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1. Abstract 

The design and optimization of metallic alloys poses a significant engineering challenge. 

The search space of all possible alloys is sufficiently large that it is impossible to fully 

explore by traditional methods. In order to address this challenge, physics based 

computational frameworks linked to advanced machine learning algorithms can serve to 

automate this process with computational efficiency such that the state of the industry may 

be rapidly advanced. The work herein presents a suite of computational frameworks 

leveraged to automate the design and optimization process of advanced alloys. An ab initio 

alloy thermodynamics system, Molecular Dynamics simulations, a Convolutional-Neural 

Network system, and a coupled Neural Network and Multi-objective Genetic Algorithm. 

These algorithms are validated over the set of binary nanocrystalline Al-X alloys, and 

multi-component High Entropy Alloys (HEA). 
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6. Introduction 

The research in this thesis details an effort to democratize and improve the advanced 

metallic alloy design process through utilizing machine learning and physics-based 

simulation. Alloy thermodynamics, Molecular Dynamics, deep Neural Networks, 

Convolutional Networks, and multi-objective Genetic Algorithms are developed and 

applied to the design of nanocrystalline binary alloys and multi-component high-entropy 

alloys. 

Utilized as the first validating dataset, nanocrystalline metal alloys are those in 

which the average microstructural crystallite size is in the nanometer range, typically 

defined to be less than 100 nm. This grain refinement from a traditional alloy is typically 

achieved through mechanical alloying or advanced processing methods, such as spark-

plasma sintering, that aim to control the solidification rate of the metal as an indirect 

method of controlling crystallite size. A small average crystallite size corresponds to a large 

volume-fraction of grain boundaries in the material’s microstructure as the thickness of the 

grain boundaries is not significantly reduced as the crystallite size decreases. Being that 

disordered grain boundaries in polycrystalline metals serve as impediments for dislocation 

motion, dislocation mobility is reduced in nanocrystalline metals relative to conventional 

microcrystalline metals. This reduction in mobility is accompanied by an increase in 

strength and reduction in ductility. Certain material processing techniques, such as post-

processing heat treatment, are able to regain some ductility in the material. As such, 

nanocrystalline materials can provide superior mechanical properties to conventional 

alloys. However, an increased volume fraction of disordered grain boundaries serves to 
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increase the free energy of the microstructure. Because the system is driven towards an 

energy minimizing state, this increased free energy is driven towards reduction through 

crystallite enlargement by the annihilation of grain boundaries and the coalescence of 

crystallites. Therefore, this process reduces the improved material properties initially 

gained through crystallite size reduction. In order to avoid this loss of properties, dopant 

elements are added to the base nanocrystalline metal that tend to segregate to the grain 

boundaries of the material. These dopant elements are chosen such that they have a 

preferentially tendency for segregation over forming a solid solution in the crystallite 

region. Via this segregation, at the grain boundaries of the material, the free energy of the 

disordered system is reduced via grain boundary relaxation, effectively reducing or 

eliminating the driving force for grain growth. However, chosen dopant elements must also 

be stable against the precipitation of secondary phases in the base nanocrystalline element 

as this precipitation serves to consume a portion of the active dopant element thereby 

reducing its efficacy in causing free energy reduction at the grain boundaries. This research 

details a thermodynamic framework applied to the set of binary nanocrystalline Al-X 

systems for which microstructural stability is predicted against grain enlargement and the 

precipitation of secondary phases. 

In the case of nanocrystalline metals, significant research in the area of crystal 

plasticity and the deviations between microcrystalline and nanocrystalline deformation 

mechanisms is currently underway. During an average crystallite size reduction from the 

microcrystalline to nanocrystalline range it has been shown that a transition from slip-based 

deformation to grain boundary mediated processes occurs. This change in the dominant 

deformation regime heavily influences the dominant deformation mechanisms in the 
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materials’ microstructures, specifically grain boundary migration and slip. This research 

details Molecular Dynamics studies of nanocrystalline Al-Mg(10%) in its segregated state, 

for which thermodynamic stability against both grain enlargement and phase precipitation 

is predicted under uniaxial tension in order to identify these mechanisms in stabilized 

materials and hypothesize their correlation to material properties. 

Effective analysis of material test and simulation data also poses a significant 

challenge to advanced alloy design. Typically, microstructural image data is analyzed 

through the use of a researcher’s expertise and direct comparisons to previous studies; an 

example of which can be seen in the analysis of NC Al-Mg in this work. Initially, 

automation of this process was done through the use of expert systems. These systems were 

designed as databases of labeled microstructural image data specific to a material class and 

configuration; pairwise comparisons of this data to slices of the input data forms the 

classification process. While relatively accurate, this process is very computationally 

expensive, data-intensive, and lacks adaptability. In order to address these challenges, early 

machine learning based classification algorithms, such as Support Vector Machines, were 

used. These algorithms significantly reduced the computational cost of the classification 

process, as well as providing a small reduction in the completeness in volume of the 

supporting datasets needed. However, these algorithms came at the cost of accuracy. This 

research details an object-based Convolutional Neural Network system, the current state of 

the industry in image classification algorithms. This solution retains high accuracy while 

reducing computational cost and is fully adaptable across datasets and even material 

classes.  
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As the second validating dataset, High Entropy Alloys are typically comprised of 

up to twelve alloying elements and are defined as those which possess significant 

components of five or more elements. Complex interactions between these components are 

responsible for their improved strength densities and resistance to fractures while specific 

properties of a given material are primarily driven by crystalline structure. Typically, 

HEA’s inherently have a trade-off in properties, as do most classes of alloys. Thermal 

stability, hardness, yield strength, ductility, and fatigue life vary across alloy classes and 

between BCC and FCC structures. For this reason, effective design of this class of alloys 

is a significant challenge. Additionally, processing techniques of these alloys are limited 

to relatively small-scale methods such as spark-plasma sintering and liquid phase synthesis. 

Furthermore, those techniques which have been proven successfully at manufacturing bulk 

quantities of HEA’s are limited in the purity of the produced samples. As such, sample 

synthesis poses and additional significant challenge to effectively designing and testing 

high entropy alloys. This research details a computational framework comprised of a 

coupled Regression Neural Network and Non-dominated Sorting Genetic Algorithm to 

effectively propose high entropy alloy designs and assess their efficacy on the basis of cost 

and predicted material properties. 

By combining the current state of research in the field of advanced alloys with the 

current best performing predictive and generative machine learning algorithms, the work 

herein develops a basis and toolset to aid materials researchers during the materials design 

process. The design loop formed utilizes Molecular Dynamics simulations in order to 

develop a dataset of simulated materials consisting of their compositions related to their 

mechanical response, a coupled Neural Network and Genetic Algorithm learns the pattern 
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in these property-composition relationships and generates and optimizes material designs 

based on these predictions. The thermodynamics framework can then be used to screen 

these proposed and optimized designs for thermodynamic stability resulting in a final 

design alloy set. These optimal and stable alloys can be further assessed in terms of their 

detailed deformation mechanisms and mechanical response by additional physics-based 

Molecular Dynamics studies. By this process, alloys can be designed, assessed, and 

investigated in detail rapidly and adaptably.  

 

7. Publications 

This thesis consists of the following four papers, written to address these challenges in 

advanced alloy design and formatted for publishing in scientific journals. 

 Paper 1: Pages 13-37 have been published in the Journal of Materials Science 

 Paper 2: Pages 38-49 will be submitted for publication in Materials Letters in a 

condensed form 

 Paper 3: Pages 50-66 have been submitted for publication in the Journal of 

Computational Materials 

 Paper 4: Pages 67-81 have been submitted for publication in the Journal of 

Computational Materials 

  



6 
 

 

I. Paper 1 

Thermodynamic Stabilization of Nanocrystalline Aluminum 

Jacob Hohl1,*, Pankaj Kumar1,2, Mano Misra1, Pradeep Menezes3, Leslie T 

Mushongera1,* 

1Department of Chemical & Materials Engineering, University of Nevada, Reno, Reno, 
NV, 87557, USA 

2Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM, 
87106, USA 

3Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, 87557, 
USA 

*Corresponding authors: lmushongera@unr.edu, jhohl@unr.edu 
 

Abstract – Nanocrystalline metals are generally unstable due to a large volume fraction of 

high-energy grain boundaries associated with a small grain size. Preferential dopant 

segregation to the high-energy grain boundaries is observed to enhance the stability of the 

material’s microstructure by minimizing its energy. Nanocrystalline aluminum-dopant 

systems were evaluated for thermodynamic stability against grain growth and phase 

precipitation via the mechanism of grain boundary segregation according to a modified 

regular nanocrystalline solution model. Fifty-one potential dopant elements have been 

evaluated for their efficacy in stabilizing nanostructures with three potential candidates, 

magnesium, lanthanum, and silicon, identified possessing the characteristics to promote 

grain boundary segregation and a state of thermodynamic stability in aluminum’s 

nanocrystalline regime. The minimum dopant content required to achieve nanocrystalline 

microstructure stability is identified for each of the three candidate elements. Beyond this 
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minimum content, further addition of the dopant elements decreased the final 

microstructure’s stability with no effects on the existence of a stable nanocrystalline state.  

 

1. Introduction 

     Nanocrystalline metals are comprised of ultra-fine grains with diameters of typically 

less than 100 nm [1,2]. Due to the small size of the constituent grains, large fractions of 

atoms are positioned at or near grain boundaries, compared to conventional polycrystalline 

metals with coarse grains [2,3]. As a result of this structure, nanocrystalline metals exhibit 

superior mechanical properties as compared to their polycrystalline counterparts. The 

extraordinary mechanical properties of nanocrystalline metals include high ductility at 

room temperature, high hardness and high strength [3–5]. The hardness of nanocrystalline 

metals has been observed to be up to seven times higher than in coarse-grained materials 

[4]. Additionally, the yield strength of nanocrystalline metals can be up to ten times higher 

than of coarse-grained materials [6–9]. These unique qualities are attributed to the large 

fraction of interfacial materials present within the grain boundaries. It is thus apparent that 

the nanoscale grain size in nanocrystalline metals brings about a significant increase in the 

strength of the materials. 

     Despite the impressive mechanical properties, nanocrystalline metals are restricted to 

use in real application, largely due to the microstructural instability. Retaining the 

morphology and size of the constituent grains in nanocrystalline metals is a major challenge 

to successfully use in the many applications over a long period of time. The compromised 

stability of nanocrystalline metals originates from the excess energy due to the high-

volume fraction of grain boundaries in these ultra-fine grained structures [10–13].  This 
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complexity is associated with both the highly degenerate nature of grain boundary 

structures as well as the interconnected nature of the boundary network within 

nanocrystalline microstructure. In the grain boundary region, atoms are typically shifted 

from their regular lattice sites to accommodate the mismatch between the adjacent grains 

causing high-energy configurations [1]. As a result, grain boundaries are associated with 

an excess stored energy compared to the grain interior. This excess stored energy provides 

a driving force for grain coarsening – a detrimental microstructural phenomenon which is 

characterized by the growth of the large grains at the expense of smaller ones. A coarse-

grained structure is thermodynamically favored since it has less excess stored energy due 

to a smaller grain boundary volume as compared to a nanocrystalline structure. Due to this 

excess stored energy, nanocrystalline metals coarsen rapidly even at low temperatures and 

lose their extraordinary mechanical properties [7]. This highlights that the grain size, as 

widely accepted, is not the only structural feature of interest for nanocrystalline materials. 

The grain boundary state considerably alters the thermodynamic and mechanical stability 

of the materials. Therefore, it must be the focus when designing nanocrystalline materials.   

     To retain the properties of nanocrystalline materials in bulk components for structural 

applications, stabilization of the nanostructure with respect to coarsening is highly 

desirable. An ideal metallic nanostructure is one in which the as-manufactured grain 

morphologies and sizes are preserved, regardless of exposure conditions [7]. It is 

imperative that the characteristic nanocrystalline grain size, and high-volume fraction of 

grain boundaries be retained in the long-term in order to preserve the material’s 

extraordinary properties. To enhance the stability of the nanocrystalline metals, the excess 

stored energy in the grain boundaries should be reduced [1]. The preferential decoration of 
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grain boundaries with dopants provides a potentially promising approach to stabilize the 

NC structure [10, 11]. Recent theories have suggested that through the addition of dopant 

elements in small amounts to pure nanocrystalline metals, the interfacial free energy 

associated with a high-volume fraction of grain boundaries in the material can be reduced. 

In some cases, the interfacial energy can be reduced below the free energy of the bulk 

solution, thereby eliminating the driving force required for grain growth, which results in 

a stable segregated nanocrystalline state [8-10]. The precise mechanism by which this 

happens is still a subject of conjecture. Several mechanisms have been proposed to explain 

how nanocrystalline metals are strengthened by grain boundary segregation. In one of these 

mechanisms, the partitioning of dopants to the grain boundaries in nanocrystalline metals 

increases the atomic registry at the boundaries, which shifts the energy of the grain 

boundary atoms to lower value [14]. Along with a reduction in the grain boundary energy 

[11-13], a contribution to the impediment of grain boundary motion from Zener drag exists 

[14-15]. Via this mechanism, dopants at the grain boundaries have also been suggested to 

mechanically restrict the migration of grain boundaries significantly, thus reducing 

coarsening.  

     Precipitation of secondary intermetallic phases due to the presence of dopants is one of 

the processing challenges which can disrupt the necessary segregation required for grain 

stability and strength. When the concentration of the added dopant is in a supersaturated 

state in the nanocrystalline matrix, such thermodynamic conditions will promote second 

phase precipitates to nucleate and grow in the grain interiors.  In general, the second phase 

precipitates in metallic materials are often considered to serve as obstacles to dislocation 

glide and cause hardening of the material [15]. This notion, however, fails to explain recent 
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discoveries of high-strength and large-ductility materials with a high density of these 

precipitates, as obstacles to dislocation glide leading to high stress concentration and even 

microcracks. Most often these deleterious secondary intermetallic phases are brittle in 

nature which negatively affects the mechanical properties of the material. Furthermore, the 

formation of the coarse, incoherent precipitates along grain boundaries leads to softening 

and substantially reduces the fracture resistance of these materials [16–18]. To achieve the 

best possible effect from grain boundary stabilization through the addition of segregation 

of dopants, it is necessary to identify the stable nanocrystalline thermodynamic states that 

do not form precipitates. 

     To realize this, an understanding of the principles of thermodynamics, and how these 

principles can be harnessed to achieve stable nanocrystalline structure, is required. In order 

to model the thermodynamics of both grain boundary segregation and the formation of 

solid solutions, the thermodynamics of the solid state can be employed. The primary 

concept from which thermodynamic stabilization mechanisms of nanocrystalline solids is 

built is that nature trends towards minimizing the energy state of a natural system. This 

concept is tied to the concept of entropy or disorder, is generated during any 

thermodynamic process. An ideal system may generate no disorder, i.e., its entropy 

generation is zero, but entropy may never be annihilated by a thermodynamic process [19]. 

To this end, if a thermodynamic formulation that describes the variation in the energy state 

of a system can be established, it can be said that the point at which this energy is 

minimized will be the stable state of the system, towards which it will trend. Additionally, 

the energy itself is neither created nor destroyed, it is only conserved and converted 

between forms. This provides the concept of enthalpy, or the energy which is necessary for 
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a process to occur [19]. These process enthalpies are the driving forces for 

thermodynamically driven change; in the specific case of this research, these enthalpies 

will be the driving forces for the segregation of atoms and for the formation of solid 

solutions.   

     Traditionally, thermodynamic modeling of nanocrystalline materials has evolved from 

the basis of describing solute segregation energetically [20]. Weissmuller was one of the 

first to quantitatively describe that a reduction in grain boundary energy can be achieved 

through the segregation of solute atoms to a nanocrystalline material’s grain boundaries 

[21]. This concept was formulated from the Gibbs Adsorption Isotherm, and the works of 

Birringer [22], who was the first to propose the theory. From Weissmuller’s description of 

solute partitioning utilizing the Langmuir-McLean segregation equation, Liu and 

Kirchheim were able to formulate a relationship between the bulk and grain boundary 

solute contents that specifically described solute segregation for binary nanocrystalline 

alloys [23]. From this relationship, Kirchheim described the conditions that would lead to 

metastability of nanocrystalline materials [23]. Weissmuller expanded upon Kirchheim’s 

criteria to create a regular solution model for a binary polycrystalline alloy system in terms 

of bond energies and number of bonds in each of the grain boundary, intercrystalline, and 

transition regions of the material [21]. It is important to note that Kirchheim’s work 

neglected the elastic and mechanical effects of solute segregation. This shortcoming was 

in part rectified by  Trelewicz and Schuh [24], and then fully described by Saber and 

Chookajorn [25,26]. The resulting models were applied to binary systems with a positive 

enthalpy of mixing by Murdoch and Schuh [27], to ternary alloy systems by Saber [28], 
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and in a modified state to binary systems with both positive and negative enthalpies of 

mixing in this work. 

     The objective of this work is to establish the conditions to stabilize the grain structure 

of nanocrystalline aluminum (NC Al). Based on thermodynamic principles, a highly 

efficient dopant design framework has been used to identify the specific dopants that 

interact with high energy grain boundaries in NC Al to release the excess free energy in the 

boundaries. It is of interest to improve the stability of the NC Al not only against grain 

growth, but also against phase separation. The dopant design framework is based on a 

modified regular solution model to describe the free energy state of the nanocrystalline 

structure in terms of bond energies and thermodynamic parameters.  

     In Section 2, the thermodynamic framework and analytical methods used in this work 

are presented. Section 3 describes the results and discussion before concluding in Section 

4. 

2. Thermodynamic Framework 

     To assess the efficacy of various dopants in stabilizing NC Al, a standard regular 

solution model for binary nanocrystalline alloys is adopted [27]. The nanocrystalline 

structure is modeled as two physically and chemically distinct regions in nanocrystalline 

metals namely: the ordered crystalline bulk (𝑐) and the disordered grain boundary (𝑔𝑏). 

The energetics of the system is described by a mixing free energy which is formulated with 

separate energetic interactions for the two regions in the nanostructure. The crystalline bulk 

and the grain boundary are however not treated as separate phases, per se, but are 

considered to be geometrically connected to one another such that the global dopant content 

of the nanocrystalline structure satisfies the mass balance 
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𝑋 = 𝑉 𝑋 + 1 − 𝑉 𝑋           (1) 

where, 𝑋  is the concentration of a dopant species in the grain boundary region, 𝑋  is the 

concentration of a dopant species in the crystalline bulk. Treating the two regions as 

geometrically connected will allow such that a reduction in grain size, d, will cause an 

increase in the grain boundary volume fraction, 𝑉 , which follows a cubic scaling  

𝑉 = 1 −
𝑑 − 𝜉

𝑑
     (2)  

where, 𝜉 is the width of the transition region which is smeared over a finite distance and is 

composed of bonds between atoms in the crystalline bulk and in the grain boundary. The 

width of the transition region will be taken as 0.5 nm [27] in all the following. The 

geometry of the nanocrystalline metal is postulated as a distribution of atomic bonds 

between the crystalline bulk, grain boundary and transition region. The energies associated 

with such a geometry is contained in the final free energy function of explicit form  

∆𝐺 = 1 − 𝑉 ∆𝐺 + 𝑉 ∆𝐺

+ 𝑧𝑣𝑉 𝑋 − 𝑋 2𝑋 − 1 𝜔 −
1

𝑧𝑡
(Ω 𝛾 − Ω 𝛾 )         (3) 

 

 

This expression is a solution model for a binary system, in which grain size is a state 

variable and grain boundary segregation contribute strongly to the energetics of the system. 

The subscripts denote the crystalline bulk (c) and grain boundary (gb), and the superscripts 

denote the two chemical species, A (Al solvent) and B (dopant).  𝛾  and 𝛾  are the 

interfacial energies of pure Al and the dopant, respectively. The other terms are associated 
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with the geometrical way in which those two regions interact. The parameters 𝑧, Ω  and 

𝑣 are the coordination number of the bulk material, the atomic volume and the fraction of 

atoms contributing bonds to the transitional bonding region, respectively. The interaction 

parameters are related to the enthalpy terms that describe the tendency of the solute atoms 

to mix into the solvent as a solid solution or segregate to the grain boundary respectively, 

with positive values of the corresponding parameter indicating a higher preference for each 

tendency. The interaction parameter in the grain boundaries (𝜔 ) is related to the enthalpy 

of segregation (∆𝐻 ) as 

𝜔 = 2𝜔 −
2∆𝐻

𝑧
− 2

Ω 𝛾 − Ω 𝛾

2𝑧𝑡
           (4) 

This captures the thermodynamics of the grain boundary environment, which incorporates 

chemical interactions, elastic mismatch, and the mismatch in interfacial energies. The 

interaction parameter in the bulk grain (𝜔 ) is related to the enthalpy of mixing (∆𝐻 ) 

following 

𝜔 =
∆𝐻

𝑧𝑋(1 − 𝑋)
           (5) 

The free energy function in Eq. (3) is essentially in the form a modified regular solution 

model in the limit of infinite grain size and will also reproduce a grain boundary energy in 

the proper limit. The estimate values of the enthalpy of mixing for fifty-one aluminum-

dopant binary systems are obtained using [29],  

∆𝐻 = 𝑋 𝑋 𝑋 ∆𝐻 + 𝑋 ∆𝐻

+ 𝑋 𝑋 (𝑋 ∆𝐻 + 𝑋 ∆𝐻 ) + ∆𝐻        (6) 
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where 𝑋  and 𝑋  are the compositions of the dopant and the Al solvent, respectively, 

and 𝑋  and 𝑋  are effective fractions of the surface of dopant atoms in contact with Al 

atoms and vice versa. This describes the difference in interaction between a B atom 

surrounded by A atoms, and one surrounded by some mixture of A and B atoms, dictated 

by composition. ∆𝐻   is the enthalpy of the formation of a solid solution of the 

dopant element in the matrix of the solvent. ∆𝐻  accounts for the elastic strain effects 

caused by solute atoms expanding or contracting the lattice of the solvent, if they are larger 

or smaller than the solvent atoms respectively. Chemical interactions are captured by the 

terms of form ∆𝐻  which describe, e.g., the enthalpy of a B atom completely surrounded 

by A atoms. Furthermore, grain boundary segregation enthalpies are calculated as [30], 

∆𝐻 = −0.237𝑣 −∆𝐻 − 𝑐 𝛾 𝑉 + 𝑐 𝛾 𝑉 + ∆𝐸           (7) 

the term 𝑐 𝛾 𝑉  is the surface enthalpy of a pure metal where 𝑐 = 4.5 × 10  is a 

dimensionless semi empirical constant, 𝑉 is the atomic volume, and 𝛾  is the surface 

energy of the pure subscripted component. The coefficient captures the change in 

coordination at the surface; when the segregant B atom is at the surface rather than in the 

bulk, it has gone from being surrounded by A atoms to being only two-thirds in contact. 

The coefficient 0.237 accounts for the surface relaxation due to surface electron density 

distribution and surface geometry, which reduces the exposed surface area. ∆𝐸  accounts 

for the elastic strain effects that contribute to segregation [31].  

∆𝐸 =
24𝜋𝐾 𝐺 𝑟 𝑟 (𝑟 − 𝑟 )

3𝐾 𝑟 + 4𝐺 𝑟
          (8) 

where, K is the bulk modulus, G is the shear modulus, 𝑟 is the atomic radius.  
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     The terms ∆𝐺  and ∆𝐺  can be postulated to describe the extremes in the 

thermodynamic state of a nanocrystalline system in which either only the bulk crystal or 

grain boundary exists. In a sharp grain boundary limit, i.e., the thickness of the grain 

boundary region is infinitesimally small,  𝑑 → 0, only a single crystal exists, which reduces 

Eq. (3) to a classical regular solution 

∆𝐺 = 𝑧𝜔 𝑋 (1 − 𝑋 ) + 𝑘𝑇[𝑋 𝑙𝑛𝑋 + (1 − 𝑋 ) ln(1 − 𝑋 )]          (9) 

where 𝑘 is the Boltzmann constant and 𝑇 is the temperature. On the other extreme end 

when 𝑑 = 𝑡, a hypothetical system with only the grain boundary exists which again 

simplifies Eq. (3) to  

∆𝐺 = 𝑧𝜔 𝑋 1 − 𝑋 +
Ω 𝛾

𝑡
1 − 𝑋 +

Ω 𝛾

𝑡
𝑋 + 𝑘𝑇[𝑋 𝑙𝑛𝑋

+ 1 − 𝑋 ln 1 − 𝑋 ]            (10) 

Considering the co-existence of both the bulk crystal and grain boundary, the global 

thermodynamic state can then be postulated as an interpolation of Eqs. (9) and (10) in 

addition to the interaction parameters accounting for the transition region which yields Eq 

(3). This equation yields a 3D free energy surface in grain boundary composition–grain 

size space as shown in Fig. 1. This free energy surface describes how the material system’s 

energy changes as a function of its grain boundary solute content (𝑋 ), which is an 

approximation for the system’s degree of segregation, and as a function of the final 
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microstructure’s average grain size (𝑑). Therefore, this surface shows the most prominent 

and influential variable quantities that affect the degree of stability that the nanocrystalline 

structure is capable of attaining. A nanocrystalline minimum in this surface denotes a state 

of stability at which the benefit to material 

properties of a nanocrystalline 

microstructure are retained. By using Eq. 

(1) in (3), the nanocrystalline stability can 

be evaluated as a function of the global 

dopant content. 

     An important feature of this approach 

is that it will not only identify the dopant 

compositions that lead to a reduction in the 

grain boundary energy but will also 

identify the stable grain size. These 

quantities for the stable state of the 

material system can be directly read from 

the corresponding axes of the generated 

free energy surface at which a minimum 

occurs, as seen in Figure 1. This effect can 

be clearly seen in the 2D plot in Figure 2, 

where the blue line is the free energy curve 

for the nanocrystalline state of the material, 

and the red line is the free energy of the 

Figure 1. Schematic of a Gibbs free energy surface 
with a minimum in the grain boundary region. The 
energy minimizing grain boundary dopant content 

and the preferred grain size correspond the 
minimum in the free energy surface. 

 

Figure 2. Gibbs free energy plot showing the energy 
minimizing grain boundary solute content 

corresponding to the minimum in the energy surface. 
Blue line denotes nanocrystalline state, red line denotes 

bulk large-grained state. 
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bulk unsegregated large-grained material. If the nanocrystalline state’s curve is concave in 

shape, as determined by sign of its second derivative, and any point on the curve exhibited 

a free energy value lower than that of the material system’s unsegregated bulk solution, a 

stable nanocrystalline state exists. Otherwise, the most energetically favorable state for the 

material system is that of the bulk solution at a large grain size, attainable by the occurrence 

of grain growth.           

3. Results and Discussion 

3.1 Analysis of grain boundary segregation 

     Through use of the regular nanocrystalline solution model (Eq. (3)), NC Al has been 

evaluated for thermodynamic stability through grain boundary segregation using fifty-one 

potential dopants. The input parameters used in the model were obtained from literature. 

The two thermodynamic parameters, which together contain all of the most relevant 

physics of the problem: enthalpies of segregation and mixing were obtained for all of the 

fifty-one systems from Ref. [29]. All other material parameters, including pure substance 

grain boundary energies and atomic volumes, were obtained from [24,26,27,32,33]. To 

form stability surfaces based on Eq. (3) throughout the entire design space for each binary 

Al-dopant system, the grain size was varied from 10 to 100 nm and grain boundary solute 

content was varied throughout its whole range of 0 to 100 at%. This variation was 

performed in steps of 1%, in order to provide sufficient resolution to accurately determine 

the stable state of the system.  
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     Using the fifty-one dopant elements, free energy surfaces were constructed and utilized 

to create a set of stability predictions for binary NC Al-dopant systems. This stability was 

achieved through free energy minimization at the grain boundary regions. 3D Gibbs free 

energy surfaces were constructed for each NC Al-dopant combination to assess 

thermodynamically stable nanocrystalline states and global compositions. From these 

studies three candidate dopants: magnesium (Mg), lanthanum (La), and silicon (Si), were 

selected as exhibiting the necessary characteristics to segregate to the grain boundary and 

provide a stable nanocrystalline state. This selection was done by examining the free 

energy surfaces created for each material and identifying surfaces exhibiting minima in the 

   
Figure 3. Gibbs free energy surfaces as function of the grain boundary dopant content, 𝑋  
and grain size, 𝑑 for (a) NC Al-Mg (b) Al-La (c) Al-Si and (d) Al-Ag systems, for a global 

dopant content of 𝑋 = 10%.  
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grain boundary dopant content-grain size regime. A unique characteristic of each of the 

three identified dopants is that they possess positive enthalpy of segregation; due to this 

fact, these three exhibits a tendency for segregation towards the grain boundaries. 

However, of the three, only Mg possesses a positive  enthalpy of mixing [29]. Being that 

this thermodynamic characteristic describes the solute’s ability to form a solid solution 

with the Al solvent, Mg may be identified as the most promising dopant for binary Al 

systems. From a thermodynamics perspective, a positive enthalpy of mixing implies that 

the solvent and dopant atoms do not have an affinity for each other thus essentially separate 

out leading to the dopants segregating to the disordered grain boundaries. Additionally, 

since the regular nanocrystalline regular solution empirical stability criterion (see Section 

3.4) is only valid for positive enthalpy of mixing systems, Mg is the only dopant for which 

the model confidently predicts stability against phase precipitation. Figure 3 shows the 

necessary minima in the Gibbs free energy surfaces for NC Al-Mg, Al-La, Al-Si, and Al-

Ag systems, respectively, where (a)-(c) show stable nanocrystalline states whereas (d) 

shows an unstable nanocrystalline state. This distinction can be seen by the concavity of 

the surface, as determined by its second derivative. Concave surfaces result in stable 

nanocrystalline minima, while convex surfaces denote instability of the microstructure 

with respect to grain growth. As such, in Al-Mg, Al-La, Al-Si nanocrystalline systems, the 

grain boundary segregated state is energetically favorable to that of the large-grained bulk 

solution. On the other hand, Al-Ag in Fig. 3(d) with a convex free energy surface will 

always have an unstable nanocrystalline structure thus will be susceptible to grain 

coarsening. By evaluating the grain boundary solute content (𝑋 ) and grain size (𝑑) at 

which the minima in the free energy occur, the degree of segregation and the resultant 
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microstructure’s grain size can be predicted. For a global dopant content of 𝑋 = 10%, a 

maximum achievable grain boundary dopant content 𝑋 , = 25% was predicted for Al-

Mg, 𝑋 , =  35% for Al-La, and 𝑋 , =  34% for Al-Si. The dopant content at which 

the nanocrystalline minimum occurs is a function of the degree of segregation that a 

material system exhibits. Therefore, it is dependent on the enthalpy of segregation, and is 

different for each solvent-solute pair. In the case of binary aluminum systems, a global Mg 

content of 13% was found to promote the highest degree of stability for the Al-Mg 

nanocrystalline system. 10% La or Si content was necessary for stability, with higher 

contents corresponding to smaller final crystallize sizes without affecting the existence of 

a stable state 

     Additionally, the three stable nanocrystalline systems show a minimum achievable 

grain size of 10 nm. However, the actual grain size that can be achieved during 

manufacturing is ultimately dependent on the initial grain size of the raw aluminum powder 

that is alloyed to create the segregated system as well as the processing methods and 

conditions. Smaller initial grain sizes typically result in smaller grain sizes in stabilized 

   
Figure 4. Evolution of Gibbs free energy with grain size for (a) unstable and (b) stable 

nanocrystalline state. 
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nanocrystalline systems. Figure 4 shows the variation in Gibbs free energy, as a function 

of grain size, for both the case of an unstable nanocrystalline state and a stable 

nanocrystalline state. It can be seen that, for an unstable nanocrystalline material, the free 

energy of the system decreases with an increase in grain size. Being that the energy 

minimized state is thermodynamically stable, this shows that the stable microstructure in 

this case is that of a bulk large-grained material. In contrast to this, for the case of a stable 

nanocrystalline state, it can be seen that the energy minimum occurs at a small nanoscale 

microstructure, with the free energy of the large-grained microstructure being greater than 

that of our stable nanocrystalline state. The resulting plots of Gibbs free energy vs grain 

size can in essence be used as a quick tool for identifying material systems for which a 

stable nanocrystalline state exists.  

3.2. Stability against second phase precipitation 

     It is likely that the dopant element interacting with the solvent element could lead to the 

formation of second phase precipitates once the maximum solubility limit within the 

nanocrystalline metal is reached. Binary nanocrystalline systems tend to exhibit rampant 

grain growth following second phase precipitation if the precipitate phase is energetically 

 

 
Figure 5. Gibbs free energy contours for Al-Mg, Al-La, Al-Si systems for a global solute 

content of 𝑋 = 0.2%. 
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favorable to one in which the material’s alloying element is segregated to the material’s 

grain boundaries. This effect is due to the precipitate phase consuming dopant atoms from 

the grain, which reduces its stabilizing effect on the microstructure. By this effect, 

precipitation of secondary phases due to the presence of dopants can disrupt the necessary 

segregation required for grain stability. This comparison can be seen visually in Figure 5 

where the blue curve represents the nanocrystalline state, and the red curve represents the 

lowest energy state of the bulk large-grained microstructure and any precipitating phases. 

In the case that a precipitating phase is of a lower energy state than the nanocrystalline 

regime, the stabilizing solute in the material’s grain boundary is utilized in the precipitation 

of the second phase, effectively reducing its presence in the grain boundary and thus its 

stabilization effect. As can be seen in Figure 5, for each chosen material system the free 

energy of the nanocrystalline state is lower than that of the bulk solution and any 

precipitating phases; this means that Al-Mg, Al-La, and Al-Si are stable against phase 

precipitation under dopant contents of 20%.  

3.3. Influence of global dopant content on grain stabilization 

     The effect of varying global dopant content 𝑋 on the free energy of a material system 

for the range of dopant contents most commonly used to synthesize binary nanocrystalline 

systems is shown in Figure 6(a); this range is chosen to promote stability without inciting 

secondary phase precipitation. It can be seen that a higher Mg dopant content, under the 

limit set by the onset of phase precipitation (𝑋 ≤ 13%), yields a higher degree of 

thermodynamic stability against grain growth. To this end, the optimal range of dopant 

content for each material system can be established. Within this optimal range, as shown 

by Fig. 6a, as global solute content is increased, so is the degree of segregation seen in the 
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material, as read by the grain boundary solute content value at which the minimum in the 

curve exists. It is intuitive to say the stability of the nanocrystalline structure will increase 

with an increase in the global dopant content. However, this apparently is not true as can 

be seen in Fig. 6b; although an increase in the global dopant increases the grain boundary 

content, it also leads to an increase in the free energy which trends the nanocrystalline 

system towards instability. When the concentration of the added dopant is in a 

supersaturated state in the nanocrystalline matrix, such thermodynamic conditions will 

promote second phase precipitates to nucleate and grow in the grain boundaries and grain 

interiors. Thus in NC Al-Mg, a global dopant content above 13% will be accompanied by 

the precipitatation secondary phases in the grain boundary region in order to reduce the 

free energy. Precipitation of secondary intermetallic phases can disrupt the necessary 

segregation required for grain stability. 

     Additionally, a material system’s preference for the size of the solute atoms can be seen 

in Figure 6(b). From the results of the regular nanocrystalline solute model, a variation in 

solute atomic volume showed a two-regime effect; at grain boundary solute contents below 

19% a large solute atomic volume resulted in a reduction in grain boundary energy 

presumably due to the large atoms’ ability to reduce the grain boundary’s free volume more 

effectively than small solute atoms. At grain boundary solute contents above 19%, small 

solute atomic volumes are preferred due to their lesser atomic misfit in the grain 

boundaries, and therefore lesser lattice strain effects. These lattice strain effects directly 

influence the material system’s enthalpies of mixing and segregation as described in Eqs. 

(6) and (7), respectively. This concept suggests that comparing the atomic volumes of the 
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solvent and solute elements can indicate the propensity for the system in question to form 

a stable nanocrystalline state.  

     The thermodynamic effect of an addition of dopant excess (Γ) on grain boundary energy 

is described by the Gibbs adsorption isotherm  

𝛾 = 𝛾 − Γ(∆𝐻 + 𝑘𝑇𝑙𝑛𝑋)          (11) 

where 𝛾 is the reduced grain boundary energy as a result of solute segregation, 𝛾  is the 

average grain boundary energy of the pure solvent material, ∆𝐻  is the system’s enthalpy 

of segregation, and 𝑋 is the global dopant content [27]. The Gibbs adsorption isotherm 

predicts that as the degree of dopant segregation is increased, the resulting microstructure’s 

final grain size becomes smaller. By varying the global dopant content in the 

nanocrystalline metal it can be shown that the model’s free energy surfaces predict the 

effects of the Gibbs Adsorption Isotherm, Eq. (13), correctly; that is, as dopant content is 

increased, so is the content in the grain boundary, and therefore the final nanostructure’s 

stable grain size is reduced as a function of solute excess. This relation provides a means 

for controlling the resultant microstructure of a manufacturing process in which a binary 

    
Figure 6. Influence of a variation in global Mg dopant content 𝑋 on grain boundary 

stabilization in NC-Al (a) Mg dopant content in the dilute limit and (b) high Mg dopant 
content. 
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nanocrystalline system is created. However, this control is limited in that no final 

nanostructure can be created with a final grain size smaller than that of the raw aluminum 

powder that is initially used in the process. The grain size is known to have a considerable 

influence of the material properties. The influence is efficiently described by the Hall-Petch 

relationship which follows 

∆𝜏 ∝
𝑘

𝑑
         (12) 

𝜎 = 𝜎 +
𝑘

√𝑑
         (13) 

The Hall-Petch relationship predicts that the material’s strength is inversely proportional 

to its grain size. This, in turn, by the commutative property, means that as the global dopant 

content is increased, so does the Hall-Petch effect’s contribution towards the strength of 

the material. Additionally, as grain boundary segregation of dopant increases the excess 

free volume in the grain boundary is decreased. Therefore, the grain boundary’s excess free 

energy is also decreased. By this mechanism, an increase in global solute content also 

increases the degree of stability of the nanocrystalline material, up to a limit set by the 

onset of phase precipitation at which point the precipitation of phases consumes dopants in 

the grain boundary reducing its stabilizing effect. In order to assess these effects, the free 

energy curves corresponding to an increase in global solute content were systematically 

created from the regular nanocrystalline regular solution model. While grain boundary 

solute content was varied throughout its full range, zero content to full saturation, the grain 

size was restricted by the breakdown of the Hall-Petch regime. Being that the regular 

nanocrystalline regular solution model is based on the assumptions of Hall-Petch, the 

model is only valid while those assumptions hold. According to Trelewicz [32], the Hall-
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Petch regime begins to break down into a description of amorphous solids at a grain size 

of approximately 10 nm; as such, the model’s grain size parameter was varied through the 

remainder of the nanocrystalline regime, 10 to 1000 nm. This breakdown is described by 

the Hall-Petch relationships of Eqs. (12) and (13), where 𝜎  is the intercept value of stress 

from a material’s empirically derived Hall-Petch plot, and 𝑘  is the slope of the same curve 

3.4. Empirical analysis of nanostructure stability  

     In order to analytically assess the stability of NC-Al against both grain growth and phase 

precipitation, an empirical stability criterion derived from the results of the regular 

nanocrystalline regular solution model was employed,  

∆𝐻

(∆𝐻 )
= 𝑐        (14) 

The parameters ∆𝐻  and ∆𝐻 which capture the thermodynamics of the grain interior 

and grain boundary environment 

were estimated for each NC-Al-

dopant system using Eqs. (6) and 

(7), respectively. The criterion was 

calibrated using regression 

analysis of the original regular 

nanocrystalline regular solution 

model’s stability predictions 

utilizing a large dataset of binary 

nanocrystalline alloys which 

yielded the  fit coefficients  a= 0.567  and 𝑐 = 4.425 [33]. Since the dataset which was 

  
Figure 7. Empirical stability map for binary aluminum 

systems with positive enthalpy of mixing. 
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used was not restricted to aluminum solvents, the empirical stability criterion’s predictions 

may exhibit systematic errors for aluminum systems due to uncertainties in the fit 

coefficients. The output of stability criterion Eq. (14) can be visualized in the form of a 

stability map that is characterized by the stable, metastable, and unstable regions separated 

by curves corresponding to an equal ratio between the enthalpy of segregation and the 

model’s adjusted enthalpy of mixing.  

     The empirical stability criterion Eq. (14) was applied to each NC Al-dopant system to 

provide an additional source of data with which to reaffirm the predicted 

thermodynamically nanocrystalline states. The analysis was limited to NC Al-dopant 

systems with a positive ∆𝐻 , which have a higher propensity to segregate to grain 

boundaries. According to the regular nanocrystalline regular solution criterion, solvent-

dopant systems with sufficiently large enthalpies of segregation in relation to their model-

adjusted enthalpy of mixing are predicted to be stable against both grain growth and phase 

precipitation. Figure 7 show a stability map for the NC Al-dopant systems which exhibit 

positive ∆𝐻 . Three regions are present: the Bulk Stable Region where grain boundary 

segregation does not result in a stabilized nanocrystalline structure due to its free energy 

being greater than that of the bulk solution, the Metastable Region in which macroscopic 

phase separation would be preferential (despite the presence of a nanocrystalline state 

stable against grain growth), and the Stable Nanocrystalline Region for which the 

nanocrystalline state is stable against both grain growth and phase separation being that it 

is the lowest free energy state available. In order for a material to be chosen as a viable 

dopant for the purposes of this research, the resulting binary alloy must reside in the stable 

nanocrystalline region. As can be seen by Figure 7, the only binary system predicted to 
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exhibit this characteristic with a positive enthalpy of mixing is Al-Mg. As such, Mg has 

been identified as the most promising dopant to successfully stabilize nanocrystalline 

aluminum’s microstructure. The empirical stability criterion’s predictions are therefore 

consistent with observations from the free energy surfaces.  

     Additionally, by examining the material system’s enthalpy of segregation and grain 

boundary interaction parameters it can be shown that there is a necessary minimum value 

in order for segregation to occur sufficiently to reduce the grain boundary energy to a level 

at which a stable nanocrystalline state is possible. This observation can be used as an 

additional tool to screen potential dopant elements and reaffirm the stability map’s 

predictions; systems with increasingly negative values of the grain boundary interaction 

parameter exhibit the tendencies necessary to provide grain boundary stability. 

4. Conclusion 

     The work described herein has been done in order to predict the dopant elements and 

their respective compositions for which nanocrystalline aluminum’s grain size can be 

stabilized. The regular nanocrystalline solution model applied for binary nanocrystalline 

aluminum alloys predicts thermodynamic stability against grain growth and phase 

precipitation for Mg, La, and Si dopants. These dopants, when added to the material system 

above the required global dopant content for stability promote segregation to the grain 

boundaries resulting in a reduction in grain boundary energy. A global Mg content of 13% 

was found to promote the highest degree of stability in the binary Al-Mg nanocrystalline 

system. 10% La or Si content was necessary for stability, with higher contents 

corresponding to smaller final crystallize sizes without affecting the existence of a stable 

state. Additional dopant addition beyond this critical minimum global solute content results 
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in a characteristic reduction in average microstructure grain. These predictions can be used 

to inform which experimental materials shall best be created to facilitate investigations 

with the goal of establishing manufacturing techniques for bulk nanocrystalline aluminum 

alloys to be used in industrial applications such as power generation and transportation.  

     While the results derived from the modified Regular Nanocrystalline Solution model 

presented in this work are relatively reasonable, it must be noted that both the chemical 

and mechanical interaction terms of the model represent simplified dynamics 

corresponding to interactions based on bond energies and elastic effects only. As such, 

dynamic interactions such as atomic hysteresis effects have been neglected. Additionally, 

the enthalpies of mixing and segregation used in this work are subject to the limitations of 

Miedema’s model. While these effects are expected to be small in terms of the results 

presented herein, in some cases deviation between experimental and modeled results is to 

be expected.  
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Abstract 

Thermodynamically stabilized nanocrystalline alloys exhibit increased strengths and 

reduced ductility relative to their coarse-grained counterparts. In order to illuminate the 

mechanisms by which these materials deform, and thereby inform manufacturing 

methods of the bulk materials, molecular dynamics studies were conducted for Al-Mg 

(10%) in uniaxial tension for periodically bounded material sections. Voronoi tessellation 

was used to initialize the microstructure while Molecular Dynamics was used to simulate 

thermodynamically driven dopant segregation and uniaxial tension. It was found that 

grain boundary mediated deformation dominated the microstructure, with interfacial 

cracking occurring as a primary mode of material failure. 

 

1. Introduction 

Due to the small average crystallite sizes of nanocrystalline microstructures, their 

deformation mechanisms are expected to significantly deviate from their microcrystalline 

counterparts. Specifically, a transition from slip mediated deformation to grain boundary 

interface mediated processes is expected with the onset of the nanocrystalline regime. 
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The onset of this regime is expected to occur around 20-40 nm average crystallite size, 

determined by a balance in dislocation source stress and the shear strength of the 

material. At this crystallite size, down to a limit determined by the breakdown of the 

Hall-Petch regime below ~10 nm, material strength increases as crystallite size decreases 

[32]. This effect in nanocrystalline metals is typically attributed to a decrease in 

dislocation mobility due to the impediment to their motion provided by the high volume-

fraction of disordered high energy grain boundaries in the material [34,35]. 

 In this new regime, grain boundary deformation processes are expected to be 

limited to grain boundary sliding, rotation, and annihilation. This grain boundary 

annihilation and migration is the primary mechanism by which crystallites coalesce and 

the material undergoes grain enlargement [36]. However, the nanocrystalline Aluminum 

stabilized by Magnesium studied in this work is expected to be thermodynamically stable 

against this grain enlargement mechanism [37]. To this end, this work discusses the 

remaining two mechanisms as well as grain boundary cracking, dislocation pile-up and 

layering, and the mechanism of grain boundary expansion and volumetric strain, which in 

the stabilized nanocrystalline material replaces that of grain boundary annihilation. In this 

work the hypothesis that the replacement of grain boundary migration with grain 

boundary enlargement and straining is caused by the suppression mechanisms of the 

dopant material, in this case Magnesium, is supported by Molecular Dynamics 

simulation. 

 Understanding and controlling these mechanisms may provide a pathway for 

increasing the limited ductility and fracture toughness inherent to these materials [38]. 

The most effective way of controlling these properties, and the stable grain size of the 
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material’s microstructure, is shown to be controlling the content of the dopant element 

added to the base nanocrystalline metal. This effect on grain expansion is investigated in 

this research, while the effect on the stable grain size is investigated in prior research by 

the authors [37]. 

 

2. Methodology 

In order to assess deformation mechanisms in NC Al-Mg, Molecular Dynamics 

simulations were conducted through the use of the LAMMPS code on the University of 

Nevada, Reno high performance computing cluster, Pronghorn. Atomsk was employed 

for microstructure initialization and Ovito was utilized for visualizations.  

 Simulated nanocrystalline Al-Mg(10%) microstructures were initialized by the 

use of stochastic Voronoi tessellation with an initial average crystallite size of 10 nm. To 

do this, crystallite nucleation sites were initiated on nodes at the required average spacing 

of 10 nm. A tolerance of 0.5 nm was accepted in relative positioning. The absolute 

position of each node was determined stochastically in the simulation region, consisting 

of a 200 nm by 200 nm cell. Grain boundaries were then drawn at the intersecting regions 

of each node’s surrounding space and crystallites were nucleated in these interiors. In this 

way, 20 3-D grains were formed in the simulation volume. By using a periodically 

bounded material section, the given simulation volume can be considered as a portion of 

a bulk material. As such, results of the model should generalize to experimentally 

synthesized materials. 
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 Magnesium segregation to the grain boundaries of the Aluminum microstructure 

was simulated by resolving forces and potentials between the dopant Mg atoms and both 

the crystallite Al and grain  

boundary Al atoms numerically. Magnesium’s low mixing enthalpy and high segregation 

enthalpy when placed in Aluminum provides the driving force for Mg to migrate to grain 

boundary sites in the nanocrystalline Al. Partitioning of the dopant in the material is 

resolved during Molecular Dynamics simulation from the empirical interatomic 

potentials used in the simulation.  

 Strain controlled uniaxial tension was then applied to the resultant microstructure 

at a strain rate of 1E-5/sec. During the simulated test, atomic motion was resolved 

through the use of the empirical potential and utilized to track the motion of both Al and 

Mg atoms under loading. Additionally, mechanical response and the classification of 

atoms as Al, Mg, intercrystalline, grain boundary, and dislocation were used to track 

changes in the microstructure, namely volumetric strains of each region of the 

microstructure as well as dislocation motion.  

 

3. Discussion and Results 
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To investigate the dominant mechanisms of deformation in nanocrystalline alloys, a 

simulated microstructure of 10 nm average grain size consisting of 90% Aluminum and 

10% Magnesium dopant was initiated and evolved to its segregated state, with the 

majority of the Magnesium dopant residing at the material’s grain boundary. A uniaxial 

tension test was then simulated according to ASTM standard E8. The resulting 

microstructure, shown in Figure 1, was then analyzed according to its deformation and 

atomic displacement state, alongside the microstructural evolution under loading as 

tracked throughout the numerical time-steps of the simulation. It was found that grain 

boundary interface mediated deformation mechanisms dominated the microstructure, 

with interfacial microcracking (I in Figure 1) occurring as a primary failure mechanism. 

 

Figure 1. Summary of Molecular Dynamics simulations of nanocrystalline Al-
Mg deformation mechanisms. (I) grain boundary interface cracking (II) grain 
boundary dissociation (III) twin deformation (IV) grain boundary interface 
curvature effects (V) interface dislocation nucleation site (VI) grain boundary 
void formation (VII) dislocation. 
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Grain boundary dissociation, twin deformation, interface curvature cracking, void 

formation, and dislocation layering were also found in the microstructure as seen in 

Figure 1. These effects are 

a combination of the 

dominant mechanisms in 

nanocrystalline materials 

and dominant 

mechanisms typically 

found in microcrystalline 

materials (to a lesser 

degree). This suggests 

that as nanocrystalline grain boundary mediated mechanisms begin to dominate the 

microstructure they do suppress the occurrence of slip-based deformation mechanisms 

but do not entirely arrest their existence. It also can be seen from (II) in Figure 1 and 

from the detail view in Figure 2 that grain boundary dissociation can occur as a 

combination of a typical nanocrystalline mechanism and microcrystalline mechanism. In 

this case, grain boundary interface cracking as a result of high interface curvature 

interacts with dislocation slip at the grain boundary causing the boundary to break down 

and two grains to coalesce. In this study, this is the only mechanism that is able to 

surmount the stabilization effect of the Mg dopant against grain enlargement. This result 

suggests that, in order to further avoid grain enlargement in the stabilized microstructure 

high interface curvatures at thin grain-boundary regions near possible dislocation 

nucleation sites should be avoided. While direct control of this scenario is not practical in 

 
Figure 2. Grain boundary dissociation mechanism, 
dislocations along the grain boundary with orthogonal 
Burgers vectors (purple). 
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experimental materials, the observation serves to provide evidence that a high degree of 

uniformity in the microstructure, created during the grain refinement process, is very 

desirable.  

Furthermore, it can be seen from (I) and (IV) in Figure 1 that interface cracking 

(Figure 3) and void formation (Figure 4) in the grain boundary region are primary 

deformation mechanisms 

that are significantly more 

prominent in the 

nanocrystalline state. This 

study has found that 

interfacial cracking, a 

dominant failure mechanism 

in the material, occurs by 

two primary mechanisms: 

cracking in the wake of atomic 

flow (I), and cracking at interface 

impingements of the atoms (II). 

Wake crack formation occurs 

when atoms flow away from an 

interface. Because of a mismatch 

in the atomic flow rates in the 

crystalline interior and the grain 

boundary region, as the 

 
Figure 3. Grain boundary atomic motion effect on 
interface cracking (I) crack forming in the wake of 

atomic flow (II) crack forming at interface 
impingement. 

 

 
Figure 4. Void formation, dislocations close off a 
portion of the crystallite interior which forms an 

internal void. 
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displacements increase in the grain boundary region the atoms are pulled away from the 

interface forming an elongated crack. Impingement cracking occurs when these atoms 

flow into an interface, as they atoms contact the interface at a higher velocity and 

displacement than can be accommodated in the crystallite interior region they form a 

pile-up and resulting localized crack. The effects resulting from these mechanisms may 

be identified as the cause of the reduced ductility in the material due to its high volume 

fraction of grain boundaries; they may also be exacerbated by the reduced grain boundary 

mobility provided by the stabilizing Mg dopant. To this end, these effects may be the 

driving force for the inherent trade-off in strength, stability, and ductility, in this material. 

As of yet, a controlling mechanism for this set of deformation mechanisms has not been 

identified, but from knowledge of crack initiation and fracture mechanics it can be 

hypothesized that a high degree of surface finish control may reduce crack initiation. 

Also, matching volumetric strain rates between the composition of the crystalline interior 

and grain boundaries would serve to decrease the interface cracking effect significantly as 

the crack forms from a mismatch in deformation rates between the two regions under 

loading. 

 

It can be also seen from the 

dispersion of dislocation nucleation 

sites (V in Figure 1) that the primary 

nucleation location is at the grain 

boundary interface. From (VII in 

Figure 1) and the detail view in Figure 

 
Figure 5. Dislocation layering and localized 
slip. 
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5 it can be seen that these dislocations then form a front and propagate across the 

crystallite interior forming a layering effect. This semi slip-based deformation 

mechanism may be the nanocrystalline equivalent of traditional dislocation propagation 

and slip seen in microcrystalline materials. From a simple review of the microstructure it 

is noted that the scenario occurs much less frequently in the nanocrystalline 

microstructure than the traditional microcrystalline case. This result reinforces the 

suppression of slip-based deformation processes in these materials. 

 

 Figure 6 details a surface 

view of the atomic motion on a 

microstructural plane parallel to the 

applied tensile load. From the 

figure, it can be seen that the 

atomic flow is generally uni-

direction in the crystallite interiors; 

conversely, atomic flow in the 

grain boundary regions has a 

distinct curvature driven by the 

large-scale interface curvature in its local region. It can be hypothesized that this effect is 

due to the lack of accommodation of the high displacements of atoms in the grain 

boundary region relative to lower displacements in the crystallite region, this mismatch 

forces the grain boundary atoms to follow the path of least resistance and re-direct their 

motion into the direction of the grain boundaries. This atomic flow enables the 

 
Figure 6. Atomic flow, direction of applied load. 
Atomic displacement is denoted by yellow 
vectors. 
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aforementioned mechanisms of both interfacial cracking by the wake mechanism and 

impingement mechanism as well as void formation in the crystallite region at the 

interfaces of the grain boundary.  

 

It was found, by molecular dynamics and confirmed by review of experimentation 

by other research groups, that the exhibited ductility of the material is strain rate 

dependent. A roughly linear relationship has been found between an increase in strain 

rate and a corresponding increase in ductility for nanocrystalline tensile tests. This 

phenomenon may be attributed to an increased kinetic energy of dislocation flow 

allowing individual dislocations to more easily surmount energetic barriers, namely 

disordered grain boundaries. To this end, dislocation mobility is increased, and 

dislocation pileup is decreased, in the material. Being that higher ductility corresponds to 

increased dislocation mobility, this coupled effect leads to higher effective ductility in the 

material. Conversely, as Magnesium dopant is added to the material and segregated to the 

grain boundaries Zener pinning effects increase proportionally with the amount of 

 
Figure 7. Mechanical response under tension (a) pure nanocrystalline Al (b) nanocrystalline Al-

Mg(10%). 
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segregated dopant. This effect serves to arrest grain boundary mobility and increase 

dislocation pileup, leading to increased material strength at the expense of ductility, as 

can be seen in Figure 7. These effects provide a means by which the strength and 

ductility can be balanced indirectly by direct control of the material’s composition. 

 

Furthermore, by tracking the components of the microstructure throughout the 

simulated tensile test, a characteristic increase in the volume fraction of the material’s 

grain boundary was observed alongside an accommodating decrease in the volume 

fraction of the material’s crystallite region as seen in Figure 8. This strain-based grain 

boundary enlargement effect indicates that the grain boundaries of the nanocrystalline 

material are resisting a disproportionately high fraction of the load on the material 

thereby strengthening the material during deformation. This effect may explain the strain 

hardening effects seen in Figure 8. Being that the Magnesium doped nanocrystalline 

Aluminum exhibits a higher degree of both grain boundary volume fraction increase and 

strain hardening relative to the simulated pure nanocrystalline Aluminum, it can be said 

that the addition of the dopant element increases the proportion of the load that is taken 

 
Figure 8. Components of the microstructure by volume (a) pure nanocrystalline Al (b) 
nanocrystalline Al-Mg(10%). 
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by the grain boundaries of the material relative to its grain. This is consistent with the 

idea that the Zenner pinning effects of the added dopants serve to strengthen the grain 

boundaries of the materials by arresting their motion. 

 

4. Conclusion 

Molecular Dynamics studies of nanocrystalline Al-Mg(10%) metallic alloy elucidated the 

deformation mechanisms that begin to dominate the material’s thermodynamically 

stabilized microstructure as grain boundary mediated deformation processes overtake and 

suppress slip mediated deformation. It was found that the stabilization against grain 

enlargement provided by dopant Mg caused the typically prominent nanocrystalline 

deformation mechanism of grain boundary migration to transition into grain boundary 

straining and accommodation. Additionally, grain boundary interface cracking due to a 

difference in deformation rate between the crystallite interior and grain boundary was 

found to be a primary mode of failure in the material.  
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Abstract – Identifying features of importance in both simulated and experimental material 

samples has traditionally been a manual task performed through a researcher’s experience 

and comparison to prior analyses. An automated system based on machine learning, 

specifically a Convolutional Neural Network, alongside image processing techniques was 

used to automatically identify and label prominent features of a material’s microstructure. 

The algorithm was developed as an enclosed system encompassing the entire data pipeline 

that can be used as a black box. Simulation or test data, in the form of a single 2-D image, 

video feed, or 3-D volume is taken as input, and classified images are given as output. This 

design facilitates the use of the computational framework by a diverse user group, 

including those who are not trained in materials engineering or machine learning. The 

framework’s performance was tested and validated through the use of a dataset comprised 

of simulated nanocrystalline Al-5 at.% Mg atomistic data. A classification accuracy of 90% 

across the test dataset was achieved with adequate computational efficiency. 

 

1. Introduction 
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     Identifying features of a simulated or synthesized material microstructure is of primary 

importance to the analysis of potential material failure modes, and of post-mortem failure 

analysis. Traditionally this task has been done qualitatively through inspection by a trained 

individual. This task, performed manually, has proven to be a challenging and repetitive 

task subject to large variances in classification accuracy depending on the experience of 

the researcher. Additionally, the classification task has been found to be extremely time 

consuming. By automating the task such that only an initial dataset must be labeled for 

training a deep learning framework the time and associated cost of this labor can be 

exponentially reduced. 

     Automation of this task, through the use of a machine learning system, may serve to 

greatly reduce analysis time and the requirement of expertise in the field. As such, a 

production system of this nature is of extreme value to multi-disciplinary researchers and 

industry alike. Current applications of machine learning models for materials science have 

included electrical and crystal property predictions based on visual feed data, as well as 

mapping relationships between numerical input data and numerically represented material 

properties [references]. As of yet, no complete frameworks designed to classify the features 

of material microstructures with adaptability to both simulated and experimentally created 

images as well as video feed data have been presented. Traditionally microstructure feature 

recognition has been automated by the use of expert systems based on segmentation of the 

visual field. Initially, these frameworks primarily consisted of digital image processing 

techniques which segment microstructural images into regions of interest that are then 

analyzed further through comparisons to other image datasets  [39]. However, the main 

drawback of these algorithms is that they are prone to segmenting along an improper length 
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scale causing features to be either disjointed or outscaled such that they are not accurately 

represented. Additionally, while images of features of interest are created by these 

algorithms, they cannot be automatically classified by the algorithm. As such, manual 

classification is still required by the researcher.  

     Additionally, Support Vector Machines (SVM) have been employed to compare 

microstructure image signatures, generated through processing steps, to those of labeled 

data in order to perform the classification task [40]. An accuracy of approximately 80% 

has been achieved with such systems. Deep learning classification systems for 

microstructural data have also been previously proposed. These systems are typically pixel 

based approaches, as opposed to object based approaches such as the framework 

represented in this paper [41]. Pixel based approaches have the advantage of somewhat 

higher classification accuracy at the expense of an increase in computational cost. The 

approach presented in this paper favors the object-based approach with additional network 

layers and additional image processing steps in order to achieve comparable accuracy at 

less computational cost. As a result of this, larger datasets may be effectively classified. 

Transfer learning approaches have also been proposed for microstructure image 

classification by deep learning with the benefit of increased generality and adaptability, at 

the cost of varying accuracy [42]. This approach is a time efficient way to perform the 

classification task over a large variety of datasets with little to no algorithm modification 

and no network retraining, but generally suffer decreased performance relative to specified 

frameworks that retrain on a dataset specific basis, such as the framework presented here. 

     In this work, and object-based CNN utilizing a dropout operator and numerically 

encoded image data was employed in order to develop a computational framework capable 
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of generalizing across multiple input data formats and material classes to identify and 

classify relevant microstructural features. Through the approach described herein 

generality is achieved while retaining high accuracy at relatively low computational cost. 

In the test case of this paper, we present simulated microstructural images, generated 

through modified Voronoi tessellation, of nanocrystalline Al-5 at.% Mg in its segregated 

state such that the dopant element Mg resides primarily at the material’s grain boundary, 

serving to stabilize its microstructure. Evolution of the microstructures under loading was 

evaluated through Molecular Dynamics simulated uniaxial tensile tests in order to assess 

the plasticity response of the material under load. The simulation parameters and workflow 

were modeled off of previous analyses conducted by the authors [43]. The automated 

feature recognition framework proposed in this work sets the methodology for further 

material studies regarding hypothesis formulation from the aggregate data that can be 

generated. To this end, the work herein facilitates rapid development in the field of 

nanocrystalline metal alloys, and potentially other classes of materials. 

     Section 2 will provide some background on CNNs in general, as well as the specific 

implementation and data representation used in this study. Section 3 will introduce the data 

sets on which the computational framework was validated. The results of this evaluation, 

as well as an investigation regarding the classification accuracy of the algorithm is 

presented in Section 4. Finally, conclusions and next steps are discussed in Section 5. 

 

2. Framework Structure 

     Convolutional Neural Networks are a subset of feed-forward deep neural networks used 

to classify images. These algorithms work by using fully connected layers of perceptrons 
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that optimize their loss function by systematically passing filters over processed images 

and propagating information forward through these layers [44,45]. This classification 

process is primary accomplished through the recognition of feature edges and their 

orientation; this is done by the activation of neurons that are activated solely by the 

presence of these edges, and that are specific to their orientation. By tracking the state of 

the filter and the activation of these neurons, the presence and location, as well as 

orientation, of the edges in an image can be identified. The patterns of these edges in their 

encoded images as well as these patterns’ relationships to pre-defined class labels can be 

learned by the model in order to form the classification schema [46]. In this way, patterns 

in labeled image data can be learned and applied generally across datasets. 

2.1 Components of the Framework: The computational framework was established to be 

modular and adaptable by sub-sectioning the overall task into three sub-tasks, 

microstructure creation, image pre-processing, and feature recognition as seen in Figure 1. 

As such, the algorithm is presented in such a way that it is general across any material class 

for which microstructural image data can be generated with only changes to the 

hyperparameters used in the neural network in order to account for longer or shorter 

convergence times depending on the complexity of the classification task. 

     Parameters of the material to be studied, including composition and morphology, as 

well as seeding parameters for microstructure simulation are specified at the onset of the 

study in order to fully define the initial microstructure to be studied. Once the parameters 

of the studied material are defined, Voronoi Tessellation performed through the Atomsk 

code set is used to systematically structure the requested microstructure. This process is 

performed by randomly linking randomly systematically dispersed nodes at the specified 
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spacing, determined by the length scale of the microstructure in question. From these nodes 

the contours of the grain boundaries are defined, atom seeds are nucleated at the node sites, 

and truncated at the grain boundaries. In this way, an initial polycrystalline structure is 

formed. 

     From this initial microstructure, in the case of an alloyed and segregated nanocrystalline 

material, Molecular Dynamics performed by the LAMMPS code set is done to simulate 

thermodynamic segregation of dopant (in this case Mg) atoms to the grain boundaries of 

the initial pure nanocrystalline aluminum structure. From this process the distribution of 

the dopant element is determined. The segregated microstructure is then used as the test 

 
Figure 1. Computational framework structure, sub-sectioned into three tasks: microstructure 

creation, image pre-processing, and feature recognition. Holistically these components map input 
image data to classification labels as output. 
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sample for a simulated tensile test, also driven by Molecular Dynamics simulation and the 

LAMMPS code. Uniaxial tension is applied to the simulated specimen at a given strain rate 

(ASTM standard here) and duration. This simulation serves to resolve the redistribution 

and deformation of the Aluminum nanocrystalline grains, the amorphous grain boundary 

structure, and the Magnesium dopant elements.  

     The generated 3-D microstructure must be processed into numerical data for 

compatibility with the CNN. In order to do this, and to increase computational efficiency 

of the framework, the 3-D microstructure is sub-sectioned into 2-D slices and tiled into a 

single image of larger 

dimensions than the 

initial microstructure. 

This tiled image is then 

sub-sectioned onto the 

length scale of interest, 

driven by the average 

size of the microstructural features of interest. These images are then converted into 256 

color scale palletted image data and numerically encoded into 2-D matrices, which are then 

stacked into a 3-D matrix with each layer of the 3rd dimension corresponding to an 

individual image. Each index in the 2-D matrices correspond to a pixel location in the 

original image, with the value of the cell corresponding to a single-color shade of the 256 

total possible colors. In this way the image data is prepared for use by the CNN. 

     The feature recognition task is performed through the use of a CNN, described in detail 

in section 2.3 and 2.4. This algorithm utilizes labeled and processed image data in order to 

  
Figure 2. Flattening Layer, utilized by the CNN used to format the 

feature map for use by the final classification step of the algorithm, the 
output layer. 
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learn a classification relationship that is then used to label further microstructure images. 

The output of the CNN is a set of labeled matrices corresponding to microstructural images. 

This data is condensed by converting the numerical data back into Red-Blue-Green (RGB) 

color scale images. These images are then tiled back onto the dimensions of the original 

input data in their original order, effectively recreating the original dataset albeit with 

included labels. This final dataset forms the end result of the CNN, a classified image 

dataset of the original form.  

 

2.2 Components of the CNN: Convolution network layers quantify and reduce image field 

data in order to systematically recognize patterns in the input image data. They work by 

passing a kernel matrix over the 

image in a repeatable sequence 

and computing the dot product 

between the visual field’s 

numerical data in a specific region 

and the weights of the kernel; the 

resultant scalar computed quantity 

describes the activation of the 

network’s neurons in the form of a 

feature map. This feature map can 

then be passed through an activation function used to represent the visual patterns that each 

region of the image exhibits. The types of kernel, defined by the values of the kernel matrix, 

dictate the types of features that are recognized by their use. In order to identify all of the 

  
Figure 3. Dense Layer, used to facilitate the final 

classification step of the algorithm, and provide full 
connectivity of the network layers. 
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features of interest in an image, multiple kernels and therefore feature maps are typically 

necessary. The values of the kernels are the weights of the network that must be learned 

during the training process to encode the classification relationship, IE the mapping 

between input data and extracted features [46,47]. This learned relationship forms the core 

of the algorithm by which the classification task is achieved. 

      Subsampling is done in order to reduce overfitting of the model by reducing the 

dimensions of the input data. This is done by a variety of algorithms, the most popular of 

which is max pooling. Max pooling reduces the area of the image currently covered by a 

kernel to the largest value in that 2-D area. This process essentially reduces the occurrence 

of small-scale intricate features in favor of more influential large scale image features of 

lower effective image resolution [44,46,47]. This results in a more generalized 

classification relationship while retaining the overall accuracy of the algorithm. 

     Dropout layers were added to the model in order to reduce overfitting. This layer works 

by randomly dropping outputs of the preceding layer at a probability specified by a 

 
Figure 4. Detail of the CNN’s structure. Operations used to map the input data to output data are 

shown as well as their connectivity.  
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hyperparameter. This effectively reduces the model’s ability to memorize dataset patterns 

such that adaptability is lost, thereby increasing the generality of the model [44]. Once the 

CNN has arrived at a pooled feature map a flattening layer, shown in Fig. 2, is used to 

reduce the dimensionality of the feature map from 2-D to a 1-D feature vector to be used 

as input for the final classification step, the output layer. In order to facilitate this 

classification, a dense layer, shown in Fig. 3, is used to provide full connectivity through 

vector multiplication for the final classifier, and to create class scores from the network’s 

activations [46,47]. This operation forms the final step of the classification task.  

     The CNN’s output layer is used to transform the input from the previous dense layer 

into labeled classes. In this way, the result of the algorithm is aggregated and presented in 

the correct format of image labels tied to image data in order to form a classified pair, at 

this step the algorithm is complete. 
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2.3 CNN Structure: The Convolutional Neural Network is structured by fully connecting 

multiple convolutional and 

subsampling network layers 

alongside multiple kernels for feature 

recognition as seen in Fig. 4. These 

layers are stacked, output to input, 

such that each subsequent layer learns 

higher level features in the data. 

Additionally, multiple kernels 

corresponding to multiple features are 

processed in parallel over the input 

image data. As such, the parallelized 

and connected algorithm is computationally efficient and capable of learning complex 

feature relationships from a relatively simple network structure. The patterned structure of 

convolution layers tied to max pooling layers is the means by which higher level features 

are learned in subsequent network layers. By using max pooling to reduce the 

dimensionality of the data low level features are lost while high level features are brought 

to prominence. 

 

3. Implementation 

 
Figure 5. Model interface implemented in Tkinter, used 

to label image data for training of the algorithm. 
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     For the purpose of microstructure feature recognition, a Convolutional Neural Network 

was implemented in Python through the Keras Application Programming Interface (API) 

and used in conjunction with 

Pillow’s imaging library and 

accessed via a Tkinter 

interface. The algorithm’s 

interface (Fig. 5) provides a 

systematic means of training 

the CNN through image 

labeling. Microstructural 

images are presented to the 

user who is then prompted to 

label them according to pre-

defined classes. These data 

are then stored in numerical 

format and passed to the main algorithm for use as train/test data to both form the labeling 

pattern and test its efficacy.  

     The algorithm accepts data in the format of a single 2-D image, or 3-D image sliced and 

tiled into 2-D. The input image is then sub sectioned and rescaled into multiple images of 

the length scale of the microstructural features of interest. These images are then converted 

into numerical palleted 256 color scale data in the form of a matrix, an example of which 

is shown in Fig. 6, where each cell represents an individual pixel location, and the cell’s 

 

 
Figure 6. Input data format, numerically encoded image data 

represented as a 256 palleted color scale pixel array. 
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numerical value corresponds to one of the 256 colors in the pallet. This data can then be 

processed by the CNN.  

     Class labels, derived from the labeling process done through the algorithm’s interface, 

are then converted to one-hot encoding of appropriate shape to match the length of the 

image data. These data are then concatenated and associated into pairs of image and label. 

The pairs can then be split into training and testing data in an 80%-20% ratio respectively. 

This process can be replicated by the algorithm for the analysis of video feed data. By 

taking frame-by-frame images and sub-sectioning them onto the appropriate length scale a 

set of 2-D images can be created and utilized by the analysis framework. This adaptation 

of the algorithm is valuable in that it can provide automated analysis of video data captured 

during mechanical testing of material specimens which allows for tracking of 

microstructural evolution under loading.  

     The CNN was implemented through the use of the Keras API. The sequential model 

was manually structured through the addition and definition of each network layer. A 13-

layer network was employed with 356,234 trainable parameters comprised of convolution 

layers, LeakyReLU activation functions, and max pooling and dropout operators. Due to 

the full connectivity of the network’s layers, the CNN algorithm is prone to overfitting. In 

order to avoid this problem, the Leaky Rectified Linear Unit activation function was used 

to improve gradient flow and avoid the problem of dying Rectified Linear Units [48]. This 

solution allows for the detection of inter-related decision boundaries, allowing for the 

delineation of related classes. Additionally, the network structure was chosen through an 

iterative study utilized to optimize the classification ability of the network while avoiding 

model overfitting. This performance was ensured by randomly varying the training and 
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testing data to assess adaptability of the classification paradigm. The results of the 

algorithm are presented by outputting the test images alongside their assigned class labels, 

defined in the training process, and predicted class labels, derived from the CNN algorithm. 

The accuracy of the CNN’s labeling schema is then calculated as a ratio of correctly labeled 

images to the number of total test images.  

 

4. Results and Discussion 

     A sample case corresponding to the decomposition of a 903 by 608 pixel 2-D Molecular 

Dynamics simulated microstructure (Fig. 7) of nanocrystalline Al-5 at.% Mg  was used for 

model validation. This decomposition, performed by the algorithm’s interface back-end, 

resulted in 208 50 by 50 pixel images, encoded into 256 color palleted numerical data, 

represented in the form of a list of Numpy nd-arrays where each element in the list 

corresponds to a single image. These images were then labeled manually through the 

 
Figure 7. Simulated microstructure image data produced by Voronoi Tessellation 
coupled to Molecular Dynamics. 
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interface described in section 3. This pairing of numerically encoded image data, and 

numerical image labels was then used for training and validation of the CNN in an 80%-

20% train-test split.  

     The simulated microstructure, shown in Fig. 7 and labeled by the algorithms interface, 

exhibits key features of importance to be learned by the classification schema. It was found 

that the presence of layered dislocations, extensive edge cracking, grain boundary 

dissociations, and the formation of internal voids in both the crystallite and grain boundary 

regions of the nanocrystalline material resulted in a highly active and complex 

microstructural landscape. The diversity and complexity of these microstructural features 

provide a sufficient classification challenge to provide validation of the algorithmic 

framework. 

     In the test case, classified images were presented in palleted scale in order to highlight 

prominent features. From Fig. 8 it can be seen that images were classified more accurately 

when more prominent and distinct features were present in the microstructures, in contrast 

to those which had more a more homogenous distribution of elements. This result is 

expected and can inform the preparation of samples or simulated microstructures for 

analysis. Techniques, such as etching, that can be used to highlights features such as grain 

boundaries or material interfaces are particularly helpful in improving the classification 

accuracy of the CNN.  

     While the accuracy of the model is largely dependent on the consistency of the labeling 

schema used to train the network, relatively high accuracy has been achieved, in terms of 

precision, F1 score, and recall, on the test dataset.   
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     Validation over the test dataset, 

corresponding to 20% of the total dataset, 

resulted in the classification of 10,000 total 

images with 8,984 of which being correctly 

classified by the algorithm, resulting in a 

89.84% total classification accuracy in the test 

case as can be seen in the classification report 

of Fig. 9. This process was repeated five times 

with randomly assigned train-test splits of the 

same ratio of 80%-20%, with a variance in 

accuracy of 1.19% meaning that the algorithm generalized well across the dataset without 

prevalent overfitting. The accuracy statistics corresponding to each of the classes in the 

dataset, as well as the total test dataset were presented through the use of a classification 

report generated by the Sklearn API where precision is inversely related to the false 

positive rate, recall is directly related to how many of the classes true members are correctly 

identified, and F1-score which is the weighted average of the two.  

 
Figure 8. Resultant classified images denoting 
correctly and incorrectly classified features. 
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      It can be seen from the classification report (Fig. 9) that all classes, with the notable 

exceptions of 0 and 6, are well above an F1-score of 0.80 meaning that neither false 

positives or false negatives are of high occurrence in most cases. Class 0, in this case 

corresponding to a microstructural grain boundary, exhibited a high occurrence of false 

positives as shown by a low 

precision meaning that some 

images were incorrectly 

classified as class 0, when in 

fact they weren’t. This may be 

attributed to the high degree of 

similarity between this class 

and that of class 6, 

corresponding to a grain 

boundary delamination or 

crack, which exhibited a low recall score meaning that not all true occurrences of this class 

were correctly labeled as such. The combination of these two phenomena suggests that true 

members of class 6 were somewhat commonly incorrectly labeled as class 0 due to the 

similarities in the classes. 

     Training and validation accuracy, assessed as the ratio of correctly labeled images to 

total images in each the training (80% split) and testing (20% split) data as plotted in Fig. 

10 as a function of epoch can be used to assess the increase in model accuracy during 

training and the presence of overfitting in the model. In this case a steady increase in 

 
Figure 9. Sci-kit Learn classification report, denoting the 

classification performance of the algorithm over each feature 
set. 

 



60 
 

accuracy can be seen for both portions of 

the dataset meaning that the model is 

accurately learning the classification 

relationship. Because the accuracy does 

not diverge between the two datasets or 

decrease during training overfitting is 

not prevalent in the model meaning that 

the learned classification relationship 

generalizes well across the datasets. 

 

5. Conclusion 

In order to identify features of importance in material microstructural images a 

Convolutional Neural Network coupled with a set of image processing techniques was 

implemented in Python. The framework was developed as a black-box model, general and 

usable across material classes and input data formats. Accuracy and computational 

efficiency was achieved by utilizing an image-based approach with a dropout operator on 

numerically encoded tiled image data. Over the test dataset, consisting of nanocrystalline 

Al-Mg simulated microstructures under tension, the algorithmic framework was successful 

in accurately identifying prominent microstructural features of interest on a variable length 

scale at an average classification accuracy of 89.84% at a variance of 1.19%. As such, the 

framework is of value to research and industry alike in order to facilitate rapid feature 

analysis of both simulated and test samples and both image and video feed data. 

  

 
Figure 10. Algorithm classification accuracy evolution 
by epoch. Matching trend between training accuracy 
and validation accuracy denotes lack of overfitting. 
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Abstract – Due to the complex nature and expense of traditional high entropy alloy testing 

and design, a computational system that can facilitate the automated design and 

optimization of these alloys with consideration to trade-offs in properties and cost is of 

great value. In order to facilitate this goal, a Regression Neural Network (RNN) is coupled 

to a Non-dominated Sorting Genetic Algorithm (NSGA-II) in order to propose material 

designs, assess their efficacy in terms of superior material properties, and optimize their 

characteristics. The framework is structured to be fully automated and generalizable across 

datasets and material classes with a single user interface point of the input data file that 

may be edited to each use case. This algorithmic framework can be used to facilitate the 

rapid and cost-effective prototyping of new materials of superior performance. The 

framework was trained and validated over a dataset of 370 High Entropy Alloys consisting 

of uniaxial tension test data. Designed alloys, generated by the framework, were found to 

match trends seen in experimental data for both high entropy and low entropy 

(conventional) alloys.  

 

1. Introduction 
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     High entropy alloys (HEAs), typically comprised of up to twelve alloying components, 

inherently present a difficult design challenge. Because of the high number of possible 

alloy compositions, individually creating and testing each material is prohibitively 

expensive. Even though a good number of HEAs have been developed for various 

applications, it appears that most of these alloys are suboptimal. Typically, HEA’s require 

costly and time-consuming processing methods to create, and are difficult to accurately 

characterize. As such, it is hypothesized that a significant number of potentially highly 

viable materials have not yet been created or tested. This presents an opportunity for 

significant improvements in the attainable best properties in this class of materials.  

     The development of the HEAs has so far mainly relied on the experiment driven trial-

and-improve approach which is generally expensive and labor intensive. Apparently, the 

commercially available alloys are the result of many decades of empirical development, 

and whilst they have good properties, they do not necessarily offer the desired properties, 

or the right balance of properties needed for specific engineering applications. The 

conventional trial-and-improve approach centers on selecting the major elements based on 

the need to satisfy a specific property requirement and further adding alloying components 

to trigger secondary properties without sacrificing the primary property. This approach 

however fails to capture the inherent complexity of most real-world problems wherein 

compromises and trade-offs are required. Considering that up to a dozen elements can enter 

the composition of HEAs, the complexity of the design problem becomes apparent when 

considering the huge design space of possible compositions on the one hand and the many 

conflicting design goals on the other. 
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    Previously, automatic design of complex alloys has been approached by employing 

physics-based modeling techniques, such as CALPHAD and Molecular Dynamics, 

alongside traditional machine learning algorithms, such as Support Vector Machines and 

Random Forests, as well as some deep learning methods [49–52]. However, these methods 

are limited in their application to high entropy alloys as complex interaction effects, in 

addition to crystal structure, determine the properties of these materials. These interaction 

effects are not well known and are therefore typically approximated from known properties 

of low entropy alloys. As such, CALPHAD and Molecular Dynamics typically lack 

absolute accuracy while their trends may predict correctly. Attempts to more accurately 

approximate the interaction effects present in High Entropy Alloys through the use of 

CALPHAD and MD are limited by the computational cost of such calculations. Support 

Vector Machines and Random Forests are both more computationally efficient methods of 

indirectly capturing the dynamics of these materials in order to map material composition 

to properties but are lacking in resolution and accuracy. They are also not capable of 

automated generative design, meaning that solutions may be assessed with some accuracy, 

but not automatically altered to improve performance of the materials. As a significant 

increase in prediction accuracy and automated optimization capability in recent years, 

Neural Networks in conjunction with Genetic Algorithms have been proven successful in 

achieving automated alloy design [53,54]. However, as of yet, an automated design process 

has not been proposed to accurately optimize across a trade-off in material properties and 

cost. As such, commercial and academic viability of the proposed alloys is limited. 

     In this work, we present a system comprised of a coupled Regression Neural Network 

and Non-dominated Sorting Genetic Algorithm implemented in Python and validated over 
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a set of high entropy alloy test data that can optimize material properties in relation to their 

trade-off with alloy cost. The computational framework was established to be adaptable 

and general across material classes with a static input and output data format. This was 

done by fully interlinking the two algorithms with a single user interface point being the 

input data file. By editing this data file the material system and training and validation 

datasets are defined and the algorithm’s parameters are fully specified. By proposing an 

automated material design system, based on machine learning and driven by material test 

data, the search space of all possible high entropy alloys can be rapidly explored. Pareto 

sets of best alloys, as a function of their trade-off in material properties and cost, can be 

quickly created and then screened by phase field modeling or evaluated by traditional 

testing procedures allowing for the rapid attainment of reliably and quickly designed 

superior alloys.  
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     Section 2 will provide some background on the computational framework including 

Backpropagation Neural Networks and Multi-Objective Genetic Algorithms, the specific 

implementation and data representation used in this study will be presented in Section 3. 

Section 4 will introduce the data sets on which the computational framework was validated. 

The results of this evaluation, as well as an investigation regarding the feasibility of the 

results will be discussed. Finally, conclusions and next steps are discussed in Section 5. 

2. Framework Components and Structure 

The structure of the model is based on a coupled Feed-

forward Backpropagation Regression Neural Network 

(Figure 1) and Non-dominated Sorting Genetic Algorithm 

(Figure 2). The neural network takes the role of a property 

predictor based on the composition of each proposed 

material while the genetic algorithm takes the generative 

role of proposing design solutions and optimizing them 

based on objective functions of cost and the properties 

predicted by the neural network. As such, the coupled 

algorithm is both capable of proposing design solutions and 

assessing their efficacy. 

     2.1 Neural Network: The Backpropagation Regression Neural Network is employed to 

map the input data of material composition to the output data of predicted material strength. 

This algorithm works by stacking input, hidden, and output layers into a fully connected 

structure to form the pattern recognition process. In this format, the pattern recognition 

schema is encoded by the weights of individual neurons in the network’s layers. During 

Figure 1. Feedforward 
Backpropagation Neural 

Network. 
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training of the algorithm, each neuron in the hidden layers has an associated weight that is 

optimized via gradient descent and backpropagation to iteratively encode the mapping 

between input (composition) and output (predicted properties). 

     The input data used by the Neural Network is in the format of composition data by 

element for each alloy coupled to tested strength, density, and strength density. The data is 

split into an 80%-20% ratio of training and validation data respectively. The training 

component of the input data is then multiplied by a set of network weights in the input 

layer in order to form the first hidden layer. This process is repeated for each subsequent 

hidden layer sequentially until the output layer is reached. Prior to the output layer, the 

final hidden layer’s output is passed through a nonlinear sigmoidal activation function to 

form the final prediction. This prediction is then compared with known values of the output 

parameter and the error between the predicted and true value is backpropagated through 

the network in order to update individual weights by partial differentiation to iteratively 

improve the model’s prediction performance [55]. 

     2.2 Genetic Algorithm: The Non-dominated Sorting Genetic Algorithm was employed 

to optimize the characteristics of the designed materials across multiple objectives, in this 

case a trade-off in strength and cost. To achieve this goal, an original implementation of 

the NSGA-II algorithm was used [56]. This implementation was chosen due to its relative 

simplicity and strong optimization performance over multiple objectives. This algorithm 

works by utilizing evolutionary operators to evolve a population of proposed alloys to 

optimize their performance as defined by their objective functions, in this case strength 

density (predicted by the Neural Network) and directly calculated cost density. As such, 
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the final design set of alloys, being the best members of the final population of the Genetic 

Algorithm, represents the best trade-off in strength and cost density. 

     In order for NSGA-II optimization to occur, a clearly defined set of objective functions 

must be available. In this case, two separately trained instances of the previously defined 

Neural Network are used to establish the first objective function, either absolute tensile 

strength or tensile strength density. This objective function works by mapping the 

composition of each proposed alloy to its predicted strength or strength density. Cost 

density, as the second optimized objective, is treated as negative cost associated with the 

amount of each alloying element in a proposed material. In this way, negative cost can be 

maximized to reduce the necessary expenditure per kilogram of material. In order to 

compare the efficacy of solutions in a pairwise manner the concept of solution domination 

is used; an individual of a given population is considered to “dominate” another individual 

 
Figure 2. Non-dominated Sorting Genetic Algorithm. 

 



68 
 

if its trade-off in properties is superior. That is, in our case, any specific alloy at a higher 

strength at the same cost as another is considered dominant.  

    In the event that this sorting criterion alone is insufficient, such as the case where both 

of the compared individuals are members of the Pareto set, crowding distance sorting is 

used to retain population diversity during selection and avoid optimizing to a local minima 

or maxima rather than global optimums. This is done by preferentially selecting individuals 

from each population that have high crowding distances. This parameter is calculated as a 

normalized cuboidal distance of each individual from its neighbors in the feature space. By 

this definition, crowding distance then quantifies how different the given solution is from 

other solutions in the population. Furthermore, solutions must be feasibly constrained, in 

this case the constraint that each alloy’s total material amount, as set by a sum of each 

alloying component’s composition, is 100% is set by introducing a penalty function in the 

optimization algorithm. The fitness of each proposed solution is reduced by an amount 

corresponding to its violation of this constraint function. As such, as the number of 

generations tends towards the maximum number of generations in the algorithm, the 

constraint function is increasingly satisfied.  

     The first generation of the Genetic Algorithm is initialized randomly, in this case each 

of an individual’s eight possible alloying elements’ (Al, Co, Cr, Fe, Ni, C, Si, Mo, Nb) 

compositions are randomly set without constraint, meaning that the total amount of 

material can exceed 100%. Throughout the subsequent generations of the algorithm, the 

constraint of 100% total material quantity is set by the aforementioned penalty function. 

Evaluation of each proposed alloy’s fitness is done through the use of each objective 

function. The chromosomal encoding of alloy composition is used as input for each 
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objective function, and the corresponding strength, strength density, and cost density is 

returned from the functions. In this way a fitness value is established in order to guide 

ranking of the population through the concepts of solution domination and crowding 

distance.  

     Selection of parents from the current generation, in order to create the offspring of the 

next generation, is then carried out through this ranking system. This is done through 

tournament selection. This process stochastically selects subgroups from the current 

population and then further sub-selects the best individual of that subgroup as a parent of 

the next generation. This selection process is repeated for the number of tournaments 

required to fill a parent population that is twice the size of the current generation. These 

parents are then recombined through crossover to form the child generation. This is done 

through single point crossover of two parent’s chromosomes. Half of each parent’s genes 

are present in the child alloy, split at the midpoint of the original chromosomes. The 

population of child alloys is then assigned random mutations in order to preserve 

population diversity and introduce new possible solutions into the chromosomal encodings. 

This is done by randomly varying a single gene of a chromosome chosen at random at a 

set probability. In this case, each gene in the entire population has a set probability of 

mutation, the mutation amount (amount of change in composition) is also chosen randomly 

as a value between 0 and 10% composition.  

3. Implementation and Dataset 

     The coupled algorithm was implemented in Python 3.7 with the use of the Sci-kit Learn, 

Keras, and Pymoo API’s. The Neural Network was implemented as a 32 node 4-layer 

network trained over 100 epochs in batches of 10, with RelU activation functions and a 
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mean squared loss estimator. The input data for the network was comprised of 8 parameters 

and one predicted value, and underwent a 80%-20% train-test split. The Non-dominated 

Sorting Genetic Algorithm was implemented as a 2 objective 2 constraint optimizer over 8 

parameters and 1,000 generations of 10,000 individuals.  

     The material dataset used to 

train and validate the coupled 

algorithm is comprised of high 

entropy alloy composition data 

describing each material’s 

content of alloying elements 

coupled to test data describing 

each material’s mechanical 

properties. These data, described in [57], were collected over a period spanning from 2004 

to 2016 from uniaxial tension tests on 370 alloys. This dataset was chosen for validation 

of the framework due to the fact that it represents one of the most robust freely available 

datasets for advanced alloys. 

4. Results and Discussion 

     4.1 High entropy alloys: As the first component of the prediction and optimization 

framework, the accuracy of the Neural Network’s strength predictions must be validated 

against test data, a subset of the results of this process can be seen in Figure 3.  

   
Figure 3. Sample of the prediction results of the Neural 

Network. 
 



71 
 

     Five test alloy cases are 

presented here to illustrate the 

scatter in accuracy; four of 

these test cases are shown to 

track quite well between test 

and prediction data while one 

test case shows significant 

deviation. While this ratio of 

high prediction performance 

to deviation tracks throughout 

the entire 370 alloy dataset, overall prediction accuracy, including these points of deviation, 

was found to be upwards of 92% over 1000 epochs of the algorithm. By assessing results 

of the framework in terms of both absolute tensile strength and tensile strength density 

related to cost density, commercial and economic viability of the proposed alloys can be 

  
Figure 4. Alloy designer results summary (a) designed high entropy alloy Pareto sets in terms of 

strength density and (b) in terms of absolute tensile strength. 
 
 

  

 
Figure 5. Pareto sets of designed alloys by number of alloying 

elements, 5, 7, and 8 components. 
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accurately compared. High entropy design sets were created for both strength and strength 

density and for five, seven, and eight component alloys.  

     Trends in the resultant pareto sets, seen in Figure 4, were found to be consistent with 

expected alloy performance. Semi-equiatomic high entropy alloys, as defined by their 

major components being within 1% of each other, were found to exhibit higher cost-based 

performance, while having equal absolute performance, to non-equiatomic high entropy 

alloys. This is consistent with expected results as non-equiatomic alloys must include a 

high portion of higher performance costly alloying components to achieve similar strength.  

     It can be seen from Figure 5. that an increasing number of alloying elements yields 

stronger performance at the extremes of each Pareto set. This is an expected result as the 

7-component set included both Si and Mo, and the 8-component set saw the addition of 

Nb. These elements are on the high end of the cost spectrum while also providing 

significant increases to alloy strength in higher contents. As such, the extreme members of 

each Pareto set include high proportions of these elements, driving up both strength and 

cost. However, it can also be seen that there is a significant overlap in the 7 component and 

8-component Pareto sets. This shows that some members of the 7-component set are 

strongly Pareto optimal over the worst members of the 8-component set. This means that 

the designed alloys in this region of the 7-component set are very high strength solutions 

at low cost.  
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     From Table 1 it can be seen 

that the unrestricted 8-

component design set of alloys 

retains relatively high levels of 

diversity, meaning that the 

optimizer and predictor are 

robust against overfitting. 

However, a clear trend in the 

results can be observed in Figure 6. Of the high entropy alloys present in the resultant 

Pareto sets, high contents of Iron, nickel, and niobium were found to be present in the 

majority; in some cases an additional high content of cobalt was present. This combination 

of elements is expected in optimal alloys and can lead to improved material properties 

beyond strength. Niobium specifically is commonly added to alloys of iron and nickel base 

elements in order to promote high temperature stability and resistance to corrosion. 

Additionally, aerospace superalloys and refractory high entropy alloys have shown that 

microstructural stability and stability against the precipitation of additional phases is 

generally high for parings of iron-nickel-niobium.  

     It can also be seen that an increase in both strength and cost of the designed alloys can 

be attributed to additional contents of niobium, as seen in the latter half of Table 1. These 

alloys have approximately double the content of the less strong less costly members of the 

Pareto set. This trend suggests that an addition of high contents of Niobium to the alloys 

presents a higher level of absolute performance. Furthermore, it can be seen that contents 

of silicon, carbon, chromium, and aluminum are low, in some cases below 1%. This is an 

Table 1: Portion of Pareto set of designed alloys, unrestricted 
high entropy alloy dataset. 
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expected result as Aluminum does not have 

the strength necessary to be present in the 

strongest alloys of the Pareto set. 

Additionally, Si, C, and Cr, are all alloying 

elements that are typically added to both 

high entropy and low entropy alloys in 

small amounts in order to improve 

corrosion resistance, strength, and 

ductility. These results indicate that the 

optimization performance of the framework is strong, and consistent with previous 

experimental studies.  

     4.2 Low entropy alloys: Low entropy alloy sets were designed for each base element in 

order to facilitate comparisons between the datasets and validation checks of the results 

across another alloy class. Low entropy alloy results show consistent trends across datasets 

and metrics. It can be seen from Figure 7 that aluminum and chromium-based alloys both 

exhibit high absolute strength while aluminum based alloys show a significant advantage 

in strength density. The relative performance of each base alloy class is consistent with 

expectation and illustrates the adaptability of the framework to additional datasets. The 

highest strength density members of this high performing set of aluminum alloys primarily 

included alloys with above 90% Aluminum content and approximately 1% of each other 

alloying element. Thermodynamic modeling of these highly multi-component low entropy 

aluminum alloys is currently an area of ongoing research [58]. While the establishment of 

a thermodynamic database and comprehensive set of phase diagrams for these alloys 

 
Figure 6. Graphical representation of the Pareto 
set. Values represent the total amount of each 

element in all materials in the Pareto set. 
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currently limits research progress in the field, they have been shown to be promising 

candidates for advancements in aerospace engineering and biological implants. To this end, 

further research into these alloys has been predicted to be promisingly valuable by the 

framework in this work, which is shown to be consistent with the efforts of the authors, 

and others mentioned, in [58]. Additionally, chromium-based, or high chromium, alloys 

have been shown by experimental literature to be a relatively strong and low-cost option 

for highly corrosion resistant materials. Additionally, these alloys have high melting points 

and relatively low densities for their strength; as such, they have been identified as 

promising candidates for aerospace engine turbines [59]. In both experimental literature 

and the design alloy set from this work Cr-Ni-Al alloys are the primary members of the 

highest performing portion of the Pareto set. From these two classes of low entropy alloys, 

it can be seen that the framework presented here performs well and is consistent with 

experimental results not only for the High Entropy Alloy dataset initially used in the study, 

but across general material datasets. By tailoring the training dataset for the Neural 

Network portion of the framework to each specific material class, it is expected that high 

 
Figure 7. Alloy designer results summary for low entropy alloy case (a) designed low entropy 

alloy Pareto sets in terms of strength density and (b) in terms of absolute tensile strength. 
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prediction and optimization performance can be retained for any class of materials that 

sufficient data is available.  

 

5. Conclusion 

Traditional high entropy alloy testing and design poses a significant time and cost 

challenge. By facilitating the automated design and optimization of these alloys, significant 

development in the best performance of these material may be enabled. In order to facilitate 

automated design of high entropy alloy designs according to their trade-offs in material 

properties and cost a computational framework was proposed based on a coupled 

Regression Neural Network and Non-dominated Sorting Genetic Algorithm. Strong 

prediction and optimization performance was found over a dataset of 370 high entropy 

alloys. Additionally, the framework was proven to be adaptable to additional datasets and 

classes of materials. Therefore, the work herein presents a framework and methodology for 

efficient design of viable high entropy alloys and other material classes.  

8. Thesis Conclusion and Recommendations 

The design and optimization of metallic alloys poses a significant challenge due to the 

complexity of interaction effects between components and the size of the search space of 

all possible alloys. To address this challenge, three computational frameworks alongside a 

Molecular Dynamics study were proposed. An ab initio nanocrystalline alloy 

thermodynamics framework was developed to assess the stability of binary nanocrystalline 

Al-X alloys against grain enlargement and phase precipitation, Molecular Dynamics 

studies were conducted in order to quantify the deformation mechanisms in these materials, 
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a Convolutional Neural Network was utilized to analyze microstructural image data, and a 

coupled Neural Network and Multi-objective Genetic Algorithm was applied to 

automatically generate, assess, and optimize alloy designs. By developing these systems 

and validating them over a dataset of binary nanocrystalline Aluminum alloys and multi-

component High Entropy Alloys significant portions of the alloy design, optimization, and 

analysis process have been automated. For this reason, this research may be used by 

academia and industry alike to decrease development times and increase research 

productivity. 

 In order to extend this work and further broaden the scope of application and 

capability of this branch of research, and the frameworks developed herein, it is 

recommended that they be applied to additional material systems. By conducting these 

studies, a scope of applicability may be identified, and the algorithms may be improved to 

encompass additional pre and post-processing mechanisms for different datasets. 

Additionally, important mechanisms of specific material systems may be elucidated by the 

results produced from that process. Furthermore, conducting further Molecular Dynamics 

studies for additional loading cases of nanocrystalline microstructures and post-processing 

the resulting simulated structures through the use of the CNN-based framework would 

provide valuable insight into the mechanics of this class of materials. This work is an 

important step towards the commercialization of nanocrystalline metals. 
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