
 

 

 

University of Nevada, Reno 

 

 

 

 

peak.gas: An R package for data wrangling and plotting trace gas concentrations from 

instantaneous output produced by benchtop instruments 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in 

Natural Resources and Environmental Science 

 

 

 

by 

Jacob Anderson 

Dr. Benjamin W. Sullivan/Thesis Advisor 

December 2021 

 



THE GRADUATE SCHOOL 

We recommend that the thesis  

prepared under our supervision by  

entitled

be accepted in partial fulfillment of the 

requirements for the degree of 

Advisor  

Committee Member 

Graduate School Representative 

David W. Zeh, Ph.D., Dean 
Graduate School 

  



 i 
 

Abstract 

1. Some analytical scientific instruments, such as infrared gas analyzers (IRGA), elemental 

analyzers (EA), gas chromatographs (GC), and flow injection analyzers, provide 

instantaneous output of timeseries data but may require further processing by the user to 

estimate injected standard or sample concentrations. Such processing can be time-

consuming and prone to error. Here, we developed an open-source package (peak.gas) 

that integrates time-series data from an IRGA, used in benchtop mode (injecting discreet 

samples into a carrier gas flow network), into peak areas from which concentrations can 

be calculated.    

2. The peak.gas package was written in the open-source language R. The package is 

designed for users with varying degrees of familiarity with the R programming language. 

At its simplest, the package will produce output simply by setting a working directory 

and executing the function. The package can also easily plot instrument output for 

diagnostic purposes. There are warnings if values exceed set limits embedded in our 

functions that will alert the user to issues such as variations in standard performance 

when compared with check standards, files not properly formatted for processing, or 

standard curves not provided.  

3. When the peak.gas package is used with the associated protocol (Appendix 1) describing 

benchtop use of the LI-8100A IRGA, the functions in the package will batch process a 

folder of text files containing sample names, date and time of recording, and carbon 

dioxide (CO2) concentration. The functions identify and extract analytical peaks and 

calculate standard curves to convert peak areas into accurate CO2 concentrations 

calculated by using area under the curve (AUC). The user can view any output using the 

plotting functions included within the package.  



ii 
4. While the peak.gas package is designed to work seamlessly with the described protocol 

and instrumentation, it can be adapted by the user to different analytical instruments that 

produce similar output to the IRGA used here (sample, datetime, concentration recorded) 

regardless of compounds measured.   



iii 
Acknowledgements 

I would like to thank Dr. Paul Verburg for generously sharing his lab and equipment to generate 

data, and Dr. Elizabeth Huenupi for a previous contribution to an earlier version of the operating 

protocol presented in my thesis. I would also like to thank my advisor Dr. Benjamin Sullivan for 

his steadfast commitment towards enriching my scientific knowledge and practice. He has been 

adaptable, kind, and considerate throughout my degree even when faced with the COVID-19 

pandemic and has genuinely wanted to help me and my lab mates become the best scientists we 

can be. I would also like to thank my lab mates for their brilliant contributions and 

companionship throughout my progress and the creation of my thesis, I am honored to be a part 

of such a wonderful group of people, thank you all! 

  



v 
Table of Contents 

 

Abstract ............................................................................................................................................ i 

Acknowledgements ....................................................................................................................... iii 

Preface ............................................................................................................................................ iv 

List of Tables ................................................................................................................................. vi 

List of Figures ............................................................................................................................... vii 

Introduction .................................................................................................................................... 1 

Methods ........................................................................................................................................... 2 

Inputs .......................................................................................................................................... 2 

Outputs ....................................................................................................................................... 3 

Package development................................................................................................................. 3 

Discussion ....................................................................................................................................... 6 

References ..................................................................................................................................... 11 

Tables ............................................................................................................................................ 12 

Figures ........................................................................................................................................... 14 

Appendix 1 .................................................................................................................................... 27 

LI-COR LI-8100A CO2 IRGA Benchtop Protocol ............................................................... 27 

Reagents, materials and equipment ................................................................................... 27 

Procedure .............................................................................................................................. 27 

Best Practices ............................................................................................................................ 33 

Appendix 1 Figures .................................................................................................................. 35 

Appendix 2 .................................................................................................................................... 42 

Code........................................................................................................................................... 42 

extract.peaks........................................................................................................................... 42 

Plot.extracted ......................................................................................................................... 52 

timeseries.peaks ..................................................................................................................... 59 

Plot.timeseries ........................................................................................................................ 60 

 

  



vi 
List of Tables 

Table 1: A table of the functions contained within peak.gas and their available arguments.  

Table 2: A table describing the functions and what they output included in peak.gas   

 

  



vii 
List of Figures 

Figure 1: An example carbon dioxide timeseries IRGA text file output from an LI-8100 gas 

analyzer 

Figure 2: The first process in extract.peaks() function extracts the sample name and assigns a                 

number to preserve sample order 

Figure 3: The second process in extract.peaks() function cleaves the data at the specified cutoff 

point and assigns a replicate number to the peak 

Figure 4: The third process in extract.peaks() function summarizes the maximum peak value, 

Area under the curve, and start/stop time for each peak 

Figure 5: The fourth process in extract.peaks() function extracts the known standard 

concentrations from the data to run a calibration curve 

Figure 6. Average area under the curve values across 78 standard samples taken from incubation 

experiments plotted against the know ppm values (500, 1000, 5000, 10000, 50000), 

demonstrating how standard values form a slight upward parabolic relationship as 

known standard values increase in orders of magnitude. 

Figure 7. Average log transformed area under the curve values using 78 standard samples taken 

from incubation experiments, plotted against log transformed standard values (500, 

1000, 5000, 10000, 50000) squared. Demonstrating correction of the upward parabolic 

relationship formed with the original data(Fig 6). 

Figure 8: The fifth process in extract.peaks() function calculates and extracts the linear equation 

statistics for all files containing known standard concentrations 

Figure 9: The sixth process in extract.peaks() function checks if a file contains any standard 

curves 



viii 
Figure 10: The seventh process in extract.peaks() function orders the files by the time the sample 

was collected 

Figure 11: The eighth process in extract.peaks() function fills in linear equation statistics for files 

that didn’t contain standard curves. 

Figure 12: The ninth process in extract.peaks() function collects and calculates standard curve 

summary statistics to be displayed to the user if specified using the argument 

std.summary= TRUE 

Figure 13: An example of the final output from the extract.peaks() function 

Appendix Figure 1: Modified connector diagram taken from 

https://www.licor.com/env/support/LI-8100A/topics/8150-connect.html. 

Appendix Figure 2: Indicator panel inside the Analyzer Control Unit modified from 

https://www.licor.com/env/support/LI-8100A/topics/analyzer-control-unit.html 

Appendix Figure 3: A pathway to take in order to set your working directory within Rstudio. 

Appendix Figure 4: A sample of three peaks taken from a text file output of an LI-8100 

Appendix Figure 5: The output from running Plot.extracted(output, std.curve = TRUE) 

Appendix Figure 6: The output from running Plot.extracted(output, file = 

“vn_clear_07292021.txt”, std.curve = TRUE) 

Appendix Figure 7: The output from running Plot.extracted(output), which selected a random 

file and sample 

 

 



iv 
Preface 

This thesis is formatted for submission to Methods in Ecology and Evolution under Applications 

and Practical Tools. When submitted, the research will include coauthors so I have used the 

pronouns “we” and “our,” instead of “I” and “my”. 

  



 1 
 

Introduction 

Many scientific disciplines measure concentrations of gas or liquid analytes on 

specialized instrumentation, including atmospheric chemistry, biology and ecology, engineering, 

food and agriculture, and occupational health and safety. Despite measuring gas concentrations 

for myriad purposes, many analytical methods detect a signal associated with the compound of 

interest, such as the absorption of an infra-red light in an infra-red gas analyzer (IRGA) used to 

measure carbon dioxide (CO2) gas. When a discrete sample is injected into an instrument, the 

concentration of the analyte in the sample is equivalent to a peak created relative to a baseline 

measured when no analyte is detected. In many cases, proprietary software packages available 

from the instrument manufacturer will integrate detected peak areas. However, in other situations, 

like when an instrument is used in an application beyond the specifications associated with the 

software, analytical peaks must be integrated from instantaneous output (Kuang et al., 2009, 

Sherrod et al., 2012, Joos et al., 2008).  

The LI-COR 8100 (Lincoln, NE, USA) is designed to measure CO2 fluxes in a chamber 

over time by calculating the change in CO2 concentration (detected by an IRGA). Proprietary 

software (LI-8100A, v. 4.0.0) supports this analysis. However, when using the LI-COR LI-8100 

in a benchtop application (in which a discreet sample is injected into a CO2-free carrier-gas flow 

network), to measure CO2 concentrations of the sample, the proprietary software associated with 

the instrument (LI -8100A, v. 4.0.0) records carbon dioxide (CO2) concentrations at one-second 

intervals and allows the user to export a raw .TXT file of the instantaneous values. However, 

these instantaneous values are not integrated. Therefore, there is no single value associated with a 

given peak. Though peak areas can be integrated manually, for efficiency and to reduce mistakes, 

a pipeline to process the data output would be optimal. 



2 
Here, we introduce the peak.gas (package name and all function names are case-

sensitive) data analysis package designed to measure CO2 concentrations of samples and 

standards injected on a LI-COR 8100 in benchtop mode. We used R, an open-source platform for 

statistical computing and data visualization (R Core Team 2021). Our R package can manipulate 

and process datasets in a fraction of the time spent calculating and visualizing CO2 concentrations 

by hand, in a way that limits human induced error.  

While the peak.gas package was designed to handle CO2 analysis, the code is open-

source and can be modified to measure concentrations of any molecule using any instrument that 

analyzes discrete sample peaks along a baseline during analysis. The package automates the post-

data-collection processing by allowing the user to run the primary functions with a single 

command line. The package is available to users at 

(https://github.com/andersonjake1988/peak.gas).   

Methods 

  The peak.gas package contains four functions (Table 1) and was built using R version 

4.1.0 (R Core Team, 2021) and created using the tidyverse package (Wickham et al., 2019). 

peak.gas is designed to allow the user to quickly calculate peak height, area under the curve 

(AUC) for each peak, and concentration values (in parts per million) based on standard curves of 

known CO2 concentrations, when the standard curves are annotated in a manner consistent with 

the protocol we developed for the LI-COR LI-8100 used in benchtop mode (Appendix 1).  

Inputs 

 Files input into peak.gas processing functions (extract.peaks and timeseries.peaks (Table 

1)) should be .TXT files that are structured into 3 columns. The first column should be the test 

column which counts the number of recorded measurements starting from zero and spanning the 

length of the text file. The sample names will be included in this column, as they are 



3 
automatically spliced into it when the user inputs the annotation while using the LI-8100A 

software. The second column should be the date and time in second intervals that the 

concentration value was recorded by the instrument. The third column should be the measured 

concentration (units are pre-selected by user when running the instrument) of the molecule of 

interest, recorded by the instrument. (Fig. 1)  

Outputs 

 The output of the extract.peaks function (Table 2) takes this three column text file input 

and expands upon the information to return: file name, sample name, replicate peaks within that 

file and sample, the order the sample was run in the file, the area under the curve of each peak 

(AUC), the maximum peak height (recorded by the instrument) in each peak, the time the peak 

began, the time the peak ended, the duration of the peak, and the corrected concentration in ppm 

based on the AUC of the peak. 

 The timeseries.peaks function (Table 2) takes the three column input and outputs 4 

columns: the file name the sample belongs to, the sample name associated with the instrument 

recording, the date and time of the instrument recording, and the value recorded by the instrument 

in units set by the user when operating the instrument.   

Package development 

 After using the LI-8100, the proprietary software exports a .TXT file with the results. 

These files, when imported into R, are structured into three columns. The first column contains a 

continuous test number starting at zero and spanning the length of the file (this column also 

includes the user’s sample annotations input into the LI-COR during sample processing). The 

second column contains the continuous date and time (in second intervals) spanning the length of 

the .TXT file. The third column contains the value recorded, which depending on instrument 

setup may be raw values associated with absorbance of infra-red light or instantaneous CO2 



4 
concentration (Fig 1). The extract.peaks() function takes these data and extracts the sample names 

from the annotations in the continuous integer column into a new column, assigning each sample 

a number to preserve the order in which they were run in the case of duplicate sample injections 

(Fig 2). The function then isolates each of the sample peaks by cleaving the data at a user-

specified cut off point (the cut.off = argument in the function call,  (Table 1)), and assigning each 

peak in each sample a replicate number (Fig 3). The cut-off point sets a new baseline and should 

be specified as a point above instrument noise which can be investigated beforehand using the 

timeseries.peaks and Plot.timeseries functions to visualize any drifting baseline concerns or 

outlying data points. The AUC for each individual peak (Fig 4) is calculated using the formula 

(Eq. 1): 

 

                       𝐴𝑟𝑒𝑎 = ∑((𝑋𝑛 ∗ (𝑇𝑛+1 − 𝑇𝑛)) +
(𝑋𝑛+1–𝑋𝑛)∗(𝑇𝑛+1−𝑇𝑛)

2
)             (Eq. 1) 

 

where X is the CO2 value recorded minus the user-specified cutoff value and T is the time of 

recording. This area calculation operates on the premise that the values recorded represent a 

single point in time, but capturing the accurate area under the curve requires inclusion of the 

subfractions of time. To do this we take the area of the column of time, using change in time as 

the X component and the concentration recorded as the Y component. Then because the 

concentration values are either increasing or decreasing as we move along the X axis, the area of 

a right triangle is added to the area of the column when the value of Yn < Yn+1 and subtracted 

when the value of Yn > Yn+1. 

This package uses a calibration curve that is user-generated from injected standards of 

known concentrations to transform the LI-COR data to concentration values (in parts per million 

(ppm)). Typically, standards to be used for curve analysis are injected near the beginning of 



5 
analysis. Best practices suggest injecting standards after every 10-15 samples to “check” that the 

instrument is performing in the same manner as when the “curve” standards were injected.  Our 

functions require that the user input the key words “curve” and “check” with the standard name to 

distinguish which standards will be used in the standard curve calibration or used as check 

standards. Similarly, the function requires that the known ppm concentration of the standards 

should be indicated in the name (Appendix 1). For example, for standards known to be 300 ppm 

CO2, the names should appear similar to “300curve” or “300check.” The names associated with 

samples of unknown concentration do not have to follow a specific convention.  

We equated the AUC for each standard peak to the known standard concentration and 

interpolated unknown samples based on either linear or logarithmic equations. To do this, all 

standards containing the word “curve” are extracted from the main dataset and the concentration 

values are further extracted from the name (Fig 5). If the standards used, range across multiple 

orders of magnitude, a linear relationship may become less accurate than a logarithmic equation, 

as the relationship between peak area and known concentration may begin to form a slight 

upward parabolic trend (Fig. 6, Fig. 7). To use a logarithmic (base-10) equation, the user can 

specify method = “log” in the function call. The standards to be used to calculate the standard 

curve in each file (or log10-transformed standards, if that option is selected) are linearly regressed 

and the slope, y intercept, and adjusted r2 value are stored as a new object (Fig 8). The function 

then checks all files to make sure they contain a standards to create a standard curve (Fig 9) 

(samples of two or more concentrations containing the key word “curve”). When batch-

processing multiple .TXT files from the instrument, sometimes an individual file does not include 

a standard curve. If a file doesn’t contain a standard curve (Fig 10), the most recent standard 

curve generated within the batch file will be used (Fig 11). In the case that no standard curves 

were run, the function will generate a warning message indicating that no standard curves were 



6 
found and thus concentration data could not be calculated. Once all standards have a slope 

formula associated with them, the AUC values of samples of unknown concentration are 

transformed to ppm values using linear (Eq. 2) or logarithmic (Eq. 3) formulas: 

  𝐴𝑈𝐶(𝑝𝑝𝑚) =
𝐴𝑈𝐶−𝑏

𝑚
      (Eq. 2) 

 

  𝐴𝑈𝐶(𝑝𝑝𝑚) = 𝑒
𝑙𝑜𝑔(𝐴𝑈𝐶)−𝑏

𝑚 .         (Eq. 3) 

 

Summary standard curve statistics including mean, standard deviation, coefficient of 

variance, linear equation statistics, and mean ppm (post interpolation). These will be output for 

the user if desired by setting the argument standard.sum = TRUE (Table 1) in the function call 

(Fig 12).  

Discussion 

As technology advances, scientists may obtain more data faster than ever before. This has 

led to an exponentially increasing volume of data with time. The ability to generate large amounts 

of data has given rise to the necessity of faster data processing. By using the peak.gas package 

and the associated protocol, the user will be able to consolidate, summarize, and visualize data 

efficiently. While the code is designed to work smoothly with the LI-8100 IRGA instrument and 

our protocol (Appendix 1), there are many analytical instruments available that, at their simplest, 

provide instantaneous output of concentrations or detector signals associated with an analyte, 

such as elemental analyzers, gas chromatographs, and flow injection analyzers. With slight 

modification of the open-source code, a user can apply this package to other instruments and 

analytes. 

One strength of our package is the ability to fit, assess, and automatically apply a 

standard curve to generate ppm data of unknown samples. However, due to the automated 



7 
process, these standard curves should be investigated by the researcher to ensure proper fit of the 

standard curve. To assist in the process, we have included two visualization functions in the 

peak.gas package. The function Plot.extracted() (Table 1), is useful when determining sample 

patterns post-standard curve calibration, whereas the function Plot.timeseries() (Table 1) is useful 

in finding outliers and potential sampling errors before the standard curve is applied to the 

unknown samples. In addition to visualizing the data using the Plot.extracted() and 

Plot.timeseries() functions (Table 1), the user may set the “standard.sum” argument to TRUE in 

the extract.peaks function. In this case, the extract.peaks function will generate a summary report 

of the standard curve statistics, and the average concentrations after the curve calibration is 

applied to assist the user in determining the quality of the standard curve. 

Analytical instruments provide instantaneous output even when analyte is not detected, 

forming a “baseline” from which peaks diverge. In most cases, baselines fluctuate slightly, and 

deviations from baseline can lead to the detection of false peaks not associated with a sample. To 

eliminate false peaks, we created a feature within the extract.peaks() function that allows the user 

to customize their analysis by setting a user-specified cutoff point in the function call (Table 1). 

While the default is set at 2, the user can redefine this to any value to increase or decrease the 

baseline. This feature allows the user to set a baseline from which the peaks are integrated, 

effectively trimming noise in the baseline unrelated to sample injections that could create false 

peaks. Because the AUC of a sample is equated to an AUC of known standard concentrations that 

should bracket the sample concentration, we can assume that the calibration will remain 

consistent even with higher cutoff values than 2, so long as the low-concentration standard AUCs 

are still detected. When injecting high concentrations, a higher cutoff point may be preferred 

relative to when injecting lower concentrations into the instrument. Lower cutoff values will 

increase the risk of false peaks. It is up to the researcher to verify that the samples listed in the 



8 
output match the samples processed. If there are more samples than expected, the selected cutoff 

value may have been too low. If there are less samples than expected, the selected cutoff value 

may have been too high. 

In our experience, the baseline of the LI-8100 does not fluctuate substantially even during 

a multi-hour period of sample injections, but numerous factors could cause baselines to change 

during analysis on this or other instruments. Check standards values that differ from values 

associated with the standard curve can indicate baseline drift, among other potential problems. 

While check standards are recommended in our protocol (Appendix 1), our software also 

provides warnings to the user if one or more check standards differ from the confidence interval 

associated with the standard curve (or a user defined interval).  

peak.gas provides more accurate estimation of concentrations by using area under the 

curve to calculate standard curves. This method produces values with less variability, thus leading 

to more accurate standard curves than simply summing the measurements recorded during the 

peak range or using the maximum peak height value. Summing the measurements recorded 

during the peak range, while still accurate, doesn’t account for the true area under the peak, it 

only represents slices of the whole area. Though as instrument recording interval decreases the 

more negligible the difference between summed values and area under the curve becomes. 

Maximum peak values provided the least accuracy due to the injection duration variations 

between samples, which can change the shape of the peak substantially. One researcher may 

inject samples faster creating higher and narrower peaks, while another may draw it out creating 

shorter yet wider peaks. Even injections from the same researcher can fluctuate as they work 

through samples. In this case despite the samples having similar areas under the curve they would 

have different maximum peak values which if used to calculate concentrations produces 

erroneous results. 



9 
A powerful feature of this package is its ability to preserve the order in which the samples 

are sequentially run through the instrument regardless of annotation redundancies. When using 

summarizing functions in R, a common problem is the automatic reordering of the summarized 

output which makes it more challenging to link sampling notes with the output. By preserving the 

order in which standards and samples were injected into the instrument, we make it easier for the 

user to compare sample notes to output data and address any discrepancies (such as false peaks 

caused by an improper cutoff point, noted in the paragraph above).  

The ability of our package to process through an entire folder of text file results while 

showing a progress bar grants the user peace of mind that the function is operating properly, but 

this automation carries with it some inherent problems. If one file out of the folder contains an 

error or is not identical to the rest, the function will break down and no output will be generated. 

If an error occurs, the user will be shown an error message stating which file wasn’t formatted 

properly, and they will have to make the necessary corrections.  

This package will continue to be maintained and improved upon with community 

feedback. We hope to continue developing helpful warning messages to inform and guide the 

user to more accurate analysis. We are developing more arguments in the plotting functions to 

allow for easy baseline drift investigation. We already offer warning messages for check 

standards that fall outside of our curve equation confidence interval, though we are hoping to 

develop automatic baseline correction before peak extraction to allow for greater accuracy and 

less variability. Arguments suggested by the user community via GitHub will continue to be 

developed and added to our data processing functions to allow for greater customization for the 

user. Additionally, we intend to record and produce a video demonstrating the protocol and 

integration of the software.  



10 
In conclusion, this package will help those in that community searching for more efficient 

ways to process their gas data. The peak.gas function is but one R package in a pantheon of tools 

that are available for streamlining data processing (e.g., Ottensmann 2020, Vivo-Truyols et al., 

2005). This package development is made possible by efforts of the broader R community, which 

is committed to open-source publication, and sites like github.com that allow for easy package 

publication and utilization.   



11 
References 

Anderson J.F., andersonjake1988/peak.gas, (2021) GitHub repository, 

https://github.com/andersonjake1988/peak.gas 

 

Joos, O., Saurer, M., Heim, A., Hagedorn, F., Schmidt, M. W., & Siegwolf, R. T. (2008). Can 

we use the CO2 concentrations determined by continuous‐flow isotope ratio mass 

spectrometry from small samples for the Keeling plot approach?. Rapid Communications in 

Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐

the‐Minute Research in Mass Spectrometry, 22(24), 4029-4034. 

 

Kuang, X., Shankar, T. J., Bi, X. T., Lim, C. J., Sokhansanj, S., & Melin, S. (2009). Rate and 

peak concentrations of off-gas emissions in stored wood pellets—sensitivities to temperature, 

relative humidity, and headspace volume. Annals of Occupational Hygiene, 53(8), 789-796. 

 

LI-COR. (2021). LI-COR, Inc. https://www.licor.com/ 

LI-COR. (n.d.). 8100A and LI-8150 Soil Co2 Flux System. LI. Retrieved September 9, 2021, 

from https://www.licor.com/env/support/LI-8100A/topics/analyzer-control-unit.html. 

 

Ottensmann, Meinolf, mottensmann/GCalignR (2020) GitHub repository, 

https://github.com/mottensmann/GCalignR 

 

R Core Team (2021). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

 

Sherrod, L. A., Reeder, J. D., Hunter, W., & Ahuja, L. R. (2012). Rapid and cost-effective 

method for soil carbon mineralization in static laboratory incubations. Communications in 

soil science and plant analysis, 43(6), 958-972. 

 

The r project for statistical computing. R. (n.d.). Retrieved September 15, 2021, from 

https://www.r-project.org/. 

 

Vivo-Truyols et al. "Automatic program for peak detection and deconvolution of multi-

overlapped chromatographic signals, Part I: Peak detection", Journal of Chromatography A, 

vol. 1096 (2005) pp 133-145 

 

Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, 

Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, 

Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H 

(2019). “Welcome to the tidyverse.” Journal of Open Source Software, 4(43), 1686. 

doi: 10.21105/joss.01686. 

  

https://github.com/andersonjake1988/peak.gas
https://www.licor.com/
https://www.licor.com/env/support/LI-8100A/topics/analyzer-control-unit.html
https://github.com/mottensmann/GCalignR
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.21105/joss.01686


12 
Tables 

Table 1: A table of the functions contained within peak.gas and their available arguments. 

 

Function Arguments and 

defaults 

Description 

extract.peaks 
cut.off = 2 

Cut off value used to define when the peak should 

start and end. (Where to place the new baseline). 

method = "linear" 
Select regression method used for the standard 

curve, either "linear", or "log". 

standard.sum = F 
Specifies whether or not the user wants to output a 

summary of the standard curve statistics. 

check.stand = F 
Logical argument to specify if the user want to 

compare "check" standards to the "curve" slope. 

check.alpha = .05 
Number to set the confidence interval, defaults to 

95% confidence interval. 

ci.meth = "avg" 
Argument to compare average ("avg") check 

standards or individual ("indiv") check standards. 

Plot.extracted 
data Output from the extract.peaks() function. 

file = NULL The name of the file the user wishes to plot. 

sample = NULL The specific sample the user wishes to plot. 

std.curve = F 
A logical argument that specifies whether to plot 

the standard curve or not. 

method = "linear" 

Specify whether you want to plot the "linear" 

relationship or the "log" transformed relationship 

of standard curve data. 

timeseries.peaks none NA 

Plot.timeseries 
data output from the timeseries.peaks() function 

file  the name of the file the user wishes to plot 

sample = NULL the specific sample the user wishes to plot 

time.start = NULL option to specify when you want the plot to start 

time.stop = NULL option to specify when you want the plot to stop 



 13 
Table 2: A table describing the functions included in peak.gas 

Function Function Description Output Output Description 

extract.peaks This function will batch process a folder 

of identically structured text files, to 

combine and extract useful peak 

information. 

File_Name The name of the text file the peak was taken from. 

Sample  The name of the sample annotation created when using 

the LI-8100A. 

Replicate  Number system to indicate how many peaks each 

sample name holds. 

Order_Run  A number to indicate the order in which the samples 

were run according to the text file. 

AUC The sum of the area under each peak. 

Peak  The maximum peak value in each peak range. 

Time_Peak_Start  The time the peak started in datetime format. 

Time_Peak_End  The time the peak ended in datetime format. 

Timespan_(s)  The total duration of the peak in seconds. 

AUC_ppm  Corrected ppm values for area under the curve based on 

standards supplied by the user. 

Plot.extracted Uses output generated from the 

extract.peaks() function to provide a 

visualization tool helpful in accessing 

quality of data post processing. 

Plot A user generated plot based on arguments selected in 

the function call 

timeseries.peaks This function will batch process a folder 

of identically structured text files, to 

combine and assign file and sample 

names to each instrument reading while 

preserving the time series structure of 

the files. 

File_Name  The name of the file the sample was taken from. 

Sample  The name of the sample annotation created when using 

the LI-8100A. 

Time  The time in date time format that a concentration value 

was recorded by the instrument. 

CO2  A value recorded by the instrument specifying the 

concentration of the CO2  in units specified by user 

before measured recording.  

Plot.timeseries Uses output generated from the 

timeseries.peaks() function to provide a 

visualization tool helpful in accessing 

timeseries data before peaks are 

identified. 

Plot A user generated plot based on arguments selected in 

the function call 

    



 14 
Figures 

 

  

Figure 1. An example carbon dioxide timeseries IRGA text file output from an LI-8100 gas 

analyzer 



15 

  

 Figure 2. The first process in extract.peaks() function extracts the sample name and assigns a                 

number to preserve sample order 



16 

  

 Figure 3. The second process in extract.peaks() function cleaves the data at the specified cutoff 

point and assigns a replicate number to the peak 



17 
 

  

 Figure 4. The third process in extract.peaks() function summarizes the maximum peak value, 

Area under the curve, and start/stop time for each peak



 18 

  

Figure 5. The fourth process in extract.peaks() function extracts the known standard concentrations from the data to run a calibration 

curve 



 19 

 

Figure 6. Average area under the curve values across 78 standard samples taken from incubation 

experiments plotted against the know ppm values (500, 1000, 5000, 10000, 50000), 

demonstrating how standard values form a slight upward parabolic relationship as known 

standard values increase in orders of magnitude. 



20 

 

Figure 7. Average log transformed area under the curve values using 78 standard samples taken 

from incubation experiments, plotted against log transformed standard values (500, 1000, 5000, 

10000, 50000) squared. Demonstrating correction of the upward parabolic relationship formed 

with the original data(Fig 6).  



21 
 

  

 Figure 8. The fifth process in extract.peaks() function calculates and extracts the linear equation 

statistics for all files containing known standard concentrations 

  



22 

  

 Figure 9. The sixth process in extract.peaks() function checks if a file contains any standard 

curves 

  



23 

  

 Figure 10. The seventh process in extract.peaks() function orders the files by the time the sample 

was collected 

  



24 

  

 Figure 11. The eighth process in extract.peaks() function fills in linear equation statistics for 

files that didn’t contain standard curves.



 25 

  

 Figure 12. The ninth process in extract.peaks() function which collects and calculates standard curve summary statistics to be displayed 

to the user if specified using the argument std.summary= TRUE 



 26 

  

 Figure 13. An example of the final output from the extract.peaks() function 

 



 27 
 

Appendix 1 

LI-COR LI-8100A CO2 IRGA Benchtop Protocol 

Reagents, materials and equipment 

1. Carrier gas: N2 or CO2-free air.  

2. Carrier gas regulator valve 

3. A rotameter to control carrier gas flow 

4. Evacuated exetainers (for storing standards) 

5. Sharpie for labeling exetainers 

6. Notebook/pencil to record standard curve peak heights for later reference, sample injection 

orders and other observations or issues.  

7. Syringe. The size depends on the available volume of the sample 

a. Typically, we inject 1 mL of sample using a 1mL syringe 

b. a 20 mL syringe is used to prep standards into evacuated exetainers.  

c. Stopcocks and needles (multiple of both) 

8. CO2 standards within the range of the CO2 content of samples under analysis 

9. LI-8100A Automated Soil CO2 Flux System 

10. Computer with the current LI-8100A instrument software installed from 

https://www.licor.com/env/support/LI-8100A/software.html 

Procedure 

1. Connect the gas tank (N2 or CO2-free air) system to the LI-8100A at the “air in” port 

(Appendix Fig 1). If chamber is connected, first proceed to disconnect the hoses: to remove 

the Air In and Bellows hoses (Appendix Fig 1), slide the collar on the fittings and pull 

straight out; to remove the Air Out unscrew the fitting, same as the cable that connects the 



28 
chamber to the Analyzer Control Unit. When the chamber is disconnected, insert the hose 

from the tank to the Air In port until you feel the fitting snaps into place.  

a. Ensure the wall-power supply adapter is attached.  

b. Change the septum on the inlet apparatus if necessary. Tighten the nut down firmly 

(be careful not to over tighten as this could crack the connector tube).  

2. Start up the system 

a. Open the LI-8100A case 

b. Connect the LI-8100A to the computer in case is not connected 

c. Turn on the LI-8100A (the power and ready LEDs will light) 

d. Turn on the computer 

e. Access the LI-8100A software on the computer connected to the instrument. The 

Main Window appears.  

i. Go to the Communication tab and select Connect (Ctrl + C). You are asked 

to select the serial port to which the LI-8100A is connected, just press the 

Connect button.  

ii. Go to the Utilities tab and select Manual Controls, then select the Flow tab. 

Press the 8100 Flow OFF button (the flow of the carrier gas is adjusted 

manually and set to a known rate, the rotameter available in this setting let us 

adjust to a maximum of 0.5 LPM, however, flow rates between 0.5 and 1.5 

LPM are suggested to work well when making injections in the LI-8100A) 

f. Open the CO2-free air tank and adjust the regulator valve at ~40 psi 

g. Adjust the regulator before the rotameter at ~14 psi, and the rotameter to 0.5 LPM  



29 
h. Let the system equilibrate and the IRGA to be ready (Appendix Fig 2). The “IRGA 

ready” LED will light. This step can take 10+ minutes. We often prep standards 

during this step.  

NOTE: Steps f and g should be set previously.   

3. Data acquisition. The procedure that follows is convenient in terms of that you can directly 

log files to the PC instead of pulling files off the instrument later; and also, this will not 

impact the pump, so once it is turned off it will stay off. The stored file will be a delimited 

text file.   

a. Go to the Utilities tab and select PC Data Logging 

b. Under the Data Values select the data you are interested on collecting such as Time 

and CO2 (umol/mol) 

c. Under Field Delimiter, select Tab 

d. Under Log Frequency select 1 second 

e. Under Controls, press the Start button. You are prompted for a file name and 

destination for the log file. Note where the file is being saved to. The data logging 

begins. 

4. Annotating samples: To best utilize sample processing code (below), standards and samples 

should be annotated differently, but all included on the same run.  

a. Annotating is done by typing in text into the box at the bottom of the PC datalogging 

window and clicking “annotate.” *NOTE* you will not receive any form of 

confirmation that your annotation has been added 

i. DO NOT CLICK OK! Leave the window open.  

b. Annotating standards correctly: 

i. Note the CO2 concentration followed by “curve” 



30 
ii. Should look like “300curve”  

c. Annotating samples and check standards:  

i. Each sample should be annotated, for it will be run in triplicate. The 

triplicates do not get annotated.  

ii. If running fluxes, always run samples in the order of the flux (e.g., T0, T1, 

T2 should be in order). This prevents instrument drift impacts that could arise 

if all the T0s were run together, followed by all the T1s).  

iii. Check standards should be noted as the concentration followed by “check” 

(E.g., 300check.)  

d. Keep a paper record of your standard sample injections. Try to watch for the 

approximate peak height of the standard curves so you can visually compare with the 

check standards later in the run 

5. Injecting standards and samples: All standards and samples should be stored in exetainers 

(unless injecting straight from incubation jars) and should be injected in triplicate. If using 

exetainers, they should be positively pressurized (We usually inject 18 mL into a 12 mL 

exetainer). Standards and samples should be injected similarly. Leaving the needles in the 

septa reduces the chances of the needle becoming clogged by septa rubber (a common 

problem we’ve experienced). To do this follow the process below.  

a. Make two stopcock-needle combos:  

i. Put a needle on a stopcock. Close the stopcock. Insert the needle and 

stopcock into the septum.  

ii. Put another needle on another stopcock. Close that stopcock. You’ll insert 

that into your exetainers or incubation jars.  

b. Put a third stopcock (without a needle) on a syringe (typically this will be 1mL).  



31 
c. Put the syringe & stopcock onto the exetainer/jar with the needle/stopcock. You’ll 

now have two stopcocks next to each other with a needle on one side and a syringe 

on the other. 

d. Open both stopcocks.  

e. Withdraw > 1 mL of gas 

f. Close both stopcocks.  

g. Separate the two stopcocks. A little twist can help.  

h. While pushing up towards the 1mL line, open the stopcock attached to the syringe. 

Vent to 1mL. Close the stopcock.  

i. Attach the 1mL syringe and stopcock to the stopcock/needle in the septum on the 

IRGA.  

j. Open both stopcocks. Inject your sample at a consistent speed finishing in 1 second 

or a little under. Say “one-one thousand” to get a sense for how long it took you to 

inject. We usually inject at a pace of  “one-one-thou.” 

k. Close both stopcocks.  

l. Remove the syringe-stopcock combo. Start again at step 4d, repeating twice more. 

That standard or sample has now been run in triplicate.  

6. Check standards 

a. Check standards should be run every 10-15 samples.  

b. Check standards should be taken randomly from the standards used in the standard 

curve 

c. Store check standards in Exetainers. Inject them the same way as the samples and 

standards.  

7. Stopping and shutting down:  



32 
a. Press the stop button on the software to end the session 

b. Go to the Communication tab and select Disconnect 

c. Close the program 

d. Turn off the computer 

e. Turn off the LI-8100A 

f. Make sure the CO2-free air tank is closed 

g. Close the LI-8100A case 

8. Sample analysis:  

a. Get your data off the computer attached to the LI-COR with a thumb drive and onto a 

machine with R. 

b. Consolidate all your text file outputs into a single folder. There should be no other 

TXT files in this folder.  

c. Using Rstudio, set your working directory to the folder containing your TXT files 

using the command setwd(“path to folder”) or by clicking on session/set working 

directory/choose directory (Appendix Fig 3) 

d. Load the peak.gas package into your working environment 

e. Specify where you want to cut the peaks by setting the cut.off argument and store as 

an object such as: output <- extract.peaks(cut.off = 2) 

f. *NOTE* The cut.off point should be specified high enough to eliminate sample 

noise, if set too low there may be “false” peaks (Appendix Fig 4)  

g. After you run the extract.peaks() function you will see a loading bar as the function 

loops through the folder. Generating an output containing 10 columns (Figure 10, 

Table 2): 



33 
h. If you want to export the output to a csv use the command: write.csv(output, "Licor 

output.csv"), this will save a .csv file called “Licor output” into the folder you set as 

your working directory 

i. If you want to generate standard curve plots or look at a subsample of the data to see 

if the patterns you expect are present, you can use the Plot.extracted() function 

included in the package. Plot.extracted() has defaults set as Plot.extracted(data, file = 

NULL, sample = NULL, std.curve = FALSE, method = “linear”) 

j. for standard curve plots you simply need to specify the std.curve argument = TRUE, 

if a file name is not specified all standard curves will be plotted with check standards 

for reference, otherwise you can select a specific file name to plot (Appendix Fig 5-7) 

Troubleshooting:  

1) Stay organized. Store and inject samples in an order that makes sense. Double check 

labels.  

2) If check standards seem strange, or your standard curve has errors, you may have a chunk 

of septa in the needle that is restricting airflow. Change the needle or clear out the stuck 

bit if possible (that can often be achieved by filling a 60 mL syringe with lab air, 

attaching it to the stuck needle, and pushing hard on the plunger).  

3) Know where you saved your file.  

 

Best Practices 

To save time and prevent re-running samples, the user should run the known standard 

concentrations first to determine if adjustments or recalibration are required before processing 

their unknown samples. It is recommended that the user first look at the raw timeseries data by 

using timeseries.peaks() followed by Plot.timeseries() to investigate baseline drift and to 



34 
determine the appropriate point to set as the cut off before extracting the peaks. A known check 

standard should be run every 10 -15 samples to help with determining baseline drift.  



 35 
Appendix 1 Figures 

 

 

Appendix 1, Figure 1.  Modified connector diagram taken from https://www.licor.com/env/support/LI-8100A/topics/8150-connect.html.  



 36 
 

 

Appendix 1, Figure 2. Indicator panel inside the Analyzer Control Unit modified from 

https://www.licor.com/env/support/LI-8100A/topics/analyzer-control-unit.html.  

  



37 

 

Appendix 1, Figure 3. A pathway to take in order to set your working directory within Rstudio. 

  



38 
 

 

Appendix 1, Figure 4. A sample of three peaks taken from a text file output from an LI-8100A. 

The values are [CO2] (µmol/mol) at the time recorded, with each recording collected in second 

increments. The peaks represent a sample passing through the instrument  

  

False peaks 

created 

from 

instrument 

noise that 

are captured 

by the 

function due 

to low cutoff 

point 

selection.  



39 

 

Appendix 1, Figure 5. The output from running Plot.extracted(output, std.curve = TRUE) 

  



40 

 

Appendix 1, Figure 6. The output from running Plot.extracted(output, file = 

“vn_clear_07292021.txt”, std.curve = TRUE) 

 

 



41 

 

Appendix 1, Figure 7. Output from running Plot.extracted(output), which selected a random file 

and sample 

 

  



42 
Appendix 2 

 

Code 

extract.peaks 

 

extract.peaks <- function(cut.off = 2, method = "linear", standard.sum = F, check.stand = F, 

check.alpha = .05, ci.meth = "avg"){ 

  Peaks <- function(x){ 

    output <- vector() 

    for(i in 1:length(x)){ 

      ifelse(x[i] >= cut.off, output[i] <- x[i], output[i] <- NA) 

    } 

    output 

  } 

  numextract <- function(string){ 

    as.numeric(stringr::str_extract(string, "\\-*\\d+\\.*\\d*")) 

  } 

  filelist <- list.files(pattern = c(".txt", ".TXT")) 

  output.raw <- data.frame() 

  print("Looping through Folder:") 

  progress_bar <- txtProgressBar(min = 0, max = length(filelist), style = 3) 

  for(a in 1:length(filelist)){ 

    setTxtProgressBar(progress_bar, a) 

    b <- read.table(filelist[a], header = T, sep = "\t", fill = T, strip.white = T, check.names = F) 

    if(length(b) != 3){ 

      print(' ') 

      stop(c(filelist[a], ' is not formatted properly, 3 columns are required.')) 

    } 

    data.1 <- dplyr::mutate(b, Sample = rep(NA, nrow(b)), .before = 1) 

    names(data.1) <- c("Sample", "Test", "Time", "CO2") 

    data.2 <- dplyr::filter(data.1, Test != "--------------------------------------------------------------") 

    data.3 <- data.2 

    for(i in 1:nrow(data.2)){ 

      if(is.na(data.2[i,4])==T){ 

        data.3[i,1] <- as.character(data.2[i,2]) 

      } else { 

        next 

      } 

    } 

    file.annot <- dplyr::filter(data.3, is.na(CO2)) %>% 

      dplyr::mutate("temp" = c(1:length(Sample))) %>% 

      dplyr::mutate("Sample" = paste0(Sample, "/", temp)) 

    for(i in 1:nrow(data.3)){ 

      if(is.na(data.3$CO2[i])){ 

        data.3$Sample[i] <- file.annot$Sample[1] 

        file.annot <- file.annot[-1, ] 



43 
      } else { 

        next 

      } 

    } 

    data.4 <- na.omit(tidyr::fill(data.3, Sample, .direction = "down")) 

    Preserve.order <- unique(data.4$Sample) 

    options(dplyr.summarise.inform = FALSE) 

    test.2 <- data.4 %>% 

      dplyr::group_by(Sample) %>% 

      dplyr::mutate("Sample" = factor(Sample, levels = Preserve.order)) %>% 

      dplyr::summarise("Peaks" = Peaks(CO2)) %>% 

      dplyr::arrange(Sample) %>% 

      dplyr::mutate("Value" = !is.na(Peaks), "Replicate" = NA) 

    test.2 <- cbind(test.2, "Time" = lubridate::as_datetime(data.4$Time)) 

    test.2 <- dplyr::arrange(test.2, Time) 

    r <- 0 

    for(i in 1:(length(test.2$Value)-1)){ 

      if(test.2$Value[i] == T & test.2$Value[i+1] == T){ 

        test.2$Replicate[i] <- r 

      } else if(test.2$Value[i] == F & test.2$Value[i+1] == T){ 

        r <- r + 1 

      } else if(test.2$Value[i] == F & test.2$Value[i+1] == F){ 

        test.2$Replicate[i] <- NA 

      } else { 

        test.2$Replicate[i] <- r 

      } 

    } 

    for(i in 2:(length(test.2$Value)-1)){ 

      if(test.2$Value[i] == F & test.2$Value[i+1] == T){ 

        test.2$Peaks[i] <- cut.off 

        test.2$Replicate[i] <- test.2$Replicate[i+1] 

      } else if(test.2$Value[i] == F & test.2$Value[i-1] == T){ 

        test.2$Peaks[i] <- cut.off 

        test.2$Replicate[i] <- test.2$Replicate[i-1] 

      } else { 

        next 

      } 

    } 

    test.3 <- na.omit(test.2) 

    test.3 <- dplyr::mutate(test.3, "Area" = 0) 

    test.3$diff <- c(0, diff(test.3$Peaks)) 

    peaks <- test.3$Peaks-cut.off 

    diff <- c(0, diff(peaks)) 

    for(i in 1:(length(test.3$Peaks)-1)){ 

      if(test.3$Replicate[i] == test.3$Replicate[i+1]){ 

        time <- as.numeric(difftime(test.3$Time[i+1], test.3$Time[i])) 

        if(test.3$Value[i] == F & test.3$Value[i+1] == T){ 

          test.3$Area[i] <- (time * diff[i+1])/2 



44 
        } else if(test.3$Value[i] == F & test.3$Value[i+1] == F){ 

          test.3$Area[i] <- (time * diff[i])/2 

        } else if(test.3$Value[i] == T){ 

          test.3$Area[i] <- (peaks[i] * time) + ((time * diff[i+1])/2) 

        } 

      } else{ 

        next 

      } 

    } 

    test.4 <- test.3 %>% 

      dplyr::group_by(Sample, Replicate)%>% 

      dplyr::summarize("AUC" = sum(Area), "Peak" = max(Peaks), "Time_Peak_Start" = 

min(Time), "Time_Peak_End" = max(Time)) %>% 

      dplyr::mutate("Subsample" = c(1:length(Sample))) %>% 

      tidyr::unite(col = "Sample", Sample, Subsample, sep = "/") %>% 

      dplyr::arrange(Time_Peak_Start) 

    test.5 <- cbind(File_Name = filelist[a], test.4) 

    test.5 <- tidyr::separate(test.5, Sample, c("Sample", "Annotation", "Replicate"), sep = "/") 

    test.5 <- dplyr::mutate(test.5, "Order_Run" = rep(1, dplyr::n()), .before = 3) 

    g <- 1 

    for(i in 2:nrow(test.5)){ 

      if(test.5$Sample[i] == test.5$Sample[i-1]){ 

        test.5$Order_Run[i] <- g 

      } else { 

        g <- g + 1 

        test.5$Order_Run[i] <- g 

      } 

    } 

    output.raw <- rbind(output.raw, test.5) 

  } 

  print("done") 

  output <- output.raw %>% 

    dplyr::group_by(Sample, Order_Run) %>% 

    tidyr::unite("Sample", Sample, Replicate, sep = ". ") %>% 

    dplyr::select(-Annotation) %>% 

    dplyr::arrange(Time_Peak_Start) 

  preserve.order <- unique(output$File_Name) 

  output <- mutate(output, "Timespan_(s)" = as.numeric(difftime(Time_Peak_End, 

Time_Peak_Start))) 

  output.1 <- dplyr::filter(output, stringr::str_detect(toupper(Sample), "CURVE")) 

  output.1 <- dplyr::mutate(output.1, "Standard" = numextract(Sample)) 

  output.2 <- dplyr::filter(output, stringr::str_detect(toupper(Sample), "CHECK")) 

  output.2 <- dplyr::mutate(output.2, "Standard" = numextract(Sample)) 

  curve <- data.frame(matrix(ncol = 4, nrow = 0)) 

  colnames(curve) <- c("File_Name", "Y.intercept", "Slope", "R.squared") 

  if(dim(output.1)[1] != 0){ 

    if(method == "linear"){ 

      q <- 0 



45 
      output.1 <- mutate(output.1, low = NA, high = NA) 

      for(i in 1:length(unique(output.1$File_Name))){ 

        dat1 <- dplyr::filter(output.1, File_Name == unique(output.1$File_Name)[i]) 

        linmod <- lm(AUC ~ Standard, data = dat1) 

        for(j in 1:nrow(dat1)){ 

          q <- q+1 

          new.dat <- dat1[j,] 

          output.1$low[q] <- predict(linmod, newdata = new.dat, interval = 'confidence', level = 1-

check.alpha)[2] 

          output.1$high[q] <- predict(linmod, newdata = new.dat, interval = 'confidence', level = 1-

check.alpha)[3] 

        } 

        asdf <- summary(linmod) 

        Y <- asdf$coefficients[1] 

        M <- asdf$coefficients[2] 

        R <- asdf$r.squared 

        curve[i,] <- c(unique(as.character(output.1$File_Name))[i], Y, M, R) 

      } 

      if(check.stand == T){ 

        ot1 <- output.1 %>% 

        group_by(File_Name, Standard) %>% 

        summarize(ci.low = mean(low), ci.high = mean(high)) 

      if(ci.meth == "avg"){ 

        ot2 <- output.2 %>% 

               group_by(File_Name, Standard) %>% 

               summarize(mean.AUC = mean(AUC))  

        ot3 <- full_join(ot1, ot2, by = c("File_Name", "Standard")) 

        ot3$File_Name <- factor(ot3$File_Name, levels = preserve.order) 

        ot3 <- dplyr::arrange(ot3, File_Name) 

        ot3$File_Name <- as.character(ot3$File_Name) 

        ot4 <- mutate(ot3, checkci = mean.AUC > ci.low & mean.AUC < ci.high) 

        cierr <- data.frame(File_Name = NA, Standard = NA, ci.low = NA, ci.high = NA, 

mean.AUC = NA) 

        naerr <- data.frame(File_Name = NA, Standard = NA, mean.AUC = NA) 

      } else if(ci.meth == "indiv"){ 

        ot2 <- select(output.2, File_Name, Sample, Order_Run, Standard, AUC) 

        ot3 <- full_join(ot1, ot2, by = c("File_Name", "Standard")) 

        ot3$File_Name <- factor(ot3$File_Name, levels = preserve.order) 

        ot3 <- dplyr::arrange(ot3, File_Name, Order_Run) 

        ot3$File_Name <- as.character(ot3$File_Name) 

        ot4 <- mutate(ot3, checkci = AUC > ci.low & AUC < ci.high) 

        cierr <- data.frame(File_Name = NA, Sample = NA, Order_Run = NA, ci.low = NA, ci.high 

= NA, AUC = NA) 

        naerr <- data.frame(File_Name = NA, Sample = NA, Order_Run = NA, AUC = NA) 

      } 

      if(any(ot4$checkci == FALSE) | any(is.na(ot4$checkci))){ 

        for(i in 1:nrow(ot4)){ 

          if(ci.meth == "avg"){ 



46 
            if(is.na(ot4['checkci'][i,])){ 

              naerr[i,] <- select(ot4[i,], File_Name, Standard, mean.AUC) 

            } else if(ot4['checkci'][i,] == FALSE){ 

              cierr[i,] <- select(ot4[i,], File_Name, Standard, ci.low, ci.high, mean.AUC) 

            } else if(ot4['checkci'][i,] == TRUE){ 

              next 

            }   

          } else if(ci.meth == "indiv"){ 

            if(is.na(ot4['checkci'][i,])){ 

              naerr[i,] <- select(ot4[i,], File_Name, Sample, Order_Run, AUC) 

            } else if(ot4['checkci'][i,] == FALSE){ 

              cierr[i,] <- select(ot4[i,], File_Name, Sample, Order_Run, ci.low, ci.high, AUC) 

            } else if(ot4['checkci'][i,] == TRUE){ 

              next 

            } 

          } 

        } 

        cierr <- na.omit(cierr) 

        naerr <- na.omit(naerr) 

        if(nrow(cierr) != 0){ 

          warning(call. = F, c("\n\nCheck standards deviate from the ", 100*(1 - check.alpha), "%", " 

confidence interval in the following Samples:\n")) 

          for(i in 1:nrow(cierr)){ 

            if(ci.meth == "avg"){ 

            warning(call. = F, c("File: ", cierr$File_Name[i], "\tStandard: ", cierr$Standard[i], 

"check", 

                                 "\tCI range: ", round(cierr$ci.low[i]), " to ", round(cierr$ci.high[i]), "\tAUC: 

", round(cierr$mean.AUC[i], 2))) 

            } 

            if(ci.meth == "indiv"){ 

              warning(call. = F, c("File: ", cierr$File_Name[i], "\tSample: ", cierr$Sample[i], 

"\tOrder_Run: ", cierr$Order_Run[i],  

                                   "\tCI range: ", round(cierr$ci.low[i]), " to ", round(cierr$ci.high[i]), 

"\tAUC: ", round(cierr$AUC[i], 2))) 

            } 

          } 

        } 

        if(nrow(naerr) != 0){ 

          warning(call. = F, "\n\nNA values for confidence interval due to missing standard 'curves' 

in the following Samples:\n") 

          if(ci.meth == "avg"){ 

            for(i in 1:nrow(naerr)){ 

              warning(call. = F, c("File: ", naerr$File_Name[i], "\tStandard: ", naerr$Standard[i], 

"check", "\tAUC: ", round(naerr$mean.AUC[i], 2))) 

            } 

          } 

          if(ci.meth == "indiv"){ 

            for(i in 1:nrow(naerr)){ 



47 
            warning(call. = F, c("File: ", naerr$File_Name[i], "\tSample: ", naerr$Sample[i], 

"\tOrder_Run:", naerr$Order_Run[i], "\tAUC: ", round(naerr$AUC[i], 2))) 

            } 

          } 

        } 

      } else{ 

        next 

      } 

      } 

      curve[, 2:4] <- sapply(curve[, 2:4], as.numeric) 

      output.0 <- dplyr::filter(output, !stringr::str_detect(toupper(Sample), "CURVE")) 

      inwork <- output %>% 

        dplyr::group_by(File_Name) %>% 

        dplyr::summarize(n = dplyr::n()) 

      inwork2 <- output.0 %>% 

        dplyr::group_by(File_Name) %>% 

        dplyr::summarize(n = dplyr::n()) 

      if(dim(inwork2)[1]==0){ 

        curve.2 <- dplyr::mutate(inwork, n2 = 0, "curve" = (n != n2)) 

      } else { 

        curve.2 <- dplyr::mutate(inwork, n2 = inwork2$n, "curve" = (n != n2)) 

      } 

      yes.curve <- data.frame(matrix(ncol = 4, nrow = 0)) 

      colnames(yes.curve) <- c("File_Name", "Y.intercept", "Slope", "R.squared") 

      for(i in 1:length(curve.2$File_Name)){ 

        for(j in 1:length(curve$File_Name)){ 

          if(curve.2$File_Name[i] == curve$File_Name[j] & curve.2$curve[i]==T){ 

            yes.curve[i,] <- curve[j,] 

          } else if(curve.2$curve[i]==F){ 

            yes.curve[i,] <- c(curve.2$File_Name[i], rep(NA,3)) 

          } 

        } 

      } 

      yes.curve$File_Name <- factor(yes.curve$File_Name, levels = preserve.order) 

      yes.curve <- dplyr::arrange(yes.curve, File_Name) 

      curve.3 <- tidyr::fill(yes.curve, "File_Name", "Y.intercept", "Slope", "R.squared", .direction = 

"down") 

      curve.3[, 2:4] <- sapply(curve.3[, 2:4], as.numeric) 

      stand <- output.1 %>% 

        dplyr::group_by(File_Name, Standard) %>% 

        dplyr::summarise(Mean = mean(AUC), std.dev = sd(AUC))%>% 

        dplyr::mutate(COV = std.dev/Mean) 

      sum.stat <- left_join(stand, curve, by = "File_Name") 

      output$AUC_ppm <- 0 

      for(i in 1:nrow(output)){ 

        for(j in 1:nrow(curve.3)){ 

          if(output$File_Name[i] == curve.3$File_Name[j]){ 

            output$AUC_ppm[i] <- (output$AUC[i] - curve.3$Y.intercept[j])/(curve.3$Slope[j]) 



48 
          } 

        } 

      } 

    } else if(method == "log"){ 

      q <- 0 

      output.1 <- mutate(output.1, low = NA, high = NA) 

      for(i in 1:length(unique(output.1$File_Name))){ 

        dat1 <- dplyr::filter(output.1, File_Name == unique(output.1$File_Name)[i]) 

        linmod <- lm(log(AUC) ~ log(Standard), data = dat1) 

        for(j in 1:nrow(dat1)){ 

          q <- q+1 

          new.dat <- dat1[j,] 

          output.1$low[q] <- predict(linmod, newdata = new.dat, interval = 'confidence', level = 1-

check.var)[2] 

          output.1$high[q] <- predict(linmod, newdata = new.dat, interval = 'confidence', level = 1-

check.var)[3] 

        } 

        asdf <- summary(linmod) 

        Y <- asdf$coefficients[1] 

        M <- asdf$coefficients[2] 

        R <- asdf$r.squared 

        curve[i,] <- c(unique(as.character(output.1$File_Name))[i], Y, M, R) 

      } 

      if(check.stand == T){ 

        ot1 <- output.1 %>% 

        group_by(File_Name, Standard) %>% 

        summarize(ci.low = mean(low), ci.high = mean(high)) 

      if(ci.meth == "avg"){ 

        ot2 <- output.2 %>% 

          group_by(File_Name, Standard) %>% 

          summarize(mean.AUC = mean(log(AUC)))  

        ot3 <- full_join(ot1, ot2, by = c("File_Name", "Standard")) 

        ot3$File_Name <- factor(ot3$File_Name, levels = preserve.order) 

        ot3 <- dplyr::arrange(ot3, File_Name) 

        ot3$File_Name <- as.character(ot3$File_Name) 

        ot4 <- mutate(ot3, checkci = mean.AUC > ci.low & mean.AUC < ci.high) 

        cierr <- data.frame(File_Name = NA, Standard = NA, ci.low = NA, ci.high = NA, 

mean.AUC = NA) 

        naerr <- data.frame(File_Name = NA, Standard = NA, mean.AUC = NA) 

      } else if(ci.meth == "indiv"){ 

        ot2 <- select(output.2, File_Name, Sample, Order_Run, Standard, AUC) 

        ot2$AUC <- log(ot2$AUC) 

        ot3 <- full_join(ot1, ot2, by = c("File_Name", "Standard")) 

        ot3$File_Name <- factor(ot3$File_Name, levels = preserve.order) 

        ot3 <- dplyr::arrange(ot3, File_Name, Order_Run) 

        ot3$File_Name <- as.character(ot3$File_Name) 

        ot4 <- mutate(ot3, checkci = AUC > ci.low & AUC < ci.high) 



49 
        cierr <- data.frame(File_Name = NA, Sample = NA, Order_Run = NA, ci.low = NA, ci.high 

= NA, AUC = NA) 

        naerr <- data.frame(File_Name = NA, Sample = NA, Order_Run = NA, AUC = NA) 

      } 

      if(any(ot4$checkci == FALSE) | any(is.na(ot4$checkci))){ 

        for(i in 1:nrow(ot4)){ 

          if(ci.meth == "avg"){ 

            if(is.na(ot4['checkci'][i,])){ 

              naerr[i,] <- select(ot4[i,], File_Name, Standard, mean.AUC) 

            } else if(ot4['checkci'][i,] == FALSE){ 

              cierr[i,] <- select(ot4[i,], File_Name, Standard, ci.low, ci.high, mean.AUC) 

            } else if(ot4['checkci'][i,] == TRUE){ 

              next 

            }   

          } else if(ci.meth == "indiv"){ 

            if(is.na(ot4['checkci'][i,])){ 

              naerr[i,] <- select(ot4[i,], File_Name, Sample, Order_Run, AUC) 

            } else if(ot4['checkci'][i,] == FALSE){ 

              cierr[i,] <- select(ot4[i,], File_Name, Sample, Order_Run, ci.low, ci.high, AUC) 

            } else if(ot4['checkci'][i,] == TRUE){ 

              next 

            } 

          } 

        } 

        cierr <- na.omit(cierr) 

        naerr <- na.omit(naerr) 

        if(nrow(cierr) != 0){ 

          warning(call. = F, c("\n\nCheck standards deviate from the ", 100*(1 - check.alpha), "%", " 

confidence interval in the following Samples:\n")) 

          for(i in 1:nrow(cierr)){ 

            if(ci.meth == "avg"){ 

              warning(call. = F, c("File: ", cierr$File_Name[i], "\tStandard: ", cierr$Standard[i], 

"check", 

                                   "\tCI range: ", round(cierr$ci.low[i],2), " to ", round(cierr$ci.high[i],2), 

"\tAUC: ", round(cierr$mean.AUC[i], 2))) 

            } 

            if(ci.meth == "indiv"){ 

              warning(call. = F, c("File: ", cierr$File_Name[i], "\tSample: ", cierr$Sample[i], 

"\tOrder_Run: ", cierr$Order_Run[i],  

                                   "\tCI range: ", round(cierr$ci.low[i],2), " to ", round(cierr$ci.high[i],2), 

"\tAUC: ", round(cierr$AUC[i], 2))) 

            } 

          } 

        } 

        if(nrow(naerr) != 0){ 

          warning(call. = F, "\n\nNA values for confidence interval due to missing standard 'curves' 

in the following Samples:\n") 

          if(ci.meth == "avg"){ 



50 
            for(i in 1:nrow(naerr)){ 

              warning(call. = F, c("File: ", naerr$File_Name[i], "\tStandard: ", naerr$Standard[i], 

"check", "\tAUC: ", round(naerr$mean.AUC[i], 2))) 

            } 

          } 

          if(ci.meth == "indiv"){ 

            for(i in 1:nrow(naerr)){ 

              warning(call. = F, c("File: ", naerr$File_Name[i], "\tSample: ", naerr$Sample[i], 

"\tOrder_Run:", naerr$Order_Run[i], "\tAUC: ", round(naerr$AUC[i], 2))) 

            } 

          } 

        } 

      } else{ 

        next 

      } 

      } 

      curve[, 2:4] <- sapply(curve[, 2:4], as.numeric) 

      output.0 <- dplyr::filter(output, !stringr::str_detect(toupper(Sample), "CURVE")) 

      inwork <- output %>% 

        dplyr::group_by(File_Name) %>% 

        dplyr::summarize(n = dplyr::n()) 

      inwork2 <- output.0 %>% 

        dplyr::group_by(File_Name) %>% 

        dplyr::summarize(n = dplyr::n()) 

      curve.2 <- dplyr::mutate(inwork, n2 = inwork2$n, "curve" = (n != n2)) 

      yes.curve <- data.frame(matrix(ncol = 4, nrow = 0)) 

      colnames(yes.curve) <- c("File_Name", "Y.intercept", "Slope", "R.squared") 

      for(i in 1:length(curve.2$File_Name)){ 

        for(j in 1:length(curve$File_Name)){ 

          if(curve.2$File_Name[i] == curve$File_Name[j] & curve.2$curve[i]==T){ 

            yes.curve[i,] <- curve[j,] 

          } else if(curve.2$curve[i]==F){ 

            yes.curve[i,] <- c(curve.2$File_Name[i], rep(NA,3)) 

          } 

        } 

      } 

      yes.curve$File_Name <- factor(yes.curve$File_Name, levels = preserve.order) 

      yes.curve <- dplyr::arrange(yes.curve, File_Name) 

      curve.3 <- tidyr::fill(yes.curve, "File_Name", "Y.intercept", "Slope", "R.squared", .direction = 

"down") 

      curve.3[, 2:4] <- sapply(curve.3[, 2:4], as.numeric) 

      stand <- output.1 %>% 

        dplyr::group_by(File_Name, Standard) %>% 

        dplyr::summarise(Mean = mean(AUC), std.dev = sd(AUC))%>% 

        dplyr::mutate(COV = std.dev/Mean) 

      sum.stat <- dplyr::left_join(stand, curve, by = "File_Name") 

      output$AUC_ppm <- 0 

      for(i in 1:nrow(output)){ 



51 
        for(j in 1:nrow(curve.3)){ 

          if(output$File_Name[i] == curve.3$File_Name[j]){ 

            output$AUC_ppm[i] <- exp((log(output$AUC[i]) - 

curve.3$Y.intercept[j])/(curve.3$Slope[j])) 

          } 

        } 

      } 

    } 

    sum.stat2 <- output %>% 

      dplyr::filter(stringr::str_detect(toupper(Sample), "CURVE")) %>% 

      dplyr::mutate(Standard = numextract(Sample)) %>% 

      dplyr::group_by(Standard, File_Name) %>% 

      dplyr::summarise(Mean_ppm = mean(AUC_ppm)) 

    standard.summary.stats <- dplyr::left_join(sum.stat, sum.stat2, by = c("File_Name", 

"Standard")) 

    output <- tidyr::separate(output, Sample, c("Sample", "Replicate"), sep = ". ") 

    if(standard.sum == T){ 

      View(standard.summary.stats) 

    }  

    return(output) 

  } else { 

    print(' ') 

    warning('No standard curve data found, could not compute concentration') 

    output$AUC_ppm <- 0 

    output <- tidyr::separate(output, Sample, c("Sample", "Replicate"), sep = ". ") 

    return(output) 

  } 

}  



52 
Plot.extracted 

 

Plot.extracted <- function(data, file = NULL, sample = NULL, std.curve = F, method = "linear"){ 

  UNR <- function(){ 

    ggplot2::theme(text = ggplot2::element_text(color = "black", size = 15), 

                   plot.title = ggplot2::element_text(face = "bold", color = "darkblue", margin = 

ggplot2::margin(b = 15)), 

                   plot.subtitle = ggplot2::element_text(size = 10), 

                   axis.ticks = ggplot2::element_line(size = 1.5), 

                   axis.title = ggplot2::element_text(face = "bold", line = 2), 

                   axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 10), color = 

"darkblue", size = 15), 

                   axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 10), color = 

"darkblue", size = 15), 

                   axis.title.y.right = ggplot2::element_text(margin = ggplot2::margin(l = 15),color = 

"grey50", size = 15), 

                   axis.text = ggplot2::element_text(color = "black"), 

                   axis.text.x = ggplot2::element_text(margin = ggplot2::margin(t = 15)), 

                   axis.text.y = ggplot2::element_text(margin = ggplot2::margin(r = 10)), 

                   axis.line = ggplot2::element_line(colour = "black"), 

                   axis.ticks.length = ggplot2::unit(2, "mm"), 

                   plot.caption = ggplot2::element_text(color = "black"), 

                   plot.background = ggplot2::element_rect(fill = "white"), 

                   plot.margin = ggplot2::margin(t = 10, r = 50, b = 10, l = 10), 

                   panel.background = ggplot2::element_rect(fill = "white"), 

                   panel.border = ggplot2::element_rect(fill = "NA", color = "darkblue", size = 1.5), 

                   legend.background = ggplot2::element_rect(color = "black", fill = "white"), 

                   legend.key =  ggplot2::element_rect(fill = "white"), 

                   legend.text = ggplot2::element_text(color = "black"), 

                   legend.position = "bottom", 

                   strip.background = ggplot2::element_rect(color = "blue", fill = "grey75", size = 2), 

                   strip.text.y = ggplot2::element_text(size = 13, face = "bold"), 

                   panel.grid = ggplot2::element_blank()) 

  } 

  numextract <- function(string){ 

    as.numeric(stringr::str_extract(string, "\\-*\\d+\\.*\\d*")) 

  } 

  ghost <- dplyr::filter(data, !stringr::str_detect(toupper(Sample), "CURVE") & 

!stringr::str_detect(toupper(Sample), "CHECK")) 

  ghost$Replicate <- as.numeric(ghost$Replicate) 

  if(is.null(sample) & is.null(file) & std.curve == F){ 

    rando.group <- sample(unique(data$File_Name), size = 1) 

    samp.run <- sample(unique(dplyr::filter(ghost, File_Name == rando.group)$Order_Run), size 

= 1) 

    verify <- dplyr::filter(ghost, File_Name == rando.group, Order_Run == samp.run) 

    mean.ppm <- mean(verify$AUC_ppm) 

    ggplot2::ggplot(verify, ggplot2::aes(x = Time_Peak_Start, y = AUC_ppm)) + 



53 
      ggplot2::geom_col(color = "darkblue", fill = "dodgerblue")+ 

      ggplot2::ggtitle(paste0("File:  ", verify$File_Name, "\nSample:  ", tolower(verify$Sample), 

"\nOrder Run:  ", verify$Order_Run)) + 

      ggplot2::geom_text(label = verify$Replicate, nudge_y = 

(mean.ppm/log(verify$AUC_ppm)*.40))+ 

      UNR() 

  } else if(!is.null(file) & is.null(sample) & std.curve == F){ 

    filt <- dplyr::filter(ghost, File_Name == file) 

    samp.run <- sample(unique(filt$Order_Run), size = 1) 

    verify.1 <- dplyr::filter(filt, Order_Run == samp.run) 

    mean.ppm <- mean(verify.1$AUC_ppm) 

    ggplot2::ggplot(verify.1, ggplot2::aes(x = Time_Peak_Start, y = AUC_ppm)) + 

      ggplot2::geom_col(color = "darkblue", fill = "dodgerblue")+ 

      ggplot2::ggtitle(paste0("File:  ", verify.1$File_Name, "\nSample:  ", 

tolower(verify.1$Sample), "\nOrder Run:  ", verify.1$Order_Run)) + 

      ggplot2::geom_text(label = verify.1$Replicate, nudge_y = 

(mean.ppm/log(verify.1$AUC_ppm)*.40))+ 

      UNR() 

  } else if(is.null(file) & !is.null(sample) & std.curve == F){ 

    samp <- dplyr::filter(data, toupper(Sample) == toupper(sample)) 

    samp2 <- dplyr::filter(samp, File_Name == sample(unique(File_Name), 1)) 

    samp.run <- sample(unique(samp2$Order_Run), size = 1) 

    verify.2 <- dplyr::filter(samp2, Order_Run == samp.run) 

    mean.ppm <- mean(verify.2$AUC_ppm) 

    ggplot2::ggplot(verify.2, ggplot2::aes(x = Time_Peak_Start, y = AUC_ppm)) + 

      ggplot2::geom_col(color = "darkblue", fill = "dodgerblue")+ 

      ggplot2::ggtitle(paste0("File:  ", verify.2$File_Name, "\nSample:  ", 

tolower(verify.2$Sample), "\nOrder Run:  ", verify.2$Order_Run)) + 

      ggplot2::geom_text(label = verify.2$Replicate, nudge_y = 

(mean.ppm/log(verify.2$AUC_ppm)*.40))+ 

      UNR() 

  } else if(!is.null(file) & !is.null(sample) & std.curve == F){ 

    verify.3 <- dplyr::filter(ghost, File_Name == file, toupper(Sample) == toupper(sample)) 

    mean.ppm <- mean(verify.3$AUC_ppm) 

    ggplot2::ggplot(verify.3, ggplot2::aes(x = Time_Peak_Start, y = AUC_ppm)) + 

      ggplot2::geom_col(color = "darkblue", fill = "dodgerblue")+ 

      ggplot2::ggtitle(paste0("File:  ", verify.3$File_Name, "\nSample:  ", 

tolower(verify.3$Sample), "\nOrder Run:  ", verify.3$Order_Run)) + 

      ggplot2::geom_text(label = verify.3$Replicate, nudge_y = 

(mean.ppm/log(verify.3$AUC_ppm)*.40))+ 

      UNR() 

  } else if(is.null(file) & is.null(sample) & std.curve == T & method == "linear"){ 

    curv <- dplyr::filter(data, stringr::str_detect(toupper(Sample), "CURVE")) %>% 

            dplyr::mutate(standard = numextract(Sample), .before = 3) 

    check <- dplyr::filter(data, stringr::str_detect(toupper(Sample), "CHECK") )%>% 

             dplyr::mutate(standard = numextract(Sample), .before = 3) 

    asdf <- summary(lm(AUC ~ standard, data = curv)) 

    Y <- as.numeric(asdf$coefficients[1]) 



54 
    M <- as.numeric(asdf$coefficients[2]) 

    R <- as.numeric(asdf$adj.r.squared) 

    form <- data.frame(Y = Y, M = M, R = R) 

    form2 <- paste0("Y = ", round(form$M, digits = 2), " * x", " + ", round(form$Y, digits = 2)) 

    r.squared <- paste0("adjusted R^2 = ", round(form$R, digits = 4)) 

    if(max(curv$standard) > max(check$standard)){ 

      ggplot2::ggplot()+ 

        ggplot2::geom_smooth(formula = y~x, data = curv, ggplot2::aes(x = standard, y = 

AUC_ppm), 

                    method = lm, se = T, lwd = 1, color = "red", fullrange = T, fill = "dodgerblue") + 

        ggplot2::geom_point(data = check, ggplot2::aes(x = standard, y = AUC_ppm, fill = 

"Check"), size = 4, shape = 21, alpha = .5) + 

        ggplot2::geom_point(data = curv, ggplot2::aes(x = standard, y = AUC_ppm, fill = "Curve"), 

size = 3, shape = 24, alpha = .5) + 

        ggplot2::scale_fill_manual(name = "Standard", values = c("grey70", "darkblue"), guide = 

ggplot2::guide_legend(override.aes = list( 

          shape = c(21,24), 

          size = c(3,3)))) + 

        ggplot2::geom_text(data = curv, ggplot2::aes(x = (((max(standard)-

min(standard))*.25)+min(standard)), 

                                   y = (((max(AUC_ppm)-min(AUC_ppm))*.75)+min(AUC_ppm)), 

                                   label = paste(form2, r.squared, sep = "\n"))) + 

        ggplot2::ggtitle("Linear Standard Curve for All Samples") + 

        ggplot2::xlab("Standard ppm") + 

        UNR() 

    } else if(max(curv$standard) <= max(check$standard)){ 

      ggplot2::ggplot()+ 

        ggplot2::geom_smooth(formula = y~x, data = curv, ggplot2::aes(x = standard, y = 

AUC_ppm), 

                    method = lm, se = T, lwd = 1, color = "red", fullrange = T, fill = "dodgerblue") + 

        ggplot2::geom_point(data = check, ggplot2::aes(x = standard, y = AUC_ppm, fill = 

"Check"), size = 4, shape = 21, alpha = .5) + 

        ggplot2::geom_point(data = curv, ggplot2::aes(x = standard, y = AUC_ppm, fill = "Curve"), 

size = 3, shape = 24, alpha = .5) + 

        ggplot2::scale_fill_manual(name = "Standard", values = c("grey70", "darkblue"), guide = 

ggplot2::guide_legend(override.aes = list( 

          shape = c(21,24), 

          size = c(3,3)))) + 

        ggplot2::geom_text(data = check, ggplot2::aes(x = (((max(standard)-

min(standard))*.25)+min(standard)), 

                                    y = (((max(AUC_ppm)-min(AUC_ppm))*.75)+min(AUC_ppm)), 

                                    label = paste(form2, r.squared, sep = "\n"))) + 

        ggplot2::ggtitle("Linear Standard Curve for All Samples") + 

        ggplot2::xlab("Standard ppm") + 

        UNR() 

    } 

  } else if(!is.null(file) & is.null(sample) & std.curve == T & method == "linear"){ 



55 
    curv.2 <- dplyr::filter(data, stringr::str_detect(toupper(Sample), "CURVE"), File_Name == 

file) %>% 

              dplyr::mutate(standard = numextract(Sample), .before = 3) 

    check.2 <- dplyr::filter(data, stringr::str_detect(toupper(Sample), "CHECK"), File_Name == 

file)%>% 

               dplyr::mutate(standard = numextract(Sample), .before = 3) 

    asdf.2 <- summary(lm(AUC ~ standard, data = curv.2)) 

    Y.2 <- as.numeric(asdf.2$coefficients[1]) 

    M.2 <- as.numeric(asdf.2$coefficients[2]) 

    R.2 <- as.numeric(asdf.2$adj.r.squared) 

    form.2 <- data.frame(Y = Y.2, M = M.2, R = R.2) 

    form2.2 <- paste0("Y = ", round(form.2$M, digits = 2), " * x", " + ", round(form.2$Y, digits = 

2)) 

    r.squared.2 <- paste0("adjusted R", "^", 2,  sep = "", " = ", round(form.2$R, digits = 4)) 

    if(max(curv.2$standard) > max(check.2$standard)){ 

      ggplot2::ggplot()+ 

        ggplot2::geom_smooth(formula = y~x, data = curv.2, ggplot2::aes(x = standard, y = 

AUC_ppm), 

                    method = lm, se = T, lwd = 1, color = "red", fullrange = T, fill = "dodgerblue") + 

        ggplot2::geom_point(data = check.2, ggplot2::aes(x = standard, y = AUC_ppm, fill = 

"Check"), size = 4, shape = 21, alpha = .5) + 

        ggplot2::geom_point(data = curv.2, ggplot2::aes(x = standard, y = AUC_ppm, fill = 

"Curve"), size = 3, shape = 24, alpha = .5) + 

        ggplot2::scale_fill_manual(name = "Standard", values = c("grey70", "darkblue"), guide = 

ggplot2::guide_legend(override.aes = list( 

          shape = c(21,24), 

          size = c(3,3)))) + 

        ggplot2::geom_text(data = curv.2, ggplot2::aes(x = (((max(standard)-

min(standard))*.25)+min(standard)), 

                                     y = (((max(AUC_ppm)-min(AUC_ppm))*.75)+min(AUC_ppm)), 

                                     label = paste(form2.2, r.squared.2, sep = "\n"))) + 

        ggplot2::ggtitle(paste0("Linear Standard Curve for ", curv.2$File_Name)) + 

        ggplot2::xlab("Standard ppm") + 

        UNR() 

    } else if(max(curv.2$standard) <= max(check.2$standard)){ 

      ggplot2::ggplot()+ 

        ggplot2::geom_smooth(formula = y~x, data = curv.2, ggplot2::aes(x = standard, y = 

AUC_ppm), 

                    method = lm, se = T, lwd = 1, color = "red", fullrange = T, fill = "dodgerblue") + 

        ggplot2::geom_point(data = check.2, ggplot2::aes(x = standard, y = AUC_ppm, fill = 

"Check"), size = 4, shape = 21, alpha = .5) + 

        ggplot2::geom_point(data = curv.2, ggplot2::aes(x = standard, y = AUC_ppm, fill = 

"Curve"), size = 3, shape = 24, alpha = .5) + 

        ggplot2::scale_fill_manual(name = "Standard", values = c("grey70", "darkblue"), guide = 

ggplot2::guide_legend(override.aes = list( 

          shape = c(21,24), 

          size = c(3,3)))) + 



56 
        ggplot2::geom_text(data = check.2, ggplot2::aes(x = (((max(standard)-

min(standard))*.25)+min(standard)), 

                                      y = (((max(AUC_ppm)-min(AUC_ppm))*.75)+min(AUC_ppm)), 

                                      label = paste(form2.2, r.squared.2, sep = "\n"))) + 

        ggplot2::ggtitle(paste0("Linear Standard Curve for ", curv.2$File_Name)) + 

        ggplot2::xlab("Standard ppm") + 

        UNR() 

    } 

  }else if(is.null(file) & is.null(sample) & std.curve == T & method == "log"){ 

    curv <- dplyr::filter(data, stringr::str_detect(toupper(Sample), "CURVE")) %>% 

      dplyr::mutate(standard = numextract(Sample), .before = 3) 

    check <- dplyr::filter(data, stringr::str_detect(toupper(Sample), "CHECK") )%>% 

      dplyr::mutate(standard = numextract(Sample), .before = 3) 

    asdf <- summary(lm(log(AUC) ~ log(standard), data = curv)) 

    Y <- as.numeric(asdf$coefficients[1]) 

    M <- as.numeric(asdf$coefficients[2]) 

    R <- as.numeric(asdf$adj.r.squared) 

    form <- data.frame(Y = Y, M = M, R = R) 

    form1 <- paste(round(form$M, digits = 2), "* log(x) +", round(form$Y, digits = 2)) 

    form2 <- paste0("Y = ", "e^(", form1, ")") 

    r.squared <- paste0("adjusted R^2 = ", round(form$R, digits = 4)) 

    if(max(curv$standard) > max(check$standard)){ 

      ggplot2::ggplot()+ 

        ggplot2::geom_smooth(formula = y~x, data = curv, ggplot2::aes(x = log(standard), y = 

log(AUC_ppm)), 

                    method = lm, se = T, lwd = 1, color = "red", fullrange = T, fill = "dodgerblue") + 

        ggplot2::geom_point(data = check, ggplot2::aes(x = log(standard), y = log(AUC_ppm), fill 

= "Check"), size = 4, shape = 21, alpha = .5) + 

        ggplot2::geom_point(data = curv, ggplot2::aes(x = log(standard), y = log(AUC_ppm), fill = 

"Curve"), size = 3, shape = 24, alpha = .5) + 

        ggplot2::scale_fill_manual(name = "Standard", values = c("grey70", "darkblue"), guide = 

ggplot2::guide_legend(override.aes = list( 

          shape = c(21,24), 

          size = c(3,3)))) + 

        ggplot2::geom_text(data = curv, ggplot2::aes(x = (((max(log(standard))-

min(log(standard)))*.25)+min(log(standard))), 

                                   y = (((max(log(AUC_ppm))-

min(log(AUC_ppm)))*.75)+min(log(AUC_ppm))), 

                                   label = paste(form2, r.squared, sep = "\n"))) + 

        ggplot2::ggtitle("Log Standard Curve for All Samples") + 

        ggplot2::xlab("log(Standard ppm)") + 

        UNR() 

    } else if(max(curv$standard) <= max(check$standard)){ 

      ggplot2::ggplot()+ 

        ggplot2::geom_smooth(formula = y~x, data = curv, ggplot2::aes(x = log(standard), y = 

log(AUC_ppm)), 

                    method = lm, se = T, lwd = 1, color = "red", fullrange = T, fill = "dodgerblue") + 



57 
        ggplot2::geom_point(data = check, ggplot2::aes(x = log(standard), y = log(AUC_ppm), fill 

= "Check"), size = 4, shape = 21, alpha = .5) + 

        ggplot2::geom_point(data = curv, ggplot2::aes(x = log(standard), y = log(AUC_ppm), fill = 

"Curve"), size = 3, shape = 24, alpha = .5) + 

        ggplot2::scale_fill_manual(name = "Standard", values = c("grey70", "darkblue"), guide = 

ggplot2::guide_legend(override.aes = list( 

          shape = c(21,24), 

          size = c(3,3)))) + 

        ggplot2::geom_text(data = check, ggplot2::aes(x = (((max(log(standard))-

min(log(standard)))*.25)+min(log(standard))), 

                                    y = (((max(log(AUC_ppm))-

min(log(AUC_ppm)))*.75)+min(log(AUC_ppm))), 

                                    label = paste(form2, r.squared, sep = "\n"))) + 

        ggplot2::ggtitle("Log Standard Curve for All Samples") + 

        ggplot2::xlab("log(Standard ppm)") + 

        UNR() 

    } 

  } else if(!is.null(file) & is.null(sample) & std.curve == T & method == "log"){ 

    curv.2 <- dplyr::filter(data, stringr::str_detect(toupper(Sample), "CURVE"), File_Name == 

file) %>% 

              dplyr::mutate(standard = numextract(Sample), .before = 3) 

    check.2 <- dplyr::filter(data, stringr::str_detect(toupper(Sample), "CHECK"), File_Name == 

file)%>% 

               dplyr::mutate(standard = numextract(Sample), .before = 3) 

    asdf.2 <- summary(lm(log(AUC) ~ log(standard), data = curv.2)) 

    Y.2 <- as.numeric(asdf.2$coefficients[1]) 

    M.2 <- as.numeric(asdf.2$coefficients[2]) 

    R.2 <- as.numeric(asdf.2$adj.r.squared) 

    form.2 <- data.frame(Y = Y.2, M = M.2, R = R.2) 

    form2.1 <- paste(round(form.2$M, digits = 2), "* log(x) +", round(form.2$Y, digits = 2)) 

    form2.2 <- paste0("Y = ", "e^(", form2.1, ")") 

    r.squared.2 <- paste0("adjusted R", "^", 2,  sep = "", " = ", round(form.2$R, digits = 4)) 

    if(max(curv.2$standard) > max(check.2$standard)){ 

      ggplot2::ggplot()+ 

        ggplot2::geom_smooth(formula = y~x, data = curv.2, ggplot2::aes(x = log(standard), y = 

log(AUC_ppm)), 

                    method = lm, se = T, lwd = 1, color = "red", fullrange = T, fill = "dodgerblue") + 

        ggplot2::geom_point(data = check.2, ggplot2::aes(x = log(standard), y = log(AUC_ppm), fill 

= "Check"), size = 4, shape = 21, alpha = .5) + 

        ggplot2::geom_point(data = curv.2, ggplot2::aes(x = log(standard), y = log(AUC_ppm), fill 

= "Curve"), size = 3, shape = 24, alpha = .5) + 

        ggplot2::scale_fill_manual(name = "Standard", values = c("grey70", "darkblue"), guide = 

ggplot2::guide_legend(override.aes = list( 

          shape = c(21,24), 

          size = c(3,3)))) + 

        ggplot2::geom_text(data = curv.2, ggplot2::aes(x = (((max(log(standard))-

min(log(standard)))*.25)+min(log(standard))), 



58 
                                     y = (((max(log(AUC_ppm))-

min(log(AUC_ppm)))*.75)+min(log(AUC_ppm))), 

                                     label = paste(form2.2, r.squared.2, sep = "\n"))) + 

        ggplot2::ggtitle(paste0("Log Standard Curve for ", curv.2$File_Name)) + 

        ggplot2::xlab("log(Standard ppm)") + 

        UNR() 

    } else if(max(curv.2$standard) <= max(check.2$standard)){ 

      ggplot2::ggplot()+ 

        ggplot2::geom_smooth(formula = y~x, data = curv.2, ggplot2::aes(x = log(standard), y = 

log(AUC_ppm)), 

                    method = lm, se = T, lwd = 1, color = "red", fullrange = T, fill = "dodgerblue") + 

        ggplot2::geom_point(data = check.2, ggplot2::aes(x = log(standard), y = log(AUC_ppm), fill 

= "Check"), size = 4, shape = 21, alpha = .5) + 

        ggplot2::geom_point(data = curv.2, ggplot2::aes(x = log(standard), y = log(AUC_ppm), fill 

= "Curve"), size = 3, shape = 24, alpha = .5) + 

        ggplot2::scale_fill_manual(name = "Standard", values = c("grey70", "darkblue"), guide = 

ggplot2::guide_legend(override.aes = list( 

          shape = c(21,24), 

          size = c(3,3)))) + 

        ggplot2:: geom_text(data = check.2, ggplot2::aes(x = (((max(log(standard))-

min(log(standard)))*.25)+min(log(standard))), 

                                      y = (((max(log(AUC_ppm))-

min(log(AUC_ppm)))*.75)+min(log(AUC_ppm))), 

                                      label = paste(form2.2, r.squared.2, sep = "\n"))) + 

        ggplot2::ggtitle(paste0("Log Standard Curve for ", curv.2$File_Name)) + 

        ggplot2::xlab("log(Standard ppm)") + 

        UNR() 

    } 

  }  

} 

  



59 
timeseries.peaks 

 

timeseries.peaks <- function(){ 

  filelist <- list.files(pattern = c(".txt", ".TXT")) 

  output.raw <- data.frame() 

  print("Looping through Folder:") 

  progress_bar <- txtProgressBar(min = 0, max = length(filelist), style = 3) 

  for(i in 1:length(filelist)){ 

    setTxtProgressBar(progress_bar, i) 

    b <- read.table(filelist[i], header = T, sep = "\t", fill = T, strip.white = T, check.names = F) 

    data.1 <- dplyr::mutate(b, Sample = NA, .before = 1) 

    names(data.1) <- c("Sample", "Test", "Time", "CO2") 

    data.1 <- cbind(data.1, File = filelist[i]) 

    data.2 <- dplyr::filter(data.1, Test != "--------------------------------------------------------------") 

    data.3 <- data.2 

    for(i in 1:nrow(data.2)){ 

      if(is.na(data.2[i,4])==T){ 

        data.3[i,1] <- as.character(data.2[i,2]) 

      } else { 

        next 

      } 

    } 

    data.4 <- na.omit(tidyr::fill(data.3, Sample, .direction = "down")) 

    output.raw <- rbind(output.raw, data.4) 

  } 

  output.raw$Time <- lubridate::as_datetime(output.raw$Time) 

  return(output.raw[, c(1,3,4,5)])  

} 

  



60 
Plot.timeseries 

 

Plot.timeseries <- function(data, file, sample = NULL, time.start = NULL, time.stop = NULL){ 

  UNR <- function(){ 

    ggplot2::theme(text = ggplot2::element_text(color = "black", size = 15), 

          plot.title = ggplot2::element_text(face = "bold", color = "darkblue", margin = 

ggplot2::margin(b = 15)), 

          plot.subtitle = ggplot2::element_text(size = 10), 

          axis.ticks = ggplot2::element_line(size = 1.5), 

          axis.title = ggplot2::element_text(face = "bold", line = 2), 

          axis.title.x = ggplot2::element_text(margin = ggplot2::margin(t = 10), color = "darkblue", 

size = 15), 

          axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 10), color = "darkblue", 

size = 15), 

          axis.title.y.right = ggplot2::element_text(margin = ggplot2::margin(l = 15),color = 

"grey50", size = 15), 

          axis.text = ggplot2::element_text(color = "black"), 

          axis.text.x = ggplot2::element_text(margin = ggplot2::margin(t = 15)), 

          axis.text.y = ggplot2::element_text(margin = ggplot2::margin(r = 10)), 

          axis.line = ggplot2::element_line(colour = "black"), 

          axis.ticks.length = ggplot2::unit(2, "mm"), 

          plot.caption = ggplot2::element_text(color = "black"), 

          plot.background = ggplot2::element_rect(fill = "white"), 

          plot.margin = ggplot2::margin(t = 10, r = 50, b = 10, l = 10), 

          panel.background = ggplot2::element_rect(fill = "white"), 

          panel.border = ggplot2::element_rect(fill = "NA", color = "darkblue", size = 1.5), 

          legend.background = ggplot2::element_rect(color = "black", fill = "white"), 

          legend.key =  ggplot2::element_rect(fill = "white"), 

          legend.text = ggplot2::element_text(color = "black"), 

          legend.position = "bottom", 

          strip.background = ggplot2::element_rect(color = "blue", fill = "grey75", size = 2), 

          strip.text.y = ggplot2::element_text(size = 13, face = "bold"), 

          panel.grid = ggplot2::element_blank()) 

  } 

  if(!is.null(file) & is.null(sample) & is.null(time.start) & is.null(time.stop)){ 

      file.plot <- dplyr::filter(data, File == file) 

      ggplot2::ggplot(file.plot, ggplot2::aes(x = Time, y = CO2)) + 

        ggplot2::geom_line(color = "blue") + 

        ggplot2::ggtitle(paste0("Time Series Plot for:", " ", file)) + 

        UNR() 

  } else if(!is.null(file) & !is.null(sample) & is.null(time.start) & is.null(time.stop)){ 

      file.plot <- dplyr::filter(data, File == file) 

      sample.plot <- dplyr::filter(file.plot, Sample == sample) 

      ggplot2::ggplot(sample.plot, ggplot2::aes(x = Time, y = CO2))+ 

        ggplot2::geom_line(color = "blue")+ 

        ggplot2::ggtitle(paste0("File: ", " ", file, "\nSample: ", sample))+ 

        UNR() 



61 
  } else if(!is.null(file) & !is.null(sample) & !is.null(time.start) & is.null(time.stop)){ 

      file.plot <- dplyr::filter(data, File == file) 

      sample.plot <- dplyr::filter(file.plot, Sample == sample) 

      start <- dplyr::filter(sample.plot, Time >= lubridate::as_datetime(time.start)) 

      ggplot2::ggplot(start, ggplot2::aes(x = Time, y = CO2))+ 

        ggplot2::geom_line(color = "blue")+ 

        ggplot2::ggtitle(paste0("File: ", " ", file, "\nSample: ", sample))+ 

        UNR() 

  } else if(!is.null(file) & is.null(sample) & !is.null(time.start) & is.null(time.stop)){ 

      file.plot <- dplyr::filter(data, File == file) 

      start <- dplyr::filter(file.plot, Time >= lubridate::as_datetime(time.start)) 

      samples <- paste0(unique(start$Sample), collapse = ', ') 

      samples.2 <- stringr::str_wrap(samples, width = 40) 

      ggplot2::ggplot(start, ggplot2::aes(x = Time, y = CO2))+ 

        ggplot2::geom_line(color = "blue")+ 

        ggplot2::ggtitle(paste0("File: ", " ", file, "\nSamples: ", samples.2))+ 

        UNR() 

  } else if(!is.null(file) & is.null(sample) & is.null(time.start) & !is.null(time.stop)){ 

      file.plot <- dplyr::filter(data, File == file) 

      stop <- dplyr::filter(file.plot, Time <= lubridate::as_datetime(time.stop)) 

      samples <- paste0(unique(stop$Sample), collapse = ', ') 

      samples.2 <- stringr::str_wrap(samples, width = 40) 

      ggplot2::ggplot(stop, ggplot2::aes(x = Time, y = CO2))+ 

        ggplot2::geom_line(color = "blue")+ 

        ggplot2::ggtitle(paste0("File: ", " ", file, "\nSamples: ", samples.2))+ 

        UNR() 

  } else if(!is.null(file) & !is.null(sample) & is.null(time.start) & !is.null(time.stop)){ 

      file.plot <- dplyr::filter(data, File == file) 

      sample.plot <- dplyr::filter(file.plot, Sample == sample) 

      stop <- dplyr::filter(sample.plot, Time <= lubridate::as_datetime(time.stop)) 

      ggplot2::ggplot(stop, ggplot2::aes(x = Time, y = CO2))+ 

        ggplot2::geom_line(color = "blue")+ 

        ggplot2::ggtitle(paste0("File: ", " ", file, "\nSample: ", sample))+ 

        UNR() 

  } else if(!is.null(file) & is.null(sample) & !is.null(time.start) & !is.null(time.stop)){ 

      file.plot <- dplyr::filter(data, File == file) 

      start.stop <- dplyr::filter(file.plot, Time >= lubridate::as_datetime(time.start) & Time <= 

lubridate::as_datetime(time.stop)) 

      samples <- paste0(unique(start.stop$Sample), collapse = ', ') 

      samples.2 <- stringr::str_wrap(samples, width = 40) 

      ggplot2::ggplot(start.stop, ggplot2::aes(x = Time, y = CO2))+ 

        ggplot2::geom_line(color = "blue")+ 

        ggplot2::ggtitle(paste0("File: ", " ", file, "\nSamples: ", samples))+ 

        UNR() 

  } else if(!is.null(file) & !is.null(sample) & !is.null(time.start) & !is.null(time.stop)){ 

      file.plot <- dplyr::filter(data, File == file) 

      sample.plot <- dplyr::filter(file.plot, Sample == sample) 



62 
      start.stop <- dplyr::filter(sample.plot, Time >= lubridate::as_datetime(time.start) & Time <= 

lubridate::as_datetime(time.stop)) 

      ggplot2::ggplot(start.stop, ggplot2::aes(x = Time, y = CO2))+ 

        ggplot2::geom_line(color = "blue")+ 

        ggplot2::ggtitle(paste0("File: ", " ", file, "\nSample: ", sample))+ 

        UNR() 

  } 

} 

 


	Anderson_peakgas_thesis_final
	ms-committee-approval-3-member

	Student Name - Please enter full name in ALL CAPITAL LETTERS: JACOB ANDERSON
	Thesis Title - Please enter as both CAPITAL and lower-case letters: peak.gas: An R package for data wrangling and plotting trace gas concentrations from instantaneous output produced by benchtop instruments
	Degree name - Enter name of degree (i: 
	e: 
	, MASTER OF SCIENCE) in ALL CAPITAL LETTERS: MASTER OF SCIENCE


	Advisor: Benjamin Sullivan, Ph.D.
	Committee Member: Erin Hanan, Ph.D.
	Grad School Representitive: Elizabeth G. Pringle, Ph.D.
	Date (Type May, August OR December AND four-digit year): December, 2021


