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ABSTRACT

This thesis presents new methods for multivariate, survival and time series
analysis with network.

We begin by describing a new method for computing the projection median, its
influence curve and techniques for the production of projected quantile plots. A
theoretical result on the form of the influence curve and numerical simulations
are displayed. A comparison of the computational performance between the
projection median and other existing multivariate medians is conducted as
well. We also produce animated multidimensional projection quantile plots,
and all results are generated using our R software package Yamm.

The second section introduces Bayesian wavelet approaches to estimate the
density function and the hazard rate for right-censored data. To estimate the
hazard rate, a Bayesian wavelet threshold approach and a Dirichlet process
model are used, which shows good performance in our simulation examples.
To improve the density estimates, we use the detailed covariance structure
of the empirical wavelet coefficients, which enables a non-dyadic grid for the
evaluation points.

A method to estimate survival functions using recurrent lifetimes is moti-
vated in the third section, which allows the use of covariate information of
individuals to construct a network structure of separate clusters. Our method
shows an improvement on estimation performance when the number of data
points is not large enough for good performance using standard methods.

The last section provides a model for analysing multivariate time series based
on the structure of a network and exogenous regressors. Our model allows the
target series to be regressed by previous time lags of itself and its neighbours,
as well as another multivariate time series, which is related to the target
one on the same network. It is shown numerically that our model has a good
prediction performance with few parameters.
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C H A P T E R 1

INTRODUCTION

Methods for analysing high-dimensional data have increased in availability

for practical analysis. Meanwhile, the use of networks has been applied in

many statistical methods. This thesis focuses on the following four topics: a

multivariate median analysis, density and hazard estimation using wavelet

methods, survival function estimation and multivariate time series analysis

with networks.

Multivariate medians are robust estimates of the center of a multivariate

distribution, which are frequently used in practical data analysis. Chapter 2

introduces our new method to compute the projection median, yamm, which

is shown theoretically to be equivalent to the one proposed by Durocher and

Kirkpatrick (2005) and generalised by Basu et al. (2012). For the first time, we

provide a theoretical result on form of the influence curve for the projection

median, accompanied by numerical simulations. The theoretical computational

complexity for a variety of medians is also explained in this chapter, where

we also present some results of running times and accuracy of estimation for

real implementations of different medians. Our Yamm R package provides users

1
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with functions to compute the projection median according to the different

methods, which also introduces functions to produce animated plots of two-

and three-dimensional sets’ projected quantiles.

There is considerable use of wavelet methods in statistics that have been

applied to density and hazard rate function estimation. Based on the Bayesian

threshold method proposed by Silverman and Johnstone (2005b), Chapter 3

details our new methods to improve the accuracy of hazard rate estimation

for right-censored data. Furthermore, a non-parametric Bayesian method

with Dirichlet process prior and a bootstrap aggregating approach are applied,

which produces a better hazard estimation performance in simulation exam-

ples compared to the presmoothed method introduced by Lopez-de Ullibarri

and Jacome (2013). Based upon Herrick et al.’s work (2001), which exploits

the non-stationary variance structure of the wavelet coefficients, Chapter 3

also uses the detailed covariance structure of the empirical wavelet coefficients

to estimate the density function. We propose a multivariate version of the

"mixture of Gaussians" prior distribution in the Bayesian wavelet thresholding

approach to attempt to improve performance.

Chapter 4 carries out the survival estimates analysis using recurrent sur-

vival lifetimes, which we do forming groups of individuals according to their

separate covariate information. Basically, we construct a network with several

separate clusters of individuals and assume the lifetimes of individuals in the

same cluster are from the same independent distribution to improve the sur-

vival estimates for all individuals. Comparing to the AG model (Andersen and

Gill, 1982) (i.e. a generalised Cox’s regression model), the displayed simulation

2



examples show that our method usually has better performance when few

lifetimes per individual are available.

The analysis of high-dimensional time series based on the network struc-

ture of target nodes has become popular recently. Based on the generalised

network autoregressive model proposed by Knight et al. (2020), the last chapter

provides our new model, which also includes exogenous regressors. Basically,

the target series is regressed by the previous time lags of itself and its neigh-

bours, as well as another network time series. Real applications of wind and

COVID data show that our new model has a better out-of-sample forecasting

performance than some other multivariate time series models.

3



C H A P T E R 2

YET ANOTHER MULTIVARIATE MEDIAN

This chapter is joint work with Professor Guy Nason and has been published

(Chen and Nason, 2020b).

2.1 Introduction

This chapter introduces a new formulation of, and method of computation for

the projection median. Additionally, we explore its behaviour on a specific

bivariate set up, providing the first theoretical result on form of the influence

curve for the projection median, accompanied by numerical simulations.

Via new simulations we comprehensively compare our performance with an

established method for computing the projection median, as well as other ex-

isting multivariate medians displayed in section 2.4. We focus on answering

questions about accuracy and computational speed, whilst taking into account

the underlying dimensionality. Such considerations are vitally important in sit-

uations where the data set is large, or where the operations have to be repeated

many times and some well-known techniques are extremely computationally

4
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expensive.

In section 2.5, we briefly describe our R package that includes our new methods

and novel functionality to produce animated multidimensional projection quan-

tile plots, and also exhibit its use on some high-dimensional data examples.

2.2 Literature Review

The median is an estimator of location that is robust, i.e. not heavily influenced

by outlying values, which are, loosely speaking, points that are far from the

main body of the data. Let x = (x1, . . . , xk)T be a mutually independent and

identically distributed (i.i.d.) sample of length k ∈N from a univariate distribu-

tion with distribution function F. The univariate population median functional

M(F) is

M(F)= inf
{

x : F(x)≥ 1/2
}
= sup

{
x : F(x)≤ 1/2

}
. (2.1)

There are several equivalent definitions of the univariate median that all yield

same unique value of true median µ for a distribution F with a bounded and

continuous density f (µ) at µ.

For multivariate data there is no natural ordering of the data to enable the

choice of the middle observation in the same way as for one-dimensional data.

However, several different multivariate median concepts have been developed

that retain some characteristics of the univariate median. For example, an

early extension of the multivariate median was suggested by Hayford (1902),

5
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which is simply the component-wise median, also known as the vector of

marginal medians. The spatial median, also known as the L1 median, (Weber,

1929) and Tukey’s median (Tukey, 1975) are two other popular variants. Oja’s

median (Oja, 1983) provides an alternative to the spatial median, but it is

known to be more computationally expensive than other choices. These, and

others, are reviewed in Small (1990), Chaudhuri and Sengupta (1993), and Oja

(2013). We briefly review some of them here next, not least as we use them

later in our simulation study.

2.2.1 Component-wise median

Let X= (
x1, . . . ,xk

)T be an n-dimensional i.i.d. sample with distribution func-

tion F : Rn → R. We assume that the n marginal distributions have bounded

densities f1(µ1), . . . , fn(µn) at the uniquely defined marginal medians µ =
(µ1, . . . ,µn). The component-wise median, also known as the marginal sample

median, MC(X) ∈Rn minimises

k−1
k∑

i=1

{(|xi1 −m1|+ · · ·+ |xin −mn|)− (|xi1|+ · · ·+ |xin|
)}

, (2.2)

the sum of component-wise distances over m ∈ Rn, where m = (m1, . . . ,mn).

The corresponding population functional, MC(F), for the vector of population

medians minimises

E
{(|x1 −m1|+ · · ·+ |xn −mn|)− (|x1|+ · · ·+ |xn|

)}
. (2.3)

6
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2.2.2 Spatial Median

The spatial median MS(X), also known as the L1 median, minimises

k−1
k∑

i=1

{
||xi −m||− ||xi||

}
, (2.4)

over m ∈ Rn, where ||m||2 = ∑n
i=1 m2

i is the (squared) Euclidean norm. The

corresponding functional spatial median, MS(F), minimises

EF

{
||x−m||− ||x||

}
. (2.5)

2.2.3 Oja’s median

Let X = (
x1, . . . ,xk

)T be an i.i.d. sample in Rn with distribution function F :

Rn →R. The volume of the n-variate simplex determined by the n+1 vertices

(m1, . . . ,mn+1) is

V (m1, . . . ,mn+1)= 1
p!

∣∣∣∣det

 1 · · · 1

m1 · · · mn+1

∣∣∣∣. (2.6)

The Oja median, MO(X), minimises(
k
n

)−1 ∑
i1<···<in

V (xi1 , . . . ,xin ,m), (2.7)

over m ∈Rn. The corresponding functional MO(F) minimises

EF

{
V (xi1 , . . . ,xin ,m)

}
. (2.8)

2.2.4 Tukey’s median

Let X= (
x1, . . . ,xk

)T be an i.i.d. sample of size k in Rn with distribution function

F :Rn →R. Let H be the class of all closed half spaces in Rn. For each H ∈H ,

7
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define the empirical distribution

F̂(H)= n−1
k∑

i=1
I(xi ∈ H), (2.9)

where I is the usual indicator function. Then, define the depth, D(µ), of a point

µ ∈ Rn within the dataset, to be the infinum of F̂(H), that is taken over all

closed half spaces H for which µ ∈ H. Tukey’s median is defined as the set of

points µ of maximal depth.

2.3 The Projection Median

This section introduces our new method for computing the projection median,

yamm. We prove that yamm is equivalent to the projection median, as defined

by Durocher and Kirkpatrick (2005) in R2 and then generalised to higher di-

mensions by Basu et al. (2012). We also explore, theoretically and numerically,

the statistical behaviour of yamm using a mixture of two bivariate normal

distributions.

2.3.1 Review of the projection median

2.3.1.1 Projection median in R2

Let X be a multiset of points in R2 and θ ∈ [0,2π) be an angle. Let Xθ denote the

multiset defined by the projection of X onto the unit vector uθ = (cosθ,sinθ), so

Xθ =
{
uθ〈x,uθ〉 | x ∈X

}
, (2.10)

where 〈 ·〉 denotes the usual inner product.

8
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The projection median of a non-empty finite set X with points in R2 (Durocher

and Kirkpatrick, 2005) is

MP (X)=π−1
∫ 2π

0
med(Xθ)dθ, (2.11)

where med(Xθ) ∈R2 is the median of the projection of X onto the line through

the origin, parallel to uθ.

2.3.1.2 Generalisation of the projection median

Given a fixed positive integer, n ≥ 2, and a finite set of points X in Rn, the

n-dimensional projection median of X (Basu et al., 2012) is

MP (X)= n

∫
Xn−1 med(Xa)da∫

Xn−1 da
= n

∫
Xn−1

med(Xa)d f (a), (2.12)

where Xn−1 = {x ∈Rn : ||x|| = 1} is the unit n-dimensional hypersphere, med(Xa)

is the median of the projection of X onto the line through the origin parallel

to a, and f is the normalised uniform measure over Xn−1. Hence, for a point

x= (x1, x2, . . . , xn) ∈Xn−1, the n-dimensional spherical coordinates are given by

x1 = cosθ1

x2 = sinθ1 cosθ2

x3 = sinθ1 sinθ2 cosθ3

· · ·

xn−1 = sinθ1 · · ·sinθn−2 cosθn−1

xn = sinθ1 · · ·sinθn−2 sinθn−1, (2.13)

where each angle θ1,θ2, . . . ,θn−2 has a range of π and θn−1 has range of 2π.

9
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Also, the normalised uniform measure f over Xn−1 is given by

d f = dXn−1V∫ π
0

∫ π
0 · · ·∫ 2π

0 dXn−1V
, (2.14)

where dXn−1V = sinn−2θ1 sinn−3θ2 · · ·sinθn−2 dθ1dθ2 · · ·dθn−1 is the volume ele-

ment of the (n−1)-sphere.

Basu et al. (2012) proved that the projection median has a breakdown point of

1/2 for all n ≥ 2.

2.3.2 Yet Another Multivariate Median (Yamm)

Let X= (
x1, . . . ,xk

)T ∈Rk×n be a random sample of size k ∈N, xi ∈Rn. Let a be

a n×1 projection vector of unit length, 1k be the k×1 vector of ones and µ a

shift vector of length n. Let y be the projection of X onto a after X has been

shifted by µ:

y= (X−1kµ
T)a, (2.15)

where y ∈Rk. The univariate median m of the projected points y is

mX(µ,a)= m(y). (2.16)

Now define the integral

MX,m(µ)=
∫

{a:aTa=1}
mX(µ,a)2da. (2.17)

10
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The yamm estimator of location for X is

µ̂= yamm(X)= argminµMX,m(µ). (2.18)

Equations (2.17) and (2.18) illustrate the rationale behind yamm. Intuitively,

if the shift vector µ is far away from the true "middle" of the dataset, then

the magnitude of mX(µ,a), as well as the integral MX,m(µ), will be large. By

contrast, a smaller mX(µ,a) can be obtained when the µ is moving closer to the

true "middle" of the data set.

Instead of computing the squared value of mX(µ,a) for the integral, we also

considered the absolute value as an alternative. However, this leads to similar

numerical results. This is because we want to find the shifted vector µ as

our multivariate median. Basically, our yamm is produced by projecting a set

of multidimensional points onto a unit direction vector and minimising the

univariate median of the projected points among all directions. The purpose of

using the absolute or squared univariate median is to avoid the cancellation

of the negative and positive projected medians. Both methods are able to do

this well. Hence, in most situations, both methods will give similar results.

However, the squaring method may not be suitable when there are some large

outliers in the projected points, which will overemphasise the effect of the

outliers comparing to using the absolute loss.

We now generate two polar plots of the absolute value of mX(µ,a), when µ

is both close to, and far away, from the true median, respectively. A random

two-dimensional dataset with k = 100 points was generated, whose Tukey’s

11
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median computed as (2.78,8.16). Here, the Tukey median is to be interpreted

as a "sensible" middle of the data set. The shift vector µ is set to be (2.2,8)

and (2,7.5) respectively, and for each plot, two thousand random projections

were used to calculate the univariate median mX(µ,a), using methods to be

explained in Section 2.3.4. Figure 2.1 shows that when µ is near Tukey’s

median, the magnitude of each mX(µ,a) is less than 0.65, while a larger value,

ranging from 0 to 1.2, is shown in the figure when µ is far away from the

median. Overall, when integrated the quantity involving the µ is closer to the

Tukey median it gives a smaller result.

0

0.79

1.57

2.36

3.14

3.93

4.71

5.5

0.2 0.4 0.6 0.8 1 1.2

Figure 2.1: Polar plot (in radians) of the magnitude of mX(µ,a) with Grey line:
µ= (2.2,8) and Blue line: µ= (2,7.5).
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The projection median and yamm definitions seem similar, as both project the

multiset onto the line passing through the origin, and then take the median.

However, the projection median integrates med(Xa) directly over the unit hy-

persphere in Rn, whereas yamm minimises the objective function MX,m(µ) ∈R
over the shift vector µ. Despite these differences, the following theorem shows

that the projection median and yamm are identical.

Theorem. For any finite multiset X⊆Rn with n ≥ 2, yamm is equivalent to the

projection median.

Proof. Let X = (
x1, . . . ,xk

)T ∈ Rk×n be a random sample of size k ∈ N, xi ∈ Rn.

Let a be a n×1 projection vector of unit length, 1k be the k×1 vector of ones

and µ a shift vector of length n. y is the projection of X onto a after X has been

shifted by µ.

We now show the proof of the equivalence in 2-dimensional case, and then

generalise it to the higher dimensions. Let

a= aθ =
(
cosθ,sinθ

)T
, (2.19)

µ=
(
µ1,µ2

)T
, (2.20)

then we have

y= (X−1kµ
T)aθ and mX(µ,aθ)= m(y). (2.21)

13
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Hence, our objective function becomes

MX,m(µ)=
∫ 2π

θ=0
mX(µ,aθ)2dθ (2.22)

=
∫ 2π

θ=0

[
m

{
(X−1kµ

T)aθ
}]2

dθ (2.23)

=
∫ 2π

θ=0

{
m(Xaθ)−µTaθ

}2
dθ (2.24)

=
∫ 2π

θ=0
m(Xaθ)2 −2m(Xaθ)(µTaθ)+ (µTaθ)2dθ. (2.25)

To minimise MX,m(µ), we want

0= ∂

∂µ

∫ 2π

θ=0
m(Xaθ)2 −2m(Xaθ)(µTaθ)+ (µTaθ)2dθ (2.26)

⇐⇒ 0=
∫ 2π

θ=0

∂

∂µ

{
m(Xaθ)2 −2m(Xaθ)(µTaθ)+ (µTaθ)2

}
dθ (2.27)

⇐⇒ 0=
∫ 2π

θ=0

∂

∂µ

{
−2m(Xaθ)(µTaθ)+ (µTaθ)2

}
dθ (2.28)

⇐⇒
∫ 2π

θ=0

∂

∂µ
2m(Xaθ)(µTaθ)dθ =

∫ 2π

θ=0

∂

∂µ
(µTaθ)2dθ (2.29)

⇐⇒
∫ 2π

θ=0
2aθ m(Xaθ)dθ =

∫ 2π

θ=0
2aθ(µTaθ)dθ (2.30)

⇐⇒
∫ 2π

θ=0
aθ m(Xaθ)dθ =

∫ 2π

θ=0
aθ(µTaθ)dθ. (2.31)

Here, aθ m(Xaθ) is the projection median of the multiset X on aθ in R2, which

is defined in Equation (2.11) and denoted by med(Xθ). Also, when aθ =(
cosθ,sinθ

)T
, and µ=

(
µ1,µ2

)T
, we have

∫ 2π

θ=0
aθ(µTaθ)dθ =πµ. (2.32)
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Hence, ∫ 2π

θ=0
med(Xθ)dθ =πµ (2.33)

1
π

∫ 2π

θ=0
med(Xθ)dθ =µ, (2.34)

which shows that the shift vector is the projection median in R2 minimising

our objective function MX,m(µ).

Our proof for higher dimensions has a similar structure. For n > 2, let

µ=
(
µ1,µ2, . . . ,µn

)T
, and a= aθ1,θ2,...,θn−1 =

(
a1,a2, . . . ,an

)T
, such that

a1 = cosθ1

a2 = sinθ1 cosθ2

a3 = sinθ1 sinθ2 cosθ3

· · ·

an−1 = sinθ1 · · ·sinθn−2 cosθn−1

an = sinθ1 · · ·sinθn−2 sinθn−1. (2.35)

Taking the volume element of the hypersphere into account, we obtain the

objective function as follows

MX,m(µ)=
∫ 2π

θn−1=0

∫ π

θn−2=0
· · ·

∫ π

θ1=0
mX(µ,a)2 sinn−2(θ1)sinn−3(θ2) · · ·

sin(θn−2) dθ1 · · ·dθn−2 dθn−1. (2.36)

To minimise MX,m(µ) we require

∂

∂µ
MX,m(µ)= 0. (2.37)
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After some manipulations similar to the two-dimensional case, we obtain∫ 2π

0

∫ π

0
· · ·

∫ π

0
med

(
Xθ1,...,θn−1

)
sinn−2(θ1) · · ·sin(θn−2)dθ1 . . .dθn−2 dθn−1

=
∫ 2π

0

∫ π

0
· · ·

∫ π

0
a(µTa)sinn−2(θ1) · · ·sin(θn−2)dθ1 . . . dθn−2 dθn−1. (2.38)

Plugging the projection vector a into the right hand side of Equation (2.38), we

have ∫ 2π

0

∫ π

0
· · ·

∫ π

0
med

(
Xθ1,...,θn−1

)
sinn−2(θ1) · · ·sin(θn−2)dθ1 . . .dθn−2 dθn−1

=n−1
{∫ π

0
sinn−2(θ1)dθ1 · · ·

∫ π

0
sin(θn−2)dθn−2

∫ 2π

0
dθn−1

}
µ, (2.39)

which is the definition of the projection median in higher dimensions. This

means the shift vector µ minimising our objective function MX,m(µ) is the

projection median in Rn with n ≥ 2.

2.3.3 Yamm behaviour on a bivariate normal mixture

To gain insight about the theoretical behaviour of yamm we study the case of

yamm applied to a mixture of two bivariate normals, where one is thought of as

the bulk and the other as the outlier of the distribution. Such a setup enables

us to evaluate the robustness of yamm. We numerically and theoretically

assess the influence curve when moving the outlier far from the bulk.

The bivariate mixture is a toy example. It is probably the simplest one that

allows us to evaluate the response of the yamm to outliers, which does not
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include any other free parameters that may affect the behaviour. Our example

provides insight on the behaviour of the yamm, but it is not representative of

real life. Even in some two-dimensional real problems, there are sometimes

other behaviours such as multiple clusters.

2.3.3.1 Bivariate mixture setup

Let X1 ∼ N
(
ν1,Σ1

)
and X2 ∼ N

(
ν2,Σ2

)
be independent bivariate normal random

variables, where X1 = (X11, X12)T , X2 = (X21, X22)T with mean vector ν1 =
(ν11,ν12)T and ν2 = (ν21,ν22)T . Let R(θ) be a rotation matrix with angle θ given

by

R(θ)=

cosθ −sinθ

sinθ cosθ

 . (2.40)

We are interested in the first row of this matrix, which describes the projection

onto direction θ. Let Yi = (Yi1,Yi2)T =R(Xi −µ) for i = 1,2 respectively, where

µ= (µ1,µ2)T is a shift vector mentioned in (2.15). Basic multivariate theory

shows that

Yi ∼ N
{
R(νi −µ), RΣiRT

}
, for i = 1,2. (2.41)

Denote Yi = (Yi1,Yi2)T , Yi1 is the first entry of Yi for i = 1,2. Then, it is

immediate that Yi1 ∼ N(si, σ2
i ), where

s1 = (ν11 −µ1)cosθ− (ν12 −µ2)sinθ and σ2
1 = (RΣ1RT)1,1, (2.42)

s2 = (ν21 −µ1)cosθ− (ν22 −µ2)sinθ and σ2
2 = (RΣ2RT)1,1. (2.43)
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The mixture distribution that we study is

fW (w1,w2)= (1−ε) fX1(w1,w2)+ε fX2(w1,w2), (2.44)

where fXi is the density of X i, and ε ∈ [0,1], is typically small. Here, fX1 is

considered to be the bulk of the distribution and fX2 the outlier.

2.3.3.2 Projected distribution

Based on the bivariate setup above, the projected distribution is

fY (y)= (1−ε)φs1,σ2
1
(y)+εφs2,σ2

2
(y), (2.45)

where s1, s2,σ2
1,σ2

2 are as above and φ is the standard normal density.

The distribution function of the projected Y (θ) is

FY (y)= (1−ε)Φs1,σ2
1
(y)+εΦs2,σ2

2
(y), (2.46)

where Φ is the standard normal distribution function. We require the median

of the projected distribution, i.e. find

ym(ε,θ, s1, s2,Σ1,Σ2) such that FY (ym)= 1/2. (2.47)

Finding an analytic exact solution for ym is difficult. Hence, we will simplify

the problem and assume that Σ1 =Σ2 = I2, the identity matrix. Since R(θ) is

an orthogonal matrix, this means that σ2
1 =σ2

2 = 1 and (2.46) becomes

FY (y)= (1−ε)Φ(y− s1)+εΦ(y− s2). (2.48)
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For small ε, we know that the median should be close to the median of the bulk,

so the median of FY should be close to s1, the median of the first component of

the mixture in Equation (2.48).

2.3.3.3 Theoretical approximation of Yamm on the mixture

We derive a theoretically based approximation to the empirical influence func-

tion. We proceed by using a Taylor series expansion of FY (y) around s1, the

quantity we know is close to our median:

FY (y)≈
[
1+ε−εErfc{(s1 − s2)/

p
2}

]
/2

+ (2π)−1/2 [
1−ε+εexp{−(s1 − s2)2/2}

]
(y− s1)

+O{(y− s1)2}, (2.49)

where Erfc(y)= 2π−1/2 ∫ ∞
y e−t2

dt. When y is close to s1, Equation (2.49) is ap-

proximately equal to 1/2 when ε is small, which is the behaviour we expect.

To find an approximation to the median we solve FY {ym(θ)} = 1/2. Ignoring

remainders, subtracting 1/2 off both sides of Equation (2.49) gives

ε

2

[
Erfc{(s1 − s2)/

p
2}−1

]
=

[
1−ε+εexp{−(s1 − s2)2/2}

]
(ym − s1)

p
2π

, (2.50)

and then

ym(θ)≈ s1 +
ε
p
π/2

[
Erfc{(s1 − s2)/

p
2}−1

][
1−ε+εexp{−(s1 − s2)2/2}

] . (2.51)
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Now using

Erfc{(s1 − s2)/
p

2}= 2Φ{(s2 − s1)/
p

2}, (2.52)

and exp{−(s1 − s2)2/2}=p
2πφ(s1 − s2), we can write

ym(θ)≈ s1 +
ε
p
π/2

(
2Φ{(s2 − s1)/

p
2}−1

)
1−ε−p

2πεφ(s2 − s1)
. (2.53)

For small ε the denominator is close to 1. From Equations (2.42) and (2.43), we

can write:

s2 − s1 = (ν21 −ν11)cosθ− (ν22 −ν12)sinθ = δ1 cosθ−δ2 sinθ, (2.54)

where δ1 = ν21 −ν11 and δ2 = ν22 −ν12. Thus

ym(θ)≈
{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

}
+ ε

p
π/2

[
2Φ{(δ1 cosθ−δ2 sinθ)/

p
2}−1

]
1−ε−p

2πεφ(δ1 cosθ−δ2 sinθ)
. (2.55)

According to Equation (2.17), our job is to find the optimal µ∗ = (µ∗
1 ,µ∗

2 )T , which

minimises

M =
∫ 2π

0
y2

m(θ)dθ. (2.56)

The integrand involves the standard normal distribution function, which

is tricky to handle analytically. Hence, we use the approximation, φ(z) ≈
(1+ cos z)/2π, for −π < z < π, for the standard normal density, Johnson et al.

(1995), which enables the following proposition.
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2.3. THE PROJECTION MEDIAN

Proposition. Let X1 = (X11, X12)T and X2 = (X21, X22)T . Suppose that X1 ∼
N

(
ν1,Σ1

)
and X2 ∼ N

(
ν2,Σ2

)
independently, where ν1 = (ν11,ν12)T and ν2 =

(ν21,ν22)T , respectively. Let the mixture, W , of X1 and X2 be

fW (w1,w2)= (1−ε) fX1(w1,w2)+ε fX2(w1,w2),

where ε ∈ [0,1] is considered small.

An approximation of the yamm estimator, µ∗ = (µ∗
1 ,µ∗

2), is

µ∗
1 =ν11 +π−1/2Rε

(
1−R2/32+R4/1536

)
cosα,

µ∗
2 =ν12 +π−1/2Rε

(
1−R2/32+R4/1536

)
sinα, (2.57)

where R2 = (δ2
1 +δ2

2), δ1 = ν21 −ν11, δ2 = ν22 −ν12 and α = arctan(δ2/δ1). The

approximation we use is valid whenever
∣∣R cos(θ+α)

∣∣ < p
2π, where θ is the

projection direction when computing yamm. This inequality is true for all θ

whenever R <p
2π.

Proof. According to Section 2.3.3.3, we need to find the optimal µ∗ = (µ∗
1 ,µ∗

2)T

minimising

M =
∫ 2π

0
y2

m(θ)dθ, (2.58)

where

ym ≈
{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

}
+ ε

p
π/2

[
2{Φ{(δ1 cosθ−δ2 sinθ)/

p
2}−1

]
1−ε−p

2πεφ(δ1 cosθ−δ2 sinθ)
. (2.59)

We do it by splitting the integrand into three terms:
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J1(θ)=
{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

}2
, (2.60)

and

J2(θ)=2
{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

}
ε
p
π/2

[
2{Φ{(δ1 cosθ−δ2 sinθ)/

p
2}−1

]
1−ε−p

2πεφ(δ1 cosθ−δ2 sinθ)
, (2.61)

and

J3(θ)= πε2 [
2{Φ{(δ1 cosθ−δ2 sinθ)/

p
2}−1

]2
/2{

1−ε−p
2πεφ(δ1 cosθ−δ2 sinθ)

}2 . (2.62)

Now, we compute the integration term by term. The first term integration is

∫ 2π

0
J1(θ)dθ =

∫ 2π

0

{
(ν11 −µ1)2 cos2θ−2(ν11 −µ1)(ν12 −µ2)sinθ cosθ

+ (ν12 −µ2)2 sin2θ
}

dθ

=π
{
(ν11 −µ1)2 + (ν12 −µ2)2

}
. (2.63)

The key part of the second integrand is the "−1" part of Equation (2.61), which

we define

J2,1(θ)= (ν11 −µ1)cosθ− (ν12 −µ2)sinθ

1−ε−p
2πεφ(δ1 cosθ−δ2 sinθ)

. (2.64)

Now

J2,1(θ+π)= (ν11 −µ1)cos(θ+π)− (ν12 −µ2)sin(θ+π)

1−ε−p
2πεφ{δ1 cos(θ+π)−δ2 sin(θ+π)}

(2.65)

=
−

{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

}
1−ε−p

2πεφ{−(δ1 cosθ−δ2 sinθ)}
(2.66)

=−J2,1(θ), (2.67)
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as cos(θ+π)=−cosθ, sin(θ+π)=−sinθ and φ(−x)=φ(x). So,∫ 2π

0
J2,1(θ)dθ =

∫ π

0
J2,1(θ)dθ+

∫ 2π

π
J2,1(θ)dθ (2.68)

=
∫ π

0
J2,1(θ)dθ+

∫ π

0
J2,1(θ+π)dθ (2.69)

=
∫ π

0
J2,1(θ)dθ−

∫ π

0
J2,1(θ)dθ = 0. (2.70)

Hence, we only need to look at the non-“−1” part of Equation (2.61), and, in

fact, redefine J2 to omit that term. So, we look at

J2(θ)= 2{(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

× ε
p

2πΦ{(δ1 cosθ−δ2 sinθ)/
p

2}

1−ε−p
2πεφ(δ1 cosθ−δ2 sinθ)

(2.71)

= 2ε
p

2πΦ{(δ1 cosθ−δ2 sinθ)/
p

2}J2,1(θ). (2.72)

Note

J2(θ+π)=−2ε
p

2πΦ{−(δ1 cosθ−δ2 sinθ)/
p

2}J2,1(θ) (2.73)

=−2ε
p

2π
[
1−Φ{(δ1 cosθ−δ2 sinθ)/

p
2}

]
J2,1(θ) (2.74)

= 2ε
p

2πΦ{(δ1 cosθ−δ2 sinθ)/
p

2}J2,1(θ)−2ε
p

2πJ2,1(θ) (2.75)

= J2(θ)−2ε
p

2πJ2,1(θ). (2.76)

Hence ∫ 2π

0
J2(θ)dθ =

∫ π

0
J2(θ)dθ+

∫ 2π

π
J2(θ)dθ (2.77)

=
∫ π

0
J2(θ)dθ+

∫ π

0
J2(θ+π)dθ (2.78)

= 2
∫ π

0
J2(θ)dθ−2ε

p
2π

∫ π

0
J2,1(θ)dθ. (2.79)

Followed by Equation (2.79), we now consider the integral 2
∫ π

0 J2(θ)dθ and
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2ε
p

2π
∫ π

0 J2,1(θ)dθ separately.

2
∫ π

0
J2(θ)dθ = 4ε

p
2π

∫ π

0
Φ{(δ1 cosθ−δ2 sinθ)/

p
2}J2,1(θ)dθ. (2.80)

So, consider the following integration∫ π

0
Φ{(δ1 cosθ−δ2 sinθ)/

p
2}J2,1(θ)dθ, (2.81)

with

J2,1(θ)= (ν11 −µ1)cosθ− (ν12 −µ2)sinθ

1−ε
{
1+p

2πφ(δ1 cosθ−δ2 sinθ)
} (2.82)

=
{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

}
(1− x)−1 (2.83)

=
{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

} ∞∑
i=0

xi, (2.84)

by the Binomial expansion and where x = ε{1+p
2πφ(δ1 cosθ−δ2 sinθ)}.

As we want to investigate the situation when ε is small, hence, for simplicity,

we consider the linear terms of ε and ignore those terms involving higher order

of ε. Then, we only extract the first term of J2,1(θ) (i.e. i = 0) when integrating

J2(θ). So, Equation (2.81) becomes

∫ π

0
Φ{(δ1 cosθ−δ2 sinθ)/

p
2}

{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

}
dθ. (2.85)

Now, we define

cosα= δ1

R
and sinα= δ2

R
, (2.86)

cosβ= ν12 −µ2

R′ and sinβ= ν11 −µ1

R′ , (2.87)
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2.3. THE PROJECTION MEDIAN

with R2 = (δ2
1 + δ2

2), (R′)2 = {(ν11 −µ1)2 + (ν12 −µ2)2}, α = arctan(δ2/δ1) and

β = arctan{(ν11 −µ1)/(ν12 −µ2)}. Using the addition formulae of trigonomet-

ric functions, then integrating by parts, (2.85) becomes

∫ π

0
−Φ{R cos(θ+α)/

p
2} R′ sin(θ−β)dθ (2.88)

=
[
Φ{R cos(θ+α)/

p
2} R′ cos(θ−β)

]π
0

+ RR′
p

2

∫ π

0
φ{R cos(θ+α)/

p
2}sin(θ+α)cos(θ−β)dθ. (2.89)

After some manipulations, we have

[
Φ{R cos(θ+α)/

p
2} R′ cos(θ−β)

]π
0
=−(ν12 −µ2). (2.90)

Considering the latter part of (2.89), we find an approximation to the standard

normal density mentioned by Johnson et al. (1995), that is

φ(z)≈ 1
2π

(1+cos z), (2.91)

with −π< z <π. Then, we expand cos z at z = 0 with Maclaurin series and use

the first three terms for further calculation:

φ(z)≈ 1
2π

{
1+1− z2

2!
+ z4

4!
+O(z6)

}
(2.92)

= 1
π

{
1− z2

4
+ z4

48
+O(z6)

}
. (2.93)

Let z = R cos(θ+α)/
p

2, with
∣∣R cos(θ+α)/

p
2
∣∣<π, we have
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RR′
p

2

∫ π

0
φ{R cos(θ+α)/

p
2}sin(θ+α)cos(θ−β)dθ (2.94)

≈ RR′
p

2π

∫ π

0

{
1− R2 cos2(θ+α)

8
+ R4 cos4(θ+α)

192

}
sin(θ+α)cos(θ−β)dθ (2.95)

= RR′
p

2π

{∫ π

0
sin(θ+α)cos(θ−β)dθ

−
∫ π

0

R2 cos2(θ+α)sin(θ+α)cos(θ−β)
8

dθ

+
∫ π

0

R4 cos4(θ+α)sin(θ+α)cos(θ−β)
192

dθ
}

(2.96)

= RR′
p

2

{
π

2
sin(α+β)− π

64
sin(α+β)+ π

3072
sin(α+β)

}
(2.97)

= RR′

2
p

2
sin(α+β)

(
1−R2/32+R4/1536

)
. (2.98)

Hence,

2
∫ π

0
J2(θ)dθ ≈ 4ε

p
2π

{
−(ν12 −µ2)+ RR′

2
p

2
sin(α+β)

(
1− R2

32
+ R4

1536

)}
. (2.99)

Now, consider the second part of
∫ 2π

0 J2(θ)dθ, that is

2ε
p

2π
∫ π

0
J2,1(θ)dθ = 2ε

p
2π

∫ π

0

{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

} ∞∑
i=0

xidθ,

(2.100)

where x = ε{1+p
2πφ(δ1 cosθ−δ2 sinθ)}.

As mentioned before, we only consider the linear terms of ε. Hence, Equa-

tion (2.100) is approximately

2ε
p

2π
∫ π

0

{
(ν11 −µ1)cosθ− (ν12 −µ2)sinθ

}
dθ =−4ε

p
2π(ν12 −µ2). (2.101)
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Combining the results of Equation (2.99) and Equation (2.101), we have

∫ 2π

0
J2(θ)dθ ≈4ε

p
2π

{
−(ν12 −µ2)+ RR′

2
p

2
sin(α+β)

(
1− R2

32
+ R4

1536

)}
− {−4ε

p
2π(ν12 −µ2)} (2.102)

=2ε
p
πRR′ sin(α+β)(1−R2/32+R4/1536). (2.103)

Finally, we wish to consider the integration of J3(θ). When ε is small, the

denominator of J3(θ) is approximate to 1 and the numerator contains the

quadratic terms of ε. As we only consider the linear terms involving ε, we

ignore the integral
∫ 2π

0 J3(θ)dθ. Hence, our approximation of the median

becomes

M =π
{
(ν11 −µ1)2 + (ν12 −µ2)2

}
+KR′ sin(α+β)ε, (2.104)

with K = 2
p
πR(1−R2/32+R4/1536).

Now, we wish to find µ1 and µ2 in terms of R (i.e. the distance between

the outlier and the bulk) by partial differentiation, which will minimise the

value of M.

M(µ1,µ2)
∂µ1

= −2π(ν11 −µ1)+Kε
{∂R′

∂µ1
sin(α+β)+ ∂sin(α+β)

∂µ1
R′

}
, (2.105)

M(µ1,µ2)
∂µ2

= −2π(ν12 −µ2)+Kε
{∂R′

∂µ2
sin(α+β)+ ∂sin(α+β)

∂µ2
R′

}
. (2.106)
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After some manipulations, we have

M(µ1,µ2)
∂µ1

= −2π(ν11 −µ1)−Kε
{
(ν11 −µ1)2 + (ν12 −µ2)2

}−1/2

{
(ν11 −µ1)sin(α+β)+ (ν12 −µ2)cos(α+β)

}
, (2.107)

M(µ1,µ2)
∂µ2

= −2π(ν12 −µ2)−Kε
{
(ν11 −µ1)2 + (ν12 −µ2)2

}−1/2

{
(ν12 −µ2)sin(α+β)− (ν11 −µ1)cos(α+β)

}
. (2.108)

Then, we set the partial derivatives of Equation (2.107) and Equation (2.108)

to be 0 and solve them. Hence, we obtain the optimal values µ∗
1 and µ∗

2 , which

minimise Equation (2.104), as follows:

µ∗
1 =ν11 +π−1/2Rε(1−R2/32+R4/1536)cosα, (2.109)

µ∗
2 =ν12 +π−1/2Rε(1−R2/32+R4/1536)sinα, (2.110)

Finally, we plug the µ∗
1 and µ∗

2 into Equation (2.104), and obtain the minimum

value of M, that is

M∗ = R2ε2(1−R2/32+R4/1536){2sin(α+β)+1}, (2.111)

with R <p
2π.

Intuitively, the approximation in the Proposition works whenever the two

cluster means are close enough together, i.e. when R2 = δ2
1 +δ2

2 < 2π2.

In particular, when ν11 = ν21 or ν12 = ν22 (i.e. when one of the δi = 0, i = 1,2),

we can form a more accurate approximation. This is because the approximation
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for the standard normal distribution function, φ(z)≈ (1+cos z)/2π, is no longer

required to find the optimal µ∗ = (µ∗
1 ,µ∗

2)T minimising Equation (2.56). With-

out loss of generality, let ν1 = (ν11,ν12)T = (0,0)T and ν2 = (ν21,ν22)T = (0,d)T ,

we obtain the yamm estimator as follows

µ∗
1 = 0,

µ∗
2 = 2−1/2εd e−

d2
8

(
BesselI

[
0,d2/8

]+BesselI
[
1,d2/8

])
, (2.112)

where BesselI[n, z] is the modified Bessel function of the first kind, sometimes

denoted In(z).

Proof. According to Equation (2.85), since δ1 = 0, δ2 = d, we have

2
∫ π

0
J2(θ)dθ ≈ 4ε

p
2π

∫ π

0
Φ(−d sinθ/

p
2)(−µ1 cosθ+µ2 sinθ)dθ. (2.113)

Integration by part, we have

2
∫ π

0
J2(θ)dθ ≈ 4ε

p
2π

{[
Φ(−d sinθ/

p
2)(−µ1 sinθ−µ2 cosθ)

]π
0

−
∫ π

0

dp
2
φ(−d sinθ/

p
2)(µ1 sinθ+µ2 cosθ)cosθdθ

}
(2.114)

= 4ε
p

2π
{
µ2 − dp

2
µ2

∫ π

0
φ(−d sinθ/

p
2) cos2θ dθ

}
(2.115)

= 4ε
p

2π
{
µ2 − d

p
π

4
µ2 e−

d2
8

(
BesselI

[
0,

d2

8
]+BesselI

[
1,

d2

8
])}

.

(2.116)

Now, we try to compute 2ε
p

2π
∫ π

0 J2,1(θ)dθ in the second part of Equation

(2.79):

2ε
p

2π
∫ π

0
J2,1(θ)dθ ≈−2ε

p
2π

{∫ π

0
(−µ1 cosθ+µ2 sinθ) dθ

}
(2.117)

= 4ε
p

2πµ2. (2.118)
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Hence,

∫ 2π

0
J2(θ)dθ (2.119)

=4ε
p

2π
{
µ2 − d

p
π

4
µ2 e−

d2
8

(
BesselI

[
0,

d2

8
]+BesselI

[
1,

d2

8
])}−4ε

p
2πµ2

(2.120)

=−
p

2dπε µ2 e−
d2
8

(
BesselI

[
0,

d2

8
]+BesselI

[
1,

d2

8
])

. (2.121)

When (ν11,ν12)T = (0,0)T and (ν21,ν22)T = (0,d)T , we have J1(θ) = (µ2
1 +µ2

2)π.

Ignoring the term J3(θ), our approximation of median M is

M ≈ J1(θ)+ J2(θ) (2.122)

≈ (µ2
1 +µ2

2)π−
p

2dπε µ2 e−
d2
8

(
BesselI

[
0,

d2

8
]+BesselI

[
1,

d2

8
])

. (2.123)

To find µ∗
1 and µ∗

2 , we then compute

M(µ1,µ2)
∂µ1

=2πµ1, (2.124)

M(µ1,µ2)
∂µ2

=2πµ2 −
p

2dπε e−
d2
8

(
BesselI

[
0,

d2

8
]+BesselI

[
1,

d2

8
])

. (2.125)

Setting M(µ1,µ2)
∂µ1

= M(µ1,µ2)
∂µ2

= 0, we have

µ∗
1 = 0 (2.126)

µ∗
2 = εp

2
d e−

d2
8

(
BesselI

[
0,

d2

8
]+BesselI

[
1,

d2

8
])

(2.127)
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2.3.3.4 The Yamm influence curve on the mixture

This section numerically computes and plots yamm for the case where ε= 0.05,

X1 ∼ N(ν1, I2) and X2 ∼ N(ν2, I2), with ν1 = (0,0)T and ν2 = (0,d)T for d ∈ R.

We explore how yamm varies as d increases from 0 to 10 in steps of 0.2. If

yamm is robust, then it should increase with d, but plateau beyond a certain

point.

For each value d we estimate yamm as the mean over five hundred bivariate

mixture realizations, with two thousand projections involved for each yamm

computation, using methods described below in Section 2.3.4. The numerically

computed crosses in Figure 2.2 show that, for this setup, yamm plateaus some-

where between d = 2 and d = 4.

The solid red line in Figure 2.2 shows our theoretical approximation of the

yamm influence curve with the more specific setup, where µ∗ follows Equation

(2.112). Under this approximation, the influence curve closely follows the

numerically computed crosses. On the other hand, the solid blue line is the

approximation of the yamm under the more general setting of Equation (2.57),

which exhibits poor approximation after d > 4.5, although it performs rea-

sonably well when the inter-cluster mean distance 0 < d < 4.5, and does not

plateau.

This is because, in the setup, δ1 = d,δ2 = 0, and d > 4.5 implies R2 = δ2
1 =

d2 > 2π2. However, the specific setup approximation of yamm obviously does

not work for arbitrary values of ν1 and ν2, whereas the general approximation
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gives a good theoretical idea of the yamm influence curve when the two means

of the clusters are close enough together.
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Figure 2.2: Yamm computed on simulated setup, increasing the distance
between two bivariate normals. Crosses: numerically computed values; Solid
blue line: approximation computed for general ν1 and ν2; Solid red line:
approximation computed when ν1 = (0,0)T and ν2 = (0,d)T .
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2.3.4 Projection median and Yamm computation

2.3.4.1 Projection median computation

A simple Monte Carlo integration (Robert and Casella, 2005) can be used to

compute an approximation of the projection median by

M̂P (X)= nJ−1
J∑

j=1
med(Xa j ), (2.128)

where J represents the number of projections used, and {a j}J
j=1 is a set of

random, independently-drawn, unit length n-vectors over Xn−1.

Calculating approximation (2.128) is relatively straightforward, but a large

value of J is required to ensure accuracy. Another approach computes the

projection median directly from the definition in (2.12), using the spherical

coordinates illustrated in (2.13), where the integral can be obtained by the

trapezoidal rule. For example, in the two-dimensional case, we apply the trape-

zoidal rule once on (2.11). In the three-dimensional case, we have to apply the

trapezoidal rule twice for the double integral, and so on. This direct approach

is easy to implement when our dataset has a low dimension, but excessive work

is required in not that many higher dimensions, even with, e.g. n = 10.

2.3.4.2 Computing Yamm

To compute an approximation to yamm, we can also use Monte Carlo integra-

tion together with an optimiser. Let J ∈N be the number of projections, {a j}J
j=1

be a set of independent random unit length n-vectors, an estimator for MX,m(µ)
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is given by

M̂X,m(µ)= J−1
J∑

j=1
mX(µ,a j)2. (2.129)

We then numerically minimise M̂X,m(µ) over µ to obtain our estimated location

measure, using the BFGS optimization method (Broyden; Fletcher; Goldfarb;

Shanno, 1970). BFGS is a quasi-Newton algorithm searching for a stationary

point of a function via local quadratic approximation. Parallel versions such

as optimParallel (Gerber and Furrer, 2019) exist as easy to use packages in R.

After extensive simulation, we find that with reasonable starting values, such

as the mean or other multivariate medians, yamm provides accurate results

with a considerably smaller number of projections than used by the Monte

Carlo projection median method.

In conclusion, projection median computation via the trapezoidal rule is fast

and accurate in low dimensions, but increasingly onerous in higher dimensions,

as progressively more multidimensional integration is required. For higher

dimensions, we prefer the Monte Carlo method and prefer yamm over the

projection median as it does not require such a large number of projections,

particularly if the optimiser is given a good starting solution.

Overall, approximating the projection median by the trapezoidal rule is a

good choice in R2 and R3, and either of the other two methods can be used in

higher dimensions.
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2.4 Empirical Performance for Different

Medians

This section reviews the theoretical computational complexity for a variety

of medians and computes some running times for real implementations of

several medians computed in R. We then present some results for accuracy of

estimation for these medians.

2.4.1 Computational complexity and empirical speed

For a dataset in Rn with k observations, the computational complexity for the

Spatial median is O(nk) (Bose et al., 2003), which is the same for the exact

computation of the component-wise median. The projection median can be

obtained in O(k4/3 log1+ε k) time in R2 (Durocher and Kirkpatrick, 2005), and

O(k5/2+ε) time in R3 (Basu et al., 2012). In Rn, with n > 3, Basu et al. (2012)

showed that O[kn{1−δn/(n+1)}+ε] time is required to compute the projection me-

dian, where δn = (4n−3)−n and ε is a fixed small constant. Several algorithms

for other multivariate medians have been developed or the bivariate case. The

current best algorithms for Oja’s and Liu’s medians require O(k log3 k) and

O(k4) time, respectively (Aloupis et al., 2003), whereas that for the fastest

bivariate Tukey median is O(k log3 k) (Langerman and Steiger, 2003). The

calculation of these three multivariate medians in higher dimensions is more

complicated and approximate computation is often preferred/required.

To provide empirical assessment of the real computation speed, we apply sev-
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eral R software medians to simulated data. There are several R functions using

different algorithms to compute one median. For example, spatial.median

from the library ICSNP (Nordhausen et al., 2018) estimates the median with the

algorithm developed by Vardi and Zhang (2000), while Gmedian developed by

Cardot et al. (2013) is faster but, perhaps, less accurate. In addition, l1median

(Croux et al., 2006) from library pcaPP (Filzmoser et al., 2021) and med from

depth (Genest et al., 2019) also provide opportunities to compute the spatial

median. Hence, after some experiments, we choose the best function (evaluated

in terms of speed and accuracy) for each multivariate median in R2 and R3

shown in Table 2.1. Much of the software for multivariate medians in R only

works in low numbers of dimensions.

Median Function Package Source
Spatial l1median pcaPP Croux et al. (2006)
CWmed med depth —

Liu’s med depth Rousseeuw and Ruts (1996)

Tukey’s med depth
Rousseeuw et al. (1999)

Struyf and Rousseeuw (2000)
Oja’s ojaMedianEvo OjaNP Fischer et al. (2016)

Projection PmedTrapz Yamm Ours

Table 2.1: R functions used for analysing different multivariate medians.

The med function can only calculate the bivariate Liu’s median, which is con-

siderably more challenging in higher dimensions. The calculation of Tukey’s

median is exact in one and two dimensions, and approximate in higher di-

mensions. We use the approximate Tukey’s median computation in the med

function, due to numerical errors that sometimes surface when using the exact

algorithm. For Oja’s median, the approximate method (evolutionary algorithm)
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is used instead of the exact one, as it is faster and can deal with high dimen-

sions.

Table 2.2 displays mean computation times and their standard deviations

across 1000 simulated datasets from the two-dimensional Laplace distribution

with different numbers of observations (k) for each set. The results are pro-

duced by running R on a single core of an Intel i7-8750h processor with 2.20

GHz base clock using 16Gb RAM. For small k, Liu’s median is fastest, but its

speed is not as fast as others for higher k. In this experiment, Oja’s median is

the slowest for small k values, but its speed does not appear to be particularly

sensitive to k. Hence, its speed is faster than Tukey’s median when k = 200.

The projection median is one of the quickest when k is below 100, while for

large k values, the component-wise median and the Spatial median are faster.

The results in Table 2.2 are produced by only one possible R function for

one median. However, other functions can be used. For example, the med func-

tion from the depth package can also be used to calculate the spatial median

and provides accurate answers. It is extremely fast for small k and lower

dimensions, but it becomes slower than l1median for larger k. Hence, we use

l1median to compute the spatial median, whose performance for small k is

also good.
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Median k = 10 k = 25 k = 50 k = 100 k = 200

Spatial
mean 27 28 30 29 28
s.d. 44 45 57 45 45

Component-wise
mean 24 21 25 25 24
s.d. 42 41 43 43 43

Liu’s
mean 3 6 14 49 190
s.d. 18 24 35 66 250

Tukey’s
mean 67 210 510 970 1890
s.d. 47 28 40 56 100

Oja’s
mean 1430 1400 1460 1410 1410
s.d. 410 190 270 190 160

Projection
mean 7 12 18 31 60
s.d. 26 32 39 46 49

Table 2.2: Mean and standard deviation (s.d.) of the operation time (×10−5) in
seconds for data in R2.

2.4.2 Mean squared error for some medians

We assess the accuracy of some of the medians via empirical mean squared

error. If X̂ is an estimator in Rn with respect to the unknown parameter µ ∈Rn,

then the mean squared error is

MSE(X̂)= n−1E(||X̂−µ||22), (2.130)

where n−1||X̂−µ||22 represents the squared Euclidean distance between X̂ and

µ, normalized by the vector length. Smaller MSE(X̂) values are better.

Table 2.3 shows mean squared error results based on the same simulations

as used for Table 2.2. Not surprisingly, for this long-tailed data, all medians

perform better than the sample mean. The spatial median and the projection

median have smaller mean squared error, the latter performing better for small
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k values. On the other hand, Liu’s median always produces a very high mean

squared error.

Location Estimator k = 10 k = 25 k = 50 k = 100 k = 200
Spatial 67 21 9.7 4.6 2.3

Component-wise 74 26 12.0 5.7 2.9
Liu’s 110 31 14.0 6.3 3.2

Tukey’s 73 21 10.0 4.8 2.3
Oja’s 75 22 11.0 5.6 3.2

Projection 66 21 9.8 4.7 2.3
Mean 110 39 20.0 9.9 5.0

Table 2.3: Mean squared error (×10−2) for data as in Table 2.2.

Based on these simulations, for the R functions listed in Table 2.1, the spatial

and projection medians always have the lowest mean squared error, but also

fast running speeds. Although Liu’s median has the shortest computation time,

for small k, it is the most inaccurate, and its computation time becomes long

for large datasets. Similarly, the component-wise median is fast, even when

k increases, but it has a large mean squared error. Hence, the spatial and

projection medians are good choices when computing two-dimensional robust

measures of location in this case, and the latter is preferred for small datasets.

The computational results for high-dimensional simulations (n = 3,5,10) can

be found in the appendix A.1.

2.4.3 2D projection median computation functions

The R package DurocherProjectionMedian can be downloaded from Github

at

https://github.com/12ramsake/DurocherProjectionMedian
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The DurocherProjectionMedian package provides functions to compute the

projection median via the Monte Carlo integration method as described in

Durocher et al. (2017) using projectionMedianMC) and an exact method for

two dimensions proposed by Ramsay (2017) using projectionMedian2D. Ta-

bles 2.4 and 2.5 show the performance of the different functions computing

the two-dimensional projection median of 1000 simulated datasets from the

Laplace distribution with different k.

k
R Function 10 25 50 100 200

PmedTrapz
mean 7 12 18 31 60
s.d. 26 32 39 46 49

projectionMedian2D
mean 320 1020 3930 11640 44830
s.d. 50 99 420 970 2690

PmedMCInt
mean 250 320 490 870 1670
s.d. 40 39 33 50 58

projectionMedianMC
mean 930 970 1010 1130 1280
s.d. 49 57 65 60 55

Table 2.4: Mean and standard deviation (s.d.) of the operation time (×10−5) in
seconds for different R functions to produce the projection median.

k
R Function 10 25 50 100 200
PmedTrapz 656 207 98.2 47.1 23.2

projectionMedian2D 656 206 97.4 46.9 22.9
PmedMCInt 659 205 97.8 47.0 23.0

projectionMedianMC 659 205 97.6 47.0 23.0

Table 2.5: Mean squared error (×10−3) for 1000 sets of data in R2 generated
from Laplace distribution.
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For the Monte Carlo Integration method, when k is small (e.g. under 150 in R2),

the computation time of projectionMedianMC is longer than our PmedMCInt

under the same number of projections in both R2 and high dimensions, whereas

both implementations have almost the same MSE.

Although the projectionMedian2D provides a slightly smaller MSE, its run-

ning time is slow. Our PmedTrapz is faster and its MSE performance is compa-

rable to projectionMedian2D, and, hence, the former might be recommended

as the best choice for R2.

2.5 The Yamm R Package

Our Yamm R package (Chen and Nason, 2020a) provides users with functions

to compute the projection median according to the different methods men-

tioned in section 2.3.4. PmedMCInt computes the projection median using

the Monte Carlo approximation; PmedTrapz uses the trapezoidal rule and

currently, it is only valid in two and three dimensions; yamm computes the

projection median using the Monte Carlo approximation to find the shift vector

µ minimising our objective function yamm.obj. The package also includes func-

tions Plot2dMedian and Plot2dMedian to plot different multivariate medians

for data in both R2 and R3. Most functions in our package are implemented

internally using C code. This section provides some brief illustrations of the

use of Yamm.
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2.5.1 Yamm projection medians

The function PmedMCInt computes the projection median for any multivariate

data, x, by invoking

PmedMCInt(x, nprojs = 20000)

Since this function uses Monte Carlo integration, we need to choose the number

of projections J, which has a default value of 20000. Typically, a large J is

required to obtain a stable answer, which means the result will not change

much if recomputed under the same conditions. This function returns the

projection median estimate vector.

The function PmedTrapz computes the projection median in R2 and R3 and

is invoked by

PmedTrapz(x, no.subinterval)

PmedTrapz applies the trapezoidal rule once in R2 and twice in R3 on each entry

of the vector med(Xa), mentioned in section 2.3.1.2, and returns a vector of the

projection median estimate.

The argument no.subinterval determines the number of subintervals for

the trapezoidal rule. For the bivariate case the no.subinterval argument is a

single number that controls the number of subdivisions for the one-dimensional

integration; for the trivariate case the argument is a vector of length two that

controls the number of subdivisions for the two integrals. In general, it is

better to use at least 36 subintervals, which typically produces accurate results
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without excessive running time.

More subintervals may be appropriate for more complex datasets. For some

unusual data sets it would be ideal to have a high resolution of the interval of

integration in one particular region, and a relatively low resolution elsewhere,

but this is beyond the scope of the current research. A small number of parti-

tions, e.g. below 15, is not recommended for reasons of accuracy.

The yamm is valid for data of any dimension. It uses an optimiser to provide

another method to compute the projection median. The arguments are

yamm(x, nprojs = 2000, reltol = 1e-06,

xstart = l1median(x), opt.method = "BFGS",

doabs = 0, full.results = FALSE).

The yamm function is a wrapper to minimise the the objective function yamm.obj,

which uses the Monte Carlo method to approximate the squared or absolute

value of the univariate median of the projection of the shifted data matrix.

The nprojs argument controls the number of projections in the Monte Carlo

approximation and doabs is an indicator, where 1 uses the absolute value of

the univariate median and 0 forces the use of the squared value. The argu-

ments reltol, xstart, opt.method are supplied directly to the R optimisation

function optim: reltol is the tolerance for the optimiser, with default value

of 10−6. Usually, we set a larger value (e.g. 10−3) to this argument, which

will reduce the running time, whilst maintaining accuracy. The argument

opt.method controls the selection of optimisation methods, which can be cho-

43



CHAPTER 2. YET ANOTHER MULTIVARIATE MEDIAN

sen from any of the four options, “BFGS”, “Nelder-Mead” (Nelder and Mead,

1965), “CG” (Fletcher and Reeves, 1964), “L-BFGS-B” (Nocedal and Wright,

1999), and “SANN” (Byrd et al., 1995). The default choice “BFGS” is relatively

fast and stable in our case. See the help page of the function optim in R for

further details about the different optimisation methods. The xstart argu-

ment provides the initial value for the parameters to optimise over, which plays

an important role in the function yamm. A good starting point will reduce the

running time and provide a more accurate result, so we use the spatial median

as the default value. Other multivariate medians could be used, but they need

to be fast. If full.results=TRUE, the output of this function involves a list

with components obtained from the optim function, otherwise, it returns a

vector containing the multivariate median estimate.

2.5.2 Some real examples

We now exhibit results for the projection medians applied to some real datasets.

Our plots show different multivariate medians and the sample mean value for

two simulated datasets in R2 and R3, respectively, allowing the methods to be

compared.

2.5.2.1 Beetle data

The famous beetle data (Lubischew, 1962) takes six measurements on 74

flea-beetles, with each belonging to one of three different species. We apply

yamm and obtain the following output:
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yamm(beetle, nprojs=1000, reltol=1e-3, doabs=0,

full.results=TRUE)

[1] 180.19194 123.73920 49.97819 135.87913 13.62603 95.49062

$value

[1] 5.585139

$counts

function gradient

90 4

$convergence

[1] 0

$message

NULL

The yamm results show that the optimiser executed 90 calls to the objective

function yamm.obj and constructed 4 gradients. The par component contains

the estimate of the yamm for the beetle data. These results are not that

different from the output generated by PmedMCInt, which is

PmedMCInt(beetle, nprojs=100000)

[1] 179.54428 124.72128 50.56934 137.47363 13.23372 94.80188
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For the beetle data, we chose the number of projections in yamm to be 1000,

while many more projections were required (e.g. 100000) in PmedMCInt to

obtain a similar and consistent result; although yamm requires optimisation.

Fewer projections for the function PmedMCInt may lead inaccurate results for

some components of the multivariate median. PmedTrapz is not valid in this

six-dimensional case, but we will show that it has a similar output when com-

puting projection median in two- and three-dimensions.

2.5.2.2 Simulated data in R2 with three clusters

We now use the function Plot2dMedian in the package Yamm to generate and

display different multivariate medians for the simulated data set clusters2d.

This set contains three clusters, which are generated randomly from different

independent normal distributions, and two outliers.

Here, we display the three different estimates of the projection median. When

computing other multivariate medians, we use functions from R packages listed

in section 2.4.1. The actual data points is plotted with grey dots. The first plot

in Figure 2.3 is producing excluding the two outliers, whilst the second one

includes them. The projection medians produced with different estimators are

very close to each other, and not far from the other median estimators also.

Figure 2.3 also shows that the multivariate medians are not particularly affect

by the outliers, whilst the mean value is.
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Figure 2.3: Bivariate medians and mean for three cluster two-dimensional set.
Top: without outliers; Bottom: with outliers (out of plot area).
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2.5.2.3 Simulated data in R3 with four clusters

The function Plot3dMedian in Yamm plots the three-dimensional medians. The

dataset clusters3d has four clusters, each generated from different indepen-

dent normal distributions, as well as five outliers. Figure 2.4 is produced with

the dataset clusters3d, whose outliers have been removed. It shows that

apart from the Oja’s median, the other medians are located close to each other.

Again, the three approximations of the projection median almost coincide in

every component.
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Figure 2.4: Trivariate medians & mean for four cluster three-dimensional set.
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2.5.3 The Muqie plot and some examples

As well as obtaining a robust location measure, we can use projections to pro-

vide information on the spread and configuration of the data. Obtaining true

multivariate quantiles can be computationally challenging, and what we pro-

duce are not true multivariate quantiles, but they do enable us to gain useful

understanding about multivariate data. The muqie (MUltivariate QuantIlE)

plots are constructed as follows.

First choose a unit-length direction vector, u. Then project our yamm-centred

multivariate data onto u to obtain a univariate set. The muqie point, Q(α,u),

is merely the vector u rescaled to have length equal to the α-quantile of the

univariate set. A muqie plot is the collection of all muqie points, Q(α,u) over all

unit-length direction vectors u. In practice, we construct our plot by choosing

a number of directions and joining the points. The basic concept, and plots,

are not new, Section 2 of Fraiman and Pateiro-Lopez (2012) introduces the

concept based on mean-centred data and is related to ideas in Kong and Mizera

(2012). Our main addition to this body of work is to (i) centre using yamm, or

other robust median and (ii) presenting the muqie plots as dynamic videos of

increasing α.

Figure 2.5 shows two muqie plots for α = 0.4 and α = 0.8. The latter indi-

cates the three cluster nature. Surprisingly, this also shows up clearly in the

α= 0.4 plot with the 0.4 quantile for, e.g. the bottom-left cluster appearing in a

“north-easterly” direction and coloured red in our plot. The movie Animation

shows an animated plot, which includes both the plots in Figure 2.5 and many
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of the others for increasing values of α.

These plots were produced by the muqie() function in the Yamm package. For

the animated plot, the package includes the makeplot() function, which calls

muqie() for multiple values of α. Then we use the CRAN package animation

to produce an animated GIF using

saveGIF(makeplot(clusters2d[,-c(102,103)], nprojs=4000),

diff.col=3, interval=0.1, width=500, height=500).

The movie can be found at

https://doi.org/10.1371/journal.pone.0229845.s005
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Figure 2.5: Muqie plot for the three cluster two-dimensional data set without
outliers for different values of pseudo-quantile α. The centre point (in blue) in
each plot is the yamm median. Left: α= 0.4, Right: α= 0.8.

The movie beetle shows a three-dimensional Muqie plot using three variables

from the beetle data. The R commands used were:
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saveGIF(makeplot3D(beetle, dm=c(1,3,6)), diff.col=3,

interval=0.2, width=500, height=500).

The corresponding animated GIF is at

https://doi.org/10.1371/journal.pone.0229845.s006

2.6 Conclusions

We have introduced a new method, yamm, to compute the projection median,

for data in Rn with n ≥ 2. We have proved the theoretical equivalence of yamm

and the projection median. Through theoretical and numerical investigations

we demonstrate the robustness of yamm on a simple, but illuminating, bivari-

ate setup.

Then, we illustrated three computation methods for the projection median,

which can be best deployed in different situations. Approximating the projec-

tion median by the Monte Carlo method is valid in any dimensions but requires

a large number of projections to ensure accuracy, while using the trapezoidal

rule is computationally fast and accurate in two and three dimensions, but

requires more integration on the projection vector in the higher dimensions,

which becomes rapidly more complex. The yamm approximation can also

compute the median in any dimensions. Its computational speed is not as

quick as the other two, under the same conditions (e.g. the number of projec-

tions). However, thanks to the optimiser, a small number of the projections can

be chosen to obtain an accurate median with a reasonable starting point (e.g.

other multivartiate medians or mean value), which can be a distinct advantage.
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Our research also documents the simulated empirical performance for dif-

ferent medians in terms of the computation time and the mean squared error.

Using different R functions to calculate different multivariate medians, we find

that the spatial median and the projection median are always accurate with

relatively fast speed using the existing R functions. The performance of other

multivariate medians either exhibits slow speed or large mean squared error.

Finally, we introduce our R package, Yamm, that contains our three meth-

ods to compute the projection median. We show that our methods coincide

with each other in R2 and R3, and all multivariate medians are not affected

by the outliers in the dataset, but the location of the mean value varies a lot.

Currently, the function PmedTrapz in the R package is only valid in R2 and

R3, further investment can be conducted on extending this function to higher

dimensions.

The Yamm package also introduces our Muqie plots, which are capable of produc-

ing animated plots of two- and three-dimensional sets’ projected quantiles. The

animated "growth" of these “quantile” plots give a vivid picture of the extent,

spread and configuration of data in the sets.
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C H A P T E R 3

DENSITY AND HAZARD RATE ESTIMATION USING

A BAYESIAN WAVELET APPROACH

3.1 Introduction

Wavelet methods are useful statistical techniques that have been applied in

density and hazard rate function estimation. One of the earliest papers pro-

posed by Antoniadis et al. (1999), estimates the hazard rate for right-censored

data via linear wavelet smoothers. Based on this article, we try to improve

the accuracy of hazard rate estimation for right-censored data displayed in

section 3.3. Section 3.3.2 demonstrates the method to estimate the density

function, where we use the Bayesian threshold method proposed by Silverman

and Johnstone (2005b), which uses a mixture prior of a point mass at zero

with a heavy-tailed distribution. Meanwhile, the survival function estimator is

computed using a non-parametric Bayesian method with Dirichlet process prior

shown in section 3.3.3. In addition, we implement a bootstrap aggregating

approach to the density function for the right-censored data in section 3.3.2.1

to increase its accuracy somewhat.
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Herrick et al. (2001) present some non-linear, thresholded wavelet estimators,

that exploits the non-stationary variance structure of the wavelet coefficients.

By considering the covariance structure of empirical wavelet coefficients, in sec-

tion 3.4, we propose a new multivariate version of the "mixture of Gaussians"

prior distribution for the unknown "true" wavelet coefficients while using the

Bayesian wavelet shrinkage method to estimate density function. Previous

methods have modelled independence between coefficients, even though we

know this is not true. Our method models correlations between the coefficients,

to attempt to improve performance.

3.2 Literature Review

3.2.1 Survival analysis definitions

3.2.1.1 Censoring

Censored data is commonly used in survival analysis, which only provides

partial information about the time to event. A survival time is said to be

censored if the exact lifetime has not been observed. There are three types of

censored data, described as follows.

• A survival time is right-censored if the censoring mechanism prematurely

terminates observation of the individual, before the event has actually

occurred.

• An survival time is left-censored if the event occurred before observation

of the individual began.
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• An survival time is interval-censored when we only know the lower and

upper bounds of an interval that the event occurred.

Our survival analysis in this chapter only focus on the right-censored data.

Let X1, X2, ..., Xn, denote lifetimes for the n items under investigation, and

let C1,C2, ...,Cn, be the corresponding censoring times, the observed random

variables Zi and δi are defined as

Zi =min(X i,Ci) and δi = I[X i≤Ci], (3.1)

where IA is the universal indicator function of set A such that

IA(x)=


1 , if x ∈ A,

0 , if x ∉ A .

Hence, δi = 0 indicates that the i-th item’s observed time is right-censored.

3.2.1.2 Hazard and cumulative hazard function

Let T denote the positive random variable representing time to event. The

cumulative distribution function is defined as

F(t)= P(T ≤ t), (3.2)

with probability density function f (t)= F ′(t), if it exists. The survival function

is

S(t)= P(T > t)= 1−F(t). (3.3)

and the hazard function is

λ(t)= lim
δt→0

P(t ≤ T < t+δt|T ≥ t)
δt

= f (t)
S(t)

. (3.4)
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Hence, the cumulative hazard function is

Λ=
∫ t

0
λ(s)ds. (3.5)

3.2.2 Wavelets and Bayesian wavelet shrinkage

Let f (x) be a probability density function. Let X1, ..., Xn be an independent

and identically distributed sample from f . For some M ∈ Z, the wavelet

representation of the density function can be written as

f (x)∼ ∑
k∈Z

cMkφMk(x)+
∞∑

j=M

∑
k∈Z

d jkψ jk(x), (3.6)

where {d jk} and {c jk} are the wavelet and scaling coefficients respectively, such

that

d jk =
∫ ∞

−∞
ψ jk(x) f (x)dx, (3.7)

c jk =
∫ ∞

−∞
φ jk(x) f (x)dx. (3.8)

Let L2(R) be the space of square integrable functions. For some j ∈Z, we also

define the space Vj as the collection of functions with detail up to some finest

scale of resolution j. Hence, for larger value of j, Vj will contain functions with

finer scales, so that Vj ⊂Vl for l > j. Then we have orthonormal basis functions

{ψ jk(x)} in L2(R) and {φ jk(x)} in Vj constructed from a "mother wavelet" ψ(x)

and "father wavelet" (also known as scaling function) φ(x) respectively. By

dilations and translations, we have
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ψ jk(x)= 2 j/2ψ(2 jx−k), (3.9)

φ jk(x)= 2 j/2φ(2 jx−k). (3.10)

The simplest wavelet is probably the Haar wavelet, which is defined by

ψ(x)=



1 if x ∈ [0,0.5),

−1 if x ∈ [0.5,1),

0 otherwise,

(3.11)

and, its associated father wavelet, which is defined by

φ(x)=


1 if x ∈ [0,1),

0 otherwise.
(3.12)

The corresponding orthonormal basis functions {ψ jk(x)} and {φ jk(x)} are,

ψ jk(x)=



2 j/2 if 2− jk ≤ x < 2− j(k+ 1
2 ),

−2 j/2 if 2− j(k+ 1
2 )≤ x < 2− j(k+1),

0 otherwise,

(3.13)

φ jk(x)=


2 j/2 if 2− jk ≤ x < 2− j(k+1),

0 otherwise.
(3.14)

Including the Haar wavelet basis, Daubechies (1988) characterised all orthonor-

mal compactly supported wavelet bases and illustrates this with a family of

examples, called extremal phase wavelets. She also introduced another family
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known as the least asymmetric wavelets (Daubechies, 1992). In our investi-

gation, we only consider these two families while implementing our wavelet

shrinkage method.

3.2.2.1 Discrete wavelet transform

The Discrete Wavelet Transform (DWT), first proposed by Mallat (1989), de-

composes a signal into a set of mutually orthogonal wavelet basis functions,

which is also invertible, so that the original signal can be completely recovered

from its DWT representation. Starting from the finest level, the basic idea

of DWT is to apply transformations recursively on the scaling coefficients to

obtain the wavelet and scaling coefficients at successive levels until the desired

number of iterations is reached.

As mentioned before, {φ1n(x)} is a basis for V1, and φ(x) ∈ V0, V0 is a sub-

space of V1. Hence, there exists a low-pass filter hn and a high-pass filter gn

satisfying

ψ(x)= ∑
n∈Z

gnφ1n(x), (3.15)

φ(x)= ∑
n∈Z

hnφ1n(x), (3.16)

where

gn =
∫
ψ(x)φ1n(x)dx, (3.17)

hn =
∫
φ(x)φ1n(x)dx. (3.18)
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Together with Equations (3.9) and (3.10), for all j,k ∈Z, we can then obtain

ψ j−1,k(x)= ∑
n∈Z

gn−2kφ jn(x), (3.19)

φ j−1,k(x)= ∑
n∈Z

hn−2kφ jn(x). (3.20)

Substituting Equations (3.19) and (3.20) into Equations (3.7) and (3.8) respec-

tively, we have

d j−1,k =
∑
n

gn−2kc jn, (3.21)

c j−1,k =
∑
n

hn−2kc jn. (3.22)

Hence, we are able to compute the coarser-level wavelet and scaling coefficients

from finer ones with the above formulae for the DWT. When implementing

DWT and inverse DWT in practice, the R function wd and wr from the package

wavethresh (Nason, 2016) can be used.

3.2.2.2 Wavelet shrinkage and thresholding

Wavelet shrinkage was introduced to the literature by Donoho and Johnstone

(1994). The basic model setup is as follows. Suppose n noisy observations

{yi}i=1,...,n are obtained from a function f , such that

yi = f (xi)+ e i, (3.23)

where xi = i/n, for i = 1, ...,n, and e i ∼ N(0,σ2) are an independent sequence.

Using the noisy observations yi, the aim is to estimate the unknown function

f (x), for x ∈ [0,1]. Wavelet shrinkage consists of the following three main steps:

• Transform the data {yi} using the discrete wavelet transform (DWT)

proposed by Mallat (1989).
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• Modify the wavelet coefficients. Here, we focus on using the thresholding

method (Donoho and Johnstone, 1994).

• Apply the inverse transform to the modified coefficients to obtain the

estimate f̂ (x) of the unknown function f (x).

Applying DWT to the model expressed in Equation (3.23), we can obtain the

wavelet-transformed model of it as

d̃ j,k = d j,k +ε j,k, (3.24)

where {d̃ j,k} and {d j,k} are the "observed" and "true" wavelet coefficients re-

spectively, and {ε j,k} are the noise wavelet coefficients, which correspond to

{yi}, { f (xi)} and {e i} respectively. Hence, the wavelet thresholding approach

illustrated later will be applied on this wavelet-transformed model.

Wavelet thresholding

The thresholding idea is to form estimates {d̂ j,k} for the "true" wavelet coef-

ficients {d j,k} by removing coefficients in {d̃ j,k} that are smaller than some

threshold. Donoho and Johnstone (1994) defined two types of thresholding

functions, that are

• hard thresholding: d̂ j,k = d̃ j,k I{|d̃ j,k| > ξ},

• soft thresholding: d̂ j,k = sgn(d̃ j,k)(d̃ j,k −ξ) I{|d̃ j,k| > τ},

where I is an indicator function and ξ is the threshold.
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There are many different choices for the threshold level ξ. Donoho and

Johnstone (1994) proposed the universal threshold, and also suggested an-

other SURE thresholding method (Donoho and Johnstone, 1995) based on

Stein’s (1981) unbiased risk estimation. Nason (1996) used a cross validation

approach to choose the threshold.

Among all thresholding methods, we are interested in the Bayesian wavelet

method. In a typical Bayesian wavelet shrinkage method, a prior distribution

is chosen for the "true" wavelet coefficients, {d j,k}. Using Bayes’ theorem, with

known distribution of {ε j,k}, the posterior distribution of {d j,k} on {d̃ j,k} can

then be computed, and then we can get the posterior mean or median of the

wavelet coefficients. Our work, explained in section 3.3.2, based on the method

proposed by Silverman and Johnstone (2004, 2005a,b). Silverman and John-

stone’s work, which we call the JS model, basically uses a mixture prior of a

point mass at zero with a heavy-tailed distribution, and works well and also

demonstrates excellent theoretical properties.

In the JS model, the probability density function of the prior is defined as

fprior(d j,k)= wγ(d j,k)+ (1−w)δ0(d j,k), (3.25)

where γ represents a heavy-tailed distribution, δ0 is a point mass (Dirac delta)

at zero, and w is the mixing weight with 0≤ w ≤ 1.

There are some conditions on the types of heavy-tailed distribution (Silverman

and Johnstone, 2005b, p. 1710), where γ must be symmetric, unimodal, have

tails as heavy as, or heavier than, exponential, but not heavier than the Cauchy
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distribution, and satisfy a regularity condition such that, for some κ ∈ [1,2],

y1−κγ(y)−1
∫ ∞

y
γ(u)du (3.26)

is bounded above and below away from zero for sufficiently large y. A popular

example is the Laplace distribution, which is also used in our simulation in

section 3.3.4, specified by

γa(d j,k)= a
2

exp(−a|d j,k|), (3.27)

where d j,k ∈R and a is a positive scale parameter.

To choose appropriate hyper-parameters for the model, "empirical Bayes"

was introduced by the JS paper, which estimated parameters directly from the

data using a marginal maximum likelihood technique.

For example, let g be the density obtained by forming the convolution of

the heavy-tailed density γ with the standard normal density φ, and given

the prior in Equation (3.25) and the conditional distribution of the "observed"

coefficients {d̃ j,k} such that

d̃ j,k|d j,k ∼ N(d j,k,σ2). (3.28)

Then, the marginal density of the "observed" wavelet coefficients {d̃ j,k} is

wg(d̃ j,k)+ (1−w)φ(d̃ j,k). (3.29)

Since g, φ and {d̃ j,k} are known at this point but the w is not, in order to

estimate w, JS maximizes the marginal log-likelihood

l(w j)=
∑
k

log
{
w j g(d̃ j,k)+ (1−w j)φ(d̃ j,k)

}
, (3.30)
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where they estimate a separate mixing weight, w j for each scale level. Then the

estimated mixing weights are substituted back into the prior model to obtain a

posterior distribution by the Bayesian procedure. Similarly, other parameters

in the prior distribution could be estimated in a similar way. This thresholding

approach is incorporated into the R package EbayesThresh (Silverman and

Johnstone, 2005a), which can be executed by function ebayesthresh.wavelet.

In section 3.3.4, we will use Bayesian wavelet shrinkage to conduct experi-

ments and present results.

3.2.3 The basic Dirichlet process model

This section provides basic information about the Dirichlet process model

discussed by Ferguson (1973). We start with the definitions of the Dirichlet

distribution and the Dirichlet process, denoted by DP. A Dirichlet distribution

of order K ≥ 2 on x1, ..., xK ≥ 0 with parameters α1, ...,αK > 0 has a probability

density function defined as

f (x1, ..., xK |α1, ...,αK )= Γ(α1+, ...,+αK )
Γ(α1), ...,Γ(αK )

K∏
k=1

xαk−1
k , (3.31)

where Γ denotes gamma function and we have
∑K

k=1 xk = 1.

The Dirichlet process is a family of stochastic processes whose realizations are

probability distributions. It is widely used in Bayesian inference to describe

the prior knowledge about the distribution of random variables. Let α be a

positive real number, G0 be a distribution over some probability space Θ and

A1, ..., Ar be any finite measurable partitions of Θ, then a random distribution

G is distributed according to a Dirichlet process with the base distribution G0
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and concentration parameter α controlling how tightly the distribution G is

around G0, written G ∼ DP(α,G0), if

(
G(A1), ...,G(Ar)

)
∼ Dir

(
αG0(A1), ...,αG0(Ar)

)
, (3.32)

where Dir is a Dirichlet distribution and the vector
(
G(A1), ...,G(Ar)

)
is ran-

dom since G is random.

Let X1, ..., Xn be a sample from an unknown CDF F. To estimate F from

a Bayesian perspective, we can use a prior π on the set of all CDF F and then

we compute the posterior distribution on F given X1, ..., Xn. Hence, the basic

Dirichlet process model is defined when the Dirichlet process prior is used

(Ferguson, 1973), which has the following form

x1, ..., xn ∼ F,

F ∼π,

with π= DP(α,G0), (3.33)

where G0 and α are defined same as Equation (3.32).

In Bayesian perspective, if a posterior distribution is in the same probability

distribution family as the prior distribution, the prior and posterior are then

called conjugate distributions, and the prior is called the conjugate prior. The

Dirichlet process prior is a conjugate prior, as the posterior distribution is in

the same probability distribution family as the prior probability distribution,

such that

F|x1, ..., xn ∼ DP
(
α+n,

αG0 +∑n
i=1δxi

α+n

)
, (3.34)
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where {δxi } is a point-mass at {xi}. Hence, the posterior distribution F|x1, ..., xn

is also a distribution of probability distributions, which is the weighted sum of

the empirical distribution of the data and the base measure, with the weighting

controlled by α.

As the Dirichlet process is a distribution over the space of probability dis-

tributions, thus samples from a Dirichlet process are probability distributions.

The stick-breaking representation is introduced by Sethuraman (1994) to show

what such samples look like.

Suppose that F ∼ DP(α,G0) is a random probability distribution sampled

from a Dirichlet process. Then, with probability 1,

F =
∞∑

k=1
wkδφk , φk ∼G0, (3.35)

where

wk = zk

k−1∏
i=1

(1− zi), zi ∼Beta(1,α). (3.36)

Combining the above results, we can draw a sample probability distribution

from the posterior F|x1, ..., xn as follows

F|x1, ..., xn =
m∑

k=1
wkδφk , φk ∼

αG0 +∑n
i=1δxi

α+n
, (3.37)

where large m is usually chosen to ensure the accuracy of the estimation, and

w1 = z1 and wk = zk

k−1∏
i=1

(1− zi), for k = 2,3, ...,m, (3.38)

with zi ∼Beta(1,α) for i = 1,2, ...,m. (3.39)

The Dirichlet process model can be used to estimate the survival function,

which will be illustrated in section 3.3.3 in detail.
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3.2.4 The presmoothed method

Presmoothed versions of the classical non-parametric estimators are motivated

by dealing with the heavily-censored data sets, which becomes more frequent

nowadays due to increasing lifetimes.

The main idea behind the presmoothed estimators of the functions in sur-

vival analysis, such as survival, density, hazard rate and cumulative hazard

function, is that they are computed by giving mass to all the data, including the

censored observations. Here, we focus on the presmoothed hazard estimator.

Therefore, more information on the local behavior of the lifetime distribution

is provided to increase the accuracy of estimation. Hence, presmoothed esti-

mators have been shown to have a smaller asymptotic variance and, therefore,

a better performance in terms of mean squared error when the bandwidth

defined later in Equation (3.41) is suitably chosen (Lopez-de Ullibarri and

Jacome, 2013).

Let K be a non-negative real-valued integrable kernel function, which sat-

isfies the following two conditions such that

•
∫ +∞
−∞ K(u) du = 1,

• K(u)= K(−u) for all values of u.

Suppose the observation at time t is not censored, the Nadaraya-Watson (NW)

kernel estimator (Nadaraya, 1964; Watson, 1964) with bandwidth b1 can be

defined as
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p̂b1(t)=
∑n

i=1 Kb1(t−Zi)δi∑n
i=1 Kb1(t−Zi)

, (3.40)

where {Zi} and {δi} are described as in Equation (3.1), and Kb1(t)= b−1
1 K(t/b1)

is a rescaled kernel.

The presmoothed version of hazard λ̂b1,b2(t) (Cao and Lopez-de Ullibarri, 2007),

with the presmoothing bandwidth b1 for estimating p̂b1(t) and a second smooth-

ing bandwidth b2, is

λ̂b1,b2(t)= 1
n

n∑
i=1

Kb2(t−Zi) p̂b1(Zi)
1−Hn(Zi)+1/n

, (3.41)

where Hn is the empirical estimator of the distribution function of Z. The

quantity λ̂b1,b2(t) is obtained by minimising the mean integrated squared error,

MISE(b1,b2)= E
[∫ ∞

0

{
λ̂b1,b2(t)−λb1,b2(t)

}2
ω(t)dt

]
, (3.42)

where ω(t) is a non-negative weight function with user-defined support [−τ,τ]

such that
∫ τ
−τω(t) dt = 1.

Since the MISE depends on the unknown function λb1,b2(t), the optimal band-

width (b1,b2) is obtained in practice by minimizing an approximation of the

MISE. Different bandwidth selectors are provided in package survPresmooth

(Lopez-de Ullibarri and Jacome, 2013), where the function presmooth specifies

methods of bandwidth selection. In our experiments, plug-in bandwidth selec-

tion is used. There are some other methods of bandwidth selection as options,

but we do not explore these further.
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3.3 Hazard Rate Estimation

This section focuses on hazard rate estimation for right-censored data, es-

pecially when the lifetimes (time to failure) of the right-censored data are

generated from a piecewise-continuous density function.

3.3.1 Model set-up

We firstly reproduce the model setup by Antoniadis et al. (1999). Assuming

that:

• X1, X2, ..., Xn, are non-negative and independent and identically dis-

tributed (IID) lifetimes with common continuous cumulative distribution

function (CDF) F and continuous density f ,

• C1,C2, ...,Cn, are non-negative and IID censoring times with common

continuous CDF G and continuous density g,

• the lifetimes and censoring times are independent,

• (Z1,δ1), (Z2,δ2), ..., (Zn,δn) are defined same as Equation (3.1).

According to the definition of the hazard function defined in Equation (3.4), in

the censored case, if G(t)< 1, we have

λ(t)= f (t){1−G(t)}
S(t){1−G(t)}

. (3.43)

Let f ∗(t)= f (t){1−G(t)} and L(t)= P{Zi ≤ t}, we have

1−L(t)= S(t){1−G(t)}, (3.44)

λ(t)= f ∗(t)
1−L(t)

, L(t)< 1. (3.45)
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Suppose our estimates of λ(t) are computed over a finite interval [τmin,τmax]

and the length of the interval is τ = τmax − τmin. Let N be an integer and

∆= τ2−N defines a dyadic grid (evaluation points) as

tk = τmin +k∆, k = 0, ...,K = 2N −1. (3.46)

Under the definition above, the time axis is the interval [τmax −τmin] divided

into K+1 (i.e. 2N ) subintervals of length ∆ centred on tk. Hence, for k = 0, ...,K ,

the kth subinterval Jk = [τk,τk+1] with midpoint tk is defined as

τ0 = τmin −
∆

2
,

τk = tk −
∆

2
, k = 1, ...,K , (3.47)

τK+1 = τmax.

Now define a data set of (K +1)n records consisting of
(
Yik, tk

)
as

Yik = IJk (Zi)δi, i = 1, ...,n, k = 0, ..K , (3.48)

which indicates that a non-censored event for item i falls within the subinterval

Jk.

Finally, let Uk be the proportion of failures observed to fail in the interval

Jk, that is

Uk =
1
n

n∑
i=1

Yik, k = 0, ...,K . (3.49)

Here, Uk/∆ are crude estimators of the subdensity values f ∗(tk), which is
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further smoothed using a discrete fast wavelet method (Antoniadis et al., 1999)

to obtain an estimate ˆf ∗(tk) for every evaluation point tk.

As Equation (3.45) states, we still need an appropriate estimator of L(t) to com-

pute the hazard rate. Given the set of IID observations Z1, ..., Zn, the empirical

distribution function Ln, which is the standard non-parametric estimator of L,

is defined as

Ln(t)= 1
n

n∑
i
I[Zi≤t]. (3.50)

Since Ln does not take fully into account the smoothness of L, Antoniadis et al.

(1999) use a traditional histogram-type estimator l̂n of the density l of L in

their paper. The integral of l̂n will give an estimator of L, that is

L̂n(t)=
∫ t

τmin

l̂n(x)dx, t ∈ [τmin,τmax], (3.51)

where l̂n(t) is the Haar wavelet transform of the data and L̂n(t) can be viewed

as a wavelet estimator of the survival function. Hence, after estimating L̂n(tk)

at the dyadic grid {tk}k=0,...,K defined in Equation (3.46), we can then obtain

the hazard rate estimation as follows,

λ̂(tk)= f̂ ∗(tk)
1− L̂n(tk)

. (3.52)

3.3.2 Density estimation by Bayesian wavelet

thresholding and the bootstrap aggregating

approach

When estimating f ∗(t) defined in Equation (3.45), Antoniadis et al. (1999)

proposed a linear wavelet thresholding method, which basically sets to zero all
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coefficients that are finer in resolution than some scale j, and keeps the values

of the coarser wavelets up to that scale j (inclusive). Although this method

retains the computational advantages as compared to other wavelet methods,

it is not as flexible as nonlinear methods (Nason, 2008, p. 110). Hence, our

method is based on Bayesian wavelet thresholding described in section 3.2.2.2,

which uses a mixture prior that contains a point mass at zero mixed with a

heavy-tailed distribution. To estimate f ∗(t), we also use the bootstrap aggre-

gating approach described in section 3.3.2.1.

3.3.2.1 Bootstrap aggregating approach

Bootstrap aggregating, also known as bagging (Breimann, 1996), is a machine

learning ensemble algorithm designed to raise stability of algorithms by reduc-

ing variance and lowering the bias. It creates a required number of different

sets of the same size with replacement from the original training data set.

Using the same machine learning scheme, it builds a model for each set. To

deal with a regression problem, new predictions are made by averaging the

predictions from the individual models, while in the classification context, pre-

dictions are combined by voting a nominal target or averaging the estimated

class probabilities together.

To attempt to give a more accurate hazard rate, we apply bagging to esti-

mate the density f ∗(t). To achieve this computationally, we use the R function

censboot to generate b sets of right-censored survival data from the original

set, then compute ˆf ∗i (t) by Bayesian wavelet shrinkage for i = 1, ...,b, which is

the estimate of the density f ∗(t) for the i-th data set. The bagged version of
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the estimate of f ∗(t) is as follows,

ˆf ∗bagging(t)= 1
b

b∑
i=1

ˆf ∗i (t). (3.53)

Although bootstrap aggregating can be highly accurate, it can be computation-

ally expensive, which may discourage its routine use.

3.3.3 Survival function estimation using a Dirichlet

process model

In section 3.3.1, we mentioned that Antoniadis et al. (1999) integrate the

traditional histogram-type estimator l̂n to obtain the estimator L̂n in the de-

nominator of the hazard function, which is reasonably fast and accurate. In an

attempt to improve the accuracy of the hazard rate, we use a Dirichlet process

model to compute the estimator, which we call L̂DP , as the L(t) can be treated

as a CDF.

Let x= {x1, ..., xn} be a vector of realisations sampled from an unknown distri-

bution L, with L ∼ DP(α,G0), where α and G0 are defined in section 3.2.3. We

are able to sample the posterior probability distributions with N realisations

from a Dirichlet process using the following algorithm.
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Algorithm 3.1: Sample From a Dirichlet Process Posterior

Function post.DP(N, x, α, G0, m):

Let i = 1 and n be the length of input vector x.

while i ≤ N do
Draw φ1, ...,φm independently from the distribution, such that

αG0+∑n
j=1δx j

α+n , where δx j is a point-mass at x j.

Draw z1, ..., zm independently from Beta (1,α+n).

Let w1 = z1 and compute wk = zk

k−1∏
j=1

(1− zi), for k = 2, ...,m

Puts mass wk at δφk and obtain a probability distribution, that is∑m
k=1 wkδφk .

Let i = i+1

return a set of probability distributions with sample size of N.

Therefore, the sample posterior mean or median obtained by the algorithm can

be used to estimate the CDF L(t) (i.e. L̂DP) . Hence, the denominator of the

hazard ratio is computed by 1 minus this estimate L̂DP (t).

3.3.4 Simulation and results comparison

An advantage of using simulations is that we know the true hazard ratio, which

can be used to compare the truth with the results of our approaches. Here,

we carry out two simulation experiments, where the observations are from a

density containing a discontinuity and a smooth Weibull distribution, respec-

tively, and compare our new approaches with the established non-parametric

presmoothed method described in section 3.2.4, and the true hazard rate.
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As mentioned above, we compute hazard rate estimators using Bayesian

wavelet shrinkage and bagging to obtain f̂ ∗(t), meanwhile using the Dirichlet

process model to produce L̂DP (t). Since our estimates are not guaranteed to be

non-negative, f̂ ∗(t) and L̂DP (t) are replaced by zero if their values are negative

in the simulation. Also, while computing the hazard rate, we target the points

where L(t) < 0.9, as the hazard rate is unstable when L(t) is close to 1. For

example, Figures 3.2 and 3.3 in section 3.3.4.2 simulation 1 show the hazard

estimation using different methods, where the observations are from a density

containing a discontinuity. These figures are computed with L(t)< 0.9, whereas

Figure 3.1 demonstrates the situation where L(t) is up to approximately 0.99.

We can see that the hazard rate, both the truth and estimates, shoot up when

t > 0.7 (i.e. L(t) large), which is usually less meaningful and in the tails of the

distribution of L(t), which is not well-estimated with a finite set of data.
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Figure 3.1: Hazard plot when L(t) is up to approximately 0.99. Details and the
parameters used to produce the curves are explained in section 3.3.4.2.
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3.3.4.1 Suggestions for parameter choices

Practical guidelines for the choice of wavelet method, filter, and length etc. in

wavelet-based methods are important components of any methodology. For

example, Zhang et al. (2016) explicitly explore the effects of these essential

parameters on the estimated values of graph metrics and in their sensitivity

to alterations in psychiatric disease. In our studied cases, we can choose the

parameters in estimating f ∗ by minimising the mean squared error, which

cannot be done in real data situations as we do not know the truth. In addition,

this may be computationally expensively in practice as every combination of

the parameters would need to be considered. Hence, after much practical ex-

perimentation, this section provides suggestions on how to approach choosing

the parameters for different data.

Our suggestions mainly focus on the following parameters: wavelet filter

(Daubechies Extremal Phase or Daubechies Least Asymmetric), wavelet length

(from one to ten for Daubechies Extremal Phase and four to ten for Daubechies

Least Asymmetric), and the number of bins (i.e. the dyadic grid defined in

Equation (3.46)). We have observed that no noticeable differences in estima-

tion from different wavelet families of the same wavelet filter length, while a

much larger factor impacting estimation was the wavelet filter length. Larger

wavelet filter lengths provide smoother wavelets, but they increase the com-

putational burden. Hence, we suggest choosing a wavelet of a relatively large

length at the first trial, to ensure the results are relatively robust to small

perturbations in wavelet length, then decrease the wavelet length if the larger

one is too computationally expensive. Regarding the number of bins, we find
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that larger datasets can benefit from a relatively larger number of bins. Usu-

ally, we suggest not to use this method if the number of observations is below

200, which may not result in enough data in each bin for obtaining an accurate

estimation under this model. Suppose there are n observations, we find that a

good number of bins is approximately 2floor{log(n)−2}. For example, if the number

of observations is around or below 1000, then 16 might be a good choice for the

number of bins; if the number of observations is around 2000, then we can try

32; if the number of observations is above 3000, 64 or even larger number of

bins can be used. A question for future work is to study more precisely, via

theory, a good number of bins.

While estimating the CDF L(t) using the Dirichlet process model, we find

in practice, larger N and m mentioned in Algorithm 3.1 will result in a more

accurate estimate of L̂DP , which will also increase the running time. A good

choice for N and m to balance the estimation performance and computational

cost is 1000. In terms of the hyperparameter choices of the Dirichlet process

prior (i.e. the concentration parameter α and the baseline distribution G0

explained in Equation (3.33)), it is difficult to give an optimal guess of the prior

to obtain the most accurate estimation in reality, as users usually do not have

too much knowledge about the dataset. However, after much experimentation,

we find that different hyperparameters do not significantly affect the accuracy

of the estimation. Our simulation examples displayed below use simple normal

distributions as the baseline, which follow Ishwaran and James’s (2001) work

and give an improvement in estimation. The optimal choices of hyperparam-

eters are not the focus of this project, further study should be carried out on

this area.
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3.3.4.2 Simulation 1: density with a discontinuity

Suppose X1, ..., Xn are non-negative IID, simulated from the density function

f , such that

f (x)=


5x if x ∈ [0,0.5),

−3x+3 if x ∈ [0.5,1).
(3.54)

The corresponding censoring times C1, ...,Cn are simulated from the Exp(0.8)

distribution. Thus, we can obtain a set of observed random variables (Zi,δi)

defined as Equation (3.1).

Figures 3.2 and and 3.3 display the hazard estimate obtained with one realisa-

tion of n = 5000 observations, where the black line in both figures represents

the true hazard corresponding to the density function as Equation (3.54). In

our experiment, we choose the number of bins to be 64 and use Daubechies’

least asymmetric wavelets with filter.number equal to 7, which minimises

the mean squared error among all other options of different wavelets. When

using our bagging method, to improve the estimation of f ∗ in both figures, the

number of bootstrap replicates is 200. Our hazard estimates in the two plots of

Figure 3.2 are computed by the histogram method, L̂n (Equation (3.51)), which

is replaced by the Dirichlet process model, L̂DP (section 3.3.3), in Figure 3.3.

While estimating L̂DP , as suggested in section 3.3.4.1, the concentration pa-

rameter α is 10, the base measure G0 is a normal distribution N(1,1) and the

parameters N and m from a Dirichlet process model described in Algorithm

3.1 are chosen to be 1000.
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(a) f̂ ∗ estimated by Bayesian wavelet shrinkage
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(b) f̂ ∗ estimated by Bayesian wavelet shrinkage combined with bagging approach

Figure 3.2: Hazard rate estimation: the red line is produced using our wavelet
method with L̂n and f̂ ∗; the blue line is produced using presmoothed method
and the black line is the true hazard rate.
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Figure 3.3: Hazard rate estimation: the red line is produced using our wavelet
method with L̂DP and bagging for f̂ ∗; the blue line is produced using pres-
moothed method and the black line is the true hazard rate.

From Equation (3.54), the density function has a discontinuity at 0.5, which

results in a ‘jump’ in the estimated hazard rate. The presmoothed estimate fits

the truth well during the interval (0.1,0.4). However, it is oversmoothed near to

x = 0.5. Also, the presmoothed estimate for x ∈ (0.5,0.7) is not as accurate as in

(0.1,0.4). This is why we prefer our wavelet method to estimate the hazard rate

when the density function has discontinuities. Although our wavelet estimate

is not smooth, all figures shows that they capture the main feature of the true

hazard, especially for the region around the discontinuity.

According to the figures produced for this particular dataset, we can see that

our approach, using Bayesian wavelet shrinkage and bagging to estimate f ∗
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and Dirichlet process modelling to obtain L̂DP , performs the best and mimics

the truth almost everywhere in our target interval. However, although the

Dirichlet process model is accurate and allows us to estimate the survival

function L at any time point, which means it is not necessary to use a dyadic

grid, it is time consuming. In addition, bagging indeed improves the estimation

of f ∗, which smooths our hazard estimation considerably compared to using

Bayesian wavelet shrinkage only (without bagging). We also compute the mean

squared error for our different approaches for this dataset, shown in Table 3.1.

The mean squared error for the presmoothed method is 7.83×10−2, which is

larger than our wavelet worst case. This may be because the presmoothed

method does not perform well at the discontinuity. From this experiment, we

can see that wavelet method may be a better choice for density functions with

discontinuities.

Method to Estimate Hazard Rate MSE (×10−2)
Presmoothed Method 7.83

(a)
f ∗

L
Bayesian Wavelet Shrinkage

Antoniadis et al. (1999) Method
(
i.e. L̂n

) 7.64

(b)
f ∗

L
Bayesian Wavelet Shrinkage and Bagging
Antoniadis et al. (1999) Method

(
i.e. L̂n

) 6.61

(c)
f ∗

L
Bayesian Wavelet Shrinkage and Bagging

Dirichlet Process Model
(
i.e. L̂DP

) 5.47

Table 3.1: Mean squared error for one realisation using different approaches
to estimate hazard rate, where the parameters and hyperparameters are
described at the beginning of section 3.3.4.2.

The mean squared error produced in Table 3.1 is when the number of obser-

vations n = 5000, which is a reasonable choice in this case. As mentioned in

section 3.3.4.1, the number of bins chosen is related to the number of obser-
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vations n and the distribution of the dataset. For this particular setup stated

on page 77, we produce a plot showing the mean squared errors for different

number of observations n. Figure 3.4 shows that when n is greater than 5000,

the mean squared error produced using method (c) in Table 3.1 is reasonably

small. Although an increase in the number of observations will lower the

mean squared error, it also becomes more time-consuming, which may not be

considered in practice.
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Figure 3.4: Mean squared error for different number of observations n , where
method (c) is used in Table 3.1 in the wavelet approach.

To make our results more convincing, we repeat our experiment 200 times with

different datasets simulated by Equation (3.54) and produce a boxplot for the

MSE shown in Figure 3.5, where we find that our wavelet method clearly has

better performance than the presmoothed approach.
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Figure 3.5: Boxplot of the mean square error for hazard rate estimation with
200 datasets of n = 5000, where method (c) in Table 3.1 is used in the wavelet
approach.

3.3.4.3 Simulation 2: Weibull distribution

Considering now the situation where observations are from a continuous

distribution, our method also performs reasonably well. Suppose X1, ..., Xn are

non-negative IID, simulated from a Weibull distribution with density

f (x;k,λ)=


k
λ

( k
x
)k−1e−(k/x)k

if x ≥ 0,

0 if x < 0,
(3.55)

where the shape parameter k > 0 is chosen to be 3.5 and the scale parameter

λ> 0 is 1.8 in this experiment. The corresponding censoring times C1, ...,Cn

are simulated from the Exp(0.4) distribution.
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Figure 3.6 displays the hazard estimate computed with one dataset of n = 2000

observations, where we can see both wavelet and presmoothed approach mimic

the truth until x = 1.3. However, the presmoothed method has better perfor-

mance when x ∈ (1.3,1.8), while our wavelet method has lower mean squared

error after x = 1.8.

While using our wavelet method to estimate f ∗, we use the Bayesian wavelet

shrinkage method mentioned previously plus bagging to increase the accuracy.

In this experiment, the number of bins is 32, and Daubechies’ least asymmetric

wavelets with filter.number equal to 7 is chosen, and the number of bootstrap

replicates is 200. Also, the survival function L is estimated by L̂DP , where the

concentration parameter α is 5, the base measure G0 is a normal distribution

N(1.5,1) and the sample size N in (3.37) is chosen to be 2000. After computing

the mean squared error for this dataset, we find that our wavelet estimate

surprisingly has the lower value (i.e. 0.0075) compared to the presmoothed

result, that is 0.013.

Figure 3.7 is a boxplot produced with 200 different datasets simulated by

the same distribution as described in Equation (3.55), where we find that both

methods have similar performance although the presmoothed method has two

more outliers than our wavelet method for the 200 datasets. This may be

because our wavelet method does not have significant advantages when the

datasets are drawn from a continuous distribution.
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Figure 3.6: Hazard rate estimation: the red line is produced using our wavelet
method with L̂DP and bagging for f̂ ∗; the blue line is produced using pres-
moothed method and the black line is the true hazard rate.
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Figure 3.7: Boxplot of mean square error for hazard rate estimation with
200 datasets of n = 5000 from the Weibull distribution, where method (c) in
Table 3.1 is used in the wavelet approach.
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These simulation studies indicate that in terms of estimation accuracy, our

wavelet method, which uses the Dirichlet process model to estimate CDF, has

promise in that it works well in situations where the underlying density has

a discontinuity, but also competitive in the underlying smooth case. However,

this method has highly variable run times, which depends on the initial hyper-

parameter settings. If hyperparameters N and m in Algorithm 3.1 are large,

then this can result in extended execution times, whereas if they are small,

then the execution times are reduced. Of course, different hyperparameter

settings will also impact on the accuracy of our overall result. It is difficult to be

specific about how the hyperparameters interact to produce specific execution

times and accuracy and further work would be required to elicit this. Roughly

speaking, in our experience with simulations, our wavelet method that uses

the Dirichlet process model can take up to ten to a thousand times longer than

the presmoothed method. Users could decide which method to use according to

their primary goal, speed or accuracy. Usually, if high standard of accuracy is

not required, our wavelet method with bagging approach and the traditional

histogram-type method to estimate CDF could be a good choice.

3.4 New Method for Density Estimation

One limitation of using the Bayesian wavelet method mentioned previously

is that our evaluation points must be on a dyadic grid. Hence, we introduce

a new approach to solve this problem while estimating the density function.

Our main idea is based on Herrick et al.’s (2001) work, which exploits the

non-stationary variance structure of the wavelet coefficients. For the first
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time, we consider the detailed covariance structure of the empirical wavelet

coefficients and propose a multivariate version of the "mixture of Gaussians"

prior distribution in the Bayesian wavelet thresholding approach.

3.4.1 Prior mixture of Gaussians

Let f (x) be a probability density function. Let X1, ..., Xn be an independent and

identically distributed (IID) sample from f . Recall Equation (3.6): for some

M ∈Z, the wavelet representation of the density function is

f (x)∼ ∑
k∈Z

cMkφMk(x)+
∞∑

j=M

∑
k∈Z

d jkψ jk(x), (3.56)

where the coefficients cMk and d jk, as described in Equations (3.8) and (3.7),

are scaling and wavelet coefficients respectively.

By considering the coefficients as expectations c jk = E
[
φ jk(X )

]
and d jk =

E
[
ψ jk(X )

]
, we can compute the empirical coefficients c̃ jk and d̃ jk by

c̃ jk =
1
n

n∑
i=1

φ jk(X i), (3.57)

d̃ jk =
1
n

n∑
i=1

ψ jk(X i), (3.58)

which are calculated for resolution levels M up to some large primary resolution

level J, which is the coarsest level to which thresholding is applied (Hall and

Patil, 1995). The empirical coefficients d̃ jk can then be thresholded using our

Bayesian wavelet shrinkage method to obtain the estimated coefficients d̂ jk.

Then, the estimated density is

f̂ (x)= ∑
k∈Z

c̃MkφMk(x)+ ∑
j∈JM

∑
k∈K

d̂ jkψ jk(x), (3.59)
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where JM = { j ∈ Z : M ≤ j < J}, K = {k ∈ Z : kmin ≤ k ≤ kmax}, kmin and kmax

are the minimum and maximum values of k needed, so that the coefficients

"cover" the data.

After computing all the empirical coefficients by Equations (3.57) and (3.58)

by the wavelet transform, we can apply the Bayesian wavelet shrinkage for

the empirical coefficients using the "mixture of Gaussians" prior distribution

(Chipman et al., 1997) for each unknown "true" wavelet coefficient d jk:

d jk|γ jk ∼ γ jkN(0, c2
jτ

2
j )+ (1−γ jk)N(0,τ2

j ), (3.60)

where γ jk is a Bernoulli random variable with prior distribution of

P(γ jk = 1)= 1−P(γ jk = 0)= p j, (3.61)

and p j, c j, and τ j are all hyperparameters to be chosen. The prior parameter

τ j is typically set to be small and the hyperparameter c j should be set to be

much larger than one.

Hence, let d = {
d jk

}T
j∈JM ,k∈K be a vector of the true wavelet coefficients and

γ = {
γ jk

}T
j∈JM ,k∈K , according to Equation (3.60), we have the multivariate

normal distribution

d|γ∼ N(0,Ψ), (3.62)

where 0 is a vector of zeros and Ψ is a diagonal covariance matrix with diago-

nals defined as γ jkc2
jτ

2
j + (1−γ jk)τ2

j for j ∈JM ,k ∈K .

Similar to the wavelet-transformed model defined in Equation (3.24), we have

the multivariate version such that

d̃=d+ε, (3.63)
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where d̃ = {
d̃ jk

}T
j∈JM ,k∈K is a vector of noisy wavelet coefficients, and ε ={

ε jk
}T

j∈JM ,k∈K is a vector of noise.

In Chipman et al.’s (1997) model, they considered the likelihood of the ob-

served wavelet coefficients, which follows a IID normal distribution. In our

work, we compute the empirical coefficients, which are not mutually indepen-

dent, as each observation contributes to many different empirical coefficients,

as shown by Equations (3.57) and (3.58) from Herrick et al. (2001). Hence, we

assume the likelihood of the empirical wavelet coefficients is given by

d̃∼ N(d,Σ), (3.64)

where Σ is the covariance matrix defined by

Cov
[
d̃ j1k1 , d̃ j2k2

]
= 1

n

{
E
[
ψ j1k1(X )ψ j2k2(X )

]−E[ψ j1k1(X )
]
E
[
ψ j2k2(X )

]}
. (3.65)

Then, by the Bayes’ theorem, we can compute the posterior mean of d given

d̃, which can be chosen as our "estimate"
(
i.e. d̂= {

d̂ jk
}T

j∈JM ,k∈K

)
of the "true"

wavelet coefficients.

From Bayes theorem, the density of the posterior distribution is

f (d|d̃,γ)= f (d̃|d,γ) f (d|γ)/ f (d̃|γ)∝ f (d̃|d,γ) f (d|γ), (3.66)

where

f (d̃|d,γ)= f (d̃|d)= |det(2πΣ)|−1/2 exp
{
− 1

2
(d̃−d)TΣ−1(d̃−d)

}
, (3.67)

f (d|γ)= |det(2πΨ)|−1/2 exp
(
− 1

2
dTΨ−1d

)
. (3.68)
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Hence, we have

f (d|d̃,γ)∝ exp
{
− 1

2
(d̃−d)TΣ−1(d̃−d)

}
exp

(
− 1

2
dTΨ−1d

)
. (3.69)

= exp
[
− 1

2

{
d̃TΣ−1d̃− d̃TΣ−1d− (

dTΣ−1d̃
)T +dTΣ−1d+dTΨ−1d

}]
(3.70)

= exp
[
− 1

2

{
d̃TΣ−1d̃−2d̃TΣ−1d+dT(

Σ−1 +Ψ−1)d}]
. (3.71)

Deleting terms that do not depend on d, we obtain

f (d|d̃,γ)∝ exp
[
− 1

2

{
dT(

Σ−1 +Ψ−1)d−2d̃TΣ−1d
}]

. (3.72)

We want to find µ and Φ, such that

d|d̃,γ∼ N(µ,Φ), (3.73)

which means

f (d|d̃,γ)∝ exp
{
− 1

2
(d−µ)TΦ−1(d−µ)

}
(3.74)

= exp
{
− 1

2

(
dTΦ−1d−2dTΦ−1µ+µTΦ−1µ

)}
. (3.75)

Hence, by Equation (3.72), we obtain

Φ= (
Σ−1 +Ψ−1)−1, (3.76)

µ= (
Σ−1 +Ψ−1)−1

Σ−1d̃. (3.77)

Recall Ψ depends on γ and since γ is a Bernoulli random variable, it is difficult

to analytically derive the full posterior f (d|d̃) integrating out γ. Hence, we use

Gibbs sampling (Geman and Geman, 1984) to obtain a sequence of observations
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from the joint distribution of γ,d|d̃. Our algorithm, which enables us to find a

sample of d|d̃,γ, is described by the following steps:

• Start with some initial value
(
γ(i),d(i)).

• For the next sample
(
γ(i+1),d(i+1)), we have

γ(i+1) ∼ f
( · |d(i), d̃

)
,

d(i+1) ∼ f
( · |γ(i+1), d̃

)
.

• Continue until the required number of samples are produced.

According to the procedures above, we need to find the distribution of γ|d, d̃.

By the Bayes theorem, we find

f (γ|d, d̃)∝ f (d̃|d,γ) f (d|γ) f (γ) (3.78)

∝ f (d|γ) f (γ). (3.79)

Hence, for individual γ jk|d jk, d̃ jk, we have

f (γ jk|d jk, d̃ jk)= f (γ jk = 1|d jk, d̃ jk)+ f (γ jk = 0|d jk, d̃ jk) (3.80)

∝ f (d jk|γ jk = 1) f (γ jk = 1)+ f (d jk|γ jk = 0) f (γ jk = 0). (3.81)

This gives us the distribution of γ|d, d̃ to enable the Gibbs sampling work,

which is the mixture parameter between the two Gaussians in the model de-

fined in Equation (3.61).
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3.4.2 Hyperparameter estimation

Like the JS model, we can obtain the estimates of hyperparameters in our

model (e.g. c j, τ j and p j explained in Equations (3.60) and (3.61)) by maximis-

ing marginal likelihood of d̃. Firstly, we compute the joint distribution of d̃,d,γ

as follows

f (d̃,d,γ)= f (d̃|d,γ) f (d|γ) f (γ) (3.82)

=C exp
{
− 1

2
(d̃−d)TΣ−1(d̃−d)− 1

2
dTΨ−1d

}
f (γ) (3.83)

=C
{
d̃TΣ−1d̃−2d̃TΣ−1d+dT(

Σ−1 +Ψ−1)d}
f (γ) (3.84)

=C exp
[
− 1

2

{
dT(

Σ−1 +Ψ−1)d−2d̃TΣ−1d
}]

exp
(− 1

2
d̃TΣ−1d̃

)
f (γ) (3.85)

with C =
∣∣∣det(2πΣ)det(2πΨ)

∣∣∣−1/2
. Integrating f (d̃,d,γ) with respect to d and γ,

we can find the marginal distribution of f (d̃). From Equations (3.73) to (3.76),

we have

∫
f (d̃,d,γ)dd=

∣∣∣det(2πΦ)
∣∣∣1/2

∣∣∣det(2πΣ)det(2πΨ)
∣∣∣1/2 exp

(− 1
2

d̃TΣ−1d̃
)
f (γ jk). (3.86)

Then

f (d̃)=∑
j,k

f (d̃,γ)=∑
j,k

∫
f (d̃,d,γ)dd (3.87)

=∑
j,k

∣∣∣det(2πΦ)
∣∣∣1/2

∣∣∣det(2πΣ)det(2πΨ)
∣∣∣1/2 exp

(− 1
2

d̃TΣ−1d̃
)
f (γ jk). (3.88)

In practice, we can find the estimates of the hyperparameters by maximising

f (d̃) numerically using R function optim. However, it will be too computation-

ally expensive as we need to sum over all the combinations of possible values
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of γ jk for j ∈ JM = { j ∈ Z : M ≤ j < J} and k ∈ K = {k ∈ Z : kmin ≤ k ≤ kmax}

described in Equation (3.59) to obtain f (d̃).

3.4.3 Simulation and results comparison

Again, we carry out two simulations, where observations are from a Weibull

distribution and a density with a discontinuity respectively. Here, we use our

new method to compare with the JS model rather than the approach proposed

by Chipman et al. (1997). This is because the JS model is a more recent devel-

opment, a thorough robust underlying asymptotic theory, attention to detail

and also has a user-friendly R package.

Suppose X1, ..., Xn are simulated from the Weibull distribution defined in

(3.55) with k =λ= 2. As mentioned in section 3.3.4.1, a relatively larger filter

number is a good choice to try, and Chipman et al. (1997) suggest that the

hyperparameter c j should be much greater than one and τ j is typically small.

Hence, in this experiment, we choose Daubechies’ least asymmetric wavelets

with the filter number of 7, and the hyperparameters in our new method are set

to be p j = 0.01, c j = 1000, and τ j = 0.001 for j = 1, ...,4. Also, as under the JS

model, the number of evaluation points must be on a dyadic grid, the number

of bins is chosen to be 32 for both wavelet models. Figure 3.8 shows estimation

using our new method (red line) and using the JS model (blue line) for one

particular data set with 2000 observations, where we can see both methods are

close to the truth despite some inaccurate estimates when X i are around 1.5.

We also plot a kernel density estimate (green line) in Figure 3.8, which looks
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smoother than the estimation produced by the wavelet methods. However, the

kernel estimation may be oversmoothed in the situation where the observations

are generated from a distribution with discontinuities, which will be displayed

in the next example.
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Figure 3.8: Density estimation: the red line represents the density estimated
using our new method; the blue line is the density estimate using the R function
ebayesthresh.wavelet; the green line is the kernel estimate; the black dash
line represents the true density of Weibull (2,2) distribution.

In order to compare the accuracy of the two wavelet methods, we generate 200

different sets of data from Weibull (2,2) distribution and compare the mean

squared error of these two wavelet-based estimates. We find that our new

method has a better performance, as about 68% of the datasets have the lower

mean square error using our new method rather than the JS model for this
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particular distribution. Figure 3.9 shows a boxplot of the mean square error

computed by the kernel method, JS model using R function ebayesthresh and

our new approach respectively. In general, our new approach has the lower

mean square error, although it has more outliers.
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Figure 3.9: Boxplot of mean square error for density estimation with 200
datasets.

Now, let us focus on a second simulation, where the X is are simulated from the

distribution with density f defined as

f (x)=


2x
75 if x ∈ [0,5),

40−4x
75 if x ∈ [5,10).

(3.89)

Again we choose Daubechies’ least asymmetric wavelets with the filter number

of 7, and the number of bins is chosen to be 32 . The hyperparameters in our

new method are set to be p j = 0.01, c j = 1000, and τ j = 0.001 for j = 1, ...,4. Fig-

ure 3.10 shows the density estimates using different methods for one dataset
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with 2000 observations. As we can see, there is a discontinuity at x = 5. How-

ever, compared to the other two wavelet-based methods, the kernel estimate

does not capture this feature for this particular dataset.

Now we generate 200 different datasets from this distribution, which shows

that about 54% and 58% of ours have the lower mean square error than the

JS model and kernel estimation respectively. The boxplots of the mean square

error for the kernel method and two wavelet models in Figure 3.11 also show

that both wavelet methods have similar performance, where our new wavelet

method has the slightly smaller mean squared errors in general. In addition,

the kernel method does not produce extreme mean squared errors, as it over-

smoothes the density function, especially near the discontinuity point.

From the two simulations, we may conclude that in terms of the accuracy,

our new wavelet method gives an improvement, although there is not always

an overwhelming superiority. Comparing to the JS model, the other main

advantage of our new method is that it does not require a dyadic grid for the

evaluation points. However, our new method is time consuming as it requires

multivariate computation.
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Figure 3.10: Density estimation: the red line represents the density estimated
using our new method; the blue line is the density estimate using the R function
ebayesthresh.wavelet; the green line is the kernel estimate; the black dash
line represents the true density.
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Figure 3.11: Boxplot of mean square error for density estimation with 200
datasets.
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3.5 Conclusions

This chapter presents the methods to improve the estimates of the density

and hazard rate using the wavelet approaches. For hazard rate estimation,

we use the Bayesian threshold approach to estimate the density function, and

a non-parametric Bayesian method with Dirichlet process prior to estimate

the survival function. We display two simulation examples, where the obser-

vations are from a density containing a discontinuity and a smooth Weibull

distribution, respectively. Both simulations show that our method works well

compared to the presmoothed method (Lopez-de Ullibarri and Jacome, 2013).

For density function estimation, we propose a multivariate version of the

"mixture of Gaussians" prior distribution in the Bayesian wavelet thresholding

approach using the detailed covariance structure of the empirical wavelet coef-

ficients. The two simulation experiments show that comparing to the JS model

(Silverman and Johnstone, 2004, 2005a,b) and the kernel density estimation,

our new wavelet method, which does not require a dyadic grid for the evalua-

tion points, gives an improvement but not always an overwhelming superiority.

Our wavelet methods is useful in the real applications. This is because using

smoothed methods such as kernel estimation or presmoothed method to esti-

mate the hazard or density functions will never show a discontinuity even if

there was one. Our wavelet methods working as an "insurance", will give users

the capability to show this structure, especially in the situation when there

is a high possibility to have a discontinuity. Antoniadis et al. (1999) show an

employment example with discontinuities in hazard estimate of employment
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time by three months, as people could only get benefit from the government for

the first three months of the unemployed period. Actually, any sharp cut-off in

policy or rules may cause discontinuities in hazard or density functions.

Further investigation could be carried out on choosing the hyperparameters

efficiently and accurately for our new wavelet method, as our current work

determines the hyperparameters based on the rough suggestions of Chipman

et al.’s (1997) work. Although in section 3.4.2, we derive the marginal likeli-

hood of the empirical wavelet coefficients and try to maximum the likelihood

numerically to find the estimates of the hyperparameters, it is computationally

inefficient to be applied in real situations.
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C H A P T E R 4

CLUSTERED RECURRENT LIFETIMES ANALYSIS

4.1 Introduction

Survival analysis is one of the most important statistical methods, which anal-

yses the lifetime of individuals until an event occurs. It is widely used in

many areas such as biological research or mechanical systems, where the event

can be defined as death or failure respectively. Traditional survival analysis

usually only contains a single event occurring for each individual: death or

survival. Our work focuses on recurrent survival times, which allows us to

have several lifetimes for each individual. Epilepsy, malaria, bladder cancer,

etc. are common situations with recurrent survival times.

Our goal is to use methods to form groups of individuals and estimate survival

functions for each group, which is useful when we only have few lifetimes per

individual. Section 4.3 illustrates our methods to group individuals, which can

be constructed using the dissimilarity matrix of the individuals from separate

covariate information. For example, if the information of the individuals comes

with their geographical location, then the dissimilarity matrix can be computed
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directly, or we can compute the matrix according to the covariates associated

with each individual. Assuming the lifetimes of individuals in the same group

are from the same independent distribution, we can improve the estimates of

the survival function by grouping lifetimes of individuals from each cluster.

We can then use the estimates to predict lifetimes of individuals with similar

covariates.

4.2 Literature Review

This chapter uses a basic knowledge of survival data analysis which has been

reviewed in Chapter 3.

4.2.1 Methods for modelling lifetimes

There are many methods for modelling lifetimes, such as using parametric or

non-parametric distributions and regression models. For parametric methods,

the exponential and the Weibull distributions are commonly considered. Each

makes a different assumption about the nature of the hazard rate. The expo-

nential distribution has a constant hazard function, which reflects a lack of

memory property. However, the constant hazard rate is often untenable. The

Weibull distribution generalises the exponential distribution, and it is probably

the most widely used parametric distribution in survival analysis. This may

be because it covers a wide variety of distributional shapes with simple sur-

vival and hazard functions, which has been found to be useful in many contexts.

For non-parametric survival function estimation, the Kaplan-Meier method

100



4.2. LITERATURE REVIEW

(Kaplan and Meier, 1958) is often used. The estimator is computed by

Ŝ(t)= ∏
i:ti≤t

(
1− di

ni

)
, (4.1)

where ti is the time when at least one event happened, di is the number of

events (e.g. deaths) that happened at time ti, and ni is the number of individu-

als that have not yet had an event or been censored up to time ti.

One of the most popular regression models to analyse survival data is Cox’s pro-

portional hazard model (Cox, 1972). Suppose there are p explanatory variables,

denoted by vector z, which may affect the time until an event. Standardising

these explanatory variables with z = 0, we will obtain some standard set of

conditions, which is called baseline hazard shown in formula below. In reality,

such standard set can be the control group in a clinical trial. Cox’s model

proposes that the hazard rates of individuals are related via the relationship

λ(t|z)=λ0(t)exp(β · z), (4.2)

where t > 0, β ∈Rp is a vector of regression parameters, and λ0(t) is the baseline

hazard representing the hazard of a individual with z = 0. Equation (4.2) also

shows a multiplicative effect on the hazard of any deviation away from zero in

each explanatory variable.

The reason why the model is called proportional hazard regression is because

of the constant ratio of hazard functions of two individuals with explanatory

variable z1 and z2 at all times, that is,

λ(t|z1)
λ(t|z2)

= λ0(t)exp(β · z1)
λ0(t)exp(β · z2)

= exp{β · (z1 − z2)}. (4.3)
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The original Cox’s proportional hazard regression only collects the data for the

first event, whereas the later events are ignored. More appropriate models for

recurrent events, which are generalizations of the Cox’s proportional hazard

regression, are the Andersen and Gill (AG) model (Andersen and Gill, 1982),

the Wei, Lin and Weissfeld (WLW) marginal model (Wei et al., 1989), the Pren-

tice, Williams and Peterson (PWP) conditional model (Prentice et al., 1981),

and the frailty models (McGilchrist and Aisbett, 1991), whose hazard functions

are shown later in Table 4.1.

The AG model is a counting process model, which assumes that the recurrent

events for individuals are independent and have the same baseline hazard,

λ0(t), for all individuals. Although this method can be used to evaluate re-

peated occurrence of hospitalizations for all individuals, the assumptions may

be too strong in practice.

The WLW model employs total time and assumes a event-specific baseline

hazard. Therefore, each individual is considered to be at risk of all recurrent

events from the start of the observation period, which means that each recur-

rence is regarded as a separate process and there is no ordering for all events

within each individual. This model will give reliable estimates when data

do not have any ordering. A drawback of the WLW method is that it takes

no account of the strong information contained in the order of the recurrent

survival lifetimes, just their values. Other methods that do take account of the

order information have the potential to do better.
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Prentice, Williams and Peterson proposed two models. One is a counting

process model, called PWP-CP, the other is a gap time (PWP-GT) model, both

of which assume that the recurrent events within each individual are related

and the baseline hazard always changes from event to event. For instance, if a

person had a bladder cancer and has been cured by a treatment, the risk for

the cancer to reappear may increase, as the body may be damaged during the

treatment. The only difference between these two models is that the former

is based on a counting process time interval, but the latter one is based on a

gap time interval, which is the time since the previous event. However, (Yadav

et al., 2018) finds that, for higher order events, the estimates may be unreliable

for both models, as the number of individuals at risk decreases.

The frailty model (McGilchrist and Aisbett, 1991) is a random effects model,

which considers the excess risk or frailty for distinct individuals caused by the

unknown factors that are not listed in the observed explanatory variables. The

assumption of the baseline hazard allows it to vary within each individual as

the heterogeneity is directly incorporated via the random effect (frailty). This

model can be used both for modelling lifetimes of individuals, like twins or

family members, and for repeated events for the same individual. The most

common frailty model assumes the random effects follow a gamma distribution

with mean equal to one and unknown variance, but this may be a restriction

implying that the dependence is most important for late events (Hougaard,

1995).

We remind the reader that λ0(t) in Equation (4.2) represents the common

baseline hazard for the regression model and β ∈Rp is a vector of regression
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parameters. For each individual, suppose there are K recurrent events, then

tk−1 with k = 1,2, ...,K is the time for the k-th event occurring. Let λik denote

the hazard function for the k-th event of the i-th individual at time t, hence λ0k

represents an event-specific baseline hazard for the k-th event. Let zik(t) ∈Rp

denote the covariate vector for the i-th individual with respect to the k-th event.

Also, Yi represents the random effect (frailty term) for the i-th individual in

the frailty model. Table 4.1 summarizes the hazard functions for the regression

models mentioned previously.

Regression model Hazard function

AG model λik(t|zik)=λ0(t)exp(β · zik)

WLW model λik(t|zik)=λ0k(t)exp(β · zik)

PWP-CP model λik(t|zik)=λ0k(t)exp(β · zik)

PWP-GT model λik(t|zik)=λ0k(t− tk−1)exp(β · zik)

frailty model λik(t|zik)=λ0k(t)Yi exp(β · zik)

Table 4.1: Hazard function for different regression models

Time

Individuals

0 5 10 15

A
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C

Figure 4.1: Illustrative recurrent times for three individuals, where a square
represents an event and a triangle means that the individual is right-censored.
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(c) Gap time

Figure 4.2: Illustrations of the risk intervals: a) counting process b) total time
c) gap time, derived from the times of the individuals in Figure 4.1. A Square
represents an event and a triangle means that the individual is right-censored.
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As mentioned before, the AG and PWP-CP are counting process models, the

WLW model uses total time, whereas the PWP-GT uses a gap or waiting-time

scale. Figure 4.1 shows the recurrent lifetimes (e.g. recurrence of cancer) for

three individuals A, B, C, whereas Figure 4.2 shows three types of intervals

(i.e. counting process, total time and gap time intervals) for the same three

individuals in Figure 4.1. For example, Figure 4.1 shows that individual A has

three event times at t = 3,7,15 respectively. The corresponding time intervals

shown in Figure 4.2 for the counting process are (0,3], (3,7], (7,15], which are

(0,3], (0,7], (0,15] and (0,3], (0,4], (0,8] when using the total time and gap time

respectively. These types of intervals are considered as the risk intervals in

the survival analysis, which is defined when an individual is at risk of having

an event along a given time scale.

4.2.2 Dissimilarity matrix and hierarchical cluster

analysis

The relationships between individuals are often considered in data analytic

and data mining tasks, which can be represented numerically using the idea

of similarities or dissimilarities. The similarity between two objects is a nu-

merical measure of the degree to which the two individuals are alike, which is

non-negative and often between 0 and 1, representing no similarity and com-

plete similarity respectively. By contrast, the dissimilarity measure describes

pairwise distinction between individuals. Intuitively, the greater distinction

between two individuals, the larger the value of the measure of dissimilarity.

106



4.2. LITERATURE REVIEW

The dissimilarity matrix is always a square matrix with the diagonal en-

tries set to zero. The non-diagonal entries represent pairwise dissimilarities

between two individuals, which can be metric or non-metric as described next.

Here, we only consider the metric dissimilarity matrix as follows. A metric

dissimilarity function, d, maps any two individuals, xi and x j, into a real

number, which satisfies the following three properties (Mendelson, 1990):

1. d is non-negative, that is

d(xi, x j)> 0 if and only if xi 6= x j,

d(xi, x j)= 0 if and only if xi = x j;

2. d is symmetric, that is,

d(xi, x j)= d(x j, xi);

3. d satisfies the triangle inequality, that is for any individuals xi, x j, xk,

d(xi, x j)≤ d(xi, xk)+d(xk, x j).

In our work, we only consider metric dissimilarity matrices. Commonly used

metrics to compute the dissimilarities for numerical data are the Minkowski

distance, Manhattan distance, Euclidean distance, maximum distance, and

Mahalanobis distance (Mahalanobis, 1936), while the Hamming distance (Ham-

ming, 1950), Jaccard distance (Jaccard, 1912) and simple matching similarity

are suitable for the categorical data. For mixed data, with both numerical

and categorical covariates, Gower’s similarity (Gower and Legendre, 1986) are

quite often considered in practice. We explain these below.
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Suppose xi and x j are two individuals with p covariates/attributes, Table 4.2

summarizes the formulae for various metric distances, where we find the

Manhattan and Euclidean distances are special cases of the Minkowski dis-

tance with r = 1,2 respectively, and the Minkowski distance is known as the

maximum distance when r =∞. If there are correlations of the attributes be-

tween individuals, the Mahalanobis distance is often preferred to other metrics

(Mclachlan, 1999).

Metric distance Equation of formula

Minkowski Distance d(xi, x j)=
(∑p

k=1 |xik − x jk|r
)1/r

Manhattan Distance d(xi, x j)=∑p
k=1 |xik − x jk|

Euclidean Distance d(xi, x j)=
(∑p

k=1 |xik − x jk|2
)1/2

Maximum Distance d(xi, x j)=maxp
k=1 |xik − x jk|

Mahalanobis Distance d(xi, x j)=
{
(xi − x j)Σ−1(xi − x j)T

}1/2

Table 4.2: Formulae for the metric distances: xik and x jk are the k-th attributes
of xi and x j respectively and Σ−1 is the inverse of the covariance matrix of the
data.

For categorical data, the dissimilarity function, d, for the k-th attributes of two

individuals xi and x j , can be

d(xik, x jk)=


0 iff xik = x jk

1 otherwise,
(4.4)

Hence, the Hamming distance can be defined as the number of differences in
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the binary attributes, such that

d(xi, x j)=
p∑

k=1
d(xik, x jk), (4.5)

which is equivalent to the definition of Manhattan distance.

For the individuals xi and x j and a,b, c,d ≥ 0, we define

• a to be the number of times that xi and x j both share an attribute,

• b to be the number of times that xi does not have an attribute but x j

does,

• c to be the number of times that xi have an attribute but x j does not,

• d to be the number of times that xi and x j do not have an attribute.

Then the Jaccard distance (Jaccard, 1912) is

d(xi, x j)= b+ c
a+b+ c

, (4.6)

and the simple matching similarity, s(xi, x j), is

s(xi, x j)= a+d
a+b+ c+d

. (4.7)

For mixed data, Gower’s similarity (Gower and Legendre, 1986) is defined as

sG(xi, x j)=
∑p

k=1 wkδ(xik, x jk)∑p
k=1 wk

, (4.8)

where wk ≥ 0 quantifies the confidence/weight in variable k, and δ(xik, x jk) is
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the similarity between xi, x j on variable k.

For categorical data,

δ(xik, x jk)= 1−d(xik, x jk), (4.9)

with d(xik, x jk) defined in Equation (4.4).

For numerical data,

δ(xik, x jk)= 1− xik − x jk

rk
, (4.10)

with rk equal to the range of values on the k-th variable.

The Gower’s dissimilarity is simply defined as
√

1− sG(xi, x j).

4.3 New Methods for Analysing Recurrent

Events using Clusters

This section describes our new methods using cluster structures to analyse re-

current lifetimes, where covariate information is also used. Basically, suppose

there are n individuals. We construct the cluster structure for these individuals

with the help of a dissimilarity matrix. In the situation when the dissimilarity

matrix or the distance between pairs of individuals is unknown, we compute

it based on the given covariates. Using hierarchical cluster analysis, we then

merge the individuals into clusters according to the closeness between individ-

uals, which can be presented as a dendrogram. Then we group the recurrent

lifetimes of each individual, where we combine the individuals of the similar
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survival/hazard functions into the same cluster. As the number of the recurrent

lifetimes for each individual is usually not numerous, with this method, we

can have more recurrent times to estimate the survival functions, by assuming

individuals similar survival/hazard functions could be grouped together, as

stated on page 100.

As mentioned previously, our methods could be applied in biological research.

For example, the survival estimates of epilepsy, which is a recurrent chronic

noncommunicable disease of the brain. According to the WHO, there are around

50 million people worldwide who have suffered from this disease. Usually, these

people tend to have more physical and psychological problems such as a brain

tumour, brain malformations etc., which could be used in our methods to con-

struct the dissimilarity matrix and produce dendrograms. However, using

these characteristics only to group patients may be a bit inaccurate, so based

on the dendrograms, recurrent lifetimes could be used to carry out goodness-of-

fit tests to adjust the initial clusters shown on the dendrograms. Because of

the low recurrence of this disease, it is usually difficult to estimate survival

curves individually. Using all lifetimes within a cluster to conduct analysis

may provide a more accurate estimate. Other similar examples, which have

few recurrent data individually, are also suitable to use our proposed meth-

ods, as our main goal is to group lifetimes reasonably to increase the number

of data to make estimation. The details of our methods will be illustrated below.

To analyse clustered measurements, mixed models are also popular alter-

natives, which contain both fixed effects and random effects. Clayton (1994)

reviews different approaches to analyse recurrent event data, including the
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generalised linear mixed model. Sun et al. (2011) propose a class of mixed

models for recurrent event data and give a clinic study on chronic granuloma-

tous disease. Rathbun and Shiffman (2018) develop a mixed effects version

of a recurrent events model to describe variation among smokers in how they

respond to some time-varying covariates. The main difference between our

model and a mixed effect model is that ours combines all possible factors to

compute the dissimilarities between individuals, which are used to construct

initial clusters. Then, the initial clusters will be adjusted using recurrent

lifetimes to obtain the final clusters. Hence, all factors are not directly included

in the model. On the other hand, mixed models include each factor directly,

either in fixed or random effects, which gives information on the influence of

individual factors.

4.3.1 Initial clusters construction

For different types of data, choosing one of the methods listed in section 4.2.2

to compute the dissimilarity matrix, we can then use the complete-linkage

clustering method (Everitt et al., 2011) and display the clusters using a dendro-

gram, which shows the hierarchical relationship between individuals. At the

beginning of the complete-linkage clustering process, each element is a cluster,

which is then sequentially combined into larger clusters until all elements

being in one cluster finally. At each step, the two clusters with the shortest

distance are combined. Suppose C1, C2 are two clusters and c1, c2 are any

individuals in these two clusters respectively, the distance between these two

clusters D(C1,C2) is defined as
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D(C1,C2)= max
c1∈C1,c2∈C2

d(c1, c2), (4.11)

where d(c1, c2) is the distance between the individuals c1 and c2.

In practice, we use daisy function in R cluster package (Maechler et al.,

2021) to compute the pairwise dissimilarities with Euclidean (the default),

Manhattan and Gower metrics. Some other functions are also available in

R, for example, function distance in philentropy package (Drost, 2018) is

able to compute 46 different distances or similarities, which includes all the

methods mentioned in this section. To apply the complete-linkage clustering

method in R software, we use hclust function in package stats.

4.3.2 Clusters adjustment

After obtaining the dendrogram of the individuals constructed according to

their covariates by the hierarchical clustering method, we then adjust the

clusters using the recurrent survival times for each individual. Basically, we

carry out a non-parametric goodness-of-fit test, the Kolmogorov-Smirnov test

(Massey, 1951), for the recurrent lifetimes to compare whether the two samples

of individuals from different clusters are actually from the same distribution.

Here, we use the two-sample Kolmogorov-Smirnov (K-S) test to check whether

two underlying probability distributions differ, which can be applied in R soft-

ware by using function ks.test in package stats. The Kolmogorov-Smirnov
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test statistic is defined as

Dn,m = sup
x

|F̂1,n(x)− F̂2,m(x)|, (4.12)

where sup is the supremum function, and F̂1,n, F̂2,m are the empirical dis-

tribution functions of the two samples with size n and m respectively. The

null hypothesis for the test is that both samples come from a population with

the same underlying distribution. Hence, we reject the null hypothesis at

significance level α if

Dn,m > Dn,m,α, (4.13)

where Dn,m,α is the critical value.

Loosely speaking, using the Kolmogorov-Smirnov test, our two methods of

adjusting the existing clusters based on the dendrogram are as follows.

Method 1 Top-down adjustment: Assuming all the individuals should

not be grouped in the same cluster, we separate them into two clusters

using the existing dendrogram. For each cluster, at each step, we check

whether the two children of each cluster should be separated or not us-

ing the Kolmogorov-Smirnov test including the recurrent lifetimes of all

individuals in each branch. The process stops when the further division

is not possible.

Method 2 Bottom-up adjustment: Assuming every individual is a cluster,

we then check whether the current cluster is able to combined with the

cluster next to it according to the dendrogram. If we do not have the
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enough evidence to reject the null hypothesis of the Kolmogorov-Smirnov

test, we group the clusters together. The process stops when further

combination is impossible.

We now propose one algorithm for the top-down approach and two algorithms

for the bottom-up approach defined next.

4.3.3 Clusters adjusting algorithms

The following algorithms illustrate in detail how our methods work practically.

The top-down adjustment explained in Algorithm 4.1 on page 116 applies a

recursive function to divide all individuals into clusters. For the bottom-up

adjustment, Algorithm 4.2 on page 117 considers whether the consecutive

individuals of the dendrogram should be clustered one by one. Hence, for a

number of n individuals, we start with n−1 pairwise Kolmogorov-Smirnov

(K-S) tests. However, sometimes Algorithm 4.2 may result in too many small

clusters. Hence, we introduce Algorithm 4.3 on page 117, which attempts some

improvement, where further combinations of the Algorithm 4.2 existing clus-

ters are possible by conducting Kolmogorov-Smirnov tests for all consecutive

clusters again. Larger clusters are made from the smaller ones, and the process

stops until no more larger clusters can be made. For all three algorithms, the

inputs and output are listed as follows.
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Input :

• vec.t: a vector of recurrent lifetimes for all individuals

ordered from the left of the dendrogram

• dend: the current dendrogram

• in.l ist: a list of input clusters of individuals

• sig: the significance level set for the K-S test

Output :

• out.l ist: a list of output clusters of individuals

Algorithm 4.1: Top-down Adjustment

Function TopDown.adjust(vec.t, dend, sig):

if members of dendrogram ≥ 2 then

Cut dend into two branches (clusters) at its highest height.

Use the K-S test on the two clusters and compute the p-value.

if p-value < sig then

For each branch, run TopDown.adjust(vec.t, dend, sig)

return

else

Add the two separate clusters into out.l ist

return

else

Add the individual as a cluster into out.l ist

return
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Algorithm 4.2: Bottom-up Adjustment (Method One)

Let each individual ordered from left of dend to be an input cluster.

Function BottomUp.adjust1(vec.t, in.l ist, sig):
Define n to be the number of clusters of in.l ist.

Let the current cluster be the first cluster of in.l ist.

Let out.l ist be an empty list.

for i = 1,2, ...,n−1 do
Use K-S test to compute the p-value of the recurrent times

between the i-th and (i+1)-th clusters of in.l ist.

if p-value > sig then
Include the (i+1)-th cluster into the current cluster.

if i = n−1 then
Add the current (last) cluster into out.l ist.

if p-value < sig then
Add the current cluster into out.l ist .

if i = n−1 then
Add the (i+1)-th cluster into out.l ist.

else
Set the current cluster to be the (i+1)-th cluster.

return

Algorithm 4.3: Bottom-up Adjustment (Method Two)

Function BottomUp.adjust2(vec.t, in.l ist, sig):
Let in.l ist be an empty list.

Let out.l ist be the individual clusters ordered from left of dend.

while out.l ist 6= in.l ist do
in.l ist = out.l ist

Run BottomUp.adjust1(vec.t, in.l ist, sig) and obtain out.l ist.

return
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4.3.4 Improve the survival estimates

Our main goal is, of course, to obtain good estimates of our survival functions.

After obtaining clusters according to the dendrogram obtained by the hierar-

chical clustering method, we can then estimate the survival/hazard function

for each cluster by using all lifetimes in that cluster. This may provide better

estimation as we have more recurrent survival times to analyse for each cluster,

which may not be possible if we estimate the survival/ hazard function using

the recurrent lifetimes for each individual separately. Sometimes, the number

of observations for each individual is fewer than ten in reality, for example

with the bladder cancer recurrent lifetime data (Byar, 1980). Hence, it can be

hard to get accurate estimates for these individuals.

4.4 Weibull Distribution Simulation Examples

This section contains simulation examples, where the recurrent lifetimes for

each individual are generated from different Weibull distributions. For sim-

plicity, we only produce uncensored lifetimes. Treating the two parameters of

each Weibull distribution as the geographical coordinates for the corresponding

individual, we can obtain a network of clustered individuals and compute a

Euclidean distance matrix. Using the algorithms mentioned in section 4.3.3,

our aim is to classify the clusters according to the dendrogram produced by the

distance matrix, and the recurrent lifetimes of individuals. The individuals in

the same clusters share the same distribution, we can obtain the estimates of

the survival/hazard functions from them. We will then compare our method

with the regular (generalised) Cox’s Proportional Hazard regression method in
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terms of mean squared error performance.

Our Weibull simulation setup is biased in favour of our approach as we use

covariates as the parameters to generate the recurrent lifetimes. However,

even when the covariates have an indirect effect on the recurrent lifetimes, we

still believe our method will be useful in getting information out. In real life,

there are cases where the covariates do not influence the recurrent lifetimes.

In that case, our method will not extract good estimators, but other methods

that rely on the covariates to get better estimators, such as the (generalised)

Cox’s Proportional Hazard regression, will not necessarily work well either.

4.4.1 Data generation

The situation we focus on is when the number of recurrent lifetimes for each

individual is small. Hence, in this example, we generate 70 individuals each

with eight event times from different Weibull distributions. The individuals

are designed to be clustered into six groups according to their values of their

Weibull distribution parameters. Let η > 0, α > 0 be the shape and scale

parameters of the Weibull distribution, respectively, for the lifetime T, the

probability density f (t), survival S(t) and hazard λ(t) functions are:

f (t)= ηα−ηtη−1 exp{−(t/α)η}, (4.14)

S(t)= exp{−(t/α)η}, (4.15)

λ(t)= ηα−ηtη−1. (4.16)

When generating the lifetimes and distance matrix for the individuals, we

follow the steps below:
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• Divide a circle in the Cartesian plane into six equal parts, and simulate

six cluster centers with associated x and y coordinates. (See Figure 4.3)

• Simulate x and y coordinates of the individuals in each cluster by defining

the distance between each cluster center and its individuals, to follow a

zero-mean normal distribution. The standard deviation of the normal

distribution affects the tightness of the clusters. A large value will result

in a dispersed distribution of the individuals around the cluster centre

and vice versa. In the example, demonstrated later, we set the standard

deviation to be 0.3. The number of individuals in each cluster is random:

70 in total.

• Simulate eight recurrent lifetimes for every individual using a Weibull

distribution. The shape and scale parameters chosen for the individual

are their geographical coordinates in the x− y plane.

Once have obtained the x and y coordinates for all individuals, then we can

directly compute the distance matrix, and use it to produce a dendrogram.

Figure 4.3 shows the geographical locations/network for all individuals, where

different clusters are assigned different colours. Figure 4.4 is the dendrogram

produced using the complete-linkage clustering method (Everitt et al., 2011),

which does not know the true clusters.

4.4.2 Cluster classification

We then apply the three algorithms mentioned in section 4.3.3 to this particu-

lar dataset and produce the dendrograms shown in Figure 4.5 and 4.6, where

the recurrent lifetimes of individuals are used to classify the new clusters
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represented by different colours. When applying the three algorithms, we set

the significance level to be 0.05 in the K-S tests. The dendrograms in Figure 4.5

and 4.6 show that the new clusters produced do not exactly match the clusters

we designed when generating data.
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Figure 4.3: Geographical locations for 70 individuals, where triangles represent
the cluster centers.
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Figure 4.4: Dendrogram produced for the 70 individuals under the complete-
linkage clustering method.
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Figure 4.5: Dendrogram produced using the top-down adjustment algorithms,
where different colours represent different clusters
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(a) Algorithm 4.2
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Figure 4.6: Dendrogram produced using the bottom-up adjustment algorithms,
where different colours represent different clusters
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From Figure 4.5, we can see that Algorithm 4.1 groups Clusters D and E in

Figure 4.3 together. This may be because it is difficult to choose the significance

level to cluster the individuals exactly as they were designed. Also, some out-

liers of Cluster D (e.g. individual numbered 34) may be influence the clustering

results.

The problem with the bottom-up method is that sometimes well-separated

individuals are clustered. For example, Figure 4.6 shows that individual 30

is grouped into Cluster E, which is far from that cluster center. This may be

because when conducting the K-S tests pairwise, we try to include an additional

cluster to the current cluster, which eventually causes the K-S tests performed

between one very large cluster (current cluster) and one relatively small cluster

(the additional cluster). This may lead to increased Type II error.

Comparing with two methods, the top-down adjustment seems more coincident

with the designed clusters. For the bottom-up adjustment, Algorithm 4.3 usu-

ally combines some small clusters in dendrogram produced under Algorithm 4.2

together. For example, Figure 4.6 (b) shows that Algorithm 4.3 groups the last

two clusters in Figure 4.6 (a). We also compute the contingency tables as well

as the adjusted Rand index values (Rand, 1971) to compare the performance

of estimated clusters for these three proposed algorithms. The results show

that our top-down approach has relatively higher similarities with a score of

0.7412 between the true and estimated clusters for this particular data set,

which agrees with our guess from the dendrograms obtained in Figure 4.5 and

Figure 4.6. The next step is to estimate the survival functions for all three

algorithms using the recurrent lifetimes of clustered individuals.
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True Clusters
A B C D E F Sum

Estimated
Clusters

1 0 0 9 0 0 0 9
2 0 15 0 0 0 0 15
3 0 0 0 14 15 0 29
4 7 0 0 0 0 0 7
5 0 0 0 0 0 10 10

Sum 7 15 9 14 15 10 70
Adjusted Rand Index 0.7412

Table 4.3: Contingency table and adjusted Rand index produced using the
top-down approach explained in Algorithm 4.1.

True Clusters
A B C D E F Sum

Estimated
Clusters

1 0 15 9 0 0 0 24
2 0 0 0 1 15 0 16
3 0 0 0 6 0 0 6
4 0 0 0 7 0 0 7
5 7 0 0 0 0 0 7
6 0 0 0 0 0 7 7
7 0 0 0 0 0 3 3

Sum 7 15 9 14 15 10 70
Adjusted Rand Index 0.6865

Table 4.4: Contingency table and adjusted Rand index produced using the
bottom-up approach explained in Algorithm 4.2.

True Clusters
A B C D E F Sum

Estimated
Clusters

1 0 15 9 0 0 0 24
2 0 0 0 1 15 0 16
3 0 0 0 6 0 0 6
4 0 0 0 7 0 0 7
5 7 0 0 0 0 0 7
6 0 0 0 0 0 10 10

Sum 7 15 9 14 15 10 70
Adjusted Rand Index 0.7210

Table 4.5: Contingency table and adjusted Rand index produced using the
bottom-up approach explained in Algorithm 4.3.
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As all individuals are generated from different Weibull distributions with

known parameters (geographical locations), we can compare the estimated

parameters of the clustered individuals for three algorithms in section 4.3.3 by

the following steps.

• According to the new clusters produced by our algorithms, we combine

the recurrent lifetimes for the individuals in the same new cluster, as we

assume these individuals are from the same distribution.

• Using R function fitdist in the package fitdistrplus (Delignette-

Muller and Dutang, 2015), we estimate the shape and scale parameters

in the Weibull distribution based on these combined recurrent lifetimes.

• We compute the mean squared error for each of these two parameters.

The parameter errors are calculated by taking difference between the

actual individual parameters generated and the estimates.

Figures 4.5 and 4.6 show that our three algorithms produce five, seven and

six new clusters respectively for this particular dataset. Table 4.6 displays

the shape and scale parameters (i.e. the geographical locations) of the cluster

centers shown in Figure 4.3. As individuals in the same clusters share the

same Weibull distribution, the "true" parameters of the Weibull distribution

for each cluster are represented by these cluster centers. Tables 4.7 shows the

parameter estimates for each new cluster. The results of Tables 4.6 and 4.7

are plotted in Figure 4.7.

Table 4.8 presents the mean squared errors for different algorithms, where
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we find that the two algorithms using bottom-up approach have similar mean

squared errors for both parameters, as plots in Figure 4.6 show that the first

five clusters produced are the same. Algorithm 4.1 has a larger mean square

error in shape estimate. This is because Algorithm 4.1 combines two horizontal

clusters D and E in Figure 4.3, which are well separated. On the other hand,

the scale estimate produced by Algorithms 4.2 and 4.3 have a greater mean

square error, as these two algorithms combines the two left-top clusters (i.e. B

and C in Figure 4.3) together.

Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F
Shape 7.00 5.00 4.00 5.00 7.00 8.00
Scale 7.73 7.73 6.00 4.27 4.27 6.00

Table 4.6: True parameters of Weibull distributions for the original clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Shape 4.39 4.62 5.43 7.18 7.77
Scale 6.21 7.48 4.29 7.72 5.91

(a) Estimates computed by Algorithm 4.1

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7
Shape 4.27 6.36 4.82 5.30 7.18 7.91 8.73
Scale 7.04 4.11 4.78 4.23 7.72 6.03 5.59

(b) Estimates computed by Algorithm 4.2

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
Shape 4.27 6.36 4.82 5.30 7.18 7.77
Scale 7.04 4.11 4.78 4.23 7.72 5.91

(c) Estimates computed by Algorithm 4.3

Table 4.7: Estimated parameters for Weibull distributions using different
algorithms explained in section 4.3.3, which coincide with points in Figure 4.7 .
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Algorithm 1 Algorithm 2 Algorithm 3
Shape 0.781 0.453 0.436
Scale 0.123 0.298 0.304

Table 4.8: Mean square errors of the two estimates in Weibull distribution
produced by different algorithms.
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Figure 4.7: Geographical location (i.e. parameters) of the cluster centers (red
triangles) shown in Table 4.6 and the parameter estimates (blue symbols) in
Table 4.7, which are computed using algorithms explained in section 4.3.3.
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In terms of the mean squared error performance, it is difficult to say which

algorithm is better for this particular dataset, but, in general, the top-down

adjustment is more coincident with the original clusters we set up and will not

have the issues such as clustering two individuals far away from each other.

Hence, we will use the top-down adjustment to estimate the survival function

and compare with other estimation methods in later sections. Further study

could focus on other alternative methods to improve the cluster classification

procedures, such as clustering individuals using top-down and bottom-up ap-

proach together at the same time, which will end up at some point at middle of

the dendrogram.

4.4.3 Methods comparisons

As mentioned in the literature review, the generalised Cox proportional hazard

regressions are suitable for modelling recurrent lifetimes. For the datasets

generated from the Weibull distribution, this section will compare our method

with the generalised Cox model in terms of mean squared error performance.

We use the function coxph in R package survival (Therneau, 2021) to fit

an AG model explained in section 4.2.1, as the AG model is the simplest gener-

alised Cox proportional hazard regression, which assumes the independence

of recurrent events within the individuals. Our data generated from Weibull

distributions is consistent with the AG model assumptions. Then survfit

function is applied to estimate the survival function under the AG model. Us-

ing our network approach, we can also obtain the survival estimates for each

adjusted cluster. As we know the true survival function for each individual,
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we can compute the mean squared error of the survival function for each in-

dividual, and take average according to the number of individuals. Suppose

there are n individuals being considered, and for an individual j at time t, let

S j(t) be the true survival function, Ŝ j(t) be the survival estimate using the AG

regression or our network approach, then the mean squared errors, MSE, can

be calculated by

MSE= 1
n

n∑
j=1

[∫ {
Ŝ j(t)−S j(t)

}2
dt

]
(4.17)

≈ 1
n

n∑
j=1

[ 1
m

m∑
i=1

{
Ŝ j(ti)−S j(ti)

}2]
, (4.18)

where ti with i = 1, ...,m is a time point in a given interval (t1, tm) that has

been divided into m−1 equal parts.

For the examples displayed in sections 4.4.1 and 4.4.2, the mean squared

error obtained using the AG model and our approach are 3.41× 10−3 and

4.05×10−3 respectively, where we can see our approach has slightly larger

error. However, when we decrease the number of individuals being considered,

then our approach usually has better performance. For example, now we sim-

ulate a dataset of 40 individuals with eight recurrent lifetimes each, which

are originally designed to be clustered into five groups randomly using the

approach described in section 4.4.1. Figure 4.8 shows the original designed

geographical locations of the 40 individuals according to the parameters of their

Weibull distributions and Figure 4.9 is the dendrogram of clusters produced

using our top-down approach, where the significance level is also 0.05 when

applying K-S test.

130



4.4. WEIBULL DISTRIBUTION SIMULATION EXAMPLES

3 4 5 6 7 8 9

3
4

5
6

7
8

9

x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

38

39

40

Cluster A Cluster B Cluster C
Cluster D Cluster E

Figure 4.8: Geographical locations for 40 individuals, where triangles represent
the cluster centers.
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Figure 4.9: Dendrogram produced using the top-down approach, where differ-
ent colours represent different clusters

The two figures show that, apart from individual 21 and 38, the clusters pro-

duced by our top-down approach coincide with the data generated originally,

which results in a high adjust Rand index (i.e. 0.9565). Then we calculate the

mean squared errors for our approach and AG model, which are now 3.03×10−3

and 3.57×10−3 respectively. For this particular dataset and setup, our ap-

proach has a better performance than the generalised Cox model.

Now we repeat our simulations using the above setup for 200 times, where

40 individuals with eight recurrent survival lifetimes for each grouped in five

clusters are generated every time. We compute the mean squared error of

the estimated survival functions for every simulation and obtain the following

boxplots for both our method and AG model, where we find our method gen-
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erally has better performance with fewer outliers and extreme small values

of the mean squared error (i.e. lower than 2×10−3). In addition, these 200

simulations show that there are 66.5% of the generated datasets having the

lower mean squared error using our method to estimate the survival functions

compared to the AG model.
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Figure 4.10: Boxplots of the mean squared errors for 200 simulations using our
method and the AG model

From the two examples displayed above and some more trials, we find the

mean squared error for our method and the generalised Cox model are similar.

However, for a large number of data points, the generalised Cox model has the

better performance, which has different versions for different types of datasets,

whereas our method may perform better when the number of data points are

not large enough for using regression models especially when there exists lots

of covariates. In fact, our method combines the influence of all covariates, and
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focuses on improving the survival/ hazard estimates using a network based

on the covariates, on the other hand, the (generalised) Cox models focus on

examining how specified factors influence the hazard rate of a event happening

at a particular point in time.

However, as our simulated data is Weibull-distributed, a Weibull distribu-

tion for survival estimation is probably optimistic. Actually, once we get the

survival times in clusters, we can use any method such as the Kaplan-Meier

method etc. to estimate the survival/hazard function. The main idea of our

method is to build clusters and put more lifetimes in each cluster to improve

the estimates.

4.5 Conclusions

This chapter introduces a new method to estimate survival functions for groups

of individuals with recurrent survival lifetimes using their network structure,

where we construct the initial clusters of the network using a dissimilarity

matrix and adjust these clusters with our proposed top-down and bottom-up

approaches. After obtaining new clusters, assuming the underlying survival

functions for each group are the same, we obtain these estimates by using all

lifetimes in that group. In addition, we conduct the Weibull distribution sim-

ulations and compare the performance of our methods with the (generalised)

Cox models, where we find that our methods have advantages when there are

small number of data but many covariates for regression models.
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Both this chapter and the previous one focus on estimating the survival (den-

sity/hazard) function, further investigation could work on the possibility of

combining methods in these two chapters to improve the estimation process of

recurrent lifetimes. To be specific, individuals could be grouped using the meth-

ods discussed in this chapter and then, survival (density/hazard) estimates

could be conducted using our wavelet methods explained previously with all

lifetimes in each group.
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C H A P T E R 5

NETWORK AUTOREGRESSIVE PROCESS WITH

EXOGENOUS NETWORK TIME SERIES

5.1 Introduction

Multivariate time series are widely available in various fields, so modelling

this kind of data well is important for making decisions. In the past, the vector

autoregressive model (Sims, 1980) is one of the most commonly used models to

deal with the multivariate time series. The use of network data has increased

in recent years, so modelling multivariate time series data with the use of any

underlying network structure becomes more and more popular. This kind of

modelling not only incorporates the influence of the previous time lags of its

own and its neighbours, but also reduces the VAR model to a more efficient

one as usually fewer parameters are required to be estimated. For example,

Knight et al. (2016) proposed the network autoregressive (integrated) moving

average processes (NARIMA). Based on the network lifting (wavelet) transform,

they also introduced network differencing to remove trend. Zhu et al. (2017)

investigated conditions for the strict stationarity and the asymptotic properties
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of the network autoregressive model (NAR), as well as developing own ordinary

least squares type estimator. Knight et al. (2020) generalised the NAR model

and made a R package called GNAR (Leeming et al., 2020), which is available

on the CRAN repository. Nason and Wei (2021) extend these network models to

include node-specific time series exogenous variables, which is called GNARX

model.

Our model adds another network time series as exogenous regressors to the

NAR model, which we call the network autoregressive process with exogenous

network time series (NAREN). Basically, our target multivariate time series

is modelled by the previous time lags of itself and its neighbours according to

the network structure, as well as another network time series, which is related

of our target time series. With our proposed model, we demonstrate how to

choose the model order by optimising AIC values in section 5.3.2. To compare

the forecasting performance between different multivariate time series models,

we use simple GNAR and our NAREN models to fit one simulation example

and two real data sets, where model orders are chosen by subjective judgement,

and the results are shown in section 5.4.

5.2 Literature Review

In this section, some useful definitions from time series analysis books in-

cluding Shumway and Stoffer (2011) and Box et al. (2015) are presented. In

addition, we introduce the network autoregressive model (NAR), originally pro-

posed by Knight et al. (2016), which is then extended to the generalised network
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autoregressive model (GNAR) (Knight et al., 2020). The recent published work

proposed by Nason and Wei (2021), the generalised network autoregressive

model with exogenous node-specific regressors (GNARX), is also reviewed.

5.2.1 The univariate autoregressive model

To begin, we define the term (weakly) stationary. The stochastic process {X t}t∈T

is said to be weakly stationary if for all n ≥ 1, and for any j such that t1, t2, . . . , tn

and t1+ j, t2+ j, . . . , tn+ j belong to some index set T ⊂N, all the joint moments

of order one and two of X t1 , X t2 , . . . , X tn exist, are finite, and equal to the

corresponding joint moments of X t1+ j, X t2+ j, . . . , X tn+ j. Hence, E{X t} ≡ µ and

Var{X t}≡σ2 are constants independent of t.

The weak stationarity defined above allows to introduce the autocovariance

sequences for the process {X t}. As the covariance between X t+ j and X t, sepa-

rated by j intervals of time or by lag j is the same for all t under the stationary

assumption, the autocovariance for a stationary time series at lag j can be

defined as

γ( j)=Cov(X t, X t+ j)= E{(X t −µ)(X t+ j −µ)}. (5.1)

Similarly, the autocorrelation at lag j is

ρ( j)=Cor(X t, X t+ j)= γ( j)
γ(0)

. (5.2)

Now, the white noise process and the autoregressive process (AR) are defined as

follows.
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• white noise process

A sequence of uncorrelated random variable {X t} is a white noise process

if

E{X t}= 0, Var{X t}=σ2 ∀t, (5.3)

and

ρ( j)=


1 j = 0,

0 j 6= 0.

• p-th order autoregressive process AR(p)

{X t} is a AR(p) if it can be expressed in the form

X t =µ+
p∑

j=1
φ j X t− j +εt, (5.4)

where {φ j}
p
j=1 and µ are real constants with φp 6= 0, and εt is a white noise

process.

For a zero mean AR(p) process, rearranging the expression in (5.4), we

have

εt = X t −
p∑

j=1
φ j X t− j =

(
1−

p∑
j=1

φ jL j)X t =:φ(L)X t (5.5)

where φ(L) is the lag polynomial and L is the lag operator where L j X t =
X t− j for j = 1, ..., p. For an AR process, stationarity is not always guaran-

teed. Briefly speaking, an AR process is stationary if all roots of the lag

polynomial φ(L) are outside the unit circle.
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5.2.2 The vector autoregressive model with exogenous

variables (VARX)

A Vector autoregressive model with exogenous variables (VARX) (Hamilton,

1994) is an extension of the Vector autoregressive model (VAR) (Sims, 1980),

both of which are commonly used for multivariate time series. For i = 1, ..., N,

j = 1, ..., M and t = 1, ...,T, let {X i,t} and {Y j,t} be the time series for variable i

and j at time t respectively, we have the following definitions.

• p-th order vector autoregressive process VAR(p)

Let Xt = (X1,t, ..., XN,t)T ∈RN be a vector of time series observations, for

t=1,2,...,T, {Xt} can be expressed in the form

Xt =µ+Φ1Xt−1 + ...+ΦpXt−p +εt, (5.6)

where {Φi}
p
i=1 are N ×N matrices of coefficients, µ= (µ1, ...,µN )T is a vec-

tor mean, and εt = (ε1,t, ...,εN,t)T is a white noise process with zero-mean

and time-invariant positive definite covariance matrix E(εtε
T
t )=Σε.

• p-th order vector autoregressive process with exogenous vari-

ables of lag q VARX(p, q)

Let Yt = (Y1,t, ...,YM,t)T ∈RM be an another vector of time series observa-

tions, for t=1,2,...,T, we have

Xt =µ+Φ1Xt−1 + ...+ΦpXt−p +Θ1Yt−1 + ...+ΘqYt−q +εt, (5.7)

where Xt, {Φi}, µ, εt are as defined in the VAR(p) model, and {Θ j}
q
j=1 are

N ×M coefficient matrices.
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The definitions above show that the general mean-zero VAR model has up to

pN2 parameters for the {Φi}
p
i=1 matrices, and the VARX model will include

another maximum of qNM variables for the {Θ j}
q
j=1 matrices. Therefore, a

downside of the VAR and VARX models is that when N or M is large compared

to T, only few orders of the full model can be usually fitted.

5.2.3 The generalised network autoregressive model

(GNAR)

The network autoregressive model (NAR) (Knight et al., 2016), as well as the

generalised network autoregressive model (GNAR) (Knight et al., 2020), de-

scribes a multivariate time series process that uses the network structure of

associated variables, where all time series data are collected on the network

G = (K ,E ), with a set of nodes, K , which are connected by edges from the set

of edges E . Each node in a network represents a variable and follows an au-

toregressive model with additional dependence defined by the neighbourhood

structure of each node.

Suppose K = {1, ...,K}, we use the notation i ! j if nodes i, j ∈ K are con-

nected by an (undirected) edge. Hence, we can define the set of edges by

E = {(i, j) : i ! j; i, j ∈K }. Suppose A ⊂K is a subset of nodes, the neighbour-

hood set of A is defined by N (A )= { j ∈K /A : i ! j; i ∈A }. Hence, the set of

rth-stage neighbours of a node i ∈K is

N (r)(i)=N {N (r−1)(i)}/
[{

∪(r−1)
s=1 N (s)(i)

}
∪ {i}

]
, (5.8)
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for r = 2,3, ... and N (1)(i)=N ({i}) is the set of immediate neighbours of node i.

Then for time t = 1, ...,T and node i = 1, ...,K , the NAR(p, [s]) model is defined

as

X i,t =
p∑

j=1

(
α j X i,t− j +

s j∑
r=1

∑
q∈N (r)(i)

β j,r,q Xq,t− j

)
+εi,t, (5.9)

where {α j} and {β j,r,q} are parameter sets, N (r)(i) is defined in (5.8), p is the

maximal time lag, s= (s1, ..., sp) is a vector indicating the number of neighbour

stages to include at each time lag, and {εi,t} are mutually uncorrelated white

noise processes. The NAR model assumes that the {α j} and {β j,r,q} do not

depend on time t, neither do they depend on node i.

To incorporate distance information into the network structure, the connection

weight of a node i ∈K and its rth-stage neighbour j ∈N (r)(i) can be defined

as

wi, j = d(i, j)−1
{ ∑

k∈N (r)(i)
d(i,k)−1

}−1
, (5.10)

where d(i, j) is the distance from node i to node j.

Then, the GNAR(p, [s]) (Knight et al., 2020) is defined as follows, which addi-

tionally allows for different autoregressive parameters at each node and also

includes the covariates on edges or nodes.

X i,t =
p∑

j=1

(
αi, j X i,t− j +

C∑
c=1

s j∑
r=1

β j,r,c
∑

q∈N (r)(i)
w(t)

i,q,c Xq,t− j

)
+εi,t, (5.11)

where p, s and {εi,t} are defined in the NAR(p, [s]) model, {αi, j} and {β j,r,c} are

parameter sets, C ∈N are the covariates splitting edges or nodes into different

types. As defined in (5.10), w(t)
i,q,c is the connection weight between nodes i and

q at time t for type c.
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5.2.4 The generalised network autoregressive model

with exogenous node-specific regressors (GNARX)

Let {X i,t} be a network time series based on the network G = (K ,E ), and {Yh,i,t}

be the h-th real-valued stationary exogenous node-specific regressor series for

node i at time t, where h = 1, ...,H ∈N is the number of such regressors. Based

on the GNAR model, Nason and Wei (2021) proposed the generalised network

autoregressive model with exogenous node-specific regressors (GNARX (p,s,p′)),

such that

X i,t =
p∑

j=1

(
αi, j X i,t− j+

C∑
c=1

s j∑
r=1

β j,r,c
∑

q∈N (r)(i)
w(t)

i,q,c Xq,t− j

)
+

H∑
h=1

p′
h∑

j′=0
λh, j′Yh,i,t− j′+εi,t,

(5.12)

where {αi, j}, {β j,r,c}, {λh, j′} are real parameter sets , p,s, {εi,t} and {w(t)
i,q,c} are

defined in the GNAR(p, [s]) model, and p′
h, the h-th element of p′ = (p′

1, ..., p′
H)

denotes the maximum lag of the h-th exogenous regressor involved in the

model.

The GNARX model, which is stationary under the assumption of stationarity

of {Yh,i,t} for all h, i and parameter constraints

p∑
j=1

(
|αi, j|+

C∑
c=1

s j∑
r=1

|β j,r,c|
)
< 1, (5.13)

shares the same advantages with respect to missing data as the GNAR model.
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5.3 Network Autoregressive Process with

Exogenous Network Time Series (NAREN)

5.3.1 Model specification

Suppose that {X i,t} and {Yi,t} are two network time series associated with the

same graph G , the network autoregressive process with exogenous network time

series, NAREN (px, [sx], py, [sy]), models X i,t in terms of both {X i,t} and {Yi,t},

where {X i,t} and {Yi,t} are two separate NAR processes. Our proposed model

can be expressed as

X i,t =
px∑
j=1

(
αi, j X i,t− j +

sx, j∑
r=1

β j,r
∑

q∈N (r)(i)
w(t)

i,q Xq,t− j

)

+
py∑
j=1

(
θ jYi,t− j +

sy, j∑
r=1

φ j,r
∑

q∈N (r)(i)
w(t)

i,qYq,t− j

)
+εi,t, (5.14)

where px and py are maximal lags for {X i,t} and {Yi,t} respectively, [sx] =
(sx,1, ..., sx,px) and [sy] = (sy,1, ..., sy,py) are corresponding neighbour stage vec-

tors, N (r)(i), {w(t)
i,q} and {εi,t} are the same as the GNAR model . Also, we

assume that the parameter sets {αi, j}, {β j,r}, {θ j} and {φ j,r} do not depend on

time t.

Compared to the GNAR and GNARX models, our proposed model includes the

exogenous regressors of another network time series, which is really useful

when our target variable X i,t is not only affected by its own and its neighbours’

previous lags, but also some other network time series. In the NAREN model,

we do not include node-specific autoregressive parameters of {Yi,t}, as {Yi,t} are

usually not the main factors that may affect the response and using the global
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parameter, θ j, of {Yi,t} for every node i will simplify our model and reduce

the computing time. Similarly with the GNAR model, our NAREN model

allows for different autoregressive parameters of {X i,t}, but we do not include

the covariates C for simplicity. Compared to the GNARX, our model includes

more information as the exogenous regressors are another network time series

rather than node-specific time series. Compared to the VARX model, our model

has fewer parameters to estimate, that is up to a maximum of

K px +
px∑
1

sx, j + py +
py∑
1

sy, j (5.15)

parameters.

Therefore, fewer data points are required to fit our model, which also can

have good performance as the network structure of the two time series provides

extra information that VAR-like models do not have access to.

5.3.2 Model selection and parameter estimation

This section illustrates how model order is chosen in general. Indeed, we first

need to determine the values of px,sx, py and sy, and then estimate parameters

for that particular model. By treating our NAREN model as a linear regression,

we use the least squares approach to fit the NAREN models with different

combinations of px,sx, py and sy, and obtain the Akaike information criterion

(AIC) values (Akaike, 1974) for each model. Let k be the number of estimated

parameters, and L̂ be the maximum value of the likelihood function for the

model, the AIC value of the model is defined by

AIC= 2k−2log(L̂). (5.16)
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The definition above shows that the AIC not only takes goodness of fit into

consideration, but also includes a penalty of increasing number of estimated

parameters. It is shown by Shibata (1980) that, for an infinite-order autoregres-

sive process, the order selection by minimising AIC is asymptotically optimal

for prediction in large samples, which provides the smallest possible one-step

mean squared prediction error. Also, let n be the number of time series, some

simulations given in Bhansali (1984) show that AIC will consistently estimate

the order if some finite constant, that is dependent on n, varies slowly with n.

Hence, we always prefer the NAREN model with the minimum AIC value for a

set of candidate models.

However, it is computationally inefficient to fit the NAREN models with all

possible combinations of px,sx, py and sy to choose the set of parameters with

the smallest AIC value. To mitigate this issue, we fit a univariate autoregres-

sive model with exogenous regressors (UARE) for each node and find the time

lags for the predictors {X i,t} and {Yi,t} leading a minimum AIC. To be specific,

the UARE model for node i at time t is defined by

X i,t =
pi,x∑
j=1

αi, j X i,t− j +
pi,y∑
j=1

θi, jYi,t− j +εi,t, (5.17)

where εi,t are zero-mean white noise process, {αi, j} and {θi, j} are parameter sets,

{pi,x} and {pi,y} are time lags of X i,t and Yi,t respectively. (Although the UARE

model is written using the similar parameter notations with our NAREN model

in (5.14), the fitted values of these parameters might be different between the

two models.)

For each node i, we will obtain the values of pi,x and pi,y that result in the
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minimal AIC. The most frequent pi,x and pi,y are chosen to be the estimates of

px and py in our NAREN model, which is not the only way to determine the

parameters of our NAREN model. Other methods, such as choosing the mean

or median of pi,x and pi,y, will also be alternatives, and further study on setting

appropriate time lags for the two network time series in our NAREN model

can be carried out. After choosing the appropriate px and py, we then use the

linear regression to fit the NAREN models with all possible combinations of sx

and sy to obtain the lowest AIC value, which will be much more efficient. Here,

the limit of the entries of vectors sx and sy are the minimum of the maximum

neighbour stages of all nodes in the network, which are set to be five for those

larger than five, as further stage-neighbours have less influence on the time

series of the current node.

5.3.3 Forecasting performance measurements

In many situations, a model that has a good in-sample fit will not necessarily

ensure that the out-of-sample performance of the model is also good. Hence,

we use the pseudo-out-of-sample forecasting (POOSF) method to measure the

forecasting performance of our NAREN model. To see how our NAREN model

performs out of the sample, we exclude some of our network time series data,

and use our model to predict the outcome. Doing this iteratively for a number of

periods, we can obtain a set of forecasting errors, which can be used to compare

the performance for different time series models. The following steps describe

how the method works.

Step 1: Split our network time series and exclude some observations
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as the out-of-sample, which is usually the last 10% to 20% of the time

period. Denote the number of period excluded by P.

Step 2: Use the remaining data (i.e. the first r = T −P periods of data,

where T is the full length of our time series) to estimate our NAREN

model.

Step 3: For node i at time r+1 given the time series of the first r periods,

compute our pseudo-forecast time series, X̂ i,r+1|r. Hence, using the actual

time series, X i,r+1|r, the forecast error, ê i,r+1|r, is obtained by

ê i,r+1|r = X i,r+1|r − X̂ i,r+1|r. (5.18)

Step 4: Move one time period forwards and repeat the process of fitting

the NAREN model and computing the forecast error until the final period.

So the number of out-of-sample decreases by one and the sample used

to fit the model increase by one every time. Hence, we can obtain a set

of pseudo-out-of-sample errors and the root mean squared forecast error

(RMSFE) for node i can be estimated by the following formula

RMSFEi =
T−1∑
j=r

√
ê2

i, j+1| j
P

, (5.19)

where {ê i, j+1| j} is defined in (5.18).

After obtaining the RMSFE for all nodes in a given network, we can take

mean to represent the forecasting error for our NAREN model and compare

the forecasting performance with other models.
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5.4 Some Examples

Using one simulation example and two real applications, we want to see

the forecast performance of different multivariate time series models, where

simple possible NAREN/GNAR models are chosen to make comparison. For

the five-node network example in 5.4.1, we compare the forecast performance

between the simplest GNAR and NAREN models, as it is unnecessary to apply

complex network models to such a simple network with maximum neighbour-

stages of two or three for all nodes. When analysing the two real network

time series applications, we increase the numbers of time lags and neighbour

stages considered, as the network structures of these two examples are more

complicated. Taking into the information provided by including some extra

parameters improves the forecast performance for these two real examples. To

compare the forecasting performance of the GNAR and NAREN models, we

choose the simple comparative benchmarks rather than models with the lowest

AIC values for the following two reasons.

• For complex networks, models with the lowest AIC values always ac-

company with many parameters (e.g. the wind example in section 5.4.2),

which is computational expensive to conduct the POOSF described in

section 5.3.3 and compute the RMSFE.

• The simple comparative models sometimes have better forecasting per-

formance, as models with the lowest AIC values do not guarantee the

lowest RMSFE in practice.

Further study could be worked on determining network models based on differ-

ent criteria for comparing the forecasting performance for different models.
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5.4.1 Simulation example

This section displays a simulation example, where the simple five-node network

from the R package GNAR (Leeming et al., 2020) shown in Figure 5.1 is used.

1

2

3

4

5

Figure 5.1: Five-node Network.

We generate a particular sample with 500 time series observations for both

{X i,t} and {Yi,t} using a NAREN (1, [1],1, [1]) model. For i = 1, ...,5 and t =
1, ...,500, the model can be written as

X i,t =α1X i,t−1 +β1,1
∑

q∈N (1)(i)
w(t)

i,q Xq,t−1 +θ1Yi,t−1 +φ1,1
∑

q∈N (1)(i)
w(t)

i,qYq,t−1 +εi,t,

(5.20)

where we use the global autoregressive parameter α1 instead of different pa-

rameters for each node. Here, the parameters chosen when generating data
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are shown in Table 5.1.

Parameter α1 β1,1 θ1 φ1,1

Value 0.5 0.3 0.4 0.2

Table 5.1: Parameters chosen in NAREN (1, [1],1, [1]) model for generating
time series data.

We now fit the GNAR (1,0), GNAR (1, [1]), and NAREN (1, [1],1, [1]) models

using the data generated from (5.20) for model comparison. For this particular

data set, we compute the AIC values of these three models to see the goodness

of fit and use the method described in section 5.3.3 to compute the RMSFE to

show their forecasting performance. The results are shown in Table 5.2.

As our dataset {X i,t} is generated from (5.20) with parameters stated in Table

5.1, the parameters estimated using NAREN (1, [1],1, [1]) model are almost the

same as the truth. In addition, if the multivariate time series {X i,t} depends on

some exogenous variables, fitting a GNAR model with network structure (i.e.

GNAR (1, [1]) model) will only have small improvement on both goodness of

fit and forecasting performance compared to the one not using the neighbour-

hood information (i.e. GNAR (1,0) model), whereas our NAREN model has a

significant decrease in terms of AIC and RMSFE values (i.e. 33.5% and 30.5%

decrease in AIC value, 52.5% and 46.7% decrease in RMSFE compared to the

GNAR (1,0) and GNAR (1, [1]) model respectively).
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5.4.2 Wind data

5.4.2.1 Exploratory data analysis

The dataset we use here records the wind speed (metres per second) and direc-

tion (in radians) hourly at 102 different locations in the UK over 30 days. The

hourly measurements were taken by a pilot anemometer at a height of 10m

at the target locations. These target wind speeds and directions are related

to contemporaneous measurements taken at a nearby reference site (i.e. a

Meteorological Office station in the UK), so our models and predictions are

based on the reference wind speeds and directions.

Our aim is to model the wind speed for each target location according to

its previous speed and direction as well as its neighbours’, which means that

the exogenous variable in this example is the wind direction. Hence, we are

able to compare the forecasting performance of our NAREN model with other

time series models. Before analysing the wind data, we clean up the dataset by

deleting the nodes (locations) with missing values, so only 75 out of 102 target

locations remain.

We then apply a variance stabilizing logarithmic transform to the wind speed

using the following equation:

new data= log(1+original data). (5.21)

After applying the transformation to the wind speed, we find the residual plots

obtained when fitting a NAREN model usually show slightly better adherence

to variance constancy, with fewer outliers presented. Figure 5.2 shows the

residual plots before and after transformation for the location CROSBY when
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fitting a NAREN(1,[1],1,[1]) model with a network linking all nodes less 80km,

where we find that plot (b) has a slightly better performance.
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(a) Residual plots for CROSBY before transformation
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(b) Residual plots for CROSBY after transformation

Figure 5.2: Residual plots for CROSBY after fitting a NAREN(1,[1],1,[1]) model
with a network linking all nodes less 80km

5.4.2.2 Network construction and selection

The wind system does not come with a network, so we create one to execute

our further analysis. Given the geographical position for each target location,

we are able to construct different networks with the following methods:

• Method 1: Minimum spanning tree (MST), which links all nodes without

any cycles and with the minimum possible total distance;

• Method 2: Connect all nodes less than certain distance apart, and link

the closest node for those isolated ones, if applicable.
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Figure 5.3 displays the MST network, where we can see that some nodes

are quite close geographically but not connected. For example, ABERP and

SENNY are really close to each other, but the MST method does not link

them. This is why we introduce the second method, which tries to include all

influence of the wind speed and direction within a certain distance from the

target location.
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Figure 5.3: Network connection for wind data using MST method.

Figure 5.4 displays two networks that connect nodes less 25km and 65km

respectively, where we notice that not all nodes are linked together when we
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choose a small value of distance (e.g. 25km).
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Figure 5.4: Network connection for wind data linking nodes less than 25km
(top) and 65km (bottom).
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In order to connect all nodes within one network, which can avoid some issues

when removing the spatial trend of the network (Nunes et al., 2015), we

improve our second construction method. In the modified version of the second

method, we connect all nodes less than certain distance apart to form several

groups of linked networks. Then, these groups of networks are linked by

selecting one node from every group and connecting the selected nodes in

order to minimise the possible total distances. Figure 5.5 shows a network

constructed using this modified method when the distance is set to be 25km.
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Figure 5.5: Network connecting nodes less than 25km with modified method.

Using the modified network construction method, we choose to construct a

network by connecting nodes within 80km for further analysis, as there are

some articles based on investigating wind energy from a meteorological per-
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spective showing that 80km is a reasonable resolution while constructing a

network for the wind data. For example, Martin et al. (2015) investigated

wind-speed correlations using three extensive datasets spanning continents,

durations and time resolution, while Cradden et al. (1974) focus on the study

of estimates of hourly aggregate wind power generation for the UK, with wind

speed resolution of around 40−50km. All these studies show that the most

appropriate choice of wind speed resolution requires a knowledge of the topog-

raphy of the target region (e.g. complex or smooth terrain), the frequency of the

wind speed data recorded (i.e. every minute, hourly, daily etc.) and the height

above the ground level when measurements taking place. Although there is no

universal appropriate wind speed resolution, most analysis consider regions

smaller than 100km while modelling, which is consistent with our decision

while constructing the network.

5.4.2.3 Fitting a NAREN model for the wind data

Based on the method described in section 5.3.2, we fit a UARE model for each

node, explained in (5.17), and find that the combination of pi,x = 5 and pi,y = 1

results in minimal AIC values in most of the nodes. Let px = 5 and py = 1, and

for simplicity, we use the global autoregressive parameter α j for all nodes to fit

NAREN models, with all possible combinations of sx and sy up to five for each

entry, which is the maximum neighbour-stage for this network. The results

shows that the NAREN (5, [1,3,2,5,2],1,0) model gives the smallest AIC value.

Hence, the best fitted NAREN model of the wind speed X i,t at node i is

X i,t =
5∑

j=1

(
α j X i,t− j +

sx, j∑
r=1

β j,r
∑

q∈N (r)(i)
wr,q(i)Xq,t− j

)
+θ1Yi,t−1 +εi,t, (5.22)
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where sx,1 = 1, sx,2 = 3, sx,3 = 2, sx,4 = 5, sx,5 = 2, and Yi,t−1 represents the wind

direction for node i at time t−1.

The following table displays the estimated parameters for the fitted model,

which indicates how the time is linking the network for the wind speed. For

example, the wind speed of immediate neighbours one hour ago and up to the

fifth stage-neighbours four hours ago, etc. has influence on the current wind

speed. This is reasonable for wind data, as it takes time (e.g. four hours in

this case) for wind of the fifth stage-neighbours to come to the target locations

(node i). Also, further stage-neighbours (i.e. larger than five) and the stage-

neighbours of wind directions will not affect the current wind speed.

time lag α j β j,1 β j,2 β j,3 β j,4 β j,5 θ j

X i, j

j = 1 513 336 - - - - -
j = 2 78 -80 123 81 - - -
j = 3 334 -108 -55 - - - -
j = 4 -115 -77 -15 -86 18 118 -
j = 5 56 14 -36 - - - -

Yi, j j = 1 - - - - - - -1

Table 5.3: Parameter estimates (×1000) for NAREN (5, [1,3,2,5,2],1,0) model.

5.4.2.4 Forecasting performance comparisons

When comparing the forecasting performance with other time series models

for the wind data, we do not use the NAREN (5, [1,3,2,5,2],1,0) model, as

the best-fitted model may not always have the best forecasting performance.

Hence, some simpler models will be applied to the wind data. To be specific, we

fit the GNAR (2,0), GNAR (2, [1,1]) and NAREN (2, [1,1],2, [2,1]) models with
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the following formula:

X i,t =α1X i,t−1 +β1,1
∑

q∈N (1)(i)
w1,q(i)Xq,t−1+

α2X i,t−2 +β2,1
∑

q∈N (1)(i)
w1,q(i)Xq,t−2+

θ1Yi,t−1 +φ1,1
∑

q∈N (1)(i)
w1,q(i)Yq,t−1 +φ1,2

∑
q∈N (2)(i)

w2,q(i)Yq,t−1+

θ2Yi,t−2 +φ2,1
∑

q∈N (1)(i)
w1,q(i)Yq,t−2 +εi,t, (5.23)

where 0 represents a vector of two zeros and for node i at time t, {X i,t} are the

wind speeds and {Yi,t} are the exogenous variables representing wind direction.

Here, the global autoregressive parameters α1 and α2 are used instead of

different parameters for different nodes. This is because when we fit the

NAREN (2, [1,1],2, [2,1]) model using different autoregressive parameters for

each node i, we find the estimates αi, j with j = 1,2 are concentrated within a

small range. Table 5.4 shows the lower and upper quantiles for the estimates

αi,1 and αi,2 respectively.

α̂i,1 α̂i,2
Lower quantile 0.5454 0.1038
Upper quantile 0.6299 0.1753

Table 5.4: the lower and upper quantiles for the estimates αi,1 and αi,2 in
NAREN (2, [1,1],2, [2,1]) model.

Tables 5.5 shows the estimates with their standard errors and confidence in-

tervals, AIC values and RMSFE for the three models that we use to fit the

wind speed, where we can see that adding the neighbourhood speed informa-

tion will make the model better fitted, as the AIC value decreases by 7.60%

when using GNAR (2, [1,1]) model instead of GNAR (2,0) model. Also, GNAR
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(2, [1,1]) model increases the forecasting performance a bit as its RMSFE de-

creases by 4.88% compared with the GNAR (2,0) model. However, our NAREN

(1, [1,1],1, [2,1]) model does not have too much improvement in terms of fitness

and forecasting performance, with a decrease of 0.45% for AIC and 0.32% for

RMSFE. This may be because the previous wind direction in the network does

not have too much influence on the current wind speed. It is reasonable as the

data records instant wind direction at each node which may change during

time and when the wind travels to other locations.

5.4.3 COVID-19 Data Example

Although COVID-19 was discovered fewer than two years (i.e. the first case

was detected in the late December 2019), the research related to COVID-19

has become extensive since the outbreak of the pandemic. For example, Omori

et al. (2020) investigate the ascertainment rate of novel coronavirus disease

in Japan; Pham (2020) estimates the number of deaths related to COVID-19

in United States using a modified logistic fault-dependent detection model;

Chu (2021) uses the Susceptible-Infectious-Recovered model and the log-linear

regression model to analyse the incidence of the disease in Italy and Spain, etc.

Our second example is based on the coronavirus (COVID-19) data provided by

the official UK government website:

https://coronavirus.data.gov.uk/details/cases.

As an easily-spread communicable disease, COVID-19 will sometimes cause
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serious respiratory tract infections, although some statistics shows that most

infections are mild (Hoseinpour Dehkordi et al., 2020). If there are a large

number of serious patients, who are admitted by hospitals, then the national

health service in UK will face an increasing burden. Hence, our purpose is

to model the numbers of patients in mechanical ventilation beds using our

NAREN model, where the exogenous variable is the number of new hospital

admissions. A proper multivariate time series model will give an idea of how

to allocate medical resources and help make local policies.

5.4.3.1 Exploratory data analysis

The COVID-19 data is available online up to date, however, we only focus on

the time period from 01/09/2020 to 01/02/2021, when we can see a large number

of new cases reported everyday as shown in Figure 5.6. Although the number

of confirmed cases is considerable in some later periods, as vaccinations were

developed and administered since late December 2020, more recent cases tend

to be mild and the number of patients admitted by hospitals is no longer at

such a high level.

To obtain the number of confirmed COVID-19 patients and the number of

patients in mechanical ventilation beds, each hospital trust needs to report

the number daily at 8am and the UK figure is the sum of the four nations’

figures, which can only be calculated when all nations’ data are available. The

details of the information about the COVID data is provided by the official UK

government website:

https://coronavirus.data.gov.uk/details/about-data.
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Figure 5.6: Daily new COVID-19 cases reported in UK from 01/08/2020 to
01/05/2021, where the green line and the red line represent the starting and
end date of our target network time series.

Before fitting our NAREN model, we have to clean the data by deleting the

hospitals with all zero patients for all time periods. Also, some incorrect or

misleading information needs to be amended. For example, Rotherham NHS

Foundation and Rotherham, Doncs and South Humber are 10 miles away, but

they have the same postcode, which will cause problems when constructing

a network. Hence, we manually enter the actual distance between these two

places. After cleaning the data, we have 132 nodes (NHS trusts) with 154 time

periods.

NHS trusts often consist of more than one hospital especially for some large

areas, which may have greater number of confirmed patients and patients in

mechanical ventilation beds than the small local areas. However, the network

structures link all the NHS trusts, where the trusts with small number of pa-

tients may also be influential to our NAREN model. When fitting the network
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time series models, we use the ordinary number of patients, which could also

be normalized by the population size. Further studies could also be carried out

in this area.

5.4.3.2 Network construction

The next step is to construct a network for the targeted hospitals according

to their geographic locations. We use the minimum spanning tree method

described in section 5.4.2.2 to obtain the network shown in Figure 5.7.

5.4.3.3 Forecasting performance comparisons

Now we want to compare the model forecasting performance for different

multivariate time series models. The VARX model is not considered here as

we do not have enough time observations for such a large network with 132

nodes, which is a major limitation of the VARX model and an advantage of

our NAREN model. Let 0 be a vector of three zeros, we now fit a GNAR (3,0),

GNAR (3, [1,0,0]) and NAREN (3,0,2, [1,0]) models with the following formula:

X i,t =α1X i,t−1 +β1,1
∑

q∈N (1)(i)
w1,q(i)Xq,t−1 +α2X i,t−2 +α3X i,t−3+

θ1Yi,t−1 +φ1,1
∑

q∈N (1)(i)
w1,q(i)Yq,t−1 +θ2Yi,t−2 +εi,t, (5.24)

where for node i at time t, {X i,t} are the numbers of patients in mechanical

ventilation beds and {Yi,t} are the exogenous variables representing the new

admissions into hospitals.
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Figure 5.7: Network constructed for the targeted hospitals according to their
geographical locations, where the nodes are labelled with their unique internal
codes.
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The logarithmic transform shown in (5.21) in wind application is applied to

our two network time series when fitting network models as the forecasting

performance after transformation is better than the non-transformed data.

Here, we also use global autoregressive parameters {α j}3j=1 while fitting both

GNAR and NAREN models, as the autoregressive parameters for most of the

nodes are concentrated within a small range when using different {αi, j} pa-

rameters to fit models. Table 5.6 shows the lower and upper quantiles for the

estimates of αi,1, αi,2 and αi,3 respectively, for i = 1, ...,132.

α̂i,1 α̂i,2 α̂i,3
Lower quantile 0.7077 0.01398 0.01496
Upper quantile 0.9347 0.2667 0.2015

Table 5.6: the lower and upper quantiles for the estimates of αi,1, αi,2 and αi,3
in NAREN (3,0,2, [1,0]) model.

Tables 5.7 shows the parameter estimates together with standard errors

and confidence intervals for the GNAR (3,0), GNAR (3, [1,0,0]) and NAREN

(3,0,2, [1,0]) models. When fitting our NAREN model, including the neighbour-

stage parameter β̂1,1 will not improve the forecast performance, which is only

considered in the GNAR (3, [1,0,0]) model in order to make comparison with

the GNAR (3,0) model. In addition, although the parameter φ̂1,1 is not very

significant (i.e. significant under 10%), adding this term will lower the RMSFE

for our NAREN model.

Table 5.7 also displays the AIC values and RMSFE for the three models that we

use to fit the COVID data. The results indicate that our NAREN (3,0,2, [1,0])
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model is better fitted, which includes the number of new admissions in hos-

pitals up to two previous time-lags as well as the one-stage neighbours’ new

patients. Compared to the GNAR (3,0) and GNAR (3, [1,0,0]) model, the AIC

value of our NAREN model decreases by 26.4% and 23.4% respectively. Also, in

terms of the forecasting performance, our NAREN (3,0,2, [1,0]) model reduces

the RMSFE values by 5.25% for GNAR (3,0) and 4.54% for GNAR (3, [1,0,0]).

In general, our NAREN (3,0,2, [1,0]) model has an improvement on both fitting

and forecasting performance compared to the other two GNAR models.

The results above coincide with the real situation, as an increase in the num-

ber of admissions in hospitals will always lead an increase in the numbers of

patients in mechanical ventilation beds due to the deterioration of the disease

in some people, which always include a time delay. In addition, an increase of

previous admissions in neighbours’ hospitals may affect the current occupation

of the mechanical ventilation beds, as patients may be transferred to other

hospitals if the current one’s resources are limited and/or the infection speeds.

5.5 Conclusions

This chapter introduces our NAREN model, which extends the generalised

network autoregressive model (GNAR) by adding the exogenous network terms.

When dealing with the real data, our extended model sometimes has a notice-

able improvement compared to the GNAR model, which is heavily dependent

on the relationship of the two sets of time series data. As a special case of
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the VARX model, our NAREN model not only captures the structure of the

network and incorporates the neighbours’ information, but also is more effi-

cient and applicable in the real data analysis as fewer parameters are required

to be estimated. However, we did not compare the forecast performance be-

tween our NAREN model and the GNARX model proposed by Nason and Wei

(2021), which is recently published towards the completion of the thesis, further

comparison between these two models could be carried out.
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C H A P T E R 6

CONCLUSIONS AND DISCUSSIONS

This section summarises main ideas and achievements of our new methodology

in this thesis, and discusses possible further research of our current work.

6.1 Yet Another Multivariate Median

Key contributions

• Proves theoretical equivalence of yamm and the projection median.

• Demonstrates the robustness of yamm on a simple bivariate setup.

• Illustrates three computation methods for the projection median and

introduces the Yamm package to compute the projection median.

• Shows empirically that the spatial median and the projection median

perform well compared to other medians using the existing R functions.

Further investigation

As we only show the the robustness of yamm on a simple bivariate setup, a

more general cases could be investigated in the future both theoretically and
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numerically. In addition, the function PmedTrapz in our Yamm package is only

valid for computing the projection median in R2 and R3 currently, which uses

the trapezoidal rule to produce accurate results without excessive running time.

A generalisation of this R function to higher dimensions could be considered,

which should be computational efficient in practice as well.

6.2 Density and Hazard Rate Estimation using

a Bayesian Wavelet Approach

Key contributions

• Uses Bayesian wavelet method to improve hazard rate estimates, where

the survival function is estimated by a Dirichlet process prior. Better per-

formance in simulation examples compared to the presmoothed method.

• Uses the detailed covariance structure of the empirical wavelet coeffi-

cients in the Bayesian wavelet thresholding approach to estimate the

density function, where the "mixture of Gaussians" prior distribution is

applied. An improvement is presented empirically in terms of the mean

squared error.

Further investigation

When estimating the hazard rate, the number of bins is suggested to be ap-

proximately 2floor{log(n)−2} for n observations, which is a rough good choice. A

further work could be based on the theory of choosing the number of bins.

When applying the Bayesian wavelet shrinkage for the empirical coefficients
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using the "mixture of Gaussians" prior distribution to estimate the density

function, we try to estimate the hyperparameters by maximising marginal

likelihood distribution of the empirical coefficients numerically. It is too compu-

tational expensive and currently, we determine the hyperparameters based on

the rough suggestions of Chipman et al. (1997). Further investigation can be

carried out on choosing the hyperparameters efficiently and accurately using

appropriate theoretical or numerical methods.

6.3 Survival Estimation with Networks

Key contributions

• Introduces a new method to estimate survival functions for groups of in-

dividuals with recurrent survival lifetimes using their network structure.

• Shows a better performance in the Weibull distribution simulations when

the number of individuals considered is small.

Further investigation

Our simulation examples show that sometimes both our top-down and bottom-

up approaches can not obtain groups matching the truth exactly. Further study

could focus on other alternative methods to improve the cluster classification

procedures, such as clustering individuals using top-down and bottom-up ap-

proaches together at the same time. In addition, our new method to improve

survival estimates is only applied to the simulation examples, as currently we

are not able to find the appropriate real datasets with both enough covariates

information to classify different clusters and recurrent lifetimes. It is vital to
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apply our method to real situations, which can be considered in the future.

6.4 Network Autoregressive Processes With

Exogenous Network Time Series

Key contributions

• Generalises the GNAR model to our NAREN model by including the

exogenous variables of another network time series.

• Displays a better POOSF performance in both simulation and real exam-

ples compared to the GNAR models.

Further investigation

Like the GNAR model, further work could be adding covariates on edges

or nodes of the network in our NAREN model. In section 5.3.2, we fit UARE

models for each node and use the modal autoregressive time lags with minimum

AIC values as the estimates of the time lags of our NAREN model, further

study on using alternative methods to set appropriate time lags can be carried

out. When comparing the forecasting performance between network time

series models, we use simple comparative benchmarks, which could be invested

further on some other alternatives. Also, comparing the performance between

our NAREN model and the GNARX model is also an interesting topic for the

future work. As mentioned in section 5.4.3.1, using normalised number of

patients is also an alternative to analyse the COVID application, which has

not been done in our experiment.
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APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A P P E N D I X A

SUPPLEMENTARY MATERIAL FOR CHAPTER 2

A.1 Simulation Performance for

High-Dimensional Medians

Median k = 10 k = 25 k = 50 k = 100 k = 200

Spatial
mean 28 30 29 29 35

s.d. 45 46 45 46 48

Component-wise
mean 27 28 34 31 32

s.d. 44 45 47 46 47

Tukey’s
mean 97 430 670 1170 2160

s.d. 20 47 50 74 130

Oja’s
mean 2240 2270 2220 2290 2650

s.d. 530 630 470 640 6330

Projection
mean 24 83 200 470 1030

s.d. 43 37 22 49 52

Table A.1: Mean and standard deviation (s.d.) of the three-dimensional
medians’ operation time (×10−5) in seconds using 1000 datasets generated
from Laplace distribution with different numbers of observations (k), where R
functions stated in Table 2.1 are used.
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Location Estimator k = 10 k = 25 k = 50 k = 100 k = 200

Spatial Median 57 20 9.0 4.2 2.1

Component-wise Median 70 27 12.0 5.6 2.8

Tukey’s Median 66 21 9.6 4.4 2.2

Oja’s Median 68 23 11.0 5.6 3.6

Projection Median 58 21 9.1 4.2 2.1

Mean 97 40 19.0 9.7 5.1

Table A.2: Mean squared error (×10−2) of three-dimensional medians with
1000 sets of data generated from Laplace distribution.

Median k = 10 k = 25 k = 50 k = 100 k = 200

Spatial
mean 36 30 39 40 44

s.d. 48 46 49 49 50

Component-wise
mean 36 31 36 37 40

s.d. 48 46 48 48 49

Tukey’s
mean 200 690 930 1510 2680

s.d. 22 42 65 110 180

Oja’s
mean 6520 4620 4360 4380 4390

s.d. 4630 1700 1450 1310 1410

Projection
mean 590 670 830 1200 1930

s.d. 47 49 48 45 47

Table A.3: Mean and standard deviation (s.d.) of the five-dimensional medians’
operation time (×10−5) in seconds using 1000 datasets generated from Laplace
distribution with different numbers of observations (k), where R function
PmedMCInt are used to produce the projection median, since PmedTrapz is only
valid in R2 and R3.
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Location Estimator k = 10 k = 25 k = 50 k = 100 k = 200

Spatial Median 54 19 8.2 3.9 1.9

Component-wise Median 74 28 11.7 5.6 2.7

Tukey’s Median 63 20 8.7 4.1 2.0

Oja’s Median 190 23 11.0 6.6 4.8

Projection Median 57 20 8.5 4.0 1.9

Mean 100 42 19 9.9 4.9

Table A.4: Mean squared error (×10−2) of five-dimensional medians with 1000
sets of data generated from Laplace distribution.

Median k = 10 k = 25 k = 50 k = 100 k = 200

Spatial
mean 53 48 60 59 66

s.d. 50 50 49 49 48

Component-wise
mean 53 47 53 60 64

s.d. 50 50 50 49 48

Oja’s
mean 5250 17550 14780 13110 12750

s.d. 150 9570 7550 4940 5250

Projection
mean 1150 1240 1390 1770 2540

s.d. 77 53 62 53 140

Table A.5: Mean and standard deviation (s.d.) of the ten-dimensional medians’
operation time (×10−5) in seconds using 1000 datasets generated from Laplace
distribution with different numbers of observations (k), where R function med
is not able to compute the Tukey’s median when n = 10.
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Location Estimator k = 10 k = 25 k = 50 k = 100 k = 200

Spatial Median 52 18 8.0 3.8 1.9

Component-wise Median 73 27 11.7 5.6 2.8

Oja’s Median 990 290 23 13 12

Projection Median 55 19 8.2 3.9 1.9

Mean 100 41 20 9.8 5.0

Table A.6: Mean squared error (×10−2) of ten-dimensional medians with 1000
sets of data generated from Laplace distribution.
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Yamm-package Multivariate Methods Based on Projections and Related Concepts 

 

 
Description 

This package provides functions for computing the projection median. PmedTrapz approximates the 
projection median by the trapezoidal rule, which is only valid for the two- and three-dimensional 
cases, while PmedMCInt use Monte Carlo approximation, and it is valid for any multivariate median. 
yamm provides another method to compute the projection median based on an optimiser technique. 
This package also provides functions for plotting different multivariate medians, such as the Spa- 
tial, Component-wise, Tukey’s, Oja’s median, etc., for randomly generated data sets in both the 
two-dimensional and three-dimensional cases. In addition, this package also allows users to pro- 
duce the two-dimensional and three-dimensional quantile plots with function muqie and muqie3D 
respectively. 

 

Details 

The DESCRIPTION file: 

Package: Yamm 
Title: Multivariate Methods Based on Projections and Related Concepts 
Version: 1.3.1 
Date: 2020-04-02 
Author: Fan Chen [aut], Guy Nason [aut, cre] 
Depends: R (>= 3.0), depth, OjaNP, pcaPP, interp 
Suggests: animation 
Maintainer: Guy Nason <g.nason@imperial.ac.uk> 
Description: Functionality to compute the projection median via several algorithms. 
 License: GPL-2 

 
 

Index of help topics: 

Plot2dMedian Plot Two-dimensional Medians 
Plot3dMedian Plot Three-dimensional Medians 
PmedMCInt Projection Median Approximated by Monte Carlo 

Integration 
PmedTrapz Projection Median Approximated by Trapezoidal 

Rule 

Yamm-package Multivariate Methods Based on Projections and 
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Yamm-package 3

Related Concepts
beetle Six Measurements of Beetles
clusters2d Three Clusters of 2-dimensional Data
clusters3d Four Clusters of 3-dimensional Data
makeplot Plot Two-dimensional Quantile
makeplot3D Plot Three-dimensional Quantile
muqie Two-dimensional Quantile
muqie3D Three-dimensional Quantile
yamm Yet Another Multivariate Median
yamm.obj Objective Function for Yamm

Author(s)

NA

Maintainer: Guy Nason <g.nason@imperial.ac.uk>

References

Basu, R., Bhattacharya, B.B., and Talukdar, T. (2012) The projection median of a set of points in
Rd CCCG., 47, 329-346. doi: 10.1007/s0045401193806

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection median, its influence
curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

Croux, C., Filzmoser, P., and Oliveira, M., (2007). Algorithms for Projection-Pursuit Robust Prin-
cipal Component Analysis, Chemometrics and Intelligent Laboratory Systems, 87, 218-225.

Durocher, S. and Kirkpatrick, D. (2009), The projection median of a set of points, Computational
Geometry, 42, 364-375.

Fischer,D., Mosler, K., Mottonen, J.K., Nordhausen, K., Pokotylo, O., and Vogel, D. (2016) Com-
puting the Oja Median in R: The Package OjaNP, ArXiv:1606.07620

Rousseeuw, P.J. and Ruts, I. (1996), Algorithm AS 307: Bivariate location depth, Appl. Stat.-J. Roy.
St. C, 45, 516-526.

Rousseeuw, P.J. and Ruts, I. (1998), Constructing the bivariate Tukey median, Stat. Sinica, 8, 828-
839.

Rousseeuw, P.J., Ruts, I., and Tukey, J.W. (1999), The Bagplot: A Bivariate Boxplot, The Am. Stat.,
53, 382-387.

Struyf, A. and Rousseeuw, P.J. (2000), High-dimensional computation of the deepest location, Com-
put. Statist. Data Anal., 34, 415-436.

See Also

yamm, PmedTrapz, PmedMCInt,

Examples

# Load a 2-dimensional data set.
data(clusters2d)
#
# Set seed for reproduction.
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4 beetle

set.seed(5)
#
# Projection median approximated by Monte Carlo Integration.
PmedMCInt(clusters2d, nprojs = 30000)
# [1] 4.3369501 -0.1578591
#
#
# Projection median approximated by the trapezoidal rule.
PmedTrapz(clusters2d,no.subinterval=180)
# [1] 4.1556553 -0.3566614
#
#
# Yamm.
set.seed(5)
yamm(clusters2d,nprojs = 2500,reltol=1e-3,doabs=1,full.results=FALSE)
# [1] 4.3871582 -0.1070497
#
#
# Plot 2-D medians
# Remove the outliers of the dataset.
cluster_without_outlier <- clusters2d[c(1:101),]
myxvec <- c(min(cluster_without_outlier[,1]),

max(cluster_without_outlier[,1]))
myyvec <- c(min(cluster_without_outlier[,2]),

max(cluster_without_outlier[,2]))
#
# Plot the figure.
set.seed(5)
Plot2dMedian(clusters2d, myxvec, myyvec, yamm.nprojs = 2000,

PmedMCInt.nprojs = 20000, no.subinterval = 36,
opt.method = "BFGS", xlab = "Component1",
ylab = "Component2")

beetle Six Measurements of Beetles

Description

Multivariate dataset containing six measurements on each of three species of flea-beetles: concinna,
heptapotamica, and heikertingeri. The original data set contains one column identifying the species
of the observations, which is irrelevant and has been deleted here.

Usage

data("beetle")
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clusters2d 5

Format

A data frame with 74 observations on the following 6 variables.

tars1 Width of the first joint of the first tarsus in microns (the sum of measurements for both tarsi).

tars2 The same for the second joint.

head The maximal width of the head between the external edges of the eyes in 0.01 mm.

aede1 The maximal width of the aedeagus in the fore-part in microns.

aede2 The front angle of the aedeagus (1 unit = 7.5 degrees).

aede3 The aedeagus width from the side in microns.

Source

Lubischew, A.A.(1962) On the Use of Discriminant Functions in Taxonomy, Biometrics,18, 455-
477.

References

Cook, D.H. and Swayne, D.F. (2007). Interactive and Dynamic Graphics for Data Analysis: With
Examples Using R and GGobi. http://www.ggobi.org/book/data/flea.xml

Examples

data(beetle)

clusters2d Three Clusters of 2-dimensional Data

Description

This dataset with 103 observations contains three clusters, which are generated from different inde-
pendent normal distributions randomly, and two outliers (located in the last two rows).

Usage

data("clusters2d")

Format

The first cluster has 26 observations, and the two variables are generated from N(3, 1) and N(4, 1)
respectively. The second cluster has 36 observations, and the two variables are generated from
N(10, 1.5) and N(�2, 1.5) respectively. The third cluster has 39 observations, and the two vari-
ables are generated from N(2, 0.5) and N(�2, 0.5) respectively. The two outliers are c(100.3, 99.1)
and c(97.5, 98.4).
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6 clusters3d

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

Examples

data(clusters2d)

clusters3d Four Clusters of 3-dimensional Data

Description

This dataset with 105 observations contains four clusters, which are generated from different Laplace
distributions randomly, and five outliers (located in the last five rows).

Usage

data("clusters3d")

Format

The four clusters are generated from different multivariate Laplace distributions. The first cluster
has 20 observations, where the mean values µ of the Laplace distribution are equal to (�8,�8,�8)
and the covariance matrix ⌃ is the product of two times identity matrix. The second cluster has
35 observations, where µ = (�5, 5, 5) and ⌃ is the identity matrix. The third cluster has 30
observations, where µ = (12,�12, 12) and ⌃ is the identity matrix. The fourth cluster has 30
observations, where µ = (18, 18,�18) and ⌃ is the identity matrix. The five outliers are from the
µ = (100, 100,�100) and ⌃ is the product of ten times identity matrix.

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

Examples

data(clusters3d)
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makeplot 7

makeplot Plot Two-dimensional Quantile

Description

This function calls muqie for multiple values of quantiles from 0.5 to 0.95 and then produces a set
of plots with these quantiles for producing an animated GIF using package animation.

Usage

makeplot(xdata, dm=c(1,2), nsegs=20,
quantile.increment= 0.001,
nprojs=2000, reltol=0.001)

Arguments

xdata The data as a matrix or dataframe with the number of columns greater than or
equal to two, with each row being viewed as one multivariate observation.

dm A numeric vector with two entries representing the selected columns of the data
considered. The default value is c(1, 2), which means the first two columns of
data are chosen if the dimension of data is greater than two.

nsegs The number of the unit-length direction vectors u, which is computed by divid-
ing a unit circle into nsegs equal sectors.

quantile.increment

A numeric value specifies the increment of the set of different quantiles.

nprojs The number of projections for the dataset when computing yamm. The default
value is 2000.

reltol The tolerance of the optimisation process in the function yamm. The default value
is 0.001.

Value

This function returns a set of plots with various specified quantiles.

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

See Also

yamm muqie
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8 makeplot3D

Examples

# Load a data frame with 103 rows and 2 columns.
# The last two rows of the data are the outliers.
data(clusters2d)
#
# Remove the outliers of the dataset.
cluster_without_outlier <- clusters2d[c(1:101),]
#
# Produce an animation of a set of multivariate quantile plots.

if (requireNamespace("animation")) {

library("animation")
# Generate temporary file
f <- tempfile(fileext=".gif")
#
# Now generate movie into the temporary file.
# Here nprojs=40: for a real example, for production quality you should increase
# it to 1000, 2000 or even higher
#
# Here quantile.increment=0.1, for production quality this should be reduced to
# e.g. 0.01, of even smaller
#
saveGIF(makeplot(cluster_without_outlier, nprojs=40, quantile.increment=0.1),
diff.col=3, interval=0.1,width=500, height=500, movie.name=f)
cat("Movie saved to: ", f, "\n")
}

makeplot3D Plot Three-dimensional Quantile

Description

This function calls muqie3D for multiple values of quantiles from 0.5 to 0.95 and then produces a set
of perspective plots of a surface over the x-y plane with these quantiles, which are used to produce
an animated GIF using package animation.

Usage

makeplot3D(xdata, dm=c(1,2,3), nsegs=30,
quantile.increment= 0.005,
nprojs=2000, reltol=0.001)

Arguments

xdata The data as a matrix or dataframe with the number of columns greater than or
equal to three, with each row being viewed as one multivariate observation.
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makeplot3D 9

dm A numeric vector with three entries representing the selected columns of the data
considered. The default value is c(1, 2, 3), which means the first three columns
of data are chosen if the dimension of data is more than three.

nsegs The number of the three-dimensional unit-length direction vectors u, which is
computed by dividing a unit sphere into nsegs equal sectors.

quantile.increment

A numeric value specifies the increment of the set of different quantiles.

nprojs The number of projections for the dataset when computing yamm. The default
value is 2000.

reltol The tolerance of the optimisation process in the function yamm. The default value
is 0.001.

Value

This function returns a set of perspective plots of a surface over the x-y plane with various specified
quantiles.

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

See Also

yamm muqie3D

Examples

#
data(beetle)
#
# Produce an animation of a set of multivariate quantile plots.
if (requireNamespace("animation")) {

library("animation")
# Generate temporary file
f <- tempfile(fileext=".gif")
#
# Now generate movie into the temporary file.
# Here nprojs=40: for a real example, for production quality you should increase
# it to 1000, 2000 or even higher
#
# Here quantile.increment=0.1, for production quality this should be reduced to
# e.g. 0.01, of even smaller
#
saveGIF(makeplot3D(beetle, dm=c(1,3,6), nprojs=40, quantile.increment=0.1),
diff.col=3, interval=0.1,width=500, height=500, movie.name=f)
cat("Movie saved to: ", f, "\n")
}
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10 muqie

muqie Two-dimensional Quantile

Description

This function plots the collection of all MUltivariate QuantIlE points in two dimensions (muqie)
over all unit-length direction vectors u, which projects the yamm-centred multivariate data onto the
chosen vector u to obtain a univariate set. The muqie point is merely the vector u rescaled to have
length equal to the quantile of the univariate set.

Usage

muqie(xdata, dm=c(1,2), probs=0.5, nsegs=20,
nprojs=2000, reltol=0.001, plot.it=FALSE,
full.return=FALSE, xlab=NULL, ylab=NULL)

Arguments

xdata The data as a matrix or dataframe with the number of columns greater than or
equal to two, with each row being viewed as one multivariate observation.

dm A numeric vector with two entries representing the selected columns of the data
considered. The default value is c(1, 2), which means the first two columns of
data are chosen if the dimension of data is more than two.

probs The quantile of the data after projected to obtain a univariate set.

nsegs The number of the two-dimensional unit-length direction vectors u, which is
computed by dividing a unit circle into nsegs equal sectors.

nprojs The number of projections for the dataset when computing yamm. The default
value is 2000.

reltol The tolerance of the optimisation process in the function yamm. The default value
is 0.001.

plot.it Logical. If TRUE, the function muqie will produce a two-dimensional quantile
plot.

full.return Logical. If TRUE, the function muqie will return a list of full results. See “Value”.

xlab x-axis label for the quantile plot.

ylab y-axis label for the quantile plot.

Value

If full.results = TRUE, it returns a list comprising of

ans A data matrix with four rows. The first row represents the angle of the unit-
length projection vector u to the positive x-axis, while the second and third row
are the x- and y-coordinates of the projection vector respectively. The last row
is univariate quantile of the projected data matrix.
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muqie3D 11

uvd A data matrix after projecting the yamm-centred multivariate data onto a set of
projection vectors u.

cdata The yamm-centred multivariate data matrix.

yamm The yamm value of the multivariate data. See yamm for more details.

If full.results = FALSE (default), it will only return ans.

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

See Also

yamm

Examples

data(beetle)
#
# Compute the 0.7-quantile for the first two columns of the beetle data.
muqie(beetle,dm=c(1,4), probs=0.7)

muqie3D Three-dimensional Quantile

Description

This function plots the collection of all MUltivariate QuantIlE points in three dimensions (muqie3D)
over all unit-length direction vectors u, which projects the yamm-centred multivariate data onto the
chosen vector u to obtain a univariate set. The muqie3D point is merely the vector u rescaled to have
length equal to the quantile of the univariate set.

Usage

muqie3D (xdata, dm=c(1,2,3), probs=0.5,
nsegs=30, nprojs=2000, reltol=0.001,
plot.it=FALSE, full.return=FALSE)

Arguments

xdata The data as a matrix or dataframe with the number of columns greater than or
equal to three, with each row being viewed as one multivariate observation.

dm A numeric vector with three entries representing the selected columns of the data
considered. The default value is c(1, 2, 3), which means the first three columns
of data are chosen if the dimension of data is more than three.

probs The quantile of the data after projected to obtain a univariate set.
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12 muqie3D

nsegs The number of the three-dimensional unit-length direction vectors u, which is
computed by dividing a unit sphere into nsegs equal sectors.

nprojs The number of projections for the dataset when computing yamm. The default
value is 2000.

reltol The tolerance of the optimisation process in the function yamm. The default value
is 0.001.

plot.it Logical. If TRUE, the function muqie will produce a three-dimensional quantile
plot.

full.return Logical. If TRUE, the function muqie will return a list of full results. See “Value”.

Value

If full.results = TRUE, it returns a list comprising of

ans A data matrix with four rows. The first three rows represent the x-, y- and z-
coordinates of the projection vector u respectively. The last row is univariate
quantile of the projected data matrix.

uvd A data matrix after projecting the yamm-centred multivariate data onto a set of
projection vectors u.

cdata The yamm-centred multivariate data matrix.

yamm The yamm value of the multivariate data. See yamm for more details.

If full.results = FALSE (default), it will only return ans.

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

See Also

yamm

Examples

data(beetle)
#
# Compute the 0.7-quantile for the first three columns of the beetle data.
muqie3D(beetle, dm=c(1,3,6), probs=0.7)
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Plot2dMedian 13

Plot2dMedian Plot Two-dimensional Medians

Description

This function plots various multivariate medians in the two-dimensional case. The grey dots pre-
sented in the figure are the data points and the Spatial, Component-wise (CWmed), Tukey’s, Oja’s,
Liu’s, Projection median as well as the mean value of the data set are plotted in the figure.

Usage

Plot2dMedian(data, xvec, yvec, yamm.nprojs = 2000,
PmedMCInt.nprojs = 20000,
no.subinterval = 36, opt.method = "BFGS",
xlab = "Component1", ylab = "Component2")

Arguments

data The data as a matrix or data frame, with each row being viewed as one multi-
variate observation.

xvec A numeric vector containing the maximum and minimum values you desire for
the x-axis.

yvec A numeric vector containing the maximum and minimum values you desire for
the y-axis.

yamm.nprojs The number of projections for the dataset when computing yamm. The default
value is 2000.

PmedMCInt.nprojs

The number of projections for the dataset when computing PmedMCInt. The
default value is 20000, since PmedMCInt requires large number of projections
while doing the Monte Carlo integration to ensure accuracy.

no.subinterval The number of subintervals while using the trapezoidal rule to approximate the
projection median with PmedTrapz function. The default value is 36, and small
values (e.g. less than 10) of no.subinterval should not be used, to safeguard
accuracy.

opt.method The method chosen for the optimiser when computing the yamm, with default
function “BFGS”. optim is used to minimise the objective function yamm.obj.
Apart from “BFGS”, other functions in optim like “Nelder-Mead”, “CG”, “L-BFGS-B”,
and “SANN” can also be used.

xlab Title for x-axis. Must be a character string.

ylab Title for y-axis. Must be a character string.
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14 Plot3dMedian

Details

The Spatial median is obtained using l1median in the Rpackage pacPP. The Component-wise
(CWmed), Liu’s and Tukey’s median are produced using function med in the Rpackage depth. Oja’s
median is produced using function ojaMedian in the Rpackage OjaNP. When computing the projec-
tion median, three approximations are implemented and diplayed in the plot, where PmedMCInt uses
Monte Carlo method, PmedTrapz is computed by the trapezoidal rule, and yamm uses an optimiser.

The argument xvec and yvec are useful when there are outliers in the data set, which are not
expected to be shown in the figure in some cases. Determining the x-axis and y-axis allows you to
zoom in the plot and see the difference between multivariate medians and mean value.

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

See Also

PmedTrapz, PmedMCInt, yamm, yamm.obj, optim.

Examples

# Load a data frame with 103 rows and 2 columns.
# The last two rows of the data are the outliers.
data(clusters2d)
#
# Remove the outliers of the dataset.
cluster_without_outlier <- clusters2d[c(1:101),]
myxvec <- c(min(cluster_without_outlier[,1]),

max(cluster_without_outlier[,1]))
myyvec <- c(min(cluster_without_outlier[,2]),

max(cluster_without_outlier[,2]))
#
# Plot the figure.
set.seed(5)
Plot2dMedian(clusters2d, myxvec, myyvec, yamm.nprojs = 2000,

PmedMCInt.nprojs = 20000, no.subinterval = 36,
opt.method = "BFGS", xlab = "Component1",
ylab = "Component2")

Plot3dMedian Plot Three-dimensional Medians

Description

This function plots multivariate medians in the three-dimensional case. The grey dots presented
in the figure are the data points and the Spatial, Component-wise (CWmed), Tukey’s, Oja’s, Liu’s,
Projection medians as well as the mean value of the data set are plotted in the figure.
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Plot3dMedian 15

Usage

Plot3dMedian(data, xvec, yvec, zvec, yamm.nprojs = 2000,
PmedMCInt.nprojs = 20000, no.subinterval = c(18,36),
opt.method = "BFGS", xlab = "Component1",
ylab = "Component2", zlab = "Component3")

Arguments

data The data as a matrix or data frame, with each row being viewed as one multi-
variate observation.

xvec A numeric vector containing the maximum and minimum values you desire for
the x-axis.

yvec A numeric vector containing the maximum and minimum values you desire for
the y-axis.

zvec A numeric vector containing the maximum and minimum values you desire for
the z-axis.

yamm.nprojs The number of projections for the dataset when computing yamm. The default
value is 2000.

PmedMCInt.nprojs

The number of projections for the dataset when computing PmedMCInt. The
default value is 20000, since PmedMCInt requires large number of projections
while doing the Monte Carlo integration to ensure accuracy.

no.subinterval A numeric vector of two entries which represents the number of subintervals
chosen while using the trapezoidal rule to approximate the projection median
with PmedTrapz function. The default vector is c(36, 36). Note small values
(e.g. less than 10) for each entry of no.subinterval should not be used, to
safeguard accuracy.

opt.method The method chosen for the optimiser when computing the yamm, with default
function “BFGS”. optim is used to minimise the objective function yamm.obj.
Apart from BFGS, other functions in optim like “Nelder-Mead”, “CG”, “L-BFGS-B”,
and “SANN” can also be used.

xlab Title for x-axis. Must be a character string.

ylab Title for y-axis. Must be a character string.

zlab Title for z-axis. Must be a character string.

Details

The Spatial median is obtained using l1median in the Rpackage pacPP. The Component-wise
(CWmed), and Tukey’s median are produced using function med in the Rpackage depth. Oja’s
median is produced using function ojaMedian in the Rpackage OjaNP. Liu’s median is not available
in higher dimensions (> 2), so it is not shown here. When computing the projection median, three
approximations are implemented and diplayed in the plot, where PmedMCInt uses Monte Carlo
method, PmedTrapz is computed by the trapezoidal rule, and yamm uses an optimiser.

The argument xvec, yvec and zvec are useful when there are outliers in the dataset, which are not
expected to be shown in the figure in some cases. Determining the x-axis y-axis, and z-axis allows
you to zoom in the plot and see the difference between multivariate medians and mean value.
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References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

See Also

PmedMCInt, PmedTrapz yamm, yamm.obj, optim.

Examples

# Load a data frame with 105 rows and 3 columns.
# The last five rows of the data are the outliers.
data(clusters3d)
#
# Remove the outliers of the dataset.
cluster_without_outlier <- clusters3d[c(1:100),]
myxvec <- c(min(cluster_without_outlier[,1]),

max(cluster_without_outlier[,1]))
myyvec <- c(min(cluster_without_outlier[,2]),

max(cluster_without_outlier[,2]))
myzvec <- c(min(cluster_without_outlier[,3]),

max(cluster_without_outlier[,3]))
#
# Plot the figure.
set.seed(15)
Plot3dMedian(cluster_without_outlier, myxvec, myyvec, myzvec,

yamm.nprojs = 2000, PmedMCInt.nprojs = 15000,
no.subinterval = c(18,36),opt.method = "BFGS",
xlab = "Component1",ylab = "Component2",
zlab = "Component3")

PmedMCInt Projection Median Approximated by Monte Carlo Integration

Description

This function approximates the projection median using Monte Carlo integration, which can be used
for any dimensions. PmedMCInt is implemented internally using C code CPmedMCInt and hence is
much faster than coding with R only.

Usage

PmedMCInt(x, nprojs = 20000)
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Arguments

x The data as a matrix or data frame, with each row being viewed as one multi-
variate observation.

nprojs The number of projections when using the Monte Carlo method to approximate
the integration. The default value is 20000, since PmedMCInt requires large a
number of projections to ensure the accuracy. More projections may increase
the accuracy, as well as the running time.

Details

The projection median was introduced by Durocher and Kirkpatrick (2009) and generalised by
Basu, Bhattacharya and Talukdar (2012). PmedMCInt produces the projection median using Monte
Carlo approximation, which is valid in any multi-dimensional data. However, a large number of
projections is sometimes required to ensure accuracy, which will also increase the running time. In
this case, PmedTrapz is preferred for the two- or three-dimensional data, which is fast and accurate
in general. In higher dimensions, yamm is another alternative for computing the projection median.

Value

A vector of the projection median for n-dimensional data.

References

Durocher, S. and Kirkpatrick, D. (2009), The projection median of a set of points, Computational
Geometry,42, 364-375.

Basu, R., Bhattacharya, B.B., and Talukdar, T. (2012) The projection median of a set of points in
Rd CCCG., 47, 329-346. doi: 10.1007/s0045401193806

See Also

PmedTrapz, yamm

Examples

# Load a 2-dimensional data set
data(clusters2d)
#
# Set seed for reproduction.
set.seed(5)
#
# Projection median approximated by Monte Carlo Integration.
PmedMCInt(clusters2d, nprojs = 50000)
# [1] 4.3246488 -0.1535201
#
#
# Load a 6-dimensional data set
data(beetle)
#
set.seed(5)
PmedMCInt(beetle,nprojs = 150000)
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# [1] 179.92439 125.16939 50.01176 136.55460 13.22277 95.04224

PmedTrapz Projection Median Approximated by Trapezoidal Rule

Description

This function approximates the projection median using trapezoidal rule, which is only valid for the
two- and three-dimensional cases. PmedTrapz is implemented internally using C code CPmedTrapz2D
and CPmedTrapz3D and hence is much faster than coding with R only.

Usage

PmedTrapz(x, no.subinterval)

Arguments

x The data as a matrix or data frame, with each row being viewed as one multi-
variate observation.

no.subinterval A vector of subintervals chosen for implementing the trapezoidal rule. It is
a number in the two-dimensional case, and has a length of two for the three-
dimensional data, since the trapezoidal rule is only required once in 2D and
needs to be applied twice for the double integral in 3D. Small values (e.g. less
than 10) for each entry of no.subinterval should not be used, to safeguard the
accuracy.

Details

The projection median was introduced by Durocher and Kirkpatrick (2009) and generalised by
Basu, Bhattacharya and Talukdar (2012). PmedTrapz produces the projection median directly from
the definition using the trapezoidal rule, but current function is only valid in the two-dimensional
and three-dimensional case. For more general dimensionalities, you can refer to function PmedMCInt
and yamm.

Value

A vector of the projection median in the two or three dimensions.

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

Durocher, S. and Kirkpatrick, D. (2009), The projection median of a set of points, Computational
Geometry,42, 364-375.

Basu, R., Bhattacharya, B.B., and Talukdar, T. (2012) The projection median of a set of points in
Rd CCCG., 47, 329-346. doi: 10.1007/s0045401193806
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See Also

PmedMCInt

Examples

# Load a 2-dimensional dataset
data(clusters2d)
#
# Projection median approximated by the trapezoidal rule.
PmedTrapz(clusters2d,no.subinterval=180)
# [1] 4.1556553 -0.3566614
#
# Load a 3-dimensional dataset
data(clusters3d)
#
PmedTrapz(clusters3d,c(180,360))
# [1] -0.906680 1.584866 2.695584

yamm Yet Another Multivariate Median

Description

Another method for computing the projection median for any dimensional dataset. Basically, it
minimises the objective function yamm.obj over a unit hypersphere and finds the optimal shift
vector mu in yamm.obj. optim in the stats package is used in this function to minimise yamm.obj.

Usage

yamm(x, nprojs = 2000, reltol = 1e-6, abstol=-Inf, xstart = l1median(x),
opt.method = "BFGS", doabs = 0, full.results=FALSE)

Arguments

x The data as a matrix or data frame, with each row being viewed as one multi-
variate observation.

nprojs The number of projections for the shifted data matrix while using the Monte
Carlo method to approximate the integration. The default value is 2000, more
projections may be required for complicated data to ensure accuracy, which,
however, increases the running time.

reltol The tolerance of the optimisation process gets supplied to control arguments of
optim. The default value is 1e � 6. Loosening tolerance will make the running
process faster. Generally, 1e� 3 is enough to obtain a good approximation for a
short running time.

abstol The absolute convergence tolerance of the optimisation process gets supplied to
control arguments of optim. The default value is negative infinity.
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xstart The starting value for the optimiser. The default value is Spatial median of the
data using function l1median. Other multivariate medians or mean values can
also be used. Note, you should be aware of the outliers when using the mean
values as a starting point, which may slow down the optimisation process or
result in a less accurate median.

opt.method The method chosen for the optimiser when computing the yamm, with default
function “BFGS”. Apart from “BFGS”, other functions in optim like “Nelder-Mead”,
“CG”, “L-BFGS-B”, and “SANN” can also be used.

doabs If 0 (default), the function yamm.obj integrates the square of the univariate
median of the projection to the shifted data set over a unit hypersphere; if 1,
yamm.obj integrates the absolute value of the univariate median instead.

full.results Logical. If FALSE (default), the function yamm only returns the best set of yamm
location estimator found; if TRUE, a list of full reults from the function optim is
displayed.

Value

If full.results = FALSE, it returns the best set of yamm location estimator found, otherwise, it
returns a list comprising of

par The best set of parameters found, which is the yamm location estimator.

value The value of objective function yamm.obj corresponding to par.

counts A two-element integer vector giving the number of calls to the objective function
and gradient of the function respectively. This excludes those calls needed to
compute the Hessian, if requested, and any calls to the objective function to
compute a finite-difference approximation to the gradient.

convergence An integer code. 0 indicates successful completion (which is always the case for
method “SANN” and “Brent”). Possible error codes are
1 indicates that the iteration limit had been reached.
10 indicates degeneracy of the Nelder-Mead simplex.
51 indicates a warning from the “L-BFGS-B” method; see component message
for further details.
52 indicates an error from the “L-BFGS-B” method; see component message for
further details.

message A character string giving any additional information returned by the optimiser,
or NULL

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

See Also

yamm.obj, optim.
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Examples

data(beetle)
#
# Set seed for reproduction.
set.seed(5)
#
# Yamm approximated using 1000 projections.
yamm(beetle,nprojs = 1000,reltol=1e-3,doabs=0,full.results=TRUE)
#
# $par
# [1] 180.30601 124.23781 50.16349 135.53947 13.45252 95.64742
#
# $value
# [1] 5.704375
#
# $counts
# function gradient
# 69 4
#
# $convergence
# [1] 0
#
# $message
# NULL

yamm.obj Objective Function for Yamm

Description

The objective function when computing yamm, which is the integral of the squared or absolute value
of the univariate median of the projection of the shifted data set over a unit hypersphere. It is
implemented internally using C code Cyammobj and hence is much faster than coding with R only.

Usage

yamm.obj(x, mu, nprojs = 2000, doabs = 0)

Arguments

x The data as a matrix or data frame, with each row being viewed as one multi-
variate observation.

mu A shift vector with length n, where n should equal to the number of columns
(variables) of the data matrix. Each row of the data matrix x is shifted by mu to
obtain the shifted data matrix.

nprojs The number of projections for the shifted data matrix while using the Monte
Carlo method to approximate the integration. The default value is 2000.
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doabs If 0 (default), function yamm.obj integrates square of the univariate median of
the projection to the shifted data set over a unit hypersphere; if 1, yamm.obj
integrates absolute value of the univariate median instead.

Value

A univariate integral of the squared or absolute value of the median of the projection of the shifted
data set over a unit hypersphere is returned from the .C calling function

References

Chen, F. and Nason, Guy P. (2020) A new method for computing the projection medi an, its influ-
ence curve and techniques for the production of projected quantile plots. PLOS One, (to appear)

See Also

yamm

Examples

data(beetle)
#
# Set seed for reproduction.
set.seed(5)
#
# Objective function for yamm with a chosen shift vector.
#
yamm.obj(beetle, mu=rep(10,6), nprojs=5000, doabs=1)
# [1] 88.38346
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