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“The most merciful thing in the world, I think, is the inability of the human mind to correlate
all its contents. We live on a placid island of ignorance in the midst of black seas of infinity,
and it was not meant that we should voyage far. The sciences, each straining in its own
direction, have hitherto harmed us little; but some day the piecing together of dissociated
knowledge will open up such terrifying vistas of reality, and of our frightful position therein,
that we shall either go mad from the revelation or flee from the light into the peace and safety
of a new dark age.”

H. P. Lovecraft
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UNIVERSITY OF BRISTOL

Abstract
School of Physics

Quantum Engineering Centre for Doctoral Training (QE-CDT)

Doctor of Philosophy

Quantum Resource Theories: Operational Tasks and Information-Theoretic
Quantities

by Andrés F. DUCUARA

This Thesis deals with a resource-theoretic approach to Quantum Information
Theory (QIT), or Quantum Resource Theories (QRTs) for short. In particular, it deals
with the identification of operational tasks as well as their characterisation by means of
information-theoretic quantities. These operational tasks can be thought of as exploit-
ing (or harnessing) properties of quantum objects as resources and consequently, such
properties become of relevant and practical interest. Whilst several different math-
ematical objects from QIT can be deemed as potential candidates in possession of
useful resources for a QRT, this Thesis specifically deals with quantum states, quan-
tum measurements, and quantum channels which are, arguably, amongst the most
fundamental objects in QIT. Amongst the properties deemed as resources we have
entanglement, incompatibility, Bell-nonlocality, EPR-steering amongst others. The
main conceptual contributions of this Thesis are the following:

1. It characterises the operational tasks of quantum state exclusion (QSE) and quan-
tum subchannel exclusion (QScE) in terms of the quantifier of weight of resource,
and reports on the existence of a general correspondence between i) exclusion-
based operational tasks and ii) weight-based resource quantifiers. This corre-
spondence holds for general resources for states and measurements and there-
fore, evidencing a fundamental correspondence that extends across general QRTs.

2. It opens a multi-object paradigm for QRTs, by considering composite QRTs as
well as multi-object operational tasks, where multiple quantum objects (states
and measurements) can be used in conjunction for the benefit of multi-object op-
erational tasks like multi-object subchannel discrimination and exclusion.

3. It introduces a QRT for Buscemi nonlocality, develops its operational significance,
and derives relationships between such form of nonlocality and entanglement as
well as non-classical teleportation.

4. It imports concepts from the theory of economics into QIT, specifically, it im-
ports the concepts of betting and risk-aversion from Expected Utility Theory (EUT),
and introduces operational tasks based on such concepts, as quantum betting tasks
for short. It provides an operational interpretation of: i) the Rényi entropy, ii)
Arimoto-Rényi conditional entropy and ii) Arimoto’s mutual information, in terms
of such quantum betting tasks.

Overall, the results presented in this Thesis can be seen as lying at the intersection
of the three research fields of: i) quantum theory, ii) information theory, and iii)
expected utility theory.
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http://www.bristol.ac.uk/quantum-engineering/
https://research-information.bris.ac.uk/en/persons/andres-f-ducuara




ix

Acknowledgements
I first would like to thank my supervisor Paul Skrzypczyk, for his thorough sup-

port and guidance during my PhD in all matters academic, bureaucratic, as well as
personal, it has truly been a pleasure to work under his supervision. His passion for
physics, quantum information in particular, is extremely contagious, I have learnt
a great lot of things under his supervision, physics, maths, as well as the humbling
and fulfilling art of trying to generate valuable knowledge.

I would now like to thank my office colleagues and collaborators: Patryk Lipka-
Bartosik and Tom Purves. It was inspiring to see them judiciously working towards
the completion of their own PhDs, and it was equally a pleasure to interact and inter-
change ideas with them as well. More generally, I would like to thank the quantum
information theory group at the University of Bristol, for the incredibly thought-
provoking seminars and lunch meetings; Noah Linden, Tony Short, Sandu Popescu,
Ashley Montanaro, João Doriguello, Ryan Mann, Alex Moylett, Stephen Piddock,
Changpeng Shao, Dominic Verdon, Benjamin Jones, and Jan Lukas Bosse. In par-
ticular, I would like to thank my Annual Progress Meeting (APM) panel: Ashley
Montanaro and Sandu Popescu, for their guidance, valuable comments, and general
advise on how to navigate the academic life.

I thank Cohort 4 (2017/18) of the Quantum Engineering Centre for Doctoral
Training (QE-CDT), for all the amazing activities we did together as a cohort dur-
ing the first year of training, the time in the office, the trip to California, the pubs,
and so on: Jake Biele, Johnathan Frazer, Huili Hou, Friederike Jöhlinger, Ankur Khu-
rana, Lana Mineh, David Payne, Ben Sayers, John Scott, Dominic Sulway, and Oliver
Thomas. In particular, I thank Oli for introducing me to the city of Bristol and the UK
in general. I also thank Ankur, for the amazing company in our trip through Eastern
European countries. I’d like to thank my colleagues and flatmates: Ben Sayers, Lana
Mineh, Dominic Sulway, and Sebastian Currie, for allowing me to live with them,
which made my day-to-day life significantly easier. In particular, I thank Ben for all
the fun times playing videogames.

I would now like to thank more generally the QE-CDT and QETLabs members,
for the amazing lectures, tutorials, seminars, and guidance: Peter Turner, Chris Er-
ven, Jorge Barreto, Dara McCutcheon, Döndü Sahin, John Rarity, and Sabine Woll-
mann. I would also like to extend my gratitude to the QE-CDT and QETLabs ad-
ministrative staff, for their kind and timely support: Lin Burden, Andrea Watkins,
Holly Caskie, and Sorrel Johnson. I also thank Jorge Martinez, for helping me being
my guarantor, as well as for being a friendly face during my stay in the UK. I thank
my collaborators Cristian E. Susa, John H. Reina, and Pedro P. Rosario, for allowing
me to interchange ideas with them.

Finally, I would like to thank my Family for their love and support: Luz Mary
García Osorio, Jairo Ducuara Castañeda, Nancy Moreno, Angélica García, Juliana
Ortíz, Alejandro Ortíz, and Catalina Ortíz. For keeping me attached to the human
world of feelings and emotions. I also thank my friends Chester, Miguel, Natalia,
JGespi, Thalen, Manuel Muñoz, for the time they have shared with me. I also thank
my in-law Ortíz-Paz Family, Amanda Paz, Abelardo Ortíz, Nubia Paz, and Sergio
Ortíz, for their willingness to offer me a hand when I have required of it. Finally,
I would like to thank my girlfriend Fanny Ortíz, for her love, support, patience,
company, and for sticking with me through both good and difficult times.

“I don’t know half of you half as well as I should like; and I like less than half of you half as
well as you deserve. ” Bilbo Baggins





xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.0.1 Quantum theory and quantum information theory . . . . . . . 1
1.0.2 Classical information theory . . . . . . . . . . . . . . . . . . . . 3
1.0.3 Expected utility theory . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Organisation of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Publications and preprints . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Mathematical preliminaries 9
2.1 Background on Quantum Theory . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Standard formalism . . . . . . . . . . . . . . . . . . . . . . . . . 10
Some operators of interest and projective measurements . . . . 10
Pure states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Unitary channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Multipartite systems . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Density operator formalism . . . . . . . . . . . . . . . . . . . . . 12
Density operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
General measurements (POVMs) . . . . . . . . . . . . . . . . . . 13
General channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
On composite quantum objects and generalities of QRTs . . . . 15
Conic programming (CP) and semidefinite programming (SPD) 15
Various information-theoretic quantities as conic programs . . . 17

2.2 Background on Information Theory . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Rényi entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Arimoto-Rényi conditional entropy . . . . . . . . . . . . . . . . 20
2.2.3 Arimoto’s mutual information . . . . . . . . . . . . . . . . . . . 20
2.2.4 Arimoto-Rényi channel capacity . . . . . . . . . . . . . . . . . . 20
2.2.5 Rényi divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Conditional-Rényi (CR) divergences . . . . . . . . . . . . . . . . 21
2.2.7 Relationship between the Rényi divergence and CR divergences 23
2.2.8 mutual informations . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.9 Relationship between CR-divergences . . . . . . . . . . . . . . . 23
2.2.10 Relationship between mutual information measures . . . . . . . 24
2.2.11 Sibson-Arimoto-Rényi channel capacity . . . . . . . . . . . . . . 24
2.2.12 Information-theoretic quantities in the quantum domain . . . . 26

2.3 Background on Expected Utility Theory (EUT) . . . . . . . . . . . . . . 27
2.3.1 The concept of risk in the theory of games and economic be-

haviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



xii

2.3.2 A gain game and EUT . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 A loss game and EUT . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 Quantifying risk tendencies . . . . . . . . . . . . . . . . . . . . . 30
2.3.5 Isoelastic Certainty Equivalent (ICE) . . . . . . . . . . . . . . . . 31

3 Weight of informativeness, exclusion games,
and excudible information 35
3.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Convex QRT of measurement informativeness . . . . . . . . . . . . . . 37
3.3 Quantum State Exclusion (QSE) games . . . . . . . . . . . . . . . . . . . 37
3.4 Weight of informativeness . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Result 3.1. Weight of informativeness and QSE games . . . . . . 41
3.5.2 Result 3.2. Connection to single-shot information theory . . . . 44
3.5.3 Result 3.3. Complete set of monotones . . . . . . . . . . . . . . . 46

3.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Operational interpretation of weight-based resource quantifiers for general
convex QRTs of measurements and states 51
4.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Main results for general convex QRTs of measurements . . . . . . . . . 52

4.2.1 Quantum state exclusion (QSE) games . . . . . . . . . . . . . . . 52
4.2.2 Result 4.1. All resourceful measurements are useful in a QSE

game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Result 4.2. Weight as the advantage in QSE games . . . . . . . . 55
4.2.4 Result 4.3. QRTs of measurements and information theory . . . 56
4.2.5 Summary of results for measurements . . . . . . . . . . . . . . . 58

4.3 Main results for general convex QRTs of states . . . . . . . . . . . . . . 59
4.3.1 Quantum subchannel exclusion (QScE) games . . . . . . . . . . 59
4.3.2 Result 4.4. All resourceful states are useful in a QScE game . . . 60
4.3.3 Result 4.5. Weight of resource as the advantage in QScE games 61
4.3.4 Result 4.6. Quantum-classical ratio with independent mea-

surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Multi-object operational tasks for QRTs of state-measurement pairs 67
5.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Composite convex QRTs and multi-object operational tasks . . . . . . . 68
5.3 Result 5.1: Any fully resourceful state-measurement pair is useful for

QScD and QScE games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Proof of Result 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Rewriting the figures of merit . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Some useful operators . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.3 Particular CPP operation . . . . . . . . . . . . . . . . . . . . . . 71
5.4.4 Discrimination case . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.5 Exclusion case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Result 5.2: Resource quantifiers and multi-object games . . . . . . . . . 78
5.6 Proof of Result 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6.1 Upper bound for multi-object discrimination and lower bound
for multi-object exclusion . . . . . . . . . . . . . . . . . . . . . . 79



xiii

5.6.2 Achieving upper bound for discrimination and lower bound
for exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Result 5.3: Connection to single-shot information theory . . . . . . . . 82
5.8 Proof of Result 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Quantum resource theory of Buscemi nonlocality 87
6.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.1 Nonlocality from the perspective of no-signalling games . . . . 92
6.2.2 Quantitative measure of Buscemi nonlocality . . . . . . . . . . . 94

6.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.1 Operational characterisation of RoBN . . . . . . . . . . . . . . . 97
6.3.2 Connecting Buscemi nonlocality with other notions of non-

classicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Buscemi nonlocality and nonclassical teleportation . . . . . . . 100
Buscemi nonlocality and entanglement . . . . . . . . . . . . . . 103
Complete sets of monotones for quantum simulation . . . . . . 105

6.3.3 RoBN as a quantifier in single-shot information theory . . . . . 105
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Characterisation of quantum betting tasks in terms of
Arimoto mutual information 109
7.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.1 The quantum resource theories of measurement informative-
ness and non-constant channels . . . . . . . . . . . . . . . . . . 113

7.1.2 Arimoto-type information-theoretic quantities for general QRTs
of measurements, channels, states, and state-measurement pairs 114

7.2 Quantum betting tasks with risk aversion . . . . . . . . . . . . . . . . . 115
7.2.1 Quantum state betting (QSB) games . . . . . . . . . . . . . . . . 116
7.2.2 Figure of merit for quantum state betting games . . . . . . . . . 117
7.2.3 Quantum state betting games generalise discrimination and

exclusion games . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.4 Noisy quantum state betting (nQSB) games . . . . . . . . . . . . 119
7.2.5 Quantum channel betting (QCB) games . . . . . . . . . . . . . . 119

7.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.1 Result 7.1. Arimoto’s α-mutual information and quantum state

betting games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.2 Result 7.2. Arimoto’s mutual information and noisy quantum

state betting games . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.3 Result 7.3. QSB and noisy QSB games for general QRTs of mea-

surements and channels . . . . . . . . . . . . . . . . . . . . . . . 124
7.3.4 Result 7.4. QCB games and QRTs of states and state-measurement

pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3.5 Result 7.5. Arimoto’s mutual information and horse betting

games in the classical regime . . . . . . . . . . . . . . . . . . . . 125
7.3.6 Result 7.6. Quantum Rényi divergences . . . . . . . . . . . . . . 127
7.3.7 Result 7.7. Resource monotones . . . . . . . . . . . . . . . . . . 128

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5 Open problems, perspectives, and avenues for future research . . . . . 131



xiv

8 Conclusions and perspectives 133

A Proofs of results on the QRT of Buscemi nonlocality 135
A.1 Equivalent formulation for the Robustness of Buscemi Nonlocality

(RoBN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Basic properties of the RoBN . . . . . . . . . . . . . . . . . . . . . . . . 137
A.3 Proof of Result 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.4 Proof of Result 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.5 Proof of Result 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.6 Proof of Result 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.7 Proof of Result 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B Proofs of results on quantum betting tasks 149
B.1 Proof of Result 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.1.1 Preliminary steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.1.2 Horse betting games with risk . . . . . . . . . . . . . . . . . . . 150
B.1.3 Horse betting with risk and side information . . . . . . . . . . . 151
B.1.4 Proving Result 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.2 Proof of Corollaries 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.3 Proof of Result 7.3 on noisy quantum state betting (nQSB) games . . . 156
B.4 Proof of Result 7.4 on quantum channel betting (QCB) games . . . . . . 158
B.5 Proof of Result 7.6 on Rényi divergences . . . . . . . . . . . . . . . . . . 159
B.6 Proof of Result 7.7 on resource monotones . . . . . . . . . . . . . . . . . 160

Bibliography 163



xv

Acronyms and Abbreviations

General acronyms
QIT Quantum Information Theory
QRT Quantum Resource Theory
EUT Expected Utility Theory
PMF Probability Mass Function
POVM Positive Operator-Valued Measure
PVM Projection-Valued Measure
TP Trace Preserving
TNI Trace Non-Increasing
CP Completely Positive
CPTP Completely Positive Trace Preserving
CPTNI Completely Positive Trace Non-Increasing
CPP Classical Post-Processing
BLP Bleuler-Lapidoth-Pfister
PBR Pusey-Barrett-Rudolph
KL Kullback-Leibler
CE Certainty Equivalent
ICE Isoelastic Certainty Equivalent
RRA Relative Risk-Aversion
CRRA Constant Relative Risk-Aversion
CR Conditional Rényi
SDP Semi-Definite Programming
CP Conic Programming
CCC Closed Convex Cone

Acronyms for operational tasks
QSD Quantum State Discrimination
QSE Quantum State Exclusion
QSB Quantum State Betting
nQSD noisy Quantum State Discrimination
nQSE noisy Quantum State Exclusion
nQSB noisy Quantum State Betting
QCD Quantum Channel Discrimination
QCE Quantum Channel Exclusion
QCB Quantum Channel Betting
QScD Quantum Sub-channel Discrimination
QScE Quantum Sub-channel Exclusion
QScB Quantum Sub-channel Betting
QHB Quantum Horse Betting
HB Horse Betting



xvi

Abbreviations
l.h.s. left hand side
r.h.s. right hand side
s.t. such that (or subject to)
a.k.a. also known as
i. e. id est (Latin for “that is”)
et al. et alia (Latin for “and others”)
à la French for "according to” or “in the manner of"



xvii

List of Symbols

General
N, R, R, C Natural, real, extended real, and complex numbers
log Logarithm in base 2

Linear algebra
HA Hilbert space of system A
L(A) Set of linear operators in HA
Herm(A) Set of Hermitian operators in HA
PSD(A) Set of positive-semidefinite operators in HA
D(A) Set of density operators in HA
ρ, σ, γ, ... Quantum states
M,M′,N,N′, ... Quantum measurements
X†, XT The adjoint operator and transpose operator of X
E † The adjoint map of E
1A, idA Identity operator and identity map on A
Tr, TrA Trace and partial trace over system A
X ≥ Y X−Y ∈ PSD(A)

Resource theories
F,F,F Sets of: free states, free measurements, and free channels
UI, C Sets of: uninformative measurements, constant channels
RF(ρ) Generalised robustness of resource of a state ρ
RF(M) Generalised robustness of resource of a measurement M
WF(ρ) Weight of resource of a state ρ
WF(M) Weight of resource of a measurement M
wICE

R Isoelastic certainty equivalent with risk-aversion R

Information theory
X, Y, G, ... Random variables
pX, qG, ... Probability mass function (PMF)
pXG, pX|G Joint PMF, conditional PMF
Hα(X) Rényi entropy of order α
Hα(X, G) Rényi joint entropy of order α
Hα(X|G) Arimoto-Rényi conditional entropy of order α
Iα(X; G) Arimoto-Rényi mutual information of order α
Cα(pG|X) Rényi capacity of order α

Dα(·||·) Rényi divergence of order α
DBLP

α (·|| · |·) BLP conditional Rényi divergence of order α
DC

α (·|| · |·) Csiszár conditional Rényi divergence of order α
DS

α(·|| · |·) Sibson conditional Rényi divergence of order α





xix

Dedicated to Excelenia Osorio and Amanda Paz.





1

Chapter 1

Introduction

1.0.1 Quantum theory and quantum information theory

The theory of quantum mechanics, or quantum theory, is one of the most marvelous
theoretical constructions made by humankind. From a conceptual point of view on
the one hand, it provides a unifying and mathematically concise framework for un-
derstanding the universe at a fundamental level. Specifically, the standard model of
particle physics, within the framework of quantum field theory, represents a mile-
stone achievement for the natural sciences, which encompasses the catalogue of fun-
damental particles that make up pretty much everything known in the observable
universe, as well as the way that these particles interact with each other via three
out of the four known fundamental forces of nature. Whilst the standard model is
still far away from being the ultimate theory of everything, it is the most complete
account of the physical world that we have so far. From a pragmatic point of view on
the other hand, quantum theory led to the so-called first quantum revolution, where
devices exploiting the laws of quantum mechanical systems were invented, like the
transistor and the laser, which consequently led to further developments and appli-
cations in areas of science like chemistry, biology, and medicine, but also in areas
like engineering and computing, which in turn gave birth to the era of digital infor-
mation, which has had a huge impact in the economy and culture of our society, and
pretty much every aspect of modern human life.

Despite the unquestionable success of quantum theory, it is still unfortunately in
possession of gaps and conceptual problems within its own landscape of operation.
Although these conceptual problems were rapidly identified since the initial devel-
opments of the theory at the beginning of the 20th century, the general consensus
within the community is that they still persist to this day. The first and blatantly ev-
ident problem is gravity not being covered within the standard model. Admittedly,
this could well not be a problem of quantum theory in and of itself, but rather a
matter of currently not correctly applying it to the quantisation of gravity, however,
until this is fully resolved, it could well also be the case that quantum theory has to
be extended/reformulated in a considerably manner, so to peacefully accommodate
and coexist alongside gravity. A second and arguably more perturbing problem,
is the existence of disagreements regarding the interpretation of quantum theory.
Grossly oversimplifying the situation, this stems from the fact that quantum the-
ory is intrinsically a probabilistic theory and, as such, it does not directly need to
assume/guarantee the existence of a physical reality, independent of agents acting
as observers and this, consequently, has led to the emergence of several different
interpretations of the theory.

It was precisely trying to tackle these conceptual problems that a foundational
line of research was born at the beginning of the 20th century, nowadays under the
label of “quantum foundations", with the milestone Einstein-Podolsky-Rosen (EPR)
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article [77] in 1935, as well as the correspondence between Einstein and Bohr [105].
Later on, further seminal papers, like the de Broglie-Bohm theory in 1952 [34, 35],
kept alive the discussion around the uneasiness regarding these fundamental as-
pects about the theory. In 1964, Bell introduced a concise theoretical framework
where to address these types of questions [19] and, in particular, showed that quan-
tum theory is a nonlocal theory [43]. Since then, great progress has been made in
this direction, with experimental demonstrations of Bell-nonlocality [88, 11], as well
as the development of additional theoretical results about what quantum theory can
or cannot be (no-go theorems), like the Pusey-Barrett-Rudolph (PBR) theorem [181],
Frauchiger-Renner theorem [87], amongst others [104, 61, 135]. The steady explo-
ration of fundamental aspects of quantum theory, could potentially help to alleviate
the tension within quantum theory and furthermore, shed a light into the unification
problem.

Parallel to the progress on purely theoretical quantum foundations, scientists
around the 70’s and 80’s started to think about these conceptual problems, and
quantum theory in general, from an information-theoretic perspective and this, re-
sulted in a new wave of practical consequences. Initially, figures like Benioff [20],
Manin [147], Deutsch [67], and Feynman [85], addressed the fundamental ideas be-
hind the concept of a quantum computer, ideas which would further evolve in sub-
sequent decades and to consolidate into the fields of quantum computing and quan-
tum simulation. In a similar vein, Wiesner [241], Bennett, Brassard [21], and Ekert
[78], pioneered the ideas behind what would later be known as quantum cryptog-
raphy. Moving on into the 90’s, the discovery of further quantum algorithms like
Bernstein-Vazirani [29], Deutsch-Josza [68], Simon [201], Grover, [98], Shor [198], er-
ror correction [197], amongst others, consolidated the field of quantum computing.
Furthermore, information-theoretic protocols like entanglement swapping [253], su-
perdense coding [22], teleportation [27], amongst others, established a basis for quan-
tum communications. Overall, the amalgamation of all of these information-theoretic
areas is nowadays known as Quantum Information Theory (QIT), an interdisciplinary
field of research lying at the intersection of physics, mathematics, computer science,
and chemistry. Moreover, these interdisciplinary efforts have also involved huge ex-
perimental progress along the way, with milestone achievements like loophole-free
experimental violations of Bell-inequalities [111], quantum supremacy [10], amongst
others [132] and therefore, as a whole, the movement gave birth to what is nowa-
days known as the second quantum revolution, where the general goal is to conceive
devices exploiting the properties of quantum-mechanical systems in a “fully quan-
tum manner"1, and construct devices like quantum processors, quantum computers,
quantum sensors, as well as infrastructure connecting such devices in the form of
quantum networks like a quantum internet and therefore, as a whole, a whole new
ecosystem for these emergent quantum technologies.

Moving on now closer to the main topic of this Thesis, the general mantra behind
the resource-theoretic approach to QIT, or Quantum Resource Theories (QRTs) for short
[57], is precisely to fully embrace such a pragmatic paradigm; from trying to under-
stand the conceptual problems of quantum theory, to a more practical perspective
by importing ideas from classical information theory. Specifically, the main general
idea is to think about properties of quantum systems as a resource for fuelling either
algorithms or more generally information-theoretic protocols. Admittedly, this ap-
proach has subconsciously been addressed by the part of the community during the

1Here we distinguish that in the first quantum revolution devices exploited the laws of quantum
theory in a “classical manner" (meaning doing classical computing), whilst in the second revolution,
devices are exploiting quantum theory in a “quantum manner".
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past few decades but, arguably, this pragmatic approach has only been embraced
by the community after seminal resource-theoretic works in the 90’s [25, 23], and
more fully from the mid 2000’s with the emergence of QRTs exploiting specific re-
sources like Bell-nonlocality [17, 233], EPR-steering [89] and several more [57]. In
summary, the types of questions being asked have evolved from what really IS a
quantum state?, to more practical matters as what quantum states, gates, channels, mea-
surements are useful for?2. Bearing this in mind, QRTs can then be seen as focusing on
subjects like: identification and characterisation of operational tasks, development
of resource quantifiers (and monotones) via either entropic-based, geometric-based,
or witness-based measures, as well as no-go theorems, convertibility amongst ob-
jects and resources either in a single-shot, asymptotic, or catalytic manner, and many
other subjects with similar operational flavour [57]. In this regard, this Thesis in par-
ticular introduces a new family of operational tasks which we will later refer to as
quantum betting tasks, as well as witness-based resource monotones and quantifiers.

Coming back to QIT, and comparing it with its direct predecessors, one can ar-
gue that QIT is still a relatively young field and therefore, it is important to keep un-
veiling, exploiting, and strengthening the links between the theory of quantum and
that of classical information theory. Even though this Thesis mostly dwells within
QIT, it is worthwhile point out that information theory can still be approached from
a purely classical point of view, which is a whole endeavour in its own right and
therefore, it is important to be up to date with the developments in the area, as well
as with the possible synergies between the classical and the quantum domains. This
serves as a small introduction to address some of points in classical information the-
ory which are going to be of relevance for this Thesis.

1.0.2 Classical information theory

The field of (classical) information theory, similarly to that of quantum theory, can
also be dated back to the beginning of the 20th century and, together with the de-
velopments from the first quantum revolution in the form of transistors, processors,
and alike, eventually led to the current era of digital information. Great efforts have
been invested over the past century to mathematically formalise operational tasks
such as computation and communication, as well as to describe/characterise such
phenomena by means of information-theoretic quantities, like entropies and capacities.
From a very oversimplified theoretical approach, classical information theory can
then be thought of as applied probability theory, where the fundamental objects of
study are such information-theoretic quantities. Classical information theory is still,
after roughly a century, a very active and fruitful area of research.

Regarding information-theoretic quantities, the Kullback-Leibler (KL) divergence
(also known as the Kullback-Leibler relative entropy) emerges as a central object
of study [131]. The importance of this quantity is in part due to the fact that it acts
as a parent quantity for many other quantities, such as the Shannon entropy, condi-
tional entropy, conditional divergence, mutual information, and the channel capac-
ity [63]. Within this classical framework, it has also proven fruitful to consider Rényi-
extensions of these quantities [192]. In particular, there is a clear procedure for how

2It is worth pointing out here that, this change of perspective is not effectively solving any of the
conceptual problems mentioned at the beginning, which we all want them to be solved but, in the
meantime, and until we get a powerful insight or appropriate tools, we can still think in pragmatic
terms, and try to further exploit the concepts and techniques of QIT to further help develop quantum
technologies. Hopefully, one day we can have a full understanding of the true inner workings of the
theory and consequently, of the devices that harness such quantum properties.
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to define the Rényi-extensions of both Shannon entropy and KL-divergence, which
are known as the Rényi entropy and the Rényi divergence, respectively [192, 229].
Interestingly however, there is yet no general consensus within the community as to
what is the “proper" way to Rényi-extend other quantities. As a consequence of this,
there are several different candidates for Rényi conditional entropies [84], Rényi con-
ditional divergences [33], and Rényi mutual information measures [232]. The latter
quantities are also known as measures of dependence [33] or α-mutual information
measures [232]. In particular, important for this Thesis are the mutual information
measures proposed by Sibson [199], Arimoto [8], Csiszár [64], as well as a recent pro-
posal independently derived by Lapidoth-Pfister [133], and Tomamichel-Hayashi
[223]. It is known that these mutual information measures (with the exception of
Arimoto’s) can be derived from their respective conditional Rényi divergence [33]
and therefore, this relationship can be addressed as a mutual information-divergence
correspondence. Many of these information-theoretic measures are going to be rele-
vant for the main findings reported in this Thesis.

Overall, similarly to quantum theory, information theory is also intrinsically a
probabilistic theory and therefore, we see that probability theory is, at an abstract
level, a common background framework between these two major research fields.
We now address a third field which is also based on probability theory, and which
is also going to be relevant in this Thesis, but that now emerges from the economic
sciences.

1.0.3 Expected utility theory

A milestone for the economic sciences is the work of Neumann and Morgenstern in
1944 [157], where they laid out a mathematically rigorous foundation for the treat-
ment of the behaviour of rational agents when dealing with good or services, in a
general theory of games and economic behaviour. This general framework of oper-
ation is nowadays known as expected utility theory (EUT), and it has been the bread
and butter, so to speak, for economists since the middle of the 20th century. In par-
ticular, central to the main results of this Thesis is the concept of risk-aversion; the
behavioural tendency of rational agents to have a preference one way or another
for guaranteed outcomes versus uncertain outcomes. This concept remains of great
research interest in the economic sciences, with various Nobel prices having been
awarded to the understanding and implications of this concept [14]

In general, the concept of risk aversion is a ubiquitous characteristic of rational
agents and, as such, it naturally emerges as a subject of study in various different
areas of knowledge such as: the economic sciences [76], biology and behavioural
ecology [188, 254], and neuroscience [129, 83, 221]. Intuitively, a gambler spending
money on bets with the hope of winning big, can be seen as an individual taking
(potentially unnecessary) risks, in the eyes of a more conservative gambler. One of
the challenges that economists have tackled, since roughly the second half of the
previous century, is the incorporation of the concept of risk aversion into theoretical
models describing the behaviour of rational agents, as well as its quantification, and
exploitation of its descriptive power [76].

The concept of risk was first addressed within theoretical models by Bernoulli
in 1738 (translated into English by Sommer in 1954) [28]. Later on, the theory of ex-
pected utility, formalised by von Neumann and Morgenstern in 1944 [157], provided
a framework within which to address and incorporate behavioural tendencies like
risk aversion. It was then further formalised, independently and within the theory
of expected utility, by Arrow, Pratt, and Finetti in the 1950’s and 60’s [9, 179, 86] who,
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in particular, introduced measures for its quantification. The quest for further under-
standing and exploiting this concept has since remained of active research interest
in the economic sciences [76]. Recently, an important step was taken in the work of
Bleuler, Lapidoth and Pfister (BLP) in 2020 [33], where the concept of risk aversion
was utilised within the realm of classical information theory. This Thesis takes this
line of research as inspiration for proposing various operational tasks based on bet-
ting and risk-aversion, or quantum betting tasks for short, which unifies various other
operational tasks in the literature, like discrimination and exclusion tasks, and ad-
mits a clear characterisation in terms of information-theoretic quantities.

The contents of this Thesis can be seen as lying at the intersection of the three
research fields of: i) quantum theory, ii) information theory, and iii) utility theory,.
We now briefly describe the way this Thesis is organised.

1.1 Organisation of this Thesis

Quantum
Theory

QIT

Probability Theory

Information
Theory

Expected Utility
Theory

C3

C3 - C6

C7

C7

FIGURE 1.1: Main themes and a chronological road-map for the or-
ganisation of this Thesis. The main general themes are: quantum
theory, information theory, and expected utility theory (EUT). These
themes can conceptually be thought of as subsets of probability the-
ory. In Chapter 2 (C2) we address the mathematical preliminaries for
these three areas of knowledge. In Chapter 3 (C3) we start with mo-
tivations in quantum theory and quickly move to QIT. We continue
working in QIT during Chapters 3, 4, 5, and 6 (C3 - C6). Finally, in
Chapter 7 (C7) we import ideas from EUT and derive a first pack
of results still within QIT. Finally, working with EUT and informa-
tion theory alone, we also derive a result which is independent from

quantum theory.
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This Thesis is organised as follows. In Chapter 2 we start with background mate-
rial, in the form of mathematical preliminaries on i) a resource-theoretic approach to
quantum theory, ii) selected information-theoretic quantities in classical information
theory as well as iii) selected notions in expected utility theory, the notion of risk-
aversion in particular. The first results chapter is Chapter 3, in which we consider
the QRT of measurement informativeness, and derive an operational interpretation
for the resource quantifier of weight of informativeness, as well as a first connec-
tion to information-theoretic quantities. In Chapter 4 we consider general convex
QRTs of states and general convex QRTs of measurements, and derive an opera-
tional interpretation for weight-based quantifiers in terms of exclusion games, as
well as a more general connection to information-theoretic quantities. In Chapter 5
we keep on working within QIT and introduce multi-object operational tasks for
composite QRTs where we are simultaneously interested in the resources provided
by states and measurements. In Chapter 6 we address a QRT for Buscemi nonlo-
cality, and connect it to the QRTs of entanglement and teleportation. In the final
results chapter, Chapter 7, we develop a framework that incorporates ideas from
expected utility theory (EUT), introduce quantum betting tasks, and provide an op-
erational interpretation to Arimoto mutual information. We also derive a four-way
correspondence for measurement informativeness between: quantum state betting,
dependence measures, quantum Rényi divergences, and resource monotones. We
also present here a result which lies in the intersection of information theory and
expected utility theory, independently from quantum theory. Finally, In Chapter 8
we address general conclusions, perspectives, and avenues for future research. A
chronological road-map of the organisation of this Thesis is in Figure 1.1, and alter-
native ways to read this Thesis are presented in Figure 1.2

FIGURE 1.2: Paths on how to read this Thesis. Chapter 3 does not
necessarily require Chapter 2.3. Similarly, Chapter 7 can be read in-

dependently from Chapter 6.
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1.2 Publications and preprints

Publications and preprints developed during the PhD and addressed in this Thesis.

• Andrés F. Ducuara, Paul Skrzypczyk
Weight of informativeness, state exclusion games
and excludible information3

https://arxiv.org/abs/1908.10347
[Chapter 3]

• Andrés F. Ducuara, Paul Skrzypczyk
Operational Interpretation of Weight-Based Resource Quantifiers
in Convex Quantum Resource Theories
https://arxiv.org/abs/1909.10486
Phys. Rev. Lett. 125, 110401, (2020)
[Chapter 4]

• Andrés F. Ducuara, Patryk Lipka-Bartosik, Paul Skrzypczyk
Multiobject operational tasks for convex quantum resource theories
of state-measurement pairs
https://arxiv.org/abs/2004.12898
Phys. Rev. Research 2, 033374, (2020)
[Chapter 5]

• Patryk Lipka-Bartosik, Andrés F. Ducuara, Tom Purves, Paul Skrzypczyk
Operational Significance of the Quantum Resource Theory of
Buscemi Nonlocality
https://arxiv.org/abs/2010.04585
Phys. Rev. X. Quantum 2, 020301, (2021)
[Chapter 6]

• Andrés F. Ducuara, Paul Skrzypczyk
Characterisation of quantum betting tasks in terms of
Arimoto mutual information
https://arxiv.org/abs/2106.12711
Submitted to Phys. Rev. X
[Chapter 7]

Publications and preprints developed during the PhD and not addressed here.

• Andrés F. Ducuara, Cristian E. Susa, John H. Reina
Emergence of maximal hidden quantum correlations and its trade-off with
the filtering probability in dissipative two-qubit systems
https://arxiv.org/abs/2005.06339
Submitted to Physica A

3The contents of this preprint are included in the second paper as a particular case.

https://arxiv.org/abs/1908.10347
https://arxiv.org/abs/1909.10486
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.110401
https://arxiv.org/abs/2004.12898
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033374
https://arxiv.org/abs/2010.04585
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.020301
https://arxiv.org/abs/2106.12711
https://arxiv.org/abs/2005.06339
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Chapter 2

Mathematical preliminaries

“The miracle of the appropriateness of the language of mathematics for the formulation of the
laws of physics is a wonderful gift which we neither understand nor deserve. We should be
grateful for it and hope that it will remain valid in future research and that it will extend,
for better or for worse, to our pleasure, even though perhaps also to our bafflement, to wide
branches of learning. ”

Eugene Paul Wigner

In this chapter we address the mathematical preliminaries behind the three themes
of this thesis: i) quantum theory, ii) information theory and iii) expected utility the-
ory. Before we start, we address some notation on standard probability theory which
is the underlying framework behind these three themes. We consider random vari-
ables (RVs) (X, Y, G, ...) on a finite alphabet X , and the probability mass function
(PMF), or probability distribution, of X represented as pX satisfying: pX(x) ≥ 0,
∀x ∈ X , and ∑x∈X pX(x) = 1. For simplicity, we omit the alphabet when sum-
ming, and write pX(x) as p(x) when evaluating. The support of pX supp(pX) :=
{x | p(x) > 0}, the cardinality of the support |supp(pX)|, and the extended line of
real numbers R := R ∪ {∞,−∞}. Similarly, joint PMFs pXG satisfy ∑x,g p(x, g) = 1
and conditional PMFs pG|X satisfy ∑x p(x|g) = 1, ∀g. We now address quantum
theory.

2.1 Background on Quantum Theory

In this section we address some mathematical preliminaries for quantum theory.
The general mantra behind our approach is to focus on three aspects of the theory: i)
preparation of physical systems, which is represented by the mathematical objects of
quantum states, ii) measurement, represented by either projective or general measure-
ments, and iii) transformation of physical systems, represented by the mathematical
objects of quantum channels. This highlights the three fundamental quantum objects
of: states, measurements, and channels. We start by addressing closed systems, fol-
lowed by a more general density operator formalism, keeping a resource-theoretic
approach to QIT by emphasising the properties of interest of each object. Important
resources for this section includes: Wolf’s lecture notes [246, 247], Preskill’s lecture
notes [180], Wilde’s book [242], Watrous’ book [238], Nielsen-Chuang’s book [161],
and Heinosaari-Ziman’s book and lecture notes [109, 108].
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2.1.1 Standard formalism

Quantum theory deals with Hilbert spaces. A Hilbert space is a complete inner product
space. An inner product space is a structure (H,+, ·,K, ⟨·|·⟩), where (H,+, ·,K) a vector
space over a field K, and ⟨·|·⟩ an inner product. Consider in this paragraph x, y ∈ H.
Taking into account that the inner product ⟨·|·⟩ induces a norm ||x|| := ⟨x|x⟩1/2,
which in turn induces a metric d(x, y) := ||x− y||, the inner product space in ques-
tion is complete, if the induced metric d(·, ·) is complete [246, 247]. The metric d(·, ·)
also induces a topology, with the open balls defined as B(x, ϵ) := {y|d(x, y) < ϵ},
ϵ ≥ 0. For simplicity, we will denote complete inner product spaces (Hilbert spaces)
(H,+, ·,K, ⟨·|·⟩) by simply writing H.

We now set restrictions on the Hilbert spaces that we work with, and establish the
notation to be used in this thesis. First, we use complex Hilbert spaces, meaning
thatK = C. Second, we address finite-dimensional spaces and therefore, the Hilbert
spaces are basically the Hilbert space Cd with dimension d ≥ 2. The vectors of these
Hilbert spaces are denoted by Greek letters inside the so-called “ket”-“Dirac” nota-
tion as |ψ⟩ ∈ H. We write the standard orthonormal basis (orthogonal normalised
basis) for these Hilbert spaces as {|i⟩}d−1

i=0 . By basis, we will always mean one of these
orthonormal bases. Third, we use the standard inner product ⟨ϕ|ψ⟩ := ∑d−1

i=0 ϕ∗i ψi, for
|ϕ⟩ = ∑d−1

i=0 ϕi |i⟩, and |ψ⟩ = ∑d−1
j=0 ψj |j⟩, ϕi, ψj complex numbers and ∗ complex con-

jugation. Throughout the text, H will mean one of these Hilbert spaces, and we will
consider Hilbert spaces for different physical “systems" or “parties" and denote each
system or party as A, B, ..., and their respective Hilbert spaces as HA,HB and so on.
We consider the set of linear operators from one Hilbert spaceHA to another Hilbert
space HB, as L(A, B), and denote L(A) := L(A, A). In particular, we consider the
linear operator |ψ⟩⟨ψ| as: |ψ⟩⟨ψ| (|ϕ⟩) := (⟨ψ|ϕ⟩) |ψ⟩. Let us now assign some of
these mathematical objects to the physical concepts that we are interested in.

Some operators of interest and projective measurements

We now consider the set of linear operators L(A) for a Hilbert spaceHA, and define
some special types of operators. Given a linear operator A ∈ L(A), its adjoint op-
erator denoted as A†, is defined as the operator such that (

〈
ϕ|A†)|ψ

〉
= ⟨ϕ|(A|ψ⟩),

∀ |ϕ⟩ , |ψ⟩ ∈ H. A linear operator A is called Hermitian when it is self-adjoint, mean-
ing that A† = A. The set of all Hermitian operators is denoted as Herm(A). A
positive semidefinite operator A is such that ⟨ψ| A |ψ⟩ ≥ 0, ∀ |ψ⟩ ∈ H, this is written
as A ≥ 0. The set of all positive semidefinite operators is denoted as PSD(A). One
can check that (L(A),+, ·,C, ⟨·|·⟩HS) forms a Hilbert space with with the so-called
Hilbert-Schmidt inner product ⟨X|Y⟩HS := Tr(X†Y). Given an Hermitian operator
O, the spectral decomposition theorem establishes that O can be written as [246]:

O =
d−1

∑
a=0

oaPa, (2.1)

where {oa} are its eigenvalues, which are real numbers, and Pa = |a⟩⟨a|with {|a⟩}d−1
a=0

a basis. Hermitian operators are important because their eigenvalues are real eigen-
values and therefore they are suitable to represent values of properties of physical
systems and so, they can be interpreted as physical observables. The set M = {Pa}
is called a projective (or von Neumann) measurement, and the operators Pa are called
projections. One can check that the set M = {Pa} satisfies the properties: i) positive
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semi-definite elements Pa ≥ 0, ∀a, ii) completeness ∑d−1
a=0 Pa = 1, and iii) orthog-

onality PaPa′ = Paδa,a′ , ∀a, a′. With these elements in place, we now address the
standard interpretation of quantum mechanics or Copenhagen interpretation.

Pure states

A quantum (pure) state or simply a (pure) state is a vector |ψ⟩ ∈ Cd such that it
has norm one ⟨ψ|ψ⟩ = 1 [180]. Considering a state written in an arbitrary ba-
sis; |ψ⟩ := ∑d−1

i=0 αi |i⟩, αi ∈ C, the normalisation condition is imposed because we
want to interpret the coefficient p(i) := |αi|2 as a probability distribution for the
physical system to be represented by the vector |i⟩, for which one can check that
∑i p(i) = ∑d−1

i=0 |αi|2 = ⟨ψ|ψ⟩ = 1, and so we say that |ψ⟩ is a superposition of the vec-
tors {|i⟩}. The normalisation condition also implies that global phases are irrelevant
from a physical point of view. The meaning of pure is going to be made clear later
on when more general mixed states are introduced, in short, a pure state represents a
closed system. Having defined a quantum state representing a physical system, we
now consider its interaction with a measurement process.

Born rule and post-measured states

Given an observable Ox (x acting as a counter x = 1, 2, ...), and an arbitrary state |ψ⟩
written in the basis generated by Ox; |ψ⟩ = ∑a ψa |a⟩, this state has probability |ψa|2
of having a value of ox

a for the property represented by Ox [180]. This probability can
also be written as:

p(a|x) := |ψa|2 = ⟨ψ| Px
a |ψ⟩ = Tr(Px

a ψ), (2.2)

with ψ := |ψ⟩⟨ψ|. This rule then determines the conditional PMF p(a|x) of obtain-
ing an outcome a for a given measurement Mx = {Px

a }, a given state ρ, and it is
known as the Born Rule. This is then a probabilistic interpretation of quantum me-
chanics. We can similarly address the expected value (average) of the observable
as Ex = Tr(Oxψ) = Tr[∑d−1

a=0 ox
a Px

a ψ] = ∑d−1
a=0 ox

a p(a|x). Given the state |ψ⟩ and the
measurement Mx = {Px

a }, we can also talk about the state after the measurement,
which is going to be one of the states |ψa⟩ := Px

a |ψ⟩ /||Px
a |ψ⟩ ||, with probability

||Px
a |ψ⟩ || = Tr(Px

a ψPx
a ). After the the measurement process has taken place, the

state of the system changes from ψ to one of the states {ψa}, in a probabilistic man-
ner, and this is what it is commonly called as the reduction of the quantum state or
the collapse of the wave function.

Unitary channels

We now want to consider transformations of states, and we naturally want for these
transformations to keep the structure of the set of states invariant, meaning that it
takes quantum states into quantum states. This therefore gives rise to unitary trans-
formations, or unitary operators. An operator U ∈ L(A) is called unitary when it
satisfies that U†U = UU† = 1.

So far, we have only considered one physical system. However, we might also con-
sider the fact that a measurement process can be somehow representing another
physical system (a measurement apparatus, an experimentalist, or more generally
the rest of the universe), which should in principle also be represented as a system,
and therefore, modelled with a Hilbert space too. Furthermore, the physical system
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of interest could also be composed of subsystems. These considerations lead us to
consider multipartite systems.

Multipartite systems

A natural way to assign a Hilbert space to a multipartite system is by considering the
tensor product of individual systems. Considering an n-partite system represented
by H⊗ =

⊗n
i=1C

di with d = d1d2...dn, where ⊗ stands for the tensor product, one
can check that the structure (H⊗,+⊗, ∗⊗,C, ⟨·|·⟩⊗), with +⊗, ∗⊗ as element-wise ex-
tensions, and ⟨ψ1 ⊗ ψ2|ϕ1 ⊗ ϕ2⟩⊗ := ⟨ψ1|ϕ1⟩⟨ψ2|ϕ2⟩, is also a Hilbert space, and
therefore, suitable and desirable to represent the n-partite system in question. Mul-
tipartite systems are going to be represented by the Hilbert space H =

⊗n
i=1C

di ,
with different values for n and {di} (we drop the subscript ⊗ for simplicity). In par-
ticular, we are going to deal with bipartite systems which are going to be denoted as
H = Cd1 ⊗ Cd2 , (or CdA ⊗ CdB ). Considering a basis for each system as {|i⟩}dA−1

i=0 ,
and {|j⟩}dB−1

i=0 , we write a bipartite basis as {|ij⟩}dA−1,dB−1
i,j=0 , with |ij⟩ := |i⟩ ⊗ |j⟩. Let

us now address a consequence of considering multipartite systems, in the so-called
density operator formalism.

2.1.2 Density operator formalism

Considering multipartite systems, we now focus on the case when we are not inter-
ested in the whole system, but rather into a subsystem of it. Let us consider a bi-
partite system and rename the two parts as system (S) and environment (E). In doing
so, we now address how this naturally leads to the generalisation of the concepts of
states, projective measurements, and unitary transformations into density operators,
Positive Operator-Valued Measures (POVM’s), and Completely-Positive Trace-Preserving
(CPTP) maps (or quantum channels), respectively. Let us address these generalisa-
tions.

Density operators

We start by introducing Hilbert spaces for system and environment as HS = CdS

and HE = CdE , respectively. The Hilbert space for the whole system is then H :=
CdS ⊗ CdE , and a general state for the whole system-environment is |ψSE⟩. If we
consider bases for the system and environment as {|i⟩},{|j⟩}, respectively, we have
that any state in H can be written as: |ψSE⟩ = ∑ij αij |ij⟩ , αij ∈ C, ∀i, j. However, we
are now only interested in the system S. Inspired by (2.2), we then would like to find
an operator, let us call it ρS, such that after local measurements on the system’s side
{Px

a ⊗ 1}, Px
a a projection on HS, we get:

⟨ψSE| Px
a ⊗ 1 |ψSE⟩ = Tr [(Px

a ⊗ 1)ψSE]
!
= Tr(Px

a ρS).

One can check that proposing ρS := ∑ik βik |i⟩⟨k|with βik := ∑j αijα
∗
kj, and calculating

Tr(Px
a ρS), yields the desired probability [180]. The operator ρS is called the reduced

density operator of |ψSE⟩, and it can also alternatively be obtained by introducing
the concept of partial trace with respect to the environment (TrE) from which we get
TrE(ψSE) = ρS (Preskill’s notes for full details [180]).

Analysing the density operator ρS, one can check that it satisfies the following
two properties: i) Tr(ρ) = 1, and ii) ρ ≥ 0, and so the set of density operators is defined
as the set of operators satisfying these two conditions and is denoted as D(H), and
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so we have D(H) ⊆ PSD(H). Any density operator ρ ∈ D(H) can be written as
ρ = ∑i piψi with {|ψi⟩ , pi} an ensemble of states, with pi > 0, ∀i, and ∑i pi = 1 [180].
We call density operators of the form ψ = |ψ⟩⟨ψ| pure quantum states, and general
density operators can then be seen as a statistical mixture of such pure states, and
that is the reason why general density operators are also called mixed states.

From a resource-theoretic approach, quantum states can be thought of as in
possession of various different valuable resources. For example, entanglement [25,
23], which means states which cannot be written in a separable form as ρAB =

∑i piψ
A
i ⊗ ψB

i , and coherence [18, 245, 1], which means states which cannot be written
in a incoherent form for a specific basis {i} as ρA = ∑i pi |i⟩⟨i|. Further properties of
quantum states deemed as valuable resources include: purity [115], superposition
[219, 2], athermality [124, 40, 116], magic [122], reference frames [94], asymmetry
[148], non-Gaussianity [215], imaginarity [249, 250], amongst others [57]. We now
consider general measurements.

General measurements (POVMs)

Similarly to the generalisation from pure to general mixed states, projective measure-
ments can also be generalised. Explicitly, consider a projective measurement {PAB

a }
in a bipartite system and a quantum state ρA. We then want to ask if this measure-
ment can be thought of as being implemented as an operation being implement in
subsystem A alone. Given any projective measurement {PAB

a } and any pure state
ψB we want to find a set of operators {EA

a } such that ∀a:

p(a) = Tr
[(

ρA ⊗ ψB
)

PAB
a

]
!
= Tr(ρAEA

a ). (2.3)

One can check that this can be achieved by considering EA
a := (1A⊗ ⟨ψ|B)PAB

a (1A⊗
|ψ⟩B). One can also check that these operators satisfy {EA

a } satisfy the properties: i)
positive semidefinite EA

a ≥ 0, ∀a and ii) partition of the identity ∑a EA
a = 1. These

operators do not necessarily need to satisfy the orthogonality condition. The set of
operators {EA

a } is called a Positive Operator-Valued Measure (POVM). These op-
erators can be seen as generalisations of the projections, where the orthogonality
condition is dropped. The converse of the previous argument is also true, given any
POVM M = {EA

a } and a state ρA, there exists a bipartite projective measurement
{PAB

a } and a quantum state ψB such that (2.3) holds (Wolf’s notes for full details
[246]).

We have that information of the state ρ and the measurement M = {Ea} alone
is not enough for describing the post-measured state (unlike the case for projective
measurements). However, when we consider POVM elements of the form Ea =
F†

a Fa, then it is possible to talk about the state after the measurement, which is given
by ρa = FaρF†

a / Tr(FaρFa
†), with probability p(a) = Tr(FaρF†

a ). The set {Fa} is called
a quantum instrument, from which both the POVM and the post-measured state (pro-
vided ρ) can be recovered.

Properties of general measurements are also deemed as being valuable from a
resource-theoretic perspective. QRTs of measurements address properties like: en-
tanglement, coherence [162], non-projective simulability [165, 99], informativeness
[204], amongst others [57]. Now that we have covered states and measurements, we
now move on to address the generalisation of unitary transformations.
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General channels

Consider two finite-dimensional Hilbert spaces HA = CdA , HB = CdB , and their
respective sets of quantum states (or density operators) as D(A) and D(B). We
address maps as objects NB←A : D(A) → D(B). A completely positive (CP) map
means that idk ⊗ NB←A is a positive map for all k ≥ 0, with the identity channel
on an auxiliary k-dimensional Hilbert space. A trace-preserving (TP) map means that
Tr[NB←A(ρA)] = Tr[ρA] = 1, ∀ρA ∈ D(A). A trace nonincreasing (TNI) map sat-
isfies 0 ≤ Tr[NB←A(ρA)] ≤ Tr[ρA] = 1. A quantum channel is a completely positive
trace-preserving (CPTP) map, and a quantum subchannel is a completely positive trace-
nonincreasing (CPTNI) map. Considering the state ψ = |ψ⟩⟨ψ|, we have that unitary
operators act as a map ΛU : ψ → UψU†, and one can check that the map ΛU is
completely positive and trace-preserving. These types of maps are called unitary
channels.

Similarly to the previous constructions for states and measurements, given a
CPTP map NB←A there exists a unitary UAB and a quantum state σB such that:

NB←A(ρA) = TrA

[
UAB (ρA ⊗ σB)U†

AB

]
. (2.4)

This is sometimes called the environment representation of a quantum channel [246]
and, similarly to the case for sates and measurements, it means that general quantum
channels naturally emerge when analysing the effect on the subsystem, when an uni-
tary channel acts on a larger Hilbert space. We now address the Choi-Jamiołkowski
representation. We introduce the unnormalised maximally entangled (ME) state be-
tween two isomorphic Hilbert spaces HA and HA′ as:

ΦAA′ := |ΦAA′⟩ ⟨ΦAA′ | , |ΦAA′⟩ :=
d−1

∑
i=0
|iiAA′⟩ . (2.5)

We now also invoke the Choi-Jamiołkowski (CJ) isomorphism between maps (chan-
nels) and bipartite operators (states) (or channel-state duality) as follows. Given any
channel NB←A : D(A)→ D(B) we define its associated CJ-operator (CJ-state) as:

JNAB := (idA ⊗NB←A′)(ΦAA′) =
d−1

∑
ij=0
|i⟩⟨j|A ⊗NB←A′ (|i⟩⟨j|A′) , (2.6)

with HA and HA′ isomorphic Hilbert spaces. The bipartite operator JNAB is not di-
rectly a state, but we can define one as ρNAB := (1/dA)JNAB. We then see here that
the ME state plays an important role in allowing the definition of the associated CJ-
operator for a given channel. We also consider the other direction, meaning that
given a bipartite operator (state) JNAB (ρNAB), we can define its CJ-map (CJ-channel) as:

NB←A(XA) := TrA[JNAB(XT
A ⊗ 1B)]. (2.7)

The properties of NB←A translate into properties of JNAB as follows:

• NB←A is CP map iff JNAB ≥ 0,
(the CJ-operator is positive semidefinite).

• NB←A is TP map iff JNA := TrB[JNAB] = 1A,
(the CJ-operator has maximally mixed marginal).

• NB←A is TNI map iff JNA := TrB[JNAB] ≤ 1A.
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This means that ρNAB := (1/dA)JNAB is a state, with maximally mixed marginal in
A as ρNA = (1/dA)1A. We also consider the concept of dual map. E † is the ad-
joint map of E , and is defined as the operator such that Tr(E(X)Y) = Tr(XE †(Y)),
∀X ∈ L(A), ∀Y ∈ L(B). Finally, from a resource-theoretic perspective, quantum
channels are also deemed in possession of valuable resources like: non-constant
channels, non-entanglement breaking, non-nonlocality breaking, and more gener-
ally resource non-destroying channels, amongst other properties [57]. We now ad-
dress some additional objects of interest, which can be constructed by combining the
previous objects of states, measurements, and channels.

On composite quantum objects and generalities of QRTs

We now briefly discuss composite objects. We can think about combining states,
together with sets of measurements, and in order to generate new objects like steer-
ing assemblages and nonlocal boxes. Many of these composite objects have been
explored under resource-theoretic lenses including: states [57], measurements [165,
162, 101], behaviours or boxes [233, 5], EPR-steering assemblages [89], teleportation
assemblages [55] and channels [144, 141]. Properties of these objects that are deemed
as resources include: entanglement [234], nonlocality [49], steering [172], asymmetry
[174], coherence [155], informativeness [204], projective simulability [99], incompat-
ibility [49, 144, 226, 48], teleportation [55], superposition [219], purity [210], magic
[122], nongaussianity [215], nonmarkovianity [31, 236, 6], athermality [158], and ref-
erence frames [95], amongst others [57].

Having specified a set of objects and one of their properties to be treated as a
resource, it is of interest to quantitatively specify the amount of resource contained
within a given object. This can be accomplished by introducing appropriate mea-
sures known as resource quantifiers [57]. Two well-known families of these measures
are the so-called robustness-based [234, 49, 172, 174, 155, 204, 49, 55, 138, 122] and
weight-based [136, 79, 206, 49, 44] resource quantifiers. In this thesis we address these
two particular measures for states and measurements. It turns out that these func-
tions can be conveniently be written as optimisation problems, some of which we
review in what follows.

Conic programming (CP) and semidefinite programming (SPD)

Conic programming (CP) is a sub-field of convex optimisation which includes other
optimisation problems like semidefinite, quadratic, and linear programming. It is called
conic programming because it deals with the optimisation of a convex function over
the intersection of closed convex cones (CCC) and an affine space. This subsection fol-
lows Gärtner-Matoušek’s book on general cone programs [90] and Johnston’s PhD
thesis [127].

In the context of QIT, we are dealing with finite-dimensional complex Hilbert
spaces, and so these concepts can be addressed as follows. K ⊆ Herm(A) is a cone if
λK ∈ K, ∀K ∈ K and ∀λ ≥ 0. K is a convex set when it satisfies pK1 + (1− p)K2 ∈ K,
∀K1, K2 ∈ K, ∀p ∈ [0, 1]. In the case of a cone K, the convexity condition can be
relaxed to K1 +K2 ∈ K, ∀K1, K2 ∈ K, this, because both λK1 ∈ K and (1− λ)K2 ∈ K.
A closed set here is considered as being closed under the topology induced by the
inner product of the Hilbert space. We also need the concept of the dual of a cone.
The dual of a cone K is defined as K◦ := {O ∈ Herm(A)|⟨O|K⟩HS ≥ 0, ∀K ∈ K}. For
any cone K we have (K◦)◦ = hull(K) (the closure of the convex hull), meaning that
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the dual cone of any cone is always a CCC, and so for any CCC we have (K◦)◦ = K.
With these tools at hand, we now address conic programs.

Definition 2.1. (Conic program [90]) A conic program (CP) is a 5-tuple (A, B, E ,K,L),
with A ∈ Herm(A), B ∈ Herm(B), E : L(A) → L(B) a Hermiticity preserving linear
map, and K ⊆ Herm(A), L ⊆ Herm(B) closed convex cones. Two optimisations asso-
ciated to the 5-tuple (A, B, E ,K,L) are the primal conic program (CP) and the dual conic
program (CP) given by:

Primal CP

maximise: ⟨A|X⟩HS (2.8a)
subject to: B− E(X) ∈ L, (2.8b)

X ∈ K. (2.8c)

Dual CP

minimise: ⟨B|Y⟩HS (2.9a)

subject to: E †(Y)− A ∈ K◦, (2.9b)
Y ∈ L◦. (2.9c)

We can alternatively write the objective functions as ⟨A|X⟩HS = Tr(A†X) = Tr(AX)
and ⟨B|Y⟩HS = Tr(B†Y) = Tr(BY). The variable X is called a “primal variable" or “pri-
mal feasible", and Y “dual variable" or “dual feasible". X∗ denotes the “optimal primal
variable/solution", and similarly Y∗ as the “optimal dual variable/solution". If there are no
feasible solutions we set the values −∞ and +∞, respectively.

We now address two particular cases of interest. First, we can consider that both
cones are equal to the cone of positive semidefinite operators, K = L = PSD, in
this case the conic program is called a semidefinite program (SDP), and it is usually
addressed by the triple (A, B, E). Second, we can consider the scenario when only
one of the cones is the set of positive semidefinite operators, say K = PSD, and so
we have a conic program with only one general cone L. In this thesis we are mostly
going to deal with these latter types of conic problems. For the sake of consistency
of notation with the literature, let us rename the cone as L = C and rewrite the
associated CP as follows.

Definition 2.2. (One-cone conic program [127]) A one-cone conic program (CP) is a 4-
tuple (A, B, E , C), with A ∈ Herm(A), B ∈ Herm(B), E : L(A) → L(B) a Hermiticity
preserving linear map, and C ⊆ Herm(A) a closed convex cone. Two optimisations of in-
terest associated to the 4-tuple (A, B, E , C) are the primal CP and the dual CP. Taking into
account that PSD◦ = PSD we can write these optimisations as follows:

Primal CP

maximise: Tr(AX) (2.10a)
subject to: B− E(X) ∈ C, (2.10b)

X ≥ 0. (2.10c)

Dual CP

minimise: Tr(BY) (2.11a)

subject to: E †(Y) ≥ A, (2.11b)
Y ∈ C◦. (2.11c)

Working with these one-cone conic problems, we now further analyse some notions
of interest. We now define the primal and dual feasible sets as:

A := {X ≥ 0|B− E(X) ∈ C}, B := {Y ∈ C◦|E †(Y) ≥ A}. (2.12)

Then optimal solutions are given by:

α := sup
X∈A
{Tr(AX)}, β := inf

Y∈B
{Tr(BY)}. (2.13)

The primal CP and the dual CP are related as α ≤ β, which is called Weak duality,
and it represents the fact that for any CP (A, B, E , C) the primal CP is always less or
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equal than the dual CP because we have the chain of inequalities:

Tr(AX) ≤ Tr(E †(Y)X) = Tr(YE(X)) ≤ Tr(YB). (2.14)

In the first inequality we use (2.11b), the equality we use the dual map, in the second
inequality we use (2.10b). Furthermore, it turns out that there are conditions, known
as Slatter-type conditions [90, 127], for the primal solution and the dual solution to
be equal, and this is called strong duality. These conditions are basically that either
α (β) are finite, and that there exist at least a strictly feasible variable in the interior
of the respective set Y ∈ Int(C◦) (X > 0) [127]. As an example, we now consider
the generalised robustness of resource, and see how it can be written as a one-cone
conic program.

Example 1. Consider the generalised robustness of resource of a state ρ, a convex closed
cone (CCC), and the set of free states as F as the intersection of F and the set of trace-one
operators as in (2.15). Consider now a conic program given by the 4-tuple (A, B, E , C) with:
A = ρ, B = 1, E = id (so E † = id), and C◦ = F . The optimisation of the dual conic
program is in (2.16c), and we can then see that the conic program is precisely 1 + RF(ρ),
with the dual variable Y = (1 + r)σ.

RF(ρ) = min r (2.15a)
s.t. ρ ≤ (1 + r)σ, (2.15b)

r ≥ 0, (2.15c)
σ ∈ F. (2.15d)

1 + RF(ρ) = min. Tr(BY) (2.16a)

s. t. E †(Y) ≥ A, (2.16b)
Y ∈ C◦. (2.16c)

Similarly, many other quantities in QIT can be expressed as conic programs (CPs)
or semidefinite programs (SDPs). We now present a list of the information-theoretic
quantities written as conic programs which we are going to use in this thesis.

Various information-theoretic quantities as conic programs

The generalised robustness of resource for states:

Primal CP
RF(ρ) = min r (2.17a)

s.t. ρ ≤ (1 + r)σ, (2.17b)
r ≥ 0, (2.17c)
σ ∈ F. (2.17d)

Dual CP
RF(ρ) = max Tr[Xρ]− 1 (2.18a)

s.t. Tr[Xσ] ≤ 1, (2.18b)
X ≥ 0, (2.18c)
σ ∈ F. (2.18d)

The weight of resource for states:

Primal CP
WF(ρ) = min w (2.19a)

s.t. ρ ≥ (1− w)σ, (2.19b)
w ≥ 0, (2.19c)
σ ∈ F. (2.19d)

Dual CP
WF(ρ) = max Tr[(−Y)ρ] + 1 (2.20a)

s.t. Tr[Yσ] ≥ 1, (2.20b)
Y ≥ 0, (2.20c)
σ ∈ F. (2.20d)

The generalised robustness of resource for measurements:
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Primal CP
RF(M) =min r (2.21a)

s.t. Mx ≤ (1 + r)Nx, ∀x, (2.21b)
r ≥ 0, (2.21c)
N ∈ F. (2.21d)

Dual CP
RF (M) =max

{Zx}
∑
x

Tr[Zx Mx]− 1, (2.22a)

s.t. ∑
x

Tr[Zx Nx] ≤ 1, (2.22b)

Zx ≥ 0, ∀x, (2.22c)
N ∈ F. (2.22d)

The weight of resource for measurements:

Primal CP
WF(M) =min w (2.23a)

s.t. Mx ≥ (1− w)Nx, ∀x, (2.23b)
w ≥ 0, (2.23c)
N ∈ F. (2.23d)

Dual CP
WF (M) = max

{Yx}
∑
x

Tr[(−Yx)Mx] + 1,

(2.24a)

s.t. ∑
x

Tr[Yx Nx] ≥ 1, (2.24b)

Yx ≥ 0, ∀x, (2.24c)
N ∈ F. (2.24d)

The trace norm or Schatten 1-norm:

Primal CP
||X||1 = sup Tr [MX] (2.25a)

s.t. − 1 ≤ M ≤ 1 (2.25b)
M ∈ Herm. (2.25c)

Dual CP
||X||1 = inf Tr[X1 + X2] (2.26a)

s.t. X = X1 − X2, (2.26b)
X1 ≥ 0, X2 ≥ 0. (2.26c)
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2.2 Background on Information Theory

In this subsection we now address the information-theoretic quantities represented
in Fig. 2.1 namely, the Rényi entropy, the Arimoto-Rényi conditional entropy, Ari-
moto’s mutual information, the Rényi divergence, the conditional Rényi (CR) di-
vergences of Sibson, Csiszár, and Bleuler-Lapidoth-Pfister, their respective mutual
informations, and the Rényi channel capacity. We mostly follow these references:
Cover & Thomas’ book [63], Moser’s lecture notes [152], and Pfister’s PhD thesis
[171].

α ≥ 1 Dα(·||·)

DS
α(pG|X ||qG|pX) DC

α (pG|X ||qG|pX) DBLP
α (pG|X ||qG|pX)HA

α (X|G)Hα(X)

ISα(X ;G) ICα (X ;G) IBLPα (X ;G)IAα (X ;G)

Cα(pG|X)

min
qG

min
qG

min
qG

max
pXmax

pX max
pX

max
pX

FIGURE 2.1: Hierarchical relationship between the Rényi divergence
Dα(·||·), conditional Rényi divergences DV

α (·|| · |·), mutual informa-
tion measures IV

α (X; G), and the Rényi channel capacity Cα(pG|X)
with α ≥ 1, and V ∈ {S, C, BLP} a label specifying the mea-
sures of Sibson [199], Csiszár [64], and Bleuler-Lapidoth-Pfister [33].
The mutual information associated to the BLP-conditional-Rényi di-
vergence was independently derived by Lapidoth-Pfister [133] and
Tomamichel-Hayashi [223]. We particularly address the capacities

generated by Sibson and Arimoto.

2.2.1 Rényi entropy

Definition 2.3. (Rényi entropy [192]) The Rényi entropy of order α ∈ R of a PMF pX is
denoted by Hα(X). The orders α ∈ (−∞, 0) ∪ (0, 1) ∪ (1, ∞) are defined as:

Hα(X) :=
1

1− α
log

(
∑
x

p(x)α

)
. (2.27)

The orders α ∈ {0, 1, ∞,−∞} are defined by continuous extension of (2.27) as: H0(X) :=
log |supp(pX)|, H1(X) := H(X), with H(X) := −∑x p(x) log p(x) the Shannon en-
tropy [63], H∞(X) := − log maxx p(x) = − log pmax, and H−∞(X) := − log minx p(x)
= − log pmin. The Rényi entropy is a function of the PMF pX and therefore, one can alter-
natively write Hα(pX). However, we keep the convention of writing Hα(X).

The Rényi entropy is mostly considered for positive orders, but it is also some-
times explored for negative values [230, 193, 227, 228]. In this thesis we use the whole
spectrum α ∈ R. We now consider the Arimoto-Rényi extension of the conditional
entropy.
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2.2.2 Arimoto-Rényi conditional entropy

Definition 2.4. (Arimoto-Rényi conditional entropy [8]) The Arimoto-Rényi conditional
entropy of order α ∈ R of a joint PMF pXG is denoted as Hα(X|G). The orders α ∈
(−∞, 0) ∪ (0, 1) ∪ (1, ∞) are defined as:

Hα(X|G) :=
α

(1− α)
log


∑

g

(
∑
x

p(x, g)α

) 1
α


 . (2.28)

The orders α ∈ {0, 1, ∞,−∞} are defined by continuous extension of (2.28) as: H0(X|G) :=
log maxg |supp(pX|G=g)|, H1(X|G) := H(X|G), with H(X|G) := −∑x,g p(x, g) log
p(x|g) the conditional entropy [63], H∞(X|G) := − log ∑g maxx p(x, g), and H−∞(X|G)
:= − log ∑g minx p(x, g). Arimoto-Rényi conditional entropy is a function of the joint
PMF pXG and therefore, one can alternatively write Hα(pXG). However, we keep the con-
vention of writing Hα(X|G).

We remark that there are alternative ways to extend the conditional entropy "à
la" Rényi [84]. The Arimoto-Rényi conditional entropy is however, the only one
(amongst five alternatives [84]) that simultaneously satisfy the following desirable
properties for a conditional entropy [84]: i) monotonicity, ii) chain rule, iii) consis-
tency with the Shannon entropy, and iv) consistency with the ∞ conditional entropy
(also known as min-entropy). Consistency with the conditional entropy means that
limα→1 Hα(X|G) = H(X|G), and similarly for property iv). In this sense, one can
think about the Arimoto-Rényi conditional entropy as the “most appropriate" Rényi-
extension (if not the outright “proper" Rényi extension) of the conditional entropy.
We now consider Arimoto’s mutual information, and its associated Rényi channel
capacity.

2.2.3 Arimoto’s mutual information

Definition 2.5. (Arimoto’s mutual information [8]) Arimoto’s mutual information of order
α ∈ R of a joint PMF pXG is given by:

Iα(X; G) := sgn(α) [Hα(X)− Hα(X|G)] , (2.29)

with the Rényi entropy (2.27) and the Arimoto-Rényi conditional entropy (2.28). The case
α = 1 reduces to the standard mutual information [63] I1(X; G) = I(X; G), with I(X; G) :=
H(X)− H(X|G). Arimoto’s mutual information is a function of the joint PMF pXG and
therefore, one can alternatively write Iα(pXG) or Iα(pG|X pX), the latter taking into account
that pXG = pG|X pX. We use these three different notations interchangeably, so that we draw
attention to the whole object pXG or either pG|X or pX.

2.2.4 Arimoto-Rényi channel capacity

Definition 2.6. (Rényi channel capacity [8, 64, 4, 154]) The Rényi channel capacity of order
α ∈ R, of a conditional PMF pG|X is given by:

Cα(pG|X) := max
pX

Iα(pG|X pX) (2.30)

with the maximisation over all PMFs pX, and Arimoto’s mutual information (2.29). The
case α = 1 reduces to the standard channel capacity [63] C1(pG|X) = C(pG|X) = maxpX

I(X; G).
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We remark that there are alternative candidates as Rényi-extensions of the mu-
tual information [84, 232]. In particular, we highlight the mutual informations of:
Sibson [199], Csiszár [64], and Bleuler-Lapidoth-Pfister [33], which we address as
IV
α (X; G) with the label V ∈ {S, C, BLP} representing each case. These mutual in-

formation measures are going to be useful, in particular, due to their connection to
conditional Rényi divergences. We now extend these information-theoretic quanti-
ties to the quantum domain.

2.2.5 Rényi divergence

Definition 2.7. (Rényi divergence [192, 229]) The Rényi divergence (R-divergence) of order
α ∈ R of PMFs pX and qX is denoted as Dα(pX||qX). The orders α ∈ (−∞, 0) ∪ (0, 1) ∪
(1, ∞) are defined as:

Dα(pX||qX) :=
sgn(α)
α− 1

log

[
∑
x

p(x)αq(x)1−α

]
. (2.31)

The orders α ∈ {1, 0, ∞,−∞} are defined define by continuous extension of (2.31) as:

D1(pX||qX) := D(pX||qX), (2.32)

D0(pX||qX) := − log ∑
x∈supp(pX)

q(x), (2.33)

D∞(pX||qX) := log max
x

p(x)
q(x)

, (2.34)

D−∞(pX||qX) := − log min
x

p(x)
q(x)

. (2.35)

with the standard Kullback-Leibler (KL) divergence given by D(pX||qX) := ∑x p(x) log p(x)
q(x)

[131, 63].

2.2.6 Conditional-Rényi (CR) divergences

Definition 2.8. (Sibson’s conditional-Rényi divergence [199]) The Sibson’s conditional-
Rényi divergence (S-CR-divergence) of order α ∈ R of PMFs pX|G, qX|G, and pX is denoted
as DS

α(pG|X||qG|X|pX). The orders α ∈ (−∞, 0) ∪ (0, 1) ∪ (1, ∞) are defined as:

DS
α(pG|X||qG|X|pX) :=

sgn(α)
α− 1

log ∑
x

p(x)∑
g

p(g|x)αq(g|x)1−α. (2.36)

The orders α ∈ {1, 0, ∞,−∞} are defined by continuous extension of (2.36) as:

DS
1(pG|X||qG|X|pX) := D(pG|X||qG|X|pX), (2.37)

DS
0(pG|X||qG|X|pX) := − log ∑

x∈supp(pX)

p(x) ∑
g∈supp(pG|X=x)

q(g|x), (2.38)

DS
∞(pG|X||qG|X|pX) := log max

x∈supp(pX)
max

g

p(g|x)
q(g|x) , (2.39)

DS
−∞(pG|X||qG|X|pX) := − log min

x∈supp(pX)
min

g

p(g|x)
q(g|x) , (2.40)
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with the conditional Rényi divergence given by D
(

pG|X||qG|X|pX
)

:= D
(

pG|X pX||qG|X pX
)
,

the latter being the standard KL-divergence [131, 63].

Definition 2.9. (Csiszár’s conditional-Rényi divergence [64]) The Csiszár’s conditional-
Rényi divergence (C-CR-divergence) of order α ∈ R of PMFs pX|G, qX|G, and pX is denoted
as DC

α (pG|X||qG|X|pX). The orders α ∈ (−∞, 0) ∪ (0, 1) ∪ (1, ∞) are defined as:

DC
α (pG|X||qG|X|pX) :=

sgn(α)
α− 1 ∑

x
p(x) log

[
∑
g

p(g|x)αq(g|x)1−α

]
. (2.41)

The orders α ∈ {1, 0, ∞,−∞} are defined by continuous extension of (2.41) as:

DC
1 (pG|X||qG|X|pX) := D(pG|X||qG|X|pX), (2.42)

DC
0 (pG|X||qG|X|pX) := − ∑

x∈supp(pX)

p(x) log ∑
g∈supp(pG|X=x)

q(g|x), (2.43)

DC
∞(pG|X||qG|X|pX) := ∑

x∈supp(pX)

p(x) log
[

max
g

p(g|x)
q(g|x)

]
, (2.44)

DC
−∞(pG|X||qG|X|pX) := − ∑

x∈supp(pX)

p(x) log
[

min
g

p(g|x)
q(g|x)

]
, (2.45)

with the conditional Rényi divergence given by D
(

pG|X||qG|X|pX
)

:= D
(

pG|X pX||qG|X pX
)
,

the latter being the standard KL-divergence [131, 63].

Definition 2.10. (Bleuler-Lapidoth-Pfister conditional-Rényi divergence [33, 171]) The Bleuler-
Lapidoth-Pfister conditional-Rényi divergence (BLP-CR-divergence) of order α ∈ R of PMFs
pX|G, qX|G, and pX is denoted as DBLP

α (pG|X||qG|X|pX). The orders α ∈ (−∞, 0)∪ (0, 1)∪
(1, ∞) are defined as:

DBLP
α (pG|X||qG|X|pX) :=

|α|
α− 1

log ∑
x

p(x)

[
∑
g

p(g|x)αq(g|x)1−α

] 1
α

. (2.46)

The orders α ∈ {1, 0, ∞,−∞} are defined by continuous extension of (2.46) as:

DBLP
1 (pG|X||qG|X|pX) := D(pG|X||qG|X|pX), (2.47)

DBLP
0 (pG|X||qG|X|pX) := − log max

x∈supp(pX)
∑

g∈supp(pG|X=x)

q(g|x), (2.48)

DBLP
∞ (pG|X||qG|X|pX) := log ∑

x∈supp(pX)

p(x)max
g

p(g|x)
q(g|x) , (2.49)

DBLP
−∞ (pG|X||qG|X|pX) := − log ∑

x∈supp(pX)

p(x)min
g

p(g|x)
q(g|x) . (2.50)

with the conditional Rényi divergence given by D
(

pG|X||qG|X|pX
)

:= D
(

pG|X pX||qG|X pX
)
,

the latter being the standard KL-divergence [131, 63].
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2.2.7 Relationship between the Rényi divergence and CR divergences

Remark 2.1. ([33, 171]) Relating conditional Rényi divergences to the Rényi divergence.
For any conditional PMFs pG|X, qG|X, and any PMF pX we have:

DS
α(pG|X||qG|X|pX) = Dα(pG|X pX||qG|X pX), (2.51)

DC
α (pG|X||qG|X|pX) = ∑

x
p(x)Dα(pG|X=x||qG|X=x). (2.52)

2.2.8 mutual informations

Definition 2.11. (mutual information measures of: Sibson [199], Csiszár [64], and Bleuler-
Lapidoth-Pfister [33]) The mutual information measures of Sibson, Csiszár, and Bleuler-
Lapidoth-Pfister of order α ∈ R of a joint PMF pXG are defined as:

IV
α (X; G) := min

qG
DV

α

(
pG|X||qG|pX

)
, (2.53)

with the label V ∈ {S, C, BLP} denoting each case, the minimisation being performed over
all PMFs qG, and DV

α (·|| · |·) the conditional Rényi (CR) divergences of: Sibson, Csiszár,
and Bleuler-Lapidoth-Pfister, of order α ∈ R, as defined previously. The case α = 1 reduces,
for all three cases, to the standard mutual information [63] IV

1 (X; G) = I(X; G). Similarly
to Arimoto’s measure, we also use the notation IV

α (pXG) and IV
α (pG|X pX) interchangeably.

2.2.9 Relationship between CR-divergences

Lemma 2.1. Consider the conditional-Rényi divergences of Sibson, Csiszár, and Bleuler-
Lapidoth-Pfister, then:

α ∈ [−∞, 0], DBLP
α (· · ·) ≤ DC

α (· · ·) ≤ DS
α (· · ·) , (2.54)

α ∈ [0, 1], DBLP
α (· · ·) ≤ DS

α (· · ·) ≤ DC
α (· · ·) , (2.55)

α ∈ [1, ∞], DC
α (· · ·) ≤ DBLP

α (· · ·) ≤ DS
α (· · ·) , (2.56)

Proof. The cases α ∈ [0, 1] and α ∈ [1, ∞] have already been proven in the literature
[33]. A similar argument can be followed in order to prove the cases α ∈ [−∞, 0].
For completeness, we address it in what follows.
Part i) We start by proving that for α ∈ [−∞, 0] we have DC

α (·|| · |·) ≤ DS
α (·|| · |·).

We prove it for α ∈ (−∞, 0) and the extremes follow because of continuity. Starting
from the Sibson’s measure times the positive factor (α− 1) sgn(α) we get:

(α− 1) sgn(α)DS
α

(
pG|X||qG|pX

)
= log

[
∑
x

p(x)∑
g

p(g|x)αq(g|x)1−α

]
, (2.57)

≥∑
x

p(x) log

[
∑
g

p(g|x)αq(g|x)1−α

]
, (2.58)

= sgn(α)(α− 1)DC
α

(
pG|X||qG|pX

)
. (2.59)

In the first equality we use the definition of the Sibson’s conditional Rényi diver-
gence (2.36). The inequality follows because of Jensen’s inequality [126], and be-
cause log(·) is a concave function. In the last equality we use the definition of the
Csiszár’s conditional Rényi divergence (2.41). Dividing both sides by sgn(α)(α− 1),
which is positive because α ∈ (−∞, 0), proves the claim.
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Part ii) We now want to prove that for α ∈ [−∞, 0], we have DBLP
α (·|| · |·) ≤ DC

α (·|| · |·).
Similarly, we prove it for cases α ∈ (−∞, 0) with the extremes following because of
continuity. Starting from Csiszár’s measure:

DC
α

(
pG|X||qG|pX

)
=

sgn(α)
α− 1 ∑

x
p(x) log

[
∑
g

p(g|x)αq(g|x)1−α

]
, (2.60)

=
|α|

α− 1 ∑
x

p(x) log

[
∑
g

p(g|x)αq(g|x)1−α

] 1
α

, (2.61)

≥ |α|
α− 1

log


∑

x
p(x)

(
∑
g

p(g|x)αq(g|x)1−α

) 1
α


 , (2.62)

= DBLP
α

(
pG|X||qG|pX

)
. (2.63)

The first equality we use the definition of Csiszár’s conditional Rényi divergence
(2.41). In the second equality we multiply by one 1 = α

α and re-organise conve-
niently. The inequality follows because of Jensen’s inequality [126], because log(·)
is a concave function, and because the coefficient sgn(α)α

α−1 is negative for α ∈ (−∞, 0).
In the last equality we use the definition of the Bleuler-Lapidoth-Pfister conditional
Rényi divergence (2.46).

2.2.10 Relationship between mutual information measures

Lemma 2.2. Consider the mutual information measures of Sibson, Csiszár, and Bleuler-
Lapidoth-Pfister, then:

α ∈ [−∞, 0], IBLP
α (·|·) ≤ IC

α (·|·) ≤ IS
α (·|·) , (2.64)

α ∈ [0, 1], IBLP
α (·|·) ≤ IS

α (·|·) ≤ IC
α (·|·) , (2.65)

α ∈ [1, ∞], IC
α (·|·) ≤ IBLP

α (·|·) ≤ IS
α (·|·) , (2.66)

Proof. The cases α ∈ [0, 1] and α ∈ [1, ∞] were proven in [33], and they follow by
considering the previous Lemma on the less or equal order between the conditional
Rényi divergences and, by considering that the mutual information measures are
defined in terms of the conditional Rényi divergences by minimising over pX (2.53).
The cases α ∈ [−∞, 0] follow the same argument.

2.2.11 Sibson-Arimoto-Rényi channel capacity

Having defined these mutual information measures, we now address the fact that
some of them become equal when maximising over PMFs pX, whilst keeping fixed
the conditional PMF pG|X.

Lemma 2.3. (Rényi channel capacity [8, 64, 4]) The mutual information measures of Ari-
moto and Sibson of order α ∈ R) become equal when maximised over pX, and we refer to this
quantity as the Rényi capacity of order α. The Rényi capacity of order α ∈ R, of a conditional
PMF pG|X is:

Cα(pG|X) := max
pX

IV
α (pG|X pX), (2.67)
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with V ∈ {A, S}, the maximisation over all PMFs pX, and the mutual information of Sibson
as in (2.53), and Arimoto’s mutual information as in the main text. The case α = 1 reduces
to the standard channel capacity [63] C1(pG|X) = C(pG|X) = maxpX I(X; G).

This Lemma, for the cases α ≥ 0, has been proven in different places in the
literature [199, 64, 4]. For completeness, here we provide a proof for the cases α < 0.
We can understand this result as Cα(pG|X) being the Rényi capacity of the classical
channel specified by the conditional PMF pG|X, which simultaneously represents
the mutual information measures of Arimoto and Sibson. On can similarly address
Rényi capacities using the rest of mutual information measures, but using these two
are enough for our purposes.

Proof. The cases for α ∈ [0, ∞) have been proven in different places in the literature
[8, 64, 4]. We therefore only address here the interval (−∞, 0). Addressing Arimoto’s
measure for α ∈ (−∞, 0):

max
pX

IA
α

(
pG|X pX

) 1
= max

pX

|α|
α− 1

log ∑
g

(
∑
x

p(g|x)α p(x)α

∑x′ p(x′)α

) 1
α

, (2.68)

2
= max

rX

|α|
α− 1

log ∑
g

(
∑
x

p(g|x)αr(x)

) 1
α

. (2.69)

In the first equality we replaced and reorganised the definition of Arimoto’s mu-
tual information (2.29). In the second equality we use the fact that both maximi-
sations are equal, because from an optimal p∗X, we can construct a feasible rX as
r(x) := p∗(x)α/(∑x′ p∗(x′)α) and conversely, from an optimal r∗X, we can construct
a feasible pX as p(x) = r∗(x)

1
α /(∑x′ r∗(x′)

1
α ). We now relate the quantity in (2.69) to

the quantity obtained from Sibson’s. We now consider Sibson’s CR-divergence and
invoke the identity [64] ∀pG|X, qG, pX:

DS
α

(
pG|X||qG|pX

)
= DS

α

(
pG|X||q∗G|pX

)
+ Dα (q∗G|qG) , (2.70)

with the PMF q∗G given by:

q∗G(g) :=
(∑x p(x)p(g|x)α)

1
α

∑g (∑x p(x)p(g|x)α)
1
α

. (2.71)

This identity can be checked by directly substituting (2.71) into the RHS of (2.70). We
can now get an explicit expression for Sibson’s mutual information, because min-
imising (2.70) over qG is obtained for qG = q∗G, this, because the Rényi divergence is
non-negative for α ∈ (−∞, 0) [229]. We therefore get:

IS
α

(
pG|X pX

)
= min

qG
DS

α

(
pG|X||qG|pX

)
, (2.72)

= DS
α

(
pG|X||q∗G|pX

)
, (2.73)

=
|α|

α− 1
log ∑

g

(
∑
x

p(x)p(g|x)α

) 1
α

. (2.74)
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Maximising this quantity over pX we get:

max
pX

IS
α

(
pG|X pX

)
= max

pX

|α|
α− 1

log ∑
g

(
∑
x

p(x)p(g|x)α

) 1
α

, (2.75)

which is the same quantity than in (2.69) for Arimoto’s measure. Altogether, we have
that starting from either Sibson or Arimoto, we arrive to the same expression when
maximising over pX, as per equations (2.75) and (2.69). Consequently, the capacities
they each define is the same, and thus proving the claim.

2.2.12 Information-theoretic quantities in the quantum domain

We now move on to describe Arimoto’s mutual information in this quantum setting,
as well as the Rényi channel capacity.

Remark 2.2. (Arimoto’s mutual information in a quantum setting) We address Arimoto’s
dependence between two classical random variables encoded into quantum objects. Explic-
itly, the random variable X is encoded in an ensemble of states E = {ρx, p(x)} and therefore,
we address it as XE . On the other hand, G is considered as the random variable obtained from
a decoding measurement D = {Dg = |g⟩⟨g|} and therefore, we address it as GD. We con-
sider a conditional PMF as p(M,S)

G|X , given by p(g|x) := Tr[DgΛM(ρx)], S := {ρx} a set
of states, and the quantum-to-classical (measure-prepare) channel associated to the measure-
ment M given by:

ΛM(σ) := ∑
a

Tr[Maσ] |a⟩⟨a| , (2.76)

with {|a⟩} an orthonormal basis. We effectively have p(g|x) := Tr[Mgρx] and therefore we
can think about the decoding variable GD as GM. We are now interested in mutual infor-
mation measures quantifying the dependence between variables XE and GM, when encoded
and decoded in the quantum setting described previously. We then consider the Arimoto’s
mutual information:

Iα(XE ; GM) := sgn(α) [Hα(XE )− Hα(XE |GM)] , (2.77)

with the standard Rényi entropy (2.27) and the Arimoto-Rényi conditional entropy (2.28)
for the quantum conditional PMF described above.

Remark 2.3. (Rényi capacity of a quantum conditional PMF) The Rényi capacity of order
α ∈ R of a quantum conditional PMF p(M,S)

G|X is given by:

Cα

(
p(M,S)

G|X

)
:= max

pX
Iα

(
p(M,S)

G|X pX

)
, (2.78)

with the maximisation over all PMFs pX.

The quantity we are interested in the quantum domain is the Rényi capacity of
order α of a quantum-classical channel.

Definition 2.12. (Rényi capacity of a quantum-classical channel) The Rényi capacity of
order α ∈ R of a quantum-classical channel ΛM associated to the measurement M is given
by:

Cα(ΛM) := max
S

Cα

(
p(M,S)

G|X

)
= max

E
Iα

(
p(M,S)

G|X pX

)
, (2.79)
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with the maximisation over all sets of states S = {ρx} or over all ensembles E = {ρx, p(x)}.

Mutual information measures in the quantum domain are defined via their Rényi
conditional divergences counterparts as:

IV
α (XE ; GM) := min

qG
DV

α

(
p(M,S)

G|X

∣∣∣
∣∣∣qG

∣∣∣ pX

)
, (2.80)

with the quantum conditional PMFs p(M,E)
G|X and q(N,E)

G|X given by p(g|x) := Tr(Mgρx),
q(g|x) := Tr(Ngρx), respectively, the minimisation over all PMFs qG, and the classi-
cal conditional Rényi divergences of: Sibson, Csiszár, and Bleuler-Lapidoth-Pfister,
which we address with a label V ∈ {S, C, BLP}.

2.3 Background on Expected Utility Theory (EUT)

In this subsection we address the preliminary theoretical tools on expected utility
theory. We start with the concept of risk in the theory of games and economic be-
haviour, a pair of games involving risk, and the quantities of certainty equivalent
(CE) and the isoelastic certainty equivalent (ICE). References for this section are: the
book by Eeckhoudt, Gollier, and Schlesinger [76], Parmigiani-Inoue-Lopes’s book on
decision theory [167], and Bonanno’s book [36].

2.3.1 The concept of risk in the theory of games and economic behaviour

In expected utility theory [157], the level of ‘satisfaction’ of a rational agent, when
receiving (obtaining, being awarded) a certain amount of wealth, or goods or ser-
vices, is described by a utility function [157]. The utility function of a rational agent
is a function u : A → R, with A = {ai} a the set of alternatives from which the
rational agent can choose from. The set A is endowed with a binary relation ⪯.
The utility function is asked to be a monotone for such a binary relation; if a1 ⪯ a2
then u(a1) ≤ u(a2). We address the set of alternatives as representing wealth and
therefore, it is enough to consider an interval of the real numbers.

We are going to consider two different types of situations. In the first case, the
wealth will always be non-negative, and so we consider the interval being A = I =
[0, wM] ⊆ R, with wM > 0 a maximal amount of wealth, and the standard binary
relation ≤. Similarly, we also will also consider a situation where the wealth is non-
positive, meaning we address a utility function taking negative arguments w < 0,
with I = [−wM, 0] ⊆ R, as the level of (dis)satisfaction when the rational agent has
to pay an amount of money |w| (or when the amount |w| is taken away from him).

We note here that the utility function does not necessarily need to be positive
(or negative), because it is only used to compare alternatives. The condition that the
utility function is monotonic is the equivalent to it being an increasing function for
both positive and negative wealth. Intuitively, this represents that the rational agent
is interested in acquiring as much wealth as possible (for positive wealth), and losing
the least amount of wealth as possible (for negative wealth). Additionally, the utility
function is asked to be twice-differentiable, both for mathematical convenience and,
because it is natural to assume that smooth changes in wealth imply smooth changes
in the rational agent’s satisfaction.

In order to address the concept of risk, we first need to introduce two games (or
operational tasks), which involves a player Bob (the Better or Gambler, who we take
to be a rational agent with a utility function u) and a referee Alice, who is in charge



28 Chapter 2. Mathematical preliminaries

of the game. We are going to address two different games which we call here: i) gain
games and ii) loss games.

2.3.2 A gain game and EUT

In a gain game, Alice (Referee) offers Bob (Gambler) the choice between two options:
i) a fixed guaranteed amount of wealth wG ∈ [0, wM] or ii) a bet. The bet consists of
the following: Alice uses a random event distributed according to a probability mass
function (PMF) pW , (i.e. ∑w∈I pW(w) = 1, pW(w) ≥ 0, ∀w ∈ I , with W a random
variable in the alphabet I), in order to give Bob a reward. Specifically, Alice will
reward Bob with an amount of wealth wB = w, whenever the random event happens
to be w, which happens with probability p(w) (we drop the label W on pW(w) from
now on). The choice facing Bob is therefore between a fixed guaranteed amount of
wealth wG ∈ [0, wM], or taking the bet and potentially earning more wB > wG, at the
risk of earning less wB < wG.

Since the utility function u(w) determines Bob’s satisfaction when acquiring the
amount wealth w, we will see below that it can be used to model his behaviour in
this game, i.e. whether he chooses the first or second option. First, considering the
bet (option ii) we can consider the expected gain of Bob at the end,

E[W] = ∑
w∈I

p(w)w. (2.81)

How satisfied Bob is with this expected amount of wealth is given by the utility of
this value, i.e.

u (E[W]) = u

(
∑

w∈I
p(w)w

)
. (2.82)

Now, Bob’s wealth at the end of the bet is a random variable, this means that his
satisfaction will also be a random variable, with some uncertainty. We can also ask
what Bob’s expected satisfaction, i.e. expected utility will be at the end of the bet,

E[u(W)] = ∑
w∈I

p(w)u(w). (2.83)

This represents how satisfied Bob will be with the bet on average.
We can now introduce the first key concept, that of the Certainty Equivalent (CE):

it is the amount of (certain) wealth wCE which Bob is as satisfied with as the average
wealth he would gain from the bet. In other words, the amount of wealth which is
as desirable as the bet itself. That is, it is the amount of wealth wCE that satisfies

E[u(W)] = u(wCE). (2.84)

It is crucial to note that the certainty equivalent wealth depends upon the utility
function u and the PMF pW , and therefore we interchangeably write it as wCE(u, pW).
We can now return to the original game, i.e. the choice between a fixed return wG, or
the average return E[W]. The rational decision for Bob is to pick which of the two
he is most satisfied with. We now see that if we set wG > wCE then he will choose
to take the guaranteed amount, if wG < wCE he will choose the bet, and if wG =
wCE then in fact the two options are equivalent to Bob, and he can rationally pick
either. That is, we see that the certainty equivalent wCE sets the boundary between
which option Bob will pick. Introducing the certainty equivalent moreover allows
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us to introduce the concept of Bob’s risk-aversion. To do so, we will compare Bob’s
expected wealth, in relation to the certainty equivalent of the bet. There are only
three possible scenarios,

wCE < E[W], (2.85)

wCE > E[W], (2.86)

wCE = E[W]. (2.87)

In the first case (2.85), Alice can offer Bob an amount of wealth wG that is larger than
wCE but less than E[W], wCE < wG < E[W] and Bob will rationally take this amount
over accepting the bet, even though he will walk away with less wealth than the
average he would have if he took the bet. In other words, Bob is reluctant to take the
bet, and so we say that he is risk-averse.

In the second case (2.86), on the other hand, if Alice wants to make Bob walk
away from the bet, and accept a fixed amount of wealth instead, she will have to
offer him more than the expected gain. That is, Bob will only choose an amount wG

if wG > wCE > E[W]. Here Bob is risk-seeking.
Finally, in the third case (2.87), Bob will take the bet if Alice offers him any wG

less than the expected gains from the bet, and will take the guaranteed amount wG if
it is larger. In this case, we say that Bob is risk-neutral, as Bob is essentially indifferent
between the uncertain gains of the bet and the certain gains of the guaranteed return.

If we recall that by definition the utility function u is strictly increasing in the
interval I (more wealth is also more satisfactory to Bob), then by applying u to the
previous three equations, and using the definition of wCE (2.84), we get

E[u(W)] < u(E[W]), (2.88)
E[u(W)] > u(E[W]), (2.89)
E[u(W)] = u(E[W]). (2.90)

This is an important result, which shows that Bob’s risk-aversion is characterised
by the curvature of his utility function: Bob is risk-averse when his utility function
is concave (2.88), risk-seeking when his utility function is convex (2.89), and risk-
neutral when it is linear (2.90). This intuitively makes sense, since roughly speaking
this corresponds to his satisfaction growing more slowly than wealth when he is
risk-averse and his satisfaction growing faster than wealth when he is risk-seeking.
We now move on to analyse the concept of risk in our second game.

2.3.3 A loss game and EUT

Let us now analyse a game which we call here a loss game. Similarly to the gain game
from the previous section, in an loss game we have two agents, a Referee (Alice) and
a Gambler (Bob), who has to make a payment to the Referee. In an loss game Bob
is now asked to choose between two options: i) paying a fixed amount of wealth
|wF|, wF ∈ [−wM, 0] or ii) a bet. Choosing the bet means Bob has to pay an amount
of wealth according to the outcome of a PMF pW . Similarly to the gain game, we
address some quantities of interest: expected debt (E(W)), expected utility (E[u(W)]),
and the certainty equivalent (CE) wCE(u, pW), as the amount of wealth wCE such that
u(wCE) = E[u(W)]. We note the CE depends on the utility function u representing
the Player, and the PMF pW representing the bet. The CE is the amount of wealth
that Bob pays to Alice, which generates the same level of (dis)satisfaction, had Bob
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opted for the bet instead. We also note here that both the expected debt and the
certainty equivalent are now negative quantities.

We now analyse the meaning of the certainty equivalent in loss games, i.e., where
Bob (the Gambler) has to choose between having to pay a certain fixed amount of
wealth (fixed debt) |wF|, or paying an average amount (average debt) |E[W]|. The
rational decision for Bob is to pick which of the two options he is more satisfied (equiv-
alently, we could say least dissatisfied) with. We then see that if we set wF < wCE he
then will choose to take the bet, if wF > wCE he will choose to pay the fixed amount,
and if wF = wCE he can rationally pick either. That is, we see that the certainty
equivalent wCE again sets here the boundary between which option Bob will pick in
an loss game.

We now compare Bob’s expected debt E[W] and the certainty equivalent of the
bet wCE. We have the three possible scenarios,

wCE < E[W], ←→ |wCE| > |E[W]|, (2.91)

wCE > E[W], ←→ |wCE| < |E[W]|, (2.92)

wCE = E[W], ←→ |wCE| = |E[W]|. (2.93)

In the first case (2.91), Alice can request from Bob a fixed amount of wealth |wF| as
wCE < wF < E[W], which is equivalent to |wCE| > |wF| > |E[W]| and Bob will
still prefer to pay this amount over opting for the bet, even though he will potentially
have to pay less |E(W)|, on average, had he opted for the bet. In other words, Bob is
reluctant to take the bet, and so we see that he is risk-averse.

In the second case (2.92), if Alice wants to make Bob walk away from choosing
the bet, and accept paying a fixed amount of wealth instead, she will have to offer
him a deal where he has to pay less than the CE (and in turn less than the expected
debt). In other words, in this case Bob is confident that the bet will allow him to pay
less than the expected debt. That is, Bob will choose paying a fixed amount |wF| only
if wF > wCE > E[W], which is equivalent to |wF| < |wCE| < |E[W]|. Here Bob can
then be considered as risk-seeking, because he is hopeful/optimistic about having the
chance of paying less than the expected debt.

Taking into account the utility function is still an strictly increasing function for
negative wealth, together with the definition of the certainty equivalent we get:

E[u(W)] < u(E[W]), (2.94)
E[u(W)] > u(E[W]), (2.95)
E[u(W)] = u(E[W]). (2.96)

This means that in an loss game we can also characterise the risk tendencies of
a Gambler in terms of the concavity/convexity/linearity of his utility function as:
risk-averse (concavity (2.94)), risk-seeking (convexity (2.95)), risk-neutral (linear (2.96)).
This characterisation of risk tendencies and the types of games are going to be use-
ful later on when introducing more elaborate games in the form of operational tasks
involving the discrimination or exclusion of quantum states. We now move on to
the quantification of risk.

2.3.4 Quantifying risk tendencies

We can go one step further, and not only classify whether Bob (the Gambler) is risk-
averse, risk-seeking, or risk-neutral, but moreover quantify how risk-averse he is. Let
us start by addressing a gain game, which means we are interested in analysing Bob
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being represented by an utility function on positive wealth. Since Bob’s attitude to-
ward risk relates to the concavity/convexity/linearity of the utility function u, it is
natural that the second derivative of the function is going to play a role. This, be-
cause u is concave on an interval if and only if its second derivative is non-positive
on that interval. However, it is also desirable for measures representing risk to be
invariant under affine transformations of the utility function, which in this context
means that they are invariant under transformations of the form u → a + bu, with
a, b ∈ R. This is because the actual values of utility aren’t themselves physical, but
only the comparison between values, and therefore rescaling or displacing the utility
should not alter how risk-averse we quantify Bob to be. Given these requirements,
a natural measure that emerges is the so-called Relative Risk Aversion (RRA) mea-
sure1:

RRA(w) := −w
u
′′
(w)

u′(w)
. (2.97)

This measure assigns positive values for risk-averse players in a gain game (concave
utility functions of positive wealth) because we have: i) w > 0, because we are con-
sidering the player receiving money ii) u

′′
(w) < 0, ∀w, because a risk-averse player

in a gain game is represented by a concave function, and iii) u
′
(w) > 0, because

the utility function is a strictly increasing function. An analysis of signs then yields
RRA(w) > 0.

Similarly, we now also analyse this measure of risk-aversion when Bob plays
a loss game. A loss game is characterised by negative wealth, and we have already
derived the fact that that a risk-averse Gambler is also characterised by a concave
utility function. We now want to quantify the degree of risk-aversion of a Gambler
playing the loss game, and therefore we then can proceed in a similar fashion as
before, and define the risk-aversion measure RRA.

We now check that this measure assigns negative values for risk-averse players in
a loss game (concave utility functions of negative wealth) because we have: i) w < 0
because we are considering the player paying money ii) u

′′
(w) < 0, ∀w, because

a risk-averse player in a loss game is represented by a concave function, and iii)
u
′
(w) > 0, because the utility function is a strictly increasing function. An analysis

of signs yields RRA(w) < 0. We can see that this is the opposite to what happens
in gain games, where RRA(w) > 0 represents risk-averse players. We highlight this
fact in Table 2.1, and present an analysis of the sign of the RRA measure for the two
types of players (risk-averse or risk-seeking) and the two types of games (gain game
or loss game).

2.3.5 Isoelastic Certainty Equivalent (ICE)

We now note that the RRA measure does not assign a global value for how risk
averse Bob is, but allows this to depend upon the wealth w, i.e. Bob may be more or
less risk averse depending on the wealth that is at stake. In order to remove this, it is
usual to consider those utility functions where Bob’s relative risk aversion is constant,
independent of wealth. In this case, (2.97) can be solved assuming RRA(w) = R,
which leads to the so-called isoelastic utility function for positive and negative wealth

1An additional benefit of this quantifier is that it is dimensionless, which is not satisfied by all
quantifiers of risk-aversion
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Risk-averse player Risk-seeking player
u
′′
(w) < 0 u

′′
(w) > 0

w > 0 RRA(w) > 0 RRA(w) < 0
w < 0 RRA(w) < 0 RRA(w) > 0

TABLE 2.1: Analysis of the sign of the quantity RRA(w) for the dif-
ferent regimes being considered. We have that the utility function
is always strictly increasing, meaning that u

′
(w) > 0, and therefore

we then only need to analyse the signs of w and u
′′
(w). In particu-

lar, we have that risk-averse players are represented by positive RRA
when dealing with positive wealth, and by negative RRA when deal-

ing with negative wealth.

as:

uR(w) :=

{
sgn(w) |w|

1−R−1
1−R , if R ̸= 1

sgn(w) ln(|w|), if R = 1
, (2.98)

with the auxiliary “sign" function:

sgn(w) :=

{
1, w ≥ 0;
−1, w < 0.

(2.99)

The parameter R varies from minus to plus infinity, describing all possible risk ten-
dencies of Bob, for either positive or negative wealth. For positive wealth for in-
stance, R goes from maximally risk-seeking at R = −∞, passing through risk-neutral
at R = 0, to maximally risk-averse at R = ∞. In Fig. 2.2 we can see the behaviour of
the isoelastic function for positive wealth and different values of R.

The certainty equivalent (2.84) for this setup can be calculated for either positive
or negative wealth as:

wICE
R = u−1

R (E[uR(W)]) =

(
∑

w∈I
w1−R p(w)

) 1
1−R

. (2.100)

The certainty equivalent of the isoelastic function, or isoelastic certainty equivalent
(ICE), is going to play an important role in this thesis. As we have already seen,
the CE stands out as an important quantity because it: i) determines the choice of a
Gambler when playing either a gain or loss game, helping to establish the charac-
terisation of risk tendencies of said Gambler and ii) optimising the CE is equivalent
to optimising the expected utility, given that the utility function is a strictly increas-
ing function and that u(wICE) = E[u(W)]. One may be tempted here to propose
the expected utility function E[u(W)] as the figure of merit instead of the CE, but the
expected utility unfortunately suffers from having the rather awkward set of units
[w]1−R, whilst the certainty equivalent on the other hand has simply units of wealth
[w] ($, £, ...).
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FIGURE 2.2: Isoelastic utility function uR(w) (2.98) as a function of
positive wealth (1 ≤ w ≤ 3) for players with different risk tenden-
cies (different values of R). The risk parameter R quantifies different
types of risk tendencies: i) R < 0 risk-seeking players (convex) ii)
R = 0 risk-neutral players (linear), and iii) R > 0 risk-averse players
(concave). Risk-aversion for positive wealth then increases from −∞

to ∞.
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Chapter 3

Weight of informativeness,
exclusion games, and excudible
information

“You keep on learning and learning, and pretty soon you learn something no one has learned
before.”

Richard Feynman

In this chapter we consider the QRT of measurement informativeness and intro-
duce a weight-based quantifier for informativeness. We show that this quantifier
has operational significance from the perspective of quantum state exclusion (QSE)
games, by showing that it precisely captures the advantage a measurement provides
in minimising the error in this game. We furthermore introduce information theo-
retic quantities related to exclusion, in particular the notion of excludible informa-
tion of a quantum channel, and show that for the case of quantum-to-classical chan-
nels it is determined precisely by the weight of informativeness. This establishes
a three-way correspondence which sits in parallel to the correspondence in QRTs
between robustness-based quantifiers, discrimination games, and accessible infor-
mation [204]. This new correspondence between a weight-based quantifier and an
exclusion-based task found here suggests that this is a generic correspondence that
holds in the context of general QRTs.

3.1 Introduction and motivation

Quantum phenomena can be seen as a resource for fuelling quantum information
protocols. In this regard, the framework of Quantum Resource Theories (QRTs) has
been put forward in order to address these phenomena within a common unifying
framework [57]. There are several QRTs of different quantum objects addressing dif-
ferent properties (of the object) as a resource. We can then broadly classify QRTs by
first specifying the objects of the theory, followed by the property to be harnessed as
a resource.

One of the main goals within the framework of QRTs is to define resource quan-
tifiers for abstract QRTs, so that resources of different objects can be quantified and
compared in a fair manner. There are different measures for quantifying resources,
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depending on the type of QRT being considered [57]. In particular, when consider-
ing convex QRTs, well-studied geometric quantifiers include the so-called robustness-
based [234, 208, 172, 174, 155, 55, 138, 122] and weight-based [79, 136, 206, 182, 49, 44]
quantifiers.

In addition to quantifying the amount of resource present in a quantum object,
it is also of interest to develop practical applications in the form of operational tasks
that explicitly take advantage of specific given resources, as well as to identify ad-
equate resources and quantifiers characterising already existing operational tasks.
In this regard, a general correspondence between robustness-based measures and
discrimination-based operational tasks has recently been established: steering for sub-
channel discrimination [172], incompatibility for ensemble discrimination [203, 47,
151], coherence for unitary discrimination [174] and informativeness for state dis-
crimination [204]. This correspondence initially considered for specific QRTs and
resources, has been extended to QRT of states, measurements and channels with ar-
bitrary resources [217, 212]. Furthermore, it turns out that when considering QRTs of
measurements there exists an additional correspondence to single-shot information-
theoretic quantities [204]. This three-way correspondence, initially considered for
the resource of informativeness [204], has been extended to convex QRTs of mea-
surements with arbitrary resources [212].

It is then natural to ask whether operational tasks can be devised in which,
weight-based quantifiers play the relevant role. We conceptually address this moti-
vation as a diagramme in Figure 3.1.

Operational
Tasks

Resource
Quantifiers

Single-shot IT

QSD

?

I acc
+∞(ΛM)

R(M)

W(M)

FIGURE 3.1: Motivation for the results presented in this chapter. The
triangular correspondence (black) was proven in [204]. The starting
question now is whether there exist operational tasks characterised

by the quantifier of weight of informativeness.

Surprisingly, in this chapter we prove that one does not need to design any con-
trived operational task, but that there are natural operational tasks which are pre-
cisely characterised by these weight-based quantifiers, namely, the so-called exclusion-
based operational tasks. Furthermore, we prove that these weight-based quantifiers
for the QRTs of measurements also happen to satisfy a stronger three-way corre-
spondence, establishing again a link to single-shot information-theoretic quantities.

This parallel three-way correspondence establishes that, in addition to robustness-
based quantifiers, weight-based quantifiers also play a relevant role in the character-
isation of operational tasks. We conjecture that the weight-exclusion correspondence
found in this chapter holds for arbitrary QRTs of different objects beyond those of
measurements. In the follow-up chapter, we support this conjecture by showing that
this is the case for weight-based resource quantifiers in convex QRTs of states with
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arbitrary resources and therefore, providing an operational interpretation to these
weight-based resource quantifiers as well.

3.2 Convex QRT of measurement informativeness

A general resource theory consists of: a set of objects, the identification of a property of
these objects to be considered as a resource, and a consequent bipartition of the set
of objects into resourceful and free objects. If the set of free objects forms a convex set,
we say that we have a convex resource theory. In this section we focus on the convex
QRT of quantum measurements with the resource of informativeness.

Definition 3.1. (Convex QRT of measurement informativeness) Consider the set of Positive-
Operator Valued Measures (POVMs) acting on a Hilbert space of dimension d. A POVM
M is a collection of POVM elements M = {Ma} with a ∈ {1, ..., o} satisfying Ma ≥ 0
∀a and ∑a Ma = 1. We now consider the resource of informativeness [204]. We say a
measurement is uninformative when there exists a probability distribution q(a) such that
Ma = q(a)1, ∀a. We say that the measurement is informative otherwise.

One can check that the set of uninformative measurements forms a convex set
and therefore, defines a convex QRT of measurements. It will be useful to introduce
the notion of simulability of measurements.

Definition 3.2. (Classical post-processing (CPP) or simulability of measurements [100])
We say that a measurement N = {Nx}, x ∈ {1, ..., k} is simulable by the measurement
M = {Ma}, a ∈ {1, ..., o} when there exists a conditional probability distribution {q(x|a)}
such that ∀x we have:

Nx = ∑
a

q(x|a)Ma. (3.1)

One can check that the simulability of measurements defines a partial order for the set of
measurements and therefore we use the notation N ⪯ M, meaning that N is simulable by
M. Simulability of the measurement N can be understood as a classical post-processing of
the measurement M.

3.3 Quantum State Exclusion (QSE) games

We consider a game first formalised in [15] for analysing the Pusey-Barrett-Rudolph
(PBR) theorem [181]. The property considered by PBR has been addressed under dif-
ferent names like antidistinguishability [107] or not-Post-Peierls compatibility (Post-
Peierls incompatibility) [74, 53]. We adopt an operational approach here, so this
property can be understood as considering that the game of state exclusion is won
with probability one, or conclusive (perfect) state exclusion [15, 150]. The game of
quantum state exclusion (QSE) has been explored under noisy channels [107], as
well as its communication complexity properties [169, 145].

Operational Task 1. (Quantum state exclusion (QSE) [15]) A referee has a collection of
states {ρx}, x ∈ {1, ..., k}, and promises to send a player the state ρx with probability p(x).
The goal is for the player to output a guess g ∈ {1, ..., k} of a state that was not sent. That
is, the player succeeds at the game if g ̸= x and fails when g = x. A given quantum state
exclusion game is fully specified by an ensemble E = {ρx, p(x)}.
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This state exclusion game can be seen as being opposite to the game of state dis-
crimination, in which the goal is to correctly identify the state that was sent. Since
now the goal is to guess the state that was not sent, this game is referred to as exclud-
ing, rather than discriminating.

We are interested in quantum strategies for the player in this game using a fixed
resourceful measurement M, and how this compares to the best quantum strategy
with free measurements (classical strategy). We will quantify how well the player
does by the probability of error in excluding a state, which should be as small as
possible.

Classical Protocol 1. The best strategy for a classical player, one that is either unable to per-
form any quantum measurement, or allowed only to perform uninformative measurements,
is easily seen to be to output the index of the least probable state. In this case, the minimal
probability of error is:

PC
err(E) = min

x
p(x). (3.2)

Quantum Protocol 1. On the other hand, we consider that the player has the ability to
perform a single quantum measurement M = {Ma} with o outcomes. The player could
nevertheless simulate a measurement N = {Nx} with k outcomes, according to (3.1), and
use the measurement result as the guess of which state to exclude. The minimum probability
of error following this strategy is then:

PQ
err(E , M) = min

N⪯M
∑
x

p(x)Tr[Nxρx], (3.3)

with the minimisation being performed over all POVMs N that are simulable by M (3.1).

We are interested in comparing classical and quantum strategies for different
games E . In general, the player will have a smaller probability of error using a quan-
tum strategy compared to a classical strategy, and hence PQ

err(E , M)/PC
err(E) ≤ 1. We

are interested in the optimal advantage that can be obtained by a fixed measurement
M compared to the best classical strategy, over all games E , i.e. in how small the ratio
between quantum and classical error probabilities can be made. In the next section
we will show that this is precisely characterised by the weight of informativeness.

3.4 Weight of informativeness

We now define a weight-based quantifier for informativeness. The idea is to geo-
metrically quantify the amount of resource contained in an object. This quantifier
was originally introduced in the so-called “EPR2 paper" [79] in the context of Bell-
nonlocality and it was later independently rediscovered in [136] in the context of
entanglement. This quantifier has several different names such as: part, content,
cost and weight. In order to keep consistency with recent notation in the literature,
we adopt weight in this Thesis.

Definition 3.3. (Weight of informativeness) The weight of informativeness of a measure-
ment M = {Ma} is given by:

WoI (M) = min
w≥0
{q(a)}

N

{
w
∣∣∣∣Ma = wNa + (1− w)q(a)1

}
, (3.4)
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where {q(a)1} is an uninformative measurement and N = {Na} is a general POVM,
Na ≥ 0, ∀a, ∑a Na = 1. The weight quantifies the minimal amount with which some
resourceful measurement N needs to be used in order to reproduce M. Evaluating the WoI
is a semi-definite program (SDP) [37] and hence it can be solved efficiently numerically.

Lemma 3.1. (Properties of WoI) The weight of informativeness (7.2) satisfies the following
properties. (i) Faithfulness: WoI(M) = 0 ↔ M = {Ma = q(a)1}. (ii) Convexity:
given two measurements M1, M2 and p ∈ [0, 1] we have WoI (pM1 + (1− p)M2) ≤
p WoI(M1)+ (1− p)WoI(M2). (iii) Monotonicity under measurement simulation: N ⪯
M → WoI(N) ≤ WoI(M). (iv) Explicit form WoI(M) = 1− ∑a λmin(Ma), where
λmin(·) is the smallest eigenvalue. (v) Upper bounded by one: 0 ≤WoI(M) ≤ 1, ∀M.

Proof. We address the optimal triple associated to W(M) = w∗ as (w∗, q∗, N∗) so that:

Ma = (1− w∗)q∗(a)1+ w∗N∗a , ∀a. (3.5)

Part (i). For the necessary condition we have that if w∗ = WoI(M) = 0, sub-
stituting this in (3.5), we have Ma = q∗(a)1. For the sufficient condition we have
that if Ma = m(a)1, we are interested in triples (w, q, N) allowing the decomposi-
tion m(a)1 = (1− w)q(a)1+ wNa. We choose a trial function q(a) := m(a) ∀a for
which we have that w = 0, which is the minimum possible and so w∗ = w = 0 with
q∗(a) = q(a).

Part (ii). Let us consider two measurements M1 = {M1a}, M2 = {M2a} with re-
spective quantities WoI(M1), WoI(M2) and their associated optimal triples (w∗1 , q∗1 , N∗1)
and (w∗2 , q∗2 , N∗2) satisfying:

M1a = (1− w∗1)q
∗
1(a)1+ w∗1 N∗1a,

M2a = (1− w∗2)q
∗
2(a)1+ w∗2 N∗2a.

We now consider the quantities for p ∈ [0, 1]:

pM1a + (1− p)M2a

= p

[
(1− w∗1)q

∗
1(a)1+ w∗1 N∗1a

]
+ (1− p)

[
(1− w∗2)q

∗
2(a)1+ w∗2 N∗2a

]
. (3.6)

We now define the variables:

w̃ = pw∗1 + (1− p)w∗2 ,

q̃(a) =
p(1− w∗1)q

∗
1(a) + (1− p)(1− w∗2)q

∗
2(a)

1− w̃
,

Ña =
pw∗1 N∗1a + (1− p)w∗2 N∗2a,

w̃
,

and then we can rewrite (3.6) as:

pM1a + (1− p)M2a = (1− w̃)q̃(a)1+ w̃Ña. (3.7)

We now consider the quantity WoI [pM1 + (1− p)M2] with associated optimal triple
(W∗, Q∗, N∗) and therefore ∀a:

pM1a + (1− p)M2a = (1−W∗)Q∗(a)1+ W∗N∗a . (3.8)
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Now comparing (4.30) with (3.7) we have that:

W∗ ≤ w̃,

because W∗ is the optimal, and therefore obtaining:

WoI [pM1 + (1− p)M2] ≤ p WoI(M1) + (1− p)WoI(M2).

Part (iii). Let us consider that M′ ⪯M which means:

M′b = ∑
a

p(b|a)Ma, ∀a. (3.9)

We now consider the quantity WoI(M) and its associated optimal triple (w∗, q∗, N∗)
then ∀a:

Ma = (1− w∗1)q
∗(a)1+ w∗1 N∗a . (3.10)

Substituting (3.10) in (3.9) we have:

M′b = ∑
a

p(b|a)Ma,

= ∑
a

p(b|a)
[
(1− w∗1)q

∗(a)1+ w∗1 N∗a
]
,

= (1− w∗)∑
a

p(b|a)q∗(a)1+ w∗∑
a

p(b|a)N∗a ,

= (1− w∗)q̃(b)1+ w∗Ñb, (3.11)

where in the last line we have defined the quantities q̃(b) = ∑a p(b|a)q∗(a) and Ñb =

∑a p(b|a)N∗a . We now consider the quantity WoI(M′) and its associated optimal
triple (W∗, Q∗, M∗). From (3.11) we have that w∗ is a candidate for being W∗ but we
have that W∗ is optimal and therefore W∗ ≤ w∗ which is equivalent to WoI(M′) ≤
WoI(M).

Part (iv) and (v). By definition we have that WoI(M) ≥ 0 so we now check the
upper bound. Let us start again with the weight of informativeness of a measure-
ment M = {Ma}. Renaming Ña = wNa and q̃(a) = (1− w)q(a) we have that ∀a:

Ma − q̃(a)1 = Ña ≥ 0. (3.12)

Minimising w is equivalent to maximising (1−w) and together with ∑a q̃(a) = 1−w
we have:

1−WoI(M) = max
w≥0
{1− w} = max

q̃ ∑
a

q̃(a).

We can now explicitly define a primal SDP as:

1−WoI(M) = max
q̃ ∑

a
q̃(a),

s.t. Ma − q̃(a)1 ≥ 0, ∀a. (3.13)

With the later inequality being the constraint (3.12). The constraint means that Ma ≥
q̃(a)1 and so maxq̃ ∑o

a=1 q̃(a) = ∑a λmin(Ma) with λmin(Ma) the smallest eigenvalue
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of Ma and therefore:

WoI(M) = 1−∑
a

λmin(Ma).

The operators Ma are POVM elements, Ma ≥ 0, which means that λmin(Ma) ≥
0 and so WoI(M) ≤ 1. The upper bound is achieved by any measurement such
that all the POVM elements are non-full-rank. For example, a rank-1 (projective)
measurement Π = {Πa}, Πa ≥ 0, ∑a Πa = 1, ΠaΠb = δabΠa has maximal weight of
informativeness, since λmin(Πa) = 0 ∀a and therefore WoI(Π) = 1.

These properties demonstrate that the weight of informativeness is good mea-
sure of measurement informativeness. We now show that it also has operational
significance, by considering QSE games.

3.5 Main Results

3.5.1 Result 3.1. Weight of informativeness and QSE games

In this section we establish a first result relating the weight of informativeness of a
measurement with its performance in the game of state exclusion.

Result 3.1. Consider a state exclusion game in which the player is sent a state from the
ensemble E = {ρx, p(x)}. The optimal advantage offered by the measurement M over any
classical strategy is given by:

min
E

PQ
err(E , M)

PC
err(E)

= 1−WoI(M). (3.14)

This shows that for all exclusion games the WoI bounds the decrease in error probability
that can be obtained for any E , and that there exists a game E∗ where this decrease is given
precisely by the WoI.

The proof consists of two parts. First we prove that the WoI lower bounds the
advantage for all tasks E . Then we prove that this lower bound can be achieved by
extracting an optimal ensemble E∗ out of the dual SDP formulation of the WoI.

First part: In this first part we prove that:

[1−WoI(M)]PC
err(E) ≤ PQ

err(E , M), ∀E , M. (3.15)

Proof. Let us start with the weight of informativeness of a measurement as given by
(7.2). Consider that the minimum is achieved with the triple (q∗, N∗, w∗) so that ∀a:

Ma − (1− w∗)q∗(a)1 = w∗Na ≥ 0,

which implies that
Ma ≥ [1−WoI (M)] q∗(a)1. (3.16)
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where we use the fact that w∗ = WoI (M). We now address the probability of error
in state exclusion:

PQ
err(E , M) = min

M⪰N
∑
x

Tr (Nxρ̃x) ,

= min
{p(x|a)}∑x

Tr

{[
∑

a
p(x|a)Ma

]
ρ̃x

}
,

≥ min
{p(x|a)}∑x

Tr

{[
∑

a
p(x|a) [(1−WoI(M))q(a)1]

]
ρ̃x

}
,

= min
{p(x|a)}∑x

∑
a

p(x)p(x|a)(1−WoI(M))q(a),

= (1−WoI(M)) min
{p(x|a)}∑x

∑
a

p(x)p(x|a)q(a).

We use ρ̃x = p(x)ρx. In the third line we used the inequality (3.16). We now use the
fact that p(x) ≥ PC

err(E), ∀x and that ∑x p(x|a) = 1, ∀a and so we obtain:

PQ
err(E , M) ≥ (1−WoI(M)) min

{p(x|a)}∑x
∑

a
PC

err(E)p(x|a)q(a),

= (1−WoI(M))PC
err(E)∑

a
q(a),

= (1−WoI(M))PC
err(E).

Before proving the second part, let us consider the dual formulation of the pri-
mal SDP for the weight of informativeness [37]. We start by addressing the primal
SDP for the weight of informativeness (3.13). We want to maximise the function
f = ∑o

a=1 q̃(a) under the constraints that Ma − q̃(a)1 ≥ 0 ∀a which is equiva-
lent to the constraint that ∀{ρa ≥ 0} Tr [ρa(Ma − q̃(a)1)] ≥ 0 which implies that
∑a Tr [ρa(Ma − q̃(a)1)] ≥ 0. We now write the Lagrangian function using this last
constraint as:

L = ∑
a

q̃(a) + ∑
a

Tr{ρa[Ma − q̃(a)1]}. (3.17)

Let us first note that by construction we have that:

L ≥∑
a

q̃(a). (3.18)

We now rearrange (3.17) to get:

L = ∑
a

q̃(a)[1− Tr(ρa)] + ∑
a

Tr(ρa Ma).

Imposing the condition 1− Tr(ρa) = 0 ∀a we have that:

L = ∑
a

Tr(ρa Ma).

Using this together with (3.18) we have:

L = ∑
a

Tr(ρa Ma) ≥∑
a

q̃(a).
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Considering now maximising over {q̃} we see that

L = ∑
a

Tr(ρa Ma) ≥ max
q̃ ∑

a
q̃(a) = 1−WoI(M).

Furthermore, by minimising over {ρa}, and by strong duality [37], which guarantees
the equality, we have:

min
{ρa}

L = min
{ρa}

∑
a

Tr(ρa Ma),

= max
q̃ ∑

a
q̃(a) = 1−WoI(M).

We then have the dual SDP of (3.13):

1−WoI(M) = min
{ρa}

∑
a

Tr(ρa Ma),

s.t.ρa ≥ 0, Tr(ρa) = 1 ∀a. (3.19)

This dual SDP is going to be useful in what follows.
Second part: (Achieving lower bound) In this second part we prove that ∀M,

∃EM such that:

[1−WoI(M)]PC
err

(
EM
)
≥ PQ

err(EM, M), ∀M. (3.20)

Proof. We now claim that the optimal ensemble (for achieving the lower bound in
(3.20) is given by EM =

{
ρM

a , 1
o

}
, a = 1, ..., o, PC

err
(
EM
)
= 1

o and {ρM
a } the set of op-

erators coming from the dual SDP (3.19) for a given M. The set
{

ρM
a
}

then satisfies:

1−WoI(M) = ∑
a

Tr
(

ρM
a Ma

)
.

The probability of error in quantum state exclusion for the ensemble EM and the
measurement M is then given by:

PQ
err(EM, M) = min

N≺M
∑

a
Tr
(

NaρM
a

1
o

)
,

= min
N≺M

1
o ∑

a
Tr
(

NaρM
a

)
.

Given the measurement M, we now choose not to simulate any measurement N but
to play with M instead so:

≤ 1
o ∑

a
Tr
(

MaρM
a

)
,

=
1
o
[1−WoI(M)],

= PC
err

(
EM
)
[1−WoI(M)].

Putting together the inequalities (3.15) and (3.20) we obtain the claim in Result 1:

1−WoI(M) = min
E

PQ
err(E , M)

PC
err(E)

.
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This establishes for the first time an operational interpretation of a weight-based
quantifier, making a link to state exclusion, and thus establishing a connection be-
tween these two previously unrelated concepts.

3.5.2 Result 3.2. Connection to single-shot information theory

We now analyse the game of state exclusion from a different angle, of a commu-
nication task in information theory. Consider a hypothetical situation whereby a
person needs to de-activate a bomb, by cutting an appropriate wire. The bomb will
only explode if the blue wire is cut – if any wire is cut it will be deactivated. The
person at the bomb doesn’t know this, but is on the phone with a knowledgeable
person, who tells them what to do. If the phoneline is noisy, what is the safest way
to communicate this information? Instead of trying to faithfully communicate ‘blue’
(i.e. encoding which wire not to cut), a better coding strategy may be to communicate
as the wire to cut, the wire which is least likely to be wrongly decoded as ‘blue’.

Thus, in contrast to the usual communication problem, which is about faithfully
identifying (or discriminating) information, the above example shows that there are
communication problems where the goal is to exclude information. The ability of
a channel to allow for faithful discrimination may be completely different from its
ability to faithfully exclude and in general, different coding strategies should be em-
ployed.

Consider then a random variable X, distributed according to p(x), for which an
outcome should be successfully excluded, the error probability is Perr(X) = minx p(x).
The entropy associated with this error probability is the order minus-infinity Rényi
entropy, H−∞(X) = − log Perr(X), which we shall call the ‘exclusion entropy’. Con-
sider a channel specified by the conditional probability distribution p(y|x). The
conditional error probability at the outcome of the channel is Perr(X|Y) = ∑y p(y)
minx p(x|y) and the associated conditional exclusion entropy is H−∞(X|Y) = − log
Perr(X|Y). The reduction in exclusion entropy is then associated to what we shall
call the mutual exclusion information between X and Y, I−∞(X; Y) = H−∞(X|Y)−
H−∞(X).

We can now define the ‘excludible’ information of a quantum channel Λ(·) by
optimising over all encodings, i.e. input ensembles E = {p(x), ρx}, and all decod-
ings, i.e. measurements D = {Dg}g:

Definition 3.4. The single-shot excludible information of the quantum channel Λ(·) is:

Iexc
−∞(Λ) = max

E ,D
I−∞(X; G), (3.21)

where p(g|x) = Tr[Λ(ρx)Dg] is the conditional probability distribution of the outcome of
the (decoding) measurement, applied to the output of the channel.

We now extend the above weight-exclusion correspondence to a three-way cor-
respondence, by showing that the WoI is also related to the excludible information
(3.21) of the quantum-to-classical channel ΛM(·) naturally associated to a measure-
ment via

ΛM(ρ) = ∑
a
|a⟩⟨a|Tr[Maρ], (3.22)

where {|a⟩} forms an arbitrary basis for the output Hilbert space of the channel.
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Result 3.2. The single-shot excludible information of a quantum-to-classical channel ΛM of
the form (3.22) is specified by the WoI and is given by:

Iexc
−∞(ΛM) = − log [1−WoI(M)] . (3.23)

Proof. In this section we calculate the the single-shot excludible information, which
we show is specified in terms of the weight of informativeness. In particular,

Iexc
−∞(ΛM) = max

E ,D
I−∞(X; G), (3.24)

with the mutual exclusion information:

I−∞(X; G) = H−∞(X|G)− H−∞(X), (3.25)

and the exclusion entropy and conditional exclusion entropy given by:

H−∞(X) = − log min
x

p(x) = − log PC
err(E), (3.26)

H−∞(X|G) = − log ∑
g

min
x

p(x, g), (3.27)

with p(x, g) = p(x)p(g|x) and p(g|x) = Tr
[
ΛM(ρx)Dg

]
= ∑a Tr(Maρx) ⟨a|Dg |a⟩.

Choosing Dg = |g⟩⟨g| so that ⟨a|Dg |a⟩ = δa
g and substituting we have:

H−∞(X|G) = − log ∑
g

min
x

p(x)∑
a

Tr(Maρx)δ
a
g

= − log ∑
g

min
x

p(x)Tr(Mgρx). (3.28)

Considering fg(x) = p(x)Tr(Mgρx) and using:

min
x

fg(x) = min
{p(x|g)}∑x

p(x|g) fg(x),

we have:

H−∞(X|G) = − log ∑
g

min
{p(x|g)}∑x

p(x|g) fg(x),

= − log ∑
g

min
{p(x|g)}∑x

p(x|g)p(x)Tr(Mgρx).

Denoting ρ̃x = p(x)ρx, and re-arranging, this is equivalent to

H−∞(X|G) = − log min
{p(x|g)}∑x

Tr

[(
∑
g

p(x|g)Mg

)
ρ̃x

]
,

= − log min
N≺M

∑
x

Tr(Nxρ̃x),

= − log PQ
err(E , M). (3.29)

Combining (3.29) and (3.26) with (3.25) we obtain:

I−∞(X; G) = log

[
PC

err(E)
PQ

err(E , M)

]
. (3.30)
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Substituting now (3.30) into (3.24) we have:

Iexc
−∞(ΛM) = max

E ,D
I−∞(X; G),

= max
E ,D

log

[
PC

err(E)
PQ

err(E , M)

]
,

= max
E ,D
− log

[
PQ

err(E , M)

PC
err(E)

]
,

= −min
E ,D

log

[
PQ

err(E , M)

PC
err(E)

]
,

= − log

[
min
E ,D

PQ
err(E , M)

PC
err(E)

]
,

= − log [1−WoI(M)] .

In the last line we have used Result 1 (7.18).

This result parallels the finding that robustness of informativeness is related to
the single-shot accessible (rather than excludible) information of the associated chan-
nel, Iacc

+∞(ΛM) = log [1 + RoI(M)] (see [204] for definitions).

3.5.3 Result 3.3. Complete set of monotones

We have already seen that the simulability of measurements defines a partial order
for the set of measurements (3.1). We now show that the probabilities of error at the
state exclusion game are intimately connected to simulation, providing a complete
set of monotones for the partial order.

Result 3.3. Consider two measurements M and N. The measurement M can simulate the
measurement N, M ⪰N, via (3.1), if and only if:

PQ
err(E , M) ≤ PQ

err(E , N), ∀ E = {p(x), ρx}. (3.31)

That is, a measurement M can simulate a measurement N if and only if it is never worse in
any state exclusion game E .

First part: (necessary condition) Let us address the necessary condition:

M ⪰M′ =⇒ PQ
err(E , M) ≤ PQ

err(E , M′) ∀E .

Proof. Let us consider the probability of error in state exclusion:

PQ
err(E , M′) = min

M′⪰N′
∑
x

Tr
(

N′xρ̃x
)

,

= min
{p(x|b)}∑x

Tr ∑
b

p(x|b)M′bρ̃x,

= min
{p(x|b)}∑x

Tr ∑
b

p(x|b)∑
a

q(b|a)Maρ̃x,

= min
{p(x|b)}∑x

Tr

[
∑

a
r(x|a)Ma

]
ρ̃x.
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In the third line we have used the fact that M ⪰ M′ which means that M′b =

∑a q(b|a)Ma, ∀b. We furthermore introduced the conditional probability {r(x|a)}
such that:

r(x|a) = ∑
b

p(x|b)q(b|a).

This may not be the most general set of conditional probabilities, therefore

PQ
err(E , M′) ≥ min

{p(x|a)}∑x
Tr ∑

a
p(x|a)Maρ̃x,

= min
M⪰N

∑
x

Tr (Nxρ̃x) ,

= PQ
err(E , M),

and therefore obtaining:

PQ
err(E , M′) ≥ PQ

err(E , M),

as required.

Second part: (sufficient condition) We now address the sufficient condition:

M ⪰M′ ⇐= PQ
err(E , M) ≤ PQ

err(E , M′) ∀E .

Proof. Let us start by assuming that the right-hand side is true. We now want to
prove that M ⪰ M′ which is equivalent to ∑a q(x|a)Ma = M′x. Let us continue by
considering the inequality:

0 ≥ PQ
err(E , M)− PQ

err(E , M′), ∀E
= min

N⪯M
∑
x

Tr (Nxρ̃x)− min
N′⪯M′ ∑

x
Tr
(

N′xρ̃x
)

,

≥ min
N⪯M

∑
x

Tr (Nxρ̃x)−∑
x

Tr
(

M′xρ̃x
)

,

= min
N⪯M

∑
x

Tr
[(

Nx −M′x
)

ρ̃x
]

,

= min
N⪯M

∑
x

Tr

[(
∑

a
p(x|a)Ma −M′x

)
ρ̃x

]
. (3.32)

In the third line we have chosen not to simulate any measurement N′ but to keep
M′. Let us now define the operators and the magnitude:

∆x(M, M′) = ∑
a

p(x|a)Ma −M′x, ∀x, (3.33)

∆(E , M, M′) =
k

∑
x=1

Tr
[
∆x(M, M′)ρ̃x

]
. (3.34)

Then the quantity in (3.32) becomes:

0 ≥ min
N⪯M

∆(E , M, M′).
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This last equation is valid ∀E and therefore it is in particular, valid for the ensemble
that maximises the magnitude:

0 ≥ max
E

min
N⪯M

∆(E , M, M′),

0 ≥ min
N⪯M

max
E

∆(E , M, M′), (3.35)

where we have used the minimax theorem to interchange orders. If ∆x = 0̂ ∀x, we
obtain the desired result that ∑a p(x|a)Ma = M′x. The idea now is to prove that if we
assume otherwise, we obtain a contradiction. We then assume that:

∆x(M, M′) =

(
∑

a
p(x|a)Ma −M′x

)
̸= 0̂, ∀x. (3.36)

One can directly check that we also have:

∑
x

∆x(M, M′) = 0̂. (3.37)

It follows then that i) the operators {∆x} cannot all be positive, since this would
be in contradiction to (3.37) ii) {∆x} cannot all be negative, since this also leads to
a contradiction with (3.37) iii) {∆x} cannot all be the zero operator (by assumption
(3.36)). Therefore, the set {∆x} has to contain at least: one positive and one negative
operator. Let us consider the positive operator. There exists then at least one x, say
x∗, such that ∆x∗ > 0̂, which means that it has to have at least one positive eigen-
value λ

pos
x∗ > 0 with eigenvector

∣∣λpos
x∗
〉
. ∆x∗ is a Hermitian operator and therefore is

diagonalisable as ∆x∗ = ∑i λi
∣∣λi

x∗⟩⟨λi
x∗
∣∣with {

∣∣λi
x∗
〉
} forming an orthonormal basis.

Equivalently, we can write this as:

∆x∗ = λ
pos
x∗
∣∣λpos

x∗ ⟩⟨λ
pos
x∗
∣∣+ ∑

i ̸=pos
λi

x∗

∣∣∣λi
x∗⟩⟨λi

x∗

∣∣∣ . (3.38)

We now consider an ensemble E∗ = {δx∗
x , ρx} with ρx∗ =

∣∣λpos
x∗ ⟩⟨λ

pos
x∗
∣∣, and the rest

of states being arbitrary. With this ensemble we calculate the quantity in (3.34)

∆(E∗, M, M′) = ∑
x

Tr
[
∆x∗

∣∣λpos
x∗ ⟩⟨λ

pos
x∗
∣∣ δx∗

x

]
,

= Tr
[
∆x∗

∣∣λpos
x∗ ⟩⟨λ

pos
x∗
∣∣
]
,

= λ
pos
x∗ > 0.

This is in contradiction with (3.35). This follows because from (3.35) we have ∆(E∗) ≤
maxE ∆(E) ≤ 0. Therefore, the assumption made in (3.36) is not true, which means
that:

∆x(M, M′) = ∑
a

p(x|a)Ma −M′x = 0̂, ∀x,

from which we obtain

M′x = ∑
a

p(x|a)Ma,

or that M simulates M′, M ⪰M′.
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This result shows then that the probabilities of error over all state exclusion
games form a complete set of (decreasing) monotones for the partial order of mea-
surement simulation. It is interesting to note that it was previously shown that the
probability of succeeding in state discrimination also forms a complete set of (in-
creasing) monotones for measurement simulation [204]. Hence, we now have a sec-
ond, independent, complete set of monotones.

3.6 Summary of Results

In Figure 4.1 we have a diagrammatic representation of the three-way correspon-
dence found in this chapter, depicted as the inner triangle. Explicitly, we prove that
for convex QRTs of measurements with the resource of informativeness, the weight
of informativeness quantifies both; the advantage of informative over uninforma-
tive measurements in the operational task of state exclusion [15], and a new type of
single-shot information (of the quantum-classical channel induced by a measure-
ment) associated to a novel communication problem.

Operational
Tasks

Resource
Quantifiers

Single-shot IT

QSD

QSE

I acc
+∞(ΛM)

I exc
−∞(ΛM)

R(M)

W(M)

FIGURE 3.2: Summary of Results. Three-way correspondence
between: operational tasks, resource quantifiers and single-shot
information-theoretic quantities for the QRT of measurement infor-
mativeness. The outer three-way correspondence is linking [204];
quantum state discrimination (QSD), robustness of informativeness
(RoI) and single-shot accessible information Iacc

+∞(ΛM). In this chap-
ter, we derive a parallel three-way correspondence (inner triangle)
linking: weight of informativeness (WoI), quantum state exclusion
(QSE) and single-shot excludible information Iexc

−∞(ΛM). Definitions
of these quantities in the main text.

3.7 Conclusions

In this section we have introduced a weight-based quantifier of measurement infor-
mativeness and shown that it has an operational interpretation as the biggest advan-
tage that can be achieved in reducing the error probability in QSE games. We have
furthermore introduced the notions of exclusion-entropy and excludible information
associated to a communication task where the information being communicated is
naturally related to exclusion rather than identification or discrimination, as is usu-
ally the case. We have shown that the weight of informativeness fully characterises
the single-shot excludible information of the quantum-to-classical channel associ-
ated to a measurement, proving a three-way correspondence, in parallel to the one
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found for the robustness of informativeness [204]. Finally, we have shown that ex-
clusion games also constitute a complete set of tasks for measurement simulation,
with the error probability over all games forming a complete set of monotones.

Although we have focused here on the QRT of measurement informativeness, we
conjecture that the insight we have found is in fact rather generic for arbitrary quan-
tum resource theories. In particular, we conjecture that whenever a (generalised)
robustness-based measure is related to a discrimination task, then a weight-based
measure will be related to the corresponding exclusion task, when considering arbi-
trary objects and arbitrary resources. In Chapter 4 we provide support to this conjec-
ture by proving that it holds true when considering convex QRTs of measurements
and convex QRTs states with arbitrary resources [73].

Figure 4.1 raises the following fascinating question. Could there exist a more gen-
eral three-way correspondence, whose extremes recover the cases for {+∞,−∞}?
This of course necessarily requires the introduction of operational tasks which are
more general than quantum state discrimination and exclusion, but yet recovering
these two cases at the extremes {+∞,−∞}, respectively. This direction of research
is further investigated in Chapter 7.



51

Chapter 4

Operational interpretation of
weight-based resource quantifiers
for general convex QRTs of
measurements and states

“A mathematician who can only generalise is like a monkey who can only climb up a tree,
and a mathematician who can only specialise is like a monkey who can only climb down a
tree. In fact neither the up monkey nor the down monkey is a viable creature. A real monkey
must find food and escape his enemies and so must be able to incessantly climb up and down.
A real mathematician must be able to generalise and specialise. ”

George Pólya

In this chapter we introduce the resource quantifier of weight of resource for con-
vex quantum resource theories of states and measurements with arbitrary resources.
We show that it captures the advantage that a resourceful measurement (state) offers
over all possible free measurements (states), in the operational task of exclusion of
states (subchannels). Furthermore, we introduce information-theoretic quantities re-
lated to exclusion for quantum channels, and find a connection between the weight
of resource of a measurement, and the exclusion-type information of quantum-to-
classical channels. The results found in this chapter apply, in particular, to the re-
source theory of entanglement, in which the weight of resource is part of the so-
called best-separable approximation or Lewenstein-Sanpera decomposition, intro-
duced in 1998 [136]. Consequently, the results found here provide an operational
interpretation to this 21 year-old entanglement decomposition.

4.1 Introduction and motivation

In the previous chapter we proved that, for the QRT of measurement informative-
ness, there exists a parallel quantifier-task correspondence that connects the resource
quantifier of weight of informativeness with the operational task of state exclusion,
and it was conjectured that this holds true for convex QRTs of different objects, and
with general resources. In this chapter we prove that this conjecture holds true in
the context of general convex QRTs of measurements with arbitrary resources. Addi-
tionally, we prove that this conjecture also holds true in the context of convex QRTs
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of states also with arbitrary resources. Specifically, we consider the resource quanti-
fier of weight of resource and prove that it quantifies the advantage that a resourceful
state offers, when compared to all possible free states, in the operational task of
subchannel exclusion. In particular, this result holds true when considering the re-
source of entanglement and therefore, provides an operational interpretation to the
weight of entanglement, which is better known as the best separable approximation,
or Lewenstein-Sanpera decomposition, introduced in 1998 [136].

The results presented here nicely complement the weight-exclusion correspon-
dence found in the previous chapter within the QRT of measurement informative-
ness and therefore, support the conjecture made in there about the existence of such
a correspondence for convex QRTs of arbitrary objects and arbitrary resources. In-
terestingly, we will furthermore show that it is possible to extend the full three-way
correspondence found in the previous chapter, which now links weight and exclu-
sion to the so-called ‘excludible’ information. Explicitly, we prove that for convex
QRTs of measurements with arbitrary resources, the weight of resource also quanti-
fies a single-shot excludible information-theoretic measure.

This chapter is divided in two main sections. In the first section we address
convex QRTs of measurements with general resources, whilst in the second section
we address convex QRTs of states with general resources.

4.2 Main results for general convex QRTs of measurements

4.2.1 Quantum state exclusion (QSE) games

In this section we address the operational task of quantum state exclusion and par-
ticularly the case of a player implementing a quantum protocol. We invoke here, for
convenience, some of the definitions from the previous chapter.

Operational Task 2. (Quantum State Exclusion [15]) A referee has a collection of states
{ρx}, x ∈ {1, ..., k}, and promises to send a player one of these states ρx with probability
p(x). The goal is for the player to output a guess g ∈ {1, ..., k} for a state that was not
sent. That is, the player succeeds at the game if g ̸= x and fails when g = x. A given state
exclusion game is fully specified by an ensemble E = {ρx, p(x)}.

Free Protocol 1. The best strategy for a free player is to implement the best amongst all free
measurements. In this case, the minimal probability of error is:

PF
err(E) := min

N∈F
∑
x

p(x)Tr[Nxρx], (4.1)

Quantum Protocol 2. We consider that the player performs a quantum measurement M =
{Ma}, Ma ≥ 0, ∀a, ∑a Ma = 1 with o outcomes and uses this to simulate a measurement
[204] N = {Nx} with k outcomes as Nx = ∑a q(x|a)Ma in order to output the guess of
which state to exclude. The probability of error following this strategy is [15]:

PQSE
err (E , M) := min

N⪯M
∑
x

p(x)Tr[Nxρx], (4.2)

with the minimisation being performed over all POVMs N that are simulable by M [204].

We are now naturally interested in minimising this probability of error by imple-
menting an optimal POVM. If we consider a binary ensemble, we have that a QSE
game is equivalent to a quantum state discrimination (QSD) game and therefore we
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have PQSE
err (E , M) = PQSD

err (E , M). Having this, we can then use the Holevo-Helstrom
theorem [113, 110, 251] to address state exclusion games with binary ensembles.

Lemma 4.1. (Holevo-Helstrom for state exclusion) The minimum probability of error over
all possible POVMs in a state exclusion game with a binary ensemble E = {ρx, p(x)}
x ∈ {0, 1} is given by:

min
M

PQSE
err (E , M) =

1
2

(
1− ∥ρ̃0 − ρ̃1∥1

)
, (4.3)

with ρ̃x = p(x)ρx and the trace norm ∥X∥1 = Tr(
√

X†X).

Proof. In a binary state exclusion game we have to exclude from a binary ensemble
of states E = {ρ0, ρ1, p(0), p(1)} with p(0) + p(1) = 1 by using a general POVM
M = {M0, M1}, M0, M1 ≥ 0, M0 + M1 = 1. The probability of error is then (4.2):

PQSE
err (E , M) = Tr(M0ρ̃0) + Tr(M1ρ̃1),

with ρ̃ = p(x)ρ. We now define an operator T as M0 = 1−T
2 and therefore it satisfies

−1 ≤ T ≤ 1. We have:

PQSE
err (E , M) = Tr

[(
1− T

2

)
ρ̃0

]
+ Tr

[(
1+ T

2

)
ρ̃1

]
.

Reorganising we get:

PQSE
err (E , M) =

1
2

(
1 + Tr

[
T(ρ̃1 − ρ̃0)

])
.

Minimising over POVMs is equivalent to minimising over matrices T and then:

min
M

PQSE
err (E , M) =

1
2

(
1 + min

−1≤T≤1
Tr
[

T(ρ̃1 − ρ̃0)
])

,

=
1
2

(
1− max

−1≤T≤1
Tr
[

T(ρ̃0 − ρ̃1)
])

.

The last term is the trace norm (2.25) and therefore we get the statement in (4.3).

This result then compares with the standard Holevo-Helstrom theorem for bi-
nary QSD [113, 110, 251] which is usually stated as the maximum probability of suc-
ceeding in a binary QSD game being given by maxM PQSD

succ (E , M) = 1
2 (1+ ∥ρ̃0 − ρ̃1∥1).

We have that for a binary ensemble, state exclusion is precisely the opposite to state
discrimination. This however, does not directly scale when considering ensembles
with more than two states, since k-state exclusion games can naturally be defined
[15]. This Lemma is going to prove useful when addressing one of our main results.

4.2.2 Result 4.1. All resourceful measurements are useful in a QSE game

We first show a preliminary result, which formalises the intuition about resourceful
measurements being useful for operational tasks.

Result 4.1. For any resourceful measurement M /∈ F, there exists a state exclusion game
EM for which playing with measurement M has small error probability when compared with
any free state (measurement). This statement is represented by the strict inequality:

PQSE
err (EM, M) < PF

err(EM). (4.4)
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In order to prove this result, we will prove a slightly stronger result, which im-
plies the simpler result stated. In particular, we will prove the following.

Result 4.1.A. Given a measurement M there exists an ensemble EM such that:

PQSE
err (EM, M) ≤ [1−WF (M)]PF

err(EM). (4.5)

This means that the any resourceful measurement M provides a strictly smaller er-
ror than any free measurement N, at playing QSE with the ensemble EM, since
1 −WF(M) < 1 for all resourceful measurements, and hence this result implies
Result 4.1.

Proof. Consider the dual formulation of the weight of measurement (2.24), namely

1−WF (M) = min
{Zx}

∑
x

Tr(MxZx)

s.t. ∑
x

Tr(NxZx) ≥ 1, ∀N ∈ F,

Zx ≥ 0, ∀ x.

Suppose we have solved the above problem using the optimal set of dual variables
{Z∗x}. We consider a particular ensemble of states E∗ = {p∗(x), ρ∗x}:

ρ∗x =
1

Tr Z∗x
Z∗x , p∗(x) =

1
c

Tr Z∗x , c = ∑
x

Tr Z∗x .

This leads to:

PQSE
err (E∗, M) = min

N⪯M
∑
x

p∗(x)Tr (Nxρ∗x) ,

≤
x

∑ p∗(x)Tr (Mxρ∗x) ,

=
1
c ∑

x
Tr (MxZ∗x),

=
1
c
[1−WF (M)], (4.6)

where in the second line we applied the trivial simulation. On the other hand notice
that we have:

PF
err(E∗) = min

N∈F
∑
x

p∗(x)Tr (Nxρ∗x) ,

=
1
c

min
N∈F

∑
x

Tr (NxZ∗x) ,

≥ 1
c

, (4.7)

where we used the constraints from the dual formulation of the weight. Combining
the bounds (4.6) and (4.7) proves the claim.

This result shows that every resourceful measurement is better that any possible
free measurement when playing a tailored exclusion game. We now explore how to
quantify the performance of a resourceful object using exclusion games.
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4.2.3 Result 4.2. Weight as the advantage in QSE games

We are now interested in quantifying the performance of a resourceful measurement
in comparison to all free measurements when playing state exclusion games. A first
main result of this section is the following:

Result 4.2. For any measurement M we have:

min
E

PQSE
err (E , M)

PF
err(E)

= 1−WF(M), (4.8)

with the minimisation over all ensembles of states E = {ρx, p(x)}.

The proof of this statement consists of two parts. First we prove that the weight
lower bounds the advantage for all tasks. We then also consider that this lower
bound can be achieved, by extracting an optimal game out of the relevant dual for-
mulation of the weight, as proved in Result 4.1.A.

Proof. Consider first the primal formulation of the optimisation problem for WF (M).
The constraint implies that for all measurements M we can lower-bound the POVM
elements {Ma} using 1−WF (M) and an element of some free measurement, i.e.

Ma ≥ [1−WF (M)]Na (4.9)

where N = {Na} ∈ F. This implies that for all ensembles of states E we have:

PQSE
err (E , M) = min

M′⪯M
∑
x

p(x)Tr
(

M′xρx
)

= min
q(x|a) ∑x,a

p(x)q(x|a)Tr (Maρx)

≥ min
q(x|a)

[1−WF (M)] ∑
x,a

p(x)q(x|a)Tr (Naρx)

≥ [1−WF (M)] min
N′∈F

∑
x

p(x)Tr
(

N′xρx
)

= [1−WF (M)]PF
err(E) (4.10)

where in the second line we used the definition of simulation, in the third line we
used (4.9), in the fourth line we used the fact that a simulation of a free measurement
is still a free measurement (due to convexity of the free set), and in the final line we
used the definition of the classical error probability.

We then note that if we combine the bound (4.5), which holds for all ensembles
E , with (4.10), then this proves the claim. In particular, (4.10) shows that the bound
in (4.5) is in fact achieved by the ensemble EM.

This theorem shows two things: that for all exclusion games the weight bounds
the decrease in error probability that can be obtained; and that there exists a game
where this decrease is given precisely by the weight. This theorem establishes for
the first time an operational interpretation of weight-based quantifiers, making a
link to exclusion tasks, and thus establishing a connection between these two pre-
viously unrelated concepts. It is also interesting to note that although the weight
is discontinuous (unlike the generalised robustness), it still admits an operational
interpretation.
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4.2.4 Result 4.3. QRTs of measurements and information theory

We now introduce an exclusion-based quantity closely related to the accessible in-
formation of a channel, and show that it too relates to the weight of resource of a
measurement. We are interested in the ability of a channel Λ to be useful for send-
ing exclusion-type information. This is a type of information where identifying is not
the relevant task, but excluding, e.g. the information of the statement ‘do not cut
the blue wire’ in a bomb-defusing situation. Two possibilities for conveying this
information are either to communicate the wire to be avoided, or to communicate
a wire that should be cut. If there is a noisy communication channel, it could be
advantageous to use one type of encoding over the other.

Formally, we assume that the information to be excluded is represented by a ran-
dom variable X, with probability distribution p(x). This is encoded into a quantum
ensemble as E = {ρx, p(x)}. The quantum state is sent through a channel Λ, and
then an optimal decoding measurement D = {Dg}g is performed, in order to make
the best prediction for a value x′ ̸= x, which will always be arg minx p(x|g), i.e. the
least likely value of x given the observed g, where p(x, g) = p(x)Tr[DgΛ(ρx)]. The
error probability is Perr(X|G) = minD ∑g minx p(x, g) and the associated conditional
entropy, which we call the ‘exclusion conditional entropy’ is

H−∞(X|G)E ,Λ = − log Perr(X|G), (4.11)

which is the order minus-infinity conditional Rényi entropy, and where we have
explicitly denoted the dependence on the quantum encoding E and the channel Λ.

We are now interested in comparing how different channels perform with the
same quantum encoding. In particular, we are interested in how much larger the
exclusion conditional entropy is for a given fixed channel Λ compared to a set of
free channels F for sending the exclusion information stored in E . Note that since
the exclusion entropy is associated to an error probability, having a larger exclusion
entropy signifies having a smaller average error probability. We thus define the gain
in exclusion conditional entropy as

Gexc
−∞(E , Λ) = H−∞(X|G)E ,Λ −max

Ω∈F
H−∞(X|G)E ,Ω (4.12)

We think of this quantity as being a generalisation of the accessible information
of a channel, in two ways: first we consider here exclusion-type information, in-
stead of standard ‘discrimination-type’ information; second, we compare to a gen-
eral set of free channels, rather than relative to a single free channel – the com-
pletely noisy channel. In the latter case, the second term would become simply
H−∞(X)E = − log Perr(X), the ‘exclusion entropy’ associated with the random vari-
able X, and the definition would reduce to a mutual information-type quantity.

We now focus on quantum-to-classical channels which arise by the action of a
measurement. In particular, to any measurement M we can define the associated
channel ΛM such that ΛM(ρ) = ∑a Tr[Maρ] |a⟩⟨a|, where {|a⟩} forms an orthonor-
mal basis, and records the measurement outcome. The conditional probability dis-
tribution that this channel leads to is p(g|x) = ∑a Tr[Maρx] ⟨a|Dg |a⟩.

We will then compare the fixed channel ΛM associated with the measurement M

with all of the channels ΛN that can arise from a free measurement N ∈ F.

Remark 4.1. An alternative way of introducing the quantity of interest in this section
(Gexc
−∞(E , Λ)) is as follows. Consider a set of free measurements as F, and a pair ensem-

ble of states and measurement (E , M), Arimoto’s gap on POVMs of order −∞ for such a
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pair is defined as:

GF
−∞(X; G)E ,M := I−∞(X; G)E ,M −max

N∈F
I−∞(X; G)E ,N, (4.13)

with I−∞(X; G) Arimoto’s mutual information of order−∞. It can be checked that these two
quantities relate as: Gexc

−∞(E , ΛM) = GF
−∞(X; G)E ,M. The definition and notation addressed

in this remark is going to be used in some of the following chapters, where it is going to be
more convenient.

We find the following result:

Result 4.3. The weight of resource of a measurement M quantifies the biggest gain in ex-
clusion information of the associated measurement channel ΛM relative to the set of free
measurement channels F = {ΛN|N ∈ F}

max
E

Gexc
−∞(E , ΛM) = − log

[
1−WF(M)

]
, (4.14)

with the maximisation over all quantum encodings E = {ρx, p(x)} of X.

Proof. We want to calculate the the single-shot excludible information gain given by:

Gexc
−∞(E , Λ) = H−∞(X|G)E ,Λ −max

Ω∈F
H−∞(X|G)E ,Ω (4.15)

with the exclusion conditional entropy given by

H−∞(X|G)E ,Λ = − log Perr(X|G),

= − log min
D

∑
g

min
x

p(x, g),

= − log min
D

∑
g

min
x

p(x)Tr[DgΛ(ρx)]. (4.16)

Writing fg(x) = p(x)Tr[DgΛ(ρx)] and using:

min
x

fg(x) = min
{p(x|g)}∑x

p(x|g) fg(x),

we can write:

H−∞(X|G)E ,ΛM
= − log min

{p(x|g)},D ∑
g,x

p(x|g)p(x)Tr[DgΛM(ρx)],

= − log min
{p(x|g)},D ∑

g,x,a
p(x|g)Tr[Maρx]⟨a|Dg|a⟩,

= − log min
{p(x|g)} ∑

g,x,a
p(x|g)Tr[Maρx]δg,a,

= − log min
{p(x|g)}∑x,a

p(x|a)Tr[Maρx],

= − log min
N⪯M

∑
x

p(x)Tr[Nxρx],

= − log PQSE
err (E , M), (4.17)

where we realise that Dg = |g⟩⟨g| is the optimal measurement, since any other mea-
surement only constitutes a potential loss of information (from a to g, which will
never be useful for the minimisation, so that ⟨a|Dg |a⟩ = δa,g.
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Let us now write explicitly the optimised quantity in (4.15) for a measurement
channel ΛM. Using (4.17) we obtain:

H−∞(X|G)E ,ΛM
− max

ΩN∈F
H−∞(X|G)E ,ΩN

= H−∞(X|G)E ,ΛM
−max

N∈F
H−∞(X|G)E ,ΩN

= − log PQSE
err (E , M) + min

N∈F
log PQSE

err (E , N)

= − log
PQSE

err (E , M)

PF
err(E),

.

If we now maximise over all ensembles of states E and use Result 4.2 we obtain the
claim.

This result, which mirrors the results found in [212], establishes, for the QRT
of measurements with arbitrary resources, a new three-way correspondence between
weight-based resource quantifiers, exclusion-based operational tasks, and single-
shot information-theoretic quantities.

4.2.5 Summary of results for measurements

In Figure 4.1 we have a diagrammatic representation of the parallel three-way corre-
spondence found in this chapter, depicted as the inner triangle. Explicitly, we prove
that for convex QRTs of measurements, the weight of resource quantifies both; the
advantage of resourceful over free measurements in the operational task of state ex-
clusion [15], and a new type of single-shot accessible information (of the quantum-
classical channel induced by a measurement) associated to a novel communication
problem.

Operational
Tasks

QResource
Quantifiers

Single-shot IT

QSD

QSE

GF
+∞(ΛM)

GF
−∞(ΛM)

RF(M)

WF(M)

FIGURE 4.1: Three-way correspondence between: resource quanti-
fiers, operational tasks, and single-shot information-theoretic quanti-
ties, for QRTs of measurements with arbitrary convex resources. The
outer three-way correspondence is linking [204, 212]; quantum state
discrimination (QSD), generalised robustness of resource RF(M),
and the single-shot accessible information gain Gacc

+∞(ΛM). in this
chapter, we derive a parallel three-way correspondence (inner trian-
gle) linking: weight of resource WF(M), quantum state exclusion
(QSE) and the single-shot excludible information gain Gexc

−∞(ΛM).
Definitions of these quantities in the main text. The contribution of

this chapter is the inner triangle (blue dotted lines).



4.3. Main results for general convex QRTs of states 59

4.3 Main results for general convex QRTs of states

We start by addressing convex QRTs of states with arbitrary resources.

Definition 4.1. (Convex QRT of states [57]) Consider the set of quantum states in a Hilbert
space of dimension d. Consider a property of these states defining a closed convex set which
we will call the set of free states and denote as F. We say a state ρ ∈ F is a free state, and
ρ /∈ F is a resourceful state.

There are numerous properties of quantum states considered as resources namely;
entanglement, asymmetry, coherence, amongst many others [57]. We now want to
quantify the amount of resource present in an state. We define a weight-based quan-
tifier for an arbitrary resource.

Definition 4.2. (Weight of resource of a state) Consider a convex QRT of states with an
arbitrary resource. The weight of resource of a state is given by:

WF (ρ) =

min
r ≥ 0
σ ∈ F

ρG

{
w
∣∣∣∣ ρ = wρG + (1− w)σ

}
. (4.18)

This quantifies the minimal amount of a general state ρG that has to be mixed with an arbi-
trary free state σ, in order to recover the state ρ.

As a reminder, this quantifier was originally introduced in [79] in the context of
nonlocality and independently rediscovered later on in [136] within the context of
entanglement. It has been addressed under several different names such as: part,
content, cost and weight. In this thesis we use the term weight in order to be consis-
tent with recent literature. We now move on to operational tasks.

4.3.1 Quantum subchannel exclusion (QScE) games

In analogy to subchannel discrimination games [172, 217], we now define subchan-
nel exclusion games as follows.

Operational Task 3. (Quantum subchannel exclusion) The player sends a quantum state ρ
to the referee who has a collection of subchannels Ψ = {Ψx}, x ∈ {1, ..., k}. The subchannels
Ψx are completely-positive (CP) trace-nonincreasing linear maps such that ∑x Ψx forms a
completely-positive trace-preserving (CPTP) linear map. The referee promises to apply one
of these subchannels on the state ρ and the transformed state is then sent back to the player.
The player then has access to the ensemble EΨ = {ρx, p(x)} with p(x) = Tr[Ψx(ρ)], ρx =
Ψx(ρ)/p(x). The goal is for the player to output a guess g ∈ {1, ..., k} for a subchannel that
did not take place. That is, the player succeeds at the game if g ̸= x and fails when g = x.

This game can alternatively be seen as playing a quantum state exclusion game
with the ensemble E ρ

Ψ = {ρx, p(x)}, in which the player has a certain level of con-
trol over the ensemble when proposing the state ρ. A particular case of subchannel
exclusion is quantum channel exclusion, in which Ψ = Λ = {Λx, p(x)} with {Λx}
being CPTP maps and p(x) a probability distribution. We now consider a quantum
protocol for the player to address this game.

Quantum Protocol 3. Consider a subchannel exclusion game in which the player sends
a state ρ to the referee who in turn, applies a subchannel from the collection Ψ = {Ψx}
with x ∈ {1, ..., k}. Having received the state back, the player now performs a quantum
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measurement M = {Mx} with k outcomes, and uses this to produce a guess of which
subchannel to exclude. The probability of error in quantum subchannel exclusion following
this protocol is given by:

PQScE
err (Ψ, M, ρ) = ∑

x
Tr
[
MxΨx(ρ)

]
, (4.19)

Similarly to state exclusion, we are interested in minimising this probability of
error. We will be particularly interested in the performance of a resourceful state
compared to the best free state when playing subchannel exclusion games.

4.3.2 Result 4.4. All resourceful states are useful in a QScE game

It has already been proven that any resourceful state is useful in a subchannel dis-
crimination game [217]. This result addresses a binary discrimination game, and
since we have already seen that PQSE

err (E , M) = PQSD
err (E , M) the result then follows.

However, since we are now interested in the probability of error, we will write this
in the context of state exclusion games as follows.

Result 4.4. For any resourceful state ρ /∈ F, there exists a subchannel exclusion game Ψρ

for which playing with the state ρ generates fewer errors when compared with any free state:

min
M

PQScE
err (Ψρ, M, ρ) < min

N
min
σ∈F

PQScE
err (Ψρ, N, σ). (4.20)

In the right-hand side the error probability is minimised over all possible free states and all
measurements.

The proof of this result follows from the identification that for binary subchannel
games we have PQSE

err (E , M) = PQSD
err (E , M) together with the exclusion version of the

Holevo-Helstrom theorem addressed in the previous section. This result shows that
every resourceful state is better that any possible free state when playing a tailored
subchannel exclusion task, which turns out to always be binary.

Proof. We are going to consider a binary subchannel exclusion game Ψ = {Ψ+, Ψ−}.
The probability of error in this binary subchannel exclusion problem is given by
the exclusion (as opposed to the discrimination) version of the Holevo-Helstrom
theorem which we derived in (4.3) so we have:

min
M

PQScE
err (Ψ, M, ρ)

min
N

min
σ∈F

PQScE
err (Ψ, N, σ)

=
1− ∥(Ψ+ −Ψ−)(ρ)∥1

1− ∥(Ψ+ −Ψ−)(σ∗)∥1
, (4.21)

with σ∗ the optimal free state. If we manage to construct subchannels such that:
∥∥(Ψ+ −Ψ−)(σ∗)

∥∥
1 ≤

∥∥(Ψ+ −Ψ−)(ρ)
∥∥

1 , (4.22)

then the statement follows. Let us see how this can be done. Given any ρ /∈ F and by
the hyperplane separation theorem (or Hahn-Banach separation theorem) [75] we
have that there exists a bounded self-adjoint operator Wρ such that: i) Tr(Wρρ) < 0
and ii) Tr(Wρσ) ≥ 0, ∀σ ∈ F. We now construct the operator Xρ = 1− Wρ

∥Wρ∥∞
which

has the properties i) 0 ≤ Xρ, ii) 0 ≤ Tr(Xρσ) ≤ 1, ∀σ ∈ F and iii) 1 < Tr(Xρρ) and so
we have the inequality:

0 ≤ Tr(Xρσ) ≤ 1 < Tr(Xρρ), ∀σ ∈ F. (4.23)
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With this operator Xρ we now construct an appropriate binary subchannel ensemble

Ψρ =
{

Λρ
+

2 , Λρ
−

2

}
as follows:

Λρ
±(η) =

(
1
2
± Tr(Xρη)

2 ∥Xρ∥∞

)
|0⟩⟨0|+

(
1
2
∓ Tr(Xρη)

2 ∥Xρ∥∞

)
|1⟩⟨1| . (4.24)

We can check that these operators are trace-preserving and therefore the subchan-
nel game is well-defined. Now because of the way that the subchannels have been
constructed we obtain:

∥∥(Λρ
+ −Λρ

−)(η)
∥∥

1 =
2 Tr(Xρη)

∥Xρ∥∞
, ∀η.

For any σ ∈ F we have:

∥∥(Λρ
+ −Λρ

−)(σ)
∥∥

1 =
2 Tr(Xρσ)

∥Xρ∥∞
≤ 2 Tr(Xρρ)

∥Xρ∥∞
=
∥∥(Λρ

+ −Λρ
−)(ρ)

∥∥
1 .

The inequality follows from (4.23). We then obtain that the denominator in (4.21) is
less than the numerator and so we obtain the claim in (4.20).

4.3.3 Result 4.5. Weight of resource as the advantage in QScE games

We are now interested in quantifying the performance of a resourceful state in com-
parison to all free states when playing subchannel exclusion games.

Result 4.5. Consider a subchannel exclusion game in which the player sends a quantum
state ρ to the Referee, who in turns applies a subchannel from the ensemble Ψ = {Ψx} with
x ∈ {1, ..., k} before sending the state back to the player. The player then implements a
measurement M = {Mx} and produce the outcome guess g ∈ {1, ..., k} representing the
choice of a subchannel to be excluded. Then, the quantum-classical ratio of probability of error
in subchannel exclusion is lower bounded by the weight of resource (4.18). Furthermore,
there exists a subchannel ensemble Ψρ and a measurement Mρ for which the lower bound is
tight as follows:

1−WF(ρ) = min
Ψ,M

PQScE
err (Ψ, M, ρ)

min
σ∈F

PQScE
err (Ψ, M, σ)

. (4.25)

Proof. Let us start by proving that for a given ρ, 1 −WF(ρ) places a lower bound
to the quantum-classical ratio in any subchannel exclusion game and any measure-
ment, that this, for any tuple (M, Ψ). Given ρ and any tuple (Ψ, M) we have:

PQScE
err (Ψ, M, ρ) = ∑

x
Tr[MxΨx(ρ)],

≥
[
1−WF(ρ)

]
∑
x

Tr[MxΨx(σ
∗)],

≥
[
1−WF(ρ)

]
min
σ∈F

∑
x

Tr[MxΨx(σ)],

=
[
1−WF(ρ)

]
min
σ∈F

PQScE
err (Ψ, M, σ). (4.26)

In the first inequality we used (4.18) from which we get ρ ≥ [1 −WF(ρ)]σ
∗ and

since Ψx are linear maps we have Ψx(ρ) ≥ [1−WF(ρ)]Ψx(σ∗), ∀x. In the second
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inequality we allow ourselves to minimise over all free states. We now address
how to achieve the lower bound. Consider a given ρ and let us construct an ap-
propriate subchannel exclusion game Ψρ = {Ψρ

x} and an appropriate measurement
Mρ = {Mρ

x} achieving the lower bound. Let us start by considering the optimal
operator coming out of the dual SDP formulation of the weight of resource (2.20) as
Yρ. By spectral decomposition we have Yρ = ∑d

i=1 yi |ei⟩⟨ei| with yi ∈ R and {|ei⟩}
an orthonormal basis. We now consider a set of unitary matrices {Ux}, x ∈ {1, ..., d}
satisfying the property ∑x Ux

∣∣ej⟩⟨ej
∣∣U†

x = 1, ∀j. This can be done by defining, for
instance, Uy = ∑d

x=1
∣∣ex+y

〉
⟨ex|. We now define a subchannel game Ψρ = {Ψρ

x} and
a measurement Mρ = {Mρ

x} as:

Ψρ
x(·) =

1
d

Ux(·)U†
x , (4.27)

Mρ
x =

1
Tr(Yρ)

UxYρU†
x . (4.28)

One can check that the subchannels and the measurement are well defined. We can
now check that the probability of error in subchannel exclusion for a state η is given
by:

PQ
err(Ψ

ρ, Mρ, η) =
Tr(Yρη)

Tr(Yρ)
, ∀η.

The quantum-classical ratio then satisfies:

PQScE
err (Ψρ, Mρ, ρ)

minσ∈F PQScE
err (Ψρ, Mρ, σ)

=
Tr(Yρρ)

Tr(Yρσ∗)
,

≤ Tr(Yρρ), (4.29)
= 1−WF(ρ). (4.30)

The inequality follows because of (2.20b) and the last equality because of (2.20a).
The inequality (4.30) together with (4.26) leads to:

PQScE
err (Ψρ, Mρ, ρ)

minσ∈F PQScE
err (Ψρ, Mρ, σ)

= 1−WF(ρ).

Therefore, for any given ρ we can find both a subchannel exclusion game Ψρ = {Ψρ
x}

and a measurement Mρ = {Mρ
x}, given by (4.27) and (4.28) respectively, such that

the the quantum-classical ratio achieves the lower bound and therefore obtaining
the claim in (4.25).

We remark that this result holds true for any property of a quantum state that
defines a closed convex subset and therefore, it holds in particular for the weight
of entanglement, a. k. a. the best separable approximation or Lewenstein-Sanpera
decomposition [136], and for the weight of asymmetry [44].

Remark 4.2. We note that this lower bound can also be achieved by quantum channel ex-
clusion games.

1−WF(ρ) = min
Λ, M

PQCE
err (Λ, M, ρ)

min
σ∈F

PQCE
err (Λ, M, σ)

, (4.31)
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with the minimisation over all measurements and all quantum channel games Λ = {Λx, p(x)}.
The proof of this statement follows the same steps as for the case of subchannels, with the sub-
tlety that now we define the set of channels as:

Λρ
x(·) := Ux(·)U†

x , p(x) :=
1
d

, ∀x. (4.32)

We also note here that in the game the quantum and classical players are required
to use the same measurement (4.25). In a different setting, we can alternatively ask
for the measurements to be chosen independently. We now explore relaxing this
measurement constraint.

4.3.4 Result 4.6. Quantum-classical ratio with independent measurements

We now consider a scenario in which the quantum and classical players implement
independent measurements.

Result 4.6. Consider a state ρ and the optimal dual variable Yρ = ∑ yi |ei⟩⟨ei| from the dual
formulation of the weight of resource (2.20). If there exists a set of unitaries {Ux} satisfying
i) ∑x Ux|ej⟩⟨ej|U†

x = 1, ∀j and ii) UiσU†
i = UjσU†

j , ∀σ ∈ F, ∀i, j, then, the weight of the
resource quantifies the advantage of the resourceful state ρ over all free states in subchannel
exclusion with independent measurements as:

1−WF(ρ) = min
Ψ

min
M

PQScE
err (Ψ, M, ρ)

min
N

min
σ∈F

PQScE
err (Ψ, N, σ)

. (4.33)

An example of a resource that satisfies the necessary conditions of Result 4.6 is
coherence [217]. This stronger result thus holds for this particular resource. It would
be interesting to know whether this also holds true for further additional resources
not covered by these scenarios, including entanglement, but this is left for future
research. We now address single-shot information-theoretic quantities that are also
related to the weight of resource. In order to prove Result 4.6 we need the following
Theorem 1 in [15].

Theorem 4.1. (Necessary and sufficient conditions for optimality in state exclusion [15])
Consider a state exclusion game defined by the ensemble E = {ρx, p(x)}. We now consider
a measurement M = {Mx}, and the operator:

N = ∑
x

ρ̃x Mx. (4.34)

The measurement M = {Mx} is an optimal measurement for playing quantum state exclu-
sion with the ensemble E = {ρx, p(x)} if and only if the operator N satisfies the following
two conditions:

i) N† = N, (4.35)
ii) ρ̃x − N ≥ 0, ∀x, (4.36)

with ρ̃ = p(x)ρx.

We now are ready to address Result 4.6. The proof of this result uses similar
techniques to the discrimination case in [212]. The subtlety lies in that we now need
to check the necessary and sufficient conditions for quantum state exclusion [15], as



64
Chapter 4. Operational interpretation of weight-based resource quantifiers for

general convex QRTs of measurements and states

opposed to those for quantum state discrimination [212]. We explicitly write down
the proof for completeness.

Proof. (of Result 4.6) Consider a state ρ and its associated operator from the dual of
the weight of resource (2.20) written in spectral decomposition as Yρ = ∑ yi |ei⟩⟨ei|.
Consider the existence a set of unitaries {Ux} satisfying the two conditions:

∑
x

UxejU†
x = 1, ∀j, (4.37)

UiσU†
i = UjσU†

j , ∀σ ∈ F, ∀i, j. (4.38)

The lower bound can be proven similarly as in Result 4.5, so we only address here
how to achieve the lower bound. Similarly to Result 4.5, we need to define an op-
timal subchannel game and a measurement. We are going to define them similarly
to Result 4.5 and we will see that this measurement turns out to be optimal when
considering free states, meaning that conditions (4.35) and (4.36) are satisfied. We
now define the subchannels and measurement as:

Ψρ
x(·) :=

1
d

Ux(·)U†
x , (4.39)

Mρ
x :=

1
Tr(Yρ)

UxYρU†
x , (4.40)

with {Ux} as described in the statement of Result 4.6. we now check that they satisfy
the first optimality condition (4.35) when considering free states σ. We now look at
the subchannel exclusion game as a state exclusion game with Eσ∗

Ψρ =
{ 1

d , σx} with
σx := Uxσ∗U†

x , σ∗ being the optimal free state for the subchannel exclusion game.
We note that the assumption (4.38) translates now to σi = σj ∀i, j. We now want to
argue that the measurement in (4.40) is optimal for this state exclusion game. We
now calculate the operator N and check the first optimality condition (4.35). We
have that:

Mi

(
1
d

σi − 1
d

σj
)

Mj = 0 ∀i, j.

because the quantity inside the parenthesis is always zero. These conditions imply
that N† = N as desired, let us see this. The previous is equivalent to:

1
d

Miσ
i Mj =

1
d

Miσ
j Mj, ∀i, j.

Summing over j we have:

1
d

Miσ
i =

1
d

Mi ∑
j

σj Mj.

Summing now over i we have:

N† = ∑
i

Miσ
i 1
d
= ∑

j

1
d

σj Mj = N.

We take into account that Mi and ρ are positive operators so they are self-adjoint.
Therefore we have that the first optimality condition (4.35) is satisfied. We now



4.4. Conclusions 65

check the second optimality condition (4.36). We have:

ρ̃x − N =
1
d

σx −∑
y

1
d

σy My,

=
1
d

σx

(
1−∑

y
My

)
= 0 ≥ 0, ∀x.

In the second line we have used that σx = σy, ∀x, y which is the assumption (4.38).
Therefore the measurement (4.40) is an optimal measurement for quantum state ex-
clusion and we obtain the statement in (4.33).

4.4 Conclusions

In this chapter we have proven, in the context of convex QRTs of states, that weight-
based resource quantifiers for arbitrary resources capture the advantage that a resource-
ful state has over all free states, in the operational task of subchannel exclusion. As
a corollary of this result, we have shown that the best separable approximation or
Lewenstein-Sanpera decomposition [136] quantifies the advantage that an entangled
state has over all separable states, in the task of subchannel exclusion. To the best of
our knowledge, this is the first operational interpretation that has been given to this
entanglement quantifier. Going forward, it would be interesting to derive a version
of our result that allows for independent measurements when comparing resource-
ful and free states, as was done in [217] for the robustness of a entanglement.

The results presented here also support the conjecture made in the previous
chapter, stating that whenever there is an discrimination-based operational task
where a robustness-based resource quantifier plays a relevant role, there is an
exclusion-based operational task where a weight-based resource quantifier plays a
relevant role as well. It would also be interesting to address this conjecture for other
objects, such as steering assemblages or collections of incompatible measurements.
All of these considerations are interesting in themselves, but we leave these for fu-
ture research.

Furthermore, and beyond the weight-exclusion correspondence, we have pro-
vided a third connection to single-shot information-theoretic quantities for QRTs
of measurements with arbitrary resources. In particular, we have shown that the
weight of resource of a measurement is also closely related to an exclusion-version
of the accessible information of quantum-to-classical channels.

The results presented in this chapter nicely fit within the endeavour of link-
ing resource quantifiers to operational tasks in general convex QRTs. One can go
even further and consider general probabilistic theories in which the discrimination-
robustness correspondence has already been extended [212]. We believe that the re-
sults presented in this chapter can be extended to this regime as well, but we leave
this for future research.
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Chapter 5

Multi-object operational tasks for
QRTs of state-measurement pairs

“The art and science of asking questions is the source of all knowledge.”

Thomas Berger

The prevalent modus operandi within the framework of quantum resource theo-
ries has been to characterise and harness the resources within single objects, like ei-
ther states, measurements, or channels, in what we can call single-object quantum re-
source theories. One can wonder, however, whether the resources contained within
multiple different types of objects, now in a multi-object quantum resource theory,
can simultaneously be exploited for the benefit of an operational task. In this chapter,
we introduce examples of such multi-object operational tasks in the form of subchan-
nel discrimination and subchannel exclusion games, in which the player harnesses
the resources contained within the composite object of a state-measurement pair.
We prove that for any state-measurement pair in which either of them is resourceful,
there exist discrimination and exclusion games for which such a pair outperforms
any possible free state-measurement pair. These results hold for arbitrary convex
resources of states, and arbitrary convex resources of measurements where the set of
free measurements is closed under classical post-processing. Furthermore, we prove
that the advantage in these multi-object operational tasks is determined, in a mul-
tiplicative manner, by the resource quantifiers of: generalised robustness of resource of
both state and measurement for discrimination games and weight of resource of both
state and measurement for exclusion games [71].

5.1 Introduction and motivation

One common feature amongst most results dealing with quantum resource theories
is that they address single-object operational tasks, meaning that a single object is
thought of as the resourceful object, and the associated tasks are then exploiting the
resource contained within such an individual object. One then can wonder, about the
possibility of having operational tasks harnessing two or more different resources out
of two, in principle different, objects. We refer to these tasks as multi-object tasks, and
we can intuitively approach them from the following two general levels. In a first
instance, one can consider a single QRT with two different resources, in which case it
is natural to make the distinction of the resources being either: disjoint, intersecting
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or nested [207]. The case of QRTs of states with disjoint resources has been explored
in the context of a first law for general QRTs [207], this, inspired by results from
the thermodynamics of multiple conserved quantities [103, 252, 146]. In a second
instance however, one can also consider a multi-object scenario in which a first QRT
of certain objects with an arbitrary resource is being specified, followed by a second
QRT with different objects with their respective arbitrary resource. We address this
latter case by considering a multi-object scenario with two objects, one being a state
and a second one being a measurement and therefore, the composite object of interest
is now a state-measurement pair.

In this chapter we address composite QRTs made of convex QRTs of states with
arbitrary resources and convex QRTs of measurements with arbitrary resources where
the set of free measurements is closed under classical post-processing (CPP). Tak-
ing into account that the set of free measurements is closed under CPP for many
important resources for measurements like: entanglement, coherence and informa-
tiveness, the results found in this chapter naturally apply to all of these instances.
Explicitly, we introduce multi-object operational tasks in the form of subchannel dis-
crimination and subchannel exclusion games in which, a state-measurement pair is
being deemed as the composite object of the theory, as opposed to the state (or the
measurement) alone. Interestingly, we find that any resourceful state-measurement
pair offers an advantage, over all possible free pairs, when performing at particu-
lar multi-object tasks. Furthermore, we find that this advantage can be quantified,
in a multiplicative manner, by the amount of resource contained within each object,
here measured by the resource quantifiers of generalised robustness and weight, for
discrimination and exclusion games respectively. Moreover, these quantifiers also
find operational significance in an multi-object encoding-decoding communication
task involving the state-measurement pair. We believe that the results found in this
chapter open the door for the exploration of multi-object operational tasks in general
convex QRTs with different objects beyond states and measurements.

5.2 Composite convex QRTs and multi-object operational tasks

We start by addressing convex QRTs of states and measurements with arbitrary re-
sources.

Definition 5.1. (Composite convex QRTs of states and measurements) We say that a state-
measurement pair (ρ, M) is: fully free when both state and measurement are free, partially
resourceful when either is resourceful, and fully resourceful when both are resourceful.

We now recall the concept of classical post-processing, introduced in the previ-
ous chapters.

Definition 5.2. (Classical post-processing (CPP)) We say that a measurement N = {Nx},
x ∈ {1, ..., k} is simulable by the measurement M = {Ma}, a ∈ {1, ..., o} when there
exists a conditional probability distribution {q(x|a)} such that Nx = ∑o

a=1 q(x|a)Ma, ∀x ∈
{1, ..., k} [100]. One can check that the simulability of measurements defines a partial order
for the set of measurements and therefore we use the notation N ⪯ M, meaning that N

is simulable by M. We refer to this property as simulability of measurements or classical
post-processing (CPP).

Intuitively, a set of free measurements is closed under CPP when there is no
physical significance to the specific measurement label. For example, when labelling
an outcome 0 or 1 does not signify anything. An example where this does not hold



5.2. Composite convex QRTs and multi-object operational tasks 69

is in thermodynamics, where the labels on an energy measurement have physical
significance (labelling particular energies) and relabelling is not automatically free,
unless the relationship between the label and the energy is also accordingly updated.

We can check that the set of free measurements is closed under CPP for QRTs
of measurements with the resources of: entanglement, coherence and informative-
ness. The sets of free measurements for these resources (separable, coherent, unin-
formative) are defined by specifying the POVM elements respectively as [162, 204]:
MS

x = ∑k MA
x,k ⊗ MB

x,k, MC
x = ∑j p(x|j) |j⟩⟨j|, {|j⟩} a basis of the Hilbert space be-

ing considered, and MU
x = p(x)1, pX a probability distribution. Since any CPP

operation always maps measurements into measurements and can never generate
entanglement, coherence nor increase purity, all of these exemplary sets of measure-
ments remain closed under CPP. We will then be addressing, from now on, convex
QRTs of measurements with its free set being closed under CPP. We now introduce
multi-object operational tasks in the form of subchannel discrimination/exclusion,
which are meant to be played with state-measurement pairs.

Definition 5.3. (Multi-object subchannel discrimination/exclusion games) Consider a player
with access to a state-measurement pair (ρ, M). The player sends the state ρ to the referee
who is in possession of a collection of subchannels Ψ = {Ψx}, x ∈ {1, ..., k}. The subchan-
nels {Ψx} are completely-positive (CP) trace-nonincreasing maps, such that ∑x Ψx forms a
completely-positive trace-preserving (CPTP) map. The referee promises to apply one of these
subchannels on the state ρ and the transformed state is then sent back to the player. The
player then effectively has access to the ensemble E ρ

Ψ = {ρx, p(x)} with p(x) = Tr[Ψx(ρ)],
ρx = Ψx(ρ)/p(x). In a subchannel discrimination game, the goal is for the player to
output a guess g ∈ {1, ..., k} for the subchannel that was applied, the player succeeds at
the game if g = x and fails when g ̸= x. In a subchannel exclusion game on the other
hand, the goal is for the player to output a guess g ∈ {1, ..., k} for a subchannel that was
not applied, that is, the player succeeds at the game if g ̸= x and fails when g = x. In order
to generate a guess, the player proceeds to implement the measurement M = {Ma} on the
received state and classically post-process the measurement outcome a to produce an output
guess g, according to a probability distribution {p(g|a)}, for playing either a discrimina-
tion or an exclusion game. The probability of success at subchannel discrimination and the
probability of error at subchannel exclusion are given by:

PD
succ(Ψ, ρ, M) = max

{p(g|a)} ∑
x,a,g

δx,g p(g|a) p(a|x) p(x), (5.1)

PE
err(Ψ, ρ, M) = min

{p(g|a)} ∑
x,a,g

δx,g p(g|a) p(a|x) p(x), (5.2)

with p(a|x) = Tr[Maρx] and the maximisation (minimisation) over all classical post-
processings of the measurements outputs p(g|a). A subchannel discrimination/exclusion
game is specified by the collection of subchannels Ψ = {Ψx}.

A key point to remark, is that the object of interest is now the state-measurement
pair (ρ, M), as opposed to the state (or measurement) alone. We now proceed to es-
tablish a first result comparing the performance of a fully resourceful state-measurement
pair against all fully free pairs when addressing a particular game.
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5.3 Result 5.1: Any fully resourceful state-measurement pair
is useful for QScD and QScE games

Result 5.1. Consider a convex QRT of states with an arbitrary resource and a convex QRT
of measurements with an arbitrary resource closed under CPP. Given a fully resourceful
state-measurement pair (ρ, M), meaning that we have both a resourceful state ρ /∈ F and
a resourceful measurement M /∈ F, then, there exist subchannel games Ψ(ρ,M)

D and Ψ(ρ,M)
E

such that:

max
σ∈F

max
N∈F

PD
succ(Ψ

(ρ,M)
D , σ, N) < PD

succ(Ψ
(ρ,M)
D , ρ, M), (5.3)

PE
err(Ψ

(ρ,M)
E , ρ, M) < min

σ∈F
min
N∈F

PE
err(Ψ

(ρ,M)
E , σ, N). (5.4)

These two strict inequalities mean that the state-measurement pair (ρ, M) provides strictly
larger (smaller) advantage (error) than all fully free state-measurement pairs, when playing
the subchannel discrimination (exclusion) game specified by Ψ(ρ,M)

D (Ψ(ρ,M)
E ).

The proof of this result relies on the hyperplane separation theorem [189] as well
as on a method first used in the context of quantum steering [172], for “completing”
a set of subchannels, from which one can extract suitable operators in order to con-
struct the tailored subchannel games Ψ(ρ,M)

D and Ψ(ρ,M)
E , for which playing with the

pair (ρ, M) is optimal.

5.4 Proof of Result 5.1

In order to prove this result we start by rewriting the figures of merit in a more com-
pact form, we then extract some useful operators using the hyperplane separation
theorem and define a particular classical post-processing (CPP) operation. With this
in place, we proceed to address the discrimination case followed by the exclusion
case.

5.4.1 Rewriting the figures of merit

We start by rewriting the probability of success (error) in multi-object discrimina-
tion (exclusion) games in a more compact form. Given a multi-object discrimination
game Ψ = {Ψx(·)} and a state-measurement pair (ρ, M), the probability of success
can be written as:

PD
succ(Ψ, ρ, M) = max

{p(g|a)} ∑
x,a,g

δx,g p(g|a) p(a|x) p(x),

= max
{p(g|a)} ∑

x,a,g
δx,g p(g|a)Tr

[
Ma

Ψx(ρ)

Tr [Ψx(ρ)]

]
p(x),

= max
{p(g|a)} ∑

x,a,g
δx,g p(g|a)Tr[MaΨx(ρ)],

= max
{p(g|a)}∑x

Tr

{[
∑

a

(
∑
g

p(g|a)δx,g

)
Ma

]
Ψx(ρ)

}
,
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= max
{p(x|a)}∑x

Tr

{[
∑

a
p(x|a)Ma

]
Ψx(ρ)

}
,

= max
N⪯M

∑
x

Tr [NxΨx(ρ)] ,

where in the third line we used p(x) = Tr[Ψx(ρ)], and in the last line the max-
imisation is over all measurements simulable by M. Similarly, for the multi-object
exclusion case we get:

PE
err(Ψ, ρ, M) = min

N⪯M
∑
x

Tr [NxΨx(ρ)] .

5.4.2 Some useful operators

Given any fully resourceful state-measurement pair (ρ, M), meaning that ρ /∈ F and
M = {Mx} /∈ F, x ∈ {1, ..., k} and using the hyperplane separation theorem [189],
we have that there exist positive semidefinite operators Zρ and {ZM

x }, x ∈ {1, ..., k}
such that:

Tr(Zρρ) > 1, ∑
x

Tr(ZM
x Mx) > 1, (5.5)

Tr(Zρσ) ≤ 1, ∑
x

Tr(ZM
x Nx) ≤ 1, ∀σ ∈ F, N ∈ F. (5.6)

Similarly, there exist positive semidefinite operators Yρ and {YM
x }, x ∈ {1, ..., k} such

that:

Tr(Yρρ) < 1, ∑
x

Tr(YM
x Mx) < 1, (5.7)

Tr(Yρσ) ≥ 1, ∑
x

Tr(YM
x Nx) ≥ 1, ∀σ ∈ F, N ∈ F. (5.8)

These sets of operators are going to be useful when constructing the subchannel
games for discrimination and exclusion.

5.4.3 Particular CPP operation

Given an arbitrary measurement N = {Na} with a ∈ {1, ..., k + n}, n and k integers,
we then construct a measurement Ñ = {Ñx} with k elements as:

Ñx := Nx, x ∈ {1, ..., k− 1},

Ñk := Nk +
k+n

∑
y=k+1

Ny. (5.9)

We can check that this is a well-defined measurement and that the operation taking
N into Ñ is a CPP operation on the initial measurement N. This corresponds to a
coarse graining of measurement outcomes, such that any outcome of N greater or
equal than k is declared as outcome k.



72 Chapter 5. Multi-object operational tasks for QRTs of state-measurement pairs

5.4.4 Discrimination case

Result 5.1A. Consider a convex QRT of states with an arbitrary resource and a convex QRT
of measurements with an arbitrary resource closed under CPP. Given any fully resource-
ful state-measurement pair (ρ, M), meaning that we have a resourceful state ρ /∈ F and a
resourceful measurement M /∈ F, then, there exists a subchannel game Ψ(ρ,M) such that:

max
σ∈F

max
N∈F

PD
succ(Ψ

(ρ,M), σ, N) < PD
succ(Ψ

(ρ,M), ρ, M), (5.10)

with the left side being maximised over all possible free states and free measurements.

Proof. We start by considering a fully resourceful state-measurement pair (ρ, M). Us-
ing the hyperplane separation theorem [189], there exist positive semidefinite oper-
ators Zρ and {ZM

x }, x ∈ {1, ..., k} satisfying the conditions (5.5) and (5.6). We now
define the set of maps {Φ(ρ,M)

x (·)} such that for any state η we have:

Φ(ρ,M)
x (η) := α Tr(Zρη)ZM

x ,

α :=
1

∥Zρ∥1 Tr(ZM)
, ZM :=

k

∑
x=1

ZM
x , (5.11)

with ∥X∥1 = Tr(
√

X†X) the trace norm. Note that α is in general a function of ρ and
M, since Zρ and ZM depend on ρ and M, respectively. We can check that these maps
are completely-positive and linear, and that they satisfy that ∀η:

F(η) := Tr

[
k

∑
x=1

Φ(ρ,M)
x (η)

]
=

Tr(Zρη)

∥Zρ∥1
≤ 1.

The inequality follows from the variational characterisation of the trace norm, estab-
lishing that ∥X∥1 = max−1≤M≤1{Tr(XM)} for any Hermitian operator X [242]. We
can also write F(η) = α Tr(Zρη)Tr(ZM). The set of maps {Φ(ρ,M)

x (·)} then add up
to a completely positive trace-nonincreasing linear map Φ(ρ,M)(·) := ∑x Φ(ρ,M)

x (·).
We can then complete this set to be a set of subchannels by adding an extra subchan-
nel Ψ(ρ,M)

k+1 (·) := Λ(·) − Φ(ρ,M)(·), with Λ being an arbitrary CPTP map such that

Ψ(ρ,M)
k+1 (·) ≥ 0 (take the identity channel for instance). Therefore, with this construc-

tion we obtain a well-defined set of subchannels with k+ 1 elements. We now proceed
to define a family of sets of subchannels in the following manner. Given a state-
measurement pair (ρ, M), M = {Mx}, x ∈ {1, ..., k}, and an integer n ≥ 1, we define
the family of sets of subchannels given by Ψ(ρ,M,n) = {Ψ(ρ,M,n)

y (·)}, y ∈ {1, ..., k + n}
with:

Ψ(ρ,M,n)
y (η) :=

{
α Tr[Zρη]ZM

y , y = 1, ..., k
1
n [1− F(η)]ξ, y = k + 1, ..., k + n

(5.12)

with ξ begin an arbitrary quantum state ξ ≥ 0, Tr(ξ) = 1. We can check that this is a
well-defined set of subchannels, because they now add up to a CPTP linear map:

Tr

[
k+n

∑
y=1

Ψ(ρ,M,n)
y (η)

]
= 1, ∀n, ∀η.
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We now analyse the multi-object subchannel discrimination game given by Ψ(ρ,M,n).
The probability of success of a player using the state-measurement pair (ρ, M) is
given by:

PD
succ(Ψ

(ρ,M,n)ρ, M) = max
N⪯M

k+n

∑
y=1

Tr[NyΨ(ρ,M,n)
y (ρ)]

≥
k

∑
x=1

Tr[MxΨ(ρ,M,n)
x (ρ)]

= α Tr[Zρρ]
k

∑
x=1

Tr
[

MxZM
x

]
. (5.13)

The inequality follows because we have chosen to simulate a particular measure-
ment, i.e. Ny = My for y ≤ k and Ny = 0 for y > k. In the last equality we have
replaced the subchannel discrimination game with (5.12). Now, because of the con-
ditions in (5.5), we have the strict inequality:

PD
succ(Ψ

(ρ,M,n), ρ, M) > α. (5.14)

We now analyse the best fully free player:

max
σ∈F

max
N∈F

PD
succ(Ψ

(ρ,M,n), σ, N) = max
σ∈F

max
N∈F

max
Ñ⪯N

k+n

∑
x=1

Tr
[

ÑxΨ(ρ,M,n)
x (σ)

]
.

We are considering QRTs of measurements closed under CPP and therefore, CPP is
redundant here and we have:

max
σ∈F

max
N∈F

PD
succ(Ψ

(ρ,M,n), σ, N) = max
σ∈F

max
N∈F

k+n

∑
x=1

Tr
[

NxΨ(ρ,M,n)
x (σ)

]
.

Let us now consider, without loss of generality, that these two maximisations are
being achieved by the fully free pair (σ∗, N∗). We then have:

PD
succ(Ψ

(ρ,M,n), σ∗, N∗) =
k+n

∑
x=1

Tr
[

N∗x Ψ(ρ,N,n)
x (σ∗)

]
, (5.15)

= α Tr[Zρσ∗]
k

∑
y=1

Tr
[

N∗y ZM
y

]
(5.16)

+
1
n
[1− F(σ∗)]

k+n

∑
y=k+1

Tr
[

N∗y ξ
]

. (5.17)

In the second equality we have replaced the subchannel game (5.12). The first term
can be upper bounded as:

k

∑
y=1

Tr
[

N∗y ZM
y

]
≤

k

∑
y=1

Tr
[

Ñ∗y ZM
y

]
≤ 1,

with the measurement Ñ
∗ defined in (5.9). The first inequality follows from the

definition of the measurement Ñ
∗. In the second inequality we use the fact that Ñ

∗

is a free measurement (because it was constructed from a free measurement N∗ and
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a CPP operation) and therefore we can use the conditions in (5.6). We now also use
the fact that 1− F(η) ≤ 1, ∀η, then equation (5.17) becomes:

PD
succ(Ψ

(ρ,M,n), σ, N) ≤ α +
1
n

k+n

∑
y=k+1

Tr
[

N∗y ξ
]

.

The second term can be upper bounded as:

k+n

∑
y=k+1

Tr[N∗y ξ] ≤
k+n

∑
y=1

Tr[N∗y ξ] = Tr

[(
k+n

∑
y=1

N∗y

)
ξ

]
= 1.

The inequality follows because we have added positive terms and the equality fol-
lows from N∗ being a measurement ∑k+n

y=1 Ñy = 1 and ξ being a state. We then get:

PD
succ(Ψ

(ρ,M,n), σ, N) ≤ α +
1
n

.

We now choose the subchannel game given by Ψ(ρ,M,n→∞) := limn→∞ Ψ(ρ,M,n) and
therefore we get:

PD
succ

(
Ψ(ρ,M,n→∞), σ, N

)
≤ α. (5.18)

Finally, equations (5.14) and (5.18) together imply that:

max
σ∈F

max
N∈F

PD
succ(Ψ

(ρ,M,n→∞), σ, N) < PD
succ(Ψ

(ρ,M,n→∞), ρ, M),

as desired.

5.4.5 Exclusion case

Result 5.1B. Consider a convex QRT of states with an arbitrary resource and a convex QRT
of measurements with an arbitrary resource closed under CPP. Given any fully resourceful
state-measurement pair, meaning that we have a resourceful state ρ /∈ F and a resourceful
measurement M /∈ F, then, there exist a subchannel game Ψ(ρ,M) such that:

PE
err(Ψ

(ρ,M), ρ, M) < min
σ∈F

min
N∈F

PE
err(Ψ

(ρ,M), σ, N), (5.19)

with minimisation over all possible free states and measurements.

Proof. This proof is closely related to the discrimination proof, but the subchannel
game has to be constructed differently. We start by considering a fully resourceful
state-measurement pair (ρ, M). Using the hyperplane separation theorem [189],
there exist positive semidefinite operators Yρ and {YM

x }, x ∈ {1, ..., k} satisfying
the conditions (5.7) and (5.8). We now define the set of maps {Φ(ρ,M)

x (·)} with:

Φ(ρ,M)
x (η) := β Tr(Yρη)YM

x ,

β :=
1

2 ∥Yρ∥1 Tr(YM)
, YM :=

k

∑
x=1

YM
x . (5.20)

with ∥X∥1 = Tr(
√

X†X) the trace norm. Note that β is in general a function of ρ and
M, since Yρ and YM depend on ρ and M, respectively. As before, these operators are
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completely-positive linear maps and they now satisfy that ∀η:

G(η) := Tr

[
k

∑
x=1

Φ(ρ,M)
x (η)

]
=

Tr(Yρη)

2 ∥Yρ∥1
≤ 1

2
,

which can also be written as:

G(η) = β Tr(Yρη)Tr(YM). (5.21)

The set of maps {Φ(ρ,M)
x (·)} then add up to a completely positive trace-nonincreasing

linear map Φ(ρ,M)(·) := ∑x Φ(ρ,M)
x (·). We can then complete this set to be a set of sub-

channels by adding an extra subchannel Ψ(ρ,M)
k+1 (·) := Λ(·)−Φ(ρ,M)(·), with Λ being

an arbitrary CPTP map such that it Ψ(ρ,M)
k+1 (·) ≥ 0 (take the identity channel for

instance). Therefore, with this construction we obtain a well-defined set of subchan-
nels with k + 1 elements. We now proceed to define a set of subchannels in the fol-
lowing manner. Given a state-measurement pair (ρ, M), M = {Mx}, x ∈ {1, ..., k},
we define the set of subchannels given by Ψ(ρ,M) = {Ψ(ρ,M)

y (·)}, y ∈ {1, ..., k + n}
with:

Ψ(ρ,M)
y (η) :=

{
β Tr[Yρη]YM

y , y = 1, ..., k
[1− G(η)]ξM, y = k + 1

(5.22)

with the quantum state:

ξM := ∑k
x=1 p(x)YM

x .

∑k
x=1 p(x)Tr (YM

x )
. (5.23)

{p(x)} being an arbitrary probability distribution. We can also check that this is a
well-defined set of subchannels, i. e., they add up to a CPTP linear map:

Tr

[
k+1

∑
y=1

Ψ(ρ,M)
y (η)

]
= 1, ∀η.

We remark here that, unlike the discrimination case, we are not generating a family
of sets of subchannels, but only a specific one. We now analyse the multi-object
subchannel exclusion game given by Ψ(ρ,M) and the probability of error of a player
using the state-measurement pair (ρ, M) which is given by:

PE
err(Ψ

(ρ,M)ρ, M) = min
N⪯M

k+n

∑
y=1

Tr[NyΨ(ρ,M)
y (ρ)]

≤
k

∑
x=1

Tr[MxΨ(ρ,M)
x (ρ)]

= β Tr[Yρρ]
k

∑
x=1

Tr
[

MxYM
x

]
. (5.24)

The inequality follows because we have chosen to simulate a particular measure-
ment, i.e. Ny = My for y ≤ k and Ny = 0 for y > k. In the last equality we have
replaced the subchannel exclusion game with (5.22). Now, because of (5.7) and (5.8),



76 Chapter 5. Multi-object operational tasks for QRTs of state-measurement pairs

we have the strict inequality:

PE
err(Ψ

(ρ,M), ρ, M) < β. (5.25)

As before, we now analyse the best fully free player:

min
σ∈F

N∈F

PE
err(Ψ

(ρ,M), σ, N) = min
σ∈F

N∈F
Ñ⪯N

k+1

∑
x=1

Tr
[

ÑxΨ(ρ,M)
x (σ)

]

= min
σ∈F

N∈F

k+1

∑
x=1

Tr
[

NxΨ(ρ,M)
x (σ)

]
,

where the equality follows because CPP is redundant. Let us now consider, without
loss of generality, that these two minimisations are achieved by the fully free pair
(σ∗, N∗). We then have:

PE
err(Ψ

(ρ,M), σ∗, N∗) =
k+1

∑
x=1

Tr[N∗x Ψ(ρ,N)
x (σ∗)]

=β Tr[Yρσ]
k

∑
y=1

Tr
[

N∗y YM
y

]

+ [1− G(σ∗)]Tr[N∗k+1ξM].

We now add and subtract a convenient term as:

PE
err(Ψ

(ρ,M), σ∗, N∗) = β Tr[Yρσ]
k

∑
x=1

Tr
[

N∗x YM
x

]

+ β Tr(Yρσ∗)
k

∑
x=1

p(x)Tr(N∗k+1YM
x )

− β Tr(Yρσ∗)
k

∑
x=1

p(x)Tr(N∗k+1YM
x )

+ [1− G(σ∗)]Tr
[

N∗k+1ξM
]

.

We now define a measurement given by Ñ = {Ñ∗x} with Ñ∗x = N∗x + p(x)N∗k+1, and
p(x) being the probability distribution from (5.23), and we can reorganise this as:

PE
err(Ψ

(ρ,M), σ∗, N∗) = β Tr[Yρσ]
k

∑
y=1

Tr
[

Ñ∗y YM
y

]

+ [1− G(σ∗)]Tr
[

N∗k+1ξM
]

− β Tr(Yρσ∗)
k

∑
x=1

p(x)Tr(N∗k+1YM
x ).
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The first term is lower bounded by β by using the conditions in (5.8) and therefore:

PE
err(Ψ

(ρ,M,n), σ∗, N∗) (5.26)

≥ β + [1− G(σ∗)]Tr
[

N∗k+1ξM
]
− β Tr(Yρσ∗)

k

∑
x=1

p(x)Tr(N∗k+1YM
x ). (5.27)

We now prove that the remaining term (last two lines) is always greater than or equal
to zero. We start by rewriting this term as:

[1− G(σ∗)]Tr
[

N∗k+1ξM
]
− β Tr(Yρσ∗)

k

∑
x=1

p(x)Tr(N∗k+1YM
x )

= Tr

{
N∗k+1

[
(1− G(σ∗)) ξM − β Tr(Yρσ∗)

k

∑
x=1

p(x)YM
x

]}
. (5.28)

We have N∗k+1 ≥ 0 and therefore we now only need to prove that the operator inside
the square brackets is positive semidefinite. We rewrite this operator as:

[1− G(σ∗)] ξM − β Tr(Yρσ∗)
k

∑
x=1

p(x)YM
x

= [1− G(σ∗)]
∑k

x=1 p(x)YM
x

∑k
x=1 p(x)Tr(YM

x )
− β Tr(Yρσ∗)

k

∑
x=1

p(x)YM
x ,

where we used (5.23) to substitute for ξM. We now multiply by the positive term
∑k

x=1 p(x)Tr(YM
x ) and obtain:

[1− G(σ∗)]
k

∑
x=1

p(x)YM
x − β Tr(Yρσ∗)

(
k

∑
x=1

p(x)Tr(YM
x )

)(
k

∑
x=1

p(x)YM
x

)
.

We now factorise the positive semidefinite operator ∑k
x=1 p(x)YM

x and analyse the
coefficient as follows:

1− G(σ∗)− β Tr(Yρσ∗)
k

∑
x=1

p(x)Tr(YM
x ) (5.29)

= 1− β Tr(Yρσ∗)Tr(YM)− β Tr(Yρσ∗)
k

∑
x=1

p(x)Tr(YM
x ), (5.30)

≥ 1− 2β Tr(Yρσ∗)Tr(YM) = 1− Tr(Yρσ∗)
∥Yρ∥1

≥ 0. (5.31)

In the first equality we replaced G(σ∗) using (5.21). The first inequality follows be-
cause we are subtracting a larger quantity. In the second equality we substituted β

(5.20). The second inequality follows because Tr(Yρη)
∥Yρ∥1

≤ 1, ∀η. Coming back to (5.27)
we then have:

PE
err(Ψ

(ρ,M), σ∗, N∗) ≥ β. (5.32)

Putting together (5.25) and (5.32) we obtain:

PE
err(Ψ

(ρ,M), ρ, M) < min
σ∈F

min
N∈F

PE
err(Ψ

(ρ,M), σ, N),
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as desired.

We would now like to quantify this advantage by specifying how large this gap
can be. In order to do this, we need to define a suitable resource quantifier for the
composite objects of state-measurement pairs. A natural starting point is to quantify
the amount of resource contained within the individual objects of interest, states and
measurements.

5.5 Result 5.2: Resource quantifiers and multi-object games

It turns out that it is enough to quantify the resources contained within the individ-
ual objects, as we will see in what follows. We now establish a connection between
robustness-based (weight-based) resource quantifiers for states and measurements
and multi-object subchannel discrimination (exclusion) games.

Result 5.2. Consider a convex QRT of states with an arbitrary resource and a convex QRT of
measurements with an arbitrary resource closed under CPP. Given any state-measurement
pair (ρ, M) we have:

max
Ψ

PD
succ(Ψ, ρ, M)

max
σ∈F

max
N∈F

PD
succ(Ψ, σ, N)

=
[
1 + RF(ρ)

][
1 + RF(M)

]
, (5.33)

min
Ψ

PE
err(Ψ, M, ρ)

min
σ∈F

min
N∈F

PE
err(Ψ, σ, N)

=
[
1−WF(ρ)

][
1−WF(M)

]
, (5.34)

with the maximisation (minimisation) over all subchannel games.

The first thing we can notice is, that by considering a fully resourceful state- mea-
surement pair (ρ, M), one recovers the strict inequalities in (5.3) and (5.4). Addi-
tionally, we can also see that by considering now a partially resourceful pair (ρ, M),
meaning that either the state or the measurement is resourceful, we still get an ad-
vantage. This may seem counter-intuitive at first sight, as using a resourceless mea-
surement should not allow the player to obtain any advantage, even with the most
resourceful state. However, as we explicitly showed, there still exists a game which
allows the player to utilise the advantage arising in such a partially-resourceful sce-
nario. The resolution to this apparent paradox is based on the crucial difference
between channel and subchannel discrimination/exclusion tasks. In particular, in
a subchannel discrimination/exclusion game, a resourceful state has the additional
ability to “influence” the ensemble of states from which the player needs to discrim-
inate/exclude, since E ρ

Ψ = {ρx, p(x)} with p(x) = Tr[Ψx(ρ)], ρx = Ψx(ρ)/p(x) and
therefore, this leads to suitable ensembles, even for resourceless measurements. Sim-
ilarly, having access to a resourceful measurement provides better guessing strate-
gies, even for ensembles generated by resourceless states. Finally, for a fixed fully
free pair, there exists a game for which the pair is still optimal amongst all free pairs.
Therefore, the ratios considered in Result 5.2 are comparing the performance of any
pair against all fully free pairs.

It is illustrative to compare these results with their single-object counterparts [217,
212]. When considering subchannel games being played with a state alone, and al-
lowing maximisations over arbitrary measurements, the advantage becomes [1 +
RF(ρ)] [217]. In the multi-object scenario considered here however, we get [1 +
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RF(ρ)][1+RM(M)] instead, which can be larger, whenever M is resourceful. A sim-
ilar analysis can be made for the weight-exclusion case [212]. This increment can
be conceptually understood by the fact that we are now addressing a composite ob-
ject and therefore, it is natural that each object contributes to the overall advantage.
Nevertheless, it is still surprising that the advantage can be quantified in this elegant
multiplicative manner.

It is also interesting to note that this result applies to convex QRTs of states
with arbitrary resources and convex QRTs of measurements with arbitrary resources
closed under CPP and therefore it covers, as particular instances, several impor-
tant resources for both states and measurements. It would be interesting to explore
whether these results still hold when CPP is dropped or, on the other hand, if a
counterexample can be found. We leave this however for future research.

5.6 Proof of Result 5.2

We divide this result in two parts. In the first part we prove the upper bound for
discrimination and the lower bound for exclusion. In the second part, we show how
to achieve these bounds.

5.6.1 Upper bound for multi-object discrimination and lower bound for
multi-object exclusion

We start by proving that for any state-measurement pair (ρ, M), the product [1 +
RF(ρ)][1+RF(M)] places an upper bound on the advantage ratio in any subchannel
game Ψ.

Proof. Given any subchannel game Ψ and any state-measurement pair (ρ, M) we
have:

PD
succ(Ψ, ρ, M)

= max
N⪯M

∑
x

Tr[NxΨx(ρ)]

≤
[
1 + RF(ρ)

]
max
N⪯M

∑
x

Tr[NxΨx(σ
∗)],

≤
[
1 + RF(ρ)

]
max
σ∈F

max
N⪯M

∑
x

Tr[NxΨx(σ)],

=
[
1 + RF(ρ)

]
max
σ∈F

max
{q(x|a)}∑x

Tr

[(
∑

a
q(x|a)Ma

)
Ψx(σ)

]
,

≤
[
1 + RF(ρ)

][
1 + RF(M)

]
max
σ∈F

max
{q(x|a)}∑x

Tr

[(
∑

a
q(x|a)Ñ∗a

)
Ψx(σ)

]
,

=
[
1 + RF(ρ)

][
1 + RF(M)

]
max
σ∈F

max
≈
N⪯Ñ

∗
∑
x

Tr
[ ≈

NxΨx(σ)
]

,

≤
[
1 + RF(ρ)

][
1 + RF(M)

]
max
σ∈F

max
Ñ∈F

max
≈
N⪯Ñ

∑
x

Tr
[ ≈

NxΨx(σ)
]

,

=
[
1 + RF(ρ)

][
1 + RF(M)

]
max
σ∈F

max
Ñ∈F

PD
succ(Ψ, σ, Ñ). (5.35)

In the first inequality we use the definition of the generalised robustness from which
we get ρ ≤ [1 + RF(ρ)]σ

∗ and since Ψx are linear maps we have Ψx(ρ) ≤ [1 +
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RF(ρ)]Ψx(σ∗), ∀x. In the second inequality we allow ourselves to maximise over
all free states. In the third inequality, we use the definition of the generalised robust-
ness from which we get Ma ≤ [1+RM(M)]Ñ∗a , ∀a. In the fourth inequality we allow
ourselves to maximise over all free measurements.

The proof for the lower bound for multi-object subchannel exclusion follows sim-
ilar arguments.

5.6.2 Achieving upper bound for discrimination and lower bound for ex-
clusion

Result 5.2A. Consider a convex QRT of states with an arbitrary resource and a convex QRT
of measurements with an arbitrary resource closed under CPP. Given any state-measurement
pair (ρ, M) we have:

max
Ψ

PD
succ(Ψ, ρ, M)

max
σ∈F

max
N∈F

PD
succ(Ψ, σ, N)

=
[
1 + RF(ρ)

][
1 + RF(M)

]
. (5.36)

Proof. Given any state-measurement pair (ρ, M), we want to find a suitable subchan-
nel game Ψ so that we achieve the upper bound in (5.35). We start by noting that
the primal SDPs of the generalised robustness for states and measurements can be
seen as refined versions of the hyperplane separation theorem, from which we can
extract positive semidefinite operators Zρ, {ZM

x }, x ∈ {1, ..., k} satisfying the condi-
tions (5.5) and (5.6). Therefore, the construction of the set of subchannels from the
previous section (5.11) applies here as well. We then continue from (5.13) which can
now be written as:

PD
succ(Ψ

(ρ,M,n), ρ, M) ≥ α Tr[Zρρ]
k

∑
y=1

Tr
[

MyZM
y

]
(5.37)

= α
[
1 + RF(ρ)

][
1 + RF(M)

]
. (5.38)

The equality follows from the dual SDPs of the generalised robustness for states and
measurements as per (2.18a) and (2.22a). We now analyse the fully free player. Simi-
larly, we now choose the subchannel game given by Ψ(ρ,M,n→∞) (5.11) and invoking
(5.18) we have:

max
σ∈F

max
N∈F

PD
succ(Ψ

(ρ,M,n→∞), σ, N) ≤ α. (5.39)

We now analyse the ratio of interest with this particular subchannel game and have:

PD
succ

(
Ψ(ρ,M,n→∞), ρ, M

)

max
σ∈F

max
N∈F

PD
succ

(
Ψ(ρ,M,n→∞), σ, N

) ≥
α
[
1 + RF(ρ)

][
1 + RF(M)

]

max
σ∈F

max
N∈F

PD
succ

(
Ψ(ρ,M,n→∞), σ, N

) (5.40)

≥
α
[
1 + RF(ρ)

][
1 + RF(M)

]

α
(5.41)

=
[
1 + RF(ρ)

][
1 + RF(M)

]
. (5.42)
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In the first inequality we used (5.38) whilst in the second we used (5.39). Putting
together (5.42) and (5.35) we obtain:

PD
succ(Ψ(ρ,M,n→∞), ρ, M)

max
σ∈F

max
N∈F

PD
succ(Ψ

(ρ,M,n→∞), σ, N)
=
[
1 + RF(ρ)

][
1 + RF(M)

]
.

as desired.

Result 5.2B. Consider a convex QRT of states with an arbitrary resource and a con-
vex QRT of measurements with an arbitrary resource closed under CPP. Given any state-
measurement pair (ρ, M) we have:

min
Ψ

PE
err(Ψ, ρ, M)

min
σ∈F

min
N∈F

PE
err(Ψ, σ, N)

=
[
1−WF(ρ)

][
1−WF(M)

]
. (5.43)

Proof. This proof follows a similar logic to that of the generalised robustness, and we
write down for completeness. Given any state-measurement pair (ρ, M), we want
to find a suitable subchannel game Ψ so that we achieve the lower bound in (5.43).
The construction of the set of subchannels form the previous section applies here as
well. We then continue from (5.24) which can now be rewritten as:

PE
err(Ψ

(ρ,M)ρ, M) ≤ β Tr[Yρρ]
k

∑
y=1

Tr
[

MyYM
y

]
, (5.44)

= β
[
1−WF(ρ)

][
1−WF(M)

]
. (5.45)

The equality follows from (2.20a) and (2.24a). We now analyse the fully free player
and invoke (5.32) which reads:

min
σ∈F

min
N∈F

PE
err(Ψ

(ρ,M), σ, N) ≥ β. (5.46)

We now analyse the ratio of interest with this particular subchannel game and have:

PE
err

(
Ψ(ρ,M), ρ, M

)

min
σ∈F

min
N∈F

PE
err

(
Ψ(ρ,M), σ, N

) ≤
β
[
1−WF(ρ)

][
1−WF(M)

]

min
σ∈F

min
N∈F

PE
err

(
Ψ(ρ,M), σ, N

) (5.47)

≤
β
[
1−WF(ρ)

][
1−WF(M)

]

β
(5.48)

=
[
1−WF(ρ)

][
1−WF(M)

]
. (5.49)

In the first inequality we used (5.45) whilst in the second we used (5.46). Putting
together (5.49) and the lower bound in (5.43) we obtain:

PE
err(Ψ(ρ,M), ρ, M)

min
σ∈F

min
N∈F

PE
err(Ψ

(ρ,M), σ, N)
=
[
1−WF(ρ)

][
1−WF(M)

]
.

as desired.

We now address multi-object single-shot information-theoretic quantities in the
context of an encoding-decoding communication task.
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5.7 Result 5.3: Connection to single-shot information theory

Consider a state-measurement pair (ρ, M) and the following communication task.
Suppose we have an ensemble of subchannels Λ = {Λx} which add up to a com-
pletely positive and trace preserving map. Our goal is to encode the information
about which of these subchannels has been applied in a classical random variable
X. We do so by applying one of these subchannels to the state ρ, resulting in the
ensemble of states E (Λ,ρ) = {σ(Λ,ρ)

x , p(x)} with σ
(Λ,ρ)
x = Λx(ρ). We refer to the clas-

sical random variable X encoded in such a way as XΛ,ρ. We then consider a decod-
ing scheme using the measurement M = {Mg} with its outcomes representing a
(guess) classical random variable G. Similarly, we refer to such a decoded variable
as GM. We then have that this encoding-decoding scheme depends on the state-
measurement pair (ρ, M). A well studied figure of merit for communication tasks is
the so-called accessible information [242]. Additionally, it has recently been introduced
a complementary figure of merit which has been coined the excludible information, as
in previous chapters, for its natural connection to exclusion tasks [217, 212]. These
quantities depend on the plus (minus) infinity mutual information (respectively),
which are given by:

I±∞(XΛ,ρ : GM) = ±
[

H±∞(XΛ,ρ)− H±∞(XΛ,ρ|GM)
]
,

with the order plus and minus infinity entropies H+∞(XΛ,ρ) = − log {maxx p(x)}
and H−∞(XΛ,ρ) = − log {minx p(x)}, the order plus and minus infinity condi-

tional entropies H+∞(XΛ,ρ|GM) = − log
{

∑g maxx p(x, g)
}

and H−∞(XΛ,ρ|GM) =

− log
{

∑g minx p(x, g)
}

, with p(x, g) = p(g|x)p(x) and p(g|x) = Tr[MgΛx(ρ)]. The
±∞ mutual information quantifies the amount of the respective type of information
(accessible or excludible) that can be conveyed by the state-measurement pair and
the ensemble of channels at play. These measures are usually functions of the chan-
nel but we consider them here as functions of the pair (ρ, M) instead.

Definition 5.4. Consider a set of free states F, a set of free measurements F, and a triple
(Λ, M, ρ), then, Arimoto’s gap on state-measurement pairs of order ±∞ for such a
triple is given by:

GF,F
±∞(X; G)Λ,M,ρ := I±∞(X; G)Λ,M,ρ −max

σ∈F
max
N∈F

I±∞(X; G)Λ,N,σ. (5.50)

We now address these quantities for a state-measurement pair in comparison to
all fully free pairs.

Result 5.3. Consider a state-measurement pair (ρ, M). The maximum gap between the plus
(minus) infinity mutual information between this pair and all fully free state-measurement
pairs is upper bounded as:

max
Λ

GF,F
+∞(X; G)Λ,M,ρ ≤ log

[
1 + RF(ρ)

]
+ log

[
1 + RF(M)

]
, (5.51)

max
Λ

GF,F
−∞(X; G)Λ,M,ρ ≤ − log

[
1−WF(ρ)

]
− log

[
1−WF(M)

]
, (5.52)

with the maximisation over all ensembles of channels.

This result means that the resource quantifiers place upper bounds for these
quantities. It would be interesting to see whether they can be saturated.
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5.8 Proof of Result 5.3

Result 5.3A. The maximum gap between the order plus-infinity mutual information of any
state-measurement pair (ρ, M) when compared to the best fully free state-measurement pair
is upper bounded as:

max
Λ

GF,F
+∞(X; G)Λ,M,ρ ≤ log

[
1 + RF(ρ)

]
+ log

[
1 + RF(M)

]
, (5.53)

with the maximisation over all ensembles of channels.

Proof. The plus-infinity mutual information between classical random variables XΛ,ρ
and GM is given by [186]:

I+∞(XΛ,ρ : GM) = +
[
H+∞(XΛ,ρ)− H+∞(XΛ,ρ|GM)

]
,

with H+∞(XΛ,ρ) = − log(maxx p(x)), H+∞(XΛ,ρ|GM) = − log(∑g maxx p(g, x))
with p(g, x) = p(g|x)p(x). We have p(g|x) = Tr(MgΛx(ρ)) and H+∞(XΛ,ρ|GM) =
− log ∑g maxx Tr[MgΛx(ρ)]p(x). Considering fg(x) = Tr[MgΛx(ρ)]p(x) and using:

max
x

fg(x) = max
{p(x|g)}∑x

p(x|g) fg(x), (5.54)

we have:

H+∞(XΛ,ρ|GM) = − log ∑
g

max
{p(x|g)}∑x

p(x|g) fg(x),

= − log ∑
g

max
{p(x|g)}∑x

p(x|g)Tr[MgΛx(ρ)]p(x),

= − log max
{p(x|g)}∑x

Tr

[(
∑
g

p(x|g)Mg

)
Λx(ρ)

]
p(x),

= − log max
N≺M

∑
x

Tr[NxΛx(ρ)]p(x),

= − log PD
succ(Λ, M, ρ). (5.55)

We then have the following expression:

I+∞(XΛ,ρ : GM)−max
σ∈F

max
N∈F

I+∞(XΛ,σ : GN)

= −H+∞(XΛ,ρ|GM)−max
σ∈F

max
N∈F
−H+∞(XΛ,σ|GN),

= log
[

PD
succ(Λ, M, ρ)

]
−max

σ∈F
max
N∈F

log
[

PD
succ(Λ, N, σ)

]
,

= log
{

PD
succ(Λ, M, ρ)

maxN∈F maxσ∈F PD
succ(Λ, N, σ)

}
.

We now maximise over all ensembles of channels and using Result 5.2 we obtain the
claim in (5.53).

Result 5.3B. The maximum gap between the order minus-infinity mutual information of
any state-measurement pair (ρ, M) when compared to the best fully free state-measurement
pair is upper bounded as:

max
Λ

GF,F
−∞(X; G)Λ,M,ρ ≤ − log

[
1−WF(ρ)

]
− log

[
1−WF(M)

]
, (5.56)
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with the maximisation over all ensembles of channels.

Proof. The minus-infinity mutual information between classical random variables
XΛ,ρ and GM is given by [217, 212]:

I−∞(XΛ,ρ : GM) = −
[
H−∞(XΛ,ρ|GM)− H−∞(XΨ)

]
,

with H−∞(XΛ,ρ) = − log(minx p(x)), H−∞(XΛ,ρ|GM) = − log ∑g minx p(g, x), p(g, x)
= p(g|x)p(x). Using p(g|x) = Tr[MgΛx(ρ)] then H−∞(XΛ,ρ|GM) = − log ∑g minx Tr[
MgΛx(ρ)]p(x). Considering fg(x) = Tr[MgΛx(ρ)]p(x) and using:

min
x

fg(x) = min
{p(x|g)}∑x

p(x|g) fg(x), (5.57)

we have:

H−∞(XΛ,ρ|GM) = − log ∑
g

min
{p(x|g)}∑x

p(x|g) fg(x),

= − log ∑
g

min
{p(x|g)}∑x

p(x|g)Tr[MgΛx(ρ)]p(x),

= − log min
{p(x|g)}∑x

Tr

[(
∑
g

p(x|g)Mg

)
Λx(ρ)

]
p(x),

= − log min
N≺M

∑
x

Tr[NxΛx(ρ)]p(x),

= − log PE
err(Λ, M, ρ). (5.58)

We then have the following expression:

I−∞(XΛ,ρ|GM)−max
σ∈F

max
N∈F

I−∞(XΛ,ρ|GN)

= H−∞(XΛ,ρ|GM)−max
σ∈F

max
N∈F

H−∞(XΛ,σ|GN),

= − log
[

PE
err(Λ, M, ρ)

]
−max

σ∈F
max
N∈F
− log

[
PE

err(Λ, N, σ)
]
,

= − log
[

PE
err(Λ, M, ρ)

]
+ min

σ∈F
min
N∈F

log
[

PE
err(Λ, N, σ)

]
,

= −
{

log
[

PE
err(Λ, M, ρ)

]
−min

σ∈F
min
N∈F

log
[

PE
err(Λ, N, σ)

]}
,

= − log

{
PQ

err(Ψ, M, ρ)

minσ∈F minN∈F PE
err(Ψ, N, σ),

}
.

We now maximise over all ensembles of channels and using Result 5.2 we obtain the
claim in (5.56).

5.9 Conclusions

In this chapter we have introduced multi-object operational tasks in which the com-
posite objects of interest are state-measurement pairs. The results found in this ar-
ticle hold for convex QRTs of states with arbitrary resources and convex QRTs of
measurements closed under CPP. In particular, we have shown that any resourceful
pair is useful for multi-object subchannel discrimination and exclusion games, when
compared to the best possible strategy using fully free state-measurement pairs.
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Furthermore, we have found that this advantage can be quantified, in a multi-
plicative manner, by the quantifiers of generalised robustness and weight of the state
and the measurement, for discrimination and exclusion respectively. This means
that the advantage is always possible whenever at least one of the pair is a resource.
This is a consequence of the fact that in our case the resources do not interact with
each other (i.e. the set of free objects is the set of all state-measurement pairs in which
both of them are free, i.e. the total free set is F×F). This leads to a natural open ques-
tion: can we find relevant information-theoretic tasks in situations in which the set
of free objects is more complicated, i.e. allows for a nontrivial interplay between the
constituent resources? This could be achieved by considering a superset of F× F

as the free set and quantifying the quantum advantage in this new case. It would
be interesting to see whether this alteration can provide any new insights for other
information-theoretic tasks and quantifiers.

Moreover, the objects which we jointly studied (state and measurement) are used
in subchannel discrimination and exclusion tasks in a way which does not allow
them to interfere with each other. It would be interesting to study objects which
can influence one another and find tasks exploiting these interactions. For example,
one could consider the pair: state and quantum instrument and study the advantage
which they provide in tasks with multiple number of guesses. We believe that this
may lead to new insights related to the information-disturbance trade-off purely
from a resource theoretic perspective.

Our results also provide support, now in the multi-object regime, to the conjec-
ture made in [217], about the existence of a weight-exclusion correspondence when-
ever there is a robustness-discrimination one. We have also introduced a communi-
cation task in which the log-robustness and the log-weight place upper bounds for
information-theoretic quantities.

Finally, we believe that this chapter opens the door for exploring multi-object op-
erational tasks in general QRTs of arbitrary composite objects with arbitrary resources,
beyond those of states and measurements, as well as tasks for pairs of the same type
of objects but exploiting different resources, and whether the distinction between the
resources being disjoint, intersecting, and nested plays any major role.





87

Chapter 6

Quantum resource theory of
Buscemi nonlocality

“A mathematician who can only generalise is like a monkey who can only climb up a tree,
and a mathematician who can only specialise is like a monkey who can only climb down a
tree. In fact neither the up monkey nor the down monkey is a viable creature. A real monkey
must find food and escape his enemies and so must be able to incessantly climb up and down.
A real mathematician must be able to generalise and specialise. ”

George Pólya

In the previous chapter we addressed composite QRTs of state-measurement
pairs, and explored how they can be used in conjunction for the benefit of multi-
object subchannel discrimination/exclusion games. In this chapter we will still con-
tinue thinking about multi-object QRTs, though in a slightly different manner. Whilst
state-measurement pairs can be seen as a composite object made out of two “in-
dependent objects", we now want to think about a composite object with its con-
stituents having a little more structure. The composite object of study in this chapter
is a distributed measurement, which is going to be constructed out of a triple: one bi-
partite state, and two bipartite measurements. In this chapter we will develop a QRT
for these objects (distributed measurements) and one of their properties which has
been coined as Buscemi nonlocality.

In 2012 F. Buscemi [45] extended the standard notion of a Bell experiment by
allowing Alice and Bob to be asked quantum, instead of classical, questions. This
gives rise to a broader notion of nonlocality, one which can be observed for every
entangled state, and which we referred here to as Buscemi nonlocality. In this chap-
ter we propose the generalised robustness of Buscemi nonlocality as a geometric
quantifier measuring the ability of a given state and local measurements to produce
Buscemi nonlocal correlations and prove the following results. First, we show that
any distributed measurement which can demonstrate Buscemi nonlocal correlations
provides strictly better performance than any distributed measurement which does
not use entanglement in the task of distributed state discrimination, and that this
advantage is quantified by the generalised robustness, thus establishing its opera-
tional significance. Second, we prove a quantitative relationship between: Buscemi
nonlocality, the ability to perform nonclassical teleportation, and entanglement. In
particular, we show that the maximal amount of Buscemi nonlocality that can be
generated using a given state is precisely equal to its entanglement content. Using
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these relationships we propose new discrimination tasks for which nonclassical tele-
portation and entanglement lead to an advantage over their classical counterparts.
Third, we interpret Buscemi nonlocality from the perspective of information theory
and show that it is related to a single-shot capacity of a quantum-to-classical bipar-
tite channel.

6.1 Introduction and motivation

Quantum entanglement is one of the most characteristic features of quantum theory
[121]. During the early years of its development, however, it was recognised mainly
as a bizarre property which distinguished it from classical physics. It was due to
the discovery of Bell nonlocality [42] and subsequent development of Bell inequali-
ties which allowed this distinction to be formulated quantitatively and to verify the
predictions of quantum theory in an experimentally feasible setting.

Bell nonlocality is today perceived as a phenomenon in its own right and can be
defined and tested irrespectively of the underlying theory. In simple terms Bell non-
locality refers to the situation when correlations shared between spatially separated
parties cannot be explained as arising from a shared classical resource. The concept
of Bell nonlocality is perhaps best understood in terms of a Bell experiment, which is
sometimes also called a “no-signalling game”. In such a game, a referee distributes
two physical systems to two spatially separated players, Alice (A) and Bob (B). Upon
receiving their systems, each player is asked a question from a pre-arranged set of
questions, labelled x for Alice and y for Bob. Depending on which of the questions
was asked, Alice measures her system locally and obtains an outcome a. Similarly,
based on his own question, Bob measures his share of the system and obtains b. The
data produced from the experiment can be described using a conditional probability
distribution p(a, b|x, y), that is the probability of producing outcomes a and b given
the choice of measurements labelled by x and y.

Entanglement and standard Bell-nonlocality are two quantum properties which
are deemed as major resources for quantum technologies and yet, the relationship
between them is still not yet fully understood. It is well known that entangle-
ment is necessary for observing Bell-nonlocality and, in a similar vein, in a series
of papers between 1991-92 by Gisin [91], Gisin-Peres [92], Popescu-Rohrlich [178],
it was further proven that these two properties can be thought of as being "equiv-
alent" for arbitrary pure states, since any pure-entangled state can be used to vi-
olate Bell-inequalities [178]. The conclusions of these three papers are nowadays
colloquially addressed as "Gisin’s theorem". The relationship between entangle-
ment and Bell-nonlocality starts to get less clear when considering mixed states. In
1989 R. Werner [240] proved that there exist mixed entangled states which cannot
violate Bell-inequalities for projective measurements. Moving forward, in 2002 J.
Barrett [16] proved a stronger statement by showing that there exist mixed entan-
gled states which cannot violate Bell-inequalities for general POVMs. These types
of states are known in the literature as "entangled-local" states [13], and whilst they
may be deemed as "useless" for nonlocality-related applications, scientists over the
year have still explored more exotic scenarios where these entangled-local states can
still hopefully be used. These more exotic modified scenarios include: hidden Bell-
nonlocality, superactivation of nonlocality, activation via networks, Buscemi non-
locality, amongst others [43]. The focus of this chapter is the scenario known as
Buscemi nonlocality.
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In 2012 [45] F. Buscemi generalised Bell’s original experiment by allowing the
referee to ask “quantum questions”. This amounts to replacing the original set of
classical (and therefore mutually orthogonal) questions, which could be encoded in
states as {|x⟩}, with a set of quantum states {|ωx⟩} which need not be orthogonal.
The correlation data p(a, b|ωx, ωy) obtained in this modified experiment, dubbed
semi-quantum non-signalling games, differs significantly from its archetypical coun-
terpart [45]. Perhaps the most striking consequence is that the new experiment is
powerful enough to reveal the nonlocality of any entangled quantum state, even the
nonlocality which would be hidden under a standard Bell test [45].

In this chapter we propose interpreting the correlation data obtained in a semi-
quantum non-signalling game as an indicator of a this type of nonlocality which
we refer to as Buscemi nonlocality. In order to formalise this notion we utilise the
framework of Quantum Resource Theories (QRTs) [118, 58]. This is a set of tools
and techniques developed to systematically quantify different properties of quan-
tum systems. QRTs can be classified in terms of objects and resources studied in a
given theory. Classification of QRTs with respect to the object lead to the resource
theories of states [58], measurements [205, 66, 73, 102, 163, 166], channels [220, 143,
142, 243], and boxes [248, 195, 194, 190]. On the other hand, classifying QRTs with
respect to the type of the studied resource leads to the resource theories of pure
[160] and mixed-state entanglement [235], coherence [156], purity [120, 211], ather-
mality [125, 40, 41, 117, 159, 114], nonlocality [50], asymmetry [175], measurement
incompatibility [46], teleportation [56, 51], magic [123], nonmarkovianity [32, 237, 7]
or nongaussianity [216], amongst many more. Its worth mentioning that although
many QRTs use essentially the same mathematical formalism, their physical impli-
cations can be genuinely different. Hence the wide applicability of the framework
to otherwise unrelated problems is a truly surprising aspect of Nature.

In this chapter, we focus on the quantum resource theory of Buscemi nonlocal-
ity, which is an instance of the resource theory from [194, 190]. The natural ob-
ject relevant for this theory is a generalised measurement (POVM) performed by
spatially-separated parties that do not communicate (distributed measurement). We
investigate a geometric measure that quantifies the amount of Buscemi nonlocality
contained within a given distributed measurement termed Robustness of Buscemi
Nonlocality (RoBN). We then address Buscemi nonlocality as a property of states, by
considering the maximal amount of Buscemi nonlocality that can be obtained using
a given state by any local set of measurements on Alice’s and Bob’s side.

As a first and main result we show that Buscemi nonlocality has operational
significance, by finding an operational task for which Buscemi nonlocality is a nat-
ural resource. This can be seen as akin to several seminal results in the field of
quantum information which showed the operational character of coherence [156],
entanglement [216], steering [173] or Bell nonlocality [3] in terms of experimentally
relevant information-processing tasks. Moreover, our task gives rise to a complete
family of monotones for this resource theory, i.e provides a sufficient and necessary
characterisation of Buscemi nonlocality contained in a distributed measurement.
Consequently, the average probability of guessing in these family of tasks can be
interpreted as a simple and complete set of “Buscemi inequalities” which charac-
terise nonlocality of distributed measurements, in analogy with the celebrated Bell
inequalities characterising nonlocality of states [43].

The second main result concerns how Buscemi nonlocality relates to other types
of nonclassical phenomena studied in the literature: nonclassical teleportation [51]
and entanglement [121]. We show that the maximal value of RoBN which can be
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achieved when Bob (Alice) is allowed to use any measurement is precisely the so-
called robustness of teleportation (RoT) of a teleportation channel from Alice (Bob)
to Bob (Alice) [51]. On the other hand, optimising RoBN over all local measurements
for both parties leads to the robustness of entanglement of the state shared by Alice
and Bob [208]. This result, despite its clarifying character being of independent in-
terest, leads to new operational tasks for which both nonclassical teleportation and
entanglement are natural resources. These quantitative relationships further expand
the results presented in [50], [216] and [139] by proposing new discrimination tasks
for which both entanglement and nonclassical teleportation provide advantage over
their classical (i.e. separable) counterparts.

As third and final main result we interpret Buscemi nonlocality from the per-
spective of single-shot quantum information theory. We show that Buscemi nonlo-
cality, when viewed as a property of a communication channel between the sender
(the Referee) and receiver (Alice and Bob), quantifies the maximal amount of infor-
mation that can be sent reliably when the channel is used only once (the so-called
single-shot capacity of a quantum channel). This establishes an important link be-
tween Buscemi nonlocality and quantum communication.

This chapter is organised as follows. In Sec. 6.2 we cover the relevant formalism,
remind the idea of characterising nonlocality in terms of non-signalling games and
recall the robustness quantifier of Buscemi nonlocality (RoBN). In Sec. 6.2.2 we find
its operational interpretation in terms of the advantage in the task of distributed state
discrimination (DSD). In Sec. 6.3.1 we explore the relationship between Buscemi
nonlocality and the concepts of nonclassical teleportation and entanglement. Fi-
nally, in Sec. 6.3.2 we describe a tangential view on RoBN from the perspective of
single-shot information theory. We conclude with Sec. 6.4 where we summarise our
findings and highlight several open questions.

6.2 Framework

In what follows we will denote a local bipartite measurement on Alice’s side (sys-
tem AA′) with MA = {MAA′

a }, where each MAA′
a is a positive semi-definite oper-

ator that adds up to the identity (POVM). Similarly we will use MAB to indicate
that the measurement is non-local, i.e. we will treat systems labelled with different
letters, e.g. A and B , as two spatially separated parties. We are interested in the
most general type of measurement that can be performed in this bipartite scenario
without the aid of classical or quantum communication. This can be realised by (i)
allowing Alice and Bob to apply arbitrary bipartite measurements in their labs, de-
noted respectively MA = {MAA′

a } and MB = {MB′B
b }, where a ∈ {1, . . . , oA} and

b ∈ {1, . . . , oB} denote Alice’s and Bob’s outcomes and (ii) allowing the two parties
to share a quantum state ρA′B′ . In this way Alice and Bob can store and share all
types of classical information (e.g. classical memory or measurement strategy), as
well as quantum information (i.e. shared entanglement). We denote such a mea-
surement with MAB = {MAB

ab }, where the corresponding POVM elements are of the
following general form:

MAB
ab = TrA′B′

[(
MAA′

a ⊗MB′B
b

)(
1A⊗ ρA′B′⊗ 1B

)]
. (6.1)

Since the sets of all quantum states and quantum measurements are both convex
sets, it follows that the set of measurements of the form (6.1) is also a convex set. We
will refer to measurements of the form (6.1) as distributed measurements and denote
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FIGURE 6.1: A schematic diagram of a distributed measurement MAB

composed of local measurements for Alice MA = {MAA′
a }, for Bob

MB = {MB′B
b } and a state ρA′B′ shared between them. This is the

most general type of measurement which Alice and Bob can perform
in a distributed scenario which does not allow for communication.

the set of all such measurements with RBN. These measurements are the main (re-
sourceful) objects of the resource theory we consider here. Whenever the elements of
measurement MAB can be written as in (6.1) for some choice of shared state and local
measurements we will write MAB ∈ RBN. Later in Sec. 6.2.2 we will formally define
the set of free measurements of this resource theory, which turn out to be distributed
measurements with a separable shared state. Fig. 6.1 illustrates a distributed mea-
surement and describes the relationship between different subsystems. This type of
objects appear naturally in a wide range of contexts when studying non-local effects
in an MDI setting [45, 52, 54, 191].

We now specify the most general class of operations that the separated parties
in A and B can perform, without communicating, to improve the properties of their
distributed measurement MAB = {MAB

ij }, where indices i ∈ {1, . . . oA} and j ∈
{1, . . . oB} describe measurements outcomes. This is done as a generalisation of the
simulation of measurements introduced in previous chapters. The free operations
for the QRT of Buscemi nonlocality can be addressed within the framework of Local
Operations and Shared Randomness (LOSR) [248, 195, 194, 190]. There, Alice and
Bob are allowed to share any amount of classical memory described by a random
variable λ. Formally this is specified by providing a probability distribution p(λ)
which is available to both parties. Moreover, before measuring their systems both
parties are allowed to locally perform any completely positive and trace-preserving
map, potentially conditioned on the value of the shared memory, i.e. we allow for
applying Eλ on Alice’s andNλ on Bob’s side. Finally, the parties are allowed to post-
process their measurement outcomes using arbitrary classical channels p(a|i, λ) and
p(b|j, λ) to produce their final guesses. This procedure leads to the most general
type of LOSR operation that can be performed on a measurement of the form (6.1)
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[194, 190]. In what follows we will refer to this as quantum simulation:

Definition 6.1. (Quantum simulation) A quantum simulation of a bipartite measurement
M = {Mij} with a subroutine:

S = {p(λ), p(a|i, λ), p(b|j, λ), Eλ,Nλ} (6.2)

is a transformation which maps the POVM elements of M into:

M′ab = ∑
i,j,λ

p(λ)p(a|i, λ)p(b|j, λ)(E †
λ ⊗N †

λ )[Mij], (6.3)

where E † denotes the (unique) dual map to E .

In other words, any action that can be performed by Alice and Bob in their labs
without access to communication can be described by some quantum simulation
subroutine.

Quantum simulation induces a natural preorder on the set of all bipartite mea-
surements. Formally, a preorder is an ordering relation that is reflexive (a ≻ a) and
transitive (a ≻ b) and (b ≻ c) implies (a ≻ c). Here the preorder induced by quan-
tum simulation will be denoted with ≻q, i.e. M ≻q M′ if and only if there there
exists a subroutine S which allows M to simulate M′, i.e. for the two measurements
M and M′, condition (6.3) in Definition 6.1 holds. The notion of simulation will turn
out to be relevant for the operational tasks introduced later on.

6.2.1 Nonlocality from the perspective of no-signalling games

Bell nonlocality can be best understood from the perspective of no-signalling games,
which also provides an intuitive understanding of Bell inequalities. Such games
have been extensively studied in computer science for a long time, where they are a
special instance of interactive proof systems [60].

The standard scenario of a no-signalling game involves two cooperating players
(Alice and Bob) who play the game against a third party, the referee. The referee
chooses a question x ∈ X for Alice and y ∈ Y for Bob according to some probability
distribution p(x, y) : X ×Y → [0, 1], where X and Y denote finite sets of questions.
Without communicating, and therefore, without knowing what question the other
player was asked, Alice (Bob) returns an answer a ∈ A (b ∈ B) from a finite set of
possible answers A (B). Based on the questions asked and the received answers,
the referee determines whether the players win or lose the game, according to a
pre-arranged set of rules. Such rules are typically expressed using a function V :
A×B ×X ×Y → [0, 1], where V(a, b, x, y) = 1 if and only if Alice and Bob win the
game by answering a and b for questions x and y.

Alice and Bob know the rules of the game, that is, they know the function V and
the distribution of questions p(x, y). Before the game starts they can agree on any
strategy which provides them with the best chances of winning. However, once the
game starts, they are not allowed to communicate any more. In the classical setting
any strategy they can possibly devise can be encoded in a classical memory system,
represented by a shared random variable λ and a probability distribution p(λ). In
the more general quantum case, any possible strategy can be described by a shared
quantum state ρ and a choice of local measurements.

In order to relate the above game setting with Bell inequalities note that the ref-
eree’s questions x and y can be thought of as labels for different measurement set-
tings. Similarly, the answers correspond to the outcomes of local measurements.
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Any measurement strategy (be it classical or quantum) leads to a conditional prob-
ability p(a, b|x, y) which describes when Alice and Bob give answers a and b for
questions x and y, respectively. In the language of Bell inequalities p(a, b|x, y) de-
termine the probability that Alice and Bob obtain measurement outcomes a and b
when performing the measurements labelled by x and y. The average probability
that Alice and Bob win, maximised over all possible strategies, can be written as:

pV
guess(G, M) = ∑

a,b,x,y
p(x, y)p(a, b|x, y)V(a, b, x, y), (6.4)

where G = {p(x, y), V} defines the game and the conditional probabilities p(a, b|x, y)
are related to the local measurements {MA

a|x} for Alice and {MB
b|y} for Bob, via the

Born rule:

p(a, b|x, y) = Tr
[(

MA′
a|x ⊗MB′

b|y
)

ρA′B′
]

. (6.5)

With this in mind, Bell inequalities can be thought of as upper bounds on the aver-
age guessing probability pguess(G, M) with which Alice and Bob can win a nonlocal
game G using a classical strategy (i.e. when ρA′B′ is a separable state), optimised over
all local measurements {MA′

a|x} and {MB′
b|y} . A violation of a Bell inequality corre-

sponds to the situation when there is a quantum strategy which uses an entangled
shared state and outperforms the best classical strategy in a particular game G.

Importantly, there are entangled states which can never violate any Bell inequal-
ity [240, 16, 12]. In the language of no-signalling games this means that there are
states ρA′B′ which, although entangled, can never outperform the best classical strat-
egy. However, in [45] Buscemi showed that when we modify the rules of the no-
signalling game and allow the referee to ask quantum instead of classical questions,
then all entangled states can outperform the best classical strategy in some nonlocal
game, or equivalently, violate the corresponding Bell inequality.

Before going into the details, let us note that “asking classical questions” can also
be mathematically modelled by sending states from a collection of orthogonal states
from a fixed basis, e.g. {|x⟩} such that ∑x |x⟩⟨x| = 1 and ⟨x|x′⟩ = δx,x′ and similarly
for {|y⟩}. Such states are perfectly distinguishable and hence Alice and Bob, after
receiving their questions, may choose their measurements unambiguously. This can
be viewed as giving Alice and Bob the ability to perform controlled bipartite mea-
surements MAA′ = {MAA′

a } and MB′B = {MB′B
b } with the POVM elements:

MAA′
a = ∑

x
|x⟩⟨x|A ⊗MA′

a|x, (6.6)

MB′B
b = ∑

y
MB′

b|y ⊗ |y⟩⟨y|
B . (6.7)

If Alice and Bob share a quantum state ρA′B′ then effectively they have access to a
distributed measurement MAB of the form (6.1). This measurement is then applied
to the “questions” they receive, which we denote here with ωA

x = |x⟩⟨x|A for Alice
and ωB

y = |y⟩⟨y|B for Bob. Therefore their behaviour p(a, b|ωx, ωy) can be written
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as:

p(a, b|ωx, ωy) := Tr
[

MAB
ab

(
ωA

x ⊗ωB
y

)]
, (6.8)

= Tr
[

MAB
ab

(
|x⟩⟨x|A ⊗ |y⟩⟨y|B

)]
, (6.9)

= Tr
[(

MA′
a|x ⊗MB′

b|y
)

ρA′B′
]

, (6.10)

= p(a, b|x, y). (6.11)

With this in mind we can now formalise the process of asking “quantum questions”.
This happens precisely when the states sent by the referee are chosen from an ar-
bitrary collection of states {ωx}. Crucially, these states need not be distinguishable
and so each of them can be in a superposition of different orthogonal states.

Notice, however, that using quantum states as inputs to the distributed mea-
surement MAB with local measurements of the form (6.6) and (6.7) can only lead
to a probabilistic version of the standard no-signalling game, i.e. Alice and Bob ran-
domise their choices of measurements according to the respective overlaps p(x′|x) =
⟨x′|ωx|x′⟩ and p(y′|y) = ⟨y′|ωy|y′⟩. Thus, in order to use the power of asking gen-
uinely quantum questions, one needs to allow for arbitrary bipartite local measure-
ments on both sides. This leads to the general form of a distributed measurement
(6.1) with the local POVM elements {MAA′

a } and {MBB′
b } being now fully general

bipartite measurements, and therefore a Buscemi behaviour is of the form:

p(a, b|ωx, ωy) = Tr
[(

MAA′
a ⊗MB′B

b

) (
ωA

x ⊗ ρA′B′ ⊗ωB
y

)]
. (6.12)

The above extension of a no-signalling game leads to a novel type of nonlocality
which was noticed for the first time in [45]. Here we will refer to this type of non-
classical correlations as Buscemi nonlocality. In this language the main result of [45]
states that all entangled states are Buscemi nonlocal.

In what follows we present a consistent way of quantifying Buscemi nonlocality.
First we define a proxy quantity which quantifies how much Buscemi nonlocality
can be evidenced using a fixed distributed measurement. This provides a natural
quantifier for the resource theory of Buscemi nonlocality of distributed measure-
ments, which is our main focus here. Optimising this quantity over all choices of
local measurements for Alice and Bob gives rise to quantity which measures the
maximal degree of Buscemi nonlocality which can ever be obtained using a given
quantum state.

6.2.2 Quantitative measure of Buscemi nonlocality

The fact that Alice and Bob may share entanglement in (6.1) and use it to perform
a measurement means that the measurement is inherently nonlocal and can lead to
interesting correlations, even when measured on completely independent systems.
Our central question then is how to quantify this nonlocality present in a bipartite
measurement. To build a valid reference point we first consider the case when the
measurement does not lead to any type of quantum correlations. This means that
the behaviour p(a, b|ωx, ωy) = Tr[MAB

ab (ωA
x ⊗ ωB

y )] results from the measurement
{MAB

ab } formed using a separable shared state ρA′B′ ∈ SEP, where SEP denotes the
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set of all separable operators. Any separable state can be written as:

ρA′B′ = ∑
λ

p(λ) ρA′
λ ⊗ ρB′

λ , (6.13)

where p(λ) is a classical probability distribution corresponding to a shared random
variable λ and {ρA′

λ } and {ρB′
λ } are collections of local quantum states. The associ-

ated distributed measurement from Eq. (6.1) takes the form:

MAB
ab = ∑

λ

p(λ) MA
a|λ ⊗MB

b|λ, (6.14)

where we denoted MA
a|λ := TrA′ [MAA′

a (1A⊗ ρA′
λ )] for Alice and MB

b|λ := TrB′ [MB′B
b (ρB′

λ

⊗ 1B)] for Bob. This is the most general classical measurement scheme which can be
realised if Alice and Bob have access only to classical randomness λ and the ability to
locally prepare quantum states in their labs. The set of all measurements that can be
written as in (6.14) will be denoted by FBN. These measurements are the most natural
candidates for free objects in the resource theory of Buscemi nonlocality. Notice that
measurements from this set have POVM elements that are all separable (SEP) and
admit a quantum realisation (RBN), i.e can be written as in (6.1) for some choice of
local measurements and shared state. Such measurements can never demonstrate
Buscemi nonlocality, regardless of the state being measured.

In order to better understand the difference between the sets RBN (all distributed
measurements) and FBN (free distributed measurements), let us consider the follow-
ing simple example:

Example 2. Let Alice and Bob share a two-qubit Werner state:

ρA′B′ = p ϕA′B′
+ + (1− p)

1A′B′

4
, (6.15)

where p ∈ [0, 1], the state ϕ+ = |ϕ+⟩⟨ϕ+| and |ϕ+⟩ := 1√
2
(|0⟩|0⟩+ |1⟩|1⟩) is a maximally-

entangled state. It is widely known that the Werner state (6.15) is separable for all p ≤ 1/3.
Let {Ua} for a = 1, ..., 4, be a set of Pauli operators. Consider a measurement MA =
{MA′A

a } with elements:

MA′A
a = (UA′

a ⊗ 1A)ϕA′A
+ (UA′

a ⊗ 1A)†, (6.16)

Defining an analogous measurement for Bob MB = {MBB′
b } and using the definition (6.1)

allows us to write the distributed measurement MAB = {MAB
ab } for Alice and Bob as:

MAB
ab = (UA′

a ⊗UB′
b )ρA′B′(UA′

a ⊗UB′
b )† (6.17)

= p ϕA′B′
ab + (1− p)

1A′B′

4
, (6.18)

where we labelled ϕA′B′
ab := (UA′

a ⊗ UB′†
b )ϕA′B′

+ (UA′
a ⊗ UB′†

b )†. Clearly, ϕA′B′
ab is again a

maximally-entangled state and therefore each POVM element of MAB is a Werner state,
up to local unitaries. Since entanglement is preserved under local unitary operations, all
elements of the distributed measurement MAB are entangled operators for p > 1/3.

Therefore we can conclude that for p ≤ 1/3 the distributed measurement MAB can
be written as in (6.14), which by definition means that MAB ∈ FBN. Moreover, for p >
1/3 we know that each MAB

ab /∈ SEP and therefore MAB /∈ FBN. This implies that this
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distributed measurement is a resourceful measurement in the resource theory of Buscemi
nonlocality.

A natural question at this point is: given an arbitrary bipartite measurement
MAB ∈ RBN, how can its nonlocal properties be quantified, in particular its ability to
generate Buscemi nonlocality? For this purpose it is useful to define the following
quantity:

Definition 6.2. (Robustness of Buscemi Nonlocality [54]) The robustness of Buscemi non-
locality (RoBN) of a distributed measurement MAB = {MAB

ab } is the solution to the follow-
ing optimisation problem:

RBN(M
AB) = min r (6.19)

s.t. MAB
ab + rNAB

ab = (1 + r)OAB
ab ∀ a, b,

{OAB
ab } ∈ FBN, {NAB

ab } ∈ RBN.

Although this may not seem obvious at first sight, the above is a convex optimisa-
tion problem and hence can be efficiently solved numerically [38, 239, 97] (see Ap-
pendix A.1 for details). Moreover, due to the duality of convex optimisation prob-
lems the dual formulation of the above has several nice properties which will be
useful for our purposes. Robustness-based quantifiers were introduced in [235, 209]
as entanglement quantifiers and since then successfully applied in a wide range of
QRTs. The above variant is closely related to the MDI-nonlocality robustness in-
troduced in [54] at the level of probabilities (6.12). In particular, the two quantities
are equivalent when the sets of input states {ωx} and {ωy} are tomographically-
complete, meaning that they form a basis for their respective Hilbert spaces. It is
also worth mentioning that the quantity defined in Def. 6.2 is not a particular case of
the robustness defined for general convex resource theories of measurements [164,
213]. In particular, in Def. 6.2 the optimisation is over all measurements {NAB

ab } and
{OAB

ab } which have a quantum realisation in the no-signalling scenario, whereas the
quantifiers considered in [164] allow for arbitrary measurements (in particular also
those which require communication). In other words, the above general approach
is valid only for measurements performed in a single location, whereas here we are
explicitly interested in a distributed, multipartite scenario. Hence our robustness
measure is a genuinely different quantity than the generalised robustness of mea-
surements studied in the above papers.

In Appendix A.1 we derived the dual formulation of the RoBN, which will be
used to study its operational characterisation. Furthermore, we note that RoBN pos-
sesses three natural properties which one would expect from a reasonable measure
of nonlocality, i.e:

(i) It is faithful, meaning that it vanishes if and only if the measurement is classical,
i.e:

RBN(M
AB) = 0 ⇐⇒ MAB ∈ FBN. (6.20)

(ii) It is convex, meaning that having access to two distributed measurements MAB
1

and MAB
2 one cannot obtain a better one by using them probabilistically, i.e for

MAB = p M1 + (1− p)M2 with 0 ≤ p ≤ 1, we have:

RBN(M
AB)≤ p RBN(M

AB
1 )+(1−p)RBN(M

AB
2 ). (6.21)
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(iii) It is monotonic (non-increasing) under all quantum simulations. That is, if NAB

can be simulated by MAB using some quantum simulation strategy (6.2) then

RBN(N
AB) ≤ RBN(M

AB). (6.22)

These properties were proven in [190] for a more general class of objects. For com-
pleteness, we given an independent proof in Appendix A.2.

Finally, we introduce a quantity which measures how much Buscemi nonlocality
can be generated by using a fixed shared state. In this way we define the robustness
of Buscemi nonlocality of a state ρAB as:

RBN(ρAB) := max
MA, MB

RBN(M
AB), (6.23)

where the optimisation ranges over all local measurements on Alice’s and Bob’s side,
MAB is a distributed measurement of the form (6.1) and RBN(M

AB) is the robustness
quantifier defined in (6.19). In this way the quantity from Eq. (6.23) is only a function
of the shared state, rather than the whole distributed measurement. It quantifies the
maximal “amount” of nonlocality of the corresponding behaviour {p(a, b|ωx, ωy)}
that can be generated using a fixed ρA′B′ , arbitrary local measurements MA, MB and
arbitrary input states {ωx}, {ωy}.

6.3 Main results

6.3.1 Operational characterisation of RoBN

In the previous subsection we introduced a measure of Buscemi nonlocality quan-
tifying how “close” a given measurement is to that which would arise from using
only local measurements and shared randomness, i.e. a measurement of the form
(6.14). In what follows we will show that RoBN quantifies the advantage offered by
a fixed distributed measurement over all classical measurements in a special type of
a state discrimination task relevant in the distributed scenario.

Let us now consider a task which is a special case of the no-signalling game
described in Sec. 6.2.1. In this case we choose the function V(a, b, x, y) = δax δby. This
means that Alice and Bob win if they both manage to guess the values of x ∈ X and
y ∈ Y which were supplied to them by the referee. This is a variation of the standard
state discrimination task in which a single player has to guess the realisation of a
single random variable x, as addressed in previous chapters. Interestingly, due to the
assumption that the players cannot communicate, distributed state discrimination
cannot be reduced to the standard state discrimination task.

Operational Task 4. (Distributed state discrimination (DSD)) The task consists of the
following steps:

1. The referee chooses a bipartite state from the ensemble {p(x, y), σxy} according to
p(x, y) and distributes it among parties by sending one part of it to Alice and the
other part to Bob.

2. After receiving their systems, Alice and Bob can preprocess them using arbitrary chan-
nels {EA

λ } and {N B
λ }, potentially conditioned on a shared randomness λ.
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3. Alice and Bob apply fixed local measurements MAA′ = {MAA′
i } and MB′B = {MAA′

j }
to their shares of the state σxy and a part of the shared state ρA′B′ . They obtain out-
comes i and j respectively, which they can postprocess to produce their guesses a and
b.

4. Alice and Bob communicate their guesses a and b to the referee and win the game if
they both correctly guess, i.e. when a = x and b = y.

Notice that the second and the third step can be also formulated as allowing Alice
and Bob apply any quantum simulation (6.3) to their distributed measurement MAB ∈
RBN. Hence the two players are effectively simulating a distributed measurement,
denoted by NAB ≺ MAB. The average probability of discriminating states in this
discrimination game as specified by G = {p(x, y), σxy} can be expressed as:

pDSD
guess(G, MAB) = max

NAB≺qMAB
∑

a,b,x,y
p(x, y)Tr

[
Nabσxy

]
δxa δyb, (6.24)

where the optimization ranges over all measurements NAB = {Nab} which can be
quantum-simulated using MAB.

Let us now consider two different situations: (i) a classical scenario in which the
distributed measurement performed by Alice and Bob is classical, i.e. MAB ∈ FBN ,
and (ii) a quantum scenario in which the measurement performed by Alice and Bob
is genuinely quantum, i.e it cannot be written as in (6.14).

In the classical case (i) the optimal average probability of guessing which state
from the ensemble {p(x, y), σxy} was provided can be expressed as:

pDSD
guess(G) = max

NAB∈FBN

pDSD
guess(G, NAB), (6.25)

Note that the above optimisation has to be performed over the convex set of mea-
surements of the form (6.14), which is a subset of all separable measurements.

In the quantum case (ii) the above score can be further improved by exploiting
Buscemi nonlocality contained in an entangled state which forms the distributed
measurement MAB. The maximal amount by which quantum score outperforms
classical one can be quantified by studying the ratio:

max
G

pDSD
guess(G, MAB)

pDSD
guess(G)

. (6.26)

In Appendix A.3 we show that the maximal advantage which Alice and Bob can
achieve when using MAB ∈ RBN over the best classical distributed measurement is
precisely equal to the robustness of Buscemi nonlocality defined in (6.19). Formally,
we have the following relation:

Result 6.1. Let MAB = {MAB
ab } be a distributed measurement and G = {p(x, y), σxy} be

an ensemble of bipartite states. Then :

max
G

pDSD
guess(G, MAB)

pDSD
guess(G)

= 1 + RBN(M
AB). (6.27)

This provides a direct operational meaning for Buscemi nonlocality. The proof
of Result 6.1 consists of three parts. First we use the primal formulation of the prob-
lem (6.19) to show that the advantage from (6.27) is always upper-bounded by the
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RoBN. Secondly, we identify a set of properties which characterize all distributed
measurements and add them to the optimization problem (6.19) as superfluous con-
straints. Finally, using this characterization we obtain a dual formulation of the prob-
lem which, after some simplifications, allows us to extract the optimal ensemble of
states {p(x, y), σxy} which achieves the optimum in (6.27). The full proof of this
result is in Appendix A.3.

The task of distributed state discrimination is a particular instance of a no-signa-
lling game. In this respect we can further consider an advantage (6.26), with the
average score psucc(G, MAB) given by (6.4), and optimize it over all ensembles G
and scoring functions V(a, b, x, y). This would allow us to find the largest possible
advantage which can be achieved in any possible nonsignalling game. In this way
Result 6.1 naturally leads to the following corollary:

Corollary 6.1. Let MAB and G be defined as above and let V(a, b, x, y) : A× B × X ×
Y → [0, 1]. Then:

max
V,G

pV
guess(G, MAB)

max
ÑAB pV

guess(G, ÑAB)
= 1 + RBN(M

AB), (6.28)

where the maximisation in the denominator is over all distributed measurements NAB that
use a separable shared state σA′B′ ∈ SEP. In this way we can also interpret RoBN as a
quantifier of the Buscemi nonlocality contained within a given distributed measurement.

6.3.2 Connecting Buscemi nonlocality with other notions of nonclassical-
ity

In this section we show that Buscemi nonlocality can be viewed as a type of non-
locality which is strictly stronger than two other well-known notions of nonlocal
correlations: entanglement [121] and nonclassical teleportation [51].

It is worth mentioning that the authors of [194] also studied the relationship be-
tween Buscemi nonlocality, nonclassical teleportation and entanglement by studying
a partial order between objects representing these resources: distributed measure-
ments for Buscemi nonlocality. teleportation instruments for nonclassical teleporta-
tion and bipartite states for entanglement. Here we address an analogous problem
using a more direct approach: we relate robustness quantifiers of these resource the-
ories and find a direct and simple relationship between them.

Recall that a distributed measurement is composed of two local bipartite mea-
surements and a shared state. This setting is very similar to the teleportation pro-
tocol in which Alice locally measures an input state provided by the referee and
a part of an entangled state which she shares with Bob. Since the resource used
in the teleportation task is effectively “contained” in the resource which is used in
the task of distributed state discrimination, it is natural to ask if we can see some
connection between these two tasks. In particular, how is the ability of performing
nonclassical teleportation related to the ability of demonstrating Buscemi nonlocal-
ity? Furthermore, since teleportation is intrinsically related with entanglement [51],
also Buscemi nonlocality should be quantitatively related to the entanglement con-
tent of a state. In the next section we will show that in fact these three notions of
nonclassical correlations are inherently connected and all describe different types of
nonlocality.
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Buscemi nonlocality and nonclassical teleportation

Quantum teleportation is one of the most important and thought-provoking discov-
eries in the whole quantum information theory. In the ideal version of the telepor-
tation protocol proposed by Bennett et. al. in [26] two players, Alice and Bob, share
a maximally entangled state. A third party, the referee, gives Alice an unknown
quantum state. She then performs a Bell-state measurement on that system and her
share of the entangled state and communicates her measurement result to Bob. With
this new information Bob applies an appropriate correcting unitary to his share of
the entangled state, transforming it into the state which was initially given to Alice.
This protocol can be naturally generalised to more realistic scenarios in which the
shared entangled state and measurements performed by Alice are arbitrary.

Teleportation experiment can be also viewed as a way of testing nonlocality of a
pair of objects: a state and measurement. In particular, the “teleportation resource”
in that case is the teleportation channel or, more precisely, a collection of subchannels
which form a teleportation instrument constructed using the shared state and Alice’s
measurement. Recall that an instrument E = {Ea} for {a = 1, . . . , oA} is a collec-
tion of oA completely positive and trace non-increasing linear maps Ea, so-called
subchannels, such that ∑oA

a=1 Ea is a channel. It was recently shown that the non-
locality present in a teleportation instrument can be exploited in several quantum-
information theoretic tasks [139]. In order to relate nonclassical teleportation with
Buscemi nonlocality we first formally introduce the notion of a teleportation instru-
ment.

Definition 6.3. (Teleportation instrument) A teleportation instrument ΛA→B′ from Alice
to Bob is a collection of subchannels {ΛA→B′

a } defined as:

ΛA→B′
a [ωA] = TrAA′

[(
MAA′

a ⊗ 1B′
) (

ωA ⊗ ρA′B′
)]

. (6.29)

The above notion fully captures the type of channel obtained during the gener-
alised teleportation experiment. For some applications it may be easier to work with
states rather than subchannels. In that case for a collection of input states {ωA

x } one
can consider the so-called teleportation assemblages (teleportages) {τB′

a|x}, where the

elements of the assemblage are given by τB′
a|x := ΛA→B′

a [ωA
x ].

Notice that any teleportation instrument satisfies its own ’no-signalling’ con-
straint, which now reads: ∑i Λi

A→B′ [ωA] = TrA′ [ρ
A′B′ ] for all input states ωA. In

fact, it can also be shown that teleportation instruments are the most general type of
no-signalling instruments acting between two parties [139]. A teleportation instru-
ment ΛA→B′ is said to be classical (or free) if it describes a teleportation experiment
performed using a separable shared state. We can find a general form of a classical
teleportation instrument by taking ρA′B′ = ∑λ pλ ρA′

λ ⊗ ρB′
λ . The associated (classical)

teleportation instrument reads:

Λc
a(ωx) = ∑

λ

pλ TrAA′
[(

MAA′
a ⊗ 1B

) (
ωA

x ⊗ ρA′
λ ⊗ ρB′

λ

)]

= ∑
λ

pλ p(a|x, λ) ρB′
λ , (6.30)

where p(a|x, λ) = Tr[MAA′
a (ωA

x ⊗ ρA′
λ )]. This is the most general classical telepor-

tation scheme which can be realised if Alice and Bob have access only to classical
randomness λ and the ability to locally prepare quantum states in their labs. In
what follows we will denote the set of all instruments which can be written as in
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(6.30) by FT. If a teleportation instrument cannot be written in this way, we will refer
to it as “nonclassical” and denote the set of all such instruments with RT. The quan-
tity which quantitatively measures the amount of nonclassicality associated with a
given teleportation instrument is called Robustness of Teleportation (RoT) [51]. For
a teleportation instrument ΛA→B′ = {ΛA→B′

a } it is defined as:

RT(ΛA→B′) = min
r, {ΓA→B′

a },{ΩA→B′
a }

r (6.31)

s.t. ΛA→B′
a + r ΩA→B′

a = (1 + r) ΓA→B′
a ∀ a,

{ΓA→B′
a } ∈ FT, {ΩA→B′

a } ∈ RT.

It turns out that the above is also a convex optimisation problem which can be seen
by formulating the constraints using the Choi-Jamiołkowski isomorphism (see Ap-
pendix A.4 for details). With the above notation we can now address our next result
which relates Buscemi nonlocality with nonclassical teleportation.

Result 6.2. Let MAB be a distributed measurement composed of local bipartite measure-
ments MA and MB and a shared state ρA′B′ . Then:

max
MB

RBN(M
AB) = RT(ΛA→B′), (6.32)

where the optimisation is over all local measurements MB = {MB′B
b } for Bob. An analogous

result holds for a teleportation instrument ΛB→A′ if we instead optimise the LHS of Eq.
(6.32) over all local measurements for Alice.

The proof of this result is in Appendix A.4. Let us now use this result to show a
new operational interpretation of the above teleportation quantifier.

Consider a task involving two players, Alice and Bob, who have access to a tele-
portation instrument ΛA→B′ connecting their labs. Let the referee be in possession
of an ensemble of bipartite quantum states G = {p(x, y), σxy}. Just as before, the
players may discuss on their strategy before the game begins. This means that they
may use a shared classical memory λ with a corresponding distribution p(λ) and
conditioning on it Alice may apply one of the channels {EA

λ } to the input of the tele-
portation instrument and Bob may apply {N B′

λ } to the output. The crucial difference
here between the standard teleportation protocol is that Bob does not know Alice’s
measurement outcome and so his correction cannot depend on it. The task posed
between Alice and Bob is the following:

Operational Task 5. (Teleportation-assisted state discrimination (TSD)) The task consists
of the following steps:

1. The referee chooses a bipartite state from the ensemble G = {p(x, y), σxy} according
to p(x, y) and distributes it among parties by sending one part of it to Alice and the
other part to Bob.

2. Alice sends her part of the state to Bob using a teleportation instrument ΛA→B′ . She is
also allowed to pre-process her part of the state conditioned on the classical randomness
λ using a collection of channels {NA

λ }. Based on the outcome of the teleportation
instrument i and potentially λ she produces a guess a via p(a|i, λ).

3. Bob applies a correction {EB′
λ } conditioned on the value of a shared random variable

λ to the teleported state he received from Alice. He then measures both parts of the
system using an arbitrary measurement MB = {MBB′

b } and produces a guess b.
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4. Alice and Bob win the game if they both simultaneously guess x and y.

The average probability of guessing in the above discrimination task can be ex-
pressed as:

pTSD
guess(G, ΛA→B′) = max

MB
max
Φ≺qΛ

∑
a,b,x,y

p(x, y)Tr
[

MB′B
b

(
ΦA→B′

a ⊗ idB
)

σAB
xy

]
δxaδyb (6.33)

where the optimization ranges over all measurements MB = {MB′B
b } on Bob’s side

and all teleportation instruments ΦA→B′ = {ΦA→B′
a }which can be quantum-simulated

using the instrument ΛA→B′ = {ΛA→B′
i }. The elements of such a simulated instru-

ment are of the form:

ΦA→B′
a (·) = ∑

i,λ
p(λ)p(a|i, λ) ◦ NA

λ ◦ΛA→B′
i ◦ EB′

λ (·) (6.34)

for some choice of local channels {EB′
λ }, {NA

λ } and probabilities p(a|i, λ) and p(λ).
The optimal average probability of guessing that can be achieved using only clas-

sical resources (i.e. a separable shared state, meaning that the teleportation instru-
ment is classical) can be written as:

pTSD
guess(G) = max

FA→B′∈FT

pTSD
guess(G, FA→B′), (6.35)

where FA→B′ stands for a classical teleportation instrument from Alice to Bob. The
maximal advantage which can be offered by any resourceful teleportation instru-
ment ΛA→B′ in the task of TSD is precisely equal to the quantifier of nonclassical
teleportation defined in (6.31). This is captured by the following result:

Result 6.3. Let ΛA→B′ = {ΛA→B′
a } be a teleportation instrument from Alice to Bob and let

G = {p(x, y), σxy} be an ensemble of bipartite states. Then the following holds:

max
G

pTSD
guess(G, A→B)

pTSD
guess(G)

= 1 + RT(ΛA→B). (6.36)

Proof. Consider maximizing both sides of Eq. (6.27) over all measurements MB

on Bob’s side. Due to Result 6.2, the right-hand side of Eq. (6.27) is equal to 1 +
RT(ΛA→B′). On the other hand, notice that we can interchange maximisation over G
with maximisation over MB. Since pDSD

guess(G) does not depend on MB, the left-hand
side of Eq. (6.27) becomes:

max
G

max
MB

pDSD
guess(G, MAB)

pDSD
guess(G)

= max
G

pTSD
guess(G, ΛA→B′)

pDSD
guess(G)

(6.37)

= max
G

pTSD
guess(G, ΛA→B′)

pTSD
guess(G)

, (6.38)
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where the last equality follows since:

pDSD
guess(G) = max

FAB∈FBN

pDSD
guess(G, FAB) (6.39)

= max
FA→B′∈FT

max
MB

pTSD
guess(G, FA→B′) (6.40)

= pTSD
guess(G). (6.41)

This completes the proof.

Buscemi nonlocality and entanglement

Let us now explore the link between Buscemi nonlocality, which we defined as a
property of a bipartite state and local measurements, and entanglement (a property
of the state only). Among the large variety of known entanglement quantifiers [177,
121, 24, 168, 231, 183, 196, 106], we are going to choose the one which most natu-
rally relates to the RoBN — the so-called generalised Robustness of Entanglement
(RoE), denoted here with RE(ρ). This entanglement quantifier was considered for
the first time in [235] and generalised in [209] and since then proved to be useful in
several different contexts, e.g. in proving that all entangled states can demonstrate
nonclassical teleportation [50], in exploring the connection between entanglement
and permutation symmetry [184] or in studying the effects of local decoherence on
multi-party entanglement [200]. This quantifier also has two interesting operational
interpretations: it quantifies the maximal advantage that can be achieved in a bi-
partite subchannel discrimination task [218] and the maximal advantage in the task
of local subchannel discrimination with a quantum memory [139]. It is defined in
terms of the following convex optimisation problem:

RE(ρ
AB) = min

r,ηAB,σAB
r (6.42)

s.t. ρAB + r ηAB = (1 + r)σAB

ηAB ≥ 0, Tr ηAB = 1

σAB ∈ SEP, Tr σAB = 1.

Using this definition we can now address our next result which relates Buscemi non-
locality with entanglement.

Result 6.4. Let MAB be a distributed measurement composed of local measurements MA

and MB and a shared state ρA′B′ . Then:

max
MA,MB

RBN(M
AB) = RE(ρ

A′B′), (6.43)

where the optimization is over all local measurements for Alice MA = {MAA′
a } and for Bob

MB = {MB′B
b }.

The proof of this result is in Appendix A.5. Notice that the above relationship
allows us to directly infer that the maximal amount of Buscemi nonlocality that can
ever be generated using a given state, defined in (6.23), is precisely equal to its en-
tanglement content. Therefore we may write:

RBN(ρAB) = RE(ρ
AB). (6.44)



104 Chapter 6. Quantum resource theory of Buscemi nonlocality

The relationship (6.43) along with Result 6.1 also allows to find a new operational
interpretation of the RoE. Consider again the task of DSD with the relaxation that
Alice and Bob may now apply arbitrary local measurements in their labs. The
goal for Alice and Bob remains the same: to guess which state from the ensemble
G = {p(x, y), σxy} was prepared, under the assumption that no communication is
allowed. In this way the task posed between Alice and Bob is the following:

Operational Task 6. (Entanglement-assisted state discrimination (ESD)) The task consists
of the following steps:

1. The referee chooses a bipartite state from the ensemble G = {p(x, y), σxy} according
to p(x, y) and distributes it among parties by sending one part of it to Alice and the
other part to Bob.

2. Alice and Bob apply arbitrary local measurements MA and MB to the states they
received and their part of the shared state ρA′B′ and receive outcomes a and b, respec-
tively.

3. Alice and Bob win the game if they both guess which state was provided, i.e. guess
both x and y.

The average probability of guessing in this task can be expressed as:

pESD
guess(G, ρA′B′) = max

MA,MB
∑

a,b,x,y
p(x, y)Tr

[
MAB

ab σAB
xy

]
δxaδyb, (6.45)

where the optimization ranges over all measurements MA = {MAA′
a } on Alice’s and

MB = {MB′B
b } on Bob’s side with measurement MAB

ab of the form (6.1).
The best average probability of guessing in the classical scenario (i.e. when the

shared state is separable) is given by:

pESD
guess(G) = max

σA′B′∈ SEP
pESD

guess(G, σA′B′)

= max
NAB∈FBN

pESD
guess(G, NAB)

= pDSD
guess(G). (6.46)

The maximal advantage which can be offered by an entangled state ρA′B′ in the ESD
task can be quantified using the RoE. This is the content of our next result:

Result 6.5. Let ρA′B′ be a bipartite state shared between Alice and Bob and let G = {p(x, y), σxy}
be an ensemble of bipartite states. Then the following holds:

max
G

pESD
guess(G, ρA′B′)

pESD
guess(G)

= 1 + RE(ρ
A′B′). (6.47)

Proof. The proof of this result proceeds similarly to the case of nonclassical telepor-
tation. Let us maximise both sides of (6.27) over all measurements on Alice’s and
Bob’s side, i.e. over all MA and MB. Due to Result Result 6.4, the right-hand side
of (6.27) is equal to 1 + RE(ρ

A′B′). On the other hand, due to (6.46) we can write the
left-hand side of (6.27) as:

max
G

max
MA,MB

pDSD
guess(G, MAB)

pDSD
guess(G)

= max
G

pESD
guess(G, ρA′B′)

pESD
guess(G)

. (6.48)
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This completes the proof.

Finally, let us note that entanglement-assisted state discrimination is a particular
instance of a no-signalling game in which we fix V(a, b, x, y) = δxaδby and allow for
optimising over local measurements. This exactly corresponds to the average score
studied in Ref. [45]. Using this realisation we can now consider the maximal advan-
tage in the task of entanglement-assisted state discrimination (6.47) and optimise it
not only over ensembles G, but also over all predicates V(a, b, x, y), in a manner ex-
actly similar as in the case of Corollary 6.1. This therefore yields the largest possible
advantage that can be achieved in any no-signalling game. In this way Result 6.5
naturally leads to the following corollary:

Corollary 6.2. Let MAB and G be defined as before and let V(a, b, x, y) : A× B × X ×
Y → [0, 1]. Then:

max
V,G

pV
guess(G, MAB)

maxσ∈SEP maxNA,NB pV
guess(G, NAB)

= 1 + RBN(M
AB), (6.49)

where NAB = {NAB
ab } with the POVM elements defined as

Nab := TrA′B′
[(

NAA′
a ⊗NB′B

b

)(
1A⊗ σA′B′⊗ 1B

)]
. (6.50)

In this way we can now interpret RoE as a quantifier of the Buscemi nonlocality
contained within a given state. This not only re-derives the main result of Ref. [45],
but also makes it significantly stronger; the RoE can now be seen as the quantifier of
the maximal advantage in any no-signalling game, therefore providing a completely
new interpretation for this well-known entanglement quantifier.

Complete sets of monotones for quantum simulation

We finish this section by showing that the average guessing probability in the task
of DSD completely describes the preorder induced by quantum simulation on dis-
tributed measurements MAB. Formally this means that the average guessing prob-
ability pDSD

guess(G, MAB) when viewed as a function of G forming a complete set of
monotones for quantum simulation of MAB. This is captured by the following re-
sult:

Result 6.6. Any distributed measurement MAB can quantum-simulate another measure-
ment NAB if and only if for all ensembles G = {p(x, y), σxy} the following holds:

pDSD
guess(G, MAB) ≥ pDSD

guess(G, NAB). (6.51)

In other words, quantum simulation (or LOSR) can never improve the discrimi-
nation ability of any distributed measurement. The proof of this result is in Ap-
pendix A.6.

6.3.3 RoBN as a quantifier in single-shot information theory

We now address another way of interpreting RoBN from the point of view of single-
shot quantum information theory. In particular, in Appendix A.7 we show that
RoBN also quantifies the entanglement-assisted min-accessible information of a quan
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tum-to-classical bipartite channel (i.e. a channel with quantum inputs and classical
outputs). This connection parallels analogous results from the previous chapters
which correspond to single party quantum-to-classical channels [205, 213].

We start by noticing that any distributed measurement MAB can be seen as an
entanglement-assisted quantum-to-classical channel:

NAB→XY[ωA ⊗ωB] = ∑
a,b

p(a, b|ωx, ωy) |a⟩⟨a|X⊗ |b⟩⟨b|Y, (6.52)

with p(a, b|ωx, ωy) as in (6.12). In quantum information theory the standard quanti-
fier of the maximal amount of classical information that can be reliably sent through
a quantum channel is the accessible information which is defined for an arbitrary
quantum channelR as:

Iacc(R) = max
E,D

I(X : G), (6.53)

where E = {p(x), σx} is an ensemble of states which encode classical random vari-
able X distributed according to p(x), D = {Dg} is the decoding POVM which pro-
duces an outcome g with probability p(g|x) := Tr[Dg · R[σx]] and I(X; G) = H(X)−
H(X|G) is the mutual information of the distribution p(x, g) := p(x)p(g|x). In the
single-shot case a more relevant quantity is the min-accessible information Iacc

min(R)
which is defined as [59]:

Iacc
+∞(R) = max

E,D

[
H+∞(X)− H+∞(X|G)

]
, (6.54)

where the optimization ranges over the same encodings and decodings as before
and single-shot entropies are given by [187]:

H+∞(X) = − log max
x

p(x), (6.55)

H+∞(X|G) = − log

[
∑
g

max
x

p(x, g)

]
, (6.56)

Let us now consider an encoding of a bipartite random variable X × Y, i.e E =
{p(x, y), σxy} and the associated decoding D = {Dg} for g = 1, . . . , |X| · |Y|. In
Appendix A.7 we show that for this particular setting RoBN quantifies the min-
accessible information of the channel NAB→XY. Formally, we have the following
result:

Result 6.7. Let NAB→XY be a quantum-to-classical channel of the form (6.52). Then the
following holds:

Iacc
+∞(NAB→XY) = log[1 + RBN(M

AB)] (6.57)

The proof of this result is in Appendix A.7. The above result provides an alterna-
tive way of interpreting RoBN as the maximal amount of min-mutual information
that can be obtained between the input and output of the channel (6.52) when using
it only once.
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6.4 Conclusions

In this chapter we have studied the notion of Buscemi nonlocality when it is for-
malised as a quantum resource theory of distributed measurements. This formula-
tion allowed us to establish a direct operational interpretation of Buscemi nonlocal-
ity in terms of a practical information-theoretic task called distributed state discrimi-
nation (Result 6.1). We have shown that the average guessing probability in this task
provides a complete set of monotones for the partial order of distributed measure-
ments induced by quantum simulation (Result 6.6). This also gives rise to a simple
and complete family of "Buscemi inequalities" which quantify nonlocal properties of
distributed measurements.

This operational link was derived using a geometric quantity measuring the
strength of nonlocal correlations generated using a given distributed measurement
(RoBN). By connecting this quantifier with other measures of nonlocality we inferred
a quantitative relationship between distributed measurements, nonclassical telepor-
tation and quantum entanglement, a realisation which we believe to be of an inde-
pendent interest. In particular, we have shown that the robustness of Buscemi nonlo-
cality optimised over all local measurements for one party is equal to the robustness
of nonclassical teleportation (Result 6.2). Similarly, optimising RoBN over local mea-
surements for both parties gives the robustness of entanglement (Result 6.4). This
naturally leads to new operational interpretations for both of these quantifiers, in
terms of appropriately tailored state discrimination tasks of: teleportation-assisted
state discrimination (Result 6.3), and entanglement-assisted state discrimination (Re-
sult 6.5).

We have also shown that the maximal amount of nonlocality that can ever be
generated using a fixed bipartite state, is directly proportional to its entanglement
content. The entanglement content in this case is characterised by the robustness
of entanglement, a widely-known entanglement quantifier with direct operational
significance. Importantly, this not only re-derives the main result of Ref. [45], but
also makes it significantly stronger; the generalised robustness of entanglement can
now be seen as the quantifier of the maximal advantage in any no-signalling game
(Corollary 6.1 and Corollary 6.2)

As our last result we have interpreted Buscemi nonlocality from the perspec-
tive of single-shot quantum information theory (Result 6.7). In particular, we have
shown that Buscemi nonlocality, when viewed as a property of a communication
channel between the sender (the Referee) and receiver (Alice and Bob), quantifies
the maximal amount of information that can be sent reliably when the channel is
used only once (the so-called single-shot capacity of a quantum channel). We have
shown that the RoBN can be viewed as the maximal single-shot capacity offered by
a bipartite quantum-to-classical channel. This establishes an important link between
Buscemi nonlocality and the single-shot theory of quantum communication.

Finally, we emphasise that while we focused exclusively on quantifying Buscemi
nonlocality using a robustness-based measure, our results can be easily extended
to address the so-called weight-based resource quantifiers [80, 137]. These geometric
measures find their operational meaning in the so-called exclusion tasks [73, 224],
as we explored in the previous chapters. Consequently, the resource quantifiers of:
weight of Buscemi nonlocality, weight of nonclassical teleportation, and the weight
of entanglement, are quantifiers characterising: distributed state exclusion (DSE),
teleportation-assisted state exclusion (TSE), and entanglement-assisted state exclu-
sion (ESE), respectively.
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We believe that the results presented in this chapter will shed new light on the
complex structure of different types of nonclassical effects observed in Nature, as
well as on their practical relevance for physically-motivated tasks.

This chapter also provides an example of a multiobject quantum resource theory
which cannot be reduced to a theory of either measurements, states, channels, or
state-measurement pairs [72]. This also means that the composite objects we study
here constitute genuine multiobject quantum resources. It is an interesting open
question to see if one can find additional examples of multiobject resource theories
which address such irreducible resources. This is in sharp contrast to a recently
introduced multiobject resource theory of state-measurement pairs, where the re-
sources independently contribute to the benefit of the operational task of discrimi-
nation and exclusion of subchannels [72].

One of the standard questions addressed by quantum resource theories is de-
termining when and at what rate a large number of copies of one resource can be
converted into another. The fact that multiobject QRTs cannot be seen as resource
theories of constituent objects leads a natural question of whether this can be used
to improve the existing asymptotic protocols. For example, in the resource theory
of nonclassical teleportation one can ask whether n uses of teleportation instrument
can lead to a better teleportation than using n copies of the shared state. Similarly
we can ask whether access to n uses of a distributed measurement can be in advan-
tageous over using bipartite measurements and n copies of the shared state.
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Chapter 7

Characterisation of quantum
betting tasks in terms of Arimoto
mutual information

“If you are receptive and humble, mathematics will lead you by the hand. Again and again,
when I have been at a loss how to proceed, I have just had to wait until I have felt the
mathematics led me by the hand. It has led me along an unexpected path, a path where new
vistas open up, a path leading to new territory, where one can set up a base of operations,
from which one can survey the surroundings and plan future progress. ”

Paul A. M. Dirac

This chapter is the spiritual sequel of chapter 3 on the weight of informativeness.
One of the main questions that were left open there, was about the apparently minor
remark that, given the two triangular correspondences (between operational tasks,
information-theoretic quantities, and resource quantifiers), one at +∞ and the other
at −∞, one can naturally speculate and hope for something reasonable to populate
the in-between. This was the starting point of the research contained in this chapter.
It turns out that there are indeed reasonable things in-between those two extreme
cases, and the main goal of this chapter is to provide such construction. Surprisingly,
the answer to our problems came by importing ideas from the economic sciences,
specifically the concepts of betting and risk-aversion, which allowed us to introduce a
family of new operational tasks which we have coined as quantum betting tasks.

In this chapter, we introduce operational quantum tasks based on betting with
risk-aversion – or quantum betting tasks for short – inspired by standard quantum
state discrimination and classical horse betting with risk-aversion and side infor-
mation. In particular, we introduce the operational tasks of quantum state betting
(QSB), noisy quantum state betting (nQSB), and quantum channel betting (QCB)
played by gamblers with different risk tendencies. We prove that the advantage
that informative measurements (non-constant channels) provide in QSB (nQSB) is
exactly characterised by Arimoto’s α-mutual information, with the order α deter-
mining the risk aversion of the gambler. More generally, we show that Arimoto-
type information-theoretic quantities characterise the advantage that resourceful ob-
jects offer at playing quantum betting tasks when compared to resourceless objects,
for general quantum resource theories (QRTs) of measurements, channels, states,
and state-measurement pairs, with arbitrary resources. In limiting cases, we show
that QSB (QCB) recovers the known tasks of quantum state (channel) discrimination
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Arimoto mutual information

when α → ∞, and quantum state (channel) exclusion when α → −∞. Inspired by
these connections, we also introduce new quantum Rényi divergences for measure-
ments, and derive a new family of resource monotones for the QRT of measurement
informativeness. This family of resource monotones recovers in the same limiting
cases as above, the generalised robustness and the weight of informativeness. Alto-
gether, these results establish a broad and continuous family of four-way correspon-
dences between operational tasks, mutual information measures, quantum Rényi
divergences, and resource monotones, that can be seen to generalise two limiting
correspondences that were recently discovered for the QRT of measurement infor-
mativeness.

7.1 Introduction and motivation

The field of quantum information theory (QIT) was born out of the union of the
theory of quantum mechanics and the classical theory of information [161]. This
union also happened to kickstart what it is nowadays known as the (ongoing) sec-
ond quantum revolution which, roughly speaking, aims at the development of quan-
tum technologies [70, 176]. Compared with its direct predecessors however, QIT is
still a relatively young field and therefore, it is important to keep unveiling, exploit-
ing, and strengthening the links between quantum theory and classical information
theory.

In this direction, the framework of quantum resource theories (QRTs) has emerged
as a fruitful approach to quantum theory [119, 57]. A central subject of study within
QRTs is that of resource quantifiers [119, 57]. Two well-known families of these mea-
sures are the so-called robustness-based [234, 208, 49, 172, 174, 155, 204, 55, 138, 122,
140, 185, 81] and weight-based [79, 136, 206, 44] resource quantifiers. Importantly,
these quantities have been shown to be linked to operational tasks and therefore, this
establishes a type of quantifier-task correspondence. Explicitly, robustness-based
quantifiers are linked to discrimination-based operational tasks [172, 217, 203, 174,
204, 212, 214], whilst weight-based resource quantifiers are linked to exclusion-based
operational tasks [73, 225]. A resource quantifier is a particular case of a more gen-
eral quantity known as a resource monotone [93] and therefore, this correspondence
can alternatively be addressed as a monotone-task correspondence.

From a different direction, in classical information theory, the Kullback-Leibler
(KL) divergence (also known as the Kullback-Leibler relative entropy) emerges as a
central object of study [131]. The importance of this quantity is in part due to the
fact that it acts as a parent quantity for many other quantities, such as the Shannon
entropy, conditional entropy, conditional divergence, mutual information, and the
channel capacity [63]. Within this classical framework, it has also proven fruitful
to consider Rényi-extensions of these quantities [192]. In particular, there is a clear
procedure for how to define the Rényi-extensions of both Shannon entropy and KL-
divergence, which are known as the Rényi entropy and the Rényi divergence, re-
spectively [192, 229]. Interestingly however, there is yet no consensus within the
community as to what is the “proper" way to Rényi-extend other quantities. As
a consequence of this, there are several different candidates for Rényi conditional
entropies [84], Rényi conditional divergences [33], and Rényi mutual information
measures [232]. The latter quantities are also known as measures of dependence
[33] or α-mutual information measures [232], and we address them here as (Rényi)
dependence measures or mutual information measures. In particular, we highlight the
mutual information measures proposed by Sibson [199], Arimoto [8], Csiszár [64],
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as well as one recent proposal, independently derived by Lapidoth-Pfister [133],
and Tomamichel-Hayashi [223]. It is known that these mutual information mea-
sures (with the exception of Arimoto’s) can be derived from their respective condi-
tional Rényi divergence [33] and therefore, we address this relationship as a mutual
information-divergence correspondence.

The links between the two worlds of QRTs and classical information theory are
now beginning to be understood to run much deeper than just the monotone-task
and mutual information-divergence correspondences from above. In fact, they are in-
timately connected via a more general four-way monotone-task-mutual information-
divergence correspondence, which holds true in particular for the QRT of measure-
ment informativeness (a QRT where the resource is a measurement’s ability to ex-
tract information encoded in a state) [204]. Explicitly, the robustness-discrimination
correspondence [204, 212] is furthermore connected to the information-theoretic quan-
tity known as the accessible information [242] which can, in turn, be written in terms
of mutual information measures. In a similar manner the weight-exclusion corre-
spondence [73, 225] is linked to the excludible information [73, 71], which can also
be written in terms of mutual information measures. Even though it was not ex-
plicitly stated in any of the above references the fourth corner in terms of “Rényi
divergences", it is nowadays a well known fact within the community, first noted
by Datta, that the generalised robustness is related to the Rényi divergence of order
∞ (also called the max quantum divergence) [65], with a similar case happening for
the weight and the divergence of order −∞ [73]. These two apparently “minor" re-
marks raise the following fascinating question: Could there exist a whole spectrum
of connections between mutual information measures, Rényi divergences, resource
monotones, and operational tasks, with only the two extreme ends at ±∞ currently
being uncovered? [73].

In this chapter we start by providing a positive answer to this question, by imple-
menting insights from the theory of games and economic behaviour [157]. This lat-
ter theory, in short, encompasses many of the theoretical tools currently used in the
economic sciences. In particular, we invoke here the so-called expected utility theory
[157] and more specifically, we borrow the concept of risk-aversion; the behavioural
tendency of rational agents to have a preference one way or another for guaranteed
outcomes versus uncertain outcomes. This concept remains of great research inter-
est in the economic sciences, with various Nobel prices having been awarded to its
understanding [14].

In general, the concept of risk aversion is a ubiquitous characteristic of rational
agents and, as such, it naturally emerges as a subject of study in various different
areas of knowledge such as: the economic sciences [76], biology and behavioral ecol-
ogy [188, 254], and neuroscience [129, 83, 221]. In short, it addresses the behavioural
tendencies of rational agents when faced with uncertain events. Intuitively, a gam-
bler spending money on bets with the hope of winning big, can be seen as an in-
dividual taking (potentially unnecessary) risks, in the eyes of a more conservative
gambler. One of the challenges that economists have tackled, since roughly the sec-
ond half of the previous century, is the incorporation of the concept of risk aversion
into theoretical models describing the behaviour of rational agents, as well as its
quantification, and exploitation of its descriptive power [76].

The concept risk was first addressed within theoretical models by Bernoulli in
1738 (translated into English by Sommer in 1954) [28]. Later on, the theory of ex-
pected utility, formalised by von Neumann and Morgenstern in 1944 [157], provided
a framework within which to address and incorporate behavioural tendencies like
risk aversion. It was then further formalised, independently and within the theory
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of expected utility, by Arrow, Pratt, and Finetti in the 1950’s and 60’s [9, 179, 86]
who, in particular, introduced measures for its quantification. The quest for further
understanding and exploiting this concept has since remained of active research in-
terest in the economic sciences [76]. Recently, an important step was taken in the
work of Bleuler, Lapidoth and Pfister (BLP) in 2020 [33], where the concept of risk
aversion was implemented within the realm of classical information theory, as part
of the operational tasks of horse betting games with risk and side information.

In this chapter, inspired by the concepts of betting, risk aversion, the tasks intro-
duced by BLP [33], as well as by standard quantum state discrimination, we intro-
duce operational quantum betting tasks. Surprisingly, we find that these tasks turn out
to provide the correct approach for solving the conundrum regarding the four-way
correspondence for QRTs described above. Specifically, we find that the concept of
risk aversion allows us to define operational quantum tasks which can be viewed as
a generalisation of discrimination and exclusion.

We start by exploring the QRT of measurement informativeness, and find that
Arimoto’s α-mutual information exactly quantifies the advantage provided by infor-
mative measurements when playing one of these quantum betting tasks which we
call quantum state betting (QSB). We then explore general QRTs of measurements
with arbitrary resources, and similarly derive Arimoto-type information-theoretic
measures which quantify the advantage provided by resourceful measurements.
Specifically, we find that the concept of Arimoto’s gap, an information-theoretic quan-
tity which generalises Arimoto’s mutual information, characterises QSB games when
comparing a resourceful gambler with gamblers with access only to free resources.

In addition to QRTs of measurements, we also explore QRTs of other objects.
First, we explore the QRT of non-constant channels. In this scenario we introduce
the tasks of noisy quantum state betting (nQSB), and find appropriate Arimoto-type
quantities which characterise the performance gain of resourceful objects over re-
sourceless objects in these tasks. Furthermore, we extend these results to QRTs
of channels with arbitrary resources, and similarly characterise the advantage pro-
vided by resourceful channels in comparison to the best resourceless alternatives.

We also explore the concept of betting and risk-aversion for tasks beyond QSB and
nQSB games, by introducing quantum channel betting (QCB) tasks. We first address
these tasks for general single-object QRTs of states with arbitrary resources. In this
regime we find that, similarly to the case of QSB and nQSB, there exist Arimoto-type
information-theoretic quantities which characterise the performance of resourceful
gamblers over resourceless gamblers. We further extend these results to multi-object
QRTs of state-measurement pairs. These results therefore altogether highlight that
betting and risk-aversion are powerful and useful concepts that naturally emerge in
general QRTs with arbitrary resources, objects, as well as different tasks.

Finally, we report additional results for the QRT of measurement informative-
ness, by deriving a continuous four-way correspondence between operational tasks,
mutual information measures, Rényi divergences, and resource monotones, which
generalise correspondences recently found in the literature [204, 73].

We believe that the concepts of betting and risk-aversion have the potential to pos-
itively impact our understanding of the framework of resource theories as well as
our understanding of the theory of quantum information more generally.

This chapter is organised as follows. In Sec. 7.1.1 we describe the QRT of mea-
surement informativeness and the QRT of non-constant channels. In Sec. 7.1.2 we
address further Arimoto-type information-theoretic quantities for general QRTs of
measurements, channels, states, and state-measurement pairs with arbitrary resources.
Our main results sections start in Sec. 7.2, where we introduce operational quantum
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tasks based on betting with risk-aversion, or quantum betting tasks for short, and
introduce various tasks as follows: quantum state betting (QSB) in Sec. 7.2.1, 7.2.2,
7.2.3, noisy quantum state betting (nQSB) in Sec. 7.2.4, and quantum channel betting
(QCB) in Sec. 7.2.5. In Sec. 7.3 we address the characterisation of quantum betting
tasks in terms of Arimoto-type information-theoretic quantities. In Sec. 7.3.1 we
relate QSB games to Arimoto’s mutual information, for the QRT of measurement
informativeness. In Sec. 7.3.2 we characterise noisy QSB (nQSB) games in terms of
a noisy Arimoto mutual information, for the QRT of non-constant channels. In Sec.
7.3.3 we characterise QSB and nQSB games in terms of Arimoto-type quantities, for
general QRTs of measurements and channels with general resources. In Sec. 7.3.4 we
characterise QCB games in terms of Arimoto-type measures for single-object QRTs
of states with arbitrary resources as well as multi-object QRTs of state-measurement
pairs with arbitrary resources. In Sec. 7.3.5 we characterise horse betting games in
terms of the Arimoto’s mutual information in the classical regime, without invoking
quantum theory. In Sec. 7.3.6 and 7.3.7 we address quantum Rényi divergences and
resource monotones, and derive a four-way correspondence for the QRT of mea-
surement informativeness. We finish in Sec. 7.4 with conclusions, open questions,
perspectives, and avenues for future research.

7.1.1 The quantum resource theories of measurement informativeness and
non-constant channels

The framework of quantum resource theories (QRTs) has proven a fruitful approach
towards quantum theory [119, 57]. In this chapter we particularly deal with convex
QRTs of measurements, channels. We start with the QRT of measurement informa-
tiveness [204].

Definition 7.1. (QRT of measurement informativeness [204]) Consider the set of Positive-
Operator Valued Measures (POVMs) acting on a Hilbert space of dimension d. A POVM M

is a collection of POVM elements M = {Ma} with a ∈ {1, ..., o} satisfying Ma ≥ 0 ∀a and
∑a Ma = 1. We now consider the resource of informativeness [204]. We say a measurement
N is uninformative when there exists a PMF qA such that Na = q(a)1, ∀a. We say that the
measurement is informative otherwise, and denote the set of all uninformative measurements
as UI.

The set of uninformative measurements forms a convex set and therefore, defines
a convex QRT of measurements. We now introduce the notion of simulability of
measurements, which is also called classical post-processing (CPP).

Definition 7.2. (Simulability of measurements [100, 204]) A measurement N = {Nx},
x ∈ {1, ..., k} is simulable by the measurement M = {Ma}, a ∈ {1, ..., o} when there
exists a conditional PMF qX|A such that: Nx = ∑a q(x|a)Ma, ∀x. The simulability of
measurements defines a partial order for the set of measurements which we denote as N ⪯
M, meaning that N is simulable by M. Simulability of the measurement N can alternatively
be understood as a classical post-processing of the measurement M.

Two quantifiers for informativeness are the following.

Definition 7.3. (Generalised robustness and weight of informativeness) The generalised
robustness [208, 204] and the weight [79, 73] of informativeness of a measurement M are
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given by:

R (M) :=
min
r ≥ 0

N ∈ UI
MG

{
r
∣∣∣∣Ma + rMG

a = (1 + r)Na

}
, (7.1)

W (M) :=
min
w ≥ 0

N ∈ UI
MG

{
w
∣∣∣∣Ma = wMG

a + (1− w)Na

}
. (7.2)

The generalised robustness quantifies the minimum amount of a general measurement MG

that has to be added to M such that we get an uninformative measurement N. The weight
on the other hand, quantifies the minimum amount of a general measurement MG that has
to be used for recovering the measurement M.

These resource quantifiers are going to be useful later on. We now introduce the
QRT of non-constant channels.

Definition 7.4. (QRT of non-constant channels) Consider the set of completely-positive
trace-preserving (CPTP) maps acting on a Hilbert space of dimension d. We now consider
the resource of non-constant channels. We say that a channel N (·) is constant, when there
exist a state ρN such that N (ρ) = ρN , ∀ρ ∈ D(H). We say that a channel is non-constant
otherwise, and denote the set of all constant channels as C.

We now consider information-theoretic quantities for various general QRTs.

7.1.2 Arimoto-type information-theoretic quantities for general QRTs of
measurements, channels, states, and state-measurement pairs

We now address a generalisation of Arimoto’s α-mutual information to the concept
of Arimoto’s gap for general resources of measurements, channels, states, and state-
measurement pairs. In order to introduce the concept of Arimoto’s gap, let us first fix
some notation. In this subsection we consider general QRTs with arbitrary resources,
meaning that we address a set of free measurements as F, and a set of free channels
as F , which are usually assumed to be convex and closed sets [217, 212, 73]. We now
introduce the concept of Arimoto’s gap, which is defined in terms of the standard
Arimoto’s α-mutual information, and for which we introduce here two variants as
follows.

Definition 7.5. (Arimoto’s gap for measurements and channels [212, 71]) Consider a set of
free measurements as F, and a pair (E , M), Arimoto’s gap on POVMs of order α ∈ R for
such a pair is given by:

GF
α (X; G)E ,M := Iα(X; G)E ,M −max

N∈F
Iα(X; G)E ,N. (7.3)

Similarly, consider a set of free channels F and a triple (E , M,N ), Arimoto’s gap on
channels of order α ∈ R for such a triple is given by:

GFα (X; G)E ,M,N := Iα(X; G)E ,M,N −max
Ñ ∈F

max
N

Iα(X; G)E ,N,Ñ . (7.4)

Similarly to the previous section, we also address a more refined quantity as:

GFα (X; G)E ,N := max
M

GFα (X; G)E ,M,N . (7.5)
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These quantities are information-theoretic in nature, being defined in terms of
Arimoto’s α-mutual information. We can think about them as the maximum gap, in
terms of the Arimoto’s α-mutual information, between the free set F (F ) and the
fixed object of interest M (N ). These two measures can be thought of as generalisa-
tions of Arimoto’s noisy α-mutual information and Arimoto’s α-mutual information,
respectively. This can be checked by setting (F = UI) and (F = C), for which we
get:

GUI
α (X; G)E ,M = Iα(X; G)E ,M, (7.6)

GCα (X; G)E ,M,N = Iα(X; G)E ,M,N . (7.7)

This is because uninformative measurements achieve p(g|x) = Tr[Mgρx] = p(g)Tr[ρx] =

p(g), and similarly for constant channels p(g|x) = Tr[MgÑ (ρ)] = Tr[MgρÑ ] = p(g),
meaning that random variables G and X are independent from each other in both
cases and therefore

max
N∈UI

Iα(X; G)E ,N = max
Ñ ∈C

max
N

Iα(X; G)E ,N,Ñ = 0. (7.8)

Inspired by these information-theoretic quantities for measurements and chan-
nels, we now also consider Arimoto-type gaps for states as well as for a hybrid sce-
nario with state-measurements pairs. Similarly for the case of measurements and
channels, we address a set of free states as F, which is usually assumed to be convex
and closed [217, 212]. We now define two variants of the concept of Arimoto’s gap
for QRTs of states as well as for QRTs of state-measurement pairs.

Definition 7.6. (Arimoto’s gap for states and for state-measurement pairs) Consider a set
of free states F, and a triple (Λ, M, ρ), then, Arimoto’s gap on states of order α ∈ R for
such a triple is given by:

GF
α(X; G)Λ,M,ρ := Iα(X; G)Λ,M,ρ −max

σ∈F
Iα(X; G)Λ,M,σ. (7.9)

Similarly, consider a set of free states F, a set of free measurements F, and a triple (Λ, M, ρ),
then, Arimoto’s gap on state-measurement pairs of order α ∈ R for such a triple is given
by:

GF,F
α (X; G)Λ,M,ρ := Iα(X; G)Λ,M,ρ −max

σ∈F
N∈F

Iα(X; G)Λ,N,σ. (7.10)

Similarly to the previous variants on Arimoto’s gaps, we have that these information-
theoretic measures can be understood as quantifying the maximum gap, in terms of
the standard Arimoto’s α-mutual information, between the set of free objects and a
fixed triple (Λ, M, ρ). The first variant was first introduced in [212] whilst the second
multi-object variant was first introduced in [71].

Here we finish with the preliminary concepts and theoretical tools needed to
describe our main results which we do next.

7.2 Quantum betting tasks with risk aversion

We now introduce the main new operational tasks that we consider in this chapter.
We start by describing quantum betting tasks being played by gamblers with differ-
ent risk tendencies. This is inspired by both standard quantum state discrimination
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and horse betting games in classical information theory.
Horse betting (HB) games were first introduced by Kelly in 1956 [128], a modern

introduction can be found, for instance, in Cover & Thomas [63], as well as in the
lectures notes by Moser [152]. Recently, Bleuler, Lapidoth, and Pfister generalised
HB games in order to include a factor β = 1− R [33], representing the risk-aversion
of the Gambler (Bob) playing these games, with standard HB games being recovered
by setting β = 0, corresponding to R = 1, i.e. a risk-averse Bob.

Inspired by this, here we introduce three types of quantum betting tasks. First,
we introduce quantum state betting (QSB) games. Specifically, we will introduce
two variants of QSB games in the form of quantum state discrimination (QSD) with
risk, and quantum state exclusion (QSE) with risk. We will then introduce the central
figure of merit for QSB games – the isoelastic certainty equivalent (ICE), and show
how it generalises the quantification of standard quantum state discrimination and
exclusion. We then introduce important variants of this first game. In particular, we
introduce noisy quantum state betting (nQSB) games and quantum channel betting
(QCB) games, which generalises both quantum channel discrimination and exclu-
sion. The tasks considered in this section, and the way they relate to each other is
depicted in Figure 7.1.

FIGURE 7.1: Operational tasks based on betting and risk-
aversion. Quantum state betting (QSB), quantum subchannel bet-
ting (QScB), quantum channel betting (QCB), quantum state dis-
crimination/exclusion (QSD/QSE), quantum channel discrimina-
tion/exclusion (QCD/QCE). A → B means that the task A is more

general than B.

7.2.1 Quantum state betting (QSB) games

Consider two rational agents, a Referee (Alice) and a Gambler (Bob). Alice is in
possession of an ensemble of quantum states E = {ρx, p(x)}, x ∈ {1, ..., K}, and is
going to send one of these states to Bob, say ρx. We address here a quantum state, or
state for short, as a positive semidefinite (ρx ≥ 0) and trace one (Tr(ρx) = 1) operator
in an finite-dimensional Hilbert space.
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As above, we will consider two different classes of state betting games, gain
games, and loss games. In a gain game, Alice offers Bob odds o(x), which is a posi-
tive function (o(x) > 0, ∀x) but not necessarily a PMF, such that if Bob places a unit
bet on the state being ρx, and this is the correct state, then Alice will pay out o(x) to
Bob. In a loss game, on the contrary, we take the ‘odds’ to be negative, o(x) < 0, for
all x, such that if Bob places a unit bet on ρx, then he will have to pay out to Alice an
amount |o(x)|.1

In order to decide how to place his bets, Bob is allowed to first perform a quantum
measurement on the state given to him by Alice. In general, this will be a positive
operator-valued measure (POVM), M = {Mg}, Mg ≥ 0 ∀g, ∑g Mg = 1, which will
allow him to (hopefully) extract some useful information from the state.

Let us assume that Bob measures the state he receives from Alice using a mea-
surement M = {Mg}, producing a measurement result g, with probability given by
the Born rule, p(g|x) = Tr[Mgρx]. Bob will then use this result to decide on his bet-
ting strategy. We assume that he bets all of his wealth, and divides this in some way
amongst all the possible options x ∈ {1, ...K}. That is, Bob’s strategy is a PMF bX|G,
such that Bob bets the proportion b(x|g) of his wealth on state x being the sent state,
when his measurement outcome was g.2 We note that Bob’s overall strategy is then
defined by the pair (bX|G, M). We also note that the PMF pX from the ensemble of
states together with the conditional PMF pG|X from the measurement implemented
by Bob, defines the joint PMF pXG := pG|X pX.

Therefore, when the quantum state was ρx, and Bob obtained the measurement
outcome g, he bet the proportion of his wealth b(x|g) on the actual state, and hence
Alice either pays out w(x, g) = o(x)b(x|g) in the case of a gain game, or Bob has to
pay Alice the amount |w(x, g)| (i.e. he loses |w(x, g)|) in a loss game. We can view
gain games as a generalisation of state discrimination. Here, since Bob is winning
money, it is advantageous, in general, for him to correctly identify the state that was
sent. On the other hand, we see that loss games can be viewed as a generalisation
of state exclusion, since now in order to minimise his losses, it is useful for Bob to be
able to avoid or exclude the state that was sent.

Finally, we note that the settings of the game are specified by the pair (oX, E).
It is important to stress that by assumption Bob is fully aware of the settings of the
game, meaning that the pair (oX, E) is known to him prior to playing the game, and
therefore he can use this knowledge in order to select an optimal betting strategy
bX|G.

7.2.2 Figure of merit for quantum state betting games

Given these two variants of QSB games, we now want analyse the behaviour of dif-
ferent types of Gamblers (represented by different utility functions), according to
their risk tendencies. We will consider quantities of interest like in the previous sec-
tions such as: expected wealth, expected utility, and similar. In particular, we model
Gamblers with utility functions displaying constant relative risk aversion (CRRA)
and therefore, the utility functions we consider are isoelastic functions uR(w) (2.98).
The figure of merit we are interested in is then the isoelastic certainty equivalent (ICE)

1That is, similarly to in thermodynamics, we take the sign of the odds to signify whether this is a
gain or a loss for Bob.

2Note that for loss games, Bob can end up having to pay out more than the wealth he bet (similarly
to how in a game gain Bob can walk away with more wealth than he started with).
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wICE
R with R ∈ R. For risk R ∈ (−∞, 1) ∪ (1, ∞), this quantity is given by:

wICE
R (bX|G, M, oX, E) = u−1

R
(
EpXG [uR(wXG)]

)
,

=

[
∑
g,x

[
b(x|g)o(x)

]1−R p(g|x)p(x)

] 1
1−R

. (7.11)

The cases R ∈ {1, ∞,−∞} are defined by continuous extension of (7.11). In sum-
mary, the game is specified by the pair (oX, E), the behavioural tendency of Bob is
represented by the utility function uR(wXG) with a fixed R ∈ R, the overall strategy
of Bob is specified by the pair (bX|G, M), and the figure of merit here considered is
the isoelastic certainty equivalent (ICE) (2.100). We can alternatively address these
operational tasks as horse betting games with risk and quantum side information, or
quantum horse betting (QHB) games for short, and we describe this in more detail
later on.

Bob is in charge of the measurement and the betting strategy (bX|G,M), so in par-
ticular, for a fixed measurement M, Bob is interested in maximising the ICE (max-
imising gains in a gain game, and minimising losses in a loss game) so we are going
to be interested in the following quantity:

max
bX|G

wICE
R
(
bX|G, M, oX, E

)
,

for a fixed QSB game (oX, E) with either positive or negative odds, and Bob’s risk
tendencies being fixed, and specified by an isoelastic utility function uR.

7.2.3 Quantum state betting games generalise discrimination and exclu-
sion games

We will now show that quantum state betting games with risk can indeed be seen as
generalisations of standard quantum state discrimination and exclusion games. We
can see this by considering a risk-neutral (R = 0) Bob playing a gain game (positive
odds) which are constant: oc(x) := C, C > 0, ∀x, in which case we find that the
quantity of interest becomes:

max
bX|G

wICE
0 (bX|G, M, oc

X, E) = C max
bX|G

∑
g,x

b(x|g)p(g|x)p(x),

= C PQSD
succ (E , M). (7.12)

For more details on standard quantum state discrimination games we refer to [204,
212]. Therefore, standard quantum state discrimination can be seen as as special
instance of quantum state betting games with constant odds, and played by a risk-
neutral player. Similarly, for a loss game, with negative constant odds o−c(x) := −C,
C > 0, ∀x:

max
bX|G

wICE
0 (bX|G, M, o−c

X , E) = C max
bX|G
−∑

g,x
b(x|g)p(g|x)p(x),

= −C PQSE
err (E , M). (7.13)

For more details on standard quantum state exclusion games we refer to [73, 225].
Therefore, standard quantum state exclusion can be seen as a quantum state betting
game constant negative odds, again played by a risk-neutral player.
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7.2.4 Noisy quantum state betting (nQSB) games

We now introduce noisy quantum state betting (nQSB) games. We first note that
standard QSB games (from the previous section) are implicitly assuming that the
states that Alice (referee) sends to Bob (player) are perfectly transmitted, meaning
that they are not affected by undesired interactions due to the environment. This
is an idealised situation, and a more realistic scenario including such effects can be
addressed by considering a completely-positive trace-preserving (CPTP) map (or
quantum channel) N , so that the probability of obtaining an outcome g after re-
ceiving the state ρx is now given by p(g|x) = Tr[MgN (ρx)]. We refer to this more
general and realistic scenario as noisy QSB (nQSB) games.

Definition 7.7. (Noisy quantum state betting games) The isoelastic certainty equivalent
(ICE) for a noisy quantum state betting (nQSB) game is given by:

wnQSB
R (bX|G, M, oX, E ,N ) := wICE

R (bX|G,N †(M), oX, E) (7.14)

with p(g|x) = Tr[N †(Mg) ρx] = Tr[MgN (ρx)],N (·) a completely-positive trace-preserving
(CPTP) map, M = {Mg} a POVM, and the POVM N †(M) := {N †(Mg)}. The cases
R ∈ {1, ∞,−∞} are defined by continuous extension of (7.14).

We note that we recover standard QSB games by considering a noiseless scenario
N (·) = id(·). Whilst noisy QSB games can be seen as noiseless QSB games by
considering the POVM N †(M) := {N †(Mg)}, it is still important from a physical
point to view to make the distinction between both noisy and noiseless scenarios.
Later on we will see how this is relevant for the resource theory of non-constant
channels.

7.2.5 Quantum channel betting (QCB) games

In this subsection we introduce quantum channel betting (QCB) games. Taking in-
spiration from the previous QSB games, where Bob (player) is asked to bet on an en-
semble of states, we now consider Bob being asked to bet instead on a set of channels
Λ = {Λx}, distributed according to a PMF pX. In this scenario, Bob is in possession
of a quantum state ρ, which he would consequently send to Alice (referee). Alice
then proceeds to generate the ensemble {Λx(ρ), p(x)}, and send back one of these
states to Bob. Bob then proceeds to measure the received state with a fixed POVM
M = {Mg}, and use the extracted information g in order to place a bet bX|G and
effectively play the game. Following a similar logic to the case for QSB games, we
can formalise and derive a figure of merit for QCB games in terms of the isoelastic
certainty equivalent as follows.

Definition 7.8. (Quantum channel betting) The isoelastic certainty equivalent (ICE) for a
quantum channel betting (QCB) game is given by:

wQCB
R (bX|G, oX, pX, Λ, ρ, M) := wICE

R (bX|G, M, oX, EΛ,ρ) (7.15)

with p(g|x) = Tr[MgΛx(ρ)], Λ = {Λx(·)} a set of completely-positive trace-preserving
(CPTP) maps, M = {Mg} a POVM, and EΛ,ρ := {Λx(ρ), p(x)}. The cases R ∈
{1, ∞,−∞} are defined by continuous extension of (7.15).

First, we note here that these tasks can be further extended to quantum subchannel
betting (QScB) games where we address a set of subchannels Ψ = {Ψx(·)}, or set of
completely-positive trace-nonincresing (CPTNI) maps, with p(x, g) = Tr[MgΨx(ρ)].
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Second, whilst QCB can be seen as noiseless QSB games with the ensemble given
by EΛ,ρ := {Λx(ρ), p(x)}, it is still important to distinguish these two cases from a
physical point of view, this, because in a QCB game Bob (player) is now allowed to
have an influence on the ensemble of states as E = EΛ,ρ. Third, we can see that QCB
games generalise standard channel discrimination and standard channel exclusion
as follows. Consider a risk-neutral (R = 0) Bob playing a gain game (positive odds)
which are constant: oc(x) := C, C > 0, ∀x, in which case we find that the ICE
becomes:

max
bX|G

wQCB
0 (bX|G, oc

X, pX, Λ, ρ, M) = C max
bX|G

∑
g,x

b(x|g) Tr[MgΛx(ρ)] p(x),

= C PQCD
succ (Λ, ρ, M), (7.16)

with Λ = {Λx(·)} a set CPTP maps, M = {Mg} a POVM. Therefore, standard
quantum channel discrimination can be seen as as special instance of quantum sub-
channel betting games with constant odds, and played by a risk-neutral player. For
more details on standard quantum channel discrimination (QCD) games we refer
the reader to [217, 212]. Similarly, for a loss game, with negative constant odds
o−c(x) := −C, C > 0, ∀x:

max
bX|G

wQCB
0 (bX|G, o−c

X , pX, Λ, ρ, M) = C max
bX|G
−∑

g,x
b(x|g) Tr[MgΛx(ρ)]p(x),

= −C PQCE
err (Λ, ρ, M), (7.17)

with Λ = {Λx(·)} a set of CPTP maps, M = {Mg} a POVM. Therefore, standard
quantum channel exclusion can be seen as a quantum channel betting game with
constant negative odds, again played by a risk-neutral gambler. For more details on
standard quantum channel exclusion (QCE) games we refer the reader to [73, 225].
We now proceed to address our main results.

7.3 Main results

We are now ready to present the main results of this chapter.

7.3.1 Result 7.1. Arimoto’s α-mutual information and quantum state bet-
ting games

The main motivation now is to compare the performance of two gamblers via the
maximised isoelastic certainty equivalent (ICE) maxbX|G wICE

R
(
bX|G, M, oX, E

)
. Specif-

ically, we want to compare: i) a general gambler using a fixed measurement M with
ii) the best uninformative gambler, meaning a gambler who can implement any un-
informative measurement N ∈ UI, or equivalently, a gambler described by the quan-
tity maxN∈UI maxbX|G wICE

R
(
bX|G, N, oX, E

)
. We have the following main result.

Result 7.1. Consider the a QSB game defined by the pair (osgn(α)c
X , E) with constant odds as

osgn(α)c(x) := sgn(α)C, C > 0, ∀x, and an ensemble of states E = {ρx, p(x)}. Consider a
Gambler playing this game using a fixed measurement M in comparison to a Gambler being
allowed to implement any uninformative measurement N ∈ UI. Consider both Gamblers
with the same attitude to risk, meaning that they are represented by isoelastic functions
uR(W) with the risk parametrised as R(α) := 1/α. Each Gambler is allowed to play the
game with the optimal betting strategies, meaning they can each propose a betting strategy
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independently from each other. Remembering that the Gamblers are interested in maximising
the isoelastic certainty equivalent (ICE), we have the following relationship:

Iα(X; G)E ,M = sgn(α) log




max
bX|G

wICE
1/α

(
bX|G, M, osgn(α)c

X , E
)

max
N∈UI

max
bX|G

wICE
1/α

(
bX|G, N, osgn(α)c

X , E
)


 . (7.18)

This shows that Arimoto’s α-mutual information quantifies the ratio of the isoelastic cer-
tainty equivalent with risk R(α) := 1/α of the game defined by (osgn(α)c

X , E), when the QSB
game is played with the best betting strategy, and when we compare a Gambler implementing
a fixed measurement M against a Gambler using any uninformative measurement N ∈ UI.

The full proof of Result 7.1 is in Appendix B.1. We now analyse two cases of
particular interest (α ∈ {∞,−∞}), as the following corollaries.

Corollary 7.1. In the case α→ ∞ we recover the result found in [204]. Explicitly, we have:

C∞(ΛM) = max
E

I∞(X; G)E ,M = log

[
max
E

PQSD
succ (E , M)

maxN∈UI PQSD
succ (E , N)

]
, (7.19)

where PQSD
succ (E , M) is the probability of success in the quantum state discrimination (QSD)

game defined by E , with the Gambler using the measurement M, given explicitly by:

PQSD
succ (E , M) := max

qG|A
∑

g,a,x
δ

g
x q(g|a) p(a|x) p(x), (7.20)

with p(a|x) := Tr[Maρx], and the maximisation over all classical post-processing qG|A.
We remark that the Rényi capacity of order ∞ has also been called as the accessible min-
information of a channel, and denoted as Iacc

∞ (ΛM) [204, 242]. This shows that quantum
state betting with risk (QSBR(α)) becomes equivalent to quantum state discrimination (QSD)
when α→ ∞.

Corollary 7.2. In the case α→ −∞ we recover the result found in [73]. Explicitly:

C−∞(ΛM) = max
E

I−∞(X; G)E ,M = − log

[
min
E

PQSE
err (E , M)

minN∈UI PQSE
err (E , N)

]
, (7.21)

where PQSE
err (E , M) is the probability of error in the quantum state exclusion (QSE) game

defined by E , with the Gambler using the measurement M explicitly given by:

PQSE
err (E , M) := min

qG|A
∑

g,a,x
δ

g
x q(g|a) p(a|x) p(x). (7.22)

with p(a|x) := Tr[Maρx], and the minimisation being performed over all classical post-
processing qG|A. We remark that the Rényi capacity of order −∞ has also been called the
excludible information of a channel, and denoted as Iexc

−∞(ΛM) [73, 71]. This shows that
quantum state betting with risk (QSBR(α)) becomes equivalent to quantum state exclusion
(QSE) when α→ −∞.

In Appendix B.2 we provide further details on these two corollaries.
Result 7.1 establishes a connection between Arimoto’s α-mutual information and

QSB games, which recovers two known cases at α ∈ {∞,−∞} [204, 73]. We em-
phasise that the right hand side of (7.18) is a completely operational quantity, which
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represents the advantage that an informative measurement provides when being
used as a resource for QSB games, whilst the left hand side is the raw information-
theoretic mutual information measure proposed by Arimoto and consequently, this
result provides an operational interpretation of Arimoto’s α-mutual information in
the quantum domain.

Furthermore, it shows that the Rényi parameter can be interpreted as character-
ising the risk tendency of the Gamblers as R = 1/α. It is also interesting to note that
this works for all ensembles E = {ρx, p(x)}, all measurements M = {Mg}, as well
as for the whole range of the Rényi parameter α ∈ R, including negative values. We
summarise the interpretation of this result in Fig. 7.2.

QSE
α→ −∞

QSD
α→∞

QSE
Risk-averse

QSE
Risk-seeking

QSD
Risk-seeking

QSD
Risk-averse

QSD

QSE

α < 0

α ≥ 0

FIGURE 7.2: Possible scenarios for quantum state discrimination
(QSD) and quantum state exclusion (QSE) games being played by
Gamblers with different risk tendencies: risk-averse, risk-seeking, or
risk-neutral, with the risk being parametrised as R(α) = 1/α. Re-
sult 7.1 establishes that Arimoto’s mutual information quantifies the
shaded region for α ∈ R, meaning that it characterises risk-averse
Gamblers playing either QSD (α ≥ 0) and QSE games (α < 0). The
left bottom corner (α → −∞) and the top-right corner (α → ∞)
represent a risk-neutral Gambler R = 0 playing either standard ex-
clusion or discrimination games, respectively. This means that stan-
dard QSD games can be understood as a risk-neutral Gambler play-
ing QSD games with risk. Similarly, standard QSE games can be un-
derstood as a risk-neutral Gambler playing QSE games with risk. The
middle point at α→ 0 represents the transition between a maximally
risk-averse Gambler playing QSD games and a maximally risk-averse

Gambler playing QSE games.

We also highlight here that Result 7.1 lies at the intersection of three major fields:
quantum theory, information theory, and the theory of games and economic be-
haviour. We believe that this result has the potential to spark further cross-fertilisation
of ideas between these three major areas of knowledge, with only these particular
examples currently being unfolded. We now address the characterisation of addi-
tional tasks based on betting and risk-aversion.
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7.3.2 Result 7.2. Arimoto’s mutual information and noisy quantum state
betting games

We now naturally would like to address a characterisation for nQSB games in the
same vein that their standard counterpart. Intuitively, we are now addressing a gen-
eral quantum channel N (·) as a new ingredient, and that Bob is still in charge of
the decoding measurement M. From the noiseless scenario, we understand that
Arimoto-like quantities are giving account for the amount of side information be-
ing conveyed to Bob. When we consider Bob using a fixed measurement, a de-
cisive factor that naturally emerges is the resource of informativeness, because this
resources defines the frontier for the cases when side information can or cannot
be transmitted. In noisy QSB games the other hand, with a general channel N (·),
the same reasoning leads to consider the resource of non-constant channels, this, be-
cause they will effectively destroy the side information carried by the state since
p(g|x) = Tr[NgN ′(ρx)] = Tr(NgρN ′) = p(g), for all constant channels N ′, and for
all measurements N. The following result confirms this intuition, and consequently
characterises nQSB games.

Result 7.2. Consider a nQSB game defined by the pair (osgn(α)c
X , E) with constant odds as

osgn(α)c(x) := sgn(α)C, C > 0, ∀x, an ensemble of states E = {ρx, p(x)}. Consider a
Gambler playing this game being able to implement any measurement M, and having access
to a fixed channel N . We want to compare this first Gambler against a second Gambler also
being allowed to implement any measurement N, but now having access only to constant
channelsN ′ ∈ C. Consider both Gamblers with the same attitude to risk, meaning that they
are represented by isoelastic functions uR(W) with the risk parametrised as R(α) := 1/α.
Each Gambler is allowed to play the game with optimal betting strategies, meaning they can
each propose a betting strategy bX|G independently from each other. Remembering that the
Gamblers are interested in maximising the isoelastic certainty equivalent (ICE), we have:

Iα(X; G)E ,N = sgn(α) log




max
M

max
bX|G

wnQSB
1/α

(
bX|G, M, osgn(α)c

X , E ,N
)

max
N ′∈C

max
N

max
bX|G

wnQSB
1/α

(
bX|G, N, osgn(α)c

X , E ,N ′
)


 . (7.23)

This means that Arimoto’s noisy mutual information quantifies the ratio of the ICE with risk
R(α) := 1/α of the nQSB game defined by (osgn(α)c

X , E), when the nQSB games are being
played with the best betting strategy, and when we compare a Gambler implementing a fixed
channel N against a Gambler using any constant channel N ′ ∈ C.

The proof of this result follows a similar argument than that of Result 7.1. We
have seen that two natural resources have emerged, or equivalently, two sets of
free objects: i) the set of uninformative measurements and ii) the set of constant
channels. We then wonder whether the results so far presented are unavoidably
linked to these particular resources or, on the other hand, whether they are particu-
lar cases of a more general underlying structure governing the relationship between
information-theoretic quantities and operational tasks for general QRTs. We address
such a question in the next subsection, where we address an extension of these re-
sults to general QRTs of measurements and channels with arbitrary resources.
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7.3.3 Result 7.3. QSB and noisy QSB games for general QRTs of measure-
ments and channels

We have seen that both uninformative measurements and non-constant channels
are related to Arimoto’s mutual information, and we now want to address general
resources. In order to do this we can expect to need quantities which are more gen-
eral than Arimoto’s mutual information. We now consider the Arimoto’s gaps intro-
duced in the previous sections, and provide operational characterisations for these
information-theoretic quantities in terms of QSB and nQSB games as follows.

Result 7.3. Consider a set of free measurements as F and a couple (E , M), then, Arimoto’s
gap on POVMs of order α ∈ R for such a couple can be written as:

GF
α (X; G)E ,M = sgn(α) log




max
bX|G

wQSB
1/α

(
bX|G, osgn(α)c

X , E , M
)

max
N∈F

max
bX|G

wQSB
1/α

(
bX|G, osgn(α)c

X , E , N
)


 . (7.24)

Similarly, consider a set of free channels F and a triple (E , M,N ), then, Arimoto’s gap
on channels of order α ∈ R for such a triple can be written as:

GFα (X; G)E ,N = sgn(α) log




max
M

max
bX|G

wnQSB
1/α

(
bX|G, osgn(α)c

X , E , M,N
)

max
Ñ ∈F

max
N

max
bX|G

wnQSB
1/α

(
bX|G, osgn(α)c

X , E , N, Ñ
)


 .

This means that Arimoto-type gaps quantify the usefulness of a given measurement (channel)
M (N ) when playing QSB (nQSB) games, in comparison with the best free measurements
(channels) N ∈ F (Ñ ∈ F ).

The proof of Result 7.3 follows a similar logic to that of Result 7.1 but, for com-
pleteness, we present its proof in Appendix B.3. It is interesting to note the level
of generality of this result. This results holds true for any α ∈ R, any ensemble E ,
any measurement M, any channel N , as well as any reasonable and physically mo-
tivated choices of sets of free measurements F and free channels F . In particular,
by specifying the sets of free objects we can recover some of the previous results as
corollaries.

Corollary 7.3. Imposing the set of free measurements to be the set of uninformative mea-
surements in (7.24) (F = UI), we recover Result 7.1 (7.18). Similarly, imposing the set
of free channels to be the set of constant channels in (7.25) (F = C), we recover Result 7.2
(7.23).

We have so far addressed QSB games and more generally nQSB games. The
main idea behind these operational tasks is the inclusion of the concept of betting,
which is represented by the constant relative risk aversion (CRRA) coefficient R,
and which is ultimately related to the Rényi parameter as R = 1/α. We now address
the fact that the concept of betting is an useful and powerful concept that allows for
the generalisation of additional operational tasks. In particular, we now address the
characterisation of quantum channel betting (QCB) games.
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7.3.4 Result 7.4. QCB games and QRTs of states and state-measurement
pairs

Similarly to the case for noisy quantum state betting (nQSB) games, we would now
like to characterise quantum subchannel betting (QCB) games in terms of information-
theoretic quantities. We now provide an operational interpretation for Arimoto-type
quantities for QRTs of states and hybrid multi-object scenarios, in terms of quantum
channel betting (QCB) games.

Result 7.4. Consider a set of free states as F and a triple (Λ, M, ρ), then, Arimoto’s gap
on states of order α ∈ R for such a triple can be written as:

GF
α(X; G)Λ,M,ρ = sgn(α) log




max
bX|G

wQCB
1/α

(
bX|G, osgn(α)c

X , Λ, ρ, M
)

max
σ∈F

max
bX|G

wQCB
1/α

(
bX|G, osgn(α)c

X , Λ, σ, M
)


 . (7.25)

Similarly, consider a set of free states F, a set of free measurements F, and a triple (Λ, M, ρ),
then, Arimoto’s gap on state-measurement pairs of order α ∈ R for such a triple can be
written as:

GF,F
α (X; G)Λ,M,ρ = sgn(α) log




max
bX|G

wQCB
1/α

(
bX|G, osgn(α)c

X , Λ, ρ, M
)

max
σ∈F

N∈F

max
bX|G

wQCB
1/α

(
bX|G, osgn(α)c

X , Λ, σ, N
)


 . (7.26)

These two statements mean that Arimoto’s gap quantifies the usefulness of resourceful objects
when compared to gamblers only having access to free objects.

The proof of this result follows a similar logic than that of Result 7.1 but, for
completeness, we present its proof in Appendix B.4. Similarly to the case for QSB
and nQSB games, we have that quantum channel betting (QCB) games can also be
characterised by means of Arimoto-type information-theoretic quantities, for single-
object QRTs of states with arbitrary resources, but also for more exotic scenarios
as the case of multi-object QRTs of state-measurement pairs. The second statement
generalises some of the multi-object results presented in [71], which considered the
cases for α ∈ {+∞,−∞}, and so this result generalises this to the whole extended
line of real numbers α ∈ R.

7.3.5 Result 7.5. Arimoto’s mutual information and horse betting games
in the classical regime

We now consider operational tasks based on betting and risk-aversion in the form of
horse betting (HB) games with risk and side information, without making reference
to quantum theory, and derive a result interpreting Arimoto’s mutual information as
quantifying the advantage provided by side information when playing such horse
betting games.

We consider here the Gambler now having access to a random variable G, which
is potentially correlated with the outcome of the ‘horse race’ X and therefore, the
Gambler can try to use this for her/his advantage. This means that these horse
betting games are defined by the pair (oX, pGX), and the Gambler is in charge of
proposing the betting strategy bX|G. We highlight here that this contrasts the case of
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QSB games, because there the Gambler could in principle be in charge of interven-
ing in the conditional PMF pG|X, as the Gambler had access to a measurement and
pG|X = Tr(Mgρx), whilst here on the other hand, pGX = pG|X pX is a given, and the
Gambler cannot in principle influence the PMF pG|X. However, the figure of merit
is still the isoelastic certainty equivalent for risk R ∈ (−∞, 1) ∪ (1, ∞) which is now
written as:

wICE
R (bX|G, oX, pXG) :=

[
∑
g,x

[
b(x|g)o(x)

]1−R p(x, g)

] 1
1−R

. (7.27)

The cases R ∈ {1, ∞,−∞} are defined again by continuous extension of (7.27). A HB
game is then specified by the pair (oX, pGX), and the Gambler plays this game with
a betting strategy bX|G.

Horse betting games were characterised by Bleuler, Lapidoth, and Pfister (BLP),
in terms of the BLP-CR divergence [33] (see Appendix B.1 for more details on this).
We now modify these tasks in order to consider both gain games (when the odds are
positive) and loss games (when the odds are negative), and relate Arimoto’s mutual
information to HB games with the following result, which can be derived in a similar
manner as the previous ones.

Result 7.5. Consider a horse betting game defined by the pair (osgn(α)c
X , pXG) with constant

odds as osgn(α)c(x) := sgn(α)C, C > 0, ∀x, and a joint PMF pXG. Consider a Gambler
playing this game having access to the side information G, against a Gambler without access
to any side information. Consider both Gamblers with the same attitude to risk, meaning they
are represented by isoelastic functions uR(w) with the risk parametrised as R(α) := 1/α.
The Gamblers are allowed to play these games with the optimal betting strategies, which
they can each choose independently from each other. Remembering that the Gamblers are
interested in maximising the isoelastic certainty equivalent (ICE), we have the following
relationship:

Iα(X; G) = sgn(α) log




max
bX|G

wICE
1/α (bX|G, osgn(α)c

X , pXG)

max
bX

wICE
1/α (bX, osgn(α)c

X , pX)


 . (7.28)

This means that Arimoto’s mutual information quantifies the ratio of the isoelastic certainty
equivalent with risk R(α) := 1/α of the games defined by (osgn(α)c

X , pXG), when each HB
game is played with the best betting strategy, and we compare the performance of a first
Gambler who makes use of the side information G, against a second gambler which has no
access to side information.

We emphasise that this result is purely “classical", as it does not invoke any ele-
ments from quantum theory. This result also complements a previous relationship
between HB games and the BLP-CR divergence [33]. Here on the other hand we
characterise instead the ratio between the two HB scenarios, where we compare a
first gambler with access to side information against a second gambler having no ac-
cess to side information. We now address a particular known case as the following
corollary.
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Corollary 7.4. In the case α = 1, which means HB games with risk aversion given by
R = 1, we get:

I(X; G) = max
bX|G

U0(bX|G, oc
X, pXG)−max

bX
U0(bX, oc

X, pX), (7.29)

with I1(X; G) = I(X; G) the standard mutual information, and U0 := log wICE
0 the loga-

rithm of the isoelastic certainty equivalent. This is a particular case of a relationship known
to hold for all odds o(x) [63, 152].

We now come back to the QRT of measurement informativeness, and explore
further connections between Arimoto’s mutual information, QSB games, and addi-
tional information-theoretic quantities in the form of quantum Rényi divergences
and resource monotones.

7.3.6 Result 7.6. Quantum Rényi divergences

Considering that the KL-divergence is of central importance in classical informa-
tion theory, it is natural to consider quantum-extensions of such quantity. There are
many ways to define quantum Rényi divergences [222, 170, 153, 244, 149, 82, 69],
with most of the effort being concentrated on divergences as a functions of quan-
tum states. Recently however, divergences and entropies for additional objects like
channels and measurements have been started to be explored [62, 134, 96]. We are
now interested in addressing quantum Rényi divergences for measurements. The
approach we take here takes inspiration from both: measured Rényi divergences for
states [30, 112, 69], as well as Rényi conditional divergences in the classical domain
[199, 64, 33]. Explicitly, we invoke the measures for Rényi conditional divergences,
and use them to define measured Rényi divergences for measurements.

Definition 7.9. (Measured quantum Rényi divergence of Sibson) The measured Rényi di-
vergence of Sibson of order α ∈ R and a set of states S = {ρx} of two measurements
M = {Mg} and N = {Ng} is given by:

DSα (M||N) := max
pX

Dα

(
p(M,S)

G|X

∣∣∣
∣∣∣q(N,S)

G|X

∣∣∣ pX

)
. (7.30)

with the maximisation over all PMFs pX, and the conditional PMFs p(M,S)
G|X and q(N,S)

G|X given
by p(g|x) := Tr(Mgρx), q(g|x) := Tr(Ngρx), respectively, and D(·|| · |·) the conditional
Rényi divergence of Sibson [199].

We now use this measured Rényi divergence in order to define a distance mea-
sure with respect to a free set of interest, the set of uninformative measurements in
this case.

Definition 7.10. (Measurement informativeness measure of Sibson) The measurement in-
formativeness measure of Sibson of order α ∈ R and set of states S of a measurement M is
given by:

ESα (M) := min
N∈UI

DSα (M||N), (7.31)

with the minimisation over all uninformative measurements.

Interestingly, it turns out that this quantity becomes equal to a quantity which
we have already introduced.
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Result 7.6. The informativeness measure of Sibson is equal to the Rényi capacity of order
α ∈ R of the measurement M as:

ESα (M) = Cα

(
p(M,S)

G|X

)
, (7.32)

with the quantum-classical channel associated to the measurement M (2.76).

The proof of this result is in Appendix B.5. This result establishes a connec-
tion between Rényi mutual information (which are used to define the Rényi chan-
nel capacity) and quantum Rényi divergences of measurements (which are used to
define the measurement informativeness measure). We now consider the quantity
Eα(M) := maxS ESα (M) = Cα(ΛM) and analyse the particular cases of α ∈ {∞,−∞}.
Corollary 7.5. The measurement informativeness measure of Sibson recovers the generalised
robustness and the weight of resource at the extremes α ∈ {∞,−∞} as:

E∞(M) = log [1 + R(M)] , (7.33)
E−∞(M) = − log [1−W(M)] , (7.34)

with the generalised robustness of informativeness (7.1) [204], and the weight of informa-
tiveness (7.2) [73].

This result follows from the fact that the Rényi channel capacity becomes the ac-
cessible min-information and the excludible information at the extremes α ∈ {∞,−∞},
together with the results from [204] and [73]. Result 7.6 therefore establishes a con-
nection between Rényi mutual informations and quantum Rényi divergences of
measurements. Inspired by these results, we now proceed to propose a family of
resource monotones.

7.3.7 Result 7.7. Resource monotones

Resource quantifiers are special cases of resource monotones, which are central ob-
jects of study within QRTs [57, 93]. Two common families of resource monotones are
the so-called robustness-based [234, 49, 172, 174, 155, 204, 49, 55, 138, 122] and weight-
based [136, 79, 206, 49, 44] resource monotones. Inspired by the previous results, we
now define measures which turn out to be monotones for the order induced by the
simulability of measurements and furthermore, that this new family of monotones
recover, at its extremes, the generalised robustness and the weight of informative-
ness.

Definition 7.11. (α-measure of informativeness) The α-measure of informativeness of order
α ∈ R of a measurement M is given by:

Mα(M) := sgn(α)2sgn(α)Eα(M) − sgn(α), (7.35)

with Eα(M) := maxS ESα (M) and the measurement informativeness measure defined in
(7.31).

The motivation behind the proposal of this resource measure is because: i) it
recovers the generalised robustness and the weight of resource as M∞(M) = R(M)
and M−∞(M) = W(M) and, ii) it allows the following operational characterisation.

Remark 7.1. They α-measure of informativeness of order α ∈ R of a measurement M

characterises the performance of the measurement M, when compared to the performance of
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all possible uninformative measurements, when playing the same QSB game as:

max
E

max
bX|G

wICE
1/α

(
bX|G, N, oc

X, E
)

max
N∈UI

max
bX|G

wICE
1/α

(
bX|G, N, oc

X, E
) = 1 + Mα(M), (7.36)

min
E

max
bX|G

wICE
1/α

(
bX|G, N, o−c

X , E
)

max
N∈UI

max
bX|G

wICE
1/α

(
bX|G, N, o−c

X , E
) = 1−Mα(M), (7.37)

for α ≥ 0 and α < 0, respectively. These two equalities follow directly from the definitions
and the previous results.

This result is akin to the connections between generalised robustness charac-
terising discrimination games, and the weight of resource characterising exclusion
games. We now also have that the α-measure of informativeness defines a resource
monotone for the simulability of measurements.

Result 7.7. (The α-measure of informativeness is a resource monotone) The α-measure of
informativeness (7.35) defines a resource monotone for the simulability of measurements,
meaning that it satisfies the following properties. (i) Faithfulness: Mα(M) = 0 ↔ M =
{Ma = q(a)1} and (ii) Monotonicity under measurement simulation: N ⪯M→ Mα(N)
≤ Mα(M).

The proof of this result is in Appendix B.6. It would be interesting to find a
geometric interpretation of this measure, in a similar manner that its two extremes
admit a geometric interpretation as in (7.1) and (7.2), as well as to explore additional
properties, like convexity, in order to talk about it being a resource quantifier. It
would also be interesting to explore additional monotones, in particular, whether the
isoelastic certainty equivalent forms a complete set of monotones for the simulability
of measurements, this, given that this holds for the two extremes at plus and minus
infinity.

Altogether, the above results establish a four-way task-mutual information-
divergence-monotone correspondence for the QRT of measurement informativeness,
by means of a risk aversion factor parametrised by the Rényi parameter α as R(α) =
1/α, as qualitatively depicted in Fig. 7.3.

7.4 Conclusions

In this chapter, we have proposed that using the ideas of betting, risk-aversion, and
utility theory are a powerful way of extending the well studied tasks of quantum
state discrimination and quantum state exclusion. We have used this to introduce
various quantum operational tasks based on betting and risk-aversion, or quantum
betting tasks. In particular, we have shown that this places two recently discovered
four-way correspondences [204, 73] into a much broader continuous family of cor-
respondences. For the first time, this shows that there exist deep connections be-
tween operational state identification tasks, mutual information measures, Rényi
divergences, and resource monotones.

The seven main results in this manuscript are the following. First, we relate
Arimoto’s α-mutual information (in the quantum domain) to the quantum state bet-
ting games with risk, for the QRT of measurement informativeness. As corollaries



130
Chapter 7. Characterisation of quantum betting tasks in terms of

Arimoto mutual information

Operational Tasks Resource Monotones

Dependence Measures Rényi Divergences

R(M)

W(M)

DS∞(M||N)

DSα(M||N)

DS−∞(M||N)

QSE

QSD

QSBR(α) Mα(M)

I∞
(
p
(M,E)
GX

)

Iα

(
p
(M,E)
GX

)

I−∞
(
p
(M,E)
GX

)

FIGURE 7.3: A four-way correspondence for the QRT of measure-
ment informativeness. The correspondence is parametrised by the
Rényi parameter α ∈ R ∪ {∞,−∞}. The outer rectangle represents
α = ∞, the inner rectangle represents α = −∞, and the shaded region
in-between represents the values α ∈ R. This four-way correspon-
dence links: operational tasks, dependence measures, Rényi diver-
gences, and resource monotones. The operational task is quantum
state betting (QSB) played by a Gambler with risk aversion R(α) =
1/α. This task generalises quantum state discrimination (QSD) (re-
covered when α → ∞), and quantum state exclusion (QSE) (recov-
ered when α → −∞). Iα(p(M,E)

GX ) is Arimoto’s dependence measure,
from which we recover the accessible information Iacc

∞ (ΛM) when
α → ∞, and the excludible information Iexc

−∞(ΛM) when α → −∞,
with ΛM the measure-prepare channel of the measurement M. We
introduce DSα (M||N), the quantum Rényi divergence of two measure-
ments M and N for a given set of states S = {ρx}. We also introduce
Mα(M), a new family of resource monotones, which generalise the
robustness of informativeness R(M) (when α → ∞) and the weight
of informativeness W(M) (when α → −∞). The outer rectangle was
uncovered in [204], whilst the inner rectangle was first uncovered in
[73]. The final set of results of this chapter is to fill the shaded region,

and connect these two correspondences for all α ∈ R.

of this result, we recover the previous two known relationships relating: i) the ac-
cessible information to quantum state discrimination, and ii) the excludible infor-
mation to quantum state exclusion. Second, we characterise nQSB games for the
QRT of non-constant channels in terms of Arimoto’s mutual information. Third,
we consider a generalisation of the two previous scenarios to general QRTs of mea-
surements with arbitrary resources (beyond that of informativeness) and QRTs of
channels with general resources (beyond that of non-constant channels), and relate
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QSB/nQSB games to Arimoto-type measures. Fourth, we address quantum chan-
nel betting (QCB) games, and consider this task for QRTs of states with arbitrary
resources, as well as an hybrid scenario in a multi-object regime, addressing QRTs
of state-measurements pairs, in which states and measurements are simultaneously
considered in possession of valuable resources. Fifth, we relate Arimoto’s mutual in-
formation to horse betting (HB) games with side information in the classical regime,
without invoking quantum theory. This result can be seen as giving a very clean
operational interpretation of Arimoto’s mutual information, showing that it exactly
quantifies the advantage provided by side information, and that the Rényi parame-
ter can be understood operationally as quantifying the risk aversion of a gambler.
Sixth, using the insights from the results on the QRT of measurement informative-
ness, we derive new quantum measured Rényi divergences for measurements. Sev-
enth, we introduce resource monotones for the order generated by the simulability
of measurements, which additionally recover the resource monotones of generalised
robustness, as well as the weight of informativeness. Finally, results 1, 6, and 7 are el-
egantly connected via a four-way correspondence, which substantially extended the
two correspondences previously uncovered [204, 73], which we now understand to
be the two extremes of a continuous spectrum.

We believe our results are the start of a much broader and deeper investigation
into the use of betting, risk-aversion, utility theory, and other ideas from economics,
to obtain a broader unified understanding of many topics in quantum information
theory. Our results raise many questions and open up various avenues for future
research, a number of which we briefly describe below.

7.5 Open problems, perspectives, and avenues for future re-
search

1. An exciting broad possibility, is to explore more generally the concept of risk
aversion in quantum information theory. This is a concept which we are just
starting to understand and incorporate into the theory of information and
therefore, we believe this is an exciting avenue of research which could have
far-reaching implications when considered for additional operational tasks,
like Bell-nonlocal games, and interactive proof systems.

2. Similarly, the scenario here considered represents the convergence of three ma-
jor research fields: i) quantum theory, ii) information theory and iii) the theory
of games and economic behaviour. Specifically, we borrowed the concept of
risk aversion from the economic sciences in order to solve an open problem
in quantum information theory. We believe that this is just an example of the
benefits that can be obtained from considering the cross-fertilisation of ideas
between these three major current research fields. Consequently, it would be
interesting to keep importing further concepts (in addition to risk aversion),
as well as to explore the other direction, i. e., whether quantum information
theory can provide insights into the theory of games and economic behaviour.
We believe this can be a fruitful approach for future research. In particular,
horse betting games are a particular family of a larger family of tasks which
are related to the investment in portfolios [63], and it therefore would be in-
teresting to explore quantum versions of the operational tasks that emerge in
these scenarios.
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3. The set of connections we have established here are by means of the Rényi
entropies, and we have seen that the parameter α is intimately linked to the
risk aversion of a gambler. It is interesting to speculate whether other types of
connections might be possible. For example, Brandao [39] previously found
a family of entanglement witnesses that encompassed both the generalised
robustness and the weight of entanglement. We do not know if this is inti-
mately related with our findings here, or whether our insights might shed fur-
ther light, e.g. operational significance, on these entanglement witnesses and
their generalisations.

4. We were led to introduce new measured quantum Rényi divergences for mea-
surements. We believe that they should find relevance and application in set-
tings far removed from the specific setting we considered here. It would also
be interesting to further explore their relevance in other other areas within
quantum information theory.

5. We have also introduced new resource monotones, for which we do not yet
have a full understanding. In particular, unlike numerous other monotones,
these do not yet have an obvious geometric interpretation. It would be inter-
esting to develop such ideas further.

6. It would be interesting to explore additional monotones, in particular, whether
the isoelastic certainty equivalent wICE

R(α) forms (for all α) a complete set of
monotones for the order induced by the simulability of measurements, this,
given that this is the case for the two extremes at α ∈ {∞,−∞} [204, 73].

7. We point out that we have used information-theoretic quantities with the Rényi
parameter α taking both positive and negative values. Whilst negative values
have been explored in the literature, it is fair to say that they have not been
the main focus of attention. Here we have proven that information-theoretic
quantities with negative orders posses a descriptive power different from their
positive counterparts and therefore, it would be interesting to explore their
usefulness in other information-theoretic scenarios.



133

Chapter 8

Conclusions and perspectives

This thesis deals with a resource-theoretic framework to quantum information the-
ory, or quantum resource theories (QRTs) for short. In particular, it focuses on the
identification of operational tasks and their characterisation in terms of information-
theoretic quantities. The research is organised in results chapters from chapters four
to seven (C4-C7), so we now address conclusions for each chapter as well as some
perspectives from each one.

In chapter 4 we introduced the resource quantifier of weight of resource for general
QRTs of states and measurements, each with arbitrary closed and convex resources.
We proved that this measure quantifies the advantage that potentially resourceful
obejcts offer, when compared against the best possible free objects, when such obe-
jcts are used to play exclusion-based operational tasks. For QRTs of measurements
the relevant operational task is quantum state exclusion, whilst for QRTs of states
the relevant task is quantum subchannel exclusion. Furthermore, we proved that
the weight of resource also characterises the information-theoretic quantity of Ari-
moto’s gap of order −∞ (a generalisation of Arimoto’s mutual information) for gen-
eral QRTs of measurements with arbitrary resources.

Various open questions for future research were identified in chapter 4. First, it
would be interesting to determine whether the ratio of quantum subchannel exclu-
sion games with independent measurements can still be characterised by means of the
weight of resource, ideally for general resources, but at least for the case of entangle-
ment. Second, it would also be interesting to explore whether there could exist an
information-theoretic corner for general QRTs of states, in a similar vein as the case for
QRTs of measurements.

In chapter 5 we introduced and developed a multi-object paradigm for composite
QRTs. Specifically, we introduced the operational tasks of multi-object subchannel
discrimination/exclusion, where the objects of interest are state-measurement pairs,
and which was consequently explored for general QRTs of states and measurements,
each with arbitrary closed convex resources. We proved that the advantage that a re-
sourceful state-measurement pair offers at playing these tasks, when compared with
the best fully free pairs, is completely characterised by the generalised robustness
and the weight of resource, respectively, with both cases resulting in an elegant mul-
tiplicative characterisation. In this multi-object regime, the generalised robustness
and weight place upper bounds for the information-theoretic quantity of Arimoto’s
gap of order +∞ and −∞, respectively.

Some ways to further develop the multi-object approach is as follows. First, it
would be interesting to develop additional multi-object tasks beyond subchannel dis-
crimination/exclusion. One potential candidate is to explore quantum ensemble
discrimination in a multi-object manner [203], with the objects of interest being one
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state and one set of measurements [203]. Second, it would be interesting to explore
the tightness of the upper bounds derived for Arimoto’s gap.

In chapter 6 we introduce a QRT of Buscemi nonlocality. We derived an opera-
tional significance for this property in terms of discrimination games and, quantita-
tively related this property to both entanglement and non-classical teleportation.

It would be interesting to explore further quantum objects à la Buscemi. For in-
stance, one natural next step is to develop a theory and further uses/consequences
of an object which we can call a Buscemi set of measurements. Explicitly, given a bi-
partite POVM {MAB

a } and a set of states {ωB
x }, a Buscemi set of measurements will

be the set of POVMs with elements given by MA
a|ωx

:= TrB[MAB
a (1A ⊗ωB

x )]. It could
be worthwhile to explore the sort of things these objects can do and, particularly, the
type of things which cannot be achieved by their standard counterparts, i e., stan-
dard sets of measurements {Ma|x}.

In chapter 7 we imported ideas from the theory of games and economic be-
haviour and introduce operational tasks based on the concepts of betting and risk-
aversion, or quantum betting tasks for short. We prove that these tasks generalise
both discrimination and exclusion tasks, and prove that they can be characterised
by information-theoretic quantities based on Arimoto’s mutual information. In partic-
ular, we introduce the quantum betting tasks of: quantum state betting (QSB), noisy
quantum state betting (nQSB), and quantum subchannel betting (QScB). We anal-
ysed these tasks from the point of view of general QRTs of measurements, channels,
states, and state-measurement pairs, each with arbitrary resources. In the fully clas-
sical case in particular, we derived a clean and clear operational interpretation for
Arimoto’s mutual information. In short, it quantifies the usefulness of side infor-
mation when this is available to a gambler playing the operational tasks known as
horse betting. Finally, for the specific QRT of measurement informativeness, we de-
rived a four-way correspondence between operational tasks, information-theoretic
quantities, resource monotones, and Rényi divergences.

In general terms, it would be interesting to further explore more generally the
concept of betting and risk-aversion in quantum information theory. It would also
be interesting to keep importing ideas and concepts form economics into quantum
information, as well as the other way around (from quantum info to economics). It
would also be interesting to explore whether the four-way correspondence found
for the specific QRT of measurement informativeness can be lifted to additional
resources beyond informativeness, as well as additional objects beyond measure-
ments.
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Proofs of results on the QRT of
Buscemi nonlocality

A.1 Equivalent formulation for the Robustness of Buscemi
Nonlocality (RoBN)

By definition RoBN is a conic program. This means that we can use the tools of
convex optimization theory to find its dual and from that obtain useful information
about the primal problem. We will assume a knowledge of the tools of conic pro-
gramming, and direct the interested reader to [38]. Let us start from the formulation
given in the main text and substitute ÑAB

ab = rNAB
ab and ÕAB

ab = (1+ r)OAB
ab . After this

substitution the primal problem can be written as:

RBN(M
AB) = min r (A.1)

s.t. MAB
ab + ÑAB

ab = ÕAB
ab ∀ a, b, (A.2)

{ÕAB
ab } ∈ FBN, {ÑAB

ab } ∈ RBN, (A.3)

where the optimization is performed over r, {ÑAB
ab } and {ÕAB

ab }. Notice that any col-
lection of operators inside RBN or FBN = FSEP ∩RBN satisfies its own “no-signalling”
constraint which can be easily deduced from the definition of the set RBN. Moreover,
any operator in FBN is separable. In this way for any {XAB

ab } ∈ FBN we can write:

∑
a

XAB
ab = 1A ⊗ XB

b ∀ b, ∑
b

XAB
ab = XA

a ⊗ 1B ∀ a, XAB
ab ∈ SEP, (A.4)

∑
b

XB
b = 1B, ∑

a
XA

a = 1A. (A.5)

Now we are going to add a family of such redundant constraints to our optimization
problem. Note that we can always do that since adding constraints which are au-
tomatically satisfied by any operator in the feasible set does not change the optimal
value of the program. Moreover, we can also relax the constraint (A.2) to an inequal-
ity MAB

ab + ÑAB
ab ≤ ÕAB without changing the optimal value of the conic program.

To see why this is the case suppose we have solved the relaxed problem using vari-
ables rrel, {ÑAB,rel

ab }, {ÕAB,rel
ab } and XAB,rel

ab ≥ 0 and such that for all a and b we have:
MAB

ab + ÑAB,rel
ab = ÕAB,rel

ab − XAB,rel
ab . Then the optimal value of the relaxed program
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becomes:

Rrel
BN(M

AB) = −1 +
1
d2 ∑

ab
Tr ÕAB,rel

a , (A.6)

= −1 +
1
d2 ∑

ab
Tr
[

MAB
ab + ÑAB,rel

ab + XAB,rel
ab

]
, (A.7)

≥ −1 +
1
d2 ∑

ab
Tr
[

MAB
ab + ÑAB,rel

ab

]
, (A.8)

≥ −1 +
1
d2 ∑

ab
Tr
[

MAB
ab + Ñ′ab

]
, (A.9)

≥ −1 +
1
d2 ∑

ab
Tr
[

MAB
ab + ÑAB

ab

]
, (A.10)

= RBN(M
AB). (A.11)

where {Ñ′ab} is a set of dual variables feasible for our initial problem A.1. In this way
the conic program defining RoBN becomes:

RBN(M) = min r (A.12)

s.t. MAB
ab + ÑAB

ab ≤ ÕAB
ab ∀ a, b, (A.13)

∑
a

ÕAB
ab = 1A ⊗ ÕB

b ∀ b, ∑
b

ÕB
b = (1 + r)1B, (A.14)

∑
b

ÕAB
ab = ÕA

a ⊗ 1B ∀ a, ∑
a

ÕA
a = (1 + r)1A, (A.15)

{ÕAB
ab } ∈ FBN ∀ a, b, OAB

ab ∈ SEP ∀ a, b, (A.16)

{ÑAB
ab } ∈ RBN ∀ a, b, (A.17)

where the minimization is performed over r, {ÕAB
ab }, {ÕA

a }, {ÕB
b } and {ÑAB

ab }.
In what follows we will denote a dual cone to R using R∗, that is R∗ := {X | Tr XQ ≥

0 for all Q ∈ R}. We will now write the dual formulation of the above problem. To
do so we first write the associated Lagrangian using dual Hermitian variables asso-
ciated with a corresponding set of constraints: {AAB

ab } such that AAB
ab ≥ 0 for all a,

b, {BAB
b }, {CAB

a }, DA ≥ 0, EB ≥ 0, {FAB
ab } ∈ F∗BN meaning that ∑ab Tr[FAB

ab XAB
ab ] ≥ 0

for all {XAB
ab } ∈ FBN, GAB

ab ∈ F∗SEP for all a, b, meaning that Tr[GAB
ab XAB] ≥ 0 for all a,

b and all separable operators XAB ∈ FSEP and, finally, {HAB
ab } ∈ R∗BN. With this the
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Lagrangian function of the conic program (A.12—A.16) becomes:

L = r + ∑
ab

Tr AAB
ab

[
MAB

ab + ÑAB
ab − ÕAB

ab

]
+ ∑

b
Tr BAB

b

[
∑

a
ÕAB

ab − 1A ⊗ ÕB
b

]
(A.18)

+ ∑
a

Tr CAB
a

[
∑

b
ÕAB

ab − ÕA
a ⊗ 1B

]
+ Tr DA

[
∑

a
ÕA

a − (1 + r)1A

]
(A.19)

+ Tr EB

[
∑

b
ÕB

b − (1 + r)1B

]
−∑

a,b
Tr
[

FAB
ab ÕAB

ab

]
(A.20)

−∑
a,b

Tr
[

GAB
ab ÕAB

ab

]
−∑

a,b
Tr
[

HAB
ab ÑAB

ab

]
(A.21)

= r ·
[
1− Tr DA − Tr EB

]
+ ∑

a,b
Tr Ñab

[
AAB

ab − HAB
ab

]
(A.22)

+ ∑
a,b

Tr Õab

[
−AAB

ab + BAB
b + CAB

a − FAB
ab − GAB

ab

]
(A.23)

+ ∑
a

Tr OA
a

[
DA − CA

a

]
+ ∑

b
Tr OB

b

[
EB − BB

b

]
+ ∑

ab
Tr
[

AAB
ab MAB

ab

]
(A.24)

− Tr DA − Tr EB. (A.25)

By demanding that the terms in the square brackets which appear along with the
dual variables vanish we can ensure L ≤ r. This leads to the following (dual) conic
program:

RBN(M
AB) = max ∑

ab
Tr
[

AAB
ab MAB

ab

]
− 1 (A.26)

s.t. CAB
a + BAB

b = AAB
ab + FAB

ab + GAB
ab ∀ a, b, (A.27)

AAB
ab = HAB

ab ∀ a, b, CA
a = DA ∀ a, BB

b = EB ∀ b, (A.28)

AAB
ab ≥ 0 ∀ a, b, {HAB

ab } ∈ R∗BN, {FAB
ab } ∈ F∗BN, (A.29)

Tr DA + Tr EB = 1.

Notice now that the set FBN ∈ FSEP, which implies that the dual sets satisfy F∗SEP ∈
F∗BN. Hence without loss of generality we can assume GAB

ab = 0 for all a and b. In this
way we can express the above program in the following way:

1 + RBN(M
AB) = max ∑

ab
Tr
[

AAB
ab MAB

ab

]
(A.30)

s.t. CAB
a + BAB

b − AAB
ab = FAB

ab ∈ F∗BN ∀ a, b, (A.31)

CA
a = DA ∀ a, CA

a , DA ≥ 0 ∀ a, (A.32)

AAB
ab ≥ 0 ∀ a, b, Tr DA + Tr EB = 1. (A.33)

Using both primal (A.1) and dual (A.30) formulations we can now describe some
basic properties of the RoBN.

A.2 Basic properties of the RoBN

Here we prove the three basic properties of RoBN highlighted in the main text.
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Faithfulness If MAB ∈ FBN then we can always choose a feasible r = 0 in the
primal form (A.1). Since the solution is always non-negative, r = 0 is also optimal.

Convexity Let {N1
ab, O1

ab} be optimal primal variables for RBN(M
1) and similarly

let {N2
ab, O2

ab} be primal-optimal for RBN(M
2). Define M′ = {M′ab} as a convex

combination of the two measurements, that is M′ab = p M1
ab + (1− p) M2

ab for each a
and b. We can construct a set of feasible variables for RBN(M

′) in the following way:
N′ab = p N1

ab + (1− p) N2
ab and O′ab = p O1

ab + (1− p)O2
ab. Substituting N′ab and O′ab

into the constraints of the primal form for RBN(M) shows that this choice is feasible.
In this way we obtain an upper bound on RBN(M

′):

RBN(M
′) ≤ Tr ∑

a,b
N′ab = p · Tr ∑

a,b
N1

ab + (1− p) · Tr ∑
a,b

N2
ab

= p · R(M1) + (1− p) · R(M2). (A.34)

Monotonicity Let us start with the assumption that there is a subroutine:

S = {p(λ), p(a|i, λ), p(b|j, λ), Eλ,Nλ}

which allows to simulate M′ using M, i.e. M ≻q M′. This means that the POVM
elements {Mab} of M can be mapped into:

M′ab = ∑
i,j,λ

p(λ)p(a|i, λ)p(b|j, λ)(E †
λ ⊗N †

λ )[Mij].

Suppose now that we solved the dual problem for RBN(M
′) using the optimal dual

variables {A′ab}, {B′b},{C′a}, D′, E′ and {F′ab}. Using these we construct an educated
guess for RBN(M) in the following way:

A∗ij = ∑
a,b,λ

p(λ) p(a|i, λ)p(b|j, λ) (Eλ ⊗Nλ) [A′ab], (A.35)

B∗j = ∑
b,λ

p(λ) p(b|j, λ) (Eλ ⊗Nλ) [B′b], (A.36)

C∗i = ∑
a,λ

p(λ) p(a|i, λ) (Eλ ⊗Nλ) [C′a], (A.37)

D∗ = ∑
λ

p(λ) Eλ[D′], (A.38)

E∗ = ∑
λ

p(λ)Nλ[E′], (A.39)

F∗ij = ∑
a,b,λ

p(λ) p(a|i, λ)p(b|j, λ) (Eλ ⊗Nλ) [F′ab]. (A.40)

It can be verified that the above choice of variables is feasible for the dual problem
(A.30). In particular, notice that by construction we have C∗i + B∗j − A∗ij = F∗ij for
all i, j since the primed dual variables satisfy the constraints of (A.30). Furthermore,
since TrB(Eλ ⊗Nλ)[XAB] = Eλ[XA] we can infer that TrB C∗i = D∗ and TrA B∗j = E∗.
Moreover, as separable maps preserve both positivity and separability we also have
that A∗ij ≥ 0 for all i, j and {F∗ij} ∈ F∗BN. Using the proposed set of dual variables we
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find the following lower bound:

1 + RBN(M) ≥∑
i,j

Tr[Mij A∗ij] (A.41)

= ∑
a,b,i,j,λ

p(λ) p(a|i, λ)p(b|j, λ) Tr[Mij · (Eλ ⊗Nλ) [Aab]] (A.42)

= ∑
a,b,i,j,λ

p(λ) p(a|i, λ)p(b|j, λ) Tr[
(
E †

λ ⊗N †
λ

)
[Mij] · Aab] (A.43)

= ∑
a,b

Tr[Mab Aab] (A.44)

= 1 + RBN(M
′). (A.45)

This proves that RoBN is monotonic under quantum simulation.

A.3 Proof of Result 6.1

In this section we prove that RoBN can be seen as a quantifier of the advantage a
given distributed measurement provides in the task of distributed state discrimina-
tion. To simplify notation in this section we shall omit subsystem labels whenever
it is clear from the context. Let us recall that the average guessing probability in the
task of distributed state discrimination using a distributed measurement M can be
expressed as:

pDSD
guess(G, M) = max

N≺qM
∑

a,b,x,y
p(x, y) Tr

[
Nab σxy

]
δxaδyb, (A.46)

where the optimization ranges over all measurements N = {Nab} which can be
quantum-simulated using M = {Mij}, where

Mij = TrAB

[(
MA′A

i ⊗MBB′
j

) (
1A′ ⊗ ρAB ⊗ 1B′

)]
(A.47)

is a distributed measurement and G = {p(x, y), σxy} is an ensemble of bipartite
states. Suppose that we have solved the dual problem for RoBN (A.30) using the
set of dual variables {Aab}, {Ca}, {Bb}, D, E and {Gab}. Notice also that due to the
constraints in (A.30) the matrix Aab is positive semi-definite for all values of a and
b. Let us now consider a particular game setting G∗ = {p∗(x, y), σ∗xy} defined in the
following way:

C = ∑
x,y

Tr Axy, p∗(x, y) =
Tr Axy

C
, σ∗xy =

Axy

Tr Axy
, (A.48)

where x = 1, . . . , oA, y = 1, . . . , oB and oA, oB are the numbers of outcomes of local
measurements performed by A and B. The best average guessing probability which
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can be achieved in the game G∗ using a distributed measurement M is given by:

pDSD
guess(G∗, M) = max

N≺qM
∑

a,b,x,y
p∗(x, y) Tr

[
Nab σ∗xy

]
δxaδyb (A.49)

≥∑
x,y

Tr Axy

C
· Tr

[
Mxy

Axy

Tr Axy

]
(A.50)

=
1
C ∑

x,y
Tr
[
Mxy Axy

]
(A.51)

=
1
C

[
1 + RBN(M

AB)
]

, (A.52)

where the inequality in the second line we follows from choosing a particular sub-
routine S with p(λ) = 1/|λ|, p(a|i, λ) = δai, p(b|j, λ) = δbj and Eλ = Nλ = id.
Let us now look at the corresponding classical (i.e. without access to entanglement)
probability of guessing:

pDSD
guess(G∗)
= max

N∈FBN
pDSD

guess(G∗, N)

= max
N∈FBN

∑
x,y

p∗(x, y) Tr
[

Nxy σ∗xy

]
(A.53)

=
1
C

max
N∈FBN

∑
x,y

Tr
[
Nxy Axy

]
(A.54)

=
1
C

max
N∈FBN

∑
x,y

Tr
[
Nxy(Cx + By − Fxy)

]
(A.55)

=
1
C

max
N∈FBN

(
∑
x

Tr [(Nx ⊗ 1)Cx] + ∑
y

Tr
[
(1⊗ Ny)By

]
−∑

x,y
Tr
[
NxyFxy

]
)

(A.56)

≤ 1
C

max
N∈FBN

(
∑
x

Tr [NxD] + ∑
y

Tr
[
NyE

]
)

(A.57)

=
1
C
(Tr D + Tr E) (A.58)

=
1
C

, (A.59)

where the inequality follows since for all N ∈ FBN we have ∑xy Tr[NxyFxy] ≥ 0.
Combining bounds (A.52) and (A.59) leads to:

max
G

pDSD
guess(G, M)

pDSD
class(G)

≥
pDSD

guess(G∗, M)

pDSD
class(G∗)

≥ 1 + RBN(M). (A.60)

In order to prove the upper bound notice that the first line of constraints in the primal
formulation for RoBN (A.1) implies:

∀ a, b M′ab = Õ′ab − Ñ′ab, (A.61)
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where Õ′ab = [1 + RBN(M)]O′ab for all a, b and {O′ab} ∈ FBN. This allows to write:

pDSD
guess(G, M)

= max
M′≺qM

∑
a,b,x,y

p(x, y) Tr
[
M′ab σxy

]
δxaδyb (A.62)

= max
M′≺qM

∑
a,b,x,y

p(x, y) Tr
[
(Õ′ab − Ñ′ab)σxy

]
δxaδyb (A.63)

≤ max
M′≺qM

∑
a,b,x,y

p(x, y) Tr
[
Õ′abσxy

]
δxaδyb (A.64)

= max
M′≺qM

[
1 + RBN(M

′)
]

∑
a,b,x,y

p(x, y) Tr
[
O′abσxy

]
δxaδyb (A.65)

≤
(

max
M′≺qM

[
1 + RBN(M

′)
])
(

max
{Oab}∈FBN

∑
a,b,x,y

p(x, y) Tr
[
Oabσxy

]
δxaδyb

)
(A.66)

≤ [1 + RBN(M)] pDSD
guess(G), (A.67)

where the last inequality follows from the monotonicity of RoBN under quantum
simulation. Combining bounds (A.60) and (A.67) yields:

max
G

pDSD
guess(G, M)

pDSD
guess(G)

= 1 + RBN(M). (A.68)

A.4 Proof of Result 6.2

Before proving the result we recall the primal and dual formulation of the RoT quan-
tifier. Let Λ = {Λa} be a teleportation instrument whose elements are defined as:

ΛA→B′
a [ω] := TrAA′

[(
MAA′

a ⊗ 1B)(ωA ⊗ ρA′B′
)]

, (A.69)

for some measurement MAA′
a and a shared state ρA′B′ . We denote the set of Choi-

Jamiolkowski states corresponding to this of these subchannels with {JVB′
a }, i.e. each

JVB′
a := (idV ⊗ΛA→B′

a )[ϕVA
+ ] with system V isomorphic to A. With these definitions

RoT for a teleportation instrument RT(ΛA→B′) can be written as:

min Tr σ̃ B′ ,

s.t. JVB′
a ≤ FVB′

a ∀ a,

∑
a

FVB′
a =

1V

d
⊗ σ̃ B′ ,

FVB′
a ∈ FSEP ∀a, σ̃B′ ≥ 0.

⇐⇒ max ∑
a

Tr
[

AVB′
a JVB′

a

]
− 1,

s.t. BVB′ − AVB′
a = WVB′

a ∈ F∗SEP ∀a,

BB′ = 1B′ , AVB′
a ≥ 0 ∀a.

(A.70)

Let us now proceed with the proof of Result 6.2.

Proof. As before, the proof consists of two steps. First we will show that RT(ΛA→B′)
lower bounds RBN(M

AB) for a particular choice of local measurement MB′B. Then
we will show that for any choice of local measurements on Bob’s side RBN(M

AB) is
never larger than the teleportation quantifier RT(ΛA→B′).
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Let AVB′
a ≥ 0, WVB′

a ∈ F∗SEP and BVB′ be optimal dual variables for RT(ΛA→B′).
Let {UB

b } for b ∈ {1, . . . , d2} be a set of Pauli operators with respect to a basis {|i⟩B}.
Consider the following measurement with oB = d2 outcomes:

MB′B
b = (idB′ ⊗UB

b )[ϕ
B′B
+ ], (A.71)

where Ub[·] := Ub(·)U†
b . We are interested in the lower bound for RT(ΛA→B′). Let

us choose a set of dual variables in (A.30) inspired by the optimal dual variables for
RT(ΛV→B′):

AAB
ab = (idA ⊗ (U †

b )
B)[(AAB

a )T], (A.72)

FAB
ab = (idA ⊗ (U †

b )
B)[(WAB

a )T], (A.73)

BAB
b =

1
d
(idA ⊗ (U †

b )
B)[(BAB)T], (A.74)

CAB
a = 0, DB =

1
d

1B, EA = 0. (A.75)

It can be verified by direct substitution that the above choice is feasible. In particular,
the above choice for {FAB

ab } is feasible as F∗SEP ∈ F∗BN and both sets are invariant
under local unitaries. This leads to the following chain of inequalities:

1 + max
MB

RBN(M
AB)

≥∑
ab

Tr[AAB
ab MAB

ab ] (A.76)

= ∑
ab

Tr
[
(idA ⊗ (U †

b )
B)[(AAB

a )T ] · TrA′B′
[
(MAA′

a ⊗MB′B
b )(1A ⊗ ρA′B′ ⊗ 1B)

]]
(A.77)

= ∑
ab

Tr
[
(idA ⊗ (U †

b )
B)[(AAB

a )T ] · TrA′B′
[
(MAA′

a ⊗ (idB′⊗UB
b )[ϕ

B′B
+ ])(1A ⊗ ρA′B′ ⊗ 1B)

]]

(A.78)

= ∑
ab

Tr
[
1A′B′ ⊗ (idA ⊗ (U †

b )
B)[(AAB

a )T ] ·
[
(MAA′

a ⊗ (idB′⊗UB
b )[ϕ

B′B
+ ])(1A ⊗ ρA′B′ ⊗ 1B)

]]

(A.79)

= ∑
ab

Tr
[(

1A′B′ ⊗ (AAB
a )T

) (
MAA′

a ⊗ ϕB′B
+

) (
1A ⊗ ρA′B′ ⊗ 1B)

)]
(A.80)

=
1
d2 ∑

ab
Tr
[

AVB′
a · TrAA′

[
(1V ⊗MAA′

a ⊗ 1B′)(ϕVA
+ ⊗ ρA′B′)

]]
(A.81)

= ∑
a

Tr[AVB′
a JVB′

a ] (A.82)

= 1 + RT(ΛV→B′). (A.83)

We now prove the upper bound. Notice that for any distributed measurement MAB

we can construct MVB := {MVB
ab } such that MVB

ab := d TrA[(1
V ⊗ MAB

ab )(ϕVA
+ ⊗ 1B)].

This in turn can be written as:

MVB
ab := d TrAA′B′

[(
1A ⊗MAA′

a ⊗MB′B
b

) (
ϕVA
+ ⊗ ρA′B′ ⊗ 1B

)]
(A.84)

= d TrB′
[(

1V ⊗MB′B
b

) (
JVB′
a ⊗ 1B

)]
. (A.85)

Note that we can always write JVB′
a ≤ [1 + RT(ΛA→B′)]FVB′

a , where {FVB′
a } are Choi-

Jamiolkowski operators of some classical teleportation instrument. This allows us to
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further rewrite (A.85) as:

MVB
ab ≤ d [1 + RT(ΛA→B′)] TrA[(1

V ⊗MAB
ab )(ϕVA

+ ⊗ 1B)] = [1 + RT(ΛA→B′)]OVB
ab .

(A.86)

Where {OVB
ab } is a free distributed measurement. Hence also MAB

ab ≤ [1+RT(ΛA→B′)]
OAB

ab for some free distributed measurement {OAB
ab }. This finally allows us to write:

max
MB

RBN(M
AB) ≤ [1 + RT(ΛA→B′)] max

MB
∑
ab

Tr[AAB
ab OAB

ab ] ≤ [1 + RT(ΛA→B′)].

(A.87)

This proves the lemma.

A.5 Proof of Result 6.4

Let us recall that the conic program formulation of RoE is given by:

RE(ρ
A′B′) = min Tr σ̃ A′B′ ,

s.t. ρA′B′ ≤ σ̃ A′B′

σ̃A′B′ ∈ FSEP.

⇐⇒ max ∑
a

Tr
[

AA′B′ρA′B′
]
− 1,

s.t. 1A′B′ − AA′B′ = WA′B′ ∈ F∗SEP,

AA′B′ ≥ 0.
(A.88)

The proof is based on three parts. First we use Result 6.2 to connect RoBN with RoT.
Then we essentially parallel the steps taken in the proof of Result 6.2 to link RoT
with RoE. It is worth mentioning that the link between RoT and RoE has already
been obtained some time ago in [51]. Here for convenience we state an independent
proof.

Proof. Let us begin by noting that Result 6.2 implies:

max
MA,MB

RBN(M
AB) = max

MA

[
max
MB

RBN(M
AB)

]
= max

MA
RT(ΛA→B′). (A.89)

Let AA′B′ ≥ 0, WA′B′ ∈ F∗SEP be optimal dual variables for RE(ρ
A′B′). Let {UA′

a } for
a ∈ {1, . . . , d2} be a set of Pauli operators with respect to a basis {|i⟩A′}. Consider
the following measurement with oA = d2 outcomes:

MAA′
a = (idA ⊗UA′

a )[ϕAA′
+ ]. (A.90)

We are interested in the lower bound for RE(ρ
A′B′), let us construct a set of (po-

tentially sub-optimal) dual variables in the maximization (A.88) using the optimal
set of dual variables for RT(ΛV→B′), i.e.:

AVB′
a = ((U †

a )
V ⊗ idB′)[AVB′ ], WVB′

a = ((U †
a )

V ⊗ idB′)[(WVB′ ], BVB′ =
1
d

1VB′ .

(A.91)
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It can be verified by direct substitution that the above choice is feasible. This leads
to the following chain of inequalities:

1 + max
MA

RT(ΛA→B′)

≥∑
a

Tr[AVB′
a JVB′

a ] (A.92)

= ∑
a

Tr
[
((U †

a )
V ⊗ idB′)[AVB′

a ] · TrAA′
[
(1V ⊗MAA′

a ⊗ 1B′)(ϕVA
+ ⊗ ρA′B′)

]]
(A.93)

= ∑
a

Tr
[
((U †

a )
V ⊗ idB′)[AVB′

a ] · TrAA′
[
(1V ⊗ (idA ⊗UA′

a )[ϕAA′
+ ]⊗ 1B′)(ϕVA

+ ⊗ ρA′B′)
]]

(A.94)

= ∑
a

Tr
[
1AA′ ⊗ ((U †

a )
V ⊗ idB′)[AVB′

a ] · (1V ⊗ (idA ⊗UA′
a )[ϕAA′

+ ]⊗ 1B′)(ϕVA
+ ⊗ ρA′B′)

]

(A.95)

=
1
d2 ∑

a
Tr[((U †

a )
A′ ⊗ idB′)AA′B′ · (UA′

a ⊗ idB′)ρA′B′ ] (A.96)

= Tr[AA′B′ρA′B′ ] (A.97)

= 1 + RE(ρ
A′B′). (A.98)

We now prove the upper bound. Notice that any teleportation instrument ΛA→B′

expressed using Choi-Jamiolkowski operators {JVB′
a } satisfies:

JVB′
a := TrVA

[(
MVA

a ⊗ 1B′
) (

ϕA
+ ⊗ ρA′B′ ⊗ 1B

)]
(A.99)

≤ [1 + RE(ρ
A′B′)]TrVA

[(
MVA

a ⊗ 1B′
) (

ϕA
+ ⊗ σA′B′ ⊗ 1B

)]
(A.100)

= [1 + RE(ρ
A′B′)]OVB′

a , (A.101)

for some state σA′B′ ∈ FSEP and corresponding (classical) teleportation operators
{OVB′

a }. In this way we can write:

max
MA

[1 + RT(ΛA→B′)] = max
MA

max
{AVB′

a }
∑

a
Tr[AVB′

a JVB′
a ] (A.102)

≤ [1 + RE(ρ
A′B′)]∑

a
Tr[AVB′

a OVB′
a ] (A.103)

≤ [1 + RE(ρ
A′B′)]. (A.104)

This proves the claim.

A.6 Proof of Result 6.6

In this section, unless explicitly specified, all bipartite operators act on subsystems
A and B. We begin by assuming that a distributed measurement M can be used to
simulate M∗, that is M ≻q M∗. We have:

pDSD
guess(G, M) = max

M≻qM′ ∑
a,b

p(a, b) Tr
[
M′ab σab

]
(A.105)

≥ max
M∗≻qM′ ∑

a,b
p(a, b) Tr

[
M′ab σab

]
(A.106)

= pDSD
guess(G, M∗), (A.107)
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since the set {M′|M∗ ≻q M′} is a subset of {M′|M ≻q M′}. Now we are going
to assume that pDSD

guess(G, M) ≥ pDSD
guess(G, M∗) holds for all games G = {p(x, y), σxy}

and show show that there always exist a subroutine S which allows to simulate M∗

using M. We thus have:

∀ G max
M′≺qM

∑
a,b

p(a, b) Tr
[
M′ab σab

]
− max

M′′≺qM∗ ∑
a,b

p(a, b) Tr
[
M′′ab σab

]
≥ 0. (A.108)

Let us now choose a particular subroutine in the second maximization, i.e.: S∗ =
{p(λ) = δλ0, p(a|i, λ) = δai, p(b|j, λ) = δbj, Uλ = Vλ = 1}. In this way (A.108)
implies:

∀ G max
M′≺qM

∑
a,b

p(a, b) Tr
[
(M′ab −M∗ab) σab

]
≥ 0. (A.109)

Let us denote ∆ab := M′ab−M∗ab. Since both M′ab and M∗ab are measurements we have
that ∑a,b ∆ab = 0. This also means that only one of the two situations can hold: either
(i) ∆ab = 0 for all a, b or (ii) there exists at least one ∆ab with at least one negative
eigenvalue.

We will now show by contradiction that (ii) cannot be true. Let us assume that
(ii) holds and label the negative eigenvalue with λa∗b∗ and the associated eigenvector
with |λa∗b∗⟩. Then, since (A.109) holds for all games G, it also holds for a particular
game G∗ = {p(a, b) = δaa∗δbb∗ , σab = |λa∗b∗⟩⟨λa∗b∗ |}. Hence (A.109) implies:

⟨λa∗b∗ |∆a∗b∗ |λa∗b∗⟩ = λa∗b∗ < 0, (A.110)

which is a contradiction. Hence we infer that (ii) cannot be true and the only possi-
bility is that each operator ∆ab is identically zero. This means that:

M∗ab = M′ab := ∑
i,j,λ

p(λ)p(a|i, λ)p(b|j, λ)(U†
λ ⊗V†

λ )Mij(Uλ ⊗Vλ), (A.111)

i.e. M∗ can be simulated using M.

A.7 Proof of Result 6.7

The accessible min-information Iacc
+∞(N ) of a channel N is defined as [243]:

Iacc
+∞(N ) = max

E,D

[
H+∞(X)− H+∞(X|G)

]
, (A.112)

where the optimization is over all encodings E = {p(x), σx} and decodings D =
{Dg} and the min-entropies are defined as:

H+∞(X) = − log max
x

p(x), (A.113)

H+∞(X|G) = − log

[
∑
g

max
x

p(x, g)

]
, (A.114)

and p(x, g) is the probability distribution induced by channel N , i.e.:

p(x, g) = p(x)p(g|x) = p(x)Tr
[
N [σx]Dg

]
. (A.115)
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Consider now encoding a bipartite random variable X × Y in an ensemble of bipar-
tite quantum states, i.e.: E = {p(x, y), σAB

xy } and D = {DA′B′
g } for g = 1, . . . , oA · oB.

Moreover, consider the channel N = NAB→A′B′ to be a quantum-to-classical mea-
surement channel, which can be written as:

NAB→A′B′(ρAB) = ∑
a,b

Tr[MAB
ab ρAB] |a⟩⟨a|A′ ⊗ |b⟩⟨b|B′ , (A.116)

where M = {MAB
ab } is a distributed measurement. We have:

Iacc
+∞(NAB→A′B′)

= max
E,D

log

[
∑
g

max
x,y

p(x, y)Tr[NAB→A′B′ [σAB
xy ]DA′B′

g ]

]
− log max

a,b
p(a, b) (A.117)

= max
E,D

log

[
∑
g

∑
a,b

max
x,y

p(x, y)Tr[MAB
ab σAB

xy ]Tr[DA′B′
g |a⟩⟨a|A′ ⊗ |b⟩⟨b|B′ ]

]

− log max
a,b

p(a, b) (A.118)

= log

[
∑
a,b

max
E

max
x,y

p(x, y)Tr[MAB
ab σAB

xy ]

]
− log max

a,b
p(a, b). (A.119)

Notice now that we can always express the optimization over (x, y) as:

max
x,y

p(x, y)Tr[MAB
ab σAB

xy ]

= max
p(x|a)

max
p(y|b) ∑x,y

p(x|a)p(y|b)p(x, y)Tr[MAB
ab σAB

xy ] (A.120)

= max
p(λ)

max
p(x|a,λ)

max
p(y|b,λ)

∑
x,y,λ

p(x|a, λ)p(y|b, λ)p(x, y)Tr[MAB
ab σAB

xy ] (A.121)

Notice further that if we carry out the optimisation of the above expression over E

we can additionally write:

max
E

max
x,y

p(x, y)Tr[MAB
ab σAB

xy ]

= max
E

max
p(λ)

max
p(x|a,λ)

max
p(y|b,λ)

∑
x,y,λ

p(x|a, λ)p(y|b, λ)p(x, y)Tr[MAB
ab σAB

xy ] (A.122)

= max
E

max
{Eλ},{Fλ}

max
p(λ)

max
p(x|a,λ)

max
p(y|b,λ)

∑
x,y,λ

p(x|a, λ)p(y|b, λ)p(x, y)× (A.123)

Tr[MAB
ab (EA

λ ⊗FB
λ )(σ

AB
xy )] (A.124)

= max
E

max
N≺M

∑
x

p(x, y)Tr
[

NAB
ab σAB

xy

]
. (A.125)



A.7. Proof of Result 6.7 147

Hence we can further continue from (A.119) and write:

Iacc
min(NAB→A′B′)

= log

[
∑
a,b

max
E

max
N≺M

p(a, b)Tr
[

NAB
ab σAB

ab

]]
− log max

a,b
p(a, b) (A.126)

= max
E

log

[
max
N≺M

∑
a,b

p(a, b)Tr
[

MAB
ab σAB

ab

]]
−max

a,b
p(a, b) (A.127)

= max
E

log
[

pDSD
guess(G, MAB)

]
− log

[
pDSD

guess(G)
]

(A.128)

= log

[
max
E

pDSD
guess(G, MAB)

pguess(G)

]
(A.129)

= log
[
1 + RBN(M

AB)
]

. (A.130)
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Appendix B

Proofs of results on quantum
betting tasks

B.1 Proof of Result 7.1

We start by mentioning that the tasks which are of interest to us are quantum state
betting (QSB) games, but that from an operational point of view, they are equivalent
to “horse betting games with risk and quantum side information", or quantum horse
betting (QHB) games for short. Given this equivalence, in this appendix we would
address QSB games as QHB or HB games only.

In order to prove Result 1 we need two Theorems on horse betting (HB) with
risk: one for HB games without side information, and other for HB games with side
information. These two Theorems depend on the of Rényi divergence and the BLP
conditional Rényi divergence.

B.1.1 Preliminary steps

We start by addressing a simplified notation.

wICE
R (bX|G, oX, pXG) := wICE

R (bX|G, M, oX, E), (B.1)

with p(x, g) = p(g|x)p(x), p(g|x) = Tr[Mgρx]. We also notice that that optimising
over uninformative measurements N ∈ UI, meaning Ng = p(g)1, ∀g, is equivalent
to a horse betting game with risk but without side information because p(g|x) =
Tr(Ngρx) = p(g)Tr(1ρx) = p(g) and then:

max
bX|G

max
N∈UI

wICE
R (bX|G, oX, pXG)

= max
bX|G

max
N∈UI

[
∑
g,x

[
b(x|g)o(x)

]1−R p(g|x)p(x)

] 1
1−R

, (B.2)

= max
bX|G

max
pG

[
∑
g,x

[
b(x|g)o(x)

]1−R p(g)p(x)

] 1
1−R

, (B.3)

= max
bX|G

[
∑
x

(
max

pG
∑
g

b(x|g)1−R p(g)

)
o(x)1−R p(x)

] 1
1−R

, (B.4)

= max
bX|G

[
∑
x

(
max

g
b(x|g)1−R

)
o(x)1−R p(x)

] 1
1−R

, (B.5)
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= max
bX

[
∑
x

[
b(x)o(x)

]1−R p(x)

] 1
1−R

, (B.6)

= max
bX

wICE
R (bX, oX, pX). (B.7)

This defines a HB game without side information, meaning without the random vari-
able G. We now define the auxiliary function of the logarithm of the isoelastic certainty
equivalent as:

UR(bX|G, oX, pXG) := sgn(o) log
∣∣∣wICE

R (bX|G, oX, pXG)
∣∣∣ , (B.8)

and similarly without side information as:

UR(bX, oX, pX) := sgn(o) log
∣∣∣wICE

R (bX, oX, pX)
∣∣∣ , (B.9)

with sgn(o) as a shorthand for the sign of the odds o(x), ∀x. We also highlight here
that we are interested in the strategy that achieves:

max
bX

wICE
R (bX, oX, pX), (B.10)

and we can see that this is equivalent to finding the best strategy for the auxiliary
optimisation:

max
bX

UR(bX, oX, pX). (B.11)

B.1.2 Horse betting games with risk

We now present two results on horse betting games. We remark here that we in-
voke these results, in contrast with the original presentation in [33], with the fol-
lowing modifications in the notation: i) the original version involves a parameter
β, here instead we directly use the risk aversion parameter R, taking into account
that these two parameters are related as β = 1− R, ii) we have defined the Rényi
divergence as a non-negative quantity, for all α ∈ R, even for negative values of al-
pha, and this explains the appearance of the term sgn(R), iii) we allow for the odds
and consequently the wealth to be negative, and this explains the appearance of the
term sgn(o). We now address a result that characterises this task in terms of the
R-divergence.

Theorem B.1. (Bleuler-Lapidoth-Pfister [33, 171]) Consider a HB game with risk defined
by the triple (oX, pX, R), and a Gambler playing this game with a betting strategy bX. The
logarithm of the isoelastic certainty equivalent is characterised by the R-divergence Dα(·||·)
as:

UR(bX, oX, pX) = sgn(o) log |co| (B.12)
+ sgn(o) sgn(R) D1/R(pX||ro

X) (B.13)

− sgn(o) sgn(R) DR(h
(R,o,p)
X ||bX), (B.14)
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with the parameter and the PMF:

co :=

(
∑
x

1
o(x)

)−1

, ro(x) :=
co

o(x)
, (B.15)

and the PMF:

h(R,o,p)(x) :=
p(x)

1
R o(x)

1−R
R

∑x′ p(x′)
1
R o(x′)

1−R
R

. (B.16)

Note that the quantities ro
X and h(R,o,p)

X define valid PMFs even for negative odds (o(x) < 0,
∀x).

We are particularly interested in the best possible betting strategy for a given
game (oX, pX) and fixed R, so we have the following two corollaries.

Corollary B.1. (Bleuler-Lapidoth-Pfister [33, 171]) Consider a classical horse discrimina-
tion (HD) game (o+X , meaning sgn(o) = 1) being played by a risk-averse Gambler (R ≥ 0,
meaning sgn(R) = 1). We then want to maximise the logarithm of the isoelastic certainty
equivalent over all possible betting strategies. The gambler plays optimally when choosing
b∗(x) = h(R,o,p)(x) and then:

max
bX

UR(bX, o+X , pX) = UR(b∗X, o+X , pX),

= log |co|+ D1/R(pX||ro
X). (B.17)

This is because the Rényi divergence DR(·||·) is non-negative ∀R ∈ R.

Corollary B.2. Consider a classical horse exclusion (HE) game (o−X , meaning sgn(o) =
−1) being played by a risk-averse Gambler (R < 0, meaning sgn(R) = −1). We then
want to maximise the logarithm of the isoelastic certainty equivalent over all possible betting
strategies. The gambler plays optimally when choosing b∗(x) = h(R,o,p)(x) and then:

max
bX

UR(bX, o−X , pX) = UR(b∗X, o−X , pX),

= − log |co|+ D1/R(pX||ro
X). (B.18)

This is because the Rényi divergence DR(·||·) is non-negative ∀R ∈ R.

B.1.3 Horse betting with risk and side information

We now address a result that characterises this task in terms of the BLP-CR-divergence
and the R-divergence.

Theorem B.2. (Bleuler-Lapidoth-Pfister [33, 171]) Consider a HB game with risk and side
information defined by the triple (oX, pXG, R), and a Gambler playing this game with a
betting strategy bX|G. The utility function of log-wealth is characterised by the the BLP-CR-
divergence DBLP

α (·|| · |·) and R-divergence Dα(·||·) as:

UR(bX|G, oX, pXG) = sgn(o) log |co| (B.19)

+ sgn(o) sgn(R)DBLP
1/R

(
pX|G||ro

X|pG
)

(B.20)

− sgn(o) sgn(R)DR

(
h(R,o,p)

X|G h(R,o,p)
G

∣∣∣
∣∣∣bX|G h(R,o,p)

G

)
, (B.21)
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with the parameter and the PMF:

co :=

(
∑
x

1
o(x)

)−1

, ro(x) :=
co

o(x)
, (B.22)

and the conditional PMF and PMF:

h(R,o,p)(x|g) :=
p(x|g) 1

R o(x)
1−R

R

∑x′ p(x′|g) 1
R o(x′)

1−R
R

, (B.23)

h(R,o,p)(g) :=
p(g)

[
∑x′ p(x′|g) 1

R o(x′)
1−R

R

]R

∑g′ p(g′)
[
∑x′ p(x′|g′) 1

R o(x′)
1−R

R

]R . (B.24)

Note that the quantities ro
X, h(R,o,p)

X|G , h(R,o,p)
G define valid PMFs even for negative odds (o(x) <

0, ∀x).

We are particularly interested in the best possible betting strategy bX|G for a given
game (oX, pXG) and fixed R, so we have the following two corollaries.

Corollary B.3. (Bleuler-Lapidoth-Pfister [33, 171]) Consider a horse discrimination (HD)
game (o+X , meaning sgn(o) = 1) being played by a risk-averse Gambler (R > 0, meaning
sgn(R) = 1) with access to side information. We then want to maximise the logarithm
of the isoelastic certainty equivalent over all possible betting strategies. The Gambler plays
optimally when choosing b∗(x|g) = h(R,o,p)(x|g) and then:

max
bX|G

UR(bX|G, o+X , pXG) = UR(b∗X|G, o+X , pXG),

= log |co|+ DBLP
1/R(pX|G||ro

X|pG), (B.25)

with the BLP-CR-divergence DBLP
α (·|| · |·). This is because the Rényi divergence DR(·||·) is

non-negative ∀R ∈ R.

Corollary B.4. Consider a classical horse exclusion (HE) game (o−X ) being played by a risk-
averse Gambler (R < 0) with access to side information. We then want to maximise the
logarithm of the isoelastic certainty equivalent over all possible betting strategies. The Gam-
bler plays optimally when choosing b∗(x|g) = h(R,o,p)(x|g) and then:

max
bX|G

UR(bX|G, o−X , pXG) = UR(b∗X|G, o−X , pXG),

= − log |co|+ DBLP
1/R(pX|G||ro

X|pG), (B.26)

with the BLP-CR-divergence DBLP
α (·|| · |·). This is because the Rényi divergence DR(·||·) is

non-negative ∀R ∈ R.
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B.1.4 Proving Result 1

In order to prove Result 1 we need two Lemmas. Let us start by rewriting the Rényi
entropy in a more convenient form:

Hα(X) = − log [pα (X)] , (B.27)

pα (X) :=

(
∑
x

p(x)α

) 1
(α−1)

. (B.28)

We are now ready to establish a first Lemma.

Lemma B.1. (Operational interpretation of the Rényi entropy) Consider a PMF pX, the
Rényi probability of order α ∈ R can be written as:

sgn(α)C pα(X) = max
bX

wICE
1/α (bX, osgn(α)c

X , pX), (B.29)

with the maximisation over all possible betting strategies bX, and constant odds osgn(α)c(x) :=
sgn(α)C, C > 0, ∀x.

Proof. We start by considering a HB game with constant odds osgn(α)(x) := sgn(α)C,
C > 0, ∀x, and consider a risk-aversion coefficient parametrised as R(α) := 1/α. We
first notice that the best strategy for the Gambler is given by (B.16):

b∗(x) =
p(x)α

∑x′ p(x′)α
. (B.30)

Considering now the isoelastic certainty equivalent and replacing the constant odds
and the best strategy we get:

wICE
1/α (b

∗
X, osgn(α)c

X , pX) =

[
∑
x

p(x)
[
b∗(x)osgn(α)c(x)

] α−1
α

] α
α−1

, (B.31)

= sgn(α)C

[
∑
x

p(x)
[
b∗(x)

] α−1
α

] α
α−1

, (B.32)

= sgn(α)C

[
∑
x

p(x)
[

p(x)α

∑x′ p(x′)α

] α−1
α

] α
α−1

, (B.33)

= sgn(α)C

[
∑
x

p(x)
p(x)α−1

[∑x′ p(x′)α]
α−1

α

] α
α−1

, (B.34)

= sgn(α)C

[
∑
x

p(x)α

[∑x′ p(x′|g)α]
α−1

α

] α
α−1

, (B.35)

= sgn(α)C
1

∑x′ p(x′)α

[
∑
x

p(x)α

] α
α−1

, (B.36)

= sgn(α)C

[
∑
x

p(x)α

] 1
α−1

, (B.37)

= sgn(α)Cpα(X), (B.38)

and therefore proving the claim.
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We now move on to rewrite the Arimoto-Rényi conditional entropy in a more
convenient form:

Hα(X|G) = − log [pα (X|G)] , (B.39)

pα (X|G) :=


∑

g

(
∑
x

p(x, g)α

) 1
α




α
(α−1)

. (B.40)

We are now ready to establish a second Lemma.

Lemma B.2. (Operational interpretation of the Arimoto-Rényi conditional entropy) Con-
sider a joint PMF pXG, the Arimoto-Rényi conditional entropy of order α ∈ R can be written
as:

sgn(α)C pα(X|G) = max
bX|G

wICE
1/α (bX|G, osgn(α)c

X , pXG), (B.41)

with the maximisation over all possible betting strategies bX|G, and constant odds osgn(α)c(x) :=
sgn(α)C, C > 0, ∀x.

Proof. We start by considering a HB game with constant odds osgn(α)(x) := sgn(α)C,
C > 0, ∀x, and consider a risk-aversion coefficient parametrised as R(α) := 1/α. We
now notice that the best strategy for the Gambler with access to side information is
given by (B.23):

b∗(x|g) = g(R,o,p)(x|g), (B.42)

=
p(x|g) 1

R osgn(α)c(x)
1−R

R

∑x′ p(x′|g) 1
R osgn(α)c(x′)

1−R
R

, (B.43)

=
p(x|g) 1

R (sgn(α)C)
1−R

R

∑x′ p(x′|g) 1
R (sgn(α)C)

1−R
R

, (B.44)

=
p(x|g) 1

R

∑x′ p(x′|g) 1
R

, (B.45)

=
p(x|g)α

∑x′ p(x′|g)α
. (B.46)

Considering now the isoelastic certainty equivalent and replacing the constant odds
and the best strategy we get:

wICE
1/α (b

∗
X|G, osgn(α)c

X , pXG) =

[
∑
x,g

p(x, g)
[
b∗(x|g)osgn(α)c(x)

] α−1
α

] α
α−1

, (B.47)

= sgn(α)C

[
∑
x,g

p(x, g)
[

p(x|g)α

∑x′ p(x′|g)α

] α−1
α

] α
α−1

, (B.48)

= sgn(α)C

[
∑
x,g

p(x, g)
p(x|g)α−1

[∑x′ p(x′|g)α]
α−1

α

] α
α−1

. (B.49)
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Using p(x, g) = p(x|g)p(g) and reorganising:

wICE
1/α (b

∗
X|G, osgn(α)c

X , pXG) = sgn(α)C

[
∑
x,g

p(g)
p(x|g)α

[∑x′ p(x′|g)α]
α−1

α

] α
α−1

, (B.50)

= sgn(α)C

[
∑
g

p(g) ∑x p(x|g)α

[∑x′ p(x′|g)α]
α−1

α

] α
α−1

, (B.51)

= sgn(α)C


∑

g
p(g)

[
∑
x

p(x|g)α

] 1
α




α
α−1

, (B.52)

= sgn(α)C


∑

g

[
∑
x

p(x|g)α p(g)α

] 1
α




α
α−1

, (B.53)

= sgn(α)C


∑

g

[
∑
x

p(x, g)α

] 1
α




α
α−1

, (B.54)

= sgn(α)Cpα(X|G), (B.55)

and therefore proving the claim.

We are now ready to prove Result 1.

Proof. (of Result 1) Consider the Arimoto’s mutual information of order α ∈ R, we
have the following chain of equalities:

Iα(X; G) = sgn(α)[Hα(X)− Hα(X|G)], (B.56)

= sgn(α) log
[

pα(X|G)

pα(X)

]
, (B.57)

= sgn(α) log
[

sgn(α)C pα(X|G)

sgn(α)C pα(X)

]
, (B.58)

= sgn(α) log




max
bX|G

wICE
1/α (bX|G, osgn(α)

X , pXG)

max
bX

wICE
1/α (bX, osgn(α)

X , pX)


 . (B.59)

The first equality is the definition of the Arimoto’s mutual information. The second
equality comes from replacing the Rényi entropy and the Arimoto-Rényi conditional
entropy. The third inequality we have multiplied and divided by sgn(α)C. The
fourth and last equality follows from invoking Lemma B.1 and Lemma B.2. This
proves the claim.

B.2 Proof of Corollaries 2 and 3

Proof. (of Corollary 2) In the case α→ ∞, we have:

max
E

I∞(X; G)E ,M = log


max
E

max
bX|G

wICE
0 (bX|G, M, oc

X, E)

max
N∈UI

max
bX|G

wICE
0 (bX|G, N, oc

X, E)


 . (B.60)
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To prove the claim, it is enough to prove:

max
bX|G

wICE
0 (bX|G, M, oc

X, E) = CPQSD
succ (E , M). (B.61)

We have already shown this in the main document, but we can also double check it
from Lemma B.2 from which we have that for α ≥ 0:

max
bX|G

wICE
1/α (bX|G, M, oc

X, E) = Cpα(X|G), (B.62)

= C


∑

g

[
∑
x

p(x, g)α

] 1
α




α
α−1

. (B.63)

Considering now α→ ∞ we have:

max
bX|G

wICE
0 (bX|G, M, oc

X, E) = C ∑
g

max
x

p(x, g). (B.64)

Further analysing this quantity we have:

∑
g

max
x

p(x, g) = ∑
g

max
q(x|g) ∑x

q(x|g)p(x, g), (B.65)

= max
q(x|g) ∑g,x

q(x|g)p(g|x)p(x), (B.66)

= max
q(x|g) ∑g,x

[
∑

a
δa

x q(a|g)
]

p(g|x)p(x), (B.67)

= max
q(a|g) ∑

a,g,x
δa

x q(a|g)p(g|x)p(x), (B.68)

= PQSD
succ (E , M). (B.69)

In the first line we use the identity:

max
q(x)

∑
x

q(x) f (x) = max
x

f (x). (B.70)

This proves the claim.

Proof. (of Corollary 3) The proof of Corollary 3 follows a similar argument than that
of Corollary 2.

B.3 Proof of Result 7.3 on noisy quantum state betting (nQSB)
games

The proof of this result is similar to that of result 1, and we write below for com-
pleteness. We start with the case for QRTs of measurements with general resources.
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Proof. (of first part) Consider the Arimoto’s gap of order α ∈ R, we have the follow-
ing chain of equalities:

GF
α (X; G)E ,M = Iα(X; G)E ,M −max

N∈F
Iα(X; G)E ,N, (B.71)

= sgn(α) log
[

pα(XE |GM)

pα(X)

]
−max

N∈F
sgn(α) log

[
pα(XE |GN)

pα(X)

]
, (B.72)

= sgn(α) log


 pα(XE |GM)

max
σ∈F

pα(XE ; GN)


 , (B.73)

= sgn(α) log


 sgn(α)C pα(XE |GM)

max
N∈F

sgn(α)C pα(XE ; GN)


 , (B.74)

= sgn(α) log




max
bX|G

wQSB
1/α (bX|G, osgn(α)

X , E , M)

max
N∈F

max
bX|G

wQSB
1/α (bX|G, osgn(α)

X , E , N)


 . (B.75)

The first equality is the definition of the Arimoto’s gap for a fixed couple (E , M).
The second equality comes from replacing the Rényi entropy and the Arimoto-Rényi
conditional entropy. In the third equality we reorganised the expression. In the
fourth equality we have multiplied and divided by sgn(α)C. The fifth and last
equality follows from invoking Lemma B.2. This proves the claim.

We now consider the case for QRTs of channels with arbitrary resources.

Proof. (of second part) Consider the Arimoto’s gap of order α ∈ R, we have the
following chain of equalities:

GFα (X; G)E ,M,N
= Iα(X; G)E ,M,N −max

Ñ ∈F
max

N
Iα(X; G)E ,N,Ñ , (B.76)

= sgn(α) log
[

pα(XE |GM)N
pα(X)

]
−max
Ñ ∈F

max
N

sgn(α) log
[

pα(XE |GN)Ñ
pα(X)

]
, (B.77)

= sgn(α) log


 pα(XE |GM)N

max
Ñ ∈F

max
N

pα(XE |GN)Ñ


 , (B.78)

= sgn(α) log


 sgn(α)C pα(XE |GM)N

max
Ñ ∈F

max
N

sgn(α)C pα(XE |GN)Ñ


 , (B.79)

= sgn(α) log




max
bX|G

wQSB
1/α (bX|G, osgn(α)

X , E , M,N )

max
Ñ ∈F

max
N

max
bX|G

wQSB
1/α (bX|G, osgn(α)

X , E , N, Ñ )


 . (B.80)

The first equality is the definition of the Arimoto’s gap for a fixed triple (E , M,N ).
The second equality comes from replacing the Rényi entropy and the Arimoto-Rényi
conditional entropy. In the third equality we reorganised the expression. In the
fourth equality we have multiplied and divided by sgn(α)C. The fifth and last
equality follows from invoking Lemma B.2. This proves the claim.
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B.4 Proof of Result 7.4 on quantum channel betting (QCB)
games

The proof of this result similar to that of result 1, and we write below for complete-
ness. We start with the case for QRTs of states with arbitrary resources.

Proof. (of first part) Consider the Arimoto’s gap of order α ∈ R, we have the follow-
ing chain of equalities:

GF
α(X; G)Λ,M,ρ

= Iα(X; G)Λ,M,ρ −max
σ∈F

Iα(X; G)Λ,M,σ, (B.81)

= sgn(α) log
[

pα(XΛ|GM)ρ

pα(X)

]
−max

σ∈F
sgn(α) log

[
pα(XΛ; GM)σ

pα(X)

]
, (B.82)

= sgn(α) log


 pα(XΛ|GM)ρ

max
σ∈F

pα(XΛ|GM)σ


 , (B.83)

= sgn(α) log


 sgn(α)C pα(XΛ|GM)ρ

max
σ∈F

sgn(α)C pα(XΛ|GM)σ


 , (B.84)

= sgn(α) log




max
bX|G

wQCB
1/α (bX|G, osgn(α)

X , Λ, ρ, M)

max
σ∈F

max
bX|G

wQCB
1/α (bX|G, osgn(α)

X , Λ, σ, M)


 . (B.85)

The first equality is the definition of the Arimoto’s gap for a fixed triple (Λ, ρ, M).
The second equality comes from replacing the Rényi entropy and the Arimoto-Rényi
conditional entropy. In the third equality we reorganised the expression. In the
fourth equality we have multiplied and divided by sgn(α)C. The fifth and last
equality follows from invoking Lemma B.2. This proves the claim.

We now consider the case for multi-object QRTs of state-measurement pairs.

Proof. (of second part) Consider the Arimoto’s gap of order α ∈ R, we have the
following chain of equalities:

GF,F
α (X; G)Λ,M,ρ

= Iα(X; G)Λ,M,ρ −max
σ∈F

max
N∈F

Iα(X; G)Λ,N,σ, (B.86)

= sgn(α) log
[

pα(XΛ|GM)ρ

pα(X)

]
−max

σ∈F
max
N∈F

sgn(α) log
[

pα(XΛ|GN)σ

pα(X)

]
, (B.87)

= sgn(α) log


 pα(XΛ|GM)ρ

max
σ∈F

max
N∈F

pα(XΛ|GN)σ


 , (B.88)

= sgn(α) log


 sgn(α)C pα(XΛ|GM)ρ

max
σ∈F

max
N∈F

sgn(α)C pα(XΛ; GN)σ


 , (B.89)
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= sgn(α) log




max
bX|G

wQCB
1/α (bX|G, osgn(α)

X , Λ, ρ, M)

max
σ∈F

max
N∈F

max
bX|G

wQCB
1/α (bX|G, osgn(α)

X , Λ, σ, N)


 . (B.90)

The first equality is the definition of the Arimoto’s gap for a fixed triple (Λ, ρ, M).
The second equality comes from replacing the Rényi entropy and the Arimoto-Rényi
conditional entropy. In the third equality we reorganised the expression. In the
fourth equality we have multiplied and divided by sgn(α)C. The fifth and last
equality follows from invoking Lemma B.2. This proves the claim.

B.5 Proof of Result 7.6 on Rényi divergences

Proof. (of Result 7.6) For α > 1 we have:

ESα (M)
1
= min
N∈UI

DSα (M||N), (B.91)

2
= min
N∈UI

max
pX

DS
α

(
p(M,S)

G|X

∣∣∣
∣∣∣q(N,S)

G|X

∣∣∣ pX

)
, (B.92)

3
= min

qG
max

pX
DS

α

(
p(M,S)

G|X

∣∣∣
∣∣∣qG

∣∣∣ pX

)
, (B.93)

4
= min

qG
max

pX

1
α− 1

log

[
∑
x

p(x)∑
g

p(g|x)αq(g)1−α

]
, (B.94)

5
=

1
α− 1

log

[
min

qG
max

pX
∑
x

p(x)∑
g

p(g|x)αq(g)1−α

]
, (B.95)

6
=

1
α− 1

log
[

min
qG

max
pX

f S
α (qG, pX)

]
, (B.96)

7
=

1
α− 1

log
[

max
pX

min
qG

f S
α (qG, pX)

]
, (B.97)

8
= max

pX
min

qG

1
α− 1

log
[

f S
α (qG, pX)

]
, (B.98)

9
= max

pX
min

qG
DS

α

(
p(M,S)

G|X

∣∣∣
∣∣∣qG

∣∣∣ pX

)
, (B.99)

10
= max

pX
IS
α

(
p(M,S)

G|X pX

)
, (B.100)

11
= Cα

(
p(M,S)

G|X

)
. (B.101)

In the first equality we use the definition of Eα,S (M). In the second equality we re-
place DSα (M||N). In the third equality we notice that minimising over uninformative
measurements is equivalent to minimising over PMFs qG. In the fourth equality we
replace the Sibson’s CR-divergence. In the fifth equality we move the optimisation
inside log(·) because the term α− 1 is positive and because log(·) is an increasing
function. In the sixth equality we introduce the function:

f S
α (qG, pX) := ∑

x
p(x)∑

g
p(g|x)αq(g)1−α. (B.102)

In the seventh equality we use Sion’s minimax theorem [202, 130] because the func-
tion f S

α (qG, pX) is being optimised over convex and compact sets, and because it is
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a convex-concave function. Specifically, the function f S
α (qG, pX) is convex in gG be-

cause the function f (q) = q1−α with α > 1 and positive values of q, is convex, and
because the sum of convex functions is convex. The function f S

α (qG, pX) is concave
in pX because it is linear in pX. In the eight equality we take the maximisation out of
log(·) because α− 1 is positive and because log(·) is an increasing function. In the
ninth equality we use the definition of Sibson’s CR-divergence. In the tenth equal-
ity we use the definition of Sibson’s mutual information. In the eleventh and final
equality we use Lemma 3. The cases for 0 < α < 1 and α < 0 follow a similar
argument, taking into account the sign of α− 1, and the convexity/concavity of the
function f (q) = q1−α.

B.6 Proof of Result 7.7 on resource monotones

Proof. (of Result 7.7) It is straightforward to check that Mα(M) is a resource mono-
tone (meaning that it satisfies i) faithfulness and ii) monotonicity) if and only if
Eα(M) is a resource monotone. We now prove these properties for Eα(M). In short,
we will expand this function in terms of the Rényi divergence, and exploit the prop-
erties of this function.
Part i) Faithfulness. Consider M ∈ UI, and let us see that this implies Eα(M) = 0
with α ≥ 0:

Eα(M)
1
= max

S
min

qG
max

pX
DS

α

(
p(M,S)

G|X

∣∣∣
∣∣∣qG

∣∣∣ pX

)
, (B.103)

2
= max

S
min

qG
max

pX
Dα

(
p(M,S)

G|X pX

∣∣∣
∣∣∣qG pX

)
, (B.104)

3
= max

S
min

qG
max

pX
Dα

(
pG pX

∣∣∣
∣∣∣qG pX

)
, (B.105)

4
= max

S
max

pX
min

qG
Dα

(
pG pX

∣∣∣
∣∣∣qG pX

)
, (B.106)

5
≤ max

S
max

pX
Dα

(
pG pX

∣∣∣
∣∣∣pG pX

)
, (B.107)

6
= max

S
max

pX
0 = 0. (B.108)

In the first equality we use the definition of the measure. In the second equality we
write Sibson’s mutual information in terms of the Rényi divergence. In the third
equality we use the assumption that M ∈ UI. In the fourth equality we use Sion’s
minimax theorem [202, 130], using the same arguments as in Result 2. In the fifth
inequality we use that qG = pG is a feasible option. In the sixth equality we invoke
the property of the Rényi divergence which reads Dα(pX||qX) = 0 if and only if
qX = pX. This chain means that Eα(M) ≤ 0, and remembering that that Eα(M) is
non-negative (being an optimisation over the Rényi divergence which is itself non-
negative) implies Eα(M) = 0 as desired.
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Consider now that M achieves Eα(M) = 0, and let us prove that M ∈ UI.

0 1
= Eα(M) (B.109)
2
= max

S
min

qG
max

pX
DS

α

(
p(M,S)

G|X

∣∣∣
∣∣∣qG

∣∣∣ pX

)
, (B.110)

3
= max

S
max

pX
min

qG
DS

α

(
p(M,S)

G|X

∣∣∣
∣∣∣qG

∣∣∣ pX

)
, (B.111)

4
= max

S
max

pX
min

qG
Dα

(
p(M,S)

G|X pX

∣∣∣
∣∣∣qG pX

)
, (B.112)

5
= max

S
max

pX
Dα

(
p(M,S)

G|X pX

∣∣∣
∣∣∣q∗G pX

)
. (B.113)

The first equality is the assumption. In the second equality we invoke the definition
of the measure. In the third equality we use Sion’s minimax theorem [202, 130] as
per Result 2. In the fourth equality we expand Sibson’s CR-divergence in terms of
the Rényi divergence. In the fifth equality we denote the optimal PMF as q∗G. We
now notice that the latter equality implies:

Dα

(
p(M,S)

G|X pX

∣∣∣
∣∣∣q∗G pX

)
= 0, (B.114)

from which we get that p(M,S)
G|X = q∗G. This means that p(g|x) = q(g), ∀g, x, or that

Tr[Mgρx] = Tr[q(g)1ρx], Tr[(Mg − q(g)1)ρx] = 0, ∀g, x which implies Mg = q(g)1,
∀g, or that M ∈ UI as desired.
Part ii) Monotonicity for the order induced by the simulability of measurements.
Given two measurements N = {Ng}, M = {My} such that N ≤ M, we now show
that this implies Eα(N) ≤ Eα(M). Let us consider that N ≤M, meaning that ∀g and
some sG|Y we have:

Ng = ∑
y

s(g|y)My. (B.115)

This implies that for any set of states S = {ρx}:

r(g|x) := Tr[Ngρx] = ∑
y

s(g|y)p(y|x), (B.116)

with p(y|x) = Tr[Myρx]. We now invoke the data processing inequality for the Rényi
divergence [229] and get:

Dα

(
r(N,S)

G|X pX

∣∣∣
∣∣∣qG pX

)
≤ Dα

(
p(M,S)

G|X pX

∣∣∣
∣∣∣qG pX

)
, (B.117)

with arbitrary PMFs pX and pG. Recognising that these quantities are the Sibson’s
CR-divergence leads to:

DS
α

(
r(N,S)

G|X

∣∣∣
∣∣∣qG

∣∣∣pX

)
≤ DS

α

(
p(M,S)

G|X

∣∣∣
∣∣∣qG

∣∣∣pX

)
. (B.118)

We now perform the optimisations maxS , minqG , maxpX on both sides and get:

Eα(N) ≤ Eα(M). (B.119)

This finishes the proof for the cases α ≥ 0. The cases α < 0 follow a similar argument.
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