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Abstract 

The transition of Structural Health Monitoring to real-world marine applications remains 

rare, despite its significant potential for cost-saving. In the absence of established standards 

and best-practices, there is an increased emphasis on rigorous case-by-case qualification and 

validation of SHM systems, requiring an understanding of the individual components and 

methods, as well as the major assumptions and sources of uncertainty. 

In order to transition to real-world applications, an important but challenging aspect to assess 

are the long-term factors affecting system performance. Representative trials are challenging 

and expensive, as the Structural Health Monitoring application systems they aim to emulate 

have operational lifespans of many decades. 

An investigation is presented that evaluates a simple guided-wave ultrasonic-testing 

Structural Health Monitoring system. A hybrid Optimal Baseline Subtraction, Baseline 

Stretch Subtraction approach is adapted to a specific dataset to permit compensation for 

environmental and operating conditions. The results present two important design 

consideration for these systems: the exploration of noise suppression performance, the 

predictability of the behaviour of the system.  

Additionally, the presence of a long-term change in the data was identified as the 

performance-limiting phenomenon observed in existing monitoring data that was collected 

over multiple years for the dataset used. A trial was undertaken to attempt to simulate long-

term system aging effects in an accelerated manner, through the use of high temperature 

heat-treatment. The results indicate a promising relationship between the behaviours of the 

system and trends observed in data collected over many years. 

In addition to technical considerations for application specific implementations and trials, 

discussion is given to the non-technical hurdles for industry implementation. 
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1. Introduction and Background 

1.1. Problem statement 

During the manufacture of naval vessels, Non-Destructive Evaluation – commonly referred 

to as NDE (or NDT for Non-Destructive Testing) – is carried out as a quality control 

measure. 

NDE covers a broad range of methods, which make use of a variety of physical phenomena. 

Radiography (radiographic testing, or RT) measures the absorption of radiation passed 

through a component. Dye-penetrant inspection uses the different behaviours of a dye 

(caused by capillary action and adhesion and cohesion) in the absence and presence of dry 

powder to identify surface imperfections, such as cracks. Ultrasonic testing (UT) measures 

wave reflections and diffractions to detect material interfaces and discontinuities. 

Raw material, castings, welded joints, and bends are subject to examination to ensure they 

are free from impermissible manufacturing defects. This examination does not change or 

damage the component. When a naval vessel is handed over by the manufacturer, an 

assurance is given that no defect is present above a critical size. 

NDE at the build stage of the product lifecycle is focused on the detection of manufacturing 

defects. These defects, which result from failures or variations in manufacturing controls, 

include inclusions, laminations, and lack of weld fusion defects. In-service defects, on the 

other hand, which result from high stress, cyclic loading, or harsh environmental conditions 

under operation, typically exhibit slightly different characteristics, despite often initiating 

from manufacturing defects. These defects therefore may be suited to different NDE 

approaches. Corrosion, fatigue cracking, leaks and erosion are all in-service type defects. 

Because of these differences (which may be subtle in many applications), manufacturing 

NDE and in-service NDE are often treated entirely independently. The asset is delivered 

with the assurance that no defect above a certain size exists, with the maintenance 

organisation then carrying out inspections to ensure no unacceptable defects have arisen due 

to operation. Only a small portion of the information generated during manufacture is passed 

on to aid in-service decision making, and research and development projects almost always 

focus on either in-service or manufacture independently. 

It is the belief of many who work on the manufacture, operation, and maintenance of naval 

vessels, that a great opportunity exists for a more joined-up approach, where a holistic 

engineering view is given to the design and delivery of a serviceable product. Such an 

approach, and the techniques that enable it, are discussed in the following sections. 
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1.2. Permanently installed transducers 

Permanently installed transducers may be directly bonded to target components at 

manufacture (or coupled using non-contact methods, for example as described in (Herdovics 

& Cegla, 2018)), for repeated inspection of area of interest without physical manipulation of 

the transducer. 

Historically, the use of permanent installation of piezoelectric ultrasonic transducers has had 

many drawbacks. The requirement to expend transducers to monitor a relatively small area 

of the component, combined with an inability to scan, results in a high cost of coverage. 

Therefore, transducers tend to be more sparsely used, forcing each to cover a larger area, 

greatly reducing sensitivity. However, despite often causing a reduction in sensitivity and 

usefulness of each single measurement on its own, by permitting repeatable measurements to 

be made at regular intervals, permanently installed sensors have the potential to surpass point 

measurement (single point-in-time) NDE, greatly improving the ability to evaluate the 

remaining life of the component.  

 

1.3. Continuous data collection 

In addition to permanent installation of the transducer, another improvement over 

conventional point measurement NDE is the ability to regularly collect data in-service 

without a trained inspector being present or having to shut-down the system.  

Recording whilst live, however, introduces a greater variability in environmental and 

operating conditions. While these do vary in conventional NDE, the low practical variation 

observed is usually within the bounds of error of the NDE technique used. In-service, high 

temperature systems may operate under wildly differing conditions, for example variation of 

many hundreds of degrees Celsius of working fluid within a pipe. The effects of these 

variations are often too complex for an inspector to interpret, and therefore new approaches 

are required to accurately evaluate the signals recorded. 

The techniques used in this approach, and challenges presented, stray from those that are 

familiar in conventional NDE, and into the area of data science. Historic measurements can 

provide useful additional information that permits a better analysis of new data sets as they 

are recorded. This approach is known as Structural Health Monitoring, or SHM. 
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1.4. Structural health monitoring 

There is a great deal of inconsistency in the use of terms for the technologies relating to 

monitoring, with Structural Health Monitoring, (Machine) Condition Monitoring, and 

Population (or fleet) Monitoring being assigned varying meaning, and sometimes being used 

interchangeably (Friedmann & Kraemer, 2016). For the purpose of this paper, SHM is 

treated as a subset of Condition Monitoring. That is, the continuous observing of a process, 

component, machine, or asset, for indicators of deviation from the nominal state (Condition 

Monitoring), with a specific focus on a load-bearing capacity of an item (SHM). SHM 

concerns typical load-bearing structure, such as a pressure hull, but also covers pipework, 

which is stressed by an internal and external pressure difference. Applications associated 

with the monitoring of rotating machinery (such as pumps, bearings, engines, or generators) 

are excluded from this work in order to limit the scope to purely SHM. However, there is 

significant scope for use of Condition Monitoring technology on a wide range of maritime 

applications (e.g. rotating machinery). 

Often, the sensors used in SHM systems are similar to those used for conventional NDE, 

since the desired outcome of both is a strong correlation of structural damage to the physical 

phenomenon that the transducer is sensitive to. Differences in consideration between SHM 

and NDE sensor design exist, however, due to SHM transducers being permanently installed 

for local measurement. These include: temperature tolerance (SHM systems involve 

measurement while the asset is operational), data storage (long-term storage is needed), 

required operational life (the sensor should last the lifetime of the structure is it used to 

monitor), cost per transducer (as a transducer cannot be moved or reused), and housing (due 

to permanent bonding to the structure). 

Operational monitoring systems may also be employed, where sensors infer damage 

indirectly through the correlation of other measurements (e.g. loads on the structure, or 

environmental conditions) (SAE International, 2013). These systems are not considered for 

this work. 

SHM is heavily dependent on individual system specific data. This increases the reliance on 

historic data or a start-of-life baselining period, to permit background subtraction, or 

independent secondary measurements for multiparameter analysis. 

The environmental and operating conditions experienced by an asset and monitoring system 

will usually lead to variations in the sensor response. This can often be large and may mask a 

change in signal due to actual defect growth. Being able, then, to compensate for these 

changing states allows for improvement of defect detection (Croxford, et al., 2007). One 

method of achieving this is by collecting a full library of defect-free signals from the signal 
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in every operational and environmental condition. This means the system contains a model 

of the “normal” or undamaged state, permitting it to then flag up any abnormal state, which 

can indicate that the structure is potentially damaged. 

The primary ingredients for monitoring, for structural health or otherwise, are: sensors, 

measurement instruments, signal processing methods and thresholds for alarms (Friedmann 

& Kraemer, 2016). Each of these components may require different levels of development 

work to meet the requirements of the monitoring system. In many cases, these components 

may be investigated independently, however, final system-level validation is crucial to 

evaluate the complex interactions of each component and the unique effects that will be 

introduced by each application. 

Due to the challenges, complexities, and application-specific nature of SHM systems, as 

much effort should be given to verification and validation as to the design. Sensitivity, 

sources (and magnitude) of uncertainty, validity of assumptions, and long-term effects must 

be considered if these systems are ever to be use in lieu of current NDE. 

Validation of these techniques, where data-based “black-box” methods are often employed, 

often requires an approach different to that commonly used in NDE qualification. Because 

behaviours of the system are not based as strongly on physical reasoning, there is a higher 

dependence on statistical performance measures. 

 

1.5. Gaps in literature 

The most significant gap in the development of this technology is transition to real-world 

applications. Despite the surge in the volume of research in Structural Health Monitoring 

over the past decade, there are only a few implementations of the technology within industry 

(Cawley, 2018). There is great value in work evaluating the higher technology maturity 

aspects, such as validation, component evaluation and discussion on practical considerations 

for application-specific design. 

Although in recent years a substantial number of standards have emerged for the use of 

Condition Monitoring of rotating machines, there are still very few widely accepted 

standards, industry practices or validation methods for Structural Health Monitoring. A 

notable exception to this being a standard written by SAE International for fixed-wing 

aircraft (SAE International, 2013). 
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In the absence of standards, there is an increased emphasis on rigorous case-by-case 

qualification and validation of SHM systems, requiring an understanding of the individual 

components and methods, as well as the major assumptions and sources of uncertainty. 

In order to transition to real-world applications, an important but challenging aspect to assess 

is the long-term effects of environmental and operational factors that lead to changes in 

system behaviour over significant periods of operation. SHM systems need to operate 

consistently for many years, which makes representative trials less practical. Studies have 

been performed to understand the long-term stability of guided wave sensors (Attarian, et al., 

2014), and shown the importance of changes in the adhesive bond. Therefore, the behaviour 

of the adhesive (and the specific process by which the adhesive is applied) should be 

understood as a source of change in ultrasonic response. 

 

1.6. Project overview 

1.6.1. Aims 

The aim of this work is to improve the understanding of certain aspects of a specific guided 

wave structural monitoring system. Although the focus will be on a specific dataset and 

system, it is believed that the methodologies and discussions will be relevant for the 

extension to other applications and datasets. 

1.6.2. Investigation of training and baseline subtraction performance on long-term data  

The first part of the analysis aspect of the project used historic data, for the development of a 

generic data analysis system, as well as provide the basis for how performance would be 

measured. It would not have been feasible to have collected this data in the timescales of this 

project, therefore, the only practical approach was to decouple the data acquisition 

(hardware) and analysis (software) components of the system.  

The historic data used provided a sufficiently long timeframe required to provide effects 

expected in a real industrial asset and monitoring system’s life, including the impact of age 

dependent effects.  

The developed monitoring system was evaluated for performance and validity with practical 

monitoring considerations. The dependence of the operations used to compensate for EOCs 

were investigated to identify computational savings that could be made. These reductions in 

computational burden make data-heavy approaches more practical on hardware that can be 

embedded onto assets. Appropriate ranges for each operation were determined through 

subtraction performance, and consideration of realistic EOC ranges to be compensated. 
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Finally, a discussion of overall algorithm subtraction performance and computation time 

using different ranges, implementation of operations, and computation savings was used to 

highlight the need for application-specific tailoring. 

1.6.3. Practical assessment of temperature cycling on sensors and bond 

A simple guided wave hardware system was constructed on a number of small metal plate 

samples. On these samples, a trial was undertaken to assess the contribution of sensor system 

aging representative of that experienced by the equipment and bonding used to collect long-

term data. The trial, however, aimed to replicate this in an accelerated manner through the 

use of high temperature cycles. The aims of this trial were to measure bandwidth, centre 

frequency and amplitude of a signal collected on each of these samples as representative 

measures of performance, whilst attempting to induce an accelerated aging effect through 

high-temperature cycling. 

The trends in each of these variables was assessed during regular recordings over a heat-

treatment period of days, as well as a comparison to single final measurements made after a 

much longer heat treatment. Additionally, the heat-treatment effect was assessed using the 

signal difference metric, detailed in the Training and Baseline Subtraction section.  
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2. Selection of Measurement Technology 

2.1. Monitoring technologies 

Due to SHM being concerned with a component’s structural integrity, the sensors and 

measurement systems are often similar to those used in single-point-in-time NDE. Most 

structural health monitoring sensors use active excitation, with the exception of acoustic 

emission and thermal/visual imaging techniques. Passive monitoring tends only to be 

appropriate in applications where detection of only very severe damage is necessary, due to 

low sensitivity that is typically achievable.  

For local monitoring, where the intention is to monitor known damage or sites of expected 

failure, it may be economical to monitor a small volume near to the transducer (Cawley, 

2018). Bulk wave Ultrasonic Testing may be the most appropriate solution, providing high 

sensitivity, and simplicity.  

Ultrasonic guided wave testing is a promising candidate for large area, in-service monitoring 

(with a limited number of sensors) for structural assessment. For this reason, guided wave 

UT was selected for this work. Additionally, this is an active research area, with promising 

signs of adoption and development for industry. It should be noted that in certain 

applications, where damage is expected to be uniform, local monitoring may be used to 

cover large areas by assuming equivalence (Cawley, 2018). 

The main target defect types for marine applications are corrosion (both uniform and local) 

and through-wall cracking, for which UT is recognised as one of the most reliable NDE 

methods for detection. 

 

2.2. Choice of method: Guided wave UT 

Ultrasonic testing (UT) is the practise of passing high frequency (typically 0.1 – 10 MHz) 

mechanical waves through a material, which reflect (and diffract) off interfaces, allowing the 

identification and location of these interfaces, which may be defects or component geometry. 

Guided wave testing is a branch of UT that refers to the use of wave modes that are 

constrained by the surfaces of components. Differing from bulk waves, less energy is lost to 

beam spread, as the material interfaces maintain the direction and mode of the wave in fewer 

dimensions, without any meaningful transmission of energy through the free surface. These 

waves, therefore, can travel long distances in plates or pipes, until their path is interrupted by 

a change in the component. Because guided ultrasonic waves travel parallel to the plate 

surface, they interact most strongly with defects oriented perpendicular to the plate surface, 

such as through-wall cracks or local wall thinning (due to corrosion). 
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Certain conditions are required to generate, and effectively use, these guided waves. 

Therefore, inspection frequency selection must be considered more carefully for the specific 

component wall thickness than for bulk-wave UT. 

Guided wave UT has been an established inspection tool in other industries since the 1990’s, 

with its main applications being large-area inspection of buried pipelines for the Oil & Gas 

industry (ASM Handbook). The ability to inspect many tens of metres of pipework (ASM 

Handbook) from a single point, greatly reducing time and cost of inspecting inaccessible 

assets. A significant amount of success has been demonstrated on pipes and rails (one-

dimensional structures), where component complexity is low, and walls may be used as a 

wave guide (Cawley, 2003). Commercial systems have been demonstrated to be capable of 

detecting changes in cross section of around 5% (Cawley, et al., 2012). However, with 

insufficient capability to accurately evaluate loss of material, the inspection is often 

complimented by higher-accuracy thickness gauging or NDE after guided wave screening 

has identified thinning. 

The greatest limitation of guided wave inspection is the complexity of measurements, with 

large coverage resulting in many signals merging, obscuring any contribution from damage. 

This challenge for signal interpretation means that guided-wave NDE is only typically 

suitable for simple structures with few features (e.g. pipes and rails). In these guided-wave 

systems, a significant amount of effort must also be put into the design of transducers and 

signal processing so that no unwanted wave modes are excited, and that any excited modes 

are non-dispersive (Alleyne & Cawley, 1992).  

The benefit to naval vessels of guided wave inspection is in principle good, with large areas 

able to be screened for damage with lesser access requirements. However, because of the 

high feature density of naval vessels and structure, GWUT inspection is generally not 

practical.  
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3. Development of a Training Algorithm for GWUT Data 

3.1. Overview 

This section details the approach taken for the design of a training algorithm used to process 

GWUT data, detailing the development of an approach specific to an example dataset, also 

considering extension and generalisation to other applications. 

First, details of the input data are given, as an understanding of this influences the design of 

any processing step. Next, an outline is provided for the overall method used for training an 

algorithm to automatically flag indicators of damage. Subsequent sections evaluate the 

specific signal processing and decision-making components in turn, and provide details of 

the design of the final algorithm developed. 

Signal processing is the one of the most challenging aspect of the design of a monitoring 

system and is where a large portion of the system design effort should be concentrated. This 

is where the most difficulty exists in transitioning to highly variable industrial environments 

and applications, with the ability to suppress benign-feature signals being a prime determiner 

of the performance of guided-wave inspection (Croxford, et al., 2007). 

 

3.2. Dataset investigation 

The first step in developing a training algorithm for monitoring is to understand the input 

data.  

A significant challenge with SHM work is the availability of representative data for real 

structures under realistic environmental conditions collected over timescales that reflect 

those expected in monitoring applications. 

A dataset was available for use in the project, which had been collected from a structure at 

the University of Bristol (Figure 1) between 2012 – 2015. This provided a dataset that would 

not have been practical to collect as part of this project. 

An array of transducers was bonded onto the structure, a ~2 m diameter steel tank, located 

outdoors, with a data acquisition instrument located nearby, collecting data at various times 

of day. Despite data being available for the full array, for this work, only single pairs of 

transducers were used. 
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Figure 1 Transducers bonded to a tank outside the University of Bristol use for data collection over a number of 

years (Courtier, 2018) 

As this data was recorded on a structure primarily affected by environmental conditions, the 

rate of change introduced is expected to be low, with the highest frequency change occurring 

due to the day-night cycle. Recording times were varied to capture a range of times-of-day 

over a 4-year period. Figure 2 shows the distribution of collection dates and times of the 

data.  

 

Figure 2 Histograms of 1500 signal recording dates (left) and times (right), with bin widths of one month and one 

hour, respectively. 

As shown, the data was collected over a three-year period, with coverage of different times-

of-year, giving both a significant time-period to give indicate age dependent effects, and 

represent a wide range of environmental conditions. The break in readings is not expected to 

have a significant effect on the usefulness of the data for this work. 
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3.3. Training algorithm 

3.3.1. Overview 

To be able to detect and flag abnormal asset states, it is necessary to build an efficient, but 

complete, model of the undamaged state of the asset. For this system, the model is described 

by a library of baseline signals that represent any measurement made while in an undamaged 

state under any operating condition. To determine the level of similarity between new signals 

recorded during operation and the baselines, signal subtraction is used. 

Temperature is understood to be the dominating factor affecting guided wave signals. 

Although theoretically it is possible to use direct temperature measurements to determine 

and remove temperature effects on a signal, it is generally not practical in real applications. 

Inaccuracies in temperature compensations of only a few degrees can mask target damage 

signals (Lu & Michaels, 2005). Accurate temperature measurement of even very localised 

areas is notoriously challenging in practical applications.  This application introduces a 

further complication that would be impractical for temperature measurement: instances 

where temperature is non-uniform along the component, and therefore, guided wave 

propagation path. Additionally, these temperature compensation techniques only remove the 

primary effect of temperature, and do not account for the additional effects on the system. 

For example, (Putkis, 2014) observed significant changes in transducer and bonding 

behaviour with temperature, compared to the effect of temperature on sound propagation in 

the material itself.  

Practical temperature compensation techniques, therefore, operate by focusing on the 

problem of effective removal of the effects of unknown and unmeasured temperature 

variations (as well as other EOCs). It should be noted that modelling temperature conditions 

is more complex than considering the state at a range of global temperatures. Local 

temperature differences and hysteresis result in complex states and interactions that make 

predicting temperature effects on a structure challenging, and limited in how much can be 

transferred between different systems with different temperature conditions and responses.  

3.3.2. Optimal Baseline Subtraction 

The simplest method for achieving this is the Optimal Baseline Subtraction (OBS) method, 

as detailed in (Croxford, et al., 2010). This involves a training phase, in which the system is 

assumed to be damage-free, and recordings taken until there is sufficient confidence that all 

possible conditions have been observed. Each of these recorded signals are compared to the 

baseline set (the set of signals that are used to represent the damage-free state of the system). 

If a new signal is determined to be different from any signal in the baseline set, and the 

system is still assumed to be in a damage-free state, then a new state has been found. This 
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new signal is added to the baseline set, with the model of undamaged state becoming more 

complete. The technique, if successful, should add fewer baseline to the reference set as time 

goes on, as it should become less likely that new conditions are encountered. Strictly, after 

the system is cycled through its entire range of operating and environmental conditions, the 

baseline reference set should cease to grow. This does assume, however, that there is no 

ageing, or progressive change, of the system over time. This aging is commonly observed on 

the transducer and bonding. If this does occur, there is a secondary change to the signals 

occurring at the same time as the potential damage growth. For this method to be useful, 

there must be confidence that the measurement system will remain largely unchanged over 

the system life. 

The training phase is also critical to the performance of the system. The assumption that no 

permanent change to the structure occurs during the training phase is a significant one. As 

well as the limitation that, to be accurate, the system must be subjected to the entire (or even 

a slightly larger) range of operation conditions to those feasibly experienced during 

operation. This may not be practical in some cases, and so other methods may be preferable, 

which permit a wider range of conditions to be generated from a smaller set of training data. 

3.3.3. Baseline Stretch Subtraction 

A second method, Baseline Stretch Subtraction (or BSS), uses only one reference baseline. 

The principle of this technique is that: by performing mathematical operations on this 

reference signal, it should be possible to mimic the response in the system at a broad range 

of environmental and operating condition (within certain bounds). A description of this 

method can be found in (Croxford, et al., 2010). 

The baseline stretch process requires the performing of mathematical operations on the 

ultrasonic signal. These operations model the effects of environmental and operating 

conditions on guided wave signals. Performing these operations on analytic signals (example 

given in Figure 3) in the frequency domain often simplifies these operations. 
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Figure 3 Real and imaginary components of complex analytic signal for an arbitary section of recorded signal 

(blue and red solid lines respecitvely); and Hilbert envelope (dotted line). 

The following operations are used to compensate for the predicted phenomenon that occur 

during changing operating conditions in the “non-damaged” state. Therefore, baselines 

covering an entire range of operating conditions may be synthesised from a single 

measurement. 

• A scaling of amplitude of the overall signal is used to model the temperature-

dependent effect of changes in coupling/bond.  

• Time domain translation may be used to align signals to accommodate for any jitter. 

“Jitter” is the term used for when the data acquisition instrument causes a 

discrepancy between different measurements in where the emitted pulse occurs 

around time = 0 on the time trace.  

• A phase shift operation may be used where it is suspected that transducer behaviour 

may change with age. The objective is to shift the phase of the signal without 

altering the Hilbert envelope. 

• A time stretch operation to model temperature effects on wave-packet arrival time. 

The primary effect of system temperature on a pitch-catch measurement between the two 

transducers, is to change the velocity of the wave-packets. This has the effect of increasing 

or decreasing the time taken for a wave-packet to reach the receiver. Although there is a 

secondary effect that the thermal expansion of the component changes the distance between 

the two transducers, it has been shown that this effect is much smaller than the velocity 

change, and so can be ignored (Croxford, et al., 2007). An approximation of this effect is the 

stretching of the time axis of the signal, to change time of arrival of wave packets. The true 

effect of a change in temperature is a translation of the received signal in time, rather than 
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stretching or compression of the entire signal in time (Croxford, et al., 2007), and so this 

operation is only valid for small temperature variations. Additionally, with stretching and 

compression, the frequency content of the wave packet will be altered. A typical appropriate 

range of compensation of 1 – 5°C is given in (Clarke, et al., 2010). 

The fact that these operations are only valid for compensation of small variations exposes the 

drawback of the BSS technique. Conveniently however, the two techniques (OBS and BSS) 

may be used together to provide a hybrid method that combines the advantages of both. 

3.3.4. Hybrid approach 

A hybrid method combining the OBS and BSS techniques may be used where multiple 

baselines are collected, and also stretched/shifted to fill any gaps in the collected baselines 

set. 

Figure 4 is a diagrammatic representation of the initial simple implementation of the hybrid 

OBS + BSS approach, where each new signal is transformed using every combination of the 

four stretch parameters before each of these transformed signals is compared to a set of 

baseline measurements to find the closest overall match. Whether the difference metric 

between the closest matching transformed signal and baseline is below a defined threshold 

determines whether the signal is flagged as “normal”, or as potentially containing damage. 

Given the large number of combinations of these four stretch parameters, computational 

savings and efficiency improvements are especially important. 

A provisional measure of signal difference was implemented: the maximum amplitude of the 

residual signal remaining after the signals were subtracted from one another. To achieve this, 

the signals were transformed using all combinations of stretch parameters, and the best 

match (minimum difference metric) found.  

This could be considered a brute-force approach, and since behaviour is not controlled, there 

is less inherent confidence in the system behaving as expected under all input conditions. 

Therefore, there is an increased onus on verification and validation of results and behaviours. 

It is important to ensure that only plausible values of each parameter are used, such that all 

outcomes may be explained by some real-world phenomenon. The simplest example of this 

being, that the responses of the system are comparable for signals recorded at similar 

operating conditions. 
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Figure 4 Flow diagram describing hybrid approach to training. 

3.4. Baseline set reduction 

The objective of this approach is to provide a set of signals that can be shifted to cover any 

undamaged state of the structure with any combination of EOCs. There will undoubtedly be 

baseline signals recorded, however, that are redundant – covering approximately the same 

EOC state of the structure.  

Due to the computational burden of calculating all combinations of baselines under all 

combinations of shift states, it is beneficial to reduce this baseline set to a more efficient 

representation of the undamaged state. It is possible to write an algorithm capable of 

comparing each of the baselines in the originally recorded set to each other – in a similar 
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way to the approach described in Figure 4, however, with dissimilar signals being added to a 

final/reduced baseline set (instead of the output being “Flag as potentially damaged” in 

Figure 4), and similar signals being discarded due to being redundant (instead of the output 

being “State assumed normal” in Figure 4). 

An additional purpose to development of this algorithm is the ability to gain insights into the 

behaviour of the system at different EOCs. By comparing the subtraction performance when 

using different amounts of shifting, and using different algorithm implementations, it was 

possible to identify improvements to computation time, as well as understand system 

behaviour, which are important factors for SHM system qualification and implementation. 

 

3.5. Pre-processing 

Now that the outline of a hybrid OBS+BSS approach has been discussed, the subsequent 

sections detail development work to optimise the algorithm for the data available.  

The first of these steps is the sanitising of input data, and normalisation, before the main 

processing algorithm is carried out. Pre-processing is a vital step in any data processing 

method for improving performance through removal of unwanted information and ensuring 

suitable formatting of data.  

3.5.1. Normalisation 

Normalisation is used to both simplify processing operations, and to generalise the code for 

different inputs to make it easier to adapt to different applications. 

Amplitude normalisation is performed by setting a known signal feature to unity. In this 

application, it was chosen to set the first arrival signal amplitude to a value of one. As the 

first arrival signal is also used as the reference amplitude, this further simplifies subsequent 

signal analysis. 

A part of time base normalisation is performed by cropping data at pulse emission time (time 

= 0). The purpose of this is to simplify time-domain operations. For example, time domain 

stretching can be performed about the time where distanced travelled is zero, by stretching 

about data point one. No information is lost in cropping the data at this point, as any signal 

before time = 0 (pulse emission) can be assumed to be noise, with the first arrival of 

importance arriving at a time corresponding to: 𝑡𝑖𝑚𝑒 = 𝑠𝑜𝑢𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ×

𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. It should be noted that in practise, instruments do not 

perfectly map transmission time to time= 0, and therefore some compensation needs to be 

made. This is handled later in the processing procedure. 



17 

Time-base normalisation can be used to generalise the code when sampling rate and gate 

length vary across applications. As only one dataset was used in this work, time-base 

normalisation was not implemented. 

3.5.2. Digital filtering 

A significant part of pre-processing is the removal of unwanted or unneeded information, 

without loss of useful information. Digital frequency filtering is used to selectively discard 

information based on signal frequency. The centre frequency and bandwidth of the input 

signal is (approximately) known, and it can be assumed that any contribution outside this 

frequency range is unwanted noise. A Gaussian bandpass filter was used to smoothly remove 

high and low frequency noise. The centre filter frequency used was the nominal input 

frequency of 250 kHz, with a filter Bandwidth of 100 kHz (as shown in Figure 5). 

 

Figure 5 Normalised amplitude vs frequency plot of signal frequency content before filtering, with filter 

overlayed 

It is also beneficial to remove any time points that are known to be of no use to the 

inspection, due to being outside the feasible range of detectible defect. Any time point before 

the first arrival signal can be disregarded. Additionally, the time, or more specifically 

distance travelled, after which the ultrasonic response is no longer of value can be 

determined through consideration of required coverage, attenuation (both material and beam 

spread, etc.), and noise. A Tukey Window was used to smoothly crop the data between two 

time points (Figure 6). This cropping method provided a smooth transition of amplitude to 
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zero at either end of the data, enabling correct implementation of the Fast Fourier Transform 

operation. The transition time of the Tukey window is determined ensuring five periods of 

the centre frequency have passed between the rise start and end (and fall start and end). For a 

typical centre frequency used in this work of 250 kHz, the transition time T is: 

𝑇 = 5 ×
1

250 𝑘𝐻𝑧
= 20 𝜇𝑠 (1) 

 

 

Figure 6 Tukey window (orange) used for time-domain cropping of recorded signal (blue) using “rise” and  

“fall” starts and ends shown by dotted vertical lines. 

3.5.3. DAC 

Distance amplitude correction (DAC) is carried out to accommodate for losses in amplitude 

due to beam spread over the propagation distance of a wave packet. By correction for this 

loss of signal amplitude, the hope is that a similar reflector at any path length will give a 

similar response, meaning sensitivity is even over the entire monitored range. 

A consequence of this distance amplitude correction is that any noise is also amplified, 

meaning signals at longer time paths will have an increased noise amplitude (i.e., signal to 

noise ratio at any point in the recorded time base is unchanged by DAC). 

Care should be taken with applying DAC, as the assumptions made in their calculation will 

only be appropriate for certain regions of the signal time domain. The case described here is 

a system whereby a single pair of transducers covers a large detection area, multiple times 

the transducer separation distance. A long time-range is recorded, giving sensitivity to far-

away regions of the component, where beam losses are considerable. DAC is therefore 

sensible. For a component with a denser covering of transducers (each covering only up to 

time (µs) × 10-4 
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two times the transducer separation) DAC may not be required, and if used, may introduce 

significant error. 

In the material and configuration used, losses due to beam spread are expected to be the main 

source of amplitude loss with propagation distance. The other main source of energy loss, 

material attenuation, would be a significant factor in other structural materials. It is proposed 

that an additional amplitude loss factor: 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑙𝑜𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑒−𝛼𝑑 (2) 
 

(where 𝛼 is the attenuation coefficient, and 𝑑 is the propagation distance), could be used to 

accommodate for this loss (Krautkrämer & Krautkrämer, 1990). The presence of significant 

material attenuation would result in a further decrease in useful detection range. 

Due to the use of a small transmitting transducer, the losses due to beam spread are 

approximated using the inverse square law model. In a two-dimensional plane, (in this case a 

thin plate,) this states that for an initial energy per unit length (𝐸1), the measured energy per 

unit length (𝐸2), at any distance away (𝑑), is given by: 

𝐸2 =
𝐸1

𝑑
 (3) 

Since energy per unit length is proportional to the square of the signal amplitude (𝐴) at a 

receiver, this can be rewritten as: 

𝐴2
2 =

𝐴1
2

𝑑
, 𝐴2 =

𝐴1

√𝑑
 (4) 

The only spatial information contained in single-pair transducer signals is a time of flight for 

each wave packet. Assuming a single speed, this corresponds to a physical total propagation 

distance of the wave packet. For a hypothetical pair of transmitter and receiver transducers 

(Tx and Rx, respectively, in Figure 7) and a single reflector, there is an ellipse of equal 

propagation distance that can be determined. A reflector at any point on this ellipse would 

give the same time of flight on the recorded A-scan. Although for a given time of flight, the 

total path length is equal, there is a difference in the ratio of each of the individual paths (see 

Figure 7). This difference in paths results in differing loss of energy due to beam spread.  

In this instance, it is impossible to determine the true ratio of individual paths (d1-2 and d2-3 in 

Figure 7), or therefore, the true loss due to beam spread. A single approximation must 

therefore be selected, which includes an inherent error.  

This section details the determination of an order of magnitude error from the assumed DAC 

model used. 
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Figure 7 (a) Hypothetical elipse (dotted line) for single reflector lcoation that would give an equal path distance 

(solid line) between transmitter and reciever. (b) Path that gives minimum beam spread for a given total path 

length. (c) Path that gives maximum beam spread for a given total path length. 

Assuming the defect (𝐷) act as a point reflector, for a total path length of 𝑑1−2 + 𝑑2−3, the 

total loss due to beam spread between transmitter 𝑇𝑥  and receiver 𝑅𝑥  is given by: 

𝐴𝐷 =
𝐴𝑇𝑥

√𝑑1−2

 , 𝐴𝑅𝑥
=

𝐴𝐷

√𝑑2−3

 (5) 

𝐴𝑅𝑥
=

𝐴𝑇𝑥

√𝑑1−2𝑑2−3

 (6) 

where the term 𝐴𝐷 is the amplitude at the defect. 

The DAC compensation factor (𝛼) necessary can be calculated by the amplitude at 

transmission divided by the amplitude of the signal at the receiver. 

𝛼 =
𝐴𝑇𝑥

𝐴𝑅𝑥

 (7) 

𝛼 = √𝑑1−2𝑑2−3 (8) 

Inherent in this assumption is the lack of reflections from benign structural features that will 

cause additional diffraction and beam spread. 

The maximum beam spread occurs when the two paths are equal (𝑑1−2 = 𝑑2−3), as shown in 

Figure 7 (c). 

𝛼𝑚𝑎𝑥 = √𝑑1−2𝑑1−2 (9) 

𝛼𝑚𝑎𝑥 = 𝑑1−2 (10) 

 

 

(a) 

(b) (c) 
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Or, in terms of total path length d: 

𝛼𝑚𝑎𝑥 =
𝑑

2
 (11) 

For a given total path length, the minimum beam spread occurs when either individual path 

(𝑑1−2 𝑜𝑟 𝑑2−3) is maximised, and the other minimised (as shown in Figure 7 (b)). For 

example, when 𝑑1−2 is minimised: 

𝑑2−3 = 𝑑𝑇𝑥𝑅𝑥
+ 𝑑1−2 (12) 

where 𝑑𝑇𝑥𝑅𝑥
 is the physical separation of the transducer pair, and is therefore a constant. 

𝛼𝑚𝑖𝑛 = √𝑑1−2(𝑑𝑇𝑥𝑅𝑥
+ 𝑑1−2) (13) 

To give a meaningful result in terms of measurable variables, the total path distance 𝑑 can be 

substituted: 

𝑑 = 𝑑𝑇𝑥𝑅𝑥
+ 2𝑑1−2 (14) 

𝑑1−2 =
𝑑−𝑑𝑇𝑥𝑅𝑥

2
 (15) 

Therefore, 

𝛼𝑚𝑖𝑛 = √
𝑑−𝑑𝑇𝑥𝑅𝑥

2
(𝑑𝑇𝑥𝑅𝑥

+
𝑑−𝑑𝑇𝑥𝑅𝑥

2
) (16) 

𝛼𝑚𝑖𝑛 = √
𝑑−𝑑𝑇𝑥𝑅𝑥

2
(

𝑑+𝑑𝑇𝑥𝑅𝑥

2
) (17) 

𝛼𝑚𝑖𝑛 =
1

2
√𝑑2−𝑑𝑇𝑥𝑅𝑥

2  (18) 

 

Considering a single velocity (𝑣), the DAC compensation factors (𝛼) can be given in terms 

of time of flight (𝑡𝑜𝑓). 

𝛼𝑚𝑎𝑥 =
𝑣𝑡𝑜𝑓

2
 (19) 

𝛼𝑚𝑖𝑛 =
1

2
√(𝑣𝑡𝑜𝑓)2−𝑑𝑇𝑥𝑅𝑥

2   (20) 
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Using the Maximum as a conservative approximation, the error (𝜖) of DAC compensation 

factors (𝛼) is between: 

0 > 𝜖𝛼 > 𝛼𝑚𝑖𝑛−𝛼𝑚𝑎𝑥 (21) 

Alternatively, the true DAC value (𝛼), written: 

𝛼 = 𝛼𝑚𝑎𝑥 (
+0

−(𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)) (22) 

A limitation of this model is the simplification of reflections as point reflectors, therefore not 

accounting for real differences in reflector morphology and orientation.  

As can be seen from Figure 8, this error tends to zero (and where Maximum and Minimum 

approximations converge) when the square of the path distance 𝑑2 ≫ −𝑑𝑇𝑥𝑅𝑥

2 , and so the 

ellipse (Figure 7) approaches a circle.  

It should be noted that the plot starts at path distance equal to 1, and not zero, as no valid 

signal is expected to arrive before this time in pitch-catch modality. 

 

Figure 8 Maximum (blue) and minimum (red) DAC values as a function of total path distance, given as multiples 

of the transducer separation. 

The possible error is substantial near to the direct arrival path (path distance 𝑑 =  1).  It is 

worth discussing this area of the plot, to evaluate whether this is significant to the validity of 
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the technique over its assumed coverage range. First, the validity of the Maximum model is 

considered.  

This DAC calculation is based on the compensation of two paths, each contributing an 

inverse-square law beam spread factor. It should be stated, then, that this is not appropriate 

for the first-arrival signal, for which the beam-spread is considerably lower. For the direct 

path of the first-arrival signal, the DAC is given by the model: 

𝛼𝑑𝑖𝑟𝑒𝑐𝑡 = √𝑑𝑇𝑥𝑅𝑥
 (23) 

Given that it is not practical to compensate the first arrival signal differently to other signal 

contributions that have a similar time of arrival, it may be beneficial to consider the case 

where both models match (at distance 𝑑 = 𝑑𝑇𝑥𝑅𝑥
): 

√𝑑𝑇𝑥𝑅𝑥
= 𝑑𝑇𝑥𝑅𝑥

 (24) 

This occurs where the transducer separation 𝑑𝑇𝑥𝑅𝑥
= 1. 

Since physical separation of transducers will be set by practical design considerations, the 

only practical method for achieving this, is to use the separation distance as the measurement 

unit. 

The other potential ways of removing this issue of incorrect first-arrival amplitude correction 

would be cropping out, or differently scaling, the first arrival signal contribution in the 

residual signal. This would, however, result in incorrect scaling of signals in this region, or 

the complete loss of valuable information about the first arrival amplitude, for example a 

change due to defects blocking or altering the first arrival signal. 

In summary, by using a measurement unit of the transducer separation, error of first arrival 

distance amplitude correction can be effectively removed. For this reason, DAC values in 

Figure 8 are given as functions of path length in multiples of transducer separation. 

Therefore, the Maximum model in Figure 8 is most accurate at path length 𝑑 = 1. 

If the Maximum model is accurate in this region, and there is large difference between the 

minimum and the maximum near to path length 𝑑 = 1 in Figure 8, discussion of the 

Minimum approximation is necessary. The tending of the Minimum approximation to zero is 

due to the collapsing to zero of one of the distance terms in 𝛼 = √𝑑1−2𝑑2−3, which is not 

encountered when considering the Maximum beam spread approximation, where neither 

path lengths can be less than half the transducer separation, and can therefore never approach 

zero.  
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The minimised distance 𝑑𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒𝑑 is the problematic term that leads to invalid 

compensation factors. The amplitude correction value with two reflectors should never be 

larger than that for the first arrival signal.  

For the Minimum model, where: 

𝛼𝑚𝑖𝑛 = √𝑑1−2(𝑑𝑇𝑥𝑅𝑥
+ 𝑑1−2) (25) 

To find the distance 𝑑1−2 for which the Minimum model is valid, the compensation value 

must be greater or equal to that of the first arrival correction. 

𝛼𝑚𝑖𝑛 ≥ 𝛼𝑑𝑖𝑟𝑒𝑐𝑡  
(26) 

√𝑑1−2(𝑑𝑇𝑥𝑅𝑥
+ 𝑑1−2) ≥ √𝑑𝑇𝑥𝑅𝑥

 (27) 

𝑑1−2
2 + 𝑑𝑇𝑥𝑅𝑥

𝑑1−2 − 𝑑𝑇𝑥𝑅𝑥
≥ 0 

(28) 

(𝑑1−2 +
𝑑𝑇𝑥𝑅𝑥

2
)

2

−
5𝑑𝑇𝑥𝑅𝑥

4
≥ 0 (29) 

(𝑑1−2 +
𝑑𝑇𝑥𝑅𝑥

2
)

2

≥
5𝑑𝑇𝑥𝑅𝑥

4
 (30) 

Taking the positive solution: 

𝑑1−2 ≥
(√5 − 1)𝑑𝑇𝑥𝑅𝑥

2
 (31) 

The validity of the Minimum correction model improves with the use of smaller units of 

distance measurement. However, taking the unit selected to make the Maximum correction 

model valid for the first arrival signal (where 𝑑𝑇𝑥𝑅𝑥
= 1), for the distance: 

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑡ℎ = 𝑑1−2 × 2 + 𝑑𝑇𝑥𝑅𝑥
 (32) 

The Minimum correction model is valid at a total path:  

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑡ℎ ≥ (√5 − 1)𝑑𝑇𝑥𝑅𝑥
+ 𝑑𝑇𝑥𝑅𝑥

 (33) 

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑡ℎ ≥ √5𝑑𝑇𝑥𝑅𝑥
≈ 2.2 𝑑𝑇𝑥𝑅𝑥

 (34) 
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The region on Figure 8, where the total path is close to the transducer separation is where the 

greatest potential error exists. Using the Maximum model will give a greater correction 

factor than the true correction value.  

There are certain factors that mean the practical effect of this is lessened. The presence of the 

first arrival signal itself, which is by far the largest expected signal, will mask indications 

and introduce a high degree of variability in this area. It may be beneficial, then, for 

indications close to the first arrival to have a potentially conservative (larger than true ideal) 

distance amplitude correction factor. 

The range of inspection is limited by the DAC noise floor. The first arrival signal occurs at 

distance = 1 (when in units of transducer separation). This is used as a reference, and occurs 

at a predictable distance, so any measurement can be easily compared to first arrival.  

By recording a series of signals in sequence, a population of time-traces can be collected 

under similar conditions. Running a subtraction algorithm on these signals, since there can 

be assumed no component change, gives a measure of noise and variation. 

For an absolute difference threshold T, first arrival signal amplitude of 1, and absolute noise 

level of N, the maximum acceptable path distance can be calculated: 

𝑇 = 𝛼 × 𝑁 (35) 

𝑇 =
𝑁𝑑

2
 (36) 

𝑑 =
2𝑇

𝑁
 (37) 

Using example values of  𝑇 = −25 𝑑𝐵 and 𝑁 = −40 𝑑𝐵 (both relative to the same 

reference), this gives a maximum distance of ~11 × 𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛.  

3.5.4. Background electrical noise  

Electrical noise is the addition of unwanted contributions into information-carrying signals 

due to the coupling of circuits with other electrical signals. 

In many cases, electrical noise is random, with frequency outside the bandwidth of interest. 

In these cases, if the ratio of signal amplitude and noise amplitude is high, averaging and 

frequency filtering in hardware and software can be used to suppress this noise so that its 

contribution is of little significance. Some contributions, however, are not random, or are 

high amplitude compared to the signal of interest.  

It is useful to have a method for determining approximate electrical (background) noise 

level, to give confidence that it will not affect the overall operation of the system. In order to 
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determine an order of magnitude effect, noise can be extracted from a recording without any 

signal of interest. This can be achieved by measuring without transmitting a pulse. 

Alternatively, if data has already been collected, as is the case in this work, by using data 

collected at the beginning of recording time, before the pulse emission (i.e. t < 0). This 

background noise signal can be extracted, and an RMS measurement performed, to 

understand electrical background noise. 

For the example dataset, taking a section of signal before the pulse emission time, the 

maximum amplitude compared to the signal maximum amplitude was -43 dB. This is 

significantly smaller than the detection performance desired (-25 dB was typically used in 

this work). 

Later, the impact of background effects on performance will be shown in Figure 9. This is 

performed by comparison of the difference between 500 datasets recorded in sequence (at 

the same conditions and system age, etc.) 

The effect of this may be greater when considering transducers such as EMATs, or in high-

electrical noise conditions, such as when the measurement system is in close proximity to 

high-voltage electrical equipment (e.g. motors and generators). Hardware design and 

techniques such as physical shielding are vital in these applications to ensure usefulness of 

gathered data.  Background electrical noise is known to be substantial in some cases – 

especially when manufacturing activities, such as welding, are being undertaken. 

 

3.6. Difference calculation  

The chosen method works based on the ability to establish a match of signals through signal 

comparison. There are a variety of methods that may be used to compare two signals.  

The method used in this work involves, first, the subtraction of one signal from the other, 

resulting in a “residual” signal equal in length (number of data points) to the original signals. 

For a perfect match of signals (i.e. if subtracting identical signals), the result would be an 

array of zeros.  

There are two methods for how this subtraction can be performed. Subtraction of RF signals, 

or subtraction of the Hilbert envelope of each signal (dotted and solid blue lines of Figure 3, 

respectively). 

Envelope subtraction has been shown to give an improved signal to noise ratio. The 

reduction in noise results from the slower rate of change of the envelope signal compared to 



27 

an RF signal and therefore, small time offsets have a smaller effect. However, this comes at 

the expense of introducing blind spots into coverage (Croxford, et al., 2007).  

Since these small time-offsets can be accounted for by shift operations, and because of the 

importance of full coverage in the monitored area, RF subtraction was selected. 

The second part of the process is to take the residual signal calculated, and convert it into a 

single value metric that describes its size, and so can represent the overall difference between 

the two original signals. 

The two options considered in this work for single-value quantification of a difference metric 

are: maximum (absolute) value of the residual, or RMS (root mean square) value for the 

residual.  

The choice of optimal metric is dependent on the specific application, and response of target 

defects. A target defect in a relatively feature-sparse application will present as an isolated 

reflector, giving a clear individual peak. This is suited to the use of a metric such as the 

maximum of residual, where a single change in peak amplitude indicates the presence and 

size of a defect – similar to the approach of conventional UT interpretation. The other case is 

in feature-dense applications, where a measured signal has many benign reflectors, and 

where a similar target defect will give many reflected responses from different paths. In this 

case, it is more appropriate to look at the sum of all changes due to the presence of a new 

reflector – e.g. RMS of the residual signal. 

It should be noted that whatever measure or metric is calculated to describe the similarity 

between two signals, this does not provide any accurate measure of defect size or 

characterisation. The metric acts as an indicator and tracks with defect size. Proper NDE 

validation activities must be undertaken to identify critical defect sizes and morphologies, as 

well as justify probability of detection. In the absence of this, measurement of difference 

between two signals under varying condition, is the best generic measure of performance. 

The metric that used the maximum-of-the-residual was selected for the majority of this work, 

as the focus was the detection of the simplest case of individual high amplitude peak 

reflections.   

A simple comparison of each metric was performed on a dataset of similar signals. Figure 9 

shows the spread of difference-metric values obtained from 500 signals, captured 

sequentially, under the same conditions. The two plots in Figure 9 provide a comparison of 

the maximum of the residual signal (relative to the maximum of the baseline signal), against 

the root mean square (RMS) of the residual signal (relative to the RMS of the baseline 

signal).  
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For work that required a threshold to be set for when two signals were to be considered a 

match, a metric of -25 dB was used (for maximum of residual compared to first arrival signal 

amplitude). This provides a low-false positive rate based on the results presented in Figure 9.  

 

Figure 9 Histogram of the minimum calculated difference metrics for 500 data sets collected sequentially under 

the same conditions. 

The results show both methods produce (approximately) a normal distribution of difference 

values for these 500 data sets, with a mean metric value slightly differing between the two 

metrics (-30 dB for maximum, and -28 dB for RMS). This investigation assumed that no 

change occurred over the time of recording, such as heating of the instrument through 

prolonged use. 

The spread observed is similar between both metrics, of approximately 8 dB, giving 

confidence in the similarity of behaviour under these conditions. 

Broadly, it can be assumed, then, that an approximate correction of around 2 dB may be used 

between each metric where signal changes match that of these variations under similar 

conditions.  

This is not, however, valid for all cases. Depending on defect response – e.g. due to number 

of features reflecting the damage and so number of responses – the effect on RMS and 

maximum of residual will be different. It is therefore important to undertake case-by-case 

assessment of metric for the application and defects of interest. 
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It is proposed that future work could be investigation of a hybrid of these methods. Due to 

differing applicability of each method described above, that a combination metric (calculated 

from both the RMS and maximum) may give coverage of both cases, and lead to a more 

adaptable monitoring system.  

3.7. Shift operation parameters  

The operations described in the ‘baseline stretch’ section of the training algorithm modify 

the signal in several different ways in order to attempt to accommodate known (benign) 

physical variations. The extent of each of these stretching or shifting transformations is 

varied over a certain range, for example, the signal may be shifted in time between a 

minimum and maximum shift values, with a step size between each trialled value. 

Using too many parameters in a test grid would make it time consuming, with some never 

being used. For the complete dataset used in this work (5000 signals, of 4000 data points 

each), for example, a full computation of shift operation may take, in the order of, 24 hours 

on a mid-performance machine. There are several methods for determining the range, and 

coarseness of the parameter range, which shall be explored. However, it should be noted that 

it is not possible to find and set a single parameter range that is suitable for all applications, 

or even all data sets. Instead, it must be calculated every time a new data is used. It is, 

therefore, useful to have a robust method of calculating this prior to full data processing, 

allowing the training process time to be reduced to a practical amount. 

Prior knowledge can be used to provide a good initial guess of a parameter range, useful for 

an initial guess, before further optimisation can be carried out. Environmental and 

operational conditions will be understood to vary within certain reasonable bounds. 

Therefore, the effects on the data can be assumed to be limited to certain predictable ranges. 

Through this, a reasonable theoretical upper and lower limit can be determined, also 

considering that the assumptions of Baseline Stretch Subtraction only tend to be valid for 

small shifts.  

This range, however, may still be surplus to that required to find an appropriate solution. By 

initially running through a number of the datasets with a single baseline (restricting baseline 

growth) an understanding can be gained of the maximum range of each parameter used, 

outside of which is wasted processing. 

A valuable property to evaluate when investigating these shift/stretch operations, and their 

ability to compensate for EOC effects in the data, is to determine whether they are 

dependent. A dependence, or coupling, of multiple shift operations means that the operations 

and/or EOCs that they are representing, are interacting. If the shift operations are determined 
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to be independent, this permits assumptions to be made that can significantly reduce 

computational burden, and simplify the prediction of system behaviour under new 

conditions. For example, an optimum stretch value for one operation could be determined 

independently of the others, reducing the total number of combinations of stretch operation 

parameters that need to be calculated - in this example, the parameter space to be tested is 

reduced by one dimension. 

3.7.1. Time translation 

Time translation involves the addition or subtraction of a constant value to the time-base. 

This operation is used to correct for the jitter shift. Jitter shift occurs in the instrument, 

changing the position of pulse emission about 𝑡𝑖𝑚𝑒 =  0 by a small amount.  

Considering the shifting of a time-domain signal 𝐹(𝑡) by a time δ𝑡, in order to permit non-

integer shift values, first the signal is transformed into the frequency domain using the fast 

Fourier transform (FFT) for computational efficiency. The frequency domain signal, 𝐹(𝑓), is 

then then shifted using the operation: 

𝐹(𝑡 + δ𝑡) = 𝑖𝑓𝑓𝑡(𝐹(𝑓)𝑒−𝑖2𝜋𝑓 δ𝑡 ) (38) 

where 𝑓 is the frequency vector. 

The operation implementation permits non-integer values of time translation to be used. It 

was believed, however, that on the dataset considered, this effect is simply an integer 

translation in time. 

In order to evaluate this, a test was performed on 1000 signals (recorded over several years) 

using an equally spaced array of time translation values between -5 and 5 time points, using 

steps of 0.01 time points.  

Figure 10 shows a histogram of time translation values that gave an optimum match between 

datasets and baseline. 
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Figure 10 Histogram of time translation values used to find the best match between 1000 datasets 

It was determined that nearly always, integer values of time translation were used, showing 

that the instrument translation was in fact a single time point jitter effect. Additionally, no 

values above ±2 time points were used. 

It was therefore proposed that a suitable range of shift values would be -2 to 2 time points in 

steps of 1 time point. This would accommodate for a possible deviation of ±1 from a median 

value, with a -1 (from the median) signal needing to be shifted +2 to match a +1 (from the 

median) signal, and vice-versa.  

This result adds validity to the assumption that time translation may be considered 

independent of other shift values, as it is due to an effect of the recording instrument that 

simply changes the point of signal emission by ±1 time point. Additionally, the effect is 

observed most significantly on the first arrival signal. Because of these two factors, it is 

therefore possible to separate the jitter shift (time translation) operation from all other 

operations, reducing the processing time by a factor (approximately) equal to the number of 

shift values used (5x). 

To verify the effect of reducing the number of trialled shift values in the parameter range, the 

training process was run again with the proposed reduced set. 

Figure 11 shows the small deviation in performance between using the full range of time 

translation values, and using only integer values between -2 to 2.  
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Figure 11 Difference in signal subtration performance with a single baseline of using the proposed reduced time 

translation parameter range and a full parameter range 

It can be seen that the performance decrease from only using five time-translation values 

(compared to 121 in the fine array) was on average 0.7 dB. 

A valuable property to evaluate when investigating these shift/stretch operations, and their 

ability to compensate for EOC effects in the data, is to determine whether they are 

dependent.  

To determine whether effects are independent, an assumption could be made that the same 

optimum compensation for one operation will be reached, regardless of whether other 

compensation operations are performed. That is, the same optimum time translation value 

would be used if performed in isolation, or if a global optimal solution is found with time 

translation, time stretch, amplitude scaling, and phase shift. 

A test was set up in which the first case varied only time translation to find an optimum 

match for each of 500 signals. The second, time translation, phase shift and amplitude were 

also varied to find a global best match. A single baseline was used, so that differences in 

baseline growth did not affect the results. The time translation values were compared, and 

83% of results matched between the two tests. This was not as high as expected and 

indicated that the assumption of independence of time translation was inaccurate.  



33 

It was, however, considered that another effect may have impacted the results. In the cases 

where it was apparent that optimum time translation value was affected by other parameters, 

this may be due to a limitation in the time stretch model used. Due to the use of a single 

baseline, the time stretch operation may have been inappropriate for some of the larger 

temperature variations. The time stretch temperature compensation assumption is only valid 

for small temperature changes, as the true effect of temperature is to shift the arrival time of 

signals, rather than effectively stretch the while time-base. In this case then, time translation 

may have been a better operation to compensate for these larger temperature shifts. As the 

actual technique used, uses a combination of OBS and BSS, these larger temperature 

variations would be better matched by new baselines at higher temperature. 

Instead, a better measure may be the subtraction performance when the time translation is 

used in conjunction with other shift operations (assume dependence with other operations), 

and when the optimum time shift is calculated independently of other operations.  

 

 

Figure 12 Subtraction performance with time translation treated independent or dependent of all other stretching 

operations, with a single baseline  

Using a single baseline, the mean reduction in signal subtraction performance (measured by 

the metric: maximum amplitude of residual) when the optimum time translation search was 

performed independent of any other stretching parameters (amplitude scaling, time 

stretching, phase shifting) was -0.2 dB (Figure 12). 

The above results indicate there is some coupling between time translation and one or more 

other operations. It was proposed that the only operation that optimum time translation is 
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dependent on is amplitude, since amplitude is so closely linked to the difference-measure 

used. Previously, the results were presented of performance when optimum time translation 

was determined independently of any other operations. An additional test was performed 

where optimum time translation was found, whilst varying amplitude, then this time 

translation value was used to find the optimum time stretch, amplitude scaling and phase 

shift combination. There was no performance improvement over optimising time translation 

without amplitude variation.  

Although potentially useful to consider for other applications, the performance improvement 

on this dataset was not significant. 

3.7.2. Amplitude scaling 

Amplitude scaling is used to account for the known effects of temperature on transducer 

response, and random variations in the measurement system. 

Amplitude scaling involves multiplying all amplitude values in an A-scan by a single value. 

The centre of the signal must be around amplitude = 0, that is, there must not be a DC offset. 

A reasonable pair of limits for amplitude scaling can be determined by the minimum and 

maximum amplitudes of the first arrival signal. This is a computationally inexpensive 

method for providing an initial guess that can be improved and iterated on. 

The (absolute) maximum of each of 1500 signals was taken, before pre-processing, 

corresponding to the first arrival signal amplitude. The lowest first arrival amplitude was 

0.88 of the highest. Taking a conservative estimate, a maximum required amplitude scaling 

of 15% was determined. 

An array of amplitude scale values can then be defined with the step being determined based 

on required sensitivity. Considering a step size Δ𝑆 where the true solution lies exactly 

between the two nearest points of the parameter space (i.e. the worse-case), this maximum 

error of amplitude scaling is equal to half the step size. This inaccurate scaling value would 

result in an incorrect scaling of the signal. Therefore, the maximum error from using this 

parameter space for an amplitude A is given by: 

𝑒𝑟𝑟𝑜𝑟 = ±𝐴
∆𝑆

2
 (39) 

Considering the largest signal (first arrival signal normalised to amplitude A= 1), for which 

the error is greatest, and a difference threshold of -25 dB, which sets the sensitivity. The 

error in amplitude scaling that would cause the first arrival signal to break the threshold is 

given by: 
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20𝑙𝑜𝑔10(𝑒𝑟𝑟𝑜𝑟) = −25 (40) 

𝑒𝑟𝑟𝑜𝑟 = 10−
25
20 = 0.056 (41) 

∆𝑆

2
= 0.056 (42) 

Δ𝑆 = 0.11 (43) 

As this is the maximum step size that would not cause the difference metric to be reached 

erroneously, a conservative value of ~
1

4
 was selected, of Δ𝑆 = 0.003. 

 

Figure 13 Histogram of amplitude scale values used to find optimum match between (growing) baseline set and 

500 signals. 

Figure 13 shows a tight range of optimum amplitude values used in the matching of signals 

to baselines. This illustrates the suitability of the range of scaling values calculated earlier 

(15%), given a much larger parameter space trialled. 

A test was performed to evaluate independence of this amplitude scaling operation. One 

baseline was used, varying amplitude only (so that it is independent of other operations), 

then comparing optimum amplitude scaling factors used with those used when all parameters 

were varied to find a global optimum set of stretch/shift values. The mean absolute 

difference in amplitude scaling value was determined to be 0.13. This is close to the 

maximum optimum shift observed (Figure 14). Therefore, it can be assumed that this test has 

demonstrated that there is very little similarity between the behaviour of the amplitude 

scaling operation when varying other operations. Amplitude scaling is the operation most 

closely linked to metric, and based on the results, it is believed this parameter should not be 

considered independent. 
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Figure 14 Histogram showing range of amplitude used to find optimum match when one baseline is used, and 

only amplitude scaling is varied (i.e., all other shift/stretch operations are not performed) 

3.7.3. Time stretching 

The time stretching operation involves stretching of the time axis of the signal. Strictly this is 

not an accurate representation of temperature effects on guided wave signals. The effect of 

temperature as a time stretch can be described as each received signal being translated in 

time, proportionately to distance travelled (Croxford, et al., 2007). This requires signal 

contribution from each wave packet to be distinguished and separately time shifted based on 

the centre of the wave packet. Since this is impractical, a stretching of the time base is used, 

which is valid for small shift values (i.e. for small temperature compensation). 

Time domain stretching requires the resampling of data points, and extending of a dataset to 

create extra data points, for maintaining a constant time base when compressing a signal. 

This is performed using the scale transform, as described in (Harley & Moura, 2012). 

The method for performing this operation correctly depends on the signal being continuous, 

requiring both the first and last time points of the signal to have an amplitude equal to zero – 

and for this transition to be gradual and smooth. This is performed by the cropping process 

detailed in Section 3.5.2 (Digital Filtering).A test was performed to determine the 

dependence of time scaling on other shift operations. The difference between optimum shift 

values was measured for when all parameters were varied to find an optimum global 

solution, and when only time stretch was varied. A single baseline was used. 
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Figure 15 shows, for each given dataset, the different optimum time stretch value when 

found in isolation, or with global varying of other operation variables. This shows the extent 

to which time stretch was dependent on time shift and amplitude scaling.  

 

Figure 15 Difference in optimum time stretch value when found in isolation (independent of other operations), or 

with global varying of other operation variables (dependent on other operations). 

The magnitude of the difference varied between three central values: 0, -470 × 10-6 and -940 

× 10-6. This can be explained by the absence of jitter correction (through time translation) in 

the case where optimum time stretch was calculated independently of time translation. It can 

therefore be said that time stretch is coupled with time translation. 

To validate whether the optimum time stretch selected is predominantly coupled with time 

translation as hypothesised (i.e., not amplitude scaling), the optimum time stetch values were 

compared when only time stretch and time translation were varied freely together, with the 

test in which all operations were performed. Figure 16 shows the significant reduction in 

difference of optimum time stretch value (mean of absolute values of 2.8 × 10-6 compared to 

420 × 10-6 in Figure 15). 
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Figure 16 Difference in optimum time stretch value when found in conjunction with time translation (independent 

of amplitude scaling), or with global varying of other operation variables (time stretch, time translation and 

amplitude scaling). 

Therefore, it was determined that the optimum time translation selected is coupled with jitter 

shift. A proposed improvement over both options – to give lower computational burden than 

calculating entire parameter space, but improved subtraction performance against treating 

time stretch as independent – was the optimum time shifting (jitter shift correction) of the 

data initially, before then determining optimum time translation independently of amplitude 

scaling. Figure 17 shows the results. 

 

Figure 17 Difference in optimum time stretch value when found in isolation (independent of other operations), or 

with global varying of other operation variables (dependent on other operations). First, time translation (jitter 

shift was corrected), independently of all other operations. 
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The mean (of absolute) difference was 79 × 10-6 using this approach. This represents an 

improvement over the purely independent determination of time translation. The 

improvement only represents a five times increase in cases matching the full parameter case, 

still significantly different to the match found using the approach in Figure 16. This approach 

does, however, represent a greatly decreased computational burden. 

This difference may also be due to the expected effect discussed in Section 3.7.1 (Time 

translation), where the use of a single baseline may lead to jitter shift correction being used 

to accommodate for large temperature differences that do not fit the time stretch model well. 

To evaluate the time stretch values used to find an optimum match between signals at 

different times (and environmental conditions), Figure 18 shows the optimum time stretch 

values when a single baseline was compared to 4000 signals, with all shift operations 

performed (global minimum found). 

 

Figure 18 Time stretch (scaling) values used to find closest match between datasets and a single baseline 

Temperature cycles can be seen in the data. These are thought to correspond with time of day 

at which each of the measurements was made.  

When using single baseline, the maximum time stretch used was 1.0006, minimum 0.9994. 

Permitting baseline growth where the optimum match produced a metric above the threshold 

(-25 dB of the first arrival signal), the minimum and maximum time stretch values were 

1.0003 and 0.9997.   

This demonstrates a decrease in the use of time stretching to compensate for temperature 

change when new baselines are able to be added, which more closely match the temperature 

effected signal. This aligns with the understanding that the inaccuracy of the time-

stretch/temperature model at large values of temperature change. 
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3.7.4. Phase shifting 

A potential change of signal phase is credible, where aging and temperature variations may 

cause transducer behaviour to change between measurements.  

Phase shifting of a signal is performed by multiplying the frequency domain representation 

of the signal by a constant value. For a signal 𝐹(𝜔), and phase shift 𝛿𝜔: 

𝐹(𝜔 + 𝛿𝜔) = 𝐹(𝜔) × 𝑒−𝑖𝛿𝜔 (44) 

A test was run with 500 data sets, restricting baseline growth so that only a single baseline is 

used. A range of phase shift values were used between −2𝜋 and 2𝜋 𝑟𝑎𝑑𝑠  with a step size of 

𝜋

100
 𝑟𝑎𝑑𝑠, giving 401 total trialled values. By recording shift values used when the closest 

match was made to the single baseline, it was possible to identify whether a shift of phase 

ever improved signal matching. This provides the ability to assess the performance benefit of 

phase shift compensation against the processing speed penalty from increasing the parameter 

space. 

It was determined that the vast majority of baseline matches were made with no phase shift, 

and the remaining low quantity had only a very small shift, as shown in Figure 19. 

 

Figure 19 Histogram with bin widths of 
𝜋

100
 of phase shift values used to find closest match to a single baseline, 

with no other shifting operations performed. 

Since no phase shifting was used in determining optimum match to a baseline, dependence 

of phase shifting on other operation could not be determined. 

In other cases, this phase shift may be coupled with a secondary effect that cannot be 

compensated for using the operations described. It may be the case then, that despite a phase 

shift improving performance when using a single dataset, a better match can still be obtained 

by using multiple baselines, even without compensation for phase shift. In this case, training 

data must be sufficiently complete that it covers all EOCs that introduce the phase (and 

secondary effect) variation. 
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3.8. Speed optimisation 

3.8.1. Overview 

The processing of datasets as part of training is time consuming. The large number of 

combinations of stretch operations that need to be computed to find an optimal solution, 

combined with the large size of typical data sets, and the brute-force nature of the approach, 

mean significant computational burden is unavoidable. However, some effort was devoted to 

optimisation of the process that improve the practicality of data processing on hardware 

available for the project. As this project is not focused on the computation aspect of this 

challenge, proper optimisation and software writing are given as possible further 

improvements. 

3.8.2. Use of the first adequate match 

If a solution is found that is below the threshold, then it is known that the data sets are 

similar. No additional benefit (outside of experimentation work) is gained from knowing 

how similar they are. That is, it does not matter how “defect-free” the component is, 

provided the difference metric is below the threshold. Therefore, as soon as a subtraction is 

found that gives a residual below threshold, the loop can be broken, and the data set classed 

as similar, ready to move on to the next data set. This is shown diagrammatically in the 

bottom section of the flow diagram in Figure 20. 

It should be noted that this was not used in the investigations above, as there was significant 

value in determining the overall minimum when developing and evaluating the system 

performance. 

3.8.3. Ordering of operations 

The order that each of the operations are performed when calculating the parameter space 

can affect performance. In addition to the obvious computation savings, such as having the 

most computationally heavy operations on the outermost programme loops as possible (so 

they are performed a lower number of times), other time-savings were proposed based on the 

objective of algorithm. 

The reordering of parameter ranges was performed to first trial the smallest shift values (e.g., 

order 0, 1, -1, 2, -2), as it is expected that small shifts are most likely to give matches. In 

conjunction with loop breaks when a solution is found, this increases the likelihood of a 

solution being identified earlier in the total parameter-space search. 
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3.8.4. Baseline sorting 

With the breakpoints described in Section 3.8.2, it now becomes beneficial to sort the 

baselines in a way that results in a match being identified as early as possible.  

Since the time-of-year dependent effects have a low frequency of change, it can be assumed 

that the most likely match for a given signal will occur in a baseline that was recorded 

recently (i.e., at a similar recording time/date to the signal). Therefore, it is proposed that 

reverse ordering baselines, so that the most recently added entries are trialled first, will result 

in a match being found in less time. 

It may be proposed that a match may also be likely for similar times-of-year for previous 

years. However, the age dependent effects apparent in a provisional trial of the data 

(discussed in more detail in the conclusions of Section 3.9), result in this not being the case. 

Therefore, it is proposed that the method above is sufficient to give a performance 

improvement from baseline sorting.  

It is noted that baseline ordering (in conjunction with loop break) will result in the full 

parameter space not being tested, and so will greatly affect and skew which baselines are 

used. Therefore, any investigative work where the best-matched baseline overall is of 

interest must have these loop breaks (detailed in Section 3.8.2) disabled so that the entire 

parameter space is tested, and the true global best match found.  

3.8.5. Overall Training Algorithm  

Figure 20 shows the changes made to the training algorithm, based on the investigation into 

performance on a specific dataset. 
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Figure 20 Training algorithm flow diagram, with computational savings and time-translation operation 

performed independently 
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3.9. Overall results 

Each of the preceding sections has dealt with performance improvements from individual 

changes to the subtraction process. Each of these changes offers an option to tailor the 

system to choose between processing speed and model behaviour, with overall subtraction 

performance and suitability for incomplete datasets. 

To understand the overall performance difference in each extreme of these cases, a 

comparison was made between a test where all parameters were permitted to vary freely and 

interact, with another test where the behaviour was restricted, and assumptions of 

independence between various shift operations were implemented to reduce the search for an 

optimal match to only the most likely combinations. 

Table 1 shows the performance comparison (subtraction and time) between the two 

approaches (best subtraction performance vs with computational savings) for a total of 500 

data sets of 4000 time points each. This was performed on a mid-performance desktop 

machine (with an AMD Ryzen 5 3600, 6-Core, 3.6 GHz Processor). 

Table 1 Subtraction performance comparison of two implementations of the subtraction algorithm, with differing 

levels of restriction on combinations of shift operation parameters and dependencies 

 Implementation 

 Best subtraction 

performance 
Reduced computation 

Subtraction performance (one 

baseline) 
-18.4 dB -17.4 dB 

Computation time (one 

baseline) 
~5 hours ~30 mins 

 

This was performed with a single baseline, with the performance difference shown above 

being conservative for the actual OBS+BSS method where baselines are added. Since 

additional baselines will result in smaller shift operation ranges needing to be used, as a 

more representative, accurate (non-stretched) baselines to any new signal will exist, and 

since smaller shift operations typically resulting more accurate modelling of EOCs, this will 

always improve performance over the use of a single baseline. Therefore, the practical 

benefits of using the entire parameter space can be assumed to be significantly reduced when 

using multiple baselines. 
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3.10. Conclusions 

The algorithm used for this work employs various compensation operations that model the 

behaviours of instrument and environmental effects on recorded signals. These models are 

imperfect, and have limitations in the extent to which they closely follow observed 

behaviour. The multi-modal signal contributions, and complex interactions with features of 

the structure, reduce performance of each of these compensation models. However, by 

permitting the free variation and interaction of these operation parameters to find a global 

minimum, it is possible to extend the performance past that of simply modelling each change 

independently. In this case, the role of compensation of each of these operations has been 

observed to overlap, providing an improvement in subtraction performance. An example of 

this in the work described, was the interaction of optimal time-stretch value when a jitter-

shift (time translation) search was or was not implemented. When there was no time 

translations, the time stretch values used varied between three discrete nominal values, 

indicating that some time translation of a single time point was being performed using a 

time-stretch.  

The best overall performance can be achieved when the search variables are allowed to vary 

freely over the entire parameter space. However, with a slight reduction in subtraction 

performance, a significant time saving can be made, accompanied by a control of the role of 

each shifting operation. This improvement in understanding of behaviour is beneficial for 

validation and verification. An example of one of these controls is: when time translation is 

calculated independently of other shifts, and without a DAC applied, it is used as a jitter shift 

correction only. This prevents time translation being used by the algorithm to compensate for 

poor time-base stretching compensation for large temperature differences between two 

signals. 

Previous work on the same dataset found that (maximum) signal amplitude, centre frequency 

and bandwidth varied with changes in temperature, but did not exhibit any long-term trend 

over the duration of recording (Courtier, 2018). Therefore, it can be considered that these 

parameters are not ageing effects in this case. 

There is a considerable long-term change in signals over the monitoring period, observed as 

the low frequency of a given recorded signal matching with baselines that was recorded 

much earlier in the monitoring period. It is beneficial to establish whether the measured 

change over the recording period (of three years) are related to sensor systems aging effects, 

or are in fact due to structural changes (which may indicate real structure degradation). 
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4. Accelerated Aging Trial 

4.1. Overview 

The previous section indicated an age-dependent effect that imposed a limitation on the 

performance of the installed sensor system. It is believed that this effect may be due to 

changes in the sensor system that do not correspond to damage or degradation of the 

structure.  

The existing results make it difficult to separate bond/transducer aging from structural 

changes. Therefore, it was believed beneficial to undertake a trial where it was known that 

no test specimen change occurred, conditions could be controlled, and where repeats could 

be conducted to provide more confidence in reliability of results. 

To try to determine whether any of this noise can be removed by understanding the age-

dependent effects of bonding on recorded signals, a trial was devised. Accelerated aging of a 

typical transducer and bond was attempted, with long-term aging simulated in a much 

shorter space of time through high temperature exposure and temperature cycling. 

In order to achieve this, first a hardware system needed to be set up. 

 

4.2. Hardware system 

For this work, 1 mm thick, 20 mm diameter PZT (lead zirconate titanate) piezoelectric 

transducers were used, which were optimised for 50-200 kHz in a plate thickness up to 3 

mm. A single pair of transducers was used per sample, operating in pitch-catch modality. 

These were bonded to 2.5 mm aluminium sheet, of approximately 300 x 100 mm. The 

bonding method used was a two-part epoxy adhesive (Araldite (Araldite, 2011)). 

The bond was achieved by applying a slight excess of adhesive onto the mechanically 

abraded and solvent cleaned surface of the plate, positioning the unsoldered ceramic 

transducer, then pressing firmly to remove any excess adhesive between the transducer and 

plate. A consistent mass of approximately 1 kg was then applied for 5 minutes until the bond 

was set. A further 24 hours were given to ensure consistent curing of the bonds across the set 

of test samples. 

Four samples were used, three of which were temperature cycled to provide an 

understanding of variation and confidence in repeatability, and an additional control was 

used as a reference from which to assess the significance of any changes. 
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A USB Oscilloscope with function generator (Handyscope HS5), was used for data 

acquisition, controlled by laptop. A 130 kHz high-pass hardware filter was used to remove 

any low frequency contribution from external vibration. A diagram of the setup is shown in 

Figure 21. 

 

Figure 21 Diagram of hardware setup used for accelerated aging work 

4.2.1. Velocity and Frequency Thickness 

To be able to perform analysis of the recorded signals, it is necessary to determine the 

properties of the guided wave of interest. A primary component of this is the frequency and 

plate thickness dependent propagation velocity of lamb wave modes. Any other setup with 

the same product of frequency-thickness (as well as same material, etc.) will behave in the 

same way. This is useful for transferability/generalisation of results, and makes it possible to 

create laboratory setups with high frequency low thickness that emulate a realistic industrial 

application on high-thickness materials. The benefit of this for trials, is that the acquiring, 

safe handling, heat treating and storage of thinner plate than that used in marine applications 

makes it significantly more practical. 

Wave packet speed is determined by using a dispersion curve diagram (like the one shown in 

Figure 22), for a specific value of frequency and plate thickness product. For a 250 kHz 

centre frequency input pulse in a 2.5 mm aluminium plate: 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 250 𝑘𝐻𝑧 × 2.5 𝑚𝑚 = 625 𝑘𝐻𝑧 𝑚𝑚 (45) 

Using a dispersion curve in Figure 22, approximate group velocities for zero-order 

(fundamental mode) anti-symmetric (A0) and symmetric (S0) modes were determined to be 

3100 and 4750 m/s, respectively. 
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Figure 22 Aluminium dispersion curve (Zhao, et al., 2017) with values annotated (green) for a frequency 

thickness product of 625 kHz mm. 

4.2.2. Acquisition parameters 

A five-cycle Hanning tone-burst was used as an input signal in line with previous work in 

this area (Clarke, et al., 2010) (Croxford, et al., 2010). 

Since acquisition time and data size were not of significant importance compared to other 

aspects of the experiment, a high sample rate, bit depth and gate length were used. The 

sampling rate was set at 5 MHz for a 200 kHz centre frequency, giving a large margin 

between the useful frequency range and the limiting Nyquist frequency. The use of 12-bit 

digitisation was sufficient for the test. 

A gate length of 500 µs was used, which, using the slowest fundamental wave mode speed of 

3100 m/s, gives a propagation distance of 1.55 m (five time the longest dimension of the 

plate). 

4.2.3. Noise measurement 

In order to predict the noise level, and therefore performance, of the overall monitoring 

system, a test was conducted. 500 recordings were collected in sequence, to cover a 

statistically significant representation of the variability of the recording system at a single 

operating point and age. The results were then passed through the training algorithm 

(described in Section 3), to give a quantitative indicator of noise suppression under ideal 
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conditions. The result of this is the absolute limit of certainty around any results produced 

using this method. 

 

Figure 23 Parameters used for training on 500 signals recorded sequentially, under the same conditions 

The tests show a low variability of stretch parameters used (Figure 23), with less than ±10% 

variability in amplitude scaling, which is observed to be the most variable feature of the 

signals. The variability of time stretch (temperature compensation) of less than 0.05%, 

verifying that spurious temperature compensation has not occurred. This corresponds to 

approximately a 3°C temperature change, based on an approximate fractional change in 

arrival time of the wave packets of 1 m/s per °C. The results demonstrate that the training is 

operating correctly when no compensation is required. 

4.2.4. Test conditions and recording regime 

Four test pieces were used: one control samples, and three that would be cycled through high 

temperatures to simulate long-term aging effects. 

Manufacturer guidance on maximum operating temperature for similar standard two-part 

epoxy glue state values of ~90°C for continued exposure, and 150°C for short periods 

(Gorilla Glue, 2019) (Permabond, 2014) (Araldite, 2014). 

The samples and bonded transducers were left in an oven varying in temperature between 

60°C and 100°C, before cooling to room temperature for data recording. All data acquisition 

was performed when the samples had reached ambient temperature. 
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A reading was made every 1 – 2 days (one cycle of temperature), for a total of 14 days to 

identify whether accelerated aging could be identified in the data. In general, the recording 

frequency of a monitoring system is set based on how rapidly operating/environmental 

conditions change, to capture data to represent all asset states sufficiently. For this test, all 

measurements were made at (broadly) the same conditions, so it was not necessary to have a 

recording frequency as high as a formal monitoring exercise. Instead, the recording 

frequency was set to capture trends over the timescale of the bond’s aging process.  

Instead of a single measurement being made at each age, ten recordings were made 

sequentially. The mean was then calculated at every time point for all ten recordings, giving 

an averaged signal. This averaging of multiple time-base data sets was performed to reduce 

any random noise component that may have introduced variability.  

 

4.3. Results 

4.3.1. Signal selection 

The first arrival signal was isolated using the same time-domain cropping method described 

in Section 3.5.2 (Tukey window). The cropped first arrival signal for one of the three 

samples, as well as the control sample, is shown in Figure 24. No digital frequency filtering 

was performed. 

 

Figure 24 First arrival (time domain) signal from sample 1 (left) and the control sample (right) 

The selected signal was then transformed into the frequency domain using the Fast Fourier 

Transform (FFT). The frequency content of the selected signal is presented in Figure 25. 

As the first arrival signal constitutes only a small proportion of the overall time trace 

recorded, the number of samples was very low. To up-sample the frequency content for 

easier analysis, the time-domain signal was zero-padded after the signal of interest, before 

the FFT operation was performed.  
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Figure 25 Frequency content of windowed signal for sample 1 (left), and control sample right) 

From an initial assessment of frequency response (Figure 25), it was apparent that the control 

sample had lower variation in amplitude of the centre frequency than the results from the 

heat-treated/aged sample. 

To quantify any changes, and permit comparison between signals, three measures were 

extracted from the frequency-domain content. The -6 dB bandwidth, centre frequency, and 

(maximum) amplitude of centre frequency, were used to assess the transducer response over 

the aging period.  

4.3.2. Bandwidth  

Bandwidth was calculated as the difference between the two frequency points on the 

frequency plot that have amplitude equal to half (-6 dB) of the maximum amplitude of the 

frequency plot (centre frequency). 

 

Figure 26 The -6 dB bandwidth of first arrival signal as a funciton of age for tests one to three, corresponding to 

the three samples, as well as the control sample that was not exposed to tmeperature cycling 
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The bandwidth variation (Figure 26) over the aging period shows no apparent trend. It is 

clear, however, that a certain amount of variability exists between each sample, much greater 

than that for each individual sample. This is expected to be due to differences in transducer 

bonding caused by inconsistency in methodology for attachment.  

Since these data points represent the metric calculated for an average signal calculated from 

ten individual time traces, it was believed that additional information about variability may 

be gleaned from calculating the metric for each of the individual time traces before 

averaging. 

 

Figure 27 Bandwidth for sample 1, with black circles representing measurements for each time-trace, and the 

blue line representing the values for the averaged time trace. A small x-axis jitter is added to each data point to 

improve clarity where data points overlap. 

Figure 27 shows the sample 1 values measured for each of the 10 individual recorded time 

trace at each age (before averaging time-domain signals), as well as value for the averaged 

signal. This figure represents results for the (similarly coloured) line for sample 1 in Figure 

26. The results of the other samples are given in Figure 39, Figure 40 and Figure 41 in the 

appendix. It is worth noting that the data points in Figure 27 are given in a scatter plot, as 

there is no link between any single data point at one age, to another data point at another age.  

Assuming there was no trend with age, the standard deviation of all measured values for 

sample 1 was calculated as 1.6 kHz, or ~2% of the mean, broadly consistent with the other 

samples (see Table 2). The variation in mean values, however, was much higher. The 

observed difference between samples is quantified in Table 2, showing a 11 kHz maximum 

difference in mean value between sample 1 and sample 3, equating to 11% of the mean of all 

values for all samples. 
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Table 2 Mean and standard deviation of bandwidth for samples 1 to 3, and control 

Bandwidth (kHz) 

Sample Mean Standard deviation 

1 96 1.6 

2 100 0.6 

3 107 1.2 

Control 98 2.2 

 

Although larger, the significance of variation between different sensors is lesser compared to 

single sample variations. The training technique used operates on the principle of change, so 

the nominal starting values are less significant. However, it still important to consider, and 

reduce where possible, the variability, to ensure operations are valid for all sensors. For 

example, if the digital filter used is designed for the bandwidth of a typical sensor pair, it 

must be considered whether this filter is also appropriate for any other credible variability in 

bandwidth. 

Additionally, sensor adhesion method was not the focus of this project, and so with limited 

access to equipment and finite time, less practise and attention were focused on a 

methodology for repeatable attachment. In a real-world implementation, it is recommended 

that more attention should be given to the design of a robust methodology for sensor 

attachment, reducing variability between sensors.  

4.3.3. Centre Frequency 

The centre frequency was extracted from each of the frequency-domain plots. This was 

measured by selecting the frequency at which the maximum amplitude occurred. 

 

Figure 28 Centre frequency of first arrival signal as a funciton of age for tests one to three, corresponding to the 

three samples, as well as the control sample that was not exposed to temperature cycling 
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There was also no trend observed in the centre frequency for the three samples over the 

aging period (Figure 28). Although there is a large variability between samples of mean 

values, the standard deviation of recordings is comparable between the aged samples and 

control (Table 3).  

Figure 38 to Figure 41 in the appendix show the spread of data points for individual time 

traces (before averaging) over the aging range. 

Table 3 Mean and standard deviation of centre frequency for samples 1 to 3, as well as the control sample 

Centre Frequency (kHz) 

Sample Mean Standard deviation 

1 184 1.4 

2 189 1.4 

3 191 0.8 

Control 171 1.5 

 

4.3.4. Amplitude 

Peak amplitude of the frequency-domain plot for each sample was extracted. This is known 

to be one of the signal features most affected by temperature.  

 

Figure 29 Max amplitude (with arbitrary units) of the frequency-domain plot, as a funciton of age for tests one to 

three, corresponding to the three samples, as well as the control sample that was not exposed to tmeperature 

cycling 

The results for the control sample, displayed in Figure 29, show a consistent peak amplitude 

across the testing period. For the aged samples, however, there is a slight trend of increasing 
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maximum amplitude from an age of 3 days up to 9 days, before then decreasing below the 

initial value. This was not observed in the control sample. 

To evaluate this trend in further detail, the maximum amplitude metric was calculated for 

each of the 10 individual time traces per aging point before averaging. 

 

Figure 30 Maximum amplitude for sample 1, with blue circles representing measurements for each time-trace, 

and line representing the values for the averaged time trace. 

Figure 30 shows a degree of variability of maximum amplitude around the value for the 

averaged time-trace. This is, however, is much smaller than the trend observed with heat 

treatment. This gives confidence in the significance of the observed change in signal 

amplitude as the sample, transducer and bond were progressively heat treated. 

It was proposed that max amplitude of frequency-domain plot may be limited as a metric, as 

is it affected by bandwidth, with a broader spectrum having lower peak amplitude. 

Therefore, sum of squares (representing signal energy) was compared as a metric for overall 

amplitude. 
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Figure 31 Max amplitude (left) and sum energy of frequency domain plot (right) of the frequency-domain plot, as 

a function of age. Both plots have arbitrary y-axis units. 

Figure 31 shows a comparison of trends between the two metrics. It can be seen that the two 

metrics are comparable. 

As amplitude is known to be affected by temperature during recording, it was important to 

establish whether the trends observed were due to an aging effect, or as a result of 

inconsistencies in cooling. If the sample and measurement system were not cooled to room 

temperature (the bond and transducer may still be above room temperature when the sample 

has cooled), then the aged samples would exhibit different amplitude values, not linked to 

aging effects. 

4.3.5. Temperature when recorded 

To evaluate recording temperature effects, where readings were not performed under 

identical conditions, a test was set up where the aged samples were removed from the high 

temperature environment before being recorded at various stages of cooling. Figure 32 

shows the variation in the maximum amplitude of the frequency domain plot as a function of 

cooling time. It can be seen that the sample cooling is associated with a decrease in 

amplitude. 
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Figure 32 Max amplitude (with arbitrary units) as a function of cooling time (in minutes) for the three samples 

that were exposed to high temperature conditions. The aging results have been overlayed, with reduced opacity 

and x-axis scaling to permit comparison of magnitudes. 

There was a 28% increase in amplitude at higher temperature than when fully cooled. The 

amount of cooling time for the first two data points was considerably less (and temperature 

of the sample and bond considerably higher) than during the aging trial. It can be, therefore, 

assumed that there was less variability of temperature in the aged sample tests, and so the 

amplitude effect on the results is less than 28%.  

Additionally, as shown by the overlayed aging data in Figure 32, the range of amplitude 

values observed was still larger the range observed in the cooling trial, despite the cooling 

trial being recorded at a much greater range of temperatures. It can be concluded that some 

small component of the trend observed in the aging trial may be an effect of lack of control 

of temperature during recording, however there is another source of variability. 

For completeness, centre frequency and bandwidth were also evaluated over the same 

cooling period. 
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Figure 33 Centre frequency (left) and bandwidth (right) as a function of cooling time (in minutes) for the three 

samples that were exposed to high temperature conditions. 

Figure 33 shows no significant trend between sample temperature and bandwidth or centre 

frequency. Additionally, different samples were affected differently by the temperature 

difference (sample 1 increasing in bandwidth, and sample 3 decreasing). 

4.3.6. Assessment of longer-term effects 

The final validation exercise in this work used to establish whether any trend exists, was to 

look at the metric values after a much longer aging period. 

 

Following the two-week aging trial, the sample aging was continued (without regular data 

collection). A further data set was collected 70 days after sensor bonding. 

 

Figure 34 Maximum amplitude (with arbitrary units) of the frequency-domain plot, as a function of age, 

including additional reading. Dotted lines indicate values at age = 0. 
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Figure 34 shows the amplitude measure not continuing the trend observed in the earlier 

period, and instead increasing slightly toward the initial value (at age = 0). Therefore, it can 

be concluded that no lasting amplitude effect resulted from the aging period. It is clear, 

however, that some change in amplitude was observed that cannot credibly be attributed to 

temperature-at-recording (Figure 32). The control values varied by a very small degree 

(±6%) over the period of heat treatment, demonstrating that it was the heat-treatment that 

caused the significant variation in maximum amplitude across the aging period for all test 

(non-control) samples. 

Bandwidth and centre frequency results are shown in Figure 35. These also show no 

discernible overall trend with age across the three samples.  

 

Figure 35 Bandwidth (left) and centre frequency (right) of first arrival signal as a funciton of age for three 

samples, including additional reading. Dotted lines indicate values at age = 0. 

4.3.7. Baseline subtraction 

The most important measure for this change in response, is the effect on the signal 

subtraction algorithm. 

Figure 36 shows the heat-treated samples (1 to 3) exhibited a much greater change, as 

quantified by the maximum of residual after subtraction, compared with the control sample.  

It should be noted that the first data point is omitted, as this reading was used as the 

reference baseline. Therefore, the first plotted data point (age = 2) represents the difference-

metric change between a perfect match (reference at age = 1) and the recording after a first 

heat-treatment cycle.  
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Figure 36 Difference metric value compared to the first recorded signal (at age = 0) as a function of aging. 

Sample 1 (top left), sample 2 (top right), sample 3 (bottom left) and the control sample (bottom right). The black 

dotted line represents the worst match of the control sample (bottom right), as a reference. The orange line 

indicates the -25 dB threshold used in the training algorithm work (Section 3.6). 

There is a change in the recorded signals over the heat-treatment period. This is observed in 

Figure 36, with later (heat treated) signals poorly matching with the signal at age = 0, or 

early in the heat treatment process. For samples 1-3, the greatest difference metrics between 

a signal recorded at age = 0, and subsequent signal after heat treatment, was between -6 to -

10dB of the first arrival signal. This is compared to -18dB of the first arrival signal for the 

Control (for which the adhesive bond is still expected to have cured over the time-period 

used). It is noted that the manufacturer recommends a cure time of 16 hours at elevated 

temperature (40°C) for the bond to reach a stable strength (Araldite, 2011), however this 

cannot reasonably account for the substantial change of the heated samples relative to the 

control. 

It is clear, then, that some other effect is present, other than the measures used in Sections 

4.3.2, 4.3.3 and 4.3.4 (amplitude, bandwidth and centre frequency), since all these measures 

were shown to not exhibit a strong trend over the aging period. Additionally, the metric that 

most strongly correlated with age, maximum amplitude, will have been partially corrected 

for by the subtraction algorithm.  

 

Sample 1 
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Sample 3 

 

Control 

sample 
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Figure 37 Difference metric value of 50 sequentially recorded signals, each created by averaging 10 signals, 

compared to a single baseline signal 

Figure 37 displays the difference metric due to variations in equipment. The signals were all 

collected at the same age and under the same conditions. The difference between these 

signals is of the order of -40 dB, significantly lower than the effects observed in Figure 36. 

 

4.4. Conclusions on the Accelerated Aging Trial  

Three samples were exposed to high temperature cycling, with a fourth used as a control. A 

change was observed in the three heat-treated samples using the signal subtraction method 

presented in Section 3. This indicates that some accelerated aging was experienced by the 

sensors and bond, similar to that seen in the long-term duration data in Section 3. 

In order to attempt to identify the specific signal change occurring with heat-treatment, three 

metrics were measured on a windowed section of the signal: bandwidth, centre frequency 

and amplitude. 

Bandwidth and centre frequency were observed to be only slightly affected by temperature 

and the heat treatment process. The amplitude of the windowed section of the signal did, 

however, vary significantly over the course of the heat treatment. The observed change was 

an increase in amplitude across all three aged samples, before reducing back to near the 

original value before heat treatment. 

It was hypothesised that this trend may have been a result of differing sample temperatures at 

recording, since transducer amplitude behaviour is known to vary with temperature. 

However, an investigation into response as a function of cooling time (and so recording 
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temperature) demonstrated that the temperature-dependent effect was not sufficient to 

wholly explain the trend observed in heat treatment. The data suggests, then, that heat 

treatment affects amplitude, however, an additional aging effect occurs that is not 

represented by bandwidth, centre frequency or amplitude, since all these measures returned 

to their original value (before heat-treatment). 

The reduction in signal subtraction performance with heat treatment, as described above, 

may be similar to, and somewhat representative of, the change observed in the long-duration 

data previously collected, however, there is insufficient information to be able to determine 

this.  
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5. Overall Conclusions and Recommendations for Further 

Work 

5.1. Conclusions 

There are many naval applications for Structural Health Monitoring solutions, and despite 

many recent advances in the enabling technologies, quick adoption into industry still appears 

unlikely. Many technical challenges and areas of insufficient understanding still exist that 

present risk when businesses consider significant investment into these systems. 

Qualification, and long-term operation are two significant obstacles. 

It is likely that qualification will require a blend of NDE qualification methodologies, where 

each parameter and part of the system is understood, and data-driven technology 

qualification, where statistical analysis of results may be used to prove technologies that 

cannot be decomposed easily into demonstrable sub-tasks (often referred to as “black box 

methods”). The first part of this project concerned the understanding of the behaviour of a 

data processing algorithm on some previously recorded long-term data collected on a 

structure. 

Many Structural Health Monitoring methodologies require an initial training period to model 

the ‘undamaged state’ of the asset, from which deviations can be measured, and flagged as 

potential damage. 

The model of the undamaged state in this work is described by a set of baseline guided-wave 

ultrasonic testing signals recorded on an undamaged structure. The baseline stretch aspect of 

this method is used to fill gaps in recorded baselines, and to reduce the number of baselines 

required to model the undamaged state. The stretch involves a number of operations on 

recorded signals to emulate the effects of varying environmental and operational conditions.  

The greater the number of shift operation combinations trialled, the more likely a close 

match will be made between a baseline and new signal. Computational savings can be made, 

however, by assessing the most commonly used parameters for each operation. Additionally, 

this restricts the behaviour of the system so that each part of the model operates as predicted. 

That is, that each model is designed to model and compensate for a particular behaviour, so 

this ensures there is no overlap in role of each operation that may break the limits of 

applicability of each model. 

Depending on the application and availability of data, a balance of performance and 

computational burden/understood behaviour can be achieved through the control of 

interaction and extent of each shifting operation. In all cases, however, a larger number of 
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training datasets (resulting in larger coverage of baselines to model the normal state) was 

proposed to provide a much more robust system, permitting any baseline shifting operations 

to be used to accommodate for only small changes in conditions. 

One of the most significant limiting factors on the performance of the developed algorithm, 

and all methodologies based around making an initial baseline model of an asset state, is the 

benign change in sensors and their bonds that cannot be differentiated from defect growth. 

Therefore, the understanding and demonstration of SHM system performance over the 

timeframe of a realistic vessel service life is crucial to their transition from research to 

industry use. The second part of this project looked to further the understanding of aging 

effects that are present in long-term duration monitoring, and how to replicate them in 

practical time scales. 

A trial was undertaken to attempt to mimic the long-term changes on sensor systems in a 

shorter period of time. It was hoped that accelerated aging may be induced through the use of 

high temperature heat-treatment. A number of plate samples had transducers bonded to them, 

and were heat-treated, with measurements made at intervals to observe the effect on the 

recorded data from any heat-treatment induced changes. 

The samples that were heat treated did show a marked change over the heat-treatment period 

when compared to the control sample. Using a signal-subtraction-based measure of signal 

similarity, recordings made at the beginning and end were found to be poorly matched. The 

behaviour observed in the heat-treatment trial may have been a similar aging effect was to 

that observed in the long-duration recording. The specific data change that results in the 

reduced subtraction performance, however, is still yet to be determined, since this work 

found that amplitude, bandwidth and centre frequency were not reliable measures of the 

extent of the heat treatment on the samples. 

In conducting this work, many valuable results and methodologies were identified that 

further the understanding of the behaviour of Structural Health Monitoring systems. Much 

work remains, however, for industry-ready systems to be suitable for the replacement of 

current processes use to assess naval structures. 

 

5.2. Further work 

Perhaps the most valuable activities that could be conducted in the area of guided wave SHM 

is the conducting of long-term experiments or trials under controlled conditions. The 

availability of many different data sources monitoring as much about the potential effectors 

on system behaviour, means the performance, limitations and behaviour of SHM systems 
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can be understood and verified. This includes the independent measurement of the structural 

health with other methods (as well as the SHM system) during the trial, to permit 

conclusions to be drawn on sources of change observed. Additionally, observations about 

structure change (for example noting of areas of localised corrosion or loss of coatings), as 

well as recording of environmental and operating data to cross-reference to changes 

observed SHM data. 

For understanding of expected performance in a real application, the use of realistic data 

(and so trials) is vital. Without this it is difficult to quantitatively assess the viability of these 

methods for the replacement and reduction of current NDE practises. 

This work did not use signals containing damage, either physical or synthetically added. To 

properly assess a guided wave SHM system, the damage type and variability must be 

included in trials. Using principles of guided wave analysis, knowledge of component 

manufacture and typical causes of failure, as well as structural integrity assessment, 

application-specific criteria for indication sentencing may be determined. This can then be 

used to evaluate system performance against. 

The damage metrics considered for this work were limited to the basic measures presented in 

previous literature, RMS and maximum of a residual signal after subtraction. Both of these 

metrics have a different suitability, depending on the target reflector and complexity of the 

signal. For many real-world applications, it is necessary to detect different defect types, or 

both techniques may be of only limited suitability. Therefore, there is believed to be merit in 

the investigation into the use of combination difference-metrics, using both RMS and 

maximum amplitude of residual signals. Furthermore, the use of relative differences in 

metrics from each flaw type and morphology, may build an understanding that could 

increase ability for reliable characterisation and more complex sentencing rules. 

Due to the constraints on collection of data, and since synthetic damage was not considered 

for this work, there is a lack of the statistical analysis that would be required to evaluate 

probability of detection. Statistical analysis and modelling constitute a large part of the 

demonstration and evaluation of performance, and there is considerable value in this as 

future work.  

Certain improvements are proposed for the hardware system, which were not possible due to 

the time and equipment constraints on this work. The method of adhesion was not ideal in 

the trial, and the repeatability and consistency of bond would benefit from improvements in 

cleanliness and clamping pressure. Performing the bonding process in a vacuum bag is 

proposed as a method of degassing the bond to reduce contamination, and the known 
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pressure on the transducers during adhesive setting is expected to provide consistent bond 

properties. 

The electronics design was likely to introduce some noise from impedance mismatches. This 

was not expected to have a significant effect on this investigation due to its aims of 

measuring change over an aging period. However, for the design of a monitoring system, 

more care would need to be given to the design of the electronic circuit. 

Another area of work that was not investigated as part of this project, but that is vital for the 

implementation of a practical monitoring system, is the use of an array of sensors. This both 

enables larger area coverage but permits significantly more information to be elicited about 

the structure in the collection of the “full matrix” of transmitter and receiver pairs from an 

array. The result of this is the improved localisation and characterisation of indications 

where detection occurs in multiple recordings.  
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7. Acronyms 

RF Radio Frequency 

SHM Structural Health Monitoring. 

UT Ultrasonic Testing 

PZT Lead Zirconate Titanate 

NDT  Non-Destructive Testing 

NDE Non-Destructive Evaluation 

SNR Signal to Noise Ratio 

BSS Baseline Stretch Subtraction 

OBS Optimum Baseline Subtraction 

DC Direct Current 

FFT Fast Fourier Transform 
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8. Appendix 

 

Figure 38 Sample 1: Max amplitude of frequency plot for first arrival signal (left), frequency of max amplitude 

(centre), and -6 dB bandwidth about the centre frequency (right) 

 

Figure 39 Sample 2: Max amplitude of frequency plot for first arrival signal (left), frequency of max amplitude 

(centre), and -6 dB bandwidth about the centre frequency (right) 

 

Figure 40 Sample 3: Max amplitude of frequency plot for first arrival signal (left), frequency of max amplitude 

(centre), and -6 dB bandwidth about the centre frequency (right) 

 

Figure 41 Control sample: Max amplitude of frequency plot for first arrival signal (left), frequency of max 

amplitude (centre), and -6 dB bandwidth about the centre frequency (right) 


