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ABSTRACT 

Unmanaged gases inside the mine airways are hazards to health and explosions, 

mainly methane (CH4) in coal mines. Temperature rise caused by heat release 

from the strata and machinery is another factor that may harm the health and safety 

of workers in underground mines. Control of methane and other gas components 

and the high temperature near a working face require overall localized ventilation 

management and adequate mine cooling systems. Continuously monitoring the in-

situ atmospheric conditions and the number of contaminant gases, especially 

methane, are important factors for predicting the necessary actions for keeping the 

mine a safe and healthy place for workers. Studies are reported for predicting 

methane concentration variations inside underground mines using a long-short-

term memory (LSTM) artificial recurrent neural network. Results will be compared 

to a simple time-series regression predictor (time-series filter). Different 

combinations of the variables and techniques are tested in the LSTM model to find 

the best results for accuracy and applicability. Forward time step variations are 

tested to explore the best prediction outcome. The results show that the LSTM 

model is limited to one-step-ahead prediction for reasonable accuracy. 

Furthermore, increasing the number of variables or the training window size does 

not seem to increase the accuracy of the LSTM predictions. Comparing the results 

using artificial data and the measured data from the mine, it is observed that the 

LSTM performs better if the data has a specific pattern and is as smooth as 

possible. 
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1. INTRODUCTION 

 

1.1 Underground Mines Atmospheric Conditions 

 

The intake air of underground mines has a composition of 78% nitrogen, 21% 

oxygen, and 1% of other gases  (Mcpherson et al., 2009). The composition 

changes as they are mixed with gases from strata (e.g., methane and carbon 

dioxide) and chemical reactions, oxidation, burning of fuels, and explosives. 

Common toxic gases encountered in underground mines are reviewed by 

(Osunmakinde, 2013), emphasizing the problem that mine's gases are not easily 

detected by human sense. The presence of these gases, mainly methane in 

mine openings (Eltschlager, 2001), may cause serious hazards (Ulery,2008), 

especially due to gas outbursts. Another harmful factor for health and safety in 

underground mines is heat release, accompanied by a rise in temperature (Nie 

et al., 2018). 

Altogether, the atmospheric conditions in the mine workings need careful 

ventilation design and operation.  Therefore, continuous monitoring is required 

to check compliance with safety and health limitations in gas component 

concentrations and temperature and humidity. For example, section 75.320 of 

the (Federal Register, 2021) refers to air quality detectors and measurement 

devices. It deals with standards for the devices that measure methane or other 

gases that can accumulate inside a mine. According to this section, these 

devices must be maintained in permissible and operating conditions. Still, 
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section 75.321 deals with air quality according to the same source. This section 

states that air where people work or travel has to contain at least 19.5 percent 

oxygen and no more than 0.5 percent carbon dioxide. 

Furthermore, the volume and air velocity in those areas should be sufficient to 

dilute and carry away flammable, explosive, noxious, harmful gases, dust, 

smoke and fumes.  Continuous AMS (Atmospheric Monitoring Systems) are 

commonly used in metal and coal mines, assisting the mines in maintaining 

operations within safety and health limitations. A modern mine may employ an 

AMS network of thousands of gas, pressure, temperature, humidity, and airflow 

rate sensors, collecting samples every minute during the mining operation. 

The amount of atmospheric data from the AMS sensors is usually evaluated 

against dangerous threshold crossings to assure compliance with target values 

for compliance. For instance, (Federal Register, 2021), section 75.323 deals 

with action for excessive methane. This section states that all electrical, diesel, 

and battery-powered equipment to be de-energized or shut off in the case where 

methane concentration of one percent or more is present in a working place, an 

intake air course, or an area where mechanized mining equipment is being 

installed or removed. If methane reaches 1.5 percent or more, personnel should 

be withdrawn from the affected area.    The data collected by the sensors is far 

too rich in information to be used only for spot-like threshold or set-value 

evaluation. Trend analysis and deep learning from the variations of the AMS 

signals may allow using the investment value for AMS operation for early-warning 
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safety and health assurance not only in the present but in future time, and not 

only in the monitored locations but everywhere in the mine airways. An AMS 

data evaluation system (G. L. Danko et al., 2019) is under development. The 

present thesis details a study in AMS signal analysis for trend detection using 

artificial neural networks. 

 

1.2  Neural Networks 

 

As described by (Haykin, 1999); (Gurney, 1997), an artificial neural network is a 

machine that performs pattern recognition and perception, enhanced through 

"experience." All of this is done by artificial "neurons" or "processing units" that, 

when connected, are called synaptic weights and are used to store knowledge 

acquired from the surroundings. The "processing units," also called nodes by 

(Gurney, 1997) are connected, and when there is a large connection of nodes, it 

is referred to as a net. The goal of a neural network is to find the desired 

relationship between input and output by changing its weights  (Nguyen & 

Widrow, 1990) . According to (Rojas, 1996) each neuron receives a certain 

number of signals (xi) which depends on the number of inputs. These signals are 

then multiplied by their respective weights (wi). Then all the different signals are 

added and integrated into the neuron. The primitive function (f ) is evaluated at 

these points, as shown in Figure 1. 
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Network architecture is defined depending on how the neurons are disposed. 

There are three kinds of architecture: recurrent networks, single-layer networks, 

and multilayer networks (Mas & Flores, 2008). A layer is a group of neurons 

working together in a network (Kriesel, 2014). The single-layer network, 

sometimes also called single-layer perceptron, is the simplest form of an artificial 

neural network. This kind of network is mainly used in classification patterns. It 

consists only of a certain number of input neurons and some output neurons 

(output layer). 

Multilayer feedforward networks usually have more than one hidden layer. When 

combined with the backpropagation algorithm, they are the most used and useful 

type of neural network (Svozil et al., 1997); (Blum & Socha, 2005). One problem 

with this type of network is that it results in many calculations; therefore, gradient 

loss and overfitting may occur (Li et al., 2019). If the error is not small enough and 

the predictions from the network do not match the target, an interactive process 

of gradient descent is applied. This process adjusts the weights and, therefore, 

minimizes the error. 

Figure 1-1 A general neuron at work.  After (Rojas, 1996) 
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There are many techniques for training a neural network, but supervised learning 

and unsupervised learning are the two most used. Supervised learning is the 

case where the correct response (target) is already known. The input and target 

data are entered into the network. It tries to find some relationship between these 

data, comparing input and output. On the other hand, Unsupervised learning only 

uses input data, and the network tries to classify it. Target information is not 

provided (Gurney, 1997). 

Prior to using a multilayer feedforward network, it needs to be trained and tested. 

As described by (Svozil et al., 1997), the training process requires several steps: 

First, some random numbers are chosen for the weights. After that, the iteration 

process starts and passes all the information through all the nodes in the layers, 

and the result is compared with the desired target. Each complete iteration is 

called an epoch. Suppose the predictions from the network are not satisfactory. 

In that case, the network uses backpropagation and tries to adjust the weights and 

minimize the error. This error can measure the performance of the network's 

predictions. When a network is well trained, it is said to generalize. Generalization 

is when the trained network gives perfect or nearly perfect predictions for a new 

set of data that has never been used in the training set. However, overfitting may 

occur if the network is trained too many times. Overfitting is when the network 

"memorizes" the training set and consequently gives perfect predictions for the 

data that has been trained but fails to give good predictions for a new dataset. To 

overcome this problem, a sufficiently large training set must be used. 
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However, it is better to use a time series neural network for doing multi-step 

ahead predictions.  They do not have the problem of long-time dependencies that 

feedforward networks have, caused by vanishing or exploded gradients 

(Diaconescu, 2008); (Lin et al., 1996). Some authors, such as (Lin et al., 1996); 

(Connor Les Atlas FT-lO, n.d.), have used an architectural approach to deal with 

long-term dependencies called Nonlinear Autoregressive models with exogenous 

inputs (NARX models). This model is recognized for being well suited for 

nonlinear modeling systems such as biological wastewater treatment and 

catalytic reformer in petroleum refineries (Su et al., 1992) and time series (Connor 

Les Atlas FT-lO, n.d.). In this type of network, outputs from the model are used 

as new inputs. Figure 1-2 shows a schematic where output at time instant y(k+1) 

is fed back into the network along with the input u(k).  

 

Figure 1-2Schematic of a NARX neural network. After (Diaconescu, 2008) 

It was observed for this type of neural network that the more inputs it has, the better 

the prediction is (Diaconescu, 2008). One variant of the common NN is the 
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recurrent neural network (RNN) (Liang & Cai, 2020). The difference from RNN to 

the conventional NN is that there are connections between layers and 

connections between neurons within layers. . Recurrent neural networks are the 

most studied types of networks. According to   (H. Liu et al., 2020), they possess 

many remarkable capabilities, such as fault tolerance, self-organizing, nonlinear 

function approximation, and self-learning. Furthermore, this neural network has 

many applications in pattern recognition, image processing, and combinatorial 

optimization. One type of RNN is the long-short term memory (LSTM). It is a 

powerful version of the conventional NN and RNN because it can deal with the 

explosion gradient in training (Sangiorgio & Dercole, 2020). It is also used for 

regression and classification problems of time series data (Liang & Cai, 2020; 

Wang et al., 2020)(Sangiorgio & Dercole, 2020;). It has four main components: 

input gate (ig), forget gate (fg), output gate(ot), and a cell (ct). These gates help 

the LSTM remember just helpful information across the time series data. These 

four parameters can be mathematically described as: 

𝑖𝑡 = 𝜎(𝑊 𝑖)𝐻 + 𝑏𝑖  
Equation 1 

 

𝑓𝑡   = 𝜎(𝑊𝑓)𝐻𝑓 + 𝑏𝑓  
Equation 2 

 

𝑜𝑡  = 𝜎(𝑊𝑜)𝐻𝑜 + 𝑏𝑜  
Equation 3 

 

𝐶t
′ = 𝑡𝑎𝑛ℎ(𝑊(𝑐))𝐻𝑐 + 𝑏𝑐  

Equation 4 
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𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶′  
Equation 5 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡 )  
Equation 6 

 

 

In this definition, 𝜎 is the sigmoid function, 𝑊 𝑖,𝑊𝑓, W 0, and 𝑊𝑐 are the 

weights of the input gate, forget gate, output gate, and cell state, respectively. 𝑏𝑖 

, 𝑏𝑓 , 𝑏𝑜, and  𝑏𝑐  are the biases of the input gate, forget gate, output gate, and 

cell state, respectively.  𝐻, 𝐻𝑓 , 𝐻𝑜 and 𝐻𝑐 represent the superposition of the 

current input vector xt and the output ht-1 at the previous moment. The output is 

represented by ℎ𝑡. Tanh is the tangent activation function.  According to (Miao et 

al., 2020), the input gate and forget gate are responsible for updating the cell 

state. These are the gates that control which information the LSTM keeps or 

discards. The LSTM can be trained in two ways, as stated by (Sangiorgio & 

Dercole, 2020), with teacher forcing (TF) or without TF. Training with teacher 

forcing is the case where the predictions from the LSTM are not fed back into it, 

so new predictions cannot be made based on past predictions. The schematic 

is shown in Figure 1.3. 

 

Figure 1-3 Training with TF. After (Sangiorgio & Dercole, 2020) 
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It is observed from Figure 1-3 that even if more than one step ahead is to be 

predicted, the data provided for predicting is always actual data, not the own 

predictions from the LSTM. This type of predicting is suitable because it does not 

propagate error in time. 

On the other hand, training without TF is where the LSTM uses its predictions 

as new inputs and makes further predictions based on previous ones, as shown 

in Figure 1-4. 

This training technique allows for multi-step ahead predictions using past predicted 

values from the LSTM. In this case, the propagation of error in time is more 

significant. The value predicted at a specific time step affects future predicted 

values. Besides the teaching method, the parameters used for tuning the LSTM 

are fundamental. According to (Sarkar & de Bruyn, 2021), the so-called 

hyperparameters can increase or decrease an LSTM's performance. Some of the 

parameters are the number of hidden units, the learning rate, and the batch size. 

The hidden units are related to the ability of the LSTM to recognize relationships 

in the data. If there are too few, the LSTM may not capture the relationship. 

Conversely, too many increase the chance of overfitting. It happens when the 

neural network tries to model (fit) every minor variation in the input. The problem 

Figure 1-4 Training without TF. After 
(Sangiorgio & Dercole, 2020) 



10 
 

is that this variation is most likely to be noise than the actual signal (Murphy, 

2021).The learning rate is responsible for the algorithm to "learn," It is considered 

the most important parameter by (Greff et al., 2017) (Bengio, 2012). If it is too 

low, the training process is prolonged and may never converge. If it is too high, 

instability in the training part may occur. According to (Bengio, 2012), the mini-

batch size can vary between 1 and a few hundred, impacting the computation 

speed. Besides hyperparameters, (Bengio, 2012) emphasizes that 

preprocessing the data before passing it to the LSTM is also a good practice. 

As stated before by (Murphy, 2021), overfitting may happen in the training of a 

neural network. According to the referred author, regularization is the most 

common way to avoid overfitting. According to (Nagarajan & L.D Babu, 2021) , 

the technique called regularization is used to avoid overfitting in machine 

learning problems. It helps prevent overfitting by introducing a penalty term to 

the error function. The L1 and L2 regularization are the two most common types 

used. The L1 regularization adds a regularization term that is the sum of the 

absolute values of weights. The L2 regularization adds a regularization term that 

is the sum of the squared value of weights. According to the source mentioned 

above, the L2 regularization is more computationally efficient and stable than 

the L1 regularization.  According to (Srivastava et al., 2014), another common 

way to avoid overfitting is using the dropout technique. This method randomly 

drops out neurons (make them inactive) during training so that they contribute 

neither to the forward pass nor to the backpropagation (Krizhevsky et al., 2017). 

The idea is to prevent the units from co-adapting too much. This way, the neuron 
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is forced to learn more robust features.  Both authors highlight that this 

technique significantly reduces overfitting and improves the neural network's 

performance. This is done in MATLAB using the function “dropoutLayer”. The 

description of this function is “ A dropout layer randomly sets input elements to 

zero with a given probability.” 

According to (Siblini et al., 2020), the most common error metrics used when 

dealing with classification problems are precision, recall, and F1 score. The 

predictive performance is measured using the number of true positives (TP), 

true negatives (TN), false positives (FP), and false negatives(FN).  According to 

(Powers, 2007), true and false positives (TP/FP) is the number of predicted 

positives that were correct/incorrect and similarly for true and false negatives 

(TN/FN). The recall is defined as the true positive rate, and its notation is: 

𝑅ec =
TP

TP + FN
 

 

Equation 7 

 

The precision is defined as : 

Prec =
TP

TP + FP
 

 Equation 8 

According to (Siblini et al., 2020), these error metrics are biased towards a 

specific type of error. Therefore, more complex error metrics have been 

proposed, such as the F1 score. 

F1 =
2 ∗ Prec ∗ Rec

Prec + Rec
 

 Equation 9 

According to ( Anderson, Sweeney, Williams, 2011), the error metrics used for 



12 
 

time-series data forecasting are the mean absolute error (MAE). It measures the 

average of the absolute value of forecast errors.  

MAE =
1

n
∑|Aj − Pj|

n

j=1

 

 Equation 10 

Where n is the size of the dataset, 𝐴𝑗 is the actual value, 𝑃𝑗 is the predicted value, 

and 𝑗 is the time step.  Another common error metric is the mean squared error 

(MSE). It computes the average of the squared forecast error.  

MSE =
1

n
∑( Aj − Pj)

2

n

j=1

 

 Equation 11 

According to (Bratu, 2013), the root mean squared error (RMSE) is also used as 

an error metric for forecast accuracy. It is defined as: 

RMSE = √
1

n
∑( Aj − Pj)2
n

j=1

 

 Equation 12 

 

2. LITERATURE REVIEW 

 

2.1 Factors Affecting the Health and Safety of Underground Workers 

 

2.1.1 Temperature And Heat Release 

 

Heat release in underground mines may come from several sources. If the 

appropriate cooling is not provided, it can rise to uncomfortable levels. According 
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to (Maurya et al., 2015), the most common source of heat release in underground 

mines is: Geothermal gradient- refers to the rate of increase in temperature with 

respect to the increase in depth. In underground airways, the gradient is affected 

by the virgin rock temperature and airflow (dry or wet). Auto compression- When 

air goes downwards an airway, it gets compressed, which, in turn, generates heat. 

Mechanized equipment-Vehicles and devices such as rock-breaking machines, 

lights, and fans generate heat and thermal pollution that needs to be removed from 

the mine; Diesel equipment- Diesel is used in almost all the machines in an 

underground operation; hence, the output produced, exhaust gases, and heat play 

a major role in contributing to heat release and control; Explosives and blasting-

When blasting is used for rock fragmentation, the heat released may stay trapped 

in the broken rock and released later when the rock is removed. Heat release leads 

to increased temperature, as shown by the case studied by (Nie et al., 2018). The 

author studied heat treatment and ventilation optimization in a deep mine where 

heat could not be discharged from the well in time, mainly because of poor air 

circulation. The authors used cold mine water to treat the heat damage inside the 

Jinqu gold mine in China. 

Throughout the research is emphasized that without proper cooling, heat release 

leads to an increase in temperature that may affect mineworkers' physical and 

mental health, which decreases productivity. Another factor that leads to an 

increase in temperature in underground mines is the seasonal temperature 

variation of the surface.  (Yi et al., 2019) studied the effect of seasonal air 

temperature variation on airflow and surrounding rocks in deep coal mines. Data 
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were collected during one year. At the end of this period, the authors concluded 

that the further from the surface, the lower the impact on increasing air temperature 

inside the mine caused by surface air. The surrounding rock would absorb heat 

during summer, which caused a decrease in underground air temperature. 

Studying cooling pathways in deep Australian longwall coal mines (Belle & Biffi, 

2018) states that wet bulb temperature (WBT) and dry bulb temperature (DBT) are 

valuable indexes to evaluate risk management in underground mines. The author 

reports that a WBT below 28 oC can be considered cool, and productivity 

increases. However, at 33 oC WBT, it was reported that productivity decreases 

significantly, accidents happen more frequently, and the chances of a heart stroke 

increase dramatically. In hot conditions, miners may sweat a lot and suffer 

significant weight loss in their working shifts (Brake, 2001). Given the importance 

of keeping the temperature under adequate levels, so health and safety coupled 

with productivity increases, some researchers have tried to develop models to 

forecast temperature inside underground mines.  

2.1.2 Models for Temperature forecast in Underground Mines 

 

For instance, (Bascompta et al., 2020) developed a linear model with four variables 

interacting with each other, namely temperature at the beginning of the drift 

section, the temperature at the end of the drift section, the airflow changes along 

the drift section, and the length of the drift section. The authors concluded that the 

model presented a good correlation between measured and estimated 

temperature values (R2=0.933). Furthermore, according to the research, this 
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model can be used to find good workplace conditions inside the mine in terms of 

temperature; it is simple to use, adaptable to further modifications, and allows for 

analyzing different mining planning scenarios. Another research that describes a 

predictive model for temperature in an underground mine was carried out by (W. 

Lyu et al., 2017). The authors developed a mathematical model based on energy 

and mass conservation law which considers the airflow inside the mine, rock 

temperature, hygrothermal exchange, temperature, and moisture. The authors 

concluded that the model had a good agreement with the measured data, and the 

airflow inside the mine was adjusted based on the predictions from the model. 

Furthermore, the workforce was able to meet standard requirements. Similar 

research was carried out by (Zhu et al., 2015), who developed a predictive model 

based on heat balance for ultra-deep underground coal mines. The authors used 

several underground heat sources such as heat from the mine shaft, heat from the 

wall rock, heat from underground machinery, and other parameters to increase the 

model performance. 

Furthermore, a computer program was developed in visual basics to speed up the 

calculation process. The highest standard deviation from the model prediction 

compared to the measured value was 1.08 oC.  The authors concluded that more 

underground heat sources should be considered to increase the model's accuracy 

further. Moreover, that moisture exchange in the roadway should be analyzed 

carefully because it can significantly affect the temperature of the air. Some 

terminologies defined by ( Mine Safety & Administration, 2012) define a hot place. 
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According to this terminology, a hot place is characterized by high air 

temperatures, high humidity, relatively low air movement. 

Furthermore, according to this source, ventilation is the best method of combating 

the effect of rock temperature. In a survey made by (Donoghue, 2004), it was found 

that most of the heat-related illnesses occur at the face in underground metal 

mines, primarily because of low ventilation velocities. A sound ventilation system 

is required to decrease the rise in temperature caused by heat release and provide 

a safer and productive environment (Sasmito et al., 2013). Not only that, but a 

sound ventilation system also allows for bringing hazardous gases concentration, 

such as methane, to within acceptable limits as required by local statutes (as those 

described in the introduction section by (Federal Register, 2021) (Kurnia et al., 

2014) (Sasmito et al., 2013). If the amount of air provided is insufficient, the 

potential accumulation of pollutants increases (Parra et al., 2006).  However, for a 

ventilation system to be effective, many factors have to be considered: the 

ventilation route, method, the operating fan, the ventilation structure as a whole 

(Tang & Ding, 2011). A study made by (Donoghue et al., 2000) evaluated the heat 

exhaustion occurrence in deep underground mines. It was reported that to prevent 

heat exhaustion and decrease in productivity, it is required to provide air cooling 

power greater than 250 W/m2. The best way to do this is by refrigeration and 

ventilation. A sound ventilation system is paramount for keeping the temperature 

within acceptable working levels in an underground mine. Furthermore, predicting 

the temperature inside an underground mine would have clear advantages, as 

aforementioned.  
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Among the software available for climate simulation underground, it is worth 

mentioning MULTIFLUX (Danko, 2008). According to (Danko, Bahrami & Jones., 

2011), this software couples time-dependent thermal hydrologic and ventilation 

calculations in an underground environment. The author states that the advantage 

of using this software lies in the great accuracy it provides. The referred software 

is tested for different scenarios, such as mine drifts and development ends in coal 

mines. MULTIFLUX showed very good agreement between the simulations results 

and the measured field values in all these tests. Several papers have been 

published about the MULTIFLUX software, such as (G. Danko, 2010; G. Danko et 

al., 2020; G. L. Danko, 2013; G. L. Danko & Asante, 2017; George et al., 2011; Lu, 

2019) 

2.1.3 Gas Release- Methane Release In Coal Mines 

 

Methane is one of the most common strata gases. It is produced by bacterial and 

chemical activity (Mcpherson et al., 2009). It is retained within fractures, voids, 

pores, and it is liberated when pierced by boreholes or mined openings. Despite 

not being toxic, its dangerous behavior lies in the fact that it can form explosive 

mixtures with air. In underground coal mines, methane explosion poses a deadly 

hazard for miners (Shi et al., 2017). The amount of coal mine methane released 

during mining activities poses concern about the sufficient ventilation required to 

ensure that work safety complies with statutory limits (C. Ö. Karacan et al., 2011); 

(C. Ö. Karacan, 2008)). According to the author, several geological features 

contribute to the release of this gas. When coal is being extracted, there is a 
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variation in the amount of gas released. It is not easy to distinguish where the 

emission is coming from. Furthermore, the author lists the parameters that most 

influence methane release in coal mines, among them: the level of maturation 

reached (rank) in a coal seam; the depth of the coal seam; face conveyor and 

stage loader speed, and presence of degasification.  (C. Ö. Karacan, 2008) reports 

that due to geological, geographical, and operational factors, prediction of methane 

emission is difficult. For example, methane emissions into a longwall operation can 

be controlled, or at least mitigated, using gob gas vent holes (GGV). Therefore, 

understanding the circumstances under which methane accumulations can occur 

in a mine is crucial (NIOSH, 2006). The referred handbook emphasizes that 

methane entering a mine through a crack, for example, gets mixed with air and 

undergoes dilution. As it gets diluted, from 100% to permissible working limits, it 

might pass through three concentration ranges: the upper explosive limit (UEL), 

above 15%, where the methane-air mixture is not explosive; from 15% to 5%, 

known as explosive range; and the lower explosive limit (LEL), below 5%, where 

the methane-air mixture cannot ignite. During the explosive range, the CH4 air 

mixture might be ignited.  To make a methane-air mixture non-explosive, the 

addition of inert gas, such as nitrogen, can be used. Pressure and temperature 

also influence methane explosibility. The dependency of methane explosibility with 

pressure varies slightly under reduced pressure. At elevated pressures, the LEL 

decreases, and the UEL increases strongly. As for temperature, the effect is 

modest. The LEL at -110 oC is 5.6% CH4 and at +100 oC is 4.8% CH4.  (Mcpherson 

et al., 2009). If the concentration exceeds 1% or 1.25 %, the power must be 
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switched off. If the concentration exceeds 2% or 2.5 %, all personnel except those 

concerned with the ventilation should leave the area. Chapter four of the  (NIOSH, 

2006) lists ways of preventing methane ignitions at longwall faces. It states that 

the methane released at the longwall represents only 10%-20% of the total 

methane emitted from the longwall panel. Despite not saying how this 

measurement is done, the chapter points out four ways to prevent methane ignition 

at longwall faces. The first one is to avoid methane accumulation around the drum 

of the shearer, which can be accomplished by providing better ventilation. Another 

action that can be taken is installing water spray behind each cutter bit to cool 

down the metal when it strikes the rock, preventing frictional ignitions. The third 

action is to ensure no eddy zones due to bad installation of the water spays around 

the shearer.  Lastly, ensure that the methane detector in the shearer is at the best 

location possible.   

2.1.4 Methane Release in Metal/Nonmetal Mines 

 

Chapter thirteen of (NIOSH, 2006) lists ways to control methane in metal/nonmetal 

mines. It emphasizes the difference between methane release in coal mines, 

where the releasing process is well understood,  

and the release in metal mines, where it can occur unexpectedly.  Because CH4  

emissions in metal/nonmetal mines are not consistent; its anticipation is hard to be  

           done. One significant difference between coal mines and metal mines is that 

methane in coal mines is always a concern. Detection can be done anywhere, and 
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various instruments are used to monitor and mitigate CH4 emissions. Therefore, 

monitoring is a regular activity that creates awareness of methane's potential 

hazards. This awareness leads to great efforts to mitigate the risk of ignition or 

explosion.  On the other hand, workers may never encounter methane in a metal 

mine. They may become complacent, and CH4 testing might be cursory, leading 

to methane build-up in recirculation areas.   

2.1.5 Models for Methane Emission and Forecast in Underground Mines 

 

Due to the importance of monitoring methane concentration in underground mines, 

several scholars have developed models for methane monitoring systems 

(Agioutantis et al., 2014); (Jo & Khan, 2018)). Studying the parameters that 

influence methane release in coal mines, like those highlighted in section 2.1.3, is 

essential to develop accurate forecasting models (Diaz et al., 2021). These models 

can be divided into three categories depending on the approach used: the first is 

the empirical approach, based on data collected by observing a process or 

phenomenon. The second category is the numerical approach, which creates 

physical models of the system or process and uses numerical approximation or 

mathematical tools to solve it. Lastly, the statistical approach, consisting of 

collecting and analyzing raw data and using mathematical techniques to find a 

pattern to create a forecast model.  

2.1.6 Empirical Models for Methane Emission and Forecast 

 

Studying the methane released from coal mines in Britain (Creedy, 1993) proposed 

a model based on three primary sources: methane flow from drainage systems, 
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methane flow in mine ventilation air, and in-situ gas content of coal seams. Data 

used for the study was from annual historical values (collected from 1966 to 1988). 

This data consists of methane emissions from deep mines in the United Kingdom. 

The estimate 𝐸𝐷 is as follow: 

𝐸𝐷 = 𝐿𝑓𝑃𝑤 + ((1.857 ∗ 𝐷) − (𝐷 − 𝑈) + 𝑅𝑓𝑃𝑡   
Equation 13 

 

Where 𝑃𝑤 refers to the annual coal production from mines without methane 

drainage; 𝑃𝑡 is the total annual deep mine coal production; 𝐷 is the total mass of 

methane drained from all mines; 𝑈 is the quantity of methane utilized; 𝐿 is the 

specific emission for mines without drainage of 6 m3/t; 𝑅 is the residual gas content 

of coal arriving at the surface of 2 m3/t; 𝑓 is a factor for converting volume flow to 

mass flow. A methane emission model was proposed by (Kirchgessner et al., 

2000). It is based on a regression equation and considers the relationship between 

mine emissions, coalbed methane content, and coal production rate.  

𝑀𝐸 = 1.08𝑥10−7(𝐶 𝑃 𝑥 𝑀𝐶) + 31.44 − 26.76(𝐷𝑉)  
Equation 14 

 

Where 𝐶𝑃 is the annual production of coals (tons/year); 𝑀𝐶 is the total CH4 content 

of the unmined coal( m3 CH4/tons coal); 𝐷𝑉 is a step function: 𝐷𝑉 =1 if (𝐶𝑃 × 𝑀𝐶) 

is less than 7.6 × 105, and 𝐷𝑉 = 0 if (𝐶𝑃 × 𝑀𝐶) is greater than or equal to 7.6 × 105. 

Another methane emission model was proposed by (C. O. Karacan et al., n.d.). 

The author studied longwall methane emission where the longwall was extended 

from 229 to 305 meters. The equation generated was through regression analysis. 
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The longwall face was divided into equal lengths segments to generate the model. 

Data from the previous two segments were averaged and used as historical data. 

The trend was then extrapolated to forecast the methane emission for the segment 

ahead. 

2.1.7 Numerical Models for Methane Emission and Forecast 

 
 

According to (Diaz et al., 2021), the numerical models for methane forecast are mainly 

based on Darcy's Law of the porous medium. The study carried out by (Owili-Eger et 

al.,1970) simulated quantity and quality control in mine ventilation. Based on Darcy’s Law, 

a mathematical model was developed to approximate the methane flow pattern and 

quantity coming from the coal seams and going into the mine atmosphere. The author 

considered that the methane emitted into the mine atmosphere depended on gas 

emissivity, boundary conditions, initial gas distribution pressures, and the combination of 

mining factors. It was emphasized that the functional relationship between these factors is 

unknown, making it very difficult to develop rigorous mathematical equations to simulate 

methane flow into the mine air. The model was tested and proved to be reasonable. 

However, further research showed that the model was only valid for shallow depths mines 

(Dixon, 1992). A numerical simulation of time-dependent methane flow was carried out by  

(Ediz & Edwards, 1991). The model considered a medium having variable anisotropic 

permeability. The solution for the equations was obtained using finite element analysis for 

time-dependent gas pressure evaluation. The model was based on Darcy’s Law. 

The results showed that the model reported good agreement with those anticipated from 

physical considerations. However, the author highlighted that the model's accuracy could 
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be improved if more field data were available.  A dynamic model for methane emission in 

longwalls mines was developed by (Tauziède et al., 1993). The model is a function of 

stratigraphy and gas content of the strata surrounding the mined coal seam. The author 

emphasizes that due to the complex structure of a mine, it is complicated to equate the 

problem as a whole. The difficulty lies in the number of parameters involved and the 

challenge of apprehending the values for these parameters.  A study carried out by (C. O. 

Karacan et al., n.d.) proposed a numerical analysis of the impact of longwall panel width on 

methane emissions. The study was divided into two stages: firstly, the author used a 

FLAC2D (Fast Lagrangian Analysis of Continua 2D) finite difference method to simulate 

the rock’s geomechanical responses. The output of this first analysis was used to calculate 

permeability changes based on empirical relationships. The second stage used the 

calculated permeability field combined with Computer Modeling Groups GEM software to 

simulate methane flow and emissions in the longwall mining. Studying the effects of 

porosity and permeability changes on methane emissions in an underground coal mine 

(Luxbacher & Erdogan, 2009), developed a dynamic model to simulate methane emissions 

and concentration. The author concluded that the induced stress activities produce the 

highest amount of methane emission.  Another alternative for forecasting methane in 

underground mines is using a numerical model such as the NTCF (numerical transport 

code functionalization) proposed by (G. Danko, 2006). Initially proposed for heat and 

moisture transport problems, this model can be used in combination with TOUGH2 

(Transport of unsaturated groundwater and heat) or NUFT ( Non-equilibrium, Unsaturated-

saturated Flows and Transport) to get important information from these models and then 

be used for methane forecasting.  



24 
 

 

2.1.8 Time Series Analysis for Methane Forecast 

 

According to (Diaz et al., 2021), a time series is a series of observations recorded 

at regular times. When applied to forecasting, past observations can be applied to 

predict future values of the target variables. The forecasting technique can be a 

regression analysis, a machine learning model, filtering algorithms, etc. For 

instance (Mathatho., 2020) proposed an early warning system for methane 

prediction in an underground coal mine. The approach consisted of a principal 

component analysis (PCA) to determine what factors most influence the methane 

levels; and an artificial neural network for methane forecast. The parameters used 

in the dataset were methane, humidity, pressure, wind(speed and current), and 

temperature. The authors obtained the dataset publicly from the “knowledge pit 

mining competition containing sensor data recorded in 2014 from March to June.” 

The PCA results showed that the most significant variables were humidity, 

temperature, and pressure. The authors use the Levenberg-Marquardt (LM) 

algorithm for training. 

Furthermore, the data was normalized, and the best number of neurons for the 

hidden layer was chosen by increasing its initial value by one until it converged to 

a minimum averaged squared error. The best number of neurons using the original 

dataset variables was fifteen, and six using the PCA components. The authors 

obtained a mean squared error of 0.0019 using the LM algorithm, and a root mean 

squared error of 0.0426. The authors concluded that the results from the neural 

had a high prediction accuracy. Additionally, they stated that the PCA-based neural 
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network was a good alternative to find influencing factors for improving the 

performance of methane predictions models. The paper does not give any other 

information regarding the actual comparison between predicted and forecasted 

values. It also does not give any information about the training data size or the 

number of steps ahead forecasted.  

 (Geng, 2016) studied short-term prediction of coal mine methane using chaos 

partial swarms optimized radial basis function neural network model (PSO-

RBFNN). The author used a three-layered feed-forward neural network with a 

Gaussian radial basis function to activate the hidden layers. The data used by the 

author comes from an underground coal mine monitoring system of the Xuan Dong 

Cola Mine. The first season of 2013 was used as a dataset, and the sample rate 

was one minute. Due to the complex environment, human factors may have 

interfered in the raw data, causing it to be noisy. Therefore, the data needed to be 

preprocessed. The author used 250 iterations and a hidden layer with five neurons. 

The output layer was the coal mine methane concentration. The RMSE for the 

proposed model was 0.0265. The author concluded that the proposed model could 

accurately forecast methane concentration. The author does not give information 

about the number of steps ahead predicted. 

 In an attempt to forecast methane emissions in a coal mine, (Yang et al., 2020) 

used a modified grey radial basis function neural network to make the forecasting. 

Seven factors were considered in the study, namely: coal seam depth, seam 

thickness, coal seam methane content, seam spacing, daily progress, daily output, 
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and methane emission. The data consisted of 300 sets of methane data from a 

coal mine in Shanxi.  The authors reported that a sensitivity analysis was made to 

determine the number of training samples. The best value from the sensitivity 

analysis was 275. Data points from 276 to 300 were used as prediction samples. 

The relative error comparing predicted and actual values was used to evaluate the 

model's performance.  The author used the six variables mentioned earlier as input 

variables to train the model. The methane concentration was the target. The data 

used for training went through logarithmic processing and other transformations to 

make it smoother and improve the predictions.  For this improved model, the 

results showed that the relative error stayed below 15%, with an average of 5.63%. 

The authors attribute the network's performance to the fact that combining the grey 

theory with the neural network, the model weakens the randomness of the sample. 

Conclusions drawn suggested that more factors affecting methane should be used 

to improve the reliability of the predictions.  

 

2.1.9 Attempts to Use LSTMs in Underground Mines to Improve Worker’s 

Health and Safety 

 

As seen in sections 2.1.6 and 2.1.7, empirical and numerical models for methane 

emission and forecast in underground mines have been proposed. However, in 

most cases, these models consider CH4 emission per year or month, making it 

difficult to prevent an accident if the methane concentration exceeds permissible 

limits during a working shift. Furthermore, as highlighted by some authors, the 

number of variables interacting with each other makes it difficult to create an 
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accurate forecasting model. Therefore, the present study aims to develop a 

predictive model for methane forecast in underground mines. However, this task 

is evaluated using neural networks (NN), specifically a long short-term memory 

(LSTM). Because of its powerful capabilities, some researchers have been using 

LSTM models applied to underground mines to improve workers' health, safety, 

and productivity. Trying to forecast a sealed-off area's fire status in underground 

coal mines (Kumari et al., 2021) used an LSTM model to forecast the 

concentrations of O2, CO, CH4, CO2, H2, N2, and C2H4 inside a mine.  The authors 

used a uniform manifold approximation and projection  (UMAP) to reduce the 

dimensionality of nonlinear high dimensional values ( a procedure on how this 

method works can be found in the author’s article). Therefore, it was created a 

UMAP-LSTM model. This model is used in three steps: dimension reduction of the 

data, gas concentration prediction, and forecasting of fire status and explosibility 

of the sealed-off area. The author used around 80% of the data for training the 

LSTM and 20%  to test the prediction result. The model's accuracy was calculated 

based on the root mean squared error.  The LSTM configuration used was a hidden 

layer with 50 neurons, batch size of 64, a learning rate of 0.001, Adam optimizer, 

a dropout rate of 0.01, and 200 epochs. The data used by the author comes from 

sensors installed at the Lakhimata Underground Coal Mine under Eastern 

Coalfields Limited in India’s Jharkhand state. The sampling interval was one day. 

143 days were used as training dataset and 31 days as the test dataset. Several 

gases ratios, such as Graham’s ratio, Young’s ratio, CO/CO2 ratio, Jones and 

Trickett's ratio, C/H ratio, and Ellicott's extension graph of Coward’s explosibility 
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diagram were determined based on the forecasting (detailed explanation about 

these gases ratios can be found in the author’s paper). The UMAP_LSTM model 

was compared to a Supporting Vector Machine and an ARIMA model. Results 

showed that the LSTM model was the best. Among the gases forecasted by the 

model, the root mean squared error for forecasting CH4 was 0.0995.  

The research done by (P. Lyu et al., 2020) presents an LSTM-based encoder-

decoder for short-term prediction of CH4 gas concentration. The data used comes 

from the Sijiazhuang coal mine. Before inputting the data into the LSTM, the author 

performed a feature extraction in the data. The correlation coefficient was used to 

calculate the correlation of the values of each gas sensor. This is done because, 

in the data used, the peak concentration for methane has a delay time if taken at 

different locations around the mine. The MSE was used as the loss function for the 

model. To prevent overfitting, an L1 regularization term was used. The data 

sampling interval was two minutes.  Nineteen days of data were used as a training 

set, and ten hours of data were used as a testing set. The proposed model was 

used to predict methane concentration two minutes, four minutes, six minutes, 

eight minutes, and ten minutes ahead.  The proposed encoder-decoder LSTM was 

compared with an ARMA model and CHAOS model. Results showed that the 

LSTM model was superior to the other models.  The author states that despite 

achieving better performance,  the accuracy of the  LSTM model decreased as the 

number of time steps ahead increased. The study compares the results when data 

from a single sensor is used to train the model versus when it is trained with 

multiple sensors.  For instance, the first step ahead prediction using a single 
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sensor presented a mean absolute error (MAE) of 0.01. Using the multi-sensor 

method, the error was 0.007. As the number of steps ahead increased, the error 

using a single sensor and multi-sensor also increased. The author highlights that 

using the multi-sensor dataset for training, the MAE for predicting five steps ahead 

was 0.0165, lower than predicting just one step ahead, 0.0169 using the single-

sensor data. The author states that combining data from different sensors to train 

the model increases its accuracy. The paper does not give information about the 

architecture of the LSTM model. 
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3. THESIS PROBLEM 
 

This study aims to forecast the methane concentration at the tail gate of an 

undergroundcoalmine. The data used for performing the tasks presented in this st

udy comes from four different locations inside the mine around the tail gate. Minute-

averaged variations of methane concentration, air flow rate, barometric pressure, 

and three other gas concentration components (CO2, CO, O2) for about a year 

time (460,880 sampled values for each variable) were made available for the 

research project. Only the methane concentrations, barometric pressures, and air 

flow rates were used in this thesis study. The daily averages of the measured 

variables were calculated by arithmetic averaging the minute-sampled 

measurement data for model studies involving daily average variations. The study 

is part of an ongoing, funded research project on an early warning system (EWS) 

proposed by (G. L. Danko et al., 2019). The original idea and in-depth details can 

be found in the author’s article. This section gives a brief description of how the 

proposed model works and lists the goals of this study.  

The early warning system proposed by the referenced author in this section 

considers that methane concentration traveling through an airway might 

accumulate (due to a distributed source). This build-up in methane 

concentration may cross a hazard threshold for safe working conditions. 

Therefore, an early warning system is required to prevent a possible disaster. 

Figure 3-1 below shows a schematic proposed by (G. L. Danko et al., 2019), 

considering the interaction between sensors and EWS evaluation for accident 
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prevention. This thesis focus on complementing part (D) of the schematic below. 

However, instead of using the dynamic mine ventilation model (DMVM) to 

forecast, it relies on an LSTM model. As a first approach, the LSTM model will 

use a combination of the available variables (airflow, barometric pressure, and  

 

Figure 3-1 Schematic showing interaction between sensors and EWS evaluation 
for accident prevention. After G. L. Danko et al., 2019 

 

methane concentration from different locations inside the mine) for training. 

Different combinations of the variables will be tested. The one that gives the best 

result will be chosen to verify its accuracy and applicability in predicting data that 

can match the monitored data. The accuracy of the LSTM model will be further 
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compared to a time series filter model.  Conclusions will be drawn regarding the 

strengths, weaknesses, and usefulness of the LSTM compared to a simpler 

model.  

4. METHODOLOGY 

 

The configuration of the computer used in the proposed methodology is as 

follow: 

Processor: Intel® Xeon(R0 CPU E3-1270 V2 @ 3.5 GHz; 

Installed RAM: 16 GB 

System type: 64-bit operating system, x64-based processor. 

 

4.1  Testing the Influence of LSTM Tuning Parameters 

 

The LSTM model in use is the one available in (MATLAB R2019a-academic use). 

It was adapted to reflect the needs for the simulations presented in this study.   

Before using the LSTM, the best tuning parameters has to be chosen. Therefore, 

In this section, the influence of the LSTM tuning parameters is tested. The first 

parameter to be tested is the number of LSTM layers. Firstly, the LSTM will use 

just one layer. This parameter will be increased to three with increments of one 

while the other parameters remain constant. Next, the number of hidden units will 

be tested using the best layer option from the previous simulation. The number of 

hidden units will start at three; It will be increased to five, ten, and twenty. Lastly, 

the initial learning rate will be varied using the best layer option and the best 

number of hidden units from the previous simulations. 
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Table 4-1 Initial LSTM configuration 

Max Epochs Number of Layers Initial Learning Rate 
Number of Hidden 

Units 

500 1 0.005 3 

 

4.2 Testing the LSTM with Artificial Data (Sine Functions) 

 

Before using the LSTM with actual data from the mine, this step aims at validating 

the LSTM performance using artificial data (sine functions). This validation 

compares how well the LSTM can predict with actual data compared to simple data 

with a specified pattern. This validation allows verifying how powerful the LSTM is 

and seeing what data can generate good predictions.  

 

4.2.1 Validating the LSTM with one Input 

 

The first elementary function that is going to be tested is: 

𝑥 = 2 ∗ sin (
𝑡𝑖

10 ∗ π
) + 3 

input Equation 15 

 

𝑌 = √2 ∗ sin (
𝑡𝑖

10 ∗ π
) + 3 

target Equation 16 
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Where 𝑡𝑖 is a vector containing data from one to 327 points;The 𝑥 vector will be 

used as a training input into the LSTM, and the target is the  𝑌 vector. The figure 

is shown below: 

 

Figure 4-1 Sine functions used as training and target 

 

The LSTM will be trained with one input, and it has to predict one step ahead. A 

five-step-ahead prediction will also be performed to check the robustness of the 

model.  

4.2.2 Validating the LSTM with Artificial Data and Multiple Inputs 

 

To test if the LSTM performs better if multiple input variables are used, it will also 

be trained with three inputs and predict one output. The data used in this test 

comes from a sinusoidal function.  The functions used  are defined as: 
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𝑖𝑛𝑝𝑢𝑡_1 = sin (
𝑡𝑖

40 ∗ π
) + 2 

 

 

Equation 17 

 

𝑖𝑛𝑝𝑢𝑡_2 = 2 ∗ sin (
𝑡𝑖

30 ∗ π
) + 3 

 

 

Equation 18 

 

𝑖𝑛𝑝𝑢𝑡_3 = 3 ∗ sin (
𝑡𝑖

20 ∗ π
) + 4 

 

 

Equation 19 

 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑖𝑛𝑝𝑢𝑡1 +
𝑖𝑛𝑝𝑢𝑡3
𝑖𝑛𝑝𝑢𝑡2

 

 

 

Equation 20 

 

 The inputs and output are displayed in Figure 4-2: 
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Figure 4-2 Inputs and output used for training the LSTM 

According to  Figure 4-2, Inputs 1, 2, and 3 will be used as training variables into 

the LSTM, and it has to predict the output function.  Following the previous 

methodology, one-step-ahead and five-step-ahead will be performed to check the 

robustness of the model.  

4.3  Data Presentation 

 

The data used for performing the tasks presented in this study comes from four 

different locations inside an underground coal mine. The sensors collect the 

insitu data from an operating mine. Figure 4-3 shows the schematic of these 

locations within the mine. 
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The MG location is the intake airway path, and the TG (also called headgate) is 

the return airway. Qm is the airflow rate, CH4_CT1 is the methane at cross-cut, 

and CH4_TG_OB is the methane at the outby panel.  

As discussed in section 1, the LSTM model and neural networks, in general, 

perform better if the data is as smooth as possible. Therefore, the data 

presented in the schematic in Figure 4-3 was filtered so that a comparison can 

be made later regarding the effect of data filtering on the results. 

4.4  Data Filtering 

 

Filtering is an important part of signal processing. According to (Marlin, 2015), the 

so-called "noise," a high-frequency component, can be generated by factors such 

Figure 4-3 Schematic layout of AMS sensor locations inside 
the mine 
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as electrical interference and mechanical vibration.  It can damage the quality of 

the actual signal (Horowitz & Hill, 2021). Therefore, filtering aims to smooth the 

signal and remove incorporated noise by reducing its amplitude to zero 

(Marlin.,2000; Koderstani,Xiang, & Ye., 2018). In order to deal with noisy data, a 

digital or an analog filter can be used (Smith,1999). These types of filters are used 

for signal separation and signal restoration.  Digital filters can be separated into 

finite impulse response (FIR) and infinite impulse response (IIR). One of the most 

common and straightforward types of filter used in the industry is the moving 

average filter (MAF), because of its simplicity and capability to attenuate the noise 

(Kordestani et al., 2018); (Smith,1999 The drawback of this filter is that it is not 

suitable for frequency-domain signals because it has a poor capability of 

separating bands of frequencies. It is an FIR, and its mathematical formulation is: 

𝑌𝑖 =
1

𝑀
∑ 𝑋(𝑖 + 𝑗)

𝑀−1

𝑗=0

 
 

Equation 21 
 

                                                                                              

Where 𝑌𝑖 Is the signal output at the ith step, 𝑋(𝑖 + 𝑗) is the signal input from the ith 

step to the jth step, and M is the number of points in the average. Several other 

IIR and FIR filters are investigated by (Smith,1999). 

In this section, a novel FIR low pass filter is used. In summary, what this particular 

filter does is: for a set of data, for example: 

𝑆 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝𝑛}  Equation 22 
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It applies the least square fitting technique to a subset T of the data set 𝑆. The 

length 𝑙 of this subset is user-defined, and it consists of a moving window. For 

instance, if 𝑙 is defined as three, then the first subset would be: 

𝑇1 = {𝑝1, 𝑝2, 𝑝3}  
        Equation 23 

                                                                                                          

The second subset would be: 

𝑇2 = {𝑝2, 𝑝3, 𝑝4} 

 

 Equation 24 

And so on, until the last element of 𝑆. For each subset, the least square fitting is 

applied in the form of a linear model using the 'polyfit' function from the software 

MATLAB R2019a-academic use.  

𝑦 = 𝑎 ∗ 𝑥 + 𝑏         Equation 25 

 After the 'polyfit' function finds the best coefficients for the equation, the 'polyval' 

function is used to evaluate the polynomial at the points going from zero to 𝑙. The 

result of 𝑦 is stored in a matrix M. For instance, if 𝑆 is equal to six and 𝑙 is equal to 

two, matrix M would have the following format: 

 

𝑀 =

(

 
 
 
 

𝑦1,1 0 0 0 0

𝑦2,1 𝑦2,2 0 0 0

0 𝑦3,2 𝑦3,3 0 0

0 0 𝑦4,3 𝑦4,4 0

0 0 0 𝑦5,4 𝑦5,6
0 0 0 0 𝑦6,6)

 
 
 
 

 

 Equation 26 

Where each column of M contains 𝑙 points, zeros are placed where the following 

conditions are true: 
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𝑀𝑖𝑗 = 0, 𝑖𝑓 𝑗 > 𝑖 𝑜𝑟 𝑖𝑓 𝑗 + 𝑙 > 𝑖           Equation 27 

Once matrix M is completed, each row is averaged by 𝑙 generating the filter output 

with the reduced frequency component, that is, the daily variation. Besides filtering 

the data, this same filter will also be used to make predictions. The difference is 

that for predicting one point ahead, the best-fitted points (for example 𝑦3,1), the 

'polyval' function evaluates the generated polynomial curve at the point   𝑙 + 1.  

The example below shows the lines generated by the filter with length  𝑙  equal 

three along a section of the original curve for the methane concentration at location 

MG.  
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Figure 4-4 Section of a curve showing the lines generated by the filter for a three-
point fitting (top figure); smoothed curve generated by the filter (bottom figure). 

The smoother curve is generated after averaging each line by the filter length, as 

shown at the bottom of Figure 4-4. The smaller the "filter length " size," the better 

the filter's fit values. This is true because the high-frequency component is not 

being filtered so strongly. If 𝑙 is equal to two, the best fit lines generated by the filter 

will match exactly each point of the original curve. However, this filter configuration 

with 𝑙 equal to two cannot be used because it would not smooth the original curve. 

The high-frequency components would not be eliminated because the averaged 
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values generated by the 'polyval' function would coincide exactly with the original 

values of the curve.  

Figure 4-5 (top) shows a complete example comparing the filtered (filter length 

equal three) and original daily average CH4 concentration at locations TG. The two 

subsequent figures (middle and bottom) show the absolute and relative errors 

between the original and filtered data. The plot shows that using a filter length 

equal to three makes the filtered and original curves almost identical. The filter was 

applied to smooth the data in the different locations in fig Figure 4-5. The goal of 

the filter is to make the data smoother. However, depending on the number of 

points used as the "filter length" (points used to find the best fit), the outcome may 

be a distortion of the original data, causing an increase in relative and absolute 

errors. That is why a filter length of size three was used, even though it seems that 

it has no effect. In some cases, a comparison will be made between the original 

data and the filtered data. The goal is to verify if filtering the data improves the 

predictions or destroys the daily variation component (even when a small filter 

length is used).  

.  
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Figure 4-5 Comparison between filtered and original curve at location MG. 

The error metrics used in this study are the absolute error and the relative error. 

The values are normalized.  

𝐸𝑎𝑖 =
(𝑣𝑓𝑖 − 𝑣𝑜𝑖)

𝑚𝑒𝑎𝑛 (𝐶𝐻4
𝑇𝐺)

  Equation 28 

Where 𝐸𝑎𝑖 is the absolute error for each time step, 𝑣𝑜𝑖 is the original measured 

value and 𝑣𝑓𝑖 is the forecasted value.  The normalization occurs by dividing the 

absolute error by the mean value of the methane concentration at location TG.  
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The relative error is defined as: 

𝐸𝑟𝑖 =
𝐸𝑎𝑖
𝑣𝑜𝑖
∗ 100  Equation 29 

 Where 𝐸𝑟𝑖 is the relative error for each time step. The mean squared error (MSE) 

and the root mean squared error (RMSE) will also be used to evaluate the LSTM 

performance.  

MSE =
1

𝑛
∑(𝑣𝑜𝑖 − 𝑣𝑝𝑖)

2

𝑛

𝑖=1

  Equation 30 

 

Where 𝑛 is the number of data points and 𝑣𝑝𝑖 is the predicted value from the LSTM.  

RMSE = √
1

𝑛
∑(𝑣𝑜𝑖 − 𝑣𝑝𝑖)2 

𝑛

𝑖=1

  Equation 31 

Besides the error metrics aforementioned, the performance of the LSTM will also 

be evaluated using a probability histogram plot. The histogram was generated in 

MATLAB using the function “ histogram” with the property “normalization” set to 

“probability.”  

4.5 Tasks 

 

The data coming from the mine will be used as training variables and as a target 

for training an LSTM and a time-series filter model.  To better understand the 

behavior of the LSTM  and its usefulness, a set of tasks are tested: 
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4.5.1 Testing the Importance of Each Training Variable  

 

This section will test if a specific training variable (e.g., airflow rate) has a more 

positive effect on the predictions than the methane concentration at location MG, 

for example. There are four variables available for training. Each one will be 

individually tested to see how well the LSTM performs. The two variables that give 

the best result will be used as training variables to see if the accuracy of the 

predictions is improved. The variables available for training and prediction can be 

seen below: 

 

Figure 4-6 Methane Concentration at Location MG 
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Figure 4-7 Methane Concentration at Location TG 

 

Figure 4-8 Airflow inside the mine in the intake location 
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Figure 4-9 Temperature inside the mine at the main gate 

 

 

Figure 4-10 Pressure inside the mine at the main gate 
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The data presented from  Figure 4-6 to Figure 4-10 is a daily average. The data in 

each figure has 327 data points. The four variables available for training (methane 

concentration at the main gate, airflow rate, temperature, and pressure) were 

chosen because they are related to the variation of methane concentration at the 

tailgate.  

4.5.2 Direct Forward Prediction of Methane Concentrations With (A) 

LSTM Model And (B) Time-Series Filter Model  

 

Using the best combination of variables from the previous section, this section 

aims to see how well the daily average data can be predicted for the next day. 

Task (b) is based on a 'polyfit' function from MATLAB, and it will be used for the 

last two (filtered or original) data points.  The goal is to fit a 1st-order polynomial 

function and forward predict the next new point(s) with this 1st-order predictor. This 

scheme will be used from day 2 through day 324 and forward predict consecutive 

days (3,4,5), (4,5,6), and so on, through days (325,326, 327). Next, the predicted 

curves will be compared with the measured curves. As an additional step, it will be 

checked if the forward prediction is better when using the original or the filtered 

curves.  

The LSTM will be trained in a sliding window fashion. This method is used by 

(Danko, 2021) and (Hota et al., 2017). Although the latter author uses it for 

another purpose and in a different style (it gets the average at the end of the 

window), the concept of “sliding the window” is the same.  
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A simple example of how this method works (for ten data points)  is presented 

below. Consider that the data set has ten data points.  

Table 4-2 hypothetical data points for a sliding window scheme 

1 2 3 4 5 6 7 8 9 10 

 

Furthermore, consider that this data set will be used as a training variable (green 

blocks) for the LSTM. Additionally, consider that the user has defined that the size 

of the sliding window is five.  

Table 4-3 Schematic showing training data in the sliding window 

1 2 3 4 5 6 7 8 9 10 

 

In this case, The LSTM will use the first five data points for training, and it has to 

predict the next point (red block). It is worth mentioning that despite having ten 

data points, only five data points are passed to the LSTM, and the remaining data 

points are “hidden” from it.  This process of “hiding” the remaining points is 

necessary; otherwise, the LSTM would “see” the whole data set, and that would 

be “cheating” since it has the chance of memorizing the values. Continuing with 

the proposed training, the window slides to the right, and a new set of five data 

points is created.  

Table 4-4 Schematic showing new set of data after the window slides 

1 2 3 4 5 6 7 8 9 10 
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As the window slides to the right, it carries historical values from the previous data 

points, which might help predict the next point without overloading the LSTM with 

unuseful information. This sliding window process is repeated until the last value 

of the data set is forecasted. 

Table 4-5 Schematic showing the process of the sliding window for ten data 
points 

1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 

 

After the LSTM is trained with five points and forecasts the next point, the state of 

the LSTM is reset. Its values for weights, bias, and information about that training 

are forgotten. This is done using the “resetState(net)” function in MATLAB. The 

window slid five times for the simple example shown here. Therefore, it is as if five 

LSTMs were used in this process.   It is important to mention that despite using the 

“resetState(net)” function, the configuration (hyperparameters) of the LSTM 

remains the same. The number of layers, number of hidden units, learning rate, 

and training algorithm are the same regardless of how many times the window 

slides.  What is erased from the LSTM is just the constants used to model the five 

data points. It is worth mentioning that the size of the window is user-defined. 

The goal is to see how well the LSTM can predict at least one step ahead and 

verify its sensitivity to the training window size.  
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The 1st null hypothesis compares a simple 'polyfit' forward prediction scheme 

(explanation of how this scheme works is found in section 4.4)  and sees if it is as 

good or better than the LSTM prediction (for at least the 1st next day). 

4.5.3 Forward-Prediction of Root-Cause CH4 Sources With (a) LSTM 

Model And (B) Time-Series Filter Model 

 

The transport model used in this section has a complex structure. A full description 

can be found in the book 'Model Elements and Network Solutions of Heat, Mass 

and Momentum Transport Processes' written by George Danko (Danko and 

Springer-Verlag Gmbh, 2017). 

In this step, the CH4 line source responsible for the CH4 increase in methane 

concentration will be calculated (MG to TG).  

 

𝑄𝐶𝐻4 = (𝐶𝐻4
𝑇𝐺 − 𝐶𝐻4

𝑀𝐺) ∗ 𝑄𝑚  Equation 32 

After the predictions are made, the 𝐶𝐻4
𝑇𝐺 will be back-calculated: 

 

𝐶𝐻4
𝑇𝐺 =

𝑄𝐶𝐻4
𝑄𝑚

+ 𝐶𝐻4
𝑀𝐺 

 
Equation 33 

 

This exercise will include two influencing factors: the CH4 differences between 

𝐶𝐻4
𝑀𝐺 and 𝐶𝐻4

𝑇𝐺 And the Qm flow rate of the air. The same exercises as in (1) will 

be done, showing the QCH4 sources back-calculated from the measurements and 

the predicted values from methods (a) and (b). 
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4.6 Testing the Influence of the number of Variables Used for Training. 

 

This section will increase the number of training variables to three, based on 

section 4.5.1. The goal is to verify if increasing the number of training variables 

there is an increase in the performance of the LSTM. This assumption is based on 

the fact that maybe the LSTM can extract more relevant information between these 

variables and the target.  

4.7  Testing the Influence of Training Data Size 

 

 This section aims at testing the influence of training data size. The goal is to verify 

if, after increasing the training window size, the LSTM can capture more easily a 

longer-term dependency between the data and perform better when making the 

predictions. So far, the tests considered that the LSTM would be trained with five 

data points. In this section, the proposed number of time steps trained will be ten, 

fifty, and one hundred data points.  

 

4.8  Testing the Influence of the Number of Steps Ahead Predicted 

 

The data used in this simulation is a methane concentration daily average. 

However, many things can happen throughout the day that will influence the 

methane concentration for the next day. Therefore, making the predictions using 

the minute data or a five-minute average data would be more advantageous. This 

section aims at verifying how well the LSTM can make the predictions if more than 

one step ahead is considered. The five minutes average data will be used, and five 
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steps ahead will be predicted. In this case, every prediction will correspond to 5 

minutes ahead. Thus, a total of 25 minutes will be predicted. This test will be done 

considering all the best-case scenarios from the previous sections. It will consider 

the best number of training variables, the best training data size, and the best 

tuning parameters for the LSTM. The test will be done using the unfiltered data.  

4.9 Considering that the Next Day Prediction is the Previous Day Value 

 

In this section, the assumption is that the prediction for the next day is the previous 

day value. This simple case will be compared against the LSTM best case from 

the previous sections. 

4.10 Testing the LSTM Against Overfitting 
 

In this section, the chance of overfitting is taken into account. As discussed in the 

introduction, L2 regularization and dropout layers avoid overfitting. Therefore, the 

best case scenario from the previous sections will be re-run in this section. 

Considering that overfit may have taken place in this best-case scenario, the 

training is done in this section will use an L2 regularization equal to 0.005 and a 

dropout layer equal to 0.33.  

5. RESULTS 

 

After all results are obtained considering the proposed methodology, the figures 

presented in this section will be discussed in deep in the “Discussion” section.  

5.1 Influence of LSTM Tuning Parameters 
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The tests carried out in this section used the methane concentration at location 

MG and the airflow rate as training variables. The predictions were made using 

the unfiltered values.  

Table 5-1 Testing LSTM layers  

New Values Tested 

Number of 

Layers 

Learning 

Rate 

Number of 

Hidden Units 

Time spent 

for predicting 

(minutes) 

MSE RMSE 

1 0.005 3 20 0.004307 0.0656 

2 0.005 3 26 0.003057 0.0553 

3 0.005 3 30 0.003117 0.0558 

 

From table 5-1, it is observed that two layers give better performance than one 

layer. However, there is the penalty of spending more time to make the predictions. 

Based on the results from table 5-1, the LSTM will now be trained with two layers 

and keep the learning rate at 0.005, and the number of hidden units will be 

increased to five, ten, and twenty.  

Table 5-2 Testing LSTM number of hidden units  

New Values Tested 
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Number of 

Layers 

Initial 

Learning 

Rate 

Number of 

Hidden Units 

Time spent 

for predicting 

(minutes) 

MSE RMSE 

2 0.005 5 29 0.004298 0.0655 

2 0.005 10 29 0.005318 0.0729 

2 0.005 20 30 0.005750 0.0758 

 

Based on tables 5-1 and 5-2, the best configuration so far is having the LSTM with 

two layers and three hidden units. Now, using this configuration, the LSTM will be 

further tested, varying the learning rate.  

Table 5-3 Testing LSTM number of hidden units  

New Values Tested 

Number of 

Layers 

Learning 

Rate 

Number of 

Hidden Units 

Time spent 

for predicting 

(minutes) 

MSE RMSE 

2 0.004 3 27 0.003686 0.0607 

2 0.0001 3 29 0.004136 0.0643 
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2 0.001 3 29 0.002472 0.0497 

2 0.01 3 29 0.003862 0.0622 

2 0.0005 3 28 0.002277 0.0477 

2 0.0009 3 29 0.002333 0.0483 

2 0.0003 3 28 0.002737 0.0523 

2 0.0007 3 29 0.002195 0.0469 

2 0.0006 3 28 0.002306 0.0480 

2 0.00075 3 29 0.002389 0.0489 

2 0.00065 3 28 0.002240 0.0473 

2 0.00068 3 29 0.002125 0.0461 

2 0.00069 3 29 0.002308 0.0480 

 

 

Combining the results from tables 5-1,5-2 and 5-3, the best configuration is having 

the LSTM with two layers, three hidden units, and a learning rate of 0.00068.  

5.2 Training the LSTM  with One Input Using Artificial Data 

 

This section presents the results of the methodology described in section 4.2.1. 

The proposed method considers that the LSTM will be trained with simple sine 

waves curves to check how robust the model is. The assumption is that if the LSTM 
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cannot forecast trivial sine waves with a specified pattern and no noise, it is most 

likely that it will not be able to accurately forecast real data from the mine, which 

has no specific pattern and has a lot of noise. For further comparison, the LSTM 

forecasts the sine waves using the best tunning parameters achieved using 

measured data from the mine. The results can be seen in the figures below. 

 

Figure 5-1 LSTM one-step-ahead forecast for the sine function 
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Figure 5-2 Absolute error from the LSTM one-step-ahead forecasting the sine 
function 

 

 

Figure 5-3 Relative error from the LSTM one-step-ahead forecasting the sine 
function 
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The MSE and RMSE for this prediction are 0.001024 and 0.0320, respectively. 

The time spent for training and predicting was 29 minutes. The same data was 

used; however, this time, five predictions ahead were made with a training window 

size of five.  

 

Figure 5-4 LSTM five-step-ahead forecast for the sine function 
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Figure 5-5 Absolute error from the LSTM five-step-ahead forecasting the sine 
function 

 

Figure 5-6 Relative error from the LSTM five-step-ahead forecasting the sine 
function 
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The MSE and RMSE for this forecast are 0.002831 and 0.0532, respectively. The 

time spent for training and predicting was 29 minutes. 

5.3 Training the LSTM with Artificial Data and Multiple Inputs 

 

The tests shown in this section follow the methodology described in section 4.2.2. 

The predictions are shown below: 

 

Figure 5-7 LSTM one-step-ahead forecast for the sine function with three training 
variables 
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Figure 5-8 Absolute error from the LSTM one-step-ahead forecasting the sine 
function with three training variables 

 

Figure 5-9 Relative error from the LSTM one-step-ahead forecasting the sine 
function with three training variables 
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The MSE and RMS for this prediction are 0.0007604 and 0.0276, respectively. The 

time spent for training and predicting was 28 minutes.  

The same data set was used; however, this time, five predictions ahead were 

made.  

 

Figure 5-10 LSTM five-steps-ahead forecast for the sine function with three 
training variables 
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Figure 5-11 Absolute error from the LSTM five-steps-ahead forecasting the sine 
function with three training variables 

 

Figure 5-12 Relative error from the LSTM fie-steps-ahead forecasting the sine 
function with three training variables 
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The MSE and RMSE for this simulation are 0.002521 and 0.0502, respectively. 

The time spent for training and predicting the first set of data was six seconds, and 

for training and predicting, the whole set of data was 28 minutes. 

 

5.4 Choosing the Best Combination of Variables 

 

This section presents the results of the best combination of variables that most 

influence the LSTM predictions using the measured data from the mine. The 

target is the methane concentration at location TG.  

 

Table 5-4 Error calculation for choosing the variables that most influence the 
predictions  

Error MSE RMSE 

CH4 at location MG 0.002374 0.0487 

Airflow rate 0.002364 0.0486 

Temperature 0.002731 0.0523 

Pressure 0.002671 0.0517 

 

According to the MSE and RMSE values from table 5-4, the variables that give the 

best predictions in combination with the target are the CH4 concentration at 

location MG and the airflow rate. Therefore, the LSTM will be trained using these 

two variables.  

5.5 Direct Forward Prediction of Methane Concentrations with LSTM Model 

Using Measured Data from the Mine 

 

The tests carried out in this section follow part (a) of the methodology presented in 

section 4.5.2. The LSTM is trained with the airflow rate and the CH4 concentration 
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at location MG. It has to predict one step ahead for the target (CH4 concentration 

at location TG). The predictions shown in the figure below were made using the 

unfiltered data.  

 

Figure 5-13 LSTM one-step-ahead prediction for the methane concentration at 
location TG using the unfiltered data. 
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Figure 5-14 Absolute error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data 

 

Figure 5-15 Relative error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data 



68 
 

 

Figure 5-16 Probability histogram based on the relative error for the LSTM one-
step-ahead prediction for the methane concentration at location TG using the 

unfiltered data 

 

The MSE and RMSE for this forecast are 0.002125 and 0.0461, respectively. The 

time spent training the first five steps and predicting one-step-ahead was six 

seconds, and the whole simulation lasted 29 minutes.  

The same data was used; however, this time, it was filtered. The results are shown 

below: 
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Figure 5-17 LSTM one-step-ahead prediction for the methane concentration at 
location TG using the filtered data. 

 

Figure 5-18 Absolute error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the filtered data 
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Figure 5-19 Relative error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the filtered data 

 

Figure 5-20 Probability histogram based on the relative error for the LSTM one-
step-ahead prediction for the methane concentration at location TG using the 

filtered data 
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The MSE and RMSE for this simulation are 0.001679 and 0.0410, respectively. 

The time spent for training the first five data points was 5.2 seconds, and for 

training and predicting, the whole simulation was 28 minutes.  

5.6 Direct Forward Prediction of Methane Concentrations with the Time Series 

Filter Using Measured Data from the Mine 

 

The tests carried out in this section follow part (b) of the methodology presented in 

section 4.5.2. The time-series filter (TSF) is trained with the target and has to 

forecast one-step-ahead. This simulation was done using unfiltered data.  

 

Figure 5-21 TSF one-step-ahead prediction for the methane concentration at 
location TG using the unfiltered data. 
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Figure 5-22 Absolute error for the TSF one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data 

 

 

Figure 5-23 Relative error for the TSF one-step-ahead prediction for the methane 
concentration at location TG using the unfiltered data 
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Figure 5-24 Probability histogram based on the relative error for the TSF one-
step-ahead prediction for the methane concentration at location TG using the 

unfiltered data 

 

The MSE and RMSE for this simulation are 0.004619 and 0.0680, respectively. 

The time spent for the whole simulation was 0.52 seconds.  The simulation was 

made again, however, with the filtered data.  
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Figure 5-25 TSF one-step-ahead prediction for the methane concentration at 
location TG using the filtered data. 

 

 

Figure 5-26 Absolute error for the TSF one-step-ahead prediction for the 
methane concentration at location TG using the filtered data 
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Figure 5-27 Relative  error for the TSF one-step-ahead prediction for the 
methane concentration at location TG using the filtered data 

 

Figure 5-28 Probability histogram based on the relative error for the TSF one-
step-ahead prediction for the methane concentration at location TG using the 

filtered data 
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The MSE and RMSE for this simulation are 0.001345 and 0.00367, respectively. 

The time spent for the whole simulation was 0.19 seconds.  

5.7 Forward-Prediction of Root-Cause CH4 Sources With the LSTM Model 

 

The results shown in this section are based on part (a) of the methodology in 

section 4.5.3.  The figure below shows the predictions for the back-calculated line 

source using the airflow rate as a training variable. 

 

Figure 5-29 LSTM one-step-ahead prediction for the line source  using the 
unfiltered data 

The back-calculated methane concentration at location TG is presented below: 
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Figure 5-30 LSTM back-calculated one-step-ahead prediction for the methane 
concentration at location TG  using the unfiltered data 

 

Figure 5-31 Absolute error for the LSTM one-step-ahead prediction for the back-
calculated methane concentration at location TG using the unfiltered data 
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Figure 5-32 Relative  error for the LSTM one-step-ahead prediction for the back-
calculated methane concentration at location TG using the unfiltered data 
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Figure 5-33 Probability histogram based on the relative  error for the LSTM one-
step-ahead prediction for the back-calculated methane concentration at location 

TG using the unfiltered data 

 

The MSE and RMSE for this simulation are 0.005861 and 0.0766, respectively. 

The time spent training and predicting the first set of data was 16 seconds and the 

time spent on the whole prediction was 28 minutes. 

5.8 Forward Prediction of Root-Cause CH4 With the Time Series Filter Model 

 

The methodology followed in this section is described in section 4.5.3 part b. The 

figure below shows the back-calculated methane concentration using the Time 

Series model.  

 

Figure 5-34 TSF back-calculated one-step-ahead prediction for the methane 
concentration at location TG  using the unfiltered data 
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Figure 5-35 Absolute error for the TSF one-step-ahead prediction for the back-
calculated methane concentration at location TG using the unfiltered data 

 

Figure 5-36 Relative  error for the TSF one-step-ahead prediction for the back-
calculated methane concentration at location TG using the unfiltered data 
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Figure 5-37 Probability histogram based on the relative  error for the TSF one-
step-ahead prediction for the back-calculated methane concentration at location 

TG using the unfiltered data 

 

The MSE and RMSE for this simulation are 0.01044 and 0.1022, respectively. The 

time spent making the predictions was 0.25 seconds.  

5.9 Testing the Influence of the Number of Training Variables 

 

The methodology followed in this section is described in section 4.6.  The LSTM 

was trained with the airflow rate, the methane concentration at location MG, and 

the pressure. The figure below shows the results using the unfiltered data.  
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Figure 5-38 LSTM one-step-ahead prediction for the methane concentration at 
location TG  using the unfiltered data and three training variables 
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Figure 5-39 Absolute error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data and three training 

variables 

 

Figure 5-40 Relative error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data and three training 

variables 
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Figure 5-41 Probability  histogram plot based on the relative error for the LSTM 
one-step-ahead prediction for the methane concentration at location TG using 

the unfiltered data and three training variables 

 

The MSE and RMSE for this prediction are 0.002301 and 0.0480. The time spent 

making one prediction was 5 seconds and for making the predictions for the whole 

data set was 29 minutes. The same data was used; however, this time, it was 

filtered.  

 

Figure 5-42 LSTM one-step-ahead prediction for the methane concentration at 
location TG  using the filtered data and three training variables 
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Figure 5-43 Absolute error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the filtered data and three training 

variables 

 

Figure 5-44 Relative error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the filtered data and three training 

variables 
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Figure 5-45 Probability histogram  based on the relative error for the LSTM one-
step-ahead prediction for the methane concentration at location TG using the 

filtered data and three training variables 

 

The MSE and RME for this simulation are 0.001641 and 0.0405, respectively. The 

time spent for training the first five data points was 9 seconds, and for training and 

predicting, the whole data set was 31 minutes.  

5.10 Testing the Influence of Training Data Size 

 

The results presented in this section follow the methodology presented in section 

4.7. The variables used for training were the methane concentration at location 

MG and the airflow rate.  
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Figure 5-46 LSTM one-step-ahead prediction for the methane concentration at 
location TG  using the unfiltered data and a training window size of ten 
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Figure 5-47 Absolute error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data and a training 

window size of ten 

 

Figure 5-48 Relative error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data and a training 

window size of ten 
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Figure 5-49 Probability histogram based on the relative error for the LSTM one-
step-ahead prediction for the methane concentration at location TG using the 

unfiltered data and a training window size of ten 

The MSE and RMSE for this simulation are 0.002437 and 0.0494, respectively. 

The time spent predicting the first training window was 16 seconds, and the whole 

data set was 64 minutes. 

The same data set was used to train the LSTM with a window size of fifty-time 

steps. The predictions can be seen below: 
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Figure 5-50 LSTM one-step-ahead prediction for the methane concentration at 
location TG  using the unfiltered data and a training window size of fifty time-step 

 

Figure 5-51 Absolute error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data and a training 

window size of fifty time-steps 
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Figure 5-52  Relative error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data and a training 

window size of fifty time-steps 
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Figure 5-53 Probability histogram based on the relative error for the LSTM one-
step-ahead prediction for the methane concentration at location TG using the 

unfiltered data and a training window size of fifty time-steps 

The MSE and RMSE for this simulation were 0.004208 and 0.0649, respectively. 

The time spent training the first fifty steps was 23 seconds and for the whole 

simulation was 83 minutes. 

The same data set was used; however, the sliding window size was one hundred 

data points this time. The LSTM has to predict one step ahead.  
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Figure 5-54 LSTM one-step-ahead prediction for the methane concentration at 
location TG  using the unfiltered data and a training window size of one hundred 
time steps.  

 

Figure 5-55 Absolute error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data and a training 

window size of one hundred time steps 
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Figure 5-56 Relative error for the LSTM one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data and a training 

window size of one hundred time steps 
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Figure 5-57 Probability histogram based on the relative error for the LSTM one-
step-ahead prediction for the methane concentration at location TG using the 

unfiltered data and a training window size of one hundred time steps 

The time spent training the first 100 points was 37 seconds and for the whole 

simulation was 84 minutes. The MSE and RMSE are 0.0055 and 0.0741, 

respectively.  

5.11 Testing the Case Where the Next Day Prediction is the Previous 

Day Value 
 

The results from the methodology presented in section 4.9 are displayed below. 
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Figure 5-58 one-step-ahead prediction for the methane concentration at location 
TG using the unfiltered data and considering that the next day prediction is equal 

to the previous day value 

 

Figure 5-59 Absolute error for one-step-ahead prediction for the methane 
concentration at location TG using the unfiltered data and considering that the 

next day prediction is equal to the previous day value 
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Figure 5-60 Relative error for one-step-ahead prediction for the methane 
concentration at location TG using the unfiltered data and considering that the 

next day prediction is equal to the previous day value 
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Figure 5-61 Probability histogram plot for one-step-ahead prediction for the 
methane concentration at location TG using the unfiltered data and considering 

that the next day prediction is equal to the previous day value 

The MSE and RMSE for this simulation are 0.002003 and 0.0448, respectively. 

  

5.12 Testing the Influence of Steps Ahead Predicted 

 

This section follows the methodology described in section 4.8. The LSTM will be 

trained using two training variables, the airflow and the methane concentration at 

location MG. It will use a training window size of five data points and the unfiltered 

data.  
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Figure 5-62 LSTM five-steps-ahead prediction for the methane concentration at 
location TG  using the unfiltered data  

 

Figure 5-63 Absolute error for the LSTM five-steps-ahead prediction for the 
methane concentration at location TG using the unfiltered data  
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Figure 5-64 Relative error for the LSTM five-steps-ahead prediction for the 
methane concentration at location TG using the unfiltered data  

 

Figure 5-65 Probability histogram based on the relative error for the LSTM five-
steps-ahead prediction for the methane concentration at location TG using the 

unfiltered data  
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The MSE and RMSE for this simulation are 0.002783 and 0.0528, respectively. 

The time spent training and predicting the first five data points was 5 seconds and 

for the whole data set was 27 minutes.  

5.13 Testing overfitting 
 

This section presents the results of section 4.10. Here, the LSTM uses 

regularization techniques to avoid overfitting. The results are shown below: 

 

 

Figure 5-66 LSTM one-step-ahead prediction for the methane concentration at 
location TG  using the unfiltered data and regularization methods to avoid 

overfitting. 
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Figure 5-67Absolute error for the  LSTM one-step-ahead prediction for the 
methane concentration at location TG  using the unfiltered data and 

regularization methods to avoid overfitting. 

 

Figure 5-68 Relative error for the  LSTM one-step-ahead prediction for the 
methane concentration at location TG  using the unfiltered data and 

regularization methods to avoid overfitting. 
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Figure 5-69 Histogram plot based on the relative error for the  LSTM one-step-
ahead prediction for the methane concentration at location TG  using the 

unfiltered data and regularization methods to avoid overfitting. 

The MSE and RMSE are 0.002449 and 0.0495, respectively. The time spent for 

training just the first five points was 4 seconds, and the whole dataset was 20 

minutes.  

6. DISCUSSION 

 

6.1 LSTM Configuration 

 

The tests results shown in section 5.1 show that the tuning parameter that most 

affects the LSTM performance is the learning rate. The fine-tuning presented in 

Table 5-3 shows that even a small change in the learning rate can significantly 

impact the error metrics. However, changing the learning rate does not affect the 

time spent on training and predicting.  Despite not having a significant impact on 
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the LSTM performance, the number of LSTM layers seems to have a high impact 

on training and predicting time. Increasing the number of hidden units decreased 

the LSTM performance; however, it did not impact the time spent for training and 

predicting.  

6.2 LSTM Results Using the Artificial Data 

 

The table below shows a summary of the results from the LSTM using the artificial 

data (sine waves)  

Table 6-1 Summary of the results from the simulation using artificial data 

Number of 
variables used for 

training 

Number of steps 
ahead predicted 

MSE RMSE 
Time 

(minutes) 

1 1 0.001024 0.0320 29 

1 5 0.002831 0.0532 29 

3 1 0.0007604 0.0276 28 

3 5 0.002521 0.0502 28 

 

The artificial data results, either using one variable for training or three variables, 

show that the predictions are accurate. When just one training variable is used, 

there is no difference in the time spent for making the predictions for the whole 

data set when comparing one-step-ahead predictions or five-step-ahead 

predictions. However, It is observed that the error increases when the number of 

time-steps-ahead predicted increases. Furthermore, it is seen, in both cases, that 

the predictions seem to be shifted when compared with the target. When three 

variables are used for training, it is observed that it significantly impacts the LSTM 

predictions. The MSE is very low when compared to just one training variable. It is 

worth noticing that the target that the LSTM has to match when it is training with 

three variables is more complex than when it is trained with just one variable. 
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Maybe, one explanation why the LSTM performs better with more training 

variables is that it can obtain more relevant information between the training 

variables and the target.  

6.3 LSTM and Time Series Filter Results Using the Measured Data from the 

Mine 

6.3.1 LSTM Results 

 

The table below summarizes the results obtained from the simulations shown in 

section 5.5. The LSTM uses the airflow and methane concentration at location MG 

for training and predicts the methane concentration at location TG. The LSTM uses 

a training window size of five-time steps. 

Table 6-2 Summary of results from the simulation using measured data from the 
mine 

 

Number 
of 

variables 
used for 
training 

Number 
of steps 
ahead 

predicted 

MSE RMSE 

Time for 
training first set 

of 
data(seconds) 

Time for 
training the 
whole set of 

data(minutes) 

U
n
fi
lt
e
re

d
 d

a
ta

 

L
S

T
M

 

2 1 0.002125 0.0461 6 29 

T
S

F
 

1 1 0.004619 0.0680 - 0.00866 

F
ilt

e
re

d
 d

a
ta

 

L
S

T
M

 

2 1 0.001679 0.0410 5.2 28 

T
S

F
 

1 1 0.001345 0.0367 - 0.003166 
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Table 6-2 shows that filtering the data positively impacts the predictions. 

Comparing figures 5-13 and 5-17, it is seen that the shifting-looking behavior is still 

present in the predictions. Regarding the time spent making the predictions, 

filtering does not have a high impact. If the time is compared with the time spent 

using the artificial data, it is observed that they are about the same. The relative 

error plot using the unfiltered data shows that there are some high error picks. 

However, the probability histogram in  Figure 5-16 shows that the probability of 

occurrence of these high picks (±100 to ±60)  is below 5%. 

Furthermore, the probability histogram shows that the lowest error picks (-20% to 

0% to 20%) have the highest chance of occurrence, around 25% of the time. The 

probability histogram for the unfiltered data also shows that based on the error 

picks from (-60% to -40%), the LSTM is undershooting the predictions. Despite 

being in a low probability range, this might become a severe issue since predicting 

a point below the original value can lead to a failure in the early warning system, 

and a disaster might happen. It is better to be on the safe side, where the LSTM 

predicts a point higher than the original value, so in this case, the early warning 

system is activated, and due precautions are taken.  

Analyzing the results using the filtered data in the same section, table 6-2 shows 

that the accuracy of the predictions increased based on the lower values of MSE 

and RMSE errors. The relative error plot in Figure 5-19  coupled with the results 

from the probability histogram in Figure 5-20 shows that the occurrence of high 

picks decreased. These high picks (±100% to ±40%) may reach around 5.5% of 
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the time. Furthermore, the probability of the lower error picks (-20% to 0% to 20%)  

increased a little compared with the unfiltered data. The simulation with the filtered 

data confirms that filtering positively affects the predictions. The issue of 

undershooting the predictions also happens in this simulation. Now, the range is 

from (-80% to -60%) relative error. As mentioned before, the chances of 

occurrence are below 5%, but this might become a problem.  

6.3.2 Time Series Filter Results 

 

Table 6-2 shows that the accuracy of the TSF is also affected when the filtered 

data is used. Analyzing the results using the unfiltered data, the relative error plot 

in Figure 5-23 and the probability histogram in  Figure 5-24 show very high error 

picks; however, these picks (±140 to ±80) are below a 5% chance of occurrence. 

As discussed in the previous section, having predicted values lower than the 

original values may cause a failure in the early warning system. The probability 

histogram for the unfiltered data shows that in the range of (-20% to 0%) relative 

error, the TSF undershoots the predictions compared with the original values. This 

range presents a probability of almost 25%. Suppose the predictions coming from 

the TSF are not reliable enough. In that case, it might predict a point that is below 

the original value. Following preceding discussions, this might become a problem 

if the original value is above permissible limits.  

 The results from the filtered data show that the very high error picks decreased. 

However, there is still error picks reaching 90% relative error. The lowest error 

picks (-10% to 0% to 10%) have the highest probability, around 18%. In this 
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simulation, the probability histogram plot is less symmetric (in the range of -30% 

to 0% to 30% relative error) than the one using the unfiltered data. In the range of 

(-20% to -10%) relative error, the histograms show that the TSF will undershoot 

the predictions, with a probability of around 14%.  

6.3.3 Comparing the Predictions from the LSTM with the TSF 

 

Table 6-2 shows that if the unfiltered data is used, the LSTM gives better 

predictions than the TSF. However, the TSF will give better predictions if the 

filtered data is used. Comparing the unfiltered data results, the LSTM probability 

histogram plot  (Figure 5-16) shows that the range of relative error picks for LSTM 

predictions reach a maximum of ±100%. On the other hand, the TSF probability 

histogram plot (Figure 5-24)  shows that the errors reach ±140%. Moreover, the 

low relative error range (-20% to 0% to 20%) in the LSTM predictions presents 

almost the same probability of occurrence (around 25%). Whereas in the TSF 

histogram plot, the probability of occurrence of this range is below 25%.  

Comparing the filtered results, Figure 5-20  (LSTM) and Figure 5-28 (TSF), the 

histogram plots show that despite having less high error pick than the raw data, 

the LSTM has more high error picks than the TSF. Furthermore, the LSTM 

presents a higher probability of occurrence for the lower relative error range (-20% 

to 0% to 20%) than the TSF. Moreover, the histogram plot for the TSF shows that 

in the relative error range of (±40% to ± 20%), the probability of occurrence reaches 

a maximum of 8%. Whereas in the LSTM histogram plot, the probability is around 
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15% for the same range.  Comparing the time spent for training and predicting, the 

TSF is much faster than the LSTM, regardless of the data used (filtered or not).  

6.4 LSTM and TSF Results Using the Root-Cause CH4 Source 

 

The table below shows a summary of the results obtained from section 5.7. The 

LSTM uses a training window size of five-time steps. 

Table 6-3 Summary of the LSTM and TSF results using the line source 

 

Number of 
variables 
used for 
training 

Number 
of steps 
ahead 

predicted 

MSE RMSE 

Time for 
training first set 

of 
data(seconds) 

Time for 
training the 
whole set of 

data(minutes) 

U
n
fi
lt
e
re

d
 d

a
ta

 

L
S

T
M

 

1 1 0.005861 0.0766 16 28 

T
S

F
 

1 1 0.01044 0.1022 - 0.004166 

 

 Table 6-3 shows that the predictions from the LSTM are better than the TSF.  

Comparing the probability histogram plots Figure 5-33 (LSTM) and Figure 5-37 

(TSF), it is observed that the LSTM presents a lower probability of having high 

error picks.  Moreover, the LSTM histogram plot shows that in the range where the 

predictions are undershot (-60% to 0%), the probability stays around 7%. Whereas 

for the TSF model, in the range of (-180% to 0%), the probability goes above 10%. 

Both histogram plots show that the LSTM and TSF predict points above the original 

values most of the time. This effect can be verified in Figure 5-30 and Figure 5-34. 
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Comparing the time for training and predicting, the TSF is much faster than the 

LSTM.  

6.4.1 Comparing the Results from the LSTM and TSF using the Direct 

Methane Concentration Versus the Results Using the Root-Cause 

 

The table below summarizes the LSTM results when the methane concentration is 

used directly versus the line source.  The LSTM uses a training window size of 

five-time steps. 

Table 6-4 Summary showing the results when the CH4 is directly used versus the 
line source(results for the unfiltered data) 

 

Number of 
variables 
used for 
training 

Number 
of steps 
ahead 

predicted 

MSE RMSE 

Time for 
training first set 

of 
data(seconds) 

Time for 
training the 
whole set of 

data(minutes) 

D
ir
e
c
t 
C

H
4
  

L
S

T
M

 

2 1 0.002125 0.0461 6 

29 

T
S

F
 

1 1 0.004619 0.0680 - 

0.00866 

L
in

e
 S

o
u
rc

e
 

L
S

T
M

 

1 1 0.005861 0.0766 16 28 

T
S

F
 

1 1 0.01044 0.1022 - 0.004166 

 

Comparing the time spent for training and predicting, there is just a one-minute 

difference in the LSTM results. The MSE and RMSE results from Table 6-4 show 
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that the LSTM performs better if the direct CH4 concentration is used. Comparing 

the probability histogram plots, Figure 5-16 (direct CH4) and Figure 5-33 (line 

source), it is observed that the direct CH4 gives a more symmetric distribution. 

Furthermore, the low relative error range (±20% to ± 20%) using direct CH4 gives 

a probability of around 25%. Using the line source, the probability varies around 

7% to almost 15% for the same range of relative error values. 

Moreover, the line source histogram plot shows high error picks reaching 180%, 

while the direct CH4 limits to 100%. Additionally, the histogram for the line source 

shows that high error picks from 60% to 80% relative error happens almost 20% 

of the time. Whereas for the direct CH4, the probability for the same range is below 

5%.  

The TSF results based on the MSE and RMSE of Table 6-4 show that using the 

direct CH4 concentration gives better predictions. Comparing the histogram plots 

Figure 5-24 (direct CH4) and Figure 5-37 (line source), it is possible to see that the 

predictions coming from the line source have more high relative error picks. 

Comparing the interval of (±140% to ± 20%) on the direct CH4 predictions, it is 

observed that the probability of occurrence stays below 10%. Whereas for the line 

source, the probability varies reaches 10% and 25% for the negative and positive 

sides of the plot, respectively.  

6.5 Influence of the Number of Training Variables in the LSTM Predictions 

 

The table below summarizes the results when LSTM is trained with the airflow rate, 

the methane concentration at location MG and the barometric pressure; versus 
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when it uses just the airflow rate and the methane concentration at location MG. 

The LSTM uses a training window size of five-time steps. 

Table 6-5 Summary for the results when the LSTM is trained with three variables 
versus when it is trained with two variables 

 

Number 
of 

variables 
used for 
training 

Number 
of steps 
ahead 

predicted 

M
S

E
 

R
M

S
E

 Time for 
training first set 

of 
data(seconds) 

Time for 
training the 
whole set of 

data(minutes) 

U
n
fi
lt
e
re

d
 

d
a
ta

 

L
S

T
M

 

3 1 0.002301 0.0480 5 29 

U
n
fi
lt
e
re

d
 

d
a
ta

 

L
S

T
M

 

2 1 0.002125 0.0461 6 29 

F
ilt

e
re

d
 

d
a
ta

 

L
S

T
M

 

3 1 0.001641 0.0405 9 31 

F
ilt

e
re

d
 

d
a
ta

 

L
S

T
M

 

2 1 0.001679 0.0410 5.2 28 

 

The results show that increasing the number of training variables causes a 

decrease in the LSTM performance when the unfiltered data is used. One possible 

explanation is that when the number of variables is increased, the LSTM 

experience more noise during training since the data is not filtered. When the 

trained model tries to forecast, the predicted values reflect the noise in the training 

set.   Another possible explanation is that the third variable included in the training 



113 
 

set has little or no influence on output prediction. However, since the LSTM uses 

it for training, this variable introduces more noise to the system. It makes it even 

harder for the LSTM to make the predictions. The time spent on training and 

predicting is the same. Using the filtered data, the predictions are about the same 

regardless of the number of variables used for training. Comparing the histogram 

plots for the unfiltered data, Figure 5-16 for the case with two training variables 

and Figure 5-41 for the case with three training variables, it is observed that the 

latter case increases the range of the relative error. Furthermore, training with two 

variables gives a more symmetric probability distribution. Comparing the low 

relative error range (±20% to ± 20%) on both histogram plots, it is observed that 

the probability is higher for the case where two variables are used for training.  

Comparing the histogram plots for the filtered data, Figure 5-20 (two variables) and 

Figure 5-45 (three variables), it is seen that the range of high error picks increased 

when three variables were used for training. On both histogram plots, the relative 

error range of (±100% to ± 20%) stays below the probability of 15%.  For the low 

relative error range (±20% to ± 20%), the probability is about the same, around 

25%.  

6.6 Influence of Training Data Size 

 

The table below summarizes the results when the training window size is increased 

to ten. The results are presented for the unfiltered data. Variables used for training 

were the methane concentration at location MG and the airflow rate.  
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Table 6-6 Summary of the LSTM results for a training window size of ten-time-
steps 

 

Number 
of 

variables 
used for 
training 

Number 
of steps 
ahead 

predicte
d 

M
S

E
 

R
M

S
E

 Time for 
training first 

set of 
data(seconds) 

Time for 
training the 
whole set of 

data(minutes) 

Training 
window 

size of 10 

L
S

T
M

 

2 1 

0
.0

0
2
4
3

7
 

0
.0

4
9
4

 

16 64 

Training 
window 

size of 50 

L
S

T
M

 

2 1 0.004208 0.0649 23 83 

Training 
window 
size of 

100 

L
S

T
M

 

2 1 0.0055 0.0741 37 130 

Training 
window 
size of 5 

L
S

T
M

 

2 1 0.002125 0.0461 6 29 

 

The results show that increasing the number of time-steps used for training did not 

positively impact the LSTM performance. Both the error and the time spent 

predicting increased. Comparing Figure 5-16 (training window size of five) and 

Figure 5-49 (training window size of ten), it is seen that increasing the training 

window size makes the histogram less symmetric. The probability of the low 

relative error range (±20% to ± 20%) is below 25% when the training window size 

increases.  Furthermore, the range of high error picks increases compared to the 

case where five steps are used for training. Looking at Figure 5-46, it seems that 

the shifting-looking behavior increased compared to the training window size of 
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five (Figure 5-13). Analyzing the case where the training window size is increased 

to fifty-time steps, Figure 5-50 shows that the predictions are very off compared to 

the target. The histogram plot in Figure 5-53 shows that the LSTM is overshooting 

the predictions most of the time. The number of high picks increases compared to 

the case where the window size is five, and the probability of these high picks has 

increased. When one hundred time steps are used for training the model, Figure 

5-54 shows that this case is the worst scenario. The histogram plot in Figure 5-57 

shows that the number of high picks has increased and that the LSTM is 

overshooting the predictions most of the time. 

 The assumption made in the methodology, section 4.7, does not seem to be true. 

The LSTM does not seem to capture the relationship between training variables 

and target more efficiently when the training window size increases. Maybe when 

the training size increases, the LSTM experiences more fluctuations in the data. 

Later, when it tries to account for these fluctuations, it predicts less accuracy. 

Another explanation for the poorer performance of the LSTM when the training 

window size increases is that it carries information that is not useful for the 

predictions.  In the case where the LSTM is trained with a larger amount of data 

(training window size of 50 and 100 time-steps), the internal structure of the LSTM 

generates weights and biases for each slide of the window. The LSTM has to 

predict the next point based on the weights and biases created in this training.  The 

problem is that, possibly, the methane release on days one and two, for example, 

does not affect the methane release on day 51 (for the training window size of 50). 

It also does not affect the methane release on day 101 (for the training window 
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size of 100). However, as the LSTM was trained with this larger amount of data, it 

considers the effects of days one and two. Therefore, the LSTM might be 

experiencing more noise and have outdated constants because of the large 

number of points used.  

Thus, the constants generated (weights and biases) are unsuitable for predicting 

the next day and subsequent days because they reflect unuseful information from 

very long past days. On the other hand, when the sliding window of five data points 

is used, it also carries information from past days; however, just useful information 

without overloading the model. Therefore, for the case studied in this paper, the 

methane concentration can be regarded as having a low memory with time.  

6.7 Verifying the Influence of Steps Ahead Predicted 

 

The table below compares the LSTM predictions using the five-minutes-average 

and daily average values. The training variables used were the methane 

concentration and airflow rate at location MG. The LSTM uses a training window 

size of five-time steps. 

Table 6-7 Summary for the LSTM results using the 5-minutes-average data and 
predicting three steps ahead 

 

Number 
of 

variables 
used for 
training 

Number 
of steps 
ahead 

predicted 

M
S

E
 

R
M

S
E

 Time for 
training first 

set of 
data(seconds) 

Time for 
training the 
whole set of 
data(minute

s) 
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Unfiltered 
data(daily 
average) 

L
S

T
M

 

2 1 0.002125 0.0461 6 29 

Unfiltered 
data(5-

min-
average) L

S
T

M
 

2 5 0.002783 0.0528 5 27 

 

The results show that increasing the number of steps ahead predicted, the error 

increases. Comparing the probability histogram error plots, Figure 5-16 ( two 

predictions ahead) and Figure 5-65 (five predictions ahead), it is seen that for the 

latter case, the probability histogram plot is not symmetric anymore. For the case 

where five predictions are made, the histogram plot shows high error picks (-200% 

to 0%) relative error that almost reached 20% probability. This might generate an 

issue with the early warning system, as previously discussed. Besides high error 

picks, the shift-looking behavior of the predictions also increased. One of the 

requirements for the early warning system is that it has to give enough time in case 

the LSTM predicts that a disaster might happen. Following the results shown in 

this section, the accuracy for predicting five minutes ahead is not enough to use 

the LSTM as an early warning system. If used as an early warning system, one 

step ahead must be considered for reasonable accuracy.  

6.8 Evaluating the Case Where the Next Day Prediction is the Previous Day 

Value 

 

The most straightforward case tested in this thesis is considering that the next day 

prediction is the previous day's value. The results shown in section 5.11, Figure 
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5-58 show that the number of high picks throughout the predictions is very low 

compared to the LSTM. However, it is clearly visible that the predictions look 

shifted. The table below shows a comparison between this simple case and for the 

best LSTM case scenario.  

Table 6-8 Comparison between the best-case scenario for the LSTM and the 
simple case considering no machine learning 

 

Number 
of 

variables 
used for 
training 

Number 
of steps 
ahead 

predicted 

M
S

E
 

R
M

S
E

 Time for 
training first 

set of 
data(seconds) 

Time for 
training the 
whole set of 

data(minutes) 

Unfiltered 
data(daily 
average) 

L
S

T
M

 

2 1 0.002125 0.0461 6 29 

Filtered 
data L

S
T

M
 

2 1 0.001679 0.0410 5.2 28 

Unfiltered 
data(daily 
average) 

S
im

p
le

 

c
a
s
e

 

1 1 0.002003 0.0448 - 0.001 

 

Table 6-8 shows that if the unfiltered data is used, the predictions from the LSTM 

are slightly worse than the simple case. If the filtered data is used, the error coming 

from the LSTM is lower. However, considering that there is no algorithm 

implementation with the simplest case, it is safe to use it. Furthermore, the time 

spent generating the predictions using this simple case is extremely faster than the 

LSTM. Figure 5-61 shows the histogram plot for this simple case. It shows that the 
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few high picks throughout the predictions happen in a very low probability range. 

Furthermore, it shows that the predictions for the low probability range (-20% to 0 

to +20%) is almost the same for the LSTM best-case scenario. For just one step 

ahead prediction, using this simple case is more advantageous than using the 

LSTM or the TSF.  

6.9 Testing for Overfitting in the LSTM 

 

This section considers that overfitting may have happened in the LSTM best-case 

scenario. Therefore, L2 regularization and dropout techniques were used to avoid 

overfitting. The table below summarizes the results obtained.  

Table 6-9 Testing overfitting in the LSTM 

 

Number 
of 

variables 
used for 
training 

Number 
of steps 
ahead 

predicted 

M
S

E
 

R
M

S
E

 Time for 
training first 

set of 
data(seconds) 

Time for 
training the 
whole set of 

data(minutes) 

Unfiltered 
data(daily 
average) 

L
S

T
M

 

2 1 0.002125 0.0461 6 29 

Unfiltered 
data(L2, 
dropout) L

S
T

M
 

2 1 0.002449 0.0495 4 20 

 

As shown in Table 6-9, adding the regularization terms did not improve the 

predictions of the LSTM. The errors are more prominent than in the previous case. 

One possible explanation for the increase in error is the addition of the dropout 
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layer. As discussed before in the introduction, this technique randomly deactivates 

neurons during training to avoid overfitting. From the LSTM configuration, the best 

number of neurons is three. Suppose the dropout layer deactivates one of them 

during training. In that case, it is expected that the error for that simulation will be 

bigger than for the optimum number of neurons. This might also explain why the 

time spent on training is lower than when there is no regularization. Another 

explanation is that the LSTM randomly initializes the weights and biases during 

training, so the outcome of the predictions will be slightly different even if the same 

set of data is used. To reproduce the values every time the LSTM uses the same 

set of data, the random number generator (RNG) in MATLAB has to be set to 

“default” and then the seed value equal to one. Unfortunately, the RNG was not 

fixed for the LSTM best case scenario discussed. Two main conclusions can be 

taken from the results presented in Table 6-9. The first one is that overfitting did 

not happen. Thus there was no additional improvement in the accuracy of the 

LSTM model. The second conclusion is that the values used for the L2 

regularization and dropout are not optimum.  

6.10 Comparing the LSTM Results Using Measured Data from the Mine 

Versus Artificial Data and Results from Literature 

 

The LSTM behaves differently when trained with artificial data (sine waves) 

versus measured data from the mine. From the artificial data predictions, the best 

predictions were those with three inputs, and even a five-step ahead prediction 

was accurate.  The best predictions are for the training with two inputs with actual 

data. A smaller number of points must be predicted to give the best predictions. It 
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is also interesting to see that increasing the number of inputs trained, in this case, 

did not have a significant impact on the result of the predictions using the measured 

data from the mine.  Based on the results presented in this study using the artificial 

data, it is safe to say that the LSTM improves the accuracy of the predictions when 

trained with data with a repetitive pattern (such as the sine functions tested) and 

is very smooth. 

Considering the papers discussed in the literature review, where authors tried to 

forecast methane using neural networks, for instance (Mathatho.,2020); despite 

not giving any information about the training data size or the number of time steps 

forecasted, the authors obtained an MSE of 0.0019 and an RMSE of 0.0426. 

Comparing these numbers with the ones found in this study, they are very similar 

to the case where the LSTM was trained with five time-steps, using the filtered 

data and predicting one step (MSE of 0.001679 and RMSE of 0.0410). The author 

used some procedures similar to the ones presented in this study. For example, in 

that paper, the best number of neurons was chosen by increments of one until it 

converged to a minimum error.  Comparing the results from this study with that of 

(Geng, 2016), the main difference is the type of neural network used in that paper. 

The author used partial chaos swarms optimized radial basis function neural 

network (details on how this neural network works can be found in the author’s 

article). The best results were obtained using a three-layered neural network using 

this neural network. The best number of iterations was 250 (half of that used in this 

thesis study), and the best number of neurons was five ( just two more than the 

ones used in this thesis study).  Because of noise, the author preprocessed the 
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data before using it (using another method than the filter used in this thesis study). 

For that paper, the author used 6880 points for training the neural network and 

around 1700 (this number is not explicit in the text but can be estimated from the 

figure provided) for predicting.  With this configuration, the author obtained an 

RMSE of 0.0265. Comparing this number with the one for the best-case scenario 

in this thesis (using the LSTM), the RMSE is 0.0410. It can be seen that the result 

obtained for (Geng, 2016) is better. This better result may be due to the different 

types of neural networks used in that paper. The author for that paper does not 

explicitly say how many steps ahead were predicted at a time. However, it is said 

in the paper that the data used had a collecting sampling rate of one minute. The 

author also does not explain how long it took for the model to train or forecast.  The 

work done by (Yang et al., 2020) also presents a similar case as this thesis. Its 

similarity lies in the fact that the authors from that paper tried to forecast methane 

emissions from an underground coal mine. The first difference is that the authors 

used an improved grey radial basis function neural network (details on how this 

network works can be found in the author’s article). Another difference is that six 

factors (coal seam depth, seam thickness, coal seam methane content, seam 

spacing, daily progress, daily output) related to methane concentration were used 

as training variables. In this thesis study, a maximum of three variables were used 

for training the LSTM.  Another difference is that the authors used 275 data points 

for training the model and 25 data points for forecasting. It also used logarithmic 

processing to make the data smoother and improve the predictions. The results 

showed that the relative error stayed below 15%, with an average of 5.63%. This 
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value is relatively low compared to the relative error presented for the best case 

scenario using the LSTM in this paper (around 20%). The accuracy of the results 

from that paper, according to the authors,  lies in the fact that the author combined 

a neural network with another predictor (the grey theory in that case), so the 

model’s performance and accuracy improved as a whole. Despite not saying how 

many time steps were predicted at a time, the paper suggests that the twenty-five-

time steps were predicted at once. The paper also does not give any information 

about the time taken to train the model and forecast. Another similar research was 

done by (Kumari et al., 2021). The author forecasted methane concentration in an 

underground coal mine, among other gases. The first difference from that paper to 

this study is that the author used a uniform manifold approximation and projection 

(UMAP) combined with the LSTM for dimension reduction of the data. This UMAP-

LSTM model was trained with 143 data points (each data point corresponds to one 

day), and 31 days were used for forecasting.  Using the UMAP-LSTM predictor, 

the best combination of hyperparameters for the model was 50 neurons (compared 

to 3 used in this thesis study), a learning rate of 0.001 (0.00068 used in this thesis), 

and 200 epochs (500 used in the thesis). The paper reports that a RMSE of 0.0995 

was obtained from this configuration for the methane forecast. This number is very 

low compared to the one obtained in this thesis study for the LSTM best-case 

scenario. The main difference that can explain their low error is that the author 

used another predictor combined with the LSTM, improving the model’s 

performance as a whole. The research done by (P.Lyu et al.,2020) presents an 

LSTM-based encoder-decoder for short-term prediction of methane concentration 
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in a coal mine. As outlined in the paper, the proposed model was used to predict 

methane concentration two minutes, four minutes, six minutes, eight minutes, and 

ten minutes ahead. The data sampling used was two minutes. Despite not saying 

the configuration of the proposed model, the author highlights that the LSTM model 

loses accuracy as the number of time steps forecasted increases. This conclusion 

is similar to the one found in this thesis; the higher the number of steps ahead, the 

worse the model's accuracy.  That paper also reported that using data from several 

sensors is better than using a single sensor. This conclusion is similar to the one 

presented in this thesis study. Table 5-4 and Table 6-2 show the contrast between 

using just one variable for training versus using two variables for the LSTM model 

training.  In this case, combining information from two sensors is better than using 

just data from one sensor.  

The main conclusion from comparing results from the literature versus those 

presented in this thesis is that the predictions coming from the LSTM model are 

improved when combined with other predictors.  

 

6.11 Recommendations in Case the Methane Concentration is Above 

Permissible Limits 

 

According to chapter six of (NIOSH, 2006), by law, the methane concentration 

inside mines is restricted to 1%-1.25%. Therefore, if the threshold limit for methane 

is set to 1% in this present study, the accuracy of the predictions depends on how 

far the original point is from the threshold limit. For instance, consider that the 
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LSTM predicts that the next day's concentration will be 0.6% methane. However, 

the actual value for the next day's concentration is 0.4% methane. In this case, 

there is a 50% relative error. However, the prediction would still be acceptable 

since it is below the threshold limit. Analyzing the results shown in the discussion 

section, it can be concluded that if the  LSTM is used as an early warning system, 

it has to be used with caution. Suppose the methane concentration measured from 

the mine is close to the threshold limit. In that case, the LSTM predictions might 

predict that it will be above permissible limits when in reality, it is not. If that is the 

case, the early warning system might activate, but it would be a false alarm.   

The contrary situation also might be true and even more dangerous. Suppose the 

LSTM predicts that the next’s day concentration is 0.9% methane. However, the 

actual value for the next-day concentration is 1.1% methane. There is a -22.2% 

relative error in this case, which is much better than a 50% error. The problem is 

that, in this case, the LSTM undershot the prediction. Therefore, a disaster might 

happen, and the early warning system alarm will not be activated because the 

predicted point is below the threshold limit.  Since we deal with human lives and 

lots of money involved in the operation, an early warning system must be flawless.  

The appealing side of the LSTM, or neural networks in general, is that one does 

not have to worry about the physics of the process under consideration, which can 

sometimes be very complex. The use of LSTM in this present study, for example, 

would simplify the need for understanding the relationship between the target and 

the several possible factors that influence methane release inside the mine.  
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Another important point to notice is that with a physics-based model, the more 

parameters it has, the greater the model's accuracy (although there is difficulty in 

collecting data for these parameters). However, as shown by the training using the 

LSTM in this study, increasing the number of parameters did not increase the 

model's accuracy. Therefore, one can conclude that the model is not smart enough 

to “see” the importance of that variable or consider the variable important. 

However, the model is so sensitive to the amount of noise in the data that it does 

not perform well.  Looking at the cases reported in the literature review, the goal 

of forecasting methane using machine learning has been attempted by others, 

even though they are using combined techniques to achieve this goal.  

6.12 Analyzing the Case Where the Methane Concentration Increases 

Suddenly  

 

The methane concentration used in this study was collected throughout the year. 

Therefore, the production variation is in the data. It is not possible to separate the 

cause for CH4 up or down variation except for the dependence on the air flow rate 

and pressure variations. These are measured, and the data already deals with the 

effects of airflow variations.  Other possible causes for methane variation are 

intercepting CH4 pockets, fissures, CH4 flow channels, various coal-seam parts 

that contain and release varying amounts of CH4, varying amounts of CH4 leakage 

from the gob, and production rate. If any of these factors happened throughout the 

year, these effects are also included in the data. 
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7. CONCLUSIONS 

 

Working in subsurface mines may become dangerous if the appropriate 

environmental conditions are not provided. One problem that may arise is the 

accumulation of contaminants, such as CO, SO2 for heath, or methane for 

explosion hazards due to lousy ventilation inside the mine, which may also cause 

a temperature rise. The present work proposed an LSTM model to create an early 

warning system for forecasting methane concentration inside an underground coal 

mine. The model used a combination of variables related to the variation of 

methane inside the mine, such as airflow, pressure, and methane concentration at 

the main gate.  The target is the methane concentration at the headgate. Several 

scenarios were tested to increase the performance of the proposed model, such 

as the influence of the LSTM tuning parameters, the best combination of variables 

for training the model, filtering the data, training window size, and the number of 

steps ahead predicted. The results were compared with an in-house developed 

time-series filter. Results show that the best configuration of the LSTM uses two 

hidden layers, three neurons per layer, and a learning rate of 0.00068. The results 

show that the LSTM model is limited to one-step-ahead prediction for reasonable 

accuracy. It also shows that when the number of time steps forecasted increased, 

the accuracy of the predictions decreased. This observation is in agreement with 

some authors from the literature. 

Furthermore, increasing the number of variables or the training window size does 

not seem to increase the accuracy of the LSTM predictions. The main reason 
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behind this observation is that when the LSTM is trained with more data or the 

number of variables increases, it experiences more noise. When it tries to make 

the predictions, the model considers this noise and combines it with outdated 

information that decreases the performance of the LSTM.  

Comparing the results with the time series filter, both present high error picks. 

However, the TSF is much faster for training and predicting. Filtering positively 

impacted the predictions, both using the LSTM and the TSF. It is important to 

notice that despite using a small filter length, the filter data contributes to increasing 

the accuracy of the predictor models. Comparing the results using artificial data 

(sine waves) and the measured data from the mine, it is observed that the LSTM 

performs better if the data has a specific pattern and is as smooth as possible. 

Possibly, this is the reason why filtering the measured data gives better 

predictions.  Comparing the results from the LSTM with those from the most simple 

case (considering that the next day prediction is the previous day value), it is 

possible to verify that the predictions from the simple case are as good as the 

predictions from the LSTM. Furthermore, it is safe to assume that using the most 

simple case is more advangeous than using the LSTM or the time series filter for 

simplicity reasons.  

The comparison with the results from the literature shows that using the LSTM in 

combination with other predictors greatly improves the model's accuracy.  The use 

of regularization techniques to test the model against overfitting shows that it does 
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not improve the model's accuracy. Therefore, the conclusion is that overfitting did 

not happen or that the regularization is ineffective for the parameters used.  

Due to many fluctuations in the predictions, the proposed model is not accurate 

enough to be used as the first stage in an early warning system to predict multiple 

steps ahead. Future works might be considered to investigate what can be done 

to improve the LSTM performance. Suggestions are: 

• Include more parameters in the fine-tuning of the LSTM 

• Make sure the data used does not have interference from the sensors 

• Use the LSTM in combination with other predictors 

• Use a faster computer if time is a concern 
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