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Abstract 
Photosynthesis is one of the most important metabolisms on Earth, because it allows 

living organisms to harvest the most abundant source of energy available on the planet: light 

from the Sun. The ability to perform photosynthesis originated within bacteria and it can now 

be found in a number of different bacterial groups, each with its own peculiar characteristics. 

A particularly interesting group of phototrophs are the Cyanobacteria: unlike other 

photosynthetic bacteria, Cyanobacteria use water as an electron donor for photosynthesis. 

As a result, they release oxygen in the atmosphere, and it is likely that they are 

singlehandedly responsible for the oxygen we now breathe. 

In this thesis, I explore the origin of photosynthesis, aiming to determine who was the first 

photosynthetic bacterium and what kind of photosynthetic metabolism it could perform. I 

also look at the ancestral environment of the first Cyanobacteria, studying whether they lived 

in high-salinity environments, such as seas and oceans, or in freshwater lakes and rivers. 

To do this, I developed a number of tools and software libraries to visualise and analyse 

biological data in novel ways. These include sMap, a new application and extension of the 

stochastic mapping algorithm to study the evolution of morphological characters, and 

TreeViewer, a new software to plot phylogenetic trees. 

My analyses demonstrate that the first bacterium to ever appear on the Earth was already 

capable of an advanced form of photosynthesis, suggesting the existence of a direct lineage 

from this organism to the ancestors of modern Cyanobacteria. This group, in particular, 

appears to have originated in a high-salinity environment, possibly a coastal region, and 

then to have spread on the rest of the planet. These analyses also serve as a demonstration 

of the potentialities of my new programs and methods, which will find application in many 

different fields.
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1 

1. Introduction 

 

Sit down. Relax. As you contemplate the fact that you are about to read a 200-page long PhD 

thesis, take a breath. Feeling the oxygen that flows into your lungs and is exchanged with carbon 

dioxide through the walls of your alveoli, think that the reason why you can do this is because a few 

billion years ago, by chance, a bacterium managed to accomplish exactly the opposite: through 

oxygenic photosynthesis, it was able to incorporate a 𝐶𝑂2 molecule in its organic biomass, releasing 

molecular oxygen as a by-product. 

What was this bacterium? Where did it live? When did it live? How did it become the first oxygen-

producing photosynthetic organism? These are some of the questions that I will try to address in this 

work. I will use a variety of novel and established methodologies, such as phylogenomics and trait 

evolution analyses, always following a Bayesian approach. 

In this first chapter, I provide some definitions and a general overview of the topics that will be 

discussed in the thesis. These topics are explored in more detail in Chapter 2, while my original 

contributions are presented in the subsequent chapters. 
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1.1. What is photosynthesis? 

1.1.1. A broad overview of photosynthesis 

Photosynthesis is a metabolic process through which light energy is converted into chemical 

energy, which is stored by organisms within carbohydrates and other organic molecules [1]. 

Many different kinds of photosynthesis can be found across the diversity of living organisms 

(some examples of photosynthetic organisms are shown in Figure 1), with differences in the 

wavelength of the light that they use, the electron donor, the final electron acceptor, the kind of by-

products they release, and more [2,3]. In particular, in oxygenic photosynthesis the electron donor 

is water (𝐻2𝑂), which gets oxidised releasing molecular oxygen (𝑂2) as a by-product [2]. As a result, 

oxygenic phototrophs (i.e., organisms that perform oxygenic photosynthesis – plants, algae and 

Cyanobacteria) produce oxygen and, being widespread and very abundant, are responsible for all 

the oxygen that is currently present in the atmosphere [2,4]. 

The evolutionary history of photosynthesis has been studied for a long time, and multiple 

hypotheses have been formulated about the origins of this metabolism and the first organisms to 

display it [5]. However, questions still remain open [6]: my goal is to use new methods to address 

them, increasing the amount of information that can be extracted from the available data. 

 

 

Figure 1. Examples of photosynthetic organisms. (A) Chlorobium phaeovibroides, a green sulphur bacterium 
(Chlorobi). Note the extracellular sulphur globules appearing as bright spots. [7] (B) Flagellated cells of Heliobacterium 
modesticaldum, a phototrophic member of Firmicutes. [8] (C) A cell of Chloracidobacterium termophilum, a phototrophic 
member of Acidobacteria. [9] (D) Chromatium okenii, a purple sulphur bacterium (Gammaproteobacteria). [10] (E) 
Filaments of Chloroflexus aggregans, a photosynthetic green non-sulphur bacterium (Chloroflexi). [11] (F) Gemmatimonas 
groenlandica, a phototrophic member of Gemmatimonadetes. [12] (G) Prochlorococcus marinus, a planktonic 
cyanobacterium. [13] (H) Bamboo (Phyllostachys edulis), a photosynthetic eukaryote (own work, Botanic Garden of Pisa). 

In broad general terms, photosynthesis can be summarised by the following chemical reaction 

[14]: 
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𝐶𝑂2 + ℎ𝜈 + 2𝐻2𝑋 → [𝐶𝐻2𝑂] + 𝐻2𝑂 + 2𝑋 

Where ℎ𝜈 represents the energy provided by an electromagnetic radiation with frequency 𝜈, 𝐻2𝑋 

represents a generic “electron donor”, 𝑋  is the corresponding “by-product” of the reaction, and 

[𝐶𝐻2𝑂] represents a carbon atom that has been reduced and incorporated into an organic compound 

(i.e., fixed). 

It should be noted that this is not a real chemical reaction, in the sense that there is no organism 

in which photosynthesis occurs in these terms; this is instead a simplification that is useful to highlight 

the overall results of the process without delving too much in the biochemical (or, indeed, quantum-

mechanical) details of the reactions. 

In actual organisms, photosynthetic reactions take place in various declinations and in 

coordination with other cellular processes, such as cyclical pathways and biosynthetic steps that use 

intermediate products from light-dependent reactions to store the light energy in some kind of 

reduced organic compound [2]. 

Figure 2 shows a schematic representation of the reactions that happen at a photosynthetic 

reaction centre. In general, photosynthesis begins when a quantum of electromagnetic radiation (a 

photon) excites a molecule of a photosynthetic 

pigment (P, e.g., chlorophyll or 

bacteriochlorophyll); this causes the pigment to 

become excited (P*) and emit a highly-

energetic electron, which is captured by a first 

electron acceptor (A0, such as phaeophytin). 

The electron then travels through an electron 

transport chain, (ETC) which consists of a 

series of redox reactions (such as the reduction 

of plastoquinone to plastoquinol) that can 

exploit the energy to create an imbalance of 

charge on two sides of a membrane, by 

relocating protons (𝐻+ ions) from one side to 

the other.  

Eventually, the electron reduces a final 

electron acceptor (AF, such as or plastocyanin), 

and is either stored as a reducing equivalent by 

reducing 𝑁𝐴𝐷𝑃+, or directly used to reduce the 

oxidised photosynthetic pigment. The cell can now use the energy stored in the electrochemical 

proton gradient to produce 𝐴𝑇𝑃, which can be used, together with the reducing equivalents, to fix a 

Figure 2. Summary of the light-dependent reactions 
happening at a generic photosynthetic reaction centre. 
Solid black arrows denote reactions or state transitions that 
happen in all types of reaction centres; dashed blue arrows 
highlight reactions that only happen in Type I reaction centres; 
dashed orange arrows refer to reactions that may happen in 
Type I and Type II reaction centres. The grey shaded area 
contains reactions that happen within the reaction centre 
complex. Electrons flow from molecules with higher oxidation 
potential to molecules with lower oxidation potential. P: 
photosynthetic pigment pair; P*: excited P; A0: first electron 
acceptor; ETC: electron transport chain; AF: final electron 
acceptor; D: electron donor. Adapted after [2,3]. 
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carbon dioxide molecule in a reduced organic molecule. If the photosynthetic pigment has not been 

reduced by the final electron acceptor, this happens by oxidising an electron donor (D, such as water 

or hydrogen sulphide) [2,3]. 

Depending on their structure and on the kind of electron acceptors they use, photosynthetic 

reaction centres can be classified in two main classes: Type I and Type II reaction centres. These 

are distributed across much of the bacterial diversity (Figure 3): 

• Type I reaction centres are found in green sulphur bacteria (Chlorobi), in some Firmicutes, 

and in some Acidobacteria [3]. 

• Type II reaction centres are found in purple bacteria (Proteobacteria), in many green non-

sulphur bacteria (Chloroflexi), and in some Gemmatimonadetes [3]. 

• Cyanobacteria are the only bacteria in which both a Type I reaction centre and a Type II 

reaction centre can be found. The reaction centres in cyanobacteria, while recognisably 

similar to the ones in other bacteria, are very distantly related to them; accordingly, they 

have their own classification: the cyanobacterial Photosystem I corresponds to a Type I 

reaction centre, while Photosystem II corresponds to a Type II reaction centre [2,6]. 

 

Note that some of these organisms (e.g., the phototrophic Firmicutes, Acidobacteria and 

Gemmatimonadetes), while being phototrophs, are not autotrophic: this means that they lack the 

ability to incorporate 𝐶𝑂2 directly, and instead require external sources of organic carbon to grow. 

Therefore, these are not, strictly speaking, photosynthetic organisms. However, since they harvest 

light energy through the same reaction centres as photoautotrophic organisms, they cannot be 

excluded from the discussion of the evolution of photosynthesis. 

Figure 3. Distribution of 
photosynthesis in the bacterial 
tree. The figure shows a 
simplified phylogenetic tree of 
bacteria, where groups 
containing photosynthetic strains 
have been highlighted. For each 
group, the type of photosynthetic 
reaction centre that is present in 
the group is shown. This tree 
shows that photosynthetic 
phenotypes are present in many 
unrelated lineages. Note that not 
all members of each highlighted 
group are photosynthetic. 
Adapted from Chapter 7. 
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Figure 4 shows the structure of a reaction 

centre from cyanobacterium, which consists of 

many proteins and cofactors associated with 

each other [2,15]. The complex interactions 

between these various elements improve the 

efficiency of the process and increase the 

stability of its components; furthermore, they 

allow cells to fine-tune their light-harvesting 

parameters to adapt to different environmental 

conditions [2,3,16,17]. 

I will now present examples of the 

photosynthetic reaction centres and pathways in 

some of these bacteria. These examples are 

meant to give an idea of the complexity of the 

processes involved in photosynthesis, and of 

the reasons why I have had to use some simplifications while studying their evolution; please note 

that these descriptions are also themselves already simplified. 

1.1.2. Type I reaction centres in green sulphur bacteria (Chlorobi) 

 

Figure 5 shows a simplified view of the light-dependent reactions in green sulphur bacteria of the 

phylum Chlorobi. 

Figure 5. Summary of the light-
dependent reactions occurring at a 
Type I reaction centre in green 
sulphur bacteria (Chlorobi). See text 
for the meaning of the abbreviations. 
Electrons released by the excited 
photosynthetic pigment can take two 
pathways: steps in common to both 
pathways are represented by black 
arrows; steps in the linear electron flow 
(which results in the reduction of 
𝑵𝑨𝑫𝑷+ to 𝑵𝑨𝑫𝑷𝑯) are represented in 
blue; steps in the cyclic electron flow 
(which results in the production of 𝑨𝑻𝑷) 
are represented in orange. Molecules 
involved in redox reactions are ordered 
according to their oxidation potential, but 
the potential differences are not to scale. 
The grey shaded area contains 
reactions that happen within the reaction 
centre complex. Adapted after [2,3]. 
Top-right: Chlorobium phaeovibroides, 
a green sulphur bacterium [7]. 

Figure 4. Structure of cyanobacterial Photosystem I. The 
figure shows a 3D representation of Photosystem I from 
Synechocystis sp. PCC 6803, a cyanobacterium, 
reconstructed using x-ray crystallography. The dark green 
residues on the left and the orange residues on the right are 
the A1 and A2 subunits that bind the photosynthetic pigment 
(see Photosystems I and II in Cyanobacteria); in the top-
centre, the three iron-sulphur clusters are represented as 
space-fill structures (iron is orange and sulphur is yellow). 
PDB ID of the structure: 6hqb [15,151,152,420].  
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Chlorobi have a Type I reaction centre, whose main component is a homodimer [18] of two PscA 

subunits, hosting a pair of bacteriochlorophylls [2,3]. This is designed P840, from the 840nm peak 

absorption wavelength of the bacteriochlorophyll dimer (note that the actual wavelengths that can 

be used by the bacterium differ from this, as they are the result of the complex interaction between 

the reaction centre and antenna complexes).  

Light can excite P840 to the P840* state; this gets oxidised to P840+ and thus transfers an electron 

to the primary acceptor, which is a bacteriochlorophyll (A0) [19], then to menaquinone (A1) [20], and 

to three iron-sulphur proteins (FX, FA, and FB). From here, the electron can take two different 

pathways: a first option (depicted in blue in Figure 5) is for it to reduce ferredoxin (Fd); in this case, 

the ferredoxin-𝑁𝐴𝐷𝑃+ reductase (FNR) enzyme then transfers two electrons to 𝑁𝐴𝐷𝑃+, which is 

reduced to 𝑁𝐴𝐷𝑃𝐻. In the meantime, the oxidised P840+ needs to get reduced and it does so by 

oxidising a sulphur compound such as 𝐻2𝑆 or 𝐻𝑆2𝑂3
−  [2,3]. 

In addition to Fd, the iron-sulphur proteins can also transfer the electrons to menaquinone (K2, 

orange pathway in Figure 5), which then directs them to an electron transport chain (ETC). These 

electrons return directly to the reaction centre and reduce the P840+, while the electron transport 

chain pumps 𝐻+ ions across the membrane, thus building a proton motive force, which can be used 

by 𝐴𝑇𝑃 synthase to produce 𝐴𝑇𝑃 [2,3]. 

By combining these two electron transport pathways, photosynthetic green sulphur bacteria are 

able to obtain both the chemical energy (in the form of 𝐴𝑇𝑃) and the reducing equivalents (as 𝑁𝐴𝐷𝑃𝐻 

or reduced ferredoxin) that are necessary to fix 𝐶𝑂2 using the reverse tricarboxylic acid cycle [21,22]. 

The main by-product of photosynthesis in green sulphur bacteria is the sulphur produced by the 

oxidation of 𝐻2𝑆, which accumulates in granules outside the cell and gives this group of bacteria 

their common name [7]. The sulphur can be further oxidised and used again as an electron donor; 

however, the biochemical pathways behind this process have not been clearly elucidated yet [7]. 
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1.1.3. Type II reaction centres in purple bacteria (Proteobacteria) 

 

Figure 6 shows a schematic representation of the light-dependent photosynthetic reactions in a 

purple bacterium of the phylum Proteobacteria. 

Photosynthetic strains in Alpha-, Beta- and Gammaproteobacteria have Type II reaction centres, 

which are constituted by a heterodimer of a PufL and a PufM subunit and contain a pair of 

bacteriochlorophylls; this is designated P870 from the 870nm peak absorption wavelength [2,3]. 

Similar to the initial reactions in a Type I reaction centre, P870 can absorb a photon and reach 

the excided P870* state, which can get oxidised to P870+ and transfer an electron to the primary 

acceptor, a bacteriochlorophyll (BChl). The electron is then transferred to bacteriopheophytin (BPh) 

and from here to a first acceptor quinone molecule (QA), which is tightly bound to the reaction centre 

proteins. From QA, the electron is then transferred to another quinone QB. Once two electrons have 

been used to reduce QB, this molecule can diffuse through the membrane and transfer the electrons 

to an electron transport chain (ETC), which returns them to the P870+ while pumping 𝐻+ ions across 

a membrane [2,3]. 

Unlike Type I reaction centres, Type II reaction centres cannot directly produce 𝑁𝐴𝐷(𝑃)𝐻; this is 

because the redox potential of the reduced quinones is not high enough to reduce 𝑁𝐴𝐷(𝑃)+ . 

Therefore, in order to obtain the reducing equivalents that are necessary to perform carbon fixation, 

purple bacteria have to use a process called reverse electron transport (rETC). While in “forward” 

electron transport a proton motive force is generated by flowing electrons through a transport chain, 

in “reverse” electron transport the proton motive force is dissipated, causing an electron to move 

Figure 6. Summary of the light-
dependent reactions occurring at a 
Type I reaction centre in purple sulphur 
bacteria (Gammaproteobacteria). See 
text for the meaning of the abbreviations. 
The proton motive force generated by the 
electron transport chain (ETC) can be 
used in two ways: either to 
generate  𝑨𝑻𝑷 through 𝑨𝑻𝑷  synthase 
(orange path), or to transfer an electron 
from an electron donor to 𝑵𝑨𝑫𝑷+ through 
a reverse electron transport chain (rETC, 
blue path). Molecules involved in redox 
reactions are ordered according to their 
oxidation potential, but the potential 
differences are not to scale. The grey 
shaded area contains reactions that 
happen within the reaction centre 
complex. Adapted after [2,3]. Top-right: 
Chromatium okenii, a purple sulphur 

bacterium (Gammaproteobacteria) [10]. 
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“uphill” in the transport chain. The electrons used in this pathway are originally sourced from donors 

such as 𝐻2𝑆, 𝐻𝑆2𝑂3
−, small organic molecules, or molecular hydrogen [2,3,23]. 

The 𝐴𝑇𝑃 produced by 𝐴𝑇𝑃 synthase and the 𝑁𝐴𝐷𝑃𝐻 produced by the reverse electron transport 

chain are then used in the Calvin cycle to fix 𝐶𝑂2 [22]. The by-products of these reactions are the 

oxidised electron donors which, depending on the specific bacterium, can be stored either inside or 

outside the cell [7]. 

1.1.4. Photosystems I and II in Cyanobacteria 

 

Figure 7. Summary of the light-dependent reactions in Cyanobacteria and photosynthetic eukaryotes. See text for 
the meaning of the abbreviations. The electron pathway generating 𝑁𝐴𝐷𝑃𝐻 is highlighted in blue, while the pathways that 

produce a proton motive force resulting in the production of 𝐴𝑇𝑃 are highlighted in orange. Electrons from PSI can follow 
both pathways. Molecules involved in redox reactions are ordered according to their oxidation potential, but the potential 
differences are not to scale. The grey shaded areas contain reactions that happen within each photosystem complex. 
Adapted after [2]. Bottom-right: Cyanosarcina sp., a cyanobacterium [24]. 

Figure 7 shows a schematic of photosynthesis in a bacterium of the phylum Cyanobacteria. 

Unlike other phototrophs, Cyanobacteria possess two kinds of photosynthetic reaction centre, which 

are designated Photosystem I (PSI) and Photosystem II (PSII). The structure and operation of PSI 

is similar to Type I reaction centres, while PSII is similar to Type II reaction centres. 
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Photosystem II 

Like their Type II counterparts, PSII reaction centres are heterodimers composed of a D1 and D2 

subunit (encoded respectively by the psbA and psbD genes [25]), which contain a pair of chlorophyll 

a molecules that constitute the P680 dimer. This is excited by light to the P680* state, which is 

oxidised to P680+ and transfers an electron to a pheophytin molecule, acting as the first acceptor 

(Ph). The electron is then transferred to a first acceptor plastoquinone (QA), which is tightly bound to 

the reaction centre complex, and from here to a second plastoquinone (QB). Once QB has been fully 

reduced by two electrons, it can diffuse through the membrane and transfer the electrons to an 

electron transport chain (ETC), which uses the energy to pump 𝐻+ ions across the membrane and 

build a proton motive force [2,26]. 

Unlike Type II reaction centres, though, the electrons that have travelled through the transport 

chain do not flow back to reduce P680+: they are instead transferred to plastocyanin (Pc) and then 

redirected to photosystem I, where they reduce the oxidised P700+ (see below). In fact, P680+ also 

differs from P870+ because the hole (lack of an electron) is confined on the chlorophyll molecule 

bound to the D1 subunit, rather than being delocalised on both parts of the dimer; due to this, P680+ 

is the strongest biological oxidising agent known, and its reduction potential is high enough that it 

can oxidise water [2,26]. 

Water oxidation, however, does not happen directly, because extracting electrons one-by-one 

from a water molecule would produce dangerous oxygen radicals. Instead, the electrons are 

“buffered” by an oxygen-evolving complex (OEC) that contains four manganese atoms; once four 

electrons have been extracted from the OEC by P680+, the OEC simultaneously oxidises two water 

molecules, producing a molecule of oxygen and four 𝐻+ ions [2,26,27]: 

𝑂𝐸𝐶4+ + 2𝐻2𝑂 → 𝑂𝐸𝐶 + 𝑂2 + 4𝐻+ 

In Cyanobacteria, therefore, PSII: 

• Produces a proton motive force (which is later used to generate 𝐴𝑇𝑃  through 𝐴𝑇𝑃 

synthase); 

• Provides electrons that reduce the P700+ in PSI; 

• Releases oxygen as a by-product. 

Photosystem I 

Unlike Type I reaction centres, PSI is a heterodimer composed of two subunits (A1 and A2) 

encoded by the psaA and psaB genes [25,28]. It hosts two modified chlorophyll a molecules that 

constitute the P700 dimer, which is excited by light to the P700* state. This gets oxidised to P700+, 

transferring an electron to the first acceptor, i.e. another modified chlorophyll molecule (A0). A0 then 

transfers the electron to a phylloquinone (A1), which then transfers it to a chain of three iron-sulphur 
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proteins (FX, FA, and FB), which use it to reduce ferredoxin (Fd). Ferredoxin can transfer two electrons 

to 𝑁𝐴𝐷𝑃+, through the ferredoxin-𝑁𝐴𝐷𝑃+ reductase enzyme (FNR), reducing it to 𝑁𝐴𝐷𝑃𝐻. The 

oxidised P700+ is eventually reduced by an electron carried by plastocyanin (Pc), which sits at the 

end of the electron transport chain of PSII [2,28]. 

However, like Type I reaction centres, PSI can also transport electrons in a cyclical pathway: the 

final iron-sulphur protein, FB, rather than transferring the electrons to Fd, can also direct them to an 

electron transport chain (ETC) that uses their energy to pump 𝐻+ ions and create a proton-motive 

force, which can be used by 𝐴𝑇𝑃 synthase to produce 𝐴𝑇𝑃. The electrons then flow to plastocyanin 

(Pc), which uses them to reduce P700+ [2,28]. 

Therefore, PSI in Cyanobacteria: 

• Produces reducing equivalents (𝑁𝐴𝐷𝑃𝐻); 

• Produces a proton motive force (which is later used to generate 𝐴𝑇𝑃  through 𝐴𝑇𝑃 

synthase); 

By combining both photosystems, Cyanobacteria can obtain both the 𝐴𝑇𝑃 and the 𝑁𝐴𝐷𝑃𝐻 that 

are necessary to fix 𝐶𝑂2 in the Calvin cycle, releasing 𝑂2 as the by-product of water oxidation in PSII  

[2,28]. 

Cyanobacteria-like photosynthesis is also performed by photosynthetic eukaryotes (e.g., plants 

and algae), because their chloroplasts have originated from an endosymbiosis event involving an 

ancestral eukaryote and a cyanobacterium [29]. In a way, therefore, Cyanobacteria and their 

endosymbiotic descendants are the only organisms that are capable of oxygenic photosynthesis. 

1.1.5. Reaction centres compared 

It is worth noting once again that the pathways described in these three examples are 

simplifications: I did not provide any detail about the function and structure of antenna complexes 

(which allow bacteria to use a wide range of light wavelengths), the relationships between the various 

components of the photosynthetic machinery, the electron transport chains, the light-independent 

reactions (through which carbon fixation actually occurs), and more. 

However, such a general discussion is useful to highlight that, despite the fact that they are found 

in widely different groups of bacteria, the various kinds of photosynthesis are, in the end, rather 

similar to each other. Table 1 and Figure 8 show a summary of these differences and similarities. 
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Looking at these features, a few questions naturally spring to mind: 

• When did photosynthesis first evolve? 

• In which group of bacteria did it originally appear? 

• What type of reaction centre(s) did this ancestral photosynthetic bacterium use? 

• When did Type I and Type II reaction centres diversify? 

I will provide more information about the evolution of photosynthesis in Section 2.3; these 

questions are the focus of Chapter 7.

Figure 8. Absorption wavelengths 
of photosynthetic bacteria. The 
top of the image shows the 
wavelengths absorbed by each 
group of photosynthetic bacteria 
arranged by reaction centre type. 
The bottom of the image shows the 
spectral irradiance of sunlight at sea 
level. The visible spectrum (400-
700nm) is highlighted. Absorption 
data from [3,32]; spectral irradiance 
adapted after [2]; visible spectrum 
adapted after [421]. 
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Table 1. Features of phototrophic bacteria. The table shows a summary of the characteristics of the various groups of phototrophic bacteria. Not all of the features in each row 

apply to all members of each group. Adapted after [3] (see Table 1 therein for references for anoxygenic phototrophs; references for Cyanobacteria are included in each cell here). 

Group 
Reaction 

centre(s) 

Photosynthetic 

pigments 

Absorption 

wavelengths 

Electron 

donors 
Photoautotrophic Environments inhabited 

Gammaproteobacteria Type II 
BChl a and b, 

carotenoids 

800/815-960 nm, 

1010-1040 nm 

𝐻2𝑆, 𝑆2𝑂3
2−, 

𝐻2 
Yes Alkaline and saline environments 

Alphaproteobacteria, 

Betaproteobacteria 
Type II 

BChl a and b, 

carotenoids 

800/815-960 nm, 

1010-1040 nm 

𝐻2𝑆, 𝑆2𝑂3
2−, 

𝐻2 
Yes 

Low-sulphide conditions, sewage and 

waste lagoons 

Chlorobi Type I 
BChl c, d and e, 

carotenoids 
710-755 nm 𝐻2𝑆, 𝑆2𝑂3

2− Yes 

Hyper saline water, marine lagoons, 

hypersaline sediments, freshwater 

lakes, marine sediments 

Chloroflexi Type II 
BChl a, c and d, 

carotenoids 
720-878 nm 𝐻2𝑆, 𝐻2 Yes 

Marine and freshwater mesophilic 

environments, microbial mats in hot 

springs 

Firmicutes (Heliobacteria) Type I BChl g, carotenoids 786-792 nm 𝑆𝑂4
2− No 

Agricultural and garden soils, only a 

few species in aquatic environments 

Acidobacteria Type I 

BChl c and aP, Chl 

aPD, Zn-Bchl a’P, 

carotenoids 

740-750 nm 
Organic 

compounds 
No 

Hot springs, metal-contaminated 

soils, marine sediments 

Gemmatimonadetes Type II BChl a 816 nm, 866 nm 𝐻2𝑆, 𝑆2𝑂3
2− No 

Soil, fresh water lakes in arid 

conditions 

Cyanobacteria 
PSI, PSII 

[2] 

Chl a (mainly), b, c, d, 

and f, carotenoids, 

phycobiliproteins [30,31] 

400-500 nm, 600-

700 nm [32] 

𝐻2𝑂, 𝐻2𝑆, 

𝑆2𝑂3
2−, 𝐻2 

[2,33] 

Yes [2] 

Oceans, fresh water, rocks, soil, hot 

springs, hydrothermal vents, ice and 

more [30] 
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1.2. Cyanobacteria as model organisms to study photosynthesis 

1.2.1. Cyanobacteria 

Cyanobacteria are a diverse group of photosynthetic prokaryotes that can perform oxygenic 

photosynthesis [30]. They are widespread in many different environments, and can be found 

essentially at all latitudes, including extreme Arctic and Antarctic regions [30,34]. They are also 

known as blue-green algae, because of the bright colours imparted to them by the various 

photosynthetic pigments they use to capture light energy [30] – even though they are not always 

blue-green and they are not algae [35]. 

These organisms can be found in many different forms: some Cyanobacteria are unicellular, some 

of them form large colonies that can be visible to the naked eye, others have filamentous forms with 

well-differentiated cells [30]; their cell diameters span two orders of magnitude, from less than 1µm 

to about 100 µm [30,36]. Each group’s peculiar morphology allows the bacteria to survive in the 

particular environments to which they have adapted, helping them deal with the specific physical and 

chemical stress they may face [30]. Modern cyanobacterial morphologies are also found in the fossil 

record, which suggests that they were already present millions or billions of years ago [37]. Figure 

9 shows some examples of cyanobacterial forms. 

 

Cyanobacteria can be found all over the world, in essentially every kind of environment [30], 

ranging from salt deserts [38] to glacier surfaces [39], from freshwater lakes [40] to the open ocean 

[16], from coastal areas [41] to underground caves [42], from hot springs [43] to bottled water [44]. 

In many of these environments – especially the most extreme ones – they act as the main primary 

producers, providing other micro- and macroorganisms with a food source [30]. Figure 10 shows 

locations around the world where Cyanobacteria have been sampled [34], and it can be safely 

assumed that the places where no Cyanobacteria have been found are just where no one has ever 

gone to look for them. 

Figure 9. Morphological variability in Cyanobacteria. (A) Gloeobacter 
violaceus, a basal, terrestrial, unicellullar cyanobacterium. (B) Synechococcus 
elongatus, a freshwater, oligotrophic, unicellular microcyanobacterium. (C) 
Trichormus variabilis, a freshwater, nitrogen-fixing, filamentous 
cyanobacterium. (D) Lyngbya majuscula, a marine, mat-forming, filamentous 
cyanobacterium. (E) Desmonostoc muscorum, a terrestrial, colonial, nitrogen-
fixing cyanobacterium. (F) Pseudanabaena galeata, a basal, freshwater, 
filamentous cyanobacterium. (G) Prochlorococcus marinus, a marine 
unicellular picocyanobacterium. (H) Dolichospermum circinale, a freshwater, 
nitrogen-fixing, bloom-forming, filamentous cyanobacterium. 
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The variety of forms and 

distribution of Cyanobacteria is 

reflected in their physiology: different 

groups are adapted to widely different 

temperature ranges (from 

psychrophiles [45,46], to mesophiles 

to extreme thermophiles [47]), salt 

concentrations [48], depths [49,50], 

and light intensities [51]. In addition to 

oxygenic photosynthesis, they can 

also perform other metabolisms, such 

as anoxygenic photosynthesis [33], 

fermentation [52], and nitrogen 

fixation [53]. 

Nitrogen fixation is particularly 

interesting, because it provides 

Cyanobacteria and other organisms 

with assimilable nitrogen compounds 

[53]. All living organisms need 

nitrogen to build amino acids, 

proteins, and nucleic acids [53], and 

this element, together with 

phosphorus and iron, is one of the 

main limiting factors for primary productivity [54]. However, the nitrogenase enzyme involved in 

nitrogen fixation is extremely sensitive to oxygen, as even small concentrations of oxygen can 

inactivate it irreversibly [55]. Therefore, it is apparently paradoxical that the only bacteria to produce 

molecular oxygen would also perform nitrogen fixation.  

Furthermore, Cyanobacteria assimilate 𝐶𝑂2 by using the Calvin cycle, which uses the ribulose-

bisphosphate carboxylase/oxygenase enzyme (RuBisCO) to add a 𝐶𝑂2 molecule to ribulose 1,5-

bisphosphate [30]. A problematic feature of this enzyme is its relatively low affinity for 𝐶𝑂2 and high 

affinity for oxygen [56] – in conditions with a high oxygen concentration, this causes a significant 

amount of energy to be wasted through a process called photorespiration [57]. 

The oxygen sensitivity of nitrogenase and RuBisCO did not cause particular issues in the oxygen-

poor atmosphere of the early Earth, but it became more relevant as 𝑂2 concentrations increased [4]. 

However, as a testament to their metabolic flexibility, Cyanobacteria have come up with ways to deal 

Figure 10. Occurrences of Cyanobacteria around the world over time. 
The top of the figure shows locations from which samples containing 
Cyanobacteria have been reported. Data for later years is drawn over data 
from earlier years, thus the colour associated with each dot represents the 
last time that the specific location was sampled. The bottom part of the 
figure shows a histogram of the number of occurrences reported for each 
year (in log scale). The 19th century is summarised in a single bar. The 
colours used for each year are the same as in the top of the figure. The 
506’841 georeferenced occurrence datapoints were retrieved from [34]. 
Map data from [422].  
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with this problem: they can overcome RuBisCO’s low affinity for 𝐶𝑂2  by employing carbon-

concentrating mechanisms and carboxysomes to locally increase 𝐶𝑂2 concentrations around the 

enzyme [30], and they use spatial and temporal differentiation to avoid the conflict between nitrogen 

fixation and photosynthesis, by performing nitrogen fixation at night or in highly specialised cells that 

do not photosynthesise (heterocysts) [53]. 

The metabolic capabilities of Cyanobacteria are so useful that they have formed many different 

symbiotic relationships with other organisms, from prokaryotic microbial communities [58], to ecto- 

and endosymbioses with diatoms [59], plants [60], fungi [61], and animals [62]. These are so 

common, that a specific term to designate a cyanobacterial symbiont – a cyanobiont – has been 

coined. 

In these relationships, the cyanobacterial component can provide anything ranging from physical 

support in microbial mats [58], to assimilable nitrogen compounds [59,60], to carbohydrates 

produced through photosynthesis [61,62]. Especially when endosymbioses are involved, 

Cyanobacteria can become extremely adapted to their symbiotic lifestyle, losing metabolic traits that 

are not “useful” in this context; this process is called genome streamlining [63]. For example, 

Candidatus Atelocyanobacterium thalassa lives in a close relationship with a single-celled alga, 

where the cyanobacterium provides fixed nitrogen to the alga and the alga provides fixed carbon in 

return [64]; as a result, the genome of this cyanobacterium has shrunk considerably, and it has lost 

the ability to photosynthesise [65,66]. 

Arguably, one of the most important symbiotic relationships in which Cyanobacteria are involved 

is the one that happened between one and two billion years ago, between an early eukaryote and a 

cyanobacterium: the symbiotic cyanobacterium eventually became the chloroplast, i.e., the 

photosynthetic organelle of plants and algae [29]. This event gave rise to a whole new group of 

organisms capable of oxygenic photosynthesis, and thus had a profound environmental effect. 

1.2.2. Cyanobacteria as model organisms 

In addition to being a versatile, diverse, and widespread group, Cyanobacteria are also good 

model organisms to study the evolution of oxygenic photosynthesis, due to a number of different 

features. 

First of all, for a long time (at least until the origin of the chloroplast) they have been the only 

organisms capable of oxygenic photosynthesis and, in some way, they still are. This means that, in 

fact, the history of Cyanobacteria is one with the history of oxygenic photosynthesis [67]. By 

analysing when and where the ancestors of this group first appeared and what kinds of environment 

they lived in, it is possible to gain insights into how oxygenic photosynthesis started to revolutionise 

the Earth [67]. 
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Cyanobacteria are abundant all over the world [30,34], which means that obtaining diverse 

samples of them is relatively easy; multiple culture collections store many cyanobacterial strains [68], 

making live samples of reference strains readily available. As the bottom part of Figure 10 shows, 

the number of locations sampled each year for Cyanobacteria has been increasing exponentially 

since at least the 1960s (the sharp decline since 2016 is probably due to data that has not been 

disclosed yet), which provides an ever-increasing amount of information about the distribution of 

Cyanobacteria. 

Furthermore, a large and rising number of cyanobacterial genomes have been sequenced [69] 

which makes it possible to perform phylogenomic and comparative analyses. Figure 11 shows how 

the number of sequenced genomes of Cyanobacteria has increased exponentially since 2003, even 

though since about 2013 the proportion of high-quality genomes included in the RefSeq database 

[70] has been decreasing, from the 80-90% of earlier years to the ~30% of 2021. At the same time, 

the number of new genomes obtained as a result of metagenome or single-cell assembly projects 

has been rising significantly – less than 10% of the genomes were assembled from metagenomes 

before 2016, but in 2021 this has risen to almost 40%. 

 

Figure 11. Number of sequenced Cyanobacteria genomes by release year. The dark blue curve shows the number of 
Cyanobacteria genomes that were available each year (on a log scale, left axis). The shaded areas below this curve 
represent the proportion of these genomes that were included in the RefSeq database [70] (orange), excluded because 
they were assembled from metagenomes (green), excluded because they were assembled from single cells (light blue), 
or excluded for other reasons (dark blue). The orange curve and the green curve represent the percentage of the available 
genomes that were included in RefSeq and the percentage of the genomes that were excluded from RefSeq because they 
were derived from metagenomes, respectively (on a linear scale, right axis). Data from [69]. 
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These patterns highlight that the amount of information about Cyanobacteria doubles roughly 

every two years, constantly opening new avenues for research. On the other hand, one must be 

careful when studying the new data in order not to include too many dubious or low-quality genomes 

in the analysis. 

Unlike other groups of bacteria, Cyanobacteria have a relatively extensive fossil record [37], both 

because many of them produce resistant mucus sheaths, and because their large size and distinct 

morphologies make it possible to assign cyanobacterial fossils to the corresponding clade with 

reasonable confidence [71]. This information provides crucial insight into the past of this group, and 

makes it possible to calibrate analyses using absolute time references [72]. 

The fact that chloroplasts share a common ancestor with Cyanobacteria also helps with this, 

because it makes it possible to include plants in cyanobacterial datasets [73]: since plant fossils are 

much more common than any kind of bacterial fossil, this provides an important source of calibration 

points that can be used in molecular clock analyses. Similarly, the numerous symbioses of 

Cyanobacteria with fossilisable organisms such as diatoms provides another source of time 

references that can be used in analyses with Cyanobacteria [72]. 

Finally, Cyanobacteria still play a large role in today’s environment: marine picocyanobacteria are 

responsible for about 50% of the ocean’s primary productivity [50,74], and cyanobacterial blooms 

can have devastating effects on aquatic environments [30]. This makes them an appealing group to 

study, because understanding how Cyanobacteria reacted to environmental changes in the past can 

also inform predictions of how they will react to anthropogenic climate change [75]. 

1.2.3. Four questions about the last common ancestor of 

Cyanobacteria 

As has been stated above, the last common ancestor of Cyanobacteria had a pivotal role in 

shaping the Earth’s environment, as one of the first oxygenic phototrophs and as the forefather of all 

the current cyanobacterial diversity [72]. 

Looking at modern Cyanobacteria, it can be hard to imagine what kind of features this ancestor 

would have, given the large number of cyanobacterial phenotypes and the very different 

environments where they can be found. However, reconstructing the relationships between the 

strains that currently live around the world and looking at their characteristics in the context of an 

evolutionary analysis can still provide useful information about long-gone cyanobacterial ancestors 

[76,77]. 

These are some of the questions that come up when thinking about the last common ancestor of 

Cyanobacteria: 

• When did it live? 
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• Where did it live? 

• What did it look like? 

• How did it become photosynthetic? 

I will provide more information about this in Section 2.2, and then try to answer some of these 

questions in Chapter 6. 
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1.3. Bayesian methods 

When trying to analyse events that occurred a long time ago, about which only limited information 

is available, being able to determine with absolute certainty exactly what happened is unlikely. The 

best that can be done, instead, is to follow a probabilistic approach, determining which courses of 

events are reasonable and which ones can be excluded, and with which probability. 

There are multiple ways to do this, but I will concentrate mainly on Bayesian approaches. The 

term “Bayesian” comes from Thomas Bayes, an English priest-mathematician from the 18th century 

credited for enunciating a theorem known as “Bayes’ theorem” (see below) [78]. 

The Bayesian process consists in continually updating the observer’s beliefs as data become 

available. As is shown in Figure 12, a naïve observer starts with some prior beliefs (or just prior for 

short), which represent their a priori assumptions and expectations: depending on the case, this can 

be an uninformative prior, which places equal weight on all possible experimental outcomes, or an 

informative prior, which asserts that some outcomes are definitely more likely than others. 

When an experiment is performed, data are collected, which are interpreted according to a certain 

model and are used to update the prior beliefs, obtaining the posterior beliefs – i.e., the a posteriori 

interpretation of the results of the experiment, in the context of the prior. However, this is not the end 

of the process: more experiments can always be performed, and the resulting data can be used to 

update again the observer’s beliefs; this way, the posterior obtained after an experiment becomes 

the prior for the new experiment. 

 

Figure 12. Bayesian process. A prior probability distribution is updated based on experimental data and an appropriate 

model. This produces a posterior probability, which then functions as a prior for the next experiment, and so on. 

Consciously or not, everyone uses Bayesian inference during their everyday life, because this 

way of updating prior knowledge based on the available data is intrinsic to how the human mind 

works [79]. Therefore, it makes sense to also use a Bayesian approach when looking at experimental 

data, whenever possible. Historically, this has not always been the case, because Bayesian analyses 

are very intensive from a computational point of view; however, new techniques that have been 

developed in the last few decades have made this kind of approach feasible [78]. 
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1.3.1. Definitions 

Before starting to analyse Bayesian inference in more detail, I will give some definitions in order 

to clarify the meaning of the terms and the notation that will be used throughout this work. However, 

I will not aim to provide a rigorous description of axiomatic probability theory (which would be out of 

the scope of this work), instead assuming that the intuitive concept of “probability” will be sufficient 

to follow the topics presented here. 

With the notation ℙ(𝐴), I will indicate the probability of an event 𝐴. 

For example, in a coin toss, the probability of obtaining head would be written as ℙ(ℎ𝑒𝑎𝑑). 

Given two events 𝐴 and 𝐵, the probability that either one or both of them happen is ℙ(𝐴 ∪ 𝐵) or 

ℙ(𝐴 ∨ 𝐵).  

The union notation (∪) will be used mainly when the events being discussed can be naturally 

thought of as sets, while the ∨  notation will be used when discussing events as propositions; 

however, they are perfectly equivalent. 

Given two events 𝐴 and 𝐵, the probability that both of them happen is written as ℙ(𝐴 ∩ 𝐵), 

ℙ(𝐴, 𝐵) or ℙ(𝐴 ∧ 𝐵). 

Similarly, ∩ will be used when talking about sets, while ∧ and , will be used for propositions. 

Given two events 𝐴 and 𝐵, the probability that 𝐴 happens when it is known that 𝐵 has happened 

is ℙ(𝐴|𝐵). 

For example, consider throwing a die: ℙ(2|𝑒𝑣𝑒𝑛) would be the probability of obtaining a 2 when 

you know that the die rolled an even number. 

The usual properties of probability apply to and relate these quantities: 

ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵) − ℙ(𝐴 ∩ 𝐵)  

ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴) ⋅ ℙ(𝐵|𝐴) = ℙ(𝐵) ⋅ ℙ(𝐴|𝐵)  

ℙ(𝑛𝑜𝑡 𝐴) = 1 − ℙ(𝐴)  

Two events 𝐴 and 𝐵 are disjoint if ℙ(𝐴 ∩ 𝐵) = 0. This implies that ℙ(𝐴 ∪ 𝐵) = ℙ(𝐴) + ℙ(𝐵) 

Two events 𝐴 and 𝐵 are independent if ℙ(𝐴|𝐵) = ℙ(𝐴), which also means that ℙ(𝐵|𝐴) = ℙ(𝐵). 

This implies that ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴) ⋅ ℙ(𝐵). 

Two events 𝐴 and 𝐵 are conditionally independent on a third event 𝐶 if ℙ(𝐴 ∩ 𝐵|𝐶) = ℙ(𝐴|𝐶) ⋅

ℙ(𝐵|𝐶) or, equivalently, ℙ(𝐴|𝐵 ∩ 𝐶) = ℙ(𝐴|𝐶) and ℙ(𝐵|𝐴 ∩ 𝐶) = ℙ(𝐵|𝐶). 

In a Bayesian context, the following definitions are also useful: 
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𝕃(𝐴|𝐵) is the likelihood of 𝐴 given 𝐵; 𝕃(𝐴|𝐵) = ℙ(𝐵|𝐴). 

Most often, this will be the likelihood of a certain model 𝑀 given the data 𝑋: 𝕃(𝑀|𝑋) = ℙ(𝑋|𝑀) – 

i.e., the likelihood of a model is the probability of the data under the model. To simplify the notation, 

the “data” part (e.g., “|𝑋”) will be omitted when it is clear from the context what data is being 

considered; for example, 𝕃(𝑀) is equivalent to 𝕃(𝑀|𝑋). 

𝕡(𝐴) is the prior probability (in short, the prior) of 𝐴; 𝕡(𝐴) = ℙ(𝐴). 

𝕄(𝐴) is the marginal likelihood of 𝐴; 𝕄(𝐴) = ℙ(𝐴). 

These definitions are mainly useful to qualitatively distinguish between priors and marginal 

likelihood. ℙ, 𝕡 or 𝕄 will be used depending on the context; for example, consider a model 𝑀 and 

data 𝑋: in most cases, it will be useful to assume ℙ(𝑀) = 𝕡(𝑀) and ℙ(𝑋) = 𝕄(𝑋). 

1.3.2. Bayes’ theorem 

Using the above notation, it is now possible to enunciate Bayes’ theorem. This is a direct 

consequence of one of the properties of probabilities described above [78]: 

ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴) ⋅ ℙ(𝐵|𝐴) = ℙ(𝐵) ⋅ ℙ(𝐴|𝐵) ⇒ 

⇒ ℙ(𝐵|𝐴) =
ℙ(𝐵) ⋅ ℙ(𝐴|𝐵)

ℙ(𝐴)
 

If we assume that 𝐴 is the observed data 𝑋 and 𝐵 is a model 𝑀, we can use the likelihood notation 

introduced above: 

ℙ(𝑀|𝑋) =
𝕡(𝑀) ⋅ 𝕃(𝑀|𝑋)

𝕄(𝑋)
  

This essentially states that the posterior probability of the model given the data ℙ(𝑀|𝑋) can be 

computed from the model’s prior probability 𝕡(𝑀), its likelihood (given the data) 𝕃(𝑀|𝑋) and the 

marginal likelihood of the data 𝕄(𝑋). 

This formula is powerful, because it makes it possible to determine how probable a certain 

explanation of reality is, given the predictions that it makes about what has been actually observed. 

In these terms, regardless of its complexity, the “model” is just a “likelihood function” that computes 

the probability of a certain observation given its internal rules. 

I will now show an example that highlights how Bayes’ theorem is useful in interpreting 

experimental data. This will also provide an introduction to the properties of likelihood functions and 

the kind of manipulations of probabilities that will be used extensively in Chapter 5. 
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A rare disease 

First, consider a very subtle hypothetical disease, which has no symptoms for a long time, before 

suddenly causing catastrophic organ failure. A person can either be Affected by the disease (𝐴), or 

they can be Healthy (𝐻). Furthermore, this is a very rare disease, which affects about one person in 

a million in the general population. 

A test has been developed for the disease, which has a false positive rate of 0.1% and a false 

negative rate of 0.5%. This means that the probability of the test being positive (+) when a person is 

Healthy is ℙ(+|H) = 0.1% and the probability of the test returning a negative result (−) when a 

person is Affected by the disease is ℙ(−|𝐴) = 0.5%. 

Suppose that an otherwise healthy person takes the test, because they wish to know if they should 

worry about having the disease in the “silent” phase. The person did not have any reason to believe 

that they had the disease in the first place, but the test turned out positive. How much should they 

worry? 

The problem can be analysed quantitatively using probability theory. Here, we are considering 

two alternative “models” to explain the observed data (i.e., the result of the test): model 𝐴 posits that 

the person is affected by the disease; model 𝐻  states that the person is actually healthy. The 

likelihood functions of these models are given by the properties of the test: 

model 𝐴:     
𝕃(𝐴|+) = ℙ(+|𝐴) = 1 − ℙ(−|𝐴) = 99.5%
𝕃(𝐴|−) = ℙ(−|𝐴) = 0.5%

 

model 𝐵:     
𝕃(𝐻|+) = ℙ(+|𝐻) = 0.1%
𝕃(𝐻|−) = ℙ(−|𝐻) = 1 − ℙ(+|𝐻) = 99.9%

 

Restricting the analysis to the current situation that the test returned a positive result, the two 

models have likelihood 𝕃(𝐴) = 99.5% and 𝕃(𝐻) = 0.1% (note that the sum of likelihoods does not 

need to be equal to 1). Based on these likelihoods, a frequentist approach would suggest that, since 

the 𝐴 model has a much higher likelihood than the 𝐻 model, the person is most likely affected by the 

disease. 

However, this does not take into account the context of the population: since the disease is rare, 

it was a priori unlikely that the person was affected by it. Indeed, determining whether the person is 

affected or not by the disease means choosing between two combinations of a rare and a common 

event: either the person was actually affected (rare) and the test returned a true positive (common), 

or the person was not affected (common) and the test returned a false positive (rare). 

To determine the a posteriori probability ℙ(𝐴|+) that the person is affected by the disease, given 

the test result and the distribution of the disease in the population, Bayes’ theorem can be applied: 
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ℙ(𝐴|+) =
𝕡(𝐴) ⋅ 𝕃(𝐴)

𝕄(+)
 

Here, 𝕡(𝐴) is the prior probability of a person having the disease, 𝕃(𝐴) is the likelihood that the 

person has the disease as defined above, and 𝕄(+) is the marginal likelihood of the test result being 

positive. The value of 𝕡(𝐴) is simply the prevalence of the disease in the population, i.e. 10−6; 𝕄(+), 

instead, can be determined by using the law of total probability: 

𝕄(+) = ℙ(+) = ℙ(+ ∩ (𝐴 ∪ 𝐻)) = ℙ((+ ∩ 𝐴) ∪ (+ ∩ 𝐻)) = ℙ(+ ∩ 𝐴) + ℙ(+ ∩ 𝐻) 

This is the probability that a person has the disease and the test returns a positive result, plus the 

probability that a person does not have the disease and the test returns a positive result. These can 

be computed as: 

ℙ(+ ∩ 𝐴) = ℙ(+|𝐴) ⋅ ℙ(𝐴) = 99.5% ⋅ 10−6 = 9.95 ⋅ 10−7 

ℙ(+ ∩ 𝐻) = ℙ(+|𝐻) ⋅ ℙ(𝐻) = 0.1% ⋅ (1 − 10−6) = 10−3 − 10−9 

Therefore: 

𝕄(+) = ℙ(+ ∩ 𝐴) + ℙ(+ ∩ 𝐻) = 9.95 ⋅ 10−7 + 10−3 − 10−9 = 10−3 + 9.94 ⋅ 10−7 

Now, we can plug the numbers in Bayes’ formula: 

ℙ(𝐴|+) =
𝕡(𝐴) ⋅ 𝕃(𝐴)

𝕄(+)
=

10−6 ⋅ 99.5%

10−3 + 9.94 ⋅ 10−7
≈ 0.0994% 

This means that, despite the positive test, the probability that the person has the disease is still 

lower than 0.1%. This is because the person having the disease was a very unlikely event a priori; 

therefore, while the positive test did increase the probability of that event almost a thousand-fold, 

from the prior 0.0001% to the posterior 0.0994%, the prior was strong enough that this was not 

sufficient to cause significant concern. 

This example highlights the difference between a maximum-likelihood approach, which would 

select the model with the highest likelihood ignoring the previous knowledge, and a Bayesian 

approach that integrates prior beliefs with observations. In this case, the two approaches yield 

radically different conclusions, because the prior strongly favours one model over the other. In 

practice, in most cases of phylogenetic Bayesian inference, such strong priors are not used; 

however, it is important to be aware of the differences between the two methods. 
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1.4. Aim and structure of the thesis 

1.4.1. Research questions 

As I have stated in the previous sections, the final objectives of my work are to provide new 

information about the origin of photosynthesis in general, and of oxygenic photosynthesis and 

Cyanobacteria in particular. 

Evolution of photosynthesis – Insights from the (bacterio-)chlorophyll 

biosynthetic pathway 

Most of the time, when thinking about the origin of photosynthesis, the analyses are somewhat 

biased due to preconceived notions about the evolutionary processes at hand [6]. For example, it is 

quite natural to assume that anoxygenic photosynthesis is the ancestral kind of photosynthesis, and 

that oxygenic photosynthesis appeared more recently when an anoxygenic phototroph became able 

to oxidise water [80]. However, while assumptions like this are sensible, it is as hard to find evidence 

to justify them as it is to reject them [6]. 

Therefore, in my work I have tried to approach the problem with a fresh outlook, trying to avoid 

as many assumptions as possible. For example, I have started studying the history of genes involved 

in photosynthesis without considering evolutionary evidence based on their biochemical function. 

Then, only after completing these analyses, I have set out to compare the phylogenetic evidence 

with the biochemical evidence and reconcile them. In this way, I hope to have avoided 

“contaminating” the phylogenetic analyses with information coming from other sources, so that if my 

results agree with a particular interpretation, this is because of evidence coming from the data and 

not from some implicit assumption. 

The main question I try to answer in this part of my project is: 

• Could the last bacterial common ancestor (LBCA) perform photosynthesis? 

This is an important starting point, because it opens the stage for different follow-up analyses 

depending on the answer: for example, if photosynthesis was present in the LBCA, it does not make 

sense to determine what was the first modern group of bacteria to become photosynthetic; on the 

other hand, if photosynthesis emerged later on, it is pointless to trace back to the LBCA the evolution 

of genes involved in the process. 

To answer this question, I have looked at the evolution of genes involved in the biosynthesis of 

(bacterio-)chlorophyll and at the core proteins of the photosynthetic reaction centres. I have 

performed an extensive survey of bacterial genomes to determine which organisms possess these 

genes, and I have used stochastic mapping analyses [81,82] to determine whether they were present 

in the LBCA or not. 
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The evolution of salt tolerance in Cyanobacteria 

In addition to looking at the evolution of photosynthesis in general, I have also studied the 

evolution of salt tolerance in Cyanobacteria. As I have discussed in Section 1.2, Cyanobacteria are 

a very important group of phototrophs, and understanding the environment where they appeared for 

the first time is important to add context to the evolution of oxygenic photosynthesis. 

As it is difficult to study the environment in which extinct organisms lived, I have concentrated on 

a single phenotype: salt tolerance. Salt tolerance is important, because it allows bacteria to live in 

seas and oceans [48]; since most water bodies on Earth have a higher concentration of salt than 

living cells [83], being tolerant to such conditions allows an organism to spread in a very vast 

environment. 

In particular, I have focused on the evolution of genes involved in the biosynthetic pathways for 

the production of compatible solutes, which are small molecules that allow cells to survive in 

conditions with a high salt concentration [48,83,84]. The main question for this part of the project 

was: 

• What kind of compatible solutes were produced by the last common ancestor of 

Cyanobacteria? 

To answer this question, I have determined the distribution of various salt tolerance genes [48,84] 

in modern Cyanobacteria; I then used this information to perform stochastic mapping analyses to 

look at their evolution. I have also computed a molecular clock of Cyanobacteria, which makes it 

possible to place the origin of these genes in an absolute time frame. Furthermore, this provides 

additional information about the timing of the evolution of this group. 

1.4.2. Method development 

While trying to answer these questions, I soon realised that some of the available tools were not 

adequate for the kind of analyses I had in mind. Therefore, I set out to develop new methods and 

programs that would make it possible to perform these studies effectively and efficiently. 

sMap – Evolution of independent, dependent and conditioned discrete characters 

in a Bayesian framework 

sMap is a new program to perform stochastic mapping analyses. Stochastic mapping is a 

technique that makes it possible to reconstruct ancestral phenotypes for any kind of morphological 

character [81]. The novelty of sMap is that it makes it possible to analyse multiple characters at the 

same time, under various different models. In particular, while studying the evolution of salt 

tolerance, this has made it possible for me to analyse the salt tolerance character as the result of 

the presence or absence of genes involved in compatible solute biosynthesis. 
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While developing this program, I have tried on the one hand to develop a powerful framework that 

can be used on multiple kinds of devices, ranging from laptops to headless servers, but on the other 

hand to create a program that would be easy to use and would provide users with useful suggestions 

and default parameters. Therefore, sMap has a dual nature: the main sMap program is a command-

line executable that performs the actual analysis, while an additional utility included with the software, 

sMap-GUI, allows users to prepare their analyses using a familiar graphical interface, which also 

checks the data for internal consistency and provides step-by-step instructions. 

To show the potential of the program, I have performed two example analyses in sMap: in the 

first one, I have re-analysed a dataset about the evolution of canids [85], while in the second analysis 

I used simulated data to study the evolution of a hypothetical biochemical pathway. These examples 

show how sMap can be used to perform new kinds of statistically robust analyses. 

The paper describing sMap has been published in Methods in Ecology and Evolution [82]; further 

information about the program is included in Chapter 5. 

TreeViewer – Flexible, modular software to visualise and manipulate 

phylogenetic trees 

TreeViewer is a program to draw phylogenetic trees. It is based on a modular structure, in which 

various small and interchangeable units cooperate to create the final plot. The aim of TreeViewer is 

to provide, at the same time, the powerful capabilities of script-based plotting and the ease of use of 

a graphical program. 

The advantage of TreeViewer over tree plotting packages such as ggtree [86] is that one does 

not have to learn a programming language to use it – while the advantage over other graphical tree 

plotting programs such as FigTree [87] is that one can use the advanced scripting capabilities of the 

program to customise the plot. 

In addition to the main graphical interface, TreeViewer also provides a command-line interface, 

which can be used to automate plotting a large number of trees and can be incorporated in analysis 

pipelines. For example, as part of the analysis on photosynthesis, I have run thousands of stochastic 

mapping analyses using sMap, and then plotted and summarised the results using TreeViewer. 

TreeViewer is described in Chapter 4. 

Other libraries and programs 

While developing these programs, I have also developed additional libraries to perform specific 

tasks, which I have released as independent open-source packages that can be re-used in other 

applications. These include the TreeNode, VectSharp, and MuPDFCore. 
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TreeNode is a library to parse and manipulate phylogenetic trees. It supports multiple 

phylogenetic tree file formats, including the widespread Newick [88] and NEXUS [89], NCBI ASN.1 

[90] and two new formats: the Newick-with-attributes format (NWKA) and the Binary tree format. The 

NWKA format is an attempt to generalise the Newick format to make it possible to associate arbitrary 

attributes to the nodes of the tree, while the Binary tree format makes it possible to create robust 

tree files with a small footprint.  

TreeNode consists of an R package and a C# library; the R package can be used to read 

phylogenetic tree files in the supported formats, producing tree objects that are compatible with the 

widespread ape package [91]. The C# library provides instead a full framework for reading the tree 

files and for manipulating the trees, such as re-rooting them, computing a consensus tree, changing 

the branch lengths, and more. 

VectSharp is a C# library to create vector graphics. The library provides an abstract interface that 

can be used to describe the draw operations (e.g., filling a rectangle or stroking a line), and multiple 

“output layers” that can be used to save the image in a vector or raster format (such as PDF, SVG 

or PNG), or to display it on the screen. This structure makes it easy to provide users with a preview 

of the content they have been creating, because the same code is used in presenting the image to 

the user and saving it on disk. 

MuPDFCore is a C# library that provides bindings to the MuPDF C library [92]. MuPDF is an 

open-source library to parse and render documents in PDF, XPF, and more formats, developed by 

Artifex Software, Inc. [92]. MuPDFCore makes it possible to use this library in C# code, thereby 

allowing cross-platform C# programs to render and analyse these documents. The MuPDFCore 

repository includes a rudimentary multi-threaded PDF viewer as an example, and the library is used 

by VectSharp to produce its raster image output. 

In addition to sMap and TreeViewer, I have also created other software; in particular, 

AlignmentViewer is a browser-based program to display and analyse sequence alignments. The 

program can be used to build concatenated alignments and to filter out some positions in the 

alignment, either manually or based on some characteristic of the sequence (e.g., number of gaps 

or percent identity). I have used this program extensively to quality-check my alignments and to 

prepare them for subsequent analyses. 

These libraries and software will be presented in Chapter 3. 

1.4.3. Chapter overview 

I will now present a brief overview of the structure of this work. This document is divided in 8 main 

chapters: 

1. Introduction 
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2. Background 

3. Method and software development 

4. TreeViewer – flexible, modular software to visualise and manipulate phylogenetic trees 

5. sMap – Evolution of independent, dependent and conditioned discrete characters in a 

Bayesian framework 

6. The evolution of salt tolerance in Cyanobacteria 

7. Evolution of photosynthesis – Insights from the (bacterio-)chlorophyll biosynthetic pathway 

8. Conclusion 

The first chapter – i.e., the one you are reading now – provides a general introduction to the topics 

of my work and introduces the main research questions that I try to answer later on. The second 

chapter, Background, goes more into detail about what is currently known about these topics and 

the status of research in the field. 

The third chapter, Method development, describes the libraries I have developed that are used in 

my other programs, as well as other software that I created to work on my analyses. The fourth 

chapter presents the TreeViewer program. Chapter five describes sMap and is based on the paper 

presenting the program that has been published in Methods in Ecology and Evolution [82]. 

 In chapter six, I apply the methods that I have developed (in particular, the sMap program) to 

study the evolution of salt tolerance in Cyanobacteria, while in chapter seven I apply them to the 

study of the evolution of photosynthesis. Finally, in chapter eight I provide a summary of my findings, 

some discussion, and prospects for future analyses. 

Three appendices follow the main body of the document: Appendix A contains information on 

additional contributions I have made to other research that has not been included in this thesis; 

Appendix B contains a comparison of three programs for stochastic mapping or ancestral state 

reconstruction, which I analysed in response to a comment from one of the reviewers for the sMap 

paper; Appendix C contains supplementary figures and tables for Chapter 6. 
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2. Background 

 

“Beyond our distantmost candle of fact lies a seductive darkness. Scientists are drawn to this 

blackness because we know it hides more candles, as yet unlit. We strike matches of hypothesis in 

the hope that a new wick will catch fire. Hypotheses seek to explain what we know, but more 

important, they make predictions about what we don’t know – about experiments not yet run, or 

fossils not yet discovered. For this reason, hypotheses provide built-in criteria for evaluation: do they 

help us to light the next candle or not? 

Most hypotheses turn out to be wrong – some gloriously and others ignominiously so. This isn’t 

because scientists are dim or the exercise futile. It simply reflects the difficulty of fashioning a lasting 

explanation of nature. In fact, most hypotheses include useful ideas that survive to become part of 

the next model or scenario. Good hypotheses also spur new research and so provide value even 

when the research shows them to be flawed. Most of us develop hypotheses destined for modest 

success or failure, but on rare occasions an idea comes along that changes how we think about 

nature.” 

– Andrew H. Knoll, Life on a Young Planet [93] 
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2.1. History of oxygen on Earth 

Oxygen is a fundamental element for life on Earth as we know it: most macroscopic life forms 

require it to produce energy, and the evolution of aerobic metabolisms is likely to have been the 

trigger for the origin of eukaryotic cells [94]. Nowadays, oxygen (after nitrogen) is the second most-

abundant component of the atmosphere, with a partial pressure of about 21% [4]; however, this has 

not always been the case: at the beginning of Earth’s history, oxygen was practically absent from 

the oceans and the atmosphere, at concentrations of less than 0.001% of the present levels [4]. It 

was only after a very long process involving various “oxygenation events” that the oxygen 

concentration reached the current levels [4]. 

Since oxygenic photosynthesis is the only relevant source of oxygen [4], understanding when and 

where these oxygenation events have happened provides indirect evidence about the evolution of 

photosynthesis [95]: if a significant increase in oxygen is detected at a certain point in time, this 

means that oxygenic phototrophs existed and were abundant enough to produce that oxygen [95]. 

Therefore, being able to reference a history of oxygen on Earth is of fundamental importance when 

studying the origin of this metabolism. 

This highlights the interplay between biological and geological factors throughout the history of 

our planet: a delicate balance between many different reactions (carbon fixation and release of 

oxygen through photosynthesis, burial of reduced organic compounds in sediments, biogeochemical 

cycles of the various elements that are fundamental for life, etc.) is responsible for the current 

composition of the atmosphere, the hydrosphere and the lithosphere. 

2.1.1. Geochemical proxies for oxygen concentration 

The past composition of the atmosphere can be determined “directly” by analysing gas bubbles 

embedded within ice cores [96]. However, even the oldest ice cores ever retrieved only go back to 

a couple of million years ago [97,98], which means that this method cannot be used to reconstruct 

the atmosphere of the early Earth at 4 billion years ago and earlier [99,100]. Instead, the 

concentration of oxygen in ancient environments can be detected indirectly, by relying on the effects 

of its presence on various “geochemical proxies” that have been preserved since then [101]. 

There are many kinds of geochemical proxies for oxygen concentrations; in general, they rely on 

the fact that high amounts of oxygen move the equilibria of redox reactions towards the more 

oxidised species, while low available oxygen has the opposite effect [101]. The various proxies differ 

based on what they record (atmospheric or oceanic oxygen) and on the scale at which they record 

it (local or global) [101]. Together, multiple proxies can be used to reconstruct a more comprehensive 

picture of the history of oxygen [101]. 
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  For example, oxygen concentration in a water basin can be estimated at a local scale by studying 

the proportion of highly reactive iron species in sediments [102], the ratio between iodine and calcium 

in carbonates [103], cerium anomalies [104], the ratio of 𝐹𝑒3+ to the total iron concentration [105] 

and marine red beds [106]. At the global scale, instead, isotope ratios of uranium [107,108], 

molybdenum [108,109], selenium [110] and sulphur [111,112] can be used, together with redox-

sensitive element concentrations [113–115]. Proxies for atmospheric oxygen are rarer [101], and 

include chromium isotope fractionation [116,117] and, for more recent times, charcoal produced by 

wildfires [118–120]. 

Table 2 (adapted from [101]) provides a summary of these proxies for oxygen concentration; a 

more detailed description of them is beyond the scope of this work, but Tostevin & Mills [101] provide 

a clear summary of their characteristics, though they focus mainly on the Neoproterozoic and 

Palaeozoic. 
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Table 2. Geochemical proxies for oxygen concentration. The table contains a summary of the geochemical proxies that can be used to estimate oxygen concentrations during 
the history of the earth. Proxies are classified based on the scope of the information they provide. RSE: redox-sensitive elements; PAL: present atmospheric level; euxinia: anoxia 
with high concentration of 𝐻2𝑆. Adapted after [101]. 

Scope Proxy Responds to Redox sensitivity Geological source 

Local/regional 

marine 

𝐹𝑒 speciation 
Integrated regional water column redox 

conditions above accumulating sediments 
Ferruginous anoxia and euxinia Shales, carbonate 

𝐼/𝐶𝑎 ratios Upper ocean oxygen gradients 
Hypoxic (<70 µM 𝑂2) to suboxic 

(between manganous and nitrogenous) 
Carbonates 

𝐶𝑒 anomalies 
Local-regional water column redox at site of 

carbonate precipitation 
Suboxic (manganous) 

Carbonates, phosphorites, 

iron formation 

∑𝐹𝑒3+

𝐹𝑒
⁄   Regional deep water oxygen concentrations Progressive with increasing [𝑂2 (𝑎𝑞)] Basalts 

Marine red 

beds 

Regional deep ocean oxygen concentrations 

following periods of anoxia 
Ferruginous anoxia Marine red beds 

Global marine 

𝛿238𝑈  Area of global seafloor bathed in anoxic waters Anoxia Carbonates, shales 

𝛿98𝑀𝑜  Area of global seafloor bathed in anoxic waters Euxinia Shales 

RSE 

enrichments 
Area of global seafloor bathed in anoxic waters 

Euxinia (𝑀𝑜); ferruginous anoxia (𝐶𝑟, 𝑅𝑒, 

𝑈, 𝑉) 
Euxinic shales 

𝛿82𝑆𝑒  
Local redox conditions and size of global-

regional oxidized 𝑆𝑒𝑂𝑥
2− reservoir 

Ferruginous anoxia Shales 

𝛿34𝑆  
Size of global marine sulphate reservoir and 

global proportional pyrite burial flux 
Euxinia, atmospheric O2 Carbonates, evaporites 

Atmospheric 
𝛿53𝐶𝑟  Atmospheric oxygen >0.1–1% PAL Shales, ironstones 

Wildfire record Atmospheric oxygen >70% PAL Charcoal 
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2.1.2. Oxygen concentrations through time 

By combining the information originating from these proxies and more, it is possible to get a 

picture of how oxygen availability has changed throughout the Earth’s history, though a certain 

degree of uncertainty is inevitable [4]; Figure 13 contains a summary of these results. A thorough 

report on the history of oxygen concentrations can be found in Lyons et al [4]; here I will try to 

summarise the main points. 

 

Figure 13. Proxies and history of oxygen on Earth. (A) Sulphur isotope data through the history of the Earth. Blue dots 
represent data generated by secondary ion mass spectrometry (SIMS), while orange dots represent bulk rock data. The 
green shaded areas represent percentile ranges: from the darkest to the lightest, 40-60%, 25%-75% 10%-90%. These 

were computed by applying a gaussian weight function with σ = 50 My to each data point.  Δ33𝑆 = 𝛿33𝑆 − 0.515𝛿34𝑆. Data 

from [112]. (B) Carbon isotope data. The Lomagundi excursion and the large Neoproterozoic 𝛿13𝐶 negative excursions 

are highlighted. 𝛿13𝐶 is a proxy for primary productivity and carbon burial [121]. Adapted from [4]. (C) Atmospheric oxygen 
levels inferred from these proxies and more. The late Archaean oxygen whiffs are highlighted. GOE: Great oxygenation 
event. NOE: Neoproterozoic oxygenation event. Adapted from [4]. 

At first, oxygen concentrations were extremely low, probably less than 0.001% of the present 

atmospheric level (PAL) [4]. The first signs of oxygen appear around 2.5 billion years ago (Gya), with 

molybdenum- and rhenium-enriched sediments from Australia providing evidence for small amounts 

of oxygen in the environment (the oxygen “whiffs”) [122], though the exact duration and extent of 

these events is not entirely clear [4]. 

Between roughly 2.5 and 2.3 Gya, the disappearance of the sulphur isotope fractionations from 

the geological record indicates that oxygen concentrations increased by a relatively large amount, 
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arriving at 1-10% PAL [4]. This is known as the “Great Oxygenation Event” or “Great Oxidation Event” 

(GOE), and is commonly regarded as a signal that oxygenic photosynthesis was ongoing on Earth 

[4]. However, since there are multiple ways in which oxygen can be depleted or buffered by different 

sinks, it is likely that the first oxygenic phototrophs appeared significantly earlier than this [4]; 

therefore, the GOE would rather mark the point at which the ongoing oxygen production overcame 

the sinks [4]. 

Around 2.3 Gya, a large increase in the 𝛿13𝐶 carbon isotope ratio has been recorded in the 

Lomagundi excursion [123], which is indicative of very high oxygen concentrations, possibly even 

higher than today’s [4]. However, this was short lived and by 2.1 Gya the concentration was back 

down to 1-10% PAL. Indeed, chromium and manganese data suggest that oxygen concentrations in 

the mid-Proterozoic were even less than 0.1% PAL, at least transiently [4]. The causes of this event 

are not clear, though it has been hypothesised that it may have been due to geological events [4]. 

After this, oxygen concentrations remained relatively low and stable for a long time, giving rise to 

what has been defined as the “boring billion” [124], until another large increase in atmospheric 

oxygen happened near the end of the Proterozoic – the Neoproterozoic Oxygenation Event (NOE) 

[125]. This event, which happened approximately between 0.8 and 0.6 Gya, has left evidence in a 

number of proxies and is associated with the origin of animals [4,125], though the causality of this 

relationship is not exactly clear [4,126]. After the NOE, oxygen concentrations have been fluctuating 

around the present levels, in a cycle involving the colonisation of land by plants and widespread 

wildfires [120]. 

2.1.3. Oxygen concentrations and photosynthesis 

Having briefly reviewed the history of oxygen on Earth, our goal is now to create the connection 

between oxygen concentrations and the evolution of photosynthesis. 

The main key conclusion that can be drawn is a lower bound on the age of the last common 

ancestor of Cyanobacteria. The reasoning goes as follows: 

1. Oxygenic photosynthesis is the only relevant source of oxygen [4]; therefore, ancestral 

oxygenic phototrophs must have caused the GOE. 

2. To be able to cause such a dramatic increase in oxygen concentrations, these organisms 

would have had to be relatively widespread and abundant; this means that it is unlikely that 

they would have gone extinct without leaving descendants.  

3. Since Cyanobacteria are the only (modern) organisms capable of oxygenic photosynthesis 

[2], it is reasonable to assume that the oxygenic phototrophs responsible for the GOE descend 

from the same lineage as current Cyanobacteria. 
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4. In particular, since it is reasonable to assume that 

multiple related lineages are involved (rather than a 

single strain), they must have been crown-group 

(Figure 14) Cyanobacteria, otherwise this would 

contradict statement 2. 

All of this leads to the conclusion that the last common 

ancestor of modern Cyanobacteria must have lived before 

the GOE, i.e., before 2.3-2.5 Gya [73]. It is important to note 

that this organism was not necessarily the first oxygenic 

phototroph, as this is the last (i.e., most recent) common 

ancestor of Cyanobacteria; we are not excluding the 

possibility that oxygenic photosynthesis appeared much 

earlier than this ancestor. Indeed, defining an upper bound 

for the LCA of Cyanobacteria (or for oxygenic photosynthesis in general) is much harder [72], with 

options ranging from the moon forming impact at 4.5 Gya [127], to the late heavy bombardment at 

3.5-4.2 Gya [128], up to 2.7 Gya [73]. 

Other authors even prefer not to make any assumption about the age of the LCA of 

Cyanobacteria, instead relying on other calibrations [129,130]. Inevitably, the huge variability of 

these prior choices is reflected in the wildly different age estimates obtained for this ancestor [72] 

(see Section 2.2.7). 

In any case, this history of oxygen concentrations provides a reference frame against which any 

analysis that aims to time the origin of oxygenic photosynthesis must be held. 

  

Figure 14. Crown group and stem group. 
Extant lineages are highlighted by blue stars, 
extinct lineages by orange circles. The crown 
group contains the last common ancestor of all 
living species and all of its descendants 
(including the ones that are extinct). The stem 
group is a paraphyletic group containing all the 

remaining lineages. 
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2.2. The evolution of Cyanobacteria 

Cyanobacteria are a diverse group of organisms that can perform oxygenic photosynthesis and 

can present a variety of forms (see Section 1.2). As they have been the subject of scientific studies 

for a long time [131,132], their classification was initially based on their morphology [133], since more 

sophisticated techniques based on DNA sequences were not available. Unfortunately, this has led 

to a number of inconsistencies between the taxonomy and phylogeny of this group [133]; for 

example, the original criteria to assign a strain to the genus Synechococcus assigned all small 

unicellular Cyanobacteria to this genus [133] and, accordingly, there are many unrelated 

Synechococcus strains that appear all over the evolutionary tree of Cyanobacteria. 

In this section, I will discuss the relationships between the main cyanobacterial groups, focusing 

on the implications of their phylogenetic position, rather than on traditional taxonomy; this is possible 

thanks to the many phylogenomic studies that have been performed on Cyanobacteria [73,77,134–

137]. Figure 15 shows a simplified tree highlighting some of the most relevant taxa in the phylum 

[72]. 

 

Figure 15. Simplified cladogram of Cyanobacteria. The tree highlights the main groups of Cyanobacteria, distinguishing 
between unicellular and filamentous strains. (1) Divergence between Gloeobacter spp. and associated strains, and the 
rest of Cyanobacteria. (2) Divergence between Micro- and Macrocyanobacteria. (3) Origin of Picocyanobacteria. Branch 
lengths and illustrations are not to scale. Adapted from [72]. 
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2.2.1. The outgroup: Vampirovibronia and Sericytochromatia 

Vampirovibronia (formerly Melainabacteria [138]) and Sericytochromatia are two groups mostly 

comprising uncultured organisms whose genome has been reconstructed from metagenome 

assemblies [139]. These strains appear to be the closest relatives to Cyanobacteria, even though 

they do not possess any of the genes associated with photosynthesis [139]. 

The samples from which Vampirovibronia strains were sequenced were collected from a variety 

of aphotic environments, such as human stool and groundwater [138,139]. Most of these strains 

have not been cultured, with the exception of Vampirovibrio chlorellavorus [140]: this organism (from 

which the group is named) has been isolated in the 1970s, when it was observed predating on a 

eukaryote alga (Chlorella sp.) [141]; while the strain could not be resuscitated from the preserved 

material, its genome was sequenced in 2015 [140]. Therefore, due to the lack of cultured 

representatives, not much is known about the physiology and ecology of these groups. 

The discovery of these groups has also caused some confusion in the nomenclature: some 

authors consider the Vampirovibrionia as a class of Cyanobacteria (with “classic” Cyanobacteria 

belonging to a different class Oxyphotobacteria) [139], while most treat them as a separate phylum 

[138]. In this work, I will follow the latter convention. 

2.2.2. Early-branching taxa: Gloeobacter and associated strains, 

Pseudanabaena 

The most basal group of Cyanobacteria is represented by the Gloeobacter strains 

[73,77,134,137,142]; currently, two species have been described from this genus: G. violaceus 

(originally found in a rock sample from Switzerland [143]) and G. kilaueensis (from a lava cave in 

Hawaii [144]). The main distinguishing features of these strains are the lack of thylakoid membranes 

[143] and the unusual structure of their phycobilisomes [145]. 

Thylakoid membranes are a series of tightly packed internal membranes that are present in most 

Cyanobacteria [146] (Figure 16). As has been discussed in Section 1.1, photosynthetic reactions 

involve a number of membrane-bound protein complexes, which produce proton gradients across 

the membrane; thylakoids significantly increase the membrane surface of the cell, improving its 

photosynthetic efficiency [146]. Phycobilisomes (Figure 17) are protein complexes that are anchored 

to the photosynthetic membrane and work as “antennas” [145]. They acquire light energy from 

wavelengths that would not be able to excite chlorophyll directly, and then transfer it to the chlorophyll 

special pair in photosynthetic reaction centres [145]. This allows the bacterium to use a wider range 

of light wavelengths to perform photosynthesis [145]. 

Gloeobacter strains lack thylakoids entirely, thus the photosynthetic complexes are located on 

the cell membrane [145]. Phycobilisomes in these strains also have a different appearance than 
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other Cyanobacteria, being organised in “bundles of rods”, 

rather than in a hemi-ellipsoidal or hemi-discoidal shape [145] 

(Figure 18). It is not yet clear whether these features 

represent the “primitive” state of the ancestor of cyanobacteria 

or are the result of evolutionary processes specific to this 

group [147]. 

Two new strains that appear related to Gloeobacter have 

been recently described: Candidatus Aurora vandensis, an 

uncultured strain whose genome has been recovered from a 

metagenomic assembly of a microbial mat in Antarctica [148], 

and Anthocerotibacter panamensis, which has been isolated 

from the thallus of a hornwort in Panama and subsequently 

cultured [147]. Based on 16S rDNA sequence data, these two 

strains form a sister clade to the two Gloeobacter strains, and, 

together, the four are the sister group of all the other 

Cyanobacteria [147] (Figure 19). 

 

Figure 18 (below). Comparison of phycobilisome models. (A) Model of 
phycobilisomes in G. violaceus. (B) Phycobilisomes in other Cyanobacteria. 
The number of phycocyanin/phycoerythrin clusters and their presence 
varies between different strains and growing conditions. (C) 3D model of the 
structure of a phycobilisome from Synechococcus sp. PCC 7002 obtained 
through cryogenic electron microscopy. This phycobilisome lacks 
phycoerythrin. A and B adapted from [145]; PDB ID of the structure in C: 
7ext [149–152]. 

Figure 16. Thylakoid membranes. False-
coloured transmission electron 
micrography of Arthrospira sp. PCC 8005, 
clearly showing the thylakoid membranes 
(which appear as concentric circles). 
Adapted from [423]. See Mareš et al. [423] 
for more examples of thylakoids. 

Figure 17 (above). Phycobilisome. 
Average of 684 single-particle electron 
microscopy images of the phycobilisome of 
Synechocystis sp. PCC 6803. Adapted 
from [424]. 
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While Ca. A. vandensis has not been isolated, its 

genome suggests that it does not possess thylakoid 

membranes [148]; electron microscopy analyses of A. 

panamensis have confirmed that this strain does not have 

them either [147]. These results would suggest that 

thylakoids are indeed a derived trait that appeared in the 

rest of Cyanobacteria [147]; however, further analyses 

are necessary to clarify this point, as well as the 

ecological role of these strains. 

Pseudanabaena are a group of basal filamentous 

strains with a cell diameter of 1-3µm, which have a cylindrical shape; they are sometimes motile and 

can form blooms [153,154]. Even though they have not been studied much [153], they are an 

interesting group because they suggest that multicellularity evolved relatively early in Cyanobacteria 

[155]. 

2.2.3. Gloeomargarita and the chloroplast 

Another interesting early-

diverging branch is the one that 

contains Gloeomargarita 

lithophora and the last common 

ancestor of the chloroplast 

[73,156,157]. G. lithophora 

(Figure 20) is a unicellular 

cyanobacterium with cells that 

are about 4 µm long and 1 µm 

wide; it has been isolated from an 

alkaline lake in Mexico and it can 

form intracellular granules of 

carbonate (which is an unusual 

feature among bacteria and 

Cyanobacteria) [156]. This strain 

diverged from other 

Cyanobacteria around 2.1 Gya 

[73], and it is interesting because it has been identified as the currently living organism that is most 

closely related to the chloroplast [73,157]. 

Chloroplasts are the organelles that photosynthetic eukaryotes use to perform photosynthesis 

[158]. Like mitochondria, they have their own DNA (the chloroplast genome) and can duplicate 

Figure 20. Gloeomargarita lithophora. (A) Transmission electron microscopy 
image of G. lithophora. The thylakoid membranes are clearly visible. (B) Colony 
growing on a BG11-agar plate. (C) Scanning-transmission electron microscopy 
image. The carbonate granules appear as bright round shapes. (D) 
Magnification of the borders of the colony in B. Adapted from [156]. 

Figure 19. Basal Cyanobacteria. The cladogram 
shows the position of Gloeobacter spp., Ca. A. 
vandensis and A. panamensis with respect to the 
rest of Cyanobacteria. Number 1 corresponds to 
the same number in Figure 15. Branch lengths 
are not to scale. Adapted from [147]. 
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independently from the cell; furthermore, eukaryotic cells cannot create chloroplasts from scratch 

[158]. For these reasons, it is generally assumed that the chloroplast originated through an 

endosymbiotic event between an early eukaryote and a cyanobacterium [29]. 

Phylogenetic analyses of the chloroplast genome highlight that almost all chloroplasts originated 

from a single endosymbiotic event [73,157] (with the exception of the chromatophore of Paulinella 

spp., which appears to have been gained independently and relatively recently [73,159]). This 

primary endosymbiotic event probably happened around 1.9 billion years ago [73] and involved, on 

the eukaryote side, an ancestor of modern Archaeplastida (plants, red and green algae, and 

glaucophytes) [73,157]. All chloroplasts can be traced back to this event, either as direct 

descendants of this organism, or through secondary or tertiary endosymbiosis events (i.e., events 

where a photosynthetic eukaryote was acquired as an endosymbiont by another eukaryote) [160], 

such as the chloroplasts of euglenids [160] or dinoflagellates [161]. 

This link between Cyanobacteria and eukaryotes is relevant for timing the origin of Cyanobacteria, 

because many eukaryotes possess features that allow them to fossilise more easily than bacteria, 

such as a mineralised exoskeleton or a macroscopic size. Since photosynthetic eukaryotes and 

Cyanobacteria can be used together in a single tree, this means that fossils of eukaryotes can be 

used to cross-calibrate molecular clock analyses of Cyanobacteria [73,130], though this requires the 

assumption that the evolutionary processes that happened in the chloroplast after the primary 

endosymbiosis are comparable to the ones going on in free-living Cyanobacteria. Such cross-

calibrations can provide useful information that can be placed on the tree with more confidence than 

microfossils [73,130]. 

2.2.4. Microcyanobacteria 

A major event in the evolution of Cyanobacteria is the diversification of Micro- and 

Macrocyanobacteria (node 2 in Figure 15), which happened around 2.2 Bya [73]. 

Microcyanobacteria, as the name implies, have smaller cells (diameter between 1µm and 2 µm) and 

include mostly unicellular strains, with the exception of genera such as Prochlorothrix, Limnothrix 

and Leptolyngbya, which are filamentous [72]. This group also contains many planktonic unicellular 

strains with even smaller cell diameters: the 

Picocyanobacteria [162–164] (Figure 21), which 

appear to have diversified around 600 Mya 

[73,162]. 

The most basal group of picocyanobacteria is 

represented by multiple strains of Synechococcus 

spongiarum [162], which are symbionts of marine 

sponges adapted to low light conditions [165]. 

Figure 21. Picocyanobacteria. The cladogram shows the 
relationships between the main groups of 
picocyanobacteria. Number 3 corresponds to the same 
number in Figure 15. Branch lengths are not to scale. 

Adapted from [417]. 
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The position of this group suggests that the last common ancestor of the picocyanobacteria likely 

lived in a marine environment, and freshwater strains have migrated into lakes and rivers multiple 

times [162]. After the divergence of the S. spongarium strains, four main groups of picocyanobacteria 

can be identified: Synechococcus subcluster 5.3, a group containing mostly freshwater Cyanobium 

and Synechococcus strains, a group with marine Synechococcus strains and a group with marine 

Prochlorococcus strains [162]. 

Subcluster 5.3 contains both marine (such as Synechococcus sp. RCC 307 [166]) and freshwater 

strains (e.g., Synechococcus sp. Tous and Synechococcus sp. Lanier [167]); while few genomes are 

available for this group, studies based on ribosomal RNA sequences have highlighted that much of 

the diversity of this group has not been sampled yet [168]. Freshwater Synechococcus and 

Cyanobium strains are widely distributed around the world and across various trophic states [169]; 

the presence of marine strains that share a common ancestor with them suggests that multiple 

radiation events are responsible for this distribution [162]. 

Marine Prochlorococcus and Synechococcus have different distributions [164]; Prochlorococcus 

can be found between longitudes of 45°N and 40°S, and is mostly abundant in open-ocean 

oligotrophic areas [164], while Synechococcus are more ubiquitous and can be found in any 

environment, including polar regions – albeit at lower concentrations [164]. Together, these two 

genera are the most abundant phototrophs on Earth [164]. Other differences between the two groups 

are their cell sizes (Synechococcus is larger) and the light-harvesting complexes [162,164]. 

2.2.5. Macrocyanobacteria 

Unlike Microcyanobacteria, the Macrocyanobacteria have large 

cell diameters (3µm – 50 µm) and comprise mostly filamentous 

strains [76]. Relevant members of this group are Trichodesmium spp. 

(Figure 22), which are among the most important nitrogen fixing 

organisms [170]. They can form large filaments and blooms in 

oligotrophic ocean waters, producing 60-80 Tg of fixed nitrogen every 

year, which is about 50% of the nitrogen fixed globally in marine 

environments [170]. 

Another major group of Macrocyanobacteria are the Nostocales: this order contains many 

filamentous strains that live mainly in freshwater environments [30]; nitrogen fixing strains are able 

to form heterocysts, which allow them to spatially separate nitrogen fixation and oxygen production 

[171,172]. Heterocysts are differentiated cells with a thick wall, which lack photosystem II [171,172]; 

they use nitrogenase to fix nitrogen, using the energy derived from the cyclic electron transport of 

photosystem I [172]. Many Nostocales can also form akinetes, which are cells with a very thick wall 

Figure 22. Trichodesmium bloom 
off the Great Barrier Reef. 
Adapted from [425]. 



 

42 

and a different composition than normal vegetative cells [172]; they can tolerate extreme conditions 

and can “germinate” when the environment becomes favourable [172]. 

2.2.6. Fossil Cyanobacteria 

Various kinds of fossil traces are used as evidence of ancestral Cyanobacteria [173]; these range 

from particular rock formations, such as stromatolites [174], to fossil biomarkers [175], to actual 

microfossils [173]. While stromatolites are traditionally associated with oxygenic photosynthesis, it is 

possible that they may have been produced by other phototrophs or even non-phototrophic 

organisms; their interpretation must therefore be careful [173]. Similarly, biomarkers such as 2-

methylhopanes can be produced by other bacteria in addition to Cyanobacteria, which makes it hard 

to determine to which taxa they can be attributed [176]. 

Some microfossils of Cyanobacteria can be 

assigned with reasonable confidence to particular 

groups, because they present a characteristic 

division pattern; these include Eoentophysalis, 

Polybessurus and Eohyella [173]. The 

Eoentophysalis belcherensis fossil (Figure 23A) 

was described from a silicified stromatolite mat 

dating back to 1.89-1.84 Gya [177]; it seems to be 

similar to modern Entophysalis colonies, because 

of a number of common features: they both appear 

as round cells that divide along three perpendicular 

planes; the colonies have a characteristic shape 

and are surrounded by an expanding polymeric 

envelope; and the current environment of modern 

Entophysalis is similar to the one inferred for the 

fossil formation [178]. This fossil can be therefore 

relatively unambiguously assigned to the Chroococcales crown group [178]. 

Polybessurus has been described from multiple sources [173], the oldest of which is a Russian 

chert dated to 1.35-1.01 Gya [179]. This fossil has a peculiar morphology (Figure 23B), consisting 

of a “stalk” that grows from the sediment upwards, which keeps the terminal cells at the interface 

between the sediment and water [180]. This, combined with inferences about the division mode of 

this fossil, leads to its assignment to the group of Pleurocapsales [180]. The oldest occurrence of a 

Eohyella fossil (Figure 23C) was retrieved in China, and dates back to 1.63 Gya [181]; this is an 

endolithic bacterium that forms “pseudofilaments” (i.e., filaments where adjacent cells have separate 

walls) [182], which makes it similar to modern Hyella (another member of Pleurocapsales) [182]. 

Figure 23. Cyanobacterial fossils. (A) Eoentophysalis 
belcherensis fossil. (B) Polybessurus fossil. (C) Eohyella 
fossil. Adapted from [173]. 
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In addition to these fossils, which represent the clearest signs of ancient Cyanobacteria, a number 

of other findings have been variously interpreted as cyanobacterial microfossils [173]; however, it is 

often unclear to which group of Cyanobacteria the fossil belongs, whether it even belongs to 

Cyanobacteria, or whether it is a fossil at all [173]. While I will not discuss them here, Demoulin et 

al. [173] provide a detailed description of these fossils. 

2.2.7. Ancestral Cyanobacteria 

Genetic information from the current cyanobacterial strains and time information from the various 

fossils can be combined to perform inferences about the unobserved ancestors of modern 

Cyanobacteria [72]. A first kind of analysis involves the creation of a time-calibrated “molecular clock” 

phylogenetic tree: this makes it possible to obtain information about the timing of the origin of these 

ancestral Cyanobacteria [72]. When talking specifically about the last common ancestor of crown 

group Cyanobacteria, most analyses suggest that this lived around 2.7 Gya [76,183,184], though 

outliers place it as early as 3.63 Gya [185] or as late as 2.02 Gya [130]. 

The next step is using the time-calibrated phylogeny to analyse the phenotypic evolution of 

ancestral Cyanobacteria: with methods such as ancestral state reconstruction or stochastic mapping 

[73,77,134], morphological character data about modern organisms can be traced back to their 

ancestors, which makes it possible to make predictions about the appearance of these ancestors, 

even though they have never been observed. Using these approaches, Blank & Sánchez-Baracaldo 

[77] determined that the LCA of crown group Cyanobacteria was most likely a unicellular 

cyanobacterium with a small cell diameter. 

These results help answer some of the questions about Cyanobacteria that were presented in 

Section 1.2.3, by providing information about when the cyanobacterial LCA lived and what it looked 

like. However, while similar analyses have been performed to determine the environment where this 

ancestor lived [73], it has been argued that those results are influenced more by the model and prior 

choices than by information provided by the data [186,187]. I have therefore tackled this question 

using a novel approach to integrate information coming from multiple sources, as described in 

Chapter 6. 
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2.3. The evolution of photosynthesis 

2.3.1. Photosynthetic bacteria 

As has been described in Section 1.1, there are three main kinds of photosynthesis: anoxygenic 

photosynthesis using a Type I reaction centre (RC), anoxygenic photosynthesis using a Type II RC, 

and oxygenic photosynthesis. These are widespread among a number of bacterial groups, in a 

pattern that makes it not obvious whether photosynthesis is an ancestral or derived trait of bacteria, 

and which kind of photosynthesis came first (Figure 24) [6].  

 

The number of bacterial groups known to 

possess photosynthetic reaction centres has 

increased steadily since the 19th century (Figure 

25) [188,189]; nowadays, 7 bacterial phyla 

contain known phototrophs. Additionally, 

photosynthetic genes have been detected in a 

metagenome-assembled genome from a 

previously undescribed phylum (Candidatus 

Eremiobacterota) [190]; however, this bacterium 

has not been cultured yet, and therefore I will 

mostly ignore this group. 

Cyanobacteria have been the subject of the 

previous section, but before analysing the evolution of photosynthesis, it is beneficial to briefly 

describe the various groups of anoxygenic phototrophs. 

Figure 24. Bacterial phyla. The 
tree shows the relationships 
between the main bacterial phyla. 
Phyla for which photosynthetic 
strains have been identified are 
highlighted in blue (for strains 
containing Type I reaction centres) 
or orange (for strains containing 
Type II reaction centres). Branch 
lengths are not to scale. Tree 
topology adapted from [403]. 

Figure 25. Number of known photosynthetic phyla. The 
figure shows how the number of known photosynthetic phyla 
has increased since the 19th century. The highlighted years 
mark the discovery of each photosynthetic phylum (whose 
name is displayed above the plot). Data from [188,189]. 
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Chlorobi 

The Chlorobi, also known as green sulphur bacteria, are a group of obligate anoxygenic 

phototrophs that generally use various sulphur compounds as electron donors for photosynthesis 

[191]. They live in strictly anoxic conditions, generally where there are anoxic water layers that are 

reached by light, and accumulate globules of sulphur outside the cells (that has been oxidised from 

sulphide during photosynthesis); they can have a green or brown colour, depending on the kind of 

pigments they contain [191]. They can use either simple organic molecules or 𝐶𝑂2 as the source of 

carbon; 𝐶𝑂2  is assimilated via the reverse tricarboxylic acid cycle, which is energetically more 

efficient than the Calvin cycle [191]. 

Heliobacteriaceae (Firmicutes) 

Heliobacteriaceae is a family of anoxygenic phototrophs from the phylum Firmicutes, also known 

as heliobacteria [192]. Despite being phototrophs (i.e., being able to convert light energy into 

chemical energy) and having a Type I reaction centre, they cannot fix 𝐶𝑂2 and therefore they are 

not, technically speaking, truly photosynthetic [192]. They can form endospores (resistance forms) 

and are normally found in soils, especially rice fields; they are strictly anaerobic and can fix nitrogen 

[192]. 

Acidobacteria 

Acidobacteria are a large phylum of understudied organisms that are abundant in many 

environments, especially soils [193]. Only a single strain of phototrophic Acidobacteria has been 

identified: Chloracidobacterium thermophilum, which was isolated from a spring in the Yellowstone 

National Park [193]; this is a microaerophilic strain and, like phototrophic Heliobacteria, cannot fix 

𝐶𝑂2 and is therefore photoheterotrophic [194]. It possesses a type I reaction centre, whose sequence 

is distantly related to the one in Chlorobi; it also has a light-harvesting structure that is similar to the 

one found in Chlorobi and some Chloroflexi [193,194]. 

Chloroflexi 

The Chloroflexi are a phylum of filamentous bacteria; they are divided in two orders: the 

Chloroflexales, which contain the phototrophic strains, and the Herpetosiphonales, which are not 

phototrophic [195]. Chloroflexales are facultatively aerobic and 16S sequences belonging to this 

group have been isolated from a variety of environments, such as wastewater treatment plants, the 

open ocean, or thermal springs; when light is available, some strains can only grow in aerobic 

conditions [195]. In hot springs, these strains can form microbial mats just below a layer of 

Cyanobacteria, sometimes mixing with them; in this condition, it is the Cyanobacteria that actually 

provide the fixed carbon, while the Chloroflexi grow (photo-)heterotrophically [195]. They can 

however grow photoautotrophically when sulphide is available [195]. 
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Proteobacteria 

The Proteobacteria are a huge and diverse phylum of bacteria; phototrophic Proteobacteria (also 

known as phototrophic purple bacteria) are found in the Alphaproteobacteria, Betaproteobacteria 

and Gammaproteobacteria classes [196]. They perform photosynthesis using a Type II reaction 

centre, and can take a number of colours, depending on the pigment content [196]. Photosynthesis 

usually happens under anoxic conditions, because oxygen represses photosynthetic genes (though 

some Alphaproteobacteria actually require oxygen to perform photosynthesis); they normally use 

sulphide or other reduced sulphur compounds, hydrogen, organic molecules or iron as electron 

donors [196]. 

Gemmatimonadetes 

Gemmatimonadetes are a phylum of widely distributed bacteria, which can be found in a variety 

of environments [189]. Very few strains of this phylum have been sequenced, and most of them are 

not phototrophic; however, two strains with a functional Type II reaction centre have been identified 

and assigned to the species Gemmatimonas phototrophica [189] and G. groenlandica [12]. G. 

phototrophica was isolated from the coastal area of a freshwater lake in the Gobi Desert and is 

microaerophilic [189], while G. groenlandica is aerobic and was isolated from a stream water sample 

from Greenland [12]. Like the photosynthetic Heliobacteria, these strains require an organic carbon 

source and cannot fix 𝐶𝑂2  [189]; the photosynthetic genes are very similar to those of 

Proteobacteria, and were likely the subject of a horizontal gene transfer [197]. 

2.3.2. Two hypotheses 

Two main hypotheses have been suggested to explain the distribution of photosynthetic reaction 

centres and the fact that Cyanobacteria have two kinds of RCs: the fusion hypothesis, and the 

selective loss hypothesis [5]. According to the fusion hypothesis, Type I and Type II RCs evolved in 

different organisms, and Cyanobacteria have both because a lateral gene transfer event transferred 

a different reaction centre in the genome of a proto-cyanobacterium that already had a reaction 

centre [5]. The selective loss hypothesis, instead, states that an ancestral photosynthetic organism 

had both RC types, and then every photosynthetic lineage except for Cyanobacteria selectively lost 

one or the other RC [5]. Figure 26 shows two examples of reaction centre histories that follow the 

two hypotheses. 

Determining which hypothesis is most plausible is not straightforward, both because these events 

happened a long time ago [198], which means that reconstructing the phylogenetic signal from 

sequence data is difficult [6], and because there are many different scenarios that can fall within the 

general framework of the two hypotheses, depending on when the various events (duplications, 

losses, gene transfers) happened [6]. 
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Figure 26. Selective loss vs fusion. The left part of the figure shows a history of photosynthesis that is compatible with 
the selective loss hypothesis, while the history on the right is compatible with the fusion hypothesis. Note that these are 
neither the only nor the most likely possible histories for each hypothesis. Stars indicate the hypothetical origin of 
photosynthesis, the circle represents the conversion of a Type II RC in a Type I RC, arrows represent lateral gene transfer 
events. Tree as in Figure 24.  

2.3.3. Evolution of reaction centre proteins 

A first step in this analysis is to consider the evolution of the core proteins of the reaction centre 

itself (Figure 27) [198]. There is reasonable consensus that the ancestral photosynthetic reaction 

centre (whenever and in whatever organism it was) was homodimeric [6,198]; molecular phylogenies 

of the genes involved then suggest a first split occurred between Type I and Type II reaction centres 

[6,198]. 

On the Type I side, a further split occurred between the Type I RCs of anoxygenic phototrophs 

(which are still homodimeric) and cyanobacterial Photosystem I (which has become a heterodimer) 

[6,198]. On the Type II side, a similar split between Cyanobacteria and anoxygenic phototrophs 

happened; furthermore, since the anoxygenic pufL and pufM genes are more closely related to each 

other than to the cyanobacterial psbA or psbD, the transformation of the ancestral homodimeric 

reaction centre into a heterodimer must have happened twice after this split – once for the 

Cyanobacteria and once for anoxygenic phototrophs [6,198]. 

While it has been long assumed that the ancestral reaction centre did not have the potential for 

water oxidation (and thus, oxygen production) [80], other analyses suggest instead that this ancestor 

was similar to a water-splitting type II reaction centre [199]. Furthermore, a comparison of the rates 

of evolution of photosynthetic reaction centres with those of ATP synthase and RNA polymerase 

catalytic subunit β (which are assumed to have been present in the last universal common ancestor 

[200,201]) suggests that reaction centres are as old as these fundamental enzymes [202], which 

would mean that they were present in the last common ancestor of all bacteria. 
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Figure 27. Evolution of photosynthetic reaction centres. (A) Model of the evolution of reaction centres. An ancestral 
homodimeric reaction centre differentiated into homodimeric proto-Type I and proto-Type II RCs. The proto-Type I RC 
remained homodimeric in anoxygenic phototrophs, but duplicated and differentiated into two different subunits in 
Cyanobacteria. The proto-Type II RC independently duplicated and differentiated into two different subunits both in 
Cyanobacteria and in anoxygenic phototrophs. (B) Phylogenetic tree of the reaction centre core subunit genes. The colours 
are the same as in A, branch lengths are not to scale. The cyanobacterial heterodimeric PSI contains the PsaA and PsaB 
proteins; the homodimeric Type I RC of anoxygenic phototrophs contains two PscA (called PshA in Heliobacteria). Both 
the cyanobacterial PSII and the Type II of anoxygenic phototrophs are heterodimeric, containing PsbA and PsbD in 
Cyanobacteria, and PufL and PufM in anoxygenic phototrophs. All seven genes share a common ancestor in the ancestral 
homodimeric reaction centre. Adapted from [198]. 

2.3.4. Gains and losses 

Another factor to consider is how likely it is for a bacterial strain to lose or gain a photosynthetic 

phenotype [6]. In principle, both of these transitions could happen through a single event: a lateral 

transfer of a gene cluster containing a full set of photosynthetic genes would explain the gain of 

photosynthesis, while a single point mutation in the “wrong” place could wreak havoc in the whole 

machinery; once the genes have become non-functional, they would be quickly removed from the 

genome [63]. 

The clearest evidence for lateral transfer of a photosynthetic cluster are the Gemmatimonadetes: 

photosynthetic genes in this group are clearly of proteobacterial origin [197]. Analyses of 

photosynthesis within the family Rhodospirillaceae of Alphaproteobacteria also suggest that a 

number of lateral gene transfers must have happened within this group (as well as a similar number 

of losses of photosynthesis); in these cases, however, the transferred genes had still originated from 

within the family [203]. Finally, some picocyanobacteria (Synechococcus and Prochlorococcus) 

appear to have replaced some pieces of the chlorophyll biosynthetic pathway with equivalents from 

Proteobacteria [204], and the same has happened between Chlorobi and Chloroflexi [6]. 
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All these examples suggest that the transfer of one or more photosynthetic genes is not unusual, 

but most of these events have happened between strains that were already phototrophic [6] – i.e., 

with the exception of Gemmatimonadetes, none of these lateral gene transfers has resulted in a non-

phototroph gaining a photosynthetic phenotype [6]. Indeed, based on this and on their close 

relationship with Chlorobi, it has been suggested that the Gemmatimonadetes are actually an 

ancestrally photosynthetic group, and that the proteobacterial gene cluster merely replaced the 

original genes that were already present in the ancestor of this group [6,12]. 

Losses of oxygenic photosynthesis are also well-documented: for example, Ca. 

Atelocyanobacterium thalassa, which lives in symbiosis with photosynthetic algae and provides them 

with fixed nitrogen [64], has lost all the genes associated with Photosystem II in the last 100 Mya 

[205]. Something similar has also happened to a cyanobacterial endosymbiont of a diatom [206]. 

Many more cases of non-photosynthetic organelles derived from chloroplasts have also been 

identified in eukaryotes [207–212]. 

The implication of these observations is that photosynthesis is not necessarily a derived trait that 

appeared relatively late after the origin of life, as has often been assumed; instead, depending on 

the relative rates of transfer and loss of photosynthetic genes, it could have even been present in 

the last common ancestor of bacteria [6,202]. 
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2.4. Phylogenetic techniques 

Phylogenetic methods make it possible to study the evolution 

and the ancestors of organisms, genes, and metabolisms based 

on the information available from currently living organisms, 

their genes and their metabolism [213]. A fundamental tool in 

phylogenetics is a phylogenetic tree, which describes the 

relationships between various organisms or genes [213]. A 

phylogenetic analysis generally involves collecting the data to 

build a phylogenetic tree, building the tree, and interpreting the 

relationships in the tree [213]. 

2.4.1. Phylogenetic workflow 

In my analyses, I have used and developed a variety of 

algorithms that can be classified in three main categories: 

• Methods to collect and prepare data for building 

phylogenetic trees. 

• Methods for building and plotting trees. 

• Methods to perform additional analyses based on a 

phylogenetic tree. 

Collecting and preparing data 

Figure 28 shows a typical workflow for the kind of 

phylogenetic analyses I have performed. First of all, I collected 

DNA or protein sequence data from online repositories, such as 

GenBank [214] or RefSeq [70]. These repositories contain 

genome data that have been deposited by researchers who 

have sequenced them; in very broad terms, these genomes can 

originate either from individual genome sequencing projects, or 

from metagenome sequencing projects. 

Sequencing the genome of a particular strain of bacteria 

involves isolating and culturing it, extracting a sufficient amount 

of DNA, fragmenting it, and then determining the nucleotide 

sequences of the fragments using various techniques [215]. The 

fragment sequences can then be “assembled” by a genome 

assembler program, which uses the information contained in 

overlapping fragments to reconstruct the whole genome 

sequence [215]. In a metagenome sequencing project, instead, 

Figure 28. Phylogenetic workflow. 
Sequence data are collected and 
prepared (1, 2); a phylogenetic tree is built 
and plotted (3); the tree is then used to 
perform additional analyses (4, 5). 
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the culturing step is skipped, and an environmental sample is sequenced directly [216]. This has the 

advantage that sequence data can be retrieved from organisms that are hard to isolate and culture 

(e.g., symbionts or bacteria that are particularly sensitive to environmental conditions), but it makes 

it harder to assemble individual genomes, as it becomes necessary to distinguish which fragments 

belong to the same organisms; furthermore, depending on the relative abundance of the genetic 

material from various strains in the sample, sequencing rare strains can be problematic [216]. As a 

consequence, sequences from individual genomes are generally “cleaner” and more trustworthy 

than those coming from metagenome sampling. 

A very large number of sequenced genomes from a variety of bacteria are nowadays available 

[70,214]; Section 1.1.2 shows, for example, how the number of sequenced cyanobacterial genomes 

has been increasing exponentially. For this reason, I chose a computational approach for my 

analyses, concentrating on studying sequence data that are already publicly available. 

Most genomes are also “annotated”: this means that a program has been used to detect protein-

coding genes within the genome and to determine the amino-acid sequences of the corresponding 

proteins [217]. Consequently, most genomes have an associated “proteome” – i.e., a collection of 

the sequences of all the proteins that are encoded by the genome. Naturally, the annotation process 

is not perfect; thus, in some cases, a protein can be “missed” by the algorithm for various reasons 

[217]. Therefore, when studying the presence or absence of a certain protein-coding gene in a strain, 

I have tried to always double-check the results obtained using the proteome data by comparing them 

with the genome data. 

 After collecting the genome/proteome sequences, I extracted the sequences for my genes of 

interest. I have worked with three main categories of genes: 

• Focal genes – i.e., genes that are involved in the process I am studying; for example, when 

analysing the evolution of salt tolerance in Cyanobacteria, I have extracted the sequences for 

genes involved in compatible solute biosynthesis. 

• Widespread housekeeping genes – these genes were (supposed to be) present in all or most 

of the strains I was analysing, and I have used them to build phylogenetic trees; for example, 

to build a phylogeny of Cyanobacteria I used a set of 145 protein coding genes derived from 

[73]. 

• Ribosomal RNA genes – these genes have been used extensively as phylogenetic markers; 

I have used them mainly as the sequence data for molecular clock analyses. 

Ribosomal RNA genes have been used so extensively in phylogenetic analyses, that specific 

tools exist to extract their sequence from a genome file [218]. To obtain the sequences for the other 

kinds of genes, I have used more generic methods that search the genome/proteome file for 

sequences that are homologs of (i.e., have a common ancestor with) a given sequence, such as 
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BLAST [219]. For example, given the sequence for gene X in a certain cyanobacterium, this 

approach makes it possible to obtain the sequences for gene X from all Cyanobacteria. 

When using this method, it is commonplace to choose an arbitrary threshold for the “E-value” 

(which is a measure of the significance of the match that has been found) and then include or exclude 

sequences by comparing their E-value with the threshold. However, this approach can produce false 

positives and false negatives; for example, Cornejo-Castillo & Zehr [220] annotated a number of 

species as possessing a gene involved in membrane lipid modification, while in reality they only 

possess a closely related uncharacterised gene [176]. Therefore, in my analyses, I have used a very 

permissive threshold value (which results in a large number of false positives), and then refined the 

results by building phylogenetic trees of the matched sequences. This allowed me to determine the 

“true homologs” of the query sequence. My approach is described in more detail in the methods 

section of each research chapter. 

After the DNA or protein sequences have been collected, the next step is to align them. This 

makes it possible to match each nucleotide or amino acid in a sequence with the corresponding 

residue in the other sequences, thus ensuring that homologous positions are being compared [221]. 

There are many different programs and algorithms to perform sequence alignment, most of which 

are based on some sort of heuristic approach to determine the best alignment [221] (e.g. [222–224]). 

While there are some “true probabilistic” methods for sequence alignment [225] (i.e., methods that 

explicitly model sequence evolution to determine the alignment), these are unfortunately very 

computationally intensive and unwieldy for analyses at my scale. Therefore, I have usually created 

my sequence alignments using MAFFT [224], which provides a good balance between speed of the 

analysis and accuracy [221]. 

Building and plotting trees 

Once sequence data have been collected and aligned, they can be used to build phylogenetic 

trees [213]. There are many different ways to build a phylogenetic tree [213]; in my analyses I have 

built three different kinds of trees: neighbour-joining trees, maximum-likelihood trees, and Bayesian 

trees. 

In broad terms, the first step in the neighbour-joining approach involves computing a “distance 

matrix” from the sequence data [213]. To do this, pairs of sequences are compared to determine 

how similar or different they are to each other, and these distances are stored in a matrix. The raw 

sequence data is not used any more after this, and the method only uses the distance data [213]; it 

then performs a series of steps that join the taxa while minimising the total length of the tree [213]. 

The fact that neighbour joining ignores the sequence data after the distance matrix is computed 

makes it much faster than the other methods; therefore, while it is less accurate than maximum-

likelihood or Bayesian analyses [213], I have used this method when dealing with very large trees 

containing tens or hundreds of thousands of sequences. 
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Maximum-likelihood and Bayesian trees are both built by using a phylogenetic “likelihood 

function” (see below). As I have described in Section 1.3, the likelihood of a model is the probability 

of observing the data assuming that the model is true. In this case, the model consists of a) the 

phylogenetic tree and b) a “substitution model” that describes the evolution of the sequences based 

on a number of parameters. A maximum-likelihood approach aims to find the model (i.e., tree plus 

substitution model parameters) which has the greatest likelihood, while a Bayesian approach 

produces instead an ensemble of trees weighted based on their posterior probability (see Section 

1.3). 

Maximum-likelihood methods are generally faster than Bayesian methods; “approximate” 

maximum-likelihood methods are also available (e.g., [226]), which sacrifice some accuracy while 

computing the likelihood in order to improve the speed of the analysis. Therefore, I have used 

maximum-likelihood approaches (mainly IQ-TREE [227] and FastTree [226]) when working with 

thousands to tens of thousands of taxa, while I have only used Bayesian methods (which are more 

desirable from a statistical point of view, see Section 1.3) when working with hundreds of taxa or 

less; these include MrBayes [228] and Phylobayes [229]. 

Finally, while neighbour-joining and maximum-likelihood approaches produce a single tree, it is 

possible to perform a “bootstrapping” analysis to determine the level of confidence to place on the 

various branches of the tree [213]. This involves resampling and reshuffling the original alignment 

data, and then using this bootstrapped alignment to create a new tree. The new tree is compared 

with the original tree, to determine which branches are common to both and which ones are not; the 

process is repeated hundreds of times and these “support” values are stored on the tree [213]. 

Support values close to 100% signify that the branch was present in most of the trees obtained in 

this way, and thus the existence of this branch is strongly supported by the data [213]. For Bayesian 

analyses, this step is unnecessary, because the Bayesian approach intrinsically provides a support 

measure (i.e., the posterior probability) for every branch in the tree. 

Once a phylogenetic tree has been built, it can be plotted and used for further analyses. Plotting 

a phylogenetic tree is useful to inspect it and evaluate the relationship between the different taxa. 

There are many tools to plot a tree (e.g., [86,87,230]), but I found that none of these suited my needs; 

therefore, I created a new program to draw phylogenetic trees, TreeViewer, which is the subject of 

Chapter 4. 

Performing further analyses 

Additional analyses that can be performed when a phylogenetic tree is available include molecular 

clock analyses and ancestral state reconstruction/stochastic mapping analyses. 

In a molecular clock analysis, the phylogenetic tree is “calibrated” using fossil data, so that the 

tips of the tree (that represent the observed currently living taxa) all have the same age – i.e., 0 
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million years ago – and the internal nodes of the tree can be dated to an absolute time scale. This 

makes it possible to perform inferences about the timing of the origin of these ancestors – e.g., to 

determine when the last common ancestor of Cyanobacteria lived. To perform these molecular clock 

analyses, I have mainly used Phylobayes [229]. 

Note that it is also possible to directly build a calibrated phylogenetic tree, by providing the fossil 

data to the tree-building program (e.g., by using BEAST [231]); however, this approach is slower 

than estimating the tree and then calibrating it separately. Having separate steps also makes it 

possible to estimate an accurate phylogenetic tree using a great amount of protein sequence data 

with a maximum-likelihood approach, and then perform a Bayesian clock analysis using a smaller 

amount of ribosomal RNA data (e.g., as we did in [162]). 

Ancestral state reconstructions and stochastic mapping analyses aim to use information about 

some characteristics of the modern taxa to perform inferences about those characteristics for 

ancestral organisms ([81,232,233]). These methods use the (time-calibrated) phylogenetic tree to 

analyse the evolution of the character “backwards”, thus reconstructing ancestral phenotypes. Since 

existing methods were not suitable for the kind of analyses I wished to perform, I developed a new 

program for stochastic mapping analyses, sMap [82], which is the subject of Chapter 5. 

2.4.2. Gene trees and species trees 

In principle, any set of homologous DNA or protein sequences can be used to build a phylogenetic 

tree, and the resulting tree will describe the relationships between the sequences of the gene that 

has been analysed [234]. However, the tree obtained from sequences for a certain gene may or may 

not be perfectly equivalent to a tree describing the relationships 

between the species from which the gene sequences were obtained 

[234]. 

Discordances between the “gene tree” and the “species tree” may 

be due to technical reasons – e.g., the sequences for the gene are too 

short, or its evolutionary rate is too high to produce an accurate result 

– or to actual underlying biological phenomena: for example, if lateral 

gene transfer events have occurred for the gene [234] (Figure 29). A 

lateral gene transfer (LGT) event happens whenever a gene is 

transferred from one organism to another in any other way than 

vertical inheritance (i.e., descendance) [235]. In a phylogenetic tree, 

LGTs manifest themselves as sequences from otherwise unrelated 

taxa, which cluster together on the tree [235]. 

If a single gene is used to build a phylogenetic tree, LGT events 

may go undetected and lead to incorrect inferences about the 

Figure 29. Comparison between 
a species tree and a gene tree. 
The grey arrow highlights a LGT 
event in the species tree, which 
causes the gene tree to have a 
different topology. 
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relationships between the taxa under exam [234]. Therefore, when building species trees, it is 

common to use information coming from many different genes [234]: this makes it possible to 

“average” the information coming from each gene, so that individual random LGT events do not 

affect the final results [234]. In addition, this also makes it possible to increase the amount of 

phylogenetic signal by using more sequence data [234]. 

There are multiple ways of determining a species tree based on a number of gene sequences or 

gene trees; these involve either computing a separate phylogenetic tree for each gene and then 

determining a consensus tree, or directly estimating the species tree using all of the gene sequences 

[234]. In a “concatenated” analysis, sequences from multiple genes are appended together in a 

single multi-alignment, and these longer concatenated sequences are used for the phylogenetic 

inference [234]. In a “partitioned” analysis, a single species tree is estimated from the sequence data 

for all the genes; however, each gene is allowed to have its own set of parameters that describe its 

evolutionary model [234]. Each approach has its merits; in my analyses, I have used mainly the 

partitioned approach in IQ-TREE [227]. 

2.4.3. The phylogenetic likelihood function 

A likelihood function is a fundamental part of a maximum-likelihood or Bayesian analysis – not 

just for phylogenetics, but in any statistical approach. This function (see Section 1.3) takes a “model” 

(which can be a phylogenetic tree, a rate matrix for sequence evolution, etc.) as a parameter, and 

computes the probability of obtaining the observed data under the model. A maximum-likelihood 

analysis proceeds by finding the “model” that maximises this function, while a Bayesian approach 

involves sampling many different “models” and using Bayes’ theorem to compute their posterior 

probability, based on the prior and the value of the likelihood function (see Section 1.3). 

This section describes the general Felsenstein “pruning” algorithm [236,237] to compute the 

likelihood of a phylogenetic tree. While this description will be at times very technical, it is a necessary 

premise to place my phylogenetic analyses, and especially the development of sMap, in the 

appropriate framework. 

As has been stated multiple times, the point of a likelihood function is to compute the probability 

of obtaining the observed data given a certain model. To keep things simple, assume that we have 

observed a single character for four taxa 𝐴, 𝐵, 𝐶 and 𝐷. This character can be found in two states, 

0 and 1; this could represent something like the presence or absence of a gene in the genome of 

each organism, or a more concrete physical character. To visualise things more easily, assume that 

𝐴, 𝐵, 𝐶 and 𝐷 are four (fictional) closely related species of cows. The observed character is the 

presence or absence of horns in the cow: a state of 0 means that cows of that particular species do 

not have horns, while a state of 1 indicates that they do have horns. This constitutes our data (Figure 

30). 
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The model consists of multiple parts: 

• The topology of the phylogenetic tree for the cow species (𝜏). 

• The branch lengths of the phylogenetic tree (𝜈𝑖). 

• A model for how the character (presence or absence of horns) evolves on the tree. 

For this example, consider the tree and 

branch lengths provided in Figure 31; I will 

provide a general description of the approach 

and apply it to this tree to show how it works in 

practice. 

We now need to create a model describing the 

evolution of the horns. Most of the time, 

characters are modelled on phylogenetic trees by 

using continuous-time Markov chain models 

[238,239]. This means that the character history 

is treated as a memoryless chain of states, where the next state only depends on the current state, 

and not on any of the previous states. The model can be parametrised using a “rate matrix”, which 

contains 𝑛 ⋅ (𝑛 − 1) parameters, where 𝑛 is the number of states – in our case, only 2 parameters 

are necessary: 𝑟0→1, which is the rate of change from state 0 to state 1, and 𝑟1→0, which is the rate 

of change from 1 to 0. The rate matrix looks as follows: 

 0 1

0 −𝑟0→1 𝑟0→1

1 𝑟1→0 −𝑟1→0

 

The elements in the diagonal of the matrix are chosen so that the sum of each row is equal to 0, 

which (together with the fact that rates are always positive) gives this kind of matrix a number of nice 

mathematical properties. 

We have now specified all the parameters of the likelihood function: 

𝕃(model) = 𝕃(𝜏, {𝜈𝑖}, 𝑟0→1, 𝑟1→0) = ℙ(Data | 𝜏, {𝜈𝑖}, 𝑟0→1, 𝑟1→0) 

Figure 30. Fictional cow 

species. Species 𝑨  and 𝑪 do 
not have horns (character 
state 𝟎), while species 𝑩 and 

𝑫 have horns (character state 

𝟏). 

Figure 31. Phylogenetic tree for the cow species in 
Figure 30. The tree consists of the tree topology (𝜏) and of 

the branch lengths {𝜈𝑖}. 
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We then need to compute the probability of observing a certain pattern of presence/absence of 

horns in cows given a set of values for all the parameters. Felsenstein’s pruning algorithm for 

computing the likelihood [236,237] involves traversing the tree from the tips towards the root of the 

tree and computing “Felsenstein likelihoods” at each node. 

The Felsenstein likelihood (𝐹𝐿) for state 𝑥 at node 𝐼, written here as 𝐹𝐿𝐼(𝑥), is the probability of 

obtaining the observed states for the descendants of 𝐼, assuming that the character is in state 

𝑥 at node 𝐼. 

For example, the 𝐹𝐿 for state 0 at node 𝐸 in the tree in Figure 31 is the probability of the character 

not changing on branch 𝑎, and at the same time changing from 0 to 1 on branch 𝑏. 

As a consequence of this definition, the 𝐹𝐿 for the root node of the tree corresponds to the sought 

likelihood function. Note that this is not the case for the 𝐹𝐿 at any other internal node: in the example 

above, the 𝐹𝐿  for node 𝐸  does not depend on the state of taxa 𝐶  and 𝐷 , therefore it does not 

consider all of the data – which means that the 𝐹𝐿 is not a “full” likelihood function (except at the root 

node, because the descendants of the root node are all the taxa being analysed). This is further 

expanded in Appendix B. 

𝐹𝐿s can be computed using an iterative process. Let us consider 

a generic internal node 𝐼, which has two child nodes (𝐽 and 𝐾), with 

branch lengths 𝜈𝑗  and 𝜈𝑘 , respectively (Figure 32). We can 

assume that the 𝐹𝐿s for 𝐽 and 𝐾 are known: if they are internal 

nodes, they will have been computed in a previous step of the 

analysis, while if they are terminal nodes, these correspond to the 

observed data (e.g., since the observed data for 𝐴 is 0, 𝐹𝐿𝐴(0) = 1 

and 𝐹𝐿𝐴(1) = 0). The Felsenstein likelihoods at node 𝐼 are: 

𝐹𝐿𝐼(𝑥) = (∑ℙ𝑥→𝑦𝑖
(𝜈𝑗) ⋅ 𝐹𝐿𝐽(𝑦𝑖)

𝑛

𝑖=0

) ⋅ (∑ℙ𝑥→𝑦𝑖
(𝜈𝑘) ⋅ 𝐹𝐿𝐾(𝑦𝑖)

𝑛

𝑖=0

) 

Here, 𝑛 is the total number of states, and 𝑦𝑖 is the 𝑖𝑡ℎ state (e.g., state 0 or state 1). ℙ𝑥→𝑦(𝜈) is 

the probability of observing a state transition from state 𝑥 to state 𝑦 (which can also be the same) 

over a branch of length 𝜈. Essentially, for each of the two child nodes we are considering every 

possible state, and we are computing the probability of having a state transition towards that state, 

times the 𝐹𝐿 for the state at the child node. We then sum the probabilities for each node, and multiply 

them between the two child nodes. In this way, we are fixing the state of node 𝐼 at 𝑥, and we are 

computing the probability of obtaining the observed data at the descendants of 𝐼 given this fixed 

state. 

Figure 32. A generic internal node. 
𝑰  is a generic internal node, whose 

children are 𝑱 and 𝑲. 𝝂𝒋 is the length 

of the branch leading to 𝑱 , 𝒗𝒌  is the 

length of the branch leading to 𝑲. 



 

58 

Doing this in practice is easier than explaining it; however, we first need to compute ℙ𝑥→𝑦(𝜈). 

Given the rate matrix 𝑸 = [
−𝑟0→1 𝑟0→1

𝑟1→0 −𝑟1→0
], the transition probability ℙ𝑥→𝑦(𝜈) can be computed as 

exp(𝜈 ⋅ 𝑸)𝑥,𝑦 ; this is the element at the 𝑥𝑡ℎ  row and the 𝑦𝑡ℎ  column of the matrix exponential 

exp(𝜈 ⋅ 𝑸). Computing a matrix exponential is generally a rather complex problem, but one of the 

nice properties of the rate matrix is that computing its exponential is relatively straightforward. In 

particular, for our two-state rate matrix, the exponential is: 

exp(𝜈 ⋅ 𝑸) =

[
 
 
 
 

𝑟0→1

𝑟0→1 + 𝑟1→0
(𝑒−𝜈(𝑟0→1+𝑟1→0) +

𝑟1→0

𝑟0→1
)

𝑟0→1

𝑟0→1 + 𝑟1→0
(1 − 𝑒−𝜈(𝑟0→1+𝑟1→0))

𝑟1→0

𝑟0→1 + 𝑟1→0
(1 − 𝑒−𝜈(𝑟0→1+𝑟1→0))

𝑟1→0

𝑟0→1 + 𝑟1→0
(𝑒−𝜈(𝑟0→1+𝑟1→0) +

𝑟0→1

𝑟1→0
)
]
 
 
 
 

 

This means that: 

ℙ0→0(𝜈) =
𝑟0→1

𝑟0→1 + 𝑟1→0
(𝑒−𝜈(𝑟0→1+𝑟1→0) +

𝑟1→0

𝑟0→1
) 

ℙ0→1(𝜈) =
𝑟0→1

𝑟0→1 + 𝑟1→0
(1 − 𝑒−𝜈(𝑟0→1+𝑟1→0)) 

ℙ1→0(𝜈) =
𝑟1→0

𝑟0→1 + 𝑟1→0
(1 − 𝑒−𝜈(𝑟0→1+𝑟1→0)) 

ℙ1→1(𝜈) =
𝑟1→0

𝑟0→1 + 𝑟1→0
(𝑒−𝜈(𝑟0→1+𝑟1→0) +

𝑟0→1

𝑟1→0
) 

Armed with these formulae, we have almost all the elements we need to compute the likelihood 

function for our tree. For simplicity, let us fix the branch lengths to the values provided in Figure 31 

and the rates to 𝑟0→1 = 1 and 𝑟1→0 = 2. 

We can start by explicitly stating the 𝐹𝐿s for the terminal nodes: 

𝐹𝐿𝐴(0) = 1

𝐹𝐿𝐴(1) = 0
              

𝐹𝐿𝐵(0) = 0

𝐹𝐿𝐵(1) = 1
              

𝐹𝐿𝐶(0) = 1

𝐹𝐿𝐶(1) = 0
              

𝐹𝐿𝐷(0) = 0

𝐹𝐿𝐷(1) = 1
 

We now want to compute the 𝐹𝐿s for node 𝐸. We need the transition probabilities, which we can 

obtain by substituting the values for the rates and the branch lengths in the equations above: 

ℙ0→0(1) =
1

1 + 2
(𝑒−1⋅(1+2) +

2

1
) ≈ 0.683262 

ℙ0→1(1) ≈ 0.316738 

ℙ1→0(1) ≈ 0.633475                    ℙ1→1(1) ≈ 0.366525 

ℙ0→0(1.5) ≈ 0.67037                    ℙ0→1(1.5) = 0.32963 

ℙ1→0(1.5) ≈ 0.659261                    ℙ1→1(1.5) = 0.340739 
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We now have all the elements: 

𝐹𝐿𝐸(0) = (ℙ0→0(1) ⋅ 𝐹𝐿𝐴(0) + ℙ0→1(1) ⋅ 𝐹𝐿𝐴(1)) ⋅ (ℙ0→0(1.5) ⋅ 𝐹𝐿𝐵(0) + ℙ0→1(1.5) ⋅ 𝐹𝐿𝐵(1)) ≈

≈ 0.225224 

𝐹𝐿𝐸(1) = (ℙ1→0(1) ⋅ 𝐹𝐿𝐴(0) + ℙ1→1(1) ⋅ 𝐹𝐿𝐴(1)) ⋅ (ℙ1→0(1.5) ⋅ 𝐹𝐿𝐵(0) + ℙ1→1(1.5) ⋅ 𝐹𝐿𝐵(1)) ≈

≈ 0.215850 

We now move to node 𝐹. We need the transition probabilities for a branch with length 2: 

ℙ0→0(2) ≈ 0.667493                    ℙ0→1(2) = 0.332507 

ℙ1→0(2) ≈ 0.665014                    ℙ1→1(2) = 0.334986 

And we can now compute: 

𝐹𝐿𝐹(0) = (ℙ0→0(1) ⋅ 𝐹𝐿𝐸(0) + ℙ0→1(1) ⋅ 𝐹𝐿𝐸(1)) ⋅ (ℙ0→0(2) ⋅ 𝐹𝐿𝐶(0) + ℙ0→1(2) ⋅ 𝐹𝐿𝐶(1)) ≈

≈ 0.148354 

𝐹𝐿𝐹(1) = (ℙ1→0(1) ⋅ 𝐹𝐿𝐸(0) + ℙ1→1(1) ⋅ 𝐹𝐿𝐸(1)) ⋅ (ℙ1→0(2) ⋅ 𝐹𝐿𝐶(0) + ℙ1→1(2) ⋅ 𝐹𝐿𝐶(1)) ≈

≈ 0.147492 

Finally, we can move to node 𝐺 (the root node): 

𝐹𝐿𝐺(0) = (ℙ0→0(1) ⋅ 𝐹𝐿𝐹(0) + ℙ0→1(1) ⋅ 𝐹𝐿𝐹(1)) ⋅ (ℙ0→0(2) ⋅ 𝐹𝐿𝐷(0) + ℙ0→1(2) ⋅ 𝐹𝐿𝐷(1)) ≈

≈ 0.0492380 = 𝕃(0) 

𝐹𝐿𝐺(1) = (ℙ1→0(1) ⋅ 𝐹𝐿𝐹(0) + ℙ1→1(1) ⋅ 𝐹𝐿𝐹(1)) ⋅ (ℙ1→0(2) ⋅ 𝐹𝐿𝐷(0) + ℙ1→1(2) ⋅ 𝐹𝐿𝐷(1)) ≈

≈ 0.0495907 = 𝕃(1) 

This is a very balanced example, but note that the likelihood for state 1 is slightly higher than the 

one for state 0: this is (also) because 𝑟1→0 > 𝑟0→1, which means that it is easier for an ancestral state 

of 1 to change into a state of 0 than vice versa. 

We now have separate likelihoods for the two states; however, we need to combine them in order 

to obtain a single likelihood value. We can do this by considering the stationary distribution of the 

character states, which represents the proportion of time that the character has been in each state, 

assuming that it has been evolving for an infinite time [238]. The stationary distribution 𝝅 satisfies 

the condition that 𝝅 ⋅ 𝑸 = 𝟎, which we can use to compute 𝝅: 

𝝅 ⋅ 𝑸 = [𝜋0 𝜋1] [
−1 1
2 −2

] = [2𝜋1 − 𝜋0 𝜋0 − 2𝜋1] 

𝝅 ⋅ 𝑸 = 0 ⇒ 2𝜋1 − 𝜋0 = 0 ⇒ 𝜋0 = 2𝜋1 
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Naturally, 𝜋0 + 𝜋1 = 1 (because these are probabilities), thus 𝜋0 =
2

3
 and 𝜋1 =

1

3
. Note that the 

value for 𝜋0 is higher – again because 𝑟1→0 > 𝑟0→1, which means that if the character evolves for a 

long amount of time, it will spend more time in state 0 than in state 1. 

We can compute the full likelihood by using these values of 𝜋0 and 𝜋1: 

𝕃 = 𝕃(0) ⋅ 𝜋0 + 𝕃(1) ⋅ 𝜋1 = 0.0493556 

This is the final likelihood value, computed as a function of the tree topology, the branch lengths, 

and the rate parameters: 

𝕃(model) = 𝕃(𝜏, {𝜈𝑖}, 𝑟0→1, 𝑟1→0) 

𝕃(𝜏⋆, {1, 1.5, 2, 2, 1, 1}, 1, 2) = 0.0493556 

Any of the arguments of this function can be changed and will affect the value of the likelihood; 

this makes it possible to find the parameter values that maximise the likelihood, or to compute the 

posterior distribution given an appropriate prior. 

A further specification is necessary about the 𝝅  distribution that was used to combine the 

likelihoods at the root node: in theory, this does not have to be the stationary distribution of the 

frequencies; however, when estimating phylogenies, this is a convenient choice. This is because if 

the model is time-reversible (i.e., 𝜋𝑥 ⋅ 𝑟𝑥→𝑦 = 𝜋𝑦 ⋅ 𝑟𝑦→𝑥  ∀ 𝑥, 𝑦), the likelihood obtains the nice property 

that it is independent of the position of the root in the tree [236,237]. This reduces the search space 

(because there are fewer unrooted topologies than rooted topologies for a given set of taxa) and is 

the reason why most methods that build phylogenetic trees return unrooted trees. 

However, in certain situations it can be beneficial to relax this assumption: for example, in 

stochastic mapping the characters are generally simulated on a clock-like tree, which is necessarily 

rooted. Therefore, it is not necessary to use a time-reversible model, and 𝝅 can be set to an arbitrary 

value (in this case, it takes the role of a prior on the states of the root node – see Chapter 5 for more 

details) [82]. Similarly, while most phylogenetic programs produce unrooted trees, it is possible to 

use a non-time-reversible model to estimate the position of the root of the tree [240].  

This example has shown how to compute the likelihood for a single character. If the data instead 

consists of a sequence of characters (e.g., a DNA sequence), the likelihood value for the whole 

sequence can be obtained by computing the likelihood for each character independently, and then 

multiplying the likelihoods for all characters together. 

In general, likelihood values, being probabilities, are numbers between 0 and 1. However, 

especially when many characters are involved, these numbers become very small very quickly; thus, 

in order to avoid numerical underflow problems, most computer programs actually work with and 
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report the logarithm of the likelihood function. As a result, the (log-)likelihood values that are usually 

presented and discussed are negative numbers.
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3. Method and software 
development 

 

This chapter will present an overview of some of the programs and libraries I have developed as 

supporting tools during my PhD. Each section provides a description of the software, the motivation 

behind its development, some of the challenges I encountered while developing it, and possible 

applications. 
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3.1. AlignmentViewer 

3.1.1. Description and motivation 

AlignmentViewer [241] (Figure 33) is a web application to display, 

combine and filter sequence alignments, which can open alignment files 

in FASTA [242] and PHYLIP [243] formats. The program automatically 

recognises the type of sequences (DNA or protein) and displays them 

accordingly. Multiple files can be opened at once, and the program will 

treat each file as a separate sequence “partition”, concatenating 

sequences that belong to the same taxon (i.e., which have the same 

name). AlignmentViewer can be accessed using the following link: 

https://giorgiobianchini.com/AlignmentViewer/AlignmentViewer.html 

[241]. 

I developed this program because I needed a tool that could display an entire sequence alignment 

on-screen and could be used to concatenate multiple genes for the same taxa, filtering each 

alignment to remove noisy positions. Alignment filtering is used to correct errors made by sequence 

alignment programs, and consists in removing some sections of data that are identified as 

“problematic” from the alignment [244]. This is an important step in a phylogenetic analysis, because, 

if done properly, it is supposed to improve the results by increasing the signal-to-noise ratio [244]. 

There are many tools to automate sequence filtering, even though there is no clear consensus on 

the best approach or whether it might be better to avoid the filtering step altogether [245]. 

Rather than employing sophisticated filtering techniques that are available in other programs (e.g. 

[246–251]), AlignmentViewer implements a set of basic filtering criteria that can be combined 

together using Boolean operators, and relies on users manually reviewing the filtered alignment 

(though it should be noted that this can potentially reduce the reproducibility of the analysis [244]). 

Figure 34 shows the graphical user interface of AlignmentViewer. The sequence filter is 

represented as a “mask” of Boolean values above the sequence alignment; a value of 1 indicates 

that the residue is included in the final alignment, and a value of 0 indicates that it must be excluded. 

The user can manually click on the mask to change the status of individual alignment columns, or 

use the included automated filtering modes. For these, the user initially defines a “threshold” value 

– either in relative terms (e.g., 50% of the sequences) or in absolute terms (e.g., 37 sequences) – 

and a criterion: 

• Under the “Distance from start” or “Distance from end” criteria, alignment positions that are 

closer or farther away than the specified threshold from the start or end of the sequence are 

matched by the filter. 

Figure 33. AlignmentViewer 

program icon. 

https://giorgiobianchini.com/AlignmentViewer/AlignmentViewer.html
https://giorgiobianchini.com/AlignmentViewer/AlignmentViewer.html
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• Under the “Gap content” criterion, columns where the number of gaps is smaller or greater 

than the threshold are matched. 

• Under the “Sequence identity (include gaps)” or “Sequence identity (exclude gaps)” criteria, 

columns where the % identity is smaller or greater than the threshold are matched. 

In the next step, the user chooses whether the matched columns should be assigned a value of 

0 or 1, and a Boolean operation to combine the existing mask with the new filter. With the “SET” 

operation, the current mask is replaced by the new filter; with the “AND” operation, the value of the 

current mask is compared with the new filter, and columns where both have a value of 1 are set to 

1, while all other columns are set to 0; and so on. 

Filters can be applied to all loaded partitions or only to the ones that are active (i.e., visible); by 

default, columns that have been excluded by the mask are drawn with semi-transparent colours, but 

they can also be hidden or drawn as normal. 

The display options of the program also include the possibility to change the amino acid or 

nucleotide colours, to sort the taxa in the alignment alphabetically, to hide the letters identifying the 

residues in the alignment, and to change the size of the alignment elements. This latter option makes 

it possible to draw alignments that are very long or contain many sequences on a single screen, 

which helps in assessing the overall quality of the alignment. 

AlignmentViewer can export the alignment in three different formats: the widespread FASTA and 

PHYLIP formats and a JSON format. For FASTA and PHYLIP output files, the user has the option 

to either include all columns in the alignment, or only the ones that have a mask value of 1. While 

Figure 34. AlignmentViewer interface. The screenshot shows an AlignmentViewer window displaying a sequence 
alignment in which some columns have been hidden. 
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the JSON format is not compatible with other software, it can be used to preserve the partitioned 

structure of the data and the sequence mask, which is useful if further modifications need to be done 

and to improve reproducibility. 

3.1.2. Implementation 

Unlike all the other software and libraries presented in this chapter and in further chapters, 

AlignmentViewer is written using HTML [252], CSS [253] and JavaScript [254]. This is because, at 

the time when I developed this program, the cross-platform .NET runtime for the C# language used 

in other programs [255] was not mature enough for GUI programming. Therefore, a browser-based 

web application was the best option to develop a cross-platform GUI program. Despite being run in 

a browser, the software is completely client-based – i.e., it runs entirely on the user’s computer, and 

no data is ever uploaded to the hosting server, which helps avoid privacy concerns. 

The graphical interface of AlignmentViewer is drawn using the HTML5 Canvas object [256]. One 

of the main challenges when developing this program was to ensure an acceptable level of 

performance even when working with large alignment files. To address this issue, AlignmentViewer 

uses a custom scrollbar implementation, and only draws at any time the parts of the alignment that 

are actually visible on screen. Accordingly, the amount of time required to draw an alignment 

depends mainly on the size of the browser window and of the sequence elements, and not on the 

alignment length or the number of sequences. This makes the program suitable to work with complex 

phylogenomic datasets. 

Running the program in a web browser also makes it amenable to easy scripting, which can be 

done by opening the browser’s JavaScript console. Here, the sequence data is available in the 

partitions object, and a number of additional manipulations can be performed. For example, the 

following script prints the name of each partition followed by the first and last unmasked residues; 

this can be useful to perform a partitioned analysis of the concatenated alignment in phylogenetic 

tree software: 

// The first partition starts at residue 1 
let start = 1; 
 
for (let i = 0; i < partitions.length; i++) 
{ 
    // The length of the partition corresponds to the length of the mask, 
    // where all the "0" positions have been removed. 
    let partitionLength = partitions[i].Mask.replaceAll("0", "").length; 
     
    // Compute the end of the partition. 
    let end = start + partitionLength - 1; 
     
    // Log the result to the console. 
    console.log(partitions[i].Name + ": " + start + " - " + end); 
     
    // The next partition starts on the first nucleotide after the end of 
    // the current partition. 
    start = end + 1; 
} 
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The source code for AlignmentViewer is available in the GitHub repository for my personal 

website, at https://github.com/arklumpus/arklumpus.github.io/tree/main/AlignmentViewer [257]. To 

produce output files containing multiple separate alignments, it uses the JSZip library, which is 

released under a MIT/GPLv3 dual licence [258]. AlignmentViewer is released under an AGPLv3 

licence. 

  

https://github.com/arklumpus/arklumpus.github.io/tree/main/AlignmentViewer
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3.2. TreeNode 

3.2.1. Description and motivation 

TreeNode [259] (Figure 35) is a library to read and write phylogenetic 

tree files and to manipulate the trees themselves. It consists of three main 

components: 

• A description of the supported tree file formats. 

• The TreeNode R package. 

• The TreeNode C# library. 

When I started to develop C# programs to manipulate phylogenetic trees (e.g., TreeViewer, which 

is described in Chapter 4 and other smaller scripts), the absence of a C# library to work with these 

structures was problematic, and I therefore decided to develop the TreeNode C# library. In addition 

to creating the appropriate data structures to hold phylogenetic tree data and the methods to 

manipulate them, the library required a parser component that would be able to read phylogenetic 

tree files. However, parsing a tree file is not a straightforward task, because every program that 

creates phylogenetic trees uses its own variation of the Newick tree format [88]. The Newick format 

is the most widely used phylogenetic tree file format, but its original specification did not contain 

provisions for defining generic attributes for the tree nodes [88]; therefore, various programs have 

“abused” the comment feature of the format in different ways, in order to include program-specific 

information together with the tree. For example, Table 3 shows a portion of a tree file obtained with 

three different programs, compared with the original Newick specification. 

Table 3. Comparison of phylogenetic tree files. The table contains portions of phylogenetic tree files created with three 
different programs (MrBayes [228], BEAST [231] and IQ-TREE [227]), compared with the standard Newick format. The 
internal structure of the node is omitted (blue); the branch length (which is the only attribute specified in the Newick format) 
is highlighted in orange; the support value is highlighted in green. Note how the attributes are specified by each program 
in a different way. 

Newick MrBayes BEAST IQ-TREE 

(…):0.00132488 (…)[&prob=9.74942093e-01,prob_s 

tddev=3.12681457e-03,prob_range 

={9.72731101e-01,9.77153085e-01 

},prob(percent)="97",prob+-sd=" 

97+-0"]:1.324888e-02[&length_me 

an=1.37783407e-02,length_median 

=1.32488800e-02,length_95%HPD={ 

2.59352500e-03,2.63084300e-02}] 

(…)[&length_range={3.5180002748

800426E-6,0.028076582623659037} 

,height_95%_HPD={0.008309844004

803654,0.014034543688957277},le

ngth_95%_HPD={0.001638152442754

6406,0.02470412121525377},rate=

1.0,length=0.014070554020013002

,posterior=0.8685164354455693,l

ength_median=0.0198468299400067

3,height_median=0.0109477907885

86403,height_range={0.006277368

434290553,0.01733554732372078},

height=0.01098551308527912]:0.0

04308549734866066 

(…)78/91:0.0040284820 

Figure 35. TreeNode logo. 

https://github.com/arklumpus/TreeNode
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To address this issue, I have attempted to codify the common features of the output tree files 

produced by various programs (such as MrBayes [228] and BEAST [231]) into a single file format 

specification, the Newick-with-Attributes format. In parallel, I have also developed a novel tree file 

format, the Binary tree format. To improve the chance of adoption of these formats, in addition to the 

TreeNode C# library I have also developed the TreeNode R package, which reads tree files in 

Newick-with-Attributes and Binary tree format and stores them in tree objects that are compatible 

with the popular R package ape [91]. 

3.2.2. Implementation 

Newick-with-Attributes format 

The Newick-with-Attributes (NWKA, pronounced new-kah) format is an extension of the Newick 

format, which allows for the specification of arbitrary attributes that can be associated to each node 

of the tree. The format is described in detail in the TreeNode GitHub repository, at 

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md [260]. 

This format is backwards compatible with the Newick format, in the sense that trees in Newick 

format are valid NWKA trees. It is also compatible with the various Newick declinations that are used 

to specify trees within NEXUS files produced by many programs, and with other extensions such as 

the New Hampshire X Format (NHX) [261], the Rich Newick Format [262] and the Extended Newick 

format [263]. 

The main extension to the base format is that attributes can be specified in the tree file as 

key=value pairs immediately after each node, which makes it possible to store many different 

features on the tree. Heuristic criteria are also specified, which make it possible to omit the key part 

of the pair where it can be inferred from the position of the attribute. These criteria make it possible 

to correctly interpret base Newick files that only specify the attribute value for node labels and 

branch lengths. 

Binary tree format 

The Binary tree format can be used to store phylogenetic tree files in a compact and seekable 

way. This means that the tree file contains an index with the location of every tree within the file; 

using the information contained within this index, it is possible to access the 𝑛-th tree in the file 

without having to read and parse the 𝑛 − 1 trees preceding it (which is not possible with traditional 

Newick or NEXUS tree files). Another feature of this format is that it can store a block of additional 

arbitrary data, which can be used to include information that does not directly belong to a node in 

the tree (e.g., a digital signature for the tree file). 

https://github.com/arklumpus/TreeNode/blob/master/NWKA.md
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A detailed description of this format is available in the TreeNode GitHub repository, at 

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md [264]. A tree file in Binary Tree 

format contains four main sections: 

• A header block. 

• A tree data block. 

• An additional data block. 

• A trailer block. 

The header block contains general information about the tree file, such as whether all the trees 

in the file contain the same set of taxa or the same attributes. The tree data block contains the 

description of one or more phylogenetic trees; each tree is specified first by describing the tree 

topology, and then the attributes associated to each node. The additional data block is an optional 

block that can contain any kind of information; for example, in TreeViewer (see Chapter 4), this block 

is used to store data about the modules that are currently active in the tree visualisation. Finally, the 

trailer block contains the index, specifying the location within the file where each tree starts. 

A program that only wants to access a specific tree from the file only needs to extract the address 

of the tree from the trailer block and then move the file pointer to the corresponding position. The 

way the tree information is stored in the file also means that the TreeNode library can parse large 

tree files in this format much more quickly than files in NWKA format, because there are fewer string 

operations involved. 

TreeNode R package 

The TreeNode R package enables R users to read and write phylogenetic trees in NWKA or 

Binary Tree formats. It provides a number of functions that read tree files and return ape-compatible 

[91] tree objects, as well as functions that take one or more tree objects and write them to files. Most 

of these functions are implemented as Rcpp modules [265] exposing methods implemented in C++, 

which provide much better performance than native R code. The full documentation for the TreeNode 

R package is available from the documentation website: https://giorgiobianchini.com/TreeNode/R/ 

[266]. 

Functions used to read tree files include: 

• The read_nwka_tree function, which reads a file containing one or more trees in NWKA 

(or standard Newick) format. This function reads and associates to the tips and nodes of 

the tree all the attributes defined in the tree file, even those that would be lost by using the 

standard read_tree function of the ape package [91]. 

• The read_nexus_tree function, which reads a tree file in NEXUS format [89]. Like the 

previous one, this function preserves all the attributes defined in the NEXUS file. 

https://github.com/arklumpus/TreeNode/blob/master/BinaryTree.md
https://giorgiobianchini.com/TreeNode/R/
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• The read_binary_trees function reads all the trees in a file in Binary Tree format, again 

preserving all the attributes defined therein. 

• The read_one_binary_tree function opens a tree file in Binary format and only reads the 

tree with the specified index, without parsing all the previous trees in the file. 

Functions used to write tree objects to tree files include: 

• The write_nwka_tree function, which writes one or more trees to a NWKA file; it is also 

possible to force this function to produce a Newick-compliant file. 

• The write_nwka_nexus function, which writes the trees to a NEXUS file, using the NWKA 

format to store them within the Trees block.  

• The write_binary_trees function writes the trees to a file in Binary Tree format, using 

various optimisations to reduce the amount of disk space used and the time required to 

open the file. 

• The begin_writing_binary_trees, keep_writing_binary_trees and 

finish_writing_binary_trees functions, which are used to write one tree at a time to 

a file in Binary format. These are useful, for example, when large trees are generated one 

by one, because they do not require that all trees be loaded in memory at the same time. 

The source code for this package, which is released under a GPLv3 licence, is available from the 

TreeNode GitHub repository [259], together with instructions on how to install it using the 

install_github function of the devtools R package [267]. 

TreeNode C# library 

The TreeNode C# library, in addition to providing methods to read and write phylogenetic trees 

like the R library, also contains functions to manipulate the tree objects (which were not available in 

any other C# library). The full documentation for this library is available from the documentation 

website: https://giorgiobianchini.com/TreeNode/Csharp/ [268]. 

The PhyloTree.Formats namespace provided by the library contains classes with methods to 

read and write phylogenetic trees; these are: 

• The BinaryTree class, which can be used for files in Binary Tree format. 

• The NEXUS class, which deals with files in NEXUS format. 

• The NWKA class, which works with files in Newick-with-Attributes format. 

• The NcbiAsnText and NcbiAsnBer classes, which are compatible with tree files in the 

NCBI ASN.1 tree format. This format can be chosen, for example, when downloading a 

distance tree built from BLAST results, and it is useful because it preserves many attributes 

of the matched sequences (such as their accession number or the organism from which 

they were obtained). 

https://github.com/arklumpus/TreeNode
https://giorgiobianchini.com/TreeNode/Csharp/


 

72 

These are all static classes and contain methods to write trees to files or to generic streams 

(WriteTree, which writes a single tree, and WriteAllTrees, which writes a collection of multiple 

trees), as well as methods to read tree data from files or streams (ParseTrees, which reads trees 

one at a time, and ParseAllTrees, which reads all the trees contained in a file at once). Some 

classes contain additional methods to perform actions that are available only for specific file types – 

for example, the NWKA class can also be used to directly convert a tree object into a Newick string. 

Phylogenetic tree objects are represented as instances of the PhyloTree.TreeNode class, 

regardless of the format of the file from which they were parsed. The tree topology can be navigated 

by using the Parent property, which points to the parent node of a TreeNode object, and the 

Children property, which contains a list of the children of the node. For the root node, the Parent 

is null, while for leaf nodes the Children have length 0. Attributes of the node can be accessed 

using the Attributes dictionary; in order to improve performance, three commonly used attributes 

are also directly implemented as properties of the TreeNode object (Name, Length and Support), 

which avoids the dictionary lookup when accessing them. 

The tree can be manipulated using methods on the TreeNode class. These include methods to 

root or unroot the tree (GetRootedTree and GetUnrootedTree), to obtain a flat list of all the 

descendants of a node (GetChildrenRecursive, GetLeaves and more), to determine the last 

common ancestor of a set of nodes (GetLastCommonAncestor), to compute distances on the tree 

(PathLengthTo, UpstreamLength, ShortestDownstreamLength, and 

LongestDownstreamLength), and more. Altogether, these methods make it possible to easily 

manipulate and explore the phylogenetic tree. 

 The TreeNode C# library is used by both sMap [82] (see Chapter 5) and TreeViewer (see 

Chapter 4) to work with phylogenetic trees. I have also used it in a number of smaller scripts to 

manipulate phylogenetic trees and prepare them for further analyses. The source code is available 

under a GPLv3 licence from the TreeNode GitHub repository [259], and the library is available as a 

NuGet package [269] that can be easily downloaded and installed. At the time of writing, it has been 

downloaded about 1900 times (including all versions) [269]. 

  

https://github.com/arklumpus/TreeNode
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3.3. VectSharp 

3.3.1. Description and motivation 

VectSharp [270] (Figure 36) is a C# library to create vector graphics. It can 

be used to either display the created image on screen, or to save it to a file in 

PDF, SVG, or PNG format. In addition to 2D vector graphics, it can also be 

used to create 3D renderings, such as plots of two- or three-variable functions 

(Figure 37). 

 Like TreeNode, I developed this library while working on my other software 

packages, due to the lack of suitable free and open-source libraries to create vector graphics and, 

in particular, PDF plots. In fact, early versions of sMap [82] used a fork of the iTextSharp library [271] 

to create PDF documents; however, this library depends on platform-specific graphics functions. 

Therefore, these versions of sMap required an additional software library on Linux and macOS 

machines (libgdiplus [272]), which was not trivial to install or provide to end users. At the time, 

alternative libraries either did not satisfy the requirements of my programs, or required an upfront 

payment to use the library. 

For these reasons, I decided to develop a new 

cross-platform library to create vector graphics in C#, 

without dependencies on external libraries. VectSharp 

provides an abstract layer on which the drawing 

operations can be performed; the operations can then 

be “replayed” on a separate output layer, which could, 

for example, draw them on screen, or save the image 

as a PDF file. This approach has the advantage of 

making it possible to use the same code to draw on 

screen and to an image file, thus providing users with 

accurate previews of their plots. 

 There are currently four output layers for VectSharp: VectSharp.PDF produces PDF documents, 

VectSharp.SVG produces SVG documents, VectSharp.Raster produces PNG images, and 

VectSharp.Canvas draws the image on screen using the Avalonia cross-platform GUI library [273]. 

3.3.2. Implementation 

The abstract layer on which drawing operations are performed is implemented by the 

VectSharp.Graphics class. This class contains both methods for simple draw operations, as well 

as other methods for more complicated operations. These can be used, for example, to draw 

rectangles (FillRectangle and StrokeRectangle), text strings (FillText and StrokeText), 

Figure 36. VectSharp 
logo. 

Figure 37. Plot of a two-variable function. This plot 

was created using the VectSharp.ThreeD library. 
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images (DrawRasterImage), and generic shapes (FillPath and StrokePath), or to perform 

transformations of the coordinate system (Scale, Translate, Rotate and more). Examples of 

complex actions are the FillTextOnPath and StrokeTextOnPath methods, which draw a text 

string following an arbitrary shape (rather than drawing it all on a line): behind the scenes, this is 

implemented as a series of simple drawing calls that draw a single character at a time, positioning it 

appropriately. 

The CopyToIGraphicsContext method of the VectSharp.Graphics class replays the drawing 

operations on an object that implements the IGraphicsContext interface, which is provided by the 

output layer. The internal implementation of this object (which is not exposed to the end user) 

receives the drawing calls and treats them appropriately in order to produce the desired output. For 

example, in VectSharp.SVG calls to the FillPath method result in a <path> SVG object being 

added to the output file. 

A major challenge in the development of this library was the implementation of methods that draw 

text strings; this is because, in order not to depend on external libraries, I also had to develop an 

implementation of a font file parser. I therefore perused the Apple and Microsoft documentation for 

the TrueType font file format [274,275], in order to unpack the contents of font files and extract 

information about the size and spacing of font glyphs, as well as their outlines; this is implemented 

in the VectSharp.TrueTypeFile class. A consequence of this approach is that VectSharp has a 

very close control on text representation; for example, text in the output layer can either be 

represented by a proper text object (which requires the appropriate font to be installed in the users’ 

computer or embedded in the output file), or transformed into outlines (which removes all 

requirements for font files in target computers). 

VectSharp.PDF 

VectSharp.PDF provides an output layer to create PDF documents using VectSharp. PDF 

documents can consist of multiple pages, and are compatible with the 1.4 version of the PDF 

specification [276]. To develop this library, I used information in the PDF Reference [276] to write 

code that transforms the VectSharp drawing calls into the equivalents in the PDF format. Among 

other features, VectSharp.PDF implements font subsetting, which makes it possible to include in the 

PDF file only the font glyphs that are actually used in the document. 

VectSharp.SVG 

In addition to providing an output layer to create SVG images, VectSharp.SVG also contains 

methods to import SVG files and transform them into native VectSharp drawings. Like 

VectSharp.PDF, drawing operations are transformed in the output layer into the corresponding SVG 

elements, and the opposite happens when the library is used to import an SVG file. Font files can 
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also be included and subsetted in SVG documents; however, some programs (e.g. Inkscape [277]) 

do not support embedded fonts and display the text using a default font instead if this option is used. 

VectSharp.Raster 

The VectSharp.Raster library can be used to export a VectSharp drawing as a PNG image. While 

older versions of this library used internal routines to rasterise the vector image, since version 2.0.0 

VectSharp.Raster uses the MuPDFCore library (see below) for this. The vector graphics is internally 

rendered to a PDF document using VectSharp.PDF, and then the PDF document is rasterised to a 

PNG image using MuPDFCore. This has resulted in significant performance improvements over 

older versions. 

VectSharp.Canvas 

Vectsharp.Canvas renders a VectSharp drawing into an object that can be drawn on screen using 

the Avalonia UI library [273]. The library implements different ways to perform this task: 

• The PaintToCanvas method, when the graphicsAsControls parameter is set to true, 

renders each drawing operation as an Avalonia object. This is the slowest approach, but 

makes it possible to more easily interact with the drawn objects, for example to detect 

mouse clicks. 

• The PaintToCanvas method with graphicsAsControls set to false, instead, performs the 

draw operations using Avalonia drawing calls. In this case, performance is better, but 

individual elements of the drawing are not represented as separate Avalonia objects. While 

mouse events can still be detected, modifying the plot in response to these events is 

trickier, and other kinds of events are not available. 

• The PaintToSKCanvas method, instead, uses the SkiaSharp library [278] to draw the 

image; this is drawn as a raster image and then displayed on screen using Avalonia. This 

is the fastest and most flexible approach: since the actual interaction with the user interface 

happens only at the very last moment, this method implements many performance 

improvements, such as separate graphics layers and multithreaded rendering, which help 

provide a smooth user experience. On the other hand, this adds complexity, and makes 

this option the hardest to work with. As in the previous case, mouse events are available, 

while handling other kinds of events is more complicated. 

VectSharp.Markdown 

The VectSharp.Markdown library contains methods to render Markdown documents [279] into 

VectSharp objects; as a consequence, this library can be used to create PDF or SVG documents 

out of Markdown files, or to display them on screen. The library uses Markdig [280] to parse the 

documents, and uses its own logic to determine the flow of text and image elements. It also supports 

syntax highlighting through a fork of the Highlight library [281]. In addition to methods that render the 
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Markdown document to a VectSharp object, this library also includes a viewer control, which can be 

used to display the contents of the document using the Avalonia UI framework [273]. This library is 

used extensively in TreeViewer, to display the manuals for the various modules and export them as 

PDF files. 

VectSharp is used by both sMap [82] (see Chapter 5) and TreeViewer (see Chapter 4); I have 

also used it to create many of the figures that are presented in this work. The full documentation for 

the library is available from the documentation website: https://giorgiobianchini.com/VectSharp/ 

[282], while the source code is available from the VectSharp GitHub repository [270] under a GPLv3 

licence (though some parts are licensed under AGPLv3). The various components are available as 

NuGet packages [283] that can be easily installed and updated. At the time of writing, the base 

VectSharp package has been downloaded about 12’800 times (including all versions) [283]. 

  

https://giorgiobianchini.com/VectSharp/
https://github.com/arklumpus/VectSharp
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3.4. MuPDFCore 

3.4.1. Description and motivation 

MuPDFCore [284] (Figure 38) is a C# library providing cross-platform 

.NET bindings to the MuPDF library [92]. MuPDF, developed by Artifex, Inc. 

and released under an AGPLv3 licence [92], is a lightweight library that is 

used to manipulate documents in PDF format and in other formats. This is a 

C library, which means that it can be used directly in C/C++ programs; 

MuPDFCore is a wrapper around this library that makes it usable in programs 

written using .NET languages (such as C#). 

While developing my programs, I had the necessity of being able to convert PDF documents into 

raster bitmaps, either to provide a preview of the PDF plot, or to provide support for directly creating 

raster images (e.g., in VectSharp.Raster, see 3.3). MuPDF was a promising option for this, but being 

a C/C++ library, it is not directly usable in C# programs, and existing wrappers were outdated, poorly 

documented, or not compatible with platforms other than Windows. Therefore, I decided to develop 

a new .NET wrapper for MuPDF. The initial goal was simply to implement methods that could be 

used to render documents into raw images; following user feedback, the library has grown to include 

methods to extract text from the documents and to perform optical character recognition (OCR). 

The latest version of MuPDFCore can be used 

to: 

• Render PDF, XPS, EPUB documents 

and more to a raster image, either 

saving it on disk (e.g., in PNG format), 

or storing the raw byte data in memory. 

• Combine pages from multiple 

documents (or extract pages from a 

document) into a new document in PDF 

format (or in other formats). 

• Extract the text contained in the 

document file, perform searches and 

highlight it. 

• Perform optical character recognition 

(OCR), using the Tesseract library [285] included within MuPDF. 

MuPDFCore also implements methods for multithreaded rendering; this can be achieved by either 

rendering multiple parts of a page at the same time, or by rendering multiple pages independently. 

Figure 38. MuPDFCore 

logo 

Figure 39. PDF viewer sample. The screenshot shows 
the interface of a simple PDF viewer program implemented 
using MuPDFCore. The program can render each page 
using multiple threads and can perform OCR and 
advanced search operations. 

https://github.com/arklumpus/MuPDFCore
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As a proof of concept of the functionalities of MuPDFCore, the GitHub repository contains an 

example of a simple cross-platform PDF viewer program, which uses multithreaded rendering to 

display the PDF document using the Avalonia UI library [273] (Figure 39). This program can also be 

used to select and copy text, to search using regular expressions, and to perform OCR. 

3.4.2. Implementation 

Reflecting the differences between the two programming languages, the MuPDF C library has a 

very different API structure than a typical C# program, involving typical C features such as the 

extensive use of pointers and the use of setjmp/longjmp for exception handling. In order to hide 

such complexities from the end users, MuPDFCore is structured in two components: 

• The MuPDFWrapper C++ library, which provides simplified access points for the most 

common MuPDF operations. 

• The actual MuPDFCore C# library, which uses Platform Invoke [286] operations to call the 

access points defined in MuPDFWrapper. This contains the methods that are accessible 

to end users. 

Wherever practical, data such as the PDF document’s contents or the rendered raster image are 

passed between the C# methods and the C library as raw pointers, in order to avoid the overhead 

that would occur if they had to be copied at every function call. 

In order to simplify the management of object lifespan, most classes in the C# MuPDFCore library 

implement the IDisposable interface [287], which invokes the corresponding C methods to perform 

safe memory allocation and deallocation. A typical workflow in MuPDFCore involves creating a new 

MuPDFContext object, using it to open a MuPDFDocument, rendering a page from the document using 

the Render or SaveImage methods, and then closing everything and releasing the resources (this is 

done automatically if the objects are initialised with the using statement). The following code snippet 

shows how MuPDFCore can be used to render the first page of a PDF document: 

//Initialise the MuPDF context. This is needed to open or create documents. 
using MuPDFContext ctx = new MuPDFContext(); 
 
//Open a PDF document 
using MuPDFDocument doc = new MuPDFDocument(ctx, "Document.pdf"); 
 
//Save the first page as a PNG image with transparency, at a 1x zoom level. 
doc.SaveImage(0, 1, PixelFormats.RGBA, "Raster.png", RasterOutputFileTypes.PNG); 

More examples are available in the MuPDFCore GitHub repository [284], together with the source 

code, under an AGPLv3 licence. The library is fully documented in the documentation website: 

https://giorgiobianchini.com/MuPDFCore/ [288]. MuPDFCore is available as a NuGet package [289] 

that can be easily installed and updated. At the time of writing, the package has been downloaded 

about 9900 times (including all versions). The library is used by VectSharp (see Section 3.3) to 

create PNG raster images and to import documents in various formats, and by TreeViewer (see 

Chapter 4).

https://github.com/arklumpus/MuPDFCore
https://giorgiobianchini.com/MuPDFCore/
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4. TreeViewer 
Flexible, modular software to visualise and manipulate 

phylogenetic trees 

 

  



 

80 

4.1. Introduction 

TreeViewer is a flexible and easy to use multiplatform software to draw phylogenetic trees, with 

the option to display additional data and produce high-quality publication figures. Phylogenetic trees 

describe evolutionary relationships; in TreeViewer, they can be used as tools to display additional 

information within an evolutionary framework, such as morphological characters or alignment 

features, enabling the discovery of novel evolutionary patterns. TreeViewer also allows users to 

define pipelines to produce complex phylogenetic tree plots, which can be customised depending 

on the needs of each analysis. 

TreeViewer has a high degree of customisation due to its modular and flexible structure; plots 

produced by the program are also intrinsically reproducible, as the user-defined pipeline can be 

easily re-applied to the same tree or different trees. Furthermore, TreeViewer has a command-line 

interface that can be used to work with huge trees or to automatically produce plots as part of a script 

pipeline. 

The development architecture of TreeViewer makes it modular and flexible: tree plots produced 

by the program are the result of the concerted action of multiple “modules” (similar to the structure 

of Mesquite [290]). Users can freely choose which modules to use and how to arrange them, 

customising every step in the process and not being tied into a predefined workflow. This modular 

Table 4. Types of modules available in TreeViewer. The table shows the task of which each module is in charge, as 
well as an example of each type of module. 

Module type Task Example 

File type 
Opens and interprets the contents 

of a tree file in a particular format. 

The “Newick” module adds support for tree files 

in Newick format. 

Load file 

Loads the contents of a tree file, 

making them available for 

TreeViewer. 

The “Memory loader” module loads the trees in 

memory. 

Transformer 

Transforms the trees contained in a 

tree file, producing a single tree that 

can be further processed. 

The “Consensus” module computes a consensus 

tree out of the trees contained in the file. 

Further 

transformation 

Performs additional 

transformations on the tree. 
The “Reroot tree” module re-roots the tree. 

Coordinates 
Computes the coordinates of the 

tree nodes in the plot. 

The “Rectangular” module computes the 

coordinates for a tree in a rectangular style. 

Plot action Plots an element of the tree. The “Branches” module plots the tree branches. 

Action 

Performs a generic action, which 

can involve activating or de-

activating some modules. 

The “Rooted tree style” module changes the 

current Coordinates module and activates Plot 

action modules in order to plot the tree as a 

rectangular rooted tree. 

Selection action 
Performs an action on the selected 

node. 

The “Collapse selection” module collapses the 

selected node (by activating the “Collapse node” 

Further transformation module). 

Menu action 
Adds an item to the menus in the 

main window. 

The “Export” module adds an option to export the 

tree plot in various formats (PDF, SVG, PNG). 
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nature also means that changes to the settings 

of an individual module do not affect the rest of 

the plot, and all changes that are made to the 

tree can be easily undone by disabling the 

module that is responsible for them. A list of all 

the types of modules that are available in 

TreeViewer is provided in Table 4. 

Plots created with TreeViewer are also 

intrinsically reproducible: in addition to saving 

the final plot as a publication-ready figure, 

users can choose to keep track of the whole 

pipeline that was involved in producing the plot 

starting from a phylogenetic tree file. This 

means that if a small change is needed 

somewhere along the pipeline, it can be 

applied in-place, without having to repeat all 

the steps that were involved in creating the plot 

(e.g., selecting the colour for the branches, 

collapsing some nodes, etc.). Furthermore, 

TreeViewer makes it easy to apply the same 

pipeline to a different tree; thus, users can 

create their own “plot style” and readily apply it 

to different datasets, performing only minimal 

dataset-specific adjustments. For example, a 

possible use case is to create a phylogenetic 

tree plot using provisional data while a long 

analysis is running, and then update it with the 

final tree when it becomes available, which 

increases the potential for multitasking. 

The functionalities of TreeViewer can be 

expanded (even by the users themselves) by 

Figure 40. Examples of trees created using TreeViewer. (A) An unrooted tree showing the results of a BLAST search. 
The branch colour displays the BLAST score of each hit and orange stars highlight the “true orthologs” of the query 
sequence, which is denoted by the blue star. (B) A circular tree showing the presence or absence in various bacterial 
strains of photosynthetic reaction centres and of the norV and hmpA genes. (C) A time-calibrated tree of cyprinodontiform 
fishes. The tree includes an image for each species. Fish families are also highlighted. The phylogeny is adapted from 
[294]. The images for P. reticulata and P. sphenops are adapted from original photographs [426,427], while all the other 
images are adapted with permission from original photos by R. Pohlmann [428]. Each figure was created using only 
TreeViewer, without the need for any external graphics editing software. Instructions detailing how to create these plots 
(and more) are available in the TreeViewer online manual, at https://treeviewer.org/manual/examples [429]. 

https://treeviewer.org/manual/examples
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creating new modules. A curated online repository of modules [291] (https://treeviewer.org/modules) 

keeps users informed as to when new modules are released or a module is updated; users can also 

take advantage of the lightweight development environment integrated in TreeViewer to create 

modules that are tailored to the particular needs of their analyses, and then share them with 

colleagues or the wider community by uploading them to the public module repository. 

TreeViewer is mainly a graphical program, in which users can interact with the phylogenetic tree 

plot by resizing it, selecting individual nodes, and performing context-specific actions (e.g., pruning 

a node or collapsing it). However, in the era of Big Data [292], it is nowadays common to have 

phylogenetic trees involving tens or hundreds of thousands of taxa (e.g. [176,293–296]), with which 

it may be impractical to interact in real-time. To address this, TreeViewer also provides a lightweight 

command-line interface that can be used to manipulate and plot the trees either interactively, or as 

part of an automated script pipeline. 

Figure 40 shows some examples of plots produced using TreeViewer v.1.2.0.  

Creating complex plots with many different features may seem at first a daunting task; however, 

a number of examples and tutorials (some included in this chapter, others available in the online 

documentation for TreeViewer at https://treeviewer.org/manual [297]) make it possible for users to 

easily gain confidence with the program and learn to use all of its features. 

4.2. Implementation 

4.2.1. Overview 

The interface of TreeViewer is used to explicitly describe the process that goes from a tree file to 

a finished tree plot (Figure 41) in a series of discrete steps. 

The initial step in producing a plot using TreeViewer is reading a tree file from the hard disk. This 

involves first of all opening the file, determining its format, and choosing the most appropriate module 

to read it. These actions are performed by a File type module (Table 4). The program can 

automatically choose the best module for each file, but users can also decide to manually specify 

the one they want to use, in case multiple modules are able to read the same file type. The File type 

modules that are currently available enable TreeViewer to open tree files in the widespread Newick 

[88] and NEXUS [89] formats, as well as the NCBI ASN.1 format [90], and a novel Binary tree format 

[298]. The program then needs to determine the best strategy to load in memory the tree file that 

has been read. This action is performed by a Load file module (Table 4), which can be used, for 

example, to copy the contents of the entire file into the system’s memory (for smaller files) or to read 

just one tree at a time from the file as necessary (for larger files containing many trees). 

https://treeviewer.org/modules
https://treeviewer.org/manual
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Figure 41. TreeViewer workflow to create tree plots. First of all, the program reads a tree file containing one or more 
trees using a File type and a Load file module. The tree(s) are then transformed using a Transformer module and, if 
necessary, one or more Further transformation modules. The final transformed tree is then plotted using a Coordinates 
module and one or more Plot action modules. 

In order to plot a tree, the next step is determining the coordinates of the nodes in the tree, i.e. at 

which position in the plot will each branch start and end. This step is performed by a Coordinates 

(Table 4) module, which determines for example whether the tree appears as an unrooted tree or 

as a rectangular tree. Finally, this set of coordinates is used by Plot action (Table 4) modules to 

actually create the phylogenetic tree plot: each module is in charge of drawing a single feature of the 

plot, such as the branches of the tree, the labels for the tip nodes, or a scale bar. 

The final tree plot is the result of the action of all these modules. It can be viewed and manipulated 

in the graphical interface of TreeViewer, which allows users to click on branches to select them, 

display their attributes and perform actions on them; plots can also be exported as publication-ready 

PDF, SVG or PNG files. 
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4.2.2. Details 

TreeViewer modules are implemented as discrete units of C# code. Every module is implemented 

as a static class, which defines a number of properties and methods that determine how the module 

works and how it appears in the program’s interface, such as its name, icon, keyboard shortcuts, 

and more. In particular, each module has a unique Id property that is used to identify it. Details on 

the various members that are implemented by modules can be found in the TreeViewer online 

manual at https://github.com/arklumpus/TreeViewer/wiki/Developer's-guide [299]. 

Briefly, there are two broad classes of modules: modules that require user-supplied parameters 

(i.e., Transformer, Further transformation, Coordinates, and Plot action modules), and modules that 

do not (all the other types of modules). Modules that require parameters provide a list of these 

parameters through the GetParameters method, and this is used by TreeViewer to build the 

interface allowing the user to change their values. The OnParameterChange method is invoked every 

time the user changes a parameter, and allows the module to respond to these changes (e.g., by 

enabling or disabling additional controls). Furthermore, all modules can make use of “global settings” 

defined by the GetGlobalSettings method; these are program-wide settings and persist between 

different sessions. 

Every module defines a static method that performs the module’s action, though the name and 

purpose of this method changes between the different kinds of modules (e.g., OpenFile for File type 

modules, Transform for Further transformation modules, PerformAction for Action modules). This 

method is invoked when the user requests the corresponding action (e.g., by clicking on the button 

for an Action module, or by updating the plot). The execution of this method is wrapped within an 

error-handling routine, so that if an error occurs, a descriptive message can be shown to the user; 

this can also be used by modules to show a failure message if the user has specified invalid settings. 

Modules are distributed as C# source code from a module repository; the default repository is 

hosted together with the program in the TreeViewer GitHub repository [291] 

(https://treeviewer.org/modules), but users can create their own repository on a remote server or on 

their computer. In addition to the source code and any required libraries, each module also contains 

a digital signature; by verifying this signature using the public keys embedded within the program, 

TreeViewer can detect modules that originate from a legitimate source. When a module is first 

installed, TreeViewer compiles the source code and saves the resulting binary on disk. Afterwards, 

installed modules are loaded dynamically every time the program is opened. This approach simplifies 

module deployment, because the same source code can be issued to users on all platforms; it also 

makes it possible to load modules for a single session, without installing them permanently. 

XML documentation comments within the source code of the module are used to produce a 

manual describing each module. This is written using Markdown syntax [279], providing a simple yet 

https://github.com/arklumpus/TreeViewer/wiki/Developer's-guide
https://treeviewer.org/modules
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powerful way of creating a rich document. Each module manual is rendered to a PDF document 

available in the module repository [291] and can also be shown from within TreeViewer, either from 

the “Module manager” window, or by clicking on the question mark buttons in the interface. 

TreeViewer also contains a tool to create new modules, the “Module creator”, which provides an 

integrated C# development environment with modern features such as semantic syntax highlighting, 

intelligent code completion, interactive breakpoints, and code revision histories. This can be used to 

efficiently write and debug the code for new modules; the Module creator also provides a preview of 

the manual for the module and performs all necessary compile-time checks to ensure that the 

module can be loaded by the program. Custom modules can be used to change how the program 

works or to implement new features and workflows. 

In addition to creating a new module, another way to fine-tune the plot is to modify the code used 

to interpret node attributes; this can be done by clicking on the “wrench” icon  next to some module 

parameters. This makes it possible, for example, to change the way numbers are mapped to colours, 

or the way branch lengths are rounded when displaying them on the tree. To customise the plot even 

more, the “Custom script” module (available both for Further transformations and Plot actions) 

provides a way to execute arbitrary code; this is a more lightweight alternative to creating a new 

module, with the same potential effect on the plot. 

When a tree plot containing custom scripts is saved, the scripts are stored within the file and can 

be distributed to other users. With respect to creating a new module, this has the advantage that it 

can work “out of the box”, without requiring the recipients to install the module; however, the 

downside is that users have to execute potentially untrusted code. To mitigate the risks resulting 

from this, tree files can be digitally signed by their creator with a user-specific key (which is generated 

when TreeViewer is first installed). The first time a user opens a tree file coming from someone else, 

they are asked whether they trust the creator of the file and want to add their public key to a list of 

trusted keys; further files coming from the same creator will then be opened without this warning. 

4.3. Results and Discussion 

The following examples showcase some of the types of plots that can be created using 

TreeViewer, as well as giving some basic information about how the program works. 

4.3.1. Example 1: Plotting the age distributions in a time-calibrated 

tree 

When provided with a sample of time-calibrated trees (e.g., a posterior distribution sample coming 

from a Bayesian molecular clock analysis, which can be obtained by using software such as MrBayes 

[228], Phylobayes [229], RevBayes [300], BEAST [231], and more), TreeViewer can be used to 

compute a consensus tree and plot the age distribution for each node. Age distribution plots visualise 
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the posterior probabilities; these plots are more informative than simple confidence interval bars and 

can be particularly useful in the case of asymmetric age distributions. 

 

Figure 42. Steps performed in Example 1: Plotting the age distributions in a time-calibrated tree. (A) The file 
containing the trees has been opened in TreeViewer, which has computed the consensus tree and displayed it. (B) Age 
distributions have been computed and plotted on the tree. (C) A scale axis has been added to the plot. (D) All the module 
parameters have been fine-tuned in order to obtain a publication-ready figure (shown enlarged in Figure 43). 

The tree file at https://treeviewer.org/manual/clock/clock.tre contains 1000 trees sampled during 

a Bayesian molecular clock analysis of Cyanobacteria. Each tree contains 42 strains. When the tree 

file is opened, TreeViewer recognises that it contains multiple trees and automatically computes a 

consensus tree. The options of the Transformer module can be used to change how the consensus 

tree is computed, but for this example the default values are adequate. The tree is shown 

automatically as a rooted tree (Figure 42A); to make the plot easier to view, the second instance of 

the “Labels” module, which shows the branch lengths, can be removed from the Plot actions. To 

make the plot more compact, the “Width” parameter of the Coordinates module can be changed to 

“500”. 

Plotting the age distribution for each node requires a two-step process: first, the age distributions 

need to be computed by using the “Set up age distributions” Further transformation module. By 

default, this module will also associate the mean age and 89% highest density interval [301] to each 

node, which can be used, e.g., to draw node bars showing the credible interval. To actually draw the 

age distributions, the “Age distributions” Plot action module needs to be enabled. This will draw a 

https://treeviewer.org/manual/clock/clock.tre
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violin plot at each node in the tree, showing the posterior age distribution estimate for the node 

(Figure 42B). 

In TreeViewer, the plot elements are drawn in the order they are displayed in the left panel, from 

top to bottom; this means that the newly added age distributions are drawn above the tree branches 

and labels. Since this partially obscures the tree topology, the “Age distributions” module should be 

moved up, so that it is the first module in the plot element list. Furthermore, some of the age 

distribution plots overlap, due to the limited available vertical space. The vertical spacing of the tips 

in the tree can be increased by opening the options for the Coordinates module and setting the 

“Height” to a higher value (e.g., “800”). 

Additionally, it would be desirable to add an age axis to the plot, so that the ages of the various 

groups can be read from the tree. This can be done by enabling the “Scale axis” Plot action module 

(Figure 42C). By default, the spacing between consecutive “ticks” on the axis drawn by this module 

is computed automatically. To make the axis more pleasant, the “Tick spacing” can be increased to 

150, the “End” to 3000, and the “Digits” can be set to 0. The module can be moved up in the list of 

plot elements, so that the scale axis is drawn before all the other layers in the plot. Finally, the font 

size of the labels and of the scale axis can be increased by clicking on the respective “Font” buttons 

and entering “12” in the “Font size” box (Figure 42D). 

The final figure should look similar to Figure 43. A more detailed version of this example, showing 

some additional features of TreeViewer, can be found in the TreeViewer online manual at 

https://treeviewer.org/manual/clock. 

https://treeviewer.org/manual/clock
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Figure 43. Tree produced following the steps in Example 1: Plotting the age distributions in a time-calibrated tree. 
For each node, a violin plot shows the posterior age distribution estimate for the node (the colours are arbitrary). Ages in 
the scale axis are expressed as millions of years since the present day. 
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4.3.2. Example 2: Drawing an alignment with the tree 

In addition to showing the tree, and thus the relationships between the various organisms, 

TreeViewer plots can also show additional information. This example uses data from a study 

analysing the evolution of multicellularity in cyanobacteria [302]. The sepJ gene encodes for a 

membrane protein that is necessary for intercellular communication in multicellular cyanobacteria 

[303,304]. The full SepJ protein consists of three domains (encoded by a single gene): an N-terminal 

coiled-coil (CC) domain, a central linker (L) domain, and a C-terminal permease (P) domain 

[303,305]. However, the sepJ homologs in some genomes only encode for the CC and P domains, 

while other genomes have instead an even shorter homolog, which is a drug/metabolite exporter 

(DME) permease that only contains the P domain [302]. 

TreeViewer can be used to display sequence alignments together with the tree; in the case of 

sepJ, this can be useful to immediately show the differences between the three kinds of sepJ 

homologs. 

A Newick file containing a simplified version of the tree in Fig. S4 of [302] can be downloaded 

from https://treeviewer.org/manual/alignment/sepJ.tre. When this tree file is opened, TreeViewer 

recognises it as a rooted tree and displays it accordingly (the labels showing the branch lengths can 

be removed). To make the plot more compact, the “Width” parameter of the Coordinates module can 

be changed to “400”. The sequence alignment for the sepJ sequences included in the tree can be 

downloaded from https://treeviewer.org/manual/alignment/sepJ.fas. A data file like this can be 

attached to the tree by loading it as an “Attachment”. 

The alignment can then be plotted by enabling the “Plot alignment” Plot action module. Once the 

alignment attachment is selected, by default the alignment will be plotted below the tree; this can be 

changed to display the plot to the right of the tree, by setting the “Anchor” to “Top-right” and the 

“Alignment” to “Top-left”. Since now the alignment plot is next to the tree, its labels are redundant 

and can be removed by setting the “Label position” to “Neither”. The size of the alignment needs to 

be adjusted so that each sequence occupies just as much space as the corresponding tip label; this 

can be done by setting the “Sequence height” to “12”. Finally, the position of the alignment needs to 

be adjusted so that the sequences are aligned with the labels and it does not overlap the tree; this 

can be done by setting the “X” and “Y” values of the “Position” to “200” and “-7”, respectively. 

The final figure should look similar to Figure 44. Including the alignment with the tree makes it 

easier to immediately identify which sequences only have the P domain (i.e. the six sequences at 

the bottom, whose alignment only shows amino acids in the C-terminus) and to highlight the different 

kinds of CC and L domains that are present in the other strains. A more detailed version of this 

example, showing some additional features of TreeViewer, can be found in the TreeViewer online 

manual at https://treeviewer.org/manual/alignment. 

https://treeviewer.org/manual/alignment/sepJ.tre
https://treeviewer.org/manual/alignment/sepJ.fas
https://treeviewer.org/manual/alignment


 

90 

 

Figure 44. Tree produced following the steps in Example 2: Drawing an alignment with the tree. The alignment plot 

to the right of the tree shows the sequences that were used to build the tree. 

4.3.3. Example 3: Highlighting character states 

This example uses data from a study analysing the evolution of phycoerythrin (PE) genes in 

picocyanobacteria [162]. PEs are accessory pigments that form part of the light-harvesting 

complexes in cyanobacteria  [162]. In picocyanobacteria, depending on the amount and on the type 

of PEs that are produced, four kinds of pigment clusters can be defined: strains with pigment cluster 

type III have PEs encoded by the cpeBA and mpeBA genes; strains with pigment cluster types II and 

IIB only have PEs encoded by cpeBA genes; strains with pigment cluster type I do not have any PE 

gene  [162]. 

The goal of this example will be to display the gene content and pigment cluster type for each 

strain next to the phylogenetic tree, in order to produce a simplified version of Figure 7 in [162]. 

A simplified version of the tree in Newick format can be downloaded from 

https://treeviewer.org/manual/states/tree.tre. Upon opening the tree file, TreeViewer will recognise 

that the tree is rooted and automatically display it accordingly. As we do not wish to display the 

branch lengths in the final figure, the second instance of the “Labels” module can be removed straight 

away, leaving only the tree branches and the tip labels. 

https://treeviewer.org/manual/states/tree.tre
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The data for the phycoerythrin content and pigment cluster type of each strain is available from 

https://treeviewer.org/manual/states/PE_data.tsv. This file contains a tab-separated table whose 

rows correspond to the strains in the tree, while the first column indicates the presence/absence of 

the cpeBA genes (Y = present, N = absent), the second column indicates the presence/absence of 

mpeBA genes, and the third column indicates the pigment cluster type. A data file can be associated 

with the tree by embedding it as an “Attachment”. The data in an attachment can be associated to 

the tips of the tree using a Further transformation module, such as the “Parse node states” module. 

After enabling this module, selecting the attachment and selecting the option to use the first row as 

header, TreeViewer will associate to each strain in the tree the presence/absence of cpeBA and 

mpeBA and the pigment cluster type. This can be verified by clicking on a strain label: the selection 

panel will open on the right, and clicking on the “Attributes” button will show a list of all the attributes 

of the strain. 

Now that the data has been attached as attributes to the tips of the tree, the presence/absence 

states can be plotted using the “Node states” Plot action module. After enabling this module, the 

correct attribute needs to be selected at the bottom (in this case, the “cpeBA” attribute), and the plot 

will update showing an orange circle for strains that have the gene and a blue circle for genes that 

do not have it. The colours corresponding to the Y and N states can be changed easily by clicking 

on the “Wizard edit state colours” button, e.g. by changing the Y colour to a light blue and the N 

colour to grey. The circles can be moved to the right of the labels by setting the X value of the 

“Position” parameter to 160. Another instance of the same module can then be used to display the 

presence/absence of the mpeBA gene. 

Finally, the pigment cluster type can be shown by adding another “Labels” module to the plot 

actions, selecting the “Type” attribute, and updating the “Position” so that the label appears further 

to the right than the circles showing the gene presence. The final figure should look similar to Figure 

45. A similar example, showing some additional features of TreeViewer, can be found in the 

TreeViewer online manual at https://treeviewer.org/manual/states/. 

https://treeviewer.org/manual/states/PE_data.tsv
https://treeviewer.org/manual/states/
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Figure 45. Tree produced following the steps in Example 3: Highlighting character states. The coloured circles show 
the presence or absence of cpeBA and mpeBA genes in the cyanobacterial strains. The labels at the far right show the 
pigment cluster type of each strain. 

4.3.4. Example 4: Displaying BLAST scores 

TreeViewer can be used to display BLAST [219] scores on a phylogenetic tree. This can be useful 

to contextualise the results of a BLAST search and assess whether the search results are true 

orthologs of the query sequence or not. 

This example will show how to display BLAST scores on a tree containing the results of a BLAST 

search for sequence homologs of the hpnP gene. The hpnP gene encodes a C-2 hopanoid 

methylase that is involved in the production of 2-methylhopanoids in various groups of bacteria [176] 

(in particular, in some cyanobacteria). Another interesting feature of this gene is that it has a closely 

related (but uncharacterised) homolog [176], which often turns up in BLAST searches; since matches 

for this homolog can have an e-value lower than 10-150 and a score higher than 400, it is sometimes 

difficult to distinguish between them and actual hpnP orthologs by just looking at the BLAST results. 

However, combining a phylogeny of the sequences with their BLAST scores can significantly help to 

determine whether a match is a “true ortholog” or just a false positive. 

The first step in this example is to run a BLAST search for the gene of interest. This can be done 

e.g. using the BLAST online interface to run a blastp analysis 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch), using the 

accession number “B3QHD1” as a query sequence (this is the accession number of the hpnP gene 

from Rhodopseudomonas palustris, an alphaproteobacterium). For simplicity, the search should be 

restricted to the Synechococcales group (taxid 1890424), by entering this name in the “Organism” 

box. Once the BLAST search finishes, the usual interface showing the best 100 matching sequences 

should appear; from this interface, it is possible to download a tree of these sequences by clicking 

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch
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on “Distance tree of results” (which will open a tree view page) and then, in the tree view interface, 

on “Tools”, “Download”, “ASN text file” (or “ASN binary file”). 

The resulting tree file (also available from https://treeviewer.org/manual/blast/tree.asn) can be 

opened and inspected in TreeViewer; clicking on a tip label will show the many attributes associated 

with that tip, such as the accession number, organism name and more. However, unfortunately, this 

tree file does not contain information about the BLAST scores. These can be obtained by going back 

to the BLAST results page, clicking on “Download”, and then on “Hit Table (CSV)”. This will download 

a file (also available from https://treeviewer.org/manual/blast/Alignment-HitTable.csv) that contains 

a comma-separated table with the information from the BLAST search. 

The CSV file can be added to the tree as an “Attachment”; to associate the information to the tips 

of the tree, the “Parse node states” module (introduced in the previous example) should be used. In 

this case, after selecting the attachment, the “Separator” needs to be changed to a comma (“,”), 

since this is what is used in the data file; then, since the table does not have a header row, the 

“Column header(s)” need to be specified manually, by setting the value of the corresponding text 

box to “query acc.ver, subject acc.ver, % identity, alignment length, mismatches, 

gap opens, q. start, q. end, s. start, s. end, evalue, bit score, % positives” 

(this list of headers can also be obtained by downloading the text version of the hit table file). Finally, 

the “Match column” should be set to “2” (i.e. the column in the data file that contains the accession 

number of the subject sequences) and, correspondingly, the “Match attribute” should be set to 

“accession-nbr”. After clicking on “Apply”, inspecting the tips of the tree should reveal additional 

attributes that have been added to them, including the “bit score” attribute. 

At this stage, a bit score has been associated to the terminal branches of the tree, but the internal 

nodes do not have this attribute. The bit score can be propagated up to the root of the tree by using 

the “Propagate attribute” module, selecting the “bit score” attribute and clicking on the “Apply” button. 

This is necessary to ensure that all the branches in the tree appear in the final plot. 

It is now possible to highlight the bit scores on the tree; this can be done easily by clicking on the 

“Branch scores” button in the “Actions” tab above the tree plot. It is then necessary to select the “bit 

score” attribute and enter a minimum and maximum value for the range of scores to plot; as the 

program suggests, a minimum of 0 and a maximum of 600 are appropriate. Upon clicking OK, the 

program will add a number of “Branches” Plot action modules, which create the different “layers” of 

the plot: each layer corresponds to a score threshold, and only nodes of the tree that have a score 

higher than that threshold are plotted in each layer. 

This makes it easy to recognise the part of the tree corresponding to sequences with a high score 

(i.e., the yellow branches at the top), which are the “true orthologs”, and the part of the tree 

corresponding to sequences with a lower score (the greenish-blue branches at the bottom), which 

https://treeviewer.org/manual/blast/tree.asn
https://treeviewer.org/manual/blast/Alignment-HitTable.csv
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are false positives. The final figure should look similar to Figure 46. A more detailed version of this 

example, showing some additional features of TreeViewer, can be found in the TreeViewer online 

manual at https://treeviewer.org/manual/blast. 

 

Figure 46. Tree produced following the steps in Example 4: Displaying BLAST scores. The branch colours highlight 

the BLAST scores. The “true orthologs” of the query sequence are the ones in the top half of the tree. 

4.4. Conclusions 

TreeViewer is developed using C# .NET 6 and is available for Windows, macOS and Linux under 

a GPLv3 licence. The latest version can be downloaded from the program’s website at 

https://treeviewer.org. A detailed user manual is also available from the website 

(https://treeviewer.org/manual) and, in addition, each module has its own manual, which can be 

consulted from within the program by accessing the Module manager window or by clicking on the 

many “Question mark” buttons that are present in the program’s interface. The great variety of plot 

types and workflows that can be implemented in TreeViewer means that it can be used effectively 

both as a teaching tool and to produce publication-ready figures that require minimal post-

processing.

https://treeviewer.org/manual/blast
https://treeviewer.org/
https://treeviewer.org/manual
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5. sMap 
Evolution of independent, dependent and conditioned discrete characters 

in a Bayesian framework 

 

This chapter is based on the main text and the Supporting Information of the paper “sMap: 

Evolution of independent, dependent and conditioned discrete characters in a Bayesian framework” 

[82], which has been published in Methods in Ecology and Evolution. The full reference is given 

below: 

Bianchini G, Sánchez‐Baracaldo P. (2020) sMap: Evolution of independent, dependent and 

conditioned discrete characters in a Bayesian framework. Methods in Ecology and Evolution. 

Available from: https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.13540 

I designed and created sMap with advice from P. Sánchez-Baracaldo; I ran all the analyses 

presented here and created the figures and tables. I also produced the first manuscript draft, which 

was improved with the contributions of P. Sánchez-Baracaldo. 

  

https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.13540
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Abstract 

Trait evolution analyses enable the comparison of characters amongst different species—a useful 

technique when inferring ancestral phenotypes based on a phylogeny of living taxa. The evolution 

of discrete characters can be mapped on the branches of a phylogenetic tree using stochastic 

mapping. In this chapter, I present sMap, a new program to perform stochastic mapping analyses. 

Key features characterising sMap are: a wide variety of models and prior distributions; the ability 

to use a posterior distribution of trees and to compute marginal likelihoods to perform model selection 

analyses; and the implementation of three kinds of characters: ‘independent’ characters, which do 

not interact with each other; ‘dependent’ characters, which co-evolve at the same time; and 

‘conditioned’ characters, whose state is determined by the state of other characters. 

Here I present two examples that show how sMap can be used to perform stochastic mapping 

analyses, produce robust results and answer new kinds of questions. sMap is freely available and 

distributed under a GPL licence, in a command-line and Graphical User Interface version; a detailed 

user manual with examples and tutorials is also provided. 

The wide variety of algorithms implemented in sMap enables accurate analyses of the evolution 

of discrete characters. Conditioned characters can be used to study the interaction of simple traits 

to produce complex phenotypes. As a multiplatform and open-source project, sMap can be used on 

a variety of systems and situations, such as academic research and teaching. 
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5.1. Introduction 

Trait evolution can be studied to infer how the phenotypes of related taxa have changed through 

time. Mapping the evolution of discrete characters along a phylogeny is a critical step in 

reconstructing the morphology, ecological role and biochemical characteristics of long-gone 

ancestors of living organisms [306], and understanding how often character states can change 

provides information on the selective pressures to which organisms were subjected in the past [307–

309]. Ancestral state reconstructions are also useful when studying the evolution of protein function 

[310], and have been used in biomedical research to analyse human viruses, such as HIV [311,312]. 

Multiple techniques have been developed to perform such character mapping: these range from 

parsimony-based methods to explicit model-based ones, such as maximum-likelihood and Bayesian 

approaches [233]. Bayesian model-based approaches produce posterior probability distributions for 

the ancestral character states and can accommodate uncertainties in all the parameters of the 

analysis, including model specification, branch lengths and tree topology. Among Bayesian 

techniques, stochastic mapping [81] samples the posterior distribution for character states at each 

point in the tree (i.e., not only at internal nodes); this makes it possible to analyse the number of 

state changes and accounts for uncertainty in the timing of state transitions. 

This chapter presents sMap, a new multiplatform application to perform stochastic mapping, 

created with the aim of providing a new resource with more flexibility than existing tools. 

Table 5. Comparison of features between four stochastic mapping programs: sMap (described here), SIMMAP [313], 
phytools [314] and corHMM [315], as well as an ancestral state reconstruction program, BayesTraits [316,317]. *: in 

phytools, parameter values are estimated separately for each tree. 

Feature sMap SIMMAP Phytools BayesTraits corHMM 

Stochastic mapping Yes Yes Yes No Yes 

Transition matrix Any 
Equal-rates 

only 
Any Any Any 

Multi-tree sampling Yes Yes Yes* Yes No 

Bayesian parameter 

sampling 
Yes Yes Yes Yes No 

Prior distributions 20 1 1 7 N/A 

Marginal likelihoods Yes No No Yes No 

Independent characters Yes Yes Yes Yes Yes 

Dependent characters Yes No No 2-state only Yes 

Conditioned characters Yes No No No No 
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There currently exist multiple programs to perform Bayesian stochastic mapping or Bayesian 

ancestral state reconstruction, with each program having its own features and limitations (see Table 

5 for some examples and a comparison with my new program). 

sMap can account for phylogenetic uncertainty by using a sample from the posterior distribution 

of trees and estimating parameters conditioned on that distribution, rather than on a single tree. It 

can work on multiple characters with potentially any number of states. sMap implements three 

different models for relationships between characters: “independent”, “dependent” and “conditioned” 

characters (see Character modelling). Furthermore, the model for the transition rates of individual 

characters can take any form, including “equal-rates”, “all-

rates-different”, “symmetrical” or anything in between. Prior 

distributions for the parameters in sMap can be chosen from 

20 different families. sMap can be used to compare different 

models using maximum-likelihood-derived statistics such as 

the Akaike Information Criterion [318] and the Bayesian 

Information Criterion [319], as well as to compute model 

marginal likelihoods using the stepping-stone algorithm [320]; 

these can be used to perform model averaging and model 

selection analyses in a Bayesian framework. 

5.2. Methods 

5.2.1. Character modelling 

In sMap, characters that evolve along a phylogeny can 

belong to three categories: “independent”, “dependent” and 

“conditioned” characters. Figure 47 illustrates the difference 

between these character models in the context of a 

biochemical pathway, e.g. a situation in which the involved 

characters are the ability of an organism to synthesise a 

certain molecule and the presence or absence of genes 

encoding for enzymes involved in this synthetic pathway. 

Independent characters 

These are characters that do not interact with each other 

during their evolution, such as completely unrelated 

phenotypes (Figure 47A). This kind of characters are 

modelled using continuous-time Markov Chain models 

[81,313,321]. The parameters for this model are the entries of 

Figure 47. Examples of the types of 
characters implemented in sMap. In this 
example, there are two genes belonging to 
a biochemical pathway. (A) Independent 
characters, such as the presence (P) or 
absence (A) of two genes on separate 
chromosomes, whose products are involved 
in different pathways. (B) Dependent 
characters, such as two genes closely 
associated on a chromosome and involved 
in the same pathway. (C) Conditioned 
characters, such as the presence of a 
molecule, which is conditioned on the 
presence of all the enzymes involved in the 
pathway to synthesise it. 
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the substitution rate matrix (see below), which can also be constrained to be equal to each other or 

fixed to 0 to obtain a variety of models. 

Dependent characters 

Dependent characters, on the other hand, evolve as a single unit, which means that the probability 

that a character change state depends also on the state of the other dependent characters (Figure 

47B). This would be the case, for example, of two characters that are involved in the same overall 

process. Dependent characters are modelled by “merging” them into a single “supercharacter” that 

then acts as a single independent unit: for example, two dependent characters, one with two possible 

states and one with three possible states, would be merged into a single, independent 

supercharacter with six states. 

The sMap implementation allows any number of characters with any number of states to depend 

on each other. There are no restrictions on the kinds of transitions that can happen; however, the 

option to impose such restrictions allows users to implement models that reflect their actual 

expectations on the mechanisms behind the evolution of the characters. For example, the model can 

be adapted to exclude multiple substitutions, like the binary trait model of Pagel, 1994 [322] or the 

multi-state model of Meyer et al., 2019 [323], or to include or favour them, like the model of Yeang 

et al., 2007 [324]. Limitations to this approach derive only from the computational challenge of 

exponentiating large transition rate matrices resulting from merging many characters or characters 

with many states. 

Conditioned characters 

Conditioned characters are characters that do not change on their own, but rather have their state 

determined by other characters (which are the “conditioning” characters, Figure 47C). This means 

that a transition in a conditioned character can only happen when there is a transition in one of the 

conditioning characters, and that the new state of the conditioned character is determined solely by 

the new states of the conditioning characters (see below). The parameters of this model are 

“conditioned probabilities” that dictate what will be the new state of the conditioned character, given 

the new state of the conditioning characters. This model is a new feature of sMap, and it makes it 

possible to model complex phenotypes that are the result of the interaction of multiple underlying 

characters. 

Algorithm details 

Stochastic mapping [81] simulates a high number of possible character histories, while only 

retaining those that are compatible with the observed data (thus conditioning on the data). 

Character evolution along the branches of a phylogenetic tree is usually modelled using a 

continuous-time Markov model. This means that a character has a certain probability of changing 

along a branch, which only depends on the current state of the character and the length of the branch 
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(as well as some model parameters). For example, the transition probability from state 𝑖 to state 𝑗 

over a branch of length 𝜈 can be written as: 

ℙ𝑖→𝑗(𝜈) = exp(𝜈 ⋅ 𝑸)𝑖𝑗 [Equation 1] 

Where 𝑸 is a transition rate matrix and exp is the matrix exponential operator. Note that this 

probability includes all the possible histories that may lead to the final state being 𝑗, given that the 

starting state is 𝑖, including those where more than one state change has happened. 

The transition rate matrix, which specifies the character model, is a Metzler square matrix, with 

order 𝑛 equal to the number of states of the character, where each diagonal element 𝑞𝑖𝑖 = −∑ 𝑞𝑖𝑗
𝑛
𝑗=1 . 

For example, a substitution matrix for a character with 4 states would be: 

𝑸 =

[
 
 
 
 
 
−(𝑎 + 𝑏 + 𝑐) 𝑎 𝑏 𝑐

𝑑 −(𝑑 + 𝑒 + 𝑓) 𝑒 𝑓

𝑔 ℎ −(𝑔 + ℎ + 𝑖) 𝑖

𝑗 𝑘 𝑙 −(𝑗 + 𝑘 + 𝑙)]
 
 
 
 
 

 

This model can be used both for simulating the history of a character along a branch and to 

compute likelihoods using Felsenstein’s “pruning” algorithm [236,237] (see Section 2.4.3). To 

simulate the history of a character, the following algorithm can be used: 

1. Start with the character in the current state 𝑖, and the remaining length to simulate 𝑙 equal 

to the branch length 𝜈. 

2. Draw a random number 𝑟 from an exponential distribution with parameter −𝑞𝑖𝑖. 

3. If 𝑟 ≤ 𝑙, go to 4; otherwise, the process is finished and the final character state is 𝑖. 

4. Update 𝑙 to 𝑙 − 𝑟. 

5. Update the character state 𝑖 to a new state drawn from a categorical distribution with 

parameters (−
𝑞𝑖1

𝑞𝑖𝑖
, −

𝑞𝑖2

𝑞𝑖𝑖
, … , −

𝑞𝑖𝑛

𝑞𝑖𝑖
), where 𝑛 is the number of states for the character. 

6. Go to 2. 

This process can be effectively conditioned on the state of the character at the end of the 

simulation, by repeatedly running the simulation until the final state is the observed one. 

Likelihood functions 

This section expands the ideas presented in Section 2.4.3, applying them to stochastic mapping 

analyses performed in sMap. Note that, while this is not specified for the sake of brevity, all the 

likelihoods presented and computed here are Felsenstein likelihoods (as defined in Section 2.4.3), 

i.e. they are only conditioned on the data for the descendants of the branch, rather than on all the 

data. 
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To compute the likelihood that a character at node 𝛼 is in 

state 𝑖 (written as 𝕃𝛼(𝑖) for brevity) using the pruning algorithm, 

consider node 𝛼 with its (usually two) immediate descendants 

𝛽  and 𝛾 , connected by branches with lengths 𝜈𝛽  and 𝜈𝛾 , 

respectively (Figure 48). This algorithm is applied recursively 

from the tips of the tree to the root, therefore we can assume 

that the likelihoods for each possible state at nodes 𝛽 and 𝛾 are 

known (for terminal nodes, they will correspond to the 

likelihoods of the observed data, while for internal nodes they 

would have been computed in previous steps). Thus: 

𝕃𝛼(𝑖) = (∑ℙ𝑖→𝑗(𝜈𝛽) ⋅ 𝕃𝛽(𝑗)

𝑛

𝑗=1

) ⋅ (∑ℙ𝑖→𝑗(𝜈𝛾) ⋅ 𝕃𝛾(𝑗)

𝑛

𝑗=1

) =

= (∑exp(𝜈𝛽 ⋅ 𝑸)
𝑖𝑗

⋅ 𝕃𝛽(𝑗)

𝑛

𝑗=1

) ⋅ (∑exp(𝜈𝑐 ⋅ 𝑸)𝑖𝑗 ⋅ 𝕃𝛾(𝑗)

𝑛

𝑗=1

) 

If we introduce a likelihood vector 𝑳𝛼 such that 𝑳𝑖
𝛼 = 𝕃𝛼(𝑖), we can rewrite this as: 

𝑳𝛼 = (exp(𝑣𝛽 ⋅ 𝑸) ⋅ 𝑳𝛽) ∘ (exp(𝑣𝛾 ⋅ 𝑸) ⋅ 𝑳𝛾) 

Where the symbol ∘ denotes the Hadamard pointwise product; this makes it possible to compute 

the complete likelihood vector for a node. Once we get to the root node 𝜌, the overall likelihood 𝕃 of 

the tree can be computed by multiplying the likelihood vector of the root 𝑳𝜌 by the transpose of a 

vector 𝝅 such that 𝝅𝑖 is the “prior probability” of the root node being in state 𝑖 (this can be chosen 

e.g. to reflect real prior beliefs on the root node, or by assuming that the process has been going on 

for a long time before the root, i.e. by setting 𝝅𝑖 = lim
𝜈→+∞

exp(𝜈 ⋅ 𝑸)𝑖𝑖): 

𝕃 = 𝝅𝑇 ⋅ 𝑳𝜌 

The sMap program implements multiple types of characters: “independent” characters, 

“dependent” characters and “conditioned” characters. Independent characters are modelled as 

continuous-time Markov processes, and the likelihoods are computed as described above. 

Characters that are dependent on each other are combined into a single character, which is modelled 

again as a continuous-time Markov process. For example, two dependent characters, each with 3 

states, are combined into a single character with 3 ⋅ 3 = 9 states. 

Conditioned characters use a different model. First, a character can be conditioned on just 

another character, or on multiple characters; this does not make any difference, as long as all the 

possible combinations of states of the “conditioning” characters are taken into account. The 

character is modelled by allowing it to change state only when at least one of the conditioning 

Figure 48. Three nodes from a 
phylogenetic tree. Node 𝜶  is the 

ancestor of nodes 𝜷 and 𝜸. The length of 

the branch connecting 𝜶 and 𝜷 is 𝝂𝜷; the 

length of the branch connecting 𝜶 and 𝜸 is 

𝝂𝜸. 
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characters changes state, and the new state is determined using conditioned probabilities of it being 

in a certain state, given that the conditioning characters are in a certain combination of states. 

For example, assume that character 𝑐0 is conditioned on characters 𝑐1, 𝑐2, … , 𝑐𝑚 (where 𝑚 is the 

number of conditioning characters). Assume 𝑛𝑖 is the number of possible states for character 𝑐𝑖; the 

state of all the conditioning characters can be summarised by the “generalised character” 𝐶, which 

can have 𝑛𝐶 = ∏ 𝑛𝑖
𝑚
𝑖=1  different states (i.e., the number of combinations of states for all the 

conditioning characters). The model is described by the 𝑛0 ⋅ 𝑛𝐶  conditioned probabilities 

{ℙ(𝑐0 = 𝑖 | 𝐶 = 𝑗)}𝑖=1,…,𝑛0; 𝑗=1,…,𝑛𝐶
. 

For a terminal node 𝜂, the likelihood for each combination of states for the conditioned character 

and the conditioning generalised character is defined as: 

𝕃𝜂(𝑐0 = 𝑖, 𝐶 = 𝑗) = 𝕃𝜂(𝑐0 = 𝑖) ⋅ 𝕃𝜂(𝐶 = 𝑗) = 𝕃𝜂(𝑐0 = 𝑖) ⋅ ∏𝕃𝜂(𝑐𝑘 = 𝑗𝑘)

𝑚

𝑘=1

 

Where 𝑗𝑘 is the state of character 𝑐𝑘 when the generalised character 𝐶 is in state 𝑗. As before, the 

likelihoods for the individual characters correspond to the likelihoods of the observed data. 

For internal nodes, considering again the nodes 𝛼, 𝛽 and 𝛾 of Figure 48, the likelihood for each 

combination of states for the conditioned character and the conditioning generalised character is 

then: 

𝕃𝛼(𝑐0 = 𝑖, 𝐶 = 𝑗) = (∑ ∑ℙ 𝑖→𝑙
𝑗→𝑘

𝑐0|𝐶
(𝜈𝛽) ⋅ 𝕃𝛽(𝑐0 = 𝑙, 𝐶 = 𝑘)

𝑛0

𝑙=1

𝑛𝐶

𝑘=1

) ⋅ (∑ ∑ℙ 𝑖→𝑙
𝑗→𝑘

𝑐0|𝐶
(𝜈𝛾) ⋅ 𝕃𝛾(𝑐0 = 𝑙, 𝐶 = 𝑘)

𝑛0

𝑙=1

𝑛𝐶

𝑘=1

) 

Where ℙ 𝑖→𝑙
𝑗→𝑘

𝑐0|𝐶(𝜈)  is the probability of character 𝑐0  (which is conditioned on character 𝐶 ) 

transitioning from state 𝑖 to state 𝑙, while at the same time character 𝐶 transitions from state 𝑗 to state 

𝑘, over a branch of length 𝜈. This will be clarified further in the following. 

First, consider that ℙ𝑠→𝑠(𝜈), i.e. the probability that a character that starts in state 𝑠 is still in state 

𝑠 at the end of the branch, includes (as defined in Equation 1) all the possible paths that could lead 

to this situation; namely, that there is no state change, or that there are multiple state changes that 

ultimately lead back to state 𝑠. The actual probability of not having a state change out of state 𝑠 over 

a branch long 𝜈 is instead: 

ℙnt(𝑠)(𝜈) = exp(𝜈 ⋅ 𝑞𝑠𝑠) 

Thus, the probability of having at least one transition when starting and ending in state 𝑠 is 

ℙt(𝑠)(𝜈) = ℙ𝑠→𝑠(𝜈) − ℙnt(𝑠)(𝜈). Furthermore, when considering multiple conditioning characters, we 

can assume that ℙ𝑠→𝑡
𝐶 (𝜈) = ∏ ℙ𝑠𝑖→𝑡𝑖

𝑐𝑖 (𝜈)𝑚
𝑖=1 . 
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Going back to the problem at hand, we can distinguish 3 cases: 

1. 𝑗 ≠ 𝑘: in this case there must be at least one transition in the conditioning character(s) 

(because it has to change state from 𝑗 to 𝑘), thus the probability of ending up in each 

state for the conditioned character is determined by the conditioned probabilities: 

ℙ 𝑖→𝑙
𝑗→𝑘

𝑐0|𝐶(𝜈) = ℙ𝑗→𝑘
𝐶 (𝜈) ⋅ ℙ(𝑐0 = 𝑙 | 𝐶 = 𝑘) 

2. 𝑗 = 𝑘 and 𝑖 ≠ 𝑙: in this case, there must also be at least one transition in the conditioning 

character(s) (otherwise, the conditioned character could not change state from 𝑖 to 𝑙), 

thus the probability is: 

ℙ 𝑖→𝑙
𝑗→𝑘

𝑐0|𝐶(𝜈) = ℙt(𝑗)
𝐶 (𝜈) ⋅ ℙ(𝑐0 = 𝑙 | 𝐶 = 𝑘) = (ℙ𝑗→𝑘

𝐶 (𝜈) − ℙnt(𝑗)
𝐶 (𝜈)) ⋅ ℙ(𝑐0 = 𝑙 | 𝐶 = 𝑘) 

3. 𝑗 = 𝑘 and 𝑖 = 𝑙: in this case, there could be no transition in the conditioning character(s) 

(and thus the conditioned character), or there could be some transitions which lead back 

to the starting states. The probability is thus: 

ℙ 𝑖→𝑙
𝑗→𝑘

𝑐0|𝐶(𝜈) = ℙnt(𝑗)
𝐶 (𝜈) + ℙt(𝑗)

𝐶 (𝜈) ⋅ ℙ(𝑐0 = 𝑙 | 𝐶 = 𝑘) =

= ℙnt(𝑗)
𝐶 (𝜈) + (ℙ𝑗→𝑘

𝐶 (𝜈) − ℙnt(𝑗)
𝐶 (𝜈)) ⋅ ℙ(𝑐0 = 𝑙 | 𝐶 = 𝑘) 

We can combine these three cases using the Kronecker delta (𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗, or 1 if 𝑖 = 𝑗): 

ℙ 𝑖→𝑙
𝑗→𝑘

𝑐0|𝐶(𝜈) = 𝛿𝑖𝑙 ⋅ 𝛿𝑗𝑘 ⋅ ℙnt(𝑗)
𝐶 (𝜈) + (ℙ𝑗→𝑘

𝐶 (𝜈) − 𝛿𝑗𝑘 ⋅ ℙnt(𝑗)
𝐶 (𝜈)) ⋅ ℙ(𝑐0 = 𝑙 | 𝐶 = 𝑘) 

This probability can then be used to compute each term of the likelihood for the conditioned 

character.  

At the root node 𝜌, the overall likelihood 𝕃 of the tree can be computed as: 

𝕃 = ∑∑𝕃𝜌(𝑐0 = 𝑗, 𝐶 = 𝑖) ⋅ ℙ(𝑐0 = 𝑗 | 𝐶 = 𝑖) ⋅ 𝜋𝑖
𝐶

𝑛0

𝑗=1

𝑛𝐶

𝑖=1

 

Where 𝜋𝑖
𝐶 = ∏ 𝜋

𝑖𝑗

𝑐𝑗𝑚
𝑗=1  and 𝜋

𝑖𝑗

𝑐𝑗
 is the “prior probability” of the root node having character 𝑐𝑗 in state 

𝑖𝑗 (which is the state in which character 𝑐𝑗 is when the generalised character 𝐶 is in state 𝑖). 

5.2.2. Stochastic mapping 

To perform a stochastic mapping analysis, given a phylogenetic tree (or a posterior distribution 

over the phylogenetic tree space) and the observed character state likelihoods, the following steps 

are followed: 

1. Determine substitution model parameters (i.e. 𝑸, 𝝅 and, in the case of conditioned 

characters, the conditioned probabilities). 

2. Obtain a character realisation from the posterior probability for the state of each character 

at each node in the tree. 
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2a. Compute the likelihoods for each node and each state (using the pruning algorithm 

described above). 

2b. Compute the posterior probability for each state and obtain a sample for each node 

(see below). 

3. Simulate the character history for each branch (as described above), using the realisation 

to constrain the simulation (i.e. start each branch with the sampled state, and reject all 

simulations where the final state does not correspond to the sampled final state for the 

branch). 

4. Repeat steps 2 and 3 multiple times. 

5. Summarise the results (see below). 

I will now describe these steps as they are implemented in the sMap program. 

Parameter Sampling 

In sMap, parameters can be determined in multiple ways: they can be supplied by the user, 

estimated by maximum-likelihood, or sampled using a Bayesian approach. 

Maximum-likelihood sampling 

To estimate parameters using maximum-likelihood (ML), various approaches are implemented in 

sMap to maximise the likelihood function (which depends on all the parameters that need to be 

estimated); these include brute-force sampling the parameter space (which is optimised to use 

multiple processors, if available), using a random-walk algorithm to explore regions of high likelihood, 

and gradient ascent to optimise rough estimates. Multiple approaches can be combined in order to 

exploit the advantages and avoid the weaknesses of each. 

It should be noted that estimating 𝝅 using ML is not useful, as the result would be a vector in 

which 𝝅𝑖 = 1 ⇔ 𝑳𝑖
𝜌

= max
𝑗

𝑳𝑗
𝜌

 and 𝝅𝑖 = 0 otherwise, therefore by default during ML estimation all 

elements of 𝝅 are set to be 1 𝑛⁄  (where 𝑛 is the number of states), unless specified by the user, and 

not modified. Alternatively, the 𝝅𝑖 can also be estimated using the approach of FitzJohn et al., 2009 

(Appendix 1) [325] by enabling the relative option in sMap. 

Bayesian sampling 

To estimate parameters under a Bayesian approach, the user needs to provide a prior distribution 

on the parameter values. In sMap it is possible to specify any of 20 different continuous univariate 

distributions for the transition rates in the 𝑸 matrix, while priors on 𝝅 and the conditioned probabilities 

for conditioned characters can be specified using Dirichlet distributions. 

The posterior distribution estimation is performed using a multithreaded Metropolis-coupled 

Markov chain Monte Carlo approach, with a mixed sampler: Gibbs sampling is used to sample the 

trees provided by the user, while random-walk Metropolis-Hastings sampling with normally 



 

105 

distributed steps is used to sample the model parameters. The proposal step sizes are tuned for 

each parameter, in order to achieve a target acceptance rate of the proposals. 

Node posterior probability computation and sampling 

As noted above, to compute the posterior probability that a character is in a certain state in a 

certain node it is first necessary to compute the likelihoods, which is done using the pruning algorithm 

with the likelihood function described above, retaining the values of the likelihood for each node and 

for each state. 

To obtain a sample at each node from the posterior probability distribution for a character 𝑐 that 

evolves under a continuous-time Markov model, we use the algorithm described by Nielsen, 2002 

[321]. 

We start from the root node 𝜌 of the tree, for which we already have the “prior probabilities” 𝝅. 

The posterior probabilities for each state at this node are simply: 

ℙ𝜌(𝑐 = 𝑖 | Data) =
𝜋𝑖 ⋅ 𝕃𝜌(𝑐 = 𝑖)

𝕃
 

If we introduce a vector 𝑷𝝆 such that  𝑷𝑖
𝝆

= ℙ𝜌(𝑐 = 𝑖 | Data), we can write: 

𝑷𝝆 =
𝝅 ∘ 𝑳𝝆

𝝅𝑇 ⋅ 𝑳𝝆
 

From a categorical distribution parametrised with this vector, we draw a random realisation for 

the root node. 

For each child node, we then obtain the posterior probabilities for each state (conditioned on the 

sampled state of its ancestor) by updating the state of the ancestor with the transition matrix. With 

reference again to nodes 𝛼, 𝛽 and 𝛾 of Figure 48, assume that node 𝛼 has been sampled in state 𝑖. 

The posterior probabilities for 𝛽 (conditioned on the sampled state of 𝛼) are then: 

ℙ𝛽(𝑐 = 𝑗 | 𝑐𝛼 = 𝑖, Data) =
ℙ𝑖→𝑗(𝜈𝛽) ⋅ 𝕃𝛽(𝑐 = 𝑗)

∑ ℙ𝑖→𝑘(𝜈𝛽) ⋅ 𝕃𝛽(𝑐 = 𝑘)𝑛
𝑘=1

=
exp(𝜈𝛽 ⋅ 𝑸)

𝑖𝑗
⋅ 𝕃𝛽(𝑐 = 𝑗)

∑ exp(𝜈𝛽 ⋅ 𝑸)
𝑖𝑘

⋅ 𝕃𝛽(𝑐 = 𝑘)𝑛
𝑘=1

 

We can thus obtain the vector 𝑷𝜷, which we use to sample a realisation for 𝛽, and we proceed 

along the tree. 

For conditioned characters, we proceed similarly, using the transition probabilities ℙ 𝑖→𝑙
𝑗→𝑘

𝑐0|𝐶(𝜈) we 

defined when describing the likelihood function; these probabilities are used to sample at the same 

time a new state for the conditioning character(s) and the conditioned character. 
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This way, we can obtain a sample from the posterior distribution for each character for each node 

in the tree. 

When this process has been repeated many times, the fraction of realisations in which a character 

is in a certain state at each node in the tree converges to the posterior probability of that state for 

the character, given the observed data. 

Character history simulation 

Using the process described in the previous step, we have obtained many trees, each with a 

single state assigned for each character at each node. It is now necessary (for each tree) to simulate 

the history of each character along each branch, conditioning the outcome on the states that have 

been sampled for the nodes. 

For a single character that evolves according to a continuous-time Markov model, we can simulate 

the history as described above (Character modelling). When dealing with multiple characters of 

this kind, which we assume to be independent, we can simulate a history for each one independently. 

For conditioned characters, first we simulate (independently) a history for each conditioning 

character; then, we assume that the conditioned character can only change state when the 

conditioning character(s) do(es), and sample a new state for the conditioned character at each 

transition of the conditioning character(s). If the state of the conditioned character at the end of the 

branch is different from the state that had been sampled for it, we discard the whole branch 

simulation (including the histories of the conditioning characters). 

Using this process, we can simulate one history for every character along the tree. Our goal is, 

however, to obtain multiple simulations (usually in the order of thousands). Each history can be 

simulated on a different tree, which makes it possible to consider uncertainties in both topology 

estimation and branch length estimation. It is then necessary to summarise all these histories in a 

meaningful way. 

Summarising character histories 

To summarise the character histories, it is necessary to specify a single tree that will be used for 

this process. If every character simulation has been run using the same tree, then this same tree 

should be used as the “summary tree”, otherwise a consensus tree of some kind should be chosen. 

For each point of each branch in the tree, the posterior probability that a character 𝑐 is in a state 

𝑖 at that time and along that branch is determined by first considering only those simulations whose 

tree actually has that branch at that point in time. Then, amongst these simulations, we count what 

proportion has character 𝑐 in state 𝑖 at that point. These probabilities can be represented with plot 

such as the ones in Figure 52 and Figure 53, where the probabilities at the nodes (which are also 

determined in the way described) are shown as pie charts for clarity. 
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The result of the stochastic mapping analysis is thus a plot that tells us the probability that a 

character was in a certain state not only at every node in the tree, but also at every intermediate 

point in time. 

5.3. Application examples 

I provide two examples of how sMap can improve stochastic mapping analyses in a variety of 

fields: one involves a dataset that has been used to study the evolution of life-history traits in 

mammals of the family Caninae [85], while the other involves a simulated dataset describing a 

hypothetical bacterial metabolism. 

5.3.1. Handling uncertainty in the phylogeny and model 

Porto et al., 2019 [85] study the evolutionary relationships between four life-history traits (i.e. diet, 

habitat use, group behaviour and body size) in mammal species from the family Caninae, including 

dogs, wolves, and foxes. Briefly (Figure 49A), the authors first build a new phylogenetic tree of this 

family and date it using fossil calibrations. The tree is later used to perform stochastic mapping 

analyses of diet, habitat use, group behaviour and body size, using the make.simmap function of 

phytools [314]. Finally, a D-test [81] is performed using the Dtest function of phytools. Briefly, the 

D-test evaluates correlation between two characters, by computing the amount of time spent in each 

combination of states over the whole tree. The outcome is then compared to the expected value that 

would be obtained if there were no correlation. The D-test enables the authors to analyse the 

correlation between the evolution of group behaviour and the other three traits. 

The authors highlight that there are some uncertainties in the phylogenetic tree that they used. 

Their model-selection analyses also show that there is not a strong preference for one particular 

model, as multiple models have non-negligible weights. Here I show how these uncertainties can be 

addressed, by performing the stochastic mapping analyses with sMap (Figure 49B).  

Methods 

Part of this work was carried out using the computational facilities of the Advanced Computing 

Research Centre, University of Bristol – http://www.bris.ac.uk/acrc/. 

Phylogenetic analysis 

I used BEAST v1.10.4 [231] to sample the posterior distribution of clock trees for this dataset. I 

used the data from the original paper, but I removed the standard character data. I defined a 

monophyletic taxon set containing every species except the outgroup (Ailuropoda melanoleuca) to 

root the tree, and 10 further taxon sets corresponding to the fossil calibrations. 

http://www.bris.ac.uk/acrc/
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I used a GTR substitution model for each gene, with a gamma (with four categories) site 

heterogeneity model and a proportion of invariant sites. I partitioned the data into 23 partitions (one 

per gene) and let the substitution model parameters be estimated separately for each partition. 

I used an uncorrelated relaxed clock (with a gamma distribution) and a tree prior from a birth-

death process. I used each fossil to set a prior on the age of the most recent common ancestor 

(MRCA) of the corresponding taxon group; I used exponential priors with an offset equal to the fossil 

age 𝑎 and a mean equal to 𝑎 ⋅ 0.03 (for example, for the MRCA of Canini and Vulpini I used an 

exponential prior with an offset of 12.6 and a mean of 0.378). The ages for each fossil can be found 

in the Supporting Information for Porto et al., 2019. 

I let two replicate analyses run for 150’000’000 generations, logging parameters every 1000 

generations. I inspected the trace files with Tracer v1.7.1 [326] to ensure convergence had been 

Figure 49. Pipelines used for the analysis of the Canids dataset. (A) Pipeline followed by Porto et al., 2019 [85]: their 
D-test results are conditioned on the clock tree and the chosen evolutionary character model. (B) Pipeline used in this 
study: my D-test results are conditioned on the DNA sequences and the fossil data. 
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reached and then thinned the tree file to obtain a posterior sample of 1000 trees (with a 20% burn-

in). I then converted the trees to Newick format [88] and pruned the A. melanoleuca branch using 

the R package ape [91]. 

I also obtained a summary tree for the stochastic mapping analyses using the TreeAnnotator 

included in BEAST. I used these trees to perform the stochastic mapping analyses. 

The BEAUTI configuration file and BEAST XML files are available from 

https://github.com/arklumpus/sMap/tree/master/SupplementaryFiles/Canids, together with the tree 

sample and the summary tree. 

Stochastic mapping 

I performed the stochastic mapping analyses using sMap v1.0.3. I used the data for the four 

characters (sociality, diet, habitat use and body size) from the supporting information for Porto et al., 

2019. I set up and ran the analyses using sMap-GUI. 

I assumed that the four characters evolve independently and considered 6 transition models for 

each character (Figure 50). For each character and each model, I first performed a maximum-

likelihood analysis to determine the maximum-likelihood estimates (MLE) for each transition rate 

parameter. I then used the MLE to inform the priors for a Bayesian analysis (with 1000 simulations): 

for each rate, I used a log-normal prior with 𝜇 equal to the logarithm of the MLE and 𝜎 = 1 (except 

for those rates whose MLE was < 0.01, for which I used an exponential prior with 𝜆 = 100). I used a 

flat Dirichlet prior for the 𝜋 parameters. In these analyses, I also computed marginal likelihoods using 

the stepping-stone algorithm [320] and sampled histories from the posterior predictive distribution 

(100 histories for each of the 1000 parameter samples). 

For each character, I then used the marginal likelihoods to compute model posterior probabilities 

(assuming a uniform prior over the 6 models) and performed model averaging using Blend-sMap 

Figure 50. Character evolution models considered for the Canids dataset. Each model is represented as arrows 
identifying the possible transitions and as a rate matrix. Arrows or matrix entries with the same colour have the same value; 
missing arrows or matrix entries denote “forbidden” transitions. Each of the four characters has three possible states, here 
generically represented as 0, 1 and 2 (for “sociality”, 0 = low, 1 = medium, 2 = high; for “diet”, 0 = hypocarnivore, 1 = 
mesocarnivore, 2 = hypercarnivore; for “habitat use”, 0 = forested, 1 = generalist, 2 = open; for “body size”, 0 = small, 1 = 
medium, 2 = large). In the all-rates-different (ARD) model, any transition can happen with a different rate. In the equal-
rates (ER) model, all transitions happen at the same rate. In the symmetrical model (SYM), “forwards” and “backwards” 
transitions between states happen at the same rate, which may be different than the rate for other states. In the ordered 
models (ORD, with ARD, ER and SYM variants), direct transitions between the extreme states 0 and 2 are not allowed. 

https://github.com/arklumpus/sMap/tree/master/SupplementaryFiles/Canids
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(with a total of 5000 histories per character). Finally, I merged the analyses for the four characters 

using Merge-sMap (with 5000 histories) and performed D-tests for character association [81] using 

Stat-sMap. 

Results 

Phylogenetic analysis 

The results of my phylogenetic analysis (Figure 51) are generally consistent with those of the 

original authors’, except for a higher uncertainty within the Vulpes and Lycalopex genera; these 

uncertainties are most likely due to the different methods employed and to the exclusion of 

morphological characters from the phylogenetic reconstruction in this study. The age estimates are 

also consistent with Porto et al., 2019 [85], considering the different methods employed and that 

those reported here are posterior distributions, rather than point estimates. 

 

Figure 51. Phylogenetic reconstruction of the Canid species. Posterior distributions for the age of each node are 
reported as coloured plots; the numbers beside nodes represent the (percent) posterior probability of the node (nodes 
without a number have a posterior probability of 100%). 
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Stochastic mapping 

The model posterior probability values (Table 6) show that there is no clear preference for any 

one model, for any character, which means that model averaging is necessary in this case to obtain 

reliable results. 

Table 6. Results of the model fit analysis for each character in the Canids dataset. The model posterior probabilities 

are computed assuming a uniform prior over the 6 models for each character. 

Character Model ln-marginal likelihood Posterior probability 

Sociality ARD -20.85139899 0.464996752 

ER -21.68616277 0.201797888 

SYM -21.90604809 0.161965171 

ORD/ARD -22.46250755 0.092844111 

ORD/ER -23.18857293 0.044918803 

ORD/SYM -23.48256254 0.033477276 

Diet ARD -19.22442686 0.689174182 

ER -21.57434721 0.0657312 

SYM -21.27882402 0.088331509 

ORD/ARD -21.70178807 0.057866165 

ORD/ER -21.82916125 0.050945664 

ORD/SYM -21.88973541 0.04795128 

Habitat use ARD -34.43389915 0.142851422 

ER -34.77478762 0.101587105 

SYM -33.53512832 0.350926185 

ORD/ARD -34.86362586 0.092951548 

ORD/ER -35.8602155 0.03431178 

ORD/SYM -33.7703448 0.277371961 

Body size ARD -31.30900469 0.099910669 

ER -33.65092503 0.009605695 

SYM -30.39075191 0.250267227 

ORD/ARD -31.13775823 0.118572304 

ORD/ER -30.32549397 0.267143827 

ORD/SYM -30.37397924 0.254500278 

 

My stochastic mapping results (Figure 52) for the “sociality” trait are essentially identical to the 

original authors’; the analysis of the “diet” character in my study, instead, predicts a higher probability 

that ancestral nodes had a hypocarnivore diet than a mesocarnivore diet, unlike Porto et al., 2019 

[85]. There are also some differences in the “habitat” trait, with ancestors living in open habitats being 

more probable in my analysis than the generalists predicted by the original authors. These results 
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are explained by the expanded set of models that I analysed, and by the fact that I performed model 

averaging rather than only choosing one model for the final analysis. The results for “body size” are 

not directly comparable, as Porto et al., 2019 [85] analysed this character as a continuous trait, and 

only used the discrete approximation when performing D-tests. 

 

Figure 52. Results of the stochastic mapping analysis for the Canids dataset. (A) Diet. (B) Habitat use. (C) Sociality. 
(D) Body size. 

 

Finally, my D-test results (Table 7) are in agreement with the original authors’: the three 

comparisons show a very low posterior predictive P-value and hence highlight the presence of 

significantly more correlation than would be assumed under a model of independent character 

evolution [81]. 
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Table 7. Results of the D-test correlation analysis for the Canids dataset. *: posterior-predictive 𝑷 < 𝟎. 𝟎𝟓. 𝒅𝒊𝒋 values for 

body size are not shown, because they depend on the definition of body size categories, which is somewhat arbitrary [85]. 

 

D vs sociality 

 dij vs sociality 

  Low Medium High 

Diet 0.780* 

Hypocarnivore 0.116* -0.070* -0.046 

Mesocarnivore -0.039 0.134* -0.097* 

Hypercarnivore -0.078* -0.062* 0.144* 

Habitat use 0.462* 

Open -0.113* 0.063 0.052 

Generalist 0.062* -0.036 -0.027 

Forested 0.047* -0.024 -0.022 

Body size 0.516*     

These results are robust, because they do not depend on any particular phylogeny to be the 

“correct” one. In fact, they are only conditioned on the original DNA sequences and fossils data, as 

well as the phylogenetic tree algorithm; this is particularly important when analysing phylogenies in 

which multiple nodes have relatively low support. 

5.3.2. Analysing complex phenotypes 

sMap can be used to analyse complex traits that arise due to the interaction of multiple simpler 

traits. To illustrate how sMap can be used to study complex phenotypes, I generated a simulated 

dataset. I assume that I am studying the presence or absence of a hypothetical metabolism in a 

group of bacteria. The strains that perform this metabolism can grow using a certain substrate, while 

the others cannot. I want to understand whether the ancestor of this group of bacteria was able to 

grow on the substrate or not. 

The dataset consists of three independently simulated characters, representing the presence or 

absence of genes involved in this hypothetical metabolism, and a fourth character representing the 

presence or absence of the metabolism. The state of the fourth character was determined based on 

the states of the other three characters, assuming that a bacterium can perform the metabolism if it 

has the first gene and at least one of the other two genes (i.e. according to the model in Figure 53D). 

In the simulation, all three genes (and thus, the metabolism) were present in the ancestor at the root 

of the tree. In a real-life analogy, the presence or absence of the genes would be determined by 

sequencing techniques, while the presence or absence of the metabolism would be determined 

independently using an experimental lab-based approach, e.g. microbiological assays. 

Figure 53 (next page). Analysis of a hypothetical bacterial metabolism. For each case, the results of the stochastic 
mapping analysis are shown, together with a representation of what is known about the pathway and a pie chart 
representing the state probabilities at the root of the tree. Orange: metabolism absent. Blue: metabolism present. In the 
simulation process, the metabolism was present at the root of the tree. (A) Nothing is known about how the bacteria can 
grow using a substrate. Thus, the ability to perform this metabolism is modelled as a single character. (B) It is known that 
“gene A” and “gene B” are involved in the metabolism, but the details are unclear. The presence of the metabolism is 
treated as being conditioned on the presence or absence of genes A and B. (C) Here, it is also known that “gene C” is 
involved in the metabolism, but the details are still unclear. The presence of the metabolism is thus treated as conditioned 
on genes A, B and C. The added knowledge improves the precision of the estimate for the root node. (D) In this case, it is 
known exactly how the biochemical pathway including enzymes A, B and C works. This additional information further 
improves the precision of the estimate for the root node. 
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Methods 

Part of this work was carried out using the computational facilities of the Advanced Computing 

Research Centre, University of Bristol – http://www.bris.ac.uk/acrc/. 

Dataset generation 

I generated a random tree with 50 tips using the rtree function from the ape R package [91] and 

fit a chronogram to this tree using the chronos function of the same package. Using this tree, I then 

generated three binary characters using the sim.Mk function of the phytools R package [314]. These 

three characters would be the genes underlying the hypothetical metabolism (genes A, B, and C in 

Figure 53). Finally, I generated a character representing the presence or absence of the whole 

metabolism, assigning “presence” of the metabolism to all strains that possess gene A and at least 

one between B and C. 

The complete dataset, constituted by the clock tree, the presence/absence data for the three 

genes and the presence/absence data for the metabolism, can be downloaded from 

https://github.com/arklumpus/sMap/tree/master/SupplementaryFiles/SimulatedData. 

Stochastic mapping analysis 

I ran the first analysis (Figure 53A) assuming that the only information available is the 

presence/absence data for the metabolism. I modelled this character using the ARD and ER models: 

using sMap-GUI, for each model, I first computed a maximum-likelihood estimate (MLE) of the 

transition rate matrix and used these values to set up priors on the transition rates. For rates with an 

MLE ≥ 0.01, I used a log-normal prior with 𝜇 = ln(𝑀𝐿𝐸) and 𝜎 = 1, while for rates smaller than that 

I used an exponential prior with 𝜆 = 100. I then ran a Bayesian analysis for each model, using the 

stepping-stone algorithm [320] to compute the marginal likelihood of the model and used these 

marginal likelihoods to compute model posterior probabilities (assuming that the two models had an 

equal prior probability). Finally, I blended the results of the analyses according to the model posterior 

probabilities, using Blend-sMap. 

For the second analysis (Figure 53B), I assumed that it is known that genes A and B are involved 

in the metabolism, even though it is not yet clear how they concur to determine the presence or 

absence of the metabolism. I thus modelled genes A and B as two independent characters, and the 

metabolism as a character that is conditioned on both genes. For each gene, I considered the ARD 

and ER models. First, I considered each gene alone and I computed the MLE for the transition rates 

under each model. I then used these MLEs to set up priors (as described above), which were used 

to run four Bayesian analyses involving all three characters (one analysis for each combination of 

models). I used a flat Dirichlet prior on the conditioned probabilities. In these analyses I also 

computed the marginal likelihoods of the (combined) model. These analyses were set up using 

sMap-GUI and run using the command-line version of sMap at the high-performance computing 

http://www.bris.ac.uk/acrc/
https://github.com/arklumpus/sMap/tree/master/SupplementaryFiles/SimulatedData
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facility (BlueCrystal 4), University of Bristol. I finally used the marginal likelihoods to compute model 

posterior probabilities (assuming a uniform prior on the models) and blended the results using Blend-

sMap. 

For the third analysis (Figure 53C), I assumed that it is also known that gene C is involved in the 

metabolism. In this model, genes A, B and C are independent characters, while the presence or 

absence of the metabolism is conditioned on them. As in the previous case, I considered the ARD 

and ER models for each gene, computed MLEs and used them to set up priors for 8 Bayesian 

analyses. I again used a flat Dirichlet prior for the conditioned probabilities and computed marginal 

likelihoods, using sMap-GUI to set up the analyses and the command-line version of sMap to run 

them. I blended the results of the analyses according to the computed model posterior probabilities. 

For the fourth and final analysis (Figure 53D), I assumed that the biochemical pathway involving 

the enzymes encoded by genes A, B and C is completely known, and thus that it is known that the 

metabolism is present when gene A and at least one between B and C is present. The analysis in 

this case is the same as in the previous one, with the exception that, rather than using a flat Dirichlet 

prior over the conditioned probabilities, I fixed them to the appropriate values (e.g. ℙ(0𝑀|0𝐴, 0𝐵, 0𝐶) =

1, ℙ(1𝑀|1𝐴, 0𝐵, 1𝐶) = 1, ℙ(1𝑀|0𝐴, 1𝐵, 1𝐶) = 0 etc., where 0𝑥 and 1𝑥 denote the presence or absence 

of character 𝑥).  

Results 

The results of the model selection analyses are shown in Table 8. 

For this analysis I was mostly interested in the state of the root node (the last common ancestor 

of all simulated strains) with regards to the metabolism character.  The first analysis (Figure 53A) 

shows a higher probability of absence of the metabolism (63%), which is however not high enough 

to make any definitive conclusions. The second analysis (Figure 53B), instead, shows a trend in the 

opposite direction (64% posterior probability for the presence of the metabolism), still not strong 

enough to draw conclusions. The third analysis (Figure 53C) shows stronger support for the 

presence of the metabolism (78%), while in the fourth analysis (Figure 53D) there is an even higher 

probability (90%). 

These last two results show that including information about the process that results in the 

metabolism can greatly improve the confidence in the results of the analysis, even when incomplete 

knowledge is available. Including all components of a biochemical pathway will likely lead to more 

accurate results. This example highlights how knowledge about the underpinning processes behind 

a complex phenotype can be used in sMap to produce more precise estimates. This can be done in 

sMap due to the implementation of dependent and conditioned characters. 
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Table 8. Results of the model fit analysis for the simulated dataset. The model posterior probabilities are computed 
assuming a uniform prior over the models for each analysis. 

 Character model ln-marginal likelihood Posterior probability 

 M A B C 

Analysis 1 
ARD / / / -26.31753038 0.527666669 

ER / / / -26.42831021 0.472333331 

Analysis 2 

Cond. ARD ARD / -72.90679346 0.34510786 

Cond. ARD ER / -73.5059535 0.189558364 

Cond. ER ARD / -72.98866793 0.317978106 

Cond. ER ER / -73.75780127 0.14735567 

Analysis 3 

Cond. ARD ARD ARD -85.04667137 0.354301146 

Cond. ARD ARD ER -87.80492532 0.022463534 

Cond. ARD ER ARD -85.89803173 0.151227737 

Cond. ARD ER ER -88.64351197 0.00971146 

Cond. ER ARD ARD -85.25117844 0.288772789 

Cond. ER ARD ER -87.90473709 0.020329673 

Cond. ER ER ARD -85.94908396 0.143700987 

Cond. ER ER ER -88.66629825 0.009492674 

Analysis 4 

Cond. ARD ARD ARD -72.3533344 0.369906679 

Cond. ARD ARD ER -75.04100459 0.025168182 

Cond. ARD ER ARD -73.58608825 0.107823638 

Cond. ARD ER ER -76.23453634 0.007629702 

Cond. ER ARD ARD -72.41819367 0.346676299 

Cond. ER ARD ER -75.10184616 0.023682562 

Cond. ER ER ARD -73.54659605 0.112167031 

Cond. ER ER ER -76.32843268 0.006945906 

5.4. Program overview 

sMap is a multiplatform program, written in C# .NET Core. It is available for Microsoft Windows, 

Apple macOS and Linux operating systems, and can be downloaded in compiled binary form or 

source code from GitHub: https://github.com/arklumpus/sMap. It is released under a GPLv3 licence. 

It is optimised to run on multi-processor architectures, ranging from laptops to supercomputer 

clusters. 

The program can be executed either from the command-line or using a Graphical User Interface 

(GUI). The command-line version is especially useful for long-running analyses, which can be run 

on headless clusters, while the GUI can be used to set up those analyses, for shorter real-time 

analyses, and for didactic purposes. 

sMap has many command-line options used to specify parameters or algorithm variants; these 

are described, along with a detailed user manual including tutorials and compilation instructions, in 

the documentation available in PDF format from the same GitHub repository. In the GUI version, 

these parameters are arranged in groups of logically connected items, “sensible” defaults are 

provided, and they can be customised in an intuitive way. Figure 54 shows for example how 

character relationships and transition rate matrices are specified. 

https://github.com/arklumpus/sMap
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5.5. Conclusion 

sMap is a new application and extension of the stochastic mapping algorithm. sMap implements 

a wide variety of algorithms and models. These include dependent and conditioned characters, 

maximum-likelihood and Bayesian parameter sampling, marginal likelihood estimation, the use of 

any kind of transition matrix, and multiple prior distributions to choose from. This enables researchers 

to more confidently analyse the evolution of discrete characters on phylogenetic trees. The 

implementation of conditioned characters makes it possible to study the interaction of simple traits 

to produce more complex phenotypes. The multi-platform and open-source nature of sMap allows 

the program to be used on a variety of systems and settings, including academic research and 

teaching.

Figure 54. Interface of sMap-GUI. (A) Interface 
used to define the relationships between characters. 
In this example, characters 0 and 1 are dependent 
on each other, character 2 is independent, and 
character 3 is conditioned on 0, 1 and 2. (B) Interface 
used to define transition rate parameters (in this 
example, rates for the 0→2 and 2→0 transitions are 
set to 0, the 1→0 rate is forced to be equal to the 
0→1 rate, which has a log-normal prior, and the 2→1 
rate is forced to be equal to the 1→2 rate, which has 
a different log-normal prior). 
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6. The evolution of salt 
tolerance in Cyanobacteria 

 

The analyses in this chapter were conceived in collaboration with P. Sánchez-Baracaldo and M. 

Hagemann. I performed the analyses, created the figures and tables, and wrote the first draft of the 

manuscript. P. Sánchez-Baracaldo and M. Hagemann provided comments on preliminary results. P. 

Sánchez-Baracaldo also contributed to the final version of the manuscript. 
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Abstract 

Trait evolution analyses can be used to determine at which point in time and in which phylogenetic 

group a biological feature has first appeared. This can be achieved through multiple techniques, 

including parsimony-based, maximum-likelihood and Bayesian methods. 

In this chapter, I use a Bayesian approach (stochastic mapping) to study the evolution of salt 

tolerance in Cyanobacteria. Salt tolerance is the ability of a bacterium to survive in environments 

with high concentrations of dissolved salt, such as marine waters. Among the various mechanisms 

for salt tolerance, I concentrate here on the ability to produce compatible solutes, which are small 

molecules whose presence within the cell balances the high environmental salt concentration. 

This topic has been studied before; however, previous analyses have led to inconclusive results. 

In a novel approach, I combine data for the overall salt tolerance with data about the ability to produce 

individual compatible solutes. Thanks to this, my analyses show that the last common ancestor of 

Cyanobacteria had a 91% probability of a high salt tolerance, as well as providing an example of 

how stochastic mapping analyses can be used to combine evidence from multiple sources. 
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6.1. Background 

6.1.1. Introduction 

Trait evolution analyses are often applied to establish the timing and evolutionary origin of 

features that can be observed in extant taxa [327]. These methodologies attempt to estimate which 

traits might have been present in their common ancestor and rely on statistical models of evolution. 

Traditionally, this type of studies have focused on phenotypic traits, such as the origin of feathers in 

dinosaurs [328–331], diet, body size, sociality and habitat use in canids [85,332], plant pollination 

[333,334], tooth loss in monkeys [335], fish diet [336], and more. Similar questions are asked also in 

the context of micro-organisms, for instance regarding the evolution of various metabolic features 

such as aerobic respiration [337–339], oxygenic photosynthesis in Cyanobacteria [80,198,340],  and 

nitrogen fixation [341–344]. Trait evolution analyses can be applied to estimate ancestral genetic 

sequences [345,346] and amino acids of a protein [347,348] (e.g. ancestral nitrogenase [349,350]; 

an ancient protein involved in animal multicellularity [351]; flavin-containing monooxygenases [352]). 

The vast amount of literature on trait evolution has undoubtedly played a central role in evolutionary 

biology.  

Computational methods for trait evolution are varied and have a long history in evolutionary 

biology. Approaches range from the mapping of character states on the tips of the tree (i.e. the extant 

taxa) to qualitatively compare the plausibility of different evolutionary hypotheses that explain this 

distribution, according to the beliefs and experiences of the researchers (e.g. [353]). Alternatively, 

maximum-parsimony reconstructions may be used, which assume that the most accurate history of 

the character is the one that involves the fewest changes from one state to another [354,355]. Other 

methods like (maximum-)likelihood-based methods were developed to address issues in maximum 

parsimony analyses. These methods assume an underlying model for character evolution (usually a 

continuous-time Markov chain model, such as the Mk model [356]) and compute the “likelihood” of 

ancestral character states (i.e. the probability of observing the extant distribution of character states, 

given a certain set of ancestral states – see Section 2.4.3). A maximum-likelihood approach returns 

one ancestral state (the one with the highest likelihood), while other likelihood-based approaches 

may return a set of possible ancestral states weighed based on their likelihood [232,322]. 

Bayesian methods have gained traction in recent years, helped by advancements in the 

computational performance of modern computers to perform resource-intensive analyses. These 

methods aim to bridge the gap between the question that is asked by researchers (i.e. “What is the 

probability of a certain ancestral state, given the current data?”) and the answer provided by 

likelihood-based methods (i.e. “The probability of obtaining the current data, given a certain ancestral 

state”). A Bayesian approach also explicitly recognises that the results obtained in any evidence-

based inference depend on the available information, and can take into account established 
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knowledge in the form of a “prior” distribution whose shape is determined by the researcher, based 

on their own views and previous results [357]. 

6.1.2. Bayesian approaches to trait evolution: Stochastic mapping 

Stochastic mapping is a Bayesian technique that can be used to reconstruct the evolutionary 

history of a character on a phylogenetic tree [81,239]. An important feature of stochastic mapping, 

which distinguishes it from ancestral state reconstruction, is that it makes it possible to infer the 

evolution of a character along the branches of a phylogenetic tree, and not only at the nodes [81]. 

Recent developments in stochastic mapping have also made it possible to analyse in this powerful 

framework the evolution of multiple characters at the same time, using multiple models of correlated 

evolution [82]. 

A Bayesian approach is also advantageous in situations where it is necessary to understand 

which models can reasonably explain the observed data, as different models can give contrasting 

results (Figure 55). In other words, by computing the posterior probability of each model, it is 

possible to consider multiple alternatives and thus reach a conclusion that does not hinge on any 

particular model being correct. While traditionally morphological characters are thought as “physical” 

features of an organism, this concept can be extended to any trait whose state can be categorised 

as one of few discrete categories. Thus, methods to study the evolution of morphological characters 

can also be used to analyse these “abstract” traits. This approach can be used, in particular, to model 

the evolution of biochemical pathways: the ability of an organism to perform a certain metabolism 

(or to produce a certain chemical) can be modelled as a morphological character, whose evolution 

is associated with the evolution of the genes coding for the enzymes involved in the pathway [82]. 

Traditional approaches to study the evolution of complex traits (consisting of multiple related 

features) usually involve analysing each trait independently, and then comparing the reconstructions 

(possibly using some sort of statistical test [81,358–360]). This approach can provide useful 

information, but it is not ideal, because it does not include a mechanism for concerted evolution in 

the model itself. For this reason, if a correlation is found, this is actually evidence that the model 

used could be misleading; in fact, inferences based on ancestral states reconstructed using such an 

inaccurate model may lead to similarly inaccurate conclusions. A more realistic approach consists 

in explicitly modelling multiple characters at the same time [82,322]; this makes it possible to account 

for correlation during all steps of the analysis, and even determine how probable a correlation 

between different characters is. This in turn increases the amount of information that is extracted 

from the data, making it possible to obtain more reliable inferences. 

6.1.3. Salt tolerance and compatible solutes in Cyanobacteria 

In this chapter, I am studying a complex trait: the evolution of salt tolerance in Cyanobacteria. The 

habitat in which Cyanobacteria evolved is a fundamental question in science and still a controversial 
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topic [73,186,361,362]. Amongst prokaryotes, Cyanobacteria are a well-studied bacterial group, 

partly due to their ecological importance [363], 

number of genomes available [198,364], and their 

extensive fossil record [37,173,365,366] (see 

Section 2.2.6). Cyanobacterial habitat evolution 

has been studied using parsimony [134], likelihood 

[77], and stochastic mapping before [73,186,187]. 

Salt tolerance is the ability of an organism to 

survive in hypertonic environments, such as 

marine water, which has a high concentration of 

dissolved salts; this can be accomplished through 

multiple means. Cyanobacteria achieve salt 

tolerance by employing active ion export 

mechanisms and compatible solutes, which are 

small organic molecules, usually without charge, 

that can be tolerated by the cells in high 

concentrations, and are used to keep the osmotic 

pressure at suitable levels for the cell’s life [83]. Not 

all cyanobacteria are able to produce (or acquire) 

compatible solutes, or to finely regulate their 

biosynthesis: accordingly, salt tolerance is tightly 

associated with habitat and there are 

cyanobacterial strains that can only live in 

freshwater environments, some that can only live 

in oceans or other high-salinity environments, and 

others that can adapt to multiple salt 

concentrations [84,136,164].  

Figure 55. Continuous-time Markov chain models for discrete characters. (A) Number of possible models in function 
of the number of states of the character. Each model differs based on which rates are constrained to be equal to each 
other, which rates are constrained to be 0, and which rates are left unconstrained. The vertical axis is scaled using Euler’s 
𝜞 function for ease of visualisation (the number of possible models grows approximately as the square of a factorial). (B) 
The 5 possible models for a 2-state character, represented as transition rate matrices. In the invariant (INV) model, both 
transition rates are equal to 0, and the character cannot change state. In the unidirectional (UNI) models, only one rate is 
different than 0, which means that only one kind of state change (𝟎 → 𝟏 or 𝟏 → 𝟎) can happen in each model. In the equal-
rates (ER) model, both rates are constrained to have the same value, which means that the two state changes happen at 
the same rate. In the all-rates-different (ARD) model, the rates are unconstrained. (C) In a hypothetical analysis, the models 
must first be assessed based on their biological plausibility, which translates to a prior probability. In this case, the INV 
model is deemed to be biologically implausible (thus, it has a prior probability of 0). The two UNI models are deemed to be 
equally plausible and given a prior probability of 10% each, while the ER and ARD models are more plausible and have a 
prior of 40% each. (D) in the hypothetical analysis, the models are assessed based on their agreement with the data by 
computing marginal likelihoods (the INV model is not tested because it was deemed implausible to begin with). Note the 
logarithmic scale on the vertical axis. (E) the prior and marginal likelihood for each model can be combined to yield a 
posterior probability for each model. The results obtained with each model can be weighted with these posterior 

probabilities to integrate over model uncertainty. 
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Five main compatible solutes have been characterised in Cyanobacteria [84], and the biochemical 

pathways for their biosynthesis are well known (Figure 56): sucrose, trehalose, glucosylglycerol, 

glucosylglycerate and glycine betaine. These compatible solutes are not exclusively found in 

Cyanobacteria, and can be found in other bacterial groups [367–370]. Cyanobacteria, however, often 

produce them using different pathways than heterotrophic bacteria [84], and here we will concentrate 

on Cyanobacteria-specific pathways. 

Sucrose (Suc) is a disaccharide widespread in cyanobacteria, as it is also involved in carbon 

metabolism [371,372]. It is synthesised in a two-step pathway [84]: first, a glucosyl group is 

transferred from UDP-glucose to fructose-6-phosphate by the enzyme sucrose phosphate synthase 

(Sps), to yield sucrose-phosphate. Then, the phosphate group is cleaved by sucrose phosphate 

phosphatase (Spp), which produces sucrose. 

Two Sps enzymes have been identified in cyanobacteria [84], to which, following [84], we will 

refer to as SpsA and SpsA*. SpsA proteins have a Spp domain at the C-terminus, which can be 

biochemically active or inactive in different strains, thus some strains that only have a SpsA enzyme 

can use it to perform both Sps and Spp activities [373]. Most cyanobacteria, however, also have a 

separate Spp gene [84]. SpsA* proteins are shorter than SpsA, as they do not have a Spp domain. 

Trehalose (Tre) is another disaccharide, and it has been associated not only with salt tolerance, 

but also tolerance to desiccation, heat, and other kinds of stressful conditions [374]. In cyanobacteria, 

it is also usually synthesised in a two-step pathway [84], starting from a polysaccharide (such as 

glycogen): in the first step, the bond between the last two units of the polysaccharide is isomerised 

to an α-1,1 glycosidic bond by maltooligosyltrehalose synthase (TreY), and in the second step the 

trehalose molecule is released from the polysaccharide by maltooligosyltrehalose trehalohydrolase 

(TreZ). 

Glucosylglycerol (GG) is synthesised by cyanobacteria with another two-step pathway [375], the 

first step being the transfer of a glucosyl group from ADP-glucose to glycerol-3-phosphate by 

glucosylglycerol-phosphate synthase (GgpS), producing glucosylglycerol-phosphate, while the 

second step involves the cleavage of the phosphate group by glucosylglycerol phosphate 

phosphatase (GgpP). 

Glucosylglycerate (GGA) is an unusual compatible solute, because it has a negative net charge 

at physiological pH; it is produced through a two-step pathway that resembles the one for GG [84]:  

first, a glucosyl group is transferred from an NDP-glucose to glycerate-3-phosphate by 

glucosylglycerate phosphate synthase (GpgS), to yield glucosylglycerate phosphate, whose 

phosphate group is then removed by glucosylglycerate phosphate phosphatase (GpgP). 

Glycine betaine is a compatible solute used by many different organisms [370]; it is synthesised 

in cyanobacteria from glycine through three consecutive methylation steps, involving S-
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adenosylmethionine as a methyl group donor [84]: the first two, producing respectively sarcosine 

and N,N-dimethylglycine, are both catalysed by glycine/sarcosine N-methyltransferase (GsmT), 

while the last step uses the dimethylglycine N-methyltransferase (Dmt) enzyme. 

 

Figure 56. Biosynthetic pathways for compatible solutes in Cyanobacteria. (A) Biosynthetic pathway for sucrose, 
involving SpsA, SpsA* and Spp. (B) Biosynthetic pathway for Trehalose, involving TreY and TreZ. (C) Biosynthetic pathway 
for glucosylglycerol, involving GgpS and GgpP. (D) Biosynthetic pathway for glucosylglycerate, involving GpgS and GpgP. 
(E) Biosynthetic pathway for glycine betaine, involving GsmT and Dmt. 
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Each of the pathways described above involves two genes, and both must be present for the 

compatible solute to be synthesised [84]. It is therefore reasonable to expect that the gain or loss of 

different genes involved in the same pathway should be correlated. Furthermore, it is also expected 

that there should be some degree of association between the various biosynthetic pathways and the 

phenotype they concur to determine (i.e., salt tolerance). 

In this chapter, I explore how Bayesian techniques can be applied to study the evolutionary 

relationship between compatible solute biosynthesis and salt tolerance using multiple lines of 

evidence. This is important because any of these lines of evidence by itself may not be enough to 

reach a meaningful conclusion, while this is instead made possible by considering all the available 

data. I also show how a Bayesian approach to model selection can be used to integrate over model 

uncertainty. 

6.2. Methods 

Computations were carried out using the computational facilities of the Advanced Computing 

Research Centre, University of Bristol – http://www.bris.ac.uk/acrc/. 

6.2.1. Molecular clock estimation 

To perform a stochastic mapping analysis, it is beneficial to consider a clock-like tree, in which 

branch lengths are expressed in units of time [81,82]. To build a molecular clock representative of 

the evolutionary history of cyanobacteria, I selected 189 strains among the sequenced 

cyanobacterial genomes available in the NCBI RefSeq database [70]. I also selected, as non-

photosynthetic outgroups to cyanobacteria, 9 Vampirovibrionia, 1 Sericytochromatia [138,139,376], 

as well as some more distantly related strains in the Terrabacteria group, i.e. 1 Chloroflexi and 3 

Firmicutes [377,378] (Table S1), for a total of 203 strains. I sampled a broad range of taxonomically 

diverse genomes from different habitats, including many recently sequenced strains that were not 

analysed in previous studies. 

I obtained genome and proteome sequences for these strains from the NCBI Reference 

Sequence (RefSeq) database [70]. I used BUSCO version 3.0.1 [379] with the cyanobacteria_odb9 

dataset to assess the completeness of the Cyanobacteria genomes analysed here (Table S2). 

I used a dataset including 139 protein-coding genes, as well as small subunit (SSU) and large 

subunit (LSU) rRNA genes. This is based on a previously published dataset [73]. To obtain the 

sequences used in this analysis, I first collected the sequences used in [73] and selected about 9 

sequences for each gene to use as BLAST [219] queries (Table S3). I then performed BLAST 

searches with these query sequences against the 203 genomes, using blastp version 2.7.1+ [219] 

with a very permissive e-value threshold of 10-5. I only retained for each genome the one hit with the 

highest score, and extracted from each proteome file the sequences of the whole proteins 

http://www.bris.ac.uk/acrc/
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corresponding to the blast hits. I aligned the resulting sequences using MAFFT v7.407 [224] with the 

--localpair --maxiterate 1000 options. 

I used these alignments to build neighbour-joining trees using rapidnj version 2.3.2 [380] and I 

finally identified on these trees the cluster of sequences that were most closely associated with the 

BLAST query sequences, which were assumed to be “true” orthologs. Based on the tree topologies, 

I identified some genes as likely to have a paralog within some genomes, and repeated the analysis 

for these genes including the two highest-scoring matches. I then identified the sequences belonging 

to each paralog group and treated them as separate markers (these are marked with a “b” in Table 

S3, e.g. “10b”). Finally, I only included in the analysis those genes/paralogs that were present in at 

least 50 strains, discarding the rest (marked with a dagger in Table S3). 

I used this dataset for a maximum-likelihood partitioned phylogenetic analyses, performed using 

IQ-TREE multicore version 1.6.1 [227,381]. I excised the non-cyanobacterial outgroups from the tree 

using the drop.tip function of the R package ape version 5.3 [91]. 

I estimated the ages in Phylobayes version 4.1b [382], for the topology of the maximum-likelihood 

phylogeny, using the LSU and SSU data. I used a birth-death prior on branch lengths and an 

uncorrelated gamma multipliers relaxed clock model, with a GTR+CAT model of DNA evolution. The 

root prior was specified as a gamma distribution with mean 2639 Mya and standard deviation 179 

Mya (which has 95% of the density in the 2300-3000 Mya interval). I enabled soft bounds for the 

fossil calibrations, which are detailed in Table S4. I ran two independent chains, and assessed 

convergence using the tracecomp program from Phylobayes v4.1b. To obtain a tree with the mean 

branch length estimates, I used the readdiv program in Phylobayes v4.1b; I used the -v option to 

save 1000 dated trees from the chain to plot age distributions and for stochastic mapping analyses. 

6.2.2. Salt tolerance evolution 

I collected data about the salinity tolerance of strains from multiple sources, detailed in Table S5. 

I used binary character states, with H = high salt tolerance and L = low salt tolerance. Where 

available, this data was based on experimental studies (e.g. [136]), but for the majority of the taxa I 

inferred the salt tolerance state based on the habitat from where the strain was isolated – e.g., I 

assumed that a strain coming from a freshwater environment would have a low salt tolerance, while 

a strain from the open ocean would have a high salt tolerance. While this is not ideal (because, in 

principle, a strain living in a freshwater environment could also be able to survive in environments 

with higher salt concentrations [362]), it is a necessary approximation due to the lack of experimental 

evidence at this scale. I used this data to perform a stochastic mapping analysis. 
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Stochastic mapping and Bayesian model selection 

Stochastic mapping analyses require a model of character evolution for the simulations; model 

selection is a crucial step since inappropriate models can lead to inaccurate results. I performed 

stochastic mapping analyses using sMap version 1.0.5 [82]. 

The evolutionary model consists mainly of a “transition rate matrix” (Figure 55B), which defines 

how each state can change to other states through time. For a binary character, there are only two 

possible transitions (i.e. 𝐻 → 𝐿 and 𝐿 → 𝐻); therefore, I considered an “all-rates-different” (ARD) 

model, in which the two transition rates are allowed differ from each other, and an “equal-rates” (ER) 

model, in which the two transitions happen at the same rate. 

I used sMap to perform stochastic mapping analyses under the ARD and ER models, estimating 

the rates by maximum-likelihood. I then used these rate estimates to inform the priors for a Bayesian 

analysis, which also involved computing marginal likelihoods using the stepping-stone algorithm 

[320] and sampling posterior-predictive replicates (which were used later to perform correlation 

tests). 

I used the marginal likelihood estimates (Table S6) to compute model posterior probabilities 

(mPPs) assuming an equal prior on the two possible models (Table S6). I then blended the results 

of the two analyses and plotted them using utilities included in sMap and TreeViewer (see Chapter 

4). 

6.2.3. Compatible solute gene sequences 

I performed BLAST searches on the 189 cyanobacterial genomes (using blastp version 2.7.1+ 

[219]) with the query sequences in Table S7 and a very permissive e-value threshold of 10-5. I only 

retained for each genome the one hit with the highest score, and extracted from each proteome file 

the sequences of the whole proteins corresponding to the blast hits. I aligned the resulting sequences 

using MAFFT v7.407 [224] with the --localpair --maxiterate 1000 options. I used these 

alignments to build neighbour-joining trees using rapidnj version 2.3.2 [380] and I finally identified on 

these trees the cluster of sequences that were most closely associated with the BLAST query 

sequences, which were assumed to be “true” orthologs. Strains that possessed true orthologs were 

marked as possessing the compatible solute biosynthesis gene (Table S8). 

6.2.4. Evolution of compatible solute genes 

Trees 

I re-aligned the sequences of “true” orthologs of compatible solute biosynthesis genes (without 

the spurious BLAST hits) using MAFFT v7.407 [224] with the --localpair --maxiterate 1000 

options. I trimmed the alignments removing all positions with a gap content greater than 85%; I also 
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removed mis-aligned positions at the start and end of each alignment, using the AlignmentViewer 

online utility [241] (see Section 3.1). 

I used these alignments to build gene trees using MrBayes version 3.2.7a [228], with a mixed 

amino acid model prior, and among-site rate variation, including a proportion of invariant sites with 

the remaining site rates drawn from a gamma distribution. Each analysis was run sampling every 

1000 generations until the average standard deviation of split frequencies became smaller than 0.01. 

I assessed convergence of the chains using Tracer v1.7.1 [326]. 

Stochastic mapping and Bayesian model selection 

I used the BUSCO estimates of genome completion (Table S2) to compute the likelihood of the 

presence or absence of each compatible solute biosynthesis gene, assuming absence of 

contamination, as explained in the sMap manual [82]. I used these likelihoods to create data files for 

stochastic mapping analyses. 

Trehalose, glucosylglycerate and glycine betaine 

For these compatible solutes, there were very few examples of current strains with only one of 

the two biosynthetic genes. Therefore, I treated each of them as a simple binary character, coding 

strains that possess at least one gene as being able to produce the compatible solute (P), and strains 

that do not have any gene as not being able to produce the compatible solute (A); this assumes that 

the reason those few strains have only one gene is because the genome has not been completely 

sequenced. The likelihoods for these two states were determined as explained. 

The steps that follow were repeated separately for each of Tre, GGA and GB. 

I performed stochastic mapping analyses using sMap version 1.0.5 [82]. I computed maximum-

likelihood estimates (MLEs) for the rates under an ER and ARD model, and then used these to inform 

priors for Bayesian analyses in which I also computed marginal likelihoods using the stepping-stone 

algorithm [320] and sampled and saved 100 posterior-predictive replicates (which were used later to 

perform correlation tests). 

I used the marginal likelihood estimates (Table S6) to compute mPPs assuming an equal prior 

on the two possible models (Table S6). I then blended the results of the two analyses and plotted 

them. 

Gucosylglycerol 

For GG, there are a sizable number of strains that only have one of the two genes involved in its 

biosynthesis and not the other. I therefore had to consider both genes in the analyses. When 

analysing multiple characters in sMap, they can be assumed to be independent, dependent or 



 

130 

conditioned. The conditioned model does not apply in this case, thus I performed analyses assuming 

the two genes to be either independent or dependent. 

For analyses in which the genes were treated as independent, I followed the previously described 

approach for each gene: I used sMap to compute MLEs that were used to inform priors for Bayesian 

analyses under ER and ARD models, also computing marginal likelihoods and sampling posterior-

predictive replicates. 

I then merged the analyses for the two genes using the Merge-sMap utility included in sMap in 

order to produce four merged analyses (one with an ARD model for both GgpS and GgpP, one with 

an ER model for both, one with an ARD model for GgpS and an ER model for GgpP and one with 

an ER model for GgpS and an ER model for GgpP). I used the marginal likelihood estimates for the 

individual genes (Table S6) to compute the marginal likelihoods of the merged analyses (since the 

two genes evolve independently here, the marginal likelihood of the combined genes is the product 

of the marginal likelihoods of each gene, Table S6). 

I then treated the two genes as being dependent on each other, which leads them to be merged 

by sMap into a single four-state character (with states A,A representing absence of both genes, P,P 

representing presence of both genes, A,P representing presence of GgpP and absence of GgpS 

and P,A representing presence of GgpS and absence of GgpP). In this case, in addition to the ARD 

and ER model, I also considered a symmetrical (SYM) model, in which a transition in one direction 

is constrained to have the same rate as the opposite transition, though this rate may be different 

from unrelated transitions (e.g. 𝑟(𝐴, 𝐴 → 𝐴, 𝑃) = 𝑟(𝐴, 𝑃 → 𝐴, 𝐴) ≠ 𝑟(𝐴, 𝐴 → 𝑃, 𝐴) = 𝑟(𝑃, 𝐴 → 𝐴, 𝐴)). 

I used sMap to compute MLEs for the rates to inform priors for Bayesian analyses under the ER, 

ARD and SYM models. In all analyses, I computed marginal likelihoods using the stepping-stone 

algorithm [320] and sampled 100 posterior-predictive replicates (which were used later to perform 

correlation tests). 

Finally, I used the marginal likelihood estimates (Table S6) from these analyses, as well as from 

the previous analyses treating the genes as independent characters, to compute mPPs assuming 

an equal prior on the 7 possible model combinations (Table S6). Since the model in which the genes 

are dependent on each other with ARD transitions had a posterior probability much higher than any 

other model (>99.99%), I used this analysis going forward. 

Sucrose 

For sucrose, there are strains with various complements of SpsA, Spp, SpsA*. I considered the 

three characters corresponding to SpsA, Spp and SpsA*, treating all three characters as 

independent, all three characters as dependent, or two characters as dependent on each other and 

the other one independent. 
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I used the previously-described approaches to compute MLEs for the rates, perform Bayesian 

analyses, compute marginal likelihoods and sample posterior-predictive replicates, for each 

combination of dependent/independent characters and each transition rate model. 

I used the marginal likelihood estimates (Table S6) from all these analyses to compute mPPs 

assuming an equal prior on the model combinations (Table S6). Since the model in which the 

characters are all dependent on each other with ARD transitions had a posterior probability much 

higher than any other model (>99.99%), I used this analysis going forward.  

Correlation between compatible solute genes and salt tolerance 

I used the Merge-sMap utility of sMap to recode the analyses for GG and Suc, renaming the 

names of the states (e.g. “A,A” became “0”, “A,P” became “1” and so on), so that the Stat-sMap 

utility would consider each compatible solute as a single character for the purpose of computing 

correlation statistics. 

I then used Merge-sMap to merge the analysis of each compatible solute with the analysis for the 

habitat and performed D-tests [81] using Stat-sMap to compute posterior-predictive P and Pij values 

(Table 10). 

6.2.5. Salt tolerance as conditioned on compatible solute genes 

Salt tolerance conditioned on GG and GGA 

I first performed a stochastic mapping analysis in which the salt tolerance character was 

conditioned on the presence/absence of GGA and GG (as these were the two compatible solutes 

most significantly correlated with habitat). In this analysis, I considered the ARD and ER models for 

GGA, and the all-dependent/ARD model for GG. 

I used the MLE for the transition rates that had been computed earlier to inform priors that were 

then used to estimate these parameters in an empirical Bayes approach. The conditioned 

probabilities had flat Dirichlet prior. 

GGA was set as an independent character, the two genes for GG were set as dependent 

characters; the salt tolerance was conditioned on the other 3 characters. I performed two analyses 

using an ARD model for the genes for GG, while for GGA in the first analysis I set up an ARD model 

and in the second analysis I used an ER model. In all analyses, I computed marginal likelihoods 

using the stepping-stone algorithm [320]. 

I used the marginal likelihood estimates (Table S9) to compute mPPs assuming an equal prior 

on the two models (Table S9). I then blended the results of the two analyses and plotted them. 

Note that the mPPs are very similar to those that were computed for the ARD and ER model for 

GGA as an independent character (Table S6); this is because the difference in marginal likelihoods 
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between the two models in this analysis is approximately equal to the difference in marginal 

likelihoods in the analysis including only GGA (i.e., the effect of adding the GG character and the 

salt tolerance character is negligible). I use this approximation in the next analysis. 

Salt tolerance conditioned on Suc, GG, GGA and GB 

In this analysis I considered the salt tolerance character as being conditioned on the 

presence/absence of GGA, GG, GB, and each of the Suc biosynthesis genes. 

I set up four sMap analyses with the data for Suc, GG, GGA, GB and the habitat. GGA and GB 

were set as independent characters; the two genes for GG were set to be dependent on each other, 

and the three characters for Suc were also set to be dependent on each other. The habitat was 

conditioned on the other 7 characters. In each of the four analyses, I used a different combination of 

models for GGA and GB (i.e. ARD for both; ER for both; ARD for GGA and ER for GB; ER for GGA 

and ARD for GB). In all analyses, I used the all-dependent/ARD model for GG and Suc. In this case, 

the model was too complex to estimate the rate parameters using a Bayesian approach, therefore I 

fixed the rates to the MLEs that had been computed previously (with each compatible solute treated 

independently). The conditioned probabilities were estimated using a Bayesian approach, with a flat 

Dirichlet prior. 

I computed weights for the four analyses using the marginal likelihoods of the ARD and ER 

models for GGA and GB (Table S6); these should be approximately equal to the mPPs of the four 

combinations of models. I used these weights to blend the results of the analyses and plotted them. 

6.3. Results and discussion 

The aim of this study is to analyse the evolution of salt tolerance in Cyanobacteria and determine 

whether the ancestors of modern strains were able to withstand high salt concentrations or not. 

Figure 57 shows the final results of the analyses presented in this chapter. It includes a time-

calibrated phylogeny of the cyanobacterial strains that I have analysed, where the branches are 

coloured according to the most probable salt tolerance state at each point in time. Five elements are 

highlighted: the last common ancestor (LCA) of Cyanobacteria (1), the LCA of Micro- and 

Macrocyanobacteria (2), the branch underlying Gloeomargarita, where the branching point from 

which the chloroplast originated is found [73,156,157] (3), the LCA of the Nostocales group (4), and 

the LCA of Picocyanobacteria (5). The presence or absence of each compatible solute in modern 

strains is also highlighted. 

6.3.1. Salt tolerance as a morphological character 

 In an initial effort to answer the question at hand, I used stochastic mapping to model salt 

tolerance as a simple character (similar to the approach in [73]). As in traditional ancestral state 

reconstruction methods, it is possible to use this analysis to determine the overall probability of the 
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character states in the ancestral taxa; however, in addition to this, stochastic mapping makes it also 

possible to correlate the character state with the age of the ancestral taxa, both at the node level 

(Figure 58A, B, C, D) and at the branch level (Figure 58E). 

 

Figure 57. Evolution of salt tolerance in Cyanobacteria. The figure represents a time-calibrated phylogeny of 
Cyanobacteria where branch regions with a posterior probability of a high salt tolerance greater than 60% are highlighted 
in orange, branch regions with a posterior probability of a low salt tolerance higher than 60% are highlighted in light blue, 
and branch regions with a posterior probability of high/low salt tolerance between 40% and 60% are highlighted with a 
dashed pattern alternating orange and blue. The presence or absence of compatible solutes is highlighted for each strain 
(see inset legend). The major traditional groups of Cyanobacteria are also highlighted; note that many of these are 
polyphyletic. Posterior distributions are drawn for the age estimates of the LCA of Cyanobacteria (1), the LCA of Micro- 
and Macrocyanobacteria (2), the LCA of Nostocales (4), and the LCA of Picocyanobacteria (5). The branch leading to 

Gloeomargarita litophora is marked as 3. 
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Figure 58. Posterior probability estimates for salt tolerance. This is shown for the key nodes highlighted in Figure 57: 
the last common ancestor (LCA) of crown group Cyanobacteria (A, node 1 in Figure 57), the LCA of Micro- and 
Macrocyanobacteria (B, node 2 in Figure 57), the LCA of the Nostocales group (C node 4 in Figure 57), the LCA of 
Picocyanobacteria (D, node 5 in Figure 57) and the branch leading to G. litophora (E, number 3 in Figure 57). Light blue 
is low salt tolerance (L), orange is high salt tolerance (H). For each node, the three rows correspond to the three analyses 
performed in this study: the top row is the analysis with salt tolerance as an independent character; the second row is salt 
tolerance conditioned on GG and GGA; the third row is salt tolerance conditioned on Suc, GG, GGA and GB. For the first 
four nodes, the violin plot shows the probability density of the corresponding ancestor existing and having each level of 
salt tolerance at each point in time, while the pie chart shows the overall probability of the node being in either salt tolerance 
state (i.e., the overall area of the light blue plot vs the area of the orange plot). For the branch leading to G. litophora, the 
reconstruction of the probability of each level of salt tolerance for the whole branch is reported (with G. litophora at the far 
right). The area highlighted in grey is the 95% confidence interval for the age of the LCA of G. litophora and the chloroplast 
as reported by [73], with the dark grey line representing the median estimate. The bar charts show the probability of each 
salt tolerance state at the median estimate for the age of the LCA of G. litophora and the chloroplast. All ages are expressed 
in million years ago (Mya). 
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In my clock analysis, the LCA of crown group Cyanobacteria has a mean age of 3182 Mya (89% 

credible interval (CI) [301]: 2956 – 3401 Mya, 95% CI: 2928 – 3472 Mya). This is within the range of 

previous estimates, though it falls towards the older end of the spectrum [72]. In this initial stochastic 

mapping analysis, the overall probability of this ancestor having a low salt tolerance is slightly higher 

than the probability of high salt tolerance (67% for L, 33% for H, Figure 58A1); however, this 

difference is not high enough to show strong support in favour of either hypothesis. 

The split between Micro- and Macrocyanobacteria was an important event in the evolution of 

Cyanobacteria, since it happened just before the diversification of the major groups of currently living 

Cyanobacteria (see Section 2.2). In my tree this is dated at 2591 Mya (89% CI: 2407 – 2758 Mya, 

95% CI: 2391 – 2820 Mya); this is also similar to previous estimates, though slightly older [73,183]. 

In this analysis (Figure 58B1), this ancestor has a 71% probability of having a low salt tolerance; 

thus, while the support for a low salt tolerance at this node is stronger than for the LCA of 

Cyanobacteria, this is still not a convincingly high probability. 

The Nostocales are a group of mostly freshwater filamentous Cyanobacteria (see Section 2.2.5). 

The mean age of their last common ancestor in my tree is 1629 Mya (89% CI: 1579 – 1682 Mya, 

95% CI: 1574 – 1708 Mya); again, this is similar to previous estimates [73,183]. As could be 

expected, there is relatively strong support suggesting a low salt tolerance state at this node (80%, 

Figure 58C1); this is however not overwhelming, and the possibility of a high salt tolerance (with 

20% probability) cannot be excluded yet. 

Picocyanobacteria are a group containing unicellular Cyanobacteria with a small cell diameter, 

which includes, in particular, important marine primary producers such as Synechococcus and 

Prochlorococcus (see Section 2.2.4). They are a relatively recent group, and their mean age in my 

tree is at 568 Mya (89% CI: 422 – 732 Mya, 95% CI: 385 – 770 Mya). As with the other nodes, this 

is similar to previous estimates [73,183], and, interestingly, is compatible with the age of the 

Neoproterozoic oxygenation event (NOE). As could be expected, the ancestor of this group has a 

higher probability for high salt tolerance than low (H: 73%, L: 27%, Figure 58D1); however, like the 

previous cases, neither hypothesis is strongly supported by the analysis. 

Finally, the branch connecting Gloeomargarita litophora to the rest of the cyanobacterial tree is 

of importance, because it has been hypothesised that the last common ancestor of eukaryotic 

chloroplasts diverged from this branch [73,156,157] (see Section 2.2.3). Figure 58E1 shows the 

probability distribution for high and low salt tolerance along the entire branch, starting from its 

divergence from other Cyanobacteria (to the left; mean age: 2762 Mya, 89% CI: 2559 Mya – 2951 

Mya, 95% CI: 2523 – 3026 Mya) to the present day (0 Mya, to the right). According to [73], the 

chloroplast originated around 2108 Mya (95% CI: 2311–1907 Mya); at this point in time, my analysis 

suggests a posterior probability of 66% for low salt tolerance and 34% for high salt tolerance. Again, 

this gap is not high enough to show strong support in favour of either hypothesis. 
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As had been noticed before [186,187], all these results highlight that the data that I have analysed 

in this section (i.e., only considering the salt tolerance state of modern strains) is not sufficient to 

provide a convincing answer about the salt tolerance capabilities of cyanobacterial ancestors. To 

address this, it is necessary to use more data and/or a more sophisticated model of the evolution of 

salt tolerance. 

6.3.2. Gene trees and species tree 

A first step in this direction can be achieved by studying the evolution of compatible solutes. Since 

compatible solute biosynthesis is an important mechanism through which Cyanobacteria can 

achieve salt tolerance, understanding the origin and evolutionary history of the genes involved in this 

mechanism can help shed light on salt tolerance itself. 

In general, individual trees for these genes showed a relatively large amount of discordance with 

the species tree, as well as many internal branches with low support values (Figure S1 – Figure 

S11). On the one hand, these may be explained by widespread lateral gene transfer (LGT) events 

in the history of these genes; however, it is also possible that these inconsistencies may be due to 

the lack of phylogenetic signal in the gene trees. 

Indeed, the short length of the gene alignments (average length ~450 amino acids) makes the 

second possibility more likely, considering that I was trying to reconstruct events that happened 

billions of years ago. It was therefore necessary to approach this issue from a different angle. 

6.3.3. Evolution of compatible solutes 

Since the gene trees do not provide enough signal to resolve the evolutionary history of 

compatible solutes, an alternative approach is to model the compatible solutes as morphological 

characters.  

 

Table 9. Presence or absence of compatible solutes in cyanobacterial ancestors. Ancestor nodes are as mentioned 
in Figure 57 and Figure 58. +: presence of the compatible solute. -: absence of the compatible solute. ?: status unclear 
(the posterior probability is not high or low enough to assume neither the presence nor the absence of the compatible 
solute). ? / +: unclear, but there is a high probability of at least one gene in the pathway being present, thus the compatible 
solute is probably present. See text for the posterior probabilities of these estimates. 

 Compatible solutes 

Node Suc Tre GG GGA GB 

LCA of Cyanobacteria ? ? ? / + + ? 

LCA of Micro- and Macrocyanobacteria ? ? ? / + + - 

LCA of Nostocales + + - - - 

LCA of Picocyanobacteria + - ? / + + - 

LCA of G. litophora and chloroplast ? ? ? ? - 
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Table 9 summarises the results of this analysis. Looking at the LCA of crown group 

Cyanobacteria, it is unclear whether it was able to produce sucrose (Suc), as there is a 52% 

probability that it possessed none of the three genes involved in the biosynthesis of this compatible 

solute and a 30% probability that it had two of them (spsA and spp). Trehalose (Tre) shows a similar 

situation, with a 57.8% probability of absence of this compatible solute. For glucosylglycerol (GG), 

there is a 9% probability that neither ggpP nor ggpS were present in this ancestor; this means that 

it is very likely that this ancestor possessed at least one of these genes. However, since both genes 

are required for the biosynthesis of GG, and there is only a 30% probability of both being present, it 

is unclear whether the ancestor possessed a functional biosynthetic pathway. Glucosylglycerate 

(GGA) was most likely present in this ancestor (93%). Finally, it is unclear whether it could produce 

glycine betaine (GB), but it is more likely that it could not (77% probability of absence). 

The presence of Suc and Tre in the LCA of Macro- and Microcyanobacteria is similarly unclear 

(68% probability of absence of all genes for Suc, 60% absence of Tre); it is more likely that this 

ancestor had the full GG pathway (57% presence of both genes, 5% absence of both genes), though 

there is still a significant probability of it possessing only one gene (38%). GGA was also probably 

present in this ancestor (94%), while GB was absent (82%). 

The LCA of the Nostocales could probably produce Suc and Tre (72% presence of spsA* and 

spp, 18% presence of all three genes for Suc; 81% presence of Tre). However, it probably could not 

produce any other compatible solute (85% absence of both genes for GG, 83% absence of GGA, 

95% absence of GB). 

The LCA of the Picocyanobacteria presents an interesting pattern for Suc, because there is an 

83% probability that it possessed the spsA gene: while the full pathway would require the spp activity 

as well, the C terminus of spsA is a homolog of spp [373], and it is conceivable that this ancestor 

could produce Suc using a single gene for both steps of the pathway [84]. Tre was probably absent 

in this ancestor (92%) and GG was probably present (85% presence of at least one gene in the 

pathway). GGA was present (99%) and GB was probably absent (84%). 

Finally, the branch leading to G. litophora is an interesting case, because while the LCA of G. 

litophora and other Cyanobacteria is predicted to possess a number of compatible solute 

biosynthesis genes, G. litophora (being a freshwater strain) does not have them. Therefore, the 

probabilities of presence of the various compatible solutes decrease along this branch, and the most 

likely state for the LCA of chloroplasts and G. litophora strongly depends on its age. Based on the 

age estimates from [73], it is unclear whether this ancestor could produce Suc (71% absence of all 

genes in the pathway), Tre (67% absence), GG (50% presence of both genes, 39% absence of both 

genes), or GGA (51% presence); however, it is very likely that it could not produce GB (90%). 
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These results provide information about the presence of compatible solutes in ancestral 

Cyanobacteria; however, they do not offer a quantitative answer to the question of the salt tolerance 

of these ancestors. In fact, while the presence of compatible solutes is qualitatively connected to a 

high salt tolerance, the relationship is not entirely clear, as other factors may be involved: for 

example, Suc and Tre are present in many strains that actually live in freshwater environments. It is 

therefore necessary to establish a probabilistic link between compatible solute production and salt 

tolerance. 

6.3.4. Correlation of compatible solutes and salt tolerance 

Stochastic mapping makes it possible to quantify the amount of correlation between two 

characters; this can be achieved using the D test [81]. To perform the D test between two characters, 

the simulated character histories between those characters are analysed, and for each history the 

amount of time that has been spent in each combination of states (e.g., presence of Suc and high 

salt tolerance, or absence of Suc and high salt tolerance) is computed. This is compared with the 

expected frequency of association between the two characters if they were truly independent, in 

order to compute a value for the D statistic (which measures overall correlation between the 

characters) and the di,j statistics (which measure correlation between specific character states) for 

the specific history. The values of D and di,j for the various histories are then averaged to obtain the 

overall values given the observed data. 

The observed value of D gives an indication of the strength of the correlation between the two 

characters, but it cannot be used on its own to determine whether the correlation is due the observed 

data or to the way the model has been specified. This can be done in a Bayesian way by computing 

a posterior predictive P value for the estimated value of the D statistic. This step involves simulating 

additional character histories that are not constrained by the observed data, and computing a value 

of D for each history. Then, the observed value of D is compared with this posterior predictive 

distribution, in order to determine the proportion of sampled values of D that are higher than the 

observed value; this is the posterior predictive P value. A low P value indicates that the correlation 

between the two characters is highly significant, while a P value close to 50% indicates that the 

correlation is not significant. 

I performed D-tests comparing the stochastic mapping reconstructions for the salt tolerance and 

for each compatible solute. The results are summarised in Table 10. 
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Table 10. Results of the D-test for correlation between compatible solutes and salt tolerance. The table shows the 
results of the D-test for each compatible solute. The rows marked “overall” contain the overall D value and posterior 
predictive P value for the compatible solute. The other rows contain di,j and Pi,j values for specific combinations of states 
for the compatible solute and salt tolerance (H = high salt tolerance). Negative values of D / di,j indicate a negative 
correlation, while positive values indicate positive correlation. For example, Absence of GGA is negatively correlated with 
high salt tolerance. For two-state characters (i.e., Tre, GGA, and GB), Pi,j values are identical for all combination of states, 
and di,j values are also identical, up to a change in sign; hence, only one value is reported (for example, the di,j between 
presence of Tre and high salt tolerance is -1.9%, with a di,j of 22%; the same values apply to the comparison between 
absence of Tre and low salt tolerance). For Suc and GG, Pi,j values for comparisons against the low salt tolerance state 
are identical to the ones against the high salt tolerance, while di,j values have the same magnitude but opposite sign (e.g., 
the di,j between the absence of all genes for Suc and low salt tolerance is -2.6%, with a Pi,j of 4.8%). For these compatible 
solutes, state combinations with a Pi,j higher than 10% are not reported. 

 Comparison D / di,j P / Pi,j 

Sucrose 

Overall 19% 8.65% 

All absent vs H 2.6% 4.8% 

All present vs H -1.5% 9.0% 

Trehalose 
Overall 8.0% 19.85% 

Absent vs H 1.9% 22% 

Glucosylglycerol 

Overall 29% 0.3% 

All absent vs H -7.1% 0.3% 

All present vs H 5.9% 0.3% 

Glucosylglycerate 
Overall 18% 1.55% 

Absent vs H -4.4% 1.6% 

Glycine betaine 
Overall 9.4% 9.45% 

Absent vs H -2.3% 9.5% 

 

The compatible solute that is most strongly associated with salt tolerance is GG (posterior 

predictive P = 0.003): as expected, absence of both genes for GG is strongly correlated with a low 

salt tolerance state, while presence of both genes is associated with a high salt tolerance. States 

where only one gene is present are also associated with a high salt tolerance, though not as strongly. 

GGA is also associated with salt tolerance (P = 0.0155). As expected, absence of this compatible 

solute is associated with a low salt tolerance, while its presence is associated with a high salt 

tolerance. 

The association between GB and salt tolerance is not as strong as the previous two compatible 

solutes (P = 0.0945); nevertheless, presence of GB is associated with high salt tolerance and 

absence is associated with low salt tolerance. The association between Suc and salt tolerance has 

similar strength (P = 0.0865); here, the strongest association is between the absence of all three 

genes involved in Suc biosynthesis and high salt tolerance. Finally, the association between Tre and 

salt tolerance is very weak (P = 0.1985); absence of Tre is associated with high salt tolerance, while 

its presence is associated with low salt tolerance. 
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The results for GG and GGA confirm the expected effect of this compatible solutes on salt 

tolerance [84]. The association of GB and high salt tolerance also corresponds to the expectations; 

the low strength of this association can be explained by the fact that this compatible solute is present 

only in few of the sampled strains (9.5%, compared with 24% with GGA and 30% with GG). 

At first sight, the fact that the presence of Suc is associated with a low salt tolerance (though 

weakly) might be surprising; however, in addition to being involved with salt tolerance, sucrose is 

also crucial for carbon metabolism [372], which may explain this observation. Similarly, the weak 

association between Tre and salt tolerance can be explained by the fact that Tre is mostly involved 

in resistance to desiccation (i.e., reduction in water activity due to reduced availability of water, rather 

than a higher concentration of salts) [374]. These results suggest that Suc and Tre are used as “last-

resort” compatible solutes by strains that are otherwise unequipped to deal with high salt 

concentrations, such as the mostly-freshwater Nostocales. 

Based on the results of this analysis, it is possible to make some qualitative statements about the 

salt tolerance of the ancestors of interest: for example, since the LCA of Cyanobacteria was probably 

able to produce GGA and had at least one gene for GG, it is reasonable to expect that this ancestor 

had a high salt tolerance. However, it is also possible to obtain additional quantitative information 

about this by performing additional stochastic mapping analyses. 

6.3.5. Salt tolerance conditioned on GG and GGA 

The D test makes it possible to estimate the amount of correlation a posteriori – i.e., after the 

stochastic mapping simulations have been computed while treating the characters as independent 

on each other. Instead, using the conditioned character model implemented in sMap [82] makes it 

possible to include and estimate the correlation within the model itself, thus producing character 

history simulations that use the correlation between the characters to provide additional information. 

In this way, even though one character does not have enough information to provide a definitive 

answer to the research question, using multiple characters can be used to address this issue. 

However, the more data is included in the analysis, the higher is the performance penalty that 

occurs. Therefore, based on the results of the correlation analysis between salt tolerance and the 

compatible solutes, I started by modelling the salt tolerance character as being conditioned only on 

GG and GGA. The results of this analysis are summarised by the distributions marked as 2 in Figure 

58.  

For the LCA of crown group Cyanobacteria, adding the information about GG and GGA has 

reversed the results, producing a 68% probability that this ancestor had a high salt tolerance (Figure 

58A2). Similarly, the LCA of Macro- and Microcyanobacteria is now predicted to have a high salt 

tolerance (78%, Figure 58B2); however, in both cases, these probabilities are still not high enough 

to provide a conclusive answer. 
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The estimate for the LCA of Nostocales has also become more uncertain in this analysis, with a 

45% probability of a low salt tolerance (Figure 58C2, down from the 80% in the previous analysis). 

The LCA of Picocyanobacteria, instead, is now predicted to have had a high salt tolerance with a 

high degree of confidence (98%, Figure 58D2). Finally, the estimates for the G. litophora branch 

have changed slightly, but it is still unclear whether the LCA of G. litophora and the chloroplast had 

a high or low salt tolerance (43% probability of low salt tolerance, Figure 58E2). 

With the exception of the LCA of Picocyanobacteria, which is now unambiguously estimated to 

have had a high salt tolerance, these results highlight that the amount of information provided by 

using the GG and GGA genes is not sufficient to reach a clear conclusion about the salt tolerance 

state of these cyanobacterial ancestors. It is therefore necessary to use additional data.  

6.3.6. Salt tolerance conditioned on Suc, GG, GGA and GB 

In the final analysis, I therefore decided to also include the data about Suc and GB. Due to the 

complexity of the analysis, in this case I could not estimate the model parameters using a Bayesian 

approach, and had to proceed using maximum-likelihood instead (see Methods). Note however that 

stochastic mapping is still a Bayesian process even in this case, in the sense that the percentages 

reported here are still posterior probabilities, even though they are conditioned on the parameter 

values sampled using maximum-likelihood in addition to the data. 

The inclusion of Suc and GB makes it finally possible to obtain a convincing answer for the salt 

tolerance state of the nodes of interest. The LCA of crown group Cyanobacteria is now convincingly 

predicted to have had a high salt tolerance (91%, Figure 58A3). Similarly, the LCA of Macro- and 

Microcyanobacteria also had a high salt tolerance (96%, Figure 58B3), while as predicted by the 

initial analysis, the LCA of Nostocales had a low salt tolerance (94%, Figure 58C3). The evidence 

in favour of the LCA of Picocyanobacteria having a high salt tolerance has also increased, reaching 

virtual certainty (100%, Figure 58D3). 

The state of the LCA of G. litophora and the chloroplast, however, is still unclear (40% probability 

of low salt tolerance, Figure 58E3). It is however interesting to note the pattern along this branch, 

because it relates the age of this ancestor with its salt tolerance state. In fact, the LCA of G. litophora 

and other Cyanobacteria is predicted to have had a high salt tolerance (94%, not shown), while G. 

litophora has a low salt tolerance. Therefore, a loss of the ability to withstand high salt concentrations 

must have happened somewhere along this branch; this means that, depending on when the LCA 

of chloroplasts diverged from this branch, this could have happened either before or after the loss of 

salt tolerance. 

The “tipping point” (i.e., the point on the branch where there is an equal probability of having a 

high or low salt tolerance) lies at about 1870 Mya; if the LCA of G. litophora and the chloroplast is 

older than this, then it is more likely that it had a high salt tolerance, while if it is younger than this, it 
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probably had a low salt tolerance. Furthermore, if this ancestor is older than about 2510 Mya, the 

probability of it having a high salt tolerance is greater than 80%, while if it is younger than 930 Mya, 

the probability of having a low salt tolerance is greater than 80%. 

In addition to considering specific nodes on the tree, it is also possible to consider when each 

compatible solute first appeared, regardless of where on the tree this happened. This is shown for 

GG, GGA and GB in Figure 59, together with a summary of the evolution of atmospheric oxygen 

levels [4] and the age estimates for some of the diversification events of Cyanobacteria (obtained 

from the molecular clock analysis). As expected based on the likely presence of GGA in the LCA of 

Cyanobacteria, the age distribution for the first cyanobacterium with GGA is very similar to the age 

distribution for the LCA of crown group Cyanobacteria. It is similarly likely that GG was present in 

the first cyanobacterium, or that it appeared shortly after it. 

 

Figure 59. Timeline of major events in the evolution of salt tolerance in Cyanobacteria. (A) Age estimates for the 
first cyanobacterium with GB, GG, and GGA. Note the bimodal distribution for GB. (B) Age estimates for important 
diversification events in the history of cyanobacteria. These correspond to nodes 1, 2, and 5 in Figure 57. (C) Estimated 
atmospheric oxygen concentrations through the history of the Earth. GOE: Great oxygenation event. NOE: Neoproterozoic 
oxygenation event. Adapted from [4]. 

The pattern for GB is more interesting, since it presents a bimodal distribution, with a first peak 

around the origin of Cyanobacteria, and a second peak much later, between the Paleoproterozoic 

and the Mesoproterozoic. This suggests two hypotheses for the origin of GB biosynthesis: either it 

was already present in the LCA of crown group Cyanobacteria, or these genes were acquired in the 
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Proterozoic. Based on these results, the second hypothesis appears more likely, though presence 

of GB in the LCA of Cyanobacteria cannot be entirely excluded. 

Figure 59 also shows an interesting coincidence between some major events in the history of 

Cyanobacteria and changes in atmospheric oxygen concentrations: the diversification of Micro- and 

Macrocyanobacteria appears to have happened just before the great oxygenation event (GOE), and 

there is a remarkable overlap between the age estimates for the LCA of Picocyanobacteria and the 

Neoproterozoic oxygenation event (NOE). While these are only correlations, a causal connection 

between Cyanobacteria and oxygen production (i.e., oxygenic photosynthesis) has been clearly 

established; it is therefore suggestive to think that the diversification of Micro- and 

Macrocyanobacteria into new ecological niches and the consequent increase in abundance might 

have played a role in the GOE, while the origin of Picocyanobacteria and their colonisation of the 

open ocean could be involved in the NOE. 

6.4. Conclusion 

Stochastic mapping is a powerful tool that can be used to study character evolution even when 

the roles of the underlying mechanisms are not clearly understood (e.g., in the case of genes, lateral 

gene transfer, duplications, losses or conversion). It can be used to integrate inferences about 

ancestral states with information about the ages of the ancestors. As exemplified by the analysis of 

the bimodal distribution of the first cyanobacterium with GB, stochastic mapping’s ability to perform 

inferences in continuous time makes it possible to analyse new kinds of hypotheses. 

In this study, I have shown how Bayesian techniques can be used to associate multiple lines of 

related evidence in a single analysis, extracting additional information about the characters being 

analysed and reconstructing a complex metabolism. An approach like this can be useful in any case 

where there are multiple characters or multiple genes underlying a single phenotype; for example, 

this will also be useful when analysing the evolution of photosynthesis (see Chapter 7). 

According to my analyses, the last common ancestor of crown group Cyanobacteria had a high 

salt tolerance, likely due to its ability to produce glucosylglycerate and possibly glucosylglycerol. It 

probably did not produce glycine betaine, while its ability to produce sucrose and trehalose is 

unclear. While my analyses report high confidence in the overall high salt tolerance state for this 

ancestor, additional data is required to clarify the presence or absence of all these compatible 

solutes. This could be obtained, for example, by sequencing genomes for new basal strains of 

Cyanobacteria (e.g. [147,148], which were published after these analyses had already been 

performed). 

Similarly, additional data is required in order to clarify the environment in which the original 

endosymbiotic event that led to the origin of the chloroplast happened. These should go in two 

directions: first, a tighter constraint on the age of the last common ancestor of G. litophora and the 
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chloroplast will provide an accurate placement of this ancestor on the tree of Cyanobacteria; second, 

the discovery of new strains related to G. litophora and the chloroplast will make it possible to “break” 

this long branch and help determine at which point in time the loss of salt tolerance in the ancestors 

of G. litophora happened. 

Nevertheless, the results presented here represent my current estimates given the available data. 

Salt tolerance is a complex trait, and the compatible solutes analysed here are not necessarily 

sufficient to get a full picture. Indeed, given that there are some cyanobacterial strains with a high 

salt tolerance that do not have any of the compatible solutes analysed here (such as Trichodesmium 

spp.), it is likely that some other factor is involved (for example, compatible solutes could be acquired 

from the environment, rather than being produced ex novo by the cyanobacterium [48,84]). However, 

even in the face of missing information, a Bayesian approach makes it possible to perform reliable 

inferences, providing probability estimates with a clear statistical interpretation, which include a 

measure of the uncertainty in the analysis. 
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7. Evolution of photosynthesis 
Insights from the (bacterio-)chlorophyll biosynthetic pathway 

 

“In a sense, the search for genes involved in chlorophyll synthesis can be said to have begun with 

Gregor Mendel, who noted the inheritance of differences in the tendency of pea cotyledons to retain 

or lose their green colour as they matured. As it turns out, the gene responsible for this trait encodes 

an enzyme that is involved in the degradation, rather than in the formation, of chlorophyll. 

Nevertheless, Mendel's observations can be considered to be the first systematic attempt to study 

the genetics of chlorophyll.” 

– Samuel I. Beale, Green genes gleaned [383]  

The analyses in this chapter were conceived in collaboration with T. Cardona, T. Williams, and P. 

Sánchez-Baracaldo. T. Cardona provided the list of genes to analyse for the (bacterio-)chlorophyll 

biosynthesis pathway. T. Williams provided a list of genes to use as phylogenetic markers for 

bacteria. I performed all the analyses, created the figures and tables, and wrote the manuscript. T. 

Cardona, T. Williams and P. Sánchez-Baracaldo provided comments on preliminary results. 
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Abstract 

Primary production through photosynthesis is a key factor for life on Earth, as it allows the 

conversion of the light energy input from the sun into chemical energy that is available to living 

organisms. Photosynthetic and phototrophic bacteria have been identified in multiple unrelated 

groups; as a result, it is unclear when and in which bacterial group photosynthesis first appeared. 

For photosynthesis to occur, a number of different cellular components need to be present and 

to interact in a carefully concerted way; two of the most important elements are reaction centre core 

proteins and chlorophylls. Chlorophylls capture the light energy from the sun, while the reaction 

centre core ensures that all the components required for photosynthesis are arranged in an effective 

way. 

In this chapter, I analyse the evolution of reaction centre core proteins and chlorophyll 

biosynthesis, using a Bayesian approach (stochastic mapping). Based on the inferred presence of 

most of these components in the last common ancestors of all bacteria (LBCA), I hypothesise that 

photosynthesis originated before the LBCA. The ability to perform photosynthesis was then 

preserved in an uninterrupted lineage leading to Cyanobacteria, as it evolved and incorporated 

“modern” features. Further analyses will clarify this history in more detail. 
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7.1. Background 

7.1.1. Introduction 

As has been discussed in Section 1.1, photosynthetic organisms are very important components 

of any ecosystem, because of two main reasons: they convert light energy into chemical energy, 

which can then be consumed by heterotrophic organisms, and oxygenic phototrophs release oxygen 

in the atmosphere, which is used by aerobic organisms to produce energy [384]. Studying how and 

when this metabolism originated and evolved, therefore, is crucial to understanding the history of life 

on Earth [384]. 

A first step in studying the evolution of photosynthesis is to look at the evolutionary relationships 

between the various photosynthetic strains. These can be found in a number of unrelated bacterial 

phyla [6] (described in Section 2.3.1), which means that it is not easy to determine when and in 

which group this metabolism first appeared: in fact, hypotheses have been formulated suggesting 

that almost every group of phototrophs could be the one in which photosynthesis ancestrally 

originated [6]. 

One of the few things that have been established with relative certainty is that photosynthesis 

originated within bacteria, and photosynthetic eukaryotes have “hijacked” this metabolism by 

acquiring an endosymbiotic partner that was capable of oxygenic photosynthesis (i.e., a 

cyanobacterium); this then became the chloroplast [29]. Furthermore, most chloroplasts can be 

traced back to a single endosymbiotic event, though there is evidence for additional events of primary 

endosymbiosis [73,157,159]. This information somewhat simplifies the study of the evolution of 

photosynthesis, because it means that photosynthetic eukaryotes can be taken out of the equation, 

at least when analysing the deep-time origin of this metabolism; accordingly, in this study I 

concentrate on photosynthetic bacteria. 

While the basic mechanics of photosynthesis are similar or identical between the different groups 

(see Section 1.1), each bacterial phototroph has its own peculiarities with regard to various aspects, 

such as the wavelengths of light it can use, the molecule that provides electrons to reduce the 

oxidised photosynthetic pigments, the by-products it releases, the kinds of pigment and antenna 

complexes that it possesses, and more [2,3]. A major distinction is between organisms that use a 

“Type I” reaction centre (RC) and those that use a “Type II” RC (see Sections 1.1.2 – 1.1.4). 

Cyanobacteria are the only oxygenic phototrophs, and have both a Type I and a Type II RC: this 

allows them to combine the energy of two quanta of light energy, creating an intermediate with a 

high enough redox potential that it can extract electrons from water, releasing molecular oxygen [2]. 

Multiple hypotheses have been suggested to explain why Cyanobacteria have both RC types while 

other organisms only have one: these can be broadly characterised as “fusion hypotheses”, which 

state that Cyanobacteria originated from an ancestor that only had one RC and gained the other RC 
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through horizontal gene transfer, or “selective loss hypotheses”, which state that ancestral 

phototrophs had both RC types, and one of them was lost in all of its descendants except 

Cyanobacteria [5] (see Section 2.3.2). 

These hypotheses try to answer four different questions: 

• When did photosynthesis first evolve? 

The origin of photosynthesis was an important step in the evolution of life, because it made it 

possible to have self-sustaining ecosystems across much of the Earth’s surface [384,385]. Before 

the invention of this metabolism, chemical energy stored in abiogenic molecules (which eventually 

runs out) and thermal energy coming from geological sources (which is only available in specific 

locations) were the only energy sources available to early micro-organisms [386]. Photosynthesis 

unlocked a new form of energy – light energy, which is abundant and available essentially 

everywhere on the planet [386]. 

While it is clear that photosynthesis must have originated before 2.5 billion years ago (since 

oxygenic phototrophs are responsible for the Great Oxygenation Event) [4], there are few additional 

constraints on the age of the first phototrophic organisms; considering the time scales involved, 

oxygenic or anoxygenic phototrophs may have existed at low abundances for a billion years or more 

without being detected [384]. 

• In which group of bacteria did photosynthesis originally appear? 

• What type of reaction centre(s) did this ancestral photosynthetic bacterium use? 

Most modern bacterial phyla originated in the early stages of bacterial evolution, and ancestors 

of almost each group of phototrophs have been proposed as the first photosynthetic organisms [6]. 

Determining where photosynthesis first appeared on the bacterial tree of life would provide unique 

insights into the evolution of this metabolism, and would also help to clarify which photosynthetic 

reaction centre is closest to the ancestral one. 

There is also the possibility that the last bacterial common ancestor (LBCA) was already 

photosynthetic [6]: in this case, the origin of photosynthesis cannot be traced on a phylogenetic tree, 

because there is not enough data in the biological record to study organisms older than the LBCA. 

• When did Type I and Type II reaction centres diversify? 

Type I and Type II reaction centres show clear signs of an evolutionary relationship [6]; however, 

while the 3-D structures of the core proteins are very similar between the two RC types, they have 

diverged a very long time ago, accumulating a large number of sequence substitutions [6,202]. This 

makes it hard to study the evolutionary relationship between these reaction centres using traditional 

sequence-based methods [202]. 
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In any case, there must be a point in time where the histories of Type I and Type II RCs coalesce 

into a single ancestor [6,67,202]: this is an important step in the evolution of photosynthesis, as 

having the two separate RCs would eventually allow Cyanobacteria to use water as an electron 

donor [2,384]. However, there is still the possibility that this divergence happened before the LBCA, 

which would again make this question hard to answer. 

7.1.2. Hypotheses on the origin of photosynthesis 

A number of contrasting hypotheses about the origin of photosynthesis have been proposed over 

the years. I give here an overview of some of these hypotheses; however, such an overview cannot 

be exhaustive, since there are essentially as many hypotheses regarding the evolution of 

photosynthesis, as there are scientists studying it. 

In 1985, upon the discovery of photosynthetic Heliobacteria (the fifth group of photosynthetic 

bacteria), Woese et al. [385] hypothesised that additional bacterial phototrophs belonging to groups 

not yet known to contain photosynthetic organisms would be discovered in the following years. We 

now know that they were correct, as photosynthetic Acidobacteria and Gemmatimonadetes were 

later identified [189,193]. In their words, given the distribution of photosynthetic strains across many 

bacterial phyla, “it would seem likely that the ancestor common to all eubacteria was itself 

photosynthetic” [385]. This hypothesis was in contrast with the then-dominant view of Oparin [387], 

which suggested that photosynthesis evolved relatively late in the history of bacteria. 

On the other hand, in 2002 Raymond et al. analysed 188 genes in five genomes from bacterial 

phototrophs [388] and, based on the maximum-likelihood branching pattern of each gene, concluded 

that lateral gene transfer (LGT) has played a significant role in the evolution of photosynthesis. They 

also state that since anoxygenic photosynthesis is “mechanistically simpler”, it is almost certain that 

anoxygenic photosynthesis “preceded and was ancestral to oxygenic photosynthesis” [388]. 

Similarly, Hohmann-Marriott and Blankenship stated in 2011 [80] that the earliest phototrophs were 

almost certainly anoxygenic, and that LGT has been involved in the evolution of photosynthetic 

components [80]. 

Looking at functional and structural homology between Type I and Type II reaction centres, 

Cardona hypothesised in 2016 [389] that the evolution of oxygenic photosynthesis follows steps that 

are similar to the assembly of Photosystem II, and that, regardless of how much LGT has happened, 

there have been massive losses of phototrophic ability in the bacterial tree of life [389]. Furthermore, 

he states that there is a large diversity of phototrophs that have become extinct or have not yet been 

discovered [389]. 

Again in 2016, Fischer et al. [384] reviewed the available evidence about the evolution of 

photosynthesis, and proposed a manganese-oxidising process as an intermediate step between 

anoxygenic photosynthesis and oxygenic photosynthesis [384]. They also stated that “Because 



 

150 

oxygenic photosynthesis evolved from a fusion of a homodimeric type I reaction centre and a 

homodimeric type II reaction centre, and given the evolutionary distance between these proteins, 

one can securely intuit that anoxygenic photosynthesis must be very old, whereas oxygenic 

photosynthesis is relatively young” [384]. 

Two years later, in 2018, Ward et al. looked at 11 genomes from Chloroflexi [390], observing at 

least two LGT events of photosynthetic machinery within this group; based on similar observations 

made in Proteobacteria, they inferred that LGT is relatively common between phototrophic 

organisms, and thus may explain the distribution of photosynthesis in the various bacterial groups 

[390]. However, in 2019 Cardona [6] highlighted that, with the exception of Gemmatimonadetes, the 

only evidence for LGT of entire photosynthetic clusters is within individual phyla, and not between 

different phyla [6]. He therefore suggested that while LGT may be possible between phototrophic 

organisms, it is less likely that it would be responsible for the acquisition of photosynthesis by a 

lineage that is not ancestrally phototrophic [6]. 

These examples highlight how the debate about the origin and evolution of photosynthesis is very 

much alive, centuries after this metabolism was discovered; while there are somewhat ideological 

differences between different research groups, conclusive evidence in favour of any one 

reconstruction of the history of photosynthesis is lacking [6]. 

Therefore, in this work I have tried to approach the problem with a fresh outlook; while I may not 

be able to provide this conclusive evidence, the novel methods that I have employed will offer new 

ways to analyse the available information. 

7.1.3. Reaction centre core proteins 

A working photosynthetic apparatus requires concerted action between a number of individual 

components [2]. As looking at all these components at once is not practical, in this study I will 

concentrate on two main factors: reaction centre core proteins and chlorophyll biosynthesis 

enzymes. 

Type I and Type II reaction centre cores have a similar structure: they are dimers of a core protein 

hosting a (bacterio-)chlorophyll dimer, which constitutes the “special pair” of photosynthetic pigments 

that absorbs light and emits a highly energetic electron [2,3] (see Section 1.1.2 – 1.1.4). In addition 

to this, the core proteins interact with other proteins and cofactors involved in processes and 

structures such as antenna complexes, electron transport, and reduction of the oxidised pigments. 

Type I RCs in anoxygenic phototrophs are homodimers – i.e., the reaction centre core is 

constituted by two molecules of the same protein, which is encoded by the pshA gene in 

photosynthetic Firmicutes and by the pscA gene in Chlorobi and Acidobacteria [198]. In 

Cyanobacteria, instead, the Photosystem I core is a heterodimer, constituted by a subunit encoded 

by the psaA gene and one encoded by psaB [67]. These four genes all have a common ancestor 
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(number 1 in Figure 60A), which represents the original Type I reaction centre [6]; it is reasonable 

to assume that this ancestral reaction centre would also be a homodimer [6], since the duplication 

that led to the heterodimeric Photosystem I appears to be relatively recent [6]. 

Type II RCs are dimers in both oxygenic and anoxygenic phototrophs; the subunits are called L 

and M in anoxygenic phototrophs, and D1 and D2 in Cyanobacteria [67]. In Proteobacteria, 

Chloroflexi, and Gemmatimonadetes, the two subunits are encoded by the pufL and pufM genes, 

respectively, while in Cyanobacteria they are encoded by psbA (for D1) and psbD (for D2) [391]. 

These four genes also share a common ancestor (number 2 in Figure 60A) [6]; however, 

interestingly, the duplication that led to pufL and pufM and the one that produced psbA and psbD 

appear to be independent events: therefore, there is no direct correspondence between L/M and 

D1/D2, and it is expected that the ancestral Type II RC was also a homodimer [6]. 

The genes for Type I and Type II RCs also share a common ancestor to all of them (Figure 60A3): 

though the protein sequences have diverged much over time (and thus have overall low identities 

and produce a tree with very long branches), they still retain structural similarities (Figure 60B, 

Figure 61) [6].  

In this study, I use these genes encoding for reaction centre core subunits to identify phototrophs 

with a Type I or Type II RC, and analyse their presence or absence to reconstruct the ancestral 

photosynthetic phenotype. 

 

Figure 60. Comparison of Type I and 
Type II reaction centres. (A) A 
phylogenetic tree of reaction centre core 
proteins. The names of the genes for 
each core subunit are highlighted. 1: LCA 
of Type I reaction centres. 2: LCA of Type 
II reaction centres. 3: LCA of all reaction 
centres. (B) Structural comparison 
between a Type I reaction centre (PsaA, 
blue) and a Type II reaction centre 
(PsbA, orange) from a cyanobacterium 
(Thermosynechococcus vestitus BP-1). 
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7.1.4. Chlorophyll 

biosynthesis 

In addition to the reaction centres, 

photosynthetic pigments are just as important 

for photosynthesis: it is the (bacterio-

)chlorophylls that actually capture the light 

energy and convert it into chemical energy by 

releasing highly energetic electrons [392]. 

Accordingly, the enzymes involved in the main 

steps of the biosynthetic pathway for (bacterio-

)chlorophyll are highly conserved in all 

photosynthetic organisms [392]. 

In this study, I concentrate on the 

biosynthetic pathway to produce chlorophyll a 

(Chl a) and bacteriochlorophyll a (Bch a). One 

of these photosynthetic pigments is present in 

most bacterial phototrophs and, in any case, 

pathways that produce other kinds of (bacterio-

)chlorophylls branch off from late stages of the 

pathways for Chl a / Bch a [392]. 

The production of chlorophylls involves a 

complex pathway, requiring many intermediate 

steps, not all of which have been elucidated 

[392]. It starts from protoporphyrin IX, which is 

a widespread molecule, as it is a precursor of 

heme [383]; the first step is the insertion of a 

magnesium atom in the protoporphyrin IX ring 

(Figure 62A): after this reaction occurs, the 

Mg-protoporphyrin IX is committed to the 

(bacterio-)chlorophyll biosynthetic pathway. 

The magnesium chelatase enzyme 

responsible for this reaction contains three 

subunits, encoded by the bchD/chlD, 

bchH/chlH and bchI/chlI genes [392]. Some 

anoxygenic phototrophs have multiple copies 

of bchH [392], but since in this analysis I am 

Figure 61. Similarity between reaction centre core 
proteins. Each comparison shows the distribution of percent 
identities between all pairs of sequences coming from two 
groups (e.g., between all possible pairs containing a sequence 
from a Type I RC and a sequence from a Type II RC). 
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only concentrating on the presence or absence of any copy of each gene, this does not affect my 

results. 

Note that, while the bch# genes are found in anoxygenic phototrophs and the chl# genes are 

found in Cyanobacteria, the genes in each pair (e.g., bchD and chlD) are homologs and 

interchangeable; therefore, they are treated here as a single gene. This pattern (where the genes 

from anoxygenic phototrophs and the ones from Cyanobacteria have different names despite being, 

for all purposes, the same gene) repeats itself with other genes as well. 

In the next step, a methyl group is transferred from S-adenosylmethionine to the carboxyl at the 

end of the chain bound to the C-13 of the tetrapyrrole ring (Figure 62B); the methylase responsible 

for this is encoded by the bchM/chlM gene [392]. This produces Mg-protoporphyrin-IX-

monomethylester; the chain at the C-13 is then oxidised and cyclised, forming the additional ring in 

3,8-divinyl-protochlorophyllide (Figure 62C) [392]. 

This step can be performed by two unrelated enzymes, one of which is encoded by the acsF 

gene, while the other is encoded by bchE [392]. While both enzymes transfer an oxygen atom to the 

chain at C-13, the difference between them is that BchE takes the oxygen from water (and does not 

work in oxic environments), while AcsF uses molecular oxygen [392]. Accordingly, AcsF is found in 

aerobic phototrophs (e.g., Cyanobacteria and some Proteobacteria), while BchE is found in 

organisms that live in anoxic conditions [392]. Some bacteria that can produce chlorophylls in both 

anoxic and microaerophilic environments have both genes, and regulate them depending on the 

oxygen concentration [392]. 

The next step in the pathway is the reduction of the vinyl group bound at the C-8, which is 

performed by one of two unrelated reductases, encoded by the bciA and bciB genes (Figure 62D) 

[392,393]. Most phototrophs have at least one between the two, but some have both genes; an 

explanation for this distribution has not yet been found [393]. Interestingly, strains of Prochlorococcus 

sp. lack both genes, and thus cannot perform this reduction step; as a result, they produce a unique 

kind of chlorophyll, divinyl-chlorophyll a, which allows them to use different wavelengths of light than 

other Cyanobacteria and thus live at greater depths in the water column [394,395]. 

The reduction of the C-8 vinyl group produces protochlorophyllide a; the double bond between C-

17 and C-18 is then reduced by an oxidoreductase, producing chlorophyllide a (Figure 62E) [392]. 

This step can also be performed by two unrelated complexes; one of these requires light and is only 

found in Cyanobacteria (see Conclusion), while the other is light-independent and is found in both 

Cyanobacteria and anoxygenic phototrophs [392]. In this study, I concentrate on the second 

complex, which is constituted by three subunits encoded by the bchB/chlB, bchL/chlL, and bchN/chlN 

genes [392]. 
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Figure 62. Biosynthetic pathway for (bacterio-)chlorophyll. For each step, the involved enzymes are displayed. When 
multiple names are displayed on the same arrow, these represent distinct subunits of a single enzymatic complex (e.g., 
BchX, BchY and BchZ). When multiple arrows are displayed, they represent distinct enzymes that catalyse the same 
reaction. The parts of the molecule that change at each step are highlighted. Names are included for some intermediate 
molecules. Carbon atom numbers for the porphyrin ring are shown for protoporphyrin IX. Exceptions and alternative 
pathways that were not analysed here are not included. Adapted after [392]. Molecular structures drawn using 

MarvinSketch version 21.20 [430]. See text for details about the pathway. 
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The steps up to here are in common between the biosynthetic pathways for bacteriochlorophyll a 

and chlorophyll a  [392]; however, the two pathways diverge after chlorophyllide a: in bacteria that 

produce chlorophyll a, the chlorophyll a synthase enzyme, encoded by the chlG gene, transfers a 

phytyl tail to the propionic acid chain bound at C-17, completing the pathway (Figure 62F) [392]. 

This tail originates from geranylgeranyl pyrophosphate, which is saturated by another enzyme either 

before or after having been added to C-17 [392]; however, I did not use the gene encoding this 

enzyme in my analyses. 

In organisms that produce bacteriochlorophylls, instead, the chlorophyllide ring undergoes further 

modification: first, the double bond between C-7 and C-8 is reduced by an oxidoreductase complex, 

encoded by the bchX, bchY and bchZ genes (Figure 62G) [392]. These three genes are related to 

bchB/chlB, bchL/chlL, and bchN/chlN and, accordingly, it has been suggested that bchX, bchY and 

bchZ originated from a duplication and divergence from bchN/chlN, bchB/chlB, and bchL/chlL, 

respectively [392]. Furthermore, these complexes are also related to the nitrogenase genes nifH, 

nifD, and nifK [392]. 

The resulting 3-vinyl-bacteriochlorophyllide a is then hydrated by an enzyme encoded by the bchF 

gene, which adds an -OH group to the chain at C-3, producing hydroxyethyl-bacteriochlorophyllide 

a (Figure 62H) [392]. This hydroxyl group is then dehydrogenated by an enzyme encoded by the 

bchC gene, forming a keto group and resulting in bacteriochlorophyllide a (Figure 62I) [392]. Finally, 

similarly to the last step in chlorophyll a biosynthesis, a phytyl tail is added to the C-17 of 

bacteriochlorophyllide a by an enzyme encoded by the bchG gene, producing bacteriochlorophyll a 

(Figure 62J) [392]. Even though the enzyme encoded by bchG is specific for bacteriochlorophyll 

and the one encoded by chlG is specific for chlorophyll, the two are very closely related and are 

essentially the same gene; accordingly, I treated them as such in my analyses. 

To summarise, in my analyses I used the genes included in Table 11, for a total of 24 genes. 
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Table 11. Genes used in this analysis. For each type of reaction centre and for each step in the biosynthesis of 
bacteriochlorophyll a and chlorophyll a, the table reports the genes involved (that have been analysed in this study) and 
the corresponding biosynthetic reaction step in Figure 62. 

Enzymatic complex Step(s) in Figure 62 Genes 

Photosystem I markers - 
psaA 

psaB 

Photosystem II markers - 
psbA 

psbD 

Type I reaction centre marker - pshA/pscA 

Type II reaction centre markers - 
pufL 

pufM 

Magnesium chelatase A 

bchD/chlD 

bchH/chlH 

bchI/chlI 

Methylase B bchM/chlM 

Cyclase C 
acsF 

bchE 

8-vinyl reductase D 
bciA 

bciB 

Protochlorophyllide oxidoreductase E 

bchB/chlB 

bchL/chlL 

bchN/chlN 

Chlorophyllide oxidoreductase G 

bchX 

bchY 

bchZ 

Hydratase H bchF 

Dehydrogenase I bchC 

Synthase F, J bchG/chlG 

7.2. Methods 

Computations were carried out using the computational facilities of the Advanced Computing 

Research Centre, University of Bristol – http://www.bris.ac.uk/acrc/. 

7.2.1. Bacterial dataset 

To determine the distribution of genes involved in photosynthesis and chlorophyll biosynthesis 

pathways, I created a dataset comprising 28,217 bacterial strains, built using all the high-quality 

genomes that were available in the NCBI RefSeq database [70] at the time the analysis was 

performed (October 27th, 2020). The dataset was constituted by: 

• 28,217 bacterial genomes, including both a genome file, containing the sequenced 

nucleotides, and a proteome file, containing the annotated protein data. 

• A rough tree for these 28,217 strains, including SSU percent identity score assigned at 

each node using the process described below. 

Genome download 

The dataset was built by iteratively refining a list of all the genomes available in RefSeq, filtering 

out at each step the genomes that did not pass the inclusion criteria. I started by downloading 

http://www.bris.ac.uk/acrc/
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197,626 assembly structure report files from the NCBI RefSeq database through the NCBI Assembly 

resource [409]; I also downloaded the NCBI taxonomy dump from the NCBI taxonomy FTP [410]. 

While the NCBI taxonomy is not an authoritative source for organism naming and classification, I still 

used it as a useful tool to perform a high-level assessment of the phylogenetic placement of the 

genomes I downloaded. 

I performed a first selection of the strains to include in my analyses by using a C# script that, 

using the information contained in the assembly structure report files and in the taxonomy dump, 

selected or rejected genomes based on the following criteria: 

1. If only one assembly was available for a species (as defined in the NCBI taxonomy), that 

assembly was selected. 

2. If multiple assemblies were available for a species, I chose the one with the best assembly 

level, as reported in the assembly structure report file (where “Complete genome” is better 

than “Chromosome”, which is better than “Scaffold”, which is better than “Contig”). 

3. For species that had multiple assemblies at the same assembly level, I chose the one 

expected to be a “final version” (as reported in the assembly structure report file). 

4. If more than one assembly was expected to be a final version for a species, I selected the 

one with the highest genome coverage (as reported in the assembly structure report file). 

5. If a species had more than one assembly with the same genome coverage, I selected the 

one with the earliest release date.  

This filtering step produced a list of 30’344 genomes, for which I downloaded the sequenced 

nucleotide data and the annotated protein sequences. I also built a guide tree for the strains from 

which these genomes were sequenced by using information in the NCBI taxonomy. 

16S SSU rRNA-based filtering 

I then used RNAmmer v1.2 [218] to obtain 16S SSU rRNA sequences from each genome. For 

genomes that had more than one SSU sequence, I only kept the one with the highest score (as 

reported by RNAmmer). At this stage, I also excluded from further analysis those genomes in which 

an SSU sequence was not found by RNAmmer, thus reducing the size of the dataset to 28,413 

genomes. 

Finally, I excluded genomes with a problematic placement in the NCBI taxonomy. To do this, I 

used the blastn program from the BLAST v2.11.0 suite [219] to find the best matches for the SSU 

sequences retrieved by RNAmmer in the the 16S_ribosomal_RNA database. For each genome, I 

kept up to 100 BLAST matches, with an e-value threshold of 10-50. I retrieved taxonomic information 

about these matches using the blastdbcmd program from BLAST v2.11.0 and built a full lineage for 

each match by using a C# script that traversed the NCBI taxonomy, moving from a node to its parent 
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until it reached the root node (taxid 1). From each BLAST output file, I also extracted the percent 

identity for the matched sequences. 

In this way, I built for each of the 28,413 genomes a file containing up to 100 lineages and 100 

percent identities, representing the best matches for the SSU sequence contained in the genome. 

As an example, the first match for the SSU sequence of the Acaryochloris marina MBIC 11017 

genome (assembly accession GCF 000018105.1) had a 100% identity, and the corresponding 

lineage was: 

131567;2;1783272;1798711;1117;1890424;1890429;155977;155978;329726 

Where the numbers are NCBI taxonomy taxids representing the following lineage: 

• cellular organisms 

o Bacteria 

▪ Terrabacteria group 

• Cyanobacteria/Melainabacteria group 

o Cyanobacteria 

▪ Synechococcales 

• Acaryochloridaceae 

o Acaryochloris 

▪ Acaryochloris marina 

I used these data files to compute a “consensus lineage” of all the matches to compare with the 

lineage reported for the genome in the NCBI taxonomy. I used a C# script that compared the lineages 

for the BLAST matches, selecting the most derived taxonomic level at which both of the following 

conditions were satisfied: 

1. The taxon (e.g., “Acaryochloris”, “Acaryochloridaceae” etc.) was retrieved in more than 

95% of the BLAST matches for the genome. For taxa that contained fewer sequences in 

the 16S_ribosomal_RNA than the number of hits (e.g., taxon “Myxococcales”, taxid 29, is 

associated only to 77 sequences), this criterion was satisfied if the number of hits for the 

taxon was more than 95% of the total number of descendants. 

2. The highest percent identity for a matched sequence belonging to the taxon was at least 

equal to 90%. 

Genomes for which a match satisfying these conditions could not be found were included in the 

analysis without further processing. 

For genomes where such a “closest hit” was found, the script then traversed the taxon’s lineage, 

starting from the root, and computing at each step the number of times the following node was 

retrieved in the BLAST matches. If this number was less than 50% of the times the current node was 

retrieved in the BLAST matches, the traversal stopped and the lineage up to the current node was 

deemed as the “consensus lineage” for the genome. 
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As an example, consider the case of the genome for Flavobacterium sp. CLA 17 (assembly 

accession GCF 013112255.1). Here, the highest-scoring hit in the database was for a Stanieria 

cyanosphaera PCC 7437 SSU sequence (accession number NR_114510.1), with an identity of 

91.908%. There are three Stanieria cyanosphaera PCC 7437 SSU sequences in the 

16S_ribosomal_RNA database (NR_102468.1, NR_112109.1, NR_114510.1), and all three were 

retrieved by the BLAST search; criterion 1 above is thus satisfied. Criterion 2 is also satisfied, 

because the percent identity is greater than 90%. The “closest hit” for Flavobacterium sp. CLA 17 is 

thus Stanieria cyanosphaera PCC 7437 (taxid 111780). The lineage for this strain is: 

131567;2;1783272;1798711;1117;52604;1890498;102115;102116;111780 

• cellular organisms 
o Bacteria 

▪ Terrabacteria group 

• Cyanobacteria/Melainabacteria group 
o Cyanobacteria 

▪ Pleurocapsales 
• Dermocarpellaceae 

o Stanieria 
▪ Stanieria cyanosphaera 

 

All of the 100 BLAST hits were of sequences within the “Cyanobacteria” group (taxid 1117); 

however, only 4 of these hits were within the “Pleurocapsales” group (taxid 52604). Thus, the 

algorithm stopped at the Cyanobacteria node, and the consensus lineage for Flavobacterium sp. 

CLA 17 is: 

• cellular organisms 
o Bacteria 

▪ Terrabacteria group 
• Cyanobacteria/Melainabacteria group 

o Cyanobacteria 

Then, this consensus lineage was compared with the lineage reported for the genome in the NCBI 

taxonomy, to identify the most derived node shared by both lineages. The number of genomes that 

descend from that node according to the taxonomy tree was computed and, if this was smaller than 

2000 (the threshold used when building the SSU tree, see below), the genome was included in the 

analysis without further processing. If the number of genomes was greater than 2000, the genome 

was flagged for manual assessment. 

For example, the lineage reported in the NCBI taxonomy for Flavobacterium sp. CLA 17 is: 

• cellular organisms 
o Bacteria 

▪ FCB group 

• Bacteroidetes/Chlorobi group 
o Bacteroidetes 

▪ Flavobacteriia 
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• Flavobacteriales 
o Flavobacteriaceae 

▪ Flavobacterium 
▪ unclassified 

Flavobacterium 
▪ Flavobacterium sp. CLA17 

The most derived node that the two lineages have in common is thus “Bacteria”. All 28,413 

genomes descend from “Bacteria”, thus Flavobacterium sp. CLA 17 was flagged for manual 

assessment. 

This process flagged 720 genomes for manual assessment. I manually checked these genomes 

to determine whether they were flagged because of a lack of close relatives (e.g. this was the case 

of many Wolbachia strains) or due to a real inconsistency between the expected lineage and the 

retrieved lineage (as was the case for e.g. Flavobacterium sp. CLA 17). Genomes flagged for the 

first reason were kept for the analysis, while genomes with inconsistent lineages were excluded. 

This way, 196 genomes were removed from the dataset, bringing the total number of genomes down 

to 28,217. 

SSU bacterial tree 

I then built a rough bacterial tree of these 28,217 genomes to use for display purposes. To do 

this, I took the guide tree computed with the NCBI taxonomy information and transformed all nodes 

with fewer than or equal to 2000 descendants into polytomies, removing any information about 

relationships below these nodes (this is the same threshold used above, during the filtering step). 

I used this tree as a “skeleton” to perform SSU sequence alignments using MAFFT v7.471 [224]. 

I could not use the --treein option of MAFFT, because this requires the tree to have meaningful 

branch lengths; instead, starting from the terminal nodes of the tree, I aligned the sequences 

descending from each node separately, and merged the alignments using the --merge option. For 

alignments that contained at most 2000 sequences, I used the --localpair --maxiterate 1000 

options, while for larger alignments I used the --auto option. 

This allowed me to build a SSU sequence alignment with reasonable resolution, because it 

allowed me to preserve the information about closely-related strains while more distantly-related 

strains were added to the analysis. I used this alignment to build an approximate maximum-likelihood 

tree using IQTREE v2.1.2 [227] with the --fast option, under a GTR+I+G model and with the 

skeleton tree as a constraint. For display purposes, the tree was rooted using the Deferribacteres as 

an outgroup. 

These steps allowed me to obtain a tree in which the major bacterial clades can be highlighted, 

even though this does not constitute an authoritative reference bacterial tree. 
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SSU identity scores 

I also used the SSU alignment to compute “identity scores” that were assigned to each node. 

Briefly, a SSU identity score for a node represents an estimate of the reciprocal similarity of the 

strains that descend from that node. This makes it possible, for example, to simplify the display of 

the tree by collapsing nodes whose identity score is higher than some threshold (because these 

nodes represent strains that are very closely related, and can thus be summarised by a single tip in 

the tree). 

First of all, I computed the percent identity between the 398,085,436 possible pairs of genomes 

in my dataset. This was defined as %𝐼𝐷 =
𝑀

𝑚+𝑀
⋅ 100, where 𝑀 is the number of matching positions 

(i.e., the number of positions where both sequences have the same nucleotide) and 𝑚 is the number 

of mismatches (i.e., the number of positions where the two sequences have different nucleotides). 

Positions where either one (or both) of the sequences have a gap or an ambiguous character are 

neither matches nor mismatches. 

I used a C# script to compute and assign the identity score for each node, using the following 

algorithm: 

• The identity score of any tip (terminal node) is 100%. 

• For each internal node, perform pairwise comparisons between its direct children, where 

each comparison produces a “comparison score” (see below). The identity score for the 

node is the minimum comparison score. 

• Additionally, a node cannot have an identity score that is higher than any of its children. 

The “comparison score” between two nodes is defined as the maximum SSU percent identity 

between a strain descending from the first node and a strain descending from the second node. 

Genome completion estimates 

I determined genome completion levels using BUSCO v5.0.0 [379] with the odb10 databases. I 

determined the best database to use for each genome based on the lineage information included in 

the genome (choosing the most derived group that contains the genome and is available as an odb10 

database), and then estimated the completeness of each genome as the percentage of complete 

BUSCOs that were found. 

7.2.2. Bacterial subsets 

Bacterial dataset composition 

In order to assess the composition of the bacterial dataset and to determine how it would be 

affected by applying various SSU identity thresholds, I plotted the number of OTUs in the tree in 

function of two SSU identity thresholds: 𝜃𝑁, which is the threshold applied to non-photosynthetic 
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groups, and 𝜃𝑃, which is the threshold applied to photosynthetic groups (Figure 63A). I defined a 

group as photosynthetic if at least one of its descendants had at least one gene for a photosynthetic 

reaction centre (psaA, psaB, psbA, psbB, pshA, pufL or pufM). I also plotted the percentage of 

photosynthetic strains in the dataset in function of the two thresholds (Figure 63C). 

Subset creation 

To perform stochastic mapping analyses, I built four “reduced” subsets of the bacterial dataset. 

The subsets were obtained by collapsing all nodes with an SSU identity score higher than a certain 

threshold, and then selecting a single genome to represent all the strains descending from each 

collapsed node. In order to assess the effect of taxon selection on my stochastic mapping analyses, 

I used four different pairs of thresholds (𝜃𝑁, 𝜃𝑃), each of which produced a subset containing about 

100 genomes. The subset composition was as follows: 

1. 𝜃𝑁  = 71%, 𝜃𝑃 = 79%, which resulted in a dataset with 111 genomes (including 32 

photosynthetic strains, i.e. 29%). 

2. 𝜃𝑁  = 75%, 𝜃𝑃 = 77%, which resulted in a dataset with 99 genomes (including 28 

photosynthetic strains, i.e. 28%). 

3. 𝜃𝑁  = 78%, 𝜃𝑃 = 75.5%, which resulted in a dataset with 124 genomes (including 16 

photosynthetic strains, i.e. 13%). 

4. 𝜃𝑁  = 79%, 𝜃𝑃 = 72%, which resulted in a dataset with 101 genomes (including 5 

photosynthetic strains, i.e. 5%). 

I selected the genome to include for each collapsed node by picking the genome that was most 

complete according to the BUSCO analysis. For photosynthetic groups, only photosynthetic strains 

were considered. 

I computed a list of all the different genomes included in the four subsets, and manually added 

additional strains to ensure that at least two Chloroflexi, two Cyanobacteria and two Chlorobi were 

included in the analysis; I also added members of the Fusobacteria, Spirochaetes, Deinococcus-

Thermus, Synergistetes, and Thermotogae groups, which were used to root the tree (see below). 

The final reduced dataset contained 192 different genomes, including all the genomes that were part 

of the various subsets. 

7.2.3. Ortholog identification 

In order to determine whether each bacterial genome contained a specific protein-coding gene 

and to retrieve its amino acid sequence, I proceeded by performing BLAST searches and by building 

phylogenetic trees. 

First, I retrieved a set of sequences for each gene to use as queries for the BLAST searches. For 

genes involved in photosynthesis and chlorophyll biosynthesis, this was done by searching for the 
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gene name (e.g. “chlB”) in the UniProt database [411] and then downloading either the “Reviewed” 

hits (if they were at least 10), or all the hits (if the search results contained fewer than 10 reviewed 

hits). For the genes that I used to build the reduced bacterial tree (see below), the sequences were 

a subset of the sequences used to build the bacterial tree in [403]. 

Figure 63. Dataset composition. (A) Number 
of OTUs (operational taxonomical units) in the 
tree as a function of the identity thresholds. 
The thresholds corresponding to the four 
subsets used for stochastic mapping analyses 
are highlighted. More detailed information 
about the composition for the full dataset, the 
dataset obtained by collapsing the tree with 
98.65% identity thresholds (which can be used 
for differentiating species [431]), and for the 
dataset as represented in the tree in Figure 64 
are shown in B. (B) details for the composition 
of datasets highlighted in A. For each dataset, 
the percentage of photosynthetic (P) and non-
photosynthetic (N) strains is shown, as well as 
the proportion of strains that belong to major 
groups of bacteria. For groups containing 
photosynthetic bacteria, photosynthetic 
strains are represented by the area highlighted 
with a darker shade, while non-photosynthetic 
strains are represented by the lighter shade. 
(C) Proportion of photosynthetic strains in the 
dataset as a function of the identity thresholds. 
The datasets that were highlighted in A are 
highlighted here as well. θP: SSU identity 
threshold for photosynthetic groups; θN: SSU 
identity threshold for non-photosynthetic 
groups. 
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I aligned these sequences using MAFFT v7.471 [224], with the --localpair --maxiterate 

1000 options. I then built a maximum-likelihood tree for each gene IQTREE v2.1.2 [227] under an 

LG+I+G model. Finally, I manually inspected each tree to select about 10 strains from a wide 

taxonomical background for each gene. These sequences were used as queries for BLAST 

analyses. 

I used the blastp and tblastn programs from BLAST v2.11.0 [219] to search for homologs of each 

gene in the 28,217 genomes, using a very permissive 10-5 e-value threshold. For each genome, I 

considered the best blastp hit and retrieved its sequence from the proteome file. For the genes 

involved in photosynthesis and chlorophyll biosynthesis, I also considered the best tblastn hit for 

each genome and extracted the DNA sequence for the hit, including a 201bp region upstream and 

downstream the matched region, in which I looked for start and stop codons. If these were found, I 

translated the DNA sequence using the “Bacterial, Archaeal and Plant Plastid Code” (translation 

table 11 in the NCBI database, [412]). Including the tblastn matches allowed me to consider genes 

that are present in the genomes, but have not been annotated in the proteome files. 

I collected all the blastp and tblastn matches in a single sequence file, along with the query 

sequences used for the BLAST searches, and aligned them using MAFFT v7.471 [224] with the --

auto option. I used these alignments to build an approximate maximum-likelihood tree using IQ-

TREE v2.1.2 with the --fast option, under an LG+G+I model. I used TreeViewer v2.0.1 (see 

Chapter 4) to plot each tree along with the BLAST scores of the matches, which allowed me to 

identify which sequences in the tree represented “true orthologs” of the query gene and which ones 

were false positives. 

Using this information, I built a presence/absence matrix of the genes involved in photosynthesis 

and chlorophyll biosynthesis across all bacteria. I followed the same approach for the genes that 

were used to build the reduced bacterial tree, with the difference that I only looked for these genes 

in the 192 genomes that are included in the four subsets, and only considered the blastp matches 

and not the ones obtained with tblastn. 

7.2.4. Reduced bacterial tree and molecular clock 

Phylogeny 

To perform stochastic mapping analyses, I required a rooted clock-like tree of the strains I was 

interested in. I built a single tree for the 192 strains that were involved in the four datasets, and 

obtained the tree for each subset by pruning the extraneous strains off the tree. 

To build a phylogeny of these strains, I used the methods described earlier to collect sequences 

for 63 genes that were also used in [403]. I aligned the sequences for each gene separately, filtered 

the alignments using the AlignmentViewer online utility (see Section 3.1), and then used the 

alignments to build three separate maximum-likelihood phylogenies using IQ-TREE v2.1.3 [227]. 
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For the first and second phylogenies (the “p” and “Q” phylogenies), I determined the best 

evolutionary model for each gene using the -m MF option of IQ-TREE. I then performed partitioned 

analyses, using for each gene the model identified earlier. For the “p” phylogeny, I used the -p option 

of IQ-TREE, which constrains all partitions to have the same set of branch lengths, though each 

partition can have a different evolutionary rate, while for the “Q” phylogeny, I used the -Q option, 

which instead allows each partition to have different branch lengths. 

For the third phylogeny (the “C20” phylogeny), I created a single concatenated alignment, and 

used it to build the tree with IQ-TREE using the -m LG+C20 option. This model uses the same branch 

lengths for all genes, but allows site-specific frequencies [227,413]. 

All maximum-likelihood analyses were repeated twice, to verify that they produced the same 

results. I compared the three phylogenies, and noted that they were mostly similar, except for the 

following: 

• In the “C20” phylogeny, Firmicutes form a sister group to the rest of Terrabacteria (i.e. 

Actinobacteria, Chloroflexi and Cyanobacteria), while Spirochaetes are a sister group to 

the rest of Gracilicutes. 

• In the “p” phylogeny, instead, Firmicutes and Actinobacteria form a clade within 

Terrabacteria, but Spirochaetes are still a sister group to the rest of Gracilicutes. 

• In the “Q” phylogeny, Firmicutes and Actinobacteria also form a clade within Terrabacteria, 

but Spirochaetes form a clade with Fusobacteria and Deinococcus-Thermus, 

Synergistetes and Thermotogae (DST). 

Based on the maximum likelihood estimate and the number of parameters for each model, I 

computed BIC scores and decided to use both the “C20” and the “p” phylogeny to build molecular 

clock trees. I also rooted each tree in three different places, corresponding to the three root positions 

identified in [403]: 

1. Fusobacteria and DST form a clade together with Gracilicutes. 

2. Fusobacteria and DST form a clade together with Terrabacteria. 

3. Fusobacteria and DST act as an outgroup to all the other bacteria. 

I thus proceeded to build six molecular clock trees. 

Ribosomal RNA alignments 

To build the sequence alignments for the molecular clock analysis, I used the SSU sequences 

that had been collected as described above and also collected 23S LSU rRNA sequences using 

RNAmmer v1.2 [218]. 
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I aligned the sequences for the strains of interest using MAFFT v7.471 [224] with the --

localpair --maxiterate 1000 options, and filtered and concatenated the alignments using the 

AlignmentViewer utility (see Section 3.1). 

Molecular clock 

The phylogenetic trees used for a stochastic mapping analysis should be clock-like trees; 

however, they do not need to be time-calibrated [82], i.e. the node ages can be expressed in relative 

rather than absolute terms. 

I used Phylobayes v4.1b [229] to build six uncalibrated molecular clock trees. For each analysis, 

I used one of the rooted phylogenies described above, together with the SSU-LSU concatenated 

alignment (which was the same for all trees). I used a birth-death prior on divergence times, an 

uncorrelated gamma multipliers clock model and a GTR+CAT evolutionary model. I ran two 

independent chains for each clock, and used the tracecomp utility to assess convergence. After the 

analyses had converged, I sampled 10,000 trees from one of the two chains (excluding the first 25% 

of samples as burn-in), using the -v option of the readdiv utility. 

Since the clock was not calibrated, Phylobayes assigned by default a root age of 1000 units to all 

the trees in the sample. To reflect uncertainty in the (relative) root age, I multiplied each tree by a 

different number drawn from a gamma distribution with mean 1000 and standard deviation 100. I 

then used TreeViewer v2.0.1 (see Chapter 4) to compute a consensus tree with median branch 

lengths from the 10,000 trees and to create a subsample of 1000 trees that I used for the stochastic 

mapping analyses. 

This process was repeated for each of the six combinations of phylogeny and rooting. 

Molecular clock for Chlorobi and Chloroflexi 

Since none of the four subsets contained enough Chlorobi, Chloroflexi and Cyanobacteria to 

constitute a representative sample, I also built separate molecular clock trees for these groups. I 

used these trees to perform stochastic mapping analyses separately for these clades, which allowed 

me to obtain information about the presence/absence of the various genes in the last common 

ancestor (LCA) of each group; I then applied this information to the corresponding nodes in the 

bacterial subsets when performing the “main” stochastic mapping analyses. 

I used the process described above to build a concatenated SSU-LSU alignment for all the 

Chlorobi and Chloroflexi that were present in my genomic dataset (25 and 51, respectively). I also 

built maximum-likelihood trees of Chlorobi and Chloroflexi using the same 63 genes that I used for 

the reduced bacterial phylogeny, with the LG+C20 evolutionary model. For the Chlorobi, I included 

three Bacteroidetes strains as an outgroup. For the Chloroflexi, I included two Vampirovibronia and 
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two Cyanobacteria. I then used the same procedure and the same parameters as above to build 

molecular clock trees for Chlorobi and Chloroflexi. 

Molecular clock for Cyanobacteria 

For Cyanobacteria, I already had at my disposal a calibrated molecular clock tree containing 220 

strains of Cyanobacteria. This clock tree was built using a phylogenomic maximum-likelihood tree, 

created using data from 145 protein-coding genes widespread in Cyanobacteria (which are the same 

as the ones I used in the salt tolerance analysis in Chapter 6). The molecular clock analysis was 

run using a concatenated SSU-LSU alignment, with a gamma root age prior putting 95% of the 

probability density between 2.3 Bya and 3.0 Bya, and six internal calibrations. I used a birth-death 

prior on divergence times, soft calibration bounds, a clock model with uncorrelated gamma 

multipliers, and a GTR+CAT evolutionary model. The genes and calibrations are described in 

Chapter 6. 

7.2.5. Stochastic mapping analyses 

I performed stochastic mapping analyses using sMap v1.0.7 [82]. I used the presence/absence 

data for the genes involved in photosynthesis and chlorophyll biosynthesis, combined with the 

BUSCO estimates of genome completeness, to compute likelihoods for the presence and absence 

of each gene in each taxon as described in the sMap manual. 

When performing a stochastic mapping analysis for each gene, I started with two maximum-

likelihood analyses: one in which the presence/absence of the gene evolved according to an all-

rates-different (ARD) model (i.e., the gain rate is independent of the loss rate), and one in which it 

evolved according to an equal-rates (ER) model (i.e., the gain rate is equal to the loss rate). I then 

took the maximum-likelihood estimates (MLE) for the rates from each of these analyses, and used 

them to inform the priors for a Bayesian analysis, using a log-normal prior with 𝜇  equal to the 

logarithm of the MLE and 𝜎 equal to 1 for rates whose MLE was greater than or equal to 0.01, and 

an exponential prior with 𝜆 equal to 100 for rates whose MLE was lower than 0.01. For the maximum-

likelihood analyses I used equal root priors, while for the Bayesian analyses I used a flat Dirichlet 

prior. In the Bayesian analyses, I also computed marginal likelihoods using stepping stone sampling. 

I then used the marginal likelihoods to compute model posterior probabilities (assuming a uniform 

prior over the ARD and ER models), and then used the Blend-sMap utility to blend the results of the 

ARD and ER Bayesian analyses with weights equal to the posterior probabilities of each model. I 

then used the Merge-sMap utility to convert the blended sMap file into a stochastic mapping tree file 

compatible with TreeViewer 2.0.1 (see Chapter 4), which I used to plot and interpret the results of 

the analyses. 

I followed the procedure described above to perform stochastic mapping analyses for each of the 

genes involved in the biosynthesis of chlorophyll, for each of the 24 clock trees (six clock trees for 
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each of the four subset). In addition, I also performed stochastic mapping analyses involving a 

generic “photosynthetic phenotype”: each strain was designated as “photosynthetic” (if it possessed 

at least one of the psaA, psaB, psbA, psbD, pscA/pshA, pufL or pufM genes) or “non-photosynthetic” 

(if it did not possess any of these genes), and the photosynthetic phenotype was modelled with the 

ARD and ER models as described above. Finally, I also performed analyses for Type I and Type II 

reaction centres; strains were designated as having a Type I RC if they had at least one of psaA, 

psaB or pscA/pshA, while they were designated as having a Type II RC if they had psbA, psbD, pufL 

or pufM. 

In all analyses, the nodes corresponding to Cyanobacteria, Chloroflexi and Chlorobi were pruned, 

leaving just a single node representing the LCA of each group. To determine the character states for 

these LCAs, I performed separate stochastic mapping analyses, using the same procedure as 

above, with data from the Cyanobacteria, Chloroflexi and Chlorobi molecular clocks (see above). I 

then extracted the likelihoods for the presence or absence of each gene in the LCA from the 

loglikelihoods.log files produced by sMap, averaged them across the different models using the 

model posterior probabilities as weights, normalised them, and used them as input data for the other 

stochastic mapping analyses. 

7.2.6. Comparison between reaction centre core proteins 

Phylogenetic tree of reaction centres 

To build the phylogenetic tree in Figure 60A, I collected the sequences for the psaA, psaB, 

pshA/pscA, psbA, psbD, pufL and pufM genes that I obtained while looking for orthologs of these 

genes. Out of these sequences, I randomly selected 15 sequences from each of psaA, psaB, psbA 

and psbD, though I made sure to include sequences from Gloeobacter violaceus PCC 7421 (which 

acts as an outgroup to the other Cyanobacteria). I then selected the pscA from Chloracidobacterium 

termophilum and from 10 randomly selected Chlorobi, and the pshA from all four Heliobacteria 

included in the dataset. Finally, I randomly selected 2 pufL sequences from Chloroflexi, 15 of these 

from Proteobacteria, and the one from Gemmatimonas phototrophica, as well as pufM from 2 

Chloroflexi, 15 Proteobacteria and Gemmatimonas phototrophica. 

I separately aligned the sequences for Type I and Type II reaction centres using MAFFT v7.471 

[224] with the --localpair --maxiterate 1000 options, and then merged the alignments using 

the --merge option. I then filtered the alignments using the AlignmentViewer utility (see Section 

3.1). I used IQ-TREE v2.1.3 [227] to compute a maximum-likelihood phylogeny, and I plotted it using 

TreeViewer v2.0.1 (see Chapter 4). 

Structural alignment 

To create the structure alignment in Figure 60B, I used the online pairwise structure alignment 

tool at PDB [152] with the jFATCAT (flexible) model. The aligned sequences were of the PsaA (PDB 



 

169 

ID: 7BW2 [414]) and PsbA (PDB ID: 4V62 [415]) proteins from Thermosynechococcus vestitus BP-

1. The structure was displayed using the Mol* viewer [151]. 

Pairwise sequence comparisons 

To plot the sequence identity distributions in Figure 61, I collected the sequences for the psaA, 

psaB, pshA/pscA, psbA, psbD, pufL and pufM genes and divided them in the groups presented in 

the image. I then computed all possible pairwise comparisons between sequences of one group and 

sequences from another group; the % identity between two sequences was computed as %𝐼𝐷 =

𝑀

𝑚+𝑀
⋅ 100, where 𝑀 is the number of matching amino acids and 𝑚 is the number of mismatching 

amino acids. Positions where either sequence has a gap are neither matches nor mismatches. I then 

plotted the resulting distributions using a C# script. Note that it is also possible to compare a group 

with itself (e.g., Type I RC sequences with Type I RC sequences); in this case, all pairwise 

comparisons between sequences of the group are computed (which will result in cases where a 

sequence is being compared to itself, yielding a % identity of 100%). In total, there were 1045 

sequences for Type I RC (507 psaA, 509 psaB, 4 pshA and 25 pscA) and 2516 sequences for Type 

II RC (475 for psbA, 376 for psbD, 828 for pufL and 837 for pufM). 

7.3. Results and discussion 

7.3.1. Distribution of genes involved in photosynthesis 

As a first step in looking at the evolution of these genes, I searched for these photosynthetic 

genes in a dataset comprising 28,217 bacterial genomes. The results of this analysis are shown in 

the tree in Figure 64, which shows the presence or absence of each gene across the bacterial 

diversity. For the most part, this analysis did not reveal unexpected results: most of the genes 

involved in (bacterio-)chlorophyll biosynthesis are found only in photosynthetic bacteria, and most 

photosynthetic bacteria have the full pathway; individual genes missing from some genomes are 

likely due incomplete genome sequencing (but see below for specific interesting cases). 

The only relevant exception is the presence of some magnesium chelatase subunit genes in non-

photosynthetic bacteria, in particular bchH/chlH. This magnesium chelatase is closely related and 

very similar to a cobalt chelatase, which is used by bacteria to synthesise cobalamin (vitamin B12) 

[396]. It has been experimentally demonstrated that some cobalamin-producing organisms have a 

“hybrid” Co-chelatase, which combines some Mg-chelatase subunits with the ones specific for Co-

chelatase [396]. The presence of these genes in non-photosynthetic bacteria might be an indication 

of a similar process; alternatively, since these two enzymes are closely related, these hits could be 

false positives (i.e. Co-chelatase genes that have been incorrectly assigned to Mg-chelatase). 

A summary of the proportion of photosynthetic genomes that contain each gene is available in 

Table 12. 
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As a next step in studying the evolution of these genes, I analysed their history using stochastic 

mapping. However, since a dataset with thousands of taxa is too large for this kind of analysis, I 

focused on four representative subsamples of the data (see Bacterial subsets). 

 

Figure 64. Distribution of genes involved in photosynthesis within bacteria. Groups containing photosynthetic strains 
are highlighted. Each branch in the tree represents multiple strains with an SSU identity greater than 87.5%; a gene is 
marked as present in a branch if at least one strain represented by the branch contains it.  
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Table 12. Distribution of reaction centre genes and (bacterio-)chlorophyll biosynthesis genes in photosynthetic bacteria. For each group containing photosynthetic bacteria, 
the table shows the total number of strains belonging to that group that I analysed (including photosynthetic and non-photosynthetic strains), the number and percentage of 
photosynthetic strains, and the percentage of photosynthetic strains that contain each gene involved in photosynthesis. 

Group Strains Photosynthetic psaA psaB psbA psbD pshA/pscA pufL pufM bchD/chlD bchH/chlH bchI/chlI bchM/chlM 

Cyanobacteria 511 507 (99%) 99% 99% 92% 74% 0% 0% 0% 98% 99% 98% 99% 

Acidobacteria 48 1 (2%) 0% 0% 0% 0% 100% 0% 0% 100% 100% 100% 0% 

Chloroflexi 51 12 (24%) 0% 0% 0% 0% 0% 100% 100% 100% 100% 33% 92% 

Beta/Gammaproteobacteria 8025 111 (1%) 0% 0% 0% 0% 0% 100% 100% 99% 99% 98% 99% 

Alphaproteobacteria 4508 713 (16%) 0% 0% 0% 0% 0% 100% 100% 97% 99% 98% 99% 

Gemmatimonadetes 5 2 (40%) 0% 0% 0% 0% 0% 100% 100% 100% 100% 100% 100% 

Chlorobi 25 25 (100%) 0% 0% 0% 0% 100% 0% 0% 100% 100% 96% 100% 

Firmicutes 4718 4 (0.08%) 0% 0% 0% 0% 100% 0% 0% 100% 100% 100% 0% 

 

Group acsF bchE bciA bciB bchB/chlB bchL/chlL bchN/chlN bchX bchY bchZ bchF bchC bchG/chlG 

Cyanobacteria 99% 18% 10% 84% 99% 99% 99% 0% 0% 0% 0% 0% 97% 

Acidobacteria 100% 100% 0% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Chloroflexi 67% 92% 0% 75% 92% 92% 92% 92% 92% 92% 100% 100% 100% 

Beta/Gammaproteobacteria 65% 49% 34% 58% 99% 99% 99% 99% 99% 99% 99% 100% 100% 

Alphaproteobacteria 96% 41% 43% 24% 99% 100% 99% 100% 99% 100% 100% 100% 100% 

Gemmatimonadetes 100% 50% 100% 0% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Chlorobi 0% 100% 88% 56% 100% 100% 100% 96% 100% 100% 100% 100% 100% 

Firmicutes 0% 100% 0% 0% 100% 100% 100% 100% 100% 100% 0% 0% 100% 
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7.3.2. Evolution of photosynthetic genes in Chlorobi, Cyanobacteria 

and Chloroflexi 

Due to the reduced number of strains in each subset, while the entire subset is representative of 

all the sampled bacteria, it cannot contain a representative sample of all individual bacterial groups. 

This is not a concern for groups containing only non-photosynthetic strains (because these strains 

are mostly interchangeable, since they do not contain the genes being analysed), but it could affect 

the analysis for photosynthetic groups. 

For example, out of the 51 Chloroflexi that I analysed, only 12 are photosynthetic; therefore, if 

only one or two strains from this group are included in the analysis, representation of the group would 

be biased towards an excess or a lack of photosynthetic strains. Furthermore, photosynthetic strains 

show a more heterogeneous pattern of presence/absence of chlorophyll biosynthesis genes than 

non-photosynthetic strains; therefore, depending on which particular strain is included in each 

subset, the results of the analysis might change. 

In order to address this, I decided to separately estimate the probability of presence or absence 

of each gene in the last common ancestor (LCA) of the Chlorobi, Chloroflexi and Cyanobacteria, and 

apply those estimates to the corresponding nodes in the tree for each subset. This approach was 

not necessary for photosynthetic Firmicutes, Acidobacteria, and Gemmatimonadetes because of the 

small number of photosynthetic strains in each of these groups, while Proteobacteria are diverse 

enough that a representative sample of them was generally included in each subset. 

Chlorobi 

All the 25 strains of Chlorobi that were included in my dataset are photosynthetic; accordingly, all 

of them also have a full bacteriochlorophyll biosynthesis pathway (with the exception of Chlorobium 

phaeovibrioides, which does not have bchX; however, this is likely due to an incomplete genome 

sequence). Therefore, it can be safely assumed that the full pathway was present in the LCA of this 

group. 

The only interesting pattern involves the 8-vinyl reductase genes: while all Chlorobi have at least 

one between bciA and bciB, there are 11 strains that only have bciA, 3 strains that only have bciB, 

and 11 strains that have both (Figure 65). As a result, the stochastic mapping analyses predict a 

66% probability of presence of bciA in the LCA of Chlorobi, and a 58% probability for bciB. 
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Figure 65. Stochastic mapping for bciA and bciB in Chlorobi. The tree shows, at each point in time, the probability of 
bciA and bciB being present in a branch. Where a solid branch is drawn, the probability of presence of the gene is greater 
than 60%; where a dashed branch is drawn, the probability is between 40% and 60%; where no branch is drawn, the 

probability is less than 40%. The presence/absence of all the other genes is also shown. 

Cyanobacteria 

The full dataset contained 511 strains of Cyanobacteria; these were still too many to estimate the 

presence/absence of the photosynthetic genes in their LCA. Therefore, I used a separate set of 220 

cyanobacterial genomes (subsampled from a larger set of 953 Cyanobacteria) instead. As was the 

case for the Chlorobi, most genes were either completely absent in these strains (e.g., 

bacteriochlorophyll-specific genes) or present in over 90% 1  of the sampled Cyanobacteria. 

Accordingly, I considered these to be respectively absent or present in the LCA for this group. 

There are three relevant exceptions: the bciA gene is mostly absent in Cyanobacteria, but was 

found in 5% of the strains; it is likely that these strains gained it by LGT and, therefore, I considered 

it to be absent in the cyanobacterial ancestor (on the other hand, bciB is present in 92% of the 

strains). The psbD gene, instead, is present in 88% of the strains. This gene encodes a fundamental 

subunit of Photosystem II; while some symbiotic strains have lost this photosystem (e.g., Ca. 

Atelocyanobacterium thalassa [65]), the absence of this gene (and not of other subunits of 

Photosystem II) in most of the other genomes is likely due to incomplete genome sequencing. 

Therefore, I considered this gene to be present in the LCA of Cyanobacteria as well. 

 
1 Note that these percentages refer to the 220 selected genomes, thus they are different from the values 

reported in Table 12. 
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The most interesting case is the bchE gene: this gene, which encodes an enzyme that performs 

cyclisation of Mg-protoporphyrin-IX-monomethylester in anoxic environments, is present in 13% of 

the cyanobacterial strains (mainly in Nostocales, 37% of which have it). Most Cyanobacteria (97%) 

have instead the acsF gene, which encodes an enzyme that catalyses the same reaction, using 

oxygen as a reagent [392]. The results of the stochastic mapping analysis are not conclusive 

regarding the presence or absence of this gene in the LCA of Cyanobacteria (45% probability of it 

being present, Figure 66), though it appears more likely that it was gained by Cyanobacteria later 

on. 

 

Figure 66. Stochastic mapping for bchE in Cyanobacteria. The tree shows, at each point in time, the probability of 
bchE being present in a branch. Where a solid-coloured branch is drawn, the probability of presence of the gene is greater 
than 60%; where a dashed branch is drawn, the probability is between 40% and 60%; where a grey branch is drawn, the 

probability is less than 40%. The Nostocales (a group of filamentous Cyanobacteria) are highlighted. 

Chloroflexi 

Among the three groups of phototrophs I analysed here, the Chloroflexi are the most intriguing, 

because, out of the 51 genomes included in the full dataset, only 12 are photosynthetic. All but one 

of these belong to a single clade of photosynthetic Chloroflexi, while Ca. Roseilinea sp. NK OTU-

006 is more distantly related to them (Figure 68). Interestingly, the strains from the main 

photosynthetic clade have an almost full pathway for the biosynthesis of bacteriochlorophyll (with 

the exception of the two Roseiflexus species, which lack both 8-vinyl reductase genes bciA and 
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bciB), while Ca. Roseilinea misses several steps: the 8-vinyl reductase, the cyclase (bchE or acsF) 

and the protochlorophyllide oxidoreductase (bchB/chlB, bchL/chlL, and bchN/chlN). Furthermore, all 

but four strains are missing the gene for the small subunit of Mg-chelatase (bchI/chlI). 

Despite the lack of 8-vinyl reductase, Roseiflexus spp. have been shown to produce normal 

bacteriochlorophyll a [397]. This is because chlorophyllide oxidoreductase (encoded by the bchX, 

bchY and bchZ genes) also has the ability to perform reduction of the 8-vinyl group [398]. However, 

this is sub-optimal compared to the catalysis by BciA or BciB, because the specialised 8-vinly 

reductases are more energetically efficient, have a higher catalytic activity rate, and work even in 

aerobic conditions, unlike BchXYZ, which does not perform the reduction when oxygen is present 

[398]. A similar mechanism may be at play also in some Proteobacteria that lack 8-vinyl reductase 

genes [398]. 

The case of Ca. Roseilinea is more puzzling: while the 8-vinylreductase activity may be performed 

by BchXYZ as in Roseiflexus spp., there are still fundamental steps in the biosynthetic pathway that 

are missing. Other related strains of Chloroflexi have been described with the same complement of 

genes [390], and it is thus unlikely that the missing genes are due to genome incompleteness 

[390,399]; furthermore, fluorescence analyses of the related Ca. Roseilinea gracile have shown that 

this bacterium does indeed produce bacteriochlorophyll a [400]. Since BchXYZ and BchLNB/ChlLNB 

are homologous and very similar, it is conceivable that BchXYZ could perform the reduction of both 

chlorophyllide and protochlorophyllide in this strain [390,401,402]; however, a functional 

replacement for the cyclase step (in alternative to bchE or acsF) is still missing [390]. The 

biosynthetic pathway for bacteriochlorophyll 

biosynthesis in this strain will thus have to 

be explored with experimental means [390]. 

The missing bchI/chlI gene is also 

surprising: the fact that the other subunits of 

Mg-chelatase are present in photosynthetic 

strains indicates that the enzyme is likely 

functional (otherwise, those “useless” genes 

would have been lost). However, these 

strains possess a gene that encodes for a 

related, but apparently distinct, protein 

(Figure 67); therefore, it is possible that this 

other protein makes up for the lack of 

BchI/ChlI, or that the inclusion criteria that I 

used were too restrictive. It should be noted, 

however, that the bchI/chlI-like protein of 

Figure 67. Maximum-likelihood phylogenetic tree of 7069 
homologs of bchI / chlI. Tree branches are coloured according 
to the taxon to which the sequences belong. Sequences that were 
assigned as “true orthologs” of bchI/chlI are highlighted. The 

Chloroflexi are highlighted by purple circles. 
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these Chloroflexi is also found in many non-photosynthetic bacteria that do not have the genes 

encoding for the other Mg-chelatase subunits. 

Aside from these considerations, most genes involved in photosynthesis appear in similar 

patterns in Chloroflexi: they are all present in the photosynthetic clade, while being absent in other 

strains. For these genes, the stochastic mapping analysis unambiguously predicts their absence in 

the LCA of Chloroflexi (99.65% probability); this implies that an ancestor of photosynthetic Chloroflexi 

gained the ability to perform oxygenic photosynthesis later on after the origin of this group and is 

consistent with results from other studies [390]. 

The exceptions here are bchI/chlI and acsF. As noted, bchI/chlI is only present in four Chloroflexi 

(Figure 68) and I therefore assumed that it was absent in the LCA of this group. While the acsF 

gene is not present in all photosynthetic Chloroflexi (the alternative bchE, instead, is), it is more likely 

that it was present in the LCA of the group (73% probability). This may seem counter-intuitive at first; 

the reason is that the distribution of this gene within photosynthetic Chloroflexi requires at least two 

loss events in a relatively short time (Figure 68). Therefore, this gene has a high estimated loss rate 

(about 200 times higher than the one for other photosynthetic genes), which results in a higher 

probability that it was present in the LCA of Chloroflexi and subsequently lost. 

Table 13 summarises the inferred presence/absence states for the LCA of Chlorobi, 

Cyanobacteria and Chloroflexi that I used in subsequent analyses. Unlike the values that have been 

mentioned in this section (which are posterior probabilities), the values reported in the table are 

scaled likelihoods; these are more suitable for downstream analyses where a subtree needs to be 

“grafted” on a larger tree, because they are computed without considering the root prior on the LCA 

of each group. 
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Figure 68. Stochastic mapping for acsF and pufL in Chloroflexi. The tree shows, at each point in time, the probability 
of acsF and pufL being present in a branch. Where a solid-coloured branch is drawn, the probability of presence of the 
gene is greater than 60%; where a dashed branch is drawn, the probability is between 40% and 60%; where a grey branch 

is drawn, the probability is less than 40%. The presence/absence of all the other genes is also shown. 
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Table 13. Scaled likelihoods for the presence/absence of photosynthetic genes in Chlorobi, Cyanobacteria, and Chloroflexi. Y: gene presence at the node corresponding to 
the LCA of each group. N: gene absence. Scaled likelihoods are either specified manually (e.g., for most genes in Cyanobacteria and Chlorobi), or obtained by normalising the 
average likelihoods at the root node in the stochastic mapping reconstructions for each group. 

Group psaA psaB psbA psbD pshA pufL pufM bchD / chlD 

 Y N Y N Y N Y N Y N Y N Y N Y N 

Chlorobi 0% 100% 0% 100% 0% 100% 0% 100% 100% 0% 0% 100% 0% 100% 100% 0% 

Cyanobacteria 100% 0% 100% 0% 100% 0% 100% 0% 0% 100% 0% 100% 0% 100% 100% 0% 

Chloroflexi 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0.05% 99.95% 0.05% 99.95% 0.05% 99.95% 

 

Group bchH / chlH bchI / chlI bchM / chlM acsF bchE bciA bciB bchB / chlB 

 Y N Y N Y N Y N Y N Y N Y N Y N 

Chlorobi 100% 0% 100% 0% 100% 0% 0% 100% 100% 0% 67% 33% 57% 43% 100% 0% 

Cyanobacteria 100% 0% 100% 0% 100% 0% 100% 0% 57.96% 42.04% 0% 100% 100% 0% 100% 0% 

Chloroflexi 0.05% 99.95% 0% 100% 1% 99.99% 90.26% 9.74% 1% 99.99% 0% 100% 0% 100% 0.01% 99.99% 

 

Group bchL / chlL bchN / chlN bchX bchY bchZ bchF bchC bchG / chlG 

 Y N Y N Y N Y N Y N Y N Y N Y N 

Chlorobi 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 0% 

Cyanobacteria 100% 0% 100% 0% 0% 100% 0% 100% 0% 100% 0% 100% 0% 100% 100% 0% 

Chloroflexi 0.01% 99.99% 0.01% 99.99% 0.05% 99.95% 0.05% 99.95% 0.05% 99.95% 0.05% 99.95% 0.05% 99.95% 0% 100% 
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7.3.3. Evolution of photosynthetic genes in all bacteria 

To perform a stochastic mapping analysis, the phylogenetic tree underlying the taxa being studied 

needs to be rooted, because the evolutionary models that are used are not necessarily time-

reversible (see Section 2.4.3). Placing a root on the bacterial tree of life is not an easy task; for my 

analyses, I decided to consider three alternative (but very similar) rooting hypotheses from a recently 

published analysis, in which the authors used a number of algorithms to determine the most likely 

position of the last bacterial common ancestor (LBCA) [403]. Furthermore, when building the 

phylogenetic trees, I used two different evolutionary models for the sequence data; therefore, my 

analyses produced 24 distinct stochastic mappings for each gene I studied. 

I analysed the results of these stochastic mappings, in order to determine a “consensus” on the 

evolutionary history of the genes. In most cases, the results of the analysis for each gene were 

reasonably consistent; the greatest differences were observed between the different subsets. The 

choice of sequence evolution model also had a noticeable effect on the estimates, though not as 

large as using a different subset, while the effect of changing the position of the root was negligible. 

This highlights that taxon selection is major factor when performing stochastic mapping analyses; 

however, by using different taxa subsets, I was able to assess its effects. 

Figure 69 shows three examples of evolutionary histories, along with their interpretation. I 

analysed the stochastic mapping for all the genes following the same principles, reaching the 

conclusions below. 

Magnesium chelatase and methylase 

All three Mg-chelatase subunits, bchD/chlD, bchI/chlI and bchH/chlH, appear to have been 

present in the last bacterial common ancestor (LBCA); they have then been conserved in 

photosynthetic bacteria, while having been lost in other groups. It is however also possible that they 

might have been lost in some photosynthetic lineages, and then gained again. The presence of some 

Mg-chelatase subunits in non-photosynthetic lineages may be explained either by late LGT events, 

or as a remnant of an ancestral photosynthetic state. In any case, it is reasonable to expect that they 

may perform a function even in these strains (e.g., as part of cobalt chelatase hybrid complexes 

[396]), otherwise they would have been easily lost from the genomes. 

The methylase bchM/chlM gene is also predicted to be present in the LBCA; it was preserved in 

the genomes of photosynthetic lineages and lost in other strains. 

Cyclase 

From my analyses, it appears that the bchE gene was most likely absent in the LBCA and 

appeared relatively late in the history of photosynthesis, either in an ancestor of Chlorobi, or in 

Alphaproteobacteria. For the acsF gene, the stochastic mapping histories predict that it might have 
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been present in the LBCA, but then it was lost from most bacterial groups, with the exception of 

Cyanobacteria; it was then gained back by anoxygenic phototrophs through repeated LGT events. 

However, it is also possible that this gene was absent in the LBCA and appeared later in an ancestor 

of Cyanobacteria.  

In this latter hypothesis, since the rest of the chlorophyll biosynthesis pathway appears to be 

present in the LBCA, another enzyme must have been involved in the cyclisation step. Since this 

also appears to be the case in at least some of the modern photosynthetic bacteria [390], further 

investigation into this alternative pathway may provide useful information about the ancestral 

mechanisms for chlorophyll biosynthesis. 

8-vinylreductase 

Both of the 8-vinylreductase genes, bciA and bciB, appear to be absent in the LBCA. The bciA 

gene probably appeared first in an ancestor of Alphaproteobacteria and was then transferred to other 

photosynthetic groups. On the other hand, bciB appeared first in Cyanobacteria. 

The late origin of bciA and bciB is consistent with the fact that they are not essential for 

bacteriochlorophyll biosynthesis, since the BchXYZ chlorophyllide reductase (which is expected to 

be present in the LBCA) can perform the reduction step. However, since BchXYZ only works in 

anaerobic conditions, these genes became necessary when oxygen became to accumulate; 

accordingly, bciB was the first to appear in a cyanobacterial ancestor and to spread to other 

phototrophs, while bciA evolved independently in other organisms. 

Protochlorophyllide reductase and chlorophyllide reductase 

The three genes for protochlorophyllide reductase, bchB/chlB, bchL/chlL and bchN/chlN, are 

predicted to be present in the LBCA, and so are the genes for chlorophyllide reductase (bchX, bchY, 

bchZ). This is consistent with other studies that have highlighted that these genes share common 

ancestry with each other and with the nitrogenase complex (which is involved in nitrogen fixation) 

[204,404], and that this ancestor is was likely found before the LBCA [25]. 

Hydratase, dehydrogenase and chlorophyll synthase 

Both the bchC and bchF genes, which encode for enzymes that are involved in the final steps of 

bacteriochlorophyll biosynthesis, are predicted to be present in the LBCA. This is consistent with a 

previous analysis of bchF, which had concluded that this gene was present in an ancestral 

phototrophic bacterium that lived after the diversification of Type I and Type II RCs, but before the 

origin of the various groups of phototrophs [405]. The bchG/chlG gene for (bacterio-)chlorophyll 

synthase is also predicted to be present in the LBCA. 
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Figure 69. Examples of stochastic mapping histories in the first subset of bacteria. Where a solid-coloured branch 
is drawn, the probability of presence of the gene is greater than 60%; where a dashed branch is drawn, the probability is 
between 40% and 60%; where a grey branch is drawn, the probability is less than 40%. The posterior probabilities shown 
refer to the root node of the tree (i.e., the LBCA). Groups containing photosynthetic bacteria are highlighted. (A) Stochastic 
mapping for the bchC gene. This gene was determined to be present in the LBCA. (B) Stochastic mapping for the bciB 
gene. This gene was determined not to be present in the LBCA. Note how the posterior probability at the root node is not 
necessarily a good summary of the history of the gene: in this case, even though the gene has a 41% probability of being 
present at the root, it appears much more likely that it was absent and then gained later multiple times. (C) Stochastic 

mapping for Type I reaction centres. A Type I RC was determined to be present in the LBCA. 

7.3.4. Evolution of the photosynthetic reaction centres 

In addition to looking at the evolution of chlorophyll biosynthesis genes, I used the same 

techniques to study the origin of photosynthesis. At first, I ran stochastic mapping analyses only 

using data about the presence or absence of photosynthesis, without distinguishing between 

different reaction centre types. This analysis suggested that a photosynthetic phenotype was present 

in the LBCA, and was retained by phototrophic bacteria, while being lost in other groups. 

I then performed two additional analyses, separately modelling the presence of Type I and Type 

II reaction centres (in these analyses, I treated Cyanobacteria as possessing both reaction centres). 

The analysis for the Type I reaction centre clearly suggests that this was present in the LBCA; the 

results for Type II RC are more ambiguous, but it is also likely that this RC was present in the LBCA. 

This agrees with previous analyses that looked at the evolutionary rates of reaction centre proteins 
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and concluded that the duplication that originated the two RC types may have happened before the 

LBCA [202].  

7.4. Conclusion 

In conclusion, my analyses suggest that the last common ancestor of all bacteria had a nearly 

complete (though simplified) biosynthetic pathway for bacteriochlorophyll a and, at the same time, it 

probably possessed both a Type I and a Type II reaction centre. A hypothesis for how this may have 

then resulted in the current distribution of photosynthetic bacteria is provided in Figure 70. 

This ancestor may have had both a homodimeric proto-Type I and a homodimeric proto-Type II 

reaction centre, and may have been able to either oxidise solvable manganese [204,384], or to 

perform an inefficient form of water oxidation [6,202] (or both). It also had a biosynthetic pathway for 

bacteriochlorophyll; since multiple steps in this pathway are sensitive to the presence of molecular 

oxygen [398,406–408], it is likely that this ancestor did not produce oxygen, or only produced minimal 

amounts of it. The lineage leading to Cyanobacteria retained both reaction centres, while anoxygenic 

phototrophs either lost one of the two, or gained a single RC by lateral gene transfer. 

The production of significant amounts of oxygen by Cyanobacteria might be associated with the 

shift from bacteriochlorophyll to chlorophyll in an ancestor of this group. An initial production of low 

amounts of oxygen might have created an evolutionary pressure for oxygen-tolerant enzymes for 

pigment biosynthesis; thus, ancestors of Cyanobacteria evolved an alternative protochlorophyllide 

oxidoreductase [408]. When their chlorophyll synthase (ChlG) became able to use chlorophyllide as 

a substrate, rather than bacteriochlorophyllide, they were also able to abandon chlorophyllide 

oxidoreductase (BchXYZ) and the following steps (BchF, BchC). Since this new chlorophyll 

biosynthesis pathway was not inhibited by oxygen, Cyanobacteria were then finally able to evolve 

full-fledged oxygenic photosynthesis. 

An important note is that all these inferences are independent of analyses that involve 

phylogenetic trees of individual genes; still, my results are similar to those obtained with that kind of 

analyses (e.g., [202,405]), which strengthens the conclusions of both. Since these reconstructions 

refer to events that happened billions of years ago, the posterior probability values are sometimes 

ambiguous; nevertheless, even though they should be taken with caution, these results represent 

an additional piece of information about the history of photosynthesis. 

Future directions 

There are multiple ways in which the evolution of photosynthesis may be investigated further. 

First of all, as new genomes are sequenced, it is likely that previously unknown phototrophic 

organisms will be discovered, which will provide new insights on the distribution of photosynthetic 
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genes. Experimental data from strains that have not been cultured yet (such as, some Chloroflexi) 

will also help elucidate some steps of the (bacterio-)chlorophyll biosynthetic pathway. 

With the available data, building phylogenetic gene trees will help corroborate (or disprove) the 

results of the stochastic mapping analysis, as well as to identify LGT events and make inferences 

about their directionality (e.g., the LGT event involving Gemmatimonadetes [189,197]). Furthermore, 

looking at the arrangement of the genes for photosynthetic reaction centres and chlorophyll 

biosynthesis within the genomes of phototrophic organisms will also provide information on the 

likelihood of LGT events: a single event transferring an entire cluster of photosynthetic genes would 

be more likely than many different events that transferred individual genes that are dispersed within 

the genome [6]. Finally, using an evolutionary model that analyses both the reaction centres and the 

chlorophyll biosynthesis genes at the same time (e.g., a conditioned or dependent model [82]) will 

also provide additional insights. 

 

Figure 70. Hypothetical history of photosynthesis. The LBCA had a Type I and a Type II RC, both homodimeric. It also 
had a pathway for the production of bacteriochlorophyll (Bch) comprising magnesium chelatase (BchDHI), a methylase 
(BchM), a protochlorophyllide oxidoreductase (BchBLN), a chlorophyllide oxidoreductase (BchXYZ), a hydratase (BchF), 
an oxygenase (BchC) and a bacteriochlorophyll synthase (BchG). It is unclear whether a cyclase was present or another 
enzyme could perform the cyclisation step. These genes were preserved in a direct lineage to Cyanobacteria; sometime 
after LBCA and before the LCA of Cyanobacteria, the pathway was redirected to the production of chlorophyll (Chl) when 
BchG/ChlG became able to attach the phytyl chain to chlorophyllide. Bacteriochlorophyll-specific enzymes BchXYZ, BchF 
and BchC were then lost. The appearance of oxygen tolerant enzymes such as AcsF (cyclase), BciB (divinyl reductase) 
and LPOR (light-dependent protochlorophyllide oxidoreductase, an alternative to BchBLN; this enzyme was not analysed 
here, but it is present in most Cyanobacteria) enabled the production of significant amounts of oxygen. Homodimeric RCs 
are highlighted by two circles of the same colour; heterodimeric RCs are highlighted by two circles of different colours. 
Phototrophic organisms possessing each type of RC genes are highlighted. 
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8. Final remarks 

 

Figure 71. Interactions between geology and biology in the history of the Earth. Geological factors have left traces 
in the geological record (top). Biological factors have left traces in the biological record (right). These are only part ial 
because not all events in the history of our planet have left a trace, and not all groups of organisms have left fossils or are 
still alive today. Methods that reconstruct the past of the Earth try to make sense of this partial information and reconstruct 
the complex history that originated it. 

The history of the Earth is the result of complex interactions between geological and biological 

factors (Figure 71). These have left traces in the geological record, which is represented, for 

example, by rocks and fossils, and in the biological record, which is constituted by currently living 

organisms and their genomes. However, these traces are only partial impressions of an intricate 

past history; therefore, reconstructing the interactions between different elements is not always easy 

or possible. 

The methods I have developed and used make it possible to analyse the history of living 

organisms and, by using time-calibrated phylogenies, to connect it with the history of our planet. 

Using a Bayesian approach, they can consider established knowledge and produce results 

addressing the uncertainty in any parameter of the analysis. I have applied these methods to 

reconstruct the ancestral habitat of Cyanobacteria and to determine the phenotype of the first 

photosynthetic bacterium; however, the techniques I have used are not specific to these problems, 

and they have the potential to find application in a wide range of topics.  
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8.1. Method development 

While the methods and software libraries that I have developed were conceived with a specific 

target in mind, releasing them as individual components allows them to be used in different contexts. 

It is nearly impossible to ensure that any piece of software is completely bug-free, but the open-

source nature of my programs and libraries means that others can easily investigate and propose 

fixes for any software errors. 

C# is an unusual choice for a programming language in the scientific sector, which is dominated 

by R and Python2; this caused some initial issues due to the lack of existing software libraries to 

analyse biological data, which resulted in me having to develop those libraries. However, using C# 

provides some great advantages, such as the ability to easily develop and deploy cross-platform 

programs with a consistent graphical user interface (GUI), and to create software that performs 

complex analyses using multiple threads, thus taking advantage of the parallelisation capabilities of 

modern CPUs. Furthermore, having multiple independent pieces of software to perform scientific 

analyses also makes it possible to compare results across different methods, which increases the 

reliability of the inferences. 

AlignmentViewer was developed before cross-platform GUI toolkits for C# were available; for 

this reason, it is implemented as a web-application that runs in a web browser. While this makes it 

possible to use the program without having to download or install anything, the downside is that the 

performance of the program and the appearance of its interface depend on the browser used to run 

it. Porting this software to C# would make it possible to achieve better performance with large 

sequence alignments, and to implement a modular structure (like TreeViewer), allowing a greater 

degree of customisation of the alignment plot and of the filtering options. 

The dependent and conditioned character models implemented in sMap make it possible to 

analyse multiple characters at the same time, thus combining evidence from multiple sources into a 

single analysis. When a relationship between different characters is expected or can be proven, 

using these models helps address issues where a single morphological character may not have 

enough information to answer specific research questions. Furthermore, the program implements a 

sophisticated approach to Bayesian parameter sampling, which makes it possible to consider the 

inevitable uncertainty in model parameters for morphological character analyses. 

However, even though multiple characters may be connected by the new models in sMap, model 

parameters for different characters are still unliked (in the sense that, for example, it is not possible 

to have the same substitution rate matrix for two separate characters). A possible improvement on 

the program, therefore, would be the implementation of such “linked” parameters. 

 
2 It should be noted, however, that high-performance libraries in these languages actually rely on bindings 

to native libraries written in C/C++. 
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Another interesting possibility would be the development of “functional” relationships between 

parameters; this would allow users to re-parametrise the model to more efficiently explore the 

parameter space or to answer new kinds of questions. For example, it would make it possible to fix 

the “loss” rate of a certain morphological feature to two or three times as much as the “gain” rate, 

and then estimate the overall rate using the data; this would allow new kinds of interesting analyses. 

Finally, sMap uses a Metropolis-coupled Markov chain Monte Carlo approach for Bayesian 

parameter sampling, which means that multiple chains with different “temperatures” are run at the 

same time, and the sampler can switch between them. Currently, this is parallelised by having the 

chains run on different processors, but running each chain is still an inherently serial process. 

However, the parallelisability and performance of the algorithm could be increased by implementing 

a Multiple Try Metropolis scheme or an Ensemble MCMC approach [416], in which multiple 

proposals are made in parallel at every step in the chain. 

TreeViewer enables users with different technical backgrounds to produce attractive plots of 

phylogenetic trees, using different tools based on their familiarity with the program (e.g., the buttons 

in the GUI, attribute formatters, or custom scripts). The modular nature of the program makes it easy 

to add new functionalities and features as the need for them arises; this allows TreeViewer to adapt 

to new settings and workflows. 

The use of some features of the program, however, might not be completely intuitive: in order to 

address this, the way some of the modules work could be improved, by making them more 

“intelligent”. By doing this, they could determine how to perform their actions based on the context 

of the plot, and advise users when they select inappropriate combinations of parameters (such as 

plotting circular branches in a tree where rectangular coordinates have been selected). As the 

Avalonia library (which is used for the graphical interface of TreeViewer) improves, the speed and 

stability of the program on multiple platforms will also benefit. 

8.2. Evolution of salt tolerance in Cyanobacteria 

By looking at the distribution of compatible solutes in Cyanobacteria and at their evolutionary 

history, my analyses have shown that the last common ancestor of Cyanobacteria probably had a 

high salt tolerance. By analysing multiple genes at once, I was able to affirm this with a higher degree 

of confidence than previous studies that only focused on a single character [73,186,187]. Indeed, in 

addition to providing information about the ancestral habitat of Cyanobacteria, this analysis also 

serves as a demonstration of how multiple lines of evidence can be combined in a Bayesian 

approach. 

However, this study only partly answers the question of the environment where the first 

Cyanobacteria appeared: having a high salt tolerance means that this ancestral organism was able 

to live in environments with a high salinity, but it does not say whether the organism could only live 
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in such environments (i.e., if a high salt concentration was a requirement for its metabolism). 

Furthermore, many different environments with a high salinity exist, with different physical and 

ecological structures: for example, coastal microbial communities are different than those in 

oligotrophic open ocean waters. 

Further analyses are required to clarify these points; however, some educated guesses can still 

be made based on the results of my work and the current distribution of Cyanobacteria. For example, 

the most widely distributed Cyanobacteria in the modern ocean are represented by members of the 

Synechococcus and Prochlorococcus genera [163,164,417], and as demonstrated by my analyses 

and by other works [73], this group evolved relatively recently, during the late Neoproterozoic. 

Because of this, it would seem unlikely that the last common ancestor of Cyanobacteria had already 

colonised the open ocean and, therefore, it can be argued that the high salt tolerance of this ancestor 

is rather an indication of a coastal environment. 

In addition to further analyses, more data is also required to clarify the relationships between 

some strains and to “break” long branches in the phylogenetic tree. Such data may come from the 

sequencing of additional genomes and the sampling of Cyanobacteria from different environments. 

Additional information about the biochemical pathways that these organisms use to manage high 

salt concentrations and other environmental stressors may also be used to shed light on further 

aspects of the metabolism of ancestral Cyanobacteria. 

8.3. Evolution of photosynthesis 

My analyses show how most genes in the biosynthetic pathway for bacteriochlorophyll were likely 

present in the last bacterial common ancestor (LBCA). They also show that this ancestor possessed 

a Type I reaction centre (RC), and possibly also a Type II RC. Other analyses have similarly 

concluded that the divergence between Type I and Type II RCs happened before the LBCA [202] 

and that bacteriochlorophyll-specific genes were present in an ancestor of anoxygenic phototrophs 

[405]; these, combined with my results, suggest that the LBCA was already capable of 

photosynthesis using both reaction centres, with bacteriochlorophyll as a pigment. 

Given this starting condition, the simplest explanation for Cyanobacteria having both RC types is 

that they have kept the ancestral state, while other strains have either inherited both RCs by vertical 

descent and then independently lost one or the other, or have gained a single RC through lateral 

gene transfer (LGT). However, it is also possible that independent lineages having different RCs 

diversified very shortly after the LBCA (where one lineage lost the genes for the Type I RC, and the 

other lineage lost the genes for the Type II RC); in this more complicated hypothesis, Cyanobacteria 

would have obtained one or both RCs by LGT. In any case, as previously reported [389], it appears 

that photosynthesis has been lost many times in the bacterial tree of life. 
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The analyses I have performed used a “high level” approach, employing stochastic mapping in 

order to avoid having to deal with the complications of multiple LGT events and their directionality. 

On the one hand, this approach makes it possible to run the analyses without making assumptions 

about this kind of events, but on the other hand it means that these events cannot be properly 

detected or addressed. Therefore, additional insights into the evolution of photosynthesis may be 

obtained by combining my results with more “traditional” approaches, such as comparisons between 

gene trees and species trees. 

Additional data about photosynthetic bacteria would also be of significant help: on the one hand, 

identifying new groups of phototrophs (such as the recently described Candidatus Eremiobacterota 

[190]) and establishing their relationships with known phototrophic bacteria may yield new 

information about photosynthesis; on the other hand, further investigation in the biochemical 

pathways used by known phototrophs (such as some Chloroflexi [390]) may help solve outstanding 

questions about this metabolism. 

8.4. Conclusion 

The Introduction to this thesis presented a number of questions about the first photosynthetic 

bacteria and the last common ancestor of Cyanobacteria. Using the methods described in Chapters 

3, 4 and 5, the analyses presented in Chapters 6 and 7 have tried to answer these questions. Even 

though it was not possible to provide a definitive answer to some of them, due to the large amount 

of time that has passed since the origin of Cyanobacteria or the origin of photosynthesis, my analyses 

have provided new information on which other studies may build. 

When did photosynthesis first evolve? 

My analyses suggest that photosynthetic reaction centres and bacteriochlorophyll biosynthesis 

were already present in the last bacterial common ancestor. This means that the first photosynthetic 

organism must have lived before the LBCA, with all of its descendants having gone extinct, except 

for the one that gave origin to all modern bacteria. If this is correct, it means that it is not likely that 

phylogenetics may provide an exact answer to this question, because not enough information has 

been preserved in the biological record. Therefore, the best answer would be that photosynthesis 

originated sometime after the origin of life, but before the LBCA – unfortunately, the timing of both of 

these events is poorly constrained. 

In which group of bacteria did photosynthesis originally appear? 

Similarly, if photosynthesis originated before the modern bacterial groups had diversified, its 

“invention” cannot be assigned to any particular group. However, the easiest way to explain the 

current distribution of photosynthetic strains is to assume that photosynthesis was preserved at least 

along a direct lineage from the LBCA to Cyanobacteria. 
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What type of reaction centre(s) did the ancestral photosynthetic bacterium use? 

My analyses suggest that the LBCA had a Type I reaction centre, and possibly also a Type II 

reaction centre. This is consistent with other studies that had estimated that the last common 

ancestor of Type I and Type II RCs predates the LBCA [202]. It should be noted, however, that the 

fact that this ancestor had both reaction centres does not necessarily mean that it was able to 

perform water oxidation to produce oxygen (or that it was able to do it efficiently); instead, it may 

have used other electron donors, such as manganese [384]. 

When did Type I and Type II reaction centres diversify? 

This is another question that cannot be answered just by looking at phylogenetic trees: if the 

LBCA already had both reaction centre types, it means that their last common ancestor and their 

diversification should also be dated back to some time after the origin of photosynthesis, and before 

the LBCA. It is therefore likely that the divergence between Type I and Type II RCs happened very 

shortly after the origin of photosynthesis itself. 

When did the last common ancestor of Cyanobacteria live? 

Consistently with previous estimates, my molecular clock analysis suggests that the LCA of 

Cyanobacteria lived around 3182 Mya (89% credible interval: 2956 – 3401 Mya). This means that 

some time passed between the origin of Cyanobacteria and the Great Oxygenation event at 2300-

2500 Mya: this is likely because these ancestral strains were not very abundant, and because 

oxygen sinks before this time were sufficient to completely buffer the oxygen production by early 

Cyanobacteria [4]. 

Where did the LCA of Cyanobacteria live, and what did it look like? 

Even though my analyses cannot exactly predict the environment of ancestral Cyanobacteria or 

their appearance, the salt tolerance analysis suggests that the LCA of this group had the ability to 

live in a high-salinity environment, and was able to produce glucosylglycerate and possibly 

glucosylglycerol. 

How did the LCA of Cyanobacteria become photosynthetic? 

My analyses on the evolution of photosynthesis suggest that the LCA of Cyanobacteria did not 

really become photosynthetic, because it descends from a lineage of bacteria that have always been 

photosynthetic since the LBCA. This lends credibility to the “selective loss” hypothesis for the 

evolution of photosynthesis, which states that anoxygenic phototrophs with a single reaction centre 

originated through the loss of one of the two reaction centres of an ancestral bacterium that had both 

RC types [5]. 

In addition to answering these questions, the contribution of this work to the scientific community 

consists of the various software tools I have developed: I hope that they will be of use to analyse 
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complex evolutionary questions in a new light, following a Bayesian approach. As the performance 

of modern computers keeps improving, Bayesian analyses are applicable to an ever-increasing 

number of problems; with their ability to implement a description of the prior knowledge and to 

produce an estimate of the uncertainty of the results, Bayesian approaches fully embody the 

principles of the scientific method.
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Insights Into the Evolution of Picocyanobacteria and 

Phycoerythrin Genes (mpeBA and cpeBA) 

Patricia Sánchez-Baracaldo, Giorgio Bianchini, Andrea Di Cesare, Cristiana Callieri, and Nathan 

A. M. Chrismas 

[417] Sanchez-Baracaldo P, Bianchini G, Di Cesare A, Callieri C, Chrismas NAM. Insights into the evolution of 

picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front Microbiol. 2019;10:45. Available from: 

https://www.frontiersin.org/articles/10.3389/fmicb.2019.00045/full 

Abstract 

Marine picocyanobacteria, Prochlorococcus and Synechococcus, substantially contribute to 

marine primary production and have been the subject of extensive ecological and genomic studies. 

Little is known about their close relatives from freshwater and non-marine environments. 

Phylogenomic analyses (using 136 proteins) provide strong support for the monophyly of a clade of 

non-marine picocyanobacteria consisting of Cyanobium, Synechococcus and marine Sub-cluster 

5.2; this clade itself is sister to marine Synechococcus and Prochlorococcus. The most basal lineage 

within the Syn/Pro clade, Sub-Cluster 5.3, includes marine and freshwater strains. Relaxed 

molecular clock (SSU, LSU) analyses show that while ancestors of the Syn/Pro clade date as far 

back as the end of the Pre-Cambrian, modern crown groups evolved during the Carboniferous and 

Triassic. Comparative genomic analyses reveal novel gene cluster arrangements involved in 

phycobilisome (PBS) metabolism in freshwater strains. Whilst PBS genes in marine Synechococcus 

are mostly found in one type of phycoerythrin (PE) rich gene cluster (Type III), strains from non-

marine habitats, so far, appear to be more diverse both in terms of pigment content and gene 

arrangement, likely reflecting a wider range of habitats. Our phylogenetic analyses show that the PE 

genes (mpeBA) evolved via a duplication of the cpeBA genes in an ancestor of the marine and non-

marine picocyanobacteria and of the symbiotic strains Synechococcus spongiarum. A ‘primitive’ 

Type III-like ancestor containing cpeBA and mpeBA had thus evolved prior to the divergence of the 

Syn/Pro clade and S. spongiarum. During the diversification of Synechococcus lineages, losses of 

mpeBA genes may explain the emergence of pigment cluster Types I, II, IIB, and III in both marine 

and non-marine habitats, with few lateral gene transfer events in specific taxa. 

Contribution 

As part of this paper, I have performed phylogenetic analyses, studying the relationships between 

the cpeBA and mpeBA genes. I identified orthologs for these genes in the strains being analysed, 

built Bayesian phylogenetic trees, and computed marginal likelihoods and Bayes factors to compare 

alternative hypotheses explaining the distribution of these genes. I also retrieved sequences and 

built phylogenetic trees for the entire pigment clusters.  

https://www.frontiersin.org/articles/10.3389/fmicb.2019.00045/full
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Cyanobacteria and biogeochemical cycles through Earth 

history 

Patricia Sánchez-Baracaldo, Giorgio Bianchini, Jamie D. Wilson, Andrew H. Knoll 

[72] Sánchez-Baracaldo P, Bianchini G, Wilson JD, Knoll AH. Cyanobacteria and biogeochemical cycles through Earth 

history. Trends Microbiol. 2021 Jul 4. Available from: https://www.cell.com/trends/microbiology/fulltext/S0966-

842X(21)00131-1 

Abstract 

Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis, transforming 

the biology and chemistry of our planet. Genomic and evolutionary studies have revolutionized our 

understanding of early oxygenic phototrophs, complementing and dramatically extending inferences 

from the geologic record. Molecular clock estimates point to a Paleoarchean origin (3.6–3.2 billion 

years ago, bya) of the core proteins of Photosystem II (PSII) involved in oxygenic photosynthesis 

and a Mesoarchean origin (3.2–2.8 bya) for the last common ancestor of modern cyanobacteria. 

Nonetheless, most extant cyanobacteria diversified after the Great Oxidation Event (GOE), an 

environmental watershed ca. 2.45 bya made possible by oxygenic photosynthesis. Throughout their 

evolutionary history, cyanobacteria have played a key role in the global carbon cycle. 

Contribution 

As part of this review, I have compiled a summary of posterior probability distributions for the age 

of the last common ancestor of crown group Cyanobacteria (Box 1 in the paper), and I used 

TreeViewer to create a phylogenetic tree summarising the main cyanobacterial groups. 
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The occurrence of 2-methylhopanoids in modern bacteria and 

the geological record 

B. D. A. Naafs, Giorgio Bianchini, Fanny M. Monteiro, Patricia Sánchez-Baracaldo 

[176] Naafs BDA, Bianchini G, Monteiro FM, Sánchez-Baracaldo P. The occurrence of 2-methylhopanoids in modern 

bacteria and the geological record. Geobiology. 2021. Available from: 

https://onlinelibrary.wiley.com/doi/full/10.1111/gbi.12465 

Abstract 

The 2-methylhopanes (2-MeHops) are molecular fossils of 2-methylbacteriohopanepolyols (2-

MeBHPs) and among the oldest biomarkers on Earth. However, these biomarkers’ specific sources 

are currently unexplained, including whether they reflect an expansion of marine cyanobacteria. 

Here, we study the occurrence of 2-MeBHPs and the genes involved in their synthesis in modern 

bacteria and explore the occurrence of 2-MeHops in the geological record. We find that the gene 

responsible for 2-MeBHP synthesis (hpnP) is widespread in cyano- and ⍺-proteobacteria, but absent 

or very limited in other classes/phyla of bacteria. This result is consistent with the dominance of 2-

MeBHP in cyano- and ⍺-proteobacterial cultures. The review of their geological occurrence indicates 

that 2-MeHops are found from the Paleoproterozoic onwards, although some Precambrian samples 

might be biased by drilling contamination. During the Phanerozoic, high 2-MeHops’ relative 

abundances (index >15%) are associated with climatic and biogeochemical perturbations such as 

the Permo/Triassic boundary and the Oceanic Anoxic Events. We analyzed the modern habitat of 

all hpnP-containing bacteria and find that the only one species coming from an undisputed open 

marine habitat is an ⍺-proteobacterium acting upon the marine nitrogen cycle. Although organisms 

can change their habitat in response to environmental stress and evolutionary pressure, we 

speculate that the high sedimentary 2-MeHops’ occurrence observed during the Phanerozoic reflect 

⍺-proteobacteria expansion and marine N-cycle perturbations in response to climatic and 

environmental change. 

Contribution 

As part of this paper, I have studied the distribution of the hpnF/shc and hpnP genes in a wide 

range of bacteria and in Alphaproteobacteria and Cyanobacteria in particular. I have also performed 

phylogenetic analyses on the hpnP gene, building a gene tree, and identified the habitat where all 

strains that possess this gene live. I used TreeViewer to produce plots highlighting the results of 

these analyses. 
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Inhibition of photoferrotrophy by nitric oxide in ferruginous 

environments 

Verena Nikeleit, Adrian Mellage, Giorgio Bianchini, Lea Sauter, Steffen Buessecker, Stefanie 

Gotterbarm, Manuel Schad, Kurt O. Konhauser, Aubrey Zerkle, Patricia Sánchez-Baracaldo, 

Andreas Kappler, Casey Bryce 

[418] Nikeleit V, Mellage A, Bianchini G, Sauter L, Buessecker S, Gotterbarm S, et al. Inhibition of photoferrotrophy by 

nitric oxide in ferruginous environments. EarthArXiv, 2021 Sep 10. Available from: 

https://eartharxiv.org/repository/view/2677/ [This manuscript is currently under review] 

Abstract 

Anoxygenic phototrophic Fe(II)-oxidizers (photoferrotrophs) are thought to have thrived in Earth’s 

ancient ferruginous oceans and played a primary role in the precipitation of Archean and 

Paleoproterozoic (3.8-1.85 Ga) banded iron formations (BIF). The end of BIF deposition by 

photoferrotrophs has often been interpreted as being the result a deepening of water column 

oxygenation below the photic zone concomitant with the proliferation of cyanobacteria. We suggest 

here that a potentially overlooked aspect influencing BIF precipitation by photoferrotrophs is 

competition with another anaerobic Fe(II)-oxidizing metabolism. It is speculated that microorganisms 

capable of coupling Fe(II) oxidation to the reduction of nitrate were also present early in Earth history 

when BIF were being deposited, but the extent to which they could compete with photoferrotrophs 

when favourable geochemical conditions overlapped is unknown. Utilizing microbial incubations and 

numerical modelling, we show that nitrate-reducing Fe(II)-oxidizers metabolically outcompete 

photoferrotrophs for dissolved Fe(II). Moreover, the nitrate-reducing Fe(II)-oxidizers inhibit 

photoferrotrophy via the production of toxic nitric oxide (NO). Four different photoferrotrophs, 

representing both green sulfur and purple non-sulfur bacteria, are susceptible to this toxic effect 

despite having genomic capabilities for NO detoxification. Indeed, despite NO detoxification 

mechanisms being ubiquitous in some groups of phototrophs at the genomic level (e.g. Chlorobi and 

Cyanobacteria) it is likely they would still be influenced by NO stress. We suggest that the production 

of NO during nitrate-reducing Fe(II) oxidation in ferruginous environments represents an as yet 

unreported control on the activity of photoferrotrophs in the ancient oceans and thus the mechanisms 

driving precipitation of BIF. 

Contribution 

As part of this manuscript, I have determined the distribution of nitric oxide reductase genes in 

bacterial genomes, using TreeViewer to create a figure to summarise the results of this analysis. 

https://eartharxiv.org/repository/view/2677/




 

227 

B. Scaled likelihoods 
This appendix was developed in response to the comments by a reviewer on the sMap 

manuscript. It is included here as it provides useful information about scaled likelihoods and posterior 

probabilities. 

Abstract 

The aim of this appendix is to provide an example showing how the probability values reported 

during an ancestral state reconstruction performed using the software BayesTraits v3.0.2 [316] differ 

from the expected posterior probabilities. 

To show this, we use a very simple phylogenetic tree with 3 taxa and a binary character which 

can be found in states A and B. 

We use an evolutionary model with equal priors for the state of the root node and unequal 

transition rates, which we fix at their maximum-likelihood estimate. 

Thanks to the simplicity of this model, it is possible to analytically derive both the likelihood 

function and the posterior probabilities for each state at each node. We compute the correct values 

for these quantities (verifying the correctness of our results using stochastic simulations) and 

compare them to the values obtained by analysing the dataset with BayesTraits, phytools [314] and 

sMap [82]. 

We show that the results obtained with BayesTraits differ significantly from the expected values 

(which are instead recovered correctly by phytools and sMap). We also analyse the source code for 

BayesTraits to identify the origin of this discrepancy. 

All the files mentioned in this document can be downloaded from the following link: 

http://sdsssdfd.altervista.org/Appendix2_ScaledLikelihoods.zip. 

Notation 

We will use the following conventions in this document: 

• 𝜋𝑥 is the root node prior for state 𝑥. 

• 𝑟𝑖𝑗 is the transition rate for the 𝑖 → 𝑗 transition. 

• ℙ𝑖→𝑗(𝑣) is the probability of a transition from state 𝑖 to state 𝑗 over a branch of length 𝑣. 

• ℙ(𝐸) is the probability of event 𝐸. In this document, we assume that all probabilities and 

likelihoods are conditioned on the specified evolutionary model, which is fixed. We do not 

explicitly write this conditioning to simplify the notation. 

• ℙ(𝐸, 𝐹) is the probability that both events 𝐸 and 𝐹 happen. 

http://sdsssdfd.altervista.org/Appendix2_ScaledLikelihoods.zip
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• ℙ(𝐸 | 𝐹) ≝
ℙ(𝐸,𝐹)

ℙ(𝐹)
 is the probability of event 𝐸 conditioned on event 𝐹. 

• 𝕃(𝐸) is the likelihood of event 𝐸. 

• 𝕝(𝐸) is the “scaled likelihood” of event 𝐸. 

Dataset 

The dataset described here consists of a tree, character state data for the tips of the tree and an 

evolutionary model (described by the root node priors and the transition rate matrix). 

Tree 

This tree is included in the files simplestTree.tre and simplestTree.nex. 

 

Data 

The character state data is provided in the files simplestData.txt and 

simplestData_noheader.txt 

Node State 

k A 

l B 

m B 

Evolutionary model 

Root node prior 

𝜋𝐴 = 0.5           𝜋𝐵 = 0.5 

Transition rate matrix 

𝑸 = [
−𝑟𝐴𝐵 𝑟𝐴𝐵

𝑟𝐵𝐴 −𝑟𝐵𝐴

] 
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We computed maximum-likelihood estimates for these rates using sMap, the fitMk function of 

phytools and BayesTraits. The values computed by fitMk are: 

𝑟𝐴𝐵 = 0.637353 

𝑟𝐵𝐴 = 0.321952 

The estimates computed by sMap and BayesTraits3 are very similar. To ensure comparability of 

the results, in further analyses we disabled maximum-likelihood optimisation and we used the rates 

shown above in all programs4. 

Expected results 

The system is simple enough that we can compute the likelihood function “by hand” and thus 

obtain the exact values for the likelihoods and posterior probabilities that each program should 

return. 

Transition probabilities 

The transition probabilities can be computed by exponentiating the transition rate matrix. Since 

there are only two branch lengths in the tree, we compute all relevant transition probabilities here, 

so that we can refer to them later. 

exp(𝑣 ⋅ 𝑸) = [

ℙ𝐴→𝐴(𝑣) ℙ𝐴→𝐵(𝑣)

ℙ𝐵→𝐴(𝑣) ℙ𝐵→𝐵(𝑣)

]

=

[
 
 
 
 

𝑟𝐴𝐵

𝑟𝐴𝐵 + 𝑟𝐵𝐴
(e−𝑣(𝑟𝐴𝐵+𝑟𝐵𝐴) +

𝑟𝐵𝐴

𝑟𝐴𝐵
)

𝑟𝐴𝐵

𝑟𝐴𝐵 + 𝑟𝐵𝐴
(1 − e−𝑣(𝑟𝐴𝐵+𝑟𝐵𝐴))

𝑟𝐵𝐴

𝑟𝐴𝐵 + 𝑟𝐵𝐴
(1 − e−𝑣(𝑟𝐴𝐵+𝑟𝐵𝐴))

𝑟𝐵𝐴

𝑟𝐴𝐵 + 𝑟𝐵𝐴
(e−𝑣(𝑟𝐴𝐵+𝑟𝐵𝐴) +

𝑟𝐴𝐵

𝑟𝐵𝐴
)
]
 
 
 
 

 

ℙ𝐴→𝐴(1) = 0.590176841429788 

ℙ𝐴→𝐵(1) = 0.409823158570212 

ℙ𝐵→𝐴(1) = 0.207017752404079 

 
3 The maximum-likelihood estimates by BayesTraits sometimes differ a lot from these values. The analysis 

should be run multiple times until the expected values are obtained. 
4 The default settings in BayesTraits (“Base frequency (PI's): None”) assume that 𝜋𝐴 = 𝜋𝐵 = 1 (see 

Rates.c, lines 385-389 in the BayesTraits 3.0.2 source code). Using the “pis uniform” command to set 

these to be 𝜋𝐴 = 𝜋𝐵 = 0.5 somewhat surprisingly also affects the rates (see PMatrix.c, line 92: A-

>me[Outter][Inner] = Rates[RPos] * Pis[Inner];). Therefore, to counterbalance this effect, we had 

to multiply each rate by 2 in the BayesTraits analysis. 
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ℙ𝐵→𝐵(1) = 0.792982247595921 

ℙ𝐴→𝐴(2) = 0.433149373330387 

ℙ𝐵→𝐴(2) = 0.286338485827375 

Likelihoods 

The likelihoods at the tips of the tree are known and correspond to the “observed” data. The 

likelihoods at the internal nodes 𝑗 and 𝑖 can be computed using Felsenstein’s pruning algorithm 

[236,237]. The “scaled likelihoods” can be computed by multiplying the likelihoods at each node by 

the respective root node prior, and then normalising them so that their sum is 1. The complete 

likelihood function of the tree can be computed by applying the root node priors to the likelihoods at 

the root node 𝑖. 

Terminal nodes 

Node 𝕃(𝑥 = 𝐴) 𝕃(𝑥 = 𝐵) 

𝑘 1 0 

𝑙 0 1 

𝑚 0 1 

 

Node 𝒋 

𝕃(𝑗 = 𝐴) = (ℙ𝐴→𝐴(1) ⋅ 𝕃(𝑙 = 𝐴) + ℙ𝐴→𝐵(1) ⋅ 𝕃(𝑙 = 𝐵)) ⋅ (ℙ𝐴→𝐴(1) ⋅ 𝕃(𝑚 = 𝐴) + ℙ𝐴→𝐵(1) ⋅ 𝕃(𝑚 = 𝐵))

= ℙ𝐴→𝐵(1) ⋅ ℙ𝐴→𝐵(1) = 0.167955021300465 

𝕃(𝑗 = 𝐵) = ℙ𝐵→𝐵(1) ⋅ ℙ𝐵→𝐵(1) = 0.628820845002279 

• “Scaled likelihoods”: 

𝕝(𝑗 = 𝐴) =
𝜋𝐴𝕃(𝑗 = 𝐴)

𝜋𝐴𝕃(𝑗 = 𝐴) + 𝜋𝐵𝕃(𝑗 = 𝐵)
= 0.210793308888511 ≈ 21.08% 

𝕝(𝑗 = 𝐵) =
𝜋𝐵𝕃(𝑗 = 𝐵)

𝜋𝐴𝕃(𝑗 = 𝐴) + 𝜋𝐵𝕃(𝑗 = 𝐵)
= 0.789206691111489 ≈ 78.92% 

Node 𝒊 

𝕃(𝑖 = 𝐴) = ℙ𝐴→𝐴(2) ⋅ (ℙ𝐴→𝐴(1) ⋅ 𝐿(𝑗 = 𝐴) + ℙ𝐴→𝐵(1) ⋅ 𝐿(𝑗 = 𝐵)) = 0.154560044993497 

𝕃(𝑖 = 𝐵) = ℙ𝐵→𝐴(2) ⋅ (ℙ𝐵→𝐴(1) ⋅ 𝐿(𝑗 = 𝐴) + ℙ𝐵→𝐵(1) ⋅ 𝐿(𝑗 = 𝐵)) = 0.152736796162528 

• “Scaled likelihoods”: 

𝕝(𝑖 = 𝐴) =
𝜋𝐴𝕃(𝑖 = 𝐴)

𝜋𝐴𝕃(𝑖 = 𝐴) + 𝜋𝐵𝕃(𝑖 = 𝐵)
= 0.50296659221115 ≈ 50.30% 
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𝕝(𝑖 = 𝐵) =
𝜋𝐵𝕃(𝑖 = 𝐵)

𝜋𝐴𝕃(𝑖 = 𝐴) + 𝜋𝐵𝕃(𝑖 = 𝐵)
= 0.49703340778885 ≈ 49.70% 

Complete likelihood function 

𝕃 = 𝜋𝐴 ⋅ 𝕃(𝑖 = 𝐴) + 𝜋𝐵 ⋅ 𝕃(𝑖 = 𝐵) = 0.153648420578012 = exp(−1.87308826980757) 

Posterior probabilities 

The posterior probabilities for each state at each node require some manipulation using Bayes’ 

theorem and multiple properties of probability measures. 

Node 𝒊 

We already have the likelihoods and the priors for this node; thus, this is easy: 

ℙ(𝑖 = 𝐴 | Data) =
ℙ(𝑖 = 𝐴) ⋅ ℙ(Data | 𝑖 = 𝐴)

ℙ(Data)
=

𝜋𝐴 ⋅ 𝕃(𝑖 = 𝐴)

𝕃
= 0.50296659221115 ≈ 50.30% 

ℙ(𝑖 = 𝐵 | Data) =
𝜋𝐵 ⋅ 𝕃(𝑖 = 𝐵)

𝕃
= 0.49703340778885 ≈ 49.70% 

Note that these are identical to the “scaled likelihoods” for node 𝑖. 

Node 𝒋 

These probabilities are slightly trickier to compute. By the definition of conditioned probability, we 

have: 

ℙ(𝑗 = 𝐴 | Data) =
ℙ(Data, 𝑗 = 𝐴)

ℙ(Data)
 

Explicitly stating what the “Data” means and using the law of total probability: 

ℙ(Data, 𝑗 = 𝐴) = ℙ(𝑘 = 𝐴, 𝑙 = 𝐵,𝑚 = 𝐵, 𝑗 = 𝐴)

= ℙ(𝑘 = 𝐴, 𝑙 = 𝐵,𝑚 = 𝐵, 𝑗 = 𝐴, 𝑖 = 𝐴) + ℙ(𝑘 = 𝐴, 𝑙 = 𝐵,𝑚 = 𝐵, 𝑗 = 𝐴, 𝑖 = 𝐵) 

We can analyse the two terms separately. Using again the definition of conditioned probability: 

ℙ(𝑘 = 𝐴, 𝑙 = 𝐵,𝑚 = 𝐵, 𝑗 = 𝐴, 𝑖 = 𝐴) = ℙ(𝑘 = 𝐴, 𝑙 = 𝐵,𝑚 = 𝐵 | 𝑗 = 𝐴, 𝑖 = 𝐴) ⋅ ℙ(𝑗 = 𝐴, 𝑖 = 𝐴) 

The second term can be expressed as: 

ℙ(𝑗 = 𝐴, 𝑖 = 𝐴) = ℙ(𝑗 = 𝐴 | 𝑖 = 𝐴) ⋅ ℙ(𝑖 = 𝐴) = ℙ𝐴→𝐴(1) ⋅ 𝜋𝐴 = 0.295088420714894 

For the first term, we can note that once the state of 𝑖 is fixed, the state of 𝑘 is independent of 𝑗, 

𝑙 and 𝑚, and that once the state of 𝑗 is fixed, the states of 𝑙 and 𝑚 only depend on 𝑗 (and not on 𝑖 or 

𝑘). Thus: 
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ℙ(𝑘 = 𝐴, 𝑙 = 𝐵,𝑚 = 𝐵 | 𝑗 = 𝐴, 𝑖 = 𝐴) = ℙ(𝑘 = 𝐴 | 𝑖 = 𝐴) ⋅ ℙ(𝑙 = 𝐵,𝑚 = 𝐵 | 𝑗 = 𝐴) = ℙ𝐴→𝐴(2) ⋅ 𝕃(𝑗

= 𝐴) = 0.0727496122239882 

Therefore: 

ℙ(𝑘 = 𝐴, 𝑙 = 𝐵,𝑚 = 𝐵, 𝑗 = 𝐴, 𝑖 = 𝐴) = 0.0214675681787976 

Similarly, we also have: 

ℙ(𝑘 = 𝐴, 𝑙 = 𝐵, 𝑚 = 𝐵, 𝑗 = 𝐴, 𝑖 = 𝐵) = ℙ(𝑘 = 𝐴, 𝑙 = 𝐵, 𝑚 = 𝐵 | 𝑗 = 𝐴, 𝑖 = 𝐵) ⋅ ℙ(𝑗 = 𝐴, 𝑖 = 𝐵)

= ℙ(𝑘 = 𝐴 | 𝑖 = 𝐵) ⋅ ℙ(𝑙 = 𝐵,𝑚 = 𝐵 | 𝑗 = 𝐴) ⋅ ℙ𝐵→𝐴(1) ⋅ 𝜋𝐵  

= ℙ𝐵→𝐴(2) ⋅ 𝕃(𝑗 = 𝐴) ⋅ ℙ𝐵→𝐴(1) ⋅ 𝜋𝐵 = 0.00497794747551848 

Thus: 

ℙ(Data, 𝑗 = 𝐴) = ℙ(𝑘 = 𝐴, 𝑙 = 𝐵,𝑚 = 𝐵, 𝑗 = 𝐴) = 0.0264455156543161 

ℙ(𝑗 = 𝐴 | Data) =
ℙ(Data, 𝑗 = 𝐴)

ℙ(Data)
=

ℙ(Data, 𝑗 = 𝐴)

𝕃
= 0.172117068010399 ≈ 17.21% 

ℙ(𝑗 = 𝐵 | Data) = 1 − ℙ(𝑗 = 𝐴 | Data) = 0.827882931989601 ≈ 82.79% 

To double check the correctness of these results, in this very simple system (with a likelihood of 

~15.4%), it is also feasible to estimate these posterior probabilities by simulating a number of 

unconstrained character histories and discarding those in which the states of the tips 𝑘, 𝑙 and 𝑚 are 

not consistent with the observed data. 

Thoroughly commented C# source code to do this is available in the SimulateCharacter project 

folder. This code can be compiled and executed by installing the Microsoft .Net Core 3.1 SDK 

(https://dotnet.microsoft.com/download/dotnet-core/3.1), opening a command-line interface in the 

SimulateCharacter folder and typing dotnet run. Pre-compiled binaries (which do not require the 

.Net Core SDK) for Windows (SimulateCharacter-win-x64.exe), macOS (Simulate-

character-mac-x64) and Linux (SimulateCharacter-linux-x64) are also provided. 

Running this program confirms that 15.4% of the simulations are accepted (i.e. the likelihood is 

correct) and that the computed posterior probabilities are correct. 

Analyses with phytools, sMap and BayesTraits 

We analysed this simple dataset using phytools, sMap and BayesTraits. In order to ensure that 

we are using the same model for each program, we turned off maximum-likelihood optimisations and 

used the previously computed maximum-likelihood estimates for the rates. 

https://dotnet.microsoft.com/download/dotnet-core/3.1
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Phytools 

The phytools_analysis.R R script was used to analyse the dataset with phytools, by 

executing: 

Rscript phytools_analysis.R 

sMap 

The dataset was analysed with sMap by executing: 

mkdir sMap_output 

sMap -t simplestTree.tre -d simplestData.txt -o sMap_output/output -n 

1000000 -i simplestModel.nex 

NodeInfo -s sMap_output/output.smap.bin -n 0,1 --batch -f 

"\tA\tB\n%I%\t%p(A)%\t%p(B)%\n" 

BayesTraits 

The dataset was analysed with BayesTraits by executing: 

BayesTraitsV3 simplestTree.nex simplestData_noheader.txt 

And then typing: 

1 

1 

sct 1 

pis uniform 

res qAB 1.274706 

res qBA 0.643904 

addtag j l m 

addnode j j 

run 

Note that as mentioned in footnote 4 the rates used here are twice the rates used with sMap and 

phytools, to counter the fact that BayesTraits multiplies each rate 𝑟𝑖𝑗 by 𝜋𝑗. 
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Results 

A comparison of the expected results and the results obtained using each program is shown in 

the following table. Values significantly different from the expected value are highlighted by asterisks 

(*): 

Parameter Expected 

value 

phytools sMap BayesTraits 

Log-likelihood -1.873 -1.873 -1.873 -1.873 

ℙ(𝑖 = 𝐴 | Data) 50.30% 50.29% 50.29% 50.30% 

ℙ(𝑖 = 𝐵 | Data) 49.70% 49.71% 49.71% 49.70% 

ℙ(𝑗 = 𝐴 | Data) 17.21% 17.19% 17.15% 21.08% (*) 

ℙ(𝑗 = 𝐵 | Data) 82.79% 82.81% 82.85% 78.92% (*) 

The values computed by phytools and sMap are remarkably close to the expected values5. 

BayesTraits, instead, computes significantly different values for the posterior probabilities at node 𝑗. 

This difference is explained by the fact that BayesTraits does not actually report posterior 

probabilities. The probabilities shown by BayesTraits are printed by line 1857 of the Rates.c file in 

the source code of BayesTraits 3.0.2, which reads: 

fprintf(Str, "%f\t", (Node->Partial[SiteIndex][Index] *  Rates-

>Pis[Index]) / Tot); 

Here, Node->Partial[SiteIndex][Index] is the likelihood for site SiteIndex and state Index, 

while Rates->Pis[Index] is the root node prior for state Index (𝜋Index). 

This is the correct way to compute posterior probabilities for the root node; however, as we have 

shown, for internal nodes this does not lead to correct results.

 
5 It should be noted that, since both sMap and the make.simmap function of phytools are based on a 

stochastic approach, a certain degree of variability between different runs each program is expected. 
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C. Supplementary tables and 
figures 

Supplementary tables 

Table S1. Outgroup strains. The table contains the GenBank assembly accession number for each outgroup strain, as 
well as a note detailing whether a proteome file is available for each strain. 

Strain GenBank assembly Proteome available 

Bacilllus subtilis GCA_000009045.1 Yes 

Chloroflexus aurantiacus GCA_000018865.1 Yes 

“Acinetobacter sp.” CAG196 GCA_000433235.1 Yes 

Heliobacterium modesticaldum GCA_000019165.1 Yes 

Mycoplasma fermentans GCA_000148625.1 Yes 

“Clostridium sp.” CAG306 GCA_000431555.1 Yes 

Ca. Melainabacteria bacterium MEL.A1  GCA_001765415.1 Yes 

Vampirovibrio chlorellavorus GCA_001858525.1 No 

Ca. Caenarcanum bioreactoricola GCA_001899385.1 No 

Ca. Gastranaerophilales bacterium HUM_10 GCA_002102745.1 Yes 

Ca. Gastranaerophilales bacterium HUM_12 GCA_002102825.1 Yes 

Ca. Gastranaerophilales bacterium HUM_3 GCA_002102975.1 Yes 

Ca. Obscuribacter phosphatis GCA_001899315.1 No 

Ca. Sericytochromatia bacterium S15B-MN24 CBMW_12 GCA_002083825.1 No 

 

Table S2. Cyanobacterial strains. The table contains a list of all the strains of Cyanobacteria analysed in this study, 
together with the GenBank accession number for their genome assembly and the completeness estimated obtained using 
BUSCO 3.0.1 [379]. A proteome file was available for all strains, except Fiscerella muscicola PCC 73103. 

Strain GenBank assembly Completeness 

Trichodesmium thiebautii H9-4 GCA_000987385.1 38.80% 

Richelia intracellularis HM01 GCA_000350125.1 43.90% 

Synechococcus spongiarum SH4 GCA_000586015.1 60.20% 

Prochloron didemni P3 Solomon GCA_000252465.1 67.10% 

Ca. Atelocyanobacterium thalassa UCYNA GCA_000025125.1 71.50% 

Ca. Atelocyanobacterium thalassa UCYNA-2 GCA_000737945.1 71.70% 

Neosynechococcus sphagnicola CAUP A 1101 GCA_000775285.1 75.20% 

Hydrocoleum sp. CS-953 GCA_002260545.1 78.10% 

cyanobacterium endosymbiont of Epithemia turgida GCA_000829235.1 83.70% 

Limnoraphis robusta CS-951 GCA_000972705.2 83.70% 

Gloeobacter kilaueensis JS1 GCA_000484535.1 84.10% 

Richelia intracellularis RC01 GCA_000613065.1 84.20% 

Chamaesiphon polymorphus CCALA 037 GCA_003003845.1 84.50% 

Gloeobacter violaceus PCC7421 GCA_000011385.1 86.60% 

Synechococcus sp. Tous GCA_002006815.1 87.30% 

Synechococcus lividus PCC 6715 GCA_002754935.1 87.40% 

Gloeomargarita lithophora Alchichica-D10 GCA_001870225.1 87.60% 

Richelia intracellularis HH01 GCA_000350105.1 88.10% 
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Nostoc piscinale CENA21 GCA_001298445.1 89.70% 

Synechococcus sp. 60AY4M2 GCA_002760375.1 89.70% 

Synechococcus sp. JA-2-3-B'a(2-13) GCA_000013225.1 90.50% 

Halothece sp. KZN 001 GCA_002900215.1 90.80% 

Cyanobacteria bacterium QS_8_64_29 GCA_003022125.1 91.30% 

Geitlerinema sp. PCC 7105 GCA_000332355.1 91.50% 

Prochloron didemni P4 Papua New Guinea GCA_000252485.1 91.70% 

Raphidiopsis brookii D9 GCA_000175855.1 91.80% 

Synechococcus sp. PCC7336 GCA_000332275.1 92.10% 

Cyanothece sp. BG0011 GCA_003013815.1 92.20% 

Leptolyngbya antarctica GCA_003241845.1 92.70% 

Prochlorococcus marinus MIT 9202 GCA_000158595.1 92.90% 

Tychonema bourrellyi FEM_GT703 GCA_002412335.2 93.10% 

Prochlorococcus marinus MIT 9515 GCA_000015665.1 93.20% 

Oscillatoriales cyanobacterium CG2_30_44_21 GCA_001873375.1 93.70% 

Prochlorococcus marinus MIT 9301 GCA_000015965.1 93.80% 

Prochlorococcus marinus NATL1A GCA_000015685.1 93.90% 

Prochlorococcus sp. MIT 0801 GCA_000757865.1 93.90% 

Leptolyngbya sp. O-77 GCA_001548395.1 94.00% 

Prochlorococcus sp. RS04 GCA_001989455.1 94.00% 

Prochlorococcus marinus CCMP 1375 GCA_000007925.1 94.10% 

Pseudanabaena frigida GCA_003242085.1 94.40% 

Pseudanabaena sp. PCC 7367 GCA_000317065.1 94.40% 

Synechococcus sp. PCC 7502 GCA_000317085.1 94.50% 

Synechococcus sp. CB0205 GCA_000179255.1 94.60% 

Tolypothrix bouteillei VB521301 GCA_000760695.2 94.70% 

Crocosphaera watsonii WH 8501 GCA_000167195.1 94.80% 

Aliterella atlantica CENA595 GCA_000952155.1 94.90% 

Pseudanabaena biceps PCC7429 GCA_000332215.1 94.90% 

Halomicronema hongdechloris C2206 GCA_002075285.2 95.00% 

Nodularia spumigena CCY9414 GCA_000169135.1 95.10% 

Thermosynechococcus elongatus BP1 GCA_000011345.1 95.70% 

Cyanobacterium stanieri HL-69 GCA_002813895.1 95.80% 

Limnothrix sp. PR1529 GCA_002742025.1 95.80% 

Cyanobium sp. NIES-981 GCA_900088535.1 95.90% 

Leptolyngbya sp. PCC 7376 GCA_000316605.1 95.90% 

Pseudanabaena sp. BC1403 GCA_002914585.1 95.90% 

Acaryochloris marina MBIC11017 GCA_000018105.1 96.10% 

Pleurocapsa sp. CCALA 161 GCA_003003995.1 96.10% 

Vulcanococcus limneticus LL GCA_002252705.1 96.10% 

Geitlerinema sp. PCC 9228 GCA_001870905.1 96.30% 

Leptolyngbya sp. hensonii GCA_001939115.1 96.30% 

Synechococcus sp. PCC 6312 GCA_000316685.1 96.30% 

Prochlorococcus marinus MIT 9303 GCA_000015705.1 96.40% 

Leptolyngbya foveolarum GCA_003242035.1 96.50% 

Synechococcus sp. PCC 7003 GCA_001693255.1 96.60% 

Synechococcus sp. PCC 73109 GCA_001521855.1 96.60% 

Snowella sp. ULC335bin1 GCA_003249095.1 96.70% 

Alkalinema sp. CACIAM 70d GCA_002148405.1 96.80% 
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Limnothrix sp. CACIAM 69d GCA_001913845.1 96.80% 

Prochlorothrix hollandica PCC 9006 GCA_000332315.1 96.80% 

Synechococcus sp. 8F6 GCA_002252665.1 96.80% 

Synechococcus sp. PCC 7335 GCA_000155595.1 96.80% 

Cyanobacterium stanieri PCC 7202 GCA_000317655.1 96.90% 

Geminocystis herdmanii PCC 6308 GCA_000332235.1 96.90% 

Gloeocapsa sp. PCC 73106 GCA_000332035.1 96.90% 

Synechococcus elongatus PCC 6301 GCA_000010065.1 96.90% 

Synechococcus sp. NIES-970 GCA_002356215.1 96.90% 

Synechococcus sp. PCC 7002 GCA_000019485.1 96.90% 

Synechococcus sp. RCC 307 GCA_000063525.1 96.90% 

Geminocystis sp. NIES-3708 GCA_001548095.1 97.00% 

Leptolyngbya sp. PCC 6406 GCA_000332095.2 97.00% 

Synechococcus sp. MIT S9509 GCA_001631935.1 97.00% 

Calothrix rhizosoleniae SC01 GCA_900185595.1 97.10% 

Moorea bouillonii PNG5-198 GCA_001942495.1 97.10% 

Synechococcus sp. 1G10 GCA_002252625.1 97.10% 

Synechococcus sp. WH5701 GCA_000153045.1 97.10% 

Trichodesmium erythraeum IMS101 GCA_000014265.1 97.10% 

Cyanobacterium aponinum PCC 10605 GCA_000317675.1 97.20% 

Synechocystis sp. PCC 6803 GCA_000340785.1 97.20% 

Leptolyngbya sp. Heron Island J 1 GCA_000482245.1 97.30% 

Planktothrix mougeotii NIVA-CYA 405 GCA_000464745.1 97.50% 

Spirulina major PCC 6313 GCA_001890765.1 97.50% 

Synechococcus sp. CC9616 genomic GCA_000515235.1 97.50% 

Acaryochloris sp. RCC 1774 GCA_003231495.1 97.60% 

Cylindrospermopsis raciborskii CS505 GCA_000175835.1 97.60% 

Dactylococcopsis salina PCC 8305 GCA_000317615.1 97.60% 

Microcoleus chthonoplastes PCC 7420 GCA_000155555.1 97.60% 

Synechococcus sp. MIT S9508 GCA_001632165.1 97.60% 

Synechococcus sp. MW101C3 GCA_002252635.1 97.70% 

Synechococcus sp. WH 8020 GCA_001040845.1 97.70% 

Chondrocystis sp. NIES-4102 GCA_002368355.1 97.80% 

Cyanobium gracile PCC6307 GCA_000316515.1 97.80% 

Cyanothece sp. CCY0110 GCA_000169335.1 97.80% 

Oscillatoria sp. PCC 10802 GCA_000332335.1 97.80% 

Planktothrix tepida PCC 9214 GCA_900009145.1 97.80% 

Pleurocapsa sp. PCC 7319 GCA_000332195.1 97.80% 

Synechococcus sp. CC9902 GCA_000012505.1 97.80% 

Cyanothece sp. PCC 7425 GCA_000022045.1 97.90% 

filamentous cyanobacterium ESFC-1 GCA_000380225.1 97.90% 

Rubidibacter lacunae KORDI 51-2 GCA_000473895.1 97.90% 

Arthrospira platensis Paraca GCA_000175415.3 98.00% 

Nostoc sp. Peltigera membranacea cyanobiont 213 GCA_002245975.1 98.00% 

Synechococcus sp. RS9916 GCA_000153825.1 98.00% 

Synechococcus sp. WH7805 GCA_000153285.1 98.00% 

Leptolyngbya sp. PCC 7375 GCA_000316115.1 98.10% 

Mastigocoleus testarum BC008 GCA_001456025.1 98.10% 

Nostoc azollae 0708 GCA_000196515.1 98.10% 
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Phormidium sp. HE10JO GCA_900149785.2 98.10% 

Xenococcus sp. PCC7305 GCA_000332055.1 98.10% 

Dolichospermum circinale AWQC310F GCA_000426925.1 98.20% 

Leptolyngbya ohadii IS1 GCA_002215035.1 98.20% 

Oscillatoriales cyanobacterium CG2_30_40_61 GCA_001873365.1 98.20% 

Synechococcus sp. CC9605 GCA_000012625.1 98.20% 

Scytonema tolypothrichoides VB-61278 GCA_000828085.2 98.30% 

Synechococcus sp. WH 8103 GCA_001182765.1 98.30% 

Oscillatoria acuminata PCC 6304 GCA_000317105.1 98.40% 

Phormidesmis priestleyi BC1401 GCA_001650195.1 98.40% 

Spirulina subsalsa PCC 9445 GCA_000314005.1 98.40% 

Stanieria cyanosphaera PCC 7437 GCA_000317575.1 98.40% 

Planktothricoides sp. SR001 GCA_001276715.1 98.50% 

Roseofilum reptotaenium AO1-A GCA_001890975.1 98.50% 

Kamptonema formosum PCC 6407 GCA_000332155.1 98.60% 

Leptolyngbya boryana PCC 6306 GCA_000353285.1 98.60% 

Calothrix sp. NIES-3974 GCA_002368395.1 98.70% 

Cyanothece sp. PCC 7424 GCA_000021825.1 98.70% 

Fischerella muscicola PCC 73103 GCA_000317245.1 98.70% 

Fischerella sp. PCC 9339 GCA_000315585.1 98.70% 

Chroococcales cyanobacterium IPPAS B-1203 GCA_002749975.1 98.80% 

Cyanothece sp. PCC7822 GCA_000147335.1 98.80% 

Halothece sp. PCC7418 GCA_000317635.1 98.80% 

Hassallia byssoidea VB512170 GCA_000817785.1 98.80% 

Lyngbya aestuarii BL J GCA_000478195.2 98.80% 

Calothrix sp. NIES-4101 GCA_002368375.1 98.90% 

Crinalium epipsammum PCC 9333 GCA_000317495.1 98.90% 

Hydrococcus rivularis NIES-593 GCA_001904635.1 98.90% 

Scytonema hofmanni UTEX 2349 GCA_000582685.1 98.90% 

Anabaena sp. PCC 7108 GCA_000332135.1 99.00% 

Calothrix parasitica NIES-267 GCA_002368095.1 99.00% 

Fischerella sp. NIES-4106 GCA_002368315.1 99.00% 

Gloeocapsa sp. PCC7428 GCA_000317555.1 99.00% 

Oscillatoriales cyanobacterium JSC-12 GCA_000309945.1 99.00% 

Synechocystis sp. PCC 7509 GCA_000332075.2 99.00% 

Tolypothrix sp. PCC 7601 GCA_000300115.1 99.00% 

Anabaena sp. 90 GCA_000312705.1 99.10% 

Chlorogloeopsis fritschii PCC 6912 GCA_000317285.1 99.10% 

Chroococcidiopsis thermalis PCC 7203 GCA_000317125.1 99.10% 

Leptolyngbya sp. NIES-3755 GCA_001548435.1 99.10% 

Nostoc flagelliforme CCNUN1 GCA_002813575.1 99.10% 

Scytonema hofmannii PCC 7110 GCA_000346485.2 99.10% 

Scytonema sp. NIES-4073 GCA_002368435.1 99.10% 

Calothrix sp. NIES-4105 GCA_002368415.1 99.20% 

Geitlerinema sp. PCC 7407 GCA_000317045.1 99.20% 

Hapalosiphon sp. MRB220 GCA_001275395.1 99.20% 

Pleurocapsa sp. PCC 7327 GCA_000317025.1 99.20% 

Sphaerospermopsis kisseleviana NIES-73 GCA_002368075.1 99.20% 

Calothrix sp. 3363 GCA_000734895.2 99.30% 
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Calothrix sp. NIES-2100 GCA_002368195.1 99.30% 

Cyanothece sp. PCC 8802 GCA_000024045.1 99.30% 

Fischerella sp. PCC 9605 GCA_000517105.1 99.30% 

Nostoc punctiforme PCC 73102 GCA_000020025.1 99.30% 

Nostoc sp. KVJ20 GCA_001712795.1 99.30% 

Oscillatoria nigro-viridis PCC 7112 GCA_000317475.1 99.30% 

Tolypothrix tenuis PCC 7101 GCA_002368295.1 99.30% 

Desertifilum sp. IPPAS B-1220 GCA_001746915.1 99.40% 

Fischerella sp. JSC11 GCA_000231365.2 99.40% 

Nostoc calcicola FACHB-389 GCA_001904715.1 99.40% 

Tolypothrix campylonemoides VB511288 GCA_000828075.2 99.40% 

Calothrix sp. PCC 7507 GCA_000316575.1 99.50% 

Cylindrospermum stagnale PCC7417 GCA_000317535.1 99.50% 

Dolichospermum compactum NIES-806 GCA_002368115.1 99.50% 

Microcystis aeruginosa NIES843 GCA_000010625.1 99.50% 

Nostoc sp. NIES-4103 GCA_002368335.1 99.50% 

Nostoc sp. PCC7120 GCA_000009705.1 99.50% 

Nostoc sp. T09 GCA_002154695.1 99.50% 

Anabaenopsis circularis NIES-21 GCA_002367975.1 99.60% 

Fischerella muscicola PCC 7414 GCA_000317205.1 99.60% 

Nodularia sp. NIES-3585 GCA_002218065.1 99.60% 

Nostoc sp. PCC 7524 GCA_000316645.1 99.60% 

Chrysosporum ovalisporum GCA_001458455.1 99.70% 

Microcoleus sp. PCC 7113 GCA_000317515.1 99.70% 

 

Table S3. Phylogenetic markers. The table contains a list of all the genes used to build the phylogenetic tree of 
Cyanobacteria, including a brief description of each gene, the accession number for the query sequences used in BLAST 
searches, and the number of strains whose genome contained an ortholog for the gene. For protein-coding genes (1-136), 
GenBank accession numbers are reported. For ribosomal RNA genes (137, 138), SILVA [419] accession numbers are 
reported. Paralogs are marked with a “b” after the gene number (e.g., 10b). Genes that were found in fewer than 50 strains 
and thus excluded from the analysis are marked with a dagger † (10b, 16b, 18b, 19b, 29b, 74b).  

Gene Description BLAST query accessions Strains 

1 
acetyl-CoA carboxylase, 
carboxyltransferase subunit beta 

EDX85101.1, WP_006616771.1, 
WP_007303254.1, WP_011244449.1, 
WP_011434210.1, WP_012629237.1, 
WP_045868630.1, WP_103667299.1, 
WP_011364814.1 

202 

2 allophycocyanin subunit beta 

WP_006453534.1, WP_006618329.1, 
WP_007311900.1, WP_011244246.1, 
WP_011433791.1, WP_012627291.1, 
WP_045874112.1, WP_103666910.1, 
WP_011364182.1 

176 

3 alanyl-tRNA synthetase 

BAD78854.1, BAI92809.1, WP_006457350.1, 
WP_007310762.1, WP_011433135.1, 
WP_012626144.1, WP_045872994.1, 
WP_103669651.1, WP_011365443.1 

199 

4 allophycocyanin subunit alpha 

WP_006456136.1, WP_006617276.1, 
WP_007305032.1, WP_011243498.1, 
WP_011433053.1, WP_012630327.1, 
WP_045870449.1, WP_094536173.1, 
WP_011365138.1 

173 

5 allophycocyanin subunit beta 
WP_006456852.1, WP_006617275.1, 
WP_007305033.1, WP_011243499.1, 

173 
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WP_011433054.1, WP_012630328.1, 
WP_045870450.1, WP_103667190.1, 
WP_006849956.1 

6 allophycocyanin subunit alpha 

WP_006454063.1, WP_006616661.1, 
WP_007307430.1, WP_011243585.1, 
WP_011431857.1, WP_012626517.1, 
WP_045868388.1, WP_103670256.1, 
WP_011364314.1 

173 

7 
photosystem I reaction center subunit 
X 

WP_006453887.1, WP_006619787.1, 
WP_007307543.1, WP_011243497.1, 
WP_011432088.1, WP_012630471.1, 
WP_045870448.1, WP_103669601.1, 
WP_011365137.1 

170 

8 
3-phosphoshikimate 1-
carboxyvinyltransferase 

ABD02299.1, WP_006616159.1, 
WP_007308384.1, WP_011243593.1, 
WP_012626751.1, WP_038016071.1, 
WP_045869903.1, WP_103670057.1, 
WP_011364107.1 

187 

9 F0F1 ATP synthase subunit alpha 

WP_006453845.1, WP_006618464.1, 
WP_007303508.1, WP_011243489.1, 
WP_011434218.1, WP_012626953.1, 
WP_045870441.1, WP_103670498.1, 
WP_011365131.1 

201 

10 AAA family ATPase 

EAM48812.1, WP_006456276.1, 
WP_011242391.1, WP_012628872.1, 
WP_035737329.1, WP_045872014.1, 
WP_103666616.1, WP_011363579.1,  

191 

10b † AAA family ATPase WP_011433413.1, WP_012629464.1,  39 

11 F0F1 ATP synthase subunit beta 

WP_006454031.1, WP_006617133.1, 
WP_007306975.1, WP_011244097.1, 
WP_011434062.1, WP_012630351.1, 
WP_045872011.1, WP_103670675.1, 
WP_011365114.1 

203 

12 ATP synthase F0 subunit C 

BBC24744.1, WP_006454566.1, 
WP_006618460.1, WP_007303504.1, 
WP_011243493.1, WP_011430931.1, 
WP_012626949.1, WP_017654400.1, 
WP_006851467.1 

199 

13 F0F1 ATP synthase subunit A 

CAA28923.1, EDX86518.1, 
sp|Q2JIF4.1|ATP6_SYNJB, 
WP_006618459.1, WP_007303503.1, 
WP_041236735.1, WP_045870544.1, 
WP_103670495.1, WP_006852023.1 

203 

14 
c-type cytochrome biogenesis protein 
CcsB 

WP_007306860.1, WP_011243321.1, 
WP_011431756.1, WP_012629819.1, 
WP_014274272.1, WP_045874396.1, 
WP_083785097.1, WP_103667343.1, 
WP_011364222.1 

195 

15 phosphatidate cytidylyltransferase 

WP_006455874.1, WP_006617390.1, 
WP_007306471.1, WP_011243433.1, 
WP_011431967.1, WP_041236249.1, 
WP_045868240.1, WP_103670151.1, 
WP_011364583.1 

199 

16 
ferredoxin:protochlorophyllide 
reductase (ATP-dependent) subunit B 

WP_006618246.1, WP_007307931.1, 
WP_011244566.1, WP_011433773.1, 
WP_012629044.1, WP_045872107.1,  

147 

16b † 
ferredoxin:protochlorophyllide 
reductase (ATP-dependent) subunit B 

WP_038016456.1, WP_103667903.1, 
WP_011363742.1 

33 
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17 
magnesium chelatase ATPase 
subunit I 

EDX87156.1, WP_006618358.1, 
WP_007303511.1, WP_011243252.1, 
WP_041436963.1, WP_045872636.1, 
WP_049771092.1, WP_103666960.1, 
WP_011364902.1 

188 

18 
ferredoxin:protochlorophyllide 
reductase (ATP-dependent) iron-
sulfur ATP-binding protein 

sp|Q2JMP3.1|CHLL_SYNJB, 
WP_006616040.1, WP_007305348.1, 
WP_011242451.1, WP_012629307.1, 
WP_045871646.1,  

147 

18b † 
ferredoxin:protochlorophyllide 
reductase (ATP-dependent) iron-
sulfur ATP-binding protein 

WP_006453494.1, WP_103667902.1, 
WP_011363740.1 

34 

19 
ferredoxin:protochlorophyllide 
reductase (ATP-dependent) subunit 
N 

WP_006620199.1, WP_007305346.1, 
WP_011242450.1, WP_011432647.1, 
WP_012629309.1, WP_045871644.1,  

149 

19b † 
ferredoxin:protochlorophyllide 
reductase (ATP-dependent) subunit 
N 

WP_006454947.1, WP_103667904.1, 
WP_011363743.1 

34 

20 
ATP-dependent Clp protease ATP-
binding subunit 

BAD79443.1, EKE97490.1, 
WP_006454749.1, WP_006618428.1, 
WP_007303900.1, WP_011432255.1, 
WP_012630051.1, WP_103669616.1, 
WP_011364587.1 

203 

21 dephospho-CoA kinase 

WP_006456057.1, WP_006617686.1, 
WP_007305085.1, WP_011243552.1, 
WP_011432930.1, WP_012629163.1, 
WP_045868069.1, WP_103670206.1, 
WP_011365417.1 

195 

22 phycocyanin subunit alpha 

WP_006453677.1, WP_006618345.1, 
WP_007306014.1, WP_011242807.1, 
WP_011434281.1, WP_012628287.1, 
WP_045870456.1, WP_103668511.1, 
WP_011363433.1 

175 

23 chaperonin GroEL 

WP_006618363.1, WP_007308122.1, 
WP_011244099.1, WP_011433224.1, 
WP_012630459.1, WP_038015768.1, 
WP_045872371.1, WP_103669213.1, 
WP_006851861.1 

198 

24 polyprenyl synthetase family protein 

WP_006455205.1, WP_006620000.1, 
WP_007307608.1, WP_011243072.1, 
WP_011433454.1, WP_012626456.1, 
WP_045874088.1, WP_103669869.1, 
WP_011364876.1 

200 

25 cysteine--tRNA ligase 

sp|Q2JKL2.1|SYC_SYNJB, 
WP_006454383.1, WP_006618270.1, 
WP_007305161.1, WP_011244736.1, 
WP_012630529.1, WP_045873353.1, 
WP_103669800.1, WP_011364917.1 

197 

26 molecular chaperone DnaK 

WP_006456604.1, WP_006617135.1, 
WP_007303526.1, WP_011243946.1, 
WP_011434322.1, WP_012629493.1, 
WP_045867705.1, WP_103666388.1, 
WP_011365594.1 

203 

27 replicative DNA helicase 

BAD78418.1, WP_006455842.1, 
WP_006616435.1, WP_008277789.1, 
WP_010473005.1, WP_011432712.1, 
WP_045872355.1, WP_103669945.1, 
WP_011365466.1 

201 
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28 DNA polymerase III subunit beta 

ABD02503.1, sp|P52023.1|DPO3B_SYNE7, 
WP_006618869.1, WP_007304972.1, 
WP_012625697.1, WP_038015664.1, 
WP_045869792.1, WP_103667093.1, 
WP_011363045.1 

198 

29 phosphopyruvate hydratase 

WP_006454144.1, WP_011243198.1, 
WP_011434092.1, WP_012628870.1, 
WP_045870078.1, WP_103669163.1, 
WP_011365403.1 

174 

29b † phosphopyruvate hydratase WP_006620145.1, WP_007307648.1,  26 

30 DNA polymerase I 

BAD79507.1, WP_007306147.1, 
WP_011431798.1, WP_012626334.1, 
WP_045869086.1, WP_050765785.1, 
WP_051659764.1, WP_103667792.1, 
WP_011364916.1 

203 

31 signal recognition particle protein 

WP_006454126.1, WP_007307383.1, 
WP_011431929.1, WP_012629386.1, 
WP_041677044.1, WP_045871173.1, 
WP_103668252.1, WP_111891988.1, 
WP_011363874.1 

200 

32 

bifunctional 5,10-methylene-
tetrahydrofolate dehydrogenase/5,10-
methylene-tetrahydrofolate 
cyclohydrolase 

EAM52709.1, WP_006455464.1, 
WP_006620001.1, WP_011377721.1, 
WP_011431762.1, WP_012626457.1, 
WP_045874089.1, WP_103669868.1, 
WP_011364878.1 

197 

33 ribosome recycling factor 

EDX84087.1, WP_006618912.1, 
WP_007309578.1, WP_011243325.1, 
WP_011434435.1, WP_012629986.1, 
WP_045867718.1, WP_103666937.1, 
WP_011363712.1 

197 

34 ferredoxin:thioredoxin reductase 

EKD08882.1, WP_007305260.1, 
WP_011244667.1, WP_011432451.1, 
WP_012627934.1, WP_038016434.1, 
WP_045870081.1, WP_103667050.1, 
WP_011365215.1 

177 

35 
ATP-dependent zinc metalloprotease 
FtsH 

WP_006456705.1, WP_006668579.1, 
WP_007310098.1, WP_011242912.1, 
WP_011431677.1, WP_012629618.1, 
WP_045872546.1, WP_103667666.1, 
WP_011364407.1 

203 

36 
signal recognition particle-docking 
protein FtsY 

WP_006453805.1, WP_007307807.1, 
WP_011243942.1, WP_011431979.1, 
WP_012627757.1, WP_014274556.1, 
WP_045874364.1, WP_103667907.1, 
WP_011363055.1 

203 

37 elongation factor G 

WP_006455436.1, WP_006619094.1, 
WP_011242967.1, WP_011432555.1, 
WP_012626194.1, WP_021831800.1, 
WP_045868170.1, WP_103668803.1, 
WP_011363347.1 

199 

38 
tRNA (adenosine(37)-N6)-
threonylcarbamoyltransferase 
complex transferase subunit TsaD 

WP_006456468.1, WP_006619221.1, 
WP_007307099.1, WP_011242613.1, 
WP_011434363.1, WP_012629369.1, 
WP_045868121.1, WP_103667308.1, 
WP_011363637.1 

201 

39 
tRNA uridine-5-
carboxymethylaminomethyl(34) 
synthesis enzyme MnmG 

ACL44672.1, WP_006457036.1, 
WP_006616246.1, WP_007305500.1, 
WP_011243993.1, WP_011434362.1, 

200 
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WP_045870845.1, WP_103667470.1, 
WP_011365468.1 

40 
glutamine--fructose-6-phosphate 
transaminase (isomerizing) 

WP_006455377.1, WP_006619686.1, 
WP_007303280.1, WP_011243299.1, 
WP_011432719.1, WP_012628062.1, 
WP_045874454.1, WP_103666558.1, 
WP_011363163.1 

196 

41 

bifunctional UDP-N-
acetylglucosamine 
diphosphorylase/glucosamine-1-
phosphate N-acetyltransferase GlmU 

EAM52933.1, WP_006457168.1, 
WP_006618474.1, WP_011243536.1, 
WP_011434190.1, WP_012627879.1, 
WP_045871260.1, WP_103670315.1, 
WP_011364105.1 

195 

42 co-chaperone GroES 

EKE99802.1, WP_006456873.1, 
WP_006618364.1, WP_007308121.1, 
WP_011244098.1, WP_011433225.1, 
WP_012630460.1, WP_103669214.1, 
WP_011365113.1 

200 

43 glutamyl-tRNA reductase 

WP_006457488.1, WP_006618315.1, 
WP_007305843.1, WP_011243328.1, 
WP_011433832.1, WP_012628884.1, 
WP_045873383.1, WP_103669463.1, 
WP_011364228.1 

192 

44 porphobilinogen synthase 
WP_006456046.1, WP_011244611.1, 
WP_012626555.1, WP_045868107.1,  

126 

44b porphobilinogen synthase 
WP_103667751.1, WP_011434019.1, 
WP_007305706.1, WP_006618266.1, 
WP_045871311.1, WP_011363513.1,  

134 

45 
imidazole glycerol phosphate 
synthase subunit HisH 

WP_006457214.1, WP_006617637.1, 
WP_007303483.1, WP_011244777.1, 
WP_011432524.1, WP_012629315.1, 
WP_045874411.1, WP_103668336.1, 
WP_011364896.1 

190 

46 transcriptional regulator NrdR 

WP_006455790.1, WP_006619120.1, 
WP_007305323.1, WP_011243147.1, 
WP_011433544.1, WP_012629395.1, 
WP_103669472.1, WP_041434368.1,  

131 

47 translation initiation factor IF-3 

WP_006617261.1, WP_007303458.1, 
WP_009627301.1, WP_011243750.1, 
WP_011432175.1, WP_012625935.1, 
WP_045868186.1, WP_011363124.1,  

179 

47b translation initiation factor IF-3 WP_083785096.1 56 

48 
biosynthetic-type acetolactate 
synthase large subunit 

WP_006454163.1, WP_006616904.1, 
WP_007303997.1, WP_011243678.1, 
WP_011432293.1, WP_012626036.1, 
WP_081584074.1, WP_103668127.1, 
WP_041434446.1 

196 

49 acetolactate synthase small subunit 

BAI88928.1, WP_006453777.1, 
WP_007304707.1, WP_011243982.1, 
WP_011432604.1, WP_012626204.1, 
WP_045868883.1, WP_103668272.1, 
WP_011364939.1 

188 

50 50S ribosomal protein L1 

WP_006619242.1, WP_007312877.1, 
WP_011243204.1, WP_011432850.1, 
WP_012629378.1, WP_038016093.1, 
WP_045868212.1, WP_103668598.1, 
WP_011365397.1 

201 

51 50S ribosomal protein L2 
WP_006454128.1, WP_006617592.1, 
WP_007306450.1, WP_011244178.1, 

203 



 

244 

WP_011434155.1, WP_012626765.1, 
WP_045870371.1, WP_103667421.1, 
WP_006851794.1 

52 50S ribosomal protein L4 

WP_006453697.1, WP_006617594.1, 
WP_007306448.1, WP_011244176.1, 
WP_011434153.1, WP_012626763.1, 
WP_045870373.1, WP_103667420.1, 
WP_011363388.1 

203 

53 50S ribosomal protein L5 

WP_006454631.1, WP_006618088.1, 
WP_007306416.1, WP_011244187.1, 
WP_011434164.1, WP_012626774.1, 
WP_045870363.1, WP_103667426.1, 
WP_011363383.1 

203 

54 50S ribosomal protein L9 

WP_006453892.1, WP_006616436.1, 
WP_007305923.1, WP_011243861.1, 
WP_012625783.1, WP_041436365.1, 
WP_045872354.1, WP_103667642.1, 
WP_011365465.1 

201 

55 50S ribosomal protein L11 

WP_006456636.1, WP_006619243.1, 
WP_007312878.1, WP_011243203.1, 
WP_011432849.1, WP_012629379.1, 
WP_045868213.1, WP_103668599.1, 
WP_011365398.1 

202 

56 50S ribosomal protein L7/L12 

WP_006456793.1, WP_006619240.1, 
WP_007307120.1, WP_011243206.1, 
WP_011432852.1, WP_012629376.1, 
WP_045868210.1, WP_103668596.1, 
WP_011365396.1 

201 

57 50S ribosomal protein L14 

EAM49850.1, WP_006457367.1, 
WP_006618090.1, WP_011244185.1, 
WP_011434162.1, WP_012626772.1, 
WP_015129713.1, WP_094530971.1, 
WP_006851211.1 

202 

58 50S ribosomal protein L19 

BAD79759.1, sp|Q2JHW3.1|RL19_SYNJB, 
WP_006456480.1, WP_006619246.1, 
WP_007306856.1, WP_012625933.1, 
WP_045868216.1, WP_103668686.1, 
WP_011363645.1 

200 

59 50S ribosomal protein L20 

WP_006456533.1, WP_006617370.1, 
WP_007304007.1, WP_011242589.1, 
WP_011434388.1, WP_012626939.1, 
WP_045872103.1, WP_103670289.1, 
WP_011363098.1 

202 

60 50S ribosomal protein L27 

WP_017287727.1, WP_006615800.1, 
WP_007305424.1, WP_009629204.1, 
WP_011242644.1, WP_011432382.1, 
WP_012626133.1, WP_045872971.1, 
WP_011365074.1 

198 

61 elongation factor 4 

WP_006455883.1, WP_007308272.1, 
WP_011431736.1, WP_012626592.1, 
WP_035736750.1, WP_041676973.1, 
WP_045867880.1, WP_103669550.1, 
WP_011363792.1 

201 

62 
4-hydroxy-3-methylbut-2-enyl 
diphosphate reductase 

WP_006456003.1, WP_006618940.1, 
WP_007304523.1, WP_011243743.1, 
WP_011434194.1, WP_012627787.1, 
WP_045870484.1, WP_103668364.1, 
WP_011363276.1 

197 
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63 methionine--tRNA ligase 

WP_006616868.1, WP_007304192.1, 
WP_011242720.1, WP_012628720.1, 
WP_017286361.1, WP_041436696.1, 
WP_045869189.1, WP_103669339.1, 
WP_011364308.1 

196 

64 
tRNA (adenosine(37)-N6)-
dimethylallyltransferase MiaA 

WP_007304080.1, WP_011243926.1, 
WP_011433631.1, WP_012628394.1, 
WP_035736955.1, WP_045867739.1, 
WP_083785126.1, WP_103670120.1, 
WP_011363125.1 

197 

65 septum site-determining protein MinD 

WP_006454327.1, WP_006617995.1, 
WP_007308106.1, WP_011242956.1, 
WP_011431984.1, WP_012626731.1, 
WP_045869512.1, WP_103669614.1, 
WP_011363489.1 

199 

66 
UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 

WP_006456390.1, WP_006616197.1, 
WP_007308135.1, WP_011431767.1, 
WP_012627988.1, WP_071818111.1, 
WP_071989339.1, WP_103669070.1, 
WP_011363859.1 

199 

67 
DNA mismatch repair endonuclease 
MutL 

WP_006457304.1, WP_007303591.1, 
WP_011244623.1, WP_011433846.1, 
WP_012629077.1, WP_014274059.1, 
WP_045871665.1, WP_103669982.1,  

173 

68 quinolinate synthase NadA 

EDX87644.1, sp|B8HNE6.1|NADA_CYAP4, 
WP_006616923.1, WP_007304059.1, 
WP_011242422.1, WP_011434042.1, 
WP_045872415.1, WP_103666723.1, 
WP_011364425.1 

196 

69 
NAD(P)H-quinone oxidoreductase 
subunit N 

WP_006453592.1, WP_006617584.1, 
WP_007303546.1, WP_011242454.1, 
WP_011433085.1, WP_012626937.1, 
WP_045871930.1, WP_103669323.1, 
WP_041434418.1 

195 

70 
NADH-quinone oxidoreductase 
subunit L 

WP_006457681.1, WP_006620027.1, 
WP_007305380.1, WP_011244429.1, 
WP_011431787.1, WP_012630538.1, 
WP_045869093.1, WP_103666401.1, 
WP_011365329.1 

197 

71 
NAD(P)H-quinone oxidoreductase 
subunit H 

sp|Q2JN25.1|NDHH_SYNJB, 
WP_006619520.1, WP_007304477.1, 
WP_011244658.1, WP_012628779.1, 
WP_038016543.1, WP_045867567.1, 
WP_103670142.1, WP_011365360.1 

196 

72 
transcription 
termination/antitermination protein 
NusG 

ABD02195.1, WP_006457642.1, 
WP_006619244.1, WP_011243202.1, 
WP_012629380.1, WP_021831945.1, 
WP_045868214.1, WP_103668600.1, 
WP_011365399.1 

202 

73 
alpha-ketoacid dehydrogenase 
subunit beta 

WP_006456755.1, WP_006616827.1, 
WP_007305839.1, WP_011243674.1, 
WP_011433364.1, WP_012630448.1, 
WP_045868110.1, WP_103669647.1, 
WP_011364166.1 

192 

74 
heme oxygenase (biliverdin-
producing) 

WP_006454203.1, WP_006617685.1, 
WP_007304842.1, WP_011244546.1, 
WP_012628373.1, WP_045870915.1, 
WP_011363201.1 

167 
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74b † biliverdin-producing heme oxygenase WP_011433998.1, WP_103667557.1,  12 

75 proton extrusion protein PcxA 

WP_006453377.1, WP_006617319.1, 
WP_007307647.1, WP_011242865.1, 
WP_011432448.1, WP_012626494.1, 
WP_045870291.1, WP_103670381.1, 
WP_011364303.1 

172 

76 apocytochrome f 

WP_006457253.1, WP_006616507.1, 
WP_011242633.1, WP_011433227.1, 
WP_012626882.1, WP_035828769.1, 
WP_045874222.1, WP_103666938.1, 
WP_041434424.1 

187 

77 cytochrome b6 

ABD02590.1, WP_006456814.1, 
WP_006616443.1, WP_007305153.1, 
WP_011244081.1, WP_012627780.1, 
WP_045867444.1, WP_103668178.1, 
WP_011363493.1 

186 

78 translation elongation factor Ts 

WP_006456993.1, WP_006616759.1, 
WP_007310529.1, WP_011243889.1, 
WP_011433147.1, WP_012629598.1, 
WP_045869932.1, WP_103669737.1, 
WP_011364197.1 

199 

79 phosphoglycerate kinase 

WP_006456361.1, WP_006620004.1, 
WP_007304168.1, WP_011242745.1, 
WP_011433296.1, WP_012626442.1, 
WP_045868399.1, WP_103668613.1, 
WP_011365387.1 

196 

80 
phenylalanine--tRNA ligase subunit 
alpha 

WP_006454381.1, WP_006617501.1, 
WP_007306572.1, WP_011244339.1, 
WP_011432376.1, WP_012628689.1, 
WP_045871276.1, WP_103669581.1, 
WP_011363892.1 

201 

81 
polyribonucleotide 
nucleotidyltransferase 

WP_006457606.1, WP_006617470.1, 
WP_007304946.1, WP_011243976.1, 
WP_011433060.1, WP_012629626.1, 
WP_045872644.1, WP_103668870.1, 
WP_011363575.1 

198 

82 solanesyl diphosphate synthase 

ABD01445.1, WP_006454001.1, 
WP_006618860.1, WP_007304655.1, 
WP_011244051.1, WP_012630183.1, 
WP_045868130.1, WP_103670487.1, 
WP_011364113.1 

201 

83 peptide chain release factor 1 

WP_006456389.1, WP_006616840.1, 
WP_007306433.1, WP_011244204.1, 
WP_011433196.1, WP_012626487.1, 
WP_045870349.1, WP_103667850.1, 
WP_011363371.1 

202 

84 photosystem I core protein PsaA 

WP_006453725.1, WP_006619833.1, 
WP_011244354.1, WP_011431694.1, 
WP_012630019.1, WP_021829509.1, 
WP_045869806.1, WP_103667320.1, 
WP_011363355.1 

186 

85 photosystem I core protein PsaB 

WP_006455359.1, WP_006619832.1, 
WP_007307412.1, WP_011244355.1, 
WP_011431693.1, WP_012630018.1, 
WP_045869805.1, WP_103667404.1, 
WP_011363356.1 

185 

86 
photosystem I iron-sulfur center 
protein PsaC 

WP_006616272.1, WP_007303722.1, 
WP_009556083.1, WP_009628656.1, 

186 
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WP_011243298.1, WP_011432199.1, 
WP_012411495.1, WP_071776901.1, 
WP_006850103.1 

87 photosystem II q(b) protein 

WP_007307403.1, WP_008048687.1, 
WP_011243404.1, WP_011432036.1, 
WP_012626542.1, WP_038019432.1, 
WP_045867858.1, WP_103669222.1, 
WP_006850794.1 

180 

88 
photosystem II chlorophyll-binding 
protein CP47 

WP_006456908.1, WP_006619122.1, 
WP_007308556.1, WP_011243145.1, 
WP_011431948.1, WP_012626345.1, 
WP_045874842.1, WP_103669988.1, 
WP_011363478.1 

180 

89 
photosystem II 44 kDa subunit 
reaction center protein 

ABD01834.1, ACL42613.1, BAI90991.1, 
WP_006456494.1, WP_007308490.1, 
WP_011243184.1, WP_045869085.1, 
WP_103667289.1, WP_011364942.1 

181 

90 photosystem II D2 protein 

WP_006453491.1, WP_007310914.1, 
WP_011243185.1, WP_011432491.1, 
WP_011610961.1, WP_012625716.1, 
WP_045869084.1, WP_103667288.1, 
WP_006851499.1 

168 

91 cytochrome b559 subunit alpha 

WP_006455529.1, WP_006616833.1, 
WP_007308400.1, WP_011242685.1, 
WP_011433109.1, WP_012627666.1, 
WP_045872957.1, WP_103668122.1, 
WP_006850675.1 

184 

92 cytochrome c-550 

sp|Q31LM9.2|CY550_SYNE7, 
WP_006453422.1, WP_006616772.1, 
WP_007303804.1, WP_011434097.1, 
WP_012629235.1, WP_045871926.1, 
WP_103667183.1, WP_041435140.1 

179 

93 
photosystem II reaction center protein 
Psb28 

WP_006454606.1, WP_006620138.1, 
WP_007307711.1, WP_011244721.1, 
WP_012629868.1, WP_045873356.1, 
WP_062290862.1, WP_103668161.1, 
WP_011364173.1 

174 

94 CTP synthase 

BAD80330.1, WP_006457021.1, 
WP_006618167.1, WP_007308454.1, 
WP_011433092.1, WP_012626851.1, 
WP_045869145.1, WP_103666382.1, 
WP_011365520.1 

197 

95 
S-adenosylmethionine 
ribosyltransferase-isomerase QueA 

WP_006455373.1, WP_007306196.1, 
WP_011244065.1, WP_011433273.1, 
WP_012627229.1, WP_045868080.1, 
WP_081471270.1, WP_103667817.1, 
WP_011364957.1 

197 

96 
ribulose-bisphosphate carboxylase 
large subunit 

sp|Q2JIP3.1|RBL_SYNJB, WP_006456244.1, 
WP_006620100.1, WP_007306215.1, 
WP_011242444.1, WP_012628807.1, 
WP_045869249.1, WP_103666300.1, 
WP_011363747.1 

183 

97 LysR family transcriptional regulator 

WP_006455132.1, WP_007307046.1, 
WP_011244426.1, WP_011433865.1, 
WP_012627924.1, WP_014275211.1, 
WP_045869091.1, WP_103666845.1, 
WP_011365327.1 

198 
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98 recombinase RecA 

ABD02910.1, WP_006453615.1, 
WP_007308530.1, WP_011243477.1, 
WP_012627130.1, WP_014275106.1, 
WP_045869991.1, WP_103667989.1, 
WP_011363394.1 

199 

99 cytochrome c biogenesis protein 

WP_006619574.1, WP_007305221.1, 
WP_011243503.1, WP_011432273.1, 
WP_012627726.1, WP_038016115.1, 
WP_045871908.1, WP_103666964.1, 
WP_011365143.1 

188 

100 ribonuclease III 

WP_006455825.1, WP_006617296.1, 
WP_007306350.1, WP_011244751.1, 
WP_011432396.1, WP_012625883.1, 
WP_045873296.1, WP_103667255.1, 
WP_011363184.1 

198 

101 ribonuclease HII 

EKF05064.1, WP_006619960.1, 
WP_007303331.1, WP_011242973.1, 
WP_011433421.1, WP_012626644.1, 
WP_050765818.1, WP_103667716.1, 
WP_011363341.1 

195 

102 
DNA-directed RNA polymerase 
subunit alpha 

WP_006456731.1, WP_006618076.1, 
WP_007306427.1, WP_011244198.1, 
WP_011433190.1, WP_012626785.1, 
WP_045870354.1, WP_103669337.1, 
WP_011363374.1 

201 

103 
DNA-directed RNA polymerase 
subunit beta 

EDX85842.1, EKF05362.1, 
WP_007305477.1, WP_011244817.1, 
WP_011433999.1, WP_012625981.1, 
WP_035735857.1, WP_103667745.1, 
WP_011365016.1 

200 

104 
DNA-directed RNA polymerase 
subunit gamma 

WP_006456786.1, WP_006618615.1, 
WP_011244818.1, WP_011434000.1, 
WP_012625980.1, WP_021829684.1, 
WP_045868368.1, WP_055073624.1, 
WP_011365015.1 

201 

105 
DNA-directed RNA polymerase 
subunit beta' 

WP_006457492.1, WP_006618616.1, 
WP_007305478.1, WP_011244819.1, 
WP_011434001.1, WP_012625979.1, 
WP_045868369.1, WP_103667747.1, 
WP_011365014.1 

201 

106 30S ribosomal protein S2 

WP_006454632.1, WP_006616758.1, 
WP_007305240.1, WP_011243890.1, 
WP_011433146.1, WP_012629599.1, 
WP_045869931.1, WP_103669106.1, 
WP_006850376.1 

202 

107 30S ribosomal protein S3 

WP_006457533.1, WP_006618094.1, 
WP_007306453.1, WP_011244181.1, 
WP_011434158.1, WP_012626768.1, 
WP_045870368.1, WP_103667422.1, 
WP_011363386.1 

201 

108 30S ribosomal protein S4 

WP_006454078.1, WP_006618547.1, 
WP_007307083.1, WP_011244783.1, 
WP_011432724.1, WP_012626488.1, 
WP_045868307.1, WP_103670143.1, 
WP_011363781.1 

203 

109 30S ribosomal protein S5 
WP_006457474.1, WP_006618084.1, 
WP_007306420.1, WP_011244191.1, 
WP_011434168.1, WP_012626778.1, 

202 
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WP_045870359.1, WP_103667430.1, 
WP_011363379.1 

110 30S ribosomal protein S7 

WP_006455099.1, WP_006619093.1, 
WP_007304697.1, WP_011242966.1, 
WP_011432554.1, WP_012626195.1, 
WP_045868171.1, WP_094536346.1, 
WP_006849937.1 

200 

111 30S ribosomal protein S10 

EAW38339.1, WP_006454161.1, 
WP_007304701.1, WP_009625825.1, 
WP_010998474.1, WP_011242969.1, 
WP_011432557.1, WP_012626192.1, 
WP_011363346.1 

200 

112 30S ribosomal protein S11 

WP_006455253.1, WP_006618077.1, 
WP_007306426.1, WP_009628986.1, 
WP_010998331.1, WP_011244197.1, 
WP_011433189.1, WP_012626784.1, 
WP_006850182.1 

203 

113 30S ribosomal protein S12 

WP_006454669.1, WP_006619092.1, 
WP_007304696.1, WP_011242965.1, 
WP_011432553.1, WP_012626196.1, 
WP_045868172.1, WP_103668804.1, 
WP_006850614.1 

198 

114 30S ribosomal protein S13 

WP_006454555.1, WP_006618078.1, 
WP_007306425.1, WP_009628987.1, 
WP_011244196.1, WP_011433188.1, 
WP_012626783.1, WP_045870355.1, 
WP_011363375.1 

202 

115 30S ribosomal protein S17 

WP_006457043.1, WP_006618091.1, 
WP_007306456.1, WP_011244184.1, 
WP_011434161.1, WP_012626771.1, 
WP_045870365.1, WP_094530969.1, 
WP_006850241.1 

200 

116 30S ribosomal protein S19 

WP_006617591.1, WP_007306451.1, 
WP_011244179.1, WP_011434156.1, 
WP_012626766.1, WP_038015492.1, 
WP_045870370.1, WP_094530961.1, 
WP_006849645.1 

202 

117 
Holliday junction branch migration 
DNA helicase RuvB 

WP_006456459.1, WP_006617214.1, 
WP_007306863.1, WP_011243017.1, 
WP_011432089.1, WP_012627933.1, 
WP_045869564.1, WP_103669835.1, 
WP_011363153.1 

199 

118 preprotein translocase subunit SecA 

WP_006454888.1, WP_006618163.1, 
WP_007307199.1, WP_011243535.1, 
WP_011434014.1, WP_012629036.1, 
WP_045874608.1, WP_103666863.1, 
WP_011363120.1 

199 

119 preprotein translocase subunit SecY 

WP_006453956.1, WP_006618082.1, 
WP_007306422.1, WP_011244193.1, 
WP_011434170.1, WP_012626780.1, 
WP_045870357.1, WP_103667432.1, 
WP_011363377.1 

201 

120 seryl-tRNA synthetase 

EDX83862.1, WP_006618527.1, 
WP_007307509.1, WP_011243380.1, 
WP_011433389.1, WP_012629993.1, 
WP_045872726.1, WP_103669127.1, 
WP_011363578.1 

200 
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121 Fe-S cluster assembly protein SufB 

WP_006456920.1, WP_006617211.1, 
WP_007307555.1, WP_011244666.1, 
WP_011433021.1, WP_012628835.1, 
WP_096731977.1, WP_103670052.1, 
WP_011365214.1 

190 

122 Fe-S cluster assembly ATPase SufC 

WP_006456876.1, WP_006617210.1, 
WP_007307556.1, WP_011244665.1, 
WP_011433019.1, WP_012628829.1, 
WP_045874401.1, WP_103670048.1, 
WP_011365213.1 

192 

123 
twin-arginine translocase subunit 
TatC 

WP_006453992.1, WP_006618809.1, 
WP_007305126.1, WP_011242348.1, 
WP_011432564.1, WP_012626893.1, 
WP_045868350.1, WP_103669050.1, 
WP_041435453.1 

193 

124 
tRNA guanosine(34) transglycosylase 
Tgt 

BAD79253.1, sp|B8HX02.1|TGT_CYAP4, 
WP_006453859.1, WP_006617291.1, 
WP_007303303.1, WP_011432162.1, 
WP_045871624.1, WP_103669793.1, 
WP_011363268.1 

202 

125 threonine--tRNA ligase 
WP_006455201.1, WP_011378530.1, 
WP_011433106.1, WP_012625881.1, 
WP_045869033.1, WP_006616117.1,  

149 

125b threonine--tRNA ligase 
WP_103669997.1, WP_007303255.1, 
WP_006619748.1, WP_011364016.1,  

63 

126 triose-phosphate isomerase 

BAD78480.1, EKE99337.1, 
WP_006455478.1, WP_006619628.1, 
WP_007307825.1, WP_011433738.1, 
WP_041236346.1, WP_103668805.1, 
WP_041435720.1 

199 

127 
tRNA (guanosine(37)-N1)-
methyltransferase TrmD 

CCQ67542.1, WP_006618918.1, 
WP_011244173.1, WP_011432845.1, 
WP_012630197.1, WP_081583893.1, 
WP_083785053.1, WP_103670672.1, 
WP_011363882.1 

199 

128 tryptophan--tRNA ligase 

ABB57338.1, EAM52437.1, 
WP_006454782.1, WP_006620196.1, 
WP_011433794.1, WP_012629601.1, 
WP_045870394.1, WP_103667048.1, 
WP_011364019.1 

189 

129 
tRNA pseudouridine(38-40) synthase 
TruA 

WP_006456253.1, WP_006618074.1, 
WP_007306429.1, WP_011244200.1, 
WP_011433192.1, WP_012626787.1, 
WP_045870352.1, WP_103669335.1, 
WP_011363373.1 

200 

130 elongation factor Tu 

WP_006454131.1, WP_006619095.1, 
WP_007304700.1, WP_011242968.1, 
WP_011432556.1, WP_012626193.1, 
WP_045868169.1, WP_103668802.1, 
WP_006851621.1 

198 

131 isoprenyl transferase 

EAM51176.1, WP_006456801.1, 
WP_006618424.1, WP_011243561.1, 
WP_011433250.1, WP_012630047.1, 
WP_045874021.1, WP_103667673.1, 
WP_011364591.1 

202 

132 excinuclease ABC subunit UvrA 
EDX85475.1, WP_006616468.1, 
WP_007306346.1, WP_011243004.1, 
WP_011432824.1, WP_012626499.1, 

197 
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WP_045868377.1, WP_103667203.1, 
WP_011365610.1 

133 photosystem I assembly protein Ycf3 

WP_006617171.1, WP_007307466.1, 
WP_011244091.1, WP_011433796.1, 
WP_012626044.1, WP_038016069.1, 
WP_045871815.1, WP_103670702.1, 
WP_011365311.1 

181 

134 DNA-binding response regulator 

WP_006453376.1, WP_006619557.1, 
WP_007304103.1, WP_011434119.1, 
WP_012626596.1, WP_041676892.1, 
WP_045868271.1, WP_103668290.1, 
WP_041435238.1 

202 

135 
NAD-dependent 
epimerase/dehydratase family protein 

WP_006457559.1, WP_006618539.1, 
WP_007308586.1, WP_011243991.1, 
WP_011434413.1, WP_012630244.1, 
WP_045867911.1, WP_103668794.1, 
WP_011364935.1 

196 

136 cytochrome b6-f complex subunit IV 

WP_006454563.1, WP_006616442.1, 
WP_007305154.1, WP_011244080.1, 
WP_011433236.1, WP_012627781.1, 
WP_045867443.1, WP_094528536.1, 
WP_006851144.1 

186 

137 large subunit ribosomal RNA gene 

AADV02000003, ABRV01000019, 
ACSK03000246, AGCR01000030, 
ALWB01000102, AP008231, CP000110, 
CP000240, CP001344 

194 

138 small subunit ribosomal RNA gene 

AADV02000003, ABRV01000019, 
ACSK03000246, AGCR01000030, 
ALWB01000102, AY172802, CP000240, 
CP001344, HF678511 

194 

 

Table S4. Fossil calibrations. The table contains a list of the fossil calibrations used in the molecular clock analysis. Each 

calibration point is identified as the last common ancestor of two taxa. See [73] for more details about these calibrations. 

Calibration Defining taxa 
Min age 
(Mya) 

Max age 
(Mya) 

Filamentous 
Cyanobacteria 

Pseudanabaena biceps 
PCC 7429 

Leptolyngbya sp. PCC 
7376 

1900 - 

Nostocales Fischerella sp. JSC11 Calothrix sp. 3363 1600 1888 

Pleurocapsales Pleurocapsa sp. PCC 7323 
Pleurocapsa sp. PCC 
7319 

1700 1888 

Richelia intracellularsis 
Richelia intracellularis 
RC01 

Richelia intracellularis 
HM01 

110 - 

Ca. 
Atelocyanobacterium 
thalassa 

Ca. Atelocyanobacterium 
thalassa UCYN-A 

Ca. Atelocyanobacterium 
thalassa UCYN-A2 

91 - 
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Table S5. Salt tolerance for cyanobacterial strains. The table contains the environment for the cyanobacterial strains analysed in this study, the corresponding salt tolerance state, 
and the reference for the environment. Environment key: M: marine; F: freshwater; T: terrestrial; S: symbiont; H: hot springs; G: cold geyser; D: desert; A: aerophyte. Salt tolerance 
key: H: high salt tolerance; L: low salt tolerance. 

Strain Environment Salt tolerance Reference 

Trichodesmium thiebautii H9-4 M H North Pacific Ocean (personal communication) 

Richelia intracellularis HM01 MS H http://www.algaebase.org/search/species/detail/?species_id=64928 

Synechococcus spongiarum SH4 MS H http://www.algaebase.org/search/species/detail/?species_id=131387 

Prochloron didemni P3 Solomon MS H http://www.pnas.org/cgi/doi/10.1073/pnas.0501424102 

Ca. Atelocyanobacterium thalassa UCYNA MS H http://science.sciencemag.org/content/337/6101/1546 

Ca. Atelocyanobacterium thalassa UCYNA-2 MS H http://science.sciencemag.org/content/337/6101/1546 

Neosynechococcus sphagnicola CAUP A 1101 F L http://www.algaebase.org/search/species/detail/?species_id=150975 

Hydrocoleum sp. CS-953 M H https://www.ncbi.nlm.nih.gov/nuccore/NZ_LGSU00000000.1 

cyanobacterium endosymbiont of Epithemia turgida FS L https://www.pnas.org/content/111/31/11407.long 

Limnoraphis robusta CS-951 F L http://www.algaebase.org/search/species/detail/?species_id=148313 

Gloeobacter kilaueensis JS1 T L http://www.algaebase.org/search/species/detail/?species_id=153246 

Richelia intracellularis RC01 MS H http://www.algaebase.org/search/species/detail/?species_id=64928 

Chamaesiphon polymorphus CCALA 037 F L http://www.algaebase.org/search/species/detail/?species_id=32501 

Gloeobacter violaceus PCC7421 F/T L http://www.algaebase.org/search/species/detail/?species_id=53027 

Synechococcus sp. Tous F L https://www.frontiersin.org/articles/10.3389/fmicb.2017.01151/full 

Synechococcus lividus PCC 6715 F L http://www.algaebase.org/search/species/detail/?species_id=53376 

Gloeomargarita lithophora Alchichica-D10 F L https://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001679 

Richelia intracellularis HH01 MS H http://www.algaebase.org/search/species/detail/?species_id=64928 

Nostoc piscinale CENA21 F L http://www.algaebase.org/search/species/detail/?species_id=32580 

Synechococcus sp. 60AY4M2 H L https://www.ncbi.nlm.nih.gov/nuccore/1275742541 

Synechococcus sp. JA-2-3-B'a(2-13) H L https://www.nature.com/articles/ismej200746 

Halothece sp. KZN 001 M H https://www.sciencedirect.com/science/article/pii/S0944501317309813 

Cyanobacteria bacterium QS_8_64_29 D H https://www.frontiersin.org/articles/10.3389/fmicb.2017.01435/full 

Geitlerinema sp. PCC 7105 M H https://www.pnas.org/content/110/3/1053.long 

Prochloron didemni P4 Papua New Guinea MS H http://www.pnas.org/cgi/doi/10.1073/pnas.0501424102 

Raphidiopsis brookii D9 F L http://www.algaebase.org/search/species/detail/?species_id=136827 

Synechococcus sp. PCC7336 M H https://www.pnas.org/content/110/3/1053.long 

Cyanothece sp. BG0011 M H https://www.ncbi.nlm.nih.gov/nuccore/1378846956 

Leptolyngbya antarctica F L http://www.algaebase.org/search/species/detail/?species_id=66768 

http://www.algaebase.org/search/species/detail/?species_id=64928
http://www.algaebase.org/search/species/detail/?species_id=131387
http://www.pnas.org/cgi/doi/10.1073/pnas.0501424102
http://science.sciencemag.org/content/337/6101/1546
http://science.sciencemag.org/content/337/6101/1546
http://www.algaebase.org/search/species/detail/?species_id=150975
https://www.ncbi.nlm.nih.gov/nuccore/NZ_LGSU00000000.1
https://www.pnas.org/content/111/31/11407.long
http://www.algaebase.org/search/species/detail/?species_id=148313
http://www.algaebase.org/search/species/detail/?species_id=153246
http://www.algaebase.org/search/species/detail/?species_id=64928
http://www.algaebase.org/search/species/detail/?species_id=32501
http://www.algaebase.org/search/species/detail/?species_id=53027
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01151/full
http://www.algaebase.org/search/species/detail/?species_id=53376
https://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001679
http://www.algaebase.org/search/species/detail/?species_id=64928
http://www.algaebase.org/search/species/detail/?species_id=32580
https://www.ncbi.nlm.nih.gov/nuccore/1275742541
https://www.nature.com/articles/ismej200746
https://www.sciencedirect.com/science/article/pii/S0944501317309813
https://www.frontiersin.org/articles/10.3389/fmicb.2017.01435/full
https://www.pnas.org/content/110/3/1053.long
http://www.pnas.org/cgi/doi/10.1073/pnas.0501424102
http://www.algaebase.org/search/species/detail/?species_id=136827
https://www.pnas.org/content/110/3/1053.long
https://www.ncbi.nlm.nih.gov/nuccore/1378846956
http://www.algaebase.org/search/species/detail/?species_id=66768
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Prochlorococcus marinus MIT 9202 M H http://www.algaebase.org/search/species/detail/?species_id=46952 

Tychonema bourrellyi FEM_GT703 F L http://www.algaebase.org/search/species/detail/?species_id=56399 

Prochlorococcus marinus MIT 9515 M H http://www.algaebase.org/search/species/detail/?species_id=46952 

Oscillatoriales cyanobacterium CG2_30_44_21 G L https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.13362 

Prochlorococcus marinus MIT 9301 M H http://www.algaebase.org/search/species/detail/?species_id=46952 

Prochlorococcus marinus NATL1A M H http://www.algaebase.org/search/species/detail/?species_id=46952 

Prochlorococcus sp. MIT 0801 M H https://www.nature.com/articles/sdata201434 

Leptolyngbya sp. O-77 H L https://www.ncbi.nlm.nih.gov/nuccore/NZ_AP017367.1 

Prochlorococcus sp. RS04 M H https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP018346.1 

Prochlorococcus marinus CCMP 1375 M H http://www.algaebase.org/search/species/detail/?species_id=46952 

Pseudanabaena frigida F L http://www.algaebase.org/search/species/detail/?species_id=72524 

Pseudanabaena sp. PCC 7367 M H https://www.pnas.org/content/110/3/1053.long 

Synechococcus sp. PCC 7502 F L https://www.pnas.org/content/110/3/1053.long 

Synechococcus sp. CB0205 M H https://www.ncbi.nlm.nih.gov/nuccore/NZ_ADXM00000000.1 

Tolypothrix bouteillei VB521301 T L http://www.algaebase.org/search/species/detail/?species_id=30156 

Crocosphaera watsonii WH 8501 M H http://www.algaebase.org/search/species/detail/?species_id=138663 

Aliterella atlantica CENA595 M H http://www.algaebase.org/search/species/detail/?species_id=165293 

Pseudanabaena biceps PCC7429 F L http://www.algaebase.org/search/species/detail/?species_id=141743 

Halomicronema hongdechloris C2206 M H https://www.frontiersin.org/articles/10.3389/fpls.2014.00067/full 

Nodularia spumigena CCY9414 M H http://www.algaebase.org/search/species/detail/?species_id=24478 

Thermosynechococcus elongatus BP1 H L https://www.ncbi.nlm.nih.gov/pubmed/12240834 

Cyanobacterium stanieri HL-69 F L http://www.algaebase.org/search/species/detail/?species_id=42084 

Limnothrix sp. PR1529 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_LIRO00000000.1 

Cyanobium sp. NIES-981 M H https://mra.asm.org/content/4/4/e00736-16 

Leptolyngbya sp. PCC 7376 M H https://www.pnas.org/content/110/3/1053.long 

Pseudanabaena sp. BC1403 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_PDDM00000000.1 

Acaryochloris marina MBIC11017 M H http://www.algaebase.org/search/species/detail/?species_id=104086 

Pleurocapsa sp. CCALA 161 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_PVWF00000000.1 

Vulcanococcus limneticus LL F L https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4648-3 

Geitlerinema sp. PCC 9228 M H https://www.frontiersin.org/articles/10.3389/fmicb.2016.01546/full 

Leptolyngbya sp. hensonii F L https://www.nature.com/articles/ismej2017193 

Synechococcus sp. PCC 6312 F L https://www.pnas.org/content/110/3/1053.long 

Prochlorococcus marinus MIT 9303 M H http://www.algaebase.org/search/species/detail/?species_id=46952 

http://www.algaebase.org/search/species/detail/?species_id=46952
http://www.algaebase.org/search/species/detail/?species_id=56399
http://www.algaebase.org/search/species/detail/?species_id=46952
https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.13362
http://www.algaebase.org/search/species/detail/?species_id=46952
http://www.algaebase.org/search/species/detail/?species_id=46952
https://www.nature.com/articles/sdata201434
https://www.ncbi.nlm.nih.gov/nuccore/NZ_AP017367.1
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP018346.1
http://www.algaebase.org/search/species/detail/?species_id=46952
http://www.algaebase.org/search/species/detail/?species_id=72524
https://www.pnas.org/content/110/3/1053.long
https://www.pnas.org/content/110/3/1053.long
https://www.ncbi.nlm.nih.gov/nuccore/NZ_ADXM00000000.1
http://www.algaebase.org/search/species/detail/?species_id=30156
http://www.algaebase.org/search/species/detail/?species_id=138663
http://www.algaebase.org/search/species/detail/?species_id=165293
http://www.algaebase.org/search/species/detail/?species_id=141743
https://www.frontiersin.org/articles/10.3389/fpls.2014.00067/full
http://www.algaebase.org/search/species/detail/?species_id=24478
https://www.ncbi.nlm.nih.gov/pubmed/12240834
http://www.algaebase.org/search/species/detail/?species_id=42084
https://www.ncbi.nlm.nih.gov/nuccore/NZ_LIRO00000000.1
https://mra.asm.org/content/4/4/e00736-16
https://www.pnas.org/content/110/3/1053.long
https://www.ncbi.nlm.nih.gov/nuccore/NZ_PDDM00000000.1
http://www.algaebase.org/search/species/detail/?species_id=104086
https://www.ncbi.nlm.nih.gov/nuccore/NZ_PVWF00000000.1
https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-4648-3
https://www.frontiersin.org/articles/10.3389/fmicb.2016.01546/full
https://www.nature.com/articles/ismej2017193
https://www.pnas.org/content/110/3/1053.long
http://www.algaebase.org/search/species/detail/?species_id=46952
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Leptolyngbya foveolarum F/T L http://www.algaebase.org/search/species/detail/?species_id=30180 

Synechococcus sp. PCC 7003 M H https://link.springer.com/article/10.1007/PL00006517 

Synechococcus sp. PCC 73109 M H https://link.springer.com/article/10.1007/PL00006517 

Snowella sp. ULC335bin1 F L https://www.ncbi.nlm.nih.gov/nuccore/QBMS00000000.1 

Alkalinema sp. CACIAM 70d F L https://mra.asm.org/content/5/28/e00635-17 

Limnothrix sp. CACIAM 69d F L https://www.ncbi.nlm.nih.gov/nuccore/MKGP00000000.2 

Prochlorothrix hollandica PCC 9006 F L http://www.algaebase.org/search/species/detail/?species_id=62124 

Synechococcus sp. 8F6 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_NQKZ00000000.1 

Synechococcus sp. PCC 7335 M H https://www.pnas.org/content/110/3/1053.long 

Cyanobacterium stanieri PCC 7202 M H https://www.pnas.org/content/110/3/1053.long 

Geminocystis herdmanii PCC 6308 F L https://www.pnas.org/content/110/3/1053.long 

Gloeocapsa sp. PCC 73106 F L https://www.pnas.org/content/110/3/1053.long 

Synechococcus elongatus PCC 6301 F L https://www.pnas.org/content/110/3/1053.long 

Synechococcus sp. NIES-970 M H https://www.ncbi.nlm.nih.gov/nuccore/NZ_AP017959.1 

Synechococcus sp. PCC 7002 M H https://www.pnas.org/content/110/3/1053.long 

Synechococcus sp. RCC 307 M H http://proportal.mit.edu/genome/id=28/ 

Geminocystis sp. NIES-3708 F L https://mra.asm.org/content/3/3/e00357-15 

Leptolyngbya sp. PCC 6406 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_ALVV00000000.2 

Synechococcus sp. MIT S9509 M H https://www.ncbi.nlm.nih.gov/nuccore/NZ_LVHV00000000.1 

Calothrix rhizosoleniae SC01 M H http://www.algaebase.org/search/species/detail/?species_id=65197 

Moorea bouillonii PNG5-198 M H http://www.algaebase.org/search/species/detail/?species_id=147301 

Synechococcus sp. 1G10 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_NQKW00000000.1 

Synechococcus sp. WH5701 M H https://aem.asm.org/content/69/5/2430.long 

Trichodesmium erythraeum IMS101 M H http://www.algaebase.org/search/species/detail/?species_id=24714 

Cyanobacterium aponinum PCC 10605 M H https://www.pnas.org/content/110/3/1053.long 

Synechocystis sp. PCC 6803 M H https://www.pnas.org/content/110/3/1053.long 

Leptolyngbya sp. Heron Island J 1 M H https://www.ncbi.nlm.nih.gov/nuccore/NZ_AWNH00000000.1 

Planktothrix mougeotii NIVA-CYA 405 M H http://www.algaebase.org/search/species/detail/?species_id=35665 

Spirulina major PCC 6313 M H http://www.algaebase.org/search/species/detail/?species_id=24748 

Synechococcus sp. CC9616 genomic M H http://aem.asm.org/cgi/pmidlookup?view=long&pmid=10583972 

Acaryochloris sp. RCC 1774 M H https://www.nature.com/articles/s41598-018-27542-7 

Cylindrospermopsis raciborskii CS505 F L http://www.algaebase.org/search/species/detail/?species_id=30112 

Dactylococcopsis salina PCC 8305 M H https://www.pnas.org/content/110/3/1053.long 

http://www.algaebase.org/search/species/detail/?species_id=30180
https://link.springer.com/article/10.1007/PL00006517
https://link.springer.com/article/10.1007/PL00006517
https://www.ncbi.nlm.nih.gov/nuccore/QBMS00000000.1
https://mra.asm.org/content/5/28/e00635-17
https://www.ncbi.nlm.nih.gov/nuccore/MKGP00000000.2
http://www.algaebase.org/search/species/detail/?species_id=62124
https://www.ncbi.nlm.nih.gov/nuccore/NZ_NQKZ00000000.1
https://www.pnas.org/content/110/3/1053.long
https://www.pnas.org/content/110/3/1053.long
https://www.pnas.org/content/110/3/1053.long
https://www.pnas.org/content/110/3/1053.long
https://www.pnas.org/content/110/3/1053.long
https://www.ncbi.nlm.nih.gov/nuccore/NZ_AP017959.1
https://www.pnas.org/content/110/3/1053.long
http://proportal.mit.edu/genome/id=28/
https://mra.asm.org/content/3/3/e00357-15
https://www.ncbi.nlm.nih.gov/nuccore/NZ_ALVV00000000.2
https://www.ncbi.nlm.nih.gov/nuccore/NZ_LVHV00000000.1
http://www.algaebase.org/search/species/detail/?species_id=65197
http://www.algaebase.org/search/species/detail/?species_id=147301
https://www.ncbi.nlm.nih.gov/nuccore/NZ_NQKW00000000.1
https://aem.asm.org/content/69/5/2430.long
http://www.algaebase.org/search/species/detail/?species_id=24714
https://www.pnas.org/content/110/3/1053.long
https://www.pnas.org/content/110/3/1053.long
https://www.ncbi.nlm.nih.gov/nuccore/NZ_AWNH00000000.1
http://www.algaebase.org/search/species/detail/?species_id=35665
http://www.algaebase.org/search/species/detail/?species_id=24748
http://aem.asm.org/cgi/pmidlookup?view=long&pmid=10583972
https://www.nature.com/articles/s41598-018-27542-7
http://www.algaebase.org/search/species/detail/?species_id=30112
https://www.pnas.org/content/110/3/1053.long
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Microcoleus chthonoplastes PCC 7420 M H https://www.pnas.org/content/110/3/1053.long 

Synechococcus sp. MIT S9508 M H https://www.ncbi.nlm.nih.gov/nuccore/NZ_LVHU00000000.1 

Synechococcus sp. MW101C3 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_NQKX00000000.1 

Synechococcus sp. WH 8020 M H https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP011941.1 

Chondrocystis sp. NIES-4102 F/T L http://mcc.nies.go.jp/strainList.do?strainId=4100&strainNumberEn=NIES-4102 

Cyanobium gracile PCC6307 F L https://www.pnas.org/content/110/3/1053.long 

Cyanothece sp. CCY0110 M H https://www.sciencedirect.com/science/article/pii/S0144861712010983 

Oscillatoria sp. PCC 10802 F L https://www.pnas.org/content/110/3/1053.long 

Planktothrix tepida PCC 9214 F L https://www.sciencedirect.com/science/article/pii/S0723202015000259 

Pleurocapsa sp. PCC 7319 M H https://www.pnas.org/content/110/3/1053.long 

Synechococcus sp. CC9902 M H http://roscoff-culture-collection.org/rcc-strain-details/2673 

Cyanothece sp. PCC 7425 F L https://www.pnas.org/content/110/3/1053.long 

filamentous cyanobacterium ESFC-1 M H https://mra.asm.org/content/1/4/e00527-13 

Rubidibacter lacunae KORDI 51-2 M H http://www.algaebase.org/search/species/detail/?species_id=136442 

Arthrospira platensis Paraca M H https://mra.asm.org/content/2/4/e00751-14 

Nostoc sp. Peltigera membranacea cyanobiont 213 TS L https://www.ncbi.nlm.nih.gov/nuccore/NZ_NOLI00000000.1 

Synechococcus sp. RS9916 M H http://www.roscoff-culture-collection.org/rcc-strain-details/555 

Synechococcus sp. WH7805 M H https://aem.asm.org/content/65/12/5247.long 

Leptolyngbya sp. PCC 7375 M H https://www.pnas.org/content/110/3/1053.long 

Mastigocoleus testarum BC008 M H http://www.algaebase.org/search/species/detail/?species_id=23807 

Nostoc azollae 0708 FS L https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011486 

Phormidium sp. HE10JO M H https://www.sciencedirect.com/science/article/pii/S1359511317302209 

Xenococcus sp. PCC7305 M H https://www.pnas.org/content/110/3/1053.long 

Dolichospermum circinale AWQC310F F L http://www.algaebase.org/search/species/detail/?species_id=140946 

Leptolyngbya ohadii IS1 D L https://www.sciencedirect.com/science/article/pii/S0005272816300263 

Oscillatoriales cyanobacterium CG2_30_40_61 H L https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.13362 

Synechococcus sp. CC9605 M H http://roscoff-culture-collection.org/rcc-strain-details/753 

Scytonema tolypothrichoides VB-61278 F/T L http://www.algaebase.org/search/species/detail/?species_id=30154 

Synechococcus sp. WH 8103 M H https://aem.asm.org/content/65/12/5247.long 

Oscillatoria acuminata PCC 6304 F L http://www.algaebase.org/search/species/detail/?species_id=61547 

Phormidesmis priestleyi BC1401 M/T H http://www.algaebase.org/search/species/detail/?species_id=150928 

Spirulina subsalsa PCC 9445 M H http://www.algaebase.org/search/species/detail/?species_id=23781 

Stanieria cyanosphaera PCC 7437 F L http://www.algaebase.org/search/species/detail/?species_id=54677 

https://www.pnas.org/content/110/3/1053.long
https://www.ncbi.nlm.nih.gov/nuccore/NZ_LVHU00000000.1
https://www.ncbi.nlm.nih.gov/nuccore/NZ_NQKX00000000.1
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP011941.1
http://mcc.nies.go.jp/strainList.do?strainId=4100&strainNumberEn=NIES-4102
https://www.pnas.org/content/110/3/1053.long
https://www.sciencedirect.com/science/article/pii/S0144861712010983
https://www.pnas.org/content/110/3/1053.long
https://www.sciencedirect.com/science/article/pii/S0723202015000259
https://www.pnas.org/content/110/3/1053.long
http://roscoff-culture-collection.org/rcc-strain-details/2673
https://www.pnas.org/content/110/3/1053.long
https://mra.asm.org/content/1/4/e00527-13
http://www.algaebase.org/search/species/detail/?species_id=136442
https://mra.asm.org/content/2/4/e00751-14
https://www.ncbi.nlm.nih.gov/nuccore/NZ_NOLI00000000.1
http://www.roscoff-culture-collection.org/rcc-strain-details/555
https://aem.asm.org/content/65/12/5247.long
https://www.pnas.org/content/110/3/1053.long
http://www.algaebase.org/search/species/detail/?species_id=23807
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011486
https://www.sciencedirect.com/science/article/pii/S1359511317302209
https://www.pnas.org/content/110/3/1053.long
http://www.algaebase.org/search/species/detail/?species_id=140946
https://www.sciencedirect.com/science/article/pii/S0005272816300263
https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.13362
http://roscoff-culture-collection.org/rcc-strain-details/753
http://www.algaebase.org/search/species/detail/?species_id=30154
https://aem.asm.org/content/65/12/5247.long
http://www.algaebase.org/search/species/detail/?species_id=61547
http://www.algaebase.org/search/species/detail/?species_id=150928
http://www.algaebase.org/search/species/detail/?species_id=23781
http://www.algaebase.org/search/species/detail/?species_id=54677
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Planktothricoides sp. SR001 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_LIUQ00000000.1 

Roseofilum reptotaenium AO1-A M H http://www.algaebase.org/search/species/detail/?species_id=143806 

Kamptonema formosum PCC 6407 F L http://www.algaebase.org/search/species/detail/?species_id=150472 

Leptolyngbya boryana PCC 6306 F/T L http://www.algaebase.org/search/species/detail/?species_id=35693 

Calothrix sp. NIES-3974 H L http://mcc.nies.go.jp/strainList.do?strainId=3972 

Cyanothece sp. PCC 7424 F L https://www.pnas.org/content/110/3/1053.long 

Fischerella muscicola PCC 73103 F/T L http://www.algaebase.org/search/species/detail/?species_id=30365 

Fischerella sp. PCC 9339 F L https://utex.org/products/utex-lb-1829 

Chroococcales cyanobacterium IPPAS B-1203 H L https://mra.asm.org/content/6/5/e01548-17 

Cyanothece sp. PCC7822 F L https://www.pnas.org/content/110/3/1053.long 

Halothece sp. PCC7418 M H https://www.pnas.org/content/110/3/1053.long 

Hassallia byssoidea VB512170 F/T L http://www.algaebase.org/search/species/detail/?species_id=35706 

Lyngbya aestuarii BL J M H https://www.frontiersin.org/articles/10.3389/fmicb.2013.00363/full 

Calothrix sp. NIES-4101 F L http://mcc.nies.go.jp/strainList.do?strainId=4099 

Crinalium epipsammum PCC 9333 F/T L http://www.algaebase.org/search/species/detail/?species_id=32516 

Hydrococcus rivularis NIES-593 F L http://www.algaebase.org/search/species/detail/?species_id=32516 

Scytonema hofmanni UTEX 2349 F/T L http://www.algaebase.org/search/species/detail/?species_id=24961 

Anabaena sp. PCC 7108 M H https://www.ncbi.nlm.nih.gov/nuccore/NZ_AJWF00000000.1 

Calothrix parasitica NIES-267 M H http://www.algaebase.org/search/species/detail/?species_id=24933 

Fischerella sp. NIES-4106 F/T L http://mcc.nies.go.jp/strainList.do?strainId=4104 

Gloeocapsa sp. PCC7428 M H https://www.pnas.org/content/110/3/1053.long 

Oscillatoriales cyanobacterium JSC-12 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_CM001633.1 

Synechocystis sp. PCC 7509 F L https://www.pnas.org/content/110/3/1053.long 

Tolypothrix sp. PCC 7601 F L https://mra.asm.org/content/3/3/e00355-15 

Anabaena sp. 90 F L https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-13-613 

Chlorogloeopsis fritschii PCC 6912 F/T L http://www.algaebase.org/search/species/detail/?species_id=65383 

Chroococcidiopsis thermalis PCC 7203 F L https://www.pnas.org/content/110/3/1053.long 

Leptolyngbya sp. NIES-3755 F/T L https://mra.asm.org/content/4/2/e00090-16 

Nostoc flagelliforme CCNUN1 D L http://www.algaebase.org/search/species/detail/?species_id=63120 

Scytonema hofmannii PCC 7110 F/T L http://www.algaebase.org/search/species/detail/?species_id=24961 

Scytonema sp. NIES-4073 F/T L https://mcc.nies.go.jp/strainList.do?strainId=4071 

Calothrix sp. NIES-4105 F/T L http://mcc.nies.go.jp/strainList.do?strainId=4103 

Geitlerinema sp. PCC 7407 F L https://www.pnas.org/content/110/3/1053.long 

https://www.ncbi.nlm.nih.gov/nuccore/NZ_LIUQ00000000.1
http://www.algaebase.org/search/species/detail/?species_id=143806
http://www.algaebase.org/search/species/detail/?species_id=150472
http://www.algaebase.org/search/species/detail/?species_id=35693
http://mcc.nies.go.jp/strainList.do?strainId=3972
https://www.pnas.org/content/110/3/1053.long
http://www.algaebase.org/search/species/detail/?species_id=30365
https://utex.org/products/utex-lb-1829
https://mra.asm.org/content/6/5/e01548-17
https://www.pnas.org/content/110/3/1053.long
https://www.pnas.org/content/110/3/1053.long
http://www.algaebase.org/search/species/detail/?species_id=35706
https://www.frontiersin.org/articles/10.3389/fmicb.2013.00363/full
http://mcc.nies.go.jp/strainList.do?strainId=4099
http://www.algaebase.org/search/species/detail/?species_id=32516
http://www.algaebase.org/search/species/detail/?species_id=32516
http://www.algaebase.org/search/species/detail/?species_id=24961
https://www.ncbi.nlm.nih.gov/nuccore/NZ_AJWF00000000.1
http://www.algaebase.org/search/species/detail/?species_id=24933
http://mcc.nies.go.jp/strainList.do?strainId=4104
https://www.pnas.org/content/110/3/1053.long
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CM001633.1
https://www.pnas.org/content/110/3/1053.long
https://mra.asm.org/content/3/3/e00355-15
https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-13-613
http://www.algaebase.org/search/species/detail/?species_id=65383
https://www.pnas.org/content/110/3/1053.long
https://mra.asm.org/content/4/2/e00090-16
http://www.algaebase.org/search/species/detail/?species_id=63120
http://www.algaebase.org/search/species/detail/?species_id=24961
https://mcc.nies.go.jp/strainList.do?strainId=4071
http://mcc.nies.go.jp/strainList.do?strainId=4103
https://www.pnas.org/content/110/3/1053.long
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Hapalosiphon sp. MRB220 F L https://standardsingenomics.biomedcentral.com/articles/10.1186/s40793-016-0175-5 

Pleurocapsa sp. PCC 7327 F L https://www.pnas.org/content/110/3/1053.long 

Sphaerospermopsis kisseleviana NIES-73 F L http://www.algaebase.org/search/species/detail/?species_id=138388 

Calothrix sp. 3363 F L https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP011382.1 

Calothrix sp. NIES-2100 F L http://www.algaebase.org/search/species/detail/?species_id=65199 

Cyanothece sp. PCC 8802 F L https://www.ncbi.nlm.nih.gov/nuccore/NC_013161.1 

Fischerella sp. PCC 9605 D L https://www.pnas.org/content/110/3/1053.long 

Nostoc punctiforme PCC 73102 F L https://www.pnas.org/content/110/3/1053.long 

Nostoc sp. KVJ20 FS L https://www.ncbi.nlm.nih.gov/nuccore/NZ_LSSA00000000.1 

Oscillatoria nigro-viridis PCC 7112 M H http://www.algaebase.org/search/species/detail/?species_id=24806 

Tolypothrix tenuis PCC 7101 F L http://www.algaebase.org/search/species/detail/?species_id=30161 

Desertifilum sp. IPPAS B-1220 F L https://academic.oup.com/femsle/article/364/4/fnx027/2959452 

Fischerella sp. JSC11 F/T L http://www.algaebase.org/search/species/detail/?species_id=64742 

Nostoc calcicola FACHB-389 F/T L https://pdfs.semanticscholar.org/01d0/e88ac3761787e0932b37cbd4fd0380c661ca.pdf 

Tolypothrix campylonemoides VB511288 F/A L http://www.algaebase.org/search/species/detail/?species_id=30157 

Calothrix sp. PCC 7507 F L https://www.ncbi.nlm.nih.gov/nuccore/NC_019682.1 

Cylindrospermum stagnale PCC7417 F/T L http://www.algaebase.org/search/species/detail/?species_id=30122 

Dolichospermum compactum NIES-806 F L http://www.algaebase.org/search/species/detail/?species_id=140947 

Microcystis aeruginosa NIES843 M H http://www.algaebase.org/search/species/detail/?species_id=30050&sk=0&from=results 

Nostoc sp. NIES-4103 F L http://mcc.nies.go.jp/strainList.do?strainId=4101&strainNumberEn=NIES-4103 

Nostoc sp. PCC7120 F L https://academic.oup.com/dnaresearch/article/8/5/205/418978 

Nostoc sp. T09 TS L https://www.ncbi.nlm.nih.gov/nuccore/NZ_MTAV00000000.1 

Anabaenopsis circularis NIES-21 F L http://www.algaebase.org/search/species/detail/?species_id=59276 

Fischerella muscicola PCC 7414 F/T L http://www.algaebase.org/search/species/detail/?species_id=30365 

Nodularia sp. NIES-3585 M H http://mcc.nies.go.jp/strainList.do?strainId=3583 

Nostoc sp. PCC 7524 F/H L https://www.ncbi.nlm.nih.gov/nuccore/NC_019684.1 

Chrysosporum ovalisporum M H http://www.algaebase.org/search/species/detail/?species_id=144890 

Microcoleus sp. PCC 7113 F L https://www.pnas.org/content/110/3/1053.long 

https://standardsingenomics.biomedcentral.com/articles/10.1186/s40793-016-0175-5
https://www.pnas.org/content/110/3/1053.long
http://www.algaebase.org/search/species/detail/?species_id=138388
https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP011382.1
http://www.algaebase.org/search/species/detail/?species_id=65199
https://www.ncbi.nlm.nih.gov/nuccore/NC_013161.1
https://www.pnas.org/content/110/3/1053.long
https://www.pnas.org/content/110/3/1053.long
https://www.ncbi.nlm.nih.gov/nuccore/NZ_LSSA00000000.1
http://www.algaebase.org/search/species/detail/?species_id=24806
http://www.algaebase.org/search/species/detail/?species_id=30161
https://academic.oup.com/femsle/article/364/4/fnx027/2959452
http://www.algaebase.org/search/species/detail/?species_id=64742
https://pdfs.semanticscholar.org/01d0/e88ac3761787e0932b37cbd4fd0380c661ca.pdf
http://www.algaebase.org/search/species/detail/?species_id=30157
https://www.ncbi.nlm.nih.gov/nuccore/NC_019682.1
http://www.algaebase.org/search/species/detail/?species_id=30122
http://www.algaebase.org/search/species/detail/?species_id=140947
http://www.algaebase.org/search/species/detail/?species_id=30050&sk=0&from=results
http://mcc.nies.go.jp/strainList.do?strainId=4101&strainNumberEn=NIES-4103
https://academic.oup.com/dnaresearch/article/8/5/205/418978
https://www.ncbi.nlm.nih.gov/nuccore/NZ_MTAV00000000.1
http://www.algaebase.org/search/species/detail/?species_id=59276
http://www.algaebase.org/search/species/detail/?species_id=30365
http://mcc.nies.go.jp/strainList.do?strainId=3583
https://www.ncbi.nlm.nih.gov/nuccore/NC_019684.1
http://www.algaebase.org/search/species/detail/?species_id=144890
https://www.pnas.org/content/110/3/1053.long
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Table S6. Results of the model selection analysis for salt tolerance and compatible solutes. The table contains a 
list of all the evolutionary models tested for the salt tolerance character and for the compatible solute characters. For each 
model, it contains the number of parameters (including both rate parameters and root priors), the marginal likelihood 
estimates and the associated model posterior probability. Models that were not included in the blended analyses based on 
their negligible posterior probability are marked with a dagger †.  

Character Model Parameters Marginal likelihood Posterior probability 

Salt tolerance 
ARD 3 -107.1077203 45.00% 

ER 2 -106.9071731 55.00% 

Suc, independent 
ARD † 9 -228.1722845 0.00% 

ER † 6 -237.0324294 0.00% 

Suc, all dependent 

ARD 63 -195.2092011 99.99% 

SYM † 35 -205.1262745 0.00% 

ER † 8 -222.0653118 0.00% 

Suc, spsA and spp dependent 

ARD † 18 -223.7431935 0.00% 

SYM † 11 -235.2953351 0.00% 

ER † 6 -239.1199279 0.00% 

Suc, spp and spsA* dependent 

ARD † 18 -205.705032 0.00% 

SYM † 11 -215.6970368 0.00% 

ER † 6 -219.1058048 0.00% 

Suc, spsA and spsA* dependent 

ARD † 18 -228.8009675 0.00% 

SYM † 11 -237.7949128 0.00% 

ER † 6 -243.4989931 0.00% 

Tre 
ARD 3 -88.19858131 36.58% 

ER 2 -87.64814147 63.42% 

GG, independent 
ARD † 6 -164.2047326 0.00% 

ER † 4 -172.6408063 0.00% 

GG, dependent 

ARD 15 -104.8249341 100.00% 

SYM † 9 -115.2306834 0.00% 

ER † 4 -131.1320945 0.00% 

GGA 
ARD 3 -64.81730843 97.77% 

ER 2 -68.59762508 2.23% 

GB 
ARD 3 -39.56269214 81.54% 

ER 2 -41.04831511 18.46% 

 

Table S7. Compatible solute biosynthesis genes. The table contains a list of the genes involved in compatible solute 
biosynthesis that were analysed, including the UniProt accession numbers for the query sequences used in BLAST 

searches, and the number of strains whose genome contained an ortholog for the gene. 

Compatible solute Gene BLAST query accessions Strains 

Sucrose 

spsA Q55440 59 

spp P74325 99 

spsA* Q8YRS3 98 

Trehalose 
treY Q8Z0D1 77 

treZ Q8Z0D0 77 

Glucosylglycerol 
ggpS P74258 55 

ggpP Q55034 59 

Glucosylglycerate 
gpgS B1XHT9 43 

gpgP B1XHU1, Q7VCL1 43 

Glycine betaine 
gsmT A5GIM2, K9YF78 18 

dmt A5GIM1, K9YGK5 18  
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Table S8. Presence/absence of compatible solute biosynthesis genes. For each strain of Cyanobacteria analysed in this study, the table reports the presence (P) or absence 

(A) of the genes involved in the biosynthesis of compatible solutes. 

Strain 

Compatible solute 

Suc Tre GG GGA GB 

spsA spp spsA* treY treZ ggpS ggpP gpgS gpgP gsmT dmt 

Trichodesmium thiebautii H9-4 A A A A A A A A A A A 

Richelia intracellularis HM01 A A A A A A A A A A A 

Synechococcus spongiarum SH4 A P A A A A A P P A A 

Prochloron didemni P3 Solomon A A A A A A A A A P P 

Ca. Atelocyanobacterium thalassa UCYNA A A A A A P A A A A A 

Ca. Atelocyanobacterium thalassa UCYNA-2 A A A A A P P A A A A 

Neosynechococcus sphagnicola CAUP A 1101 A P P A A A A A A A A 

Hydrocoleum sp. CS-953 A A A P P A A A A A A 

cyanobacterium endosymbiont of Epithemia turgida A A A A A P P A A A A 

Limnoraphis robusta CS-951 A A A P P A A A P A A 

Gloeobacter kilaueensis JS1 A P P A A A A A A A A 

Richelia intracellularis RC01 A P P P P A A A A A A 

Chamaesiphon polymorphus CCALA 037 A P P P P A A A A A A 

Gloeobacter violaceus PCC7421 A P P A A A A A A A A 

Synechococcus sp. Tous A A A A A A A A A A A 

Synechococcus lividus PCC 6715 P A P A A A A A A A A 

Gloeomargarita lithophora Alchichica-D10 A A A A A A A A A A A 

Richelia intracellularis HH01 A P A P P A A A A A A 

Nostoc piscinale CENA21 A P A P P A A A A A A 

Synechococcus sp. 60AY4M2 A A A P P A A A A A A 

Synechococcus sp. JA-2-3-B'a(2-13) A A A P P A A A A A A 

Halothece sp. KZN 001 A P P A A P P A A P P 

Cyanobacteria bacterium QS_8_64_29 A P P A A A A A A P P 

Geitlerinema sp. PCC 7105 A A P A A P P P P A A 

Prochloron didemni P4 Papua New Guinea A A A A A A A A A P P 

Raphidiopsis brookii D9 A A A A A A A A A A A 

Synechococcus sp. PCC7336 A A A P P P P A A A A 

Cyanothece sp. BG0011 A P A A A P P A A A A 
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Leptolyngbya antarctica A A A P P P P P P A A 

Prochlorococcus marinus MIT 9202 P A A A A A P P P A A 

Tychonema bourrellyi FEM_GT703 A A A P P A A A A A A 

Prochlorococcus marinus MIT 9515 P A A A A A P P P A A 

Oscillatoriales cyanobacterium CG2_30_44_21 P A P A A A A A A A A 

Prochlorococcus marinus MIT 9301 P A A A A A P P P A A 

Prochlorococcus marinus NATL1A P A A A A A P P P A A 

Prochlorococcus sp. MIT 0801 P A A A A A P P P A A 

Leptolyngbya sp. O-77 P P P A A A A A A A A 

Prochlorococcus sp. RS04 P A A A A P P P P A A 

Prochlorococcus marinus CCMP 1375 P A A A A A P P P A A 

Pseudanabaena frigida A P P A A A A A A A A 

Pseudanabaena sp. PCC 7367 A A A A A P A A A A A 

Synechococcus sp. PCC 7502 P A P A A A A A A A A 

Synechococcus sp. CB0205 P A A A A P P P P A A 

Tolypothrix bouteillei VB521301 A P P P P A A A A A A 

Crocosphaera watsonii WH 8501 A A A A A A A A A A A 

Aliterella atlantica CENA595 A P P A A A A A A A A 

Pseudanabaena biceps PCC7429 A P A A A A A A A A A 

Halomicronema hongdechloris C2206 A A A P P P P P P P P 

Nodularia spumigena CCY9414 P P P P P A A A A A A 

Thermosynechococcus elongatus BP1 P A P A A A A A A A A 

Cyanobacterium stanieri HL-69 A A A A A P P A A A A 

Limnothrix sp. PR1529 P A A A A A A A A A A 

Cyanobium sp. NIES-981 P A A A A P P A A A A 

Leptolyngbya sp. PCC 7376 A A A A A P P P P A A 

Pseudanabaena sp. BC1403 P A P A A A A A A A A 

Acaryochloris marina MBIC11017 A P P A A P P P P A A 

Pleurocapsa sp. CCALA 161 A P P P P A A A A A A 

Vulcanococcus limneticus LL P A A A A A A A A A A 

Geitlerinema sp. PCC 9228 A P P P P P P A A P P 

Leptolyngbya sp. hensonii A A A P P A A A A A A 

Synechococcus sp. PCC 6312 P A A A A A A A A A A 



 

261 

Prochlorococcus marinus MIT 9303 P A A A A A P A A P P 

Leptolyngbya foveolarum A A A P P A A A A A A 

Synechococcus sp. PCC 7003 P A A A A P P P P A A 

Synechococcus sp. PCC 73109 P A A A A P P P P A A 

Snowella sp. ULC335bin1 P A P A A A A A A A A 

Alkalinema sp. CACIAM 70d P A P A A A A A A A A 

Limnothrix sp. CACIAM 69d P A A A A A A A A A A 

Prochlorothrix hollandica PCC 9006 A P P A A A A A A A A 

Synechococcus sp. 8F6 P A A A A A A A A A A 

Synechococcus sp. PCC 7335 A A A P P P P A A A A 

Cyanobacterium stanieri PCC 7202 A A A A A P P A A A A 

Geminocystis herdmanii PCC 6308 P A A A A A A A A A A 

Gloeocapsa sp. PCC 73106 A A A P P A A A A A A 

Synechococcus elongatus PCC 6301 P A A A A A A A A A A 

Synechococcus sp. NIES-970 A A A A A P P P P A A 

Synechococcus sp. PCC 7002 P A A A A P P P P A A 

Synechococcus sp. RCC 307 P A A A A P P P P A A 

Geminocystis sp. NIES-3708 P A A A A A A A A A A 

Leptolyngbya sp. PCC 6406 A A A A A P P P P A A 

Synechococcus sp. MIT S9509 P A A A A P P P P P P 

Calothrix rhizosoleniae SC01 A P P A P A A A A A A 

Moorea bouillonii PNG5-198 A P P A A A A A A A A 

Synechococcus sp. 1G10 A A A A A A A A A A A 

Synechococcus sp. WH5701 P A A A A P P A P A A 

Trichodesmium erythraeum IMS101 A A A A A A A A A A A 

Cyanobacterium aponinum PCC 10605 A A A A A P P P P A A 

Synechocystis sp. PCC 6803 P P A A A P P A A A A 

Leptolyngbya sp. Heron Island J 1 A A A A A P P P P A A 

Planktothrix mougeotii NIVA-CYA 405 A A A P P A A P A A A 

Spirulina major PCC 6313 A A A P P P P A A A A 

Synechococcus sp. CC9616 genomic P A A A A P P P P P P 

Acaryochloris sp. RCC 1774 A P A A A P P A A A A 

Cylindrospermopsis raciborskii CS505 A P P A A A A A A A A 
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Dactylococcopsis salina PCC 8305 A P P A A P P A A P P 

Microcoleus chthonoplastes PCC 7420 A P P P P P P P P A A 

Synechococcus sp. MIT S9508 P A A A A P P P P P P 

Synechococcus sp. MW101C3 P A A A A A A A A A A 

Synechococcus sp. WH 8020 P A A A A P P P P P P 

Chondrocystis sp. NIES-4102 A P A A A P P A A A A 

Cyanobium gracile PCC6307 P A A A A A A A A A A 

Cyanothece sp. CCY0110 A P A A P P P A A A A 

Oscillatoria sp. PCC 10802 A A A P P A A A A A A 

Planktothrix tepida PCC 9214 A A P P P A A P A A A 

Pleurocapsa sp. PCC 7319 A P P A A P P A A A A 

Synechococcus sp. CC9902 P A A A A P P P P A A 

Cyanothece sp. PCC 7425 A P P A A A A A A A A 

filamentous cyanobacterium ESFC-1 A P P A A P P A A A A 

Rubidibacter lacunae KORDI 51-2 A P P A A P P A A P P 

Arthrospira platensis Paraca A A A P P P P P P A A 

Nostoc sp. Peltigera membranacea cyanobiont 213 A P P P P A A A A A A 

Synechococcus sp. RS9916 P A A A A P P P P P P 

Synechococcus sp. WH7805 P A A A A P P P P P P 

Leptolyngbya sp. PCC 7375 A A A A A P P P P A A 

Mastigocoleus testarum BC008 A P P P P A A A A A A 

Nostoc azollae 0708 A P P A A A A A A A A 

Phormidium sp. HE10JO A A P P P P P P P A A 

Xenococcus sp. PCC7305 A P A A A P P A P A A 

Dolichospermum circinale AWQC310F A P P A A A A A A A A 

Leptolyngbya ohadii IS1 A P P P P A A A A A A 

Oscillatoriales cyanobacterium CG2_30_40_61 A A A P P A A P A A A 

Synechococcus sp. CC9605 P A A A A P P P P A A 

Scytonema tolypothrichoides VB-61278 A P P P A A A A A A A 

Synechococcus sp. WH 8103 P A A A A P P P P P P 

Oscillatoria acuminata PCC 6304 A P P P P A A A A A A 

Phormidesmis priestleyi BC1401 A P P A A A A A A A A 

Spirulina subsalsa PCC 9445 A A A P P P P P P A A 
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Stanieria cyanosphaera PCC 7437 A P P P P P P P P A A 

Planktothricoides sp. SR001 A A A A A A A A A A A 

Roseofilum reptotaenium AO1-A A A A P P A A A A A A 

Kamptonema formosum PCC 6407 A A A P P A A A A A A 

Leptolyngbya boryana PCC 6306 A P P P P A A A A A A 

Calothrix sp. NIES-3974 P P P A A A A A A A A 

Cyanothece sp. PCC 7424 A P P P P A A A A A A 

Fischerella muscicola PCC 73103 A P A P P A A A A A A 

Fischerella sp. PCC 9339 A P P P P A A A A A A 

Chroococcales cyanobacterium IPPAS B-1203 A P P A A A A A A A A 

Cyanothece sp. PCC7822 A P P P P A A A A A A 

Halothece sp. PCC7418 A P P A A P P A A P P 

Hassallia byssoidea VB512170 A P P P P A A A A A A 

Lyngbya aestuarii BL J A A A P P A A P P P P 

Calothrix sp. NIES-4101 P P P A A A A A A A A 

Crinalium epipsammum PCC 9333 A P P P P A A A A A A 

Hydrococcus rivularis NIES-593 A P P A A A A P P A A 

Scytonema hofmanni UTEX 2349 A P P A A A A A A A A 

Anabaena sp. PCC 7108 P P P A A A A A A A A 

Calothrix parasitica NIES-267 A P P P P A A A A A A 

Fischerella sp. NIES-4106 A P P P P A A A A A A 

Gloeocapsa sp. PCC7428 A P P A A A A A A A A 

Oscillatoriales cyanobacterium JSC-12 A P P A A A A A A A A 

Synechocystis sp. PCC 7509 A P P A A A A A A A A 

Tolypothrix sp. PCC 7601 P P P P P A A A A A A 

Anabaena sp. 90 P P P A A A A A A A A 

Chlorogloeopsis fritschii PCC 6912 A P P P P A A A A A A 

Chroococcidiopsis thermalis PCC 7203 A P P P P A A A A A A 

Leptolyngbya sp. NIES-3755 A P P P P A A A A A A 

Nostoc flagelliforme CCNUN1 A P P P P A A A A A A 

Scytonema hofmannii PCC 7110 A P P P P A A A A A A 

Scytonema sp. NIES-4073 A P P P P A A A A A A 

Calothrix sp. NIES-4105 P P P A A A A A A A A 
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Geitlerinema sp. PCC 7407 A P P P P P A A A A A 

Hapalosiphon sp. MRB220 A P P P P A A A A A A 

Pleurocapsa sp. PCC 7327 A P P A A A A P P A A 

Sphaerospermopsis kisseleviana NIES-73 A P P A A A A A A A A 

Calothrix sp. 3363 A P P A A A A A A A A 

Calothrix sp. NIES-2100 P P P P P A A A A A A 

Cyanothece sp. PCC 8802 A A A P P A A A A A A 

Fischerella sp. PCC 9605 A P P P P A A A A A A 

Nostoc punctiforme PCC 73102 A P P P P A A A A A A 

Nostoc sp. KVJ20 A P P P P A A A A A A 

Oscillatoria nigro-viridis PCC 7112 A P P P P A A A A A A 

Tolypothrix tenuis PCC 7101 P P P P P A A A A A A 

Desertifilum sp. IPPAS B-1220 A P P P A A A A A A A 

Fischerella sp. JSC11 A P P P P A A A A A A 

Nostoc calcicola FACHB-389 A P P P P A A A A A A 

Tolypothrix campylonemoides VB511288 A P P P P A A A A A A 

Calothrix sp. PCC 7507 A P P A A A A A A A A 

Cylindrospermum stagnale PCC7417 P P P A A A A A A A A 

Dolichospermum compactum NIES-806 P P P A A A A A A A A 

Microcystis aeruginosa NIES843 A A A A A A A A A A A 

Nostoc sp. NIES-4103 A P P P P A A A A A A 

Nostoc sp. PCC7120 A P P P P A A A A A A 

Nostoc sp. T09 P P P P P A A A A A A 

Anabaenopsis circularis NIES-21 P P A P P A A A A A A 

Fischerella muscicola PCC 7414 A P P P P A A A A A A 

Nodularia sp. NIES-3585 P P P P P A A A A A A 

Nostoc sp. PCC 7524 P P P A A A A A A A A 

Chrysosporum ovalisporum P P P P P A A A A A A 

Microcoleus sp. PCC 7113 A P P P P A A A A A A 
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Table S9. Results of the model selection analysis for salt tolerance conditioned on GG and GGA. The table reports 
the value of the marginal likelihood estimate for the models in which the salt tolerance character was conditioned on GG 
and GGA. The two genes for GG were modelled as dependent characters under an ARD model, while the 
presence/absence of GGA was modelled as a single character using either an ARD or ER model. 

GGA model Parameters Marginal likelihood Posterior probability 

ARD 26 -282.4145799 98.16% 

ER 25 -286.3923838 1.84% 
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Supplementary figures 

 

Figure S1. Gene tree for spsA. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 
linearly up to PP = 100%.  
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Figure S2. Gene tree for spp. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 
linearly up to PP = 100%.  
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Figure S3. Gene tree for spsA*. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 
linearly up to PP = 100%.  
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Figure S4. Gene tree for treY. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 
linearly up to PP = 100%.  
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Figure S5. Gene tree for treZ. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 
linearly up to PP = 100%.  
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Figure S6. Gene tree for ggpS. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 
linearly up to PP = 100%.  
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Figure S7. Gene tree for ggpP. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 
linearly up to PP = 100%.  
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Figure S8. Gene tree for gpgS. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 
linearly up to PP = 100%.  
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Figure S9. Gene tree for gpgP. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 

linearly up to PP = 100%.  
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Figure S10. Gene tree for gsmT. Branches that are compatible with the phylogenomic species tree are highlighted in 
blue, branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches 
is proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 

linearly up to PP = 100%.  
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Figure S11. Gene tree for dmt. Branches that are compatible with the phylogenomic species tree are highlighted in blue, 
branches that are not compatible with the species tree are highlighted in orange. The colour intensity of the branches is 
proportional to their posterior probability (PP): branches with PP < 0.95 have a 20% intensity, and intensity increases 
linearly up to PP = 100%.  

 


