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ABSTRACT 
 
The Intergovernmental Panel on Climate Change has recognised the Sahel region in 
Africa as a hotspot for the effects of climate change due to its economic and 
environmental vulnerability to changes. Its climate is driven by the West African 
Monsoon (WAM) which occurs during the June to September season, accounting for 
~75% of annual precipitation. Modelling the WAM has many associated uncertainties, 
predominantly linked to precipitation and its occurrence on the sub-grid-scale. 
Previous projections for the Sahel have covered both extremes of wetting and drying, 
complicating policymaking, and reinforcing the need for confidence in projections. This 
study has examined the output from the sixth phase of the Coupled Model 
Intercomparison Project for monsoon season precipitation over the Sahel. Models 
were initially evaluated by comparing historical simulations to observations. No model 
well represented the wet period of the 1950s and the dry period of the 1970s.  
However, atmosphere-only models using prescribed sea surface temperatures 
performed much better with considerably higher correlation coefficients at decadal 
time scales. This suggests that representing ocean processes (and their coupling) 
remains a major limitation on simulating decadal precipitation over the Sahel. 
Projection anomalies revealed an inter-model range of +2mm/day to -1mm/day for 
SSP1-2.6 which increased to +4mm/day to -2mm/day for SSP5-8.5. Following this, 
these projections were analysed in the context of historical model performance. There 
is no clear link between historical model performance and their respective projections, 
but historical model behaviour partially explains the differences in projections. 
However, this study highlights the range of potential impacts for the Sahel should 
global warming not be limited. Although, there is no guarantee the climate system will 
behave the same way as it did in the past, improving historical model performance, 
specifically ocean representation and its coupling, could add confidence to projections 
for the Sahel. 
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1. Introduction 
Between 1901 and 2010, global surface air temperature (SAT) increased by an 
estimated ~0.07oC each decade (Barry et al, 2018). Africa in particular has seen 
warming of at least 0.5oC over the last 50 to 100 years, and by the end of the 21st 
century, temperatures could be up to 6oC higher than the 20th century average 
temperature (Niang et al, 2014), depending on the scenario. Climate projections are 
generated through running simulations using general circulation models (GCMs) 
under a range of scenarios, the latest version being called Shared Socioeconomic 
Pathways in the Intergovernmental Panel for Climate Change’s (IPCC) Sixth 
Assessment Report (AR6) (IPCC, 2021).  These warming trends over the last 100 
years can no longer be attributed to natural variability alone, so other factors are 
coming into play, associated with global warming (Niang et al, 2014). Radiative forcing 
due to anthropogenic greenhouse gases (GHGs) is increasing faster than the 
reduction in radiative forcing from anthropogenic aerosols, hence the warming from 
the GHGs outweighs the cooling from the reduced aerosols (Tebaldi et al, 2021).  

The IPCC has recognised the Sahel region in Africa as a hotspot for the effects 
of climate change, signifying its economic and environmental vulnerability to potential 
changes (Niang et al, 2014; Sultan and Gaetani, 2016). The Sahel’s climate is 
naturally highly variable, being susceptible to both droughts and flooding (Monerie et 
al, 2020). Over the last 50 years, observed temperatures have warmed in all seasons, 
with annual maximum temperatures increasing by 0.16oC and annual minimum 
temperatures by 0.28oC per decade – both statistically significant increases (Barry et 
al, 2018). The region’s climate is driven by the West African Monsoon (WAM) which 
has a wet phase during June, July, August and September (JJAS) and a dry phase 
during January, February and March (JFM) (Quagraine et al, 2020). The JJAS wet 
phase is characterised by south-westerly winds and accounts for ~75% of West 
African annual precipitation, whereas the JFM dry phase has north-easterly winds 
(Akinsanola and Zhou, 2019; Quagraine et al, 2020). The principal driving force behind 
the change in wind is the land-sea temperature gradient between the Sahel and the 
equatorial Atlantic (Nicholson, 2013). Changes in the WAM can have detrimental 
impacts on the region, as seen with prolonged droughts which occurred during the 
1970s and 1980s (Sultan and Gaetani, 2016). Since the vast majority of precipitation 
falls during the wet season, these droughts correspond to reduced precipitation during 
the wet season. The drought has been attributed to sea surface temperature (SST) 
anomalies, but 40 years later, the interaction between the different mechanisms 
behind the droughts are still being researched (Sultan and Gaetani, 2016; Monerie et 
al, 2020). Feedbacks being considered are linked to changes in SSTs, vegetation and 
aerosols (e.g. Haarsma et al 2005; Sheen et al, 2017; Giannini and Kaplan, 2019). 

Projections show a range of potential outcomes for the Sahel, from intense 
drying to overwhelming wetting, with a subset of CMIP6 models suggesting an 
increase in the number of extreme hot days as well as extremely wet days (Vogel et 
al, 2020; Elagib et al, 2021). This lack of clarity makes policy making and mitigation 
planning more complicated (Sultan and Gaetani, 2016). There are also indications that 
by 2100, the Sahel could be over 5oC warmer than other parts of the continent (James 
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et al, 2015). Temperature fluctuates within a narrow range over the Sahel, thus 
unprecedented climate changes are likely to occur earlier here compared to the global 
average (Niang et al, 2014). This will have knock-on impacts to local populations 
through affecting agriculture – the basis of their livelihoods (Bamba Sylla et al, 2016).  

GCM performance is tested by comparing historical simulations to observations 
and the complex nature of Sahelian precipitation means models often struggle with 
reproducing the observations (Lau et al, 2006; Sheen et al, 2017; IPCC, 2021). Within 
the third and fifth phases of the Coupled Model Intercomparison Project (CMIP), the 
broad range of projections for the Sahel were partially attributed to the sensitivity of 
Sahel precipitation to global climate changes (Caminade and Terray, 2010; Biasutti, 
2013; Sultan and Gaetani, 2016). Precipitation is hard to capture within models as it 
occurs on the sub-grid-scale, hence parameterisations are needed (Biasutti, 2013; 
Sultan and Gaetani, 2016). Also, Sahelian precipitation is connected to so many 
different circulation systems, both locally and globally (Figure 1.1), adding further 
complications to model representation (Sultan and Gaetani, 2016). The Sahel’s 
warming projections imply improving simulations of past dry periods, like the 1970s 
and 1980s droughts, or the wetter period in the 1950s, is important for indications of 
how precipitation could behave with future warming (Sheffield and Wood, 2008). 
Should the model not capture the full scale of the drought or wet periods, confidence 
in their projections can be affected, as a potential extremity in projections is increased 
droughts with warming (Sheffield and Wood, 2008; Caminade and Terray, 2010; 
Sheen et al, 2017; Vogel et al, 2020). As a result, there is little consensus and 
confidence in projections for the 21st century under the differing emission scenarios 
(Niang et al, 2014; Sultan and Gaetani, 2016; Monerie et al, 2020).  

This study aims to examine whether the newer CMIP6 models can reproduce 
the Sahelian droughts and wet periods and if their ability to do so impacts their future 
projections for the region. This will be achieved by evaluating historical simulations of 
Sahelian precipitation and comparing them to observations, exploring what factors 
affect precipitation representation in the models, and finally examining whether 
historical model performance informs understanding of future projections. 

Figure 1.1: From Vigaud and Giannini (2019, p.7046). Schematic showing the basic 
circulation of the WAM and teleconnections to other regions, whereby a drier WAM early 
in the season is associated with a stronger and wetter Indian Monsoon.  
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2. Literature Review 
 
2.1. Sahel droughts 
2.1.1. Observations 
Approximately 75% of precipitation over the Sahel falls during June, July, August and 
September (JJAS) due to the West African Monsoon (WAM) (Quagraine et al, 2020). 
Hence any changes in annual mean precipitation are reflections of changes in the wet 
season, and droughts are equivalently reduced wet season precipitation. Most studies 
focus on changes in JJAS precipitation only. The WAM’s south-westerly winds 
transport moisture into the Sahel from the through the Gulf of Guinea during JJAS, 
resulting in precipitation (Nicholson, 2013; Sultan and Gaetani, 2016). Precipitation 
changes over the Sahel have not been consistent over the last 50 to 100 years, with 
large interannual and interdecadal variability, linked into the WAM (Giannini et al, 
2008; Vellinga et al, 2016; Kennedy et al, 2017; Barry et al, 2018). Despite the 
uncertainty, observations show the Sahel is undergoing strong and fast climate 
changes through the combination of warming and the WAM recovery, which has 
resulted in extreme climate events becoming more frequent (Sultan and Gaetani, 
2016). Between 1901 and 1950s, precipitation was higher than today, but between 
1960 and 1980, it was lower with droughts during the 1970s and 1980s (Niang et al, 
2014; Kennedy et al, 2017; Monerie et al, 2020). Precipitation has been increasing 
since, however, it is still relatively low compared to the pre-drought values (Kennedy 
et al, 2017). The reason for the increasing precipitation is not conclusive, as it could 
be due to natural variability or anthropogenic climate change (Sultan and Gaetani, 
2016; Barry et al, 2018). During the droughts, different areas in the region experienced 
different levels of reduced precipitation, ranging from a decline of 15% to over 30% 
(Barry et al, 2018). Paleoclimatic data has revealed that droughts of this extent have 
happened before in the Sahel and West Africa, so this is not an unusual event on 
these longer geological timescales (Biasutti, 2013).  
 
2.1.2. Potential drivers of the drought 
Many alternative processes that led to the droughts have been suggested. Among the 
frequently mentioned are changes in sea surface temperatures (SSTs) in the Atlantic 
and Indian Oceans (Mohino et al, 2011; Barry et al, 2018). SSTs can influence WAM 
variability though various feedbacks with the atmosphere. A stronger difference 
between the Northern and Southern Hemisphere is a key SST pattern associated with 
the drought (Folland et al, 1986). The temperature gradient between the Sahara and 
SSTs in the Gulf of Guinea has also been found to influence the WAM and Sahelian 
precipitation (Haarsma et al, 2005; Monerie et al, 2017). Land-atmosphere feedbacks 
can amplify changes in precipitation arising from SST variability (Giannini et al, 2003). 
Changes in tropical SSTs initiate Kelvin and Rossby waves that spread across the 
Equator, and upon reaching the Sahel they interact and alter the region’s circulation 
(Lau et al, 2006; Sultan and Gaetani, 2016; Gaetani et al, 2017; Monerie et al, 2020). 
Increased convection over the oceans results in the convergence over the land 
weakening, reducing precipitation through there being less monsoonal moisture 
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(Giannini et al, 2003; Lau et al, 2006). Thus, moisture is reduced over land, affecting 
evaporation, exacerbating any drought periods (Giannini et al 2003; Lau et al, 2006). 
 Local SST feedbacks are important but Folland et al (1986) first showed that 
global feedbacks are also important in Sahelian precipitation variability. A comparison 
of the five driest and five wettest years between 1945 and 1985 found warmer SSTs 
in the Indian, South Atlantic and south-east Pacific Oceans, and cooler SSTs in the 
Mediterranean Sea, North Atlantic and North Pacific Oceans in the drier years (Folland 
et al, 1986). A subsequent study by Giannini et al (2003) reiterated the importance of 
both local and remote SST influences on Sahelian precipitation. Reduced precipitation 
over the Sahel was found to be associated with warmer SSTs in the tropical Pacific 
and Indian Oceans (Giannini et al, 2003). They attributed the variability in precipitation 
between the 1960s and 1980s to a warming trend in the Indian Ocean equatorial 
SSTs, with the impacts being amplified by land-atmosphere feedbacks, as discussed 
previously (Giannini et al, 2003; Lau et al, 2006).  

Vegetation feedbacks have also been implicated in the droughts, for example, 
desertification has both natural and human causes and accentuates the impacts of 
decreased precipitation due to the reduced ability of the soil to take up moisture 
(Kucharski et al, 2013). Although over time, evidence has suggested desertification 
had a smaller role in the droughts that originally thought (Fensholt et al, 2017). 
Moreover, the Sahel region neighbours the Sahara which is an important dust source, 
and release of Saharan dust can interact with the WAM but there is limited research 
on its role in the drought (N’Datchoh et al, 2018; Bercos-Hickey et al, 2020).  However, 
the effects of different feedbacks on climate variability in the Sahel makes it hard to 
draw robust conclusions on exactly how all the different drivers contribute (Martin and 
Thorncroft, 2014). 

Some have questioned whether human activities caused the droughts. They 
most likely had an influence through global warming affecting feedback mechanisms 
between the land, ocean and atmosphere (Dong and Sutton, 2015; Sheen et al, 2017; 
Giannini and Kaplan, 2019). However, experiments forced by only GHGs do not show 
drying of the Sahel, suggesting that anthropogenic reflective aerosols played a more 
important role (Biasutti and Giannini, 2006). The interhemispheric SST gradient was 
adjusted by the Northern Hemisphere aerosol emissions dampening the warming from 
GHGs, leading to drying over the Sahel (Biasutti and Giannini, 2006). Although, it has 
also been suggested global warming contributed 10% to the changes in SSTs that 
supported drought conditions (Mohino et al, 2011). 

Since the droughts, observations demonstrate a recovery in Sahelian and West 
African precipitation (Giannini et al, 2008; Kennedy et al, 2017). There are several 
possible reasons for this recovery, but published literature is not conclusive. One 
hypothesis is that the recovery is linked to SST changes: the difference between SSTs 
in Northern Hemisphere extratropics and tropics have driven the tropical rainbelt 
northward, bringing more precipitation to West Africa (Park et al, 2015). However, this 
influence is not very well understood, and there are many papers with conflicting 
results due to the numerous other factors that impact the gradient, such as cloud cover 
and changes in Arctic sea ice (Deser et al, 2015; Hwang and Frierson, 2013; Monerie 
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et al, 2020). Others argue precipitation has increased with increased atmospheric 
GHGs, resulting in a greater contrast in land and sea temperatures, but this has not 
been proven (Barry et al, 2018). It has also been suggested increased atmospheric 
GHGs has impacted the WAM through the initiation of thermodynamic feedbacks with 
regional warming, increasing precipitation (Dong and Sutton, 2015; Akinsanola and 
Zhou, 2019). 
 
2.2. Circulation over the Sahel 
Precipitation is typically found over the west Sahel, from 5oN to 15oN (Akinsanola and 
Zhou, 2019). Two of the maximum rainfall areas are found over the Guinea Coast 
region, where there is high topography, despite having a mini dry season of reduced 
rainfall at the same time as peak monsoon over the Sahel during August (Akinsanola 
and Zhou, 2019). The precipitation belt retreats south during October (Akinsanola and 
Zhou, 2019). The Inter-Tropical Discontinuity (ITD) is around 11oN, and just south of 
9oN, where there are strong westerlies that converge at low levels at the Intertropical 
Convergence Zone (ITCZ), dividing the northern dry air and southern moist air 
(Lavaysse et al, 2010; Akinsanola and Zhou, 2019). The WAM takes place between 
late June and late September and accounts for ~80% of the annual rainfall (Sultan 
and Gaetani, 2016; Monerie et al, 2020). Alongside the previously discussed SSTs, 
the WAM’s dynamics are inherently linked to other parts of Sahelian circulation, 
including African Easterly Jet (AEJ), African Easterly Waves (AEWs) and the West 
African Heat Low (WAHL) (Parker et al, 2005; Lavaysse et al, 2010; Vellinga et al, 
2016; Brannan and Martin, 2018; Figure 2.1).  

 The AEJ is found at 15oN in August, at ~600-700hPa in the mid-troposphere 
(Parker et al, 2005; Sultan and Gaetani, 2016). It is thought to be a foundation in 
maintaining the WAM’s momentum balance, as it “is known to be in approximate 

Figure 2.1: A schematic diagram of the West African Monsoon, from Nicholson (2009, 
p.1167), with some key circulation elements. TEJ is Tropical Easterly Jet, AEJ is the African 
Easterly Jet, DIV is divergence of winds and CONV is convergence of winds. 
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thermal-wind balance with the thermodynamic contrasts from the Guinea Coast to the 
Sahara” (Parker et al, 2005, p.2840). The AEJ impacts Sahelian weather systems, 
predominantly precipitation, as “the lower-tropospheric easterly component of wind 
shear with height is favourable for the generation of intense and long-lived 
cumulonimbus systems” (Parker et al, 2005, p.2840). The AEJ location and strength 
changes over the year but is usually strongest in summer, between 10oN and 15oN 
(Brannan and Martin, 2018). 
 AEWs have two tracks, one north of the AEJ and one south (Sultan and 
Gaetani, 2016; Brannan and Martin, 2018). AEWs have an influence on precipitation 
over the Sahel, but also on tropical cyclones that form off the continent and move 
westwards towards the Caribbean (Sultan and Gaetani, 2016; Brannan and Martin, 
2018). They are disturbances on the synoptic scale that travel from North Africa to the 
Atlantic Basin, have 2000-4000km wavelengths on 2-10 day periods (Brannan and 
Martin, 2018). The northern track waves are strongest at around 850hPa and found 
close to the Sahara where there is less moist convection, which means northern track 
AEWs do not have as much influence on precipitation but do have a large role in 
Saharan dust transport (Lavaysse et al, 2010; Brannan and Martin, 2018). Southern 
track AEWs are found near the ITCZ, being strongest at ~600-700hPa, affecting 
tropical cyclones after leaving West African coast (Brannan and Martin, 2018). AEWs 
affect mesoscale convective systems, and AEWs that are longer in duration and more 
intense have been found to be associated with anomalously rainy summer seasons 
(Brannan and Martin, 2018). 

The WAHL is a thermal depression at low levels over Northern Africa, affecting 
the WAM through its seasonal cycle, particularly preceding the monsoon season 
(Lavaysse et al, 2016). It impacts the WAM through its anticyclonic circulation in the 
mid-troposphere and helps maintain the AEJ through the temperature gradient 
between the WAHL and the rain belt (Lavaysse et al, 2010). During the summer, it is 
known as the Saharan Heat Low (SHL) as it is found primarily over the Sahara Desert 
(Lavaysse et al, 2016; Sultan and Gaetani, 2016). Satellite data revealed in the late 
summer of 2006, there was an event where the SHL weakened despite increased 
convective activity over the northern Sahel at the beginning of September (Lavaysse 
et al, 2010). It is thought the weakening was due to stronger easterly waves and 
influences from extratropical sources, such as one particularly detrimental one from 
Europe on 5th September (Lavaysse et al, 2010). There is some evidence of the 
connection between the WAHL/SHL and the WAM in various studies through the effect 
of dry air disturbing the circulation (see Covreux et al, 2010; Flaounas et al, 2012). 
 
2.3. Climate Models 
2.3.1. Coupled Model Intercomparison Project (CMIP) 
The Coupled Model Intercomparison Project (CMIP) originally began 24 years ago “as 
a comparison of a handful of early global coupled climate models performing 
experiments using atmosphere models coupled to a dynamic ocean, a simple land 
surface, and thermodynamic sea ice” (Eyring et al, 2016, p.1938). It is now an 
international scale research effort with publicly available data and provides data for 
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the IPCC reports (Eyring et al, 2016). CMIP’s objective is to “better understand past, 
present, and future climate change arising from natural, un-forced variability or in 
response to changes in radiative forcings in a multi-model context” (Eyring et al, 2016, 
p.1938). Over time, CMIP has become more complex in response to climate model 
developments, with the more recent phases beginning in 2008 (CMIP5) and the sixth 
phase – CMIP6 – in 2014 (Taylor et al, 2012; Eyring et al, 2016). CMIP6 aims to fill 
research gaps through examining the Earth’s response to different forcings, the origin 
of systematic biases and the impact on models (Eyring et al, 2016). It also allows for 
investigation of how uncertainties and climate variability in models can affect future 
climate change (Eyring et al, 2016). To help address these, there are 21 Model 
Intercomparison Projects associated with CMIP6, including HighResMIP which 
analyses regional phenomena at high resolution and CORDEX which investigates how 
regional downscaling of various model output can advance scientific knowledge 
(Eyring et al, 2016). The models used have uncertainties and display a wide range of 
projections for various parts of the climate system, such as those shown over the 
Sahel in Figure 2.2. The strength of CMIPs is that they show the likely uncertainties 
due to model representations of key processes. However, a challenge of CMIPs is that 
the models all vary so much in structure and with parameterisations, therefore it is 
hard to attribute differences in results to specific elements of the models. 

 
2.3.2. Historical simulations over the Sahel 
Precipitation over the Sahel varies on interannual and decadal timescales and is 
affected by various feedback mechanisms, making changes complicated to analyse 
(Akinsanola and Zhou, 2019; Monerie et al, 2020). There is limited agreement on the 
interactions between the drivers of precipitation variability and lots of models have 
biases which reduce confidence in conclusions (Biasutti, 2013). Factors involved 
include dynamic changes in wind strength and direction, thermodynamic changes in 
boundary layer specific humidity, SST variation impacting the Hadley Cell and tropical 

Figure 2.2: Adapted from Sultan and Gaetani (2016). Projected changes in July to September 
monsoon season precipitation (mm/day), with the end of 21st century RCP8.5 projections 
calculated as the difference between the average of 2006-2015 and the 2081-2100 average, 
for 12 CMIP5 models. The black line reflects the average of the subset of models. 



 8 

precipitation, vegetation and dust feedbacks and moisture availability (Biasutti, 2013; 
Vellinga et al, 2016; Monerie et al, 2020). Vegetation and dust feedbacks associated 
with soil moisture are often missed in coupled models as SSTs influence these 
feedbacks through circulation, thus if the SSTs are incorrect, the feedbacks could be 
missed (Kucharski et al, 2013). Sultan and Gaetani (2016) argue models have 
improved with time, but they struggle with “large scale mechanisms which influence 
the regional atmospheric circulation” (p.4) and teleconnections associated with African 
climate.  It has been suggested improving how models reproduce past observations 
could increase confidence in model projections for precipitation (Brannan and Martin, 
2018). However, resolving past issues may not fully reduce uncertainties in projections 
because the climate system may not behave the same way as it did in the past (Sultan 
and Gaetani, 2016). 
 Evaluating CMIP3 and CMIP5 historical simulations revealed complications in 
understanding West Africa’s response to climate change (Caminade and Terray, 
2010; Biasutti, 2013). Complications are associated with precipitation’s internal 
variability being strongly linked with feedbacks between the land, ocean and 
atmosphere, and the influence of GHGs on these (Caminade and Terray, 2010). Only 
one CMIP3 model was found to reproduce observations of the Sahel droughts well, 
having a correlation coefficient greater than 0.4, reflecting the limitations in models 
(Caminade and Terray, 2010). A similar study was conducted by Biasutti (2013) using 
CMIP5 models, which do reproduce the spatial drying trends over the Sahel in the 20th 
century, although displaced slightly south compared to observations. Nevertheless, 
biases that were present in CMIP3 are still retained in CMIP5 models (Biasutti, 2013). 
These include missing the Gulf of Guinea’s cold tongue during the monsoon season 
– typically cooler SSTs than the surrounding oceans - and the incorrect location of the 
Sahelian precipitation band, along with circulation elements like the AEJ and AEWs 
(Biasutti, 2013). This is not helped by parameterisations of model elements and 
missing components like vegetation feedbacks (Biasutti, 2013). 

Out of the 19 coupled GCMs included in Lau et al (2006)’s study, chosen from 
IPCC AR4 models used (CMIP3), only eight reproduced the Sahel droughts 
reasonably well and seven of them produced precipitation during the drought period. 
Even the most skilled model struggled with the start of the drought event and how long 
the event lasted for (Lau et al, 2006). Models were evaluated using the Standardised 
Precipitation Index (SPI) which is “a probabilistic type of drought monitoring index and 
is calculated via a nonlinear transformation that converts the precipitation data into a 
normally distributed, dimensionless random variable SPI” (Lau et al, 2006, p.3). The 
modelled SPI was compared to the observed SPI, with a drought being defined relative 
to the long-term historical precipitation trends (Lau et al, 2006). Correlation coefficients 
higher than 0.26 were classified as reasonable agreement (Lau et al, 2006), which is 
not that strong a coefficient, indicating the model struggles with simulating historical 
Sahelian precipitation. The authors concluded models need SSTs to be strongly 
coupled with Sahelian precipitation in both the Indian and Atlantic Oceans, alongside 
“a robust land surface feedback with strong sensitivity of precipitation and land 
evaporation to soil moisture” (Lau et al, 2006, p.9), to represent the droughts well. 
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However, even with numerous developments since CMIP3, models are still struggling 
with some of these elements through the interconnected nature of Sahelian circulation 
(Monerie et al, 2020). 

Models have struggled representing the WAM and its precipitation on all 
timescales (Parker et al, 2005; Paxian et al, 2016). More recent research has tried to 
address this using Regional Climate Models (RCMs) to resolve biases, but these have 
had mixed results (Paxian et al, 2016). Monsoon precipitation tends to be from 
“organized convection, such as squall lines and large mesoscale convective systems”, 
however this is usually missed by model resolution (Vellinga et al, 2016, p.326). In 
many GCMs, Sahel precipitation is underestimated when compared to observations, 
which has been improved by downscaling and using RCMs, but the positive bias over 
the Guinea Coast has been enhanced (Paxian et al, 2016). RCMs with coupled 
atmosphere and ocean components have helped reduce the precipitation biases 
associated with Atlantic SSTs and the WAM, but these are not yet fully resolved 
(Paxian et al, 2016).  

RCMs have revealed the importance of the multiscale connections between 
convection and circulation, elements signifying the need for higher model resolution 
when examining the Sahel, as GCMs have previously missed these (Vellinga et al, 
2016). It has been found increasing model resolution did improve representation of 
precipitation observations due to convective precipitation being more strongly coupled 
with circulation in higher resolution models (Vellinga et al, 2016). This study used the 
Met Office UM atmosphere model at 25km resolution which when compared to the 
lower resolution 130km model, could generate precipitation twice as efficiently, 
originating from the large-scale circulation providing more moisture (Vellinga et al, 
2016). Circulation changes were analysed through prescribing historical SSTs in the 
models for the period 1984 to 2008, as this is when precipitation recovery began over 
the Sahel (Vellinga et al, 2016). It was found that changes in East Pacific and Atlantic 
SSTs cause an anomalous Walker circulation in the models forced by SSTs compared 
to their equivalent that were not (Vellinga et al, 2016). Changes seen include 
westerlies from the Atlantic below 850 hPa, easterlies above 700 hPa and AEJ 
intensification (Vellinga et al, 2016). More moisture was brought into the Sahel, 
corresponding with an increase in precipitation (Vellinga et al, 2016). The AEJ 
strengthened, promoting stronger moisture divergence, which could reduce 
precipitation, but the synoptic AEWs disturbed the AEJ, leading to low-level 
convergence and convective precipitation (Vellinga et al, 2016). This modelled 
feedback evolved from prescribing SSTs, exemplifying the importance of accurate 
representation. Overall, they concluded to accurately represent Sahelian precipitation, 
high resolution models are needed in combination with the correct model physics, 
although this requires lots of computational power and expense (Vellinga et al, 2016). 

Comparing CMIP5 models to a multi-reanalysis mean showed a lot of CMIP5 
models can represent the AEWs’ seasonal cycle but underestimate their frequency 
and intensity (Brannan and Martin, 2018). Biasutti (2013) found the CMIP5 models 
often do not represent the AEWs well. Model resolution and parameterisations are 
among the likely causes of historical biases (Biasutti, 2013; Brannan and Martin, 
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2018). The evolution and strength of AEWs is influenced by parameterisations of the 
planetary boundary layer and convection, and the AEJ’s simulation which tends to be 
better in higher resolution models (Brannan and Martin, 2018). Higher resolution 
models had the least bias for northern track AEWs, most likely due to them being drier 
and having weaker convection, thus not as affected by parameterisations (Brannan 
and Martin, 2018). Conversely, southern track AEWs are associated with higher levels 
of moisture and convection, hence parameterisations strongly influence their model 
misrepresentation (Brannan and Martin, 2018). Despite an initial hypothesis that 
increasing model resolution would improve AEW representation, it was found 
increasing resolution alone will not solve the problem, as further understanding is 
needed for precipitation, convection, and latent heat (Brannan and Martin, 2018). 

Models tend to have different uncertainties which feed into Sahel precipitation, 
so to investigate this Monerie et al (2020) took 29 simulations from CMIP5 and 11 from 
CMIP6 for comparison. A good insight was provided despite more CMIP5 simulations 
being included than CMIP6 ones (Monerie et al, 2020). Precipitation changes in the 
chosen models were smaller compared to the overall spread of changes, indicating 
uncertainties (Monerie et al, 2020). There are more uncertainties associated with 
dynamic changes in response to climate change – mainly atmospheric circulation – 
than thermodynamic changes (Monerie et al, 2020). Uncertainties are also amplified 
by parameterisations as precipitation occurs on a scale smaller than the typical model 
grid box, which then feeds into the dynamic changes in atmospheric circulation 
(Brannan and Martin, 2018; Monerie et al, 2020). SSTs also play a role in these 
dynamic changes, with the temperature gradient in the Northern Hemisphere oceans 
being particularly influential on Sahelian precipitation (Barry et al, 2018; Monerie et al, 
2020). Furthermore, Martin and Thorncroft (2014) found that CMIP5 models which had 
prescribed SSTs in the nearby Atlantic and Indian Oceans performed better in 
representing Sahelian precipitation than those that had not been.  Overall, there were 
very little changes in uncertainties between CMIP5 and CMIP6 (Monerie et al, 2020). 
 
2.3.3. Projections for the Sahel 
All future precipitation trends over the 21st century in CMIP5 GCMs are significant, but 
there are some key differences (Biasutti, 2013; Sultan and Gaetani, 2016; Figure 2.2). 
About half agree precipitation is likely to increase over the Sahel, but a quarter of them 
suggest precipitation will decrease (Biasutti, 2013; Sultan and Gaetani, 2016; Figure 
2.2). This is likely due to the biases associated with SSTs in the models, which has 
knock-on impacts to the WAM’s variability (Sultan and Gaetani, 2016). Also, the 
model’s response to carbon dioxide (CO2) projections affects regional surface 
warming and global SSTs (Sultan and Gaetani, 2016). 

Based on the ensemble mean of a subset of CMIP5 models, there are 
statistically significant projections of increased precipitation over east Sahel of 0.2-
1mm/day and a decrease over west Sahel – stronger with higher Representative 
Concentration Pathways (RCPs) (Akinsanola and Zhou, 2019). Preceding the WAM, 
precipitation is projected to decrease by 0.2-0.5mm/day but increase afterwards by 
0.4-0.6mm/day, with this increase being linked to “increased surface evaporation and 
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enhanced atmospheric moisture convergence” (Akinsanola and Zhou, 2019, p.1029). 
A similar study using an ensemble of models from the UK Met Office also found 
throughout the 21st century, the western Sahel is projected to dry by over 2mm/day 
(James et al, 2015). The decline in precipitation is contradicted by monsoon flow 
amplification, with increased moisture convergence and stronger uplift near the 
surface of the west Sahel (James et al, 2015). There are several potential reasons for 
the stronger WAM. Global warming could lead to changes in the inter-hemispheric 
SST gradient (Park et al, 2015), increased differences in temperature between the 
land and ocean (Barry et al, 2018), or the SHL deepening (Sultan and Gaetani, 2016), 
so theoretically should result in a wetter Sahel. The stronger monsoon could also have 
a role in the drier Guinea Coast and Congo Basin (James et al, 2015). The mechanism 
behind this contrast has previously been explained through a wetter Sahel and dry 
Guinea Coast coexisting as the monsoon circulation shifted north (James et al, 2015). 
However, there is a lack of data on the response of precipitation and the WAM to 
climate change to support this conclusion (Akinsanola and Zhou, 2019). 

80% of CMIP5 model projections for the 21st century agree there will be a “dryer 
onset season in West Africa and an intensification of the late rainy season throughout 
the Sahel”, with GHGs being a factor in this (Biasutti, 2013; p.1621-1622). Seasonal 
variation of SSTs and the response of convection to changes in the stability of the 
troposphere and surface energy budget have been implicated in these projections 
(Biasutti, 2013). Additionally, within CMIP6 data, all regions with monsoon systems 
have large uncertainties in future projections; North Africa/Sahel in particular has the 
largest at ~31.88% under the Shared Socioeconomic Pathway (SSP) 5-8.5 scenario 
(Chen et al, 2020). Nearly all scenarios for North Africa/Sahel do indicate an increase 
in mean precipitation compared to the 1995-2014 climatology, however, the 10th to 
90th range bars get larger with time, showing the uncertainty, and the lower end of the 
range does extend into decreased precipitation (Chen et al, 2020; Figure 2.3). 

Figure 2.3: Adapted from Chen et al (2020). Projections of monsoonal precipitation over 
North Africa monsoon region (defined as over the Sahel) under the differing scenarios. Near 
is 2021-2040, middle is 2041-2060 and long is 2080-2099. These projections are relative to 
the average climatology over 1995-2014, calculated as a percentage. The bars are the 10th 
to 90th percentiles, with the thick line representing the CMIP6 multi-model ensemble mean. 
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Projections of meteorological droughts in CMIP6 were analysed by Ukkola et 
al (2020), defined as droughts that are caused by a lack of precipitation. CMIP6 
models predict meteorological droughts in south and west Africa are likely to intensify 
and increase in duration, from two to four months (Ukkola et al, 2020). Robustness 
has been defined as the size of the future change being larger than the standard 
deviation between the models (Ukkola et al, 2020). Results in western Africa are 
amongst the strongest and most robust when compared to other regions across the 
globe, increasing confidence in the projections (Ukkola et al, 2020). CMIP6 results 
tend to be more robust compared to CMIP5 (Ukkola et al, 2020). However, models 
generally do not agree well with observations when simulating drought events across 
the globe, reducing the skill level for reproducing drought intensity (Ukkola et al, 2020). 
Models need to be able to simulate average precipitation and its variability, but there 
are systematic biases involved, especially with the variability in monthly precipitation 
where models tend to underestimate the average in humid regions (Ukkola et al, 
2020). There has not been much change in this between CMIP5 and CMIP6 (Ukkola 
et al, 2020), indicating continuing uncertainty for future projections. 

Moreover, a study that included both models from CMIP5 and CMIP6 found a 
link between Sahelian precipitation and the projected warming of the North Atlantic 
Ocean, with a warmer ocean corresponding with a wet Sahel (Monerie et al, 2020). 
Interannual variation in monsoon season precipitation has been found to be related to 
tropical ocean SSTs, but on multidecadal timescales, there is a teleconnection with 
extratropical ocean SSTs (Sultan and Gaetani, 2016). This again shows that to 
improve future projections, how important it is to accurately represent SSTs in models 
because of their impact on precipitation and the WAM.  

The SHL impacts precipitation throughout the monsoon season, with a clear 
connection between a strong SHL phase and the eastern Sahel being wetter than 
usual and the west drier (Sultan and Gaetani, 2016). Compared to the rest of Africa 
and surrounding oceans, the west Sahel is projected to have decreased precipitation 
that corresponds with a strong increase in temperature (James et al, 2015). This 
results in the sea level pressure lowering, implying a stronger SHL, thus strengthening 
the WAM too (James et al, 2015). This study’s results correspond with Sultan and 
Gaetani (2016)’s findings of a stronger SHL with a drier west Sahel and shows 
potential for WAM intensification despite the Sahel drying (James et al, 2015). 
However, the SHL behaviour in relation to Sahelian precipitation could be dependent 
on where the maximum warming is found because different locations could have 
different effects on the SHL itself (Vizy et al, 2013). 

WAM projections are associated with changes in AEWs (Sultan and Gaetani, 
2016). CMIP5 models suggest pre-monsoonal AEWs may reduce with warming but 
could increase significantly during the monsoon season (Sultan and Gaetani, 2016). 
Northern AEWs are predicted to increase in intensity and frequency by 1.5 waves a 
year by end of the 21st century (Brannan and Martin, 2018). Southern AEWs are more 
uncertain, with models lacking agreement on frequency, strength and precipitation, 
but there are indications of increased intensity and shift of timing to later months 
(Brannan and Martin, 2018). Model resolution leads to variation in projections for 
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AEWs (Sultan and Gaetani, 2016). Higher resolution models show increased 
frequency of strong AEWs, by ~12% per decade, but this is not seen in the lower 
resolution models, with the link between AEWs and precipitation being less clear or 
not even shown at all (Vellinga et al, 2016).  

AEWs’ locations are likely to change should the AEJ migrate, further adjusting 
their characteristics (Brannan and Martin, 2018). With warming, the AEJ could 
strengthen and migrate northwards from its current position, nearer the Sahara Desert, 
and the Tropical Easterly Jet (TEJ) could weaken, particularly over the Indian Ocean 
where it originates from (Akinsanola and Zhou, 2019). CMIP5 models have shown a 
stronger AEJ could dry some parts of the western Sahel (Sultan and Gaetani, 2016; 
Vellinga et al, 2016). Potential feedbacks on the AEJ may originate from surface 
warming in the western Sahel, potentially leading to more dry convection in the 
northern Sahel, strengthening the SHL, affecting the AEJ and WAM (James et al, 
2015). The stronger AEJ results in stronger moisture divergence and can reduce 
precipitation further (Vellinga et al, 2016). Although, synoptic AEWs disturb the AEJ, 
resulting in convergence at lower atmospheric levels and convective rainfall (Vellinga 
et al, 2016). The SHL may also impact the AEJ through a drier west Sahel and 
warming reducing humidity and lowering pressure relative to the Guinea Coast (James 
et al, 2015). The AEJ may therefore also migrate southwards and could reduce 
Sahelian precipitation (James et al, 2015).  

The WAM’s circulation dynamics can further be altered through the aerosol 
feedback (Zhou et al, 2016; Giannini and Kaplan, 2019). The land/sea temperature 
gradient, and/or hemispheric SST gradients, can be altered by aerosols increasing the 
albedo and the amount of radiation reflected (Zhou et al, 2016). As previously 
discussed, the land/sea temperature gradient can affect the WAM’s strength, and a 
smaller gradient could lead to a weaker WAM, thus less Sahelian precipitation 
(Haarsma et al, 2005; Monerie et al, 2017; Giannini and Kaplan, 2019). One reason 
that SSPs were developed for CMIP6 is that the aerosol concentrations in CMIP5 
RCPs are now thought to have been underestimated, as all four pathways assumed 
there would be a dramatic decrease in aerosols, which is unlikely (Tebaldi et al, 2021). 
There are eight SSPs considering a wider range of more realistic aerosol pathways, 
are consistent with projected GHG emissions and account for the implementation of 
climate policies for atmospheric aerosols (Tebaldi et al, 2021). Various climatic 
feedbacks across the globe, including the WAM, will see differing impacts under these 
new SSPs (Zhou et al, 2016; Tebaldi et al, 2021). Research is lacking on the future 
impact of aerosols on WAM projections, and it has been recognised the feedback 
needs to be evaluated further (e.g. Lee and Wang, 2014). Scannell et al (2019) 
examined 40-year precipitation projections for subset of CMIP6 models using SSP2-
4.5 for West Africa which assumes a reduction in aerosol emissions. Models produced 
a range of results, with some suggesting drying and others wetting over West Africa, 
leading the authors to speculate whether this is associated with SST changes 
(Scannell et al, 2019). This combined with the suggested influence of the aerosol 
feedback on SSTs during the Sahel droughts means the aerosol feedback needs to 
be considered when examining projections of Sahelian precipitation. 
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2.4. Research Questions 
Reviewing the existing literature highlighted the many uncertainties and struggles 
associated with analysing the West African climatology in relation to the droughts in 
the 1970s and 1980s. Moreover, very few studies have also focussed on the wetter 
(than present) conditions during the 1950’s. Various studies used different 
observational datasets to analyse the data which will impact any conclusions drawn, 
as it is unlikely the observational datasets are the same. As the CMIP6 data has only 
recently been published, there are less studies using the data than CMIP3 and CMIP5, 
hence it will be useful to compare CMIP6 models and to see how the models vary 
within CMIP6 in relation to the drought period. Improving historical simulations often 
helps to increase confidence in model projections, and it could be likely that if the 
models have different representations of the Sahelian droughts that this will feed into 
their projections. Moreover, model resolution has appeared frequently in the literature 
as a factor that affects model behaviour, through struggling to represent precipitation 
but also circulation over Africa. Average model resolution is increased within CMIP6 
and will relate to the historical simulations of Sahel droughts and the projections for 
precipitation over the region. Hence if resolution is a dominant process, we might hope 
to see overall improvements in CMIP6 models. The literature shows circulation over 
the Sahel is complex with many associated feedbacks, but due to time constraints, 
more focus will be placed on investigating precipitation variability. To investigate these 
issues, the following research questions were devised: 

1. Can CMIP6 models simulate observed interdecadal precipitation variability over 
the Sahel? 

2. What factors relate to model representation of precipitation variability? 
3. Does evaluation of past variability inform understanding of future change? 
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3. Methodology 
In this chapter, the methods for the thesis will be discussed. The geographical study 
location and drought time period will be defined, alongside a summary of the various 
observational and reanalysis datasets that will be compared to the model simulations. 
The spatial and time series analysis methods will also be outlined.  
 
3.1. Study Region 
Following an examination of the literature, it was found there is a lot of variation on 
how the drought period is defined and what region it affected (Table 3.1). The study 
region of 18oW to 20oE and 10oN to 20oN was chosen and the drought period was 
defined as 1970 to 1983 (Figure 3.1; Figure 3.2; Table 3.1). This produces a region 
which minimises the area of ocean whilst covering the Sahel in West Africa. It is also 
the location of the WAM during the wet months of June, July, August and September 
(JJAS), thus JJAS was chosen to be analysed. As can be seen, it is very similar to 
many other studies (Table 3.1).

Figure 3.1: Left - Map of Africa showing the study region which is highlighted in red. 
Right - Map of the study region itself. 

Figure 3.2: Time series of observed monsoon season precipitation over the 
Sahel (mm/day). The green box depicts the time period defined as the drought. 
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Table 3.1: Definition of the Sahelian drought in academic literature, in terms of location, timing and duration, and how the data was analysed. 

Paper Drought Location Drought Timing and 
Duration 

Months Absolute values or 
anomalies 

Binns (1990) Savanna-Sahel = Mauritania to 
Sudan: 10oN-25oN, 18oW-35oE 

1968-1974, 1979-1984 N/A – discusses 
desertification 

N/A 

Dai et al (2004) 
 

10oN-20oN, 20oW-20oE Early 1970s to late 1980s JJAS Anomaly relative to 1920-
2003 long term mean 

Lau et al (2006) 10oN-20oN,20oW-40oE 1970-1980s JAS Absolute 
Giannini et al (2008) 10oN-20oN, 20oW-35oE 

West Sahel = 13oN-20oN, 15oW-20oE 
1970s to mid 1980s JJAS 21 year running mean, 

annual anomalies 
Biasutti (2013) 3oN-20oN, 20oW-30oE 1970s and 1980s JAS Anomalies 

Nicholson (2013) Sahel = 14oN-18oN, 20oW-25oE 1970s-1980s JJAS Varies 
Bamba Sylla et al 

(2016) 
10oN-20oN, 15oW-15oE N/A – looking at climatic 

zones 
N/A N/A 

Vellinga et al (2016) 10oN-20oN,15oW-30oE Lifted in 1984 – year when 
Sahelian rainfall recovered 

from the drought 

JAS Absolute 

Sultan and Gaetani 
(2016) 

7oN-20oN, 15oW-30oE (west = west 
of 5oW and east = east of 5oE) 

1970s-1980s JAS Absolute 

Barry et al (2018) West Africa = 5oN to 20oN, 20oW-
15oE 

Between 1970 and 1980 N/A – looking 
across all years 

N/A 

Akinsanola and 
Zhou (2019) 

West Africa = 0-20oN, 20oW-20oE N/A – did not go in depth 
about the past 

JJAS Anomalies compared to 
historical period of 1980-

2005 
Andrews et al (2020) 12.5oS-17.5oN, 15oW-37.5oE 

West Africa = 0-10oN, 20oW-10oE 
1970s-1980s N/A - Annual Absolute and decadal 

anomalies 
Monerie et al (2020) Western Sahel = 10oN-20oN, 20oW-

5oW 
Central Sahel = 10oN-20oN, 5oW-

20oE 

N/A – analysing model 
uncertainty, does not mention 

drought in depth 

JAS N/A 
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3.2. Observational, satellite, and reanalysis datasets 
 
3.2.1. Precipitation 
This study used five observational, satellite, and reanalysis datasets to compare 
model results to: Tropical Applications of Meteorology using satellite data and ground-
based observations (TAMSAT), Climate Hazards group Infrared Precipitation with 
Stations (CHIRPS), Climatic Research Unit Time-Series version 4.04 (CRU), 
European Centre for Medium-Range Weather Forecasts Reanalysis Dataset 5 Land 
(ERA5) and the Global Precipitation Climatology Centre Full Data Reanalysis Product 
(GPCC) (Table 2.1). These datasets are compiled using different methods thus results 
in a range of estimates of Sahelian precipitation. 
 

 

TAMSAT was developed by the University of Reading and was originally an algorithm 
to estimate precipitation from satellite data for West Africa but was eventually 
extended to the rest of Africa, from 1983 to present day, with a 0.0375o resolution 

Full Name Developers Duration Resolution Reference Data Type 

Climatic Research 
Unit Time-Series 

version 4.04 
(CRU) 

University of 
East Anglia 1901 - 2019 0.5o x 0.5o 

University of 
East Anglia 

Climatic 
Research Unit 

(2020) 

Gauge 

Tropical 
Applications of 

Meteorology using 
Satellite data and 

ground-based 
observations 
(TAMSAT) 

University of 
Reading 1983 - 2020 0.0375o 

Maidment et al 
(2014) 

Merged 
gauge and 

satellite 

Climate Hazards 
group Infrared 

Precipitation with 
Stations 

(CHIRPS) 

University of 
California at 

Santa Barbara 
and the United 

States 
Geological 

Survey 

1981 - 2020 0.05o 
Funk et al 

(2015) 

Merged 
gauge and 

satellite 

European Centre 
for Medium-Range 

Weather 
Forecasts 
Reanalysis 
Dataset 5 
(ERA5) 

European 
Centre for 

Medium-range 
Weather 

Forecasts 
(ECMWF) 

1981 - 2020 0.25o 
Hersbach et al 

(2020) Reanalysis 

Global 
Precipitation 
Climatology 

Centre Full Data 
Reanalysis 

Product (GPCC) 

Global 
Precipitation 
Climatology 

Center 

1891 - 2019 0.25o 

Global 
Precipitation 
Climatology 

Center (2020) 

Gauge 

Table 3.2: Summary of the observational, satellite and reanalysis datasets used in this study. 
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(Maidment et al, 2014; Tarnavsky et al, 2014; Dembélé and Zwart, 2016). The 
algorithm has been calibrated for the period 1983 to 2010 due to data availability 
associated with ground-based rain gauges (Tarnavsky et al, 2014; Dembélé and 
Zwart, 2016). TAMSAT estimations themselves are not affected by biases from the 
number of gauges as it uses Thermal Infrared imagery (TIR) which took samples every 
30 minutes up to July 2006, and then every 15 minutes after that (Tarnavsky et al, 
2014; Maidment et al, 2014). TIR is most useful because African precipitation tends to 
come from deep convective systems (Maidment et al, 2014), although, the signal does 
not penetrate the clouds fully, and consequently struggles with quantifying the exact 
amount of precipitation (Dembélé and Zwart, 2016). Precipitation is estimated “by 
applying the predetermined calibration parameters to cold cloud duration (CCD) fields 
calculated from TIR data”, assuming most African precipitation is produced by cold 
clouds (Maidment et al, 2014, p.3). This data is used with rain gauge observations to 
provide information; however, the number of rain gauges has decreased over time 
hence the satellite data has become dominant (Maidment et al, 2014; Tarnavsky et al, 
2014). Evaluation of the estimates produced by TAMSAT found Africa specific 
datasets tend to perform better than a subset of a global dataset as it accounts for 
local climatologies within the algorithm (Maidment et al, 2014). 
 CHIRPS has been derived by the University of California at Santa Barbara and 
the United States Geological Survey, covering 50oS to 50oN, with a resolution of 0.05o 
(Funk et al, 2015). It aims to fill a gap by being a high-resolution dataset that has a 
higher temporal coverage with a low bias and goes back further in time than other 
available datasets (Funk et al, 2015). The dataset was “mainly designed for drought 
monitoring […] in regions with complex topography, changing observation networks 
and deep convective precipitation systems that correspond reasonably well with CCD 
estimates” (Funk et al, 2015, p.17). Its algorithm uses satellite information over areas 
that lack gauge data alongside estimates of precipitation from CCD data from 1981 to 
present day (Funk et al, 2015). This is merged with available World Meteorological 
Organization’s Global Telecommunication System (GTS) gauge data (Funk et al, 
2015). The database has been validated and shown to perform well in relation to 
drought monitoring, thus supporting the United States Agency for International 
Development Famine Early Warning Systems Network well (Funk et al, 2015). Using 
28 stations in the Sahel region, it has been shown that the wet season bias in CHIRPS 
is lower than other datasets as it includes weather station data (Funk et al, 2015). 
However, CHIRPS still overestimates precipitation compared to gauge data, but there 
is a strong correlation coefficient for data from 1998 to 2010 before the data is 
averaged to monthly resolution (Sacré Regis et al, 2020). During the monsoon season, 
CHIRPS overestimates precipitation by an average of 14mm/month (Sacré Regis et 
al, 2020). Despite this, studies such as Badr et al (2016) deemed CHIRPS to be 
among the best of observational datasets for Africa due to its “higher resolution, better 
station coverage over Africa, improved statistical approaches and updated temporal 
coverage” (p.9029). 
 The CRU TS.04 precipitation dataset is a gridded gauge dataset, which 
retrieves observations from different sources and combines them (Maidment et al, 
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2014). It was initially released in 2000 and has since been updated on many different 
occasions to refine the dataset and implement new variables (Harris et al, 2020). 
There is a high temporal coverage, so it is useful for analysing long term climate 
changes (Maidment et al, 2014). However, there is the potential for large errors 
because gauges are sparsely and unevenly distributed across Africa (Maidment et al, 
2014). The grids in the CRU datasets are 0.5o x 0.5o, and provide monthly data from 
1901 to 2019, derived from National Meteorological Services’ daily or sub-daily 
observational data (University of East Anglia Climatic Research Unit, 2020). There are 
a total of 10 variables, including precipitation, cloud coverage, temperature and 
evapotranspiration (University of East Anglia Climatic Research Unit 2020). The time 
series was created by angular-distance weighting interpolation (University of East 
Anglia Climatic Research Unit, 2020). Gaps in observational data are filled using 
published climatology for the region (Harris et al, 2020). For Africa in particular, the 
CRU dataset has been recognised as one of the most trustworthy providers of 
historical observational data (Zebaze et al, 2019). 
 GPCC is a gridded gauge dataset like CRU (Maidment et al, 2014; National 
Center for Atmospheric Research Staff, 2020). The World Meteorological Organization 
uses the datasets provided by the GPCC ‘through the Global Telecommunication 
System (GTS) on near-real-time basis’ (Akinsanola et al, 2017, p.671). The data for 
the GPCC began to be compiled in 1989, and now there is data from 85,000 stations 
across the globe and a temporal coverage of over 100 years (Becker et al, 2013; 
Global Precipitation Climatology Center, 2020; Table 3.2). For a station to be used, 
there has to be a 10-year minimum length, which results in over 65,000 stations being 
used to calculate annual climatologies (Becker et al, 2013). However, it should be 
noted that between 1983 and 2010, the number of gauges across Africa has 
decreased up by to 80%, adding uncertainty to the data despite the rigorous quality 
control process (Becker et al, 2013). Every one to three years, the gridded products 
are released, with spatial resolutions of 0.25o, 0.5o, 1.0o and 2.5o (Becker et al, 2013; 
Global Precipitation Climatology Center, 2020). This study will use the 0.25o spatial 
resolution dataset. Akinsanola et al (2017) calibrated GPCC over West Africa for the 
time period January 1990 to December 2008, comparing to observational data from 
81 West African meteorological stations that have been quality control checked. They 
used a monthly dataset at 0.5o spatial resolution and found that GPCC did manage to 
reproduce the WAM annual cycle but underestimated Sahelian precipitation 
(Akinsanola et al, 2017). Despite this, they stated that GPCC was one ‘of the most 
outstanding datasets’ in their study, along with an earlier version of CRU TS.04 
(Akinsanola et al, 2017, p.687). Over the Sahel, GPCC had a Pearson’s value of 0.96 
and over the whole of West Africa the resultant value is 0.94 (Akinsanola et al, 2017), 
indicating just how well it performed compared to the observations. 
 ERA5 provides data from 1950 to present day, with a resolution of 31km and 
using the 4D Variance assimilation scheme (Hersbach et al, 2020). ERA5 is “produced 
by combining a numerical weather prediction model with observational data from 
satellites and ground observations” (Gleixner et al, 2020, p.4). It provides hourly data 
at a 0.25o spatial resolution from 1979 to present day (Gleixner et al, 2020). ERA5 
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matches precipitation observations better than the previous version ERA-Interim 
(Gleixner et al, 2020; Quagraine et al, 2020). The monsoon season wet bias over West 
Africa was reduced by up to 60% in ERA5 compared to ERA-Interim, which suggests 
the overall cycle of precipitation across the year is better represented, as well as the 
extreme precipitation distribution (Gleixner et al, 2020; Quagraine et al, 2020). The 
peak monsoon values produced by ERA5 are lower than the gauge data though, and 
the WAM precipitation band is placed more south in ERA5 compared to observations, 
however, this has also been seen in other reanalysis datasets (Quagraine et al, 2020). 
It has been found that ERA5 is able to represent the spread of West African 
precipitation across the year and the interannual variability well (Quagraine et al, 
2020). This study uses ERA5-Land which was produced by taking the land component 
from ERA5 and refining its accuracy through a range of improvements, predominantly 
by an increased resolution of 9km rather than ERA5’s 31km resolution, on a grid of 
0.1o by 0.1o (Muñoz-Sabater et al, 2019). 
 
3.2.2. Circulation 
Circulation over the Sahel has been linked to changes in precipitation, such as through 
the WAM (Parker et al, 2005; Nicholson and Klotter, 2021), thus it has formed part of 
the analysis in this study. Due to limitations with observational circulation data 
availability over the Sahel (Nicholson and Klotter, 2021), circulation data has been 
taken from the ERA5 reanalysis dataset - discussed previously (Hersbach et al, 2020). 
It is important to note due to this lack of continuous records of upper-air stations in the 
Sahel region, reanalysis datasets like ERA5 have not been properly validated 
(Nicholson and Klotter, 2021). However, reanalysis circulation data is trusted more 
than precipitation estimates (Hersbach et al, 2020). ERA5 itself has a slightly lower 
resolution than the ERA5-Land dataset used for precipitation data (0.25o vs 0.1o); and 
a back-dated version has been released that covers 1950 to 1979 which will be 
merged with the version that covers 1979 to 2021 (Hersbach et al, 2020) to maximise 
the temporal coverage. It is constructed using the same methods as ERA5 (Hersbach 
et al, 2020). The u and v components of wind variables will be used to examine 
changes in wind speed and compare to the surface zonal and meridional wind speeds 
in the CMIP6 models. The study area has been extended to 25oW to 20oE and 0oN to 
20oN to capture the winds that feed into the Sahel region. 
 
3.2.3. Sea Surface Temperatures (SST) 
The sea surface temperatures (SST) variable from the Met Office Hadley Centre’s sea 
ice and sea surface temperature version 1 (HadISST) dataset was used (Rayner et al, 
2003). It has a spatial resolution of 1o x 1o, and a temporal coverage of 1870 to 2016 
(Rayner et al, 2003). Building on previous datasets, interpolation was undertaken to 
fill more gaps of missing data (Rayner et al, 2003). Again, the lack of available 
observational data adds uncertainty to this dataset as it cannot be fully validated, 
nevertheless, the interpolated data performs well when compared to other published 
datasets (Rayner et al, 2003). To aid analysis for this study, all missing data values 
were set to be ‘land’ rather than -1000.0. The data was remapped to a regular 360o by 
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180o grid using Climate Data Operators (CDO). Data was plotted as global maps, 
rather than specifying an area related to West Africa, because the ocean’s influence 
on West African precipitation is not limited to just one area, for example, both the 
Indian and Atlantic oceans affect the WAM (Sultan and Gaetani, 2016).  
 
3.3. Models 
All coupled models within CMIP6 with historical runs were analysed. The lowest 
numbered ensemble member was taken (see 3.4 for discussion about ensemble 
choice). Details are in Table 3.3., using information from Eyring et al (2016). For 
detailed information of model set-up, see Appendix 2. 

    As well as these, the equivalent simulations in the historical atmosphere only 
experiments with prescribed SSTs (AMIP-Hist) and the coupled Historical-Natural 
experiments (Hist-Nat) were examined to evaluate the coupled historical experiments 
(Table 3.3.). The Hist-Nat simulations hold GHGs at pre-industrial levels and do not 
include land-use changes, which removes the impact of humans. However, they do 
not include all natural forcings (e.g. natural forest fires) (Eyring et al, 2016). The 
historical version of AMIP was analysed because those experiments cover 1870 to 
2014 (Eyring et al, 2016), encompassing all of the drought period. It needs to be noted 
that a lot fewer modelling groups ran AMIP-Hist experiments compared to AMIP (16 
versus 42) (Eyring et al, 2016).  

   Five Shared Socioeconomic Pathway (SSP) projections were examined: 1-2.6, 
2-4.5, 3-7.0, 4-6.0 and 5-8.5. These were chosen as they build on the Representative 
Concentration Pathways in the fifth IPCC report and CMIP5 models (Monerie et al, 
2017). SSP3-7.0 was also included because it is a new baseline scenario that has 
been developed assuming no further mitigation policies are put in place, continuing on 
the current trajectory, with higher levels of aerosols too (Tebaldi et al, 2021). 

 
 
 

 
3.4. Analysis Methods 
Analysis was undertaken on the BluePebble server using Python through the Linux 
operating system on the computational facilities of the Advanced Computing Research 
Centre at the University of Bristol (2021). 

Experiment Years Number of Models 
Coupled (CMIP) 1850 – 2014 49 

Atmosphere Only Historical (AMIP-
Hist) 1870 - 2014 16 

Coupled Historical-Natural (Hist-Nat) 1850 - 2014 14 
Shared Socioeconomic Pathways 

(SSPs) projections 2015 - 2100 34  
(at least one SSP) 

Table 3.3: Details of the experiments used in this study, their duration, and the number of 
models in the experiment. 
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The lowest numbered ensemble member run by each modelling group was 
used. This was decided on after examining CanESM5 – a model which was run for 65 
different experiments in the historical category, by the Canadian Centre for Climate 
Modelling and Analysis (Swart et al, 2019). Within the CanESM5 ensemble members, 
the average range between the different members amounts to 1.17mm/day for the 
interannual variability and decreases to 0.38mm/day with the 20-year running mean 
(Figure 2.3). There is likely to be a larger difference between the different modelling 
groups rather than the different ensemble members within a modelling group, as seen 
with past CMIPs like CMIP5 (Sultan and Gaetani, 2016). The subset of CMIP5 models 
in Sultan and Gaetani (2016)’s work had an inter-model range of ~4mm/day, nearly 
four times larger than what is seen within CanESM5. In addition, this means the multi-
model mean is not going to be weighted towards models with more ensemble 
members, with previous studies using similar methodologies (e.g. Santer et al, 2009; 
Monerie et al, 2012; Gaetani et al, 2017). 

 
 
 
 

 

Figure 3.3: Time series of each ensemble member of the CanESM5 model by the Canadian 
Centre for Climate Modelling and Analysis (mm/day). Interannual (top left), five year running 
mean (top right), 10 year running mean (bottom right) and 20 year running mean (bottom 
left). The multi-model mean is the black line, CRU is the purple line and GPCC is orange.  
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3.4.1. Time series analysis 
For time series analysis, models were averaged over the study region, producing one 
value for each timestep, using CDO. All models and observations need to be mm/day, 
so the relevant conversions will be completed. TAMSAT was already in mm/day. 
CHIRPS, GPCC and CRU were converted from mm/month to mm/day by dividing by 
30.5, as that is the average number of days in the months of JJAS. ERA5-Land and 
ERA5-Backdated were converted from m/day to mm/day by multiplying by 1000. 
 
3.4.2. Spatial analysis 
For spatial analysis, models were averaged over the chosen time periods (Table 3.4) 
producing one value per grid point, using CDO. Model resolution varies, so for spatial 
comparison to the observations, the models were re-gridded to match the respective 
observational grid through using CDO bi-linear interpolation. This allowed for the 
correct calculations to take place and model bias to be evaluated. Additionally, models 
have been grouped into three categories approximately equal in size according to their 
nominal resolution: higher resolution (<160km), medium resolution (160km-250km) 
and lower resolution (>250km) (Figure 3.4).  
 
Table 3.4: Details of time periods to be analysed in this study. The common period is the 
overlapping time period between the coupled historical model runs and the observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time Period Name Years in Time Period 
Drought 1970 - 1983 

Wet Period 1950 - 1963 
Recent Period 2001 - 2014 

CRU common period 1901 - 2014 
GPCC common period 1891 - 2014 

Figure 3.4: Model resolution groupings. 

LOWER RESOLUTION

Model Nominal 
Resolution (km)

AWI-ESM-1-1-LR 268
BCC-ESM1 402
CanESM5 402

CanESM5-CanOE 402
CESM2-FV2 305.6

CESM2-WACCM-FV2 305.6
GISS-E2-1-G 315.5

GISS-E2-1-G-CC 315.5
GISS-E2-1-H 315.5

IITM-ESM 271.5
IPSL-CM6A-LR 262.4
MCM-UA-1-0 417.3
MIROC-ES2L 402

MPI-ESM-1-2-HAM 268
MPI-ESM1-2-LR 268

NESM3 268
NorESM2-LM 305.6

HIGHER RESOLUTION

Model Nominal 
Resolution (km)

AWI-CM-1-1-MR 134
CESM2 152.8

CESM2-WACCM 152.8
CNRM-CM6-1-HR 71.5

E3SM-1-0 142.9
E3SM-1-1 142.9

E3SM-1-1-ECA 142.9
EC-Earth3 100.5

EC-Earth3-Veg 100.5
FIO-ESM-2-0 152.8

HadGEM3-GC31-MM 96.7
MPI-ESM1-2-HR 134

NorESM2-MM 152.8
SAM0-UNICON 152.8

TaiESM1 152.8
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3.4.3. Statistical testing 
To quantify the differences between the models and the observations and the different 
time periods, statistical testing was carried out. Anomalies were calculated across the 
varying timescales and time periods (Table 3.4). Projection anomalies were calculated 
by subtracting the average of the recent period from each timestep in the projection 
time period.  

Running means of various lengths were applied to filter out the interannual 
variability and analyse the long-term variations in precipitation. For comparison, the 
interannual variability and five- and 10-year running means were analysed. A longer 
period in the running mean was considered but the standard deviation of applying one 
that is longer than 10 years drops to less than 50% of the interannual standard 
deviation, smoothing out too much of the variation (Figures 3.3/3.5). The 10-year 
running mean allows for some variation to still exist as well as a distinguishable signal 
(Figure 3.5). 

Pearson’s R correlation coefficients were computed to help with the 
understanding of how well the models represent the historical observations. There was 
also analysis of the variation within the historical time series by standardising them. 
These was calculated by subtracting the long term mean from each timestep and 
dividing by the long-term standard deviation. 

 
 

 
Figure 3.5: Standard deviation of the long term means (mm/day) for differing number 
of years in the running mean for the r1i1p1f1 ensemble member of CanESM5. 
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4. Results and Discussion 
To investigate the ability of the CMIP6 models to simulate the Sahel droughts, and 
whether there is a relationship with their future projections, three research questions 
were devised after examining the literature: 

1. Can CMIP6 models simulate observed interdecadal precipitation variability over 
the Sahel? 

2. What factors relate to model representation of precipitation variability? 
3. Does evaluation of past variability inform understanding of future change? 

 
4.1. Can CMIP6 models simulate observed interdecadal precipitation variability 
over the Sahel? 
There have been huge improvements in climate models over time (Eyring et al, 2016). 
Despite these improvements, there are still discrepancies between models and 
observations for Sahelian precipitation that have yet to be fully resolved. 
 
4.1.1. Observations 
Figure 4.1.1. illustrates Sahelian precipitation over time from observed, satellite, and 
reanalysis datasets. Precipitation has been averaged over JJAS, and GPCC has the 
best temporal coverage, closely followed by CRU. TAMSAT, CHIRPS and the 
reanalysis data of ERA5-Land start in the early 1980s, hence do not cover the entire 
drought period. ERA5-Backdated is similar to ERA5-Land but is a coarser resolution 
and covers a longer time period. 
 GPCC and CRU agree quite well across their available coverage, with ERA5-
Backdated’s fluctuations aligning with the other two but has lower values. For the 
datasets which cover the drought period, preceding the drought, there is a wetter 
period of high precipitation values during the 1950s and early 1960s (Figure 4.1.1). 
Following this, there is a clear decrease in precipitation around 1970 and remains low 
for about 13/14 years. Precipitation recovers around 1983/1984 and continues to 
increase, albeit at different rates between datasets. In the more recent years, all the 
datasets agree quite well, with there being ~1mm/day between all of them. This can 
be attributed to the ERA5 data not quite having the same level of recovery in 
precipitation following the drought period compared to the other four datasets. It has 
been found reanalysis datasets tend to underestimate Sahelian precipitation 
compared to datasets such as CRU, CHIRPS and GPCC, linked to factors like 
parameterisations and relationships between earth system elements (Quagraine et al, 
2020). Also consistent across some reanalysis datasets, including ERA5, is the 
WAM’s band of precipitation is often being located too south, hence reducing 
precipitation over the Sahel (Quagraine et al, 2020). Thus, ERA5 is not expected to 
represent Sahelian precipitation well but it is useful for comparison to the other 
available datasets. 
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 The spatial representation of the drought for the two long timeseries (GPCC 
and CRU) will be shown later (in Figures 4.1.5 to 4.1.10). GPCC and CRU resemble 
each other, with the only difference linking to the generation of their data – CRU has 
smoother contours than GPCC. The values across the study region are consistent in 
both datasets. 

 
4.1.2. Evaluation of models 
Deciding which models have the best and worst representation of precipitation over 
the Sahel depends on the method used. This study uses three methods to help 
examine model performance: comparison of temporal correlations, spatial comparison 
using difference maps and model biases.  

Temporal correlations have been derived using the Pearson’s r correlation test 
between the modelled and observed time series. This method tests whether the 
models capture the long-term variability that has been observed, however, the models 
may perform well here despite not having the right magnitude of change. For example, 
the modelled fluctuations could mirror the observed fluctuations but instead of being 
around 3mm/day, they are around 1mm/day. Developing this further, Lau et al’s 2006 
study defined reasonable agreement between models and observations to be 
significant when coefficients at the 95% confidence interval are higher than 0.26 and 
reasonable disagreement being -0.26 or lower, with neutral models in between. These 
were computed for the time series that came out of the Standardised Precipitation 
Index (SPI) (Lau et al, 2006). This study did not use the SPI, but the time 
series have been standardised which is a very similar method (see Methodology).  

Figure 4.1.1: Time series of mean JJAS precipitation (mm/day) over the Sahel study 
region for the observational datasets. Note that only GPCC, CRU and ERA5-Backdated 
cover the entire drought period. 
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The second method of comparison was to compare the spatial distribution of 
precipitation averaged over the different time periods, a visual method of comparison 
rather than numerical. It assesses the model’s ability to capture the magnitude of 
change across the Sahel and not the variability like the temporal correlation 
coefficients do. Using this method of analysis may result in different models being 
classed as the ‘best’ performers compared to the temporal correlations. Model 
performance will be defined by representation of the anomalies between the drought 
and wet periods because models tend to perform better with the anomalies between 
the drought and recent periods, limiting the distinctions.  

Additionally, as a third method of comparison, model biases can be calculated 
both temporally and spatially through creating an average over the drought period and 
subtracting the observations from the models. The larger the bias, the more 
uncertainty there is in the model. 
 
4.1.2.1. Method 1: Temporal Correlations 
Figure 4.1.2 shows Sahelian precipitation over time in observations and CMIP6 
models. There are a wide range of results within CMIP6 historical simulations, with an 
average of 4.5mm/day between the minimum and maximum models with no running 
mean implemented, decreasing to 4.2mm/day with a 10-year running mean. This is 
over 3mm/day larger than the range of different ensemble members of CanESM5 
(Figure 3.4.1). Every available historical simulation was plotted for the lowest 
ensemble member, apart from CIESM2, as these results were out by a factor of 
approximately 100, thus the model was removed from the analysis. The multi-model 
mean (MMM) does not seem to capture the wet (1950-1963) or drought (1970-1983) 
periods in any of the plots, in fact it suggests there is a slight increase in precipitation 
during the drought (Figure 4.1.2).  

Previous studies have focused more on the spatial changes in precipitation 
over the Sahel or conducting ensemble mean analysis instead of explicitly examining 
the time series data (Akinsanola and Zhou, 2019; Monerie et al, 2020). There are 
uncertainties associated with using the ensemble mean; it often risks being an 

Figure 4.1.2: Time series of mean JJAS precipitation (mm/day) over the study region for the 
lowest numbered ensemble member for each historical run (1850-2014). From left to right: 
interannual time series, five-year running mean and 10-year running mean. The black line is 
the multi-model mean, purple is CRU and orange is GPCC. The blue box represents the wet 
period, green the drought and red the recent period.  
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oversimplification, especially when examining precipitation due to its variable nature 
(Daron et al, 2021). Narrower ranges of projections were interpreted when participants 
were shown the ensemble mean instead of the whole range (Daron et al, 2021). This 
is reflected in these results, as there is not even a 1mm/day change between 1850 
and 2014, compared to the 4.5mm/day inter-model range, and it does not show the 
same variations as observations (Figure 4.1.2). However, it is useful for an insight into 
the overall behaviour of modelled precipitation when used in context of the full range. 

Upon inspecting the individual models, there is little indication that they 
reproduce the observed interdecadal variability: a wetter period in the 1950s, a long 
term drought in the 1970s, and then a recovery. However, despite apparently 
struggling to represent the wet and drought periods, CMIP6 models do show a wetting 
trend in the recent period over the Sahel (Figures 4.1.2/4.1.3). Some studies have 
attributed recent increases in precipitation (or the drought recovery) to GHGs (Dong 
and Sutton, 2015), so it is interesting the models show recent increases, which may 
also be due to rising GHGs.  

It is a little challenging to evaluate individual models’ representation of the wet 
and dry periods from Figure 4.1.2. Models have different mean precipitation and 
magnitude of variability, hence standardising the modelled and observed time series 
was appropriate, so changes could be analysed relative to the long term means of 
each model. This results in the interannual variability being the same in each model 
and allows for analysis of whether the models have relative drought and wet periods 
compared to their long-term mean. The time series were standardised by subtracting 
the long term mean from each timestep and dividing by the long-term standard 
deviation, for each model. This method is similar to the Standardised Precipitation 
Index (SPI) (Lau et al, 2006; Mishra and Singh, 2010). However, the SPI adjusts the 
precipitation variance to have a Gaussian distribution so that drought frequency 
statistics are appropriate. It was decided to not use this approach and keep the 
standardisation simpler, and comparable to that used for phenomena such as El Niño. 

There is still a lot of scatter within the data and the MMM shows some similarity 
to the observations in the wet period and the recent period, but not the drought period 
(Figure 4.1.3). The models being able to capture the variability in the recent period 
suggests they have been able to depict the influence of rising GHGs on the Sahel, 
even if slightly overestimated compared to the observations (Dong and Sutton, 2015). 

Figure 4.1.3: As Figure 4.1.2, but for the standardised time series instead. 
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It is possible that the models are able to simulate long term wet and dry periods, 
but they are not simulating them at the same time as in observations. Following this 
logic, the standardised time series (Figure 4.1.3) were analysed further to examine 
whether the models were able to simulate a drought period, regardless of the years it 
occurred in. A ‘dry’ or ‘wet’ year was defined as a year where the dry/wet anomaly is 
more than one times standard deviation (SD). A ‘drought’ or ‘wet’ period were 
classified by three or more consecutive years with the anomaly being more than one 
times the SD (Appendix 1.1a/1b). 
 Surprisingly, the observations do not have a sustained drought period during 
the defined time period of 1970-1983. GPCC has six years that are below 1SD and 
CRU has five in the drought period (Appendix 1a). There are 26 models which have 
sustained drought periods, with nine models having consecutive years falling within 
the defined drought period. In particular, E3SM-1-1 has seven ‘dry’ years within the 
defined drought period, closely followed with HadGEM3-GC31-LL having six. 
However, the fact 26 can simulate consecutive dry years implies the models are able 
to be dry enough for a drought to occur, despite being out of sync with the 
observations. This can be explained by years in coupled simulations not being 
expected to correspond with specific years in observations because models produce 
their own unforced interannual variability. 
 The observations have eight out of the 13 years in the wet period defined as 
‘wet’ years, with two sustained wet periods, but no years fall in the recent period. 24 
models have prolonged ‘wet’ periods across the whole historical time period. Only two 
models – IITM-ESM and MCM-UA-1-0 – have three or more wet years in the wet 
period. 10 models have sustained ‘wet’ years during the recent period. Significant 
models include CanESM5-CanOE with 10 ‘wet’ years and EC-Earth3-Veg with seven 
all in the defined recent period. Despite E3SM-1-1 capturing a large proportion of the 
drought period, it struggles with the wet periods, having no ‘wet’ years falling in either 
the wet period or recent period. 

The overall long term mean and the magnitude of changes across the historical 
time period will have affected whether a year is deemed ‘dry’ or ‘wet’. It has been 
suggested the wet period that preceded the drought was anomalous instead of the 
drought, which may feed into the observations lacking ‘wet’ years in the recent period, 
despite a clear indication that recent years have become significantly wetter. Kennedy 
et al (2017) recognises that precipitation has been recovering since the drought but 
notes that the current values are lower than the pre-drought levels, implying the wet 
period is anomalous, which could explain these patterns. 
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Pearson’s r correlation coefficients were computed for each model with both 
observational datasets to assess whether they can capture the long-term variability. 
The resulting coefficients with GPCC are consistent with those of CRU (Appendix 
1.2a-2c). Lau et al (2006) conducted an analysis of a subset of CMIP3 models and 
their ability at representing the Sahel droughts. They deemed a sufficient 
representation to be a Pearson’s r correlation coefficient of 0.26, and disagreement at 
-0.26 (Lau et al, 2006). These thresholds were applied to the correlation coefficients 
for the historical CMIP6 simulations, to evaluate whether models were able to simulate 
observed variability. The number of models meeting the threshold for agreement with 
observed variability increases with the implementation of the running mean, from one 
model agreeing with the original time series (EC-Earth3, r = 0.31) to 13 models 
agreeing with a 10-year running mean. It also must be noted that there are six (five-
year running mean) and 10 (10-year running mean) models that demonstrate 
significant disagreement with the observational datasets. 

 
4.1.2.2. Method 2: Spatial comparisons 
Figures 4.1.5 to 4.1.10 are anomaly maps showing the differences between the 
observations and the models between either the drought period and wet period or the 
drought period and the recent period, grouped according to resolution. For the drought 
and wet period anomalies, E3SM-1-1 visually best represents the observations in the 
higher resolution grouping. There is a similar area 0.5-1mm/day drier in the drought 
than the wet period in both the model and the observations (Figure 4.1.5). In the 
medium resolution grouping, MIROC6 has a band across the southern Sahel with 
areas in the drought period up to 1.5mm/day drier, but compared to observations, this 
is only about one third of the areal extent of drying (Figure 4.1.7). The lower resolution 
models appear to have very marginal differences between the drought and wet periods 
(Figure 4.1.9). Interestingly, a lot of the models across all three groupings have 
drought periods wetter than the wet period. However, this is consistent with the 
interannual variability multi-model means in both Figure 4.1.2 and 4.1.2, where there 
appears to be a slight increase in precipitation over the drought period - higher than 
the preceding wet period. Furthermore, this also suggests there are many models that 

Figure 4.1.4: As Figure 4.1.2, with models coloured according to Lau et al (2006)’s thresholds 
where green is a Pearson’s r value greater than 0.26 (agreement) and red is less than -0.26 
(disagreement) with GPCC. 
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struggle to get the volume of precipitation that has been observed in the wet period. 
 Across all three groupings, more models better represent the observations for 
the drought and recent period anomalies compared to the drought and wet period. 
Although, it is not the same models with the best representation in both. EC-Earth3-
Veg suggested the drought period was wetter than the wet period (Figure 4.1.5) but 
represents the observations well for the differences between the drought and recent 
periods (Figure 4.1.6). In the medium resolution models, there are some which do 
capture some of the same differences as the observations, however, there are a few, 
for example MIROC6, which have a larger difference between the drought and recent 
period than the observations (Figure 4.1.8). There is a similar pattern in the lower 
resolution models, but, again, a few models show a larger dry difference compared to 
the observations (Figure 4.1.10).  
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Figure 4.1.6: Maps displaying the difference (mm/day) between the 
average of the drought period (1970-1983) and the recent period (2001-
2014) for all the models and the two observational datasets, for the 
higher resolution models. Negative (positive) numbers represent the 
drought period being drier (wetter) than the recent period. 

Figure 4.1.5: Maps displaying the difference (mm/day) between the 
average of the drought period (1970-1983) and the wet period (1950-
1963) for all the models and the two observational datasets, for the 
higher resolution models. Negative (positive) numbers represent the 
drought period being drier (wetter) than the wet period. 
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Figure 4.1.7: As Figure 4.1.5, but for the medium resolution models. Figure 4.1.8: As Figure 4.1.6, but for the medium resolution models.  
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Figure 4.1.9: As Figure 4.1.5, but for the lower resolution models.  Figure 4.1.10: As Figure 4.1.6, but for the lower resolution models.  
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4.1.2.3. Method 3: Model bias during the drought period 
Model biases were calculated for the drought period, as another route to evaluating 
the models’ ability to simulate the drought, using both the time series (Figure 4.1.11) 
and spatial data (Figures 4.1.12 – 4.1.14). These are the difference between the 
average precipitation during the modelled drought period and the observations.  

According to the time series data, five models overestimate precipitation, with 
the rest underestimating (Figure 4.1.11). The relationship with resolution was also 
considered. There was no consistency between model resolution and bias (Figure 
4.1.11). MCM-UA-1-0 is the lowest resolution model and has the strongest 
overestimation of nearly 2mm/day, which is significant when analysing low 
precipitation periods as this bias could hide the overall signal. ACCESS-CM2 has the 
strongest underestimation bias the same magnitude of MCM-UA-1-0 but is a medium 
resolution model. 

Most models have a dry spatial bias of over 2mm/day, however, there are some 
which are wetter than the observations, for example, SAM0-UNICON has areas which 
are over 4mm/day wetter (Figures 4.1.12 – 4.1.14). Regardless of the direction of bias, 
the strongest differences are seen in the south-west Sahel, over the Guinea Coast, 
suggesting this is a region where model representation still needs to be improved – 
an uncertainty that has persisted across CMIPs (Paxian et al, 2016). A subset of 
CMIP5 models revealed many struggled to capture the observed magnitude of change 
in Sahelian precipitation, with the Guinea Coast seeing the largest overestimation of 
differences (Paxian et al, 2016). The E3SM models have a relatively small bias 
compared to the other models in the higher resolution group, with most of the Sahel 
being ±1mm/day than the observations (Figure 4.1.12). The medium resolution 
models are generally drier than the observations, except for GFDL-ESM4, MIROC6 
and the two CNRM models (Figure 4.1.13). The lower resolution models tend to have 
a smaller bias compared to the other two resolution groupings, apart from MCM-UA-
1-0 which has a strong wet bias over a large area (Figure 4.1.14). However, the 
temporal bias calculations do provide different results compared to the spatial biases, 
for example, SAM0-UNICON has a temporal bias of ~1.5mm/day (Figure 4.1.11) but 
an average spatial bias of ~3mm/day (Figure 4.1.12), highlighting how the perspective 
taken can affect how well the models behave in comparison to each other. 
 The location of precipitation biases over the Sahel is influenced by the modelled 
ITCZ (Monerie et al, 2017). For example, Monerie et al (2017) found that if the ITCZ 
is displaced south, the Gulf of Guinea tends to have a wet bias whereas western Africa 
has a dry bias. In these results, south-west Sahel has a dry bias in most models and 
the Gulf of Guinea is not in the study region, but this could indicate the ITCZ is 
incorrectly located within the models. Alongside this, Ukkola et al (2020) researched 
meteorological droughts in the region and deemed a result robust when the standard 
deviation between the models was smaller than the magnitude of the change itself. In 
the results here, most models have a bias that is larger than the difference between 
the various time periods, suggesting the results are not robust. 
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Figure 4.1.11: Temporal biases (mm/day) between the time series data for the modelled drought period (1970-1983) and the observed 
drought period in the GPCC dataset, organised by nominal resolution, with the highest resolution on the left and the lowest on the right. The 
CRU anomalies are consistent with GPCC.  



   
 

   
 

37 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.12: Maps displaying the difference (mm/day) between the average 
of the drought period (1970-1983) in the highest resolution models and 
GPCC. Negative (positive) numbers represent the model being drier (wetter) 
than GPCC. The difference with CRU is consistent with those displayed for 
GPCC. 

Figure 4.1.13: As Figure 4.1.12, but for the medium resolution models. 
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4.1.3. Summary 
Whether a model is judged to be able to simulate observed interdecadal variability in 
precipitation depends on the method used for assessment. Regardless of the method 
used, it is clear most CMIP6 models fail to capture the interdecadal variability and the 
magnitude of the wet and dry periods. 

According to temporal correlations, EC-Earth3 is one of the best performing 
models and one of the worst is HadGEM3-GC31-MM – both in the higher resolution 
model grouping. Going by the spatial representation of the differences between the 
drought and wet periods, E3SM-1-1 (higher resolution; Figure 4.1.7) is one of the best 
performers and the worst is MPI-ESM1-2-LR (lower resolution; Figure 4.1.9).  

Spatially through visual analysis, the best model appears to be MIROC-E2SL 
in the lower resolution grouping, where the bias is mainly 1mm/day with some small 
areas of slightly higher dry numbers (Figure 4.1.14). Both worst models are in the 
higher resolution grouping (Figure 4.1.12). The worst dry bias model is EC-Earth3 
with most of the bias being up 3mm/day drier than the observations below 15oN, and 
above this it ranges from 0-2mm/day. SAM0-UNICON is the worst model for the wet 
bias, which is mainly +1-3mm/day, with a small dry area over Guinea of 3mm/day. 
According to the temporal bias, the best model is E3SM-1-0 (-0.06mm/day; higher 
resolution) and the worst models are ACCESS-CM2 (-2.16mm/day; medium 
resolution) and MCM-UA-1-0 (+1.87mm/day; lower resolution).  
 
 
 

Figure 4.1.14: As Figure 4.1.12, but for the lower resolution models. 
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4.2. What factors relate to model representation of precipitation variability? 
Various factors have been implicated for the varying representations of historical 
precipitation over the Sahel in CMIP models. Higher resolution models should in theory 
capture more of the small-scale precipitation systems, but this can be affected by other 
aspects such as the role of aerosols and other anthropogenic influences which either 
directly change precipitation or indirectly via changes in sea surface temperatures.  
 
4.2.1. Resolution 
Figure 4.2.1. shows there is a wide range in the strength of correlation coefficients 
between the models and GPCC, using either a five-year or 10-year running mean, 
from 0.6 to -0.5 and nearly 0.8 to -0.7 respectively. The correlations strengthen with 
more years in the running mean. The interannual coefficients were not plotted because 
no correlation is expected on this timescale, as seen in Figure 4.1.4. Figure 4.2.1. 
illustrates the relationship between correlation coefficients and model resolution. On 
the whole, the higher positive correlation coefficients are found in the higher resolution 
models. However, outside of this, there is no clear link between model resolution and 
representation of precipitation variability, with some of the lowest resolution models 
having higher correlation coefficients than the higher resolution models. A similar 
pattern is seen with the model biases, for example, E3SM-1-0 has the smallest bias 
but is not the highest resolution model (Figure 4.1.11-4.1.14).   

 Vellinga et al (2016) found increasing model resolution in three versions of the 
Met Office UM atmosphere model had a positive impact on the representation of 
Sahelian precipitation. They inferred this to be due to the higher resolution model being 
able to depict fine circulation elements better than the low-resolution models, thus can 
generate precipitation more efficiently (Vellinga et al, 2016). However, the model also 
needs to have accurate physics to improve performance (Vellinga et al, 2016). It must 
be noted that this study only focused on one model so is not representative of all 
models that have participated in CMIP6, and that it was an earlier version of 
HadGEM3. Later versions, as used in CMIP6, did not show such a clear improvement 
with resolution (Vellinga, pers. comm). 

Figure 4.2.1: Scatterplots of the GPCC Pearson’s r correlation coefficients and the 
model’s respective nominal resolution (km). Left: five-year running mean. Right: 10-year 
running mean. correlation coefficients with CRU are consistent with those with GPCC. 
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4.2.2. Anthropogenic influence 
The Historical-Natural (Hist-Nat) simulations are still coupled but hold CO2 and other 
GHGs at pre-industrial levels and only includes natural aerosols (Eyring et al, 2016). 
There are no land-use changes so removes the impact of humans, although do not 
include all natural forcings, such as natural forest fires (Eyring et al, 2016).  

Figure 4.2.2 shows the time series data for the Hist-Nat simulations. On the 
whole, there is less variation compared to the historical simulations, signifying the 
influence humans have had on precipitation across time. It also suggests the recent 
increase in precipitation seen in the coupled historical simulations towards the end of 
the 20th century is linked to human actions (Figure 4.1.2/4.1.2), due to the Hist-Nat 
simulations not having a corresponding increase (Figure 4.2.2). The data is plotted on 
the same scale as the historical simulations, indicating the Hist-Nat simulations have 
less spread than the full historical runs. However, fewer models performed this 
simulation so this result could be influenced by a smaller sample size. 

 Dong and Sutton (2015) specifically focused on the radiative forcings 
associated with greenhouse gases (GHGs) to investigate the anthropogenic influence 
towards the end of the 20th century on Sahelian precipitation. They concluded nearly 
75% of the observed changes in Sahelian precipitation is associated with the rise in 
GHGs, hence indicating GHGs might have a positive impact in this region (Dong and 
Sutton, 2015). However, another study by Giannini and Kaplan (2019) hinted 
conclusions like this may only hold when the impact of aerosol cooling is outweighed 
by GHG warming. They implicated the aerosol feedback on SSTs in the Sahel 
droughts through the balance of tropical oceans warming by increased GHGs and the 
North Atlantic cooling from aerosols (Giannini and Kaplan, 2019). In the late 20th 
century, environmental policies were introduced to limit aerosol emissions, thus the 
GHG warming began to outweigh aerosol cooling and coincided with the precipitation 
recovery over the Sahel (Giannini and Kaplan, 2019). These studies suggest aerosols 
played a bigger role in the drought whereas GHGs played a bigger role in the recovery, 
implying they potentially have opposite influences on Sahelian precipitation (Giannini 
and Kaplan, 2019). 
 As with the historical simulations, correlation coefficients were computed to 
assess whether the Hist-Nat simulations represent observed variability. No models 
agree with the observations on the interannual timescale (Appendix 1.3). On the five-
year timescale, only ACCESS-CM2 and CESM2 agree. On top of these two, 
HadGEM3-GC31-LL, ACCESS-ESM1-5 and IPSL-CM6A-LR agree with the 
observations on the 10-year running mean, but only just over the threshold. CNRM-
CM6-1 disagrees with the observations with the 10-year running mean, with 
correlations of -0.25 (GPCC) and -0.27 (CRU), again, just over the threshold. The 
coupled historical simulations tend to have better correlations, which is reassuring as 
it implies the models can better capture the anthropogenic influence and supports the 
existing research base. 
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The spatial pattern of change was also investigated in the Hist-Nat simulations 
(Figures 4.2.3 – 4.2.4). Despite the removal of the variation in CO2 and other 
anthropogenic influences, CESM2 and GFDL-CSM4 still capture an area of significant 
drying that resembles the observations between the wet and drought periods (Figure 
4.2.3). The other models have more muted differences, mainly between ±0.5mm/day, 
which is to be expected following the smaller variations seen in the time series. Nearly 
every model apart from CESM2 has an area where the drought is modelled at least 
0.5mm/day wetter than the wet period (Figure 4.2.3).  

Again, GFDL-CM4 and CESM2 have large areas with a negative difference of 
between 0.5mm/day and 1.5mm/day between the drought and recent periods (Figure 
4.2.4). More models capture the drought being drier than the recent period, however, 
a few, for example IPSL-CM6A-LR and NorESM2-LM have large areas wetter in the 
drought period than the recent period, although, this is mostly +0.5mm/day. 

Despite the more muted differences seen between the different time periods, it 
is clear model biases still exist (Figure 4.2.5). Generally, the highest uncertainties are 
found in the southern part of the study region, and a small concentration of high 
uncertainty over the Guinea Coast, regardless of the direction of bias of ±3mm/day. 

ACCESS-CM2 has a similar bias to its historical equivalent, and so does 
ACCESS-ESM1-5, bar the added slight wet bias of 0.5mm/day on the eastern border 
of the Sahel. BCC-CSM2-MR, CanESM5, CNRM-CM6-1, GISS-E2-1-G, MIROC6 
mirror their historical equivalent. CESM2’s bias has been slightly reduced, as well as 
HadGEM3-GC31-LL. Whereas, IPSL-CM6A-LR’s bias has been significantly reduced 
but now has a small area of wet bias, up to +3mm/day. 

FGOALS-g3 has no historical equivalent, but its nearest comparison is 
FGOALS-f3-L and the bias for each model is very much the same. GFDL-CM4’s 
nearest equivalent is GFDL-ESM4 and the model biases in the Hist-Nat simulations 
are a smaller magnitude than the historical model. Whereas, NorESM2-LM has a 
larger area of a slightly wet bias of up to 0.5mm/day, but in the historical equivalent, it 
is mostly a dry bias of 0.5mm/day in the now wetter areas.

Figure 4.2.2: Time series of JJAS precipitation (mm/day) over the study region for the lowest 
numbered ensemble member for each Historical-Natural run. From left to right: interannual 
timescale, five year running mean and 10 year running mean. The black line is the multi-
model mean, purple is CRU and orange is GPCC. The models are coloured according to Lau 
et al (2006)’s thresholds where green is a Pearson’s R value greater than 0.26 (agreement) 
and red is less than -0.26 (disagreement). 
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Figure 4.2.3: Maps displaying the difference (mm/day) between the 
average of the drought period (1970-1983) and the wet period (1950-
1963) for all the available Historical-Natural models and the two 
observational datasets. Negative (positive) numbers represent the 
drought period being drier (wetter) than the wet period.  

Figure 4.2.4: As Figure 4.2.3 but for the average of the drought period 
(1970-1983) and the recent period (2001-2014).  
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4.2.3. Interactive oceans (AMIP-Historical) 
The atmosphere-only simulations have prescribed oceans, rather than dynamic, which 
forces modelled interannual variability to align with the observations (Eyring et al, 
2016). AMIP-Hist simulations cover 1870 to 2014 (Eyring et al, 2016) - including the 
full drought period. These simulations were examined to evaluate whether models can 
reproduce the drought when forced with the observed SSTs. The range of precipitation 
timeseries is slightly narrower compared to the coupled historical simulations (Figure 
4.2.6). The MMM is also more consistent with the observations, showing similar long-
term variations, albeit ~1mm/day drier (Figure 4.2.6). There is a clear decrease in 
modelled precipitation in the drought period across all three plots, however particularly 
in the 5-year running means, the MMM increases and peaks in the recent period, then 
decreases again (Figure 4.2.6).  

68% of the models in AMIP-Hist strongly agree with the observations and are 
statistically significant on the interannual timescale (Appendix 1.4) – a substantial 
increase from 2% in the coupled historical simulations (Figure 4.2.7). There are no 
models in AMIP-Hist which disagree. This is consistent with other studies which have 
found atmosphere-only models to simulate the annual cycle of precipitation better than 
coupled models, having higher correlations (Sow et al, 2021). This is likely linked to 

Figure 4.2.5: Difference maps of the models and GPCC of JJAS precipitation (mm/day) 
averaged over the drought period (1970-1983) for the Historical-Natural simulations. 
Negative (positive) numbers represent the model being drier (wetter) than the observations. 
Note: only GPCC is presented because the differences are consistent with CRU. 
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coupled models having their own simulated interannual variability as they are not 
forced by observations. 

The decrease in precipitation in the recent period (Figure 4.2.6) is reflected in 
the difference maps between the drought period and wet period and drought and 
recent period. The differences between the drought and wet periods are larger than 
the drought and recent period, although for both anomaly calculations there are still 
models suggesting large areas are wetter in the drought period than both the wet and 
recent periods (Figures 4.2.8 and 4.2.9). The CNRM models show more similarity to 
the observations in the drought minus recent period maps but struggle in the drought 
minus wet period maps. CESM2 appears to capture the observations well in both sets 
of differences, closely followed by TaiESM1. MIROC6 is interesting because it has a 
dry band corresponding to the observations between 10oN and 15oN in the drought 
minus wet period map, but in the drought minus recent it shows the whole study region 
being up to 0.5mm/day wetter in the drought period. 

In terms of model bias, the differences are larger, with the colour bar being 
±4mm/day rather than ±1.5mm/day, highlighting how the model biases are greater 
than the changes shown by the models (Figure 4.2.10). There is no consistency across 

Figure 4.2.7: As Figure 4.2.6 but the models are coloured according to Lau et al (2006)’s 
thresholds where green is a Pearson’s r value greater than 0.26 (agreement) and red is less 
than -0.26 (disagreement). 

Figure 4.2.6: Time series of JJAS precipitation (mm/day) the lowest numbered ensemble 
member for each AMIP-Hist model run (1870-2014). From left to right: interannual 
timescale, five-year running mean and 10-year running mean. The multi-model mean is the 
black line, CRU is the purple line and GPCC is orange. The blue box denotes the wet period, 
the green the drought and the red the recent period. 
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the models for the direction of bias, with some being drier than the observations and 
others being wetter. However, as seen with the coupled simulations, the highest 
uncertainty tends to be in the southern part of the study region, regardless of the 
direction of the difference. As well, there are more models with a wet bias over west 
Africa, implying the modelled ITCZ could be located correctly, as seen in Monerie et 
al (2017)’s study.  
 Compared to the coupled simulations, there are changes in the extent and 
direction of the bias. MRI-ESM2-0, TaiESM1, CESM2, BCC-CSM2-MR, CAMS-
CSM1-0, CanESM5 and FIO-ESM2-0 have wetter biases in the AMIP-Hist 
simulations, with some models having a complete change in bias direction than in the 
coupled simulations (Figure 4.2.10). MIROC6, IPSL-CM6A-LR, FGOALS-f3-L, CNRM-
ESM2-1 and CNRM-CM6-1 all have slightly lower biases in AMIP-Hist, and despite 
GFDL-CM4 not having a direct equivalent coupled model, the bias has been reduced 
here too. IITM-ESM’s bias has reduced in some areas, and become wetter in others, 
whereas CNRM-CM6-1-HR has remained relatively the same in both coupled and 
atmosphere only simulations across the whole Sahel.  
 Thus, the atmosphere only simulations indicate the coupled models struggle to 
represent the patterns of SST change and/or the interaction between SST patterns 
and the atmosphere. This is because prescribing the oceans has improved the model 
relationship with the observations. The model bias compared to observations has 
been improved slightly, however, model bias is still larger than the changes seen 
between the different periods in the models. 
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Figure 4.2.8: Maps displaying the difference (mm/day) between the 
average of the drought period (1970-1983) and the wet period (1950-
1963) for all the available AMIP-Hist models and the two 
observational datasets. Negative (positive) numbers represent the 
drought period being drier (wetter) than the wet period.  

Figure 4.2.9: As Figure 4.2.8, but between the average of the drought 
period (1970-1983) and the recent period (2001-2014).  
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The relationship between a models’ performance in coupled mode and atmosphere-
only mode was examined, to establish whether those models with better historical 
simulations also have better AMIP-hist simulations. 13 models have run both the CMIP 
historical simulations and the AMIP-Hist simulations (Figure 4.2.11). AMIP-Hist 
correlation coefficients are clearly stronger than the CMIP ones, with not even one 
negative coefficient, although CNRM-ESM2-1 (black square on Figure 4.2.11) is close 
to zero. Models by the CNRM group consistently have the lowest correlations across 
all pairings on the interannual timescale and the five-year running mean, suggesting 
even with removing the uncertainty of the oceans, there is still something affecting the 
representation in these models. They are amongst the models with the lowest 
correlations for the 10-year running mean. CNRM-CM6-1-HR is the highest resolution 
model in this study and the other two are medium resolution models (Figure 4.1.4), 
indicating resolution does not always have a large influence on representation. This 
contrasts with Vellinga et al (2016)’s conclusions for the Met Office UM. MRI-ESM2-0 
has the highest CMIP correlation coefficients across all three timescales from ~0.2 to 
~0.6, and the highest AMIP-Hist coefficient switches between CESM2 at ~0.5 on the 
interannual to MIROC6 at over 0.9 with the 10-year running mean.

Figure 4.2.10: Difference maps of the models and GPCC of JJAS precipitation 
(mm/day) averaged over the drought period (1970-1983) for the AMIP-Hist simulations. 
Negative (positive) numbers represent the model being drier (wetter) than the 
observations. Note: only GPCC is presented because the differences are consistent with 
CRU. 
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Figure 4.2.11: Scatterplots comparing the Pearson’s r correlation coefficients of CMIP models and AMIP models with GPCC. The 
correlation coefficients for CRU are consistent with those of GPCC. From left to right: interannual timescale, five-year running mean and 
10-year running mean. 
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4.2.4. Sea Surface Temperatures (SSTs) 
Having shown the importance of SSTs for improving simulations of Sahel precipitation 
variability, they were examined in CMIP6 models in relation to the drought period. 
SSTs have been implicated as an influence on Sahelian precipitation through their 
connection to West African circulation (Nicholson, 2013). Previously, variations in 
modelled Sahelian precipitation have been linked to SSTs across a range of oceans; 
North Atlantic (Mohino et al, 2011), Indian (Bader and Latif, 2003) and the 
Mediterranean Sea (Polo et al, 2011). The North and South Atlantic dipole is a key 
influence on Sahelian precipitation (Mohino et al, 2011). Extratropical oceans have 
been found to influence precipitation on multidecadal timescales, with interannual 
variations linked to nearby oceans (Sultan and Gaetani, 2016). Also, tropical Pacific 
SSTs could induce Kelvin and Rossby waves that propagate across the equator and 
eventually interact over the Sahel, influencing precipitation in the region (Gaetani et 
al, 2017). This adds another level of complexity to understanding the role of SSTs in 
Sahelian precipitation. 

The observations show the Northern Hemisphere SSTs are cooler by up to 1oC 
and the Southern is warmer by 0.5-1oC in the drought period compared to the wet 
period (Figure 4.2.12). The Indian Ocean is also warmer by 0.75oC. These conditions 
are all linked to the Sahelian drought (Park et al, 2015; Zhou et al, 2016). Conversely, 
in the drought and recent period modelled differences, there is less of a clear 
distinction between the Northern and Southern Hemisphere oceans (Figure 4.2.13). 
Global warming has had a strong influence on SSTs, for most of the oceans are at 
least 0.5oC colder in the drought period, with a large part of the Northern Hemisphere 
seeing SSTs that are over 1oC colder (Dong and Sutton, 2015). Where there are 
warmer SSTs in the drought period, these are found in the Southern Hemisphere and 
are typically 0.5-1oC warmer, although the predominant difference is the large negative 
difference between the drought and recent periods.  

On the whole, the models struggle with capturing the difference in SSTs between 
the drought and wet periods. This is likely contributing to the models not having the 
high precipitation values that were observed in the wet period. As well as this, 
generally there are larger negative differences between the modelled drought and 
recent periods in the north Atlantic, linking to the upward trend in precipitation in recent 
years and global warming (Dong and Sutton, 2015), consistent across all models.  

Where the models do capture the correct direction of change, the differences 
tend to be larger than HadISST. On the other hand, there are some models that are 
completely opposite to the observations. For example, EC-Earth3-Veg and 
HadGEM3-GC31-MM have modelled SSTs to be warmer in the North Atlantic (by over 
1.5oC and 0.5oC-1oC respectively) during the drought period than the wet period 
(Figure 4.2.12). It is expected to be the reverse, with the observations showing a lower 
temperature by up to 1.5oC in the same location during the drought period (Figure 
4.2.12). Although, these two models do perform better with the drought and recent 
period differences (Figure 4.2.13).   
 Changes in SSTs can increase Sahelian precipitation through a stronger 



   
 

   
 

50 

difference between the Sahara and the Gulf of Guinea SSTs (Haarsma et al, 2005; 
Monerie et al, 2017), and a stronger Atlantic dipole between the two hemispheres, with 
the latter having been seen in both CMIP5 and CMIP6 models (Park et al, 2015; Zhou 
et al, 2016; Monerie et al, 2017; Monerie et al, 2020). CMIP5 models that had been 
initialised with Atlantic and Indian Ocean SSTs performed better regarding Sahelian 
precipitation compared to those that were not (Martin and Thorncroft, 2014). In these 
CMIP6 results, E3SM-1-1 has one of the best representations of the observations for 
the drought and wet period precipitation anomalies (Figure 4.1.5). Its SSTs show an 
overestimation of the cooling in the Northern Hemisphere compared to HadISST, 
however, there is a clear difference between the two hemispheres so the resultant 
temperature gradient could have influenced the Sahelian precipitation, despite the 
overestimation (Figure 4.2.12). 
 An alternative theory is warmer SSTs resulting in a drier Sahel, comparable to 
the influence of ENSO, because of an associated increase in upper-level moist static 
energy, thus impacting the atmosphere’s vertical stability (Giannini, 2010). EC-Earth3-
Veg is one model with significantly warmer SSTs in the drought period compared to 
the wet period, opposite to the observations (Figure 4.2.12) and suggests this may be 
the cause of the drought period being much wetter than the wet period (Figure 4.1.5). 
For the drought and recent periods, the SSTs have a better resemblance of the 
observations, which feeds into the precipitation anomalies too. Despite not being the 
expected pattern, it can be inferred the warmer SSTs contributed to the higher 
modelled precipitation levels – the opposite to what has been suggested in the 
literature. Additionally, Monerie et al (2017) showed drought conditions in the west 
Sahel have been accompanied by a reduction in moisture convergence and increased 
subsidence by the winds, whereas the central Sahel being wetter is linked to Saharan 
warming and an increased gradient between the north and south Atlantic SSTs. So, 
whilst the concern remains that warmer SSTs could cause further droughts in the 
Sahel in the future, the current historical models suggest otherwise for past trends. 
 It has been found that the modelled ITCZ can be displaced south when the 
equatorial Atlantic have a warm bias and the north Atlantic colder, which has a knock-
on impact to Sahelian precipitation (Monerie et al, 2017). The dry bias over west Africa 
implies the modelled ITCZ in these results could be displaced south. Following this, 
there are not many models with a warm bias for SSTs over the equatorial Atlantic, but 
there are larger cold biases in the North Atlantic which could feed into ITCZ 
displacement and Sahelian precipitation (Monerie et al, 2017).  
 As well, the West African Monsoon brings moisture into the Sahel and is linked 
with SSTs (Nicholson, 2013). The temperature gradient between the Sahara and the 
Gulf of Guinea is one of the main influences on the WAM (Nicholson, 2013). This 
gradient tends to be underestimated in models, resulting in the WAM being displaced 
south compared to observations (Nicholson, 2013; Monerie et al, 2017), thus also 
impacting precipitation. 
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Figure 4.2.12: Maps displaying the difference in sea surface 
temperatures (oC) between the average of the drought period (1970-
1983) and the wet period (1950-1963) for the higher resolution 
models and HadISST, ordered by nominal resolution. Negative 
(positive) numbers represent the drought period being colder 
(warmer) than the wet period. 

Figure 4.2.13: Maps displaying the difference in sea surface 
temperatures (oC) between the average of the drought period (1970-
1983) and the recent period (2001-2014) for the higher resolution 
models and HadISST, ordered by nominal resolution. Negative 
(positive) numbers represent the drought period being colder 
(warmer) than the recent period. 
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Figure 4.2.14: As Figure 4.2.12 but for the medium resolution models.  Figure 4.2.15: As Figure 4.2.13 but for the medium resolution models.  
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Figure 4.2.16: As Figure 4.2.12 but for the lower resolution models.  Figure 4.2.17: As Figure 4.2.13 but for the lower resolution models.  
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4.2.5. Circulation 
It has been seen the coupled historical models are able to capture the recent trend 
with the increased precipitation, but struggle with the wet period that preceded the 
drought, hence analysis of the circulation over the Sahel and the surrounding area 
was undertaken. Three models were chosen: EC-Earth3 for having the best time 
series correlation coefficients, HadGEM3-GC31-MM for the worst and E3SM-1-1 for 
having a better visual representation of the differences between the drought and the 
wet period (Figures 4.2.18/4.2.19). HadGEM3-GC31-MM and E3SM-1-1 were re-
gridded to EC-Earth3’s resolution for ease of comparison. 850hPa was chosen as 
most key circulation elements either originate or exist near the top of the atmospheric 
boundary layer, such as zonal winds associated with the Walker Circulation and 
meridional ones linked to the Hadley cell (Sheen et al, 2017). 
 The vector plots for drought minus recent period (Figure 4.2.19) have a better 
representation of the observations than the drought minus wet periods (Figure 4.2.18). 
This is interesting because the absolute plots for the drought and wet periods appear 
to capture the general circulation shown by the ERA5 observations, whereas the 
recent period absolute plots are slightly more dissimilar. Despite this, the models have 
quite a good resemblance to one another in the structure of the flow over West Africa 
and the surrounding ocean, for both sets of comparisons.  

ERA5 observations help explain how the circulation played a role in the drought 
period, for the comparison between the drought and the wet period shows a 
weakening of the West African Easterly Jet which brings moisture onto the continent 
(Figure 4.2.18). All three models do not have a good representation of this flow and 
show little changes in winds between the two periods, which is intriguing for E3SM-1-
1 due to its representation of the observed precipitation. As a result, it can be argued 
that E3SM-1-1 could be getting the precipitation right for the wrong reasons, from the 
circulation perspective.  

Over the Guinea Coast, the winds seem to be westerly in the absolute plots for 
the drought and the recent period, but the anomaly plots suggest the flow has become 
weaker between the two periods due to the easterly vectors (Figure 4.2.19).  The West 
African Monsoon (WAM) originates from the south, with south-westerly winds over the 
Gulf of Guinea bringing moisture from the ocean into the Sahel (Parker et al, 2005; 
Biasutti, 2013; Vellinga et al, 2016). Thus, weaker westerlies would indicate a 
weakening of the WAM and a reduction in precipitation over the Sahel. As well, over 
the eastern Sahel, EC-Earth3 and HadGEM3-GC31-MM and the observations show 
a strengthening in some north-easterly winds which would originate from the Sahara. 
These winds are going to be much drier compared to the moist ocean winds (Brannan 
and Martin, 2018), so combined with a weakening in the moist ocean winds, there is 
enhanced drying over the Sahel in the drought period compared to the recent period. 
This results in the spatial distribution of precipitation in the models showing more 
similarities to the observations for the drought and recent periods. 
 SSTs and Sahelian circulation are interlinked (Biasutti, 2013; Nicholson, 2013). 
Drought conditions in the west Sahel have been accompanied by a reduction in 
moisture convergence and increased subsidence by the winds, whereas the central 
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Sahel being wetter is linked to Saharan warming and an increased gradient between 
the north and south Atlantic SSTs (Monerie et al, 2017). Furthermore, temperature 
gradients between the land and ocean and between the North and tropical Atlantic 
and stronger winds in the lower and mid-levels have been implicated as some of the 
main reasons for the differences between models (Monerie et al, 2017).  EC-Earth3 
and E3SM-1-1 have a stronger Atlantic dipole for the anomalies between the drought 
and recent period; the drought period SSTs are up to 1.5oC cooler in the North Atlantic 
than the recent period (Figure 4.2.13). HadGEM3-GC31-MM also has a clear Atlantic 
dipole but not to the same extent as the other two models. This links into the 850hPa 
vector plots, as EC-Earth3 and E3SM-1-1 are alike between 5-15oN over the Atlantic 
Ocean of increased easterlies, indicating weaker westerlies (Figure 4.2.19). 
HadGEM3-GC31-MM also has increased easterlies in the drought and recent period, 
although this is not as consistent as the other two models, relating back to the cooler 
SSTs in the drought period not being the same areal extent and magnitude. There are 
smaller differences in SSTs between the drought and wet periods for EC-Earth3 and 
E3SM-1-1, and HadGEM3-GC31-MM suggests a part of the North Atlantic is warmer 
in the drought period than the wet period (Figure 4.2.12). These smaller SST changes 
can help explain the corresponding vector plots, for there are little differences between 
the drought and wet period 850hPa winds. 

Consequently, it can be implied that SSTs are an uncertainty that affect 
Sahelian precipitation in CMIP6 due to their relationship with the region’s circulation 
and precipitation (Biasutti, 2013; Monerie et al, 2017). Vellinga et al (2016) examined 
CMIP5 models and prescribed SSTs using the Met Office’s Operational Sea Surface 
Temperature and Ice Analysis (OSTIA) dataset. The Eastern Pacific and Atlantic SSTs 
led to an anomalous Walker circulation, resulting in winds becoming westerly from the 
Atlantic below 850hPa, easterly above 700hPa and a stronger African Easterly Jet 
(Vellinga et al, 2016). Ultimately, moisture transportation into the Sahel increased, 
along with precipitation (Vellinga et al, 2016). Their study implies prescribing SSTs 
improves model representation of Sahel precipitation with a methodology comparable 
to the AMIP-Hist simulations run in CMIP6. The AMIP-Hist results in this study have 
an improved representation of Sahel precipitation as seen with the Pearson’s r 
correlation coefficients and the spatial distribution of precipitation (Figures 4.2.7 to 
4.2.9). Model biases still exist in the AMIP-Hist simulations of precipitation, signifying 
that SSTs are not the sole uncertainty in CMIP6 models (Figure 4.2.10). 
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Figure 4.2.18: A comparison of the differences between the drought (1970-1983) and wet period (1950-1963) for the observations with 
EC-Earth3 (‘best model’ according to the time series correlation coefficients), HadGEM3-GC31-MM (‘worst model’) and E3SM-1-1 
(better visual representation) for precipitation (mm/day) and 850hPa circulation (m/s). The anomaly vector plots (top vector one) have 
an arrow length of 1 m/s whereas the absolute plots are 5 m/s. Positive (negative) numbers represent the drought period being 
wetter/stronger (drier/weaker) than the wet period. 
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Figure 4.2.19: As Figure 4.2.18 but for the drought (1970-1983) and recent (2001-2014) periods. 
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MIROC6 ranked highly with both CMIP and AMIP-Hist precipitation correlation 
coefficients so its circulation was analysed. Its spatial representation of the 
precipitation observations is not the best. In both the coupled and AMIP-Hist plots, the 
drought and wet period better represents the observations. The coupled drought 
minus recent plot for precipitation has a larger dry area (Figure 4.2.21), whereas in 
AMIP-Hist, the Sahel is wetter in the drought than the recent period (Figure 4.2.22). 
 Precipitation representation is explained by the circulation plots for the coupled 
model drought minus recent period. The winds are easterly, taking the moisture off the 
continent (Figure 4.2.21; Parker et al, 2005; Biasutti, 2013; Vellinga et al, 2016). 
However, the ERA5 data has stronger easterly winds over the Guinea Coast and on 
the coast around 10oN. The anomaly plot for the modelled drought and wet periods 
appears to have little differences in circulation, with any differences being less than 
1m/s, contrasting with the observations (Figure 4.2.21).  
 On the other hand, the drought minus wet plot for the AMIP-Hist simulation 
shows more resemblance to the observations, although MIROC6 overestimates over 
eastern Sahel and underestimates the western (Figure 4.2.21). The drought minus 
recent plot is more dissimilar to the observations and is missing the stronger easterlies 
over western Sahel that are seen in the observations. This results in the drought period 
being wetter than the recent period as the model is not capturing anomalies that result 
in the drought. In addition, MIROC6’s AMIP-Hist time series shows the recent period 
is drier than the drought period, as it does not get the same increase seen in the 
coupled simulations towards the end of the 20th century (Figure 4.2.20).  

On the contrary to the overall conclusions drawn from the other AMIP-Hist 
models, it seems that prescribing SSTs in MIROC6 has not improved the 
representation of precipitation for the drought and recent periods. Idealised 
simulations have suggested the inter-model spread is influenced by the contrasting 
effects of SSTs and CO2 within the models and how they have been integrated 
(Gaetani et al, 2015). For example, warmer SSTs lead to a drier west Sahel, whereas 
an increase in CO2 leads to wetting (Gaetani et al, 2015). It also depends on the 
weighting applied to the various processes and feedbacks in the model set-up 
(Gaetani et al, 2017). Again, this highlights how working towards resolving the SST 
uncertainties will not be the only answer to issues with modelling Sahel precipitation.

Figure 4.2.20: Time series of JJAS precipitation (mm/day) over the study region for 
MIROC6, with CMIP on the left and AMIP-Hist on the right. The blue box represents the 
wet period, the green the drought and the red the recent period. 
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Figure 4.2.22: As Figure 4.2.21 but for MIROC6 AMIP-Hist (AMIP). Figure 4.2.21: Comparison of observations with MIROC6 CMIP 
precipitation (mm/day) and 850hPa circulation (m/s). Left: anomalies for 
the drought (1970-1983) and wet (1950-1963) periods. Right: drought 
and recent (2001-2014) periods. Positive (negative) numbers represent 
the drought being wetter/stronger (drier/weaker) than the wet period. 
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4.2.6. Summary 
Research question 2 asked what factors related to model representation of 
precipitation variability. A range of factors were explored in response to this: nominal 
resolution, anthropogenic influence, interactive oceans, sea surface temperatures 
(SSTs) and circulation. 

There is no clear link between the resolution of the coupled models and their 
representation of observed historical variability in precipitation. Following this, 
removing the anthropogenic influence in the models increases the differences with the 
observations, indicating the role of humans on Sahelian precipitation – both modelled 
and observed. AMIP-Hist models revealed that prescribing the oceans yields stronger 
correlations and likeness between models and observations, implying that interactive 
oceans in the coupled models are a source of uncertainty for Sahelian precipitation 
representation. SSTs influence precipitation through circulation and this was 
examined in a subset of coupled and atmosphere-only historical models for 850hPa 
winds. This part of the analysis showed the absolute plots having similarities with the 
observations but not so much for the anomaly plots, partially linking back to SST 
representation in the coupled models. The AMIP circulation was slightly better than 
CMIP in MIROC6 for the drought and wet period comparison, again suggesting how 
influential interactive oceans are in coupled models. 

To summarise these findings in relation to research question 1, which asked 
whether CMIP6 models could simulate observed interdecadal precipitation variability 
over the Sahel, histograms were created of the differences between the drought and 
the wet and recent periods (Figures 4.2.23/24). Most models across all experiments 
struggle to reproduce the observed magnitude of change between the drought and 
wet period (Figure 4.2.22). The Historical and Historical-Natural experiments have 
peaks of over 40% of models in the -0.2-0mm/day bin, whereas AMIP-Hist has two 
peaks at ~30% of models, one in the same bin and one in the -0.6 to -0.4mm/day bin 
- 0.5-0.7mm/day lower than the observed differences. On the other hand, the modelled 
differences between the drought and the recent period for all experiments are 
weighted between -0.2mm/day and +0.2mm/day (Figure 4.1.32). The coupled 
historical models peak between the observed values of ~-0.25 and ~-0.35mm/day 
which suggests ~40% of historical models can capture a similar magnitude of change 
between the drought and recent periods to the observations. This can be attributed to 
the anthropogenic influence in the recent period, further emphasising the patterns 
seen in Figures 4.1.2 and 4.1.3 (Dong and Sutton, 2015). 
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Figure 4.2.23: Histogram of the difference in JJAS precipitation 
(mm/day) of the average of the wet period subtracted from the 
average of the drought period for the different simulations compared 
to the observational datasets. 

Figure 4.2.24: As Figure 4.2.23 but for the drought and recent 
periods. 
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4.3. Does evaluation of past variability inform understanding of future change? 
Previous research using CMIP3 and CMIP5 models has found that some models have 
wet projections and some dry (Druyan, 2011; Monerie et al, 2017). In this section, 
CMIP6 projections will be examined, and it will be explored whether the new 
understanding gained from the historical simulations can help to interpret future 
projections. 
 
4.3.1. Temporal Projections 
34 out of the 49 models in the historical analysis ran at least one Shared 
Socioeconomic Pathway (SSP) projection. SSPs 1-2.6, 2-4.5, 3-7.0, 4-6.0 and 5-8.5 
are presented here. All models ran SSP5-8.5, with 32 doing SSP1.2-6 and 2-4.5, 29 
doing SSP3-7.0 and six on SSP4-6.0. Pearson’s r correlation coefficients between the 
historical runs and the observations suggest the models struggle with capturing the 
long-term variability in the past, thus could affect their projections.  

Only the 10-year running mean plots are shown here because the trends are 
clear. The multi-model mean (MMM) across all SSPs is steady, varying by at most by 
~±0.5mm/day in SSP5-8.5 (Figure 4.3.1). In SSPs 4-6.0 and 5-8.5, there appears to 
be a 20-year period of projected decreased precipitation from 2065 to 2085 (Figure 
4.3.1.) This period begins with positive precipitation values just above zero relative to 
the average of the recent period and ends with negative values just below zero. 
However, despite this being a clear decreasing period in precipitation, it does begin to 
increase again after 2085 and the marginal variation in the MMM implies the Sahel 
might not need to worry about the extremities of climate change.  

On the other hand, the higher SSPs tend to have a larger range of projections 
compared to the lower ones, SSP5-8.5 having a range of +4mm/day to -2mm/day 
relative to the historical recent period (Figure 4.3.1). Even SSP1-2.6 has a range of 
+2mm/day to -1mm/day. The models lack agreement in direction of change and either 
extreme could have profound impacts on the region. CMIP3 (Druyan, 2011) and 
CMIP5 (Monerie et al, 2017) models also had a wide range of projections, with little 
consensus on the direction of change. Furthermore, 50% of CMIP5 models had 
projections of increased Sahelian precipitation, but 25% of models projected reduced 
precipitation (Biasutti, 2013; Sultan and Gaetani, 2016). So, as well as preparing for 
droughts, flooding is also a concern for the region (Elagib et al, 2021).  

Merging the historical results with the projections exposes the long-term 
modelled changes over the Sahel (Figure 4.3.2). A step increase in absolute 
precipitation of ~0.5mm/day is clear in the MMM at the end of the 20th century in all 
projections, but what follows varies between SSPs. SSP1-2.6 and 2-4.5 appear to 
have a slight long-term negative trend in precipitation, decreasing to about 0.2-
0.3mm/day lower than the peak around 2020 (Figure 4.3.2). SSPs 4-6.0 and 5-8.5 
have a steeper step increase compared to the other three SSPs, and despite showing 
similarities early on to SSP1-2.6 and 4-6.0, SSP3-7.0’s long term trends are more 
consistent with SSP4-6.0 and 5-8.5. Precipitation is projected to increase compared 
to the beginning of the historical period, even with concerns that the warming 
projections could result in a drier Sahel (Figures 4.3.2). However, feedbacks could 
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exist where a drier west Sahel strengthens the monsoon circulation through changes 
in the vertical structure of circulation, as seen in some CMIP3 and CMIP5 models 
(James et al, 2015; Monerie et al, 2017). Again, these conclusions relate to the MMM, 
so the range in models must also be noted. All SSPs have a range of at least 5mm/day, 
reflecting the lack of agreement across the models in the potential changes in 
precipitation over the study region. 

Figure 4.3.3 further demonstrates the range of projections produced by the 
models. 11 models have projections that span both positive and negative values 
compared to the historical recent period. There are 16 models with positive projections 
and seven have solely negative projections. These proportions are lower than CMIP5, 
with 47% having positive projections compared to 50%, and 20% compared to 25% 
for negative projections (Sultan and Gaetani, 2016). Organising the models by 
resolution on Figure 4.3.3 signifies model resolution has little impact on the 
projections, for there is no clear trend in projections with decreasing resolution. The 
six models that ran SSP4-6.0 are medium to lower resolution models with results 
ranging from ~+1.5mm/day to ~-2mm/day. The models with the largest range are 
NESM3 and MIROC6. NESM3 has a range of 2.72mm/day of positive projections, 
whereas MIROC6 has a similar range of 2.22mm/day but is from positive to negative 
projections. Outside of these two models, the average range is 0.58mm/day. 
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Figure 4.3.1: Time series of projected JJAS precipitation anomalies (mm/day) from 2015 to 2100 over the study region, calculated relative to 
the average of the 2001-2014 recent time period, with a 10-year running mean implemented. The black line denotes the multi-model mean. 
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Figure 4.3.2: Merged time series of JJAS precipitation (mm/day) over the study region from 1850-2100, with a 10-year running mean 
implemented. The black line denotes the multi-model mean. 
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Figure 4.3.3: The range of anomalies (mm/day) between the different Shared Socioeconomic Pathways (averaged over 2087-2100) and the 
recent period (2001-2014), organised by nominal resolution. 
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4.3.2. Spatial Projections 
Across all SSPs and resolution groupings, there is a lack of consensus between the 
models for the projected direction and magnitude of spatial changes in precipitation 
relative to the historical recent period (Appendix 1.5). CMIP5 models had projected 
changes that were not homogenous across the Sahel, as the western Sahel was 
projected to be drier but central Sahel to be wetter (Monerie et al, 2017). 

Increasing model resolution in SSP1-2.6 sees differences become generally 
smaller, with some exceptions, for example the high-resolution model CESM2 has a 
large area of drying that is over 1.5mm/day (Appendix 1.5a). These differences tend 
to be in similar locations in SSP2-4.5 (Appendix 1.5b) and 3-7.0 (Appendix 1.5c), just 
more enhanced. In some SSP4-6.0 models, the direction of projection changed, such 
as MIROC6 which becomes predominantly wet rather than dry (Appendix 1.5d). The 
largest differences tend to be found in SSP5-8.5, indicated by the bold colours of 
±1.5mm/day, however this is not consistent across the models (Appendix 1.5e).  

None of the models deemed best or worst by the various methods described in 
section 4.1 ran SSP4-6.0 (Table 4.3.1). Apart from HadGEM3-GC31-MM, which only 
did SSP1-2.6 and 5-8.5, they all ran the other SSPs. For the medium and higher 
resolution models, projected changes tend to intensify with increasing SSPs. EC-
Earth3’s spatial projections are mostly wetter between 0.5 and 1.5mm/day higher than 
the historical recent period, with a small area of drying up to 1.5mm/day in the south-
west that expands with the higher SSP. HadGEM3-GC31-MM has fairly balanced 
projections between wetting and drying which are between ±1mm/day for SSP1-2.6, 
increasing to over ±1.5mm/day in SSP5-8.5. ACCESS-CM2 projects small changes 
across all SSPs. SSP1-2.6 and 2-4.5 have predominantly wet projections reaching up 
to 1.5mm/day in some places, with some small areas of drying up to 0.5mm/day. There 
are larger projected dry areas in the west with SSP3-7.0 and 5-8.5 that do reach 
between 1-1.5mm/day in the south-west, but this is still outweighed by the more 
dominant wet areas in the east. 
 However, this pattern of larger changes with increasing SSP does not hold for 
the lower resolution models (Table 4.3.1). MPI-ESM1-2-LR projects wetting of up to 
and over 1.5mm/day across the whole of the Sahel in SSP1-2.6, which reduces in 
intensity in SSP2-4.5, with the south seeing projections between 1-1.5mm/day wetter 
and the north seeing up to 1mm/day with some marginal drying of 0.5mm/day. SSP3-
7.0 is interesting because it has mainly drying between 0.5-1mm/day and a 
significantly smaller area of wetting up to 1mm/day. For SSP5-8.5, the Sahel is 
projected to be wetter by up to 1.5mm/day apart from the south-west where there is 
drying of 1.5mm/day. 
 Similarly, there is no clear pattern with MCM-UA-1-0 (Table 4.3.1). There are 
strong projected changes across all SSPs of ±1.5mm/day. In SSP1-2.6, the west 
Sahel tends to be drier up to 1.5mm/day and the east wet of a comparable magnitude. 
SSP2-4.5 yields mostly wet projections of up to 1.5mm/day with some drying in central 
Sahel up to 1.5mm/day. The areas of high magnitude drying and wetting reduce 
slightly in SSP3-7.0. SSP5-8.5 has mostly wet projections of up to 1.5mm/day with a 
small dry area of 1.5mm/day in the south-west, comparable to EC-Earth3 and MPI-
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ESM1-2-LR.  
As well as this, MIROC-E2SL’s projections all suggest the Sahel is likely to see 

drying at the end of the century, apart from SSP3-7.0 which indicates wetting of up to 
1.5mm/day (Table 4.3.1). Drying ranges between 0.5 and 1.5mm/day, with higher 
values in the southern part of the Sahel. Interestingly, SSP2-4.5 has a larger area with 
higher dry values than SSP5-8.5. 

CMIP5 models with increased precipitation projections were the ones with a 
stronger difference between the SSTs in the hemispheres (Monerie et al, 2017). Park 
et al (2015) also found the inter-hemisphere SST difference was one of the causes of 
the differences between models in the direction of Sahel precipitation projections. 
Examining the anomaly plots for historical SSTs (Figures 4.2.12-4.2.17) reveals some 
models with wet projections (for example EC-Earth3) do have clear differences 
between hemispheres across the three historical time periods. HadGEM3-GC31-MM 
has projected very marginal drying which corresponds with its difference in historical 
SSTs because there is not a clear inter-hemispheric difference in them. MIROC-
E2SL’s projections fluctuate around zero for the various SSPs and the historical SST 
reflects this, as the hemispheres are balanced. It could be likely that these models will 
carry these broad patterns into the future, supporting the theories proposed by 
Monerie et al (2017) and Park et al (2015). 

Following this, the previously discussed connections between global SSTs and 
Sahelian precipitation implies projected changes in precipitation are likely to be 
affected by SSTs (Park et al, 2015; Monerie et al, 2017). Each model is likely to have 
slightly different variations of the strength and presence of the teleconnections, 
however, it is hard to measure as the teleconnections vary across time and space 
(Monerie et al, 2017). In fact, dry projections in CMIP5 were linked to warmer SSTs, 
heating the troposphere and reducing moisture transport to the Sahel, whereas the 
wet projections are associated with GHGs increasing net surface radiation, resulting 
in more evaporation and precipitation (Gateani et al, 2017). Which impact dominates 
depends on the weight given to each feedback within the climate model (Gaetani et 
al, 2017). These reasons are likely to still be present in CMIP6 projections and could 
help explain the broad range of projections by CMIP6 models (Figure 4.3.1). 
 Model resolution may also influence projections, despite not clearly linking into 
the projections with the time series. Previous studies have found differences in 
projections that are associated with the relationship between circulation elements and 
model resolution (Sultan and Gaetani, 2016). African Easterly Waves are found at 
~850hPa, and are linked to precipitation, but this connection was not as clear or 
present at all in lower resolution models (Vellinga et al, 2016). The higher resolution 
models projected strong AEWs to increase in frequency by ~12% a decade (Vellinga 
et al, 2016). Thus, the differences in resolution could feed into precipitation projections 
through impacting circulation.  

However, these discussed influences could be dampened by the aerosol 
feedback both within the models and reality. Aerosols can increase the albedo, hence 
more insolation is reflected than absorbed, leading to a smaller difference between 
land and ocean temperatures, impacting the WAM’s circulation dynamics (Zhou et al, 
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2016). There are other feedbacks which will feed into the relationship between 
aerosols and monsoons but are not yet fully understood, so the extent of the impact 
of aerosols on the WAM is yet to be determined for the past, present and future (Zhou 
et al, 2016). How the feedback is represented within the model could affect their 
projections, as it may not reflect what is happening within the Sahel climate system 
(Zhou et al, 2016).
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Table 4.3.1: Comparison of projections by the various Shared Socioeconomic Pathways (SSPs) by the models deemed best and worst 
according to the methods described in section 4.1. Projections are the difference in anomalies averaged over 2087-2100 and the historical 
recent period of 2001-2014, in mm/day. 
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Table 4.3.2 summarises the models deemed best and worst by the different methods 
in section 4.3.1 and their associated projections. It shows resolution does not seem to 
have a huge influence on the rankings of the models for the temporal correlation, 
because both models are in the higher resolution model grouping. However, for the 
other three methods, the model’s resolution is expected to be related to its ranking 
placement. For the spatial representation method, the higher resolution models are 
more of a similar resolution to the observations therefore can show a more varying 
distribution of precipitation than the lower resolution ones. In terms of bias, the higher 
resolution models are likely to have more uncertainties within each grid box, thus 
negatively impacting them for spatial bias ranking, but due to the increased resolution, 
they have a better chance at having values closer to the observations for the temporal 
bias.  

EC-Earth3 appears in the rankings twice – once as the best model from the 
perspective of the temporal correlations but also as the worst model for the dry spatial 
bias (Table 4.3.2). The model tends to show wetter projections for both the values and 
the spatial distribution of precipitation across all four SSPs that it ran. The fact it is one 
of the worst models for spatial bias may indicate the changes projected by the model 
could be outweighed by the model bias, affecting the robustness of its results (Ukkola 
et al, 2020). HadGEM3-GC31-MM projects marginal changes in precipitation over the 
Sahel, although this could be linked to its inability to capture the variability in historical 
precipitation.   

MPI-ESM1-2-LR’s projections are a near match to EC-Earth3’s despite being 
ranked as the worst for spatial representation of precipitation during the drought 
period. The values increase with the SSP except for SSP2-4.5 which is 0.06mm/day 
lower than SSP1-2.6, also reflected in the difference maps. However, the categories 
for the contours on the difference maps are broader compared to the concise values 
calculated with the time series, hence the values may not always directly transfer to 
the distributions seen in the spatial representation of precipitation. As well as this, the 
time series data is a field average over the Sahel which overrides the spatial variation.  

Interestingly both models with the worst temporal bias have wetter values for 
projections over the Sahel. ACCESS-CM2’s values are smaller than MCM-UA-1-0’s, 
and the former’s highest projection is SSP2-4.5 at +0.21mm/day and the latter’s is 
SSP5-8.5 with +1.03mm/day. Similarly, MCM-UA-1-0 has both wet and dry projections 
spatially, with the wet projections outweighing the dry ones according to the time series 
projections. MIROC-E2SL’s projections are ~50-75% of those projected by EC-Earth3. 
 Sea surface temperatures (SSTs) play a role in Sahelian precipitation, and as 
seen previously, there is a link between the historical distribution of SSTs and model 
projections. The models with wet projections here – EC-Earth3, MPI-ESM1-2-LR, 
ACCESS-CM2 and MCM-UA-1-0 (Figures 4.2.12 - 4.2.17) – all have an element of a 
contrast in SSTs between the hemispheres. The interhemispheric difference in SSTs 
has been associated with increased Sahelian precipitation (Park et al, 2015; Zhou et 
al, 2016; Monerie et al, 2017; Monerie et al, 2020). MIROC-E2SL’s projections 
fluctuate around zero, reflecting its SSTs being balanced across the hemispheres 
(Figures 4.2.16/17). HadGEM3-GC31-MM does not have a clear difference in 
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historical SSTs between the hemispheres (Figures 4.2.12/13). HadGEM3-GC31-MM’s 
historical 850hPa circulation plots have minimal differences between the drought and 
the two wetter periods (Figures 4.2.18/19), and the lack of clear Atlantic dipole in the 
associated historical SST maps helps to explain this. Thus, the variability in Sahelian 
precipitation in HadGEM3-GC31-MM is limited in the past and hints that this may 
continue in the future, even with projected GHG emissions. 
 
4.3.3. Summary 
Corresponding with previous CMIPs, there is still a lack of consensus in models for 
the direction, magnitude and location of projected changes in precipitation over the 
Sahel. On the whole, with the higher SSPs, projected changes tend to be larger, 
regardless of direction of change. 
 Evaluating the best and worst models for each method (as discussed in 4.3.1) 
revealed only a tentative link between historical representation of precipitation and 
projections. Some model projections can be explained by their historical behaviour, 
for example, HadGEM3-GC31-MM lacks variability in historical precipitation, which 
might continue in the future, even with rising GHGs. However, the issue of 
uniformitarianism arises because the model behaviour might not be the same in their 
historical simulations as in their projections (Akinsanola and Zhou, 2019). This is also 
the case for the climate system in reality too (Akinsanola and Zhou, 2019). 
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Table 4.3.2: Details of the best and worst performing models according to each method and their projections (mm/day) for the Sahel. 

Method Model Resolution group SSP values (mm/day) SSP Maps – dominant overall trend

Temporal correlation
Best EC-Earth3 Higher

1-2.6: +0.34
2-4.5: +0.65
3-7.0: +1.12
5-8.5: +1.31

Between 0-1.5mm/day wetter
Larger area of higher wet projections

East wet, 1-1.5mm/day, Guinea drier 1.5mm/day
Larger area 1.5mm/day wetter, Guinea same

Worst HadGEM3-GC31-MM Higher 1-2.6: -0.21
5-8.5: -0.07

Larger dry area, mainly 0.5mm/day
Balanced drying and wetting by ±0.5 to 1mm/day

Spatial representation

Best E3SM-1-1 Higher No SSP data available

Worst MPI-ESM1-2-LR Lower

1-2.6: +0.49
2-4.5: +0.35
3-7.0: +0.86
5-8.5: +1.22

Mainly at least 1.5mm/day wetter
Quite even, ±1mm/day drier/wetter

0.5mm/day drier, some wetter areas up to 1mm/day
Guinea 1.5mm/day drier, rest 1-1.5mm/day wetter

Temporal bias

Best E3SM-1-0 Higher No SSP data available

Worst - dry ACCESS-CM2 Medium

1-2.6: +0.08
2-4.5: +0.21
3-7.0: +0.20
5-8.5: +0.15

Balanced ±0.5mm/day drier/wetter
Wetter, mainly 0.5-1mm/day, some 1.5mm/day

Quite even, ±1mm/day drier/wetter
Quite even, ±1mm/day drier/wetter

Worst - wet MCM-UA-1-0 Lower

1-2.6: +0.48
2-4.5: +0.72
3-7.0: +0.29
5-8.5: +1.03

East 1-1.5mm/day wetter, West 1.5mm/day drier
Most 1.5mm/day wetter, 1.5mm/day drier over Nigeria

East/West 1-1.5mm/day drier, central 1.5mm/day wetter
1.5mm/day wetter apart from 1.5mm/day drier over Liberia

Spatial bias

Best MIROC-E2SL Lower

1-2.6: -0.11
2-4.5: +0.06
3-7.0: +0.34
5-8.5: +0.44

Drier – North 0-0.5mm/day, up to 1.5mm/day in South
Larger area of 0.5-1.5mm/day drying

Nearly whole region 1.5mm/day wetter
Mostly 0.5-1mm/day drier

Worst - dry EC-Earth3 Higher

1-2.6: +0.34
2-4.5: +0.65
3-7.0: +1.12
5-8.5: +1.31

Between 0-1.5mm/day wetter
Larger area of higher wet projections

East wet, 1-1.5mm/day, Guinea drier 1.5mm/day
Larger area 1.5mm/day wetter, Guinea same as 3-7.0

Worst - wet SAM0-UNICON Higher No SSP data available
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5. Conclusions 
The Sahel region’s vulnerability to the impacts of climate change means it is important 
to understand what possible repercussions could occur in the future. This study 
examined CMIP6 simulations of Sahel precipitation variability, and whether there is a 
link between historical CMIP6 model performance and their projections for Sahelian 
precipitation. The following research questions were considered, arising from the 
existing literature base. 
 
5.1. Answers to research questions 
1. Can CMIP6 models simulate observed interdecadal precipitation variability over 

the Sahel? 
There are various observational datasets available for precipitation over the Sahel. 
This study predominantly used GPCC and CRU due to their temporal coverage, both 
having similar fluctuations across time, having a clear wetter period during the 1950s 
and 1960s, a drought during the 1970s and 1980s and recovery since. CHIRPS, 
TAMSAT and ERA5-Land begin towards the end of the drought period. 

Different methods were used to understand which models could simulate 
observed interdecadal precipitation variability over the Sahel, with results dependent 
on the method used. EC-Earth3 was the best model for temporal correlations, with its 
coefficient being 0.31 at interannual timescales to 0.71 with a 10-year running mean. 
E3SM-1-1 was the best when examining the spatial representation of the anomaly 
plots between the drought and wet period. Bias with the drought period was also 
calculated, with E3SM-1-0 having the smallest temporal bias of -0.06mm/day and 
MIROC-E2SL having the smallest spatial bias varying around ±1mm/day. 

Overall, the models fail to capture the full magnitude of the variability and the 
differences between the drought and wet/recent periods that is seen in the 
observations. 
 
2. What factors relate to model representation of precipitation variability? 
Model resolution, anthropogenic influence, interactive oceans and sea surface 
temperatures, and circulation were examined in this study as factors that relate to 
model representation of precipitation variability. 

There is no clear link between model resolution and Sahelian precipitation, in 
terms of both temporal and spatial variations. Removing the anthropogenic influence 
weakens correlation coefficients and more muted spatial differences between the 
observations and both anomaly comparisons. This indicates coupled models do 
capture the observed variability better when anthropogenic influences are included as 
seen with the clear increase in precipitation in recent years. 
  CMIP6 included atmosphere-only simulations as a separate experiment, where 
the influence of interactive oceans is removed. Compared to the coupled experiments, 
correlations improved with the time series data, with more models agreeing with the 
observations and are statistically significant. The multi-model mean (MMM) has similar 
fluctuations to the observations. Spatial representation improved slightly for both the 
anomaly and bias plots, but there are still differences that need resolving. AMIP-Hist 
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correlation coefficients are consistently higher than the CMIP ones. This implies a key 
uncertainty for representing Sahelian precipitation in coupled models is the portrayal 
of ocean processes and their coupling to the atmospheric components.  

Following the AMIP-Hist results, sea surface temperatures (SSTs) were 
examined further, as they have been implicated as a driver of the drought. SSTs have 
feedbacks linked to Sahelian circulation thus could have affected modelled 
precipitation anomalies. The drought and recent period SST anomaly plots show more 
resemblance to the observations than the drought and wet period ones. The Atlantic 
dipole is clearer in the drought and wet period anomaly plots than the drought and 
recent periods, although the models do not capture the full magnitude of the 
differences that are seen in the observations. This can help to explain their limited 
ability in capturing the drought in both the precipitation time series and spatial 
representation. However, the influence of global warming and the models’ recent 
increase in precipitation can be explained by the recent period SSTs being warmer 
than the drought period, which is consistent across all models. 

Model resolution is thought to impact Sahelian precipitation through 
atmospheric circulation (Vellinga et al, 2016). HadGEM3-GC31-MM, EC-Earth3 and 
E3SM-1-1 were analysed for 850hPa winds. Their absolute plots showed similarities 
to observations however the anomaly plots did not. E3SM-1-1’s good representation 
of drought and wet period precipitation anomalies cannot be explained by its 850hPa 
circulation. Although, the circulation vector plots can help to explain the drought and 
recent period precipitation plots. There are weaker westerlies over the Guinea Coast 
with stronger dry north-easterly winds from the Sahara, signifying a weaker WAM and 
less precipitation over the Sahel in the drought period. These plots are also affected 
by SSTs, and a stronger temperature gradient has been found to lead to larger 
changes in circulation (Monerie et al, 2017). There are smaller differences in SSTs for 
the drought and wet period hence linking into the smaller differences in circulation. 
Additionally, the AMIP circulation in MIROC6 is slightly better than CMIP for the 
drought and wet period plots. However, for the drought and recent period anomalies, 
CMIP is better than AMIP for circulation, consistent with its precipitation. 

Model resolution does not have a clear connection to representation of 
precipitation variability over the Sahel. The Hist-Nat simulations showed the coupled 
models better capture the observed variability when anthropogenic influences are 
included, but this has more of an impact in the recent period. Prescribed SSTs in the 
AMIP-Hist simulations yielded stronger correlation coefficients and better spatial 
representation. SSTs are strongly linked to circulation over the Sahel. The drought 
and recent period SST anomaly plots show a better resemblance to observations than 
the drought and wet period ones, with this being reflected in the respective 
precipitation and circulation plots. So, factors associated with ocean representation 
seem to have the strongest influence on representing Sahelian precipitation variability. 

 
3. Does evaluation of past variability inform understanding of future change? 
For the models that ran the Shared Socioeconomic Pathways (SSPs), the inter-model 
range in anomalies increased with SSPs from +2mm/day to -1mm/day for SSP1-2.6 
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to +4mm/day to -2mm/day for SSP5-8.5, except for SSP4-6.0 which had a similar 
range to SSP2-4.5. Based on consistency across scenarios, there were 16 models 
with solely positive projections, 7 with solely negative and 11 which spanned both 
positive and negative projections. The lack of agreement between models is 
consistent with CMIP3 (Druyan, 2011) and CMIP5 conclusions (Monerie et al, 2017). 
However, the MMM for each SSP are steady around ±0.5mm/day, further signifying 
why using the MMM can be problematic when not considering the whole range (Daron 
et al, 2021).  

Merging the absolute time series for each SSP with the historical time series 
revealed a step increase in mean precipitation at the end of the 20th century, potentially 
linked to anthropogenic greenhouse gases (Dong and Sutton, 2015). This increase 
stabilises in SSP1-2.6 and 2-4.5 but continues to increase in the other three SSPs. It 
is unclear why this noticeable rise at the end of the 20th century does not continue in 
all of the projections. This is based on the MMM, so it must be noted there is wide 
range in precipitation projections, and the pattern which is clearer with the 10-year 
running mean. Some models have consistently higher or lower values compared to 
the MMM, contributing to the wide range. 
 Spatially analysing the projections compared to the recent period shows the 
averaging methods result in the time series projections not always directly correlating 
with the spatial projections. Across all SSPs and resolution groupings there is not a 
clear consensus over which areas of the Sahel will be drier or wetter in the future. 
Overall, projected values increase with SSPs. Some models project complete wetting 
of over 3mm/day over the Sahel and others drying to the same magnitude compared 
to the recent period. 
 There does not seem to be a clear connection between the ability of the models 
to represent the Sahelian droughts when examining the ranked models as a group 
(Table 4.3.1). For those with available SSP data, all the ‘worst’ models for each 
method have wet projections apart from HadGEM3-GC31-MM, which projects slight 
drying. All the ‘best’ models have projections of wetting too. SSP5-8.5 has the 
strongest change for all models, apart from HadGEM3-GC31-MM. When looking at all 
the models with SSP data, there are some with larger wet/dry projections, which 
suggests the models that are deemed the ‘best’ and ‘worst’ per each method do not 
reflect the potential range of projections for the Sahel. 

Nevertheless, there are hints from historical model behaviour about future 
projections, as seen with HadGEM3-GC31-MM. This model struggles with capturing 
historical precipitation variability. As discussed, the interhemispheric difference in 
SSTs is a key influence on Sahelian precipitation. HadGEM3-GC31-MM does not 
have a clear Atlantic dipole in the drought and wet period anomaly SST plots, which 
then feeds into the corresponding circulation plots for 850hPa winds. There are 
minimal differences between the drought and wet period 850hPa winds, linking into 
the spatial distribution of precipitation for the same comparison. The future changes 
could be marginal because HadGEM3-GC31-MM does not have strong variability in 
the 20th century so might not change much with future GHG emissions. It could also 
potentially be linked to the band of precipitation being displaced too south, as seen 
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with other Hadley Centre models (e.g. HadGEM3-RA, Diallo et al, 2014), hence a drier 
Sahel region. It may be that models in which the Sahel is too dry struggle to generate 
large precipitation variability, because there is very little rain there in any time period. 

  
5.2. Limitations and Future Work 
There is no perfect method for examining models: time series data averages out the 
spatial variation across the region, and maps average out interannual variability in 
precipitation. As well as this, classing the reliability of model projections according to 
present day bias is not overly accurate due to a lack of association between the 
present bias and projected precipitation (Monerie et al, 2017). Furthermore, Lee and 
Wang (2014) compared model performance in past to observations and similarly 
showed there are complications with using bias to classify model performance. 

E3SM-1-1 had a good representation of the observations for the anomaly plot 
between the drought and wet periods, despite its circulation plots lacking similarities 
to the observations. This alludes to the idea that this model in particular is getting the 
precipitation right for the wrong reason. Addressing this could be achieved through 
examining different pressure levels for the circulation or examining different variables 
in more detail to explore the drivers of the drought. 
 There are circulation elements which are not examined in this study but play a 
role in Sahelian precipitation. One such example is the Tropical Easterly Jet (TEJ) 
which is usually found at 200hPa, and feedbacks are linked with the African Easterly 
Jet (AEJ) but are not fully understood (Monerie et al, 2017). There is a strong 
correlation between reduced Sahelian precipitation and the AEJ migrating southward 
with a weakened TEJ, with a more northern AEJ being associated with anomalous wet 
years over the Sahel (Grist and Nicholson, 2001). The AEJ can also take moisture 
away from the Sahel, reducing precipitation (Patricola and Cook, 2008). Examining 
these elements further would aid understanding of the behaviour of precipitation over 
the Sahel in CMIP6 models. 
 To investigate further the impact of resolution on the representation of 
precipitation over the Sahel, future work could analyse individual models at different 
resolution. Vellinga et al (2016) did this for the Met Office UM, where they examined 
three different resolutions and compared their decadal variability in Sahel precipitation. 
There were definite differences between the higher and lower resolution models 
(Vellinga et al, 2016). Similarly, it has been suggested models which do not capture 
the drought may be too dry all year round (Birch et al, 2014; James et al, 2018). 
Sometimes the monsoon circulation is displaced too far south which means even with 
the associated climatic feedbacks initiating a drought, no drought is seen over the 
Sahel because the precipitation was not there in the first place (James et al, 2018). 
Following this, higher resolution models have been found to simulate the monsoon 
circulation further into the continent than lower resolution ones, resulting in 
precipitation over the Sahel (Birch et al, 2014). The models are more likely to capture 
a drought over the Sahel with changes in associated feedbacks because of the 
improved monsoon circulation location. Keeping within the CMIP framework, models 
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from HighResMIP could be used to examine these differences alongside the coupled 
ones (Eyring et al, 2016). 
 The Sahel is a unique region in terms of its geographical location and 
relationship with various climatic feedbacks that link the atmosphere, ocean, and land 
(Zhou et al, 2016). For this reason, the insight gained from this study cannot be directly 
applied elsewhere. However, this study revealed CMIP6 models do still struggle with 
modelling precipitation when compared to observations, particularly with the large 
scale interdecadal variability linked to SSTs. There have been some improvements 
following CMIP5, predominantly linked to model developments, but representation still 
varies between models. Examining AMIP-Historical simulations implied the interactive 
oceans in coupled models play a large role in this discrepancy. Similarly, exploring the 
Historical-Natural simulations over the Sahel in the recent wetter period hinted that the 
fully coupled models may capture the recent anthropogenic influence on precipitation, 
which could be an interesting avenue for future work. Evaluating other regions will aid 
understanding whether these findings are unique to the Sahel, or whether they 
consistent across the globe. 

There are a lack of studies analysing CMIP6 historical simulations for specific 
droughts elsewhere, but studies that have examined general drought patterns across 
the globe (e.g. Papalexiou et al, 2021) have found biases exist with low precipitation 
values and that uncertainties are larger in the tropics than other latitudes. Papalexiou 
et al (2021) compared CMIP6 historical drought representation to several 
observational datasets using the Standardised Precipitation Index. They found CMIP6 
models did not reproduce the spatial patterns of precipitation that well across the 
globe, with a maximum agreement of 36% of grid cells for average drought duration 
and 40% for variation in precipitation (Papalexiou et al, 2021). This suggests the signal 
to noise ratio seen in modelled Sahelian precipitation is consistent with the global 
patterns. 
 
5.3. Concluding remarks 
CMIP6 models have improved on CMIP5 in terms of model set-up and 
parameterisations. However, their representation of Sahelian precipitation, both during 
the 1970/80s drought period and the preceding and following wet periods, still needs 
improving, as they fail to simulate the magnitude of the difference between the dry and 
wet periods. There are uncertainties that are not yet fully understood. For example, 
removing the interactive oceans in AMIP does improve representation slightly but does 
not fully resolve the differences between models and observations. Undertaking the 
future work suggested will contribute to closing this research gap. 
 Projections for the Sahel by CMIP6 models still do not agree on the direction of 
potential change by the end of the century, consistent with previous studies of CMIP3 
and CMIP5 models. There is not a clear link between historical model performance 
and resolution. Although, some projections can be partly explained by historical model 
behaviour, such as SSTs. This suggests improving historical performance could 
increase confidence in model projections for the Sahel. 
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APPENDIX 1: SUPPLEMENTARY INFORMATION 
1a. Prolonged dry periods 

No prolonged dry period: AWI-CM-1-1-MR, BCC-CSM2-MR, CAMS-CSM1-0, CanESM5, CanESM5-CanOE, CAS-ESM2-0, 
CESM2, CESM2-WACCM, CESM2-WACCM-FV2, CNRM-CM6-1-HR, EC-Earth3-Veg, FGOALS-f3-L, GFDL-ESM4, GISS-E2-1-G-
CC, GISS-E2-1-H, HadGEM3-GC31-MM, INM-CM4-8, MCM-UA-1-0, MIROC-ES2L, MPI-ESM-1-2-HAM, NorESM2-LM, NorESM2-
MM, UKESM1-0-LL 

Table 1a: All dry years in the observations during the drought alongside years in prolonged dry periods – three or more years with a dry anomaly 
that is more than one times the standard deviation – for the coupled models. Green highlight represents the years falling within the defined drought 
period of 1970-1983. All years in the observations that fall in the drought period are included to signify the extent of the drying. 

GPCC 1972 1973 1976 1977 1982 1983 1984 1985 1986 1987
CRU 1972 1973 1976 1982 1983 1984 1985 1986 1987

ACCESS-CM2 1907 1908 1909
ACCESS-ESM1-5 1970 1971 1972 1973
AWI-ESM-1-1-LR 1905 1906 1907 1992 1993 1994

BCC-ESM1 1951 1952 1953 1954
CESM2-FV2 1910 1911 1912 1968 1969 1970

CNRM-CM6-1 1936 1937 1938 1939
CNRM-ESM2-1 1948 1949 1950

E3SM-1-0 1915 1916 1917
E3SM-1-1 1965 1966 1967 1971 1972 1973 1975 1976 1977 1978 1987 1988 1989 1991 1991 1992 1993

E3SM-1-1-ECA 1970 1971 1972
EC-Earth3 1902 1903 1904 1912 1913 1914

FIO-ESM-2-0 1901 1902 1903
GISS-E2-1-G 1968 1969 1970

HadGEM3-GC31-LL 1977 1978 1979 1980 1981 1982
IITM-ESM 1970 1971 1972

INM-CM5-0 1875 1876 1877 1981 1982 1983
IPSL-CM6A-LR 1876 1877 1878

KACE-1-0-G 1938 1939 1940
MIROC6 1972 1973 1974 1975 1988 1989 1990

MPI-ESM-1-2-HAM 1955 1956 1957
MPI-ESM1-2-HR 1902 1903 1904 1905 1906 1908 1909 1910 1911 1912 1913
MPI-ESM1-2-LR 1919 1920 1921 1922 1923

MRI-ESM2-0 1973 1974 1975
NESM3 1924 1925 1926 1964 1965 1966 1974 1975 1976

SAM0-UNICON 1907 1908 1909 1910
TaiESM1 1978 1979 1980
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1b. Prolonged wet periods 

No prolonged wet periods: ACCESS-CM2, ACCESS-ESM1-5, BCC-ESM1, CAMS-CSM1-0, CAS-ESM2-0, CESM2-FV2, CESM2-
WACCM, CESM2-WACCM-FV2, E3SM-1-0, E3SM-1-1-ECA, EC-Earth3, FGOALS-f3-L, FIO-ESM-2-0, GFDL-ESM4, GISS-E2-1-G, 
GISS-E2-1-G-CC, GISS-E2-1-H, HadGEM3-GC31-MM, IITM-ESM, INM-CM4-8, INM-CM5-0, KACE-1-0-G, MIROC6, NorESM2-LM, 
NorESM2-MM, UKESM1-0-LL 

Table 1b: Years in prolonged wet periods – three or more years with a wet anomaly that is more than one times the standard deviation – for 
both the observations and coupled models. Yellow highlight represents the years falling within the defined wet period of 1950-1963 and blue 
highlight is the recent wet period of 2001-2014. All years in the observations that fall in the wet period are included. 

GPCC 1952 1953 1954 1955 1957 1958 1959 1961
CRU 1952 1953 1954 1955 1957 1958 1959 1961

AWI-CM-1-1-MR 1850 1851 1852 1853 1854
AWI-ESM-1-1-LR 1861 1862 1863 1864 1870 1871 1872
BCC-CSM2-MR 1918 1919 1920

CanESM5 2003 2004 2005 2011 2012 2013
CanESM5-CanOE 2002 2003 2004 2005 2009 2010 2011 2012 2013 2014

CESM2 1998 1999 2000 2011 2012 2013
CNRM-CM6-1 2004 2005 2006

CNRM-CM6-1-HR 1996 1997 1998
CNRM-ESM2-1 1997 1998 1999 2011 2012 2013

E3SM-1-1 1855 1856 1857 1858 1859 1860 1861 1894 1895 1896
EC-Earth3-Veg 1991 1992 1993 1994 1995 2006 2007 2008 2011 2012 2013 2014

HadGEM3-GC31-LL 1860 1861 1862 1863
IITM-ESM 1958 1959 1960

IPSL-CM6A-LR 1995 1996 1997
KACE-1-0-G 1864 1865 1866
MCM-UA-1-0 1888 1889 1890 1891 1959 1960 1961 1962 1989 1990 1991
MIROC-ES2L 1933 1934 1935

MPI-ESM-1-2-HAM 2012 2013 2014
MPI-ESM1-2-HR 2005 2006 2007
MPI-ESM1-2-LR 1997 1998 1999 2000 2012 2013 2014

MRI-ESM2-0 1857 1858 1859
NESM3 2006 2007 2008

SAM0-UNICON 1863 1864 1865 1870 1871 1872
TaiESM1 1859 1860 1861 1862
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2. Coupled correlation coefficients 
2a. Interannual  
 

Table 2a: Table of correlation coefficients between the models and GPCC/CRU for the coupled historical runs on the interannual timescale. Light 
green highlight signifies a strong positive correlation (r>=0.26) and orange a strong negative correlation (r<=-0.26), according to Lau et al 2006’s 
criteria. The pale blue highlight represents the correlation being significant at the 95% confidence interval. Higher resolution models are blue, 
medium resolution are green and lower resolution are yellow. 

Pearson's R P-Value Pearson's R P-Value Pearson's R P-Value Pearson's R P-Value
ACCESS-CM2 -0.0680 0.474 -0.0655 0.491 GFDL-ESM4 0.0604 0.525 0.0496 0.602

ACCESS-ESM1-5 0.155 0.102 0.155 0.102 GISS-E2-1-G -0.0195 0.837 -0.00140 0.988
AWI-CM-1-1-MR -0.100 0.290 -0.115 0.227 GISS-E2-1-G-CC -0.0378 0.691 -0.0598 0.529
AWI-ESM-1-1-LR -0.155 0.102 -0.171 0.0709 GISS-E2-1-H 0.0187 0.844 0.0118 0.901
BCC-CSM2-MR -0.0243 0.798 -0.0241 0.800 HadGEM3-GC31-LL 0.0601 0.527 0.0418 0.661

BCC-ESM1 -0.0477 0.616 -0.0435 0.647 HadGEM3-GC31-MM -0.0589 0.535 -0.0666 0.483
CAMS-CSM1-0 0.0663 0.485 0.0604 0.525 IITM-ESM 0.123 0.195 0.113 0.233

CanESM5 -0.146 0.123 -0.0985 0.300 INM-CM4-8 -0.00991 0.917 -0.0509 0.593
CanESM5-CanOE -0.0671 0.480 -0.0414 0.663 INM-CM5-0 0.0441 0.642 0.0452 0.635

CAS-ESM2-0 0.0959 0.312 0.0898 0.344 IPSL-CM6A-LR 0.0241 0.800 0.0531 0.576
CESM2 0.0211 0.824 0.0217 0.819 KACE-1-0-G 0.0230 0.809 0.0489 0.607

CESM2-FV2 -0.0133 0.889 -0.0288 0.762 MCM-UA-1-0 0.0271 0.776 0.0320 0.737
CESM2-WACCM -0.00439 0.963 0.00612 0.949 MIROC6 0.0366 0.701 0.0561 0.555

CESM2-WACCM-FV2 -0.0380 0.690 -0.0267 0.779 MIROC-ES2L -0.0590 0.535 -0.0619 0.515
CNRM-CM6-1 -0.215 0.0224 -0.186 0.0486 MPI-ESM-1-2-HAM 0.0232 0.808 0.0100 0.917

CNRM-CM6-1-HR -0.172 0.0684 -0.162 0.0870 MPI-ESM1-2-HR 0.0945 0.320 0.124 0.192
CNRM-ESM2-1 -0.211 0.0247 -0.201 0.0327 MPI-ESM1-2-LR -0.132 0.162 -0.106 0.266

E3SM-1-0 0.0776 0.414 0.0525 0.581 MRI-ESM2-0 0.125 0.187 0.123 0.195
E3SM-1-1 0.0176 0.853 0.00498 0.958 NESM3 -0.0509 0.592 -0.0165 0.862

E3SM-1-1-ECA 0.233 0.0131 0.212 0.0243 NorESM2-LM -0.0198 0.835 -0.0388 0.684
EC-Earth3 0.313 0.000724 0.350 0.000144 NorESM2-MM -0.0657 0.489 -0.0549 0.564

EC-Earth3-Veg -0.0957 0.313 -0.0567 0.551 SAM0-UNICON 0.0950 0.317 0.104 0.273
FGOALS-f3-L -0.00143 0.988 -0.0110 0.908 TaiESM1 0.0679 0.475 0.0456 0.631
FIO-ESM-2-0 -0.0349 0.714 0.00670 0.944 UKESM1-0-LL 0.0436 0.646 0.0666 0.483

CRUGPCC CRU
Model Model

GPCC
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2b. Five year running mean 

 

Table 2b: As Table 2a, but for the five-year running mean coefficients. 

Pearson's R P-Value Pearson's R P-Value Pearson's R P-Value Pearson's R P-Value
ACCESS-CM2 -0.149 0.123 -0.122 0.206 GFDL-ESM4 0.0357 0.713 -0.00431 0.964

ACCESS-ESM1-5 0.245 0.0104 0.259 0.00659 GISS-E2-1-G 0.0327 0.736 0.0369 0.703
AWI-CM-1-1-MR -0.259 0.00660 -0.279 0.00329 GISS-E2-1-G-CC 0.0312 0.747 -0.000445 0.996
AWI-ESM-1-1-LR -0.156 0.105 -0.177 0.0655 GISS-E2-1-H -0.0259 0.789 -0.00328 0.973
BCC-CSM2-MR -0.232 0.0151 -0.217 0.0233 HadGEM3-GC31-LL 0.186 0.0532 0.168 0.0809

BCC-ESM1 -0.133 0.168 -0.128 0.183 HadGEM3-GC31-MM 0.0668 0.490 0.0670 0.4886
CAMS-CSM1-0 0.234 0.0145 0.267 0.0050 IITM-ESM 0.224 0.0190 0.230 0.0161

CanESM5 -0.241 0.0116 -0.177 0.0659 INM-CM4-8 0.102 0.292 0.0568 0.55775
CanESM5-CanOE -0.247 0.00959 -0.198 0.0385 INM-CM5-0 0.290 0.00226 0.301 0.0015

CAS-ESM2-0 0.219 0.0219 0.250 0.00868 IPSL-CM6A-LR 0.112 0.244 0.122 0.20489
CESM2 0.0716 0.460 0.0896 0.354 KACE-1-0-G 0.241 0.0116 0.293 0.00201

CESM2-FV2 -0.129 0.181 -0.116 0.228 MCM-UA-1-0 0.339 0.000312 0.314 0.000884
CESM2-WACCM -0.0278 0.774 0.00866 0.929 MIROC6 0.298 0.00167 0.316 0.000804

CESM2-WACCM-FV2 -0.0291 0.764 -0.00681 0.944 MIROC-ES2L 0.102 0.291 0.0902 0.351
CNRM-CM6-1 -0.429 3.18E-06 -0.395 2.10E-05 MPI-ESM-1-2-HAM -0.0959 0.321 -0.0827 0.392

CNRM-CM6-1-HR -0.410 9.72E-06 -0.379 4.79E-05 MPI-ESM1-2-HR 0.117 0.227 0.171 0.0759
CNRM-ESM2-1 -0.445 1.25E-06 -0.422 4.78E-06 MPI-ESM1-2-LR -0.406 1.21E-05 -0.378 5.05E-05

E3SM-1-0 0.0573 0.554 0.0574 0.553 MRI-ESM2-0 0.403 1.40E-05 0.395 2.18E-05
E3SM-1-1 -0.0763 0.430 -0.0508 0.600 NESM3 -0.136 0.157 -0.0831 3.90E-01

E3SM-1-1-ECA 0.488 7.10E-08 0.485 8.81E-08 NorESM2-LM 0.0555 0.566 0.0694 0.474
EC-Earth3 0.623 4.80E-13 0.641 5.89E-14 NorESM2-MM -0.0410 0.672 -0.0470 0.627

EC-Earth3-Veg -0.309 0.00109 -0.252 0.00824 SAM0-UNICON 0.392 2.53E-05 0.390 2.81E-05
FGOALS-f3-L -0.211 0.0275 -0.225 0.0189 TaiESM1 0.209 0.0295 0.168 0.0816
FIO-ESM-2-0 -0.0954 0.324 -0.0803 0.406 UKESM1-0-LL 0.0609 0.529 0.118 2.23E-01

CRUGPCC CRU
Model Model

GPCC
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2c. 10 year running mean

Table 2c: As Table 2a, but for the 10-year running mean coefficients. 

Pearson's R P-Value Pearson's R P-Value Pearson's R P-Value Pearson's R P-Value
ACCESS-CM2 -0.137 0.1640 -0.117 0.239 GFDL-ESM4 -0.0565 0.569 -0.0917 0.355

ACCESS-ESM1-5 0.267 0.00607 0.260 0.00762 GISS-E2-1-G -0.0299 0.764 -0.0579 0.559
AWI-CM-1-1-MR -0.295 0.00233 -0.297 0.00221 GISS-E2-1-G-CC -0.0131 0.895 -0.0384 0.699
AWI-ESM-1-1-LR -0.175 0.0751 -0.206 0.0363 GISS-E2-1-H -0.0728 0.463 -0.0736 0.458
BCC-CSM2-MR -0.290 0.00282 -0.279 0.00412 HadGEM3-GC31-LL 0.246 0.0117 0.218 0.0264

BCC-ESM1 -0.149 0.131 -0.154 0.119 HadGEM3-GC31-MM 0.120 0.227 0.112 0.258
CAMS-CSM1-0 0.277 0.00447 0.308 0.00145 IITM-ESM 0.307 0.00151 0.290 0.00279

CanESM5 -0.277 0.00443 -0.229 0.0193 INM-CM4-8 0.105 0.291 0.0508 0.609
CanESM5-CanOE -0.361 0.000168 -0.314 0.00118 INM-CM5-0 0.333 0.000542 0.331 0.0005890

CAS-ESM2-0 0.279 0.00407 0.289 0.00294 IPSL-CM6A-LR 0.0741 0.454 0.0671 0.499
CESM2 0.0618 0.533 0.0658 0.507 KACE-1-0-G 0.326 0.000730 0.384 5.84E-05

CESM2-FV2 -0.183 0.0625 -0.1688 0.0868 MCM-UA-1-0 0.520 1.53E-08 0.488 1.52E-07
CESM2-WACCM -0.101 0.308 -0.071 0.477 MIROC6 0.398 2.84E-05 0.393 3.65E-05

CESM2-WACCM-FV2 0.0241 0.808 0.042 0.672 MIROC-ES2L 0.118 0.233 0.0994 0.315
CNRM-CM6-1 -0.506 4.21E-08 -0.483 2.13E-07 MPI-ESM-1-2-HAM -0.232 0.0177 -0.228 0.0199

CNRM-CM6-1-HR -0.538 3.85E-09 -0.516 2.12E-08 MPI-ESM1-2-HR 0.106 0.286 0.151 0.126
CNRM-ESM2-1 -0.530 7.19E-09 -0.502 5.50E-08 MPI-ESM1-2-LR -0.619 2.51E-12 -0.595 2.74E-11

E3SM-1-0 -0.0076 0.939 -0.00357 0.971 MRI-ESM2-0 0.547 1.89E-09 0.513 2.53E-08
E3SM-1-1 -0.0965 0.330 -0.0676 0.495 NESM3 -0.160 0.105 -0.118 0.233

E3SM-1-1-ECA 0.627 1.13E-12 0.625 1.39E-12 NorESM2-LM -0.0261 0.793 -0.024 0.809
EC-Earth3 0.716 1.36E-17 0.718 9.34E-18 NorESM2-MM -0.0614 0.536 -0.078 0.431

EC-Earth3-Veg -0.416 1.13E-05 -0.381 6.46E-05 SAM0-UNICON 0.606 9.25E-12 0.601 1.50E-11
FGOALS-f3-L -0.142 0.151 -0.165 0.0943 TaiESM1 0.257 0.00834 0.217 0.0271
FIO-ESM-2-0 -0.0775 0.434 -0.0869 0.381 UKESM1-0-LL 0.0408 0.681 0.104 0.292

CRUGPCC CRU
Model Model

GPCC
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3. Historical-Natural correlation coefficients 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3a: Table of correlation coefficients between the models and GPCC/CRU for the 
Historical-Natural runs on the interannual timescale. Green highlight signifies a strong positive 
correlation (r>=0.26) and orange a strong negative correlation (r<=-0.26) according to Lau et 
al 2006’s criteria. The blue highlight represents the correlation being significant at the 95% 
confidence interval. 

Model
GPCC CRU

Pearson's R P-Value Pearson's R P-Value
ACCESS-CM2 0.228 0.0153 0.241 0.010

ACCESS-ESM1-5 0.0898 0.344 0.108 0.257
BCC-CSM2-MR 0.0638 0.502 0.0977 0.303

CanESM5 0.0184 0.846 0.022 0.817
CESM2 0.129 0.172 0.118 0.211

CNRM-CM6-1 -0.0409 0.667 -0.045 0.637
FGOALS-g3 -0.0951 0.316 -0.104 0.274
GFDL-CM4 0.093 0.326 0.078 0.411

GISS-E2-1-G 0.0037 0.969 0.019 0.840
HadGEM3-GC31-LL 0.0876 0.356 0.069 0.471

IPSL-CM6A-LR 0.00636 0.947 0.0108 0.910
MIROC6 0.0488 0.607 0.0354 0.710

MRI-ESM2-0 0.104 0.273 0.088 0.353
NorESM2-LM -0.016 0.863 -0.001 0.994

Table 3b: As Table 3a, but for the five-year running mean. 

Model
GPCC CRU

Pearson's R P-Value Pearson's R P-Value
ACCESS-CM2 0.382 4.13E-05 0.404 4.13E-05

ACCESS-ESM1-5 0.130 0.177 0.161 0.0951
BCC-CSM2-MR 0.00602 0.950 0.0789 0.415

CanESM5 0.0375 0.699 0.0464 0.632
CESM2 0.471 2.41E-07 0.470 2.41E-07

CNRM-CM6-1 -0.0766 0.429 -0.0814 0.400
FGOALS-g3 -0.0614 0.526 -0.0396 0.682
GFDL-CM4 0.123 0.203 0.145 0.133

GISS-E2-1-G -0.0422 0.663 -0.0238 0.806
HadGEM3-GC31-LL 0.192 0.0455 0.162 0.0932

IPSL-CM6A-LR 0.145 0.133 0.127 0.187
MIROC6 -0.0403 0.678 -0.062 0.523

MRI-ESM2-0 0.185 0.0543 0.170 0.0765
NorESM2-LM 0.127 0.188 0.111 0.252
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4. AMIP-Historical correlation coefficients 

 
 
 

Table 4: Table of correlation coefficients between the models and GPCC/CRU for the AMIP 
historical runs on the interannual timescale. Green highlight signifies a strong positive 
correlation (r>=0.26), according to Lau et al 2006’s criteria. The blue highlight represents 
the correlation being significant at the 95% confidence interval. 

Model GPCC CRU
Pearson's R P-Value Pearson's R P-Value

BCC-CSM2-MR 0.275 0.00321 0.311 0.000796
CAMS-CSM1-0 0.187 0.0468 0.197 0.0362

CanESM5 0.138 0.144 0.205 0.0296
CESM2 0.487 4.42E-08 0.518 4.14E-09

CNRM-CM6-1 0.195 0.0380 0.190 0.0436
CNRM-CM6-1-HR 0.146 0.122 0.178 0.0592

CNRM-ESM2-1 0.0418 0.660 0.0625 0.511
FGOALS-f3-L 0.358 0.000101 0.361 8.51E-05
FGOALS-g3 0.252 0.00714 0.288 0.00201
FIO-ESM-2-0 0.351 0.000137 0.379 3.46E-05
GFDL-CM4 0.368 5.94E-05 0.425 2.69E-06
IITM-ESM 0.250 0.00746 0.267 0.00422

IPSL-CM6A-LR 0.390 1.99E-05 0.419 3.78E-06
MIROC6 0.320 0.000552 0.342 0.000211

MRI-ESM2-0 0.382 2.97E-05 0.417 4.23E-06
TaiESM1 0.391 1.90E-05 0.449 5.99E-07

Table 3c: As Table 3a, but for the 10-year running mean. 

Model
GPCC CRU

Pearson's R P-Value Pearson's R P-Value
ACCESS-CM2 0.447 1.98E-06 0.460 9.00E-07

ACCESS-ESM1-5 0.241 0.0138 0.269 0.00568
BCC-CSM2-MR -0.0763 0.441 -0.00430 0.965

CanESM5 0.0522 0.598 0.0659 0.506
CESM2 0.719 7.79E-18 0.714 1.66E-17

CNRM-CM6-1 -0.251 0.0101 -0.270 0.00551
FGOALS-g3 -0.155 0.117 -0.128 0.194
GFDL-CM4 0.140 0.156 0.169 0.0869

GISS-E2-1-G -0.121 0.222 -0.103 0.299
HadGEM3-GC31-LL 0.266 0.00642 0.217 0.0271

IPSL-CM6A-LR 0.246 0.0117 0.220 0.0249
MIROC6 -0.0435 0.661 -0.0857 0.387

MRI-ESM2-0 0.191 0.0522 0.199 0.0430
NorESM2-LM 0.178 0.0699 0.173 0.0791
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5. Spatial Projections 
 

 
 

Figure 5a: Difference 
maps of the modelled 
2087-2100 average 
minus the recent period 
average (2001-2014) 
monsoon season 
precipitation (mm/day) 
for SSP1-2.6, ordered by 
nominal resolution 
smallest to largest. From 
top to bottom: lower, 
medium and higher 
resolution models. 
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Figure 5b: As Figure 5a 
but for SSP2-4.5.  
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Figure 5c: As Figure 5a 
but for SSP3-7.0. 
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Figure 5d: As Figure 5a, but for SSP4-6.0 and the top row are medium resolution 
models, with the bottom row lower resolution models. 
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Figure 5e: As Figure 
5a but for SSP5-8.5. 
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APPENDIX 2: TABLE OF CMIP6 MODELS 

Table 1: Summary of models used in this study. The variant label is made up of four indices, r<k>i<l>p<m>f<n>, where k is realisation index, l is initialisation 
index, m is physics index and n is forcing index. The historical period is 1850-2014, as per the CMIP6 requirements. 

Model Modelling Group 
Atmospheric Resolution 

(longitude/latitude 
unless specified) 

Oceanic Resolution 
(longitude/latitude 
unless specified) 

Variant 
Label 

Aerosol and Land 
components 

References 
(experiment and 

model description) 

ACCESS-
CM2 

 

Commonwealth 
Scientific and 

Industrial Research 
Organisation, (CSIRO) 

Australia, Australian 
Research Council 

Centre of Excellence 
for Climate System 
Science (ARCCSS) 

MetUM-HadGEM3-GA7.1 
(N96; 192 x 144 

longitude/latitude; 85 
levels; top level 85 km) 

ACCESS-OM2 (GFDL-
MOM5, tripolar 

primarily 1o; 360 x 300 
longitude/latitude; 50 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = UKCA-
GLOMAP-mode, 

dust included as a 
separate simulation 

to the other aerosols. 
 

Land = CABLE2.5, 
vegetation 

distribution is kept at 
the year 1850 

distribution 

Dix et al (2019) 
Bi et al (2020) 

ACCESS-
ESM1-5 

 

Commonwealth 
Scientific and 

Industrial Research 
Organisation, 

Aspendale, Victoria 
3195, Australia 

HadGAM2 (r1.1, N96; 192 
x 145 longitude/latitude; 

38 levels; top level 39255 
m) 

ACCESS-OM2 
(MOM5, tripolar 

primarily 1o; 360 x 300 
longitude/latitude; 50 
levels; top grid cell 0-

10 m) 

r10i1p1f1 

Aerosol= CLASSIC 
(v1.0), no dust 

 
Land = CABLE2.4, 

vegetation 
distribution is kept at 

the year 1850 
distribution 

Ziehn et al (2019) 
Ziehn et al (2020) 

AWI-ESM-
1-1-LR 

 

Alfred Wegener 
Institute, Helmholtz 
Centre for Polar and 

Marine Research, 
Germany 

ECHAM6.3.04p1 (T63L47 
native atmosphere T63 
gaussian grid; 192 x 96 
longitude/latitude; 47 

levels; top level 80 km 

FESOM 1.4 
(unstructured grid in 
the horizontal with 

126859 wet nodes; 46 
levels; top grid cell 0-5 

m 

r1i1p1f1 

Aerosol = Interactive 
within 

ECHAM6.3.04p1 
 

Land = JSBACH, 
dynamic vegetation 

 

Danek et al (2020) 
Stevens et al (2013) 

BCC-
CSM2-MR 

 
Beijing Climate Center, 

Beijing, China 
BCC-AGCM3-MR (T106; 

320 x 160 

MOM4 (1/3o 10oS-
10oN, 1/3-1o 10o-30o 
N/S, and 1o in high 

r1i1p1f1 Aerosols = 
Prescribed, both 

Wu et al (2019) 
Wu et al (2018) 
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longitude/latitude; 46 
levels; top level 1.46 hPa) 

latitudes; 360 x 232 
longitude/latitude; 40 
levels; top grid cell 0-

10 m) 

direct and indirect 
effects included 

 
Land =  BCC-AVIM2, 
dynamic vegetation 

BCC-ESM1 
 

Beijing Climate Center, 
Beijing, China 

BCC-AGCM3-LR (T42; 
128 x 64 

longitude/latitude; 26 
levels; top level 2.19 hPa) 

MOM4 (1/3o 10oS-
10oN, 1/3-1o 10o-30o 
N/S, and 1o in high 
latitudes; 360 x 232 

longitude/latitude; 40 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosols = 
Prognostic, both 

direct and indirect 
effects included 

 
Land = BCC-AVIM2, 
dynamic vegetation 

Zhang et al (2018) 
Wu et al (2018) 

CAMS-
CSM1-0 

 

Chinese Academy of 
Meteorological 

Sciences, Beijing, 
China 

ECHAM5_CAMS (T106; 
320 x 160 

longitude/latitude; 31 
levels; top level 10 mb) 

MOM4 (tripolar; 360 x 
200 longitude/latitude, 

primarily 1o  
latitude/longitude, 

down to 1/3o   within 
30o  of the equatorial 
tropics; 50 levels; top 

grid cell 0-10 m) 

r1i1p1f1 

Aerosols = uses 
historical values and 
includes the effects 

on radiation 
 

Land = ECHAM5 
coupled with 

Common Land 
Model, fixed land-use 

forcing, 

Rong (2019) 
Rong et al (2021) 
Xin et al (2019) 

CanESM5 
 

Canadian Centre for 
Climate Modelling and 
Analysis, Environment 
and Climate Change 

Canada 

CanAM5 (T63L49 native 
atmosphere, T63 Linear 
Gaussian Grid; 128 x 64 

longitude/latitude; 49 
levels; top level 1 hPa) 

NEMO3.4.1 (ORCA1 
tripolar grid, 1o with 
refinement to 1/3o 
within 20o of the 

equator; 361 x 290 
longitude/latitude; 45 

vertical levels; top grid 
cell 0-6.19 m) with 
Canadian Model of 

Ocean Carbon 

r10i1p1f1 

Aerosols = 
Interactive 

 
Land = Canadian 

Land Surface 
Scheme (CLASS) 
and the Canadian 

Terrestrial 
Ecosystem Model 
(CTEM), dynamic 

vegetation 

Swart et al (2019a) 
Swart et al (2019b) 

CanESM5-
CanOE 

 

Canadian Centre for 
Climate Modelling and 
Analysis, Environment 
and Climate Change 

Canada 

CanAM5 (T63L49 native 
atmosphere, T63 Linear 
Gaussian Grid; 128 x 64 

longitude/latitude; 49 
levels; top level 1 hPa) 

NEMO3.4.1 (ORCA1 
tripolar grid, 1o with 
refinement to 1/3o 
within 20o of the 

equator; 361 x 290 

r1i1p2f1 

Aerosols = 
Interactive 

 
Land = Canadian 

Land Surface 

Swart et al (2019a) 
Swart et al (2019b) 
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longitude/latitude; 45 
vertical levels; top grid 

cell 0-6.19 m) with 
Canadian Ocean 
Ecosystem model 

Scheme (CLASS) 
and the Canadian 

Terrestrial 
Ecosystem Model 
(CTEM), dynamic 

vegetation 

CAS-
ESM2-0 

 

Chinese Academy of 
Sciences, Beijing, 

China 

IAP AGCM 5.0 (Finite 
difference dynamical core; 

256 x 128 
longitude/latitude; 35 

levels; top level 2.2 hPa) 

LICOM2.0 (LICOM2.0, 
primarily 1o; 362 x 196 
longitude/latitude; 30 
levels; top grid cell 0-

10 m) 

r1i1p1f1 Aerosol = IAP AACM Chai (2020) 

CESM2 
 

National Center for 
Atmospheric Research 

CAM6 (0.9x1.25 finite 
volume grid; 288 x 192 
longitude/latitude; 32 

levels; top level 2.25 mb) 

POP2 (320x384 
longitude/latitude; 60 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = MAM4 
(0.9o x 1.25o finite 
volume grid; 288 x 

192 longitude/ 
latitude; 32 levels; 
top level 2.25 mb) 

 
Land = interactive 

(CLM5) 

Danabasoglu 
(2019a) 

Danabasoglu et al 
(2020) 

CESM2-
FV2 

 
National Center for 

Atmospheric Research 

CAM6 (1.9x2.5 finite 
volume grid; 144 x 96 
longitude/latitude; 32 

levels; top level 2.25 mb) 

POP2 (320x384 
longitude/latitude; 60 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = MAM4 
(1.9o x 2.5o finite 

volume grid; 144 x 
96 longitude/latitude; 
32 levels; top level 

2.25 mb) 
 

Land = interactive, 
CLM5 at 1.9o latitude 

x 2.5o longitude 

Danabasoglu 
(2019b) 

Danabasoglu et al 
(2020) 

CESM2-
WACCM 

 
National Center for 

Atmospheric Research 

CAM6 (0.9x1.25 finite 
volume grid; 288 x 192 
longitude/latitude; 70 

levels; top level 4.5e-6 
mb) 

POP2 (320x384 
longitude/latitude; 60 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = MAM4 
(0.9o x 1.25o finite 
volume grid; 288 x 

192 longitude/ 
latitude; 70 levels; 

top level 4.5e-6 mb) 
 

Danabasoglu 
(2019c) 

Danabasoglu et al 
(2020) 
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Land = interactive 
(CLM5) 

CESM2-
WACCM-

FV2 
 

National Center for 
Atmospheric Research 

CAM6 (1.9x2.5 finite 
volume grid; 144 x 96 
longitude/latitude; 70 

levels; top level 4.5e-6 
mb) 

POP2 (320x384 
longitude/latitude; 60 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = MAM4 
(1.9o x 2.5o finite 

volume grid; 144 x 
96 longitude/latitude; 
70 levels; top level 

4.5e-6 mb) 
 

Land = interactive 
(CLM5, 1.9o x 2.5o ) 

Danabasoglu 
(2019d) 

Danabasoglu et al 
(2020) 

CNRM-
CM6-1 

 

CNRM (Centre 
National de 
Recherches 

Meteorologiques, 
France), CERFACS 

(Centre Europeen de 
Recherche et de 

Formation Avancee en 
Calcul Scientifique, 

France) 

Arpege 6.3 (T127; 
Gaussian Reduced with 
24572 grid points in total 

distributed over 128 
latitude circles (with 256 
grid points per latitude 

circle between 30oN and 
30oS reducing to 20 grid 

points per latitude circle at 
88.9oN and 88.9oS); 91 

levels; top level 78.4 km) 

Nemo 3.6 (eORCA1, 
tripolar primarily 1o; 

362 x 294 
longitude/latitude; 75 

levels; top grid cell 0-1 
m) 

r10i1p1f2 

Aerosol = Prescribed 
monthly fields 
computed by 

TACTIC_v2 scheme. 
 

Land = Fixed, using 
ECOCLIMAP-II. 

Voldoire (2018) 
Voldoire et al (2019) 

 

CNRM-
CM6-1-HR 

 

CNRM (Centre 
National de 
Recherches 

Meteorologiques, 
France), CERFACS 

(Centre Europeen de 
Recherche et de 

Formation Avancee en 
Calcul Scientifique, 

France) 

Arpege 6.3 (T359; 
Gaussian Reduced with 

181724 grid points in total 
distributed over 360 

latitude circles (with 720 
grid points per latitude 

circle between 32.2oN and 
32.2oS reducing to 18 grid 
points per latitude circle at 
89.6oN and 89.6oS)  ); 91 
levels; top level 78.4 km) 

Nemo 3.6 
(eORCA025, tripolar 
primarily 1/4o; 1442 x 

1050 
longitude/latitude; 75 

levels; top grid cell 0-1 
m) 

r1i1p1f2 

Aerosol = Prescribed 
monthly fields 
computed by 

TACTIC_v2 scheme. 
 

Land =  Fixed 
vegetation, using 
ECOCLIMAP-II. 

Voldoire (2018) 
Voldoire et al (2019) 

CNRM-
ESM2-1 

 

CNRM (Centre 
National de 
Recherches 

Meteorologiques, 
France), CERFACS 

Arpege 6.3 (T127; 
Gaussian Reduced with 
24572 grid points in total 

distributed over 128 
latitude circles (with 256 

Nemo 3.6 (eORCA1, 
tripolar primarily 1o; 

362 x 294 
longitude/latitude; 75 

r10i1p1f2 

Aerosol = Interactive, 
using TACTIC_V2. 

 
Land = 

SURFEXv8.0, 

Séférian et al (2019) 
 

Séférian (2018) 
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(Centre Europeen de 
Recherche et de 

Formation Avancee en 
Calcul Scientifique, 

France) 

grid points per latitude 
circle between 30oN and 
30oS reducing to 20 grid 

points per latitude circle at 
88.9oN and 88.9oS); 91 
levels; top level 78.4 km 

levels; top grid cell 0-1 
m) 

interactive, includes 
feedbacks between 
dust and vegetation, 

E3SM-1-0 
 

LLNL (Lawrence 
Livermore National 

Laboratory, USA); ANL 
(Argonne National 

Laboratory, USA); BNL 
(Brookhaven National 

Laboratory, USA); 
LANL (Los Alamos 

National Laboratory, 
USA); LBNL 

(Lawrence Berkeley 
National Laboratory, 
USA); ORNL (Oak 

Ridge National 
Laboratory, USA); 

PNNL (Pacific 
Northwest National 

Laboratory, USA); SNL 
(Sandia National 

Laboratories, USA). 

EAM (v1.0, cubed sphere 
spectral-element grid; 1o 
average grid spacing; 90 

x 90 x 6 
longitude/latitude/cube 

face; 72 levels; top level 
0.1 hPa) 

MPAS-Ocean (v6.0, 
variable resolution 60 

km to 30 km; 60 levels; 
top grid cell 0-10 m) 

r1i1p1f1 

Aerosol = MAM4, 
interactive aerosols, 

same grid as 
atmosphere 

 
Land = ELMv1.0, 
fixed vegetation. 

Bader et al (2019a) 
Golaz et al (2019) 

E3SM-1-1 
 

LLNL (Lawrence 
Livermore National 

Laboratory, USA); ANL 
(Argonne National 

Laboratory, USA); BNL 
(Brookhaven National 

Laboratory, USA); 
LANL (Los Alamos 

National Laboratory, 
USA); LBNL 

(Lawrence Berkeley 
National Laboratory, 
USA); ORNL (Oak 

EAM (v1.1, cubed sphere 
spectral-element grid; 1o 
average grid spacing; 90 

x 90 x 6 longitude/latitude/ 
cubeface; 72 levels; top 

level 0.1 hPa) 

MPAS-Ocean (v6.0, 
variable resolution 60 

km to 30 km; 60 levels; 
top grid cell 0-10 m) 

r1i1p1f1 

Aerosol = MAM4, 
interactive aerosols, 

same grid as 
atmosphere 

 
Land: ELM v1.1, 

same grid as 
atmosphere, 
interactive 

vegetation. MOSART 
(v1.1, 0.5o 

latitude/longitude 
grid) 

Bader et al (2019b) 
Burrows et al (2020) 
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Ridge National 
Laboratory, USA); 

PNNL (Pacific 
Northwest National 

Laboratory, USA); SNL 
(Sandia National 

Laboratories, USA). 

E3SM-1-1-
ECA 

 

LLNL (Lawrence 
Livermore National 

Laboratory, USA); ANL 
(Argonne National 

Laboratory, USA); BNL 
(Brookhaven National 

Laboratory, USA); 
LANL (Los Alamos 

National Laboratory, 
USA); LBNL 

(Lawrence Berkeley 
National Laboratory, 
USA); ORNL (Oak 

Ridge National 
Laboratory, USA); 

PNNL (Pacific 
Northwest National 

Laboratory, USA); SNL 
(Sandia National 

Laboratories, USA). 

EAM (v1.1, cubed sphere 
spectral-element grid; 1o 
average grid spacing; 90 

x 90 x 6 
longitude/latitude/cube 

face; 72 levels; top level 
0.1 hPa) 

MPAS-Ocean (v6.0, 
variable resolution 60 

km to 30 km; 60 levels; 
top grid cell 0-10 m) 

r1i1p1f1 

Aerosol = MAM4, 
interactive aerosols, 

same grid as 
atmosphere 

 
Land = ELM v1.1, 

same grid as 
atmosphere, 
interactive 

vegetation, includes 
active 

biogeochemistry 
associated with plant 
and soil carbon, as 
well as mechanisms 

with nutrients. 
MOSART (v1.1, 0.5o 

latitude/ longitude 
grid) 

Burrows et al (2020) 
Bader et al (2020) 

EC-Earth3 
 

Earth Consortium, 
Europe 

IFS cy36r4 (TL255, 
linearly reduced Gaussian 

grid equivalent to 512 x 
256 longitude/latitude; 91 
levels; top level 0.01 hPa) 

NEMO3.6 (ORCA1 
tripolar primarily 1o 

with meridional 
refinement down to 

1/3o in the tropics; 362 
x 292 

longitude/latitude; 75 
levels; top grid cell 0-1 

m) 

r10i1p1f1 

Aerosols = Forcings 
taken from the 
CMIP6 dataset 

including 
stratospheric 

aerosols (optical 
properties). 

Tropospheric 
aerosols derived 

from modelled pre-
industrial values 
combined with a 

EC-Earth Consortium 
(EC-Earth) (2019a). 
Döscher et al (2021) 
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model of 
anthropogenic 

aerosols. 
Land = HTESSEL, 
dynamic vegetation 

EC-Earth3-
Veg 

Earth Consortium, 
Europe 

80km horizontal, 0.35o x 
0.35o, 91 vertical levels 

IFS cy36r4 (TL255, 
linearly reduced Gaussian 

grid equivalent to 512 x 
256 longitude/latitude; 91 
levels; top level 0.01 hPa) 

75 layers, 1o 
resolution, equator has 

mesh refinement 
NEMO3.6 (ORCA1 
tripolar primarily 1o 

with meridional 
refinement down to 

1/3o in the tropics; 362 
x 292 

longitude/latitude; 75 
levels; top grid cell 0-1 

m) 

r1i1p1f1 

Aerosols = Forcings 
taken from the 
CMIP6 dataset 

including 
stratospheric 

aerosols (optical 
properties). 

Tropospheric 
aerosols derived 

from modelled pre-
industrial values 
combined with a 

model of 
anthropogenic 

aerosols. 
 

Land = HTESSEL, 
dynamic vegetation, 

also includes the 
reciprocal effects of 

soil water on 
evapotranspiration, 
surface albedo and 
roughness length, 

which feeds into the 
defined effective 
vegetation cover. 

Rivera and Arnould 
(2020) 

Wyser et al (2020) 
EC-Earth Consortium 
(EC-Earth) (2019b) 
Döscher et al (2021) 

 

FGOALS-
f3-L 

 

Chinese Academy of 
Sciences, Beijing, 

China 

FAMIL2.2 (Cubed-sphere, 
360 x 180 longitude/ 

latitude; 32 levels; top 
level 2.16 hPa) 

LICOM3.0 (LICOM3.0, 
tripolar primarily 1deg; 
360 x 218 longitude/ 

latitude; 30 levels; top 
grid cell 0-10 m) 

r1i1p1f1 

Aerosols = 
Prescribed, as per 

CMIP6 requirements. 
 

Land = CLM4.0, 
prescribed with 

Yu (2019) 
He et al (2019) 

Guo et al (2020) 
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monthly mean 
observed values 

FIO-ESM-
2-0 

 

FIO (First Institute of 
Oceanography, State 

Oceanic 
Administration, China), 

QNLM (Qingdao 
National Laboratory for 

Marine Science and 
Technology, China) 

CAM4 (0.9x1.25 finite 
volume grid; 192 x 288 
longitude/latitude; 26 

levels; top level ~2 hPa) 

POP2-W (POP2 
coupled with 

MASNUM surface 
wave model, 

Displaced Pole; 320 x 
384 longitude/latitude; 
60 levels; top grid cell 

0-10 m) 

r1i1p1f1 

Aerosol = Prescribed 
monthly fields 

 
Land = CLM4.0 
(same grid as 
atmosphere) 

Song et al (2019) 
 

GFDL-
ESM4 

 

National Oceanic and 
Atmospheric 

Administration, 
Geophysical Fluid 

Dynamics Laboratory, 
USA 

GFDL-AM4.1 (Cubed-
sphere - 1o nominal 

horizontal resolution; 360 
x 180 longitude/latitude; 
49 levels; top level 1 Pa) 

GFDL-OM4p5 (GFDL-
MOM6, tripolar - 

nominal 0.5o; 720 x 
576 longitude/latitude; 
75 levels; top grid cell 

0-2 m) 

r1i1p1f1 

Aerosol = Interactive, 
including dust 

emissions 
 

Land = GFDL-LM4.1, 
dynamic to a certain 

extent as the 
nitrogen cycle is not 
interactive but the six 
carbon pools are live. 

 

Krasting et al (2018) 
Dunne et al (2020) 

GISS-E2-1-
G 
 

Goddard Institute for 
Space Studies, USA 

GISS-E2.1 (2.5o x 2o, 144 
x 90 longitude/latitude; 40 
levels; top level 0.1 hPa) 

GISS Ocean (1.25o x 
1o; 288 x 180 

longitude/latitude; 32 
levels; top grid cell 0-

10 m) 

r101i1p1f1 

Aerosol = Prescribed 
 

Land = GISS LSM, 
prescribed 
vegetation 

NASA Goddard 
Institute for Space 

Studies (2018) 
Kelley et al (2020) 
Miller et al (2021) 

GISS-E2-1-
G-CC 

 
Goddard Institute for 
Space Studies, USA 

GISS-E2.1 (2.5o x 2o; 144 
x 90 longitude/latitude; 40 
levels; top level 0.1 hPa) 

GISS Ocean (1.25o x 
1o; 288 x 180 

longitude/latitude; 32 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = Prescribed 
 

Land = GISS LSM, 
prescribed 
vegetation, 

interactive carbon 
cycle 

NASA Goddard 
Institute for Space 
Studies (2019a) 

Kelley et al (2020) 
Miller et al (2021) 

GISS-E2-1-
H 
 

Goddard Institute for 
Space Studies, New 

York, USA 

GISS-E2.1 (2.5o x 2o; 144 
x 90 longitude/latitude; 40 
levels; top level 0.1 hPa) 

HYCOM Ocean (~1o 
tripolar grid; 360 x 180 
longitude/latitude; 26 
levels; top grid cell 0-

10 m) 

r10i1p1f1 

Aerosol = Prescribed 
 

Land = GISS LSM, 
prescribed 
vegetation 

NASA Goddard 
Institute for Space 
Studies (2019b) 

Kelley et al (2020) 
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HadGEM3-
GC31-LL 

Met Office Hadley 
Centre, UK 

192 x 144, 85 levels, 
135km 

MetUM-HadGEM3-GA7.1 
(N96; 192 x 144 

longitude/latitude; 85 
levels; top level 85 km) 

360 x 330, 75 levels 
(mainly 1o resolution, 
1/3 degree in tropics) 
NEMO-HadGEM3-
GO6.0 (eORCA1 

tripolar primarily 1o 
with meridional 

refinement down to 
1/3o in the tropics; 360 

x 330 
longitude/latitude; 75 

levels; top grid cell 0-1 
m) 

r1i1p1f3 

Aerosol = UKCA-
GLOMAP-mode, 

dust included as a 
separate simulation 
to the other aerosols 

using CLASSIC 
scheme 

 
Land = dynamic 

vegetation in JULES-
HadGEM3-GL7.1, 

different tile 
groupings. 

 
Williams et al (2017) 
Ridley et al (2019a) 
Walters et al (2019) 

 

HadGEM3-
GC31-MM 

 
Met Office Hadley 

Centre, UK 

MetUM-HadGEM3-GA7.1 
(N216; 432 x 324 

longitude/latitude; 85 
levels; top level 85 km) 

NEMO-HadGEM3-
GO6.0 (eORCA025 

tripolar primarily 0.25o; 
1440 x 1205 

longitude/latitude; 75 
levels; top grid cell 0-1 

m) 

r1i1p1f3 

Aerosol = UKCA-
GLOMAP-mode, 

dust included as a 
separate simulation 
to the other aerosols 

using CLASSIC 
scheme 

 
Land = dynamic 

vegetation in JULES-
HadGEM3-GL7.1, 

different tile 
groupings. 

Williams et al (2017) 
Ridley et al (2019b) 
Walters et al (2019) 

 

IITM-ESM 
 

Centre for Climate 
Change Research, 
Indian Institute of 

Tropical Meteorology 
Pune, India 

IITM-GFSv1 (T62L64, 
Linearly Reduced 

Gaussian Grid; 192 x 94 
longitude/latitude; 64 

levels; top level 0.2 mb) 

MOM4p1 (tripolar, 
primarily 1o; 360 x 200 
longitude/latitude; 50 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = prescribed 
using MAC-v2 

 
Land = NOAH 

LSMv2.7.1 

Swapna et al (2015) 
Raghavan & 

Panickal (2019) 

INM-CM4-8 
 

Institute for Numerical 
Mathematics, Russian 
Academy of Science, 

Russia 

INM-AM4-8 (2x1.5o; 180 x 
120 longitude/latitude; 21 
levels; top level sigma = 

0.01) 

INM-OM5 (North Pole 
shifted to 60oN, 90oE; 

360 x 318 
longitude/latitude; 40 
levels; sigma vertical 

coordinate) 

r1i1p1f1 

Aerosol = interactive 
using INM-AER1 

 
Land = prescribed 

INM-LND1 

Volodin et al (2019a) 
Volodin et al (2018) 
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INM-CM5-0 
 

Institute for Numerical 
Mathematics, Russian 
Academy of Science, 

Russia 

INM-AM5-0 (2x1.5o; 180 x 
120 longitude/latitude; 73 
levels; top level sigma = 

0.0002) 

INM-OM5 (North Pole 
shifted to 60oN, 90oE. 
0.5x0.25o; 720 x 720 
longitude/latitude; 40 
levels; vertical sigma 

coordinate) 

r10i1p1f1 

Aerosol = interactive 
using INM-AER1 

 
Land = prescribed 
using INM-LND1 

Volodin et al (2019b) 
Volodin et al (2017) 

IPSL-
CM6A-LR 

 
Institut Pierre Simon 

Laplace, France 

LMDZ (NPv6, N96; 144 x 
143 longitude/latitude; 79 
levels; top level 40000 m) 

NEMO-OPA 
(eORCA1.3, tripolar 

primarily 1o; 362 x 332 
longitude/latitude; 75 

levels; top grid cell 0-2 
m) 

r10i1p1f1 

Aerosol = 
climatologies 

prescribed, the 
interactive option is 

not activated. 
 

Land = prescribed 
using ORCHIDEE 

(v2.0, Water/ 
Carbon/Energy 

mode) 

 
Boucher et al (2018) 
Boucher et al (2020) 

KACE-1-0-
G 
 

National Institute of 
Meteorological 
Sciences/Korea 
Meteorological 
Administration, 

Climate Research 
Division, Republic of 

Korea 

MetUM-HadGEM3-GA7.1 
(N96; 192 x 144 

longitude/latitude; 85 
levels; top level 85 km) 

MOM4p1 (tripolar 
primarily 1o; 360 x 200 
longitude/latitude; 50 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = calculated 
using UKCA-

GLOMAP-mode 
 

Land = prescribed 
vegetation within 

JULES-HadGEM3-
GL7.1, with nine 

different categories 
using Land Use 

Harmonization data 
version 2 or data 

from the Max Planck 
Institute for 
Meteorology 

 
 

Byun et al (2019) 
Lee et al (2020) 

MCM-UA-
1-0 

 

Department of 
Geosciences, 

University of Arizona, 
USA 

R30L14 (3.75 x 2.5o 
(long-lat) configuration; 96 
x 80 longitude/latitude; 14 

levels; top level 0.015 
sigma, 15 mb) 

MOM1.0 (MOM1, 
1.875 x 2.5o; 192 x 80 
longitude/latitude; 18 
levels; top grid cell 0-

40 m) 

r1i1p1f1 

Aerosol = Modifies 
surface albedos 

 
Land = simplified 

processes 

Delworth et al (2002) 
Stouffer (2019) 
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MIROC-
ES2L 

 

JAMSTEC (Japan 
Agency for Marine-
Earth Science and 

Technology, Japan), 
AORI (Atmosphere 

and Ocean Research 
Institute, The 

University of Tokyo, 
Japan), NIES (National 

Institute for 
Environmental 

Studies, Japan), and 
R-CCS (RIKEN Center 

for Computational 
Science, Japan) 

CCSR AGCM (T42; 128 x 
64 longitude/latitude; 40 
levels; top level 3 hPa) 

COCO4.9 (tripolar 
primarily 1o; 360 x 256 
longitude/ latitude; 63 
levels; top grid cell 0-2 

m) 

r10i1p1f2 

Aerosol = dynamic 
elements within 
SPRINTARS6.0 

 
Land = prescribed 

using MATSIRO6.0 + 
VISIT-e ver.1.0 

Hajima et al (2019) 
Hajima et al (2020) 

 

MIROC6 

JAMSTEC (Japan 
Agency for Marine-
Earth Science and 

Technology, Japan), 
AORI (Atmosphere 

and Ocean Research 
Institute, The 

University of Tokyo, 
Japan), NIES (National 

Institute for 
Environmental 

Studies, Japan), and 
R-CCS (RIKEN Center 

for Computational 
Science, Japan) 

CCSR AGCM (T85; 256 x 
128 longitude/latitude; 81 

levels; top level 0.004 
hPa) 

COCO4.9 (tripolar 
primarily 1o; 360 x 256 
longitude/ latitude; 63 
levels; top grid cell 0-2 

m) 

r10i1p1f1 

Aerosol = dynamic 
using 

SPRINTARS6.0 
 

Land = prescribed in 
MATSIRO6.0 

Tatebe & Watanabe 
(2018) 

 
Tatebe et al (2019) 

MPI-ESM-
1-2-HAM 

 

ETH Zurich, 
Switzerland; Max 
Planck Institut fur 

Meteorologie, 
Germany; 

Forschungszentrum 
Julich, Germany; 

University of Oxford, 
UK; Finnish 

ECHAM6.3 (spectral T63; 
192 x 96 

longitude/latitude; 47 
levels; top level 0.01 hPa) 

MPIOM1.63 (bipolar 
GR1.5, approximately 

1.5o; 256 x 220 
longitude/latitude; 40 
levels; top grid cell 0-

12 m) 

r1i1p1f1 

Aerosol = prescribed 
using HAM2.3 

 
Land = Simulated 

using JSBACH 3.20 

No experiment 
citation available.  

Mauritsen et al 
(2019) 
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Meteorological 
Institute, Finland; 

Leibniz Institute for 
Tropospheric 

Research, Germany; 
Center for Climate 
Systems Modeling 

(C2SM) at ETH Zurich, 
Switzerland 

MPI-ESM1-
2-HR 

 
Max Planck Institute 

for Meteorology 

ECHAM6.3 (spectral 
T127; 384 x 192 

longitude/latitude; 95 
levels; top level 0.01 hPa) 

MPIOM1.63 (tripolar 
TP04, approximately 

0.4o; 802 x 404 
longitude/latitude; 40 
levels; top grid cell 0-

12 m) 

r10i1p1f1 

Aerosol = prescribed 
using MACv2-SP 

 
Land = prescribed 

within JSBACH3.20 

Jungclaus et al 
(2019)  

Mauritsen et al 
(2019) 

MPI-ESM1-
2-LR 

 
Max Planck Institute 

for Meteorology 

ECHAM6.3 (spectral T63; 
192 x 96 

longitude/latitude; 47 
levels; top level 0.01 hPa) 

MPIOM1.63 (bipolar 
GR1.5, approximately 

1.5o; 256 x 220 
longitude/latitude; 40 
levels; top grid cell 0-

12 m) 

r10i1p1f1 

Aerosol = prescribed 
using MACv2-SP 

 
Land = Simlated 

using JSBACH3.20 

Weiners et al (2019) 
Mauritsen et al 

(2019) 

MRI-ESM2-
0 
 

Meteorological 
Research Institute, 

Japan 

MRI-AGCM3.5 (TL159; 
320 x 160 

longitude/latitude; 80 
levels; top level 0.01 hPa) 

MRI.COM4.4 (tripolar 
primarily 0.5o latitude/ 

1o longitude with 
meridional refinement 
down to 0.3 deg within 
10 degrees north and 
south of the equator; 

360 x 364 
longitude/latitude; 61 

levels; top grid cell 0-2 
m) 

r1i1000p1f1 

Aerosol = prescribed 
using MASINGAR 

mk2r4 (TL95; 192 x 
96 longitude/latitude; 
80 levels; top level 

0.01 hPa) 
 

Land = Prescribed 
using HAL 1.0 

Yukimoto et al 
(2019a) 

Yukimoto et al 
(2019b) 

 
 

NESM3 
 

Nanjing University of 
Information Science 

and Technology, 
China 

ECHAM v6.3 (T63; 192 x 
96 longitude/latitude; 47 

levels; top level 1 Pa) 

NEMO v3.4 (NEMO 
v3.4, tripolar primarily 

1o; 384 x 362 
longitude/latitude; 46 

levels; top grid cell 0-6 
m) 

r1i1p1f1 

Aerosol = prescribed 
 

Land = dynamic 
vegetation within 

JSBACH v3.1 

Cao and Wang 
(2019) 

Cao et al (2018)  
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NorESM2-
LM 

 

NorESM Climate 
modeling Consortium 
consisting of CICERO 

(Center for 
International Climate 
and Environmental 

Research, Oslo), MET-
Norway (Norwegian 

Meteorological 
Institute, Oslo), 

NERSC (Nansen 
Environmental and 
Remote Sensing 

Center, Bergen), NILU 
(Norwegian Institute 

for Air Research, 
Kjeller), UiB 

(University of Bergen, 
Bergen), UiO 

(University of Oslo) 
and UNI (Uni 

Research, Bergen) 

CAM-OSLO (2o 
resolution; 144 x 96; 32 
levels; top level 3 mb) 

MICOM (1o resolution; 
360 x 384; 70 levels; 
top grid cell minimum 
0-2.5 m [native model 
uses hybrid density 
and generic upper-

layer coordinate 
interpolated to z-level 
for contributed data]) 

r1i1p1f1 

Aerosol = natural 
emissions are 

interactive using 
OsloAero 

 
Land = prescribed 

within CLM 

Seland et al (2019) 
Seland et al (2020) 

NorESM2-
MM 

 

NorESM Climate 
modeling Consortium 
consisting of CICERO 

(Center for 
International Climate 
and Environmental 

Research, Oslo), MET-
Norway (Norwegian 

Meteorological 
Institute, Oslo), 

NERSC (Nansen 
Environmental and 
Remote Sensing 

Center, Bergen), NILU 
(Norwegian Institute 

for Air Research, 
Kjeller), UiB 

CAM-OSLO (1o 
resolution; 288 x 192; 32 

levels; top level 3 mb) 

MICOM (1 o resolution; 
360 x 384; 70 levels; 
top grid cell minimum 
0-2.5 m [native model 
uses hybrid density 
and generic upper-

layer coordinate 
interpolated to z-level 
for contributed data]) 

r1i1p1f1 

Aerosol = natural 
emissions are 

interactive using 
OsloAero 

 
Land = prescribed, 

CLM 

Bentsen et al (2019) 
Seland et al (2020) 
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(University of Bergen), 
UiO (University of 

Oslo) and UNI (Uni 
Research, Bergen) 

SAM0-
UNICON 

 

Seoul National 
University, Republic of 

Korea 

CAM5.3 with UNICON 
(1o; 288 x 192 longitude/ 

latitude; 30 levels; top 
level ~2 hPa) 

POP2 (Displaced Pole; 
320 x 384 

longitude/latitude; 60 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = prescribed 
within MAM3 

 
Land = prescribed 

within CLM4.0 

Park and Shin (2019) 
Park et al (2019) 

TaiESM1 
Research Centre for 

Environmental 
Change, Taiwan 

TaiAM1 (0.9o x 1.25o; 288 
x 192 longitude/latitude; 
30 levels; top level ~2 

hPa) 

POP2 (320 x 384 
longitude/latitude; 60 
levels; top grid cell 0-

10 m) 

r1i1p1f1 

Aerosol = SNAP – 
parameterises in 

bulk. 
 

Land = CLM4.0 – 
prescribed 

vegetation but 
includes 

consideration of dust 
deposition and 

vegetation impacts 
on albedo. 

Lee and Liang (2020) 
Lee et al (2020) 

 

UKESM1-
0-LL 

 

Met Office Hadley 
Centre, UK  

and 
National Institute of 

Meteorological 
Sciences/Korea 
Meteorological 
Administration, 

Climate Research 
Division, Republic of 

Korea 

MetUM-HadGEM3-GA7.1 
(N96; 192 x 144 

longitude/latitude; 85 
levels; top level 85 km) 

NEMO-HadGEM3-
GO6.0 (eORCA1 

tripolar primarily 1o 
with meridional 

refinement down to 
1/3o in the tropics; 360 

x 330 
longitude/latitude; 75 

levels; top grid cell 0-1 
m) 

r13i1p1f2 

Aerosol = Dynamic 
using UKCA-

GLOMAP-mode 
 

Land = Dynamic 
using JULES-ES-1.0 

Byun (2020) 
Sellar et al (2019) 
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