
University of Nevada, Reno

WOPR: A Dynamic Cybersecurity Detection and

Response Framework

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering

by

Aaron Walker

Dr. Shamik Sengupta/Dissertation Advisor

December 2021

•
THE GRADUATE SCHOOL

We recommend that the dissertation
prepared under our supervision by

entitled

be accepted in partial fulfillment of the
requirements for the degree of

Advisor

Committee Member

Committee Member

Committee Member

Graduate School Representative

i e e
Graduate School

Aaron Russell Walker

WOPR: A Dynamic Cybersecurity Detection and Response
Framework

DOCTOR OF PHILOSOPHY

Shamik Sengupta, Ph.D.

Sergiu Dascalu, Ph.D.

Haoting Shen, Ph.D.

Shahriar Badsha, Ph.D.

Hanif Livani, Ph.D.

December, 2021

i

Abstract

Malware authors develop software to exploit the flaws in any platform and application

which suffers a vulnerability in its defenses, be it through unpatched known attack

vectors or zero-day attacks for which there is no current solution. It is the responsi-

bility of cybersecurity personnel to monitor, detect, respond to and protect against

such incidents that could affect their organization. Unfortunately, the low number

of skilled, available cybersecurity professionals in the job market means that many

positions go unfilled and cybersecurity threats are unknowingly allowed to negatively

affect many enterprises.

The demand for a greater cybersecurity posture has led several organizations to de-

velop automated threat analysis tools which can be operated by less-skilled infor-

mation security analysts and response teams. However, the diverse needs and or-

ganizational factors of most businesses presents a challenge for a “one size fits all”

cybersecurity solution. Organizations in different industries may not have the same

regulatory and standards compliance concerns due to processing different forms and

classifications of data. As a result, many common security solutions are ill equipped

to accurately model cybersecurity threats as they relate to each unique organization.

We propose WOPR, a framework for automated static and dynamic analysis of soft-

ware to identify malware threats, classify the nature of those threats, and deliver

an appropriate automated incident response. Additionally, WOPR provides the end

user the ability to adjust threat models to fit the risks relevant to an organization,

ii

allowing for bespoke automated cybersecurity threat management. Finally, WOPR

presents a departure from traditional signature-based detection found in anti-virus

and intrusion detection systems through learning system-level behavior and matching

system calls with malicious behavior.

iii

For Amanda

iv

Acknowledgements

I would like to express my gratitude toward my advisor, Dr. Shamik Sengupta, for

his guidance and support for my research activities. I would also like to thank my

committee: Dr. Sergiu Dascalu, Dr. Haoting Shen, Dr. Shahriar Badsha, and Dr.

Hanif Livani.

Furthermore, I would like to acknowledge the support of Research & Innovation and

the Cyberinfrastructure Team in the Office of Information Technology at the Univer-

sity of Nevada, Reno for facilitation and access to the Pronghorn High-Performance

Computing Cluster.

I thank my research partners who have aided and challenged me in so many ways

which helped lead me to this milestone. Finally, I thank my family for their tremen-

dous support through difficult times.

v

Contents

Abstract i

Acknowledgements iv

List of Figures ix

1 Introduction 1

1.1 Malware threat assessment . 1

1.2 The motivating problem . 2

1.3 Limitations of the State-of-the-Art 4

1.4 Contributions . 5

1.5 Dissertation Organization . 6

2 Related Work and Research Challenges 8

2.1 Identifying Malicious Behavior via Machine Learning 9

2.1.1 Machine Learning Application for Cyber Risk Assessment . . 11

2.2 Malware Analysis for Threat Management 13

2.2.1 Malware Relationships . 15

2.3 Cyber Security Risk Management . 18

2.3.1 Threat Frameworks . 19

2.3.2 Threat Scoring . 20

2.3.3 One Size Fits All? . 22

2.4 Challenges for Cyber Risk Management 23

2.4.1 Open Source Intelligence . 24

2.5 Novelty of Present Research . 25

3 Cuckoo Malware Threat Scoring and Classification: Friend or Foe? 28

3.1 Introduction . 28

3.2 Malware Behavior Analysis . 32

3.2.1 Setup . 33

3.2.2 Malware Dataset . 35

vi

3.2.3 Methodology . 36

3.2.4 Discussion . 39

3.3 Evaluation . 43

3.3.1 Results . 43

3.3.2 Discussion and Recommendations 46

4 Insights Into Malware Detection via Behavioral Frequency Analysis
Using Machine Learning 48

4.1 Introduction . 49

4.2 Malware Behavior Analysis . 49

4.2.1 Setup and Malware Dataset 50

4.2.2 Methodology . 51

4.3 Machine Learning Approach . 51

4.3.1 Methodology . 53

4.3.2 Results . 57

4.3.2.1 Large Sample . 57

4.3.2.2 Medium Sample . 59

4.3.2.3 Small Sample . 61

4.3.3 Discussion and Recommendations 63

5 Malware Family Fingerprinting Through Behavioral Analysis 66

5.1 Introduction . 67

5.2 Machine Learning Enabled Malware Family Classification 69

5.2.1 Setup & Methodology . 69

5.2.2 Machine Learning Results . 71

5.3 Malware Signature Analysis . 72

5.3.1 Windows API Frequency Analysis 73

5.3.2 Limitations of Signature-Based Approach 75

5.4 Discussion and Recommendations . 79

6 Friend or Foe: Discerning Benign vs Malicious Software and Mal-
ware Family 80

6.1 Introduction . 81

6.2 Malware Behavior Analysis . 82

6.2.1 Setup and Malware Dataset 84

6.2.2 API Collection Methodology 84

6.2.3 Malware Classification . 85

6.2.4 Benign Software API Collection 86

6.3 Machine Learning Framework . 87

6.3.1 Machine Learning Algorithms Used 88

6.3.1.1 Multilayer Perceptron 88

vii

6.3.1.2 Convolutional Neural Network 89

6.3.1.3 Support Vector Machine 90

6.3.1.4 Comparison of Algorithms 90

6.3.2 Experimentation . 92

6.4 Analysis of Results . 94

6.5 Discussion and Recommendations . 97

7 Ohana Means Family: Malware Family Classification using Extreme
Learning Machines 98

7.1 Introduction . 99

7.2 System Software Architecture . 102

7.3 Problem Statement . 103

7.4 Dynamic API call sequence classification 107

7.4.1 API Collection Methodology 107

7.4.2 API Sequence Dataset . 110

7.5 Analysis of ELM and OS-ELM . 110

7.5.1 Extreme Learning Machine . 110

7.5.2 Online Sequential Extreme Learning Machine 113

7.5.2.1 Initialization Phase 114

7.5.2.2 Sequential Phase . 115

7.6 Experimental Results . 116

7.6.1 Question 1 . 116

7.6.1.1 ELM Analysis . 117

7.6.1.2 OS-ELM Analysis 118

7.6.1.3 LSTM . 121

7.6.1.4 MLP and SVM . 122

7.6.2 Question 2 . 124

7.7 Discussion and Recommendations . 126

8 Bespoke Automated Malware Risk Classification 128

8.1 Introduction . 128

8.2 Analysis of Existing Risk Assessment Methodologies 132

8.2.1 CVSS . 132

8.2.2 Infocon . 134

8.2.3 WatchGuard TDR Threat Score 137

8.3 WOPR: Automated Bespoke Malware Threat Modeling 140

8.3.1 Bespoke Threat Categorization 143

8.3.2 Assignment of Threat Value 145

8.4 Discussion and Recommendations . 147

9 Conclusion and Future Research Direction 149

viii

9.1 Peer-Reviewed Publications . 151

A Machine learning experimentation results 153

A.0.1 Tables . 153

Bibliography 165

ix

List of Figures

3.1 Setup for Cuckoo Sandbox and the VM Environment. 33

3.2 Flow of the Cuckoo Sandbox malware analysis and report generation. 35

3.3 Sample of ”GetComputerNameW” API call with a severity score of 1. 37

3.4 Sample of ”CreateProcessInternalW” API call with a severity score of 5. 38

3.5 Sample frequency of API calls by number of samples in Cuckoo report
score range. 40

3.6 Distribution of malware samples with score of 15 and greater, sized by
the number of API calls. 41

4.1 Decision Tree for Large Sample . 58

4.2 Decision Tree for Medium Sample . 60

4.3 Decision Tree for Small Sample . 62

5.1 API Frequency for PUA:Win32/DownloadGuide 75

5.2 API Frequency for Trojan:JS/Redirector.QE 76

6.1 Malware Data Preparation . 83

6.2 MLP & CNN Network Graphs . 89

6.3 Comparison of MLP Algorithm Accuracy 92

7.1 System Model . 102

7.2 Cuckoo Setup on Ubuntu Host . 106

7.3 Cuckoo Malware Report Generation Process 108

7.4 Example of API Used for Malicious Code Injection 109

7.5 An ELM Network . 113

7.6 OS-ELM Accuracy by Initial Training Size for Test Groups 1 - 3 . . . 120

7.7 Learning Time for SVM, MLP, OS-ELM, and ELM 120

7.8 Learning Time for Test Groups using LSTM 121

8.1 Example CVSS Severity Scores . 133

8.2 WOPR flow diagram describing threat category determination. 142

8.3 Flow diagram describing threat category determination. 144

8.4 Flow diagram describing threat value assignment. 146

1

Chapter 1

Introduction

In this chapter, we discuss the following:

• A brief introduction to malware threat assessment

• The motivating problem

• Limitations of existing work and discuss briefly how the contributions of this

dissertation address these limitations.

1.1 Malware threat assessment

Malware, i.e., malicious software, presents a threat to computing environments in the

office, at home, and in travel. Malware artists develop software to exploit the flaws

in any platform and application which suffers a vulnerability in its defenses, be it

2

through unpatched known attack vectors or zero-day attacks for which there is no

current solution. Malware which successfully exploits such a vulnerability produces

an information security incident. Security incidents may involve the loss of function-

ality of a system, compromise of user account credentials, unauthorized access into a

system, or any number of conditions which compromise the confidentiality, integrity,

or availability of a system or application.

Malware threat assessment involves the identification and evaluation of risks associ-

ated with the potential actions of a malware agent[1]. This involves understanding

the differences between a vulnerability, a threat, and a risk. A vulnerability is a flaw

in software or system design which can be exploited by a threat, resulting in the loss

of confidentiality, integrity, or availability. The cost of this loss is considered the risk

associated with a given threat.

The objective of a malware threat assessment is to provide recommendations for ac-

tions which limit risk and, in particular, what cybersecurity incident response strate-

gies would be the most beneficial for an organization.

1.2 The motivating problem

Current methodologies regarding cybersecurity risk assessment tend to focus on the

identification and remediation of software and system vulnerabilities, as seen in the

popular Common Vulnerability Scoring System (CVSS)[2]. While we agree that the

3

assessment of vulnerabilities is a key component of a robust cybersecurity program,

we feel that this is only one side of the coin when considering risk. Malware acts as

an agent to exploit vulnerabilities and therefore analysis of malware threats should

be performed to gain a fuller picture of what risks present the greatest danger to an

organization.

However, as shown in the following chapters, malware comes in many forms. There

are several malware families and variants of malware within these families. The num-

ber of potential malware threats any organization may face makes human analysis

of malware extremely difficult for organizations who find difficulty in placing and re-

taining key cybersecurity talent[3]. This led us to perform research into developing

novel means of automating malware analysis using machine learning and producing

threat intelligence information in the form of malware family classification. These

new techniques of malware family fingerprinting from operating system application

programming interface (API) function calls observed through behavioral analysis of

malware as well as API sequences provide a means of automated malware analysis

which can detect both known and previously unknown (zero day) malware threats.

In so doing, our goal was to show that bespoke automated malware threat analysis

and risk response is more accurate and beneficial to an organization than general-

ized automated solutions. Our approach was to create a framework titled WOPR,

a name inspired by the fictional supercomputer known as War Operation Plan Re-

sponse (WOPR) which was programmed to predict threats leading to nuclear war

and execute automated responses in the 1983 movie WarGames[4]. Our WOPR is

4

meant to predict malware threats and automate malware risk response using software

behavioral analysis and machine learning.

1.3 Limitations of the State-of-the-Art

Current approaches have the following limitations:

• Current methods of analyzing Application Programming Interface (API) system

calls made by malware do not consider which API calls are relevant to particular

malware families.

• Current implementations of machine learning (ML) for malware analysis require

expert ML knowledge in order to train effective models and therefore are not

accessible for the majority of users.

• Many ML malware analysis methodologies only separate benign and malicious

software and not which malware family the malware belongs to.

• Current methodologies of malware threat assessment rely on general-purpose

rubrics. If an organization is aware that certain types of malware have a more

damaging effect on their business, this will have an effect on the prioritization

of incident response.

5

1.4 Contributions

Accomplished contributions, directly related to this dissertation are listed below:

• We show that the analysis of Windows API system function call frequencies

observed through the behavioral analysis of malicious and benign software pro-

vides machine learning models which have higher real-world accuracy due to an

understanding of the differences between malicious and benign behaviors.

• A machine learning methodology for identifying key traits of a malware family

based on the relationship between antivirus signature and API call behavior.

• An examination of Windows API system function calls, observed through be-

havioral analysis of malicious and benign software, provides machine learning

models which have higher real-world accuracy due to an understanding of the

differences between malicious and benign behaviors, as well as differences be-

tween malware families.

• Real experimental malware data is used by collecting sequences of behavioral

system API function calls. This allows for the fingerprinting of malware families.

• This research investigates the efficiency of Extreme Learning Machines (ELM)

for malware family classification through learning API call sequences. Our

experiments show that ELM is much faster than traditional ML methods and

supports real-time classification of malware.

6

• We provide WOPR, a novel, bespoke malware threat and risk evaluation frame-

work to assist in the prioritization of malware remediation which overcomes the

limitations of existing “one size fits all” approaches to measuring malware crit-

icality.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows.

• Chapter 2 describes a background study on malware analysis and presents some

of the open research issues.

• Chapter 3 describes the flaws in the malware threat score provided by Cuckoo

Sandbox.

• Chapter 4 analyzes linear and non-linear machine learning algorithms and com-

pares their relative accuracies against data sets with different proportions of

malicious and benign software.

• Chapter 5 shows how behavioral analysis of malware combined with a data

set of Windows API function call frequencies classified by anti-virus signature

matches allows for the creation of machine learning models capable of identifying

the appropriate family to which a given malicious software belongs.

7

• Chapter 6 presents a framework for quickly learning the differences between

software to accurately predict, not only if a given software is malicious or benign,

but also to classify malicious software by family type. This approach requires

the observation of only the first 3,000 API calls, rather than the full sequence

of malware behavior.

• Chapter 7 shows that Extreme Learning Machines (ELM) can be used to accu-

rately predict malware family classification through analysis of Windows API

call sequences with the benefit of significantly reduced prediction time. This

approach allows for near real-time analysis of malware through the use of Online

Sequential Extreme Learning Machines (OS-ELM).

• Chapter 8 identifies flaws associated with preconfigured threat assessment sys-

tems and methodologies, with particular emphasis on the applicability of the

resulting malware criticality score within the context of individual organizations

and presents a novel bespoke malware risk classification framework.

• Chapter 9 discusses the conclusions of the given research and puts forward the

future research ideas.

8

Chapter 2

Related Work and Research

Challenges

In this chapter we describe the current state of the art in terms of cyber risk as-

sessment, malware analysis, threat detection and response, as well as the current

tools used in the attempt to provide solutions to these problems. Limitations and

insights will be discussed as well as the novel forward direction our research provides.

Summarizing, the main contributions of this chapter are as follows.

• We discuss the application of machine learning to the identification of malicious

behavior in software.

• We explore the role of malware analysis in threat management.

9

• We explore the current methods and drawbacks of cyber security risk manage-

ment.

• The challenges for cyber risk management are discussed.

• We describe the novelty of our research.

2.1 Identifying Malicious Behavior via Machine Learn-

ing

Machine learning provides a means of identifying malware by training a machine

learning algorithm to learn the difference between malicious and benign software be-

havior. A user-centric machine learning framework [5] has been shown to be effective

at identifying malicious behavior. This methodology involves establishing a baseline

of ‘normal’ behavior through statistical analysis and then training a Multi-layer Neu-

ral Network with this baseline behavior. Any actions observed by the user are then

compared to this model, with malicious behavior observed with a mean of 80.7%

success. These results are promising, but the drawback of this methodology is in its

ability to scale with a large organization of many hundreds or thousands of users.

A challenge exists in relating the risk faced by the organization when different users

may have vastly different threat profiles. If no two employees necessarily have the

same baseline ‘normal’ behavior, an additional methodology of understanding user

10

risk in relation to organizational risk is necessary for prioritization of security incident

response.

Research into the sequence of Windows API system calls has allowed for malware

classification[6]. This methodology is of interest to our research as in the current

work we describe API frequency for malware classification. Though this research

shows that API sequence can be used for fingerprinting malware, it also shows the

need to identify API system calls which are relevant to particular malware families.

Additionally, research has been performed to consider the effects of anti-virus labels

on malware detection, focusing on the machine-language opcodes discovered during

the run time of malicious software[7]. This study shows that there is a negative

correlation between AV labels and the ability to distinguish malware and benign

software. While the results of this research are promising for accurate detection via

opcode analysis, we believe that AV labels work well for API frequency analysis given

the relationship between known malware families and their specific behavior.

The evaluation of API function calls as well as character strings in the malware code

have been used as a predictor of future malware family variants[8]. The methodolo-

gies in this research include extraction of semantic features, incremental clustering of

variants into families, and deep neural networks to learn patterns of malware evolu-

tion. We decided to borrow directly from the malware family classification provided

by Microsoft Defender Antivirus to label malware family rather than this method,

11

partly for ease of use but also to avoid any complications associated with defining our

own malware family definition scheme.

2.1.1 Machine Learning Application for Cyber Risk Assess-

ment

Machine learning is widely used in the field of cybersecurity and there are a number

of different machine learning algorithms available for research[9], including decision

trees and logistic regressions, to name but a few. Static analysis of malware involves

inspection of the code at rest and has been shown to be successful in the classification

of malware family [10]. This includes the examination of the register, operation codes,

Portable Executable structured information and more. Dynamic analysis has proven

effective in cases where static analysis would fail due to encryption or dynamic code

loading [11], making this approach more attractive for the extraction of features for

machine learning.

Recent research into bench marking machine learning models for network security

[12] has demonstrated differences between deep learning and classical shallow learning

methods in regard to detecting malicious network traffic. Various machine learning

algorithms have been shown to be effective in cyber security, especially in relation to

malware analysis, intrusion detection, and phishing email analysis [13]. One challenge

for organizations wishing to implement machine learning models lies in the expert

knowledge required to train effective models.

12

Bayesian network-based cyber security risk assessment has been shown to be more ef-

fective when machine learning algorithms are used to learn the parameters of the risk

assessment model from historical data and online observations [14]. This method-

ology provides greater objectivity than other methods which rely solely on expert

knowledge. This is particularly interesting when considering response to unknown or

zero-day attacks, as these present threats which a subject matter expert may not be

able to associate with an organizational risk in a timely manner.

An interesting (and currently unsolved) question regarding the practical use of ma-

chine learning for cyber security lies in how an organization should implement such

techniques. A lack of expert knowledge with regard to machine learning is certainly a

barrier for bespoke applications developed within an organization, which in turn leads

to third-party “black box” solution acquisition. If an organization is unable to train

such a solution within the context of that organization in terms of baseline “normal”

behavior with the ability to dynamically adjust over time, new and unknown cyber

threats may go unnoticed.

The use of machine learning in identifying cyber threats via time series classification

has been shown in [15] where an SVM based approach was used in a framework

for real-time monitoring of processes on embedded cyber-physical systems (CPS)

devices. Deep learning techniques for time series classification are reviewed in [16]

with multiple practical applications. Identification of Android malware via API data

sets is performed in [17], [18], and [19] using LSTM to classify a given software

13

as malicious or benign with very high accuracy. However, this methodology only

provides a binary classification and does not detect to which malware family does the

application belongs to.

The cost of processing overhead must be considered when evaluating methods for

malware detection. Probability scoring has been shown to be effective in using a

CNN based methodology for comparing gray scale images of known malware. As

shown in [20], the cost of malware detection can be reduced by performing only this

static analysis when a known malware is detected based on a probabilistic analysis,

relegating dynamic analysis for only when static analysis alone is inefficient.

2.2 Malware Analysis for Threat Management

Malware remains a threat to organizations, be it in the form of targeted delivery

through email or malicious web advertising, just to name a few attack vectors [21].

Threat actions can be observed from malware through the use of a malware sandbox

[22], which we describe in Chapter 3. In addition to simply detecting malware, the

observation of the effects of the malware on a system provides data regarding what

threats the malware present. This dynamic analysis has been used extensively in the

following research.

Dynamic analysis typically involves the use of a sandbox environment, such as Cuckoo

Sandbox[22] which reports behaviors in terms of system API calls. Smith et al.[23]

14

demonstrated the potential for understanding malicious API calls through machine

learning algorithms. The large number of Windows API calls found in malicious as

well as benign software samples frustrates the process of feature selection for machine

learning algorithms. One approach is to categorize the function calls based on their

general function[24][25] and then evaluate the entropy of these categorial functions

based on Information Gain[26], which essentially is a measure of how much informa-

tion a randomly chosen data element in a set will teach us about another randomly

chosen element in a set. Heuristic N-Grams analysis also adopts the Information Gain

technique and has been shown to be effective in distinguishing malware from benign

software[27]. This shows that while both benign and malicious software perform many

of the same Windows API calls, their relative frequencies are distinguishable.

Another approach for selecting which Windows API calls to use as features involves

narrowing the scope of analyzed malware samples to model specific malware families,

such as WannaCry ransomware[28]. Malware family classification can be enhanced

with machine learning models, as shown in[25], however here we also see the same

issues with feature extraction and definition. Malware authors are aware of the at-

tempts of researchers and system defenders to identify malicious software and often

employ anti-analysis features[29]. As a result there has been research into image

processing with Deep Learning – in this way, machine learning has been used in

malware classification based upon image processing using an extracted local binary

pattern[30]. There is no currently defined methodology for accurate, non-biased fea-

ture extraction of malicious behavior observed through dynamic analysis; therefore it

15

is not reasonable to assume that bias is restricted without a systematic approach for

the comparison of machine learning models with differing data sets.

2.2.1 Malware Relationships

Previous research has shown how dynamic analysis of malware through the use of the

Cuckoo Malware Sandbox[22] can be used to detect malware and identify malware

families within a limited scope[31]. We decided that it should be possible to perform

a similar analysis on a much larger dataset, focusing on the classification of malware

family rather than more generally on detecting malware from a mixed set of malicious

and benign software.

Malware behavioral analysis involves the examination of system API function calls

to determine malicious behavior. This provides information regarding such actions

as Windows registry changes, file creation and deletion, process injection, and many

other activities. One drawback of most solutions lies in the individual examination of

these calls without context of process inter-dependencies. Recent research has shown

that sentiment analysis offers a technique which may consider the relationship between

API function calls of behavioral sequences [32]. By examining these relationships, the

overall function or purpose of the malware may be inferred.

Another malware detection methodology based upon behavioral analysis involves ex-

amining the similarity between various API function calls [33]. This methodology

involves computing the Levenshtein distance [34] between API calls to determine

16

their similarity. Though this measurement is grammatical in nature, this lends well

to the naming conventions of Windows API system function calls. By itself, this does

not seem to be a methodology which is superior at detecting malware in compari-

son to previously described methods. However, the inferences achieved may help to

identify relationships between malware as well as malicious activity in the general

sense.

When malware is detected, another problem lies in automatic classification of malware

family. To reduce the number of false positives, it is shown that using a combination

of static and dynamic analysis is more beneficial in identifying and classifying malware

than using a single feature such as a signature [17]. Even machine learning techniques

can be thwarted by a malware author and lead to misclassification through adversarial

examples - this has led to analysis of malware through image analysis performed

within generative adversarial networks [35].

Interesting research into inferring malware families through the use of phylogenic

networks makes use of Windows API calls to compare malware samples [36]. This

approach is successful in drawing relationships within known malware families via be-

havioral analysis. While successful in revealing internal relationships among known

malware families, it would be interesting to extend this research into discovering rela-

tionships between unlabeled malware samples to determine if real family identification

is possible through this method.

A natural language processing (NLP) approach for malware classification from API

17

sequences [37] has been shown to be effective when partnered with machine learn-

ing algorithms such as support vector machines (SVM), K-nearest neighbor (KNN),

random forest (RF), and multilayer perceptron (MLP) when splitting API call se-

quences into n-grams. One reason why we may want to classify malware lies in threat

response. If an organization is aware that certain types of malware have a more dam-

aging effect on their business, this will have an effect on the prioritization of incident

response.

Malware visualization has been used for static malware classification via both convo-

lutional neural networks[38] and the intriguing bag-of-visual-words methodology with

roots in natural language processing[9]. These visualization techniques have shown

to be very effective for detection malicious software. However, since the visualiza-

tion is generally performed upon the raw binary file, the presence of obfuscated or

encrypted code may interfere with the detection process, thus limiting the efficacy of

these methodologies. The use of dynamic methods for analyzing malware have the

ability to overcome these limitations.

A recent study shows that behavior-based approaches to malware detection result in

a higher detection rate with respect to malware complexity[39], which corresponds to

the ability to directly detect malware actions on a live system via inspection of API

calls. While more effective, the cost of performing such analysis involves having such

an environment capable of analyzing potential malware before any infections occur.

18

What is clear from this research is that a combination of several techniques of mal-

ware analysis is most beneficial. Term Frequency-Inverse Document Frequency [40]

metrics are used to effectively extract features of malware given access to logs of both

malicious and non-malicious behavior and is robust to polymorphism [28]. Analysis

of the semantics of code has been shown to detect malicious software independent

from signature-based bytecode analysis [41]. The classification of particular API calls

for potential malicious behavior can be used to analyze malware for particular traits

[42]. We believe that a combination of these methods can aid in the trust of malware

detection and threat profiling through the correlation of the resulting data.

2.3 Cyber Security Risk Management

The discovery of malware or any other cyber threat is important, but without a clear

understanding of the effect of these threats there is a deficiency in the application of

any of these techniques when considering risk management. However, understanding

an organization’s risks are not trivial as the threat landscape will differ between dif-

ferent organizations in different industries. Automated tools for information security

risk management have been proposed [43] which an organization may use to quickly

evaluate risk based upon standards such as ISO 27001. Adherence to such standards

may increase an organization’s resilience against risk.

19

Frameworks have been developed to defend against cyber security threats such as

insider threat [44]. This shows that when an organization takes the time to fully assess

their internal practices, behavior can be monitored for possible malicious intent. This

monitoring can potentially be performed in an automated fashion through the use of

threat frameworks.

2.3.1 Threat Frameworks

The Cybersecurity Framework (CSF) developed by the National Institute of Stan-

dards and Technology (NIST) [45] serves as a guide for implementing cyber security

best practices. A demonstration of the effectiveness of this framework through the

use of a real-world cyber attack [46] has shown that risk-based cyber security defenses

can be very effective.

A methodology of assessing cyber risk in relation to the Common Vulnerability Scor-

ing System (CVSS) [2] has been presented [47] which clearly shows how to relate

the impacts of CVEs on organizational assets in terms of confidentiality, integrity,

and availability. However, the dependency on CVSS is not tempered by any metric

related to or provided by the organization which applies the methodology. This has

the effect of promoting a “one size fits all” approach to cyber risk management – in

issue we will expand upon at the end of this section.

Threat modeling and security assessment has been developed utilizing security metrics

associated with discovered system vulnerabilities within software defined networks [48]

20

according to CVSS scores. This allows for the anticipation of new threats to networked

computers as a result of a potentially exploited vulnerability. Graph theory has also

been used to produce a threat model which uses Markov chains in conjunction with

CVSS vulnerability scores for a cloud computing environment [49].

Probabilistic threat detection for risk management in cyber-physical medical systems

has been explored [50], illustrating the effectiveness of real-time threat response for

such devices as a pacemaker. This research shows how predetermined threat response

schemes can be highly affective for limited-purpose systems. A challenge would be to

make use of probabilistic threat detection in a system with multiple and varied uses,

with multiple and varied users interacting with that system.

2.3.2 Threat Scoring

Researchers have evaluated the value of threat scoring in terms of privacy risk [51],

cyber threat feeds [52], CVSS metric-based analysis [53], and vulnerability assessment

models based on multiple criteria utilizing CVSS [54] have been introduced, to name a

few. A thorough examination of the trustworthiness of the CVSS has been presented

[55] and has shown that in many instances the efficacy of CVSS-related threat models

is best determined by what threat databases and criteria of threat are utilized by the

end user. Indeed, the choice of resources used affects the prioritization of risks and

threats. This suggests that while the “one size fits all” nature of CVSS scoring may

21

be appropriate for vulnerabilities, the associated threats and risks must be evaluated

using a separate methodology in order to be relevant for an individual organization.

This research shows the need for a robust scoring mechanism for the assessment of

threats. This concept led us to consider the threat scoring system used by the Cuckoo

Sandbox so as to determine what problems exist or improvements could be made to

benefit the practice of information security incident response. Researchers have shown

how the behavioral analysis reports from Cuckoo can be used to classify malware

[31] in conjunction with labels for malware families extracted from VirusTotal [56]

reports for each sample. This methodology relies on the presence of key features in

the malware which correspond to a signature; however, malware authors can over-

come signature-based analysis via mutation engine generating polymorphic code [57].

One question is in the determination of how to define security metrics based directly

on threats, rather than vulnerabilities as with CVSS. This would require the ability

for an organization to selectively rate what threat conditions they feel impact their

business the most, perhaps through historical review of their cybersecurity incidents or

those of their peers. Tunable security metrics have been proposed with demonstrated

results [58]. In this way, the direct security concerns of an organization become the

basis of determining the criticality of an incident as it relates to that organization.

Utilization of threat models when designing a risk management strategy for computing

systems has been shown to be effective in flexibly affecting threat values across a range

of conditions [59].

22

2.3.3 One Size Fits All?

A one size fits all approach to cyber security auditing has been championed in some

research, such as the CyberSecurity Audit Model [60]. The benefit to this approach,

according to the authors, is in the use of a universal scorecard by which any organiza-

tion’s policies and practices can be matched to industry and government regulatory

requirements. While this aspect may be effective, the authors further admit that there

is no universal acceptance or standardization in terms of cyber security risk. This can

mislead organizations into presuming that the only risks they need manage are related

to those which are identified and controlled through compliance with industry and

government regulations, which we believe is not true in the general case. Given that

these regulations are concerned solely with particular types of data, there are many

cyber threats which are beyond the scope of what is required for compliance. With

vast differences existing in the technological and human resource structure of each

organization, we believe it is necessary to consider the impact of a system of cyber

security risk management which allows for bespoke threat response and prioritization.

The OCTAVE Allegro[61] methodology provides a robust means of assessing orga-

nizational cyber risks. However, it has been shown that this method’s calculation

of risk mitigation priorities are under-developed and can present confusion regarding

which information assets are most important to mitigate first[62]. This method can

be extended to include greater threat prioritization, however we believe that care

23

must be taken to ensure that each organization’s individual risk strategies are taken

into account in order to truly be effective.

2.4 Challenges for Cyber Risk Management

One of the greatest challenges in cyber security is user awareness. A recent analysis

of assessment approaches and maturity scales used to evaluate cyber security aware-

ness programs [63] shows that there is a lack of published research in evaluating the

effectiveness of such programs. With the threat of phishing attempts and drive-by

malware infections ever present in organizations today, it would seem wise to find

a way to demonstrate whether or not an organization’s staff is sufficiently aware of

cyber security risks.

The emerging field of study regarding computer users’ wishful thinking as a response

to computer threats suggests that there is much more involved in an organization’s

overall risk management than simple scoring mechanisms [64]. This leads us to suggest

that if the scoring threat mechanism employed by an organization does not clearly

map to real and credible threats, this can have a deep effect on the actions of the

consumers of threat data in an organization.

Furthermore, organizations face the challenge of understanding the cyber risks they

face. As businesses grow, markets change, and technology advances, organizations

must consider a robust cyber risk management strategy. An excellent example of this

24

would be the effect of many employees working from home on their personal comput-

ing devices. If a sudden change were made to allow most of an organization’s staff to

work remotely when previously there was limited work from home opportunities, the

risks present in home networks, personal devices, and personal computer use become

a risk for the organization’s business computing network should these devices need

to remotely connect to this network for business resources.

2.4.1 Open Source Intelligence

Open source intelligence (OSINT) provides information on cyber threats and indica-

tors of compromise (IoCs), however it has been shown that sources of such information

provide little or no processing of that data [65]. The overall effect of this lies in lim-

itations on the usefulness of such data as there is no pre-processing to correlate the

IoCs from different OSINT threat feeds. This limitation can be overcome through

deduplication and IoC enrichment, creating clusters of data which relate to single

threats.

It has been shown that IoCs can be extracted from cyber threat intelligence [66]. This

research suggests that natural language processing can be used in conjunction with

cyber threat intelligence data as an input for a risk-based cyber security framework.

We believe that the benefit of this approach can be observed through a multilayered

approach to cyber risk management, where multiple sources of potential threat input

are used to extract threat data. A system which analyzes malware for threats against

25

an organization is very useful and this can be enhanced with the ability to analyst

OSINT data as well to provide many layers of threat analysis and risk management.

2.5 Novelty of Present Research

Many intriguing and effective solutions for cyber security threat detection and re-

sponse have been described in recent research. Machine learning has been shown to

classify malware with high accuracy. Natural language processing has been shown

to provide the ability to make connection between API system calls and open source

intelligence. Cyber security frameworks have been shown to be effective in help-

ing organizations to understand their risks and make responsible decisions for threat

management.

A problem with machine learning and natural language processing approaches lies in

the expert knowledge required to utilize and modify the models over time. Not all

organizations have access to such expert knowledge and will instead turn to third-

party software to provide a solution. If an organization instead has the ability to

provide threat and risk information to a system which automatically adjusts or re-

trains machine learning algorithms, the expert knowledge required of the organization

will simply be in regard to its own threat and risk management, rather than deeply

technical in nature.

26

The wealth of existing research regarding the use of deep learning techniques for

malware detection provides much to build upon. Some works have investigated the

malware signature analysis while others have also used sequential API calls. How-

ever, what the previous research lacks is a means of classifying malware in an online

fashion. Malware changes over time due to code polymorphism as well as in response

to emerging vulnerabilities in operating systems and software. The online solution

presented in this work has the ability to identify evolving malware threats by learning

malicious API call sequences common in malware families. Furthermore, the great

amount of training time required by prior techniques makes them incapable of clas-

sifying malware through API analysis in real-time. Therefore, this work presents

ELM and OS-ELM approaches that can be easily trained and do not require much

computation time.

Our research provides a framework for systems designed to automate cyber security

threat analysis, particularly threats involving malware. We believe that such a system

would benefit organizations who lack expert technical knowledge by providing them

a tool they can use in a fashion tailored for their risk profile. Previous research

has shown how several different methods of malware threat discovery can be used

effectively, each with their own limitations. We suggest that by combining several of

these methods we can produce a system which not only discovers malware, but details

the threats involved in an automated fashion so that an organization can choose the

appropriate response to these threats by mapping them to an organization’s risk.

27

This results in bespoke threat and risk response, a solution which to our knowledge

has not been presented before.

28

Chapter 3

Cuckoo Malware Threat Scoring

and Classification: Friend or Foe?

In this chapter we describe the usage of the Cuckoo Malware Sandbox, a popular open-

source software tool which automates malware behavioral analysis. In particular, we

focus on the malware threat scoring feature and discuss its limitations.

3.1 Introduction

While all successful malware compromises require a measure of response in order to

restore faith in the proper working order of a system, not all malware attacks are cre-

ated equal. For large organizations, the number of live information security incidents

can be staggering. Prioritization of incidents based upon levels of severity is necessary

29

for the quick elimination of the most severe threats and the continued monitoring and

assessment of threats not yet handled. This is especially true for organizations with a

relatively small information security incident response team. In situations where high

volumes of security incidents may be present, an automated means of prioritization

is essential to help incident analysts to quickly triage and respond in an appropriate

manner. The use of automated tools, especially those made available through open-

source, adds value to the work performed by the security incident response team

because in many cases it allows for greater understanding of information security

threats, quicker remediation times, and provides more information for after-action

analysis and reporting.

The Cuckoo Sandbox [22] provides a means of automated analysis of suspicious files.

Through behavioral analysis, hash comparisons, and various integrated tools it is

possible to identify malware and discover what indicators of compromise one should

look for in their production environment to ascertain the presence of malicious activity

on a network or system. It is important to note that as an automated malware

analysis system, Cuckoo provides information about the behavior of a suspected file

on a system but it is not using these observations to actively classify malware. As

an option, Cuckoo can be configured to enable submission of a file to VirusTotal

[56] for a comparison to known malicious files and the associated malware families as

determined by various anti-virus vendors. Additionally, Cuckoo can be configured to

allow custom signatures and/or those from the open source community which define

severity scores for particular API calls and malware family attribution [22]. These

30

optional elements are meant to enhance the Cuckoo-generated report on a sample file

so as to bring more depth to the analysis. Without these optional features Cuckoo

only has the ability to execute potential malware samples in a sandbox, observe the

dynamic behavior, and report the actions committed. In this thesis we are interested

in the optional element of malware signatures and what value they bring to the

automated malware analysis.

Another reason to consider the Cuckoo Sandbox is that it is open source software. It

is familiar to the information security community [67] and free to use, which makes

it more available to incident response teams who cannot easily justify the expense of

similar closed-source products. While the initial setup and configuration of Cuckoo

is not particularly user-friendly, the end result is a system which allows for the sub-

mission of a file and the automated return of a report describing the observed actions

of a suspected malware sample in a sandbox environment. The benefit of Cuckoo

is in this automation – no human interaction is required for the behavioral analysis.

A report is generated describing the actions which occurred when the suspicious file

was opened or executed, and all an analyst needs to do is investigate the report. A

detailed list of system operations, file manipulations, attempted communication with

external systems, and even screenshots of the activity are generated. All of these

artifacts are essential for understanding the nature of the malicious file analyzed.

One element of the Cuckoo report stands out as an element which immediately cap-

tures the eye of an analyst, and for good reason. The “Score” section appears at the

31

top of the report and represents the threat severity of a malicious file as a number

out of ten. The color of the section containing the score changes with severity, further

suggesting the impact of a file as it goes from benign light green with a score of 0/10

to an angry red with a score of 10/10. This score does come with a notice from the

developers: “Please notice: The scoring system is currently still in development and

should be considered an alpha feature.”

While using Cuckoo as an analysis tool in practice, we discovered odd behavior in

the reported score for many malware samples. Several executable files were identified

as malware with a score higher than the upper threshold of 10. This was confusing

and caused us to wonder if there was an error in the scoring mechanism. Instead

we discovered that there was no error in the configuration of our system or a bug

in the Cuckoo software. Instead, we found that the methodology used by Cuckoo to

generate this threat score results in an arbitrary value that is of little help to illustrate

the threat severity of malicious code to an incident responder. The arbitrary nature

of this score is not immediately apparent to the end user. The otherwise excellent

value of the Cuckoo Sandbox in automated behavioral analysis might lead an incident

responder to place a similar value in this score, perhaps so far as to reduce the priority

of remediation for an incident involving a malware with a score of 2/10 in comparison

to a similar incident involving a malware with score of 9/10 or 15/10. This could also

lead an incident responder to prioritize an incident involving less actual risk, given

the arbitrary nature of the threat score.

32

3.2 Malware Behavior Analysis

In order to evaluate the current scoring mechanism Cuckoo uses to classify severity,

we designed an environment to allow for the installation of Cuckoo and the analysis of

known malware samples in a virtual machine sandbox per the installation instructions

provided by Cuckoo [22]. Our goal was to create an environment which would per-

haps be most typical for small to medium-sized security incident response teams and

focus on the evaluation of potentially malicious software affecting Windows operating

systems. This included the usage of a single Linux host machine to run the Cuckoo

application and house Windows 7 virtual machine guest environments. Cuckoo allows

for the configuration of Linux virtual machine guest environments as well; however,

for this work we were most interested in the analysis of Windows-based threats.

33

3.2.1 Setup

Figure 3.1: Setup for Cuckoo Sandbox and the VM Environment.

Cuckoo Sandbox was installed on a dedicated Ubuntu Linux host with access to the

public internet, as shown in figure 3.1. Cuckoo was configured per the installation

guide found on the Cuckoo website [22], including two 64-bit Windows 7 virtual

machines installed on the Ubuntu host. Cuckoo recommends the usage of 64-bit

Windows 7 over Windows XP for better results. Cuckoo supports many virtualization

software solutions but does assume the usage of VirtualBox by default, so for ease

of setup we chose this platform. VirtualBox is a free system virtualization product

developed by Oracle and it easily integrates with Cuckoo for administration of the

virtual machines.

34

The Windows 7 virtual machines were configured with essentially none of the built-

in security measures in order to make them as vulnerable to malware as possible,

including the disabling of User Access Control, Windows Firewall, and automatic

updates. Software known to be the target of attack for malware was also installed

on the virtual machines, including Adobe PDF reader, Java, and Microsoft Office.

This ensures that when a malicious software sample is executed in the environment,

the full breadth of the malware’s behavior might be observed as it may attempt to

access these applications as part of the process to compromise the system. Python has

been installed to facilitate the communication between the Windows operating system

on the virtual machine and Cuckoo on the host machine. Afterward, the Windows

virtual machine resets to the base, non-compromised state via an automated Cuckoo

command to VirtualBox.

Furthermore, on the host Ubuntu system we ran the “cuckoo community” command

to load the signatures provided by contributions from the Cuckoo user community.

These signatures are curated by the Cuckoo development team and provide the defi-

nitions of malware severity and family attribution described later in this Section.

35

Figure 3.2: Flow of the Cuckoo Sandbox malware analysis and report generation.

3.2.2 Malware Dataset

Known malware samples were acquired from Malpedia [68], a curated online resource

of malicious software containing multiple versions of malware samples seen over time.

This allows for the observation of evolving behaviors as the methods of exploiting sys-

tem and application vulnerabilities changes with new generations of malware. Mal-

pedia samples often include references to third party analysis of the malware as well

as identified malware family and threat actor affiliation. This information is quite

valuable for those desiring to create custom signatures in Cuckoo for malware fam-

ily attribution. However in this work we were mainly concerned with the native

36

functionality of Cuckoo scoring using the community-provided signature set.

3.2.3 Methodology

Figure 3.2 describes the process of malware analysis in the Cuckoo Sandbox. When

a malware sample is submitted to Cuckoo, it will designate a virtual machine for

use in analyzing the software. The virtual machine will resume from a snapshot

from which it was in a known good, non-compromised state and Cuckoo passes the

malware sample to the virtual machine for execution and analysis. Once the analysis

has been performed, Cuckoo generates a report of the observed activity, including

but not limited to changes to the registry, newly spawned processes, file creation and

access, virtual memory access, HTTP communication to an external IP, and much

more. These behavioral events are captured as a number of Windows API calls.

These API calls are each designated a severity score, which is determined by a repos-

itory of rules defined by the Cuckoo user community. According to the Cuckoo

documentation [22], the range of severity scores is from 1-3, though our observation

shows scores of 5 as well. While often a description will be included in the signature

asserting the malicious nature of how a particular API call is being manipulated by

malware, it is not immediately clear how the actual severity value is determined. All

of the API calls flagged in these signatures perform common actions in a Windows

system. This makes ranking a particular API call as more suspicious than another

quite difficult. The community signatures clearly are attempting to note API calls

37

which are used to have a potentially damaging effect, but the ranking from 1-3 or

higher appears to be at the discretion of the author of the signature and subject to

review by the Cuckoo developers.

Once all of the behavior witnessed by Cuckoo has been checked against these signa-

tures and severity scores have been tallied, a final report is generated and available

for inspection by an analyst via local web page or command line delivery.

Figure 3.3: Sample of ”GetComputerNameW” API call with a severity score of
1.

Figure 3.3 presents an example of an API call with a severity score of 1. The activity

shown here is the usage of the GetComputerNameW Windows function which re-

trieves the NetBIOS name of the local computer. The signature matched is identified

as “antivm queries computername” and the function of this call is indeed to query for

38

the name of the computer. In this example, our Windows 7 VM chosen by Cuckoo to

analyze the malware sample was named “IBLIS.” For the full set of sample malware

we analyzed, we found that this particular API call was committed a total of 38,867

times.

Figure 3.4: Sample of ”CreateProcessInternalW” API call with a severity score
of 5.

Figure 3.4 presents an example of a CreateProcessInternalW API call which has

been classified by the community rules with a severity score of 5. This particular

call demonstrates the malware executing a process and injecting code into it. In

this example, a process identified as 2736 is being loaded with the code within the

file “this.exe” from within the logged in user’s temporary files within an AppData

subdirectory. It is interesting to note that the description of the behavior matched in

the signature involves the possibility of code unpacking, which refers to a compressed

39

executable file which must “unpack” in memory in order to execute. This procedure

of unpacking is common in malware samples so it is likely that this is why the severity

score for this signature was rated as a five. However, there is no clear indication that

this is the case, which further leads to confusion regarding the assignment of this

value.

We discovered that this particular API was called 32,880 times across our sample set.

The severity score of each identified signature-matched activity is evaluated and a

final “Score” is produced in the report. Not all of the signatures single out specific

API calls, as it has been seen that certain signatures refer to specific known malicious

sites, known malicious malware file names, etc.

3.2.4 Discussion

Cuckoo reports were generated for 7,401 known malware samples retrieved from Mal-

pedia. Analysis of these reports show that there were 138,523,300 API calls in total

with just 264 unique API calls in all. Given that the Cuckoo analysis assigns severity

scores to particular API calls as a result of a signature match, we found it interesting

to compare the frequency of API calls to the overall report threat score reported by

Cuckoo. The severity ratings for these API calls are determined by Cuckoo com-

munity signatures, but not all of the APIs discovered in a Cuckoo analysis match

these signatures. Thus we find that a high number of API calls will not necessarily

translate to a high report threat score.

40

Figure 3.5: Sample frequency of API calls by number of samples in Cuckoo report
score range.

As seen in Figure 3.6, our sample file named 891 had a reported 1,326,166 individual

API calls (174 unique) and was assigned a threat score of 16.8/10 by Cuckoo. In

contrast, our most threatening file with a score of 23.6/10 committed only 34,480

API calls (190 unique).

What we discovered is that the majority of these individual function calls do not

result in a severity score because there is no associated signature to assign the value.

In fact, a single API function call may result in different severity rating assignments

based upon different signature matched.

For example, one malware sample was observed calling the “NtAllocateVirtualMem-

ory” function with this behavior of possibly allowing code injection for another process

and was assigned a severity score of 3. In the same malware sample this API function

41

call was made again with the behavior matching a rule describing the possibility of

the injection of code into an executed process while unpacking, resulting in a severity

classification of 5. This creates a challenge when attempting to determine the rela-

tive threat of a particular API call observed in a malware sample. We believe a great

deal of confusion regarding consistent threat classification exists given the disparity

between severity scores for the same API calls amongst the signatures.

Figure 3.6: Distribution of malware samples with score of 15 and greater, sized
by the number of API calls.

42

Table 3.1 describes this relationship for the top ten occurring API calls.

Table 3.1: Top Ten Occurring API Function Calls

Function Type Occurances

NtDelayExecution Windows Kernel 13,052,984
GetAsyncKeyState Windows Control 10,786,787

NtClose File System 10,142,832
ReadProcessMemory Process Control 9,626,589
GetSystemMetrics Windows Conrol 7,974,563

LdrGetProcedureAddress Windows Kernel 5,563,886
LdrGetDllHandle Windows Kernel 4,497,628
CryptHashData Security & Identity 3,568,810

NtReadFile File System 3,425,244
RegQueryValueExW Windows Registry 3,303,343

Figure 3.5 details the relationship between these highest occurring API function

calls and the final threat score Cuckoo assigned to malware samples containing these

calls. It is interesting to note the changes in frequencies of these API calls between

the different threat values. For instance, “GetAsyncKeyState” is called a total of

10,786,459 times in the malware samples Cuckoo rated a threat score greater than or

equal to three and just 1,543,317 for malware samples greater than or equal to ten.

Of all of our tested malware samples, the average score was 2.6 with the majority

of samples with a score in the 0 – 2.12 range. Of particular interest is that we

found that 257 samples were rated above the suggested maximum “10” rating. These

ranged from 10.2 – 23.6. This finding is of interest because nearly 3.5% of the samples

analyzed were classified a threat rating above the maximum value. Why was this the

case and what does this mean about the severity of these samples in comparison

to those with a threat rating below 10? The answer to our question is that the

43

arbitrary nature of the threat score denies the opportunity for the 0 – 10 rating to

provide an evaluation of the threat of a given malware sample in relation to others.

Essentially, what we can say about any suspected malware sample with a score of 0

is that no behaviors matched a signature rule. A score of 0.2, or 1/5, implies that

exactly one signature was matched for an observed behavior. Since any higher score

is similarly only representative of the number of potentially malicious actions and not

truly representative of the impact of the risks associated with those actions, we feel

that this is an insufficient metric for assigning priority of malware remediation tasks

for an incident response team.

3.3 Evaluation

3.3.1 Results

Given that in this sample set we observed malware threat severity scores from 0 –

23.6, we decided to understand the methodology behind the value of the threat score.

This required the analysis of the reports for each malware sample in our set which

was evaluated by Cuckoo Sandbox. These reports are easily parsable as they are in

JSON format. We found that the bulk of the Cuckoo report involves the observed

behavior of the malware in terms of Windows API calls. Many of these API calls

were designated a “severity” score within this report and it is here that we see what

Cuckoo uses to determine the final report threat score value. When creating the

44

report for a sample, captured behaviors are compared to any signature rules enabled

as part of the Cuckoo configuration. The final threat score assigned by Cuckoo to the

analyzed malware is the result of adding the scores of all the signatures which match

an observed behavior of the malware and then dividing the sum by 5. Therefore, if

Sn
o is the threat rating of a signature which matches the n-th observed behavior of

the malware then the malware’s final threat score Sf is given by:

Sf =

∑k
n=1 S

n
o

5
(3.1)

where k is number of observed malware behaviors that matched a cuckoo signature.

For example, in the highest rated malware sample in our testing set Cuckoo observed

six behaviors which matched signatures with a severity rating of 1, sixteen behaviors

which matched signatures with a severity rating of 2, twenty-five behaviors which

matched signatures with a score of 3, and one behavior which matched a signature

with a severity rating of 5. The sum of these severity ratings is 118, which when

divided by five results in the final threat score of 23.6 assigned by Cuckoo. We

observed this formula again when analyzing a malware sample with 1,326,166 observed

API function calls, with only 36 of these API calls resulting in a signature match –

eight with a severity of 1, ten with a severity of 2, seventeen with a severity of 3, and

finally one behavior matching a signature with a severity score of 5. The sum of these

severity ratings is 84, which when divided by five results in the final threat score of

16.8 delivered in the Cuckoo report. The number five is the consistent denominator

45

across all malware samples regardless of the number of APIs called or signatures

matched. The developers of the Cuckoo Sandbox acknowledge the use of this number

five[69] and state that this means of generating a final threat score is in need of

improvement[70].

There is no obvious benefit in the use of the number five to divide the total severity

score to achieve the final threat value for a malware sample. For all 7,401 malware

samples, a sum was tallied for every severity score in a sample report and divided by

five to achieve the same final threat score reported by Cuckoo. The consistent use of

the number five across all analyzed malware sample suggests that this number is not

related to any behavior or attribute of the analyzed malware samples but is instead

an arbitrarily chosen value, similar to the severity values assigned to the Cuckoo

community signatures. This adds to the confusion regarding the true value of the

threat reported for a malware sample by Cuckoo.

What we found is that Cuckoo is designed to produce a final threat score which is

the sum of the severity ratings for each observed API call, divided by five. What

is not immediately obvious is what this means for the relationship between different

malware samples analyzed in Cuckoo. The denominator value of five used in the

calculation of the final threat score is not associated with the number of API function

calls or other behaviors observed by Cuckoo in its behavioral analysis, nor is it linked

to the number of matched signatures. Therefore, we cannot take this final threat

score as an accurate measure to compare malware samples for the relative priority by

46

which they should be addressed to mitigate the risk which they represent.

3.3.2 Discussion and Recommendations

The arbitrary nature of the Cuckoo scoring methodology casts confusion upon the

threat level of a given malware sample. For the incident responder, it might seem

appropriate to immediately act to contain an incident involving a malware with a score

of 18.8 instead of an incident involving a malware with a score of 6.4. However, if it is

determined that the malware with the larger score is simply repeatedly attempting to

reach out to a dead host on the internet (and of course failing) while the malware with

the lower score is actively injecting malicious code into legitimate Windows services,

this casts confusion upon the meaning of the severity score. Should such a score be

evaluated in conjunction with the behavior to determine actual severity? One could

make a case for ignoring the scoring mechanism altogether and focus on the relevant

indicators of compromise.

Yet the purpose of a threat score is to provide a quick, immediate index value to

support effective triage. Even though the current methodology used in the Cuckoo

Sandbox is arbitrary, one could argue that it was included to provide a general guide

to help support a quick assessment. What is necessary is a more reliable metric.

Currently the Cuckoo report threat score is dependent upon community-provided

signatures. The severity score assigned to these signatures affects the final score

Cuckoo evaluates, again via an arbitrary method. Of note is the fact that if the

47

community signatures are not loaded into Cuckoo as described in Section III and no

custom signatures are created by the user, each file analyzed by Cuckoo will have a

threat score of zero due to not having any API severity values to evaluate.

This issue is not limited to the problem of scoring. Malware family classification

is also dependent on these community signatures. Thus when Cuckoo analyzes a

malware sample and reports that it belongs to a particular malware family, this is

determined by the logic provided in a signature which checks for the presence of a

particular mutex or specific filename in a particular Windows folder, for example.

This is not a particularly robust method as malware behavior will change over time

with new generations and variants.

We believe that in order to take the confusion out of the malware threat scoring,

a more thorough analysis of malicious API calls is necessary. Statistical analysis of

these function calls shows that a large amount of activity witnessed by Cuckoo remains

unevaluated. Instead of relying on signatures, the breadth of the API calls can be

evaluated in conjunction with the context of the behavior. For example, an API call

made to reach an external host on the internet which is known to be a recent command

and control server used by a large threat actor should carry a heavier severity score

than a similar API call reaching out to Google. This requires both statistical analysis

of each malware sample as well as reliable, current threat intelligence. In this manner,

threat scoring and malware family attribution will be dynamic, robust, and provide

greater confidence in threat prioritization for the incident response team.

48

Chapter 4

Insights Into Malware Detection

via Behavioral Frequency Analysis

Using Machine Learning

In this chapter we describe how several machine learning techniques can be used to

discriminate malicious from benign software by virtue of analysis of operating system

Application Programming Interface (API) calls made by software on a system within

which it was executed. These API calls are observed through Cuckoo as described in

Chapter 3 and both linear and non-linear machine learning models are used to make

these distinctions.

49

4.1 Introduction

In our research we found a lack of analysis regarding the meaning of why several

different machine learning approaches can identify malware with high accuracy on

specific datasets. It is not always clear how machine learning models for detecting

malware address the issues of false positive and false negative classification. We show

that malware and benign software contain many of the same Windows API function

calls which define their behavior on a host computer. Analysis of only the presence of

these function calls is therefore not sufficient to divide malware from benign software.

In this work we will show that analysis of the frequencies of these API calls provides a

powerful means of understanding the difference between malicious and benign activity.

Furthermore, our interest is in observing what machine learning algorithms can teach

us about malware as well as our understanding of how to identify malware. Our

research leads us to discover the relationship between the system calls used as features

in the models. This work presents a first step on the path to revise the way we think

about the behavior of malware and what that could mean for the next generation of

malware analysis systems.

4.2 Malware Behavior Analysis

In order to programmatically observe the behavior of malware in an isolated envi-

ronment, we designed an environment to allow for the installation of Cuckoo and the

50

analysis of known malware samples in a virtual machine sandbox per the installa-

tion instructions provided by Cuckoo[22]. Our goal was to focus on the evaluation of

potentially malicious software affecting Windows operating systems.

4.2.1 Setup and Malware Dataset

Cuckoo was configured per the installation guide found on the Cuckoo website[22], in-

cluding two 64-bit Windows 7 virtual machines installed on the Ubuntu host. Cuckoo

supports many virtualization software solutions but does assume the usage of Vir-

tualBox by default, so for ease of setup we chose this platform. VirtualBox is a

free system virtualization product developed by Oracle and it easily integrates with

Cuckoo for administration of the virtual machines.

Known malware samples were acquired from Malpedia[68], a curated online resource

of malicious software containing multiple versions of malware samples seen over time.

This allows for the observation of evolving behaviors as the methods of exploiting sys-

tem and application vulnerabilities changes with new generations of malware. Mal-

pedia samples often include references to third party analysis of the malware as well

as identified malware family and threat actor affiliation. This information is quite

valuable for those desiring to create custom signatures in Cuckoo for malware family

attribution.

51

4.2.2 Methodology

Once the analysis has been performed, Cuckoo generates a report of the observed

activity, including but not limited to changes to the registry, newly spawned processes,

file creation and access, virtual memory access, HTTP communication to an external

IP, and much more. These behavioral events are captured as a number of Windows

API calls and can be referenced programmatically through created JSON files.

One example of a Windows API call is the GetComputerNameW function. The ac-

tivity shown here is the usage of the GetComputerNameW Windows function which

retrieves the NetBIOS name of the local computer. The signature matched is iden-

tified as “antivm queries computername” and the function of this call is indeed to

query for the name of the computer. For the full set of malware samples we analyzed,

we found that this particular API call was committed a total of 38,867 times.

4.3 Machine Learning Approach

Our dataset consists of the Windows application programming interface (API) func-

tion calls observed by our Cuckoo malware behavioral analysis environment as de-

scribed in Section III. The API calls recorded in our dataset represent the activities

performed by 7,401 malware samples. Windows API functions are called by applica-

tions in order to operate in a Windows environment [71]. Analysis of API calls made

52

by an application in a Windows environment therefore presents a concrete record of

all behaviors performed by that application.

In our behavioral analysis we identified a number of Windows API calls and their

frequencies which correspond to the actions performed by malware on a system, such

as registry changes, code injection into running processes, file modification, etc. It is

important to note that it is not trivial to analyze API calls for malicious behavior. In

addition to known malware samples, we also performed behavioral analysis against a

set of thirty known benign software samples.

These benign software samples consist of a mixture of application installers, Java

applications, Microsoft Word documents, and similar executable files. Analysis of

malicious and benign software samples in Cuckoo resulted in the observation of over

138 million API calls, with 264 unique referenced functions. Of these 264 API calls

we found that 84 unique API functions were found in malware but not in benign

software.

Unfortunately, these 84 APIs were called in only a small fraction of the malware

samples and therefore are not useful as a “smoking gun” for determining if a given

application is malicious if its behavior includes these particular function calls. There-

fore, we concluded that the best usage for applying a machine learning model in

malware analysis would be to examine the relative frequencies of these 264 APIs

across malicious and benign software. It is important to note that the frequency of

53

the API calls largely vary. For example, we found a greater number of the “GetA-

syncKeyState” Windows API call in comparison to the “GetCursorPos” call. This is

likely due to a greater interest in software to react to a computer user’s mouse button

usage[72] than in the screen coordinates of the mouse cursor[73]. This suggests that

while particular Windows API functions may be selected as features in a machine

learning model to identify malware, there is reason to analyze what such a decision

really means for understanding the behavior of the identified malicious software. Our

approach was to apply several machine learning algorithms to three different sized

malware sample sets and compare them. Our goal was to identify the algorithmic

approach which should most reliably classify malicious software from benign software

through analysis of the frequency of Windows API calls.

4.3.1 Methodology

Eight machine learning algorithms were evaluated on the set of values describing the

Windows APIs called for each malicious and benign sample:

• Logistic Regression (LR)

• Linear Discriminant Analysis (LDA)

• K-Nearest Neighbors (KNN)

• Classification and Regression Trees (CART)

• Gaussian Naive Bayes (NB)

54

• Support Vector Machines (SVM)

• Decision Tree

• Random Forest

Our desire was to use a mixture of linear (LR and LDA) and non-linear (KNN, CART,

NB, and SVM) algorithms to determine which would be good for our dataset. The

applicability of classification trees to relationship models led us to further break CART

down into Decision Tree and Random Forest classifiers using the Scikit-Learn Python

library for visualization as shown in[74]. Our implementation included Python and

the SciPy platform using a random number seed which was reset before each run to

ensure that the results were directly comparable as shown in[75].

Through the use of a Python program we were able to compare each of these algo-

rithms as they attempted to classify a given software sample as malicious or benign

through the evaluation of the relationships between the API frequencies in known

malicious and benign software samples. Once such a training model was created for

each algorithm, these models were used to classify a testing subset of unevaluated

software. The accuracy of the training models against the test subset for each algo-

rithm was then compared to determine the best performing algorithm. In addition to

Table 4.1: Three Datasets

Dataset Malware Count Benign Count

Large Sample 7,400 30
Medium Sample 853 30

Small Sample 30 30

55

evaluating different machine learning algorithms, the decision was made to evaluate

each upon different sample sizes of malicious and benign software. The Large Sample

dataset contains the API frequencies of all 7,400 malware samples from our known

malware dataset along with the API frequencies of thirty known benign software sam-

ples. The Medium Sample dataset consists of 853 randomly selected known malware

samples along with our thirty known benign software samples. The Small Sample

dataset consists of an equal number of known malicious and known benign samples,

again with a randomly selected subset of the original 7,400 malware samples. Table

4.1 summarizes the three datasets used to test the accuracy of the algorithms against

different ratios of known malicious to known benign software.

We utilized a 70/30 split for training and validation for each dataset, which trains

each machine learning model on 70% of the dataset and then tests 30% to determine

accuracy. 10-fold cross validation was used to estimate the accuracy of the machine

learning algorithms.

Given its high relative accuracy across our datasets, we chose to further evaluate our

models generated with KNN to break down their confusion matrices. A confusion

matrix considers the total number of elements in the validation dataset and then

further classifies these elements into the following categories: true positive, false pos-

itive, true negative, and false positive. Since we are attempting to classify malware, a

true positive result would reflect that an actual malware was identified as malicious.

56

Likewise, a false positive would involve the classification of benign software as mali-

cious. Therefore, our most successful models would generate the highest number of

true positives and true negatives.

Additionally, we also observed high accuracy with CART. This intrigued us due to

the possibility of relationship modeling using decision trees and lead us to include a

deeper dive into the accuracy of different decision tree models. Our Decision Tree

implementation utilizes two methods for determining a root node with the goal of

comparing these two methods for different accuracies. Equation 1 describes the Gini

Index, which is a metric used to determine how often a randomly chosen feature would

be incorrectly identified. In our case, each API frequency is evaluated as a feature

and the one with the lowest Gini Index is identified as an appropriate root node for

a tree.

Gini(E) = 1−
c∑
j

P 2
j (4.1)

Equation 2 describes our second method for determining a root node for a tree. Here

entropy is used to determine the impurity of a feature as a measure of information

gain. In this way the feature with highest calculated entropy will be selected as the

root node of a tree.

H(X) = −
c∑
j

p(xi)log2p(xi) (4.2)

57

4.3.2 Results

4.3.2.1 Large Sample

Table II shows most of our algorithms are extremely close to purporting 100% accu-

racy. This is likely due to the much larger number of malware samples included in

this dataset skewing the learning algorithm’s perception to understand mostly mali-

cious behavior. This leads us to conclude that four models for the Large Sample are

overfit, with the notable exception of NB which appears to under-perform for each

of our datasets. We also observed that KNN gave us 9 false positives and 2,220 true

positives according to the model. Figure 4.1 illustrates the Decision Tree model for

Table 4.2: Comparison of Algorithms for Large Sample

Linear/Non-linear Algorithm Mean Standard Deviation

Linear LR 0.995193 0.002470
Linear LDA 0.981541 0.010784

Non-linear KNN 0.995963 0.002499
Non-linear CART 0.995001 0.002878
Non-linear NB 0.241691 0.023089
Non-linear SVM 0.995963 0.002499

the Large Sample as a series of branching nodes. Each node describes a value for a

particular Windows API, followed by the Gini Index value, the number of software

samples (malicious or benign) which made a call to this particular Windows API, a

tuple which delineates the number of benign software from the number of malicious

software samples, and finally a classification of Malware or Benign as predicted by

the learning model.

58

The Decision Tree model for the Large Sample reported 99.59% accuracy with gini

index with one true negative, three false negatives, eight false positives, and 2,217

true positives. We also observed zero true negatives, zero false negatives, nine false

positives, and 2,220 true positives with 99.6% accuracy using entropy. Utilizing Ran-

dom Forest for the Large Sample we observed two true negatives, zero false negatives,

seven false positives, and 2,220 true positives with 99.69% accuracy.

The decision trees created show a pronounced bias toward identifying malware as

opposed to identifying benign software samples. This is likely due to the much higher

amount of malware samples in the Large Sample. This apparent overfit is what led

us to continue evaluating these algorithms with a smaller dataset.

Figure 4.1: Decision Tree for Large Sample

59

4.3.2.2 Medium Sample

In the Medium Sample we observe results which appear to be much less overfit than

what was seen from the Large sample. Table III shows a much different algorithm

comparison than what was seen for the Large Sample. Of interest is that NB per-

formed similarly to the Large Sample, with a much lower accuracy than the other

algorithms. As with the Large Sample we see that KNN and SVM perform with the

highest accuracy. The confusion matrix for KNN shows us that this algorithm gave

us one true negative, three false negatives, ten false positives and 251 true positives

according to the model. Our Decision Tree model decreased accuracy by approxi-

Table 4.3: Comparison of Algorithms for Medium Sample

Linear/Non-linear Algorithm Mean Standard Deviation

Linear LR 0.954654 0.027075
Linear LDA 0.881914 0.058108

Non-linear KNN 0.964410 0.020299
Non-linear CART 0.959572 0.025247
Non-linear NB 0.737916 0.060903
Non-linear SVM 0.966023 0.019854

mately 8% using Gini, with four true negatives, sixteen false negatives, seven false

positives, and 238 true positives. This is in contrast to our model using entropy,

which decreased by approximately 2% with nine true negatives, four false negatives,

two false positives, and 250 true positives. This suggests that the use of entropy

to determine a root node works much better than the Gini approach for the API

frequency data being categorized. Our Random Forest model decreased accuracy by

approximately 4% with one true negative, one false negative, ten false positives, and

60

253 true positives. The lack of true negatives in this result suggest that either a

small amount of benign software was provisioned into the test dataset or this model

continues to suffer from overfit.

Figure 4.2 illustrates a decision tree generated by our model for the Medium Sample.

Here we see quite a difference from the tree for the Large Sample, as there is much

less bias toward identifying malware versus benign software. This tree appears to not

suffer from as much overfit as we saw in the Large Sample. As a whole, the machine

learning algorithms created models which seem to be more accurate for the Medium

Sample than for the Large Sample.

Figure 4.2: Decision Tree for Medium Sample

61

4.3.2.3 Small Sample

For the Small Sample we observe that our models are underfit. We have a proportion-

ately high ratio of true negatives to true positives reported, along with a relatively

higher number of false negatives. The overall accuracy of our models has reduced

significantly as a result. Table IV shows a greater amount of outliers as opposed to

our previous sample datasets, reducing the overall accuracy. Of interest is that NB

has increased in accuracy in comparison to its performance in the larger datasets

while others, especially SVM have greatly reduced accuracy. As noted earlier, KNN

and SVM had previously performed with comparable accuracy. Here we can see that

KNN performed with 36% greater accuracy than SVM. Furthermore, KNN gave us

eight true negatives, six false negatives, zero false positives and four true positives

according to the model. Interestingly, as seen with the Smaller Sample we note that

Table 4.4: Comparison of Algorithms for Small Sample

Linear/Non-linear Algorithm Mean Standard Deviation

Linear LR 0.695 0.180901
Linear LDA 0.67 208806

Non-linear KNN 0.715 0.264622
Non-linear CART 0.81 0.185472
Non-linear NB 0.79 0.115758
Non-linear SVM 0.355 0.180901

here our decision trees created with entropy have greater accuracy than those using

the Gini Index. Our decision tree made with Gini had an accuracy of approximately

83.33% with a confusion matrix showing seven true negatives, two false negatives,

one false positive, and eight true positives. Comparatively, our model using entropy

62

resulted in an accuracy of approximately 94.44% along with eight true negatives, one

false negative, zero false positives, and nine true positives. This suggests that as the

sample datasets become smaller and the ratio between malware and benign software

samples becomes more equal, entropy is a much better deciding measure for a root

node. Furthermore, our Random Forest model suffers from reduced accuracy with

this Small Sample dataset. Eight true negatives and eight true positives are offset by

two false negatives and zero false positives. There is a progressive increase in false

negatives as our sample size and disparity between malicious and non-malicious soft-

ware samples has decreased. Our Decision Tree for the Small Sample illustrates a bias

toward classifying software as benign. This indicates the increase in false negatives

as our models are now clearly underfit.

Figure 4.3: Decision Tree for Small Sample

63

4.3.3 Discussion and Recommendations

Our research shows that the analysis of the varying frequencies of Windows API calls

made between malicious and benign software can be used for classification with ex-

tremely high accuracy depending on the machine algorithm used and characteristics

of the dataset. Our Large Sample dataset (reported 99% accuracy) trained the mod-

els to recognize the most malicious activity from the features because the data was

highly biased toward understanding the Windows API call frequencies as malicious

behavior. Our Small Sample dataset (reported 88% accuracy) contained an equal

number of malicious and benign software samples, resulting in a bias toward under-

standing the feature properties as benign indicators – likely due to a higher number

of benign samples in the training dataset for the model not producing enough dis-

tinguishing features between the classes. Using the Goldilocks analogy, the Medium

Sample dataset (reported 96% accuracy) was a “just right” middle-ground which cap-

tured more true negatives and true positives for malware classification based solely

on Windows API call frequency.

Our research also shows that the malware analysis machine learning models generated

by various algorithms are subject to varying accuracy depending on the data used

to build those models as well as the algorithms selected. For example, Naive-Bayes

did not produce strong models for us, possibly due to the conditional independence

assumption inherent in the algorithm. Furthermore, decision trees trained on our

dataset using entropy to determine the root note were much more accurate than

64

those using Gini. Indeed, our research suggests that there is no “one size fits all”

for malware detection using machine learning. As noted previously, recent work has

shown the efficacy of using machine learning algorithms to identify malware based

upon observed behavior through dynamic analysis. Our research supports the viabil-

ity of this approach for malware detection, with the added caveat that it is simple to

overfit or underfit machine learning models to the malware behavior data. Consider-

ing that there is currently no universal dataset for malware behavior or a recognized

unbiased approach to creating models in a consistent manner, we find that it is imper-

ative for researchers to employ exhaustive investigation into varied machine learning

algorithms and techniques when evaluating the efficacy of a model’s ability to identify

malware so as to not fall victim to the bias of a given dataset or methodology.

We also believe it is worthwhile to consider not simply the accuracy score of a machine

learning algorithm but also what meaning can be derived from the produced model.

Decision trees in particular give us information about the relation between features

when observed visually. The differences in the trees described in Figures 4.1, 4.2, and

4.3 provide an opportunity to analyze the logic employed by the machine learning

algorithm in developing the model. As the model learns to understand malicious

behavior, we have discovered the possibility of using the relationship between feature

values as an indication of how to understand what patterns exist in the dynamic

analysis of malware. This suggests that there is potential for fingerprinting dynami-

cally observed malicious activity based upon common Windows API calls made which

perform actions that are typically malicious in nature because they serve a typically

65

malicious purpose. This is a different approach from recognizing the frequencies of

API calls made by malware in that we would not be concerned with just one or more

function calls - our concern would be in what these function calls tell us about the

malicious or benign intent of the software.

66

Chapter 5

Malware Family Fingerprinting

Through Behavioral Analysis

In Chapter 4 we showed how machine learning using operating system Application

Programming Interface (API) calls made by software as an input can be made to

discern malicious from benign software. In the present chapter, we show how this

machine learning technique can be extended to accurately fingerprint malware fami-

lies. This allows for greater intelligence to be gathered from a malware executable in

an automated fashion which requires no expert knowledge of malware in order to be

effective.

67

5.1 Introduction

Malware signatures are devised by Anti-Virus (AV) software vendors which allow

for the recognition of known malware, leading to the deletion or quarantine of the

malicious program before harm can be performed. The challenge AV faces in terms

of efficacy lies in that these malware signatures are only capable of detecting known

malware and offer little protection for new variants. AV software vendors provide

frequent updates on their malware signature databases for systems which have the AV

software installed, but this methodology can not help increase the security of a system

which has already been compromised by an unknown malware prior to the signature

database update. This inherent flaw in AV security provoked the creation of intrusion

detection and prevention systems and other cybersecurity defense tools which add

layers of security to help protect computing systems from malware compromise.

There is no standard for the creation of malware signatures. The many Anti-Virus

software companies work independently to devise malware signature databases in

competition, with each attempting to produce a superior product to sell. In doing so,

malware researchers for each AV company analyze known malware programs to find

elements common to malware types, so as to maximize the rate of detecting malware

while attempting to minimize the false-positive rate. False-positive malware detection

involves the inaccurate identification of benign software as malicious. A high false-

positive rate would in turn lower the confidence in the AV software as normal business

functions on a computer can be disrupted due to such an error. This leads to the

68

creation of AV signatures which attempt to detect specific and often granular types

of known malicious code or behavior in attempt to increase accuracy.

Malware signatures are associated not only with malware types such as a virus, trojan,

or worm, but also by a classification of sets of malware which can be referred to as

families. Malware families include a certain strain of malware and its derivatives.

Just as AV software companies invest effort into creating better signatures and AV

software engines, malware authors continue to devise methods to obfuscate malicious

code and avoid detection. Polymorphic malware variants are one such method used

to evade AV detection, where the code of the malware executable allows for self-

replication along with a re-ordering or restructuring of the code itself. Such altered

malicious programs may perform the same actions upon a victim computer regardless

of the structure of their code and it are these actions which help to define the malware

family classification.

One benefit of anti-virus signatures for the malware researcher is the label of a mal-

ware type associated with the signature. This allows one to group many unlabeled

malware samples by the corresponding signature for a certain type of malware. In

this fashion, malware behavioral analysis can be performed upon similarly labeled

malware samples in order to examine what similarities exist in the malware of the

certain classification. In our previous work we have shown how Windows API sys-

tem function calls can be used to perform behavioral analysis on malware, which in

turn allows for the categorization of malware via multiple machine learning classifiers

69

based on the frequencies of Windows API calls invoked by the analyzed malware

[76][77]. In the present work we demonstrate that behavioral analysis of Windows

API function calls made by sets of malware classified as a certain type through AV

signatures results in stacked ensemble machine learning models capable of discerning

malicious software as a certain malware family classification. In the process, we also

describe what behaviors or attributes of the malicious software which are common

amongst the malware family and in essence reverse-engineer the malware signature

used to classify the malware.

5.2 Machine Learning Enabled Malware Family Clas-

sification

In this section we describe our methodology and results from applying a stacked

ensemble machine learning approach to malware family classification.

5.2.1 Setup & Methodology

We utilized the Cuckoo Malware Sandbox to produce reports for the behavior of over

65,000 malware samples. Cuckoo delivers these reports in JSON format, which allows

for convenient parsing of the relevant Windows API function call data. The name

of each API utilized along with the number of times each API was called for each

malware file was recorded, as our focus in this research is API call frequency.

70

Additionally, we wanted to label each malware file based upon anti-virus signature

detection. For this purpose, we used VirusTotal[56], an online tool which allows

multiple anti-virus software products to analyze malware and reports any detections.

Microsoft Defender Antivirus consistently provided malware detections and classifi-

cation for each malware in our set, so we decided to use their classification for our

malware family labeling. Not every other anti-virus vendor provided such labeling

for every malware sample, so our choice of using Microsoft’s classification was based

on availability of data for known malware samples.

Table 5.1: Top Twenty Families in Malware Set

Malware Family Accuracy

PUA:Win32/DownloadGuide 99.5539%
PUA:Win32/Presenoker 99.4711%
Trojan:Win32/Occamy.C 99.4667%

SoftwareBundler:Win32/Prepscram 99.4194%
Trojan:JS/Redirector.QE 99.3849%

Virus:HTML/Jadtre.A 99.3371%
TrojanDownloader:JS/Vigorf.A 99.2945%
TrojanClicker:JS/Faceliker.D 98.9730%
Trojan:HTML/Redirector.CF 98.8959%

Trojan:HTML/Redirector 98.6964%
Trojan:HTML/Brocoiner.N!lib 98.6839%
TrojanClicker:JS/Faceliker.H 98.5605%

Trojan:JS/Redirector 98.2740%
Trojan:JS/HideLink.A 98.0905%

Virus:VBS/Ramnit.gen!C 95.4734%
Trojan:JS/Iframe.AE 94.2849%

Trojan:HTML/Brocoiner.A!lib 93.0102%
TrojanDownloader:JS/FakejQuery.AR!MTB 91.7861%

TrojanDownloader:JS/FakejQuery.A!bit 90.1614%
Virus:VBS/Ramnit.gen!A 79.4957%

A CSV file was created which represented our malware dataset, with each row describ-

ing a particular malware file and each column describing the frequency of a certain

71

API call. Separate CSV files were created for the top 20 most prevalent of the 318

identified malware families, where the rows of each malware corresponding to a par-

ticular malware family were labeled in a fashion which supports supervised machine

learning. Measures were taken to adjust the ratio of labelled malware samples for

each CSV file in order to combat over-fitting or under-fitting the data. We then cre-

ated a stacked ensemble machine learning model using scikit-learn in Python, making

use of KNN, logistic regression, and decision tree classifiers to distinguish the various

malware families according to API frequency relationships.

5.2.2 Machine Learning Results

The machine learning models used were collectively able to positively classify each

malware file with 96.5156% accuracy. This demonstrates that API call frequency is

a valid predictor of malware family. We believe the accuracy could be improved by

further increasing the number of malware files in the dataset, which should serve to

likewise increase the diversity of malware family members.

Of interest was the accuracy of the model to detect “Ramnit.gen!A”[78] which per-

formed at 79.4957% accuracy, the poorest of the lot. In contrast, the related malware

“Ramnit.gen!C”[79] was classified with 95.4734% accuracy based on API call fre-

quency. We will analyze the cause for this in the next section.

72

5.3 Malware Signature Analysis

The particular label for a malware which matches a signature will vary amongst the

different AV software companies. For example, Microsoft Defender Antivirus created

a signature for a malicious software they named “TrojanDownloader:JS/Vigorf.A”[80]

which Trend Micro describes as “Worm.JS.Bondat.AC”[81]. Evidently, there is cause

for debate for whether a particular malware is a trojan or a worm. While we cannot

explain the methodology taken by malware analysts for different anti-virus companies

in terms of the classification of malware, we can show that many discrepancies exist

between how the same malware file will be classified by different anti-virus software

signatures. In the general case, these discrepancies may be trivial for as long as the

end result is the deletion or quarantine of the malicious file is accomplished before a

victim computing system is compromised.

Through behavioral analysis we were able to discern key characteristics between mal-

ware classified as a certain type through our means of signature labelling. Mal-

ware labeled as Vigorf.A attempt to communicate to a particular URL in attempt to

download a file. Additionally, specific character strings exist in the malware which

differentiate it from other malicious software. Similarly, malware labeled as “Tro-

jan:JS/Redirector.QE” attempts to call out to a range of URLs in attempt to down-

load a specific file named ”jquery.min.php.” Since this file name is hard coded in

the code instruction, this can be used for string comparison to detect similar mal-

ware. Other malware files labelled as “Jadtre.A” display an attempt to reach out to

73

a specific URL in attempt to download additional malware. Similar specific URL or

file name specifications are prevalent in many of the malware families we analyzed,

leading us to believe that many of the anti-virus signatures we employed for family

classification utilize a simple string-matching method.

For our purposes we desire a means of malware family classification through the

analysis of Windows API call frequencies. In the previous section we described a

machine learning model which accomplished this with high accuracy. In this section

we will describe why this relationship between API calls and malware families exists.

5.3.1 Windows API Frequency Analysis

When we consider that the operations which software, malicious or benign, are pro-

grammed to perform on a system must do so through API calls to the host operating

system, we can understand that the frequency of these calls produces a fingerprint.

This fingerprint can be used to identify software which has been developed to perform

similar actions. For example, Figure 5.1 shows the frequencies of API calls made by

multiple files which matched the Microsoft malware signature for “DownloadGuide.”

Each column represents a behavioral analysis report for an individual malicious soft-

ware file while each color represents a specific API call, with the size of the colored

sections representative of the relative API call frequencies.

We can visually determine a pattern in these malware files by comparing the frequen-

cies of various API calls. This is the means by which the machine learning models

74

also determine malware family relationships. It is interesting to note that the num-

ber of unique API calls made by malware does not appear to significantly affect the

accuracy of the malware family categorization. For instance, the DownloadGuide

malware shown in Figure 5.1 was observed making use of 152 unique API calls with

certain frequencies in our malware set, while the Redirector.QE malware shown in

Figure 5.2 called out to only 24 unique API functions. Our experiments show that it

is not necessarily which API calls were chosen by malware which provides a means

of fingerprinting, but the relative frequencies of these API calls made which provides

the ability to discern what family a certain malware is most associated with.

75

Figure 5.1: API Frequency for PUA:Win32/DownloadGuide

5.3.2 Limitations of Signature-Based Approach

In Section III we discussed the results of our machine learning models and how of the

twenty most prevalent malware families in our malware dataset, each model was capa-

ble of identifying the correct malware family with very high accuracy with the greatest

76

Figure 5.2: API Frequency for Trojan:JS/Redirector.QE

exception being the model trained to identify malware classified as Ramnit.gen!A. The

similar malware family Ramnit.gen!C performed with 15.9777% greater accuracy. We

found the question of why there would be such a discrepancy between the accuracy

of these two related families to be intriguing.

Behavioral analysis of malware labeled as these two forms of the Ramnit virus reveals

that malware classified as Ramnit.gen!C in our malware set make use of 123 unique

API function calls while malware classified as Ramnit.gen!A utilized 287 unique API

calls as a whole. Additionally, the frequencies of these API calls are much more

uniform in the set of Ramnit.gen!C malware than in the Ramnit.gen!A set. Table II

describes the twenty most prevalent API calls in the Ramnit.gen!A malware set, with

Table III similarly describing Ramnit.gen!C. We believe that this lack of uniform API

frequency contributed to the lower accuracy of the Ramnit.gen!A machine learning

classifier.

77

Table 5.2: Top Twenty APIs in Ramnit.gen!A Malware Set

API Function # of Calls

RegQueryValueExW 92027468
RegOpenKeyExW 32498784

NtClose 28061847
RegCloseKey 23596025

GetSystemMetrics 22887494
NtWriteFile 16457483
NtCreateFile 16100748

NtAllocateVirtualMemory 11930672
NtOpenFile 9044230

NtQueryDirectoryFile 7218844
LdrLoadDll 6826873

GetSystemTimeAsFileTime 6345445
LdrGetProcedureAddress 6194868

RegEnumKeyW 5784563
FindFirstFileExW 4927071

NtOpenKey 4806287
SetErrorMode 4756149
CoInitializeEx 4664570

NtProtectVirtualMemory 4654408
RegEnumValueW 4574213

Microsoft’s documentation on these two viruses is unclear on the technical speci-

fication for their classification. However, we do find that both Ramnit.gen!A and

Ramnit.gen!C perform similar actions on a victim computer, including an attempt

to drop a malicious file named “svchost.exe” to the logged-in user’s temporary direc-

tory through the use of malicious Visual Basic Script code embedded in an HTML

file. However, different malware files labeled as Ramnit.gen!A may perform many

additional functions, such as the modification of the Windows registry and/or the

creation of additional files to be run as DLLs. This wider range of possible activities

appears to suggest that the Ramnit.gen!A signature may be over-broad and has the

ability to mis-label related yet different-generation malware.

78

This illustrates the importance of accurate malware signatures for the purpose of clas-

sifying related malware behavior. We find that many malware families classified by

Microsoft AV have a range of different classifications according to other AV software

companies. Future work may benefit from examining malware family classification

based on malware signatures produced by a variety of AV software. In so doing, the

possibility of mis-labeling malware by family may be reduced and possibly new mal-

ware families can be distinguished by comparing multiple signatures with behavioral

analysis.

Table 5.3: Top Twenty APIs in Ramnit.gen!C Malware Set

API Function # of Calls

NtWriteFile 10586688
NtCreateFile 626186
NtOpenFile 568450

NtAllocateVirtualMemory 430983
LdrLoadDll 363739

NtProtectVirtualMemory 190428
CoInitializeEx 155245
CoUninitialize 128127

CoCreateInstance 98541
NtResumeThread 35054

RegQueryValueExW 22989
CoGetClassObject 14364

OleInitialize 9811
NtDelayExecution 9549
RegOpenKeyExW 8070

NtClose 6404
RegCloseKey 5848

GetSystemMetrics 5704
send 5064

CoInitializeSecurity 4262

79

5.4 Discussion and Recommendations

In this chapter we showed how behavioral analysis of malware combined with a data

set of Windows API function call frequencies classified by anti-virus signature matches

allows for the creation of machine learning models capable of identifying the appro-

priate family to which a given malicious software belongs. We described how API

frequencies can be used for this classification and explain that this form of software

behavior fingerprinting can be used with very high accuracy. Finally, we discussed

how this current methodology is dependent upon accurate anti-virus signatures.

We believe that this methodology can be extended by including additional anti-virus

signatures from multiple sources as a means of increasing accuracy. Furthermore, we

believe that comparison of known malware families and generational changes through

API frequency analysis may provide insight into how malware evolves over time,

leading to a potential predictive model for future malware variants based on historical

data. In so doing, we believe it is possible to determine a kind of “natural selection”

for successful malware families and thereby contribute to cybersecurity defense.

80

Chapter 6

Friend or Foe: Discerning Benign

vs Malicious Software and Malware

Family

In Chapter 5 we showed how machine learning can be used to fingerprint malware

families. This process, while effective, comes at a cost of time and resources. We

wished to develop a means of performing similar actions with greater speed. This

led us to consider malware and malware family fingerprinting using only a fraction of

the total API function calls performed by the software being examined. This chapter

presents the results of this research, which compares MLP, CNN, and SVM machine

learning algorithms.

81

6.1 Introduction

Malware, or malicious software, continues to threaten computer systems and networks

ranging from the home office to corporate environments, including workstations, mo-

bile devices, and Internet-of-Things. Malware continues to be successful because it is

just as varied as the systems and users they intend to compromise. As world events

such as technological innovations or a global pandemic alter the way in which we

use computing devices, threats from malicious software continue to diversify, thereby

continuing to frustrate cybersecurity professionals who seek to ensure the safety of

the systems and networks they secure.

The threat of a malware-based compromise is particularly severe for enterprise envi-

ronments which rely heavily upon Microsoft Windows systems. Malware compromises

continue to rank higher in frequency for Windows systems than any other operating

system [67], due in part to the prevalence of Windows systems located both in the

enterprise as well as home environments. Malware-based compromises can result in

a ransomware attack, remote access to the compromised system, data theft, or other

forms of abuse by the malware author or remote attacker.

Many tools currently exist to aid in the fight against malware, including anti-virus

or anti-malware software. However, these tools are limited to known malware sig-

natures. Endpoint threat detection software is an advancement in the fight against

malware yet is mostly effective against known threats. Next-generation firewalls add

intrusion prevention to their list of offerings while also relying on signatures and rules

82

defined in advance of new, unknown threats. This produces a landscape of tools and

methodologies which require significant investment in terms of both money and per-

sonnel to use them. As the ways in which users interact with business networks and

applications change, the need for a dynamic approach to cybersecurity is not always

reflected in the security tools made available, especially to those on a limited budget

or time.

This has motivated us to develop a framework for an approach to not only identify

malware from benign software, but also to discern malware family to provide greater

threat intelligence. Both malicious and benign software perform many, many oper-

ations on a system when they are executed. Analysis of hundreds of thousands of

behaviors performed on a system can be costly, time consuming, and may require ad-

vanced cybersecurity training. However, machine learning provides the opportunity

to automate these tasks and produce more legible results, especially for organizations

which lack a dedicated team of skilled human analysts.

6.2 Malware Behavior Analysis

In order to programmatically observe the behavior of malware in an isolated setting,

we designed an environment to allow for the installation of Cuckoo and the analysis of

known malware samples in a virtual machine sandbox per the installation instructions

provided by Cuckoo[22]. Our goal was to focus on the evaluation of potentially

83

Figure 6.1: Malware Data Preparation

malicious software affecting Windows operating systems, and the ability to discern

between malware types, families, and benign software. The decision was made to

focus on malware affecting Windows systems due to the significantly larger amount of

malware compromises observed on Windows systems as compared to other operating

systems [67], and the relative threat such malware presents to corporate environments.

84

6.2.1 Setup and Malware Dataset

Cuckoo was configured per the installation guide found on the Cuckoo website[22],

including two 64-bit Windows 7 virtual machines installed on the Ubuntu host.

Cuckoo supports many virtualization software solutions but does assume the usage

of VirtualBox[82] by default, so for ease of setup we chose this platform. VirtualBox

is a free system virtualization product developed by Oracle and it easily integrates

with Cuckoo for administration of the virtual machines.

Known malware samples were acquired from VirusShare [83], an online resource of

malicious software containing multiple versions of malware samples seen over time.

This allows for the observation of evolving behaviors as the methods of exploiting

system and application vulnerabilities changes with new generations of malware.

6.2.2 API Collection Methodology

Once the analysis has been performed, Cuckoo generates a report of the observed

activity including, but not limited to, changes to the registry, newly spawned pro-

cesses, file creation and access, virtual memory access, HTTP communication to an

external IP, and much more. When a malware file is analyzed by Cuckoo, a report

is generated including a list of each behavior exhibited by the malware as it was ex-

ecuted in a controlled environment. This report can be delivered in JSON format,

which can easily be parsed for the relevant behavior artifacts. These artifacts are

85

expressed through the Windows API[71] system function calls made by the malware

to affect the system during execution. To make use of this information, we gathered

the names of the first 3,000 API function calls for each malware analyzed. We found

that less than this number of API calls negatively affected the overall accuracy of our

machine learning models, while a greater amount provided only little improvement

to accuracy at the cost of a much greater training time. We also analyzed several

commonly available software executables with Cuckoo to obtain API call behavior

for comparing malicious software against benign software.

6.2.3 Malware Classification

The collection of malware available from VirusShare was delivered without any iden-

tifiers. This meant that while it was known that the supplied malware samples were

malicious, there were no labels to identify the malware by type (virus, trojan, worm,

etc.) or by family (Ramnit, Faceliker, Brocoiner, etc.). As we were very interested in

discovering any similarities between malware types, we felt that identification of our

malware samples was important. VirusTotal[56] is an online resource which allows

for the comparison of the hash of each unique malware file to any malware identi-

fied by various antivirus vendors. Each of the antivirus vendors who reported that

a given malware file was indeed malicious assigned a name for the family to which

the malware belonged. These malware family names vary as there is no set standard

nomenclature. We chose to follow the naming convention used by Microsoft antivirus,

86

since a version of their antivirus software is available on all modern Windows operat-

ing systems, making this an appropriate baseline. As shown in Figure 6.1, the labeled

API calls made by each malware were then collected according to their family label.

These Microsoft antivirus signatures were referenced to assign a malware family to

each malware file. For the current research data set, this resulted in 23 family des-

ignations for the set of unique malware. We then labeled representative malware

samples by these family names and collected the full Windows system API function

calls for each malware file. For ease of reference, we assigned unique identifiers to

each malware as described in Table 6.1.

6.2.4 Benign Software API Collection

In addition to behavioral analysis of malware, we also collected Windows API calls

for known benign software. This was performed to compare the behavior of benign

software to malware for the purpose of showing that our machine learning method-

ology can discern benign activity through API analysis. The choice of what benign

software to use was arbitrary, with a tendency to collect software that might be com-

monly downloaded by common computer users. Each of the benign software files were

executed in the Cuckoo sandbox and API calls were observed in the same manner as

for the malware analysis. The benign software executables as well as their reference

labels are described in Table 6.1.

87

Table 6.1: Malware by Antivirus Signature Classification & Benign Software Set

ID Signature ID Benign Executable

M1 Virus:VBS/Ramnit.gen!A B1 7-Zip 32-bit[84]
M2 Virus:VBS/Ramnit.gen!C B2 7-Zip 64-bit[84]
M3 PUA:Win32/Puamson.A!ml B3 Avira Antivirus[85]
M4 TrojanClicker:JS/Faceliker.M B4 CCleaner[86]
M5 Trojan:JS/Iframeinject B5 Google Chrome[87]
M6 Trojan:HTML/Redirector.CF B6 Epson scanner
M7 Trojan:Win32/Skeeyah.A!bit software[88]
M8 Exploit:HTML/IframeRef.gen B7 GifCam animated
M9 Virus:VBS/Ramnit.B gif software[89]
M10 TrojanClicker:JS/Faceliker.D B8 GIMP image
M11 TrojanClicker:JS/Faceliker.C editor[90]
M12 Trojan:JS/Redirector.QE B9 OpenVPN[91]
M13 Trojan:JS/BlacoleRef B10 Ultrasurf proxy[92]
M14 PUA:Win32/Presenoker B11 Microsoft Visual
M15 Trojan:HTML/Brocoiner.D!lib Studio Code[93]
M16 TrojanClicker:JS/Faceliker!rfn
M17 Trojan:Win32/Vibem.O
M18 Trojan:HTML/Redirector.EP
M19 Exploit:HTML/IframeRef
M20 TrojanClicker:JS/Faceliker.A
M21 Exploit:HTML/IframeRef.DM
M22 Trojan:HTML/Phish
M23 PUA:Win32/Kuaiba

6.3 Machine Learning Framework

Our dataset of malicious and benign Windows API calls provided a description of the

behavior each software performed upon the Windows system in our Cuckoo sandbox

environment. Frequency analysis of these APIs for malware classification has been

performed in the past [77], however we felt that the goal of our experimentation

should be to discover what relationships might be observed between malicious and

benign software through inspection of these API calls. To that end, we decided to

88

make use of machine learning for analysis of API calls made by our software dataset

to determine if this data was suitable for the task. We chose to use the machine

learning algorithms described below to devise models which compare three sets of

input data for multi-class classification. For each experiment, API calls for three

software executables (malicious or benign) were used for input into these models.

The APIs were input into the algorithms one at a time, so the API function names

are considered in chronological order by label.

6.3.1 Machine Learning Algorithms Used

We chose to implement three machine learning algorithms for our experimentation,

namely Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and

Support Vector Machine (SVM). These models were chosen for their applicability to

classification prediction problems and accuracy performance.

6.3.1.1 Multilayer Perceptron

We built a learning network using MLP as shown in Figure 6.2. This consisted of five

dense layers with input dropout of 40%, compiled with a categorical cross-entropy loss

function and the Adam optimizer. As noted previously, we found the greatest success

in our experimentation when using a network created through MLP. Therefore, the

analysis in Section V reflects the results from our MLP learning model.

89

Figure 6.2: MLP & CNN Network Graphs

6.3.1.2 Convolutional Neural Network

We built a learning network using CNN as shown in Figure 6.2. This consisted of

three convolutional layers with an input dropout of 50%, compiled with a categorical

cross-entropy loss function and the Adam optimizer.

90

6.3.1.3 Support Vector Machine

Finally, we built a learning network using SVM. We used the linear kernel function

with the one-versus-one function for multi-class classification.

6.3.1.4 Comparison of Algorithms

We experimented with multiple ratios of training and testing data, including 80/20,

70/30, 60/40, and 50/50, respectively. We found that in general the best performance

for these machine learning algorithms for our data came with a 70/30 split between

training and test data sets.

A comparison of the accuracy of these machine learning algorithms with respect to

our data is shown in Figure 6.3. Here it is shown that the overall accuracy of the

MLP algorithm performs better than CNN or SVM for each experiment. For example,

experiment 1.3 resulted in an overall accuracy of 88% when MLP was used, as opposed

to accuracies of 50% and 54% for CNN and SVM, respectively (more details regarding

experiments and experiment numbers are provided in the next section). The only

experiments where MLP did not perform better than the other algorithms were in

the cases of experiment 3.3 where CNN was 2% more accurate and experiment 7.2

where both CNN and SVM were 1% more accurate. Given these small values of

difference in accuracy while MLP excelled in all other experiments, we refer solely to

the experimental results from usage of the MLP model in subsequent sections.

91

We feel it is important to try to explain why these algorithms behaved so differently.

First, MLP maps the features from the input space to the output space – meaning

that it takes input and then adjusts the weights during the optimization such that an

optimal function is generated. This creates a more robust mapping from the input

to the output so that the relationship can be learned with greater reliability when

optimized. MLP can efficiently be used with a limited number of features, such as

with our problem. Since our problem uses few features, MLP maps our functions

from input to output spaces with the high accuracy.

CNN operates by taking convolutions of the input. CNN typically extracts a very

low level of information from the input and thus helps in the classification task. The

convolution and pooling layers in the CNN are typically used to extract features

from image data, although they are also useful for one-dimensional data when spatial

information is of interest. However, there is no spatial information in our dataset

and therefore CNN probably is not performing better than MLP because of limited

low-level data extraction.

SVM finds hyperplanes in a n-dimensional space, where the different classes are sep-

arated by the boundaries of the resulting planes. If the different classes are well

separated, then SVM can be very effective as the defined boundaries can easily clas-

sify the dataset. It is probable that our dataset does not have well separated classes.

Therefore, SVM does not work as effectively and more complex mapping between

input and output using MLP performs better.

92

Figure 6.3: Comparison of MLP Algorithm Accuracy

Overall, our MLP networks performed with greater accuracy than our CNN or SVM

networks. As a result, we have included only the MLP results in this work.

In addition to its increased overall accuracy with our Windows API dataset, our

MLP approach performed much faster than traditional CNN by a significant amount.

Three days were required for training and testing each experiment using our CNN

network, on average. By comparison, our MLP network required an average of four

hours per experiment.

6.3.2 Experimentation

Seven experiments were devised for testing the machine learning models described in

the previous section. This included the following:

93

1. Benign vs Trojan vs Virus

2. Benign vs Trojan vs Trojan

3. Benign vs Benign vs Benign

4. Benign vs Benign vs Malware

5. Trojan vs Virus vs PUA

6. Trojan vs Trojan vs Trojan

7. Related Malware (by signature)

These experiments were purposefully chosen to assess the ability of our MLP networks

to discern malware families as well as benign software from a variety of input sets of

API data. Each experiment consisted of three tests, where each test concerned sets

of input API calls from three different software sources. Therefore, the experiments

are referred to as 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, and so on through 7.1, 7.2, and 7.3.

For example, our first experiment involved the input of a benign software, a trojan,

and a virus. Our third test within the first experiment is then referred to as 1.3 and

involved the benign Avira Antivirus (B3), the trojan Win32/Vibem.O (M17), and

the virus VBS/Ramnit.B (M9). The results from our MLP network are recorded in

Table 6.2.

94

Similarly, our seventh experiment involved the input of three related malwares. Test

7.1 involved APIs observed from three variants of the Ramnit virus, including VB-

S/Ramnit.gen!A (M1), VBS/Ramnit.gen!B (M9), and VBS/Ramnit.gen!C (M2). The

results from our MLP network are recorded in Table 6.3.

Extensive results from our experimentation can be found in Appendix A.

Table 6.2: Statistics for Experiment 1.3

Precision Recall F1-score Support

M17 0.98 0.78 0.87 880
B3 0.83 0.86 0.84 914
M9 0.85 1.00 0.92 906

Accuracy 0.88 2700
Macro Avg. 0.89 0.88 0.88 2700

Weighted Avg. 0.89 0.88 0.88 2700

Table 6.3: Statistics for Experiment 7.1

Precision Recall F1-score Support

M1 1.00 0.96 0.98 913
M9 0.55 0.74 0.63 882
M2 0.61 0.42 0.50 905

Accuracy 0.71 2700
Macro Avg. 0.72 0.71 0.70 2700

Weighted Avg. 0.72 0.71 0.70 2700

6.4 Analysis of Results

Our initial experimentation included the experiments 5.1 - 7.3, including the classi-

fication of three sets of trojans, viruses, and potentially unwanted programs (PUA),

three sets of trojans of different malware families, and three sets of related malware

95

families. We found success in our machine learning model’s ability to discriminate

between different malware types, as can particularly be seen in Table 6.2. These

experiments show that there is enough of a difference in the API calls made by the

malware Trojan:Win32/Vibem.O and Virus:VBS/Ramnit.B in particular to make

this methodology useful for learning the type of malware being analyzed. In this way,

we show that classification of malware by family is possible through observation of

API function calls to learn distinct patterns.

We also saw success in the discrimination of malware of related families - in par-

ticular, our model could discern the difference between Virus:VBS/Ramnit.gen!A,

Virus:VBS/Ramnit.B, and Virus:VBS/Ramnit.gen!C with high accuracy in experi-

ment 7.1 and shown in Table 6.3. However, we were not quite as successful in ex-

periments 7.2 and 7.3 concerning Faceliker and iframeRef variants, respectively. We

believe this is because there is more of a functional difference between the Ramnit

variants, as analysis of the malware behavior shows differences in how these viruses

compromise a victim computer. This suggests that our methodology is useful for

determining differences in actions between malware variants of the same family and

could be helpful for fingerprinting malware evolution.

Expanding our scope to include benign software in experiments 1.1 - 4.3 allowed us

to determine what impact was provided by including benign software in our learn-

ing methodology. We found a much higher average accuracy for these experiments,

compared to the experiments concerning only malware. We believe that the variety

96

of benign software used in our experimentation was varied enough in function to not

reflect a distinct difference in behavior from malware, as both the benign and mali-

cious software used perform similar functions on a Windows system (file read/writes,

registry changes, creation of processes to inject code, etc.). However, we found inter-

esting results when comparing similar experiments which were differentiated by the

inclusion of benign software.

For example, experiment 4.1 involved three malware inputs - namely, Virus:VBS/Ramnit.B,

Trojan:JS/Redirector.QE, and PUA:Win32/Puamson.A!ml. Experiment 1.1 replaced

PUA:Win32/Puamson.A!ml with the 32-bit 7-Zip executable which resulted in a

change from an overall accuracy of 40% to 68%. We believe that this increase in

accuracy is a result of the variance in API calls made by benign software as opposed

to malware. Experiments 3.1 - 3.3 include only benign software inputs while experi-

ments 6.1 - 6.3 include only trojan malware inputs and the former reports a greater

ability to classify over the latter. This suggests that the API calls for malware lack

the entropy found in benign software API calls. This would then possibly explain

the greater ability to differentiate malicious from benign software over malware of the

same type.

These results show that our approach provides a means of understanding the nature of

malware by learning the behavior of different malware types and family relationships.

This benefits the cybersecurity incident responder by providing an additional means of

malware analysis, where the relative risk presented by a certain malware not matching

97

a current antivirus signature can be assessed by its behavioral relationship to known

malware families.

6.5 Discussion and Recommendations

Our research showed that it was possible to discern malware and benign software

through learning the Windows system API function calls made by different classifi-

cations of software. The novelty of this approach can be found in how accurately it

performed, given the sparse input of single API function call names. This produced

a framework for quickly learning the differences between software to accurately pre-

dict, not only if a given software is malicious or benign, but also to classify malicious

software by family type. The accuracy of this approach increased when including

disparate software types and we believe that the overall, general accuracy will be

increased by adding additional classes with a mix of benign and malicious software.

While not a replacement for current malware detection mechanisms, this approach

supplied a quick tool for accurate malware analysis as part of a cybersecurity incident

response process to provide greater insight and visibility into the nature of malware.

One that, otherwise, may be unavailable for many cybersecurity professionals.

98

Chapter 7

Ohana Means Family: Malware

Family Classification using

Extreme Learning Machines

In Chapter 6 we compared several machine learning algorithms for greatest accuracy

when learning the differences between malware, benign software, and malware family.

An additional problem we discovered was that while we were able to identify MLP

as a fast algorithm suited to making this discrimination based upon single API func-

tion calls, this methodology did little for malware family classification using longer

sequences of API calls. The motivation for this research included understanding how

the speed and accuracy of malware family prediction would be affected by sequences

of varying sizes. Additionally, we were interested in the use of the Extreme Learning

99

Machine (ELM) algorithm to see if its greater speed would be appropriate with our

malware data set.

7.1 Introduction

Malicious software, or malware, continues to be a grave threat to computing systems,

especially those running the Windows Operating System in enterprise environments[94].

It is the role of cybersecurity incident responders to detect cyber threats such as mal-

ware compromises and to quickly remediate infected systems before damage can be

done. However, this task is not trivial - in the case of one type of malware called

ransomware, $11.5 billion in damages were accrued in 2019 in the United States

alone[95]. The risk associated with malware builds a need in the cybersecurity indus-

try for real-time malware detection which can continuously learn and better classify

malware threats.

Traditional antivirus (AV) software is one form of malware detection, where software

is compared to known malware code components, known as malware signatures. If

there is a match between a malware signature and the inspected software, the AV

software may quarantine or delete the offending program. This process can be effec-

tive; however, its efficiency is predicated upon the prior knowledge of the malware

threat. A certain malware must already have been detected and analyzed by the AV

vendor for the malware signature to exist. This limits the efficacy of AV software to

100

only known malware threats. Unfortunately, this provides little protection against

new malware variants which lack a signature.

The ability to not only detect malware but also classify which malware family it be-

longs to provides greater detail regarding the relative threat of a given malware. A

malware detection system could alert an analyst when malicious software is found.

But if the context of its malware family is not discovered, then this ambiguates the

threat the malware poses. For example, if malware is delivered to a user’s email inbox

as an attachment and that malicious attachment is downloaded by the user, an alert

may be generated to inform the cybersecurity team that a user has downloaded a

malicious file. If no further information is given, such as what malware signature or

malware family the software belongs to, the ability to make an informed response

during triage will be difficult when similar incidents are occurring in tandem. This

situation allows for a higher threat evaluation for a security incident involving rela-

tively benign adware as opposed to something much more severe such as ransomware

if the context of the threat posed by the malware is not taken into consideration.

Previous research has shown that machine learning can be useful for not only de-

tecting malware, but also for fingerprinting malware families by learning observed

malware behavior as represented by frequencies of Windows system API function

calls [96] [97]. While highly accurate, this method requires the observation of every

behavior a certain malware makes and is, therefore, most useful for analysis after

101

an infected system has been remediated. To accommodate real-time detection, se-

quences of API calls should be observed by a machine learning model as they are

executed. However, malware data tends to change in distribution as well as fam-

ily type due to malware evolution and changes in operating system and commercial

software exploitation techniques.

A machine learning model trained for a particular malware dataset may not provide

the best results when considering dynamic data that varies with time. Therefore, ma-

chine learning models need to be updated or retrained to accommodate these changes

in malware threats. Traditional machine learning methods are also time consum-

ing, making malware family classification computationally inefficient. Therefore, in

this work we have investigated the use of Extreme Learning Machine (ELM) and

Online Sequential Extreme Learning Machine (OS-ELM) methods for malware sig-

nature detection. The advantage with ELM and OS-ELM is that they do not rely

on computationally complex optimization algorithms like gradient descent for data

training. Thus, ELM and OS-ELM can be retrained in real-time.

102

7.2 System Software Architecture

Figure 7.1: System Model

The proposed system model for malware family classification based upon API se-

quences is depicted in Fig.7.1. The methodology for observing operating system API

calls consists of a running process on the system which reports sequences of such calls

to the machine learning classifier. Fig.7.1 shows the use of either ELM or OS-ELM

in this process, where OS-ELM would be preferred for online learning.

As we show in Section VII, ELM provides the ability to very quickly and accurately

classify malware and malware family given a set of observed API call sequences. This

103

is beneficial for when analysis of a suspicious program is required as part of a cyber-

security investigation, especially when there is belief that the potentially malicious

program serves as an active threat. In this case, a snapshot of observed API call

sequences may be recorded and sent to the learning classifier on a remote system

which is not affected by the suspicious software.

However, this reactive approach with ELM may not always be ideal. Therefore,

we also propose the use of OS-ELM, which due to its self-updating nature provides a

proactive approach to malware detection as well as classification. This online method-

ology allows for the continuous monitoring for new threats as sequences which occur

after the initialization of the learning classifier are factored into the analysis of pro-

grams. Instead of only classifying programs as malicious or benign and determin-

ing malware family in an ad hoc fashion as part of incident analysis, the OS-ELM

approach can be used to automatically monitor new process API calls to discover

malicious software before damage is done.

7.3 Problem Statement

Consider an API call apii at the time i. The time i is not discrete but continuous.

Thus if apii, apii+1, and apii+2 are three sequential calls then the time difference

between i + 1 and i + 2 is not necessarily equal to the time difference between i + 1

and i, but rather that API calls occur in a sequential manner. The variable Sj denotes

104

the malware signature where j ∈ 1, 2,|S|, where |S| represents the total number of

possible malware signatures. The sequence of API calls where the sequence starts at

time i is denoted as the set Seqi = {apii, apii+1,apil}, where l is the total number

of sequences in l. The problem statement is given below.

1. Can we predict Sj given Seqi as the input? This involves using all values in

Seqi to predict Si.

2. Can we predict Sj given a subset of Seqi? This involves using only the first k api

call sequences in Seqi, where k is a subset of Seqi. An Additional sub-problem

involves determining the minimum value of k.

The difficulty of these problems lies in the large amount of API calls performed by

malware. For example, we observed one variant of the V BInject.AIE!bit malware

performing 9,654 API calls over 1 minute and 58 seconds, where 392 API calls were

made within a window of 641 nanoseconds. Manual analysis of these API calls by a

human analyst is not feasible due to the wealth of actions performed. Furthermore,

malware makes use of the same library of Windows API functions as benign software.

Discrimination between malicious and benign behavior through API call analysis

alone requires a wealth of prior knowledge of malicious API call sequences which is not

possible for a human to perform. Current methods using traditional machine learning

techniques are not online in nature and therefore are only capable of identifying

malware according to API call sequences which were known to be malicious at the

105

time of training. An additional difficulty concerning malware family fingerprinting

is presented in terms of real-time detection and response. Any system tasked with

identifying malware threats in real-time must have the ability to perform quickly and

with high accuracy.

Existing methods that use Machine Learning (SVM, random forest, etc.) or Deep

Learning methods (for eg. using MLP, CNN, etc.) require a significant amount of

time to train. These methods are suitable when a model only needs to be trained

once. However, the distribution and type of malwares tends to vary with time. Thus,

a machine learning model that is trained at some time t may not be efficiently used at

time t+T where T is significantly larger. Therefore, we need to continuously update

a model by retraining after certain intervals of time. With traditional methods this is

infeasible because they take a significant amount of time to train along with increased

computational costs. Therefore, online training is required to update the model with

time.

106

Figure 7.2: Cuckoo Setup on Ubuntu Host

107

7.4 Dynamic API call sequence classification

7.4.1 API Collection Methodology

To programmatically observe the behavior which malware performs on an infected

system, we designed an environment to allow for the installation of the Cuckoo mal-

ware sandbox[22][98] for the analysis of known malware samples in a virtual Windows

machine. Cuckoo is open-source software which may be installed on a host computer

system for the purpose of analyzing malicious software behavior when executed within

virtual systems. Figure 7.2 illustrates our setup, where Cuckoo software installed on

an Ubuntu host serves malware to Windows virtual machines via a hypervisor.

Cuckoo was used in this manner to perform dynamic analysis upon 60,046 malware

files obtained from VirusShare[83], an online repository for malicious software. Once

a malware file is analyzed by Cuckoo, a report is generated including a list of each

behavior exhibited by the malware as it was executed in a controlled environment.

The process for Cuckoo report generation is described in Figure 7.3, which begins

with the submission of a malicious program to Cuckoo for analysis and is followed

by execution of the malware on a Windows virtual host. Actions performed by the

malware are then recorded, inspected, and finally delivered in the form of a report in

JSON format, which can easily be parsed for the relevant behavior artifacts.

108

Figure 7.3: Cuckoo Malware Report Generation Process

These artifacts are expressed through the Windows API system function calls made

by the malware during execution. To make use of this information, we gathered the

names of the API function calls as well as their timestamps to produce API call

frequency reports for each malware analyzed. An example of such an API call can

be seen in Figure 7.4, where the Cuckoo report shows the Windows API function

“CreateProcessInternalW” used for malicious code injection.

109

Figure 7.4: Example of API Used for Malicious Code Injection

Of the total number of malware files analyzed, 29,868 files were unique according

to their file hashes. VirusTotal[56] is an online resource for comparing software to

known malware signatures as a means of malware detection. This service was used

to compare the hash of each unique malware file to malware identified by various an-

tivirus (AV) vendors. Each of the AV vendors who reported that a given malware file

was indeed malicious assigned a name for the family to which the malware belonged.

These malware family names vary as there is no set standard nomenclature. We

chose to follow the naming convention used by Microsoft AV. Since a version of their

AV software is available on all modern Windows operating systems, this seems to be

an appropriate baseline. These Microsoft AV signatures were referenced to assign a

malware family to each malware file, resulting in 318 family designations for the full

set of unique malwares. Of these family designations, 138 corresponded to a single

malware file each, while a total of 247 malware family designations mapped to less

than 10 malware files each.

110

7.4.2 API Sequence Dataset

The API sequence data for each malware family was combined for each malware

family designation to represent known API sequences for a given malware family.

We found that sequences of 10 API call names produced the best accuracy in our

experimentation, as this number was large enough to discriminate against similar

API call sequences for different malware families which could interfere with learning.

For example, during training we found that smaller sequences of 2-5 API calls (such

as {LdrLoadDll, LdrLoadDll, LdrLoadDll} would often occur amongst many malware

family labels. However, we found that such sets of 10 API calls rarely were duplicated

amongst different labels. These malware family sequence files were then used for

training and validation of the machine learning models used.

7.5 Analysis of ELM and OS-ELM

7.5.1 Extreme Learning Machine

Algorithm 1: Extreme Learning Machine (ELM)

Input: Seq = {Seqj} , T = {Sj} , j = 1, 2, . . . , N
Output: class label Sj

1 Initialization: Randomly assign weight matrix w and the bias vector b.

• Calculate matrix H based on Eq. 7.3

• Calculate parameter vector β based on Eq. 7.6

• Obtain final output Sj based upon Eq. 7.1

111

The Extreme Learning Machine (ELM) algorithm makes use of single hidden layer

feedforward neural networks (SLFNs) along with random input weights, which per-

forms much faster than the traditional back-propagation algorithm [99][100][101]. A

SLFN network includes three layers: an input layer, a single hidden layer, and an

output layer as described in Fig. 7.5. Such a network is useful in classification prob-

lems, especially in complex problems such as sequence classification due to its time

efficiency when compared to traditional training algorithms such as LSTM. In our

problem, the input is a set of API call sequences Seqi which is composed of {api1,

api2, api3, ..., apil}. The output of the network with L hidden nodes can be repre-

sented by Eq. 7.1, with a set of N training samples with input as (Seq1, Seq2,SeqN)

and output as (S1, S2....., SN).

Sj =
L∑
i=1

βig (ai · Seqj + bi) j = 1, 2, . . . , N (7.1)

Here, the output weight is expressed as βi ε Rm, the input weight and bias values are

expressed with ai ε Rn and bi ε R. Assuming equation 7.1 has zero error, it can be

expressed compactly in matrix format as

Hβ = T (7.2)

112

where

H =

g (a1 · Seq1 + b1) . . . g (aL · Seq1 + bL)

...
. . .

...

g (a1 · SeqN + b1) . . . g (aL · SeqN + bL)

N×L

(7.3)

β =

βT
1

...

βT
L

L×m

=

β11 . . . β1m

...
. . .

...

βN1 . . . βLm

L×m

(7.4)

T =

S1

...

S2

N×m

(7.5)

T is the training data target matrix and H is referred to as the hidden layer out-

put matrix of the ELM[99], where ai and bi are not tuned during training, but are

randomly assigned[102]. Accordingly, Eq. 7.2 becomes a linear system with output

weights β estimated as

β = H†T (7.6)

whereH† is the Moore-Penrose pseudo-inverse[103] of the hidden layer output matrix

H.

113

Figure 7.5: An ELM Network

7.5.2 Online Sequential Extreme Learning Machine

ELM assumes that all the training data is available up front and in a single batch.

Liang et al.[102] described how ELM could be extended to perform training when

data arrives sequentially through the Online Sequential Extreme Learning Machine

(OS-ELM) algorithm. This allows for continued training when additional input data

is provided after the initialization of computation, allowing for an online approach

which has the potential to be of greater value to real-time systems. The OS-ELM

algorithm consists of two phases: 1) the initialization phase and 2) the sequential

learning phase.

114

7.5.2.1 Initialization Phase

In this phase, the initial hidden layer output matrix needs to be defined based on

the initial chunk of training data. Let us consider a small chunk D0 of the training

dataset D

D0 = {(Seqi, ti)}N0

i=1 (7.7)

where

D = {(Seqi, ti) |xi ε Rn, ti ε R
m, i = 1, . . . , N0} (7.8)

From here, the random input weights and bias, ai and bi respectively, are assigned

and the initial hidden layer output matrix H0 is calculated as seen in Eq. 7.9.

H0 =

g (a1 · Seq1 + b1) . . . g (aL · Seq1 + bL)

...
. . .

...

g (a1 · SeqN0 + b1) . . . g (aL · SeqN0 + bL)

N×L

(7.9)

The initial output weight β0 is computed as follows:

β0 = P 0H
T
0 T 0 (7.10)

115

where

P 0 =
(
HT

0H0

)−1
(7.11)

and

T 0 = [t1, . . . , tN0]
T (7.12)

7.5.2.2 Sequential Phase

With the previous phase calculations performed, OS-ELM provides the ability to

consider observations on training data beyond the initial set of X0. Eq. 7.13 describes

how the (k + 1)th chunk of new observations is presented, where k = 0 and Nk+1

denotes the number of observations in the (k + 1)th chunk.

Dk+1 = {(Seqi, ti)}
∑k+1

j=0 Nj

i=(
∑k

j=0 Nj)+1
(7.13)

The partial hidden layer output matrix is calculated, followed by a calculation of the

output weight βk+1

P k+1 = P k − P kH
T
k+1

(
I +Hk+1P kH

T
k+1

)−1
Hk+1P k (7.14)

116

βk+1 = βk + P k+1H
T
k+1

(
T k+1 −Hk+1β

k
)

(7.15)

Equations 7.14 and 7.15 show how the output weights are recursively updated based

on the results of the last iteration as well as the present data in the current iteration.

The value of k is increased by one and the Sequential Phase is repeated. This cycle

will continue until the maximum value of k is reached and the final output weights

determine the value of Sj in an online manner

7.6 Experimental Results

Here we present the results of our experimentation with machine learning models for

sequence classification. Our experiments were composed of three test groups, each

made up of three malware family classes as described in Table 7.1. These malware

families were chosen randomly from our malware dataset where the total number of

API function calls were similar. This allowed us to experiment with a robust number

of API calls while maintaining balanced datasets.

7.6.1 Question 1

In this section we address the first research question:

117

Table 7.1: Malware Test Groups

Test Group Label Malware Families

Test Group 1 0 Trojan:JS/Redirector.ARA!MTB
1 TrojanClicker:JS/Faceliker.C
2 Exploit:HTML/IframeRef

Test Group 2 0 TrojanClicker:JS/Faceliker.I
1 TrojanClicker:JS/Faceliker.C
2 PUA:Win32/Presenoker

Test Group 3 0 PUA:Win32/DownloadGuide
1 SoftwareBundler:Win32/Prepscram
2 PUA:Win32/Presenoker

• Can we predict Sj given Seqi as the input? This involves using all values in

Seqi to predict Si.

7.6.1.1 ELM Analysis

Our ELM implementation involved the use of 1000 hidden units with a 60/40 split

between training and test sets. This resulted in overall accuracies of 59% for Test

Group 1, 62% for Test Group 2, and 91% for Test Group 3. Precision, recall, and

F1 scores for these groups are presented in Tables 7.2, 7.3, and 7.4, respectively. In

addition to accuracy, we found it relevant to track the amount of time taken for each

ELM model to execute and make predictions. ELM Test 1 completed in 1 second,

ELM Test 2 completed in 2 seconds, while ELM Test 3 completed in 3 seconds, as

reflected in Figure 7.7.

118

Table 7.2: ELM Statistics for Test Group 1

Precision Recall F1-score Support

0 0.50 0.37 0.43 12287
1 0.70 0.97 0.81 12439
2 0.49 0.43 0.46 12112

Accuracy 0.59 36838
Macro Avg. 0.56 0.59 0.57 36838

Weighted Avg. 0.57 0.59 0.57 36838

Table 7.3: ELM Statistics for Test Group 2

Precision Recall F1-score Support

0 0.49 0.79 0.61 12150
1 0.48 0.20 0.29 12274
2 0.89 0.88 0.88 11944

Accuracy 0.62 36368
Macro Avg. 0.62 0.62 0.59 36368

Weighted Avg. 0.62 0.62 0.59 36368

Table 7.4: ELM Statistics for Test Group 3

Precision Recall F1-score Support

0 0.91 0.86 0.89 13902
1 0.88 0.96 0.92 14104
2 0.94 0.90 0.92 13918

Accuracy 0.91 41924
Macro Avg. 0.91 0.91 0.91 41924

Weighted Avg. 0.91 0.91 0.91 41924

7.6.1.2 OS-ELM Analysis

Our OS-ELM implementation involved a 60/40 split between training and test sets

and performed similarly to ELM in terms of overall accuracy and execution time.

However, we observed that the accuracy of the OS-ELM models varied in relation to

the initial training size. Figure 7.6 describes the different accuracies resulting from

different initial training sizes for Test Groups 1-3.

119

We observe that for our datasets, lower initial training sizes (less than approximately

50,000 - 60,000 training samples) result in accuracies which fluctuate significantly

and are much less than the accuracy values expressed through ELM. However, larger

initial training sizes result in the same accuracies as the ELM models, though the

exact value of the initial training sizes necessary to reach this limit varies. Test

Group 1 achieved an overall accuracy of 33% with an initial training size of 55,000

samples, yet when we add just 1,000 more samples to the initial training size we

observe an accuracy of 59%. Similarly, Test Group 2 achieved a 34% accuracy with

an initial training size of 54,000 samples, while an increase to 55,000 results in an

accuracy of 62%. Finally, Test Group 3 with an initial training size of 62,000 samples

resulted in an accuracy of 45% and then an accuracy of 91% with 63,000 samples in

the initial training size.

We also experimented with sequential batch sizes of 64, 250, 500, and 1,000 samples.

We observed that smaller batch sizes resulted in higher accuracies prior to hitting

the accuracy limits described above, but there was no effect of different batch sizes

afterward.

120

Figure 7.6: OS-ELM Accuracy by Initial Training Size for Test Groups 1 - 3

Figure 7.7: Learning Time for SVM, MLP, OS-ELM, and ELM

121

Figure 7.8: Learning Time for Test Groups using LSTM

7.6.1.3 LSTM

In our LSTM methodology, we implemented a five-layer sequential model including

embedding, dropout, LSTM, dropout, and dense layers. The LSTM layer consisted

of 100 neurons and dropout was set to 20%. Our model was compiled using binary

cross-entropy for the loss function and was optimized using the Adam algorithm.

These networks were trained with a 60/40 split between training and test sets.

We found that on average, LSTM performed with a lower overall accuracy as ELM

and OS-ELM and with much more time taken to train and test the models. The

overall accuracy for Test Group 1 was 63% with a running time of 3 days, 16 hours,

39 minutes. The accuracy for Test Group 2 was 60% with a running time of 10 days,

10 hours, 25 minutes. Finally, the accuracy for Test Group 3 was 80% with a running

time of 13 days, 5 minutes, as reflected in Figure 7.8. In contrast, ELM learning for

these test groups completed within 3 seconds.

122

7.6.1.4 MLP and SVM

In addition to ELM and LSTM, we considered the use of a multi-layer perceptron

(MLP) model as well as Support Vector Machines (SVM) for malware family pre-

dictions. These models were trained with a 60/40 split between training and test

sets.

MLP Test 1 completed in 13 minutes, 52 seconds. MLP Test 2 completed in 15

minutes, 54 seconds. MLP Test 3 completed in 19 minutes.

Table 7.5: MLP Statistics for Test Group 1

Precision Recall F1-score Support

0 0.51 0.44 0.47 12287
1 0.79 0.99 0.88 12439
2 0.50 0.44 0.47 12112

Accuracy 0.63 36838
Macro Avg. 0.60 0.62 0.61 36838

Weighted Avg. 0.60 0.63 0.61 36838

Table 7.6: MLP Statistics for Test Group 2

Precision Recall F1-score Support

0 0.50 0.95 0.66 12150
1 0.60 0.08 0.15 12274
2 0.94 0.93 0.93 11944

Accuracy 0.65 36368
Macro Avg. 0.68 0.65 0.58 36368

Weighted Avg. 0.68 0.65 0.57 36368

SVM Test 1 completed in 44 minutes, 25 seconds. SVM Test 2 completed in 1 hour,

18 minutes, 47 seconds. SVM Test 3 completed in 30 minutes, 21 seconds.

The overall accuracies for the MLP approach were slightly higher than with ELM

and OS-ELM, while the SVM approach performed poorly on average in comparison

123

Table 7.7: MLP Statistics for Test Group 3

Precision Recall F1-score Support

0 0.95 0.91 0.93 13902
1 0.92 0.98 0.95 14104
2 0.97 0.94 0.95 13918

Accuracy 0.94 41924
Macro Avg. 0.94 0.94 0.94 41924

Weighted Avg. 0.94 0.94 0.94 41924

as shown in Tables 7.5 - 7.10. Despite the best accuracy achieved by the MLP, we can

see that it was tantamount to the performance of the ELM. In addition, the accuracies

using ELM were achieved with a mean learning time of 2 seconds, compared to that

of 16 minutes for the MLP. This makes ELMs an attractive option for performing

real-time malware analysis on computing environments.

Table 7.8: SVM Statistics for Test Group 1

Precision Recall F1-score Support

0 0.36 0.36 0.36 12287
1 0.55 0.25 0.34 12439
2 0.35 0.55 0.43 12112

Accuracy 0.38 36838
Macro Avg. 0.42 0.39 0.38 36838

Weighted Avg. 0.42 0.38 0.38 36838

Table 7.9: SVM Statistics for Test Group 2

Precision Recall F1-score Support

0 0.42 0.92 0.58 12150
1 0.44 0.07 0.12 12274
2 0.87 0.58 0.69 11944

Accuracy 0.52 36368
Macro Avg. 0.58 0.52 0.46 36368

Weighted Avg. 0.57 0.52 0.46 36368

124

Table 7.10: SVM Statistics for Test Group 3

Precision Recall F1-score Support

0 0.92 0.88 0.90 13902
1 0.90 0.97 0.93 14104
2 0.95 0.92 0.93 13918

Accuracy 0.92 41924
Macro Avg. 0.92 0.92 0.92 41924

Weighted Avg. 0.92 0.92 0.92 41924

7.6.2 Question 2

In this section we address the second research question:

• Can we predict Sj given a subset of Seqi? This involves using only the first k api

call sequences in Seqi, where k is a subset of Seqi. An Additional sub-problem

involves determining the minimum value of k.

Our experiments show that a significantly reduced subset of sequential API calls made

by a given malware can be used to fingerprint that malware as a member of a certain

family. Table 7.11 describes the variation of accuracy when reducing the number of

API calls is reduced for each label (malware family) in the test group. For example,

Test Group 3, which has an accuracy of 91% when using its full dataset, maintains

an accuracy of 91% when reduced to as little as 6.25% of its total dataset before

reducing in accuracy to 39% when only 3.125% of the dataset is used.

We find similar accuracies for Test Group 2 and 3, which both maintain accuracies

like that resulting from the full dataset when reduced to just 12.5% of their datasets.

It should be noted that the reduction in datasets is relative to the beginning of the

125

malware sequences, inferring that malware families can be identified from the first

few API call sequences.

Table 7.11: Changes in ELM Accuracy With Reduced Datasets

Test Group % of API Sequences Accuracy

Test Group 1 100% (30698) 59%
50% (15349) 60%
25% (7674) 59%

12.5% (3837) 51%
6.25% (1918) 34%
3.125% (959) 34%

Test Group 2 100% (30306) 62%
50% (15153) 62%
25% (7576) 61%

12.5% (3788) 54%
6.25% (1894) 36%
3.125% (947) 34%

Test Group 3 100% (34936) 91%
50% (17468) 90%
25% (8734) 91%

12.5% (4367) 91%
6.25% (2183) 91%
3.125% (1091) 39%

This experiment has the additional outcome of showing that our malware family

fingerprinting is resistant to obfuscation of malware behavior. As a relatively small

subset of API call sequences is all that is needed to classify malware, attempts to

resist fingerprinting can be defeated by making several classification attempts against

a single malware.

For example, Table 7.11 shows that the minimum value of k which produced 91%

accuracy for Test Group 3 was 2,183 sequences, or just 6.25% of the total number of

126

API sequences. Assume that a new malware belonging to one of the same families

from this test group has been programmed to execute API sequences in a different

order. Then it would be possible to randomly select k API sequences from the total

set of sequences observed from the new malware’s behavior to produce an accurate

classification.

7.7 Discussion and Recommendations

Previous research has shown that computationally expensive machine learning al-

gorithms such as LSTM can be used for discerning malware from benign software.

However, our research shows that ELM can also be used to accurately predict malware

family classification through analysis of Windows API call sequences with the benefit

of significantly reduced prediction time. Additionally, a relatively small number of

API calls in a sequence can be used for this detection.

This methodology can be extended to serve as a real-time malware detection system,

where API call sequences may be monitored on a computer and compared against

known malware sequences. The usage of ELM for malware sequence classification

provides this ability in as little as a second in our experimentation, which is far su-

perior in training speed to LSTM, MLP, or SVM. The accuracy of ELM is slightly

reduced in comparison to MLP. However, we argue that the benefit of ELM’s much

faster learning time is significant enough to allow real-time detection. Additionally,

127

the online nature of OS-ELM allows for the speed of ELM while providing the oppor-

tunity for greater accuracy on unknown malware due to the real-time update of the

machine learning model.

128

Chapter 8

Bespoke Automated Malware Risk

Classification

In the previous chapters we described how machine learning can aid malware analysis.

In this chapter, we show how these methodologies can be combined into a framework

for automated malware threat determination. Several existing scoring systems are

presented and are shown to lack the ability to take into account the differences in se-

curity posture each organization has and how that relates to malware threat analysis.

8.1 Introduction

Organizations which have a mature cybersecurity program are well-versed in the

language of risk. Regulatory and standards compliance is a chief concern amongst

129

enterprises which handle protected health information, credit card transaction data,

or student information. The challenges of protecting the confidentiality, integrity, and

availability of such information for authorized use requires regular and thorough as-

sessment of organizational policies and procedures. This promotes a healthy security

posture and therefore greater confidence in the efficacy of a cybersecurity program.

However, the process of establishing risk ratings and generating appropriate response

procedures is not necessarily straight-forward. The diversity of industry results in

organizations which do not face the same risks, or even value the same risks equally.

When we define a threat as an agent or event which has the potential to do harm and

define a risk as the potential for loss or damage should the threat occur, we can visual-

ize how not all threats and risks are equal for all organizations. A banking institution

will be concerned with preventing a breach of customer account information, while a

library may not face the same risk. A university with a medical school is obligated

to protect student records, patient health information, and payment transactions for

tuition and fees. A small business in the dining industry will be concerned with se-

cure payments but may not otherwise transmit or store any customer information. In

each of these cases the same threats may exist, but each organization’s response to

these threats will be different based upon the potential risk impact. Determining risk

impact is not trivial because it requires a deep understanding not only of the industry

within which an organization operates, but also the various internal environmental

factors involved in such an organization. Because of this, methods of ascertaining

risk are often dependent upon the value of a related threat or vulnerability.

130

There are several frameworks currently available which can be used to identify and

qualify organizational risk, such as CMMI[104], NIST 800-53[105], and ISO 27001[106].

These frameworks identify security and privacy controls to minimize information secu-

rity risks. Risk rating systems such as OCTAVE Allegro[61], Common Vulnerability

Scoring System (CVSS)[2], and Infocon[107] allow for detailed organizational risk

assessments for software vulnerabilities and internet service disruptions. However,

these frameworks fail to provide a robust methodology for assessing and responding

to cybersecurity risks directly associated with malware.

Malware, i.e., malicious software, presents a threat to computing environments in the

office, at home, and in travel. Malware developers create software to exploit the flaws

in any platform and application which suffers a vulnerability in its defenses, be it

through unpatched known attack vectors or zero-day attacks for which there is no

current solution. Malware which successfully exploits such a vulnerability produces

an information security incident. Security incidents may involve the loss of function-

ality of a system, compromise of user account credentials, unauthorized access into a

system, or any number of conditions which compromise the confidentiality, integrity,

or availability of a system or application.

While all successful malware compromises require a measure of response in order

to restore faith in the proper working order of a system, not all malware attacks

are created equal. For large organizations, the number of live information security

incidents can be staggering. Prioritization of incidents based upon levels of severity

131

is necessary for the quick elimination of the most severe threats and the continued

monitoring and assessment of threats not yet handled. This is especially true for

organizations with a relatively small information security incident response team. In

situations where high volumes of security incidents may be present, an automated

means of prioritization is essential to help incident analysts to quickly triage and

respond in an appropriate manner.

Cybersecurity vendors such as WatchGuard provide automated tools which assess the

criticality of malware[108], however their rubric by which a severity score is measured

is designed to match the needs of their broad range of customers. This results in

a “one size fits all” approach to malware severity scoring which does not accurately

reflect the criticality of a certain malware infection with regard to the mitigating

security strategies of a given organization. Therefore, an organization which has

fewer security strategies may be devastated by a malware outbreak which would be

simple for another organization to remediate. The current methods for evaluating

malware severity are therefore misleading and may result in greater risk as a result of

misguided confidence in a low severity score provided by these means. In this chapter

we present a bespoke automated methodology for evaluating malware severity and

show how such a strategy is more accurate and beneficial to an organization than

generalized automated solutions.

132

8.2 Analysis of Existing Risk Assessment Method-

ologies

8.2.1 CVSS

The Common Vulnerability Scoring System (CVSS) is an open framework for commu-

nicating the characteristics and severity of software vulnerabilities[2]. It was created

by the Forum of Incident Response and Security Teams (FIRST), in coordination

with the National Institute of Standards and Technology (NIST). The CVSS scoring

system was adopted as part of the Payment Card Industry Data Security Standard

(PCI DSS)[2] and as a result has been used in assessments of software security.

The CVSS is designed to measure the severity of a vulnerability, not risk. This means

that CVSS scores refer to the potential criticality of a software vulnerability in any

operating environment and does not take into account any mitigating factors which

might impact the risk associated with the vulnerability, such as defense-in-depth

strategies, data backups, or security technologies which limit access to a vulnerable

system, to name a few.

NIST provides an online calculator for CVSS severity scores[109] which allows the

user to toggle various score impact factors. Figure 8.1 illustrates the result of one

such calculation, where choices were made so that the various metrics might reflect

133

a ransomware infection. The metrics involved include exploitability and impact fac-

tors, ranging from the complexity required from an attack in order to successfully

exploit a vulnerability to the affect of the attack on the confidentiality, integrity, and

availability of data. As a result, we received an overall score of 7.8 out of 10.

Figure 8.1: Example CVSS Severity Scores

The difficulty of applying CVSS to malware lies in the lack of consideration for mit-

igating security controls. As CVSS is designed to evaluate software vulnerabilities,

there is a limited range of possible values for the considered metrics. From a software

security perspective, severity can have a true or false value for metrics such as impact

on data integrity in order to evaluate the scope of potential threat impact. However,

malware and software vulnerabilities are separate in that a vulnerability is an aspect

of the condition of software on a system while malware is an agent which potentially

exploits a vulnerability. Thus, as in the case of our score of 7.8 for ransomware, this

severity value addresses the vulnerabilities associated with a ransomware attack yet

does not reflect how the presence of antivirus software, data backups, and disaster

recovery methods might impact the true severity of a ransomware attack. This results

134

in a severity value which only considers the vulnerability and not the threat which

may exploit it.

8.2.2 Infocon

Infocon is a risk rating scale created by the SANS Internet Storm Center (ISC) as

means of reflecting changes in malicious internet traffic and the possibility of disrupted

connectivity[107]. The focus of this risk assessment methodology is on the impact

which certain vulnerabilities and malware, especially viruses and worms, actively have

on the Internet infrastructure. Of particular interest to the current research is the

risk rating rubric employed by Infocon, which is as follows:

• +2 Slammer-like impact on Internet wide operations

• +2 Remote arbitrary code execution

• +2 No vendor patch or effective mitigation is available

• +2 Active exploitation of vulnerability

• +1 Affects current version of up to date software

• +1 Affects widely deployed software

• +1 Relatively easy to exploit

• +1 Proof of concept code is available

135

• +1 Affects current version of up to date software

• +1 Affects a Microsoft OS or Adobe application

• +1 Wormable

• -1 Affects obscure or obsolete OS or application

• -1 Requires user intervention to run

• -1 IDS/IPS rules or other detective controls are available

• -1 Major anti-virus vendors can detect and clean malware

• -1 Mainstream media and everyone else has already covered issue

• -1 Vendor has released an advisory/ bulletin/ announcement (and decent workaround)

The resulting score applied to a malware threat by this rubric is then compared to a

certain status, as follows:

• Infocon Green (0-5)

– Everything is normal. No significant new threat known.

• Infocon Yellow (6-9)

– We are currently tracking a significant new threat. The impact is either

unknown or expected to be minor to the infrastructure. However, local

impact could be significant. Users are advised to take immediate specific

action to contain the impact.

136

• Infocon Orange (10+)

– A major disruption in connectivity is imminent or in progress.

• Infocon Red (Conditional)

– Loss of connectivity across a large part of the internet.

An example usage of this rubric and resulting status can be observed from the ISC’s

analysis of the Wannacry/WannaCrypt ransomware outbreak in May of 2017[110].

While the exact Infocon rubric calculation was not explicitly presented, the result-

ing status was elevated from Green to Yellow. This means that the risk score was

evaluated to be between 6 and 9. This score is likely related to the remote arbitrary

code execution (+2), active exploitation (+2), and lack of a vendor patch (+2) result-

ing from Wannacry’s exploitation of the ETERNALBLUE Windows SMB zero-day

vulnerability[111].

The Infocon rubric considers malware threats, rather than vulnerabilities as seen in

CVSS. This makes this system more applicable for considering the severity of a wide

range of malware threats. However, the Infocon rubric only considers the actions of

malware and not any mitigating security controls present within an organization tar-

geted by the malware threat. This can be illustrated by again considering the threat

of Wannacry in an organization which makes exclusive use of the Linux operating

system for workstations and servers. Since Wannacry exploited a Windows SMB vul-

nerability, this condition for the successful ransomware attack would be unavailable

137

and this malware would present little to no threat to such an organization. The lack

of an ability to reflect these organizational factors into the Infocon risk rating limits

the efficacy of this methodology beyond a generic severity score.

8.2.3 WatchGuard TDR Threat Score

The Watchguard Threat Detection and Response (TDR) is a service which classifies

cybersecurity threats observed by its network security products such as the Fire-

box and APT Blocker sandbox[108]. These threats may be related to malware or

the exploitation of security vulnerabilities, and are evaluated according to heuristic

analysis, comparison of the current threats to known malicious activity according to

shared threat information feeds, and sandbox analysis of malware activity for known

malicious behavior on an infected system. The resulting threat information is then

assigned a criticality score according to the following rubric:

• 10 (Critical)

– Scored based on host indicator threat feed, Malware Verification Service

confirmation, or both, and critical network alerts. This score can also

indicate that Host Ransomware Prevention was triggered and the Host

Sensor action to prevent it failed.

• 9 (Critical)

– Scored based on the result of APT Blocker sandbox analysis.

138

• 8 (Severe)

– Scored based on host Indicator threat feed, Malware Verification Service

confirmation, or heuristics identification of multiple behaviors for the same

object. An indicator can also be assigned this score as a result of APT

Blocker sandbox analysis.

• 7 (High)

– Scored based on network activity, heuristics identification of multiple be-

haviors for the same object, or third-party network activity. An indicator

can also be assigned this score as a result of APT Blocker sandbox analysis.

• 6 (High)

– Scored based on network activity or heuristics identification of multiple

behaviors for the same object. A network indicator can also be assigned

this score when APT Blocker on a Firebox blocks a known threat.

• 5 (Investigation)

– Scored based on heuristics identification of multiple potential malicious

process behaviors. A network indicator can also be assigned this score

when APT Blocker on a Firebox blocks a known threat.

• 4 (Medium)

139

– Medium priority ranked indicators, including third-party vendor scores,

primarily network activity indicators. A network indicator can also be

assigned this score when APT Blocker on a Firebox blocks a known threat.

• 3 (Low)

– Low priority ranked indicators, including WatchGuard and third-party

vendor scores, primarily network indicators.

• 2 (Suspect)

– Low fidelity file heuristics without other correlation. Indicators with this

score do not appear on the Indicators page.

• 1 (Remediated)

– Identified host indicator has been remediated on the host.

• 0 (Known Good)

– Host does not have any detected indicators or the object is on the allowlist.

An example TDR threat score of 10 might then result from a detected Wannacry

ransomware infection, as a ransomware event in this rubric is assigned the highest

criticality. However, this presumes that the TDR system is able to successfully detect

ransomware and/or the malware in question has a known antivirus signature and/or

the identifiers of the malware (such as MD5 hash) are known and included in a mal-

ware threat feed. Without these positive identifiers of the ransomware, a score of 9 is

140

possible if the malware behavior is detected in WatchGuard’s APT Blocker sandbox.

Otherwise, a lower score may be assigned which may impede correct threat response

prioritization. This places a high burden on Watchguard’s sandbox to correctly iden-

tify the malware threat.

The use of a malware sandbox, threat intelligence feeds, and heuristics presents a

more sophisticated approach to automated malware analysis when compared to a

stand-alone scoring method as previously seen in CVSS and Infocon. However, pro-

cesses TDR uses for these evaluations are largely unknown and there is no means for

adjusting threat priorities in relation to an organization’s security posture. Given the

assumption that many organizations make use of the Windows operating system, a

threat such as Wannacry which exploits a Windows SMB vulnerability would again

present as a critical risk for any organization. This fails to capture the true risk con-

ditions for an organization which makes exclusive use of the Linux operating system

or has mitigating security controls such as daily data backups to a remote site which

could be recovered in the event of a ransomware incident.

8.3 WOPR: Automated Bespoke Malware Threat

Modeling

In this section we describe WOPR, our approach to bespoke malware threat eval-

uation which makes use of the tools and techniques described in previous chapters

141

for malware threat classification. Figure 8.2 describes the flow of our threat mod-

elling approach, which makes use of the following steps to automatically investigate

malware threats and provide a recommended response:

1. The suspected malware executable is submitted to WOPR for automated anal-

ysis.

2. The executable is analyzed in an automated sandbox to extract operating sys-

tem API function calls.

3. Machine learning is used to classify the submitted executable as malicious or

benign according to API call information. If the executable is malicious then

malware family classification is additionally performed using machine learning.

4. With the malware classified as a certain threat, automated analysis of the risk

associated with the threat for a particular organization is performed.

5. Finally, an automated malware incident response recommendation is provided.

142

Figure 8.2: WOPR flow diagram describing threat category determination.

Steps 1 and 2 described above correspond to the use of the Cuckoo Sandbox for auto-

mated API call reporting as shown in Chapter 3. The machine learning classification

tasks described in step 3 utilizes the methods described in Chapters 4 - 7 which make

use of multiple machine learning classifiers and API frequency analysis to inform the

resulting automated analysis referenced in step 4 above. This final analysis step cor-

relates the output of several machine learning classifiers and compares these results

to a malware threat classification rubric which can be modified to meet the security

posture of a particular organization.

In the following sections we will describe how this final analysis step is performed.

143

8.3.1 Bespoke Threat Categorization

Below we describe the processes resulting from the use of our framework. This first

includes the ingestion of threat-related information delivered as a result of machine

learning classification of malware which describes behaviors, factors, or conditions

which an organization chooses to base threat-related decisions upon. Next, a threat

value is assigned to the malicious software which will align with the risk prioritization

of a particular organization.

As this WOPR framework is a system which ultimately would require an organization

utilizing it to have a cybersecurity professional actively engaged in its implementation,

we will refer to the “end user” of WOPR as such an individual. We assume that this

end user has full knowledge of an individual organization’s information security risks

as well as all mitigating security factors so as to make informed decisions regarding

the impact of malware threats with respect to an individual organization.

In Figure 8.3 we present the concept of threat categorization which allows for cus-

tomization by the end user. Here concern is made regarding the attack patterns

associated with a particular malware threat identified as a result of malware family

classification. An example of an attack pattern would be the encryption of files lo-

cated on an infected system. Malware which has been identified as ransomware would

likely perform this activity on a victim system.

144

Figure 8.3: Flow diagram describing threat category determination.

In another example of malware analysis, an end user may identify “persistence” as an

attack pattern they are concerned with, where persistence refers to a set of actions

which permit the malware to remain on the system after a reboot or other system

change. Many organizations may treat the threat of malware persistence as a critical

145

issue. However, an organization which serves volatile virtual workstations from a

cloud server to its users with no expectation of a static environment to store data

(such as a public internet cafe) would likely not hold this threat in the same regard.

In previous chapters we have described how malware classification according to a mal-

ware family may describe what malicious behaviors to expect, informing this threat

categorization process accordingly. Therefore a library of attack patterns can be

compiled according to known malware threats as well as previously unknown mal-

ware identified through the methodology described in previous chapters. By giving

the end user the ability to dynamically define what attack patterns they are concerned

with, the output of WOPR will have greater value to the end user than as seen with

existing solutions.

8.3.2 Assignment of Threat Value

With defined threat categories assigned to the analyzed malware, our methodology

then enters the process which assigns a threat value for an attack category. Figure 8.4

illustrates this process, beginning with an analysis of the assigned threat categories

and then comparing a user-defined threat value for each category. For example, an

organization which deploys volatile virtual workstations may consider the threat of

persistence to be of a “medium” severity because they largely control the risk due to

the volatile nature of the workstations, meaning that the changes to the system are

not normally saved. However, other organizations that issue physical workstations

146

to their end users may consider persistence to be a “critical” issue due to a lack of

security controls on these systems.

Figure 8.4: Flow diagram describing threat value assignment.

The end user’s ability to assign threat values to attack categories in WOPR’s design

borrows from malware threat grading scales such as previously seen in the Infocon

rubric. However unlike Infocon, the exact value used to modify a criticality score is

configurable by the end user. Therefore, as in the case of the Wannacry ransomware,

if the end user for an organization making use of Windows workstations and servers

wishes to assign a value of +2 to indicate a critical severity for the detection of

file encryption behavior and a +2 to indicate a critical severity for the detection

of Windows SMB vulnerability exploitation, then the combined value of 4 for the

147

malware threat may be appropriate for the perceived risk this malware presents to

this organization.

Conversely, an end user for an organization with only Linux workstations and servers

may feel that a Wannacry threat is of minimal risk. Therefore they may assign a

value of +2 for the detection of file encryption behavior to indicate a critical severity,

yet perhaps a -1 for the detection of Windows SMB vulnerability exploitation since

Windows vulnerabilities are not a concern. This allows for bespoke threat values

which the end user decides aligns with their organization’s existing mitigating security

controls and operating environment.

8.4 Discussion and Recommendations

In this chapter we have identified flaws associated with preconfigured threat assess-

ment systems and methodologies, with particular emphasis on the applicability of

the resulting malware criticality score within the context of individual organizations.

We have presented a novel bespoke malware risk classification framework which uti-

lizes several beneficial aspects of existing methodologies, such as the use of a severity

score rubric and correlation of threat information from several sources, while allowing

the risk calculation to take into account mitigating security controls and operating

environment of the organization utilizing this framework.

148

Our bespoke methodology provides an organization with the ability to directly map

threats to risks and assign both categorical and impact values in alignment with

the unique challenges faced, rather than attempting to bend to a “one size fits all”

solution. This methodology combines a simple scoring rubric for malware threats

along with an intelligent machine learning approach which is completely transparent

to the end user. Implementation of this bespoke methodology will allow organizations

to more accurately model threat and risk as a result of the customization allowed

under this framework and allows for the identification of potentially unknown risks.

Furthermore, this bespoke methodology can be used across a range of industries and

its extensibility allows for both user-defined and existing threat classification models.

149

Chapter 9

Conclusion and Future Research

Direction

Malware threats constantly evolve, polymorphically changing code execution sequences

and altering behaviors in effort to frustrate detection mechanisms. The resulting arms

race between malware authors and cybersecurity professionals has encouraged focus

on assessing vulnerabilities in systems and software as a means of disrupting the abil-

ity for malware to exploit these vulnerabilities. Frameworks and best practices have

been developed to aid in cybersecurity defense, but these efforts routinely ignore mal-

ware threats due to their ever-changing nature. This has resulted in fewer tools and

techniques to evaluate the severity of a malware threat than the consideration of the

impact of vulnerabilities. Tools which do currently exist to assess malware threat are

generalized toward the majority of computing systems and environments and while

150

they are better than having nothing at all, their features are not as robust as found

in system and software vulnerability assessment tools.

In this dissertation, we assert that bespoke automated malware threat analysis and

risk response is more accurate and beneficial to an organization than generalized au-

tomated solutions. In support of this assertion, we have developed machine learning

methodologies for classifying software as malicious or benign by virtue of operating

system API function calls made by software when executed within a computer sys-

tem. Additionally, our novel methodologies of malware family classification through

API frequency analysis as well as analysis of API sequences produces several indica-

tors which an automated system can correlate, thereby increasing confidence in the

malware classification performed. An automated malware threat analysis without a

bespoke threat evaluation component aims to support the needs of all organizations,

and in so doing fails to take into account the differences in security posture each

organization has.

However, a bespoke malware threat evaluation suffers from the very attribute which

makes it more valuable to an individual organization: subjectivity. A downside of the

approach we present lies in the lack of objectivity which would benefit a threat in-

formation exchange. If organization A values a ransomware threat as extremely high

due to the potential for lost data and organization B devalues the same ransomware

threat due to a robust data recovery program, neither of these organizations would

be able to agree on the risk impact of such a malware threat. Therefore any malware

151

threat information either organization could share with others would be similarly col-

ored by their faith in their existing security controls, or resulting fear of unmitigated

risks due to a lack of mitigating systems or actions.

While the methodologies presented in this dissertation have been focused on malware

threat analysis, similar problems exist in the cybersecurity field. One key problem

lies in the understanding of how malware threats are related. While this work shows

that malware can be classified into families based on API call behavior, further work

could explore the relationships between malware families by discovering concrete con-

nections between malware families and variants. In so doing, malware evolution could

be modelled and new malware could potentially be predicted from existing code.

Additionally, this dissertation was motivated by a desire to replicate and automate

the critical thinking a human cybersecurity analyst might exhibit when performing

malware incident response. Malware analysis is but one component of cybersecurity,

and the success of the methodologies presented in this work suggest that it could be

extended to such activities as software vulnerability assessment, user account behavior

anomaly detection, network anomaly detection, and others.

9.1 Peer-Reviewed Publications

Publications that resulted from this dissertation work

152

[1] Aaron Walker, Muhammad Faisal Amjad, and Shamik Sengupta. Cuckoo’s malware

threat scoring and classification: Friend or foe? In 2019 IEEE 9th Annual Computing

and Communication Workshop and Conference (CCWC), pages 0678–0684. IEEE, 2019.

[2] Aaron Walker, Tapadhir Das, Raj Mani Shukla, and Shamik Sengupta. Friend or foe:

Discerning benign vs malicious software and malware family. In 2021 IEEE Global

Communications Conference: Communication & Information Systems Security (Globe-

com2021 CISS), Madrid, Spain, December 2021.

[3] Aaron Walker and Shamik Sengupta. Insights into malware detection via behavioral

frequency analysis using machine learning. In MILCOM 2019-2019 IEEE Military Com-

munications Conference (MILCOM), pages 1–6. IEEE, 2019.

[4] Aaron Walker and Shamik Sengupta. Malware family fingerprinting through behavioral

analysis. In 2020 IEEE International Conference on Intelligence and Security Informat-

ics (ISI), pages 1–5. IEEE, 2020.

[5] Aaron Walker, Raj Mani Shukla, Tapadhir Das, and Shamik Sengupta. Ohana means

family: Malware family classification using extreme learning machines. In 2022 IEEE

19th Annual Consumer Communications & Networking Conference (CCNC) (CCNC

2022), Las Vegas, USA, January 2022.

153

Appendix A

Machine learning experimentation

results

The following section illustrates the extensive results of our experimentation in the

form of tables presenting Precision, Recall, and F1-score as a result of MLP networks

trained on both malicious and benign software as described in Chapter 6. Table A.1

describes the software used in our experiments. Confusion matrices accompany the

tables for each experiment.

A.0.1 Tables

154

Table A.1: Malware by Antivirus Signature Classification & Benign Software Set

ID Signature ID Benign Executable

M1 Virus:VBS/Ramnit.gen!A B1 7-Zip 32-bit
M2 Virus:VBS/Ramnit.gen!C B2 7-Zip 64-bit
M3 PUA:Win32/Puamson.A!ml B3 Avira Antivirus
M4 TrojanClicker:JS/Faceliker.M B4 CCleaner
M5 Trojan:JS/Iframeinject B5 Google Chrome
M6 Trojan:HTML/Redirector.CF B6 Epson scanner
M7 Trojan:Win32/Skeeyah.A!bit software
M8 Exploit:HTML/IframeRef.gen B7 GifCam animated
M9 Virus:VBS/Ramnit.B gif software
M10 TrojanClicker:JS/Faceliker.D B8 GIMP image
M11 TrojanClicker:JS/Faceliker.C software
M12 Trojan:JS/Redirector.QE B9 OpenVPN
M13 Trojan:JS/BlacoleRef B10 Ultrasurf proxy
M14 PUA:Win32/Presenoker B11 Microsoft Visual
M15 Trojan:HTML/Brocoiner.D!lib Studio Code
M16 TrojanClicker:JS/Faceliker!rfn
M17 Trojan:Win32/Vibem.O
M18 Trojan:HTML/Redirector.EP
M19 Exploit:HTML/IframeRef
M20 TrojanClicker:JS/Faceliker.A
M21 Exploit:HTML/IframeRef.DM
M22 Trojan:HTML/Phish
M23 PUA:Win32/Kuaiba

Table A.2: Statistics for Experiment 1.1

Precision Recall F1-score Support

B1 0.53 0.90 0.67 906
M12 0.59 0.22 0.32 880
M9 1.00 0.89 0.94 914

Accuracy 0.68 2700
Macro Avg. 0.71 0.67 0.64 2700

Weighted Avg. 0.71 0.68 0.65 2700

155

Table A.3: Confusion Matrix for Experiment 1.1

Predicted Class Actual Class

B1 M12 M9

B1 818 88 0
M12 684 196 0
M9 49 47 818

Table A.4: Statistics for Experiment 1.2

Precision Recall F1-score Support

M5 0.50 0.41 0.45 914
B2 1.00 0.89 0.94 880
M2 0.51 0.65 0.57 906

Accuracy 0.65 2700
Macro Avg. 0.67 0.65 0.65 2700

Weighted Avg. 0.66 0.65 0.65 2700

Table A.5: Confusion Matrix for Experiment 1.2

Predicted Class Actual Class

M5 B2 M2

M5 374 0 540
B2 64 783 33
M2 317 0 589

Table A.6: Statistics for Experiment 1.3

Precision Recall F1-score Support

M17 0.98 0.78 0.87 880
B3 0.83 0.86 0.84 914
M9 0.85 1.00 0.92 906

Accuracy 0.88 2700
Macro Avg. 0.89 0.88 0.88 2700

Weighted Avg. 0.89 0.88 0.88 2700

Table A.7: Confusion Matrix for Experiment 1.3

Predicted Class Actual Class

B1 B3 M9

M17 687 155 38
B3 16 782 116
M9 0 0 906

156

Table A.8: Statistics for Experiment 2.1

Precision Recall F1-score Support

B4 0.53 0.4 0.46 897
M10 1.00 0.99 1.00 914
M12 0.51 0.63 0.56 889

Accuracy 0.68 2700
Macro Avg. 0.68 0.68 0.67 2700

Weighted Avg. 0.68 0.68 0.68 2700

Table A.9: Confusion Matrix for Experiment 2.1

Predicted Class Actual Class

B4 M10 M12

B4 363 0 534
M10 1 906 7
M12 326 0 563

Table A.10: Statistics for Experiment 2.2

Precision Recall F1-score Support

B5 0.50 0.98 0.66 897
M11 1.00 0.91 0.95 914
M7 0.57 0.06 0.11 889

Accuracy 0.65 2700
Macro Avg. 0.69 0.65 0.57 2700

Weighted Avg. 0.69 0.65 0.58 2700

Table A.11: Confusion Matrix for Experiment 2.2

Predicted Class Actual Class

B5 M11 M7

B5 881 2 14
M11 54 835 25
M7 837 0 52

157

Table A.12: Statistics for Experiment 2.3

Precision Recall F1-score Support

B6 0.48 1.00 0.65 880
M22 0.96 0.43 0.60 896
M18 0.89 0.46 0.61 924

Accuracy 0.63 2700
Macro Avg. 0.78 0.63 0.62 2700

Weighted Avg. 0.78 0.63 0.62 2700

Table A.13: Confusion Matrix for Experiment 2.3

Predicted Class Actual Class

B6 M22 M18

B6 878 0 2
M22 458 389 49
M18 482 18 424

Table A.14: Statistics for Experiment 3.1

Precision Recall F1-score Support

B9 0.86 0.41 0.55 906
B7 0.62 0.97 0.75 880
B8 0.96 0.93 0.95 914

Accuracy 0.77 2700
Macro Avg. 0.81 0.77 0.75 2700

Weighted Avg. 0.82 0.77 0.75 2700

Table A.15: Confusion Matrix for Experiment 3.1

Predicted Class Actual Class

B9 B7 B8

B9 367 509 30
B7 20 856 4
B8 38 23 853

158

Table A.16: Statistics for Experiment 3.2

Precision Recall F1-score Support

B10 0.89 0.71 0.79 840
B4 0.67 0.70 0.68 891
B11 0.56 0.64 0.60 916

Accuracy 0.68 2700
Macro Avg. 0.71 0.68 0.69 2700

Weighted Avg. 0.70 0.68 0.69 2700

Table A.17: Confusion Matrix for Experiment 3.2

Predicted Class Actual Class

B10 B4 B11

B10 593 19 228
B4 36 623 232
B11 39 287 590

Table A.18: Statistics for Experiment 3.3

Precision Recall F1-score Support

B1 0.50 0.26 0.35 914
B2 0.47 0.98 0.63 906
B3 0.49 0.17 0.25 880

Accuracy 0.47 2700
Macro Avg. 0.48 0.47 0.41 2700

Weighted Avg. 0.48 0.47 0.41 2700

Table A.19: Confusion Matrix for Experiment 3.3

Predicted Class Actual Class

B1 B2 B3

B1 241 517 156
B2 14 890 2
B3 228 503 149

159

Table A.20: Statistics for Experiment 4.1

Precision Recall F1-score Support

B8 0.87 0.57 0.69 914
B7 0.70 0.89 0.79 880

M12 0.93 1.00 0.96 906
Accuracy 0.82 2700

Macro Avg. 0.83 0.82 0.81 2700
Weighted Avg. 0.83 0.82 0.81 2700

Table A.21: Confusion Matrix for Experiment 4.1

Predicted Class Actual Class

B8 B7 M12

B1 519 336 59
B7 80 786 14

M12 0 0 906

Table A.22: Statistics for Experiment 4.2

Precision Recall F1-score Support

B10 0.98 0.21 0.34 916
M9 0.61 0.49 0.54 839
B11 0.50 0.99 0.66 892

Accuracy 0.56 2647
Macro Avg. 0.69 0.56 0.52 2647

Weighted Avg. 0.70 0.56 0.51 2647

Table A.23: Confusion Matrix for Experiment 4.2

Predicted Class Actual Class

B10 M12 B11

B10 190 258 468
M9 3 410 426
B11 1 7 884

160

Table A.24: Statistics for Experiment 4.3

Precision Recall F1-score Support

B1 0.50 0.81 0.62 914
M12 0.82 1.00 0.90 906
M9 0.38 0.05 0.10 880

Accuracy 0.63 2700
Macro Avg. 0.57 0.62 0.54 2700

Weighted Avg. 0.57 0.63 0.54 2700

Table A.25: Confusion Matrix for Experiment 4.3

Predicted Class Actual Class

B1 M12 M9

B1 740 96 78
M12 0 906 0
M9 735 97 48

Table A.26: Statistics for Experiment 5.1

Precision Recall F1-score Support

M9 0.40 0.74 0.52 913
M12 0.35 0.20 0.25 882
M3 0.44 0.26 0.33 905

Accuracy 0.40 2700
Macro Avg. 0.40 0.40 0.37 2700

Weighted Avg. 0.40 0.40 0.37 2700

Table A.27: Confusion Matrix for Experiment 5.1

Predicted Class Actual Class

M9 M12 M3

M9 672 129 112
M12 521 175 186
M3 469 199 237

161

Table A.28: Statistics for Experiment 5.2

Precision Recall F1-score Support

M5 0.60 0.19 0.29 913
M23 1.00 0.99 1.00 882
M2 0.51 0.87 0.65 905

Accuracy 0.68 2700
Macro Avg. 0.71 0.69 0.64 2700

Weighted Avg. 0.70 0.68 0.64 2700

Table A.29: Confusion Matrix for Experiment 5.2

Predicted Class Actual Class

M5 M23 M2

M5 174 231 0
M23 437 444 1
M2 5 94 806

Table A.30: Statistics for Experiment 5.3

Precision Recall F1-score Support

M9 0.61 0.75 0.67 913
M14 0.58 0.50 0.54 882
M17 1.00 0.89 0.94 905

Accuracy 0.72 2700
Macro Avg. 0.73 0.71 0.72 2700

Weighted Avg. 0.73 0.72 0.72 2700

Table A.31: Confusion Matrix for Experiment 5.3

Predicted Class Actual Class

M9 M14 M17

M9 682 231 0
M14 437 444 1
M17 5 94 806

162

Table A.32: Statistics for Experiment 6.1

Precision Recall F1-score Support

M6 0.36 0.52 0.42 913
M10 0.37 0.40 0.39 882
M12 0.33 0.15 0.21 905

Accuracy 0.36 2700
Macro Avg. 0.35 0.36 0.34 2700

Weighted Avg. 0.35 0.36 0.34 2700

Table A.33: Confusion Matrix for Experiment 6.1

Predicted Class Actual Class

M6 M10 M12

M6 473 304 136
M10 386 353 143
M12 472 293 140

Table A.34: Statistics for Experiment 6.2

Precision Recall F1-score Support

M7 0.38 0.03 0.06 913
M11 0.41 0.50 0.45 882
M15 0.37 0.63 0.47 905

Accuracy 0.39 2700
Macro Avg. 0.39 0.39 0.33 2700

Weighted Avg. 0.39 0.39 0.32 2700

Table A.35: Confusion Matrix for Experiment 6.2

Predicted Class Actual Class

M7 M11 M15

M7 30 311 572
M11 37 441 404
M15 13 319 573

163

Table A.36: Statistics for Experiment 6.3

Precision Recall F1-score Support

M22 0.36 0.43 0.40 913
M13 0.33 0.61 0.43 882
M18 0.00 0.00 0.00 905

Accuracy 0.34 2700
Macro Avg. 0.23 0.35 0.27 2700

Weighted Avg. 0.23 0.34 0.27 2700

Table A.37: Confusion Matrix for Experiment 6.3

Predicted Class Actual Class

M22 M13 M18

M22 394 519 0
M13 348 534 0
M18 338 567 0

Table A.38: Statistics for Experiment 7.1

Precision Recall F1-score Support

M1 1.00 0.96 0.98 913
M9 0.55 0.74 0.63 882
M2 0.61 0.42 0.50 905

Accuracy 0.71 2700
Macro Avg. 0.72 0.71 0.70 2700

Weighted Avg. 0.72 0.71 0.70 2700

Table A.39: Confusion Matrix for Experiment 7.1

Predicted Class Actual Class

M1 M9 M2

M1 876 18 19
M9 0 655 227
M2 0 521 384

164

Table A.40: Statistics for Experiment 7.2

Precision Recall F1-score Support

M4 0.34 0.29 0.31 913
M16 0.32 0.42 0.36 882
M20 0.32 0.27 0.29 905

Accuracy 0.32 2700
Macro Avg. 0.33 0.32 0.32 2700

Weighted Avg. 0.33 0.32 0.32 2700

Table A.41: Confusion Matrix for Experiment 7.2

Predicted Class Actual Class

M4 M16 M20

M4 262 397 254
M16 247 371 264
M20 256 408 241

Table A.42: Statistics for Experiment 7.3

Precision Recall F1-score Support

M21 0.34 0.98 0.51 913
M8 0.35 0.03 0.06 882
M19 0.00 0.00 0.00 905

Accuracy 0.34 2700
Macro Avg. 0.23 0.34 0.19 2700

Weighted Avg. 0.23 0.34 0.19 2700

Table A.43: Confusion Matrix for Experiment 7.3

Predicted Class Actual Class

M21 M8 M19

M21 894 19 0
M8 853 29 0
M19 871 34 0

165

Bibliography

[1] Michele Maasberg, Myung Ko, and Nicole L Beebe. Exploring a systematic

approach to malware threat assessment. In 2016 49th Hawaii International

Conference on System Sciences (HICSS), pages 5517–5526. IEEE, 2016.

[2] Forum of Incident Response and Inc. Security Teams. Cvss v3.1 user guide,

Jun 2019. URL https://www.first.org/cvss/user-guide.

[3] Oskars Podzins and Andrejs Romanovs. Why siem is irreplaceable in a se-

cure it environment? In 2019 Open Conference of Electrical, Electronic and

Information Sciences (eStream), pages 1–5. IEEE, 2019.

[4] MGMUA Entertainment Company, May 1983.

[5] Charles Feng, Shuning Wu, and Ningwei Liu. A user-centric machine learn-

ing framework for cyber security operations center. In 2017 IEEE Interna-

tional Conference on Intelligence and Security Informatics (ISI), pages 173–175.

IEEE, 2017.

https://www.first.org/cvss/user-guide

Bibliography 166

[6] Ramandika Pranamulia, Yudistira Asnar, and Riza Satria Perdana. Profile hid-

den markov model for malware classification—usage of system call sequence for

malware classification. In 2017 International Conference on Data and Software

Engineering (ICoDSE), pages 1–5. IEEE, 2017.

[7] Domhnall Carlin, Alexandra Cowan, Philip O’kane, and Sakir Sezer. The effects

of traditional anti-virus labels on malware detection using dynamic runtime

opcodes. IEEE Access, 5:17742–17752, 2017.

[8] Michael Howard, Avi Pfeffer, Mukesh Dalai, and Michael Reposa. Predicting

signatures of future malware variants. In 2017 12th International Conference on

Malicious and Unwanted Software (MALWARE), pages 126–132. IEEE, 2017.

[9] Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor CM Leung.

A survey on security threats and defensive techniques of machine learning: A

data driven view. IEEE access, 6:12103–12117, 2018.

[10] Bowen Sun, Qi Li, Yanhui Guo, Qiaokun Wen, Xiaoxi Lin, and Wenhan Liu.

Malware family classification method based on static feature extraction. In

2017 3rd IEEE International Conference on Computer and Communications

(ICCC), pages 507–513. IEEE, 2017.

[11] Pengbin Feng, Jianfeng Ma, Cong Sun, Xinpeng Xu, and Yuwan Ma. A novel

dynamic android malware detection system with ensemble learning. IEEE Ac-

cess, 6:30996–31011, 2018.

Bibliography 167

[12] Pedro Casas, Gonzalo Maŕın, Germán Capdehourat, and Maciej Korczynski.

Mlsec-benchmarking shallow and deep machine learning models for network

security. In 2019 IEEE Security and Privacy Workshops (SPW), pages 230–

235. IEEE, 2019.

[13] Giovanni Apruzzese, Michele Colajanni, Luca Ferretti, Alessandro Guido, and

Mirco Marchetti. On the effectiveness of machine and deep learning for cyber

security. In 2018 10th International Conference on Cyber Conflict (CyCon),

pages 371–390. IEEE, 2018.

[14] Kaixing Huang, Chunjie Zhou, Yu-Chu Tian, Weixun Tu, and Yuan Peng.

Application of bayesian network to data-driven cyber-security risk assessment

in scada networks. In 2017 27th International Telecommunication Networks and

Applications Conference (ITNAC), pages 1–6. IEEE, 2017.

[15] Prashanth Krishnamurthy, Ramesh Karri, and Farshad Khorrami. Anomaly

detection in real-time multi-threaded processes using hardware performance

counters. IEEE Transactions on Information Forensics and Security, 15:666–

680, 2019.

[16] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane

Idoumghar, and Pierre-Alain Muller. Deep learning for time series classification:

a review. Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

Bibliography 168

[17] Xinjian Ma, Qi Biao, Wu Yang, and Jianguo Jiang. Using multi-features to

reduce false positive in malware classification. In 2016 IEEE Information Tech-

nology, Networking, Electronic and Automation Control Conference, pages 361–

365. IEEE, 2016.

[18] Aziz Alotaibi. Identifying malicious software using deep residual long-short

term memory. IEEE Access, 7:163128–163137, 2019.

[19] Tianshi Mu, Huajun Chen, Jinran Du, and Aidong Xu. An android malware

detection method using deep learning based on api calls. In 2019 IEEE 3rd Ad-

vanced Information Management, Communicates, Electronic and Automation

Control Conference (IMCEC), pages 2001–2004. IEEE, 2019.

[20] Di Xue, Jingmei Li, Tu Lv, Weifei Wu, and Jiaxiang Wang. Malware classifi-

cation using probability scoring and machine learning. IEEE Access, 7:91641–

91656, 2019.

[21] Blake E Strom, Joseph A Battaglia, Michael S Kemmerer, William Kupersanin,

Douglas P Miller, Craig Wampler, Sean M Whitley, and Ross D Wolf. Finding

cyber threats with att&ck-based analytics. The MITRE Corporation, Tech.

Rep., 2017.

[22] Automated malware analysis, Feb 2014. URL http://www.cuckoosandbox.

org/.

http://www.cuckoosandbox.org/
http://www.cuckoosandbox.org/

Bibliography 169

[23] Michael Smith, Joey Ingram, Christopher Lamb, Timothy Draelos, Justin Doak,

James Aimone, and Conrad James. Dynamic analysis of executables to detect

and characterize malware. In 2018 17th IEEE International Conference on

Machine Learning and Applications (ICMLA), pages 16–22. IEEE, 2018.

[24] Hajredin Daku, Pavol Zavarsky, and Yasir Malik. Behavioral-based classifi-

cation and identification of ransomware variants using machine learning. In

2018 17th IEEE International Conference On Trust, Security And Privacy

In Computing And Communications/12th IEEE International Conference On

Big Data Science And Engineering (TrustCom/BigDataSE), pages 1560–1564.

IEEE, 2018.

[25] Abdurrahman Pektaş and Tankut Acarman. Malware classification based on api

calls and behaviour analysis. IET Information Security, 12(2):107–117, 2018.

[26] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. Zero-day malware detection.

In 2016 Sixth international symposium on embedded computing and system de-

sign (ISED), pages 171–175. IEEE, 2016.

[27] SL Shiva Darshan, MA Ajay Kumara, and CD Jaidhar. Windows malware

detection based on cuckoo sandbox generated report using machine learning

algorithm. In 2016 11th International Conference on Industrial and Information

Systems (ICIIS), pages 534–539. IEEE, 2016.

Bibliography 170

[28] Qian Chen and Robert A Bridges. Automated behavioral analysis of malware:

A case study of wannacry ransomware. In 2017 16th IEEE International Con-

ference on Machine Learning and Applications (ICMLA), pages 454–460. IEEE,

2017.

[29] Aruna Jain and Akash Kumar Singh. Integrated malware analysis using ma-

chine learning. In 2017 2nd International Conference on Telecommunication

and Networks (TEL-NET), pages 1–8. IEEE, 2017.

[30] Jhu-Sin Luo and Dan Chia-Tien Lo. Binary malware image classification us-

ing machine learning with local binary pattern. In 2017 IEEE International

Conference on Big Data (Big Data), pages 4664–4667. IEEE, 2017.

[31] Steven Strandlund Hansen, Thor Mark Tampus Larsen, Matija Stevanovic, and

Jens Myrup Pedersen. An approach for detection and family classification of

malware based on behavioral analysis. In 2016 International conference on

computing, networking and communications (ICNC), pages 1–5. IEEE, 2016.

[32] Robert Luh, Sebastian Schrittwieser, and Stefan Marschalek. Llr-based senti-

ment analysis for kernel event sequences. In 2017 IEEE 31st International Con-

ference on Advanced Information Networking and Applications (AINA), pages

764–771. IEEE, 2017.

[33] Ehab Mufid Shafiq Alkhateeb. Dynamic malware detection using api similarity.

In 2017 IEEE International Conference on Computer and Information Tech-

nology (CIT), pages 297–301. IEEE, 2017.

Bibliography 171

[34] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

[35] Joakim Kargaard, Tom Drange, Ah-Lian Kor, Hissam Twafik, and Emlyn But-

terfield. Defending it systems against intelligent malware. In 2018 IEEE 9th

International Conference on Dependable Systems, Services and Technologies

(DESSERT), pages 411–417. IEEE, 2018.

[36] Jing Liu, Yuan Wang, and Yongjun Wang. Inferring phylogenetic networks

of malware families from api sequences. In 2016 International Conference

on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),

pages 14–17. IEEE, 2016.

[37] Trung Kien Tran and Hiroshi Sato. Nlp-based approaches for malware classifi-

cation from api sequences. In 2017 21st Asia Pacific Symposium on Intelligent

and Evolutionary Systems (IES), pages 101–105. IEEE, 2017.

[38] Mahmoud Kalash, Mrigank Rochan, Noman Mohammed, Neil DB Bruce, Yang

Wang, and Farkhund Iqbal. Malware classification with deep convolutional neu-

ral networks. In 2018 9th IFIP International Conference on New Technologies,

Mobility and Security (NTMS), pages 1–5. IEEE, 2018.

[39] Ömer Aslan Aslan and Refik Samet. A comprehensive review on malware de-

tection approaches. IEEE Access, 8:6249–6271, 2020.

Bibliography 172

[40] Gerard Salton and Christopher Buckley. Term-weighting approaches in au-

tomatic text retrieval. Information processing & management, 24(5):513–523,

1988.

[41] Aran Lakhotia and Paul Black. Mining malware secrets. In 2017 12th Interna-

tional Conference on Malicious and Unwanted Software (MALWARE), pages

11–18. IEEE, 2017.

[42] Chunlei Zhao, Wenbai Zheng, Liangyi Gong, Mengzhe Zhang, and Chundong

Wang. Quick and accurate android malware detection based on sensitive apis. In

2018 IEEE International Conference on Smart Internet of Things (SmartIoT),

pages 143–148. IEEE, 2018.

[43] Michael Brunner, Christian Sillaber, and Ruth Breu. Towards automation in

information security management systems. In 2017 IEEE International Con-

ference on Software Quality, Reliability and Security (QRS), pages 160–167.

IEEE, 2017.

[44] Michael Mylrea, Sri Nikhil Gupta Gourisetti, Curtis Larimer, and Christine

Noonan. Insider threat cybersecurity framework webtool & methodology: De-

fending against complex cyber-physical threats. In 2018 IEEE Security and

Privacy Workshops (SPW), pages 207–216. IEEE, 2018.

[45] Adam Sedgewick. Framework for improving critical infrastructure cybersecurity,

version 1.0. Technical report, 2014.

Bibliography 173

[46] Sri Nikhil Gupta Gourisetti, Michael Mylrea, Travis Ashley, Roger Kwon, Jerry

Castleberry, Quinn Wright-Mockler, Penny McKenzie, and Geoffrey Brege.

Demonstration of the cybersecurity framework through real-world cyber attack.

In 2019 Resilience Week (RWS), volume 1, pages 19–25. IEEE, 2019.

[47] M Ugur Aksu, M Hadi Dilek, E İslam Tatlı, Kemal Bicakci, H Ibrahim Dirik,

M Umut Demirezen, and Tayfun Aykır. A quantitative cvss-based cyber security

risk assessment methodology for it systems. In 2017 International Carnahan

Conference on Security Technology (ICCST), pages 1–8. IEEE, 2017.

[48] Taehoon Eom, Jin B Hong, Seongmo An, Jong Sou Park, and Dong Seong Kim.

A systematic approach to threat modeling and security analysis for software

defined networking. Ieee Access, 7:137432–137445, 2019.

[49] Ngoc T Le and Doan B Hoang. Security threat probability computation using

markov chain and common vulnerability scoring system. In 2018 28th Inter-

national Telecommunication Networks and Applications Conference (ITNAC),

pages 1–6. IEEE, 2018.

[50] Aakarsh Rao, Nadir Carreón, Roman Lysecky, and Jerzy Rozenblit. Probabilis-

tic threat detection for risk management in cyber-physical medical systems.

IEEE Software, 35(1):38–43, 2017.

[51] Daniel M Best, Jaspreet Bhatia, Elena S Peterson, and Travis D Breaux. Im-

proved cyber threat indicator sharing by scoring privacy risk. In 2017 IEEE

Bibliography 174

International Symposium on Technologies for Homeland Security (HST), pages

1–5. IEEE, 2017.

[52] Roland Meier, Cornelia Scherrer, David Gugelmann, Vincent Lenders, and Lau-

rent Vanbever. Feedrank: A tamper-resistant method for the ranking of cyber

threat intelligence feeds. In 2018 10th International Conference on Cyber Con-

flict (CyCon), pages 321–344. IEEE, 2018.

[53] Victor R Kebande, Ivans Kigwana, HS Venter, Nickson M Karie, and Ruth D

Wario. Cvss metric-based analysis, classification and assessment of computer

network threats and vulnerabilities. In 2018 International Conference on Ad-

vances in Big Data, Computing and Data Communication Systems (icABCD),

pages 1–10. IEEE, 2018.

[54] Holman Boĺıvar, Héctor Dario Jaimes Parada, Olga Roa, and John Velandia.

Multi-criteria decision making model for vulnerabilities assessment in cloud

computing regarding common vulnerability scoring system. In 2019 Congreso

Internacional de Innovación y Tendencias en Ingenieria (CONIITI), pages 1–6.

IEEE, 2019.

[55] Pontus Johnson, Robert Lagerström, Mathias Ekstedt, and Ulrik Franke. Can

the common vulnerability scoring system be trusted? a bayesian analysis. IEEE

Transactions on Dependable and Secure Computing, 15(6):1002–1015, 2016.

[56] Virus Total. Virustotal-free online virus, malware and url scanner. Online:

https://www. virustotal. com/en, 2012.

Bibliography 175

[57] Nur Syuhada Selamat, Fakariah Hani Mohd Ali, and Noor Ashitah Abu Oth-

man. Polymorphic malware detection. In 2016 6th International Conference on

IT Convergence and Security (ICITCS), pages 1–5. IEEE, 2016.

[58] Preetam Mukherjee and Chandan Mazumdar. “security concern” as a metric for

enterprise business processes. IEEE Systems Journal, 13(4):4015–4026, 2019.

[59] Denis Chernov and Alexey Sychugov. Development of a mathematical model

of threat to information security of automated process control systems. In 2019

International Russian Automation Conference (RusAutoCon), pages 1–5. IEEE,

2019.

[60] Regner Sabillon, Jordi Serra-Ruiz, Victor Cavaller, and Jeimy Cano. A com-

prehensive cybersecurity audit model to improve cybersecurity assurance: The

cybersecurity audit model (csam). In 2017 International Conference on In-

formation Systems and Computer Science (INCISCOS), pages 253–259. IEEE,

2017.

[61] Richard A Caralli, James F Stevens, Lisa R Young, and William R Wilson.

Introducing octave allegro: Improving the information security risk assessment

process. Technical report, Carnegie-Mellon Univ Pittsburgh PA Software En-

gineering Inst, 2007.

[62] Anisa Dewi Prajanti and Kalamullah Ramli. A proposed framework for rank-

ing critical information assets in information security risk assessment using the

Bibliography 176

octave allegro method with decision support system methods. In 2019 34th

International Technical Conference on Circuits/Systems, Computers and Com-

munications (ITC-CSCC), pages 1–4. IEEE, 2019.

[63] Khangwelo Muronga, Marlein Herselman, Adele Botha, and Adéle Da Veiga.

An analysis of assessment approaches and maturity scales used for evaluation of

information security and cybersecurity user awareness and training programs: A

scoping review. In 2019 Conference on Next Generation Computing Applications

(NextComp), pages 1–6. IEEE, 2019.

[64] Daniel Qi Chen and Huigang Liang. Wishful thinking and it threat avoidance:

An extension to the technology threat avoidance theory. IEEE Transactions on

Engineering Management, 66(4):552–567, 2019.

[65] Rui Azevedo, Ibéria Medeiros, and Alysson Bessani. Pure: Generating quality

threat intelligence by clustering and correlating osint. In 2019 18th IEEE Inter-

national Conference On Trust, Security And Privacy In Computing And Com-

munications/13th IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE), pages 483–490. IEEE, 2019.

[66] Ghaith Husari, Xi Niu, Bill Chu, and Ehab Al-Shaer. Using entropy and mutual

information to extract threat actions from cyber threat intelligence. In 2018

IEEE International Conference on Intelligence and Security Informatics (ISI),

pages 1–6. IEEE, 2018.

Bibliography 177

[67] Joshua Cannell and Joshua Cannell. Automating mal-

ware analysis with cuckoo sandbox, Apr 2016. URL

https://blog.malwarebytes.com/threat-analysis/2014/04/

automating-malware-analysis-with-cuckoo-sandbox/.

[68] Daniel Plohmann, Martin Clauss, Steffen Enders, and Elmar Padilla. Malpedia:

a collaborative effort to inventorize the malware landscape. Proceedings of the

Botconf, 2017.

[69] Cuckoosandbox. Really low scores for hardcore malware · issue #2019 · cuck-

oosandbox/cuckoo, . URL https://github.com/cuckoosandbox/cuckoo/

issues/2019#issuecomment-352305821.

[70] Cuckoosandbox. Magic numbers in signatures score · issue #732 · cuckoosand-

box/cuckoo, . URL https://github.com/cuckoosandbox/cuckoo/issues/

732#issuecomment-174168657.

[71] John Kennedy, Michael Satran, and Mark LeBlanc. Api index-windows appli-

cations. Windows Applications-Microsoft Docs, 2018.

[72] Windows-Sdk-Content. Getasynckeystate function (winuser.h) - win32 apps,

Dec 2018. URL https://docs.microsoft.com/en-us/windows/win32/api/

winuser/nf-winuser-getasynckeystate.

https://blog.malwarebytes.com/threat-analysis/2014/04/automating-malware-analysis-with-cuckoo-sandbox/
https://blog.malwarebytes.com/threat-analysis/2014/04/automating-malware-analysis-with-cuckoo-sandbox/
https://github.com/cuckoosandbox/cuckoo/issues/2019#issuecomment-352305821
https://github.com/cuckoosandbox/cuckoo/issues/2019#issuecomment-352305821
https://github.com/cuckoosandbox/cuckoo/issues/732#issuecomment-174168657
https://github.com/cuckoosandbox/cuckoo/issues/732#issuecomment-174168657
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getasynckeystate
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getasynckeystate

Bibliography 178

[73] Windows-Sdk-Content. Getcursorpos function (winuser.h) - win32 apps, Dec

2018. URL https://docs.microsoft.com/en-us/windows/desktop/api/

winuser/nf-winuser-getcursorpos.

[74] Will Koehrsen. How to visualize a decision tree from a random forest in python

using scikit-learn, Aug 2018. URL https://tinyurl.com/2txtkymv.

[75] Jason Brownlee. Your first machine learning project in python

step-by-step, Aug 2019. URL https://machinelearningmastery.com/

machine-learning-in-python-step-by-step/.

[76] Aaron Walker, Muhammad Faisal Amjad, and Shamik Sengupta. Cuckoo’s

malware threat scoring and classification: Friend or foe? In 2019 IEEE 9th

Annual Computing and Communication Workshop and Conference (CCWC),

pages 0678–0684. IEEE, 2019.

[77] Aaron Walker and Shamik Sengupta. Insights into malware detection via behav-

ioral frequency analysis using machine learning. In MILCOM 2019-2019 IEEE

Military Communications Conference (MILCOM), pages 1–6. IEEE, 2019.

[78] Microsoft. Virus:vbs/ramnit.gen!a, Aug 2011. URL https://www.microsoft.

com/en-us/wdsi/threats/malware-encyclopedia-description?Name=

Virus:VBS/Ramnit.gen.

https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-getcursorpos
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-getcursorpos
https://tinyurl.com/2txtkymv
https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus:VBS/Ramnit.gen
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus:VBS/Ramnit.gen
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus:VBS/Ramnit.gen

Bibliography 179

[79] Microsoft. Virus:vbs/ramnit.gen!c, Nov 2011. URL https://www.microsoft.

com/en-us/wdsi/threats/malware-encyclopedia-description?Name=

Virus:VBS/Ramnit.gen.

[80] Microsoft. Trojandownloader:win32/vigorf.a, Jun 2016.

URL https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=TrojanDownloader:Win32/

Vigorf.A.

[81] Maureen Reyes. Worm.js.bondat.ac - threat encyclopedia, Dec 2018. URL

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/

worm.js.bondat.ac.

[82] ORACLE. Oracle vm virtualbox, 2019. URL https://www.virtualbox.org/.

[83] J-Michael Roberts. Virusshare.com. URL https://virusshare.com.

[84] Igor Pavlov. 7-zip, 2019. URL https://www.7-zip.org/.

[85] Avira. Avira antivirus, 2019. URL https://www.avira.com/.

[86] Piriform. Ccleaner official website, Oct 2019. URL https://www.ccleaner.

com/.

[87] Google. Google chrome, 2017. URL https://www.google.com/chrome/.

[88] Epson. Epson drivers, 2021. URL https://ftp.epson.com/drivers/ESU_

451.exe.

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus:VBS/Ramnit.gen
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus:VBS/Ramnit.gen
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Virus:VBS/Ramnit.gen
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Vigorf.A
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Vigorf.A
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Vigorf.A
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/worm.js.bondat.ac
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/worm.js.bondat.ac
https://www.virtualbox.org/
https://virusshare.com
https://www.7-zip.org/
https://www.avira.com/
https://www.ccleaner.com/
https://www.ccleaner.com/
https://www.google.com/chrome/
https://ftp.epson.com/drivers/ESU_451.exe
https://ftp.epson.com/drivers/ESU_451.exe

Bibliography 180

[89] Isa Ali. Bahraniapps blog, Nov 2020. URL http://blog.bahraniapps.com/.

[90] GIMP Team. Gimp, 2019. URL https://www.gimp.org/.

[91] OpenVPN. Openvpn, 2018. URL https://openvpn.net/.

[92] UltraReach. About ultrasurf and ultrareach - internet freedom, privacy, and

security, 2021. URL https://ultrasurf.us/.

[93] Microsoft. Visual studio code, Apr 2016. URL https://code.visualstudio.

com/.

[94] Malwarebytes, Feb 2021. URL https://resources.malwarebytes.com/

files/2021/02/MWB_StateOfMalwareReport2021.pdf.

[95] Terrence August, Duy Dao, and Marius Florin Niculescu. Economics of ran-

somware attacks. Earlier Version Presented at WISE, 2017.

[96] Aaron Walker and Shamik Sengupta. Insights into malware detection via be-

havioral frequency analysis using machine learning. In MILCOM 2019 - 2019

IEEE Military Communications Conference (MILCOM), pages 1–6, 2019. doi:

10.1109/MILCOM47813.2019.9021034.

[97] Aaron Walker and Shamik Sengupta. Malware family fingerprinting through

behavioral analysis. In 2020 IEEE International Conference on Intelligence

and Security Informatics (ISI), pages 1–5, 2020. doi: 10.1109/ISI49825.2020.

9280529.

http://blog.bahraniapps.com/
https://www.gimp.org/
https://openvpn.net/
https://ultrasurf.us/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://resources. malwarebytes.com/files/2021/02/MWB_StateOfMalwareReport2021.pdf
https://resources. malwarebytes.com/files/2021/02/MWB_StateOfMalwareReport2021.pdf

Bibliography 181

[98] Aaron Walker, Muhammad Faisal Amjad, and Shamik Sengupta. Cuckoo’s

malware threat scoring and classification: Friend or foe? In 2019 IEEE 9th

Annual Computing and Communication Workshop and Conference (CCWC),

pages 0678–0684, 2019. doi: 10.1109/CCWC.2019.8666454.

[99] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning

machine: theory and applications. Neurocomputing, 70(1-3):489–501, 2006.

[100] Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang. Extreme

learning machine for regression and multiclass classification. IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2):513–529, 2011.

[101] Jin-Man Park and Jong-Hwan Kim. Online recurrent extreme learning ma-

chine and its application to time-series prediction. In 2017 International Joint

Conference on Neural Networks (IJCNN), pages 1983–1990. IEEE, 2017.

[102] Nan-Ying Liang, Guang-Bin Huang, Paramasivan Saratchandran, and

Narasimhan Sundararajan. A fast and accurate online sequential learning al-

gorithm for feedforward networks. IEEE Transactions on neural networks, 17

(6):1411–1423, 2006.

[103] C Radhakrishna Rao. Generalized inverse of a matrix and its applications. In

Vol. 1 Theory of Statistics, pages 601–620. University of California Press, 1972.

[104] ISACA. Cmmi institute - cmmi v2.0, 2019. URL https://cmmiinstitute.

com/cmmi.

https://cmmiinstitute.com/cmmi
https://cmmiinstitute.com/cmmi

Bibliography 182

[105] Ron Ross, Victoria Pillitteri, Kelley Dempsey, Mark Riddle, and Gary Guis-

sanie. Protecting controlled unclassified information in nonfederal systems and

organizations. Technical report, National Institute of Standards and Technol-

ogy, 2019.

[106] ISO 27000 Directory. Iso 27000 - iso 27001 and iso 27002 standards, 2021. URL

https://www.27000.org/.

[107] SANS Internet Storm Center. Infocon. URL https://isc.sans.edu/infocon.

html.

[108] Inc. WatchGuard Technologies. About tdr threat scores. URL

https://www.watchguard.com\/help\/docs\/help-center\/en-US\

/Content\/en-US\/Fireware\/services\/tdr\/tdr_threat_scores\

unhbox\voidb@x\bgroup\let\unhbox\voidb@x\setbox\@tempboxa\

hbox{h\global\mathchardef\accent@spacefactor\spacefactor}\let\

begingroup\def{}\endgroup\relax\let\ignorespaces\relax\accent95h\

egroup\spacefactor\accent@spacefactortml.

[109] National Institute of Standards and Technology. Nvd - cvss v3 calculator. URL

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator.

[110] Johannes Ullrich. Wannacry/wannacrypt ransomware summary, May

2017. URL https://isc.sans.edu/forums/diary/WannaCryWannaCrypt+

Ransomware+Summary/22420/.

https://www.27000.org/
https://isc.sans.edu/infocon.html
https://isc.sans.edu/infocon.html
https://www.watchguard.com\/help\/docs\/help-center\/en-US\/Content\/en-US\/Fireware\/services\/tdr\/tdr_threat_scores\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {h\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \def { }\endgroup \relax \let \ignorespaces \relax \accent 95 h\egroup \spacefactor \accent@spacefactor tml
https://www.watchguard.com\/help\/docs\/help-center\/en-US\/Content\/en-US\/Fireware\/services\/tdr\/tdr_threat_scores\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {h\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \def { }\endgroup \relax \let \ignorespaces \relax \accent 95 h\egroup \spacefactor \accent@spacefactor tml
https://www.watchguard.com\/help\/docs\/help-center\/en-US\/Content\/en-US\/Fireware\/services\/tdr\/tdr_threat_scores\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {h\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \def { }\endgroup \relax \let \ignorespaces \relax \accent 95 h\egroup \spacefactor \accent@spacefactor tml
https://www.watchguard.com\/help\/docs\/help-center\/en-US\/Content\/en-US\/Fireware\/services\/tdr\/tdr_threat_scores\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {h\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \def { }\endgroup \relax \let \ignorespaces \relax \accent 95 h\egroup \spacefactor \accent@spacefactor tml
https://www.watchguard.com\/help\/docs\/help-center\/en-US\/Content\/en-US\/Fireware\/services\/tdr\/tdr_threat_scores\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {h\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \def { }\endgroup \relax \let \ignorespaces \relax \accent 95 h\egroup \spacefactor \accent@spacefactor tml
https://www.watchguard.com\/help\/docs\/help-center\/en-US\/Content\/en-US\/Fireware\/services\/tdr\/tdr_threat_scores\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {h\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \def { }\endgroup \relax \let \ignorespaces \relax \accent 95 h\egroup \spacefactor \accent@spacefactor tml
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://isc.sans.edu/forums/diary/WannaCryWannaCrypt+Ransomware+ Summary/22420/
https://isc.sans.edu/forums/diary/WannaCryWannaCrypt+Ransomware+ Summary/22420/

Bibliography 183

[111] Ellen Nakashima and Craig Timberg. Nsa officials worried about the day its

potent hacking tool would get loose. then it did. The Washington Post, May

2017. URL https://tinyurl.com/2p889yk8.

https://tinyurl.com/2p889yk8

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Malware threat assessment
	1.2 The motivating problem
	1.3 Limitations of the State-of-the-Art
	1.4 Contributions
	1.5 Dissertation Organization

	2 Related Work and Research Challenges
	2.1 Identifying Malicious Behavior via Machine Learning
	2.1.1 Machine Learning Application for Cyber Risk Assessment

	2.2 Malware Analysis for Threat Management
	2.2.1 Malware Relationships

	2.3 Cyber Security Risk Management
	2.3.1 Threat Frameworks
	2.3.2 Threat Scoring
	2.3.3 One Size Fits All?

	2.4 Challenges for Cyber Risk Management
	2.4.1 Open Source Intelligence

	2.5 Novelty of Present Research

	3 Cuckoo Malware Threat Scoring and Classification: Friend or Foe?
	3.1 Introduction
	3.2 Malware Behavior Analysis
	3.2.1 Setup
	3.2.2 Malware Dataset
	3.2.3 Methodology
	3.2.4 Discussion

	3.3 Evaluation
	3.3.1 Results
	3.3.2 Discussion and Recommendations

	4 Insights Into Malware Detection via Behavioral Frequency Analysis Using Machine Learning
	4.1 Introduction
	4.2 Malware Behavior Analysis
	4.2.1 Setup and Malware Dataset
	4.2.2 Methodology

	4.3 Machine Learning Approach
	4.3.1 Methodology
	4.3.2 Results
	4.3.2.1 Large Sample
	4.3.2.2 Medium Sample
	4.3.2.3 Small Sample

	4.3.3 Discussion and Recommendations

	5 Malware Family Fingerprinting Through Behavioral Analysis
	5.1 Introduction
	5.2 Machine Learning Enabled Malware Family Classification
	5.2.1 Setup & Methodology
	5.2.2 Machine Learning Results

	5.3 Malware Signature Analysis
	5.3.1 Windows API Frequency Analysis
	5.3.2 Limitations of Signature-Based Approach

	5.4 Discussion and Recommendations

	6 Friend or Foe: Discerning Benign vs Malicious Software and Malware Family
	6.1 Introduction
	6.2 Malware Behavior Analysis
	6.2.1 Setup and Malware Dataset
	6.2.2 API Collection Methodology
	6.2.3 Malware Classification
	6.2.4 Benign Software API Collection

	6.3 Machine Learning Framework
	6.3.1 Machine Learning Algorithms Used
	6.3.1.1 Multilayer Perceptron
	6.3.1.2 Convolutional Neural Network
	6.3.1.3 Support Vector Machine
	6.3.1.4 Comparison of Algorithms

	6.3.2 Experimentation

	6.4 Analysis of Results
	6.5 Discussion and Recommendations

	7 Ohana Means Family: Malware Family Classification using Extreme Learning Machines
	7.1 Introduction
	7.2 System Software Architecture
	7.3 Problem Statement
	7.4 Dynamic API call sequence classification
	7.4.1 API Collection Methodology
	7.4.2 API Sequence Dataset

	7.5 Analysis of ELM and OS-ELM
	7.5.1 Extreme Learning Machine
	7.5.2 Online Sequential Extreme Learning Machine
	7.5.2.1 Initialization Phase
	7.5.2.2 Sequential Phase

	7.6 Experimental Results
	7.6.1 Question 1
	7.6.1.1 ELM Analysis
	7.6.1.2 OS-ELM Analysis
	7.6.1.3 LSTM
	7.6.1.4 MLP and SVM

	7.6.2 Question 2

	7.7 Discussion and Recommendations

	8 Bespoke Automated Malware Risk Classification
	8.1 Introduction
	8.2 Analysis of Existing Risk Assessment Methodologies
	8.2.1 CVSS
	8.2.2 Infocon
	8.2.3 WatchGuard TDR Threat Score

	8.3 WOPR: Automated Bespoke Malware Threat Modeling
	8.3.1 Bespoke Threat Categorization
	8.3.2 Assignment of Threat Value

	8.4 Discussion and Recommendations

	9 Conclusion and Future Research Direction
	9.1 Peer-Reviewed Publications

	A Machine learning experimentation results
	A.0.1 Tables

	Bibliography

