
 

 

 

 

University of Nevada, Reno 

 

 

 

Role of Spin-Dependent Interactions in Chemical Reactions and Molecular Physics 

 

 

 

 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy in 

Chemical Physics 

 

 

 

 

 

 

 

by 

Vsevolod D. Dergachev 

Dr. Sergey A. Varganov/Dissertation Advisor 

 

December, 2021 

 



 

THE GRADUATE SCHOOL 

We recommend that the dissertation 

prepared under our supervision by 

VSEVOLOD D. DERGACHEV 

entitled 

Role of Spin-Dependent Interactions in Chemical Reactions 
and Molecular Physics 

be accepted in partial fulfillment of the 

requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Sergey A. Varganov, Ph.D. 

Advisor 

David M. Leitner, Ph.D. 
Committee Member 

Samuel O. Odoh, Ph.D. 
Committee Member 

Timur V. Tscherbul, Ph.D. 
Committee Member 

David C. Cantu, Ph.D. 

Graduate School Representative 

David W. Zeh, Ph.D., Dean 

Graduate School 

December, 2021 

 



i 

 

 

ABSTRACT 

 

 

This work describes development of theoretical models for applications where 

spin-dependent interactions play a key role. Specifically, we focus on the spin-orbit and 

hyperfine interactions in atoms and molecules, which are important for applications in 

photochemistry, photophysics, materials science, quantum sensing, and quantum 

computing. In the first part of this work, we discuss development and application of the 

nonadiabatic statistical theory (NAST) to predict kinetics of spin-forbidden chemical 

reactions, intersystem crossings and spin-crossovers. We describe the newly developed 

NAST software package and its capabilities. The package predicts the microcanonical 

and canonical rate constants for the nonadiabatic spin-orbit coupling driven and 

traditional adiabatic unimolecular reactions. In addition, the NAST package can 

calculate the probabilities and rate constants for transitions between individual  MS 

components of the spin multiplets, and process the results of electronic structure 

calculations to generate the necessary input data for the rate calculations. The second 

part of this work is motivated by the proposed applications of ultracold atoms in the 

quantum information science. The ultracold alkali atoms trapped in inert parahydrogen 

matrix have been shown to possess long coherence times between the hyperfine states 

|𝐹,𝑚𝐹⟩. The long coherence times make these atoms promising candidates for spin-

based qubits and quantum sensors. This coherence is limited by interaction between the 

electron spin of the alkali metal atom and the host matrix. To explain the experimental 

coherence times of 39K, 85Rb, 87Rb, and 133Cs atoms, we develop a model of 
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inhomogeneous broadening of the transitions between the |𝐹,𝑚𝐹⟩ states due to the 

anisotropic hyperfine interaction between the metal and the host matrix.  In the third 

part of this work, we model the effect of extreme variations in the speed of light on the 

electronic and atomic structures of small molecules. This part of work is motivated by 

the theories beyond the Standard Model of physics that treat the fundamental constants 

as dynamic entities.  
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CHAPTER 1. INTRODUCTION 

 

 

I. Electron Spin as Relativistic Property of Matter 

Spin is a property of matter carried by elementary particles – fermions with half-

integer spin and bosons with integer spin. At the atomic level, the spin is carried by 

electrons and atomic nuclei. Therefore, understanding the properties of matter, as well 

as the interaction of matter with external electromagnetic field, requires consideration 

of the effects associated with electron and nuclear spins. A few examples, where the 

electron spin effects drive applications in chemistry, include light harvesting1,2, 

electroluminescence of organic materials3,4, catalytic activity of metalloproteins5, and 

design of molecular electron spin-based qubits, sensors and memory devices6–8. 

The role of electron spin in electronic structure of atoms and molecules can be 

studied using different physical frameworks. There are essentially three choices. First 

is the Schrödinger one-component (scalar) wave equation postulated by Erwin 

Schrödinger in 1925. The Schrödinger equation rests on the postulates of quantum 

mechanics only and does not consider special relativity. Therefore, it does not describe 

interactions arising from electron and nuclear spins. However, the theory accounts for 

the electron spin in an ad hoc manner by antisymmetrizing the electronic wavefunction 

to satisfy the Pauli exclusion principle. 

Second is the four-component Dirac equation, or equivalently, a system of four 

coupled first-order differential equations. The Dirac equation, derived by Paul Dirac in 

1928, describes a fully relativistic electron in an external potential, but can be 
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generalized to many-electron problems as well. The Dirac equation is formulated to 

fulfill the postulates of special relativity, which require the speed of light to be constant 

and the laws of physics be identical in all inertial frames of reference. A change between 

inertial frames is described by the Lorentz transformation. Therefore, to fulfill the 

postulate of constant physical laws, the equations that describe these laws should be 

invariant under the Lorentz transformation. The Schrödinger equation is not invariant 

under the  Lorentz transformation because it contains the partial derivatives of different 

orders with respect to time and space coordinates. In contrast, the Dirac equation is 

equivalent, first-order in both time and space coordinates, and therefore consistent with 

the postulates of special relativity. Two degrees of freedom of the Dirac equation are 

interpreted as two different particles – electron and positron – while the remaining two 

are accounted for by assigning particles’ spin. Therefore, spin appears naturally in the 

Dirac equation. The degrees of freedom of the Dirac equation are usually arranged to 

form large and small components, where the small component vanishes in the non-

relativistic limit, i.e. c → ∞, where c is the speed of light.  

Third, there exist approximation methods9–14 based on derivation of the spin-

free and spin-dependent relativistic correction terms from the power series expansion 

of the Dirac Hamiltonian in orders of 1/c2. These correction terms are either added as a 

perturbation to the Schrödinger equation or themselves form Schrödinger-like 

equations. Notably, using different approaches on how to decouple large and small 

components of the Dirac equation and wheatear or not the spin-free form is desired 

(two-component vs. one component), the resulting relativistic correction terms can take 

different forms. Some of these corrections are easier to interpret than the others and 

some are easier to calculate. The approximation methods include the Pauli 
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Hamiltonian9,13, n-Order Regular Approximation (nORA)10,11,13, eXact 2-Component 

(X2C)13, and n-order Douglass-Kroll-Hess (nDKH)12,13. 

There are two fundamental aspects in which relativity impacts the electronic 

structure of atoms. To better understand these aspects, let us locally adhere to the 

language of relativistic corrections. An advantage of this is in bringing the correction 

terms whose form is useful in interpreting various interactions in atoms due to relativity. 

The first aspect is various magnetic interactions among electrons and nucleus. The 

motion of  an electron in electrostatic field E created by a nucleus gives rise to internal 

magnetic field B. The magnetic moment MS of electron then interacts with B, with the 

interaction energy W = -MS
.B. As MS and B are proportional to electron spin S and 

orbital angular momentum L, correspondingly, the interaction reduces to the well-

known form of the spin-orbit interaction S.L. Moreover, if a nucleus carries a non-zero 

spin, there appear interactions between the magnetic moment MI of proton and MS, and 

between MI and B. In turn, these interactions can be reduced to a more familiar form 

of I.S and I.L, correspondingly. The interactions, which are due to the electron spin S 

only, are the spin-orbit (SO), spin-spin (SS) and orbit-orbit (OO) interactions. The SO 

interaction terms are described by the Breit-Pauli Spin-Orbit Hamiltonian15, which was 

originally derived by Pauli in 1927: 

�̂�SO
BP =

𝑒2

2𝑚𝑒
2𝑐2

{∑(−∇𝑖 (∑
𝑍𝐴
𝐫𝑖𝐴

𝐴

) × 𝐩𝑖) ∙ 𝐬𝑖
𝑖

 

+∑∑(−∇𝑖 (
1

𝐫𝑖𝑗
) × 𝐩𝑖) ∙ 𝐬𝑖

𝑗≠𝑖𝑖

 

+∑∑(−∇𝑗 (
1

𝐫𝑖𝑗
) × 𝐩𝑗) ∙ 𝐬𝑖

𝑗≠𝑖𝑖
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+∑∑(−∇𝑖 (
1

𝐫𝑖𝑗
) × 𝐩𝑖) ∙ 𝐬𝑗

𝑖≠𝑗

},                                    (1.1)

𝑗

 

where 𝑒 and 𝑚𝑒 are the charge and mass of an electron, 𝑐 is the speed of light, 𝑖 and 𝑗 

are electron indices, 𝐴 labels nuclei,  𝑍𝐴 is the charge of nucleus 𝐴, 𝐫𝑖𝐴 is the distance 

between an electron 𝑖 and nucleus 𝐴, 𝐫𝑖𝑗 is the distance between electrons 𝑖 and 𝑗, and 

𝐩𝑖 and 𝐬𝑖 are momentum and spin of electron 𝑖. The first two terms in Eq. (1.1) are the 

one- and two-electron parts of the spin-same-orbit interaction. The third and fourth 

terms describe the spin-other-orbit interaction, where the magnetic moment of electron 

𝑖 interacts with orbital momentum of electron 𝑗 and vice versa. The SS and OO 

interactions are described by separate correction terms: 

�̂�SS =
𝑒2

2𝑚𝑒
2𝑐2

∑∑(
𝐬𝑖
𝑇 ∙ 𝐬𝑗

𝑟𝑖𝑗
3 − 3

(𝐬𝑖
𝑇 ∙ 𝐫𝑖𝑗)(𝐫𝑖𝑗

𝑇 ∙ 𝐬𝑗)

𝑟𝑖𝑗
5 −

8𝜋

3
(𝐬𝑖
𝑇 ∙ 𝐬𝑗)𝛿(𝐫𝑖𝑗)) , (1.2)

𝑗≠𝑖𝑖

 

�̂�OO = −
𝑒2

2𝑚𝑒
2𝑐2

∑∑(
𝐩𝑖
𝑇 ∙ 𝐩𝑗

𝑟𝑖𝑗
+
(𝐩𝑖

𝑇 ∙ 𝐫𝑖𝑗)(𝐫𝑖𝑗
𝑇 ∙ 𝐩𝑗)

𝑟𝑖𝑗
3 ),                  (1.3)

𝑗≠𝑖𝑖

 

For the states of non-zero total orbital angular momentum L and total spin 

angular momentum S, the spin-orbit coupling splits these electronic states into 

components. For example, the first excited doublet state of sodium, 2P, where S = 1/2 

and L = 1, is split into two components, 2P1/2 and 2P3/2, where subscripts 1/2 and 3/2 

stand for two values of the total angular momentum J. The SS and OO interactions 

contribute to the zero-field splitting (ZFS), which lifts the degeneracy of magnetic 

levels in the absence of external magnetic field, in molecules with more than one 

unpaired electron. These electron-spin interactions constitute the fine structure of an 
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atom. The interactions between magnetic moments of electrons and nucleus, described 

above, are responsible for the hyperfine structure of an atom. 

The second aspect is the scalar relativistic effects. The correction terms that 

describe these effects act in the position space only. Therefore, an equation that 

incorporates the scalar relativistic effects will resemble in structure the nonrelativistic 

Schrödinger equation. For this reason, calculation of the scalar relativistic effects is 

often added to capabilities of nonrelativistic electronic structure codes. There are two 

kinds of scalar relativistic effects. The first kind arises when velocity of the core 

electrons of an atom increases to the values comparable with the speed of light c. 

Relativistic corrections, describing different orders of this kind, can be derived from 

the power series expansion of the relativistic kinetic energy expression. Neglecting 

fourth- and higher-order terms of the expansion, the resulting terms are the rest-mass 

energy of electron, the non-relativistic kinetic energy, and the first kinetic energy 

correction called the mass-velocity term. The relativistic kinetic energy effect leads to 

energy stabilization and radial contraction of the core s orbitals. The joint effect of the 

relativistic kinetic energy correction and the spin-orbit coupling (SOC) results in 

overall stabilization of s1/2 and p1/2 orbitals (direct effect). As a consequence, orbitals in 

the same shell but with higher value of the total angular momentum J, i.e. p3/2 and d5/2, 

experience increased nuclear screening and, therefore, destabilize in energy, which is 

an indirect effect. The second kind of scalar relativistic effect is described by the 

Darwin term named after the English physicist Charles Galton Darwin. The Darwin 

term can be interpreted as the correction to the effective potential at the nucleus felt by 

an electron due to Zitterbewegung – rapid quantum oscillations of the electron. Since 
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the Darwin term corrects the potential at the nucleus, it affects only s electrons because 

the electron wavefunctions with a higher angular momentum are zero at the nucleus. 

It is well-known that the special relativity is strongly manifested in heavy 

elements for which the non-relativistic description often leads to the predictions that 

are not even in qualitative agreement with experiments16–18. For example, the 

nonrelativistic coupled cluster single and double excitations CCSD method predicts the 

values of the electron affinity and ionization potential of Au atom to be almost 50 and 

24 percent off the respective experimental values, while the relativistic CCSD predicts 

deviations within fraction of percent19. There are many famous examples of the effects 

of relativity, including the yellow color of gold, the low melting point of mercury, and 

the high voltage of a lead-acid battery19. Among heavy elements, of rising importance 

are studies of lanthanide (atomic numbers 57-71) complexes as candidates for electron 

spin-based single-molecule magnets20,21. Of great importance are studies of impact of 

relativistic effects on trends in properties of heavy elements19,22–24. These studies had 

probably started with the work of Descalux22, where the author, solving the relativistic 

Dirac-Fock equation, systematically studied changes in the total electron energies of 

atoms, orbitals energies and positions of maximum orbital densities in comparison with 

nonrelativistic Hartree-Fock results. Modern studies19,24 predict orbital destabilization 

and expansion for elements with the (n+1)s → nd electron shift (e.g., element 41, Nb: 

[Kr]4d45s1) and stabilization and contraction for elements with the (n-1)f → nd electron 

shift (e.g., element 91, Pa: [Rn] 5f26d17s2). These studies suggest that these trends are 

non-monotonic due to complex interplay of relativistic kinematic effects, SOC, 

relativistically modified nuclear screening, shell structure and electron correlation. 
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It is important to note that relativistic effects are not negligible even for the 1st– 

5th row elements. In chemistry of these elements, relativity is often manifested through 

the intersystem crossing (ISC)25–27, i.e. non-radiative transitions between a pair of 

coupled electronic states with different spin multiplicities, mediated by the spin-

dependent interactions. Among these, SOC is generally the largest in magnitude. The 

effects of SOC on the properties and structure of molecules containing 4th row transition 

metals like Cr, Fe, Ni and Cu are well known2,5,28,29. For example, in the metal-sulfur5 

and heme2 proteins, the functioning mechanism often involves change in the spin state 

of the metal center of the protein active site via SOC-mediated ISC, which affects the 

light-harvesting and catalytic properties of these proteins. In addition, the SOC-

mediated ISC transitions between two electronic states are involved in many other 

chemical reactions30–35. These reactions are named spin-forbidden due to their formal 

‘forbiddenness’ in the dipole approximation because the transition electric dipole 

moment is independent of the electron spin, and therefore forbiddenness results from 

orthogonality of the spin parts of the wavefunctions of two electronic states. The 

reaction rates associated with the spin-forbidden reaction pathways are often assumed 

to be low. However, ISC can open competitive low-energy pathways in many reactions. 

For example, ISC is often encountered in the gas-3,32,36 and solutionphase34,37 reactions 

of organic molecules and polymers. Many of these reactions find application in artificial 

photosynthesis and organic light-emitting diodes (OLEDs)3,34. 
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II. Dirac Equation 

The Schrödinger equation is not invariant under the Lorentz transformation and, 

therefore, does not fulfill the requirements of special relativity. The search for the 

relativistic wave equation for an electron starts with the classical expression for the 

relativistic energy of a free moving particle: 

𝐸 = √𝐩2𝑐2 +𝑚2𝑐4,                                                       (1.4) 

where E is the energy of a free moving particle, p is the linear momentum, m is the 

mass of a particle, and c is the speed of light. Solving Eq. (1.4) is complicated because 

of the square root over the differentiation operator ∇2 in p2. A possible solution of the 

power series expansion of the square root is not satisfactory, because it will lead to 

high-order derivatives with respect to spatial coordinates while leaving the time 

derivative order unchanged. Therefore, one would arrive at the Lorentz noninvariant 

wave equation, which violates the requirements of special relativity. Instead, the 

square-root problem can be overcome by squaring Eq. (1.4). After squaring and 

replacing the energy and momentum with the corresponding quantum mechanical 

operators (𝐸 → 𝑖ℏ𝜕/𝜕𝑡 and 𝐩𝟐 → −ℏ2∇2), we arrive at the Klein-Gordon (KG) 

equation: 

[−
1

𝑐2
𝜕2

𝜕𝑡2
+ ∇2] 𝜓 =

𝑚2𝑐2

ℏ2
𝜓.                                          (1.5) 

This equation was derived by W. Gordon in 1926 and by O. Klein in 1927. The time 

and space coordinates enter the KG equation in the equivalent, second order. Therefore, 

the KG equation is Lorentz invariant. The KG equation predicts existence of both 
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positive and negative energy solutions, 𝐸 = ±√𝑚𝑐2 + 𝑝2. Later we will see that the 

solutions of negative energy predict the existence of antiparticles. 

The KG equation cannot be accepted as the relativistic wave equation of an 

electron for two reasons. First, the KG equation describes spinless particles. As a 

consequence, it fails to describe the electron spin. Second, the following quantity – 𝜌 =

(𝑖ℏ/2𝑚𝑐2)[𝜓∗𝜕𝜓/𝜕𝑡 − 𝜓𝜕𝜓∗/𝜕𝑡] – aimed to represent the probability density 

associated with the KG equation, is not positive definite. The KG equation is the 

second-order differential equation. Therefore, its solution requires two arbitrary initial 

conditions, i.e. it allows to choose independently initial values of 𝜓 and 𝜕𝜓/𝜕𝑡 such 

that the probability density can take both positive and negative values. In contrast, Paul 

Dirac’s intention was to linearize the relativistic energy equation as: 

√𝐩2𝑐2 +𝑚2𝑐4𝜓 = 𝑐(𝛼1p1 + 𝛼2p2 + 𝛼3p3 + β𝑚𝑐)𝜓,                     (1.6) 

where 𝛼1, 𝛼2, 𝛼3 and β are yet unknown coefficients. If 𝛼1, 𝛼2 and 𝛼3 are scalars, Eq. 

(1.6) is invariant to spatial rotations. Dirac postulated that 𝜶1, 𝜶2, 𝜶3 and 𝛃 are 

quadratic matrices of yet unknown dimension. Then, 𝜓 cannot be a scalar, but rather is 

a column vector. The desired relativistic equation for an electron must  i) fulfill Eq. 

(1.4), ii) be invariant under the Lorentz transformation, and iii) have a positive define 

probability density. To fulfill these requirements, i) the smallest matrix dimension of 

𝜶𝑖 must be four, ii) 𝜶𝑖 and 𝛃 must possess as many negative as positive eigenvalues 

and 3) 𝜶𝑖 and 𝛃 must obey the following anticommutation relations: 

𝜶𝑖𝜶𝑗 + 𝜶𝑗𝜶𝑖 = 2𝛿𝑖𝑗𝐈, 

𝜶𝑖𝛃 + 𝛃𝜶𝑖 = 0,                                                           (1.7) 
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𝛂𝑖
2 = 𝛃2 = 𝐈. 

Based on these considerations, Dirac proposed the following quantum mechanical wave 

equation of a free electron: 

ℎ̂𝐷𝜓 = [𝑐𝛂 ∙ 𝐩 +  𝛃′𝑚𝑒𝑐
2]𝜓,                                               (1.8) 

where ℎ̂ denotes a one-particle Hamiltonian. In the Dirac-Pauli representation: 

𝛼𝑖 = (
02 𝝈𝑖
𝝈𝑖 02

),   𝛃 = (
𝐈 02
02 −𝐈

),   𝛃′ = (
02 02
02 −2𝐈

) 

02 = (
0 0
0 0

),   𝝈𝑥 = (
0 1
1 0

),  𝝈𝑦 = (
0 −𝑖
𝑖 0

),  𝝈𝑧 = (
1 0
0 −1

)          (1.9) 

In Eq. (1.5), 𝛃 is replaced by 𝛃′ to align the relativistic and nonrelativistic energy scales.   

The Dirac theory fulfills the requirements of special relativity by introducing a 

system of four coupled first-order differential equations. Therefore, 𝜓 appearing in Eq. 

(1.8) is a four-component wavefunction: 

𝜓 =

(

 
 

𝜓L
𝛼

𝜓L
𝛽

𝜓S
𝛼

𝜓S
𝛽
)

 
 
= (

𝜓L
𝜓S
),                                                  (1.10) 

where L and S correspond to the large and small components of the wavefunction, and 

not to be confused with orbital and spin angular momenta, and 𝛼 and 𝛽 describe spin 

degrees of freedom . Like in case of the KG equation, the solutions of the Dirac equation 

form continua of positive and negative energy states, where the negative energy 

continuum is often called the 'Dirac sea'. In the Dirac theory, the energetically lowest 

stable state, also called the vacuum state, is defined so all positive energy states are 
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empty, and all states of negative energy are occupied. Since a positron represents a hole 

in the lower continuum,  such definition of the vacuum state implies that neither free 

electrons nor free positrons are present in  the lowest energy state. The two continua, 

without and with alignment of the relativistic and nonrelativistic energy scales, are 

shown in panels A and B of Figure 1.1.  In the presence of an external potential, for 

example, the electrostatic potential of a proton, the electrons are bound to the potential 

well and a manifold of electronic states E0, E1, … are lowered into the energy gap 

between two continua (Figure 1.1 C). 

 

Figure 1.1.  The vacuum state of the Dirac theory defined so all positive energy states 

are empty (○) and all states of negative energy are occupied (●). The panel A shows the 

vacuum state in the relativistic energy scale. In the panel B, the relativistic and 

nonrelativistic energy scales are aligned. In the panel C, the vacuum state is shown in 

the presence of bounding electrostatic potential 𝑉, which lowers a manifold of 

electronic states into the gap between two continua. 

 

To describe relativistic electrons in atoms and molecules, the one-particle Dirac 

equation need to be generalized to a many-body equation. Such generalization requires 

an expression for the electron-electron interaction to be invariant to the Lorentz 
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transformation. Such expression can be derived from quantum electrodynamics by 

using the time-dependent perturbation theory. In practice, calculation of the associated 

two-electron matrix elements (integrals) is impractical due to n8 scaling, where n is the 

number of one-electron basis functions. Instead, relativistically modified potential 

terms are added to the one-electron Dirac Hamiltonian. In atomic units (ℏ = 1 and 𝑒 =

1), the total Hamiltonian containing the modified potential terms and nuclei 

electromagnetic field, but excluding external fields reads 

�̂�𝐷 = ∑ℎ̂𝑖
𝐷

𝑖

+ �̂�𝑒𝑒
𝐶𝐵 + �̂�𝑛𝑛 + 𝑒𝑨,                                          (1.11) 

ℎ̂𝐷 = [𝑐𝛂 ∙ 𝐩 +  𝛃′𝑚𝑒𝑐
2 + �̂�𝑛𝑒], �̂�𝑛𝑒 = −∑

𝑍𝐴
𝑅𝑖𝐴

𝐴

,                         (1.12) 

�̂�𝑒𝑒
𝐶𝐵 = ∑∑

1

𝑟12
(1 −

1

2𝑐2
[𝑐𝛂1 ∙ 𝑐𝛂2 +

(𝑐𝛂1 ∙ 𝒓12)(𝑐𝛂2 ∙ 𝒓12)

2𝑟12
2 ])

𝑗>𝑖𝑖

,              (1.13) 

�̂�𝑛𝑛 = ∑∑
𝑍𝐴𝑍𝐵
𝑅𝐴𝐵

𝐵>𝐴𝐴

, 𝑨 =∑∑𝛾𝐴
𝐈𝐴 × 𝑹𝑖𝐴

𝑅𝑖𝐴
3

𝐴𝑖

 ,                          (1.14) 

where ℎ̂𝐷 is the one-electron Dirac Hamiltonian for an electron in the electrostatic field 

of nuclei, �̂�𝑒𝑒
𝐶𝐵 is the Coulomb-Breit modified electron-electron interaction, �̂�𝑛𝑛 is the 

nuclear-nuclear repulsion term, 𝑨 is the sum of vector potentials of all nuclei, and 𝛾𝐴 is 

the nuclear gyromagnetic factor of nucleus 𝐴. Relativistic corrections for �̂�𝑛𝑒 are of 

order 1/c3 and even smaller for �̂�𝑛𝑛, and therefore can be neglected. 

In non-relativistic picture, the electron-electron interaction is instantaneous and 

described by the Coulomb potential. In relativistic picture, the Coulomb potential is 

only a zeroth-order term in the 1/c2 power series expansion of the full Lorentz-invariant 

electron-electron interaction and alone violates the principles of general relativity since 
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an instantaneous interaction is forbidden. The terms in the square brackets of Eq. (1.13) 

include the first-order corrections to the Coulomb potential. The first term in the 

brackets is the magnetic Gaunt interaction, and the second term is the gauge interaction 

that describes the retardation effect of the electron-electron interaction. Together, the 

Gaunt and gauge terms are called the Breit interaction. Adding the Coulomb interaction 

leads to the Coulomb-Breit potential of Eq. (1.13). Decoupling of the large and small 

components in the Dirac equation, followed by the expansion of the large component 

Hamiltonian to the order 1/c2, gives a set of well-known spin-free (scalar relativistic) 

and spin-dependent one- and two-electron correction terms, including the mass-

velocity, Darwin, spin-orbit, spin-spin, spin-other-orbit, and orbit-orbit. If the nuclear 

spin degrees of freedom and an external magnetic field are included in Eq. (1.11), the 

correction terms, which correspond to coupling between the electron and nuclear 

magnetic moments and to coupling of either moment to the external magnetic field, can 

as well be derived. A well-known form of these correction terms are the Fermi-contact, 

nuclear dipole-dipole and Zeeman interaction terms . In this work, the focus is on the 

SOC and nuclear hyperfine (HFI) interactions. SOC is often the strongest coupling that 

mediates the ISC transitions between the electronic states with different spin 

multiplicities. The HFI interaction plays an important role in paramagnetic species, 

including spin decoherence in atoms and single-molecule magnets, which can be used 

as spin qubits in quantum sensing and computing. 
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III. Nonadiabatic Statistical Theory 

Unimolecular reactions, which include isomerization, decomposition and 

dissociation processes, are an important class of chemical transformations. The 

transition state theory (TST)38–41 is a powerful tool used to describe kinetics of such 

processes. TST is formulated based on statistical mechanics, and describes chemical 

transformations using the statistical quantities, such as a partition function and density 

of states. The nonadiabatic statistical theory (NAST)35,42,43 extends TST to a 

nonadiabatic realm, where chemical processes involve more than one electronic state. 

The spin-dependent processes, including spin-forbidden reactions in chemistry, 

intersystem crossings (ISCs) in photochemistry and spin-crossovers in material science, 

form a special class of such nonadiabatic processes. In these processes, the reactant to 

product transformation induces change of the total electron spin of a system. The spin-

dependent processes are important in many areas of molecular science, including 

photochemical reactions44,45, chemical reactions on surfaces,46,47 design of high 

efficiency organic light-emitting diodes,3,4 and development of atomic and molecular 

spin systems for applications in the quantum information science.20,21 

The formulation of the transition state theory starts with defining the phase 

space of the reaction, where the total energy of a system, described by the classical 

Hamiltonian 𝐻(𝐪, 𝐩) is a function of the coordinates 𝐪 and momenta 𝐩 of all the 

constituent atoms.30,40,48 Associated with the phase space are four fundamental 

assumptions, to which any traditional TST or NAST obeys. The first assumption is the 

existence of a hypersurface in the phase space that divides the reaction space into the 

reactant and product regions. The second assumption is that the trajectories that come 
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from the reactant region and cross the dividing surface do not re-cross back. A third 

assumption states that the distribution of energy among the internal degrees of freedom 

(DOF) of a molecule is much faster than the reaction rate. A fourth assumption is that 

there exists a coordinate system that allows separation of the internal DOF into a one-

dimensional reaction coordinate and remaining spectator DOF. Together, these 

assumptions form a basis for statistical formulation of the unimolecular reaction rate 

theories by describing the chemical transformation as a function of the internal states 

of a molecule. Both microcanonical and canonical ensembles can be used to describe 

such internal states. To calculate the reaction rate, it is necessary to compute either the 

density of states (microcanonical ensemble) or the partition function (canonical 

ensemble) of molecular system. The density of states can be defined as:48 

𝜌(𝐸) =
𝑑𝑊(𝐸)

𝑑𝐸
,                                                     (1.15) 

𝑊(𝐸) =
1

ℎ𝑛
∫ 𝑑𝑞1. .
𝐻(𝐪,𝐩)=𝐸

𝐻(𝐪,𝐩)=0

𝑑𝑞𝑛𝑑𝑝1. . 𝑑𝑝𝑛,                             (1.16) 

where 𝜌(𝐸) is the density of states of a system with the internal energy 𝐸, 𝑊(𝐸) is the 

number of states counted as an integral over the phase space in the energy range from 

zero to 𝐸. The corresponding partition function can be obtained via the Laplace 

transform: 

𝑄(𝛽) = ℒ{𝜌}(𝐸) = ∫ 𝑑𝐸 𝜌(𝐸)𝑒−𝛽𝐸
∞

0

,                                    (1.17) 

where ℒ{𝜌} is the Laplace transform of the density of states, 𝛽 = 1/(𝑘B𝑇), 𝑘B is the 

Boltzmann constant, and 𝑇 is the temperature. A rigorous statistical formulation of  the 
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unimolecular reactions was developed by Rice, Ramsperger and independently by 

Kassel, and later generalized by Marcus (RRKM theory).49–51 An underlying idea of the 

RRKM theory is dependence of the reaction rate on internal energy states of a molecule. 

Having enough internal energy for a molecule to react is not a sufficient condition. The 

energy is distributed among all internal DOF, and the reaction will not occur until 

enough energy is accumulated in the reaction coordinate. Applied to unimolecular 

reactions in the high-pressure limit, RRKM theory becomes the microcanonical TST 

(μ-TST).40,52,53 In μ-TST, a reaction rate is represented as a reaction flux, i.e. the number 

of molecules near the critical (transition) region of the phase space (𝐪∗ + 𝑑𝐪∗, 𝐩∗ +

𝑑𝐩∗) per unit of time: 

Flux (reaction rate) =  
𝑑𝑁(𝐪∗, 𝐩∗)

𝑑𝑡
,                                  (1.18) 

𝑑𝑁(𝐪∗, 𝐩∗)

𝑑𝑡
=
𝑁𝑑휀∗ ∫ 𝑑𝑞∗

1
. .

𝐻(𝐪,𝐩)=𝐸− −𝐸0
𝐻(𝐪,𝐩)=0

𝑑𝑞∗
𝑛−1

𝑑𝑝∗
1
. . 𝑑𝑝∗

𝑛−1

∫ 𝑑𝑞1. .
𝐻(𝐪,𝐩)=𝐸

𝐻(𝐪,𝐩)=0
𝑑𝑞𝑛𝑑𝑝1. . 𝑑𝑝𝑛

= 𝑁𝑘(𝐸, 휀),   (1.19) 

where 𝑁 is the total number of molecules, 휀 is the energy stored in the reaction 

coordinate, 𝑑휀∗ is the infinitesimal change in the energy accumulated in the reaction 

coordinate near the critical region, 𝐸0 is the energy of the transition state, and 𝑘(𝐸, 휀) 

is the microcanonical rate constant. Note that the reaction coordinate is factored out in 

the numerator due to assumption of separability of the DOF. A considerable 

simplification of μ-TST can be achieved by averaging the phase-space integrals (Eq. 

1.19) over microcanonical ensemble. It can be shown that after ensemble averaging,30,48 

the expression for the μ-TST rate constant takes the well-known form: 
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𝑘(𝐸) = ∫ 𝑑휀 𝑘(𝐸, 휀)

𝐸−𝐸0

0

=
𝑁∗(𝐸 − 𝐸0)

ℎ𝜌(𝐸)
,                                (1.20) 

where 𝑁∗(𝐸 − 𝐸0) is the number of internal states of a molecule at the transition state, 

ℎ is the Planck constant, 𝜌(𝐸) is the density of states at reactant’s configuration. Note 

that 𝑘(𝐸, 휀) is integrated over energy 휀 stored in the reaction coordinate to account for 

all possible distributions of the internal energy 𝐸 − 𝐸0 between the reaction coordinate 

and the transition state spectator DOF. 

NAST is the extension of μ-TST to spin-dependent processes involving two 

electronic states with different spin multiplicities. For such processes, the hypersurface 

that divides the reactant and product regions of the phase space is the 3N-7 crossing 

seam between the potential energy surfaces of the two spin states, where 3N-7 is the 

number of the vibrational modes associated with the spectator DOF. The one-

dimensional reaction coordinate corresponds to a single vibrational mode orthogonal to 

the spectator DOF of the crossing seam. The main NAST assumption, additional to 

those inherited from μ-TST, is that the spin-flip transitions take place at a minimum 

energy crossing point (MECP), which is a minimum on the crossing seam. NAST is 

discussed in detail in Chapter 3 of this dissertation. 

This dissertation describes several examples of atomic and molecular systems 

where interactions due to electron spin play central role. The computational methods 

used in this work are described in Chapter 2. Chapter 3 is dedicated to the development 

and implementation of the Non-Adiabatic Statistical Theory (NAST) code to predict 

the rates of the spin-forbidden chemical reactions driven by SOC. Chapters 4 and 5 

describe the spin coherence of alkali-metal atoms in solid parahydrogen, which are 
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promising candidates for quantum sensors and qubits. It is shown that the coherence 

time is defined by the strength of the hyperfine (HFI) interaction, which depends on 

interaction between the metal atom and the matrix. Chapter 6 discusses the effect of 

variation of the fundamental constants of physics, with focus on the speed of light, on 

the electronic and atomic structures of atoms and small molecules. Finally, Conclusion 

summarizes the key results of this work. These results cover capabilities of the recently 

implemented NAST code, development of theory of inhomogeneous broadening of 

hyperfine transitions of alkali-metal atoms, and changes in electronic structure 

properties of atoms and molecules when the speed of light is promoted to dynamical 

entity. 
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CHAPTER 2. METHODS 

 

 

I. Hartree-Fock Theory 

The Schrödinger equation describes interaction among non-relativistic electrons 

and nuclei in molecules. In the atomic units, it reads 

�̂�Φ𝑗(𝐫, 𝐑) = 𝐸𝑗Φ𝑗(𝐫, 𝐑),                                             (2.1) 

�̂� =  −∑
1

2𝑀𝐴
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−∑
1

2
∇𝑖
2

𝑁

𝑖=1
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+∑∑
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𝐵>𝐴

𝑀

𝐴=1

,        (2.2) 

where �̂� is the total Hamiltonian, Φ𝑗 is the total wavefunction of state j; r and R are the 

vectors of electronic and nuclear coordinates, correspondingly. The first term in Eq. 

(2.2) is the kinetic energy operator of M nuclei, �̂�𝑛; the second term is the kinetic energy 

operator of N electrons, �̂�𝑒; the third term describes the electron-nuclear attraction 

energy, �̂�𝑛𝑒; the fourth term is the electron-electron repulsion energy, �̂�𝑒𝑒; and the last 

term is the nuclear repulsion energy, �̂�𝑛𝑛. 

The Schrödinger equation (Eq. 2.1) cannot be solved analytically for systems 

with more than two particles (electrons and nuclei) due to particle-particle interactions. 

There exist approximations, however, that make numerical solution of Eq. (2.1) more 

tractable. Among these, the Born-Oppenheimer (BO) approximation is fundamental. 

The BO picture assumes separation of electronic and nuclear degrees of freedom in the 

total wavefunction Φ(𝐫,𝐑) due to their different variation timescales.1 As a 
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consequence, the BO approximation allows to transform Eq. (2.1) into separate 

electronic and nuclear parts as: 

Φ𝑗(𝐫, 𝐑) = Φ𝑗(𝐫; 𝐑)Φ𝑛𝑗(𝐑),                                             (2.3) 

�̂�𝑒Φ𝑗(𝐫; 𝐑) = (�̂�𝑒 + �̂�𝑛𝑒 + �̂�𝑒𝑒 + �̂�𝑛𝑛)Φ𝑗(𝐫; 𝐑) = 𝐸𝑗(𝐑)Φ𝑗(𝐫; 𝐑),         (2.4) 

�̂�𝑛Φ𝑛𝑗(𝐑) = (�̂�𝑛 + 𝐸𝑗(𝐑))Φ𝑛𝑗(𝐑) = 𝐸𝑇Φ𝑛𝑗(𝐑),                         (2.5) 

where Φ𝑗 is the electronic wavefunction of state j; Φ𝑛𝑗 is the nuclear wavefunction of 

state j; �̂�𝑒 and �̂�𝑛 are the electronic and nuclear Hamiltonians, respectively. Eq. (2.4) 

is the electronic Schrödinger equation, whose eigenvectors Φ(𝐫;𝐑) and eigenvalues 

𝐸(𝐑) depend parametrically on the nuclear positions R. Equation (2.5) describes the 

nuclear time-independent Schrödinger equation, where nuclei move in the electron 

potential 𝐸𝑗(𝐑). In this dissertation, we consider numerical solutions of the electronic 

Schrödinger equation only. A many-body Eq. (2.4) can be solved numerically by means 

of approximation of the wavefunction Φ𝑗(𝐫; 𝐑) by Φ𝑗
′(𝐫; 𝐑) and applying variational 

principle to optimize trial function Φ𝑗
′(𝐫; 𝐑): 

𝐸𝑗
′ =

⟨Φ𝑗
′|�̂�𝑒|Φ𝑗

′⟩

⟨Φ𝑗
′|Φ𝑗

′⟩
,                                                         (2.6) 

where the electron and nuclear degrees of freedom are dropped for simplicity, and the 

bra-ket notation is used for the expectation values and overlap integrals. Generally, the 

variational principle is applied to find approximate solution of Eq. (2.4) for the ground 

state, j = 0. We now drop index j assuming the ground state energy and wavefunction 

and replace Φ′ by Φ. 
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The simplest approach to solving Eq. (2.6) is a self-consistent field (SCF) 

method,1-2 also known as the mean-field approximation or the Hartree-Fock (HF) 

method. The central approximation behind the HF method is replacement of the 

electron-electron interaction term by an effective one-electron potential, experienced 

by each electron from averaged motion of all other electrons. This is achieved by using 

a single Slater determinant as a trial wavefunction Φ: 

Φ =
1

√𝑁!
|

𝜒1(1) 𝜒2(1)
𝜒1(2) 𝜒2(2)

… 𝜒𝑁(1)
… 𝜒𝑁(2)

… …
𝜒1(𝑁) 𝜒2(𝑁)

⋱ ⋮
… 𝜒𝑁(𝑁)

|,                                   (2.7) 

where the determinant form ensures the antisymmetry of Ψ with respect to electron 

exchange, and 1/√𝑁! is the normalization constant. The wavefunction Φ is written in a 

basis of one-electron functions, molecular spin-orbitals, that describe both the spatial 

and spin degrees of freedom of each electron. The spatial part of Molecular Orbitals is 

represented as a Linear Combination of Atomic Orbitals (MO-LCAO): 

𝜓𝑖(𝐫) = ∑𝐶𝜇𝑖𝜙𝜇(𝐫)

𝐾

𝜇=1

, 𝑖 = 1, 𝑁̅̅ ̅̅ ̅                                  (2.8) 

where i is the electron index, 𝜙𝜇 are the atomic orbitals used to describe the molecular 

orbital 𝜓𝑖, and 𝐶𝜇𝑖 are the linear variational parameters optimized to minimize the 

ground state energy (Eq. 2.6). Variational optimization of the 𝐶𝜇𝑖 coefficients leads to 

the Hartree-Fock-Roothaan (HFR) equation: 

𝐅𝐂 = 𝜺𝐒𝐂,                                                       (2.9) 
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where F is the K × K Fock matrix containing one- and two-electron integrals of the �̂�𝑒, 

�̂�𝑛𝑒 and �̂�𝑒𝑒 operators of the electronic Schrödinger equation in the basis of atomic 

orbitals, 𝐂 is K × K matrix of 𝐶𝜇𝑖 coefficients. The  K × K matrix S represents the overlap 

integral ⟨Φ|Φ⟩ in the basis of atomic orbitals, and 𝜺 is the diagonal matrix of molecular 

orbital energies. The matrix elements of the two-electron part of the Fock matrix F are 

the Coulomb (J) and exchange (K) integrals2 of the form: 

𝐽𝑖𝑗 = ∫|𝜓𝑖(𝐫1)|
2
1

𝑟12
|𝜓𝑗(𝐫2)|

2
𝑑𝐫1𝑑𝐫2 ,                                 (2.10) 

𝐾𝑖𝑗 = ∫𝜓𝑖(𝐫1)𝜓𝑗(𝐫1)
1

𝑟12
𝜓𝑖(𝐫2)𝜓𝑗(𝐫2)𝑑𝐫1𝑑𝐫2 .                         (2.11) 

The HFR equation is solved iteratively: an initial guess of molecular orbitals in 

Eq. (2.8) is given by choosing initial values of the expansion coefficients 𝐂. Then, Eq. 

(2.9) is solved in a self-consistent manner by using 𝐂𝑛 and 𝜺𝑛 solutions at iteration n as 

a starting guess for the n + 1 iteration, until convergence is reached. Upon convergence, 

the total electronic energy E of the closed-shell ground state is 

𝐸 = 2∑ℎ𝑖𝑖

𝑁/2

𝑖=1

+∑∑(2𝐽𝑖𝑗 − 𝐾𝑖𝑗)

𝑁/2

𝑗=1

𝑁/2

𝑖=1

,                                   (2.12) 

where ℎ𝑖𝑖 are matrix elements of the one-electron part of the Fock matrix, and 𝐽𝑖𝑗 and 

𝐾𝑖𝑗 are two-electron matrix elements associated with the Coulomb (Eq. 2.10) and 

exchange (Eq. 2.11) interactions. 

In the mean-field HF method, the correlation between the electrons of different 

spin is missing. However, the HF method includes the exchange correlation between 

electrons of parallel spin: the probability of two electrons with parallel spins to occupy 
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the same point in space equals zero. The missing electron correlation can be recovered 

by improving the HF wavefunction, Φ. The dynamic part of missing correlation comes 

from the correlated motion of electrons due to the Coulomb repulsion. The remaining 

static correlation is due to possible degeneracy or near degeneracy of some electronic 

configurations. This static correlation can be accounted for using a multi-determinant 

form of the wavefunction Ψ. Because of the lack of electron correlation, the HF method 

usually cannot provide quantitative predictions of atomic and molecular properties, but 

rather provides a reference wavefunction that is further improved by the post-HF 

methods described below. 

 

II. Density Functional Theory 

A well-known disadvantage of the multi-electron Hartree-Fock wavefunction is 

its hard interpretability due to electrons being essentially independent to each other in 

the Hartree-Fock method. It had been shown that instead of a wavefunction, an 

electronic energy of a system and its Hamiltonian can be linked to a physical 

observable, an electron density 𝜌.1 Integration of the electron density over all space 

gives the total number of electrons 𝑁: 

𝑁 = ∫𝜌(𝐫)𝑑𝐫 =∑∫|𝜓𝑖(𝐫)|
2𝑑𝐫

𝑁

𝑖=1

.                                   (2.13) 

The electron density can be spanned in the basis of one-electron wavefunctions, 𝜓𝑖(𝐫). 

In the density functional theory (DFT), the total electron energy is defined as a 

functional of electron density: 
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𝐸[𝜌(𝐫)] = 𝑇[𝜌(𝐫)] + 𝑉ne[𝜌(𝐫)] + 𝑉ee[𝜌(𝐫)],                        (2.14) 

𝑉ne[𝜌(𝐫)] = ∑∫
𝑍𝐴
𝑟𝐴

𝑀

𝐴=1

𝜌(𝐫)𝑑𝐫,                                                (2.15) 

𝑉ee[𝜌(𝐫)] =
1

2
∫∫

𝜌(𝐫1)𝜌(𝐫2)

𝑟12
𝑑𝐫1 𝑑𝐫2,                             (2.16) 

where 𝐸 is the total electronic energy. The first term in Eq. (2.14) is the kinetic energy 

written as a functional of electron density. In 1927, Thomas and Fermi derived an 

expression for 𝑇[𝜌(𝐫)] using the uniform electron gas model. However, this expression 

was found inaccurate and is no longer used in computational chemistry. Instead, 𝑇 is 

expressed as a functional of molecular orbitals 𝜓𝑖, as will be shown below. The 𝑉ne 

term in Eq. (2.14) is an attractive nuclear potential, and 𝑉ee is the electron-electron 

repulsion energy.  

DFT was implemented into a practical and quantitative quantum mechanical 

methodology by Hohenberg, Kohn and Sham. In 1964, Hohenberg and Kohn proved 

two theorems. The existence theorem3 postulates that the electron density of the ground 

state is sufficient to determine the system Hamiltonian, and, therefore, to determine the 

system energy. The variational theorem4 postulates that the electron density obeys the 

variational principle. Therefore, a procedure similar to the self-consistent field used in 

the Hartree-Fock theory can be applied to minimize the 𝐸[𝜌(𝐫)] functional. A practical 

computational protocol of DFT was subsequently formulated by Kohn and Sham.4 The 

exact energy functional takes the form 

𝐸[𝜌(𝐫)] = 𝑇[𝜌(𝐫)] + 𝑉ne[𝜌(𝐫)] + 𝑉ee[𝜌(𝐫)] + Δ𝑇[𝜌(𝐫)] + Δ𝑉ee[𝜌(𝐫)], (2.17) 
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where Δ𝑇 is the correction term to the kinetic energy due to interacting electrons, and 

Δ𝑉ee is correlation correction for the electron-electron repulsion. Usually, the Δ𝑇 and 

Δ𝑉ee correction terms are combined into the exchange-correlation functional 𝐸XC. A 

breakthrough of Kohn and Sham was to show that tremendous simplification can be 

made if one i) starts with a system of non-interacting electrons and ii) given that the 

density of the ground state of such non-interacting system is the same as the density of 

a real system with interacting electrons, use this density of the non-interacting electrons 

as an initial guess. Written in the orbital basis 𝜓𝑖, the energy functional reads 

𝐸[𝜌(𝐫)] =  ∑(⟨𝜓𝑖|−
1
2∇𝑖

2|𝜓𝑖⟩ − ⟨𝜓𝑖| ∑
𝑍𝐴
𝑟𝑖𝐴

𝑀
𝐴=1 |𝜓𝑖⟩)

𝑁

𝑖=1

 

  +∑⟨𝜓𝑖|
1
2 ∫

𝜌(𝐫′)
𝑟𝑖′

𝑑𝐫′ |𝜓𝑖⟩

𝑁

𝑖=1

+ 𝐸XC[𝜌(𝐫)],                          (2.18) 

The one-electron orbitals 𝜓𝑖 and the orbital energies 휀𝑖 can be found solving the 

following Kohn-Sham equations using variational procedure : 

ℎ̂𝑖
KS𝜓𝑖 = 휀𝑖𝜓𝑖,                                                           (2.19) 

ℎ̂𝑖
KS = −

1

2
∇𝑖
2 −∑

𝑍𝐴
𝑟𝑖𝐴

𝑀

𝐴=1

+∫
𝜌(𝐫′)

𝑟𝑖′
𝑑𝐫′ + 𝑉XC,                            (2.20) 

where ℎ̂𝑖
KS is the one-electron Kohn-Sham operator and 𝑉XC is a derivative of 𝐸XC with 

respect to density. Unfortunately, the theorems of Hohenberg and Kohn do not say 

anything about the form of corrections to the kinetic and electron-electron repulsion 

energies. Therefore, a general form of the exchange-correlation functional is unknown. 

In practice, it is a choice of 𝐸XC that defines a specific DFT method. There are several 
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approaches that guide a practical choice of this functional. One is the local spin density 

approximation (LSDA),5 where 𝐸XC depends only on the local electron density 𝜌 at 

position 𝐫. However, there exist limitations to LSDA due to non-uniform nature of the 

electron density. The non-local correction takes the form of the density gradient and 

leads to a generalized gradient approximation (GGA)6 for the exchange-correlation 

functional:  

𝐸XC
GGA[𝜌(𝐫)] = 𝐸XC

LSDA[𝜌(𝐫)] + ∆𝐸XC [
|∇𝜌(𝐫)|

𝜌4/3(𝐫)
].                             (2.21) 

One of the most popular GGA exchange functionals (B88) was developed by 

Becke7 and is parametrized with two empirical parameters 𝛿 and 𝛾: 

𝐸X
B88 = 𝐸X

LSDA − 𝛿 ∑ ∫𝜌𝑖
4/3 (|∇𝜌𝑖|/𝜌𝑖

4/3
)
2

1 + 𝛾(|∇𝜌𝑖|/𝜌𝑖
4/3
)
2 𝑑𝐫

𝑖=𝛼,𝛽

,                         (2.22) 

where index 𝑖 runs over spin-up and spin-down electrons. Parameter-free GGA 

exchange functionals include B86, PBE, mPBE and others. One of the famous GGA 

functionals to describe correlation energy was developed by Lee, Yang, and Parr 

(LYP).8  

A significant improvement of the DFT accuracy was achieved by Becke who 

introduced the Hartree-Fock exchange (𝐸X
HF) into the exchange-correlation 

functionals9:  

𝐸XC = 𝑐𝐸X
HF + (1 − 𝑐)EX

GGA + EC
GGA,                                (2.23) 

where 𝑐 is a weighting coefficient. The B2LYP exchange-correlation functional 

includes Becke’s B88 exchange formula, HF exchange and LYP correlation, and two 
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empirical parameters.  B3LYP is a more modern version of this functional with three 

fitted parameters: 

𝐸X
B3LYP = (1 − 𝑎)𝐸X

LSDA + 𝑎𝐸X
HF + 𝑏𝐸X

B88 + (1 − 𝑐)𝐸C
VWN3 + 𝑐𝐸C

LYP,    (2.24) 

where 𝑎 = 0.20, 𝑏 = 0.72, 𝑐 = 0.81, and VWN3 is a correlation functional.10 

 

III. Post Hartree-Fock Methods 

Utility of the computational quantum chemistry depends on the accuracies of 

predictions it can make. Understanding complex phenomena, including dynamics of 

ultrafast processes, high-resolution molecular spectroscopy, as well as designing spin-

based qubits, quantum sensors and molecular nanomagnets, requires highly accurate 

solutions for the atomic and molecular quantum wave equations.  An accurate solution 

of the Schrödinger equation beyond the Hartree-Fock approximation requires inclusion 

of electron correlation. Electron correlation is usually divided into the static and 

dynamic contributions. The static correlation arises due to partial occupation of 

degenerate or nearly degenerate molecular orbitals. As a result, the wave function of 

such electronic state cannot be described by a single Slater determinant but must include 

multiple determinants. Such situation is often the case when describing excited states 

of a molecule, as well as dissociation and formation of chemical bonds. Accounting for 

the dynamic correlation is important for accurate prediction of molecular properties. 

 

A. Coupled Cluster Theory 

One way to include the electron correlation, proved to be highly accurate, is to 

apply the following exponential ansatz18-20 to a reference wave function: 
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Ψ0 = 𝑒
�̂�Φ0,                                                        (2.25) 

where Ψ0 is the exact wave function of a ground state, 𝑒�̂� is the exponential electron 

excitation operator, Φ0 is the reference Hartree-Fock wave function, and 𝑒�̂�Φ0 

generates a linear combination of the Slater determinants with all possible electron  

excitations from the occupied to virtual spin-orbitals of Φ0. The exponential formalism 

of the coupled cluster theory is based on the diagrammatic representation of the 

perturbation theory and therefore ensures the size extensivity of this theory, i.e. correct 

scaling with the number of electrons. The working equations of the coupled cluster 

theory were first derived by Ĉíẑek.21 Here, we describe only the main steps of this 

theory. The cluster form of the 𝑒�̂� excitation operator is written as the Taylor series: 

𝑒�̂� ≡ 1 + �̂� +
�̂�2

2!
+
�̂�3

3!
+ ⋯ = ∑

�̂�𝑚

𝑚!

∞

𝑚=0

,                              (2.26) 

�̂� =  �̂�1 + �̂�2 + �̂�3 +⋯ =∑ �̂�𝑛,

𝑁

𝑛=0

                                  (2.27) 

where �̂�𝑚 operator represents the expansion of the exponential operator 𝑒�̂� up to order 

𝑚, and �̂�𝑛 denotes the electron excitations of an order 𝑛, which is all possible 

excitations of 𝑛 electrons from the occupied to virtual spin-orbitals of the reference 

Slater determinant Φ0. For example, the �̂�1 and �̂�2 single- and double-excitations can 

be written as 

�̂�1Φ0 = ∑ ∑𝑡𝑖
𝑎Φ𝑖

𝑎

𝑁

𝑖=1

𝐾

𝑎=𝑁+1

, �̂�2Φ0 = ∑ ∑ 𝑡𝑖𝑗
𝑎𝑏Φ𝑖𝑗

𝑎𝑏

𝑖,𝑗>𝑖𝑎,𝑏>𝑎

,              (2.28) 
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where indices 𝑖 and 𝑗 run over all occupied spin-orbitals in the reference determinant 

Φ0, and indices 𝑎 and 𝑏 – over all virtual spin-orbitals. The singly excited Slater 

determinant Φ𝑖
𝑎 is obtained by promoting an electron from the occupied spin-orbital 𝜒𝑖 

to the virtual spin-orbital 𝜒𝑎, and 𝑡𝑖
𝑎 is a weight (amplitude) of this determinant. The 

act of �̂�2 on Φ0 is to generate the  doubly excited determinants Φ𝑖𝑗
𝑎𝑏, whose amplitudes 

are 𝑡𝑖𝑗
𝑎𝑏. 

A particular coupled cluster method is defined by truncation of �̂� in Eq. (2.27). 

For example, if �̂� = �̂�2, the resulting method is called the coupled cluster with doubles 

(CCD), if �̂� = �̂�1 + �̂�2 – coupled cluster with singles and doubles (CCSD). To 

determine the total energy and coupled cluster amplitudes, we first insert the wave 

function defined in Eq. (2.25) into the Schrödinger equation: 

�̂�𝑒�̂�Φ0 = 𝐸CC𝑒
�̂�Φ0.                                               (2.29) 

To determine the ground state energy 𝐸CC, Eq. (2.29) is multiplied by Φ0
∗  from the left 

and integrated: 

⟨Φ0|�̂�|𝑒
�̂�Φ0⟩ =  𝐸CC⟨Φ0|𝑒

�̂�Φ0⟩.                                (2.30) 

In the r.h.s. of Eq. (2.30), the matrix elements contain products like Φ0�̂�Φ0, Φ0
1

2
�̂�2Φ0, 

and so on.  Because of the orthogonality of the spin-orbitals in Φ0 and excited 

determinants, integrals over such products vanish and Eq. (2.30) simplifies to 

⟨Φ0|�̂�|𝑒
�̂�Φ0⟩ =  𝐸CC,                                                (2.31) 

⟨Φ0|𝑒
�̂�Φ0⟩ =  ⟨Φ0|Φ0⟩ = 1.                                        (2.32) 
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To determine the amplitudes, Eq. (2.29) is projected on the space of singly, 

doubly, etc. excited determinants. In the case of the CCSD method, the projection 

becomes 

⟨Φ𝑖
𝑎|�̂�|𝑒�̂�Φ0⟩ =  𝐸CC⟨Φ𝑖

𝑎|𝑒�̂�Φ0⟩,                                     (2.33) 

⟨Φ𝑖𝑗
𝑎𝑏|�̂�|𝑒�̂�Φ0⟩ =  𝐸CC⟨Φ𝑖𝑗

𝑎𝑏|𝑒�̂�Φ0⟩.                                  (2.34) 

Resulting from Eqs. (2.33-2.34) are two sets of coupled nonlinear equations 

with single (Eq. 2.33) and double (Eq. 2.34) amplitudes as unknowns.18 Once the 

equations are solved and the amplitudes are computed, the coupled cluster energy can 

be calculated using Eq. (2.30). While the described procedure produces the exact 

solution of the Schrodinger equation in a given one-electron basis, in practice it is only 

feasible to use truncated forms of the operator �̂�. For the CCD and CCSD methods, the 

computational cost scales as 𝑁6, where 𝑁 is the number of one-electron basis functions. 

The coupled cluster method with single, double, and triple excitations, CCSD(T), is 

very accurate in recovering the correlation energy. However, the CCSDT method scales 

as 𝑁8 and is therefore applicable only to small systems. The CCSD(T) method, which 

scales as 𝑁7 thanks to the triple excitations accounted with the perturbation theory, is 

considered to be a golden standard of quantum chemistry.22 Moreover, the equation-of-

motion coupled cluster (EOM-CC) theory is one of the most widespread approach to 

study electronic excited states in atoms and molecules.23 
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B. Multireference Methods 

Another approach to include electron correlation is a generalization of the 

Hartree-Fock wave function to multiple Slater determinants, i.e. multireference 

approach.1-2 Following the multireference approach, an exact solution of the 

Schrödinger equation can be obtained using the full configuration interaction (full CI) 

wave function by generating all possible excitations of electrons from the reference 

Hartree-Fock occupied to virtual spin-orbitals: 

Ψ = 𝑐0Φ+ ∑ ∑𝑐𝑖
𝑎Φ𝑖

𝑎

𝑁

𝑖=1

𝐾

𝑎=𝑁+1

+ ∑ ∑ 𝑐𝑖𝑗
𝑎𝑏Φ𝑖𝑗

𝑎𝑏

𝑖,𝑗>𝑖𝑎,𝑏>𝑎

+ ∑ ∑ 𝑐𝑖𝑗𝑘
𝑎𝑏𝑑Φ𝑖𝑗𝑘

𝑎𝑏𝑑

𝑘>𝑗>𝑖𝑑>𝑏>𝑎

… , (2.35) 

where Ψ is the full CI wave function and 𝑐0, 𝑐𝑖
𝑎, 𝑐𝑖𝑗

𝑎𝑏 , 𝑐𝑖𝑗𝑘
𝑎𝑏𝑑are CI coefficients in front of 

the reference, singly, doubly, triply, and higher-order excited determinants. If not stated 

otherwise, Ψ and Φ denote the exact and reference Hartree-Fock wave functions of a 

ground state (Ψ ≡ Ψ0 and Φ ≡ Φ0), correspondingly. Solving the full CI problem 

recovers all the static and dynamic electron correlation and is equivalent to the exact 

solution of the Schrödinger equation. However, it can be done only for systems with 

very few electrons, since the number of excited determinants grows factorially with the 

numbers of electrons and orbitals. 

A practical way to overcome the dimensionality problem of full CI is to reduce 

the number of excited determinants that form Ψ. Such methods are used to recover the 

static electron correlation and as well account for dynamic correlation to some extent. 

In a multiconfigurational self-consistent field (MCSCF) method11, both the number of 

electrons and orbitals involved in the generation of the excited determinants are 

truncated. A particularly important form of MCSCF is the complete active space SCF 
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(CASSCF) method,12 which performs a full CI inside a preselected space of 𝑛 electrons 

and 𝑚 orbitals, CASSCF(𝑛, 𝑚), as shown in Figure 2.1. 

 

Figure 2.1.  Partition of the molecular spin-orbital space in the complete active space 

(CAS) formalism. The frozen HF spin-orbitals are excluded from the CASSCF orbital 

optimization, the rest of the spin-orbitals are optimized variationally. In this example, 

the active space consists of three electrons in four orbitals. 

 

A particular problem of the multireference methods is the choice of the active 

space to construct excited determinants. The choice of the active space requires a  

careful analysis of the molecular orbital space. For example, when CASSCF or other 

multireference method is used to study mechanisms of chemical reactions, the active 

space must include all the orbitals that are localized on the atoms and bonds involved 

in the chemical transformations. A more general prescription to determine the active 

space is based on occupation numbers of the natural orbitals.13  
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There exist different approaches to account for the dynamic correlation in the 

multireference methods. One is to perform a subsequent configuration interaction to 

augment the reference wave function with determinants obtained by all possible n-tuple 

excitations from the MCSCF or CASSCF reference determinants to the virtual spin-

orbitals. This method is called a multireference configuration interaction (MRCI).14 In 

its most widespread version, MRCI includes all single and double excitations from the 

reference wave function (MRCISD). Whereas the MCSCF (or CASSCF) wave function 

is optimized with respect to both orbital and expansion coefficients, in the MRCI 

methods, the orbitals are frozen, and the wave function is variationally optimized by 

changing the CI expansion coefficients in front of determinants. 

Another approach to account for the dynamic correlation in multireference 

methods is to use perturbative corrections. The resulting class of methods is generally 

called the multireference perturbation theory (MRPT).15-17 In these methods, the 

MCSCF (CASSCF) wave function is chosen as a zero-order wave function. The MRPT 

methods are differ by the choice of the perturbation and the zero-order Hamiltonian. 

For example, in the popular complete active space second-order perturbation theory 

(CASPT2) method,15 the perturbation is defined as the electron-electron interaction 

between CAS electrons in the outer space, i.e. in the space of virtual orbitals. 

Specifically, the perturbation becomes all the double excitations of all CAS electrons 

to all virtual orbitals, also known as the internally contracted formalism. The single 

excitations are also included as a subspace. The higher-order excitations do not 

contribute to the first-order perturbation of the wavefunction. The CASPT2 method 
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uses the Møller–Plesset zero-order Hamiltonian as a sum of one-electron Fock 

operators, �̂�. 

Given below is a short summary of the main steps behind multireference 

calculations. Note that unlike MCSCF, the CI method minimizes energy of a system 

only with respect to the CI expansion coefficients in front of determinants and leaves 

orbitals unrelaxed. Therefore, for simplification, we describe main steps of a CI 

calculation. Energy minimization in the CI method is formulated as a constrained 

optimization problem with requirement that the total electron wavefunction Ψ (Eq.  

2.35) is normalized, leading to minimization of the following Lagrangian: 

𝐿 =  ⟨Ψ|�̂�|Ψ⟩ − 𝜆(⟨Ψ|Ψ⟩ − 1),                                        (2.36) 

where 𝜆 is the Lagrange multiplier. A minimum of energy associated with the 

Lagrangian 𝐿 has to obey the following condition: 

𝜕𝐿

𝜕𝐜
= 𝟎, (𝐇CI − 𝐸𝐈)𝐜 = 𝟎,                                      (2.37) 

where the first expression is the stationary condition, which results in the system of 

linear equations written in the second expression. This system of equations has a 

nontrivial solution only when the determinant of the matrix 𝐇CI is equal to zero: 

|

𝐻00 − 𝐸 𝐻12 ⋯ 𝐻1𝑁
𝐻21 𝐻11 − 𝐸 ⋯ 𝐻2𝑁
⋮
𝐻𝑁1

⋮
𝐻𝑁2

⋱
⋯

⋮
𝐻𝑁𝑁 − 𝐸

| = 0,                              (2.38) 
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where H𝑖𝑗 = ⟨Φ𝑖|�̂�|Φ𝑗⟩ is the Hamiltonian matrix element between two determinants. 

The main computational efforts associated with the CI method is the construction and 

diagonalization of the 𝐇CI matrix. The computational cost is reduced due to the 

following features: 

1) The Hamiltonian Ĥ bears no reference to the electron spin. Therefore, the H𝑖𝑗 

matrix elements are zero if Φ𝑖 and Φ𝑗 belong to different spin multiplicities; 

2) According to the Slater-Condon rules, all the matrix elements with Φ𝑖 and Φ𝑗 

differ by three or more occupied orbitals are equal to zero; 

3) According to the Brillouin’s theorem, all matrix elements between the HF 

reference detriment Φ0 and all singly excited determinants are zero; 

4) If a system can be described by a molecular point group symmetry, the number 

of the matrix H𝑖𝑗 that needed to be calculated is reduced; 

The size of the very sparse CI matrix 𝐇CI (see features 1-4) grows factorially 

with the number of allowed excitations. Therefore, it is impractical to use standard 

diagonalization methods. In addition, it is usually unnecessary, as only a few lowest 

eigenvalues that represent the ground and excited state energies are sought for. In 

practice an iterative direct CI algorithm is usually used, which avoids construction of 

the full 𝐇CI matrix and calculates only few lowest eigenvalues. 

 

IV. Dirac-Hartree-Fock Method 

In this Section, we briefly describe main ideas behind relativistic electronic 

structure calculations. The computational protocol of such calculations closely 

resembles the one used to solve the Schrödinger equation. However, in the case of the 
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Dirac equation, its compliance with special relativity makes it possible to exploit 

additional symmetry and algebra to speed up the calculations and, more importantly, 

better understand the underlying physics.24-25 There are several general and specific to 

this work approximations used in the relativistic calculations. For example, it turns out 

that the Born-Oppenheimer (BO) approximation violates the theory of the special 

relativity because BO treats atomic nuclei as stationary points and, therefore, creates a 

preferred reference frame. However, since the BO approximation greatly simplifies the 

solution of the wave equation by allowing to focus on the electronic degrees of freedom 

only, it is used in practical relativistic calculations. In addition, the hyperfine 

interactions between the nuclear and electron spins are usually excluded from 

relativistic molecular calculations because they break the symmetry of the Dirac 

equation discussed below. Finally, the relativistic calculations performed in this work 

employed only the non-relativistic Coulomb term to describe the electron-electron 

interaction. Therefore, the relativistic corrections for the two-electron part of the Dirac 

Hamiltonian were neglected. 

Assuming the approximations described in the previous paragraph, the Dirac-

Coulomb Hamiltonian describes the many-body system of relativistic electrons: 

�̂�𝐷 = ∑ℎ̂𝑖
𝐷

𝑖

+ �̂�𝑒𝑒
𝐶 + �̂�𝑛𝑛,                                         (2.39) 

which is equivalent in form to Eq. (1.8) but with the �̂�𝑒𝑒
𝐶𝐵 Coulomb-Breit operator 

replaced by the Coulomb interaction and the vector potential 𝑨 is excluded. The first 

term in Eq. (1.8) is the sum of the one-electron Dirac operators (Eqs. 1.9-1.11). 
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In the absence of external electromagnetic fields, the Hamiltonian �̂�𝐷 is Lorentz 

invariant. Therefore, the properties of �̂�𝐷 can be studied using the symmetry operations 

of space and time. The spatial symmetry operations are described by unitary operators. 

In the non-relativistic limit, all possible spatial symmetry operations of a given 

molecule are described by a symmetry point group. However, in the relativistic case, 

the spatial symmetry alone is lost due to the coupling of the spatial and spin degrees of 

freedom.24 Therefore, to exploit molecular symmetry, symmetry point groups must be 

extended to include operations in a spinor space. The spatial symmetry properties of a 

spinor can be studied by considering infinitesimal rotations around a quantization axis: 

�̂�(𝜙, 𝒏) =  𝑒−𝑖𝜙(�̂�∙𝒏),                                               (2.40) 

where operator �̂� represents the rotations generated by the total angular momentum �̂� 

(not to be confused with the Coulomb operator in Eq. (2.11)). Eq. (2.40) shows that for 

half-integer (fermion) momentum 𝐽, rotations by 𝜙 and 𝜙 + 2𝜋 are not identical but 

differ in sign. Therefore, the rotation by 2𝜋 cannot be used as identity operator �̂� for 

half-integer spin. Explicitly, it can be shown that the spin rotations are represented as 

�̂�2
𝑞
= −𝑖𝜌𝛼𝑞 , 𝜌𝛼𝑞 = (

𝜎𝑞 02
02 𝜎𝑞

) , 𝜌 = (
𝐼2 02
02 𝐼2

),                   (2.41) 

where �̂�2
𝑞
 is the rotation operator around axis 𝑞 = 𝑥, 𝑦, 𝑧, 𝐼2 is the 2 × 2 identity matrix, 

and 𝛼𝑞 are the Dirac matrices. Then, two subsequent rotations around 𝑞 give �̂�2
𝑞�̂�2

𝑞 =

−𝐼4, where 𝐼4 is an identity operator. This demonstrates that rather rotations by 𝜙 and 

𝜙 + 4𝜋 are identical, and therefore the spin identity operator is �̅� = 4𝜋 ≠ �̂�, where 

�̂� = 2𝜋 is the identity operator of the nonrelativistic spatial symmetry point group. 
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Other spin symmetry operations can be derived in a similar manner remembering that 

the operator (𝛂 ∙ 𝐩) is invariant under all symmetry operations. For molecular systems 

with the half-integer total angular momentum, the symmetry operations form the so-

called double groups, where the number of symmetry operations is doubled.24-25 

However, the number of irreducible representations is generally not doubled. These 

extra irreducible representations of a double group are spanned by fermionic functions 

and are often called fermion representations. The regular irreducible representations of 

single groups are then called boson representations. Therefore, restoring (and 

extending) the spatial symmetry in relativistic equations allows to exploit the symmetry 

properties of spinors and operators in a full analogue with non-relativistic calculations. 

In addition, the time-reversal symmetry can be used to explore additional 

properties of the Dirac equation. Specifically, we will see how the algebra of the Pauli 

spin matrices 𝝈 forming the Dirac matrices 𝛂 connects the time-reversal symmetry of 

the Dirac Hamiltonian and the quaternion algebra. In turn, reformulation of the Dirac 

equation using the quaternion algebra is a very efficient computational approach as it 

allows to i) block diagonalize the Fock matrix and ii) due to the time-reversal symmetry, 

consider only the upper block of the block-diagonalized Fock matrix. 

Transformation of the Dirac equation under the time-reversal symmetry can be 

described with an antiunitary operator Α̂.24,26,27 Since Α̂ is antiunitary, it can be 

represented as a product of the unitary operator �̂� and the antiunitary operator �̂�0. The 

explicit form of the time-reversal operator Α̂ is  

Α̂ = −𝑖(𝐼2⊗𝜎𝑦)�̂�0.                                                  (2.42) 
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It can be shown that the 𝛂 matrices transform as coordinates under the time-reversal 

symmetry. Therefore, the unitary operator �̂� can be identified as rotation about the y-

axis, �̂� = −𝑖(𝐼2⊗𝜎𝑦). Studies of the time-reversal symmetry of the Dirac equation  

showed the following. 

1) The operator Α̂ commutes with the Dirac Hamiltonian �̂�𝐷. Therefore, 

eigenstates of �̂�𝐷 are simultaneously the eigenstates of Α̂. For a system of total half-

integer spin, eigenstates of Α̂ has a following property 

Α̂𝑎𝜓 = 𝑎∗Α̂𝜓, Α̂2𝜓 = −𝜓, Α̂𝜓 = �̅�,                        (2.43) 

where 𝑎 is an arbitrary complex multiplier, and (𝜓, �̅�) form Kramer pairs. Therefore, 

an eigenstate 𝜓 of a system with the total half-integer spin is at least two-fold 

degenerate. A union of two sets, {𝜓} and {�̅�}, forms a restricted Kramer basis. 

2) Algebra of the Pauli spin matrices 𝝈 = {𝜎𝑥, 𝜎𝑦, 𝜎𝑧} multiplied by the imaginary 

number 𝑖, is identical to the quaternion algebra. Quaternions can be though of as 

extensions of complex numbers to three dimensions. A quaternion number has the 

following form: 

𝑞 = 𝑎 + 𝑏𝑖̆ + 𝑐𝑗̆ + 𝑑�̆�,                                            (2.44) 

where 𝑎, 𝑏, 𝑐, and 𝑑 ∈  ℝ, and {𝑖̆, 𝑗̆, �̆�} are basic quaternions. Due to the connection 

of quaternions with the Pauli matrices, the following basis can be defined: 

𝑒1 = 𝑖̆ ↔ 𝑖𝜎𝑧 , 𝑒2 = 𝑗̆ ↔ 𝑖𝜎𝑦 , 𝑒3 = �̆� ↔ 𝑖𝜎𝑥.                (2.45) 

In this basis, a quaternion number can be represented as 𝑞 = 𝑠 + 𝑖(𝝈 ∙ 𝐯), where 𝑠 

and 𝐯 are the scalar and vector parts of the quaternion. The quaternion algebra is not 
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commutative, and therefore 𝑞1𝑞2 ≠ 𝑞2𝑞1. The multiplication algebra of quaternions 

is identical to those of spin matrices: 

𝑒𝑖𝑒𝑗 = −𝛿𝑖𝑗 − 𝜖𝑖𝑗𝑘𝑒𝑘,                                              (2.46) 

where 𝛿 is the Kronecker delta and 𝜖𝑖𝑗𝑘 is the Levi-Cevita symbol. 

3) There is an explicit connection between the time-reversal symmetry and the 

quaternion algebra. In the restricted Kramer basis, a matrix representation of a 

Hermitian operator �̂�, which is symmetric under time-reversal symmetry (e.g. Fock 

operator), takes a special form: 

𝑶 = (
𝑨 𝑩
−𝑩∗ 𝑨∗

) , 𝑨† = 𝑨, 𝑩𝑇 = −𝑩,                     (2.47) 

where matrix 𝑨 contains the matrix elements of �̂� between {𝜓} eigenstates of �̂�𝐷  

only, while the elements of 𝑩 are calculated between {𝜓} and {�̅�}  . The matrix 𝑶 

can be expanded in the quaternion basis: 

𝑶 = 𝐼2⊗Re(𝑨) + [𝑖𝜎𝑧] ⊗ Im(𝑨) + [𝑖𝜎𝑦] ⊗ Re(𝑩) + [𝑖𝜎𝑥] ⊗ Im(𝑩). (2.48) 

Because the operator �̂� is symmetric under the time-reversal transformation, its 

matrix form 𝑶 is doubly degenerate. Therefore, 𝑶 can be block-diagonalized by a 

unitary transformation �̂�, which matrix form is: 

𝑼 = 
1

√2
(
𝑰 𝑗̆𝑰
𝑗̆𝑰 𝑰

),                                                   (2.49) 

𝑶Q = 𝑼†𝑶𝑼 = (
𝑨 + 𝑩𝑗̆ 0

0 −�̆�(𝑨 + 𝑩𝑗̆)�̆�
).                            (2.50) 
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Therefore, with the aid of the time-reversal symmetry, the Dirac-Hartree-Fock 

method26,27 can be formulated in the quaternion form: 

𝑭Q𝐜Q = 휀𝑺Q𝐜Q,                                                    (2.51) 

where 𝑭Q is the quaternion-form matrix of the Fock operator �̂� with the block-diagonal 

structure of Eq. (2.47), 𝐜 is the vector of complex expansion coefficients and the 

quaternion-form overlap matrix 𝑺Q has a block-diagonal form: 

𝑺Q = (𝑺
𝐿𝐿 0
0 𝑺𝑆𝑆

) , 𝑆𝑖𝑗
𝑋𝑌 = ⟨𝜒𝑖

𝑋|𝜒𝑗
𝑌⟩𝛿𝑋𝑌, 𝑋, 𝑌 = {L𝛼, L𝛽, S𝛼, S𝛽},    (2.52) 

where 𝛼 and 𝛽 refer to two spin degrees of freedom, and L and S denote large and small 

components of a 𝑘-th spinor 𝜓𝑘 spanned by the real basis {𝜒}: 

𝜓𝑘 =

(

 
 

𝜓𝑘
L𝛼

𝜓𝑘
S𝛼

𝜓𝑘
L𝛽

𝜓𝑘
S𝛽
)

 
 
,𝜓𝑘 = (

𝝌L 0

0 𝝌S
) (
𝐜𝑘
𝛼

𝐜𝑘
𝛽).                          (2.53) 

In conclusion, the time-reversal symmetry naturally leads to reformulation of 

the Dirac-Hartree-Fock method using the quaternion algebra. Such reformulation 

allows not only to fully explore the structure and properties of the Dirac equation, but 

also leads to significant computational benefits. In particular, the matrix of the Fock 

operator becomes block-diagonal, which reduces the number of operations associated 

with the construction of the Fock matrix by a factor of two. Additional reductions in 

the computational cost can be achieved by using the symmetry of spatial molecular 

point group. It can be shown that for some point groups, the use of spatial symmetry 

can reduce the quaternion algebra to the complex or real algebras. 
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Abstract 

We present a nonadiabatic statistical theory (NAST) package for predicting 

kinetics of spin-dependent processes, such as intersystem crossings, spin-forbidden 

unimolecular reactions, and spin crossovers. The NAST package can calculate the 

probabilities and rates of transitions between the electronic states of different spin 

multiplicities. Both the microcanonical (energy dependent) and canonical (temperature 

dependent) rate constants can be obtained. Quantum effects, including tunneling, zero-

point vibrational energy, and reaction path interference can be accounted for. In the 

limit of an adiabatic unimolecular reaction proceeding on a single electronic state, 

NAST reduces to the traditional transition state theory. Because NAST requires 

molecular properties only at a few points on potential energy surfaces, it can be applied 

to large molecular systems, used with accurate high-level electronic structure methods, 

and employed to study slow nonadiabatic processes. The essential NAST input data 

includes the nuclear Hessian at the reactant minimum, as well as the nuclear Hessians, 

energy gradients, and spin-orbit coupling at the minimum energy crossing point 
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(MECP) between two states. The additional computational tools included in the NAST 

package can be used to extract the required input data from the output files of electronic 

structure packages, calculate the effective Hessian at MECP, and fit the reaction 

coordinate for more advanced NAST calculations. We describe the theory, its 

implementation, and three examples of application to different molecular systems. 
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I. Introduction 

Spin-dependent processes, including transitions between electronic states 

characterized by different values of total electron spin and magnetic quantum numbers, 

play an important role in many areas of atomic and molecular science. These include 

multi-state reactivity in transition-metal based catalysis1-6 and on semiconductor 

surfaces,7 design of photosensitizers for various applications,8-10 and development of 

single-molecule magnets for applications in quantum sensing, quantum computing and 

spintronics.11-15 For example, in photodynamic therapy, intersystem crossing (ISC) 

populates a manifold of low-lying triplet states of a photosensitizer. The following spin-

allowed triplet-triplet reaction with molecular oxygen produces highly reactive oxygen 

species, which destroys cancer cells.8-10 Delayed fluorescence in organic light-emitting 

diodes (OLEDs) is due to a thermally activated reverse ISC between close-lying excited 

triplet and singlet electronic states.16-20 A nitrogen-vacancy (NV) center in diamond – 

one of the most promising candidates for a spin-based qubit – is initialized through the 

ISC between optically-excited triplet and singlet states.15 Photolysis of axial ligands 

from active sites of hemeproteins proceeds via several ISCs on a femtosecond time 

scale.21-25 Spin-forbidden low-energy reaction pathways have been proposed for the 

catalytic mechanisms of molecular hydrogen activation on the NiFe-hydrogenase 

metalloprotein6 and the C-H bond activation on Fe(II).4 Many ligand-metal binding and 

dissociation reactions, such as the CO binding to Fe(CO)4 
26,27 and the diatomic 

molecules binding to the active site of hemeproteins, 28-30 are formally spin-forbidden. 

Spin-crossovers and spin-spin magnetic exchange interactions in d4 – d7 transition 

metal complexes play a fundamental role in the design of magnetic bistable materials.31-

39  



56 

 

 

Predicting kinetics of spin-dependent processes is important for understanding 

the mechanisms of thermally-activated spin-forbidden reactions, ISCs in 

photochemistry, and spin-crossovers in transition metal-based systems. There are two 

main approaches to calculate the rate constants and lifetimes of electronic states in spin-

dependent processes. In ab initio nonadiabatic molecular dynamics, the classical or 

quantum nuclei are time propagated on the coupled potential energy surfaces (PESs) of 

multiple spin states,40-49 and the time evolution of nuclear trajectories is used to 

statistically describe the population transfer between the interacting electronic states. 

Such molecular dynamics simulations can be very accurate; however, they often require 

thousands of electronic structure calculations and can be computationally expensive if 

not prohibitive. An alternative nonadiabatic statistical theory (NAST) approach, also 

called nonadiabatic transition state theory, 4,25,29,43,49-58 largely eliminates the 

computational burden by exploring only the critical points on PESs. This allows to use 

NAST with the high-level electronic structure methods and model even slow 

nonadiabatic kinetics, which is intractable for molecular dynamics. NAST can be 

viewed as an extension of traditional transition state (TST) theory60-65 to the 

nonadiabatic processes. Similarly to TST, NAST assumes that (i) intramolecular energy 

is statistically distributed among the molecular degrees of freedom (DOF) and (ii) a 

one-dimensional reaction coordinate can be separated from the remaining spectator 

DOF. Both microcanonical (energy-dependent) and canonical (temperature-dependent) 

ensembles can be used to describe internal states leading to two formulations of NAST. 

Transitions between PESs of two electronic states with different spin multiplicities are 

driven by various spin-dependent interactions, among which the spin-orbit coupling 

(SOC) is often the strongest.66-69 The crossing seam between such two PESs is 3N-7 
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dimensional, where N is the number of atoms in a molecule, and the seven omitted 

dimensions include three translational, three rotational and a reaction coordinate DOF. 

It is also assumed that nonadiabatic transitions between two crossing PESs can be 

described by effective transitions at a minimum energy crossing point (MECP) on the 

seam,4 which plays a similar role to a saddle point in TST (Figure 3.1). At MECP, the 

reaction coordinate is orthogonal to the rest of (spectator) DOF. To evaluate the rate 

constant using NAST, the nuclear Hessian at the reactant minimum, as well as the 

energy gradients, nuclear Hessians and the SOC at MECP are needed. A more advanced 

treatment requires the knowledge of one-dimensional minimum energy paths from 

MECP to the reactant and product minima.59,70 The statistical nature of NAST makes it 

relatively simple to account for the quantum effects, such as tunneling and zero-point 

vibrational energy (ZPE).59 

 

Figure 3.1. Intersection of potential energy surfaces of two electronic states with 

different spin multiplicities. Point 1 is the reactant minimum, point 2 is the minimum 

energy crossing point (MECP), point 3 is the product minimum, and ∆𝐠 =  |𝐠1 − 𝐠2| 
is the gradient vector orthogonal to the crossing seam and aligned with the reaction 

coordinate at the MECP. The dashed curve shows the minimum energy path connecting 

MECP with the reactant and product minima. 
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In this article, we present the NAST package for investigating the mechanisms 

and predicting the rates of spin-dependent processes. The package includes an 

implementation of NAST and additional computational tools for processing the output 

of electronic structure calculations. In Section 2, we describe the fundamentals of 

NAST. In Section 3, we discuss the NAST package capabilities and implementation. In 

Section 4, we present several examples of NAST application. In conclusion, we 

summarize the main strengths and discuss future extensions of NAST. 

 

II. Nonadiabatic Statistical Theory 

A. Microcanonical Rate Constants 

 The microcanonical rate constant 𝑘(𝐸) of a unimolecular reaction is calculated 

as a function of the internal (rovibrational) energy 𝐸, 

𝑘(𝐸) =  𝜎
𝑁X(𝐸)

ℎ𝜌R(𝐸)
,                                                           (3.1) 

𝑁X(𝐸) =  ∫ 𝜌X

𝐸

0

(𝐸 − 휀⊥)𝑃(휀⊥)𝑑휀⊥,                                        (3.2) 

𝜎 =
σR
𝜎X
𝛾X,                                                               (3.3) 

where 𝑁X(𝐸) is the effective number of states at the MECP, 𝜌R and 𝜌X are the densities 

of rovibrational states at reactant and MECP, respectively, and ℎ is Planck’s constant. 

Calculations of the densities of rovibrational states are described in SI. The interstate 

transition probability 𝑃(휀⊥) is a function of the energy 휀⊥ partitioned in the reaction 

coordinate orthogonal to the crossing seam. The reaction path degeneracy 𝜎 is defined 
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in terms of the symmetry numbers of reactant (𝜎𝑅) and MECP (𝜎X),71 and the number 

of chiral MECP isomers (𝛾X).72  

 

B. Microcanonical Transition Probabilities 

The most popular ways to calculate the interstate transition probability 𝑃(휀⊥) in 

Eq. (3.2) are the double passage Landau-Zener (LZ) and weak coupling (WC) 

formulas.4,55,73,74 These formulas yield a cumulative probability of transition at MECP 

for the forward (primary passage) and backward (secondary passages) motions along 

the reaction coordinate, 

𝑃LZ(휀⊥) = 𝑝LZ + (1 − 𝑝LZ)𝑝LZ = 2𝑝LZ − 𝑝LZ
2,                               (3.4) 

𝑝LZ(휀⊥) = 1 − exp(−
2𝜋𝐻SO

2

ℏ|Δ𝐠|
√

𝜇⊥
2(휀⊥ − 𝐸𝑋)

),                                  (3.5) 

𝑃WC(휀⊥) = 4𝜋2𝐻SO
2 (

2𝜇⊥
ℏ2�̅�|Δ𝐠|

)

2
3
Ai2(−(휀⊥ − 𝐸𝑋) (

2𝜇⊥|Δ𝐠|
2

ℏ2�̅�4
)

1
3

),              (3.6) 

where 𝑝LZ is the single-passage LZ probability, 𝐻SO is the spin-orbit coupling constant, 

ℏ is reduced Planck’s constant. The norm of the gradient parallel to the reaction 

coordinate |Δ𝐠| =  |𝐠1 − 𝐠2| and the mean gradient �̅� =  (|𝐠1||𝐠2|)
1/2 are defined in 

terms of the gradients of two crossing PESs at MECP, 𝐠1 and 𝐠2. In Eqs. (3.5 and 3.6), 

𝜇⊥ is the reduced mass for the motion along the reaction coordinate, and 𝐸X is the 

MECP energy barrier with respect to the reactant minimum. In Eq. (3.6), Ai is the Airy 

function.  
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To account for ZPE, the MECP energy can be redefined as 𝐸X → 𝐸X + 𝑍𝑃𝐸X −

𝑍𝑃𝐸R. For a non-linear molecule, the zero-point energies at the reactant minimum and 

MECP are defined as: 

𝑍𝑃𝐸R =
1

2
∑ ℏ𝜔𝑖

R

3𝑁−6

𝑖=1

,                                                      (3.7) 

    𝑍𝑃𝐸X =
1

2
∑ ℏ𝜔𝑖

X

3𝑁−7

𝑖=1

,                                                       (3.8) 

where 𝜔𝑖
R and 𝜔𝑖

X are the fundamental transition frequencies of reactant and MECP, 

respectively. In Eq. (3.7), index i runs over 3𝑁 − 6 vibrational DOF, while only 3𝑁 −

7 DOF orthogonal to the reaction coordinate contribute to ZPE at MECP. Note that 

using 𝑍𝑃𝐸X at the classical turning point along the minimum energy reaction path is 

equivalent to the zero-curvature tunneling approximation in TST, where the density of 

the rovibrational states is approximated by the density at TS and the effective TS barrier 

is reduced by the difference between 𝑍𝑃𝐸R and 𝑍𝑃𝐸TS. 

The LZ probability is defined only at the reaction energy 휀⊥ above MECP, and 

therefore does not account for quantum tunneling through the MECP barrier. In 

addition, the LZ probability formula does not describe the quantum interference 

between primary and secondary passages at MECP.4 These two quantum effects are 

included in the WC probability formula. However, both the LZ and WC formulas are 

only valid within the limited region of the parameters 휀⊥, 𝜇⊥, 𝐻SO and the energy 

gradients. For example, the WC formula can predict a greater than unit probability of 

transition, if the interacting states are strongly coupled as often the case in the 

complexes containing second- and third-row transition metals.4 In addition, the LZ and 
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WC formulas assume a linear behavior of the two crossing potentials, which is often a 

reasonable approximation in the vicinity of MECP but not in the regions closer to the 

reactant and product minima. A more sophisticated approach to predict transition 

probabilities, which does not suffer from these limitations, has been introduced by Zhu 

and Nakamura (ZN).75-80 The ZN probability expressions require knowledge of the 

entire one-dimensional minimum energy path connecting MECP to the reactant and 

product minima. This path can be obtained in either spin-diabatic or spin-adiabatic 

representations.49 The ZN theory distinguishes two intersection types between PESs: a 

sloped intersection (𝐠1 ∙ 𝐠2 > 0) and a peaked intersection (𝐠1 ∙ 𝐠2 < 0) (Figure S1). 

Currently, in the NAST package, the ZN probability is implemented only for a sloped 

intersection in the spin-adiabatic representation. Because most of the electronic 

structure calculations produce spin-diabatic PESs, the adiabatic potentials are obtained 

by diagonalizing the following matrix: 

(
𝐸1
𝑑(𝑟) 𝐻SO
𝐻SO 𝐸2

𝑑(𝑟)
),                                                   (3.9) 

where 𝐸1
𝑑 and 𝐸2

𝑑 are the spin-diabatic energies of two electronic states with arbitrary 

spin multiplicities, r is the arc length along the minimum energy reaction path in mass-

scaled coordinates81 with the reduced mass set to 1 amu, and 𝐻SO is the spin-orbit 

coupling constant at MECP. The diagonalization of the matrix defined by Eq. (3.9) 

produces two eigenvalues corresponding to the adiabatic (spin-mixed) state energies, 

𝐸1 and 𝐸2 (Figure 2). The ZN double passage transition probability is given by 

𝑃ZN(휀⊥) = 4𝑝ZN(1 − 𝑝ZN)sin
2(𝜓),                                     (3.10) 
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where 𝜓 is the overall transition phase. The single passage probability 𝑝ZN defined in 

SI depends on several parameters that are functions of the energies at the smallest 

energy gap point 𝑟0, the turning points at the MECP energy 𝑡1
0 and 𝑡2

0, and the turning 

points 𝑡1 and 𝑡2 corresponding to the specific value of the energy 휀⊥ (Figure 3.2).  

 

Figure 3.2. Sloped intersection of two spin-adiabatic potentials with the energies E1 

(blue) and E2 (red) along the reaction coordinate r. Points 𝑟0, 𝑡1
0, 𝑡2

0, 𝑡1 and 𝑡2 are defined 

in the text. 

 

C. Canonical Rate Constants 

A canonical, temperature-dependent, rate constant can be obtained by averaging 

the microcanonical rate constant (Eq. 3.1) over the internal energy Boltzmann 

distribution, leading to the following expression: 

𝑘(𝑇) =  
𝜎

ℎ𝑄R(𝑇)
∫ 𝑁X(𝐸)𝑒

−𝐸/𝑘B𝑇𝑑𝐸

∞

0

,                                 (3.11) 

𝑄R(𝑇) =  ∫ 𝜌R(𝐸) 𝑒
−𝐸/𝑘B𝑇 𝑑𝐸

∞

0

,                                (3.12) 
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where 𝑄R is the partition function of the reactant, T is the temperature, and 𝑘B is the 

Boltzmann constant. 

 

D. Velocity-Averaged Probabilities 

Velocity-averaged probabilities provide a simple estimate for the likelihood of 

spin-forbidden reaction mechanism as a function of temperature. The velocity-averaged 

single passage LZ probabilities (Eqs. 3.13 and 3.14) are derived by averaging the 

microcanonical LZ probability (Eq. 3.5) using the Maxwell-Boltzmann (MB) and 

normalized Kuki (K) distributions of the mass-weighted velocity 𝜐2 =  2(휀⊥ − 𝐸X).
6-82 

The corresponding double passage LZ probabilities can be obtained using Eq. (3.4). 

The velocity-averaged WC probabilities (Eqs. 3.15 and 3.16) can also be derived using 

the Maxwell-Boltzmann and normalized Kuki distributions. It is important to note that, 

in contrast to the microcanonical WC probability, the velocity-averaged WC 

probabilities do not account for quantum tunneling. 

〈𝑝LZ(𝑇)〉MB = 1 − (
2

𝜋𝑘B𝑇
)

1
2
∫ exp(−

2𝜋𝐻SO
2 𝜇⊥

1
2

ℏ|Δ𝐠|𝜐
) exp(−

𝜐2

2𝑘B𝑇
)𝑑𝜐,

∞

0

        (3.13) 

〈𝑝LZ(𝑇)〉K = 1 − 
1

𝑘B𝑇
∫ 𝜐 exp(−

2𝜋𝐻SO
2 𝜇⊥

1
2

ℏ|Δ𝐠|𝜐
) exp(−

𝜐2

2𝑘B𝑇
)𝑑𝜐,

∞

0

        (3.14) 

〈𝑃WC(𝑇)〉MB =  𝛼 (
2

𝜋𝑘B𝑇
)

1
2
∫ Ai2 (−

1

2
𝜐2𝜇⊥𝛾)

∞

0

exp (−
𝜐2

2𝑘B𝑇
)𝑑𝜐,         (3.15) 

〈𝑃WC(𝑇)〉K = 
𝛼

𝑘B𝑇
∫ 𝜐 Ai2 (−

1

2
𝜐2𝜇⊥𝛾)

∞

0

exp (−
𝜐2

2𝑘B𝑇
)𝑑𝜐,       (3.16) 
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𝑎 =  4𝜋2𝐻SO
2 (

2𝜇⊥
ℏ2�̅�|Δ𝐠|

)

2
3
,                                                    (3.17) 

𝛾 = (
2𝜇⊥|Δ𝐠|

2

ℏ2�̅�4
)

1
3

.                                                       (3.18) 

 

F. Rate Constants and Transition Probabilities Between Individual MS 

Components of Spin States 

A simple approach to model transitions between electronic states with the 

different spin quantum numbers 𝑆 and 𝑆′ is to calculate the effective probabilities and 

rates accounting for all MS components of the spin multiplets. In this approach, the 

effective SOC, also called the SOC constant, is obtained as the RMS of the couplings 

between individual MS components, 

𝐻SO = ( ∑ ∑ |〈𝑆,𝑀𝑆|�̂�SO|𝑆
′, 𝑀𝑆′〉|

2
𝑆′

𝑀𝑆′=−𝑆
′

𝑆

𝑀𝑠=−𝑆

)

1
2⁄

.                     (3.19) 

In Eq. (19), �̂�SO is the spin-orbit operator; for example, from the Breit-Pauli 

Hamiltonian.67 This approach is easy to justify for a singlet-triplet crossing with the 

MECP energy gap between the two spin-adiabatic states equal to 2𝐻SO.4 However, for 

the states with higher spin multiplicities, for example a triplet-quintet crossing, there 

are multiple energy gaps between the adiabatic states. Therefore, employing a single 

effective SOC to calculate the transition probability and rate constant is not well-

justified. 
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This issue can be resolved by calculating the rate constants and transition 

probabilities between individual MS components of the spin multiplets. As an example, 

for a singlet-triplet crossing, the non-zero spin-orbit coupling matrix elements are  

𝑧 = ⟨0,0|�̂�SO|1, −1⟩, 𝑖𝑏 = ⟨0,0|�̂�SO|1,0⟩, 

𝑧∗ = ⟨0,0|�̂�SO|1, +1⟩,                                              (3.20) 

where z and z* are complex conjugate to each other, and b is real. The single-passage 

LZ probabilities 𝑝LZ
𝑀𝑆 , 𝑀𝑆′(휀⊥) between the components 𝑀𝑆  and 𝑀𝑆′  of the spin states 

𝑆 = 0 and 𝑆′=1 read 

𝑝LZ
0,−1(휀⊥) = 𝑝LZ

0,+1(휀⊥) = 1 − exp(−
2𝜋𝑧𝑧∗

ℏ|Δ𝐠|
√

𝜇⊥
2(휀⊥ − 𝐸X)

),                   (3.21) 

𝑝LZ
0,0(휀⊥) = 1 − exp(−

2𝜋𝑏2

ℏ|Δ𝐠|
√

𝜇⊥
2(휀⊥ − 𝐸X)

).                        (3.22) 

The double-passage probabilities 𝑃LZ
0,±1

 and 𝑃LZ
0,0 can be obtained from the single 

passage probabilities (Eq. 3.4) and employed to calculate the microcanonical rate 

constants between individual 𝑀𝑆 components, 

𝑘0,±1(𝐸) =
𝜎 

ℎ 𝜌R(𝐸)
∫  𝜌X(𝐸 − 휀⊥)𝑃LZ

0,±1(휀⊥)𝑑휀⊥

𝐸

0

,                       (3.23) 

𝑘0,0(𝐸) =
𝜎 

ℎ 𝜌R(𝐸)
∫  𝜌X(𝐸 − 휀⊥)𝑃LZ

0,0(휀⊥)𝑑휀⊥

𝐸

0

.                         (3.24) 
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The probabilities and rate constants between individual 𝑀𝑆 components can be 

calculated for any pair of spin states with |𝑆 −  𝑆′| =1, as shown in SI for a triplet-

quintet crossing. 

 

G. Transition State Theory Rate Constants 

For adiabatic reactions, both microcanonical and canonical NAST rate constants 

can be reduced to the traditional TST rate constants by replacing MECP with transition 

state (TS) and the transition probability in Eq. (3.2) with the Heaviside step function.83 

The canonical TST rate constant, obtained by averaging the microcanonical constant 

over the Boltzmann internal energy distribution, is equivalent to the traditional 

analytical TST expression:4 

𝑘(𝑇) = 𝜎
𝑘𝐵𝑇

ℎ

𝑄TS
𝑄R

𝑒−𝐸TS/𝑘B𝑇 ,                                    (3.25) 

where 𝑄TS and 𝑄R are partition functions of TS and reactant. 

 

H. Effective Hessian 

Calculation of the effective number of states 𝑁X(𝐸) defined in Eq. (3.2) requires 

the density of vibrational states at MECP, which can be obtained using the harmonic 

vibrational analysis.84-85  Since MECP is not a stationary point on either of two crossing 

PESs, a conventional vibrational analysis is not valid. The vibrational frequencies at 

MECP can be obtained from the effective Hessian matrix calculated from the state-

specific Hessians 𝐇1 and 𝐇2, and gradients at MECP:86 
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𝐇eff =
|𝐠1|𝐇2  ±  |𝐠2|𝐇1

|𝐠𝟏| ± |𝐠𝟐|
.                                          (3.26) 

The details of calculating effective Hessian are given in SI. 

 

III. NAST Package Capabilities and Implementation 

A. Forward and Reverse Rate Constants 

By default, the NAST package calculates only forward rate constants with both 

the LZ and WC transition probabilities. A forward direction is defined as the transition 

from the higher energy spin state (reactant) to the lower energy spin state (product). 

Such calculations require molecular properties only at the reactant minimum and 

MECP. However, calculation of the reverse rate constants can be requested in the same 

run, if molecular properties at the product minimum are provided. For such reverse rate 

calculations, the above definition of reactant and product prevents the reverse 

unphysical tunneling to the region below the reactant minimum where the density of 

states is zero (Figure 3.3). If only a forward rate constant with tunneling contribution is 

calculated, it is important to ensure that the reactant has a higher energy than the product 

to prevent contribution from unphysical tunneling to the rate constants. This is not 

required if the rate constants are calculated with the LZ probability or traditional TST, 

which do not account for tunneling. In the present implementation, the ZN transition 

probability can be only used to calculate a forward rate constant. For canonical rate 

constant calculations, the temperature range (default 290-300 K) and step (default 1 K) 

can be specified in the input file.  
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Figure 3.3. Definition of forward and reverse directions. The region of reverse 

unphysical tunneling is shown by the red box. 

 

B. Transition Probabilities 

The LZ, WC, and ZN probabilities (Eqs. 3.4-3.6 and 3.10) are used to calculate 

the microcanonical and canonical rate constants. The velocity-averaged LZ and WC 

probabilities (Eq. 3.13-3.16), which are calculated by default, can be used to obtain a 

qualitative understanding of the spin-dependent reaction kinetics. While calculations of  

the LZ and WC probabilities require molecular properties at reactants and MECP only, 

the ZN probability calculations require additional input data discussed together with the 

intrinsic reaction coordinate (IRC) fit code (Section III.G). 

 

C. Rate Constants and Transition Probabilities Between Individual MS 

Components of Spin States 

In addition to effective transition probabilities and rate constants between the 

spin manifolds with the different values of quantum number S, the NAST package can 
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calculate the transition probabilities and rate constants between individual MS 

components of different spin manifolds. In the current implementation, the MS-specific 

kinetics can be modeled only using the LZ formula. Such calculations can provide 

insight into the role of individual MS components in the overall spin-dependent kinetics. 

Moreover, working in the basis of individual MS components is necessary to study the 

effect of an external magnetic field on spin-dependent processes.  

 

D. Rate Constants in Solution 

Transition state theories for reactions in solution has been extensively discussed 

before.60,87-92 In the current NAST implementation, the solution phase effects can be 

modeled by simply assuming that all molecular rotations are frozen. In such 

calculations, only vibrational states contribute to the total density of states, and 

contributions from rotational states are ignored.  

 

E. Transition State Theory Rate Constants 

The NAST package can calculate the traditional TST rate constants for single-

state adiabatic reactions by replacing the MECP molecular properties with the TS 

properties (energy, vibrational frequencies, moments of inertia). Such TST calculations 

do not require spin-orbit couplings, energy gradients and reduced mass, and can be 

invoked with a separate keyword. 

 

F. Effective Hessian Tool effhess 

The effective Hessian tool effhess, distributed as a part of the NAST package, 

calculates and diagonalizes the effective Hessian (Eq. 3.26) to generate the vibrational 
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frequencies at MECP, the reduced mass 𝜇⊥, |Δ𝐠| and �̅�. These quantities are needed for 

the following rate constant calculations. Currently, the tool can read the MECP energy 

gradient vectors and Hessian matrices from the output files generated by the 

GAMESS93 and Molpro94 electronic structure packages. The effhess tool generates a 

template of an input file for the main NAST code.  

 

G. IRC Fitting Tool ircfit 

The fitting tool ircfit produces the IRC potentials of two crossing spin states. 

These potentials are required for calculating the ZN probabilities. Currently, ircfit can 

read only the GAMESS IRC output files. Here we summarize the ircfit algorithm, the 

details are included in SI. 

1) Perform two IRC calculations from MECP to the minima of reactant and 

product, generating the two sets of geometries {𝑸𝑖, 𝐸𝑖}𝑋→𝑅 and {𝑸𝑖 , 𝐸𝑖}𝑋→𝑃 , where 𝑸𝑖 

and 𝐸𝑖 are the coordinates and energy of molecular geometry i. Index i runs from 1 

(MECP) to n for the reactant side of IRC and m for the product side.   

2) Define 𝑛 +𝑚 points along the reaction coordinate as  

𝑟𝑗 = (∑(𝑑𝑄𝑗,𝑝)
2

3𝑁

𝑝=1

)

1/2

 ,                                             (3.27) 

where 𝑑𝑄𝑗,𝑝 is the difference between the coordinates of the reactant and the geometry 

𝑗 ∈ [1, 𝑛 + 𝑚]. 

3) Build the crossing potentials by fitting the two sets of points {𝑟𝑖, 𝐸𝑖}𝑋→𝑅 

and {𝑟𝑖, 𝐸𝑖}𝑋→𝑃 with fourth-order polynomials.  
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𝑓(𝐜, 𝑟) = ∑𝑐𝑞

4

𝑞=0

𝑟𝑞 .                                                     (3.28) 

The vector of coefficients c is obtained by minimizing the linear least-squares function 

𝐹 = ∑(𝐸𝑖 − 𝑓(𝐜, 𝑟𝑖))
2

𝑘

𝑖=1

,                                                 (3.29) 

where k=n for the reactant side of the fit, and k=m for the product side. The coefficients 

of the polynomials, which represent spin-diabatic states, are used by the main NAST 

code to generate spin-adiabatic states (Eq. 3.9) required for the ZN probability 

calculations. 

 

H. Modular Structure of NAST Package 

The NAST package consists of a collection of modules written in modern 

Fortran and runs under Linux (Figure 3.4). The package manual contains a full list of 

the input file keywords that control the type of rate calculation. Most of the keywords 

have default values appropriate for the common calculation types. The effective 

Hessian tool effhess can be used to generate an input file template containing MECP 

properties, further reducing the efforts required to set up a NAST calculation. The rest 

of the input data, including vibrational frequencies, moments of inertia, electronic 

energies and SOC must be extracted from the output of electronic structure calculations. 

The calculated canonical rate constants and velocity-averaged transition probabilities 

are saved to the main output file nast.out. Additional information, including 

microcanonical rate constants, transition probabilities and density of states are written 

to separate output files. The amount of output information can be controlled by user.  
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Figure 3.4. Modular structure of the NAST package. The top left panel illustrates the 

main NAST code installation, testing, and workflow. The bottom left panel lists the 

output files of the effective Hessian (effhess) and IRC fitting (ircfit) tools. The right 

panel shows the main modules and subroutines of the NAST package.   

 

The NAST package requires an external math library. It has been tested with the 

Intel Math Kernel Library (MKL) but can be linked with other math libraries. The 

package has been successfully compiled and tested with the gfortran and ifort 

compilers. To streamline the package installation, the provided Python configuration 

script configure.py can be used to generate a Makefile. The Linux utility make is used 

to compile and link the executable nast.x. A new build can be tested by running the 

script checknast that executes several test examples. The installation and testing 
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procedures are the same for the effective Hessian and IRC tools. The configuration and 

installation details are provided in the package manual.  

 

IV. Examples of Applications 

A. Isomerization of Propylene Oxide to Acetone and Propanal 

This example demonstrates how the NAST package can be used to calculate the 

reaction rates for single-state adiabatic reactions using the traditional TST. We consider 

the isomerization of propylene oxide to acetone and propanal, following the original 

theoretical work of Dubnikova and Lifshitz.95 For each isomerization reaction, four 

canonical TST rate constants are compared: i) predicted by the NAST package, ii) 

calculated analytically using Eq. (3.25), iii) calculated analytically using Eq. 3.30 

below95 and iv) obtained from an experiment.96 In Ref.95, the following equation has 

been used: 

𝑘(𝑇) =  𝜎
𝑘B𝑇

ℎ
𝑒−∆𝑆

#/𝑅𝑒−∆𝐻
#/𝑅𝑇 ,                                        (3.30) 

where 𝑅 is the universal gas constant;  ∆𝑆#and ∆𝐻# are the entropy and enthalpy of 

activation, respectively. Because for a unimolecular reaction,  ∆𝐻# = 𝐸TS + ∆ZPE, 

the activation enthalpy is equal to the ZPE-corrected electronic barrier between 

transition state and reactant. The input data for NAST were obtained from the B3LYP 

geometry optimization and Hessian calculations in GAMESS, and the single-point 

CCSD(T) energy calculations in Molpro. The cc-pVDZ basis set was used in all 

calculations. The partition functions 𝑄TS and 𝑄R used in Eq. (3.25) were taken from the 

GAMESS Hessian calculations. In Eq. 3.30, the original data from Table 1 of 
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Dubnikova and Lifshitz95 was used. The energy profiles for two isomerization reactions 

are shown in Figure 3.5.  

 

  

 

Figure 3.5. Energies and structural parameters for the isomerization reactions of 

propylene oxide to acetone (left) and propanal (right). The relative CCSD(T) energies 

(kcal.mol-1) listed in parenthesis are corrected with  𝛥𝑍𝑃𝐸 = 𝑍𝑃𝐸X − 𝑍𝑃𝐸R calculated 

with B3LYP. Bond lengths and angles are in Å and degrees, respectively. 

 

The NAST input file and parts of the output file are shown below.  

 

&keys zpe = 1 tst = .true. &end               ! TST calculation with ZPE correction 

&inputdata 

freX = 263, 294, 374, 580, 729, 871, 886, 958, 999, 1081, 1118, 1241, 1283, 1357, 1434, 1452, 1471, 

2296, 3026, 3092, 3118, ,3142, 3238         ! Vibrational frequencies (cm-1) of TS/MECP  

freR = 240, 370, 416, 773, 848, 903, 974, 102, 1117, 1136, 1153, 1173, 1277, 1381, 1423, 1451, 1471, 

1515, 3025, 3059, 3076, 3098, 3117, 3153 ! Vibrational frequencies (cm-1) of reactant 

inertX = 170.850, 217.264, 351.144           ! Moments of inertia for TS/MECP 

inertR = 100.305, 272.514, 305.514          ! Moments of inertia for reactant 

enX = 0.09129754                                    ! Energy of TS in hartree (program will add ∆ZPE) 

enR = 0.0                                                 ! Energy of reactant in hartree 

maxn = 30000                                         ! Maximum energy bin - integration limit in cm-1 

T1 = 1000                                                  ! Initial temperature in K for canonical rate constant 

&end 
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    ******************************************************* 

    ~~~~~~~ NAST: Nonadiabatic Statistical Theory ~~~~~~~~ 

                      ~~~~~ v. 2021.1 ~~~~~ 

    ******************************************************* 
--------------------------------------------------------- 

NAST control parameters and related data 

 

zpe = 1     sp = F     zn = F     solution = F 

tst = T     printmore = F     rev = F     extern = F 
--------------------------------------------------------- 

zpe = 1: ZPE correction scheme I (eliminates turning points below ZPE). 

Electronic barrier from reactant to MECP is   20037 cm-1 

ZPE of reactants =   18586 cm-1 

ZPE of MECP =   17150 cm-1 

ZPE-corrected MECP energy bin =  18602 cm 

 

  --------------------------------------------------------- 

               Start NAST calculation 

  --------------------------------------------------------- 

 

   1. Calculating densities of states 

 

......vibrational. 

.......rotational. 

........rovibrational. 

 

   2. Calculating microcanonical TST rate constant. 

................................... Done. 

 

(The forward rate constant k(E) is multiplied by reaction path degeneracy equal to 1 ) 

 

             Canonical rate constant, k(T) 

 

     T(K)     TST rate constant 

 

   1000.0          6.78E+01 

 

 Total CPU time =    10.35 

 

Table 3.1 shows the calculated and experimental rate constants for the 

isomerization of propylene oxide to acetone and propanal. The factor of two difference 
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between the acetone rate constants calculated with two analytical expressions can be 

explained by the 1.0 kcal.mol-1 discrepancy in the TS barrier (using the same barrier 

height of 53.2 kcal.mol-1 in both analytical expressions reduces this difference to 18%). 

The difference between the NAST rate constant (67.8 s-1) and the analytical constant 

obtained with Eq. (3.30) (101.0 s-1) could be due to a finite accuracy of the numerical 

integration in NAST. For the isomerization to propanal, similar differences in the 

reaction rates calculated with different methods are observed. All calculated rate 

constants are in reasonable agreement with the experimental values for both 

isomerization reactions. 

 

Table 3.1. Canonical TST rate constants for isomerization of propylene oxide to 

acetone and propanal at T=1000 K.  

Product Source ETS, kcal.mol-1 k1000, s-1 

Acetone 

NAST 

Analytical, Eq. (3.30)a 

Analytical, Eq. (3.25) 

Experimentb 

53.2 

54.2 

53.2 

- 

67.8 

50.2 

101.0 

30.0 

 

Propanal 

NAST 

Analytical, Eq. (3.30)a 

Analytical, Eq. (3.25) 

Experimentb 

54.2 

54.4 

54.2 

- 

43.0 

69.6 

88.6 

90.0 

a Ref.95 

b Experimental values are estimated from the log(k) vs. T plots of Ref.96 
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B. Spin-Forbidden Isomerization of Ni(dpp)Cl2 

This example demonstrates the forward and reverse rate constants calculation 

in a single NAST run. In addition to the overall rate constants, it predicts the rate 

constants between individual MS components of two spin states. Spin-forbidden 

kinetics of interconversion between the singlet (planar) and triplet (tetrahedral) isomers 

of Ni(dpp)Cl2 complex (dpp=1,3-bis(diphenylphosphino)propane) has been studied in 

acetonitrile.97 To reduce the computational cost, the phenyl groups were replaced by 

methyls (Figure 3.6). The optimized geometries and Hessians for singlet, triplet, and 

MECP structures were obtained with the M11-L density functional, implicit solvation 

model, and def2-TZVP basis set, as implemented in GAMESS. The SOC value of 135 

cm-1 was calculated with the second-order multiconfigurational quasi-degenerate 

perturbation theory (MCQDPT2) using the CASSCF(2e, 4o) wave function averaged 

over the lowest energy singlet and triplet electronic states. The forward (S1 → T0) rate 

constant calculated using the WC transition probability at 296 K  (4.96 ×106 s-1 ) agrees 

almost within one order of magnitude with the experimental value of 4.5 × 105 s-1. 

However, the reverse (T0 → S1) rate constant predicted to be 3.50 ×102 s-1 is 

significantly smaller than the experimental value of  6.0 × 105 s-1, which could indicate 

that the barrier for the reverse reaction is overestimated due to the low-level of 

electronic structure calculations and the reduced model size.  
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Figure 3.6. Reaction path for the singlet-triplet isomerization of the Ni(dpp)Cl2 model 

from the square-planar to tetrahedral geometry. The twist angle between the Cl-Ni-Cl 

and P-Ni-P planes is 6°, 42° and 90° for the singlet, MECP and triplet geometries, 

respectively. The phenyl groups of Ni(dpp)Cl2 are replaced with the methyl groups. 

 

Calculations of the transition probabilities and rate constants between individual 

MS components of the singlet and triplet states were carried out using the spin-orbit 

matrix elements (z = -69.0-63.8i cm-1 and b = 21.3 cm-1, as defined in Eq. 3.20) obtained 

from the same MCQDPT2 calculations. The 𝑀𝑆-specific rate constants 𝑘𝑀𝑆 , 𝑀𝑆′
 for the 

transitions between the  𝑀𝑆 = 0 component of singlet state and three 𝑀𝑆′ = ±1 and 

 𝑀𝑆′ = 0 components of the triplet state, calculated using the LZ transition probability 

are plotted in Figure 3.7. The stronger couplings between the 𝑀𝑆 = 0 component of the 

singlet state and the  𝑀𝑆′ = ±1  components of the triplet result in the faster population 

transfer, as evident from the 𝑘0,±1 rate constant being larger than 𝑘0,0. 
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Figure 3.7. The microcanonical rate constants 𝑘0,0 and 𝑘0,+1 = 𝑘0,−1 for transitions 

between the 𝑀𝑆 components of the singlet and triplet states calculated using the LZ 

probabilities. The effective rate constant 𝑘𝑒𝑓𝑓 corresponds to the overall transition 

between the singlet state and all three components of the triplet state.  

 

C. T1→S0 Relaxation in Cyclopropene  

This example demonstrates calculation of the rate constant using the ZN 

transition probability. Miller and Klippenstein published a detailed kinetics study of 

different reactions of C3H4, including those proceeding on multiple PESs with different 

spin multiplicities.98 Here we consider the T1→ S0 relaxation in cyclopropane (Figure 

3.8). The equilibrium geometries and Hessians of the S0, T1 states and MECP were 

obtained at the B3LYP/cc-pVTZ level of theory. The SOC constant of 4.0 cm-1 was 

calculated with the MCQDPT2 method based on the CASSCF(2,2) wave function 

averaged over the S0 and T1 states, using the same basis set. All calculations were 

performed in GAMESS. To calculate the T1→ S0 rate constant with the ZN transition 
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probability, the T1→ MECP → S0 minimum energy reaction path was fitted with the 

ircifit tool using the geometries and energies generated by two IRC calculations starting 

from MECP and following to the T1 and S0 minima. The MECP→T1 path was fitted 

with the quartic polynomial, while the MECP→S0 path was approximated by a linear 

fit (Figure 3.9).  

 

Figure 3.8. The T1→ S0 relaxation path in cyclopropene. The relative energies of the T1 

minimum, the S0 minimum and MECP (kcal mol-1) are in parentheses. The bond lengths 

and angles calculated at the B3LYP/cc-pVTZ level of theory are in Å and degrees. 

 

The T1→ S0 canonical rate constant calculated at 1000 K with the ZN transition 

probability (3.07×107 s-1) is almost an order of magnitude smaller than the value 

obtained with the WC probability (1.24×108 s-1). This difference can be explained by 

the fact that the linear-crossing WC model significantly underestimates the width of the 

tunneling barrier (Figure 3.9). In contrast, the ZN model uses a more realistic potential 

energy curves and predicts a wider barrier, leading to a significant reduction in the 

tunneling contribution to the rate constant. Table 3.2 compares the same rate constant 
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calculated using the simple LZ transition probability with the values obtained by the 

MESMER 6.0 package.99 There is a reasonable agreement between the values predicted 

by two packages. The larger discrepancies at high temperatures are attributed to the 

numerical integration errors in Eq. (3.2). It is important to note, that these discrepancies 

in the rate constants are significantly smaller than the errors expected due to the limited 

accuracy of the MECP barrier calculated by commonly used electronic structure 

methods. 

 

Figure 3.9. Fitted T1→ MECP → S0 reaction path. The circles mark the energies of the 

IRC geometries. Green area shows an increase in the tunneling barrier width compared 

to the linear model (dashed black line). For the rate constant calculations, the 

coefficients of the fitting polynomials (f(r) = 0.092 r4 – 0.121 r3 + 0.093 r2 – 0.004 r – 

1.86 × 10-6 and g(r) = 0.127 r – 0.048) are included in the NAST input file. 
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Table 3.2. The T1→ S0 canonical rate constant (s-1) at different temperatures. The 

relative difference between the NAST and MESMER values is defined as (kNAST-

kMESMER)/kMESMER. 

 

T, K NAST MESMER 
Relative 

difference 

100 1.52×10-16 2.37×10-16 -0.36 

200 6.71×10-4 7.88×10-4 -0.15 

300 1.19×101 1.29×101 -0.08 

400 1.62×103 1.68×103 -0.03 

500 3.16×104 3.09×104 0.02 

600 2.33×105 2.13×105 0.09 

700 9.81×105 8.43×105 0.16 

800 2.91×106 2.35×106 0.24 

900 6.85×106 5.18×106 0.32 

1000 1.36×107 9.71×106 0.40 

1100 2.41×107 1.62×107 0.49 

1200 3.89×107 2.47×107 0.58 

1300 5.85×107 3.52×107 0.66 

1400 8.32×107 4.76×107 0.75 

1500 1.13×108 6.17×107 0.83 

1600 1.48×108 7.73×107 0.91 

1700 1.88×108 9.42×107 1.00 

1800 2.33×108 1.12×108 1.08 

1900 2.82×108 1.31×108 1.15 

2000 3.36×108 1.50×108 1.24 

 

V. Conclusions 

We introduced the NAST software package for predicting kinetics of spin-

dependent processes, including intersystem crossings, spin-forbidden reactions, and 

spin crossovers. The package calculates both the microcanonical and canonical rate 

constants and can account for quantum tunneling, zero-point vibrational energy, and 

reaction path interference. Traditional single-state adiabatic TST calculations are also 

possible. The NAST main strengths steam from its ability to 1) model nonadiabatic 

kinetics in large systems, 2) use high-level electronic structure methods for predicting 
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molecular properties, which is critical for accurate kinetics calculations and 3) study 

slow spin-dependent processes that present a great challenge for nonadiabatic 

molecular dynamics. Additional computational tools included in the NAST package 

simplify setting up kinetics calculations using molecular properties obtained with 

different electronic structure programs. The three presented examples demonstrate 

various capabilities of the NAST package. Future development will focus on 

multidimensional tunneling effects, accounting for MECP barrier recrossing, modeling 

spin-dependent processes in solution, and using an external magnetic field to control 

the kinetics of spin-dependent processes.  
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Abstract 

We measure the transverse relaxation of the spin state of an ensemble of ground-

state rubidium atoms trapped in solid parahydrogen at cryogenic temperatures. We find the 

spin dephasing time of the ensemble (𝑇2
∗) is limited by inhomogeneous broadening. We 

determine that this broadening is dominated by electrostaticlike interactions with the 

host matrix, and can be reduced by preparing nonclassical spin superposition states. 

Driving these superposition states gives significantly narrower electron paramagnetic 

resonance lines and the longest reported electron spin 𝑇2
∗ in any solid-phase system other 

than solid helium. 
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Measuring the energy splitting between Zeeman levels is at the heart of atomic 

magnetometry,1 electron paramagnetic resonance (EPR) spectroscopy,2 and 

fundamental physics measurements.3-5 For an ensemble of N atoms, the shot- noise 

limited precision of a single measurement is 𝜎𝐸  ~ 
ℏ

𝑇2
∗√𝑁

,1 where 𝑇2
∗ is the ensemble’s 

spin dephasing time. In this  paper, we show that rubidium atoms in parahydrogen 

have favorable 𝑇2
∗ times for a solid state electron spin ensemble. Moreover, their 𝑇2

∗ 

can be further extended by using non-classical superposition states instead of 

traditional Larmor precession states. 

Our apparatus is similar to that described in Refs.6,7 We grow our crystal by 

codepositing hydrogen and rubidium gases onto a cryogenically cooled sapphire 

window at 3 K. We enrich the parahydrogen fraction of hydrogen by flowing the gas 

over a cryogenically cooled catalyst. In the data presented in this paper, the 

orthohydrogen fraction is < 10−4. Typical thicknesses of the doped crystals are ~0.3 

mm. We use natural-isotopic-abundance rubidium; typical rubidium densities are on 

the order of 1017 cm−3, or a few ppm. 

We apply a static “bias” magnetic field (Bz) normal to the surface of the 

crystal. We polarize the spin state of the implanted Rb atoms by optically pumping the 

atoms with a circularly polarized laser. To minimize magnetic field inhomogeneities 

across the sample we optically select a region of the crystal with transverse dimensions 

of roughly 0.1 mm. We measure the polarization through circular dichroism, measuring 

the relative transmission of left-handed and right- handed circularly polarized light 

(LHC and RHC). As described in Ref.,6 the circular dichroism signals observed are 

roughly an order of magnitude smaller than for gas-phase  atoms, and we are unable to 
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determine if the reduced signal is due to imperfect optical pumping, readout, or both. 

Hence our “effective” atom number in a typical measurement is ∼10% of  the ∼1012 

atoms in a typical sample volume. Larger number samples could be obtained by using 

larger-diameter beams (or a thicker crystal) to address a larger volume of atoms. We 

drive transitions between Zeeman states with transverse rf magnetic fields generated 

by a wire a few mm above the surface of the crystal. We take data with bias fields 

ranging from 40 to 120 G, giving Zeeman shifts that are small compared to the 

hyperfine splitting, but sufficiently large that transitions between different Zeeman 

levels can be spectrally resolved. The level structure of ground-state 85Rb is shown in 

Figure 4.1. In the gas phase, the hyperfine splitting is 3.0357 GHz.8 From prior work, 

the hyperfine constants of alkali-metal atoms in noble gas matrices are within a few 

percent of the free-space atom value9; we expect alkali- metal atoms in parahydrogen 

to be similar. 

We measure rubidium’s transverse relaxation time by free-induction-decay 

(FID) measurements. After polarizing the spin through optical pumping, an RF pulse 

is applied to induce Larmor precession. The Larmor precession and its decay are 

measured optically via circular dichroism.1 The measured values of 𝑇2
∗ are on the order 

of 10 μs or shorter, as presented in the Supplemental Material.10 

This is significantly shorter than spin-echo measurements under similar 

conditions (which indicate 𝑇2  ≳ 1 ms). This indicates that the dominant limit on 𝑇2
∗ 

comes from static inhomogeneous broadening (static on the spin-echo timescale). 

Significant inhomogeneous broadening is not surprising, given that our matrix growth 

conditions are expected to pro- duce polycrystalline parahydrogen.11,12 
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For a magnetically pure host such as parahydrogen, we hypothesize that the 

observed inhomogeneous broadening is dominated by electrostatic interactions. We 

note that the Hamiltonian for electrostatic interactions is unchanged under time 

reversal. Thus, to first order in the perturbation, the electrostatic energy shift of a state 

|𝜓⟩ and its time-reversed state |�̃�⟩ must be identical. A superposition state of Zeeman 

levels which are time reversals of each other will have a reduced inhomogeneous 

broadening. For free-space Rb atoms, |𝐹, ±𝑚𝐹⟩ pairs are time reversals of each other 

in the low-field limit (the stretched states |𝐹 = 𝐼 + 𝐽,𝑚𝐹 = ±𝐹⟩ are time reversals of 

each other at all fields). We can use multiphoton transitions, as shown in Figure 4.1, to 

prepare superpositions of this kind. 

 

Figure 4.1. Schematic of the Zeeman levels of gas-phase 85Rb, showing some of the 

relevant transitions of Figure 4.2. The energy eigenstates (black) are labeled by their 

low-field quantum numbers 𝐹 and 𝑚𝐹, and we refer to them throughout the paper by 

that terminology. The slender arrows denote the single-photon transitions. The wide 

arrows denote the two-photon transitions between states which are approximate time 



102 

 

 

reversals of each other; each two-photon transition is shown as a single arrow. To better 

illustrate the nondegenerate frequencies of the transitions, the Zeeman levels are plotted 

over a larger range of magnetic fields than used in this experiment; likewise, the 

transition arrows are horizontally offset for ease of viewing.  

 

Superpositions of these states cannot be studied by FID techniques. Only 

superpositions of Zeeman levels which differ by ∆𝑚 = 1 give rise to Larmor 

precession. For the superpositions of interest, the expectation value of the spin 

projection along a transverse axis is zero. Thus there is no literal “transverse spin 

relaxation” time. However, as any other two-level system, a superposition of 

|𝑚𝐹 = +1⟩ and |𝑚𝐹 = −1⟩ has a well-defined dephasing time. 

To measure 𝑇2
∗ we use “depolarization spectroscopy,” wherein we polarize the 

atoms by optical pumping, then continuously measure the circular dichroism signal as 

we scan the RF frequency across the resonances. When the frequency is on resonance 

between two 𝑚𝐹 energy eigenstates, population is transferred between them and the 

polarization signal changes. In the limit of low RF power and a slow frequency sweep, 

the linewidth of the transition provides a measurement of the inhomogeneous 

broadening and hence 𝑇2
∗. 

Figure 4.2 shows depolarization data for 85Rb at two different RF powers. For 

the low-power sweep, we see a change in the polarization signal at each expected 

single-photon resonance frequency. The broadening is sufficiently large that the 𝐹 =

 2 transitions are not fully resolved from the 𝐹 =  3 transitions. 
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Figure 4.2. Depolarization spectroscopy signals, as discussed in the text, taken with 

𝐵𝑍 = 82 G. The vertical axis measures the ratio of the transmission of LHC and RHC 

probe beams; under conditions of no spin polarization the ratio is 1. The signal is plotted 

as a function of the RF frequency; in these data the RF is swept from high to low 

frequency. The dashed vertical lines mark the calculated single-photon and two-photon 

transition frequencies for gas-phase 85Rb 13; the yellow labels denote 𝑚𝐹 ↔ 𝑚𝐹
′ . 

 

At higher powers, the two-photon transitions become observable. The +1 ↔

−1 transitions at the center of the spectrum are significantly narrower than all other 

one- and two-photon transitions. This is precisely as expected for inhomogeneous 

electrostatic broadening, as they are the only two-photon transitions between time-

reversed states. This confirms that the dominant inhomogeneous broadening 

mechanism is time-even in nature (electrostaticlike), as time-odd (magnetostaticlike) 

perturbations would result in a +1 ↔ −1 linewidth approximately twice that of a 0 ↔

±1 transition. For the +1 ↔ −1 transitions, the 𝐹 =  2 and 𝐹 =  3 transitions are 
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cleanly resolved; the two transitions cause the circular dichroism signal to change in 

opposite directions. 

We extract linewidths from these data by assuming the inhomogeneous 

broadening is Gaussian and fitting each transition in the depolarization spectrum to a 

corresponding error function. The extracted linewidths as a function of magnetic field 

are shown in Figure 4.3 for 85Rb and 87Rb. These linewidths reflect low-field (i.e., non-

power-broadened) values. For the single-photon transitions, the linewidths measured 

through depolarization spectroscopy match those from FID measurements to within our 

experimental error. A comparison is provided in the Supplemental Material.10 

 

Figure 4.3. Measured linewidths of 85Rb in the 𝐹 =  3 hyperfine state and 87Rb in the 

𝐹 =  2 hyperfine state. For the single-photon linewidth, we plot the average of the 
|𝑚𝐹 = ±1⟩  ↔ |𝑚𝐹 = 0⟩ transitions. For the two-photon linewidth we plot the 

linewidth of the +1 ↔ −1 transition. 
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Examining the single-photon linewidths in Figure 4.3, we see that 87Rb exhibits 

more broadening than 85Rb. This is as one would naively expect for shifts that are 

electrostatic in nature, as tensor Stark shifts are larger for ground-state 87Rb (𝐹 =  2) 

than for 85Rb (𝐹 =  3).14 For a static electric field, calculations predict the ±1 ↔ 0 

transitions in 87Rb (𝐹 =  2) would show 3.2 times the tensor Stark shift of 85Rb (𝐹 =

 3),14 consistent with the differences seen in the linewidths of Figure 4.3. 

We attribute the dominant contribution to the linewidth of the +1 ↔ −1 

transitions to residual electrostatic broadening that arises because these energy 

eigenstates are not perfect time reversals of each other. While we do not know the exact 

form of the tensor interaction with the parahydrogen host, we can use perturbation 

theory to qualitatively predict the linewidth of the +1 ↔ −1 transition. We consider an 

atom with hyperfine constant of 𝐴, a Zeeman splitting of 𝑧, and an interaction with the 

matrix which is symmetric under time reversal and on the order of 𝑚. We consider the 

limit that 𝐴 ≫ 𝑧 ≫ 𝑚, and only include perturbations from 𝑚 to lowest-order in 

perturbation theory. In this limit, we expect the linewidth of the +1 ↔ −1 transition to 

be smaller than the single-photon transitions by a factor of ~𝑧/𝐴 (ignoring numerical 

prefactors). The residual broadening is due to the breakdown of the time-reversal 

symmetry of the|+1⟩ and |−1⟩ energy eigenstates at nonzero magnetic field. This 

model qualitatively agrees with our linewidth measurements (Figure 4.3), and explains 

the observed dependence of the +1 ↔ −1 linewidth on the magnetic field. We note 

that measurements of 85Rb as a function of rubidium density indicate that dipolar 

broadening does not contribute significantly to the linewidth. 



106 

 

 

The only energy eigenstates of the free atom which are time reversals of each 

other at all magnetic fields are the “stretched states”: |𝐹 = 3,𝑚𝐹 = ±3⟩ for 85Rb and 

|𝐹 = 2,𝑚𝐹 = ±2⟩ for 87Rb. Inhomogeneous electrostatic broadening should be further 

suppressed for these states. We have not been successful in observing the six-photon 

+3 ↔ −3 transition in 85Rb; we suspect this is due to insufficient rf power. 

Observations of the four-photon +2 ↔ −2 transition in 87Rb at 60 G indicated narrower 

lines, but not at a statistically significant level. We suspect the measured linewidth of 

the 87Rb stretched state transition is limited by technical limitations of our apparatus 

(magnetic field gradients, as well as magnetic field instabilities which prevent 

averaging) and possible coupling to other states in the multiphoton transition. 

To estimate the matrix shifts of the alkali-metal atoms trapped in solid p-H2, we 

use a third-order perturbative expression15 

∆𝐸hf =∑∑
⟨00|𝑉𝑑𝑑|𝑖𝑗⟩⟨𝑖𝑗|𝐻hf|𝑘𝑙⟩⟨𝑘𝑙|𝑉𝑑𝑑|00⟩

(𝐸00 − 𝐸𝑖𝑗)(𝐸00 − 𝐸𝑘𝑙)
𝑘𝑙𝑖𝑗

 

−⟨00|𝐻hf|00⟩∑
⟨00|𝑉𝑑𝑑|𝑘𝑙⟩⟨𝑘𝑙|𝑉𝑑𝑑|00⟩

(𝐸00 − 𝐸𝑘𝑙)2
𝑘𝑙

,                               (4.1) 

where the unperturbed basis functions |𝑖𝑗⟩ = |𝑖⟩𝐴|𝑗⟩H2
 describe the electronic states of 

noninteracting atom 𝐴 and H2, with energies 𝐸𝑘𝑙 = 𝐸𝑘
𝐴 + 𝐸𝑙

H2 and 𝐻hf is the atomic 

hyperfine Hamiltonian,8 and 𝑉𝑑𝑑 is the dipole-dipole interaction.15 The sums in Eq. 

(4.1) run over all excited electronic, fine, and hyperfine states of 𝐴 and H2. The first 

term in Eq. (4.1) gives rise to an 𝑚𝐹-dependent tensor matrix shift of the atomic 

hyperfine levels16 whereas the second term leads to an 𝑚𝐹 - independent scalar shift 

∆𝐸hf
𝑠 . The latter can be estimated by assuming that 𝐸00 − 𝐸𝑖𝑘 ⋍ 𝐸𝐴 + 𝐸H2, where 𝐸𝐴 is 
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the average excitation energy of atom 𝐴 and 𝐸H2 is that of H2.15 Using the closure 

relation to eliminate the summations over the excited states in the second term of Eq. 

(4.1), we obtain15 

∆𝐸hf
𝑠 ⋍ −⟨00|𝐻hf|00⟩ (

1

𝐸𝐴 + 𝐸H2
)𝐸disp,                            (4.2) 

where 𝐸disp = ⟨00|𝑉𝑑𝑑
2 |00⟩/(𝐸𝐴 + 𝐸H2) is the dispersion interaction energy of 𝐴 with 

H2. 

To estimate the tensor matrix shift, we take into account only the diagonal 

matrix elements of the hyperfine interaction in Eq. (4.1) and assume that ⟨𝑖|𝐻hf|𝑖⟩ ⋍

𝐴𝑃 is independent of the electronic state 𝑖 and equal to the hyperfine constant of the 

lowest excited 2𝑃1/2 state of atom 𝐴. Since the hyperfine constants of alkali-metal atoms 

decrease rapidly with increasing 𝑖,8 these assumptions provide a conservative upper 

bound to the magnitude of the tensor shift 

∆𝐸hf
𝑡 < 𝐴𝑃∑

⟨00|𝑉𝑑𝑑|𝑖𝑗⟩⟨𝑖𝑗|𝑉𝑑𝑑|00⟩

(𝐸00 − 𝐸𝑖𝑗)
2

𝑖,𝑗

= 0.1∆𝐸hf
𝑠 ,                       (4.3) 

where the ratio of the tensor to scalar matrix shifts ∆𝐸hf
𝑡 /∆𝐸hf

𝑠  ≤  𝐴𝑃/𝐴𝑆 = 0.1 for Rb.8 

This is consistent with the fact that the third-order tensor Stark shifts of alkali-metal 

atoms are suppressed by a factor of ⋍ 100 compared to the scalar shifts.17 Note also 

that the ratio of third-order tensor and scalar polarizabilities of atomic Cs, 𝛼2
(3)/𝛼0

(3) =

0.03,17 is four times smaller than the upper bound (Eq. 4.3). 

To obtain the dispersion energy needed to estimate the tensor matrix shift via 

Eq. (4.3), we carried out accurate ab initio calculations of the Rb-H2 interaction 
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potential using the unrestricted coupled cluster method with single, double, and 

perturbative triple excitations [UCCSD(T)].18 A large augmented correlation-consistent 

polarization valence quadruple-ζ basis set (aug-cc-pVQZ)19 and the ECP28MDF 

relativistic effective core potential with the [13s10p5d3f ] basis set20 were used for the 

H and Rb atoms, respectively. The basis set superposition error for Rb-H2 interaction 

energy was corrected using the standard approach.21 All calculations were carried out 

with the MOLPRO suite of programs.22 The potential energy surface (PES) is expressed 

in the Jacobi coordinates 𝑅 and 𝜃, where 𝑅 is the distance between the Rb atom and the 

H2 center of mass, and 𝜃 is the angle between the atom-molecule vector 𝑅 and the H2 

axis. To obtain the effective Rb-H2 potential 𝑉0(𝑅) used in matrix shift calculations, 

we averaged 19 PES cuts corresponding to evenly spaced values of 𝜃 ∈ [0◦, 90◦] using 

the hindered rotor model.23 A contour plot of our ab initio PES shown in Figure 4.4(a) 

demonstrates that the Rb-H2 interaction is weakly anisotropic. 

 

Figure 4.4. (a) Ab initio PES for Rb-H2 plotted as a function of the Jacobi coordinates 

𝑅 and 𝜃. (b) Tensor matrix shifts of 85Rb (solid line) and 87Rb (dashed line) interacting 

with six p-H2 molecules as a function of the Rb-H2 distance R. 
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Figure 4.4(b) shows our calculated upper bounds to the tensor matrix shifts of 

Rb as a function of the Rb-H2 distance R, calculated for six p-H2 molecules. The 

theoretical bounds are consistent with the measured values shown in Figure 3.3, 

reaching their maxima of 59 kHz for 85Rb and 142 kHz for 87Rb near the minimum of 

the potential well. The large magnitude of the shift in 87Rb is due to its larger hyperfine 

constant, which exceeds that of 85Rb by a factor of 3.4. The 𝑅 dependence of the shifts 

follows that of the Rb-H2 interaction energy, reaching a minimum at 𝑅𝑒  ⋍ 12.1𝑎0 and 

tending to zero at large 𝑅. At short values of 𝑅 to the left of the potential minimum, the 

dominant mechanism responsible for the matrix shifts is no longer the dispersion 

interaction, but rather the Pauli exclusion force arising from the overlap of the 

electronic wave functions of Rb and H2.
15 Thus, our matrix shift estimates at 𝑅 ≪ 12𝑎0 

should not be considered even qualitatively accurate. We also note that the calculated 

tensor matrix shifts scale with 𝑚𝐹 (for a given isotope and 𝐹) as 𝑚𝐹
2  due to the second-

rank tensor nature of the magnetic dipole hyperfine interaction in the excited atomic 

states.17 

In conclusion, we have established that the spin dephasing of Rb atoms in 

parahydrogen at densities ≲ 1018 cm-3 is dominated by interactions that are 

electrostatic (or “T -even”) in nature. As such, the 𝑇2
∗ can be significantly increased by 

replacing traditional Larmor precession states (or traditional single-photon EPR 

spectroscopy) with superposition states of (or multiphoton transitions between) Zeeman 

levels that are time reversals of each other. 
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This will enable greater resolution in EPR spectroscopy, and is of use for 

improving ensemble magnetometry24,25 and for fundamental physics experiments with 

atoms and molecules in matrices.26,27 We note that for these applications, the 

superposition states we have explored have two advantages: Their inhomogeneous 

broadening is reduced and they evolve phases faster than Larmor precession states, 

limited to a factor of 2𝐹 for the stretched states. The latter advantage has been explored 

in recent work with dysprosium atoms28 and with mechanical oscillators,29 where larger 

factors can be achieved. 

Our results are similar to the “double quantum coherence magnetometry” 

techniques developed for nitrogen vacancy (NV) centers in diamond,24,25,30,31 but in a 

different limit. NV centers are typically used in the regime where the electrostatic 

coupling of the spin to the lattice is ≫ its coupling to 𝐵𝑧; here, we work in a limit where 

the coupling to 𝐵𝑧 is ≫ the electrostatic coupling to the matrix. The NV-center limit 

requires the use of a single-crystal sample with magnetic field parallel to the crystal 

axis24; in the current work we employ what we expect is a polycrystalline sample,11,12 

and see no dependence of the FID linewidths on the magnetic field direction. We 

speculate the electrostatic broadening comes from a combination of inhomogeneous 

trapping sites and inhomogeneous crystal axis orientations. 

Our narrowest observed linewidth of 5 kHz corresponds to a 𝑇2
∗ of 60 μs. We 

note this ensemble 𝑇2
∗ is longer than reported values for ensembles of NV centers in 

diamond.24 It is also, surprisingly, an order of magnitude longer than reported for alkali-

metal atoms in superfluid helium.32 The only condensed-phase electron spin system 

with longer reported ensemble 𝑇2
∗ times is atomic cesium in solid He, which was 
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measured at a significantly lower spin density.33 We expect even longer 𝑇2
∗ times can 

be obtained in parahydrogen by employing stretched-state superpositions and by 

producing single-crystal samples through different growth parameters or sample 

annealing.11,12 
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Abstract 

We present a joint experimental and theoretical study of spin coherence 

properties of 39K, 85Rb, 87Rb, and 133Cs atoms trapped in a solid parahydrogen matrix. 

We use optical pumping to prepare the spin states of the implanted atoms and circular 

dichroism to measure their spin states. Optical-pumping signals show order-of-

magnitude differences depending on both matrix growth conditions and atomic species. 

We measure the ensemble transverse relaxation times (𝑇2
∗) of the spin states of the 

alkali-metal atoms. Different alkali species exhibit dramatically different 𝑇2
∗ times, 

ranging from submicrosecond coherence times for high-𝑚𝐹  states of 87Rb to ∼102 

microseconds for 39K. These are the longest ensemble 𝑇2
∗ times reported for an electron 

https://doi.org/10.1103/PhysRevA.100.063419


118 

 

 

spin system at high densities (𝑛 ≳  1016 cm−3). To interpret these observations, we 

develop a theory of inhomogeneous broadening of hyperfine transitions of 2S atoms in 

weakly interacting solid matrices. Our calculated ensemble transverse relaxation times 

agree well with experiment, and suggest ways to longer coherence times in future work. 
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I. Introduction 

Addressable solid-state electron spin systems are of interest for many physics 

applications, including quantum computing and quantum information,1-6 

magnetometry,7-9 nanoscale magnetic resonance imaging,10-13 and tests of fundamental 

physics.14-17 

Atoms trapped in inert matrices—such as hydrogen or noble-gas solids—are 

promising for these applications. The transparent matrix allows for optical pumping and 

probing of the electron spin state of the implanted atom, and the weak interaction of the 

trapped atom with the host matrix should only minimally perturb the atomic properties. 

The hope is to combine the high densities of solid-state electron spin systems with the 

(marginally perturbed) excellent properties of gas-phase atoms. 

Cesium atoms in the bcc phase of solid helium (at pressures of ∼26 bars and 

temperatures of ∼1.5 K) exhibit good optical pumping and readout of spin states and 

excellent ensemble spin coherence times, but to date have been limited to low cesium 

densities (109 cm−3) .18-20 On the other hand, atoms can be trapped in argon and neon 

matrices at high densities (1017 cm−3),21-23 but to date optical pumping and readout of 

the electron spin state has been significantly less efficient than the best solid-state spin 

systems.24,25 

Parahydrogen is a promising cryogenic host matrix26 which combines the 

respective advantages of solid argon and solid helium. Previously it was demonstrated 

that the spin state of rubidium in solid parahydrogen could be optically pumped and 

probed more efficiently than in solid argon.27 Moreover, demonstrated ensemble 
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electron spin coherence times for Rb atoms in solid parahydrogen are longer than any 

other solid-state system capable of comparable electron spin density.28 

In this work, we compare the optical-pumping properties and ensemble 

transverse spin relaxation time (𝑇2
∗) for potassium, rubidium, and cesium in solid H2. 

The dramatic differences between these alkali-atom species reveal the underlying 

physical mechanisms affecting optical-pumping and spin coherence times. 

We further develop a first-principles theoretical model to describe the coherence 

properties of matrix-isolated alkali-metal atoms, which shows that the measured 𝑇2
∗ 

times are due to the anisotropic hyperfine interaction of the atoms with the host matrix. 

Our theoretical results are in good agreement with experiment, opening up the 

possibility of systematic ab initio modeling of coherence properties of atomic and 

molecular guest species in inert matrices. 

 

II. Experiment 

The apparatus is as described in references27,29,30; the key components are shown 

in Figure 5.1. Parahydrogen and alkali atoms (from high-purity, natural isotopic 

abundance samples) are co-deposited onto a cryogenically cooled sapphire substrate in 

vacuum. Before deposition, normal hydrogen is converted to parahydrogen using a 

cryogenic catalyst.27,31 In our current apparatus the remaining orthohydrogen fraction 

can be varied from 3 × 10−5 to 1 × 10−2. After deposition, the atoms are optically pumped 

and probed with both broadband and laser light at near-normal angles of incidence to 

the surface. A homogeneous magnetic bias field is applied to the crystal, and RF 

magnetic fields can be applied perpendicular to the bias field. 
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Figure 5.1. Schematic of apparatus. The copper plate and parahydrogen gas line are 

cooled by a closed-cycle pulse tube refrigerator. In our experiments, the pump and 

probe light are of the same frequency, and generated from the same laser. The vacuum 

chamber, its windows, and other optics are omitted for simplicity. 

 

III. Optical-Absorption Spectra 

Sample spectra of K, Rb, and Cs are shown in Figure 5.2. The transmission T of 

the crystal is determined by comparing a spectrum of the light transmitted through the 

apparatus – as measured by a fiber-coupled grating spectrometer – before and after 

crystal deposition. The optical depth (OD) is determined from T ≡ e−OD. For ease of 

comparing spectra the baseline of the spectra has been shifted so that the off-resonance 

OD = 0; the amplitudes have been normalized so that the peak OD = 1. 

All spectra shown were taken at the 3 K base temperature of the cryostat. We 

note that thermal annealing of the crystal at temperatures of up to 4.2 K and times of up 

to 24 hours causes negligible changes in the absorption spectrum. 
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Figure 5.2. Optical spectra of alkali-doped parahydrogen crystals. The spectra are 

normalized as discussed in the text. In each spectrum, the frequencies of the gas-phase 

atom transitions32 are shown for comparison. 

 

 

Figure 5.3. Spectra of potassium-doped parahydrogen showing bleaching. Spectra are 

taken before and after illuminating the matrix with laser light at 757 nm. The light 

causes a significant reduction in the absorption of the peak it is on resonance with. 

 

In all spectra, we see large spectral shifts, large broadenings, and the splitting of 

the s → p transition into multiple lines. Similar behavior was observed for alkali atoms 

in noble-gas matrices and superfluid helium.18,20,21,33,34 
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A. Optical Annealing 

The spectra of the implanted alkali atoms—if grown in the absence of light—

are significantly affected by the application of broadband light to the crystal. This 

phenomenon, which we call “optical annealing,” has been previously reported for Rb 

atoms.27 Similar effects were observed for Cs and K. Typically during optical annealing 

the number of spectral peaks is reduced, and the optical depth of the remaining peaks 

increases correspondingly. As far as we know, these changes are irreversible; in our 

observations we have not observed the spectrum returning to its original form, even 

over timescales of weeks. We attribute the spectral changes to the reconfiguration of 

trapping sites due to optical excitation. 

The data shown in Figure 5.2 are after optical annealing. We have not studied 

optical pumping of atoms prior to optical annealing (nor have we studied the spectral 

peaks that disappear in the process), as we expect those sites not to be stable under 

optical excitation. For the remainder of this paper, we only discuss the properties of 

samples in this state reached after optical annealing. 

 

B. Bleaching and Broadening Mechanisms 

Much as the optical spectrum is changed by the application of broadband light; 

we observe that it is also altered by the application of narrowband light. 

For potassium atoms trapped in parahydrogen, we see “bleaching” effects due 

to the application of narrowband light, as seen in Figure 5.3. We attribute the changes 
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in the spectrum to changes in the trapping sites induced by the light, similar to what 

occurs during optical annealing with broadband light. 

The changes to the spectrum indicate that broadening is homogeneous within 

each peak: application of light with a linewidth ≪ the absorption linewidth effectively 

bleaches the entire line. The changes also indicate that the different lines originate from 

different trapping sites, as absorption at other frequencies is not diminished. In fact, 

absorption at 610 nm increases, indicating that during bleaching the trapping sites that 

give rise to absorption at 735 nm are changed into trapping sites that absorb at a different 

frequency. 

Similar bleaching effects were observed for Rb atoms trapped in solid argon. 

We note that in argon, ∼101 photon scattering events would cause reconfiguration of 

the trapping sites.25 Alkali atoms in parahydrogen are significantly more resistant to 

bleaching. From the atomic density, the intensity of light, and the timescale of 

bleaching, we estimate that potassium absorbs on the order of 104 photons before 

bleaching. 

Such bleaching effects can be problematic for use of these matrix-trapped atoms 

for applications. For Rb atoms in argon we found that application of light at other 

wavelengths would reverse the bleaching effects and return the trapping sites to their 

“unbleached” states.25 We have not yet demonstrated similar unbleaching with alkali 

atoms in parahydrogen; it is not yet known whether this is possible. 
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C. Effects of Crystal Growth Conditions 

The spectra of alkali atoms in parahydrogen can vary significantly with crystal 

growth conditions. 

We did not observe a significant dependence of the spectra on alkali density or 

orthohydrogen density over the ranges we explored. We saw no noticeable change with 

ortho fraction over the range from 4 × 10−5 to 3 × 10−3. Similarly, the spectra show only 

minor changes with Rb atom density from 1 × 1017 cm−3 to 1 × 1018 cm−3. However, the 

spectra do depend sensitively on the substrate temperature at the time of matrix growth. 

Figure 5.4 shows the optical spectra of Rb-doped parahydrogen crystals grown 

at different substrate temperatures. The temperatures specified in the figure – and 

throughout this paper—are of the copper plate upon which the sapphire window is 

mounted. 

We measure the temperature of the front surface of the window (onto which the 

parahydrogen matrix is grown) with a silicon diode temperature sensor attached to the 

window with varnish. We monitor its temperature during crystal growth as the sensor 

is embedded in solid hydrogen. From these measurements we conclude that the 

temperature of the front surface of the window is within 0.4 K of the copper plate 

temperature during growth. While the crystals in Figure 5.4 were grown at different 

substrate temperatures, the spectra shown were measured under identical conditions at 

our base temperature of 3 K. The crystals of Figure 5.4 have Rb densities of 1 × 1017 

cm−3, with variations within ±15%, and ortho fractions of 3 × 10−5, with variations of 

±25%. We believe that the spectral differences are primarily due to the substrate 

temperature. 
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Figure 5.4. Optical spectra of Rb-doped parahydrogen crystals, grown at different 

substrate temperatures, as labeled. The spectra are normalized in the same manner as in 

Figure 5.2. 

 

As the substrate temperature increases, the blueshifted peaks become larger in 

amplitude and the redmost peak becomes smaller and shifts. Qualitatively similar 

behavior was observed for Cs atoms. (Potassium-doped matrices were only grown at 

the base temperature.) 

Subsequent annealing at temperatures up to 4 K for durations up to ∼10 hours 

can change the background scattering from the crystal (depending on crystal conditions, 

annealing has been observed to either increase or decrease background scattering). 

However, annealing has little observable effect on the alkali atom absorption peaks. 

The optical spectrum is also affected by the matrix growth rate. Rubidium-

doped crystals grown at our base temperature (3 K) with low hydrogen deposition rates 

(∼1 μm per minute) have optical spectra similar to samples grown at normal deposition 

rates (∼3 μm per minute) and higher substrate temperatures (similar to the 3.3 K 
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spectrum shown in Figure 5.4). However, we have not explored flow rates as 

comprehensively as substrate temperatures. 

As discussed in Section D, these changes in the optical spectrum have 

significant consequences for our ability to optically pump and measure the spin states 

of the alkali atoms. 

 

IV. Spin Polarization Signal 

We optically pump the implanted atoms using right-hand circular (RHC) laser 

light, as shown in Figure 5.1. We monitor the spin polarization produced using a 

linearly polarized probe beam at the same frequency. After passing through the sample, 

the probe beam is sent through wave plates and a Wollaston prism to separate it into its 

RHC and left-hand circular (LHC) components, which are measured on two 

photodetectors. Differential absorption between the RHC and LHC components 

(circular dichroism) indicates spin polarization. Due to the large broadening of the 

optical spectrum, the different isotopes and their hyperfine levels cannot be optically 

distinguished, and the spin polarization signal measured for each species is an average 

of the naturally occurring isotopes. 

To quantify the spin polarization obtained, we measure the ratio of RHC and 

LHC signals on the two photodiodes and normalize the ratio to a level of 1 before 

optical pumping. The ratio changes after optical pumping. To ensure that the change is 

not due to systematic effects, it is measured both with an applied longitudinal magnetic 

field and with a transverse field (the ambient earth magnetic field); the latter prevents 

the accumulation of spin polarization during optical pumping. With a transverse field, 
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the change in the ratio due to optical pumping is typically very small compared to the 

longitudinal field, as expected.27 To calculate the polarization signal amplitude, one 

ratio is subtracted from the other. This is the polarization signal P shown below in 

Figures 5.5, 5.6, and 5.7. 

 

Figure 5.5 Polarization signal amplitude, plotted alongside the optical spectra of a Cs-

doped parahydrogen crystal. Crystal grown with a substrate temperature of 3 K, 

orthohydrogen fraction 3 × 10−5, and Cs density 6 × 1016
 cm−3. Polarization was 

measured with an 80 G on-axis bias field. 

 

We relate this signal to atomic properties by the following model. Optical 

pumping changes the hyperfine and spin state of the implanted atoms. This changes the 

atoms’ cross section for scattering RHC and LHC light. We quantify the change with a 

single parameter ∆, and model the cross-section changes as 𝜎RHC  =  𝜎0(1 − ∆) and 

𝜎LHC  =  𝜎0(1 + ∆), consistent with our observations.27 Before pumping (or after 

pumping with a transverse magnetic field) we assume  ∆ = 0, giving identical optical 

depths for both polarizations of light; we refer to this optical depth as OD0. Thus, when 
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we measure the ratio 𝑅 of transmissions of LHC and RHC light, we obtain 𝑅 =

𝑒−2∆×OD0. The polarization signal 𝑃 we measure is then 𝑃 = 1 − 𝑅. In the limit 𝑃 ≪

1, 𝑃 =  2∆ × OD0. For vapor-phase atoms, it is possible to obtain ∆ → 1, as the atoms 

can be pumped into a spin state that is dark to one of the circular polarizations of light. 

As presented below, the largest values of ∆ observed for alkali atoms in parahydrogen 

are ∼0.065, significantly lower than vapor-phase atoms. Whether this is due to 

limitations in optical pumping or optical detection is not known; we expect that it is a 

combination of both. 

 

A. Wavelength Dependence 

We examine the polarization signal as a function of the wavelength of the pump 

and probe (the two wavelengths are identical in all data presented here). For the cesium 

data presented in Figure 5.5, typical pump and probe beams have waists of 200 μm and 

125 μm, respectively, and intensities 5 × 103 mW/cm2 and 50 mW/cm2, respectively. 

We note that while these intensities are above the saturation intensity of a gas-phase 

alkali atom, they are far below the saturation intensity of alkali atoms in parahydrogen 

(due to the large spectral broadening of the optical transition). Typical pump durations 

are ∼100 ms; the pumping rate is limited by laser intensity. 

While the optical spectrum shows multiple peaks, we only see a significant 

polarization signal when pumping and probing near the redmost peak. 

For Rb polarization, we were not able to scan the entire Rb spectra, and were 

only able to cover the ranges 655 nm, 680–700 nm, and 730–810 nm (limited by the 

light sources available to us). Over this range, we saw negligible polarization signal 
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except in the region from 730–760 nm, with maximum signal near 750 nm. Similarly 

to Cs, the largest polarization signal was seen near the redmost peak (for crystals grown 

at low temperature). 

For potassium, we likewise were unable to cover the entire spectral range, but 

were able to compare pumping and probing on the redmost line (at 735 nm) to the line 

at 660 nm. We were unable to observe spin polarization at 660 nm, but observed a signal 

when slightly red-detuned from the redmost line. 

This behavior is similar to what was previously observed for thermally spin-

polarized rubidium atoms in argon, which gave the strongest circular dichroism signal 

on the redmost line.24 We do not know whether this is due to similar physics or is simply 

a coincidence. 

Surprisingly, for Rb spectra grown at elevated temperatures (as shown in Figure 

5.4), the peak polarization response remains near 750 nm despite the nearly complete 

“disappearance” of that peak in the absorption spectrum. However, the size of the 

polarization signal decreases, as discussed below in Section IV B. 

Much as the optical spectrum has little dependence on the ortho fraction or alkali 

density over the ranges we explored, we observed little change in the polarization 

signal. For rubidium densities from 6 × 1016 to 3 × 1017 cm−3 in matrices grown under 

similar conditions, we see no change in ∆ to within ±15%. We note that at higher 

rubidium densities (≳ 1018 cm-3) the polarization signal appeared to decrease, but we 

did not extensively explore this density region. Increasing the ortho fraction from 5 × 

10−3 to 3 × 10−2 resulted in a decrease in the Rb polarization signal of a factor of 2. 

However, the higher ortho fraction crystal was grown at a substrate temperature 0.16 K 
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higher than the low ortho fraction crystal (due to the extra heat load on the cryostat from 

heating the ortho-para catalyst), and we suspect the majority of the difference in 

polarization signal is due to the substrate temperature change (as discussed below in 

Section IV B). We did not investigate this behavior for Cs and K in a controlled manner. 

 

B. Effects of Crystal Growth Conditions 

Because the crystal growth temperature strongly affects the optical spectrum (as 

discussed in Section III C), one might expect the polarization signal to be affected as 

well. This is indeed true: the size of the polarization signal varies strongly with the 

temperature of the substrate during crystal growth. Figure 5.6 shows this effect for the 

case of cesium atoms. 

 

Figure 5.6. Polarization signal amplitude for Cs-doped parahydrogen crystals of optical 

depth OD0 ∼ 1 grown at different substrate temperatures. The optical depths of the 

different crystals differed by ±25%, and their densities varied by ±30%. As these 

variations are small compared to the polarization effects observed, we did not correct 

for them. The change in ortho fraction was small, and separate measurements indicate 

that ortho fraction has little effect on the size of the polarization signal. 
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We note that the optical-pumping data in Figure 5.6 were all obtained at our 

base temperature, having cooled down the crystal after growth. Much as the optical 

spectrum maintains a “memory” of the temperature at which it was grown, so does the 

optical pumping and readout. Similar behavior was observed for Rb, with smaller 

polarization signals for crystals grown at elevated substrate temperatures. 

For cesium, some data suggest that matrices grown at higher hydrogen 

deposition rates give larger polarization signals than samples grown at lower flow. This 

is consistent with the results of Section III C, indicating that higher hydrogen flow has 

a similar effect on the optical behavior as lower temperatures. The maximum flow rate 

is limited by our current ortho-para converter. 

Based on these results and those of Sections III C and IV A, we speculate that 

some trapping sites in the lattice are more favorable for optical pumping and readout. 

The different growth conditions change the fraction of atoms trapped in such favorable 

sites, which is reflected in both the optical spectrum and the polarization signal. 

We note that these data suggest that it is very likely that significant 

improvements in the ability to optically pump and read out the spin states of alkali 

atoms in parahydrogen are possible with an apparatus capable of colder temperatures 

and faster parahydrogen deposition rates during crystal growth. 

 

C. Magnetic-Field Dependence 

As seen in Figure 5.7, the amplitude of the spin polarization signal has a strong 

dependence on the applied magnetic field. At fields ≪ 10 G, the optical-polarization 
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signal is quite small. The signal size increases with increasing magnetic field, and 

appears to saturate at fields 10 G. 

 

Figure 5.7. Polarization signal P for Cs and Rb as a function of the bias magnetic field. 

The bias field is roughly normal to the matrix surface and roughly parallel to the pump 

and probe beams. The difference in the high-field value of P is partially due to different 

growth conditions: the cesium-doped sample was grown at a higher substrate 

temperature; the ODs of Rb and Cs were 1.4 and 1.1, respectively. Both crystals exhibit 

the same qualitative behavior. 

 

As discussed below in Section VIII (and touched upon previously in Refs.18,27) 

we attribute these effects to coupling to the crystal field in our polycrystalline sample. 

At magnetic fields 10 G, the Zeeman splitting is much larger than the coupling of the 

spin to the crystal field, and the 𝑚 levels are only slightly perturbed by the matrix. At 

low magnetic fields, the perturbation from the matrix mixes the 𝑚 eigenstates and 

interferes with the ability to optically control and probe the spin state with polarized 

light. 
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D. Species Dependence 

Potassium produces significantly smaller polarization signals than Rb- and Cs-

doped crystals produced and measured under similar conditions. 

 

Table 5.1. The optical spin polarization signal ∆, as defined in Section IV, for the 

atomic species measured. All crystals had an optical depth of 1.1 at the pump-probe 

wavelength. The excited-state finestructure splittings are from Ref.32 

Species B(G) ∆ FS splitting (cm-1) 

K 80 4 × 10-3 57 

Rb 33 5 × 10-2 237 

Cs 33 4 × 10-2 554 

 

Table 5.1 compares the spin polarization signals obtained for potassium, 

rubidium, and cesium. All crystals were grown on the identical cryogenic substrate 

setup and under similar growth conditions. The potassium datum is the largest 

polarization signal observed for potassium in our laboratory, and was measured before 

significant bleaching of the spot occurred (see Section III B). Larger signals were seen 

for rubidium and cesium crystals grown under different conditions (an improved 

window mount that was able to reach slightly colder temperatures, and higher 

parahydrogen flow rates). While the data were taken at different bias fields, rubidium 

and cesium polarizations do not have a significant dependence on the magnetic field 

over the range from 30 to 80 G (as seen in Figure 5.7). 

 

E. Interpretation 

As discussed below in Section VII B, all three species have similar ground-state 

interaction potentials with hydrogen. Our interpretation is that the order-of-magnitude 
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differences in polarization are due to the different fine-structure splittings of their 

excited states. 

First, optical pumping and detection of spin polarization on the s → p transition 

in an alkali atom relies on the fine-structure coupling between orbital angular 

momentum (L) and spin (S). Inside the matrix, the excited p orbital is coupled to the 

crystal field of the local-trapping site, which (neglecting spin and fine structure) can 

split its threefold orbital degeneracy.24 If the coupling of L to the crystal is large 

compared to the fine-structure splitting, it can potentially “decouple” L and S and 

impede the ability to both optically pump and detect the electron spin state.24 Hence, if 

the crystal-field interaction is much larger than the fine-structure splitting, we expect 

poor optical pumping and detection. 

Second, if the fine-structure splitting of the excited state is not optically 

resolved, it will suppress the ability to optically detect spin polarization. However, we 

note that in the case of repopulation pumping, optical pumping would still be possible 

in this limit, as discussed in Section IV F. 

As expected from both these effects, for Rb and Cs – with large fine-structure 

splittings – we see large polarization signals; for potassium – with a significantly 

smaller fine-structure splitting – we see a smaller polarization signal. 

 

F. Nature of Optical Pumping 

Optical pumping of spin is characterized as “depopulation” or “repopulation” 

pumping.35 In the depopulation limit, the excited-state polarization state is completely 

randomized prior to decay to the ground state. In the repopulation limit the atomic 

polarization is conserved in the excited state. These two limits will lead to different 
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spin-state distributions, as shown in Figure 5.8. For a free 85Rb atom driven on the 2S1/2 

→ 2P1/2 transition, depopulation pumping will result in (semi)dark states for both the F 

= 2 and F = 3 manifold. Repopulation pumping will produce a dark state in the F = 3 

but a bright state in the F = 2 manifold. 

 

Figure 5.8. Schematic of 85Rb optical pumping. Panel (a) shows the relative line 

strengths of σ + transitions of the 2S1/2 → 2P1/2 transition in the limit that the upper level 

hyperfine structure is unresolved.36 Panels (b) and (c) show the expected populations in 

the cases of repopulation and depopulation pumping, respectively, as discussed in the 

text. 

 

After optical pumping we can sweep an RF field to depolarize the ground-state 

population. By monitoring the resulting changes in the optical signal we can distinguish 

between the two cases shown in Figure 5.8. As previously reported in Ref.28, the 

polarization signal 𝑃 of 85Rb shifts in opposite directions for RF depolarization of the 

𝐹 =  2 and 𝐹 =  3 levels. This indicates that the pumping is predominantly 

repopulation pumping. Similar behavior was seen for 87Rb, indicating that it also 

undergoes repopulation pumping. Cs and K were not measured in this manner. 



137 

 

 

For comparison, it was previously reported that optical pumping of the spin of 

cesium atoms in solid helium was predominantly repopulation pumping18; however, 

rubidium atoms in solid helium underwent depopulation pumping.37 

 

G. Comparison with Argon 

In prior work, the spectra of alkali atoms trapped in argon matrices exhibited 

multiple absorption peaks, in groups of “triplets”.21,24,25 In those experiments each 

triplet was attributed to the crystal-field interaction splitting the threefold degeneracy 

of the excited-state p orbital. 

The bleaching results presented in Section III B suggest that the crystal-field 

splitting of the excited p orbital in parahydrogen is too small to resolve. Our 

interpretation is that excited-state alkali atoms in parahydrogen experience a smaller 

crystal-field interaction than in argon. This may be the reason why the spin polarization 

signals seen for rubidium in parahydrogen are an order of magnitude larger than the 

largest signals reported for rubidium in argon.25 

 

V. Longitudinal Spin Relaxation 

We can measure the longitudinal relaxation time, 𝑇1, by observing the decay of 

the polarization 𝑃 over time. The 𝑇1 of rubidium atoms in parahydrogen was previously 

reported in Ref.27 It depends strongly on the orthohydrogen fraction in the crystal, with 

longer 𝑇1 times at lower orthohydrogen fractions. 𝑇1 is on the order of 1 s at ortho 

fractions ≲ 10−2 and magnetic fields ≳ 10 G. At lower magnetic fields, 𝑇1 is 

considerably shorter. We did not systematically measure the 𝑇1 of Cs and K at high 
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ortho fractions, but observed 𝑇1 times on the order of 1 s at low ortho fractions. Cs 

showed a similar strong dependence on the magnetic field, with 𝑇1 shorter at magnetic 

fields ≲ 10 G, and saturating at higher fields. 

What processes limit 𝑇1 and whether longer times might be achieved is not 

understood at this time. Our primary interest at present is in the ensemble transverse 

relaxation time 𝑇2
∗. As the measured 𝑇1  ≫  𝑇2

∗, longitudinal relaxation does not play a 

significant role in limiting 𝑇2
∗. 

 

VI. Ensemble Transverse Relaxation Time 

We measure the ensemble transverse spin relaxation time (𝑇2
∗) with free-

induction-decay (FID) measurements, as well as other methods detailed in Ref.28 After 

optically pumping the spin state of the atoms, we apply a short RF pulse to induce 

Larmor precession and observe the resulting oscillations in the polarization signal. 

Because different isotopes typically have different g factors, we can frequency-select a 

single isotope with the RF pulse, allowing us to measure the FID signals of the different 

isotopes separately. 

For the case of Cs, we use a mostly RHC pump-probe beam at 846 nm whose 

intensity and waist are about 103 mW/cm2 and 200 μm, respectively. This beam passes 

through the center of the crystal just above the RF coil and is subsequently focused onto 

a fast photodiode. The RF coil is about 0.5 cm away from the front surface of the crystal. 

DC bias magnetic fields ranging from a few gauss to ∼80 G are applied at ∼45 degrees 

relative to the pump beam direction. We pump the atoms for ∼150 ms which creates 

magnetization along the direction of the DC bias field. Then we apply a short (and hence 
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spectrally broadband) RF pulse, which induces Larmor precession. We high-pass-filter 

the pump beam signal from the photodiode to obtain the time-varying free-induction-

decay signal as shown in Figure 5.9. Rubidium and potassium are measured in a similar 

manner. 

 

Figure 5.9. 133Cs FID signal, taken at a bias field of 21 G, as described in the text. The 

FID is excited by a 1 μs pulse, as shown in the figure. A fit to an exponentially decaying 

sinusoid gives a 3 μs 𝑇2
∗. 

 

In the case of Cs, we have made FID measurements over a range of Larmor 

frequencies from 0.7 to 8 MHz. All return similar values of 𝑇2
∗  ≈ 3 μs. At these fields, 

the nonlinear Zeeman effect is sufficiently small that the different Larmor precession 

superposition states are unresolved.38 

This is not the case for 39K, whose much smaller hyperfine splitting38 results in 

a much larger splitting between the different Zeeman states. The Zeeman structure of 

39K is shown in Figure 5.10. A typical FID signal for potassium is shown in Figure 11. 

The beating of the different Larmor superposition states makes fitting the decay to a 
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damped sinusoid impractical. Instead, we Fourier-transform the FID signal and fit the 

resulting spectral peaks. From their full width at half maximum (FWHM), we determine 

𝑇2
∗ from the relationship 𝑇2

∗ = (𝜋 × FWHM)-1, where FWHM is expressed in cycles per 

unit time (e.g., Hz). From the spectrum, we determine that the four peaks observed are 

from the 𝐹 = 2 hyperfine manifold of 39K; the shifts of 40K, 41K, and the 𝐹 = 1 

manifold of 39K are sufficiently large that their Larmor precession transitions would be 

spectrally resolved.38 

 

Figure 5.10. 39K Zeeman structure, calculated from Ref.39 The energy levels are labeled 

by their low-field quantum numbers. Superposition states of levels differing by ∆𝑚𝐹  = 

1 (indicated by arrows) give rise to Larmor precession. 
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Figure 5.11. 39K FID signal, taken at a bias field of 9 G, as described in the text. On 

this scale, the individual oscillations of the RF pulse and FID signal are not visible, but 

their overall envelopes can be observed. The FID signal shows clear beating. The inset 

shows the Fourier transform (magnitude squared) of the FID signal. Fitting the largest 

peak to a Lorentzian line shape gives a 6 kHz full width at half maximum, which 

corresponds to a 53 μs 𝑇2
∗. From left to right, the four peaks correspond to superpositions 

of |𝑚𝐹 = +2⟩ and |𝑚𝐹 = +1⟩; +1 and 0; 0 and −1; and −1 and −2. 

 

We note that the measured 𝑇2
∗ for 39K is over an order of magnitude longer than 

for 133Cs. These differences are discussed in Section VI A. 

At sufficiently low magnetic fields (≲ 2 G) Rb FID exhibits a single line, similar 

to Cs. At “intermediate” fields, the different Larmor superposition states cannot be fully 

resolved, but their splitting leads to a decrease in the FID time. At still higher fields (≳ 

40 G) beating is clearly observed (as in the case of potassium data shown in Figure 

5.11). We present the higher-field data below in Section VI B; for now we concern 

ourselves with the low-field limit. 
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We measured the Rb FID time for Rb densities from 1017 to 1018 cm−3, and saw 

no variation to within ±15%. Similarly, the Rb FID time showed no dependence on the 

ortho fraction in the crystal over a range from 5 × 10−5 to 1 × 10−3, to within ±10%. 

Much like Rb, we did not see any dependence of Cs FID decay on Cs density or 

ortho fraction. We observe no dependence on the Cs density (to within ±15%) over the 

range from 1 × 1016 to 1 × 1017 cm−3. We observe no dependence on the ortho fraction 

(to within ±10%) over a range from 3 × 10−5 to 1 × 10−3. For Cs, 𝑇2
∗ showed little 

dependence on the substrate temperature at the time of crystal growth. 

We note that for all species, the FID frequency is consistent with the applied 

magnetic field and the free-atom g factor.38 However, because we do not know the 

applied magnetic field accurately, all we can say is that the g factor in the crystal 

matches the free-atom case to within ±20%. We have verified that magnetic-field 

gradients do not play a significant role in the 𝑇2
∗ measurements presented here: we tested 

for gradients by varying the size of the sample (by growing thicker and thinner crystals, 

and by changing the probe beam diameter). 

 

A. 𝑻𝟐
∗  for Different Species 

Figure 5.12 shows the measured 𝑇2
∗ values, expressed as a FWHM linewidth for 

our measured species. 
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Figure 5.12. 𝑇2
∗, expressed as a linewidth = 1/(𝜋𝑇2

∗) , for the species measured. The 

linewidths are plotted as a function of the ground-state hyperfine splitting of each 

species; we believe this is the key parameter in explaining the differences in the 

observed linewidths, as discussed in the text. Rb and Cs data were taken at sufficiently 

low fields that the different Larmor precession frequencies were unresolved; the 39K 

data were taken at similar fields but with resolved structure; the number plotted is the 

linewidth of the 𝐹 = 2, |𝑚𝐹 = 0⟩ and |𝑚𝐹 = −1⟩ Larmor superposition. All data points 

were taken in the short-pulse limit. The unresolved splittings of the different Larmor 

precession states may be artificially broadening the 85Rb linewidth at the level of 10%; 

less for 87Rb and 133Cs. 

 

The 𝑇2
∗ times are limited by inhomogeneous broadening, as we have measured 

spin-echo T2 times to be 1 ms for rubidium and cesium (we have not measured spin-

echo signals in potassium due to its small polarization signal). 

We expect that the inhomogeneous broadening which limits 𝑇2
∗ is primarily due 

to electrostatic-like interactions with the host matrix.28 As such, we would expect the 

energy level shifts to resemble those of the Stark effect. Considering the Stark effect 

for a ground-state alkali atom, there is a scalar component which shifts all |𝐹,𝑚𝐹⟩ levels 

the same, and a tensor component which shifts different 𝐹 and 𝑚𝐹  levels differently. It 
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is this tensor component which will cause inhomogeneous broadening for Larmor 

precession. The tensor component is zero in second-order perturbation theory, and only 

appears in third-order perturbation theory including two electric dipole couplings and 

one hyperfine interaction.40-42 Consequently, we would expect atoms with larger 

hyperfine splittings to have larger shifts due to their interaction with the matrix. In the 

case of a polycrystalline matrix with inhomogeneous trapping sites, this would result in 

larger inhomogeneous broadening. This is qualitatively consistent with the observations 

presented in Figure 5.12. 

A more sophisticated and quantitative model based on the rigorous electron spin 

resonance (ESR) Hamiltonian is presented in Section VII A. 

 

B. 𝑻𝟐
∗  for Different Larmor Superposition States 

At sufficiently high magnetic fields, we can spectrally resolve the different 

Larmor precession states of rubidium, similarly to the case of potassium shown in 

Figure 5.11. Figure 5.13 shows data for both the 𝐹 = 3 manifold of 85Rb and the 𝐹 = 

2 manifold of 87Rb. Larmor precession arises from all superpositions of states that differ 

by ∆𝑚 = 1. 
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Figure 5.13. The FWHM linewidths of the Rb Larmor precession superposition states 

at a magnetic field of 80 G, as discussed in the text. The data are labeled by the 𝑚𝐹  

states of their corresponding Larmor superposition. Plotted alongside the data is the 

theory of Section VII A, scaled by a factor of 1.35. 

 

As observed in Section VI A at low fields, the 87Rb linewidths are larger than 

those of the corresponding superpositions in 85Rb. For both isotopes, the linewidths are 

larger for superposition states of higher 𝑚𝐹. Qualitatively, this is as one would expect 

for inhomogeneous broadening from electrostatic interactions: tensor Stark shifts scale 

as 𝑚𝐹
2 .41,43 

The data in Figure 5.13 are presented alongside the quantitative theory of 

Section VII A. The theory reproduces the dependence of the linewidth on both isotope 

and 𝑚𝐹. The significant isotope effect is mainly due to the hyperfine anisotropy of 87Rb, 

which is 3.4 times larger than that of 85Rb (see Table 5.4) owing to the difference in the 

nuclear magnetic moments. The 𝑚𝐹  scaling arises from the tensor nature of the 

anisotropic hyperfine interaction, as presented in Section VII A. 
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More subtle features of the spectrum, such as why the Larmor precession 

linewidth of the (−1,0) superposition of 𝐹 = 3 85Rb is consistently narrower than the 

(+1,0) superposition, are not understood. The low signal-to-noise ratio of the potassium 

polarization signal does not permit similar comparisons of different Larmor precession 

states, and we did not take Cs data at sufficiently high field to resolve the different 

superpositions. 

 

C. Temperature Dependence 

We measured rubidium 𝑇2
∗ in the low-field limit at different crystal 

temperatures. The Rb linewidth showed no dependence on the crystal temperature over 

a range from 3 to 4.2 K, to within ±30%. 

We do, however, see a dependence of the FID decay time on temperature for 

Cs. We warmed a Cs-doped crystal (grown at 3.2 K substrate temperature, with our 

“base” ortho fraction) crystal to 4 K and held it there overnight to allow the crystal to 

anneal. This produced, surprisingly, longer free-induction decay times by roughly 40%. 

Cooling back to our base temperature of 3 K returned our original FID times. 

Subsequent cycling between 3 and 4 K consistently showed longer FID decay times at 

the elevated temperature. These data are presented in Figure 5.14. 
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Figure 5.14. Cs FID 𝑇2
∗ measured at different temperatures. Each point is an average 

of multiple measurements over multiple temperature cycles of the same sample; the 

warmer temperatures consistently gave longer FID decay times. 

 

The link between elevated matrix temperature and longer 𝑇2
∗ times is not 

understood, but we speculate that it may be due to larger amplitude atomic motion (on 

a timescale much shorter than 𝑇2
∗) reducing the anisotropy of individual trapping sites 

and/or reducing the inhomogeneities between different trapping sites, similarly to 

“motional narrowing” effects observed in NMR.44 

 

VII. Theory 

A. Inhomogeneous Broadening due to Hyperfine Interactions 

In this section, we present a theoretical analysis of inhomogeneous broadening 

of hyperfine transitions of 2S atoms embedded in an inert matrix. The theory is based 

on the hyperfine Hamiltonian commonly used to calculate powder ESR spectra,45-47 
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which we extend to the low-field limit of interest to the matrix isolation experiments 

described here. The primary focus will be on alkali-metal atoms trapped in solid p-H2, 

although our theory is sufficiently general to be applicable to any S-state atom in an 

inert matrix. 

To model the broadening of the hyperfine transitions 𝐹,𝑚𝐹 ↔ 𝐹′, 𝑚𝐹
′ , we 

assume that it is due to the tensor matrix shifts of the hyperfine levels caused by the 

interaction with the host matrix. As shown below, the tensor matrix shifts depend on 

the orientation of the principal axes of the hyperfine tensor A with respect to the 

magnetic-field axis. We derive analytical expressions for these shifts as a function of 

the orientation angle and then calculate them for all possible orientations to obtain the 

linewidth of the hyperfine transitions of an atom in a polycrystalline (powder) matrix. 

Our results establish a direct connection between the experimentally observable 

transition linewidths and the elements of the hyperfine tensor, calculated ab initio for a 

range of alkali-H2 complexes as described in Section VII B. At the end of this section, 

we compare our calculated transition linewidths with experiment, finding good 

semiquantitative agreement, and discuss the limitations of our model. 

 

 



149 

 

 

Figure 5.15 (a) A schematic representation of our model for the alkali-metal trapping 

site in a p-H2 matrix. The red circle represents the central alkali-metal atom; the blue 

circles represent the axial p-H2 molecules taken into account in the present calculations; 

the gray circles are all other p-H2 molecules. The electron and nuclear spins of the 

alkali-metal atom are indicated by arrows. (b) Space-fixed (black) and principal-axes 

(magenta) coordinate systems. The Z axis of the space-fixed system is defined by the 

direction of the external magnetic field. The positions of the principal axes x, y, z in the 

space-fixed coordinate system are defined by the Euler angles Ω = 𝜑, 𝜃, 𝜒. 

 

We begin with the ESR Hamiltonian for a central S = 1/2 atom embedded in a 

solid p-H2 host matrix,45,46,48 as illustrated in Figure 5.15 (a), 

𝐻hf =  𝐴𝑎𝑺 ∙ 𝑰 + 2𝜇0𝑺 ∙ 𝐠 ∙ 𝑩 +  𝑺 ∙ 𝐀 ∙ 𝑰 +∑𝑺 ∙ 𝐀𝛼 ∙ 𝑰𝛼

𝛼

,                       (5.1) 

where 𝑺 and 𝑰 are the electron and nuclear spins of the central atom 𝐀, is the hyperfine 

tensor on the central nucleus of interest, and 𝐀𝛼  are the hyperfine tensors on the 

surrounding nuclei bearing nuclear spin angular momenta Iα (we neglect this final term 

in the following calculations). In Eq. (5.1), 𝐠 is the g tensor of the central atom, 45,46,48 

assumed here to be proportional to the unit matrix, 𝐠 =ge1, where 𝑔𝑒 ⋍ 2 is the electron 

g factor. In defining the hyperfine tensor, we separate out the contribution due to the 

hyperfine structure of the free atom 𝐴𝑎𝑺 ∙ 𝑰, which allows us to define unperturbed 

atomic states |𝐹,𝑚𝐹⟩ in the weak-field limit. Here, 𝑭 =  𝑰 +  𝑺 is the total angular 

momentum of the atom, and 𝑚𝐹  is the projection of 𝑭 on the space-fixed quantization 

axis defined by the external magnetic field. 

The hyperfine tensor accounts for the modification of the atomic hyperfine 

structure due to the interaction with the matrix, and can be decomposed as 

𝑨 =  𝐴iso(𝑅)𝟏 + 𝐓,                                                  (5.2) 
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where the scalar constant 𝐴iso describes the isotropic (Fermi contact) interaction and 

the traceless tensor 𝐓 describes the anisotropic hyperfine interaction. Note that the 

isotropic hyperfine interaction does not affect the splitting between the 𝑚𝐹 sublevels of 

the same 𝐹 state, so we do not consider this term in the following. However, it must be 

taken into account when considering the transitions involving hyperfine states of 

different 𝐹. We further assume that matrix perturbations are weak, i.e., 𝐴𝑎  ≫  𝑇𝑖𝑗. 

The third term in Eq. (5.1) can be written as a sum over Cartesian components 

of vector operators 𝑺 and 𝑰: 

𝐻ahf = ∑ 𝑆𝑖𝑇𝑖𝑗𝐼𝑗
𝑖,𝑗=𝑥,𝑦,𝑧

.                                                  (5.3) 

In general, the form of this operator depends on the choice of the coordinate 

system. Here, we choose the principal axes (PAs) of the tensor 𝐓 as coordinate axes. 

The orientation of the PAs with respect to space-fixed axes defined by the external 

magnetic field is specified by the Euler angles Ω = (𝜑, 𝜃, 𝜒) as shown in Figure 5.15 

(b). In this coordinate system, 𝐀 and 𝐓 take the diagonal form and Eq. (5.3) reduces to 

𝐻ahf
PA = 𝑇𝑥𝑥𝑆𝑥𝐼𝑥 + 𝑇𝑦𝑦𝑆𝑦𝐼𝑦 + 𝑇𝑧𝑧𝑆𝑧𝐼𝑧,                                     (5.4) 

where 𝑇𝑥𝑥, 𝑇𝑦𝑦, and 𝑇𝑧𝑧 are the PA components of 𝐓 calculated ab initio as described 

in the next section. 

In first-order perturbation theory, the energy shift of the atomic level |𝐹,𝑚𝐹⟩ 

due to the interaction with the host matrix is given by the diagonal matrix element of 

the perturbation 

∆𝐸𝐹𝑚𝐹
= ⟨𝐹𝑚𝐹|𝐻ahf

PA|𝐹𝑚𝐹⟩.                                                (5.5) 
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To evaluate the matrix elements in Eq. (5.5) in terms of the PA components of 

the hyperfine tensor, we express the Hamiltonian via the spherical tensor operators 

expressed in the space-fixed frame [see Figure 15 (b)]. Following Appendix A of Ref.49 

and keeping in mind that �̅� =
1

3
(𝑇𝑥𝑥 + 𝑇𝑦𝑦 + 𝑇𝑧𝑧) = 0, we have 

𝐻ahf
PA = ∑ [

1

2
(𝑇𝑥𝑥 − 𝑇𝑦𝑦)[𝐷p,2

2 (Ω) + 𝐷p,−2
2 (Ω)]

2

𝑝=−2

 

+
1

√6
(2𝑇𝑧𝑧 − 𝑇𝑥𝑥 − 𝑇𝑦𝑦)𝐷p,0

2 (Ω)] [𝑰 ⊗ 𝑺]𝑝
(2)
,                           (5.6) 

where [𝑰 ⊗ 𝑺]𝑝
(2)

 is a rank-2 tensor product of two rank-1 spherical tensor operators 

and 𝐷p,2
2 (Ω) are the Wigner 𝐷 functions of the Euler angles that define the orientation 

of the PA coordinate system relative to the space-fixed axes [see Figure 15 (b)]. 

In the case of axial symmetry assumed below,46,48 𝑇𝑥𝑥 = 𝑇𝑦𝑦 and the expression 

(Eq. 5.6)  simplifies to 

𝐻ahf
PA =

2

√6
∆𝑇 ∑ 𝐷p,0

2 (Ω)

2

𝑝=−2

[𝑰 ⊗ 𝑺]𝑝
(2)
,                                     (5.7) 

where we define ∆𝑇 = 𝑇𝑧𝑧 − 𝑇𝑥𝑥 as the hyperfine anisotropy. The matrix shifts in Eq. 

(5.5) thus become, for a given orientation Ω of the PA coordinate system relative to the 

space-fixed axes, 

∆𝐸𝐹𝑚𝐹
(Ω) =

2

√6
∆𝑇 ∑ 𝐷p,0

2 (Ω)

2

𝑝=−2

⟨𝐹𝑚𝐹|[𝑰 ⊗ 𝑺]𝑝
(2)
|𝐹𝑚𝐹⟩.                  (5.8) 
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Applying the Wigner-Eckart theorem50 to evaluate the matrix elements on the 

right-hand side, we find 

⟨(𝐼𝑆)𝐹𝑚𝐹|[𝑰 ⊗ 𝑺]𝑝
(2)
|(𝐼𝑆)𝐹′𝑚𝐹

′ ⟩ = (−1)𝐹−𝑚𝐹 (
𝐹 2 𝐹′

−𝑚𝐹 𝑝 𝑚𝐹
′ ) 

[(2𝐹 + 1)5(2𝐹′ + 1)]1/2𝑝3(𝐼)𝑝3(𝑆) {
𝐼 𝐼 1
𝑆 𝑆 1
𝐹 𝐹′ 2

},                  (5.9) 

where the symbols in parentheses and curly brackets are 3-𝑗 and 9-𝑗 symbols, and 

𝑝3(𝑋) = [(2𝑋 + 1)𝑋(𝑋 + 1)]1/2. For 𝑚𝐹 = 𝑚𝐹
′ , the 3-𝑗 symbol in Eq. (5.9) is nonzero 

only when 𝑞 = 0. Setting 𝐷p,0
2 (Ω) = 𝑑00

2 (𝜃) =
1

2
(3cos2(𝜃) − 1) in Eq. (5.9), we 

obtain the angular dependence of the tensor matrix shift 

∆𝐸𝐹𝑚𝐹
(𝜃) =

3cos2(𝜃) − 1

√6
∆𝑇(−1)𝐹−𝑚𝐹 (

𝐹 2 𝐹
−𝑚𝐹 0 𝑚𝐹

) 

[(2𝐹 + 1)5(2𝐹 + 1)]1/2𝑝3(𝐼)𝑝3(𝑆) {
𝐼 𝐼 1
𝑆 𝑆 1
𝐹 𝐹 2

}.                  (5.10) 

For a polycrystalline p-H2 matrix, the orientation of the PA coordinate system 

with respect to the external magnetic field is random45; i.e., all possible 𝜃 angles will 

contribute to the linewidth. In the presence of axial symmetry, Eq. (5.10) shows that 

there is a distribution of matrix shifts proportional to (3cos2(𝜃) − 1). The transition 

linewidth can then be evaluated as a difference between the maximum (2) and minimum 

(−1) values of the angular function (3cos2(𝜃) − 1) for 𝜃 ∈  [0, 𝜋]. Replacing 

3cos2(𝜃) − 1 → 3 in Eq. (5.10), we obtain the linewidth of the atomic state |𝐹,𝑚𝐹⟩ in 

a polycrystalline matrix 
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∆𝐸𝐹𝑚𝐹
= 3√

5

6
∆𝑇(−1)𝐹−𝑚𝐹(2𝐹                                     

+ 1)𝑝3(𝐼)𝑝3(𝑆) (
𝐹 2 𝐹

−𝑚𝐹 0 𝑚𝐹
) {
𝐼 𝐼 1
𝑆 𝑆 1
𝐹 𝐹 2

}.                                (5.11) 

The 3-𝑗 symbol on the right is equal to (−1)𝐹−𝑚𝐹[(2𝐹 + 3)(2𝐹 + 2)(2𝐹 +

1)2𝐹(2𝐹 − 1)]−1/2[3𝑚𝐹
2 − 𝐹(𝐹 + 1)].50 Eq. (2.11) thus establishes that for a given 

alkali-metal atom (fixed 𝐼, 𝑆, and ∆𝑇), the linewidth of the 𝐹, 𝑚𝐹 level scales with 𝐹 

and 𝑚𝐹 as 

∆𝐸𝐹𝑚𝐹
∝ [(2𝐹 + 3)(2𝐹 + 2)(2𝐹 + 1)2𝐹(2𝐹 − 1)]−1/2 

(2𝐹 + 1) {
𝐼 𝐼 1
𝑆 𝑆 1
𝐹 𝐹 2

} [3𝑚𝐹
2 − 𝐹(𝐹 + 1)].                (5.12) 

Given the broadening of the individual hyperfine levels (Eq. 5.11), we can 

calculate the inhomogeneous transition linewidth assuming that the hyperfine levels 𝐹, 

𝑚𝐹  and 𝐹′, 𝑚𝐹
′   involved in the magnetic dipole transition are broadened by the 

interaction with the matrix. Both of the hyperfine levels experience tensor matrix shifts 

according to Eq. (5.11). Taking the difference of the 𝐹, 𝑚𝐹  and 𝐹′, 𝑚𝐹
′  level shifts given 

by Eq. (5.11) and averaging the result over 𝜃 as described above, we obtain the 

inhomogeneous linewidth of the 𝐹,𝑚𝐹 ↔ 𝐹′, 𝑚𝐹
′  transition 

∆𝐸𝐹,𝑚𝐹↔𝐹
′,𝑚𝐹

′ = 3√5/6𝑝3(𝐼)𝑝3(𝑆)∆𝑇 [(−1)
𝐹−𝑚𝐹(2𝐹

+ 1) (
𝐹 2 𝐹

−𝑚𝐹 0 𝑚𝐹
) {
𝐼 𝐼 1
𝑆 𝑆 1
𝐹 𝐹 2

} 
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−(−1)𝐹
′−𝑚𝐹

′
(2𝐹′ + 1) (

𝐹′ 2 𝐹′

−𝑚𝐹
′ 0 𝑚𝐹

′ ) {
𝐼 𝐼 1
𝑆 𝑆 1
𝐹′ 𝐹′ 2

}].                     (5.13) 

For the transitions involving different 𝑚𝐹 sublevels of the same 𝐹 state of interest here, 

𝐹 = 𝐹′  and Eq. (5.13) simplifies to [omitting the irrelevant overall phase (−1)𝐹−𝑚𝐹] 

∆𝐸𝐹,𝑚𝐹↔𝐹
′,𝑚𝐹

′ = 3√5/6𝑝3(𝐼)𝑝3(𝑆)(2𝐹 + 1)∆𝑇 

[(
𝐹 2 𝐹

−𝑚𝐹 0 𝑚𝐹
) − (−1)𝑚𝐹−𝑚𝐹

′
(
𝐹 2 𝐹

−𝑚𝐹
′ 0 𝑚𝐹

′ )] {
𝐼 𝐼 1
𝑆 𝑆 1
𝐹 𝐹 2

}.                          (5.14) 

Table 5.2 presents the theoretical linewidths of 𝑚𝐹-changing transitions in 

different alkali-metal atoms. The linewidths are calculated using Eq. (5.14) based on 

the ab initio values of the hyperfine anisotropy ∆𝑇 from Section VII B. We observe 

good semiquantitative agreement between theory and experiment across all species and 

isotopes, confirming that anisotropic hyperfine interactions are the dominant source of 

broadening. 

 

Table 5.2. Calculated linewidths (in kHz) for the 𝐹,𝑚𝐹 ↔ 𝐹′, 𝑚𝐹
′  transitions in 

different alkali-metal isotopes. The theoretical values are computed using Eq. (5.14) 

based on the ab initio hyperfine anisotropies ∆𝑇 calculated as described in Section VII 

B. The theoretical 𝑚𝐹 ↔ 𝑚𝐹
′  transition linewidths are invariant with respect to the 

simultaneous sign reversal 𝑚𝐹 → −𝑚𝐹  and 𝑚𝐹
′ → −𝑚𝐹

′ ; thus only positive values are 

presented. 

Transition (𝑚𝐹 ↔ 𝑚𝐹
′ ) Theory 

39K; 𝐹 = 2: 

2 ↔ 1 

1 ↔ 0 

 

6.19 

2.06 
85Rb; 𝐹 = 3: 

3 ↔ 2 

2 ↔ 1 

1 ↔ 0 

 

109.6 

65.78 

21.93 
87Rb; 𝐹 =  2: 

2 ↔ 1 

1 ↔ 0 

 

334.4 

111.5 
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133Cs; 𝐹 = 4: 

4 ↔ 3 

3 ↔ 2 

2 ↔ 1 

1 ↔ 0 

 

546.27 

390.18 

234.11 

78.04 

 

For the same alkali-metal isotope, Eq. (5.14) predicts 𝐹-independent broadening 

of the 𝐹,𝑚𝐹 ↔ 𝐹′, 𝑚𝐹
′  transitions. Within the same 𝐹 manifold, the linewidths are 

expected to increase linearly with 𝑚𝐹 and to be independent of its sign, again consistent 

with the trend observed experimentally (Figure 5.13). Significantly, Eq. (5.12) predicts 

that +𝑚𝐹 → −𝑚𝐹 transitions will have dramatically reduced inhomogeneous 

broadening, as these pairs of levels are (to first order) shifted identically by the 

anisotropic hyperfine interaction. Experimentally, such transitions are found to have 

much smaller linewidths than the Larmor-precession transitions, as discussed in Section 

VIII.28 

While our theoretical results are in nearly quantitative agreement with 

experiment, small disagreements remain. We suspect these disagreements are due to 

differences between our model trapping site and the true trapping site. To compensate 

for this, we scale our theoretical Rb anisotropies by a single constant factor (common 

to both isotopes). This scaled calculation is presented alongside experimental data in 

Figure 5.13. With this scaling, we see nearly quantitative agreement with experiment. 

Additional work is warranted to provide more detailed models of trapping sites, 

which are different not only in their orientations, but also in their geometries and 

coordination numbers,51 bringing about additional broadening mechanisms. A 

theoretical study of these mechanisms would require a detailed investigation of trapping 

site structure (using, e.g., quantum Monte Carlo simulations) combined with extensive 



156 

 

 

ab initio calculations of the hyperfine and g-tensor elements corresponding to different 

site structures. 

 

B. Ab initio Calculations of Alkali-H2 Potentials and Hyperfine Interactions 

As discussed in Section VII A, the linewidths of alkali-metal atoms trapped in 

solid p-H2 are determined by the hyperfine anisotropy ∆𝑇. To estimate this quantity, 

we adopt a minimal model for the alkali-metal trapping site illustrated in Figure 5.15. 

In this axially symmetric model, commonly used in theoretical simulations of molecular 

ESR spectra,46,48 the central alkali-metal atom 𝐴 is surrounded by two H2 molecules in 

the linear configuration H2-𝐴-H2. We then use the eigenvalues of the hyperfine tensor 

calculated ab initio at the equilibrium 𝐴-H2 geometry 𝑅𝑒 to approximate the hyperfine 

anisotropy ∆𝑇 defined in Section VII A above. 

To estimate the equilibrium configuration of the axial trapping site, we carried 

out ab initio calculations of the alkali-H2 interaction potentials using the unrestricted 

coupled cluster method with singles, doubles, and perturbative triples [UCCSD(T)],52 

as implemented in MOLPRO.53 The aug-cc-pVQZ54 and Jorge-AQZP55 one-electron 

basis sets were employed for H and K atoms, respectively. For Rb and Cs atoms, 𝑛 core 

electrons were replaced with the ECPnMDF relativistic effective potential (𝑛 = 28 for 

Rb and 𝑛 = 46 for Cs). The remaining valence electrons of Rb and Cs were described 

with the uncontracted [13s10p5d3f] and [12s11p5d3f] basis sets,56 respectively. The 

alkali-H2 interaction potentials were corrected for the basis set superposition error57 and 

expressed in Jacobi coordinates 𝑅 and 𝜃, where 𝑅 is the interatomic distance between 

an 𝐴 atom and the H2 center of mass, and 𝜃 is the angle between the A-H2 vector 𝑅 and 
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the H2 interatomic axis. The two-dimensional interaction energies were averaged over 

19 equally spaced values of 𝜃 ∈  [0, 90o] using the hindered rotor model58 and fitted 

with cubic splines to produce the isotropic potentials shown in Figure 5.16. 

As shown in Section VII A, the hyperfine tensor on the nucleus of interest has 

the isotropic (𝐴iso1) and anisotropic (𝐓) components, which can be expressed as the 

Fermi contact and spin-dipolar terms in SI units: 

𝐴iso =
𝑔𝑁𝑒

2ℏ

6𝜋𝜖0𝑐2𝑚𝑒𝑚𝑝

|Ψ(𝐫)|2,                                          (5.15) 

𝐓 =
𝑔𝑁𝑒

2ℏ

16𝜋2𝜖0𝑐2𝑚𝑒𝑚𝑝

〈
𝐫𝑡 ∙ 𝐫 ∙ 𝟏 − 3𝐫 ∙ 𝐫𝑡

𝑟3
〉,                        (5.16) 

where 𝑔𝑁 is the nuclear g factor, 𝑒 is the electron charge, ℏ is reduced Planck constant, 

𝜖0 is vacuum permittivity, 𝑐 is the speed of light, 𝑚𝑒 and 𝑚𝑝 are electron and proton 

masses, |Ψ(𝐫)|2 is the electron spin density at the nucleus, and the expectation value 

〈… 〉 is that of the spin-dipolar interaction. We carried out ab initio calculations of the 

spin density |Ψ(𝐫)|2 and the spin-dipolar interaction on the alkali-metal nucleus using 

the UCCSD(T) method and all-electron fully uncontracted basis sets augmented by the 

large-exponent s functions in CFOUR.59 The aug-cc-pwCV5Z60 and relativistic ANO-

RCC61 basis sets augmented with four s functions obtained by multiplying the largest 

exponent by a factor of 4 were used for H and alkali-metal atoms, respectively, as 

described in our previous work on alkali-He hyperfine interactions.62,63 We carried out 

test calculations of the hyperfine tensor for 1H, 39K, 85Rb, 87Rb, and 133Cs with the 

corresponding nuclear spins I = 1/2, 3/2, 5/2, 3/2, and 7/2. 
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To validate the level of theory used to predict the anisotropic component of the 

hyperfine tensor, we also calculated its isotropic component 𝐴iso in Eq. (2.15). Table 

5.3 compares the calculated and experimental values of the hyperfine constants for 1H 

and the alkali-metal atoms. For the light 1H, 7Li, and 39K isotopes, the calculated and 

experimental values are in good agreement. For Rb isotopes, we observe significant 

deviations from experiment because of the relativistic properties of the core electrons, 

which are not accounted for in our ab initio calculations. It is important to note that the 

isotropic part of hyperfine interaction depends on the electron density at a nucleus, 

while the anisotropic part is defined by the spin-dipolar interaction, which is much less 

affected by the electron density of the core electrons. Therefore, we expect a much 

higher accuracy in our anisotropic hyperfine constant calculations on heavy alkali-

metal isotopes. 

 

Table 5.3. Calculated isotropic hyperfine interaction constants (in MHz) compared 

with experiment for atomic hydrogen (Ref.64) and alkali-metal atoms (Ref.38). 

Atom This work Experiment 
1H 1418 1420.405 726(3) 
7Li 399 401.752 043 3(5) 
39K 221 230.859 860 1(3) 
85Rb 848 1011.910 813(2) 
87Rb 2875 3417.341 306 42(15) 
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Figure 5.16. Ab initio isotropic interaction potentials for K, Rb, and Cs atoms with H2. 

 

Figure 5.16 shows the radial dependence of the isotropic part of our ab initio 

alkali-H2 interaction potentials. We note that the potential minima of all alkali-H2 

complexes occur at much larger distances than the H2-H2 potential minimum, and also 

they are much larger than the 7 𝑎0 nearest-neighbor spacing in zero-pressure solid 

hydrogen.65 This “mismatch” in sizes may explain the existence of multiple trapping 

sites in the solid,51 as there may be multiple different configurations of similar (or 

lower) energy than a simple interstitial or single-substitution site. The well depths of 

the potentials are 𝐷𝑒 = −8.5 cm−1 at 11.7 𝑎0 for K-H2, 𝐷𝑒 = −7.2 cm−1 at 12.1 𝑎0 for 

Rb-H2, and 𝐷𝑒 = −6.6 cm−1 at 12.5 𝑎0 for Cs-H2. 

 

Table 5.4. Principal-axis components (𝑇𝑥𝑥 , 𝑇𝑦𝑦, 𝑇𝑧𝑧) of the hyperfine tensor (in kHz) 

for the H2-𝐴-H2 complexes. The hyperfine anisotropy ∆𝑇 = 𝑇𝑧𝑧 − 𝑇𝑥𝑥 . The value of 𝑅 

is fixed at the equilibrium distance 𝑅𝑒 of the corresponding 𝐴-H2 interaction potential 

(see Figure 5.16). 

Transition (𝑚𝐹 ↔ 𝑚𝐹
′ ) (𝑇𝑥𝑥 , 𝑇𝑦𝑦, 𝑇𝑧𝑧) 

H2-
39K-H2 (-1.8, -1.8, 3.7) 

H2-
85Rb-H2 (-29.2, -29.2, 58.5) 

H2-
87Rb-H2 (-99.1, -99.1, 198.2) 

H2-
133Cs-H2 (-138.7, -138.7, 277.5) 
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In Table 5.4, we report the values of anisotropic components of the hyperfine 

tensor for the linear H2-𝐴-H2 complex at the equilibrium 𝐴-H2 separation determined 

from the ab initio potentials plotted in Figure 5.16. In these calculations, the H2 bond is 

taken to be collinear to the symmetry axis of the axially symmetric H2-𝐴-H2 complex. 

We estimate the upper limits to the hyperfine anisotropy ∆𝑇 = 𝑇𝑧𝑧 − 𝑇𝑥𝑥 to be 5.5, 87.7, 

297.3, and 416.2 kHz for 39K, 85Rb, 87Rb, and 133Cs, respectively. 

 

VIII. Properties of Inhomogeneous Broadening from Generic Time-Symmetric 

Perturbations 

Our measured 𝑇2
∗ times for Larmor precession states agree well with the 

theoretical model for inhomogeneous broadening due to hyperfine interactions with an 

inhomogeneous host matrix, as presented in Section VII A. First-order perturbation 

theory – in the limit that 𝐹 and 𝑚𝐹  are good quantum numbers – finds that states of the 

same 𝐹 and |𝑚𝐹| undergo identical shifts. This will be the case not only for the specific 

interaction Hamiltonian used in Section VII A, but for any electrostatic-like 

perturbation (i.e., a perturbation which is unchanged under time reversal). 

Because electrostatic interactions are unchanged under time reversal, the 

electrostatic shift of the |𝐹,𝑚𝐹⟩ and the|𝐹, −𝑚𝐹⟩ level should be the same to first 

order. Hence, superpositions of such levels should show dramatically reduced 

broadening when compared to Larmor precession levels. This effect has been 

demonstrated in previous measurements of 85Rb in parahydrogen.28 We wish to 

consider the specific behavior of this phenomena in greater detail here, and compare 

the broadening of different superposition states. 
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We first construct a Hamiltonian for the known gas-phase hyperfine and 

Zeeman structure of the ground state of 85Rb (𝐼 =5/2), working in the 12-dimensional 

subspace of the 2S1/2 electronic ground state [66]. We model the crystal-field interaction 

as a random Hermitian matrix in this subspace, with each element a Gaussian 

distribution of amplitudes chosen to roughly match our observed 𝑇2
∗. We then “time-

symmetrize” the matrix by adding it to a time-reversed copy of itself. We solve for the 

eigenvalues of the total Hamiltonian, calculate the energy differences between each pair 

of levels (labeled by their low-field, perturbation-free eigenvalues), and then repeat the 

process multiple times and calculate the standard deviation of the distribution of energy 

differences. 

 

Figure 5.17. Simulation of inhomogeneous broadening for different superpositions of 

Zeeman levels of the 𝐹 = 3 manifold of 85Rb, plotted as a function of magnetic field. 

The simulations were for “random matrix” perturbations that were symmetric under 

time reversal (i.e., electrostatic-like), as explained in the text. The states are labeled by 

𝐹 and 𝑚𝐹 quantum numbers; we note that these are good quantum numbers only in the 

limit of small magnetic fields (Zeeman shifts small compared to the hyperfine splitting) 

and small random matrix perturbations (small compared to the Zeeman splitting). 
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This simple model will capture some of the generic effects of a time-symmetric 

perturbation, but will miss many of the important details of the inhomogeneous 

broadening. The model omits the specific structure and symmetry of the trapping sites. 

It also emits the specific nature of the electrostatic interactions (which will cause 

different shifts for different 𝑚𝐹  levels and different species, as discussed in Sections VI 

A, VI B, and VII A). Additionally, it has no predictive capability for the magnitude of 

the broadening, as the magnitude of the random matrix elements are chosen to match 

experiment. However, it does reveal interesting behavior which we expect will be 

general, as shown in Figure 5.17, which plots the simulated linewidths as a function of 

the applied magnetic field, for Zeeman shifts small compared to the hyperfine splitting. 

As shown in Figure 5.13, 85Rb (𝐹 = 3) has six superpositions which give rise to 

Larmor precession. All show roughly similar behavior in this simple calculation; in 

Figure 5.17 we have plotted the linewidth of a single superposition to simplify the 

graph. All show a linewidth which is roughly independent of the applied field. More 

interesting is the behavior of the other states shown. The 𝑚𝐹 = +3 and −3 levels are, in 

the absence of the crystal field, time reversals of each other. At high magnetic fields, 

where the Zeeman splitting is much greater than the crystal-field interaction, this leads 

to a large suppression of the inhomogeneous broadening, as the perturbation by the 

crystal field is zero to first order. At lower fields, this “protection” is reduced as higher-

order perturbations begin to play a larger role. In the low-field limit, where the crystal 

field is greater than the Zeeman splitting, the levels are fully mixed by the crystal-field 

perturbation and the protection is lost, as seen in Figure 5.17. Slightly more complex 

are the 𝑚𝐹, −𝑚𝐹 superpositions which are not stretched states (+2 and −2, and +1 and 
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−1 for 85Rb). In the absence of the crystal field, these states are time reversals of each 

other only in the low-magnetic-field limit. Hence, they show behavior similar to the 

stretched-state superposition at low magnetic fields, but at higher magnetic fields lose 

their “protection” due to the nonlinear Zeeman effect. 

These simulations qualitatively agree with our experimental measurements. 

First, we typically find that our optical pumping signal is reduced in amplitude if we 

work at longitudinal magnetic fields ≲ 1 G, as discussed in Section IV C. This is 

qualitatively consistent with the idea that the 𝑚𝐹 levels are fully mixed by the crystal-

field perturbation at low magnetic fields. Second, in Ref.,28 we measured the linewidth 

of a superposition of |𝐹 = 3,𝑚𝐹 = +1⟩ and |𝐹 = 3,𝑚𝐹 = −1⟩ at magnetic fields 

ranging from 60 to 150 G. The linewidth observed was significantly narrower than any 

of the Larmor precession superpositions. The linewidth increased linearly with the 

magnetic field over the measured range, in qualitative agreement with the model shown 

in Figure 5.17. From the simulation, we expect significant improvements could be 

obtained by working with a superposition of stretched states, and at higher fields. 

 

IX. Discussion 

The optical spin polarization signals obtained for Rb and Cs in solid 

parahydrogen are significantly larger than had previously been reported for alkali atoms 

in solid argon or neon,25,67 but not as large as what has been observed in solid helium.18 

However, the behavior observed in Section IV B suggests that significant improvement 

could be obtained in an apparatus capable of colder substrate temperatures and higher 

parahydrogen deposition rates. 
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The measured 𝑇2
∗ times are significantly shorter than those of cesium atoms in 

solid helium,19 but are predominantly due to matrix inhomogeneities. Significant 

improvement would be observed with a sample of uniform trapping sites in a single-

crystal hydrogen matrix. Even in the absence of uniform trapping sites, significant gains 

in the spin 𝑇2
∗ would be expected by employing stretch-state superpositions rather than 

Larmor precession states,28 as discussed in Section VIII. 

Considering the other alkali-metal atoms, we would expect lithium and sodium 

to have long 𝑇2
∗ times due to their small hyperfine splitting,38 as explained in Sections 

VI A and VII A. Unfortunately, we would expect poor polarization signals from lithium 

and sodium due to their small excited-state fine-structure splitting, as discussed in 

Section IV D. 

Considering other elements of the periodic table, we expect that – unless one is 

able to grow single-crystal samples with uniform trapping sites – atoms with ground 

states with 𝐽 > 1/2 will have short 𝑇2
∗ times, as tensor Stark shifts would be expected to 

be significantly larger. Among the 𝐽 = 1/2 elements, silver appears promising: it has a 

large excited-state fine-structure splitting (which should be favorable for optical 

pumping and readout of spin) and a small ground-state hyperfine splitting (which 

should be favorable for a long 𝑇2
∗). Moreover, silver’s nuclear spin of 𝐼 = 1/2 makes it 

straightforward to obtain stretched-state superpositions with a simple two-photon 

transition.28 In addition, silver’s smaller “size” may allow it to fit into the lattice in a 

more stable or favorable configuration. 
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Abstract 

In 1939, George Gamow published a popular-science book ''Mr. Tompkins in 

Wonderland'', which tells a story about Mr. Tompkins dreaming of alternative reality 

where  fundamental constants have radically different values from those they have in 

the real world. Gamow's classic predates modern theories which generically promote 

fundamental constants to dynamical entities. Constants are no longer constant. Enter 

Mr. Tompkins  world where speed of light c is reduced to that of a speeding bicycle. 

Here we show that gradually reducing c from its nominal value truncates periodic 

system of elements. It also leads to qualitative changes in Aufbau principle, atomic 

ground states, nature of chemical bond, and  molecular geometry. Noble gasses are no 

longer inert.  In addition to pushing relativistic quantum chemistry to its limits, we find 

that Mr. Tompkins world would be uninhabitable. 

  



176 

 

 

I. Introduction 

Quantum chemistry primarily depends on a set of three fundamental constants 

(FCs): the electron mass 𝑚𝑒, its charge 𝑒, and the Plank constant ℏ. Relativity brings 

in the speed of light 𝑐 or, equivalently, the fine-structure constant 𝛼 = 𝑒2/ℏ𝑐. These 

constants, together with nuclear parameters are fixed in conventional computations to 

their empirical (nominal) values. Modern theories, however, generically promote FCs 

to dynamical entities1,2. Constants are no longer constant. The effects in variation of 

FCs in non-relativistic Born-Oppenheimer (NR-BO, infinitely heavy point-like nuclei) 

approximation  reduce to isotropic scaling of all nuclear and electronic coordinates by 

the Bohr radius 𝑎 = ℏ2/𝑚𝑒𝑒
2, see Supplementary Information. Similarly, all the FC-

dependence of energies factorizes out (common factor is Hartree energy 𝑚𝑒𝑒
4/ℏ2). 

Then  chemical bond angles and transition frequency ratios do not depend on FCs. 

Effects beyond the NR-BO approximation violate these scaling laws and lead to 

changes in chemical bond angles and frequency ratios with varying FCs. For 

concreteness, here  we focus on the effects of relativity and examine the effect of 

variation in 𝛼. In atomic units (𝑚𝑒 = |𝑒| = ℏ ≡ 1), conventionally used in quantum 

chemistry, 𝛼 = 1/𝑐. Then variations in 𝛼 are equivalent to those in speed of light: 

𝑐/𝑐0 = 𝛼0/𝛼. Here and below all quantities sub-scripted with 0 refer to their nominal 

values. Our choice of atomic system of units does not affect our conclusions3.  

Previous literature on variations of FCs predominately focused on small 

deviations of FCs from their nominal values4. Here we explore a novel regime of 

extreme variations and find an abundance of remarkable effects. The periodic system 

of elements is truncated with reduction in 𝑐. 
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The Aufbau principle, atomic ground states, nature of chemical bond, and 

molecular geometry all exhibit substantial qualitative changes. Noble gasses are no 

longer inert. 

Beyond connection to novel theories, there is a practical utility in enhancing 

relativity5. As an electron near the nucleus of charge 𝑍 moves with speed 𝑣/𝑐 ~𝛼𝑍, 

relativistic effects are most pronounced in heavy systems. However, in  heavy  

molecules, the effects of relativity are masked by large electron correlations. Reducing 

𝑐 magnifies the role of relativity in light molecules, where correlations can be treated 

with much higher accuracy. We carry out most of our ab initio relativistic quantum 

chemistry calculations with the state-of-the-art Dirac package6-8, testing its capabilities 

in the ultra-relativistic regime. 

 

II. Dirac Theory of the Relativistic Electron in the Potential 

We start with a hydrogen atom. Its ground state energy is given by 

휀1𝑠1/2 = 𝑐
2 (√1 − (

𝑍

𝑐
)
2

− 1).                                             (6.1) 

We remind the reader that Dirac equation has two continua: above the ionization 

threshold, 휀 > 0, and below the rest-mass gap,  휀 <  −2𝑐2, see Figure 6.1. In the Dirac 

sea paradigm, the lower continuum is fully occupied by  electrons. Then the atomic 

electron cannot spontaneously decay into the lower continuum due to the Pauli 

exclusion principle. As we increase 𝑐, the 1𝑠1/2 energy is lowered deeper into the rest-

mass gap until we reach a value of 𝑐 = 𝑍 with 휀1𝑠1/2 = −𝑐
2. Above this value, the 
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argument of the square root, 1 − (𝑍/𝑐)2, becomes negative and the energy acquires an 

imaginary part: the ground state becomes unstable. Point-like nucleus approximation 

of Eq. (6.1), however, is inadequate in determining the critical value of 𝑐.  Bound states 

become unstable when their energies ''dive'' into Dirac sea9,10, i.e.  휀1𝑠1/2 = −2𝑐2, and 

not 𝑐2 per Eq. 6.1). 

 

Figure 6.1. Energy states of atomic hydrogen a function of speed of light. The 1𝑠1/2 

''dives''' into Dirac sea  at the critical value 𝑐∗ ≈ 𝑐0/143. 

 

To rectify the failure of the point-like nucleus approximation, Eq. (6.1), we 

solved Dirac equation with finite-size nuclei numerically. Resulting energies of several 

lowest-energy orbitals for hydrogen are shown in Figure 6.1. As expected, the  solutions 

remain stable until the  energy dives into Dirac sea. The 1𝑠1/2 energy breaches the rest-

energy gap  at the critical value of 𝛼∗ ≈ 1.04 corresponding to an ≈ 143-fold reduction 

in the speed of light. 
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What happens when 𝑐 is driven below its critical value 𝑐∗? This question has 

been explored in a related problem of determining the critical nuclear charge with 𝛼 

fixed to its nominal value9,10. The bound state becomes embedded into the Dirac sea 

continuum, and, as such, becomes unstable, similar to  Fano resonances in chemical 

physics. An electron-positron pair is emitted spontaneously and the vacuum becomes 

electrically charged. 

We show in Supplementary Information that  the critical value 𝑐∗ increases with 

nuclear charge, 

𝑐∗

𝑐0
=
𝛼0
𝛼∗
≈

𝑍

168
.                                                      (6.2) 

This remains a good approximation for multi-electron systems as the 1𝑠1/2 electrons 

tend to see the unscreened nuclear charge with minor correlation corrections. In a 

chemical compound, 𝑐∗is determined by the charge of the heaviest nucleus. Inverting 

Eq. (6.2), we observe that at a given value of 𝑐/𝑐0, only elements with 𝑍 ≲ 168𝑐/𝑐0 

are stable.  As 𝑐 is gradually decreased from its nominal value, the heavier elements are 

destabilized first and the periodic system is truncated. If 𝑐 is reduced ten-fold, only 

elements with 𝑍 ≲ 16 remain stable. The entire periodic system  shrinks to elements 

from hydrogen to sulfur. In Mr. Tompkins alternative reality11, with 𝑐 reduced to that 

of a speeding bicycle, 𝑐/𝑐0  ≈ 4 × 10
−8 and even the hydrogen atom fails to exist. 
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III. Effects of Extreme Variation of the Speed of Light on Structure of Many-

Electron Atoms 

For multi-electron systems, the role of  Dirac sea becomes explicit even at the 

stage of formulating the many-body atomic Hamiltonian, 

𝐻no−pair =∑ℎD
𝑖

(𝑖) +
1

2
∑Λ++

1

𝑟𝑖𝑗
Λ++

𝑖≠𝑗

.                               (6.3) 

Here the first term is a sum of Dirac Hamiltonian  ℎD(𝑖) of an electron 𝑖  moving in the  

potential of a finite-size nucleus and the second term describes the Coulomb repulsion 

between the electrons. Breit interaction is usually included as well. Notice that the 𝑒 −

𝑒 interaction is sandwiched between projection operators Λ++. These  exclude states 

from the Dirac sea continuum of ℎD, to avoid  collapse of many-electron wavefunctions 

into Dirac sea12. This is the no-pair Hamiltonian of relativistic atomic and molecular 

structure calculations13,14 and we use it as a starting point in our computation. 

 

Figure 6.2. Evolution of the Aufbau principle’s sequence of orbital occupation in 

many-electron atoms with varying speed of light 𝑐 (or fine-structure constant). 𝑐0 and 

𝑐∗ are the nominal and the critical values, respectively. 
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Figure 6.3. Energy spectrum of neon atom as a function of speed of light (or 𝛼) with 

the energy 𝐸0e of the closed-shell state 0e(1S0) serving as a reference. At the nominal 

𝑐, the states are labeled using the conventional Russell-Saunders LS coupling scheme15, 

and the closed-shell ground state is labeled as 1S0. At the smaller values of 𝑐, the states 

are labeled as 𝐽π, where 𝐽 is the total angular momentum and π is the parity of the state. 

Multiple state crossings lead to the open-shell state 2e becoming the ground state near 

the critical 𝑐 (𝑐0/𝑐
∗ = 14.8). 

 

The Aufbau (building-up) principle states that electrons fill atomic orbitals with 

the lowest energies. For 𝑐 ≈  𝑐0, the textbook sequence of orbitals is 

1𝑠1/22𝑠1/22𝑝1/22𝑝3/23𝑠1/2. This sequence is explained by the screening of the nuclear 

charge by the electrons in inner shells, which is more effective for the orbitals with 
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larger 𝑙 due to centrifugal potential. When 𝑐 approaches its critical value, our 

calculations for the hydrogen atom result in the 1𝑠1/22𝑝1/22𝑠1/23𝑠1/22𝑝3/2 sequence 

of energies, while for the multi-electron atoms, it becomes 1𝑠1/22𝑠1/22𝑝1/23𝑠1/22𝑝3/2 

(Figure 6.1), which is attributed to relativistic stabilization of 2𝑠1/2, 2𝑝1/2, and 3𝑠1/2. 

For example, at 𝑐 ≲  𝑐∗, neon (𝑍 = 10) has the ground-state configuration 

1𝑠1/2
2 2𝑠1/2

2 2𝑝1/2
2 3𝑠1/2

2 2𝑝3/2
2  with the total angular momentum 𝐽 = 2, as shown in Figure 

6.3. Neon becomes an open-shell atom with a half-occupied  2𝑝3/2 atomic orbital, and, 

as such, is no longer inert. The "effective" configuration of the ultra-relativistic neon, 

3𝑠1/2
2 2𝑝3/2

2  (occupied 2𝑠1/2 and 2𝑝1/2 atomic orbitals are omitted since their energies 

are significantly lowered), closely resembles configuration of carbon at nominal speed 

of light, 2𝑠1/2
2 2𝑝1/2

2 . Therefore, such neon is expected to have as reach chemistry as 

carbon, including the ultra-relativistic version of organic chemistry. It is intriguing to 

imagine polymers, nanostructures, and entire new biology where neon plays the 

traditional role of carbon. 

 

IV. Effects of Extreme Variation of the Speed of Light on Structure of Molecules 

How will the extreme variation of the speed of light affect the structure and 

properties of molecules? Here we address this question by investigating the properties 

of water and ammonia, which are common and very important molecules in the 

Universe. Water is abundant in the Solar System, including liquid water that is believed 

to exist under the surface of the Jupiter’s moon Europa and in early atmospheres of 

Venus and Mars 16-17. All known forms of life use water as a universal solvent for 

various chemicals and as an essential component of  many metabolic processes. 



183 

 

 

Ammonia is an important source of nitrogen required for synthesis of amino acids and 

building proteins in living systems18. Ammonia is present in the atmospheres of the gas 

giants, in comets and interstellar ices, and on the moons of Pluto and Saturn19-20. 

In the worlds where 𝑐 ≪  𝑐0, the geometry of water molecule will undergo 

dramatic changes. We find that at 𝑐 13.7 times smaller than its nominal value, the 

calculated bond angle in water reduces from 106o to 90o. If 𝑐 decreases to 17.8 times of 

the nominal value, the water molecule becomes linear and therefore nonpolar. These 

dramatic changes in molecular geometry are induced by the relativistic stabilization of 

the 2𝑠1/2 and 3𝑠1/2 spin-orbitals of oxygen atom, and by the increased spin-orbit 

splitting between the 2𝑝1/2 and 2𝑝3/2 spin-orbitals (Figure 6.4). The effect on 

molecular geometry can be understood considering two common theories of molecular 

bonding: the valence shell electron pair repulsion (VSEPR) model and molecular 

orbital (MO) model.  

According to the VSEPR model, at nominal 𝑐, the valence 𝑠 and three 𝑝 atomic 

orbitals of oxygen mix to produce four equivalent hybrid orbitals (𝑠𝑝3 hybridization, 

or 2𝑠1/22𝑝1/22𝑝3/2 in spin-orbital notation). Two of the hybrid orbitals overlap with 

the orbitals of the hydrogen atoms, and another two hold the two lone electron pairs. 

The repulsion between the four electron pairs on the hybrid orbitals leads to the slightly 

distorted tetrahedral arrangement, corresponding to the calculated bond angle of 106o. 

At intermediate 𝑐0/𝑐 = 13.7, the stabilization of the 2𝑠1/2 and 2𝑝1/2 spin-orbitals 

breaks down the hybridization and results in only the doubly degenerate 2𝑝3/2 spin-

orbital participating in the formation of the oxygen-hydrogen bonds. This stabilizes the 

molecular structure with the 90o bond angle5. The loss of hybridization is supported by 
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the contraction of the electron radial density distributions (RDDs) of HOMO-3 and 

HOMO-2 (HOMO is the highest occupied molecular orbital), as the speed of light 

decreases (Figure S8). This indicates a reduction of these two molecular orbitals to 

2𝑠1/2 and 2𝑝1/2 atomic spin-orbitals of oxygen. As the speed of light decreases further, 

relativistic stabilization of the 3𝑠1/2 spin-orbital of oxygen and destabilization of the 

2𝑝3/2 spin-orbital due to large spin-orbit splitting lead to these spin-orbitals becoming 

quasi-degenerate. Such quasi-degeneracy induces the 𝑝𝑠 hybridization between these 

two spin-orbitals, stabilizing the linear molecular geometry. The participation of the 

3𝑠1/2 spin-orbital in chemical bonding is supported by the shape of the HOMO-1 RDD 

that becomes similar to the RDD of the 3𝑠 atomic orbital (Figure S8).   

 

Figure 6.4. Molecular geometry and orbital diagram of water at different speeds of 

light, 𝑐0/𝑐 = 1 (A), 13.7 (B) and 17.8 (C). The energy scale is the same in all panels. 

At the nominal speed of light (panel A), the orbitals are labeled and colored according 

to their irreducible representations in the 𝐶2𝑣 point group. At decreased speed of 

light (panels B and C), the spin-orbital notation is used for atomic oxygen, and only the 

occupied MOs are shown.  
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Figure 6.5. Walsh correlation diagrams of water showing the energies of four valence 

molecular orbitals as functions of bond angle at different speeds of light 𝑐0/𝑐 = 1 (A), 

13.7 (B), and 17.8 (C). In panels B and C, HOMO-3 is not shown because it reduces to 

the 2𝑠1/2 atomic spin-orbital of oxygen and does not participate in the formation of 

oxygen-hydrogen bonds. 

 

The Walsh correlation diagrams of the MO theory provide more insight into the 

relation between the electronic structure and geometry of the water molecule (Figure 

6.5). These diagrams show the energies of valence MOs as functions of the bond angle. 

Because the total electron energy of a molecule can be approximated as the sum of MO 

energies, the Walsh diagrams can be used to predict the values of the bond angle that 

minimize the total electron energy. At 𝑐0/𝑐 = 1, the interplay between mostly the 

HOMO-1 and HOMO-2 energies minimizes the total electron energy at the calculated 

bond angle of 106o. As the speed of light decreases, the energy of the 2𝑠1/2 spin-orbital 

is reduced and its contribution to HOMO is diminished, leading to the minima of the 
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HOMO and total electron energies at the 90o bond angle. At even slower speed of light, 

the realistically stabilized 3𝑠1/2 spin-orbital contributes to HOMO, minimizing the 

HOMO and total electron energies at the linear geometry. 

Changes in molecular geometry of ammonia at slower speed of light resemble 

those of water and can be explained by the similarity in changes in electronic structure 

of the nitrogen and oxygen atoms (Figures S4 and S5). At the nominal speed of light, 

the VSEPR model predicts formation of four equivalent sp3 hybrid orbitals in 

tetrahedral arrangement. In ammonia, three of these hybrid orbitals form chemical 

bonds with hydrogen atoms, while the fourth orbital holds the lone electron pair, leading 

to the trigonal pyramidal geometry, with calculated bond angle of 108o (Figure 6.6).  

As speed of light decreases, the angle reduces to its minimum values of 87o, which can 

be explained by the loss of hybridization due to relativistic stabilization of the 2𝑠1/2 

spin-orbital of nitrogen. This is supported by the RDD plot of HOMO-3, showing the 

transformation of this molecular orbital to the atomic 2𝑠1/2 spin-orbital at reduced 𝑐 

(Figure S10). Further decrease in the speed of light leads to the planar molecule 

geometry with the 120o bond angle, which can be explained by the formation of new 

𝑝2𝑠 hybrid orbitals from the 2𝑝3/2 and relativistically stabilized 3𝑠1/2 spin-orbitals. 

The participation of 3𝑠1/2 spin-orbital in the chemical bonding is reflected in the RDD 

shape of HOMO-1 (Figure S10, panels C and D).  
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Figure 6.6. Molecular geometry and orbital diagram of ammonia at different speeds of 

light, 𝑐0/𝑐 = 1 ( A), 17.8 (B) and 20.6 (C). The energy scale is the same in all panels. 

At the nominal speed of light (panel A), the orbitals are labeled and colored according 

to their irreducible representations in the 𝐶3𝑣 point group. At decreased speed of 

light (panels B and C), the spin-orbital notation is used for atomic nitrogen, and only 

the occupied MOs are shown. 
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Figure 6.7. Walsh correlation diagrams of ammonia showing the energies of four 

valence molecular orbitals as functions of bond angle at different speeds of light 𝑐0/𝑐 

= 1 (A), 17.8 (B), and 20.6 (C). In panels B and C, the HOMO-3 molecular orbital is 

not shown because it reduces to 2𝑠1/2 core spin-orbital of nitrogen and does not 

participate in the formation of nitrogen-hydrogen bonds. 

 

The Walsh correlation diagrams for ammonia show the molecular orbital 

energies as functions of the bond angle (see Figure 6.7). At the nominal and 

intermediate 𝑐, the minima of the sum of orbital energies correspond to the trigonal 

pyramidal molecular geometries. For a very slow 𝑐, the HOMO stabilization at large 

angles dominates the energy changes of other molecular orbitals, leading to the planar 

molecular geometry. 
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V. Conclusion 

 Dramatic changes in the geometries of the oxygen and nitrogen-containing 

molecules will lead to alternative chemistry and biology. For example, the linear water 

molecule will have no dipole moment, and therefore will not be able to act as the 

universal solvent. Such molecules will be able to form only two-dimensional networks 

of hydrogen bonds, which should dramatically decrease the freezing and boiling points 

of water. The predicted changes in the geometry of ammonia, which is one of the most 

abundant polyatomic molecules in the interstellar space, can be used to search for the 

variations of fundamental constants in the Universe. If the underlying field driving the 

variations of fundamental constants permeates the visible Universe, there are strong 

anthropic-principle and observational constraints on how large the variations can be. 

However, if the field is self-interacting, it can clump into a few small patches on cosmic 

scales21. Then the constraints are evaded:  fundamental constants can be radically 

different inside these patches. 
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SUMMARY AND CONCLUSION 

 

 

In the first part of this work, we presented the nonadiabatic statistical theory 

(NAST) to predict kinetics of spin-dependent processes. We discussed the NAST 

program package that calculates the probabilities and rate constants of intersystem 

crossings and spin-forbidden chemical reactions mediated by the spin-orbit coupling 

between electronic states with different spin multiplicities. NAST is a computationally 

inexpensive tool that requires the knowledge of molecular properties only at a few 

points on the potential energy surfaces of two spin states. Therefore, in contrast to 

nonadiabatic molecular dynamics, NAST can be applied to large molecular systems 

and is ideally suited to study slow nonadiabatic processes. NAST accounts for quantum 

effects, such as zero-point vibrational energy, quantum tunneling and reaction path 

interference. The key capabilities of the NAST package include calculations of i) 

reverse rate constants, ii) velocity-averaged transition probabilities, iii) rate constants 

in solutions, iii) adiabatic transition state theory (TST) rate constants, iv) effective 

Hessian matrix to obtain vibrational frequencies at the minimum energy crossing point, 

and v) spin-adiabatic potentials for obtaining the Zhu-Nakamura transition 

probabilities. We discussed three examples of NAST application. In the first example, 

the TST rate constants for isomerization of propylene oxide to acetone and propanal 

are calculated. The second example illustrated calculations of the forward and reverse 

rate constants for spin-forbidden isomerization of Ni(dpp)Cl2. The third example 

demonstrated the rate constant calculations for T1→S0 relaxation in cyclopropene.  
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In the second part, we presented experimental and theoretical study of 

decoherence between spin states in 39K, 85Rb, 87Rb, and 133Cs atoms trapped in solid 

parahydrogen matrix. To explain experimental decoherence times 𝑇2
∗, we proposed a 

model of inhomogeneous broadening of hyperfine transitions between spin states of the 

central alkali atom due to its interaction with the host matrix. The largest contribution 

to the inhomogeneous broadening was identified to come from the anisotropic dipole-

dipole interaction between the magnetic moments of the unpaired electron and nucleus 

of the metal atom. This anisotropic dipole-dipole interaction is induced by a change in 

the electronic structure of the alkali atom in presence of the host matrix. The 𝑇2
∗ values 

predicted by our model, which was parametrized using the hyperfine anisotropy 

constant obtained from high-level electronic structure calculations, were in semi-

quantitative agreement with the experimental results. 

In the last part, we investigated how extreme variations of the speed of light 

impact electronic structure of atoms and molecules. This work was motivated by 

modern theories of physics which admit variation of fundamental constants. The 

changes in electronic structures were induced by increased relativistic effects when the 

speed of light 𝑐 is reduced from its nominal value. To model these changes, we solved 

the fully relativistic Dirac equation at different values of 𝑐. We showed that atoms 

remain stable under variation of 𝑐 up to a critical atom-specific value 𝑐∗. All first-row 

atoms with electrons in the 2𝑝3/2 subshell (N, O, F, and Ne) exhibit a change in the 

ground states at 𝑐 close to 𝑐∗ due to the relativistic stabilization of the 3𝑠1/2 spin-orbital 

and the large spin-orbit splitting between the 2𝑝1/2 and 2𝑝3/2 spin-orbitals. We also 

found that an extreme variation of 𝑐 leads to dramatic changes in the molecular 
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geometries of ammonia and water. At the speed of light close to 𝑐∗, the water molecule 

becomes linear, while the ammonia molecule becomes planar. 
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APPENDIX A. CHAPTER 3 SUPPLEMENTAL MATERIALS 

 

 

Density of rovibrational states 

 

The rovibrational density of states measures the number of states of the system per 

unit energy at the given energy E, 

𝜌(𝐸) = ∫ 𝜌νib

𝐸

0

(𝐸 − 𝐸rot)𝜌rot(𝐸rot)𝑑𝐸rot,                                         (1) 

 where 𝜌νib and 𝜌rot are the vibrational and rotational densities of states, 

respectively. The vibrational density of states are calculated using the direct counting 

algorithm,1,2 which is implemented in the NAST package as follows: 

define Emax, where [0, Emax] is desired energy range 

 do loop over all vibrational frequencies: 

         do j = 1 till number_of_frequencies 

               set counter k = 0 

                do while frequency(j)*k < Emax 

                         k = k +1;  e_bin = ceil(frequency(j)*k) 

                         vib_density(e_bin) = vib_density(e_bin) + 1 

                end do 

          end do 

The rotational density of states is calculated using the classical equation for asymmetric 

top model3: 

𝜌rot(𝐸rot) =
4√2𝐸rot
ℎ3

√𝐼A𝐼B𝐼C,                                                   (2) 

where ℎ is Planck’s constant, and 𝐼A, 𝐼B and 𝐼C are the principal moments of inertia of 

a molecule. 
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Sloped and peaked intersections 

 

The difference between sloped and peaked intersections is shown in Fig. 1 below. 

 

Figure 1. Sloped (upper left) and peaked (lower right) intersections of two states along 

the one-dimensional reaction coordinate 𝑟,  휀⊥ is the internal energy contained in 𝑟. The 

two states 𝐸1 and 𝐸2 are shown in spin-diabatic (grey) and spin-adiabatic (green and 

red) representations. In sloped intersection, the gradients 𝐠1 and 𝐠2 point in the same 

direction at MECP. 

 

Zhu-Nakamura formulas for sloped intersection 

 

The Zhu-Nakamura (ZN) probability of transition at the reaction energy 휀⊥ is given 

by 

𝑃ZN(휀⊥) = 4𝑝ZN(1 − 𝑝ZN)sin
2(𝜓),                                   (3) 
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where 𝑃ZN is the ZN double passage probability, and 𝜓 is the overall transition phase.3,4 

The single passage probability 𝑝ZN is parametrized as a function of 𝑎, 𝑏, 𝑑, 𝜎, 𝛿 and 𝜓. 

For a sloped intersection, the parameters 𝑎, 𝑏 and 𝑑 are defined as: 

𝑎2 = (𝑑2 − 1)1/2
ℏ2

𝜇(𝑡2
0 − 𝑡1

0)2(𝐸2(𝑟0) − 𝐸1(𝑟0))
,                                      (4) 

𝑏2(휀⊥) = (𝑑
2 − 1)1/2

휀⊥ − (𝐸2(𝑟0) + 𝐸1(𝑟0))/2

(𝐸2(𝑟0) − 𝐸1(𝑟0))/2
,                                   (5) 

𝑑2 =
(𝐸2(𝑡1

0) − 𝐸1(𝑡1
0))((𝐸2(𝑡2

0) − 𝐸1(𝑡2
0))

(𝐸2(𝑟0) − 𝐸1(𝑟0))2
,                                             (6) 

where 𝑟0 is a point of the smallest energy gap between two spin-adiabatic states, and 𝑡1
0 

and 𝑡2
0 are the turning points (see Fig. 2 in the main text). The single passage probability 

𝑝ZN reads 

𝑝ZN(휀⊥) =

{
 
 

 
 
exp(−

𝜋

4𝑎𝑏
√

2

1 + √1 + 𝑏−4(0.4𝑎2 + 0.7)
) , 𝑏(휀⊥) ≥ 0

(1 + B (
𝜎

𝜋
) 𝑒2𝛿 − 𝑔2 sin

2(𝜎))
−1

, 𝑏(휀⊥) < 0 

     (7) 

B(𝑥) =
2𝜋𝑥2𝑥𝑒−2𝑥

𝑥Γ2(𝑥)
,                                                       (8) 

where parameter 𝑔2 and phases 𝜎, 𝛿 and 𝜓 are defined for different energy ranges as: 

 

i)  휀⊥  ≤  𝐸1(𝑟0) 

𝜎 = 𝜎0,                                                                     (9) 

𝛿 = − ∫|𝐾1(𝑟)|𝑑𝑟

𝑡1

𝑟0

+ ∫|𝐾2(𝑟)|𝑑𝑟

𝑡2

𝑟0

+ 𝛿0,                          (10) 
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ii)  𝐸1(𝑟0) < 휀⊥  ≤  𝐸2(𝑟0) 

𝜎 = ∫ 𝐾1(𝑟)𝑑𝑟

𝑟0

𝑡1

+ 𝜎0,                                            (11) 

𝛿 = ∫|𝐾2(𝑟)|𝑑𝑟

𝑡2

𝑟0

+ 𝛿0,                                           (12) 

iii)  휀⊥ > 𝐸2(𝑟0) 

𝜎 = ∫ 𝐾1(𝑟)𝑑𝑟

𝑟0

𝑡1

− ∫ 𝐾2(𝑟)𝑑𝑟

𝑟0

𝑡2

+ 𝜎0,                         (13) 

𝛿 = 𝛿0.                                                           (14) 

𝐾𝑖, 𝜎0 and 𝛿0 are 

𝐾𝑖(𝑟) =  √
2𝜇⊥
ℏ2

(휀⊥ − 𝐸𝑖(𝑟)),                                                    (15) 

𝜎0 + 𝑖𝛿0 =
𝜋

𝑎√8

𝐶− + 𝑖𝐶+

𝐹−2 + 𝐹+
2 ,                                                     (16) 

𝐹± = √√(𝑏2 + 𝛾1)2 + 𝛾2 ± (𝑏2 + 𝛾1) + √√(𝑏2 − 𝛾1)2 + 𝛾2 ± (𝑏2 − 𝛾1),     (17) 

𝐶+ = 𝐹+ (𝑏
2 → [𝑏2 −

0.16𝑏x

√𝑏4 + 1
]),                                       (18) 

𝐶− = 𝐹− (𝛾2 → [
0.45𝑑

1 + 1.5exp (2.2𝑏x|𝑏x|0.57)
]),                           (19) 

𝑏x = 𝑏2 − 0.9553, 𝛾1 = 0.9√𝑑2 − 1, 𝛾2 =
7

16
𝑑.                 (20) 
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For the internal energies below MECP, 𝑏 < 0, and 𝜓 is an argument of the Stock’s 

constant 𝑈1: 

 

i) 𝑏(휀⊥) < 0 

𝜓 = arg(𝑈1),                                                (21) 

Re(𝑈1) = cos(𝜎) [𝑒
𝛿√B(𝜎/𝜋) − 𝑔1sin

2(𝜎)
𝑒−𝛿

√B(𝜎/𝜋)
],          (22) 

Im(𝑈1) = sin(𝜎) [𝑒2𝛿B(𝜎/𝜋) − 𝑔1
2sin2(𝜎)cos2(𝜎)

𝑒−2𝛿

B(𝜎/𝜋)
+ 2𝑔1cos

2(𝜎)

− 𝑔2],                                                                                                            (23) 

𝑔1 = 1.8(𝑎
2)0.23𝑒−𝛿 , 𝑔2 =

3𝜎

𝜋𝛿
ln(1.2 + 𝑎2) −

1

𝑎2
,            (24) 

where function B is defined by Eq. 8. For the internal energies above MECP, 𝜓 is 

defined as: 

 

ii) 𝑏(휀⊥) ≥ 0 

𝜓 =  𝜎 + 𝜑s,                                                           (25) 

𝜑s = −
𝛿ψ

𝜋
+
𝛿ψ

𝜋
ln (

𝛿ψ

𝜋
) − argΓ (𝑖

𝛿ψ

𝜋
) −

𝜋

4
,                                  (26) 

𝛿ψ = 𝛿 (1 +
5√𝑎

√𝑎 + 0.8
10−𝜎).                                            (27) 

Rate constants and transition probabilities between individual MS components for 

triplet-quintet crossing 
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The spin-orbit Hamiltonian in the basis of spin-diabatic states {|𝑆,𝑀𝑠⟩} is: 

|1, −1⟩ |1,0⟩ |1, +1⟩ |2, −2⟩ |2, −1⟩ |2,0⟩ |2, +1⟩ |2, +2⟩ 

𝑯SO =

|1,−1⟩
|1,0⟩
|1, +1⟩
|2, −2⟩
|2, −1⟩
|2,0⟩
|2, +1⟩
|2, +2⟩(

 
 
 
 
 
 

0 0 0 𝑧1 𝑖𝑏1 𝑧2 0 0
0 0 0 0 𝑧3 𝑖𝑏2 𝑧3

∗ 0

0 0 0 0 0 𝑧2
∗ 𝑖𝑏1 𝑧1

∗

𝑧1
∗ 0 0 0 0 0 0 0

−𝑖𝑏1 𝑧3
∗ 0 0 0 0 0 0

𝑧2
∗ −𝑖𝑏2 𝑧2 0 0 0 0 0
0 𝑧3 −𝑖𝑏1 0 0 0 0 0
0 0 𝑧1 0 0 0 0 0)

 
 
 
 
 
 

,              (28) 

where the non-zero spin-orbit coupling matrix elements include three complex numbers 

(𝑧1 , 𝑧2,  𝑧3) and two real numbers (𝑏1, 𝑏2): 

𝑧1 = 〈1,−1|�̂�SO|2,−2〉, 𝑖𝑏1 = 〈1,−1|�̂�SO|2,−1〉,

𝑧2 = 〈1,−1|�̂�SO|2,0〉,           

𝑧3 = 〈1,0|�̂�SO|2,−1〉, 𝑖𝑏2 = 〈1,0|�̂�SO|2,0〉.                         (29) 

The single-passage LZ probabilities 𝑝𝐿𝑍
𝑀𝑆 , 𝑀𝑆′(휀⊥) between the components 𝑀𝑆 and 𝑀𝑆′  

of the spin states 𝑆 = 1 and 𝑆′ = 2 read 

𝑝𝐿𝑍
−1,−2(휀⊥) = 𝑝𝐿𝑍

1,+2(휀⊥) = 1 − exp(−
2𝜋𝑧1𝑧1

∗

ℏ|Δ𝒈|
√

𝜇⊥
2(휀⊥ − 𝐸X)

),                       (30) 

𝑝𝐿𝑍
−1,−1(휀⊥) = 𝑝𝐿𝑍

+1,+1(휀⊥) = 1 − exp(−
2𝜋𝑏1

2

ℏ|Δ𝒈|
√

𝜇⊥
2(휀⊥ − 𝐸X)

),                       (31) 

𝑝𝐿𝑍
−1,0(휀⊥) = 𝑝𝐿𝑍

1,0(휀⊥) = 1 − exp(−
2𝜋𝑧2𝑧2

∗

ℏ|Δ𝒈|
√

𝜇⊥
2(휀⊥ − 𝐸X)

),                        (32) 
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𝑝𝐿𝑍
0,−1(휀⊥) = 𝑝𝐿𝑍

0,+1(휀⊥) = 1 − exp(−
2𝜋𝑧3𝑧3

∗

ℏ|Δ𝒈|
√

𝜇⊥
2(휀⊥ − 𝐸X)

),                        (33) 

𝑝𝐿𝑍
0,0(휀⊥) = 1 − exp(−

2𝜋𝑏2
2

ℏ|Δ𝒈|
√

𝜇⊥
2(휀⊥ − 𝐸X)

),                        (34) 

where 𝑝𝐿𝑍
𝑀𝑆 , 𝑀𝑆′ = 𝑝𝐿𝑍

−𝑀𝑆 ,−𝑀𝑆′ . The double-passage probabilities 𝑃𝐿𝑍
𝑀𝑆 , 𝑀𝑆′  are calculated 

from the single passage probabilities using Eq. (3.4) from the main text and used to 

obtain the microcanonical rate constants between individual 𝑀𝑆 components, 

𝑘±1,±2(𝐸) =
𝜎 

ℎ 𝜌R(𝐸)
∫  𝜌X(𝐸 − 휀⊥)𝑃𝐿𝑍

±1,±2(휀⊥)𝑑휀⊥

𝐸

0

,                                  (35) 

𝑘±1,±1(𝐸) =
𝜎 

ℎ 𝜌R(𝐸)
∫  𝜌X(𝐸 − 휀⊥)𝑃𝐿𝑍

±1,±1(휀⊥)𝑑휀⊥

𝐸

0

,                                  (36) 

𝑘±1,0(𝐸) =
𝜎 

ℎ 𝜌R(𝐸)
∫  𝜌X(𝐸 − 휀⊥)𝑃𝐿𝑍

±1,0(휀⊥)𝑑휀⊥

𝐸

0

,                                  (37) 

𝑘0,±1(𝐸) =
𝜎 

ℎ 𝜌R(𝐸)
∫  𝜌X(𝐸 − 휀⊥)𝑃𝐿𝑍

0,±1(휀⊥)𝑑휀⊥

𝐸

0

,                                  (38) 

𝑘0,0(𝐸) =
𝜎 

ℎ 𝜌R(𝐸)
∫  𝜌X(𝐸 − 휀⊥)𝑃𝐿𝑍

0,0(휀⊥)𝑑휀⊥

𝐸

0

.                                  (39) 

Similarly, the rate constants between individual 𝑀𝑆 components can be obtained for 

any pair of spin states with |𝑆 −  𝑆′| =1. 

 

Effective Hessian 
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The complete derivation of the effective Hessian using the method of Lagrange 

multipliers is described in detail elsewhere.5 Here, we skip the initial steps up to the 

more general form of Eq. (3.26) from the main text: 

𝐇eff =
|𝐠1|cos(𝜃)𝐇2 + [|∆𝐠| − |𝐠1|cos(𝜃)]𝐇1

|∆𝐠|
,                             (40) 

At MECP, the angle 𝜃 between the collinear gradient vectors 𝐠1 and 𝐠2 is equal to 0° 

or 180°, and Eq. S40 can be reduced to 

𝐇eff =
|𝐠1|𝐇2 + |𝐠2|𝐇1
|𝐠1| + |𝐠2|

,            if 𝐠1
T𝐠2

< 0,         {
|𝐠1| < |𝐠2|, |∆𝐠| = |𝐠1| + |𝐠2|, cos(𝜃) = 1
|𝐠1| > |𝐠2|, |∆𝐠| = |𝐠1| + |𝐠2|, cos(𝜃) = 1

,                                               (41) 

or to 

𝐇eff =
|𝐠1|𝐇2 − |𝐠2|𝐇1
|𝐠1| − |𝐠2|

, if 𝐠1
T𝐠2 > 0,

{
|𝐠1| < |𝐠2|, |∆𝐠| = |𝐠2| − |𝐠1|, cos(𝜃) = −1
|𝐠1| > |𝐠2|, |∆𝐠| = |𝐠1| − |𝐠2|, cos(𝜃) = 1   

,                                                              (42)  

where 𝐠1
T𝐠2 < 0 and 𝐠1

T𝐠2 > 0 correspond to peaked and sloped intersections, 

respectively. Eq. (26) in the main text is a unified form of Eqs. (41) and (42). 

 

Effective Hessian tool effhess 

 

Because an MECP is not a stationary point on either of two PESs of the crossing 

spin states, the traditional vibrational analysis cannot be used. Instead, an effective 

Hessian defined on the crossing seam of two PESs using the state-specific gradients 
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and Hessian matrices must be constructed. This can be accomplished with the 

computational tool effhess, which is included in the NAST package. Currently, effhess 

can automatically extract the state-specific gradients and Hessians from the GAMESS 

and Molpro output files. However, it can use the state-specific gradients and Hessians 

from any electronic structure program. The code is automated to deal with imaginary 

frequencies, if any are found after diagonalization of the effective Hessian matrix. Such 

imaginary frequencies indicate that the found critical point is not a true MECP and a 

subsequent re-search is required. In this case, the effhess tool generates a series of 

molecular geometries with displacements along the imaginary frequency normal 

modes. The generated geometries can be used to restart the MECP search. The effhess 

tool also generates a template of a NAST input file containing the calculated MECP 

properties. 

The effective Hessian matrix is calculated as:  

𝐇eff =
|𝐠1|𝐇2  ±  |𝐠2|𝐇1

|𝐠𝟏| ± |𝐠𝟐|
,                                                (43) 

where 𝐠 and 𝐇 are the state-specific gradients and Hessian matrices at MECP obtained 

from standard electronic structure calculations. The mass-weighted effective Hessian 

(MWEH) reads 

𝐇eff
mw(𝑖, 𝑗) =

𝐇eff(𝑖, 𝑗)

√𝑚𝑖𝑚𝑗
,                                                   (44) 

where 𝑚𝑖 and 𝑚𝑗 are masses of atoms 𝑖 and 𝑗, respectively. To remove the seven 

frequencies associated with the translational, rotational and the reaction coordinate 

(RC) degrees of freedom, the following projection is performed: 
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 𝐇proj = (𝐈 − 𝐏)𝐇eff
mw(𝐈 − 𝐏),                                               (45) 

 

where 𝐈 is the identity matrix, and the projection matrix 𝐏 = 𝐏tr + 𝐏rot + 𝐏RC is the 

sum of the translational, rotational and RC projection matrices. Elements of 𝐏 are 

defined in the earlier work.3 To calculate the reduce mass along the reaction coordinate, 

we also project MWEH on RC. 

𝐇proj
RC = 𝐏RC𝐇eff

mw𝐏RC.                                               (46) 

The 𝐇proj
RC  matrix is diagonalized to obtain the eigenvector 𝐤 corresponding to the non-

zero eigenvalue. This vector is mass-weighted by dividing each component by the 

square root of mass of the corresponding atom. The resulting mass-weighted 

eigenvector 𝐤mw is used to calculate the reduced mass along RC, 

𝜇⊥ = (𝐤
T,mw 𝐤mw)−1.                                             (47) 

 

Intrinsic reaction coordinate fit tool ircfit 

 

To ensure the quality of the fit in the vicinity of MECP, the MECP→product path 

is fitted using only the IRC points lying above the reactant minimum. The ircfit tool 

works with polynomials up to the fourth order. The choice of the polynomial order 

(from 1 to 4) is based on the number of the IRC points above the reactant minimum. If 

the number of points is equal or greater than five, the quartic polynomial is used. 

Otherwise, the order of the fitting polynomial is smaller than the number of points by 

one. Different polynomial fittings are shown in Fig. 2. 
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Figure 2. Two examples of the fitted IRC paths along the reaction coordinate r. RM is 

the reactant minimum, 휀⊥ is the energy partitioned in the reaction coordinate. A) Sloped 

intersection with the reactant and product IRC points fitted by quartic polynomials. B) 

Peaked intersection with the reactant and product IRC points fitted by quadratic and 

linear functions, correspondingly. 

 

The vector of the fitting polynomial coefficients c is obtained by solving the 

following system of linear equations: 

𝜕𝐹

𝜕𝐜
= 0,                                                              (48) 

𝐹 = ∑(𝐸𝑖 − 𝑓(𝐜, 𝑟𝑖))
2

𝑘

𝑖=1

 ,                                                (49) 

𝑓(𝐜, 𝑟) =

{
 

 
𝑐1𝑟

4 + 𝑐2𝑟
3 + 𝑐3𝑟

2 + 𝑐4𝑟 + 𝑐5  or

𝑐2𝑟
3 + 𝑐3𝑟

2 + 𝑐4𝑟 + 𝑐5  or

𝑐3𝑟
2 + 𝑐4𝑟 + 𝑐5  or
𝑐4𝑟 + 𝑐5

,                                   (50) 

where 𝑘 is the number of IRC points used in the fit, and 𝐹 is the linear least squares 

function. 
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Input files for the electronic structure, NAST and MESMER calculations 

 

The input files for the electronic structure, NAST and MESMER calculations 

discussed in the main text are included in the file NAST_Topics_SI_files.tar.gz. 
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APPENDIX B. CHAPTER 4 SUPPLEMENTAL MATERIALS 

 

 

Here we present the raw data for free-induction decay (FID) measurements of 

𝑇2
∗ and a comparison to the depolarization spectroscopy presented in the main paper. 

All data presented in this supplementary material is for 85Rb, and was taken in the low-

field limit with respect to the hyperfine splitting. 

 

Figure 1. FID data taken at a "low" bias field, such that all Larmor precession 

frequencies are nearly degenerate. 

 

We first present the raw FID data. Figure 1 presents FID data taken at a 

sufficiently low magnetic field such that the different single-photon lines cannot be 

spectrally resolved. After optical pumping, Larmor precession is excited by an RF 

pulse. The circular dichroism signal is monitored continuously by a single weak probe 

beam at an angle to the magnetic field, and this signal is put through a high-pass filter 

to remove changes in the DC level. The data presented in Figure 1 was taken at a bias 
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field of ~ 13 Gauss. At this field all Larmor precession frequencies (for the free atom) 

differ by ≲ 0.1 MHz due to the nonlinear Zeeman shift. The observed Larmor 

precession is fit to an exponentially decaying sine wave 𝐴 sin(𝜔𝑡 + 𝜙)𝑒−𝑡/𝑇2
∗
, giving a 

measured 𝑇2
∗ of 4 𝜇s. It is possible that this is partially limited by the unresolved 

substructure (see Figure 4.1 of the main paper). 

At higher magnetic fields the nonlinear Zeeman effect is sufficiently large that 

the different single-photon lines can be spectrally resolved; sample FID data under 

these conditions is shown in Figure 2. The beating of multiple frequencies makes it 

impractical to fit this FID data as in the low-field case. Instead, we Fourier transform 

the signal to obtain a spectrum. In this spectrum we observe six Larmor precession lines 

from the 𝐹 = 3 hyperfine manifold, as discussed in the main text. 
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Figure 2. FID data taken at a "high" magnetic bias field of ~ 78 G. The raw data is 

shown at the top; the RF pulse was applied from 0.4 to 1.4 𝜇s. The FID oscillations are 

too fast to be seen on this timescale, but the beating from multiple frequencies (due to 

the nonlinear Zeeman shift) can be clearly observed. A Fourier transform of the signal 

(at times after the RF pulse is off) is shown below, and fit as described in the text. 

 

The lower graph of Figure 2 shows two of those peaks, the +1 ↔ 0 and −1 ↔

0 transitions. Each has a small side peak from the 𝐹 = 2 manifold, as discussed in the 

main text. We fit each 𝐹 = 3 peak to a Lorentzian and determine its full width at half 

maximum (FWHM). 𝑇2
∗ is determined for each transition from the measured FWHM 

via 𝑇2
∗ =

1

𝜋FWHM
, where FWHM is expressed in cycles per unit time. Repeating the 

measurements of Figure 2 multiple times, we obtain linewidths of 40 kHz and 28 kHz. 
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From multiple measurements we obtain an average FWHM for the |𝐹 = 3,𝑚𝐹 =

0⟩ ↔|𝐹 = 3,𝑚𝐹 = ±1⟩ transitions of 34 ± 3 kHZ, corresponding to a 𝑇2
∗ of 10 ± 1 𝜇s. 

All the data presented in the body of the paper is from "depolarization" data. A 

fit to raw depolarization data is shown in Figure 3. This data is taken at a similar 

magnetic field as Figure 2, with a slight difference in the magnetic field leading to a 

small difference (≲ 0.2%) in the center frequencies. 

 

Figure 3. Sample raw depolarization data, taken at a magnetic field of Bz ∼ 78 G, 

plotted over a range showing the |𝑚𝐹 = 0⟩ ↔|𝑚𝐹 = ±1⟩ transitions. Each transition 

in the 𝐹 = 3 manifold is fit to an error function plus an offset and a constant slope. To 

the right of each 𝐹 = 3 transition is a transition in the 𝐹 = 2 manifold, as discussed in 

the main text. 

 

In the data of Figure 2, we operate at a Rabi frequency much greater than the 

linewidth, so that we can excite multiple Larmor superpositions with a single pulse. In 

the data of Figure 3 we operate in the opposite limit of small Rabi frequencies to avoid 

power broadening. 
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The fits shown in Figure 3 give a FWHM of 38 kHz and 30 kHz. An average of similar 

fits yields an average FWHM for the |𝐹 = 3,𝑚𝐹 = 0⟩ ↔|𝐹 = 3,𝑚𝐹 = ±1⟩ transitions 

of 37 ± 3 kHZ, corresponding to a 𝑇2
∗ of 9 ± 1 𝜇s. 

Thus, the linewidths from the FID and depolarization methods agree to within 

our experimental error. 

Finally, Figure 4 shows the raw depolarization data for the |𝐹 = 3,𝑚𝐹 =

+1⟩ ↔|𝐹 = 3,𝑚𝐹 = −1⟩ two-photon transition. This data was taken at a small Rabi 

frequency to avoid power broadening. To maximize the signal we wish to maximize 

the population difference between the 𝑚𝐹 = +1 and -1 states prior to the depolarization 

sweep. To do so, we first conducted high-power "pre-sweeps" over the -3 ↔ -2 and -2 

↔ -1 transitions, followed by the +1 ↔ +2 and +2 ↔ +3 transitions. The data was fit in 

the same manner as Figure 3, giving a FWHM of 5.2 kHz and a 𝑇2
∗ of 60 𝜇s. 

 

Figure 4. Simple raw depolarization data, taken at a magnetic field of Bz ~ 38 G, 

showing the  |𝑚𝐹 = +1⟩ ↔|𝑚𝐹 = −1⟩ two-photon transition. 
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APPENDIX C. CHAPTER 6 SUPPLEMENTAL MATERIALS 

 

 

A. Invariance of molecular geometry under variation of fundamental constants in 

the non-relativistic  Born-Oppenheimer approximation 

 

The goal of this section is to prove that the effect of variation of fundamental  

constants cause all the molecular bonds to stretch/dilate by the  very same scaling factor, 

leaving the angles between chemical bonds unaffected, see Figure 1. This statement 

holds only in the assumption of (i) non-relativistic approximation, (ii) infinitely-heavy 

nuclei (Born-Oppenheimer approximation) and (iii) point-like spin-less nuclei. If either 

of these assumptions is broken, chemical bond angles would vary with changing FCs. 

 

Figure 1. Scaling all the sides of the triangle by the very same numerical factor does 

not affect the value of angle 𝜃 (or of any other angle in the triangle). This example can 

be generalized to 3D geometry: angles  and thus the molecular geometry are not 

affected by scaling of all the inter-nuclear distances by the same factor (isotropic scaling 

transformation). 
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Consider an arbitrary molecule containing 𝑁𝑛 point-like nuclei and 𝑁𝑒 electrons. 

Under the enumerated assumptions, the non-relativistic Born-Oppenheimer (NR-BO) 

Hamiltonian   reads 

𝐻NR−BO =∑−
ℏ2

2𝑚𝑒
∆𝑟𝑖

𝑖

+
1

2
∑

𝑒2

|𝐫𝑖 − 𝐫𝑗|𝑖≠𝑗

+ 

1

2
∑

𝑍𝑛𝑍𝑛′𝑒
2

|𝐑𝑛 − 𝐑𝑛′|
𝑛≠𝑛′

−∑
𝑍𝑛𝑒

2

|𝐑𝑛 − 𝐫𝑖|
𝑖,𝑛

.                              (1) 

Here, for clarity, we retained all the fundamental constants (FCs).  We  labeled positions 

of electrons as 𝐫𝑖 and those of nuclei as 𝐑𝑛.  All the terms in 𝐻NR−BO have their usual 

meaning: kinetic energy of electrons, electron repulsion, nuclear repulsion, and 

electron-nucleus attraction. 𝑍𝑛 are nuclear charges. To determine the molecular 

geometry in the Born-Oppenheimer approximation, one solves the time-independent 

Schrödinger equation with fixed positions of nuclei, 

𝐻NR−BO(𝐫𝑒|𝐑𝑛)Ψ(𝐫𝑒|𝐑𝑛) = 𝐸(𝐑𝑛)Ψ(𝐫𝑒|𝐑𝑛).                     (2) 

Here the Hamiltonian 𝐻 and thus the eigenfunctions Ψ and energies 𝐸 depend on 

fundamental constants: 𝐸(𝐑𝑛|𝑚𝑒 , ℏ, 𝑒). After the potential surfaces 𝐸(𝐑𝑛|𝑚𝑒, ℏ, 𝑒) are 

obtained as functions of nuclear coordinates, the equilibrium nuclear positions,  {𝐑𝑛
eq
}, 

are determined by minimizing the energy 

min
{𝐑𝑛}

𝐸(𝐑𝑛|𝑚𝑒 , ℏ, 𝑒)  ⇒  {𝐑𝑛
eq
}.                                   (3) 

We would like to explicitly factor out the dependence on FCs from Eq. (2). To this end 

we rescale all the coordinates by the same factor 𝜉: 𝐫𝑖  →  𝜉𝝆𝑖, 𝐑𝑛  →  𝜉𝝆𝑛. Upon 



216 

 

 

substitution into 𝐻NR−BO, the kinetic energy term transforms into −∑
ℏ2

2𝑚𝑒𝜉2
∆𝜌𝑖

𝑁𝑒
𝑖  and 

all the electrostatic interaction potentials are divided by 𝜉. We pick the dimension-full 

pre-factors in the kinetic and potential energy contributions to be equal. 

ℏ2

𝑚𝑒𝜉2
=
𝑒2

𝜉
.                                                           (4) 

This particular choice enables factoring out the dependence on the FCs from the 

Hamiltonian 𝐻. Solving the above equation results in 

𝜉 =
ℏ2

𝑚𝑒𝑒2
,                                                           (5) 

which is the Bohr radius 𝑎. Then the Hamiltonian is 𝐻NR−BO = 𝐸ℎℎ(𝝆𝑒|𝝆𝑛), where 

𝐸ℎ = ℏ2/𝑚𝑒𝜉
2  = 𝑒2/𝜉 = 𝑚𝑒𝑒

4/ℏ2                              (6) 

is atomic unit of energy (Hartree). Moreover, the scaled Hamiltonian ℎ(𝝆𝑒|𝝆𝑛) no 

longer depends on FCs. Thereby, the solution of the eigenvalue equation (Eq. 2) 

ℎ(𝝆𝑒|𝝆𝑛)𝜑(𝝆𝑒|𝝆𝑛) = 휀(𝝆𝑛)𝜑(𝝆𝑒|𝝆𝑛)                                (7) 

does not depend on FCs either. For any value of FCs, 

𝐸(𝐑𝑛|𝑚𝑒 , ℏ, 𝑒) =
𝑚𝑒𝑒

4

ℏ2
휀(𝝆𝑛).                                         (8) 

Finding equilibrium positions as prescribed by Eq. (9) also does not depend on FCs, 

min
{𝝆𝑛}

휀(𝝆𝑛)  ⇒  {𝝆𝑛
eq
}.                                           (9) 

Thereby, 
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𝐑𝑛
eq
=

ℏ2

𝑚𝑒𝑒2
𝝆𝑛
eq
,                                                     (10) 

where 𝝆𝑛
eq

 are FC-independent. 

To reiterate, in the non-relativistic Born-Oppenheimer approximation, as the 

FCs are varied from their nominal values, all the equilibrium positions are scaled by  

the very same factor, 

𝐑𝑛
eq
=
𝑎

𝑎0
𝐑𝑛,0
eq
.                                                   (11) 

Here and below all the quantities with the subscript 0 refer to the nominal values. This 

scaling of all the coordinates by the same factor belongs to the class of isotropic scaling 

transformations; as such it does not affect  molecular bond angles, see Figure 1. 

The fact that the  isotropic scaling does not affect angles in a molecule of 

arbitrary geometry can be formally proven as follows. Choose {𝐑𝑛}, 𝑛 = 1,𝑁̅̅ ̅̅ ̅ to be 

(equilibrium) position vectors of all 𝑁 nuclei in a molecule.  The angle 𝜃𝑎𝑏 between  a 

pair of these vectors, 𝐑𝑎 and 𝐑𝑏, is given by 

𝜃𝑎𝑏 = cos−1 [
(𝐑𝑎 ∙ 𝐑𝑏)

|𝐑𝑎||𝐑𝑏|
],                                             (12) 

where we used the conventional definition of scalar products and |𝐑𝑎| = √(𝐑𝑎 ∙ 𝐑𝑎) 

is the length of the vector. Should  all the position vectors be scaled by some factor 𝜆, 

$𝐑𝑛  →  𝜆𝐑𝑛, the factors of 𝜆 in Eq. (12) cancel out. Thereby, the angles between 

chemical bonds are not affected by the isotropic scaling. The entire molecule undergoes 

isotropic stretching or dilation as the FCs are varied. 
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In addition, as follows from our derivation, all the electron coordinates undergo 

the same isotropic scaling, 

𝐫𝑒 =
𝑎

𝑎0
𝐫𝑒,0.                                                       (13) 

In particular, it means that the sizes of electronic clouds and atoms are scaled by the 

same 𝑎/𝑎0 ratio. Another point is that all the energies (both atomic and molecular) are 

scaled by the atomic unit of energy 

𝐸 =
𝐸ℎ
𝐸ℎ,0

𝐸0.                                                         (14) 

These observations offer a visualization: as a clump of FCs sweeps through an 

atom or a molecule, all the energy states are gently modulated and the atoms and 

molecules ''breathe'' in accordance with the local values of FCs. This picture  is valid in 

the regime of sufficiently large and slow FC clumps. The clumps need to be sufficiently 

large, so  there are no gradients of FCs across individual atoms and molecules. The 

clumps have to be sufficiently slow, so that the induced perturbation does not cause 

transitions between molecular or atomic states. Then the molecules follow the change 

in FCs adiabatically. 

It is worth emphasizing that our proof heavily relied on the possibility of 

factoring out all the dependence on FCs in various contributions to the 𝐻NR−BO 

Hamiltonian. If we were to add kinetic energies of the nuclei to 𝐻NR−BO, our coordinate 

scaling procedure would result in the requirement 

ℏ2

𝑚𝑒𝜉2
=
𝑒2

𝜉
=

ℏ2

𝑀1𝜉2
= ⋯ =

ℏ2

𝑀𝑁𝜉2
,                                       (15) 
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where 𝑀𝑛 are nuclear masses. Generically, these equalities cannot be satisfied 

simultaneously  by any choice of the scaling parameter 𝜉. 

Our factorization procedure depended on the fact that the Coulomb interactions 

in the 𝐻NR−BO Hamiltonian  exhibited power-law dependence with respect to distances. 

If the nuclei have finite size, the Hamiltonian no longer admits simple coordinate 

scaling. Moreover, introducing nuclear properties (such as finite-size charge 

distribution or hyperfine interactions with nuclear moments) into the problem brings in 

another FC, 𝑚𝑞/ΛQCD, where 𝑚𝑞 is the average mass of up and down quarks and ΛQCD 

is the energy scale of quantum chromo-dynamics. 

Similarly, Dirac equation does not admit factoring out all the FCs in the 

Hamiltonian. Indeed, even in the simplest case of hydrogen atom with an infinitely-

heavy point-like nucleus, Dirac Hamiltonian contains three terms, 

ℎD = −𝑖ℏ𝑐𝜶 ∙ 𝛁 + 𝛽𝑚𝑒𝑐
2 −

𝑒2

𝑟
.                                    (16) 

Since the 4 × 4 Dirac matrices 𝜶 and 𝛽 are collections of FC-independent c-numbers, 

our coordinate scaling procedure results in the requirement 

ℏ𝑐

𝜉
= 𝑚𝑒𝑐

2 =
𝑒2

𝜉
.                                                      (17) 

For arbitrary values of FCs (𝑚𝑒, ℏ, 𝑒, and 𝑐), these equalities are mutually exclusive. 

We conclude that relativity must lead to the breakdown of the isotropic scaling of 

atomic structure and molecular geometry with varying FCs. Chemical bond angles vary 

with changing FCs due to relativistic effects. 
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Since the theory of quantum electrodynamics (QED) is built on quantizing 

relativistic fields, field-theoretic effects also lead to the breakdown of the isotropic 

scaling with varying FCs. This can be easily seen by examining effects of vacuum 

polarization by the nucleus1. In QED, a nucleus is immersed into a nuclear-field-

polarized cloud of virtual pairs of particles and anti-particles. Vacuum polarization 

leads to the replacement of the −𝑍/𝑟 Coulomb potential of a point-like nucleus by the 

Uehling potential. The success of our factorization procedure depends on the fact that 

the Coulomb interactions in the NR-BO Hamiltonian  exhibits a power-law dependence 

with respect to distances. The Uehling potential lacks this  power-law dependence and, 

thereby, does not admit factoring out FCs in the resulting Hamiltonian. 

Scaling of molecular geometry preserves angles between chemical bonds in the 

NR-BO approximation. Molecular geometry  ''breathes'' with varying FCs. Consider a 

thought experiment where we compare lengths of two rulers of different chemical 

composition. Suppose at the nominal values of FCs both rulers have the same lengths. 

As the FCs change,  both rulers are expanding/contracting by the same factor in the 

NR-BO approximation. The observer would not be able to tell if FCs have changed. 

The very same argument applies to transition frequency comparisons: in the NR-BO 

approximation, all the dependence of energies on FCs is governed by the common 

factor of Hartree energy 𝑚𝑒𝑒
4/ℏ2. Corrections to the most basic NR-BO 

approximation violate this isotropic scaling law: the lengths of two rulers  in our though 

experiment would  differ for varying FCs. Similarly, the ratios of transition frequencies 

for two different atoms or molecules would change with varying FCs. 
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B. Critical values of 𝛼 for finite-size nuclei 

 

The critical value 𝛼∗ of varying electromagnetic fine structure constant 𝛼  is 

determined by the requirement that the energy 휀 of the bound electron becomes equal 

to the Dirac sea threshold, 휀 = −2𝑚𝑒𝑐
2. Here and below the energy excludes the rest 

mass energy. This problem can be solved analytically1,2, where the authors were 

interested in determining the critical nuclear charge value for the fixed nominal value 

of 𝛼. 

The analytical solution can be developed for nuclear spherical shell-like charge 

density distribution, 𝜌shell(𝑟)  ∝  𝛿(𝑟 − 𝑅), where 𝑅 is the radius of the nuclear charge 

shell. Qualitatively, inside the nuclear shell, 𝑟 < 𝑅, the potential is constant 𝑉(𝑟) =

−𝑍𝑒2/𝑅 and the solution to the Dirac equation is given by the energy-offset free 

particle solutions. Outside the nuclear shell, the potential is  of the Coulomb character, 

𝑉(𝑟) = −𝑍𝑒2/𝑟, and  the solution to the Dirac equation is given by the linear 

combinations of the regular and irregular Coulomb wavefunctions. Setting 휀 =

−2𝑚𝑒𝑐
2 and matching the inner and outer solutions at 𝑟 = 𝑅 leads to a transcendental 

equation for 𝛼∗ 

𝜉
𝐾𝑖𝜈
′ (𝜉)

𝐾𝑖𝜈(𝜉)
= 2(𝛼∗𝑍)cot(𝛼∗𝑍),                                   (18) 

where 𝜉 = √8𝑍𝑅/𝛼0, 𝐾𝑖𝜈(𝜉) is the modified Bessel function of the second kind 

(Macdonald function) with index 𝜈 ≡ 2√(𝛼∗𝑍)2 − 1 with 𝐾𝑖𝜈
′ (𝜉) being its derivative 

with respect to 𝜉. Eq. (18) is specific to the 𝑛𝑠1/2 orbitals. Subsequently increasing 
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roots of this equation correspond to larger values of principle quantum number 𝑛. 

Similar equations can be derived for orbitals of larger total angular momenta. 

In estimates based on solving Eq. (18), we need to specify the spherical shell 

radius 𝑅. We make the connection to the more realistic nuclear charge distributions by 

noticing that for the spherical shell distribution, the r.m.s. radius 𝑅rms is identical to 𝑅.  

For proton, we take the 2018 CODATA3 recommended value, 𝑅rms(
1H) = 0.8414(19) 

fm. For heavier elements, we use an approximation1 𝑅 ≈ 1.6𝑍1/3 fm, adequate for our 

semi-qualitative discussions. 

From Eq. (18) we find the critical value of 𝛼 for hydrogen 1𝑠1/2 orbital occurs 

at 𝛼∗ ≈ 1.04 or 𝑐∗ ≈ 𝑐0/143. One may argue that the spherical shell approximation for 

the nuclear charge distributions used in deriving Eq. (18) is not realistic. To address 

this question, we solved the Dirac equation for hydrogen using numerical finite-

differencing techniques4; for the uniform nuclear charge distribution we find 𝛼∗ ≈

1.042. This is to be compared to the spherical shell result of 1.040. A similar exercise 

for Fermium (𝑍 = 100, 𝐴 = 257, 𝑅rms = 7.1717 fm) shows that 1𝑠1/2 𝛼∗ for the 

spherical shell distribution is 1.20 × 10−2 versus 1.18 × 10−2 for both the uniform and 

the Fermi nuclear charge distributions. Thereby, more realistic models of charge 

distributions lead to somewhat smaller values of 𝛼∗ than those resulting from the 

spherical shell distribution. 

We notice that Dirac code internally uses Gaussian nuclear charge distributions 

with 𝑅rms given by the fitting formula5 

𝑅rms = 0.836𝐴
1/3 + 0.570(±0.05) fm.                         (19) 
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For a given charge 𝑍 we use the most abundant isotope mass number 𝐴. This formula 

results in the proton 𝑅rms(
1H) = 1.406 fm which is almost as twice as large than the 

CODATA recommended value, 𝑅rms(
1H) = 0.8414(19) fm. The simple reason for this 

discrepancy is that Eq. (19) is a fit for atomic mass numbers 𝐴 > 9 5. If we use the value 

𝑅rms(
1H) = 1.406 fm, Eq. (18) results in 𝛼∗(1H) = 1.044, slightly larger than the value 

of 1.040 obtained with the CODATA 𝑅rms(
1H). 

 

Figure 2. Phase diagram of periodic system of elements as a function of varying speed 

of light. Red curve are the results for critical values of 𝑐∗/𝑐0 as a function of nuclear 

charge 𝑍 for finite-size nuclei. Blue curve is the same dependence but for point-like 

nuclei. To borrow an analogy from condensed matter physics, 𝛼 (or 𝑐) is an order 

parameter that governs phase transitions. 

 

The results of our calculations are shown in Figure 2. In this plot, the red curve  

are the results for critical values of 𝑐∗/𝑐0 as a function of nuclear charge 𝑍 for finite-

size nuclei. Blue curve is the same dependence but for point-like nuclei, 𝛼∗ = 1/𝑍. This 

parameter space can be interpreted as a phase diagram: any point (𝑐/𝑐0, 𝑍) above the 
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red curve corresponds to unstable Dirac sea. Here, for comparison, we also plot the 

critical values for point-like nucleus, 𝑍max = 1/𝛼
∗, i.e. 𝑍max = 𝛼0𝑐

∗/𝑐0. 

Finite-size nuclei critical curve exhibit nearly linear dependence with a fit, 

𝑍max  ≈ 168
𝑐

𝑐0
.                                                  (20) 

The nearly linear dependence  can be understood by examining the graphical solution 

of transcendental Eq. (18), see  Figure 3 for hydrogen. Plots for heavier elements are 

similar. Even without solving the Eq. (18), it is apparent that the critical value of 𝛼 for 

the 1𝑠1/2 orbital occurs in the vicinity of the first zero of Macdonald function 𝐾𝑖𝜈(𝜉), 

where the l.h.s. approaches vertical asymptote. The first zero of 𝐾𝑖𝜈(𝜉) is given by 

ln 𝜉  ≈ −𝜋/𝜈 + ln 2 − 𝛾Euler, where 𝛾Euler = 0.5772156649… is the Euler 

constant6. This leads to an analytical estimate 

𝛼∗  ≲  
1

𝑍

(

  
 
1 +

𝜋2

8

1

(𝛾Euler +
1
2 ln (

√2𝑍𝑅
𝑎0

)

2

)
)

  
 
.                    (21) 

The leading 1/𝑍 term can be recognized as the critical value for  point-like nucleus. 

We use the smaller sign (≲) because the true value of 𝛼∗ lies below this asymptotic 

estimate, see Figure 3. The fractional contribution of the corrective term has a weak 

logarithmic dependence on the nuclear charge, ln(𝑍4/3), explaining the nearly linear 

dependence of maximum allowed nuclear charge in Figure 2. In  approximate Eq. (21) 

we also restored the Bohr radius 𝑎0, showing that the dominant dependence is the ratio 

of nuclear radius 𝑅 to the characteristic size of atomic orbital 𝑎0/𝑍. Approximation 
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(Eq. 21) tends to overestimate 𝛼∗. Its relative accuracy ranges from 2% for hydrogen to 

50% for Fermium (𝑍 = 100) as follows from comparison with our numerical results. 

 

Figure 3. Graphical determination of critical values of fine-structure constant for 

hydrogen (𝑍 = 1, 𝑅 =  0.8414 fm). The r.h.s and the l.h.s of transcendental Eq. (18)  

are drawn as  blue and brown curves, respectively. The values of 𝛼 at the intersection 

of two curves are critical values, 𝛼∗. The lowest 𝛼∗ is the critical value for 1𝑠1/2, next 

lowest 𝛼∗ is for 2𝑠1/2 and so on. 

 

QED corrections to the 1𝑠1/2 energy (vacuum polarization and self-energy) tend 

to cancel1, leaving critical values largely unaffected. 

For  multi-electron systems, the stability of an atom with respect to varying FCs 

requires further qualifiers. Indeed, unlike in H-like ions, a Dirac sea electron cannot 

transition into the fully occupied 1𝑠1/2 orbital due to the Pauli exclusion principle2. Yet, 

because the rest-mass energy gap is lowered, background photons can promote Dirac 

sea electrons into unoccupied orbitals, i.e., Dirac sea becomes unstable with respect to 

the interaction with photon bath. As to the critical values, we computed Dirac-Hartree-

Fock energies of 1𝑠1/2 orbitals in several atoms as a function of 𝑐. We find that the 
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hydrogen-like ion result (Eq. 6.2) for 𝑐∗ remains a good approximation. Indeed, 

energies of the deeply-bound 1𝑠1/2 orbitals in atoms and molecules are strongly 

dominated by the interaction with the nucleus with small corrections from the 

interaction with other electrons. 

 

C. Many-electron atoms 

 

The electronic structures of selected atoms and molecules were calculated by 

solving the many-electron Dirac equation as implemented in the DIRAC package7,8. 

Since the typical distance of an electron from the nucleus decreases with decreasing 𝑐, 

e.g., for a 1𝑠 electron, 〈𝑟〉/𝑎0 ~3/(2𝑍) − 𝑍𝛼
2/2 in the regime of small 𝛼, the basis 

sets used in the calculations needed to be calibrated to accurately describe the electron 

density near the nucleus at reduced 𝑐. For the hydrogen atom and hydrogen-like ions of 

N, O, F, and Ne, the calibration procedure was designed as follows. For a selected ion, 

the speed of light was gradually lowered until the 1𝑠1/2 ground state was lowered into 

the Dirac sea. The size of the basis set and the largest exponents were chosen by 

matching the critical values of 𝑐 obtained using such a basis set with that predicted by 

solving the transcendental equation (Eq. 1). In addition, the validity of these basis sets 

was verified by comparing the energy state orderings they engendered with those 

predicted by the analytical solution of the Dirac equation, e.g., the relative order of 

2𝑠1/2 and 2𝑝1/2 states in hydrogen as presented in Figure 6.1 in the main text. 

For example, for H, the six 𝑝 basis functions in the original uncontracted aug-

cc-pV6Z basis set were augmented to a total of twenty. Next, the exponents of the new 
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functions were obtained by subsequently multiplying the largest 𝑝 exponent by 3. For 

simplicity, the same exponents were used for 𝑠 functions. This procedure was carried 

out until a match with the solution of  Eq. 1 was obtained, while maintaining the correct 

ordering of the energy states (Figure 6.1). The resulting basis included twenty 𝑠 and 

twenty 𝑝 basis functions with the largest exponent of 4.1 × 107. The basis functions 

with higher angular momenta were left unchanged. The same strategy was applied to 

N, O, F, and Ne. For these elements, the modified basis sets contained nineteen 𝑠 and 

nineteen 𝑝 basis functions. The largest exponents were 6.9 × 108 for N, 8.8 × 108 for O, 

1.1 × 109 for F, and 1.4 ×109 for Ne. With such modified basis sets, the DIRAC 

calculated values of 𝑐∗ perfectly matched those predicted by Eq. 1. The critical values 

are 𝛼H
∗ = 1.040, 𝛼N

∗ = 0.154,  𝛼O
∗ = 0.135,  𝛼F

∗ = 0.120, and  𝛼Ne
∗ = 0.108. 

The atomic spectra of N, O, F, and Ne atoms were calculated at different values 

of the speed of light using the Kramer Restricted Configuration Interaction (KR CI) 

method, as implemented in DIRAC19. The Dirac-Hartree-Fock (DHF) calculations 

were first carried out to obtain the reference wavefunction for the CI step. In DHF 

calculations, the 3𝑠1/2 orbital was included in the average-of-configuration open-shell 

framework to ensure the balanced description of the selected atomic states at the CI 

step and to assess the effect of  relativistic stabilization of this orbital on chemical 

bonding in molecules. At the nominal 𝑐, the atomic states were labeled in the 

conventional intermediate coupling scheme. At decreased 𝑐, the states were labeled as 

𝐽π, where 𝐽 is the value of the total angular momentum and π is the parity of the state. 

In all atomic calculations, the 2𝑠 sub-shell remained doubly occupied; therefore, in the 
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notation for electronic configurations  2𝑠2 part is omitted. The equilibrium molecular 

structures of water and ammonia were obtained using the DHF method. 

 

1. Nitrogen 

 

Figure 4. Energy spectrum of a nitrogen atom as a function of the speed of light (or 𝛼). 

The critical value of 𝑐0/𝑐 is marked with star (∗). 

 

For a nitrogen atom, we describe changes in eight lowest energy states induced 

by variations of 𝑐 (Figure 4). The 2𝑝3 ground electron configuration of the nitrogen 

atom produces five states arising from all possible distributions of three valence 

electrons over the six spin-orbitals (2𝑝1/2,±1/2, 2𝑝3/2,±1/2 and 2𝑝3/2,±3/2). The ground 

state, labeled as 4S3/2
o  at nominal 𝑐, is the spin quartet with the total orbital angular 

momentum L = 0. The excited states of the 2𝑝3 configuration are the spin doublet states 



229 

 

 

2Do and 2Po, where D and P stand for L = 2 and L = 1, the left superscript is the spin 

multiplicity, and the right superscript o indicates odd parity. Both 2Do and 2Po states 

split into the components with different values of the total angular momentum quantum 

number 𝐽, giving rise to 2D5/2
o , 2D3/2

o  and 2P1/2
o , 2P3/2

o  atomic states. The first excited 

configuration 2𝑝23𝑠 produces the following quartet states of even parity: 4P1/2, 4P3/2 

and 4P5/2.  

At smaller 𝑐, these eight states are labeled as (3/2)o(1), (5/2)o, (3/2)o(2), 

(1/2)o, (3/2)o(3), (1/2)e, (3/2)e, and (5/2)e, correspondingly, using the 𝐽π notation 

(π is the state parity). Throughout this discussion, the ''nominal'' ground state (3/2)o 

(1), which corresponds to 4S3/2
o  at nominal 𝑐, is used as a reference; and all state 

energies are reported as the ratio (𝐸 − 𝐸(3/2)o)/|𝐸(3/2)o|. This choice does not imply, 

however, that the energy of (3/2)o(1) remains unaffected as 𝑐 varies. Indeed, the 

dominant electronic configuration of (3/2)o(1) changes twice within the variation 

range of 𝑐. In the range 1.0 ≤  𝑐0/𝑐 < 13.0, the dominant configurations are 

2𝑝1/2
2 2𝑝3/2, 2𝑝1/22𝑝3/2

2  and 2𝑝3/2
3 . As 𝑐 decreases, the splitting between the spin-

orbital components 2𝑝1/2 and 2𝑝3/2 increases as ~ (𝑐0/𝑐)
2 9. As a result, at 𝑐0/𝑐 ≥

13.0, the 2𝑝3/2
3  configuration becomes energetically unfavorable and does not 

contribute to the ground state. At 𝑐0/𝑐 ≈ 15.0, the 2𝑝1/22𝑝3/2
2  configuration becomes 

energetically unfavorable, leading to the 2𝑝1/2
2 2𝑝3/2 and 2𝑝1/2

2 3𝑝3/2 configurations 

dominating in the (3/2)o (1) state. 

As can be seen from Figure 4, in the region  1.0 ≤  𝑐0/𝑐 < 7.0, the energies of 

the four components of the 2Do and 2Po states remain almost constant with respect to 
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the energy of the ground state. However, the (5/2)o and (3/2)o (2) states change order. 

At nominal 𝑐, (5/2)o is around 8 cm-1 lower in energy than (3/2)o (2). In the region 

1.0 ≤  𝑐0/𝑐 < 7.0, both states are dominated by the 2𝑝1/22𝑝3/2
2  configuration. 

However, the (3/2)o (2) state, due to lower value of 𝐽, contains a second dominant 

configuration, 2𝑝1/2
2 2𝑝3/2. As 𝑐 decreases, the weight of this configuration grows 

because of the stabilization of the doubly occupied 2𝑝1/2 spin-orbital. Due to this effect, 

the (3/2)o (2) states becomes lower in energy than (5/2)o. At 𝑐0/𝑐 > 7.0, 

components of the 2Do and 2Po states significantly split in energy due to increased 

relativistic effects. In case of the (3/2)o (2) and (5/2)o pair, the splitting increases due 

to the gradual stabilization of the doubly occupied 2𝑝1/2 spin-orbital in the dominant 

configuration of the (3/2)o (2) state. In case of the (1/2)o and (3/2)o (3) pair, the 

splitting results from the different fraction occupation of the 2𝑝3/2 spin-orbital in these 

two states. In the region, 𝑐0/𝑐 > 7.0, the dominant configurations of (1/2)o and 

(3/2)o (3) states are 2𝑝1/22𝑝3/2
2  and 2𝑝3/2

3 . As 𝑐 decreases, 2𝑝3/2
3  becomes more 

unfavorable than 2𝑝1/22𝑝3/2
2 . This is reflected as the sharp increase in the relative 

energy of the (3/2)o (3) state in Figure 4. 

At smaller 𝑐, the (3/2)o (2), (5/2)o, (1/2)o and (3/2)o (3) states stabilize with 

respect to the reference nominal ground state. This happens for two reasons. The first 

is appearance of the 2𝑝1/2
2 3𝑝3/2 dominant configuration in the nominal ground state 

(3/2)o (1). Because the (3/2)o (1) state now contains an occupied higher energy 3𝑝3/2 

spin-orbital, it destabilizes, which results in relative stabilization of (3/2)o(2), (5/2)o, 

(1/2)o, and (3/2)o (3) with respect to this reference state. The second reason is related 
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to the weights of dominant configurations of these four states. Since these weights vary 

with 𝑐, energies of these states change at different rate as c decreases. Among these 

four states, the strongest stabilization takes place for (1/2)o (Figure 4). At 𝑐0/𝑐 ≈

15.0, the dominant configuration of this state switches from 2𝑝1/22𝑝3/2
2  to 2𝑝1/2

2 3𝑝1/2. 

The changes in the energy of the (1/2)e, (3/2)e and (5/2)e states, which at 

nominal 𝑐 correspond to 4P1/2, 4P3/2 and 4P5/2, can be explained by noting that as 𝑐 

decreases, the energies of the 3𝑠1/2 and 2𝑝1/2 spin-orbitals decrease, while the energy 

of 2𝑝3/2 increases9. Near the nominal 𝑐, the state (1/2)e is comprised of the 

2𝑝1/2
2 3𝑠1/2, 2𝑝3/2

2 3𝑠1/2 and 2𝑝1/22𝑝3/23𝑠1/2 configurations. As 𝑐 decreases, the 

energy of the 2𝑝3/2 spin-orbital rises destabilizing the last two configurations and 

leading to 2𝑝1/2
2 3𝑠1/2 dominating in the (1/2)e state. In a similar manner, at 𝑐 = 𝑐0, 

(3/2)e and (5/2)e start out as the mixtures of 2𝑝3/2
2 3𝑠1/2 and 2𝑝1/22𝑝3/23𝑠1/2 

configurations but become dominated by 2𝑝1/22𝑝3/23𝑠1/2 as 𝑐 decreases.  This 

explains the near degeneracy of the (3/2)e and (5/2)e states at very small values of 𝑐 

(Figure 4). It also explains why the energy lowering of the (3/2)e and (5/2)e states 

proceeds at a slower rate than that of the (1/2)e state. 

The most remarkable feature is the replacement of (3/2)o (1) by (1/2)e as the 

ground state of atomic nitrogen at 𝑐0/𝑐 ≈ 19.0. As discussed in the previous two 

paragraphs, for small 𝑐, the configurations of the nominal ground state (3/2)o (1) and 

the state (1/2)e differ only in the highest valence orbitals, (2𝑝3/2 or 3𝑝1/2 in (3/2)o 

(1), and 3𝑠1/2 in (1/2)e). As 𝑐 decreases, the relativistic contraction and the spin-orbit 

splitting result in the stabilization of the 3𝑠1/2 spin-orbital relative to 3𝑝1/2 and large 
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destabilization of the 2𝑝3/2 spin-orbital. These effects lead to the  (1/2)e state 

becoming more energetically favorable than (3/2)o (1) inducing the change of the 

nitrogen ground state. 

 

2. Oxygen 

 

Figure 5. Energy spectrum of an oxygen atom as a function of speed of light (or 𝛼). 

The critical value of 𝑐0/𝑐 is marked with star (∗). 

 

For oxygen, we consider five states of even parity, 3P2, 3P1, 3P0, 1D2, and 1S0, 

produced from the 2𝑝4 ground electron configuration of oxygen. We also include the 

lowest 5S2
o and 3S1

o excited states of the 2𝑝33𝑠 configuration (Figure 5). The ''nominal'' 

ground state of oxygen is 2e(1) or 3P2 at 𝑐0, and used as a reference. The electron 
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configuration of 2e(1) state changes twice within the variation of 𝑐. In the region 1 ≤

 𝑐0/𝑐 < 10.0, the dominant configurations of the 2e(1) state are 2𝑝1/2
2 2𝑝3/2

2  and 

2𝑝1/22𝑝3/2
3 . At 𝑐0/𝑐 ≈ 10.0, 2𝑝1/22𝑝3/2

3  becomes energetically unfavorable and does 

not contribute to 2e(1). At 𝑐 = 𝑐∗, the 3𝑠1/2 spin-orbital becomes near degenerate with 

2𝑝3/2 and the promotion of a 𝑝 electron to the 3𝑠1/2 shell is possible, which leads to 

the 2𝑝1/22𝑝3/23𝑠1/2
2  new dominant configuration of the 2e(1) state. In this promotion, 

both the 2𝑝1/2 and 2𝑝3/2 electrons were transferred to conserve total angular 

momentum and parity. 

Similar to nitrogen, there occurs ''early'' crossing between the 1e (red) and 0e(1) 

(green) states of the oxygen atom (Figure 5). At 𝑐0, 0e(1) lies 65 cm-1 higher in energy 

than 1e. The respective dominant configurations of the 0e(1) and 1e states are i) 

2𝑝1/2
2 2𝑝3/2

2  and 2𝑝3/2
4 , and ii) 2𝑝1/22𝑝3/2

3 . At 𝑐0/𝑐 ≈ 7.0, the effect of the spin-orbit 

splitting increases and 2𝑝3/2
4  configuration does not contribute to the 0e(1) state. Since 

the 2𝑝1/2
2 2𝑝3/2

2  remaining configuration of 0e(1) is more energetically favorable than 

2𝑝1/22𝑝3/2
3  of the 1e state, 0e(1) crosses below 1e. 

The 1e (red), 2e(2) (dark red), and 0e(2) (dark orange) states exhibit maxima in 

destabilization in the variation range of 𝑐 (Figure 5). This is related to multiple changes 

in weights of the dominant configurations of these states. In the region 1 ≤  𝑐0/𝑐 <

10.0, destabilization of 0e(2) is the fastest among these three states. This is explained 

by different fraction occupation of the 2𝑝3/2 spin-orbital in dominant configurations of 

these states: 2𝑝3/2
4  for 0e(2) vs. 2𝑝1/22𝑝3/2

3  for 1e and 2e(2). In the same region, the 

2e(2) state destabilizes slightly slower than 1e, because 2e(2), in addition to 
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2𝑝1/22𝑝3/2
3 , also contains the 2𝑝1/2

2 2𝑝3/2
2  dominant configuration. At smaller 𝑐, all 

these three states - 1e, 2e(2), and 0e(2) - rapidly stabilize in energy. In case of the 1e 

and 2e(2) states, this is due to change of their dominant configurations to 

2𝑝1/2
2 2𝑝3/23𝑝1/2 due to avoided crossings with higher lying excited states of the same 

value of 𝐽 and parity π. In case of the 0e(2) state, the stabilization at is initiated by 

change of the dominant configuration from 2𝑝3/2
4  to 2𝑝1/2

2 2𝑝3/23𝑝3/2, which now 

contains doubly occupied 2𝑝1/2 spin-orbital. At even smaller 𝑐, the dominant 

configuration of 0e(2) changes to 2𝑝1/2
2 3𝑠1/2

2  due to energy stabilization of the 3𝑠1/2 

spin-orbital. At near 𝑐∗, the dominant configuration of this state changes from 

2𝑝1/2
2 3𝑠1/2

2  to 2𝑝1/2
2 2𝑝3/2

2  due to avoided crossing with the lower lying 0e(1) (dark 

green) state. 

At near 𝑐∗, there are three states - 0e(1) (dark green), 2o (magenta) and 1o (light 

blue) - competing to be the new ground states (Figure 5). Their respective dominant 

configurations are 2𝑝1/2
2 3𝑠1/2

2  for 0e(1), and 2𝑝1/2
2 2𝑝3/23𝑠1/2 for 2o and 1o. Since the 

0e(1) state has no electrons on 2𝑝3/2 and has 2𝑝1/2 and 3𝑠1/2 spin-orbitals doubly 

occupied, it wins the competition and becomes the new ground state of the oxygen 

atom. 

 

3. Fluorine 
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Figure 6. Energy spectrum of a fluorine atom as a function of speed of light (or 𝛼). The 

critical value of 𝑐0/𝑐 is marked with star (∗). 

 

For fluorine, we consider five lowest atomic states (Figure 6). The 2𝑝5 ground 

electron configuration produces two atomic states of the odd parity, 2P3/2
o  and 2P1/2

o . 

From the 2𝑝43𝑠 first excited configuration of fluorine we include three low-lying 

states, 4P5/2, 4P3/2 and 4P1/2. The nominal ground state, (3/2)o, consists of a single 

dominant configuration 2𝑝1/2
2 2𝑝3/2

3  for all 𝑐 larger than 𝑐∗. A single hole in this 

configuration prevents recombination of electrons among 2𝑝 spin-orbitals. Therefore, 

the ground state configuration can be changed only if electrons are transferred to virtual 

spin-orbitals, among which 3𝑠1/2 is the lowest. To conserve parity of (3/2)o, two 

electrons need to be transferred from 2𝑝 to 3𝑠1/2 which requires substantial energy. As 

a result, the change in the ground state configuration takes place only close to 𝑐∗, when 
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the 3𝑠1/2 spin-orbital lowers in energy enough to facilitate the electron transfer, and the 

new dominant configuration of the (3/2)o ground state changes to 2𝑝1/2
2 2𝑝3/23𝑠1/2

2 . 

In the region 1 ≤  𝑐0/𝑐 < 10.0, there occurs rapid destabilization of the 

(1/2)o state (Figure 6). It can be explained by the fourfold occupied 2𝑝3/2 spin-orbital 

in its single dominant configuration of 2𝑝1/22𝑝3/2
4 . In the region 10.0 ≤  𝑐0/𝑐 ≲ 14.0, 

however, the (1/2)o state becomes quasi-constant. This is due to change of the 

dominant configuration to 2𝑝1/2
2 2𝑝3/2

2 3𝑝3/2, which is in close resemblance with the 

dominant configuration 2𝑝1/2
2 2𝑝3/2

3  of the reference ground state. At 𝑐∗, the (1/2)o 

state stabilizes in energy as its dominant configuration changes to 2𝑝1/2
2 3𝑠1/2

2 3𝑝1/2. 

The (5/2)e (magenta), (3/2)e (gold) and (1/2)e (dark red) states begin to 

rapidly stabilize at near nominal 𝑐 as they contain singly occupied 3𝑠1/2 in their 

dominant configurations: 2𝑝1/2
2 2𝑝3/2

2 3𝑠1/2 and 2𝑝3/2
4 3𝑠1/2 for (1/2)e, and 

2𝑝1/2
2 2𝑝3/2

2 3𝑠1/2 and 2𝑝1/22𝑝3/2
3 3𝑠1/2 for (3/2)e and (5/2)e. Close to 𝑐∗, 

2𝑝1/2
2 2𝑝3/2

2 3𝑠1/2 remains the only dominant configuration of these states and there 

occurs a temporary change of the ground state of fluorine from (3/2)o to (5/2)e. At 

𝑐0/𝑐 ≈ 15.0, the dominant configurations of these two states are 2𝑝1/2
2 2𝑝3/2

3  for 

(3/2)o and 2𝑝1/2
2 2𝑝3/2

2 3𝑠1/2 for (5/2)e. Since the (5/2)e state contains singly 

occupied 3𝑠1/2 spin-orbital, in contrast to (3/2)o, it becomes lower in energy and the 

new ground state. However, at critical 𝑐, as the dominant configuration of the "nominal" 

ground state (3/2)o changes to 2𝑝1/2
2 2𝑝3/23𝑠1/2

2 , (3/2)o again becomes lower in 

energy than (5/2)e and restores as the ground state of the fluorine atom. 
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4. Neon 

At nominal 𝑐 = 𝑐0, the 2𝑝6 ground electronic configuration of neon gives a 

single atomic state of the even parity, 1S0. The 2𝑝53𝑠 first excited configuration 

contains four excited states of the odd parity, 2[3/2]2
o, 2[3/2]1

o, 2[3/2]0
o, and 2[1/2]1

o. 

The second excited configuration, 2𝑝53𝑝, produces a manifold of atomic states of the 

even parity, among which we include three lowest states, 2[1/2]1, 2[5/2]3, and 2[5/2]2. 

We therefore include a total of eight atomic states of neon in our discussion (see Figure 

6.3 in the main text). At smaller 𝑐, these states are labeled as 0e, 2o, 1o(1), 0o, 1o(2), 

1e, 3e, and 2e. 

In the range 1 ≤  𝑐0/𝑐 < 14.0, the 0e ''nominal'' ground state retains its closed-

shell configuration of 2𝑝1/2
2 2𝑝3/2

4 . At 𝑐0/𝑐 ≈ 14.0,  2𝑝1/2
2 2𝑝3/2

2 3𝑠1/2
2  becomes the 

second dominant configuration of 0e due to the electron transfer from 2𝑝3/2 to 3𝑠1/2. 

At 𝑐∗, the closed-shell configuration does not contribute to the ground state and 

2𝑝1/2
2 2𝑝3/2

2 3𝑠1/2
2  becomes the only dominant configuration of 0e. 

At 𝑐 close to 𝑐∗, the 2o and 2e states cross below the nominal ground state. The 

2o state contains a single configuration of 2𝑝1/2
2 2𝑝3/2

3 3𝑠1/2, which remains dominant 

at all values of 𝑐. At 𝑐 ≲  𝑐∗, 2o crosses the 0e nominal ground state in the reverse 

direction, becoming back higher in energy. It can be explained by rapid stabilization of 

the nominal ground state at 𝑐∗, when the 2𝑝1/2
2 2𝑝3/2

4  configuration drops off 0e. As a 

consequence, the 0e state stabilizes faster than 2o, which is reflected as reverse 

crossing. At near 𝑐∗, the other crossing state, 2e, contains a single dominant 

configuration of 2𝑝1/2
2 2𝑝3/2

2 3𝑠1/2
2 , which is the same as of the 0e state at the same 𝑐. 

However, total angular momentum 𝐽 of the 2e state equals two and is than 𝐽 equals zero 
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of the 0e nominal ground state. Therefore, according to the third Hund's rule, 2e 

becomes the new ground state of neon. 

 

D. Molecules 

In relativistic picture, the states of atoms and molecules are described by four 

component Dirac spinors 𝜓 = (𝜓L
𝛼 , 𝜓L

𝛽
, 𝜓S

𝛼 , 𝜓S
𝛽
)T, where L and S correspond to the 

large and small components of the spinor (not to be confused with the total orbital 

angular and spin momenta), and 𝛼 and 𝛽 describe spin degrees of freedom. The spinor 

components are in general complex functions, and therefore, the Dirac spinor has eight 

degrees of freedom. Since the Dirac Hamiltonian commutes only with the total angular 

momentum 𝐽, the spatial and spin degrees of freedom are coupled. Consequently, the 

symmetry of the Dirac spinors is described by double groups, where the total spinor 

transforms under the fermion irreducible representations spanned by the half-integer 

spin functions7. However, the real and imaginary parts of each spinor component are 

spanned by boson irreducible representations, which are the irreducible representations 

of conventional single point groups. Therefore, each spinor component can be described 

by scalar functions, 'orbitals'. The symmetries of the ammonia and water molecules are 

described by the 𝐶3𝑣 and 𝐶2𝑣 double groups. For example, by exploiting the symmetry 

of the Dirac Hamiltonian, it can be shown that in the 𝐶2𝑣 double group, the real and 

imaginary parts of the large component transform under (𝑎1, 𝑎2) and (𝑏1, 𝑏2) boson 

irreducible representations for 𝜓L
𝛼  and 𝜓L

𝛽
, correspondingly7. At nominal 𝑐, the 

molecular orbitals of ammonia and water are spanned only by a real or imaginary part 

of a single component, neglecting the vanishing contributions from other components. 
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Therefore, these orbitals are described by a single irreducible representation, in 

compliance with results from non-relativistic calculations. At decreased 𝑐, however, the 

molecular orbitals become spanned by multiple real and imaginary parts of the spinor 

components. Therefore, no longer a single irreducible representation can be assigned to 

molecular orbitals when relativity is strongly increased, that is when values of 𝑐 largely 

decreased from nominal. For this reason, the symmetry labels in orbital diagrams of 

ammonia and water are kept only at nominal speed of light, and are excluded otherwise. 

In the water molecular orbital diagram (Figure 6.4 in the main text), the 𝜎 and 

𝜎∗ linear combinations of 1𝑠 orbitals of two hydrogen atoms have the 𝑎1 and 𝑏2 

symmetries. At nominal 𝑐, the atomic spin-orbitals of oxygen have symmetries of 𝑎1 

for 2𝑠1/2 and 3𝑠1/2, and 𝑎1, 𝑏2, and 𝑏1 for spatial components of each 2𝑝 spin-orbital. 

In the ammonia molecular orbital diagram, the three linear combinations 𝜓1, 𝜓2, and 

𝜓3 of 1𝑠 orbitals of three hydrogen atoms have 𝑎1 and doubly degenerate 𝑒 symmetries. 

At nominal 𝑐, the atomic spin-orbitals of nitrogen have symmetries of 𝑎1 for 2𝑠1/2 and 

3𝑠1/2, and 𝑎1 and 𝑒 for spatial components of each 2𝑝 spin-orbital. In atomic 

calculations of oxygen and nitrogen, the 3𝑠1/2 spinor was included in the average-of-

configuration Dirac-Hartree-Fock method to assess effect of stabilization of higher 

lying spinors on molecular bonding. For clearer comparison of diagrams, we keep the 

energy unit constant and equal to those at nominal 𝑐. 

 

1. Water 
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Figure 7. Changes in equilibrium geometry of a water molecule induced by variation 

of 𝑐 from nominal to critical value (marked with * on the 𝑥-axis): 𝑐O
∗= 7.46 (or 

equivalently 𝑐0/𝑐O
∗  = 18.4). The changes in the O-H bond distance and the H-O-H bond 

angle are shown as fractional changes. 

 

 

Figure 8. Radial density distributions (RDDs) of four MOs of water at different values 

of 𝑐. The oxygen atom is put to the coordinate origin. The MOs are given in the 

increasing energy order: dark blue solid line (HOMO-3), dark red dashed line (HOMO-
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2), dark green dotted line (HOMO-1), and magenta dot-dashed line (HOMO). For 

clearer comparison, distance is given in unit of unscaled nominal bohr radius. 

 

2. Ammonia 

 

Figure 9. Changes in equilibrium geometry of an ammonia molecule induced by 

variation of 𝑐 from nominal to critical value (marked with * on the 𝑥-axis): 𝑐N
∗= 6.5 (or 

equivalently 𝑐0/𝑐N
∗  = 20.9). The changes in the N-H bond distance and the H-N-H bond 

angle are shown as fractional changes. 
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Figure 10. Radial density distributions (RDDs) of four valence MOs of ammonia at 

different values of the speed of light 𝑐. The nitrogen atom is put to the coordinate origin. 

The MOs are given in the increasing energy order: dark blue solid line (HOMO-3), dark 

red dashed line (HOMO-2), dark green dotted line (HOMO-1), and magenta dot-dashed 

line (HOMO). For clearer comparison, distance is given in unit of unscaled nominal 

bohr radius. 
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