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Abstract

Edge computing promises lowlatency computation by moving data processing closer

to the source. Tasks executed at the edge of the network have seen a significant increase

in their complexity. The demand for lowlatency computation for delaysensitive applica

tions at the edge is also increasing. To meet the computational demand, task offloading has

become a goto solution where the edge devices offload tasks in part or whole to the edge

servers via the network. But the performance fluctuations of the network largely influence

the data transfer performance between edge devices and the edge servers, which negatively

impacts the overall task execution performance. Hence, monitoring the state of the net

work is desirable to improve the performance of task offloading at the edge. However,

networks are usually dynamic and unpredictable in nature, particularly when the network

is being used by multiple other devices and applications simultaneously, resulting in data

flows competing with each other for the resources.

In this study, we are leveraging InbandNetwork Telemetry (INT) to collect finegrained

network information to introduce network awareness in task scheduling for edge comput

ing. Legacy methods of network monitoring that rely on flowlevel and portlevel statistics

are often limited by their collection frequency which is typically in the order of tens of sec

onds. In contrast, INT can improve the collection frequency by working at the line rate and

granularity of information by capturing network telemetry at packetlevel directly from the

data plane. Such capabilities enable the detection of subtle changes and congestion events

in the network, thereby increasing the network visibility while making it more accurate. We

implemented a networkaware task scheduler for edge computing that uses highprecision

network telemetry for task scheduling. We experimented with different workloads under

various congestion scenarios to assess the impact of our networkaware scheduler on the

task offloading performance. We observed up to 40% reduction in data transfer time and
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up to 30% reduction in the overall task execution time by favoring edge servers in uncon

gested or relatively less congested areas of the network when scheduling the tasks. Our

study shows that network visibility is an important factor that can improve task offload

ing performance. The results so obtained supports our motivation to use INT for obtaining

finegrained highprecision network telemetry to create a networkaware task scheduler for

edge computing.
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Chapter 1

Introduction

Smart devices and IoT have taken over our society by storm. These devices are ubiqui

tous and have found their use cases in every household, smart city, etc. Advancements in

technology such as 5G has made it possible to have highcapacity, lowlatency connectivity

among such devices. Such advancements have given rise to numerous other applications

of smart devices such as fleet management, industrial automation, etc. At the same time,

software applications running on these devices have become more and more complex, de

manding more compute resources and requiring latency guarantees [2]. Offloading tasks is

one of the solutions used to meet the computational demands of such applications.

In the legacy data offloading paradigm, the edge devices offloaded their tasks to the

datacenters to meet the computational demands of the applications. This paradigm comes

with a drawback as the data required for computation has to be transferred to the datacenters

located far away from the edge devices, which will increase the overall latency due to an in

crease in communication delay, significantly reducing performance. This is a dealbreaker,

especially as the increasing number of applications are demanding lowlatency computa

tion. Edge computing solves this problem by bringing the computation closer to the source.

Communication delay is vastly reduced by being closer to the source, allowing faster data
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transfer time between the device and the compute nodes [3]. Reduced congestion due to

this proximity also reduces the amount of data that needs to be transferred overall. This

results in reduced overall latency of computation as demanded by the applications at the

edge [4].

However, just having closer proximity does not mean an end to all of the problems.

Though the proximity improves the network conditions in comparison to communicating

and offloading tasks to a remote datacenter, congestion still can significantly affect the

performance of edge computing workloads. This is because the network is usually shared

among many other devices and services that are actively utilizing resources simultaneously.

Such a situation can create contention of network resources between edge computing traf

fic and regular traffic leading to increased congestion. Such congestion can increase the

network latency, thus degrading the data transfer performance during task offloading sig

nificantly. Such issues can potentially create problems for initiatives taken by FABRIC

Testbed [5] and ESnet’s High Touch Project [6] in the field of scientific edge computing for

research. Scientific edge computing workloads will share the same underlying resources of

the research network with existing regular traffic, potentially causing performance issues

in such highprofile initiatives.

Edge devices offloading tasks to the edge servers or edge compute nodes would require

selecting one or more servers to offload the tasks. Due to the reasons mentioned above, it is

not always optimal to select the edge nodes based on the physical proximity. Also, always

selecting nearest nodes for task offloading would result in high network resource usage at

the edge of the network resulting in poor data transfer performance between edge devices.

In order to overcome this problem, it is desirable to monitor subtle changes in the network

so that an optimal decision about edge server selection can be made during task scheduling.

But monitoring the network at such a finegranular level and accuracy is easier said than

done due to its unpredictable and dynamic nature. Technologies such as Simple Network
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Management Protocol (SNMP) [7], NetFlow [8], etc can be used for the purpose of network

monitoring at port or flowlevel. However, these solutions have lower reporting frequency

which is usually in the order of tens of seconds. Hence, these solutions cannot capture subtle

and transient network changes and congestion events required to make precise inferences

about the network status.

Inband Network Telemetry (INT) is a novel method of collecting network metrics at

the packet level. Network devices with programmable data plane can attach finegrained

network performance metrics to the packets as it traverses through those devices. Informa

tion such as device ID, ingress/egress port, queue usage, hop latency, etc., can be directly

embedded to any target packet using INT. Since INT works at the line rate, the metrics can

be obtained at really high frequency. This increases our ability to detect subtle changes

in the network and make precise inferences about the network conditions that the sched

uler can use to make optimal task scheduling decisions. In this study, we use INT as a

network monitoring paradigm to build a networkaware scheduler to schedule tasks at the

edge optimally [9]. We compare different types of edge computing workloads under differ

ent background traffic conditions to see how our method of edge node selection performs

against other baseline selection strategies.

Following are the key contributions of this study.

• We devise a network monitoring paradigm combining INT along with an active prob

ing mechanism to achieve highprecision network visibility while keeping the system

overhead at a minimum.

• We introduce techniques to estimate network path delay and bandwidth usage based

on the queue usage information of each device.

• We propose a networkaware scheduling algorithm based on INT for edge computing

to optimally schedule tasks by avoiding potentially congested paths to minimize data

transfer completion times.
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• We evaluate the performance of our networkaware scheduling method through ex

tensive experiments using various workload types and congestion scenarios.

This thesis is organized into various chapters. Chapter 2 provides the background on

edge computing, programmable data planes, P4 programming language, and Inband Net

work Telemetry (INT). It also explores related literatures in the field of task scheduling for

edge computing and INT. Chapter 3 goes into the details of the proposed networkaware

task scheduler exploring the inner working of the scheduler in different phases, and also

provide details on node ranking methods used. Details regarding the experiments and out

come analysis are provided in chapter 4. Finally, the conclusion of the study and possible

future works are discussed in chapter 5.
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Chapter 2

Background and Literature Review

2.1 Edge Computing

The amount of data generated at the edge of the network has been growing exponentially, fu

eled by the explosive growth and adoption of intelligent IoT devices. According to the study

done by IoT Analytics, the number of IoT devices connected to the network is expected to

reach 12 billion by 2021 and 27 billion by 2025 [10]. To keep things in perspective, the

current population of the earth is about 7.7 billion. That is equivalent to having nearly two

connected IoT devices per person in 2021. These devices have various use cases in smart

homes, automation, logistics, health industry, smart city, gaming, etc. Newer connectivity

technology such as 5G drastically reduces the communication latency providing a suitable

environment for IoT [11]. This is expected to push the adoption of IoT devices to greater

heights. The amount of data generated by such a massive number of connected devices is

astronomical.

Cloud computing has been the goto solution when additional compute resources are

required for performing certain tasks which the local machines are not capable of providing.
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Edge devices

Edge Nodes

Cloud

Figure 2.1: Overview of edge computing.

Cloud resources usually reside on the data centers that are multiple hops away from the

edge of the network and possibly in different physical regions. Hence, the data needs to

travel a much longer distance, which adds to the overall computation latency. A study of

network roundtrip latency in Azure between different data center regions shows that the

latency increases as the distance between the data center increase [12]. This shows that

the application requiring realtime or near realtime data will suffer from higher latency to

reach the cloud. Considering the enormous amount of data generated by the connected IoT

devices at the edge, it would be efficient and desirable to have the processing capability at

the edge of the network. This boosts the performance of the edge applications and saves

resources wasted due to transferring the data to the remote data centers. Edge computing

is a paradigm where the compute resources are closer to where the data is generated at the

edge of the network. Figure 2.1 shows the overview of edge computing where the edge

devices are closer to the edge nodes than the cloud.

Although all IoT applications benefit from edge computing, the applications that re

quire latency guarantees are the ones that benefit the most. For example, a security camera

device with realtime object detection might not have enough computational resources on

board and needs to offload the task to the compute nodes. However, task offloading comes



7

with an added cost of communication, adding uncertainty to the overall processing latency.

This means that the device might no longer guarantee realtime processing if it uses cloud

offloading. On the other hand, edge compute nodes at the edge of the network have lower

network latency than the cloud. Offloading to the edge device would maximize the chance

of meeting the desired latency guarantee and hence realtime object detection.

Edge computing has seen its use in widerange applications in areas such as distributed

computing [13], big data processing [14], serverless computing [15], etc. that benefits from

the proximity of computational resources. Although edge computing can bring computation

resources closer to the data source, these resources are usually limited. In comparison, cloud

computing can virtually provide unlimited resources on demandwhich is impossible in edge

computing. Hence, not all applications and workloads can make use of edge computing.

2.2 Programmable Data Plane

Networking devices can be divided into two distinct planes: the control plane and the data

plane. The Control plane decides the path that the incoming packet will take. On the other

hand, the packets are actually forwarded through the data plane. Traditional networking de

vices are fixed functionality devices, making them extremely inflexible. Modern network

requirements in terms of agility, security, management, etc., are not met by such fixed

functionality devices. This led to the introduction of SoftwareDefined Networking (SDN)

which has fully decoupled control and data plane [16]. Though SDN provides a flexible

control plane through protocol such as OpenFlow [17], the data plane is still fixed in func

tionality. Let us consider a scenario where a researcher wants to develop their own transport

protocol. But even with SDN, the data plane protocols are fixed, which means these de

vices will not be able to process the new transport protocol. For this, the researcher may

have to build the custom ASIC and program them to support their protocol. This adds to
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Figure 2.2: Very Simple Switch (VSS) architecture [1].

the cost and time required for such research. Programmable data plane addresses this prob

lem and hence is an important stepping stone towards realizing nextgeneration networking,

services, and applications [18].

Programmable data plane, as the name suggests, provides a way to express custom

packet processing routines directly in the data plane [19]. This makes it possible to de

sign and experiment with newer protocols and also provides an ability to create, add, and

update the packet data in the device itself at a line rate. For instance, we can use pro

grammable data plane devices to embed network telemetry data directly into the packets to

create highprecision network monitoring that works at a line rate. Figure 2.2 represents a

primitive Very Simple Switch (VSS) architecture. This architecture provides a highlevel

idea of how a programmable switch works. VSS receives the packet from one of its ports

or from the port connected to the CPU directly. Then the packet goes through the parser

stage which feeds the parsed packet into the programmable matchaction pipeline. Finally

the packets are reconstructed in deparser stage and queued for egress. The egress can send

the packet through one of the output ports, recirculate it to the parser stage, send it to port

directly connected to CPU or drop it. We further explore the use cases of data plane pro

gramming using INT in the related study section.
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2.3 P4 Programming Language

Though it is possible to program the programmable data plane devices using lowlevel lan

guages, having a specific programming language that properly reflects the internal architec

ture makes it much easier to program them. ProtocolIndependent Packet Processors (P4)

is currently the most widely adopted programming language for data plane devices [20].

It provides programming constructs that are specific to the underlying hardware making it

easier to program the device data plane [21].

P4_16 is the current standard of the P4 programming language [22] known as Portable

Switch Architecture (PSA). Figure 2.3 shows different stages of PSA at a high level. When

the device first encounters a packet, it goes through the parser stage. In this stage, the

packet data is parsed to extract required headers and payloads. At ingress, programmable

matchaction pipelines are used to provide generic packet processing capabilities, usually

to make packet forwarding decisions. A Matchaction pipeline is an abstraction where

packets are matched against specific entries in the device table, and corresponding actions

are executed. The tables required for this are populated and controlled via the control plane.

Then the packet, along with its metadata, are buffered and optionally can be replicated

to send to multiple egress ports at the packet buffer and recirculation stage. Before the

packets are emitted from the egress port, they go through an additional round of egress

matchaction pipeline. At this stage, addition/changes to the payloads can be performed,

such as attaching telemetry information to the packets. Finally, the packet is deparsed at

deparser stage and queued to exit from the specified egress port. Each packet goes through

these stages whenever they are encountered by programmable data plane devices running

P4 program during their traversal through the network.
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Figure 2.3: Stages of Portable Switch Architecture (PSA).

2.4 Inband Network Telemetry

Flowlevel and portlevel statistics collection using technologies such as SNMP, NetFlow,

etc., have been a primary method of network monitoring. These techniques work well for a

longer monitoring period to uncover network performance issues but fall short in detecting

issues in a very short monitoring period. Due to such limitations, monitoring based on such

techniques is not able to capture transient network events [23]. INT is a method collecting

network telemetry information directly from the data plane. This technique enables moni

toring of the network at the packet level. On top of that, the monitoring can be done at the

line rate of the device, which means the monitoring performance can scale automatically as

the line rate of the device increases. Hence, INT provides access to precise network infor

mation at a very high frequency addressing the limitations of existing monitoring methods.

We discuss the details of using INT in chapter 3.

Bmv2 is a reference P4 software switch [24] written in C++11. It takes in JSON as an

input which is generated by compiling P4 programs, and uses it to define packet processing

behavior as specified by the P4 program such as INT. Bmv2 is not a productiongrade switch

and is mainly used for programmable data plane research purposes.

2.5 Literature Review

Task scheduling at the edge is one of the fields of active research. Authors have used vari

ous metrics such as network, cache, compute, energy, etc., in building efficient scheduling
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algorithms in their research. Also, the use of machine learning, heuristicbased approaches

are widespread. Programmable data planes are relatively new though the usecases and

popularity have been growing. We believe that this is the first study that makes use of pro

grammable data planes and INT to enhance task scheduling at the edge. We present various

studies related to task scheduling in edge computing and INT below.

2.5.1 Task Scheduling in Edge Computing

Executing performancecritical tasks or tasks demanding additional compute resources than

the edge device can provide requires the task to be offloaded to edge servers and compute

nodes. The selection of suboptimal edge servers for the tasks could increase communi

cation costs, drastically increasing the task completion time. It might lead to poor task

execution performance and might not meet the requirements for certain classes of applica

tions running at the edge of the network, such as realtime applications. Various research

has been done in task scheduling to improve the performance of edge computing. In order

to find optimal task scheduling policy, Liu et al. [25] propose a twostep process. First,

a decision is made whether to execute the task locally or to offload it to the MobileEdge

Computing (MEC) server. Then a decision on where to schedule the computation tasks is

made based on the queueing state of the task buffer, the execution state of the local process

ing unit, and the state of the transmission unit in order to achieve a shorter average execution

delay. An adaptive neurofuzzy inference system is employed by Rashidi et al. to predict

the availability of network and compute resources that are used to select offload targets

optimally [26]. This resulted in higher resource utilization, better qualityofservice, and

increased tolerance of network dynamics in task offloading. Chen et al. went a step forward

and studied multiuser computation offloading problems in mobileedge cloud computing

environment [27]. They used the gametheoretic approach to formulate an efficient dis

tributed computation offload algorithm that scales well as the user size increases. Energy
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efficiency is considered one of the vital parts of MobileEdge Computing (MEC). In ad

dition to having lower computational resources, the devices usually have a limited power

supply in such an environment. Zhu et al. have proposed algorithms for scheduling tasks

with strict deadlines in an energyefficient manner [28]. While edge computing brings com

putation closer to the edge devices, improving latency and reducing energy consumption,

but inappropriate cache placement and utilization can degrade the overall system perfor

mance [29]. Li et al. have proposed a cacheaware task scheduling method to solve this

issue by formulating a utility function that considers data chunk transmission cost, caching,

and cache replacement penalty. Data used for tasks are placed in the optimal edge servers

to maximize the utility value, thereby improving the performance. Even though the edge

compute servers have better capabilities than the edge devices, the resources are still gener

ally limited than that of cloud servers. Cooperation between edge servers and cloud servers

is desired when additional resources are required to complete the tasks. Zhao et al. has

proposed a cooperative scheduling scheme so that the tasks can take advantage of the low

latency of edge computing and also the abundant computational resources of cloud servers

when required [30].

2.5.2 Inband Network Telemetry

Inband Network Telemetry (INT) can be used to perform network monitoring at the packet

level. Since it can performmonitoring operations at the line rate, it becomes an excellent al

ternative to existingmonitoring systems. At the same time can provide finegranularmetrics

such as portlevel queue usage statistics, accurate delay information, etc. Such precise link

load information obtained by using INT is used by Yuliang et al. to develop High Precision

Congestion Control (HPCC) that improves the flow completion times by up to 95% [31].

Programmable data planes on top of which INT work improves the agility of the network

by allowing it to steer the traffic with great precision. These features are exploited by Lim
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et al. to improve network load balancing by quickly identifying the congestion events and

steering the traffic through the less congested paths [32]. Pelle et al. have shown that the

telemetry data obtained using INT can be used to optimally place the serverless functions

improving the performance of latencysensitive edge applications [33]. While INT can be

used to detect various events, reducing the number of events to monitor can significantly

reduce the overhead of the INT data collection. Such a programmable event detector capa

ble of reporting only selected information is designed by Vestin et al. [34]. Similarly, Kim

et al. have proposed to monitor a specific ratio of packets instead of all packets in order to

reduce overhead while maintaining the detection of all significant data plane events [35]. In

addition to the overhead of the data collection, storage and processing of a huge amount of

data received from INT becomes a challenge. Scaling such a solution becomes a challenge

when the amount of devices in the network increases. Basat et al. has proposed Probabilis

tic Inband Network Telemetry (PINT) that drastically reduces the number of INT fields

to store in each packet [36]. PINT maintains sufficiently high accuracy of measurements

though the data collection is reduced, thereby addressing the problem.
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Chapter 3

NetworkAware Task Scheduler

In this chapter, we lay down the details of our proposed NetworkAware Task Scheduler.

Figure 3.1 shows a high level architecture of our proposed system. The scheduler is a stan

dalone node in the network that carries out the selection of nodes for the offloading devices.

INT is used to monitor the network by collecting telemetry from all the data plane devices.

All of the nodes in the network sends a probe packet to the scheduler periodically. This

probe packet is used by the programmable data plane devices to inject INT payload when

it traverses through the network. These packets are then collected by the scheduler and

processed. When an edge device needs to offload some task, it sends a query requesting

optimal edge nodes to schedule the tasks. Then the scheduler processes the network infor

mation received via INT to find out the best nodes for the querying device. The scheduler

returns a ranked list containing the addresses of the best nodes. Finally, the querying node

selects the nodes from the list to offload the tasks.
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Figure 3.1: High level architecture of proposed networkaware task scheduler. (1) Probe
packet collects the INT payloads from the devices. (2) The scheduler receives and stores
the INT payload for further processing. (3,4) Edge device requests scheduler when it wants
to schedule a task. (5,6) The scheduler responds with the list of best nodes with respect to
the querying node. (7,8) Finally the querying device schedules the task.
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3.1 System Design

Figure 3.2 shows the overall design of all the system components involved in the proposed

networkaware task scheduler. Each edge node has three specific components: INT Prob

ing, Task Offload Unit, and Task Execution Unit. INT Probing takes care of constructing

the INT packets and sending them to the scheduler over the network. The Task Offload Unit

is responsible for initiating optimal nodes query to the scheduler and performing the task

offloading to the other nodes based on the received response from the scheduler. The Task

Execution Unit receives the offloaded tasks, executes them, and sends back the results to

the offloading node. Switch, or programmable network devices, has two specific modules:

INT Probe Handler and Normal Traffic Handler. INT Probe Handler attaches the INT pay

load to the probe packet, which is then forwarded to the scheduler. All the other traffic,

including ranking query from the offloading node, is handled by the Normal Traffic Han

dler. The scheduler has two specific tasks: receiving probe packets and handling the edge

nodes’ query requests. The INT Probe Receiver listens to all the probe packets and then

sends the packet to Network Mapping for additional processing. Query Server is responsi

ble for listening for the ranking query. It invokes the Nodes Ranking module receiving the

appropriate nodes list and responds to the querying node. Both the INT Probe Receiver and

Query Server uses UDP protocol in this system.

The Networkaware scheduler works in three distinct phases: INT Telemetry collection,

Network Mapping, and Ranking of nodes.

3.2 INT Telemetry Collection

In order to create network awareness in the scheduler, we need to monitor the network

and feed the data into the scheduler. In our case, the scheduler receives data from the

devices in the form of INT payloads. In order to collect such metrics, there are two possible
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Figure 3.2: Overall system design of networkaware task scheduler.

approaches. One approach is to add the information to all the packets that traverse through

the network. But there are drawbacks of this approach. Adding additional information to

each packet will increase the amount of traffic. Research shows that adding just two fields

of INT on every packet demands 4.2% of the entire packet payload in a network of just five

switches [31]. When the size of the network or the amount of INT data in each packet is

increased, this figure becomes much higher, which is entirely undesirable. Also, there is a

limit on the maximum size of a packet allowed in a network. Adding fields to every packet

might increase the size of some packets beyond the allowable limit, which can cause issues.

Due to the aforementioned reasons, we are using dedicated probe packets scheduled at

specific intervals in our approach. INT fields are attached to these probe packets rather

than adding it to all of the packets. We use the device’s internal memory to store desired

metrics using the P4 program. This P4 program calculates and stores information in switch

registers as each packet passes through the device by using ingress and egress matchaction

pipeline [37]. Given that the information stored in registers is rather updated, not added
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Figure 3.3: P4 based data plane processing pipeline of probe packets.

each time the device/switch encounters a new packet, the memory requirement is constant.

When the switch encounters the probe packet, the same P4 program attaches the data stored

in the memory to its payload and forwards it to the next hop. This way, a considerable

amount of data is reduced by adding the INT fields to the probe packet only.

Now that we have established the importance of using probe packets, we discuss the

details of the probe packet(s) in action. The first thing is that each network device running

our P4 program should be able to identify the probe packet. For this, we use UDP packet

with certain IP class field set referred to as Geneve option [38]. Our P4 program parses the

incoming packet and looks for that specific field. A packet with the Geneve option field set

to a specific value is considered the probe packet. Figure 3.3 shows the overall overview

of how probe packets are processed at each hop. We can categorize all the network pack

ets into normal and probe packets. When the network device receives normal packets, the

P4 program extracts information such as queue occupancy, ingress/egress timestamp and

updates the device’s appropriate register(s). Then the packets are forwarded without any

modifications. Although the normal packets are part of the metric collection process, they
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do not carry any collected monitoring data directly. Now when the devices receive probe

packets, all the collected telemetry information is added to the packet as a INT payload and

then is forwarded to the next hop. Then the values in registers are reset. Apart from collect

ing the payload, the probe packet is crucial in calculating the link latency information. The

previous device that encountered the probe packet attaches an egress timestamp to it. The

following device then extracts it at its ingress stage, where the timestamp is extracted and

then compared with the current timestamp to determine the link latency. This information

is used to capture the state of jitter in any link, although the link latency is relatively stable

over time. Such information can be crucial to inferring the overall status of the network be

ing monitored. Please note that we have synchronized our switch instances using Network

Time Protocol (NTP) to enable such kind of measurement. Pseudocode 1 and 2 present the

details of ingress and egress of the P4 program, respectively.

Algorithm1: Pseudocode of P4 program (Ingress) running on all network devices.
1 SW_ID: ID of the device P4 program is running on;
2 PKT : Packet currently being processed;
3 META: Metadata of the current device and packet;
4 T_FWD: MatchAction table with forwarding port information;
5 A_DROP (): Action to drop the packet;
6 Function Ingress():
7 if PKT [destination_addr] in T_FWD then
8 destination_port = T_FWD[PKT [destination_addr]][port]
9 META[dst_port] = destination_port
10 else
11 A_DROP ()
12 end
13 end

As we rely upon the probe packets for network monitoring, we must capture the infor

mation from all the available paths so that the scheduler has uptodate information about

the whole network. For this purpose, we schedule probe packets from all the available

devices in the network. Though this approach might result in some probes traveling the
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Algorithm 2: Pseudocode of P4 program (Egress) running on all network devices.
1 SW_ID: ID of the device P4 program is running on;
2 PKT : Packet currently being processed;
3 META: Metadata of the current device and packet;
4 R_max_queue[N ]: Register to record max queue length of N ports of the device;
5 R_link_lat[M ]: Register to record link latency of M neighbours of the device;
6 Fn_is_probe(pkt): Check if the packet is a probe;
7 Fn_extract_INT (pkt): Extract INT payload from the packet;
8 Fn_attach_INT (pkt, int): Attach INT payload to the payload;
9 A_FWD(pkt, port): Action to forward the packet to the given port;
10 Function Egress():
11 destination_port = META[dst_port]
12 last_queue_len = R_max_queue[destination_port]
13 current_queue_len = META[port_stats][destination_port]
14 if current_queue_len > last_queue_len then
15 R_max_queue[destination_port] = current_queue_len
16 end
17 if Fn_is_probe(PKT ) then
18 INT = Fn_extract_INT (PKT )
19 (from_swid, ts) = INT [link_info]
20 current_timestamp = META[egress_timestamp]
21 R_link_lat[from_swid] = (current_timestamp− ts)
22 INT [link_info] = (SW_ID, current_timestamp)
23 foreach sw_id in R_link_lat do
24 latency = R_link_lat[sw_id]
25 INT [SW_ID][latency].append((sw_id, latency))
26 end
27 foreach port in R_max_queue do
28 max_queue = R_max_queue[port]
29 INT [SW_ID][queue].append((port,max_queue))
30 end
31 Fn_attach_INT (PKT, INT )
32 Reset()

33 end
34 A_FWD(PKT, destination_port)
35 end
36 Function Reset():
37 foreach port in R_max_queue do
38 R_max_queue[port] = 0
39 end
40 end
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Figure 3.4: Comparison of sampling of egress port for queue length at 100ms and 1s.

same section of the network more than once, or some paths might even be left out, we leave

the optimization of the probing path to future work. Apart from path selection, probing

frequency is another important criteria to consider. In this study, we are focusing on high

frequency network monitoring. Figure 3.4 compares the queue length sampled from egress

port at two different rate: 100ms and 1s. As we can see from the figure, having a lower

sampling period captures subtle changes in the network. Having a higher sampling period

means greater loss of network information. That means SNMPwhich has a sampling period

of tens of seconds, has a lower chance of capturing subtle network statistics. Hence we have

set our probing interval to 100ms. Due to our testbed’s limitations, we could not reduce the

probing interval further than this in the current study. Hence, we have 10 probe packets per

second traversing through any specific path at any given time (considering the path opti

mizations) which results in a considerable reduction in the network overhead compared to

the scheme where INT payload is added to every packet traversing the network.
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3.3 Network Mapping

The purpose of the networkaware scheduler is to serve queries from the devices and pro

vide them with a list of the best available nodes. In order to be able to do that, the scheduler

needs to learn the overall network topology and status of each device in the network. This

is another purpose that is served by probing. When the device or nodes schedule a probe

packet, the INT payload is attached to them in the order they encounter the network devices.

Let us consider a probe packet has INT payload from device D1, D5, D6 in order. With

that information, we can confidently say that devicesD1 andD5 are connected, and so are

devicesD5 andD6. Also, the devicesD1 andD6 are connected viaD5. This information

is represented in the scheduler as a graph of connected nodes. Each node in the graph rep

resents specific devices, and the information it holds corresponds to the INT data received

from the probe. Every probe received by the scheduler updates the appropriate nodes in this

graph.

The scheduler runs a graph traversal between the querying node and all the available

edge servers to serve the query from edge devices. This way, the scheduler tracks down

all the devices and paths between edge devices and the edge servers. Let us consider an

example where we have three edge devices and nodes, namely E1, E2, and E3. When the

scheduler receives the query from E1, there are two possible offload points: E2 and E3.

Then scheduler runs graph traversal to find out the network devices and path between E1,

E2 andE1, E3 respectively. Now the scheduler quantifies the network state between those

two possibilities and ranks the list of results with it. Finally, the results are returned to the

querying edgeE1 device. The device will then make the edge server selection based on the

results.
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Figure 3.5: Max queue length of egress queue at different bandwidth utilization levels.

3.4 Methods of Ranking the Nodes

It is clear from above that the scheduler needs a method to rank the available nodes based

on the network conditions with respect to the querying node. In our study, we present

two ranking methods. In the first method, available nodes are ranked based on delay with

respect to the querying node, and in the second method, bandwidth is used as a metric for

ranking the available nodes. This means the selection can be made based on the lowest

delay between nodes or the highest bandwidth availability between the nodes. In another

approach, the scheduler can optionally return a list of all the edge nodes along with their

bandwidth availability and delay from the querying node so that the querying node can

make its own decisions. In this study, we focus on the scheduler making decision based on

the delay and bandwidth availability and leave the latter approach for future work.

3.4.1 Delaybased Node Ranking

A packet can experience two different kinds of delay when traversing through the net

work. It can experience a delay in the link and in the device/hop itself. For formally

defining the delay that we are considering in this case, let us consider a network consist

ing of a set of edge devices and servers E, a set of network devices D. A set of links
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Figure 3.7: Inference from figure 3.5 and 3.6 that delay increases as the queue occupancy
increases.
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L connects all the edge devices, servers, and network devices. Let us consider two edge

nodes En and Em where En, Em ∈ E are communicating, and we want to calculate the

delay between these devices. Communication packets between the edge nodes traverses

through arbitrary number of network devices and switches H1, H2, . . . Hk ∈ D and links

L1, L2, . . . Lk ∈ L. Then, we can calculate oneway delay between the communicating

nodes as Delay(En, Em) =
∑k

i=1 delay(Li) +
∑k

i=1 delay(Hi). We are already calculat

ing the link delay Li using the probe packets as discussed in section 3.2. We are interested

in calculating the hop latency that completes the total latency calculation required for a

delaybased ranking scheme.

In order to infer the amount of delay each packet experiences at each hop, we use queue

occupancy information received from the probe packets. Typically, increased queue occu

pancy in any device would mean that the packet would potentially experience more delay

when going through that device. Our study found that minimum queue and average queue

occupancy information is inconclusive to infer the delay experienced by the packets. The

reason is that the occupancy is usually zero, which means that minimum queue occupancy

would be zero during most of the measurement intervals. Hence, average queue occupancy

is also pulled towards zero. Therefore, we rely on maximum queue occupancy for the trend

inference. Figure 3.5 and 3.6 gives us information about how the queue occupancy indicates

the delay experienced by the packets in a network device when the bandwidth utilization

is increased. For this experiment, we used Behavioral Model (Bmv2) switch, which is

an experimental reference software switch that supports P4 in Mininet. Please note that

Bmv2 is an experimental switch and has performance limitations which is not the case for

the productiongrade switches. For this reason, we define our maximum bandwidth to be

20 Mbps, 10ms link delay in a Mininet network of two hosts connected by Bmv2 switch.

Fixedrate iperf transfers were executed between two hosts. That is, 50% bandwidth uti

lization would correspond to setting iperf transfer to 10Mbps. The Bmv2 switch is running
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our P4 program that stores the maximum queue occupancy between the probing interval to

the switch registers. We set the probing interval to 100ms. The values in the registers are

reset after encountering the probe packet to enable registers to track maximum queue occu

pancy of another 100ms interval. During the same time, we run the ping tool to calculate

the endtoend delay between the hosts. We run the transfers mentioned above for 300 sec

onds for each bandwidth utilization and record the maximum queue occupancy and average

pingbased delay for that period.

From the figure 3.5 and 3.6, we can see that the maximum observed queue occupancy

and delay experienced by the packets increases significantly as the bandwidth occupancy is

increased. Figure 3.7 shows the inferred relation between delay experienced by each packet

at egress at various queue occupancy levels. Also, we can see that packets in the queue in

crease sharply when the bandwidth utilization exceeds 50%. We can see a similar trend in

endtoend delay. The delay stays between 40− 60ms which is closer to the normal RTT of

about 40ms up until the bandwidth utilization reaches 80%. A sharp increase (about 6x) can

be seen as delay reaches 250ms when the bandwidth utilization exceeds 80%. This shows a

positive correlation between the maximum queue occupancy and the delay experienced by

the packet. We exploit this correlation to quantify delay from the maximum queue occu

pancy observed from the INT data. We introduce a conversion factor k to linearly convert

the queue occupancy to delay observed. Our experimental evaluation showed that the value

of k = 20ms performs better in inferring the delay experienced by the packets in the net

work device in our topology resulting in better performance of the networkaware scheduler

overall. More work can be done in the future in regards to finetuning this parameter. Algo

rithm 3 shows the overall ranking process using the delay between the edge servers and the

querying node. First, the network graph representation created by the scheduler is queried

to get all the edge nodes and servers reachable via the querying node upon receiving the

query. The method, as mentioned earlier, is used to calculate the overall delay by summing
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up the link delay and the hop delay at each link and network device. The list of the nodes

is then sorted using the delay factor so calculated before sending the results to the querying

node.

Algorithm3: Sort the edge servers based on the overall network delaywith respect
to the querying edge node.
Result: Set of edge nodes ranked by delay (N)

1 en = Edge node initiating the query ;
2 G = Graph representation of the network ;
3 E(G, en) = Edge nodes reachable from en in G ;
4 L(en, ei) = Get links between given edge nodes ;
5 H(en, ei) = Get hops between given edge nodes ;
6 D(li) = Delay in the link li ;
7 Q(hi) = Max queue occupancy of hop hi ;
8 S(A) = Sort the given array A by delay ;
9 N = [ ] (Array of result nodes initially empty) ;
10 k = Queue occupancy to latency conversion factor ;
11 foreach ei ∈ E(G, en) do
12 totalLinkDelay = 0;
13 foreach li in L(en, ei) do
14 totalLinkDelay += D(li);
15 end
16 totalHopDelay = 0 ;
17 foreach hi in H(en, ei) do
18 totalHopDelay += k ∗Q(hi);
19 end
20 ∆ = totalLinkDelay + totalHopDelay;
21 N.append((ei,∆))

22 end
23 N = S(N) ;
24 return N ;

3.4.2 Bandwidthbased Node Ranking

As seen from the figure 3.5, there is a positive correlation between the maximum queue

occupancy and bandwidth usage. We use this correlation to formulate a bandwidthbased

node ranking scheme. To make it easier to formulate, let us consider two nodes where
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En, Em ∈ E are communicating, and we are interested in inferring available bandwidth

between them. The packet traverses through links L1, L2 . . . Lk ∈ L and network devices

D1, D2 . . . Dk which has available bandwidth B1, B2 . . . Bk respectively. Its easy to see

that the available bandwidth between En and Em is the minimum available bandwidth in

the link represented by throughput(En, Em) = min({B1, B2 . . . Bk}). This is because the

bottleneck link bandwidth is the maximum bandwidth achievable in data transfers between

any devices. This means available bandwidth B1, B2 . . . Bk is negatively correlated (posi

tively correlated with usage) with the queue occupancy Q1, Q2 . . . Qk. Hence, we can say

that the network device with maximum queue occupancy is the bottleneck that defines the

overall communication bandwidth between communicating edge devices. Then the sched

uler uses this information to sort the nodes based on the available bandwidth and sends the

response to the querying node similar to the algorithm 3.
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Chapter 4

Experimental Analysis and Results

In this section, we provide the details on the experiments carried out in this study and dis

cuss the obtained results. Mininet is used to emulate the experimental network. Mininet

is a network emulator capable of emulating large networks used usually for research pur

poses [39]. The main goal of Mininet is to ease the SDN research by providing tools to

emulate a large network in a single computer for rapid prototyping. It uses Linux network

namespace to provide processbased virtualization to create multiple hosts on a single ma

chine. The current version of Mininet also has experimental support for distributing the

network topology among multiple clusters for significantly larger experiments [40].

Each virtual host in the network runs probing, and experimental compute offloading ap

plication services. Behavioral Model (Bmv2) is that standard reference P4 software switch

used which provides connectivity among all the virtual hosts in the network. All instances

of the switch are running the P4 program required for this experiment. Due to the multiple

instances of hosts, switches, and multiple services used per virtual hosts instance, we need

to scale out the experiments for better performance. For this, we used the cluster support

in Mininet to scale our experiments to multiple physical servers. Figure 4.1 shows this

topology with 8 nodes and 12 Bmv2 switches used in our experiment. This setup runs on
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Figure 4.1: Experimental topology realised in Mininet. Node (6) acts as networkaware
scheduler. Other nodes acts as edge devices or servers. Edge devices offloads tasks to the
edge servers and edge servers execute the tasks.

four physical servers, each with four core CPUs and 32 GB RAM with Ubuntu 18.04 as

the Operating System. We also use HP Procurve switches to provide physical connectivity

between the servers.

As shown in figure 4.1, node 6 acts as the networkaware scheduler. It can both receive

probe packets and also serve ranking queries from the other nodes. We have two additional

services running in all of the nodes. The probing service is configured to send probe packets

to the scheduler at specific intervals from all nodes except the scheduler itself. Another

experimental compute offloading module is installed on all the nodes. At any given time,

nodes can act as edge devices that can request offloading or edge servers that can execute the

offloaded tasks. All of the mentioned services are implemented in the Python programming

language. All of the switches in the topology are running our P4 program to handle the probe

packet as shown in pseudocode 1 and 2.
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Type Data Size (KB) Execution Time (ms)
Very small (VS) 0  1000 0  2000

Small (S) 1500  2500 2500  4500
Medium (M) 3000  4000 5000  7000
Large (L) 4500  5500 7500  9500

Table 4.1: Data size, execution time for different workload sizes used in the experiments.

In order to evaluate the performance of the proposed INTbased task scheduler, we

compare it with two different scheduling strategies: nearest node(s) scheduling and ran

dom node(s) scheduling. In the nearest nodes(s) scheduling strategy, the edge devices al

ways schedule the tasks to the nearest nodes only in the pursuit of achieving lowlatency

communication. Since all the links have a 10ms delay, we can see that the nodes that are

minimum hops away are the closest ones to each other. For example, nodes 3 and 4 are the

closest ones to each other in figure 4.1. Since we assume that we know the network topol

ogy beforehand, we calculate the nearest nodes ahead of time for simplicity. In the random

nodes(s) scheduling strategy, as the name suggests, the nodes are selected at random by the

offloading device as task offload targets. This strategy simulates the random load balancing

of the tasks compared to the nearest nodes(s) scheduling strategy.

We used two different workload types for our experiments that represent most of the

workloads in the realworld task offloading scenarios at the edge: serverless computing

workload and distributed computing workload. Serverless computing is a paradigm where

execution happens in the cloud rather than in the local environment [41]. This allows the

developers to focus on their business logic of the function and offshore the lowlevel man

agement details such as running the function, scaling, optimizing, etc., to the serverless

computing provider. FunctionasaService is a type of serverless computing in which the

computation unit is functions. All major cloud provider provides serverless computing plat

form such as AWS Lambda [42], Azure Functions [43], and Google Cloud Functions [44].



32

In the serverless computing workload, the offloading node selects only one offloading node

to offload its tasks. This is representative of functionasaservice type workloads where

a significant amount of time is spent on the network communication providing significant

potential for optimization using edge computing. In this type of computing, the edge de

vices execute remote functions residing on the edge server to perform specific tasks that

cannot be done with the resources on board [15].

On the other hand, distributed computing workload represents all the tasks that take

more than one compute node or server to complete. The distributed system provides crit

ical advantages such as scalability, fault tolerance, performance, etc., which are required

as the demand for processing power and data storage increases. We can find abundant

applications that use distributed computing paradigm, such as federated machine learning

applications. Lowlatency communications potentially boost the performance of the appli

cations such as deep learning in a distributed environment, which makes edge computing a

viable candidate [45]. For our experiment, we configured the compute offloading module

to submit one task to a single offloading target for serverless computing and selected three

different targets to offload three different tasks for the distributed computing workload. Ta

ble 4.1 shows the different workload sizes used for the experiment. Each workload size is

defined by the amount of data transfer it makes and the amount of task execution time on

the offloading target is expected. Finally, we use iperf tool to create background traffic and

congestion scenarios in the network. We run one or two background data transfers between

randomly selected nodes for the duration of 30 or 60 seconds periodically. Since we are

comparing our method of selecting the offload targets with the other two baseline meth

ods, we ensure that all the methods are subjected to the same background traffic conditions

to ensure consistency in the experiment. We run 200 task offloading per experiment and

categorize our results according to the workload types and sizes under each node ranking

strategy. Please note that the results presented here are the part of the research published
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Figure 4.2: Average task completion time (s) of serverless computing workload using delay
based node ranking strategy for networkaware task scheduling compared to the near and
random node selection based scheduling strategy on various workload sizes: very small
(VS), small (S), medium (M) and large (L).

for this study [9].

4.1 Delaybased Node Ranking

Figure 4.2 shows the performance comparison of networkaware task scheduler using the

delaybased ranking strategywith near and random scheduling strategy onworkloads of var

ious sizes. Figure 4.3 shows the corresponding performance gain of ourmethod compared to

the nearest nodes selectionbased scheduling strategy. We observe that our networkaware

scheduling strategy using delaybased nodes ranking yields performance between 17−31%

on the various workload sizes. Results show that the performance gain is highest for the

workloads of the smallest size. This means that this strategy is well suited for smaller work

loads with low total data transfer and execution time. Similarly, figure 4.4 and 4.5 show

a comparative analysis of average task completion time and performance comparison for

the distributed computing workloads, respectively. The networkaware scheduling outper

forms nearestnode and random nodes selectionbased scheduling strategies regardless of

the workload sizes. The performance gain of networkaware strategy over other strategies
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Figure 4.3: Performance comparison between networkaware scheduling using delaybased
nodes ranking strategy and nearest node selectionbased scheduling strategy for various
workload sizes: very small (VS), small (S), medium (M) and large (L) on serverless com
puting workload.

ranges between 7− 13%, and still, the smaller workloads perform better compared to other

workload sizes. This is because smaller workloads have shorter total task completion time

and are better poised to gain from networkaware strategy. If we look at the larger work

loads, the network conditions might worsen after the task offloading has started. Then the

task’s performance will suffer for a longer time impacting overall task completion time.

Whereas in the case of smaller workloads, such impact is shortlived.

4.2 Bandwidthbased Node Ranking

Since our strategy is about reducing the communication overhead by favoring offload tar

gets that are optimally positioned with respect to the offloading device, we present average

data transfer time comparison between networkaware scheduling strategy using bandwidth

based ranking strategy and nearest nodes, random nodes selectionbased scheduling strategy

for different workload sizes in figure 4.6. The result shows that the networkaware method

performs better than both the near and random nodes selectionbased strategies. Figure 4.7

shows that the performance gain from networkaware strategy ranges between 28 − 40%
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Figure 4.4: Average task completion time (s) of distributed computing workload using
delaybased node ranking strategy for networkaware task scheduling compared to the near
and random node selection based scheduling strategy on various workload sizes: very small
(VS), small (S), medium (M) and large (L).
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Figure 4.6: Average data transfer time (s) of distributed computing workload using
bandwidthbased node ranking strategy for networkaware task scheduling compared to
the near and random node selection based scheduling strategy on various workload sizes:
very small (VS), small (S), medium (M) and large (L).

when compared against the nearest node selection strategy in terms of average data transfer

time. If we account for the average execution time of each workload as presented in table

4.1, the performance gain ranges between 22 − 35% in terms of average task completion

time. Even in this strategy, the smaller workloads have better performance gains out of all

workload sizes. We attribute this behavior to the same reason smaller workloads perform

better in networkaware scheduling using delaybased ranking strategy in 4.1. For exam

ple, let us take three different transfers T0, T1, and T2 as shown in the figure 4.8 where

available bandwidth between the nodes is decreasing over time. All transfer starts at t0 but

ends at a different time t1, t2, and t3 respectively. T0 is shortlived, followed by T1 and

T2, respectively. We can see that decreasing bandwidth availability between the nodes over

time affects the transfer with the longer transfer time as those transfers cannot be resched

uled to a different node once it starts. This results in the degraded performance for such

transfers. Use of SDN to change the paths of such transfer on the fly using a control plane

is a possible approach to solve this issue. We leave the study and implementation of such

optimization for future work.
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Figure 4.9: Impact of probing frequency of average data transfer time of the scheduled tasks
under different traffic conditions.

4.3 Impact of Probing Frequency

We are using probe packets to extract INT metrics from every network device that helps

make the scheduler networkaware. We can run probing at specific intervals. In this sec

tion, we evaluate the impact of probing frequency on the performance of networkaware

task scheduling, specifically task completion time. Changing the probing frequency means

increasing or decreasing the time between the probing, which would change how frequently

the network statistics are updated in the scheduler that receives the probe packets. This has

nothing to do with the actual working of the probe packets themselves. Our rationale for

using programmable data planes and INT is that we can make network monitoring fast and

precise enough to detect the subtle changes and congestion events. Hence, we hypothesize

that a higher frequency of probing should increase the chances of the scheduler to detect

those subtle changes that might lead to better performance.

For this evaluation, we choose probing intervals of 0.1s, 5s, 10s, 20, and 30s where 30s is

in the range of typical SNMP polling interval. Distributed workload using bandwidthbased

ranking strategy is used under two different traffic scenarios: Traffic 1 and Traffic 2. Traffic

1 uses a mediumsized workload and has background traffic that changes less frequently.

For this, we run three iperf transfers between randomly selected nodes at the distance of
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10 seconds from each other. Each of the transfers runs for 30 seconds which is followed

by a 30 second sleep. Traffic 2 uses a small workload size and has background traffic that

changes much more frequently than Traffic 1. This is to simulate the more dynamic nature

of the network. Same as before, we run three different iperf transfers between randomly

selected nodes started at the gap of 10 seconds from each other with 5 seconds of transfer

duration followed by 5 seconds of sleep.

Figure 4.9 shows the results of this experiment. A lower probing period or higher prob

ing frequency seems to lower the average data transfer time resulting in higher performance

gains on both Traffic 1 and Traffic 2 scenarios. Analyzing the data from the figure, we can

see that the transfer takes 12.5 seconds to complete under Traffic 2 conditions when the

probing is 0.1ms. The same transfer takes about 15 seconds to complete when the probing

period is 30 seconds which is about 20% increase. It indicates that having a high probing

frequency increases the likelihood of capturing subtle changes in the network, enabling the

scheduler to make more optimal choices of the targets. This result further supports our

rationale of using highfrequency INTbased network monitoring over SNMP or NetFlow

to create a networkaware scheduler. Due to the limitations observed in our distributed

Mininet testbed, we capped our minimum probing interval to 0.1s. Hence, we leave mini

mum probing period optimization to the future work.
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Chapter 5

Conclusion and Future Work

Inband Network Telemetry (INT) provides a mechanism of obtaining highprecision net

work telemetry directly from the data plane at the line rate. The information obtained is

crucial to detect subtle changes in the network, which increases the ability to detect network

congestion events more precisely with high accuracy. It increases the network visibility,

which is not possible using the traditional form of network monitoring such as SNMP, Net

Flow, etc. In this study, we proposed a networkaware task scheduler for edge computing

that leverages INT. The scheduler uses the data obtained from the INT to infer the network

conditions in order to optimally select the edge servers for task offloading such that overall

task completion time is decreased, improving performance. We proposed a scheme where

the production traffic is used only to update the telemetry data within the network device

but is not affected at all during the INT data collection process. Instead, we use specially

crafted probe packets to periodically collect the INT data from each network device with

programmable data plane capabilities. The scheduler was subjected to various experiments

running server selection strategies using our proposed methods of node ranking under dif

ferent workloads. We observed that compared to the baseline strategies, networkaware

strategy leads up to a 40% reduction in average data transfer times and up to 30% reduction
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in average task completion times. This shows that increasing the network visibility with

INT for task scheduling at the edge yields promising performance improvements.

The current version of the scheduler only considers the network conditions for making

the server selection decisions. In the future, we will enhance it with compute availability to

ensure that load is balanced evenly among available resources. Also, the scheduler is cur

rently centralized. This can be a possible source of a bottleneck or single point of failure. In

the future, we plan to adapt a distributed scheduler approach by investigating the possibility

of using the network devices to store all the required information so that the edge devices

can omit communicating with the centralized scheduler. Considering the heterogeneous

edge server environment is another promising direction for future work where tasks to be

offloaded may have certain hardware (e.g., GPU) or software requirements that need to be

considered while scheduling the tasks. Scheduler in the future can make use of availability

of such requirements to properly schedule the tasks. Finally, we will investigate the opti

mization of transfers between edge devices and edge servers since previous studies show

that utilizing network bandwidth can be challenging for high bandwidth networks [46–48].
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