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Abstract

Advances in ultrasonic nonlinear imaging techniques have increased the detectability of fatigue
cracks during earlier stages of formation. This thesis explores the novel nonlinear ultrasonic
diffuse energy imaging (NUI) technique used for non-destructive testing (NDT). In contrast to
current linear methods the NUI method is able to image tightly closed crack tips and quantify
the degree of nonlinearity present in the defect without the need for mechanical scanning or
complicated bespoke set-ups. More specifically, unlike nonlinear coherent methods the NUI
method is able to resolve nonlinear closed crack tips without the need for coherent reflections
from damage, meaning the orientation of the crack tips is not required and the method can be
extended to classical nonlinearity induced by lattice anharmonicity and dislocations.

A sensitivity analysis of the NUI technique is first explored to establish the sensitivity profile
of the method and further understand the detectability of nonlinear features in materials. This
is achieved through experimental and simulated data, and explores the influence of attenuation
and transmission frequency on detectability of nonlinear features. Consistent sensitivity over
the frequency transmission range investigated is observed and is attributed to the competing
effects of increased attenuation and nonlinearity as frequency increases. The knowledge of the
sensitivity profile is then used to investigate a multi-view diffuse method to allow optimisation
of the position of the sensitivity profile used to detect the nonlinear feature. This is only
effective at 5 MHz where a nonlinear feature is detected very close to the array which is
otherwise undetectable using the existing single-view NUI technique.

Further optimisations of the NUI technique are investigated. Firstly, a multi-frequency adapta-
tion is explored and compares the sensitivity of the NUI technique using varying transmission
frequencies and receiving at different frequency components (low, sub-harmonic, fundamental
and second harmonic). Themost effective configuration is transmitting at 5MHz and receiving
at the low frequency and the second harmonic component. A phase metric is also investigated
in an attempt to reduce the diffuse field dependency of this method. The results show some
reduction in sensitivity to the diffuse field, suggesting there is some benefit to computing the
proposed phase metric over the current energy metric. The optimisation of the diffuse time
parameters is investigated and a phase coherence metric is established to process full matrix
capture (FMC) data and determine the time in which ultrasonic energy has homogenised in the
material. The results suggest the metric converges when the field is diffuse and is tested with
the experimental performance of the NUI technique in imaging a crack tip.

Finally, using the optimisations proposed in this thesis the detection of classical nonlinearity
(lattice anharmonicity and dislocations) is investigated on dog-bone samples subjected to
loading from a 4-point bending jig. This study concludes that the NUI method requires further
optimisation to detect lower-level classical nonlinearity.
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Chapter 1

Introduction

This thesis is concerned with the development and optimisation of the nonlinear ultrasonic

diffuse energy imaging (NUI) technique for monitoring crack growth in mechanical compo-

nents. The aim of this thesis is to enhance current techniques to increase the detectability of

closed crack tips and automate this method for industrial use by investigating its optimisation

on artificially grown nonlinear damage in Aluminium.

In the aerospace and power generation industries, metallic parts such as pipelines, nuclear

reactors and aerospace components are subjected to cyclic high pressures and temperatures

which reduce their operational lifetime. The reliability and integrity of these structures are

key to ensure safe operation. It is known that materials used in these industries experience

fatigue, thermal ageing, creep, plasticity and radiation damage all of which cause the material

to become more nonlinear [9]. Most notably, crack growth caused by cyclic loading occurs

frequently in engineering structures and components. Such fatigue is hard to detect early in

life, therefore detection methods are desirable to plan maintenance repairs for improved safety.

The consequence of these processes is the demand for in situ testing of components in-order

to detect defects and quantitatively determine their remaining life at earlier stages of fatigue to

ensure safe operation.

1
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It is vital to use reliable non-destructive testing (NDT) methods for early detection of these

defects to plan maintenance and guarantee safety. Conventional linear ultrasonic methods,

using a variety of transmit and receive configurations, have proven effective in imaging these

defects, however these methods are considered inaccurate at early stages of degradation where

the crack tip is partially or fully closed, due to limited reflections from the damage [10–12].

Therefore these conventional methods are optimised and focused towards identifying fatigue

cracks towards the middle or end of the components lifetime. The result of these limitations is

relatively short intervals for inspection and higher safety factors to ensure the detectability of

fast growing crack tips, reducing efficiency and increasing cost.

Nonlinear methods have been developed to detect the response frommicro-structural fatigue

which precedes crack growth in engineering components. As micro-structural degradation

(such as dislocations) persists, cracks initiate and grow (initially tightly closed), exhibiting

nonlinear effects from opening and closing. This nonlinear mechanism becomes a dominant

feature to measure and allows for the detection of fatigue crack tips prior to the development of

volumetric damage (which can then be detected using conventional methods). Micro-structural

nonlinearity is classified in two groups: classical and non-classical. Classical nonlinearity is

induced when a longitudinal wave propagates through a medium with a nonlinear stress-

strain relationship (which occurs in all materials). The stress-strain relationship is generally

defined as quadratic and is generated by dislocations and lattice anharmonicity [13–15]. Non-

classical nonlinearity is induced by crack tips where the interface of the crack opens and

closes, and only allows the compressional component of the wave to transmit [2,16,17]. Both

nonlinear mechanisms produce measurable nonlinearity in received ultrasonic signals allowing

for detection of fatigue damage before the formation of larger volumetric defects. Several

ultrasonic nonlinear measurement techniques have been developed that capitalise on induced

second harmonic generation (SHG) and frequency modulation caused by classical [18,19] and

non-classical [20–22] nonlinearity. However, the requirement for complicated configurations
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for these experiments limits these methods to lab research and prevents industrial deployment

[23–26], and will be discussed in more detail in Section 2.2.

Recent advances in the field have enabled the development of nonlinear phased array

methods which increase the applicability of nonlinear measurement techniques for industrial

use, by removing the requirement for mechanical scanning and reducing the inspection time.

Such approaches have been effective in detecting and spatially resolving nonlinear features [5,

27,28] using a variety of transmit and receive configurations. These nonlinear methods are split

into two main groups: coherent and diffuse. The nonlinear phased array coherent techniques

evaluate the transfer of energy to additional harmonics present in the wave backscattered from

the point of inspection, such as the fundamental wave amplitude difference technique [3, 28],

fundamental sequential-parallel subtraction method [27] and sub-harmonic methods [4]. The

key requirement of these methods are linear reflections from the nonlinear damage at the

inspection point, therefore the orientation of damage such as fatigue crack tips can influence

their reliability.

The stochastic formation of closed crack tips means the orientation of the crack tip is not

known, therefore a technique that does not rely on linear scattering is desirable. The second type

of nonlinear phased arraymethod is the NUI technique which removes the dependency of linear

scattering on the detectability of defects. The NUI technique evaluates the nonlinearity once

the field is diffuse, that is, statistically uniform throughout the specimen [5]. The benefit of this

technique is that it does not rely on backscatter from the inspection point and therefore it has the

potential to resolve classical nonlinearity, such as bulk material nonlinearity. Since the closed

crack tips are typically generated from the surface or larger volumetric fatigue, contact-acoustic

nonlinearity (CAN) sources are generally located near a large linear scatterer, allowing for the

nonlinear information to propagate back to the array. However, bulk nonlinearity induced by

strain-fields is generally distributed throughout the material and therefore close proximity to
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linear reflectors is less likely, meaning the nonlinearity can not propagate back to the array.

This NUI technique implements the same parallel-sequential subtraction method but captures

information later in time when the field is diffuse. The key requirement of the NUI technique

is that the energy is diffuse throughout the specimen before the receivers begin to capture the

signal, meaning the relative loss of energy from the focal point diffuses uniformly through

the material. As such, the relative diffuse energy between the parallel and sequential field is

proportional to the energy lost at the focal point, and therefore proportional to the nonlinearity

at that location [5]. The optimisation of the timewhen the receivers begin and stop capturing the

field is vital to ensure that the ultrasonic data is diffuse and contains the smallest contribution

from noise. This optimisation is therefore critical for the practical implementation of this

technique.
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1.1 Thesis objectives

The focus of this thesis is the optimisation of the NUI technique to increase the detectability of

fatigue crack tips, which will allow earlier detection of fatigue. This will be achieved through

a number of optimisations investigated on artificially produced crack tips.

Firstly, the sensitivity profile of the NUI method for detecting fatigue crack tips will be

investigated, achieved through experimental and simulation investigation. The purpose of

this is to spatially determine the most detectable region of the array and study the influence of

attenuation rates and transmission frequency on the detectability of the NUI method. Using the

known sensitivity profile an optimised detection method is proposed to control the point of the

sensitivity profile used to detect the crack tip. To increase detectability further, nonlinear energy

at various reception frequencies are investigated, introducing a multi-frequency method which

evaluates the nonlinear energy at nonlinear components within the spectrum. The performance

of the alternative frequencies are compared via signal-to-noise ratio (SNR) measurements to

establish the most effective frequencies for localising fatigue crack tips. The most effective

configuration can then be used to resolve nonlinear features more accurately and resolve lower

levels of nonlinearity, which allows for earlier detection of fatigue crack tips.

The detectability of nonlinear features using the NUI technique is highly dependent on the

diffuse field, therefore the capturing of data during a diffuse state is vital to detect fatigue

cracks at early stages of development. Therefore, the dependency of NUI on the diffuse

field is investigated, and a diffuse field metric is established to approximate the time the field

has homogenised. The capture of data in an optimally diffuse state will allow for increased

detectability of crack tips. In addition, to reduce the dependency of NUI on the diffuse field, a

phase NUI metric is introduced.

Finally, using the multi-frequency method, diffuse metric optimisations and sensitivity
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optimisations, an investigation into resolving bulkmaterial nonlinearity (classical nonlinearity)

will be conducted. This is investigated using samples containing a strain field induced via

loading and attempts to validate the NUI method for determining classical nonlinearity.

1.2 Thesis outline

The structure of this thesis is consistent with the objectives described in the previous section

and is as follows:

A literature review is presented in Chapter 2 which reviews the literature principally relevant

to this thesis. Firstly, nonlinear wave propagation and classical/non-classical nonlinearity is

introduced to set the theoretical baseline of the project. Subsequently, nonlinear measurement

techniques are compared (second harmonic measurement and wave-mixing) to introduce var-

ious methods for measuring nonlinearity induced by fatigue. The development of ultrasonic

phased arrays for various transmission configurations and conventional linear imaging meth-

ods is introduced. Following this, the nonlinear phased array methods are introduced in two

categories: coherent and diffuse methods. The advantages and disadvantages of both these

methods are compared in depth.

Chapter 3 investigates the NUI sensitivity profile of the array through analysis of experi-

mental and simulation results. Using knowledge of the sensitivity profile a multi-view diffuse

method is proposed to provide some dynamic control over the sensitivity of the array. The

efficacy of transmission frequencies for detecting fatigue crack tips is also investigated to

determine the most effective frequencies for exciting nonlinearity induced by crack tips.

Chapter 4 investigates an adaptation of the single NUI method which measures nonlinear

energy at multiple frequencies. This chapter evaluates the performance of each nonlinear

frequency component in detecting fatigue crack tips by comparing the SNR of each image



1.2. THESIS OUTLINE 7

with the current single frequency method. Following this analysis a frequency combination for

transmission and reception is determined to ensure maximum nonlinear resolution of features.

Chapter 5 investigates two phase metrics for detecting fatigue crack tips in test specimens.

The performance of the metrics is compared with the SNR of the current NUI metric for

multiple start gate-times. This process evaluates how the performance of the metrics vary with

a change in the diffuse field state. Since there is a limitation in achieving a diffuse state in large

geometries, a metric less reliant on the diffuse field is desired.

Chapter 6 introduces a phase coherence metric for determining the time in which the

energy in the wave-field has homogenised and a diffuse field has been achieved. This metric is

tested against the performance of NUI for multiple start gate-times and investigates multiple

parameters (e.g. cycle length, sample volume and frequency transmission).

Chapter 7 employs the optimisations discovered in the previous chapters and investigates

the detection of material nonlinearity induced by strain-fields from fatigue. Using the most

effective multi-frequency configuration, the proposed multi-frequency method and the diffuse

phase coherent metric, the efficacy of NUI for resolving material nonlinearity is extensively

explored.

Chapter 8 concludes the findings of the thesis and suggests the direction of further research.

This includes the future applications of optimisations, and additional optimisations required.





Chapter 2

Nonlinear wave propagation and NDT

In this chapter literature relevant to the research in this thesis will be discussed. Firstly, the

general principles of elastic nonlinear wave propagation will be introduced. The measurement

of elastic non-linearity has been investigated in multiple fields [29]. Most notably, the micro-

structure of crystalline metallic materials (such as dislocations, precipitates and micro-cracks)

have been shown to induce elastic nonlinearity, first observed using acousto-elastic methods

[30, 31]. This led to the development of ultrasonic nonlinear methods for the quantitative

measurement of micro-structural changes, such that early material degradation and remaining

life of components can be estimated. This subsection presents a theoretical overview of elastic

nonlinearity in two different forms: classical and non-classical.

Nonlinear ultrasonic measurement techniques can be broadly categorised into three groups:

second harmonic generation (SHG), nonlinear spectroscopy and nonlinear ultrasonic phased

arrays. The first method measures the second harmonic (or higher) wave generated in the

nonlinear medium or a third wave which is generated through wave mixing. These methods

provide a global measure of classical nonlinearity in the material and can estimate the fatigue

(e.g. dislocations) in the material. The second class is nonlinear spectroscopy methods which

measure nonlinearity through analysis of the frequency spectra at points in the material to

9
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resolve various types of nonlinear damage. This method has shown to be sensitive to damage

precursors or discrete defects, for global or localised measurements. The third class are

nonlinear phased array methods which are capable of spatially resolving elastic nonlinearity

in materials. These methods have emerged in recent years, and have shown potential in

localising closed crack tips. Firstly, linear phased array methods will be introduced to outline

the fundamental processing used for phased array configurations. The nonlinear methods,

which use a variety of transmission configurations and processing procedures, will then be

discussed in depth to establish the advantages and disadvantages of each method.

2.1 Elastic nonlinearity in solids

2.1.1 Derivation of the nonlinear wave equation (classical)

In the context of damage characterisation the most commonly adopted nonlinear ultrasonic

technique is measurement of the second harmonic generated wave. This method is concerned

with measuring the distortion of a sinusoidal wave of a given frequency through a nonlinear

medium. This distortion is observed as a transfer of energy away from the excitation frequency,

typically to the second harmonic. The amplitude of generated higher harmonics decreases with

increasing order, therefore this technique generally only considers the second harmonic. The

elastic nonlinearity of a medium can then be inferred by the relative amplitudes of the excitation

frequency and higher harmonics. The following section will outline the derivation of nonlinear

wave propagation, assuming longitudinal wave propagation in an isotropic nonlinear medium.

To begin this analysis we must first introduce the nonlinear Hooke’s law, which assumes

quadratic nonlinearity and higher orders for the relationship between stress and strain,
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FIGURE 2.1: Illustration of quadratic nonlinearity

σ = Eε(1+ βε + ...) (2.1)

where σ is the stress, ε is the strain, E is the Young’s Modulus and β is the nonlinearity

parameter. An illustrative comparison of linear and quadratic stress-strain relationships can

be seen in Fig. 2.1. The equation of motion for the propagation of a one dimensional elastic

wave in an isotropic medium is defined as,

ρ
∂2u
∂t2 =

∂σ

∂x
(2.2)

where ρ is the density of the material, u is the particle displacement, t is the temporal co-

ordinate and x is the propagation distance. The strain can be related to the particle displacement

via the following expression,

ε(x, t) =
∂u(x, t)
∂x

(2.3)



12 CHAPTER 2. NONLINEAR WAVE PROPAGATION AND NDT

When considering quadratic nonlinearity, an adaptation of the wave equation is required to

produce a nonlinear equation of motion. Only the first few terms are required from a Taylor

series expansion as the displacement of ultrasonic wave are so small that the contribution of

higher order derivatives is minimal. Therefore by truncating Eq. 2.1 to the second term, and

using Eq. 2.2 and Eq. 2.3 the nonlinear wave equation is derived,

ρ
∂2u
∂t2 = E

∂2u
∂x2 +2E

∂

∂x

[
β

(
∂u
∂x

)2
+ ...

]
(2.4)

The second term on the right represents the quadratic nonlinearity. Note that if the nonlin-

earity parameter β = 0, then the equation will return to the linear wave equation. In the case

of material nonlinearity in metallic solids, induced by lattice anharmonicity and dislocations,

the nonlinear conversion is relatively low [32], meaning the nonlinear term in Eq. 2.4 is sig-

nificantly lower than the linear term. This allows the solution of the nonlinear wave equation

to be derived by the perturbation method (a full explanation of this method can be found in

the work by Ginsberg (1998) [33]). Adopting this method, the solution is assumed to take the

following form,

u = u(0)+u(s) (2.5)

where u is the total response, u0 is the incident (linear) field and us the secondary (nonlinear)

field. The secondary field is the "perturbation" away from the linear response due to the

quadratic nonlinearity. The perturbation method assumes that the nonlinearity is small and

does not influence the linear field (a quasi-linear approximation). The linear equation is formed

from Eq. 2.4 by replacing the u = u0 and β = 0, obtaining:
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ρ
∂2u(0)

∂t2 = E
∂2u(0)

∂x2 (2.6)

The nonlinear equation for the secondary field can then be formed by using u(0) in the

nonlinear forcing terms in Eq. 2.4 giving,

ρ
∂2u(s)

∂t2 = E
∂2u(s)

∂x2 +2E
∂

∂x

[
β

(
∂u(0)

∂x

)2]
(2.7)

To derive the linear solution, we can define the source excitation as u = U0 sin (−ωt) and

therefore the solution as a sinusoidal forward propagating harmonic wave,

u(0) =U0 sin (k x−ωt) (2.8)

where U0 is the source excitation amplitude, k is the wave number and ω is the angular

frequency. Next, it is necessary to substitute u(0) as the forcing terms on the right hand side of

Eq. 2.7, resulting in

ρ
∂2u(s)

∂t2 −E
∂2u(s)

∂x2 = −EβU2
0 k3 sin [2(k x−ωt)] (2.9)

Next we adopt the trial solution,

u(s) = f (x)B cos [2(k x−ωt)] (2.10)

where f is a function of the distance and B is a constant. To obtain the solution for the

fundamental and second harmonic waves it is necessary to substitute this solution into Eq. 2.9

implementing the perturbation method of multiple scales, giving the following solution:
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u = u(0)+u(s) =U0 sin (k x−ωt)+
β

4
U2

0 k2x cos [2(k x−ωt)] (2.11)

This equation indicates that the nonlinear perturbation from the linear propagation oscillates

at twice the fundamental frequency. From this solution we can derive the amplitude A1 and

A2, corresponding to the fundamental and second harmonic respectively, giving

A1 =U0 (2.12)

A2 = β/4k2
0U2

0 . (2.13)

These equations can be combined and rearranged to calculate the nonlinearity parameter as

a function of the relative amplitudes between the fundamental and second harmonic,

β =
4

k2x
A2

A2
1

(2.14)

where β is calculated for a given distance and excitation frequency. Typically, the non-

linearity parameter is measured in a through transmission configuration where the nonlinear

material is excited using a single-frequency and the signal is received on the opposite side of

the material. Through Fourier analysis it is then possible to calculate the relative amplitude of

the fundamental and second harmonic. This method will be discussed further in Section 2.2

in more detail.
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2.1.2 Definition of β

The calculation of β can be inferred through bulk wave analysis as derived in the previous

section. The nonlinearity parameter can also be related to three elastic parameters known

as third-order elastic constants (TOECs) which describes isotropic quadratic nonlinearity in

three dimensions. TOECs can be represented as A, B and C known as the Landau-Lifshitz

third order elastic constants [34]. Alternately, these constants can be expressed as Murnaghan

constants [29] as l = B+C, m = A/2 and n = A. The nonlinearity parameter related to the

TOECs is expressed as,

β = −
©«

3E(1− ν)
(1+ ν)(1−2ν)

+2A+6B+2C

σ0+
E(1− ν)

(1+ ν)(1−2ν)

ª®®®¬ (2.15)

where ν is Poison’s ratio.

The parameter β is determined primarily by the crystalline structure, in particular any lattice

anharmonicity (i.e. asymmetry of the lattice) present in the structure. Additionally, local

stress fields induced by varying micro-structural effects contribute to β known as dislocations,

which are crystallographic defects in the crystal structure which cause changes in the atomic

arrangement.

Dislocations induced by degradation result in a nonlinear relationship between the glide

displacement and the applied stress. Without pinning, this dislocation contributes to elastic

nonlinearity and is further increased when the dislocation becomes pinned between two points

[13]. This pinning can be caused by other dislocations, grain boundaries and precipitates or

other material inclusions. When the movement of the dislocation is slowly limited by the

local stress state of these pinning points the dislocation will bow. Once this occurs the total
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strain will be the sum of both the lattice strain and the bowed dipole, producing a nonlinear

stress-strain relationship. The dependence of β on dislocations is also determined by the

type. For example, edge dislocations have proven to induce larger nonlinear effects than screw

dislocations [14].

Dislocation dipoles occur when two pinned dislocations are in close enough proximity

to become one single dynamic system. The stress-strain relationship of these dipoles are

inherently nonlinear, contributing to local elastic nonlinearity and therefore the parameter

β. Theoretical models have been validated against experimental work investigating the con-

tribution of elastic nonlinearity from dipoles by measurement of the second harmonic (β

parameter) [15, 30]. Cyclic loading promotes mutual trapping of dislocations as they move in

response to cyclic stresses, this can lead to the formation of single dislocations (monopoles),

a complex arrangement of dipoles or even multi-poles.

The presence of precipitates also contributes to the value of β. In isolation precipitates

do not directly influence β, however in the presence of dislocations a resulting stress-field is

induced and contributes to the magnitude of β. The magnitude of the bulk nonlinear response

is determined by the volumetric density and distribution of the precipitates. Most types of

damage (e.g. fatigue, creep, damage, thermal ageing and radiation) are produced by the

generation of precipitate dislocations, therefore the degree of damage can be determined by

the magnitude of β. However, the precise dependency of β on damage type requires significant

consideration of both the micro-structure and the damage type.

Over time these dislocations can lead to the development of closed crack tips or kissing

bonds, where the surface of the crack interfaces are in-contact but not bonded. This type of

fatigue damage induces additional non-classical forms of nonlinearity.
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2.1.3 Contact-acoustic effects (non-classical)

At later stages of fatigue damage weaker classical sources of nonlinearity such as dislocations

and micro-structural degradation leads to the development of crack tips which induce a non-

classical form of nonlinearity. Previous studies have reported contact-acoustic nonlinearity

(CAN), which occurs when an ultrasonic wave is incident on an un-bonded interface (but still

in contact), which can cause nonlinearity due to self induced hysteretic behaviour [35] and a

clapping effect [2,16,17]. This highly nonlinear effect has been observed for ultrasonic waves

in fatigue crack tips and kissing bonds (bonded joints) [36, 37]. Using theoretical models and

appropriate measurement techniques it is possible to quantify CAN.

When an ultrasonic wave is incident on an un-bonded surface the tensile stress component

of the wave acts to open the interface of the crack tip, weakening the contact between the

interfaces and inhibiting the transmission of the wave across the interface. The compressional

component strengthens the interface by increasing the elasticity (through contact) between the

two interfaces, allowing efficient transmission of the ultrasonic wave. The consequence of this

interference results in bi-linear stress-strain relationship expressed as,

σ = E(1−H(ε − ε0)
∆E
E
)ε, (2.16)

where H denotes a Heaviside function and ε0 is the initial static strain at the interface. An

illustration of this bi-linear stress-strain relationship is displayed in Fig. 2.2.

The bi-linear stress-strain relationship leads to a number of nonlinear dynamic responses.

These non-classical effects contribute to super-harmonics and higher, which is consistent

with classical nonlinear effects [38]. However, harmonic contributions caused by CAN also

exist at sub-harmonics (i.e. ω/2, 3ω/2, ω/3, 2ω/3) in respect to the incident wave frequency
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FIGURE 2.2: Illustration of bi-linear nonlinearity con-
tact acoustic effects.

(ω) [39–41]. These harmonic contributions are easily differentiated from classical nonlinearity,

meaning it is possible to directly measure these harmonics in order to characterise nonlinear

defects.

Furthermore, when the shear component of a wave is at a normal incident to an un-bonded

interface, the interface will exhibit frictional nonlinear effects. This results in the following

mechanisms: a coulombs law with a constant friction coefficient and a slip-weakening friction

lawwhich consists of static and varying friction laws [42]. The state of this slip-stick behaviour

is dependent on the magnitude of the incident shear wave stress, as large stresses are required

to activate the slip, known as the threshold effect. This nonlinear mechanism is independent

on loading direction, therefore the nonlinear stress-strain relationship is symmetrical and are

illustrated in Fig. 2.3. The frictional nonlinear mechanisms parallel to the interface combined

with the clapping effect in normal direction results in cumulative nonlinear dynamics known

as non-classical.
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FIGURE 2.3: Illustration of shear stress-strain relationship: (a) coulomb fric-
tion law and (b) slip-weakening friction law.

2.2 Nonlinear measurement techniques

The next section will introduce the nonlinear measurement techniques implemented to detect

the nonlinear mechanics outlined in the previous section. These techniques are broadly

categorised into the following groups: second harmonic generation (SHG), wave mixing,

nonlinear spectroscopy and phased array methods. The advantages and disadvantages of each

method is discussed in depth to highlight the focus of this thesis.

2.2.1 Second harmonic generation measurement techniques

The most conventional techniques for measuring classical nonlinearity are measurement of the

second harmonic generation (SHG), which has been implemented successfully for detecting

nonlinearity induced by lattice anharmonicity (i.e. dislocations and dipoles) [18, 19]. When a

longitudinal wave propagates through a quadratic nonlinear medium, the wave interacts with
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itself causing energy to be transferred to the second harmonic. The propagating pulse con-

tinuously generates a second harmonic which constructively interferes along the propagation

path, causing the second harmonic to growwith distance travelled. As mentioned previously in

Section 2.1.1, the relationship between the fundamental transmission frequency and the second

harmonic can be used to determine the nonlinearity parameter β. Therefore, it is possible to

determine experimentally the degree of classical nonlinearity in a medium by measuring the

amplitude at the second harmonic. The analytical definition of β dictates that it is a cumulative

measure of nonlinearity over the propagation distance, meaning it is not possible to spatially

resolve β at different distances. Subsequently, it is only possible to measure the nonlinearity

once the wave has propagated to the surface, meaning it is only possible to measure SHG at

the surface.

The requirement of this measurement technique is that there is two-sided access to the

material, which is necessary to measure the ultrasonic wave at some point along its propagation

path (at the surface). Single-sided access has been considered but has not proved to be a feasible

technique for measuring SHG. Although previous work has reported [43,44] successful results

using single-sided SHG in solid and fluids. However, when the propagating waves reflect

off the back-wall towards the transducers SHG is induced on its backwards propagation path

which is out of phase with the SHG induced on the forward propagation path. This results

in destructive interference between the two propagation paths, removing the energy which

has been transferred to the second harmonic. In reality, there is some energy at the second

harmonic due to a difference in diffraction and attenuation between the two paths, but this is still

very small and challenging to measure compared with a through transmission measurement

(i.e. two sided configuration).

The general experimental procedure for measuring second harmonic generation is achieved

by implementing two monolithic probes (e.g. transmitting at 5 MHz and receiving at 5-10
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FIGURE 2.4: Schematic of monolithic nonlinear experiment configuration.

MHz). The schematic for this set-up is shown in Fig. 2.4. A pulse wave of frequency ω is

transmitted at one side of the material and is received by a secondary monolithic probe on

the opposite side of the specimen. The in-contact coupling allows for efficient transmission

of the ultrasonic signal. The signal length is generally more than 10 cycles and captured

using a broad-band receiver to ensure all nonlinear components are measured. In addition, a

powerful amplifier is required during the implementation of SHG due to the weak harmonic

amplitude relative to the incident amplitude. When the signals are received by the broadband

transducer a number of processing techniques are applied to extract the desired information.

The amplitude of the received signals is filtered at both the fundamental frequency (ω) and

the second harmonic (2ω) to determine A1 and A2 respectively. Using this measurement it is

then possible to infer the value β using Eq. 2.14. In practise, a more accurate measurement

of β is achieved by repeating the measurement for a wide range of transmission voltages.

Therefore, through multiple measurements of A2
2 at different excitation amplitudes (i.e. A1),

the relationship between A2
2 and A1 can be calculated by fitting a linear line through the data

points. The gradient of this line can then be used determine β.

Previous work suggests that a quantitative measurement of early stages of degradation

(fatigue and creep) using SHG is achievable in a range of materials including aluminium [23],

nickel super alloys [45], carbon steels [46] and titanium [47]. The general trends in these studies

show that β increases with number of fatigue cycles, and therefore if measured quantitatively,
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provides a deterministic measure of fatigue life. However, this monotonic relationship is

true for most studies, but is not universal. Previous works have shown than an increase in

fatigue results in a reduced β value. For example, two distinct peaks in β have been observed

towards later stages of fatigue life in aluminium [48] when subject to low cycle fatigue. A

similar effect has been observed in steel. Therefore it is important that trends of β with

respect to fatigue life should be considered for each specific material and loading conditions.

Another limitation of SHG is that it is not possible to distinguish between non-classical and

bulk material nonlinearity along the propagation path, as well as instrument nonlinearity.

The nonlinearity induced by the coupling applications can also have a significant effect on

the results. In addition, varying attenuation and diffraction for the fundamental and second

harmonics requires effective post-processing corrections [49, 50].

2.2.2 Wave mixing method

When two-incident waves mix together, material nonlinearity induces a nonlinear interaction

between the two ultrasonic waves. The study and analysis of this interaction is called the

Wave Mixing method, and consists of two classes: collinear and non-collinear mixing [51,52].

Under particular conditions the two incident waves (assuming quadric nonlinearity at the point

of intersection) will interact and generate a third wave, which has a frequency and wave vector

equal to the sum and difference frequency of the two incident wave frequencies and their

wave vectors. The two key advantages of this technique over SHG are that the nonlinearity

parameter inferred through wave mixing is localised at the point of the waves intersecting, and

the instrument and material nonlinearity may be separated since β is inferred by analysis of

the generated wave. In the case where the generated wave is at the difference frequency, the

attenuation it will experience will be significantly lower than the transmission and harmonic

frequencies, meaning the wave is less susceptible to attenuation and therefore more nonlinear
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information can be captured by the probes. The focus of this section will be a non-collinear

interaction, providing a specific example of how wave mixing works.

In NDT the non-collinear technique is desirable as it only requires single-sided access.

When implementing the non-collinear method the interactions between the waves do not have

parallel vectors but are instead of some relative angle to their propagation directions. Quadratic

nonlinearity at the point of intersection leads to the generation of the third wave. The scattered

wave will have a direction vector which is equal to the sum or difference of the incident wave

vectors (k3 = k1 + k2 or k3 = k1 − k2). The frequency of this generated wave will be equal to

the sum or difference of the incident wave frequencies (ω3 = ω1 +ω2 or ω3 = ω1 −ω2). The

theoretical solutions were first introduced by Jones and Kobett [53] and Taylor and Rollins [51].

The case that has mostly been applied to NDT is the interaction of shear waves to produce a

longitudinal wave at the sum of the incident frequencies (T(ω1) −T(ω2) → L(ω1 +ω2)). In

order to produce a large amplitude longitudinal wave in the direction of the resulting wave

vector (k1+ k2), the interaction angle of the incident frequencies φ and the ratio of the incident

frequencies αω = ω1/ω2 must satisfy the following resonant condition,

cosφ = α2
ω +

1
2
(q+

1
q
)(α2

ω −1) (2.17)

where q is the ratio of longitudinal and shear velocities. This condition can be satisfied for

an number of relative angles, therefore the frequency ratio is not limited. However, there is a

frequency ratio limit to Eq.2.17, where the frequency ratios must be between (1− q)/(1+ q)

and (1+ q)/(1− q).

This methodology can be conducted using a double-sided configuration, see Fig. 2.5(a).

Two monolithic transducers are coupled via a wedge to transmit shear waves at an angle into

the material. The angle of the wedges are selected such that the refracted shear waves are
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FIGURE 2.5: Schematic of a typical non-collinear wave mixing experimental
setup: (a) double-sided and (b) single-sided

transmitted and interact at the chosen relative angle αω. The depth of the interaction can be

modified by changing the distance between the transmitting probes. For a frequency ratio of 1

(i.e. the ω1 = ω2), the generated longitudinal wave propagates through the medium normal to

the surface to be received on the opposite surface of the material.

Single-sided access of this experiment is also achievable and shown in Fig. 2.5(b). For

this symmetric arrangement, the generated longitudinal wave scatters at normal to the surface

(back-wall). This reflected wave will then be the first reflection received by the transducer

position centrally on the transmission surface. If the frequency ratio is not equal to unity,

than the generated wave will be steered away from the centre point (centre distance between

transmitters). For this configuration, it is possible to scan through the depth of the material

by altering the separation of the transducers. This is also achievable by changing the angle

of the transducers, however requires the frequency ratio to be changed in order to ensure the

resonance condition is satisfied.

The first experimental study to assess the feasibility of non-collinear mixing for damage

characterisationwas published byCroxford et al. [24]. This study conducted aT(ω1)−T(ω2)→

L(ω1+ω2) interaction to samples of Al-2014 for monitoring residual stress and low-cycle fa-

tigue. Additional recent publications have experimentally validated this technique for detecting

classical nonlinearities [54] as well as non-classical nonlinearities [55, 56]. In summary, the
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wave mixing method can resolve elastic nonlinearity at the interaction volume meaning it is

possible to measure nonlinearity locally at various locations in a material. By altering the

configuration between the transmission traducers it is possible to take measurements locally

throughout the material to determine a map of nonlinearity. This provides a significant advan-

tage over SHG which can only determine the integral of nonlinearity along the propagation

path. The spatial separation of the generated wave means it is possible to differentiate between

instrument and material nonlinearity. The limitation of the wave mixing methods is the experi-

mental configuration which is significantly more complicated than other nonlinear techniques,

meaning this method is impractical for in-situ testing and monitoring, and therefore is currently

limited to lab research.

2.2.3 Nonlinear elastic wave spectroscopy

Nonlinear elastic wave spectroscopy (NEWS) studies the interaction of a wave with its medium

by analysing its frequency spectra. In a way all non-linear techniques are implemented by

analysing frequency spectra, but this technique is focused on measuring the frequency spectra

of a system in response to resonant excitation, as opposed to a single frequency. Using this

technique it is possible to infer the elastic nonlinearity at a point in the material, rather than

the later component of the propagating wave.

The class of techniques used to measure the global nonlinear response of a material are

known as nonlinear resonant ultrasound spectroscopy (NRUS) methods. In a linear material

or system, the structure has set natural frequencies and modes which are independent of

excitation amplitude. In a nonlinear system, the modal frequency response is a function of

the excitation amplitude. One type of these NRUS techniques introduced by Abeele et al. [1]

is called nonlinear wave modulation spectroscopy (NWMS), a method which focuses on the

application of harmonics and sum and difference frequencies in a material affected by damage.
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This provides a measure of the global nonlinearity in the material. The material is excited

using two continuous waves at different frequencies simultaneously, whilst inspecting the

harmonics of the two waves and their sum and difference. In a linear material or undamaged

specimen it is expected that the output spectrum will consist of two frequencies (the two input

excitation frequencies) that have been slightly altered by wave dissipation and scattering (linear

processes), and negligible nonlinearity. In a damaged material, harmonics and side bands are

created by the nonlinearity within the material which is induced by micro-cracking and fatigue.

The efficacy of this technique was tested on two plates, an un-damaged sample and a damaged

sample containing numerous micro-cracks. The samples were excited using a sweep frequency

(around the first natural frequency), measuring the peak amplitude displacements [1]. The

results for this are presented in Fig. 2.6. The undamaged specimen only shows a change in

the magnitude of the frequency response, while the damaged specimen shows a change in

magnitude and frequency with an increasing excitation amplitude.

A further study by Courtney et al. [57] shows consistent results analysing the bi-spectrum

of the signals transmitted into a fatigued aluminium sample. The difference in signals at the

transmission bandwidth was shown to increase in the presence of damage and has proven to

be robust to transducer position, boundary conditions and vibrational amplitudes. This study

in particular concluded that consistent results are achieved when using multiple excitation

modes in the experiment. This would remove the possibility that a particular mode has a node

positioned at the defect, increasing the accuracy of this method.

The nonlinear resonant technique has also been effective in detecting fatigue in composite

materials [58,59]. NEWSwas able to detect the presence of damage in the structure, even when

the damaged region only covered a small area. Meaning it has the potential to determine early

stages of fatigue in composites. Alternatively, by investigating the harmonic and side-bands

(using NRUS methodology) it is possible to determine not only the presence of damage but
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FIGURE 2.6: Example of nonlinear resonant spectroscopy (Image reproduced from [1]).

the severity.

The NRUS method was adapted further by Solodov et al. [2] using a laser vibro-meter to

achieve localisedmeasurements of the spectra and form images using the nonlinear information.

For this study a high amplitude ultrasonic signal is transmitted into the material and the sub-

sequent field is measured at locations on the surface by the laser vibro-meter. The efficacy of

this technique was tested by growing a fatigue crack in an aluminium test sample. Analysis

of the frequency spectra showed amplitudes of sub-harmonic components around the fatigue

crack, but also self-modulation (the mixing of frequencies within the transmission bandwidth).

Self-modulation results in an energy flux from the transmission band-width down to very low

frequencies due to sum-difference frequency modulation. In Fig. 2.7(a) spectral results are

plotted against excitation amplitudes, displaying the sub-harmonic content and self-modulation

measured at the location of the fatigue crack.

A nonlinear image was then formed by extracting the frequency components of various

surface locations by conducting a C-scan of the material. The sub-harmonic image from this

scan is presented in Fig. 2.7(b). The resulting image clearly indicates the location of the

fatigue crack. However, a limitation of this technique is that it is not possible to make through

depth measurements of elastic nonlinearity but only surface measurements.

Another class of the NEWS methods is time-reversal nonlinear elastic wave spectroscopy
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a) b)

FIGURE 2.7: (a) Experimental spectral response of fatigue cracks using a
20 kHz excitation (b) Image generated from sub-harmonic data captured from
C-scan (Image reproduced from [2]).

(TR-NEWS), which was first developed by Ulrich et al. [60]. This method exploits the

reciprocity of a linear system. For example, consider two incident waves propagating at

different frequencies in a damaged material, that are simultaneously co-incident at the location

of the damage. The sum and difference frequencies induced by the nonlinearity from the

damage will propagate into the field from that point (i.e. the damage location) to be received

by a network of transducers. The received signals are then filtered at the sum and difference

frequencies, time-reversed (reversing the order of the data points in the time domain) and

re-broadcast. It is expected that the re-broadcast signals will focus on the nonlinear scatterer

in sequence. Experimental results showed that the re-broadcast signal did focus at the fatigue

crack by measuring surface displacement using a laser vibro-meter.

In summary, nonlinear spectroscopy techniques are capable of inferring elastic nonlinearity

in materials through analysis of the spectra, both globally and locally. The localised mea-

surements however, requires an extensive complex experimental set-up and procedure to scan

samples. In addition, the application of this technique to large samples can potentially be

very time consuming. The ability to infer elastic nonlinearity at various harmonics in the

spectra is beneficial and offers the ability to resolve either classical, non-classical or both. In

particular, the generation of a low frequency component caused by nonlinear mixing in the

frequency band-width offers efficient detectability. Attenuation at low frequencies is relatively
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lower compared with the transmission band-width, meaning a higher amplitude wave can be

measured. Since nonlinearity induced by the materials can be significantly damped by atten-

uation this is very beneficial. The limitation of this method is that nonlinear measurements

can only be conducted on the surface of the specimen, which prohibits industrial application

where through depth analysis of elastic nonlinearity is required.

2.2.4 Nonlinear phased array techniques

2.2.4.1 Ultrasonic phased arrays

An ultrasonic phased array is a device comprising of multiple piezoelectric elements for

transmitting and receiving ultrasonic signals. Conventionally, this is achieved through parallel

transmission circuits that allow for transmission of ultrasonic plane beams, steered angled

beams and focused beams by applying delays to the signal [37,61]. All of these benefits allow

for increased sensitivity and detection of features inside materials. Prior to phased arrays,

monolithic traducers would be exclusively used for inspections. There are two main benefits

from implementing a phased array over monolithic transducers, the first being a reduced

inspection time as mechanical scans are not required for a significant volume (based on the

size and sensitivity of the array). Secondly, it is possible to implement the various beam

forming approaches mentioned via programming delays to the parallel output circuits.

The application of phased array configurations was initially in medical imaging for diag-

nostics purposes [62] and has been proven effective for NDT in engineering and aerospace

industries [37, 63]. The most significant difference in ultrasonics between these two fields is

that the inspection subject in engineering applications is typically static (i.e. time invariant),

where in medical imaging the subject is time variant and therefore needs to be evaluated fre-

quently per second (hence the optimisation of medical imaging is generally focused on frame
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FIGURE 2.8: Schematic illustrations of (a) plane B-scan, (b) fo-
cused B-scan, (c) sector B-scan and (d) total focusing method.

rate). The medical transmission modes are grouped into the following three methods: plane

B-scan, focused B-scan and sector B-scan (a schematic diagram of these methods are presented

in Fig. 2.8(a-c)).

In engineering based NDT generally the specimen does not change at all over the period

of the experiment, therefore more accurate processing tools can be used to detect features

in materials (since the experiment is not constrained to high frame rate performance). It is

possible to capture and store the time-domain signals and reprocess the data afterwards. This

technique is known as full matrix capture (FMC) where the array transmits on each element in

sequence whilst all elements are receiving and the time series data is stored in a matrix [63].

It has been proven that the equivalent plane B-scans, focused B-scans and sector B-scans can

be formulated by extracting the corresponding time-domain signals from FMC data. The most

critical technique for increased accuracy is the total focusing method (TFM), which provides a

very high signal-to-noise ratio (SNR) and spatial resolution by synthetically focusing at each

pixel point with all elements in post-processing [63].
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The TFMmethod is implemented by firstly defining a x-z target grid space which is going to

be imaged. Assuming the time series data is represented as f j,k(t) for all j transmitted signals

and k received signals. All of the received FMC data is then synthesised to the image space to

give the intensity I(x, z) by the following equation,

I(x, z) =

�������
∑

h j,k

(√(x j − x)2+ z2)+
√
(xk − x)2+ z2)

cl

)������� (2.18)

for all j, k combinations. Where h j,k is the Hilbert transform for each transmitter and

receiver pair, x j and xk are the co-ordinates of the centre of the elements and cl is the longitudinal

speed of sound in the material. The summation is used for all j and k combinations, meaning

every sequential firing contributes to the formation of this image and thus using as much

information as possible. Prior to this calculation, linear interpolation of the time domain

signals is necessary to allow for the computation of the spatially dependent I(x, z).

Nonlinear measurement techniques adapted to a phased array configuration offer huge

potential for localised measurements of nonlinearity. The implementation of phased arrays

to nonlinear methods will be discussed in the following sections. The techniques will be

introduced in two main categories: coherent and diffuse methods.

2.2.4.2 Coherent field nonlinear imaging

In the case where a nonlinear feature exhibits reflections from its boundary (or is in close

proximity to a reflector), the nonlinearity of the scattering feature can be determined using the

coherent field (i.e. the coherent back scatter). These reflections allow nonlinear information

to propagate back to the ultrasonic transducer. Capturing nonlinear information during the

coherent field means the SNR of the received signals is high and the resolution of nonlinearity
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is elevated.

The earliest nonlinear coherent technique was implemented for detecting nonlinear scatter-

ing frommicro-bubble contrast agents in the presence of tissue [64]. This technique implements

a modified Doppler and colour Doppler pulse sequence by inverting every second pulse signal

and subtracting them. The method suppresses the linear scattering from the subject (the micro-

bubble) subsequently revealing the nonlinear scattering in the frequency spectra. Another well

researched technique is the amplitude modulation technique (AM) which excites the wave field

at two amplitudes. The relative harmonic amplitudes between the two fields gives a measure of

nonlinearity. The difference in harmonic amplitude is caused by the varying input amplitude

and has been proven a robust measure of nonlinearity [65].

Nonlinear coherent methods since then have been adapted to phased arrays to spatially

resolve relative amplitude difference induced by fatigue cracks in metals. The fundamental

wave amplitude difference (FAD) method has been proven to detect contact acoustic effects

in fatigue cracks [3] by measuring the energy lost at the fundamental frequency. Since all

forms of nonlinearity (i.e. classical and non-classical) result in energy being transferred away

from the harmonic, therefore it is possible to measure all nonlinear contributions at a focal

point by evaluating the energy lost at the fundamental frequency. Assessing the energy lost at

the fundamental to nonlinear harmonics provides higher selectivity to detecting fatigue cracks

over measuring sub-harmonic and super-harmonic component of the spectrum. However,

measuring energy lost from the fundamental removes the ability to separate the types of

nonlinear fatigue (i.e. contact-acoustic or material nonlinearity), since the measurement is

the total loss of energy from the fundamental to different nonlinear components, and not the

measurement of individual nonlinear spectral components. This technique was validated using

a 32 element 5 MHz array, the lower and higher amplitude images are presented in Fig. 2.9(a-

b), and the subtracted image is present in Fig. 2.9(c). The low and high amplitude images
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FIGURE 2.9: FAD used to detect a closed fatigue crack: (a) lower input amplitude, (c)
higher input amplitude and (c) difference (images reproduced from Ikeuchi et al. [3]).

indicate that the fatigue crack exhibits significant linear scattering relative to the back wall,

as well as coherent noise exhibited throughout the image domain. The subtracted image in

Fig. 2.9 (c) suppresses the linear scattering from the crack tip and the back wall, and only

the nonlinear residual remains, resulting in a clear spatial resolution of the nonlinear feature

and a measurable sensitivity. In addition, the coherent noise from the low and high amplitude

images in Fig. 2.9 (a-b) have been suppressed reasonably well.

Another form of FAD has been introduced by Haupert et al. [28] which consists of three

modes of parallel transmission: only odd elements, only even elements, and all elements firing.

The variation of energy transmitted to each focal point between odd and even compared to all

firing results in a localised amplitude difference. The all elements firing transmission physically

focuses within the medium at multiple focal points by applying delays on transmission and

reception producing a linear image. The odd and even mode repeats this focusing process but

only the odd or even elements are active. These images are then added together and subtracted

from the all element firing transmission, resulting in the generation of a nonlinear image.

A demonstration of feasibility was conducted by Haupert et al. [28] on a stainless steel

AISI304 sample subjected to thermal fatigue loading to create a thermal fatigue crack with

a residual stress field. The technique was implemented using a 5 MHz 64 element array

with an inter-element pitch of 0.42 mm, contact coupled to the surface opposite the fatigue

crack. The conventional imaging is capable of detecting the linear scattering from the feature,
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approximately 8 dB above the coherent noise. Coherent noise (e.g. grain noise) was also

measured in the results, and is sparsely distributed throughout the image. The corresponding

nonlinear image has suppressed the coherent noise and the linear scattering from the defect,

resulting in an increased sensitivity to the defect of 25 dB.

A sequential-parallel subtraction technique has also been implemented by Cheng et al. [27],

which relies on two modes of transmission: parallel and sequential. In parallel mode the

elements fire the signals at once and delay laws are applied to each element to focus at

points in the material. In sequential mode the elements transmit the signals individually and

each time-domain signal for each transmit and receiver pair is stored in a full matrix capture

(FMC), the same delay laws are then applied in post-processing to synthetically focus at pixel

locations. The main difference between the modes of transmission, is that during sequential

transmission the elements are fired individually, and the high intensity focus is not generated

in the sample but in post-processing. Assuming the principle of linear superposition holds

for both the parallel and sequential fields, the two transmission modes have nearly identical

linear propagation. Therefore, the two resulting images would be linearly equivalent and any

differences in amplitude would be attributed to nonlinearity at the focal point. This difference

can be exploited to determine the elastic nonlinearity at the focal point. The technique has

been validated for detecting closed crack tips at varying stages of early development against

micro-graphic images of the fatigue.

The coherent methods previously described evaluate elastic nonlinearity at the focal point

through analysis of energy lost from the fundamental. A coherent technique for imaging

closed cracks at the sub-harmonic frequency was first developed by Ohara et al. [4]. This

technique implemented both a monolithic transducer and a phased array for transmission and

reception respectively, as seen in the configuration in Fig. 2.10 (a). The monolithic transmitter

is translated across the surface and the received signals produced into images by correcting
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FIGURE 2.10: Sub-harmonic imaging monolithic and phased array configura-
tion and imaging results: (a) configuration, (b) fundamental frequency and (c)
sub-harmonic frequency (results reproduced from Ohara et al. [4]).

for the various propagation paths and then integrating the signals received from each element

in the array. The signals are then band-pass filtered at the fundamental frequency and the

sub-harmonic frequency to produce corresponding images. The performance of this apparatus

was assessed using a three-point bend (3PB) test fatigue sample made from stainless steel,

using 7 MHz monolithic transducer and a 5 MHz 32 element phased array.

The study investigates the fundamental and sub-harmonic response from a close crack tip

under various stress intensities. When under a low stress intensity compared with a high

stress intensity, the sub-harmonic is sensitive to detecting the fatigue crack (see Fig. 2.10(b)),

whilst the fundamental is not able to resolve the feature (see Fig. 2.10(c)). This indicates that

the crack tip is partially closed, and therefore the sub-harmonic (induced by contact-acoustic

and frictional nonlinearity) is more detectable during low stress stages of fatigue and/or early

stages of fatigue. However, in the results for the high stress intensity, the fundamental is more

sensitive to the crack tip than the sub-harmonic. Overall both methods have been effective in

detecting the nonlinearity induced by the fatigue crack.

The main benefits of coherent methods is the capture of ultrasonic data with a high signal-

to-noise ratio (SNR) meaning coherent and random noise levels have low influence in the

constructed nonlinear image. Therefore the detectability of the feature is generally high and

is more robust in detecting sources of non-classical nonlinearity. Since nonlinear signals are
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captured in the coherent field more nonlinear information can be analysed to determine the

location of the feature. This results in a higher resolution of the nonlinear feature above the

noise floor. The dependency on linear scattering limits coherent techniques to non-classical

nonlinearity since classical linearity generally does not produce reflections.

2.2.4.3 Diffuse field nonlinear imaging

The phased array methods described in the previous section are principally dependent on

scattering from the nonlinear feature to measure a field at the sub-harmonic and fundamental

frequencies. Theoretically, these methods only measure a small proportion of nonlinearity

induced when the wave-field is incident since reflected nonlinear energy will propagate in

various directions throughout the material. In particular, if a micro-crack is closed only the

forward propagating field through the material contains the nonlinear information and would

require a receiving array on the opposite surface. In addition, the orientation of the crack

tip can limit the coherently scattered field, meaning limited nonlinear information is received

by the array. To improve detectability a nonlinear ultrasonic diffuse energy imaging (NUI)

technique was proposed to overcome these challenges [5]. This method is advantageous since

it allows for the total nonlinear information (scattered in all directions) to be evaluated from a

fully diffuse field.

The NUI technique utilises the physical difference between sequential and parallel trans-

mission, first proposed by Potter et al. [5]. It is worth noting that the coherent method used by

Cheng et al. [27] mention in the previous section implements the same transmission configu-

ration. In parallel transmission, the ultrasonic signals are fired near simultaneously using an

applied delay law, to produce a high intensity focus at a point in the material. During sequen-

tial transmission the signals are fired independently (known as a FMC) while all elements are

receiving and the interference effects are applied in post-processing by synthetically focusing
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with the delay laws. The linear propagation between the two fields is identical, therefore any

difference between the two fields can be attributed to nonlinearity (i.e. elastic nonlinearity at

the focal point), since the presence of nonlinearity will result in varying propagation between

the two fields.

In the parallel case (where all elements are firing) the material experiences more stress at the

focal point than contributions from the individual sequential transmissions. The nonlinearity

is determined by the flux of energy away from the fundamental, therefore it is expected more

energy will be lost in the parallel case. For example, consider the case of longitudinal wave

propagation through an elastic solid with isotropic bulk nonlinearity truncated to the second

order. For the parallel and sequentially focused fields using a phased array with N number of

elements, the wave amplitude A at the focal point differs by a factor of N . The amplitude of

the second harmonic generated is proportional to A2, and the energy of the second harmonic

is proportional to A4, hence the energy lost from the fundamental is proportional to A4. The

ultrasonic energy lost from the fundamental in the parallel focusing is therefore N3 higher than

the energy lost from the summation of N transmission cycles in the sequential case (see table

2.1 for more detail) [5]. Since phased arrays are of the order N = 100, the difference in energy

lost between the two fields is significant. This measure of difference in energy between the

two fields infers nonlinearity at the focal point in the subsequent diffuse field.

Transmission
mode

Amplitude of funda-
mental

Amplitude of second
harmonic

Energy lost from fun-
damental

Parallel NxA (NxA)2 (NxA)4

Sequential NxA NxA2 NxA4

TABLE 2.1: Amplitude at the fundamental, amplitude at the second harmonic and energy lost from the funda-
mental at the focal point for a single transmission cycle.

Measurement of the total nonlinear energy in the system is not feasible in the coherently

scattered field, however it is possible in the subsequent diffuse field later in time. After

the initial transmission and multiple scattering (from boundaries) the ultrasonic energy will
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homogenise in the structure. In this state the ultrasonic energy is statistically diffuse in the

structure and the energy measured at any point in the material is proportional to the total

energy in the system. During this time the energy lost from the fundamental at the focal point

is spread uniformly throughout the structure, and the relative diffuse energy of the parallel

and sequential field is proportional to the relative energy loss at the focal point. Therefore,

ultrasonic nonlinearity at the focal point can be estimated by measuring the relative diffuse

energy loss at the fundamental between the parallel and sequentially focused fields. This is the

principle of NUI, the metric is therefore defined as the normalised difference in diffuse energy

between the sequential and parallel fields.

The technique was implemented by Potter et al. [5] on artificially produced fatigue crack

samples to assess efficacy. Since the crack tips are expected to behave nonlinearly, these fatigue

samples provide a clear point of nonlinearity in the material to detect. The fatigue crack in

this case has been drilled to produce linear reflectors to emulate a surface breaking crack and

clearly indicate the benefit of nonlinear imaging in aiding linear imaging. The nonlinear and

linear (TFM) results using a 5 MHz 64 element phased array are presented in Fig. 2.11. As

seen in Fig. 2.11(b) the image is dominated by linear scattering from the drill hole and the

back-wall. There is some linear scattering observed at the location of the crack tip, however

this is a very subtle feature and does not provide any indication of nonlinearity and size. The

nonlinear image presented in Fig. 2.11(a) shows clear isolation and detection of the crack

tip due to local elastic nonlinearity. Moreover, the linear suppression in this technique is

particularly effective, which is a consequence of NUI. Since the nonlinearity is not derived

from the coherently scattered field at the focal point, the instrument and material nonlinearity is

consistent between the two firing methods and therefore does not produce artefacts from linear

features (which is the case with coherent methods discussed in Section 2.2.4.2). This effective

suppression of linear features is crucial since the crack tip is emerging from the drill-hole in

the sample, and therefore without effective separation of linear and nonlinear features, a small
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FIGURE2.11: Nonlinear diffuse field phased array results: (a)Nonlinearmetric
γ and (b) linear method (TFM) (results reproduced from Potter et al. [5]).

1

nonlinear defect will be masked by the strong linear features.

The technique has also been validated for the monitoring of the early stages of fatigue crack

growth [6]. The method was tested on steel compact tension (CT) specimens subject to various

loading cycles. The detection of the nonlinear features is validated against micro-graphic

images. This study investigated the sizing of crack tips for loading cycles between 40,000

and 100,000 cycles (presented in Fig. 2.12(a)-(c)), and shows the maximum magnitude of

the nonlinear metric increases almost linearly with crack growth. In addition, the position of

peak nonlinear amplitude and the actual crack tip location as measured from micro-graphs is

investigated. The image location of the crack tip is below the location of the actual crack tip

by approximately 1 mm, as seen in Fig. 2.12(c). This is not necessarily caused by the location

of maximum nonlinear response. Less of the crack lies under the footprint of the focal region

when focused at the crack, therefore reducing the measured nonlinear response. Despite this

off-set, the locations of the peak nonlinear amplitude in the images are consistent with the

actual crack tip location measured from surface micro-graphs. The study concludes that the

NUI method is capable of imaging micro-scale fatigue cracks down to 15 % of fatigue life. It

is worth noting that the percentage of fatigue life in this study is measured as the number of

loading cycles (at various experimental stages) divided by number of loading cycles at failure.

The diffuse state of the material is what provides the sensitivity to the NUI method, placing
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[H]

FIGURE 2.12: Maximum nonlinear diffuse metric during fatigue as a function (a) actual crack length and (b)
number of fatigue cycles. (c) the measured crack length from the diffuse image as a function of the micro-
graphically measured crack length (results reproduced from Cheng et al. [6]).

limits on practical applications. The current results for NUI have been obtained on relatively

small test specimens in a laboratory environment, therefore this method has only been proven

effective in ideally diffuse conditions. The method is yet to be evaluated on larger volumetric

samples which reflect those used in industry.

In summary, NUI offers the ability to spatially resolve fatigue cracks without the presence of

strong linear back-scatter. This means the technique can be implemented when the orientation

of the fatigue crack is unknown and more importantly, has the potential to resolve classical

nonlinearity (induced by lattice anharmonicity and dislocations). It also provides the ability

to capture more nonlinear information which propagates throughout the structure. However,

the limitation of this method is the dependency on the diffuse field and therefore efficacy on

relatively larger samples is unknown.

2.2.5 Summary of nonlinear methods

A broad range of nonlinear methods for measuring elastic nonlinearity have been introduced.

Each method has particular experimental requirements, set-ups and sensitivity to different

types of nonlinear damage. By comparison with linear imaging, these methods are capable

of characterising micro-structural fatigue prior to the formation of larger volumetric damage,
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meaning it is possible to detect defects earlier.

Nonlinear phased array methods are advantageous over other more complicated nonlinear

experimental set-ups. In particular, a measure of localised nonlinearity can be determined

in a specimen (without the requirement for mechanical scanning) which is not possible using

monolithic probes, in turn reducing experimental run time. Phased array techniques also

facilitate through depth nonlinear analysis and are not limited to surface measurements. A

summary of advantages and disadvantages of the various nonlinear phased array methods are

presented in Tab. 2.2. The coherent phased array methods are shown to be effective in imaging

nonlinear features by measuring nonlinearity in the coherent backscatter. These methods are

limited to fatigue scattering linear reflections, therefore in the case of fatigue crack tips the

orientation can effect the efficacy of the techniques. In real-life samples the orientation of

crack tips is unknown and therefore presents a limitation to the coherent method. Moreover,

the coherent methods only measure nonlinear information which back-propagates to the array

and ignores the nonlinear information which scatters in all directions in the material. The

NUI method addresses these limitations by measuring the total nonlinear information in the

subsequent diffuse field which does not rely on direct coherent scattering. The NUI method is

therefore capable of measuring bulk material nonlinearity (classical) which does not produce

linear reflections to be measured. Given the clear advantages over the coherent method it

is evident that the NUI method should be further researched as it has the most potential for

industrial application.
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Nonlinear phased
array techniques

Damage sensitivity Advantages Disadvantages

Sub-harmonic (Co-
herent)

Partially closed crack. Through depth imaging.
Single-side access.

Dependent on linear scat-
tering near the feature
(crack orientation depen-
dency). Multiple trans-
ducers required. Analy-
sis limits nonlinear infor-
mation.

FAD (Coherent) Partially closed crack. Through depth imaging.
Single-side access. Sin-
gle array required.

Dependent on linear scat-
tering near the feature
(crack orientation depen-
dency).

Seq-par (Coherent) Partially closed or closed
crack.

Most sensitive imaging
metric. Through depth
imaging. Effective linear
suppression.

Dependent on linear scat-
tering near the feature
(crack orientation depen-
dency).

Seq-par (Diffuse) Partially closed or closed
crack. Has potential to
resolve bulk nonlinearity.

Through depth imaging.
Effective linear suppres-
sion. Not dependent on
linear reflection (crack
tip orientation indepen-
dent).

Requires a measurable
diffuse field (limits vol-
ume size).

TABLE 2.2: Advantages and disadvantages of nonlinear phased array techniques.

2.3 Research scope

This thesis will focus on optimising NUI given its applicability to resolving non-classical

features (fatigue crack tips) without the requirement of scattering from the nonlinear feature

and the potential for resolving classical features (dislocations and anharmonicity). The current

weakness of NUI will be addressed while incorporating the strengths of wave mixing and

nonlinear spectroscopy methods. The study will focus on the following five aspects of NUI:

1. The NUI method has proven to be effective in detecting fatigue crack tips, however,

further investigation into detectability of nonlinear features using various transmission

frequencies is required to ensure maximum sensitivity to low level nonlinear responses.

In this thesis various transmitting frequencies will be evaluated using simulated and
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experimental sensitivity maps. In addition, a multi-view NUI method is proposed to

increase the detectability of features.

2. As indicated in literature, nonlinear features cause energy to be transmitted to a variety of

frequency components, such as sum-difference frequencies, second and sub-harmonics.

This thesis proposes an adaptation of the current NUI method which evaluates energy at

the individual frequency components (as opposed to energy lost from the fundamental),

where an increase in sensitivity is expected.

3. The dependency of the diffuse field on the NUI method is fundamental to the detection of

features in a material and the general efficacy of this method. Therefore, an investigation

into approximating the time awave-field has homogenised and is diffusewill be conducted.

This will increase the sensitivity of the NUI method to resolving relatively lower levels

of nonlinearity.

4. An alternative phase method less sensitive dependent on a diffuse field is proposed. The

aim of this is to maintain the key benefits of NUI without a significant dependency on the

diffuse field, enhancing the method to be more applicable to larger geometries.

5. Using the optimisations proposed in this thesis the efficacy of NUI for resolving bulk

material nonlinearity will be evaluated. The focus will be to resolve nonlinear features

not currently detectable using nonlinear phased array methods.





Chapter 3

Nonlinear sensitivity analysis

3.1 Introduction

As discussed in Chapter 2, the nonlinear ultrasonic diffuse energy imaging (NUI) technique

is capable of detecting closed fatigue cracks in aluminium [5] and mild steel [6]. The key

benefit of NUI is the ability to detect nonlinear damage independent of directional scattering

amplitude meaning the orientation of the crack tip can be unknown, such as in real fatigued

engineering components. Additionally, this method has the potential to resolve bulk material

nonlinearity (induced by anharmonicity and dislocations), which does not produce any linear

scattering. However, the requirement for a diffuse field means there are limitations with

regards to sensitivity. Capturing in a diffuse state means there is less energy available to be

measured caused by a reduced signal-to-noise ratio (SNR), which limits the applicability of

this method in larger geometries, where reaching a diffuse state is more difficult. In this study,

the sensitivity profile of the NUI method will be evaluated to determine the limitations of

the method in detecting fatigue crack tips, specifically addressing the issues described. The

sensitivity profile will be established using both simulated and experimental data to determine

the most appropriate configuration. A range of transmission frequencies will be analysed to

45
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determine the most effective excitation frequency in detecting fatigue as well as analysis of

simulated nonlinear sensitivity across two materials: Aluminium 2014 and Mild Steel.

Closed fatigue cracks generally grow from larger volumetric features, however the depth

and orientation of the closed crack tip is unknown. Therefore, it may not be possible to

directly measure the nonlinear feature using the most sensitive location below the array,

since the relative distance between the crack tip and the phased array is not measurable.

However, a multi-view method can be implemented by imaging the material after the back-

wall reflection, allowing for control over which section of the sensitivity profile is used to detect

the fatigue, potentially increasing the detectability of nonlinear features. Prior understanding

of the nonlinear sensitivity profile is desired to implement this strategy.

3.2 Diffuse energy method

The theory of NUI proposed by Potter et al. [5] will first be introduced. This will be a

full description of the methodology used throughout this thesis and explains the fundamental

requirement of capturing in the diffuse field.

As mentioned previously in the literature review, NUI relies on two modes of transmission:

sequential and parallel. During parallel transmission the elements fire near simultaneously

with an applied delay law to produce a high-intensity focus at a defined location in the

material. The sequential mode fires each element individually and the time domain signals

for each transmitter-receiver pair are stored in a full matrix capture (FMC) and is synthetically

focused in post-processing using the applied delay laws. In both cases where there is the

assumption of linear superposition, the linear propagation between the sequential and parallel

fields are identical (assuming the specimen is time invariant). However, the presence of elastic

nonlinearity causes the two fields to differ, which can be exploited by subtracting the two fields,
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suppressing the linear features and isolating the nonlinearity. In the parallel case (where all

elements are firing) the material experiences more stress at the focal point than contributions

from the individual sequential transmissions. The nonlinearity is determined by the flux of

energy away from the fundamental, therefore it is expected more energy will be lost in the

parallel case.

The diffuse state is what provides sensitivity toNUI. Themethod relies on the relative diffuse

energy between the two fields being proportional to the relative energy loss at the focal point,

which infers the nonlinearity at that point in the material. Therefore requirement to measure

diffuse energy between the two transmission modes means the selection of the start gate-time

tr (the time when each element starts to record data) and window length T (length of the time

signal each receiver acquires) is critical. The selection of these parameters is a compromise

between two competing effects. First, later in time the ultrasonic field convergences to a

diffuse field where energy is homogenised. Second, wave propagation is dissipative, therefore

the SNR reduces with time. A compromise is selected to ensure the diffuse field condition is

achieved whilst the SNR is maximised. An investigation into the selection of these parameters

is provided in Chapter 6.

If we assume f j,k(t) is the time-domain signal for each transmit ( j) and receive (k) pair

for the sequential mode, the transmission delay law δT
i (r) for each jth element to focus at the

inspection point r(x, z) and can be expressed as,

δT
j (r) =

√
(xi − x)2+ z2−

√
(xa − x)2+ z2

cl
(3.1)

where cl denotes the longitudinal wave velocity and xa is the reference element which is the

centre of the x-axis of the delay law. The frequency spectra of f j,k(t) is approximated using a

fast Fourier transform (FFT) and is expressed as,
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Fj,k(ω) =

∫ tr+T

tr
f j,k(t)e−iωt dt (3.2)

were tr is the start gate-time and T is the end gate-time.

The parallel time-domain data is denoted hk(r, t) for signals received on element k for all

focal points r in the material. The frequency spectra of hk(r, t) is expressed as,

Hk(ω) =

∫ tr+T

tr
hk(r, t)e−iωt dt . (3.3)

The bandwidth integration limits used is an important consideration and are selected in

post-processing. A broad-bandwidth will increase the ultrasonic energy incident at the focal

point, however this can also cause nonlinear energy flux to harmonics to be within the evaluated

bandwidth. Therefore, the bandwidth should be set to the maximum where there is no internal

energy flux to harmonics and ensure only the fundamental nonlinear energy loss is considered.

Aware of additional nonlinear frequency components such as energy transfers to harmonics,

sub-harmonics, sum and difference frequencies, the evaluation bandwidth limits is set as 2/3ω0

and 4/3ω0. Therefore only the energy lost from the fundamental is evaluated in the calculation.

Thus the diffuse acoustic energy for an N element array in sequential transmission Es at focal

point r̄ is calculated as follows,

Es(r) =
N∑

k=1
(

∫ 4
3ω0

2
3ω0

ω2 |
N∑

j=1
Fj,k(ω)e

−iωδTj (r̄) |2 dω) (3.4)

The the parallel transmission Ep, this is calculated as follows,

Ep(r) =
N∑

k=1
(

∫ 4
3ω0

2
3ω0

ω2 | Hk(ω) |
2 dω) (3.5)
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The nonlinear metric, γ, is calculated as the relative difference in diffuse energy between

the parallel and sequential transmission giving,

γ(r) =
Es(r)−Ep(r)

Es(r)
(3.6)

where Es and Ep is the parallel and sequential diffuse energy. This metric provides a

measure of a statistical difference in diffuse energy at the fundamental between the parallel

and sequential fields. The procedure for modelling this methodology will be discussed in the

next section.

3.3 Simulation sensitivity

To simulate the NUI method outlined in the previous section a quadratic elastic nonlinearity

perturbation method has been adopted, whereby the linear and nonlinear fields are simulated

separately. This simulation methodology has been adopted in literature for nonlinear imaging

in a previous study and will be implemented for this project [66].

The NUI technique operates on the assumption that the sequential and parallel energy loss

at the focal point in the coherent field, caused by elastic nonlinearity, is equivalent to that of the

diffuse field. Therefore it is only necessary to model the energy of the parallel and sequential

fields in the coherent field to model the contribution of elastic nonlinearity, as modelling of

the coherent prorogation to the focal point is proportional to the energy transferred in the

diffuse field. The simulation will therefore model the flux of energy from the linear to the

nonlinear field due to elastic nonlinearity in the coherent field. This energy flux measure

provides sufficient analysis of the relative energy lost at the focal point between the two fields,

which is proportional to the relative diffuse field energy.
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The NUI experiments have been validated for detecting closed crack tips [5, 6]. In these

experiments the non-classical nonlinearity will be predominately contributing to the nonlinear

energy flux, since classical nonlinearity is a much smaller effect. Since the ultimate aim in

the development of this NUI technique is to be able to resolve classical nonlinearity (induced

by lattice anharmonicity and dislocations), this simulation will model classical material non-

linearity. A disadvantage of this method is that crack tip nonlinearity (non-classical) does not

behave as a point-like nonlinear feature, which will potentially cause discrepancies in analysis,

which will be discussed in more detail in this chapter. By assessing the energy flux from the

linear to nonlinear field, due to quadratic elastic nonlinearity, at various focal points in the

material it is possible to determine the nonlinear sensitivity of this phased array experiment.

The simulation will be conducted using three transmission frequencies: 1, 2.5 and 5

MHz. Each transmission frequency simulation will model two sample materials: Aluminium

2014 and Mild Steel. The selection of samples represent those used in industry and offer

varying attenuation rates for analysis. The appropriate attenuation values for each transmission

frequency and material will also be implemented to evaluate the influence of attenuation on

the sensitivity of this nonlinear method. This is an important parameter to assess for industry

since attenuation rates have the potential to limit sensitivity and therefore reduce industrial

applicability.

For the perturbation solution of the nonlinear field, the forcing linear simulation will be

computed with an analytical solution at each time-step. The linear displacement field will then

be used to force the nonlinear field which is computed using a finite difference method. All

time stepping calculations were computed in C++/CUDA with extensive use of parallelisation

on the GPU. This is important when simulating NUI which requires focusing at each pixel

point in the imaging space to establish the nonlinearity at each point, which is a time intensive

procedure.
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FIGURE 3.1: Illustration of incident field from point sources of a phased array:
(a) plane beam and (b) focused beam.

3.3.1 Linear field (Incident)

For modelling nonlinear wave propagation a perturbative approach is implemented by mod-

elling the incident ū(0) and secondary field ū(s) components separately. The total displacement

field as the sum of the linear incident field and the secondary nonlinear field,

u(t,r) = u(0)(t,r)+u(s)(t,r) (3.7)

The incident field is simulated using an analytical solution, with each transducer element

modelled as a displacement source to simulate the desired propagating wave-front. The sum

of these spherical sources determines the wave front. An illustration of the linear wave field

model adapted to a phased array is presented in Fig. 3.1(a) for a plane wave where the elements

are fired simultaneously. For each time step, ∆t, the wave-front is the sum of the spherical

sources from the previous time step. For a focused beam it the same principle but with delay

laws applied relative to the focal point of the desired beam. This is illustrated in Fig. 3.1(b)
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where the delay laws cause the spherical waves to interfere to produce a wave-front focused

towards the focal point.

In this study the incident field, Ū(0), is evaluated in the frequency domain from an analytical

solution for a focused ultrasonic array and include both longitudinal and shear components of

displacement [66],

Ū(0) = ∆(2πcl/ω0)
1/2T(ω)

N∑
n=1

[
Ān(r̄)CL(ω)DLn(r̄,ω)Bn(r̄)e

iω( |r̄−ān |cl
−δn)

+ Ān(r̄)CS(ω)DSn(r̄,ω)Bn(r̄)e
iω( |r̄−Ān |cs

−δn)

]
(3.8)

where cl and cs are the longitudinal and shear velocities respectively. T(ω) is the Gaussian

spectra in the frequency domain expressed asT(ω)= exp
{
−α(ω−ω0)

2} at the centre frequency,
ω0. The beam spread, Bn is expressed Bn(r̄) = |r̄ − an |

−1/2. The amplitude unit vector of the

longitudinal field component is expressed as An(r̄) = (r̄ − an)/|r̄ − an |.

The directivity of the array is accounted for and describes the angular amplitude distribution

of wave modes from the array transducer elements. The directivity is modelled differently

for both the longitudinal and the shear components, as the differing displacement directions

significantly effects the distribution into the field [67]. The longitudinal directivity function

Dln is defined as,

DLn(θ,ω) = sinc
(
πωbsinθ

cl

) (
(cl/cs)

2−2sin2 θ)
)
cosθ

F0(cosθ)
(3.9)

The shear directivity function Dsn is defined as,
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DSn(θ,ω) = sinc
(
πωbsinθ

cs

) (
cl

cs

)5/2 (
(cl/cs)

2 sin2 θ −1
)1/2 sin2θ

F0(
cl
cs

sin(θ))
(3.10)

where θ is the elevation angle and F0 is expressed as,

F0(ζ) =

(
2ζ2−

(
cl

cs

)2
)2

−4ζ2(ζ2−1)1/2
(
ζ2−

(
cl

cs

)2
)1/2

(3.11)

The linear field in the simulation is computed via this analytical solution and is used to

determine the nonlinear derivatives in the nonlinear field.

3.3.2 Nonlinear field (Secondary)

The nonlinear field is assumed to be a quadratic stress-strain displacement and therefore im-

plements the following governing quadratic partial differential equation of motion in isotropic

media in three dimensions,

ρ0
∂2ui

∂t2 − µ
∂2ui

∂xk∂xk
−

(
K +

µ

3

) ∂2ul

∂xl∂xi
=(

µ+
A
4

) (
∂2ul

∂xl∂xk

∂ul

∂xi
+

∂2ul

∂xl∂xk

∂ui

∂xl
+2

∂2ui

∂xl∂xk

∂ul

∂xk

)
+(

K +
µ

3
+

A
4
+B

) (
∂2ul

∂xi∂xk

∂ul

∂xk
+

∂2uk

∂xl∂xk

∂ui

∂xl

)
+(

K −
2

3µ
+B

) (
∂2ui

∂xk∂xk

∂ul

∂xl

)
+(

A
4
+B

) (
∂2uk

∂xl∂xk

∂ul

∂xi
+

∂2ul

∂xi∂xk

∂uk

∂xl

)
+

(B+2C)
(
∂2uk

∂xi∂xk

∂ul

∂xl

)

(3.12)
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where ui is the ith component of the particle displacement, k is the bulk modulus, and µ is

the shear modulus.The terms x1, x2 and x3 are the rectangular co-ordinates. A, B and C are

the third-order elastic constants, these are the cubic-strain terms for elastic energy [53]. The

elastic moduli are determined as K = E/3(1− 2v) and µ = E/2(1+ v). The left side of Eq.

3.12 is the linear contribution and the right hand side is the nonlinear perturbation.

Since the nonlinear contribution of the secondary field is significantly smaller than the

incident field, the contribution of the secondary field to the right hand-side is ignored. This is

known as a ’quasi-linear’ approximation and is implemented theoretically during the derivation

of the nonlinear wave equation via the perturbation method [33]. We can therefore implement

the following nonlinear equation of motion,

ρ0
∂2u(s)i

∂t2 − µ
∂2u(s)i

∂xk∂xk
−

(
K +

µ

3

) ∂2u(s)l

∂xl∂xi
= Fi (3.13)

splitting these terms into temporal and spatial derivatives we end up with the following

equation,

∂2u(s)i

∂t2 =

[
µ
∂2u(s)i

∂xk∂xk
+

(
K +

µ

3

) ∂2u(s)l

∂xl∂xi
+Fi

]
1
ρ

(3.14)

with the following forcing terms,
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Fi =

(
µ+

A
4

) (
∂2u(0)l

∂xk∂xk

∂u(0)l

∂xi
+
∂2u(0)l

∂xk∂xk

∂u(0)i

∂xl
+2

∂2u(0)i
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)
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K −
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)
(3.15)

The nonlinear forcing terms are calculated using the linear displacement field, u0, calculated

from the analytical solution for linear wave propagation (see Eq. 3.8). The derivatives for

the forcing terms and secondary field are computed using finite difference (FD) stencils to

approximate the solution at each time-step. Prior to this it is necessary to expand the Einstein

notation of the derivatives in the forcing terms in Eq. 3.15 (see Appendix A). To ensure that

accuracy was maintained, a 4th order central difference formula was implemented for both the

first and second order derivatives. The derivatives are computed spatially using this formula

and temporally with a Runge-Kutta 4th order time stepping routine (see Appendix B).

3.3.3 Nonlinear Work Done, ψ

The nonlinear phased array simulation infers the nonlinear sensitivity of the array by assessing

the implicit energy flux from the incident (linear) field to the secondary (nonlinear) field at

various focal points in space. The partial differential equation defined in Eq. 3.12 could

be solved directly using a similar method without perturbation approximations, producing a

more accurate solution. However, the purpose of this modelling is to evaluate the energy

transferred due to nonlinearity, in terms of magnitude and where it exists in space. By keeping

explicit separation of the incident and secondary field this can be achieved more simply than
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modelling the field as a whole. If solved directly as one field it would require computation of

the diffuse field which is a computationally expensive endeavour. Instead, this can be achieved

implicitly by evaluating the nonlinear work done by the incident to the secondary field. In

the methodology presented there is no nonlinear energy loss from the incident field, since it

is inferred implicitly. The nonlinear work done by the incident field to the secondary field is

defined as,

Ψ(r̄) =
∫ t2

t1
F̄(r̄, t) Û̄u(s)(r̄, t)dt, (3.16)

where t1 and t2 are the time limits of the simulation and F(r̄, t) = (Fx,Fz) is the nonlinear

forcing vector for each time step along the x and z axis. The time length of simulation is set

to ensure the incident field has focused at the focal point. The key benefit of modelling the

nonlinear work done is that the metric is spatially resolved within the field meaning the time

of the simulation only has to be sufficiently long to allow the incident field to propagate to the

focal point. The nonlinear weighting function ψ within a specimen of aluminium are presented

in Fig. 3.2 for multiple focusing points, where it is clear that the magnitude of nonlinear

energy transferred between fields changes with the distance from the array. The nonlinear

energy transferred between the two fields for multiple focus points can be used to infer the

nonlinear sensitivity profile of the array.

a) b) c)

FIGURE 3.2: Nonlinear weighting function, ψ(r̄), for aluminium various focal points: (a)
r̄f = [-15 20] mm, (b) r̄f = [0 30] mm and (c) r̄f = [20 40] mm.
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3.3.4 Nonlinear sensitivity profile, η

To determine the nonlinear sensitivity profile the weighting function in Fig. 3.2 must be

measured at each focal point, r̄ f . It is required that a similar measurement of energy transfer

is used between the work done metric in the simulation and nonlinear energy metric in the

experiments. The values taken from the experimental nonlinear images will be maximum

γ from each image, which indicates energy lost from the fundamental at the crack tip. The

experimental sensitivity is assessed by translating the array and measuring the response of a

crack tip using the multiple sensitivity regions of the array (this is discussed in further detail

in Section 3.4). The reduction in sensitivity when the array is translated will result in reduced

detectability, and therefore the maximum value of the nonlinear feature is most straight forward

and applicable. Since the validation process infers the energy lost at the focal point through

the detection of the maximum feature (i.e. the crack tip) in the image, it is necessary to repeat

this process in the simulation. The energy loss from parallel transmission can be determined

by calculating the maximum of Ψ(r̄ f ). This can then be related directly to the nonlinear metric

γ by subtracting the sequential and parallel energy flux fields. If the spatial energy flux from

the sequential case is denoted Ψs(r̄ f ), then the contribution of nonlinear elastic energy to the

nonlinear imaging metric is expressed as,

η(r̄ f ) =
Es −Ep

Es
=

max(Ψs(r̄ f ))−max(Ψ(r̄ f , r̄))
max(Ψs(r̄ f ))

(3.17)

Note that the sequential term in Eq. 3.17 is spatially invariant since the nonlinear losses

occur during acquisition and are independent of the sequential post-processing calculation.

Therefore, the parallel energy flux can be used directly as a measure of array sensitivity.
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3.3.5 Model parameters

3.3.5.1 Material and array parameters

The nonlinear simulation was conducted for two commonly used isotropic materials: Alu-

minium 2014 and Mild Steel. The material parameters for each undamaged material are

presented in Tab. 3.1 and are consistent with the materials used in the experimental analysis.

The steel third-order elastic constants (TOECs) are obtained from a study by Takahashi et al

which investigates the second and third order elastic constants of polycrystalline steels [8].

Stress is applied to the steel sample and is increased step-wise, and the velocity of the elastic

wave is measured at each step. For this study, the results from the S30 sample in an adiabatic

state is used as the TOECs for simulating the steel sample. The TOECs in this study are

Murnaghan constants (l,m,n) and can be represented as Landau-Lifshitz (A,B,C) constants

using l = B+C, m = A/2+B and n = A. The aluminium values are from work by Lubarda et

al. which implements an extension of linear theory for calculating TOECs.

Property Aluminium 2014 Mild Steel
Young Modulus, E (GPa) 90 200
Poisons ratio, v 0.35 0.26
Density, ρ (kg/m3) 2700 7850
A (GPa) -344 -505
B (GPa) -124 -65
C (GPa) -19 -730
β 7.18 8.70

TABLE 3.1: Material mechanical properties for Aluminium 2014 and Mild Steel [7, 8].

The arrays simulated were Imasonic 1, 2.5 and 5 MHz arrays, as presented in Tab. 3.2,

Centre frequency (MHz) No. of El. (mm) El. width (mm) El. pitch (mm)
1 64 15 1.5
2.5 64 15 0.5
5 64 10 0.6

TABLE 3.2: Phased array specifications used for experiments.
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The ultrasonic displacement ∆ is set to 6 nm for each element transmission. This is a book

value from work by Potter et al. [66] measured using a laser vibrometer.

3.3.5.2 Spatial and temporal parameters

The simulation propagation time is set to ensure the incident focused beam propagates to the

focal point and beyond to ensure analysis of the point-spread function. This is achieved by

setting t1 = 0 and establishing t2 in Eq. 3.16 to ensure all the energy has propagated to the focal

point. This was achieved by calculating the distance to the focal point for each transmission and

calculating the required propagation time given the longitudinal material velocity, cl . The time

limits are proportional to the grid size (x,z), and therefore larger samples (where an increased

image domain is required) will increase the time limits. The various simulation times used

for each transmission frequency is presented in Tab 3.3, which are adjusted to account for

varying image domain sizes used for each simulation. The image domain sizes are adjusted to

account for differing pitch sizes, to ensure sufficient imaging space is computed for analysis

whilst computational performance is maintained. The varying longitudinal sound speed for

each material is negligible, therefore to be conservative the simulation durations are calculated

using the material with the lowest sound speed.

Centre frequency (MHz) Simulation duration, t2 (µ s)
1 17.5
2.5 10
5 10

TABLE 3.3: Simulation duration for each transmission frequency and material simulated.

The temporal resolution ∆t is calculated to ensure accurate computation of the nonlinear

field. This is achieved by sampling 25 time points per period of the excitation frequency, ω0,

using the following equation,
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∆t =
Tp

25
(3.18)

where Tp is the periodic time which is calculated as Tp = 1/ω0.

The spatial resolution ∆x is determined to ensure 25 sample points per wavelength λ using

the following calculation,

∆x =
λ

25
(3.19)

where λ = cl
ω0
. These spatial and temporal resolutions are sufficient for the calculation of

nonlinear field terms.

3.3.5.3 Attenuation

Attenuation can have a significant effect on the propagation of longitudinal and shear waves

in a medium. It is therefore necessary to account for such phenomena in this simulation. This

is achieved by implementing an attenuation coefficient in the incident field calculation. Since

the secondary field is being driven by the incident field, the reduction in displacement due to

attenuation in the incident field will translate into the secondary field directly. The attenuation

term to be included in the incident field calculation in Eq. 3.8 is calculated as,

CL,S = exp
{
−αL,S x

}
(3.20)

where α is the attenuation (Np/m) and x the propagated distance in the x-direction in

m. It is expected that the attenuation will significantly affect the nonlinear sensitivity, the

maximum sensitivity is expected to spatially shift towards the array due to exponentially
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increasing attenuation losses with distance propagated. The attenuation coefficients α used

for the simulation are presented in Tab. 3.4, and are book values from a study by Zhang et

al. [68]. The attenuation values are applied to the linear wave field which forces the nonlinear

field, therefore the attenuation directly influences the nonlinear work done and therefore the

nonlinear sensitivity.

Material 1 MHz 2.5 MHz 5 MHz
L S L S L S

Aluminium 5.60 x 10−3 2.10 x 10−3 1.60 x 10−1 7.59 x 10−2 1.22 9.42 x 10−1

Steel 1.70 x 10−3 7.00 x 10−3 6.54 x 10−2 2.69 x 10−1 9.95 x 10−1 3.99

TABLE 3.4: Longitudinal (L) and shear (S) attenuation (Np/m) for Aluminium 2014 and Mild Steel.

3.4 Experimental sensitivity

3.4.1 Experimental parameters

By following theNUImethodology highlighted in Section 3.2 an experimental sensitivity study

is performed using a fatigue crack tip grown in a Aluminium 3 point-bend (3PB) specimen.

The purpose of this is to determine the sensitivity of the array to a known and consistent

nonlinear feature (i.e. the crack tip), which is a discrete nonlinear feature much higher in

amplitude than the surrounding material nonlinearity, meaning a higher SNR is available for

measurement. For these reasons it can be used as a close experimental approximation of a

point-like nonlinear feature. Since this feature is inherently time invariant, it is possible to

determine the sensitivity of the array in the x direction by translating the array laterally relative

to the nonlinear feature location as seen in Fig. 3.3. During this process nonlinear images are

acquired at each translation position where the feature will be detected using various locations

within the sensitivity profile of the array. To evaluate the through depth sensitivity, z, the top

surface of the specimen is machined down in 6 stages (of 5 mm increments) for the lateral

study to be conducted at each of these machining steps. By taking the maximum of each of
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these nonlinear images for lateral scans for through depth stages an experimental sensitivity

map can be determined.

The array translation is conducted by mechanically scanning the array along the surface

of the specimen above the crack tip. Nonlinear diffuse images taken at different translation

positions are presented in Fig. 3.4 where the increased sensitivity is observed when the array

is directly above the feature. This provides an increased magnitude of the nonlinear parameter

γ and SNR compared with the translated positions off-set from the centre axis. The maximum

γ reduces by approximately 27% and 36% for +9 mm and -12 mm off-sets respectively,

confirming that detectability of the feature is dependent on the location of the feature relative

to the array.

z

x

Nonlinear feature

5 mm

Machining steps

Imaging space

FIGURE 3.3: Experimental configuration for phased array translation process.

The experimental validation was conducted with 2.5 and 5 MHz phased arrays where

approximately 40 nonlinear images were taken at multiple translation points for eachmachining

stage. In the case of NUI it was observed that, the variability of results can be significant due

to varying transmission output from the array controller and variations in coupling (this is

discussed further in Section 6.3). To reduce the impact of this variability a low-pass filter is

applied to each lateral section, to smooth out the experimental error. Using the lateral sections

from each machining stage the data is interpolated to the imaging space used for both the

experimental and simulated data, allowing for direct comparison of the sensitivity profiles.

All NUI experiments were conducted using a Verasonics array controller using Imasonic



3.5. RESULTS 63

a) b) c)

FIGURE 3.4: Nonlinear diffuse images (γ) transmitting at 5 MHz for multiple translations
on the surface: (a) +9 mm (b) 00 mm and (c) -12 mm.

arrays specified in Tab. 3.2. A cycle length of 3 is facilitated via the arbitrary waveform

generation capabilities of the array controller to match the input signal length used in the

simulation. However, it is worth noting that the exact cycle length will not be transmitted

into the material due to the array transfer function. The diffuse times (tr and T) are set for

each transmission frequency to ensure the nonlinear energy is captured during the diffuse field.

These times are based on preliminary experiments to determine the most effective diffuse times

for resolving the nonlinear feature for each transmission frequency. The selection of the diffuse

times through statistical analysis will be investigated in Chapter 6.

Trans. Frequency tr T
T1 0.5 0.08
T2.5 0.25 0.04
T5 0.25 0.04

TABLE 3.5: Start-time, tr (ms), and window length,
T(ms), for each transmission frequency used for the 3PB
specimens.

3.5 Results

3.5.1 Simulation and experimental sensitivity

Following the defined simulation and experimental procedures the nonlinear sensitivity is

evaluated for multiple array transmission frequencies, as well as varying array sizes, defined

specifically for different frequency transmissions. By evaluating Eq. 3.17 for multiple focus
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Simulation Experimental

5 MHz

2.5 MHz

FIGURE 3.5: Simulation and experimental results for 2.5 and 5 MHz array transmissions.

points in the imaging space the dependence on η value on the the location measurement point

relative to the array is measured, producing a simulated sensitivity map. It is expected that the

nonlinear work done η (inferred from the TOECs) will vary as a function of position in the

x − z space. This spatial variation is expected to converge closely with experimental results

where a crack tip is used as a known source of nonlinearity.

The sensitivity results using the 2.5 and 5 MHz phased arrays are presented in Fig. 3.5,

where there is a consistent maxima at a depth of 36 mm for both transmission frequencies

across the experimental and simulated data. The distribution of the profile along the x-axis

at the maxima is relatively consistent across the experimental and simulated results where

there is a reduction in sensitivity of 50 % between -25 mm and 25 mm for both transmission

frequencies. The sensitivity profile along the z-axis (through depth) does not show consistency,

the point of highest experimental sensitivity is muchmore localised showing that the sensitivity

drops by 50% between 30 mm and 42 mm for both frequencies. In the simulation case, both

transmission frequencies show significant sensitivity between 25 mm and 50 mm reducing by

only 20%. This variation in simulation and experimental sensitivities is potentially caused by
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differing nonlinear sources used for each sensitivity investigation.

The more localised experimental sensitivity profile is potentially caused by changing expo-

sure to the interfaces of crack tip with depth, altering the intensity of the opening and closing

of the crack interface, resulting in less nonlinearity being induced at the focal point. For

example, when focused at a crack tip close to the array the focused beam excites the interface

of crack tip at more angles and is therefore exciting a larger surface area of the interfaces,

resulting in increased acoustic nonlinearity. When focusing further into the material the angle

of interaction is reduced and a reduced surface area of the interface is excited, resulting in

less nonlinearity. The sensitivity in the experimental case is therefore determined by both the

intensity of ultrasonic energy incident at the focal point and the exposure of the displacement

incident waves to the surface area of the interfaces. The combination of these effects results

in a more localised sensitivity profile where sufficient ultrasonic energy is incident at the focal

point and increased exposure to the crack induces more nonlinearity.

3.5.2 Material analysis

The nonlinear sensitivity in different materials is desired to investigate the performance of NUI

for a variety of polycrystalline compounds with different material properties for nonlinearity.

The third order elastic constants (TOECs) for the materials is expected to have a significant

influence on the nonlinear work done by the incident field, since the degree of material

nonlinearity is defined by the measured TOECs which determines the forcing term in Eq. 3.15.

In addition, it is expected that varying attenuation values will have a significant effect on the

nonlinear work done, since the nonlinear field is driven by the linear field. For instance, an

increase in attenuation will reduce the incident wave amplitude at the focal point, and in turn

will reduce the nonlinear work done. Attenuation is expected to adjust the sensitivity profile of

the array as well, the point of highest sensitivity is expected to move towards the array since the
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linear field will decay exponentially causing near field focusing to provide higher sensitivity.

The longitudinal attenuation will be most influential since the focusing is achieved for the

longitudinal component meaning mostly bulk wave energy is transferred to the nonlinear field

at the focal point. To address these effects the percentage difference between simulations

with and without attenuation is calculated to determine the quantitative differences between

the two sensitivity profiles. It is expected that the aluminium sensitivity profile will be more

influenced by attenuation since the measured attenuation rates are higher than steel for the

selected frequencies. In addition, attenuation is expected to influence the nonlinear sensitivity

at higher frequencies since the attenuation rates are relatively larger.

The simulated sensitivity results transmitting at 5 MHz are presented in Fig. 3.6. It can be

seen that in the case of aluminium and steel the attenuation reduces the nonlinear work done,

η, by approximately 16% and 14% respectively. The results for a 2.5 MHz transmission are

presented in Fig. 3.7 and it can be seen that in the case of aluminium and steel the attenuation

reduces the nonlinear work done by approximately 2% and 0.8% respectively. The results for

a 1 MHz transmission presented in Fig. 3.8 confirms that the attenuation reduces the nonlinear

work done by 0.14% and 0.04% for aluminium and steel respectively. It is clear that the

reduced attenuation rates at 1 MHz influence the nonlinear sensitivity less compared with the

2.5 and 5 MHz transmissions as expected.

The subtracted images show the largest difference in nonlinear energy occurs at a depth

of 50 mm for 5 MHz , 60 mm for 2.5 MHz and 110 mm for the 1 MHz transmission. The

spatial distribution of this percentage difference shows the sensitivity profile is shifted towards

the array in the presence of attenuation, confirming that the sensitivity of the array is spatially

determined by attenuation rates. The linear field energy is attenuated at a higher rate reducing

the energy incident at the focal point, causing less work done on the nonlinear field and thus

reducing sensitivity. The exponential attenuation of wave energy with distance means focal
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Attenuation

No attenuation

SteelAluminium

Subtraction

FIGURE 3.6: Nonlinear simulated sensitivity profile transmitting at 5MHz for Aluminium
and Steel with and without attenuation.

points further away from the array will transfer less energy to the nonlinear field, resulting in

a shift in sensitivity towards the array.

When comparing the different materials without attenuation, generally it can be seen that

the nonlinear work done is larger in steel compared with aluminium by a factor of 3 for 2.5 and

5 MHz transmission frequencies. The nonlinearity parameter β is larger for steel compared

with aluminium and therefore an increase in the nonlinear work done is expected since the

forcing terms which are calculated from the TOECs, determine the nonlinearity of the material.

This is also observed for the 1 MHz transmission where there is an increase in the nonlinear

work done by a factor of 2 for steel compared with aluminium. When attenuation is accounted

for the difference in sensitivity performance is increased since the steel material experiences
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Attenuation

No attenuation

SteelAluminium

Subtraction

FIGURE 3.7: Nonlinear simulated sensitivity profile transmitting at 2.5 MHz for Alu-
minium and Steel with and without attenuation.

less longitudinal attenuation, and therefore more energy is transferred to the nonlinear field at

the focal point.

The different frequency transmissions produces consistent maximum nonlinear sensitivity

levels for each material. Despite induced nonlinearity being proportional to transmission

frequency, the reverse effects of attenuation at higher frequencies reduces the sensitivity. At

lower frequencies there is less nonlinearity induced, however the effects of attenuation are lower

meaning nonlinear energy is not degraded significantly. This consistency is also observed in

the experimental data in Fig. 3.5 where there is only an increase in maximum sensitivity

at 5 MHz by approximately 5% compared with 2.5 MHz. This suggests that transmission

frequency selectivity does not significantly effect the performance of the NUI method over the
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FIGURE 3.8: Nonlinear simulated sensitivity profile transmitting at 1MHz for Aluminium
and Steel with and without attenuation.

selected frequency range. However, it is important to consider that higher attenuation rates

across real life samples will effect the nonlinear sensitivity and therefore the implementation

of transmission frequencies will be material specific for industrial samples. These results also

confirm that the location of the nonlinear source relative to the array is an important factor to

ensure optimised resolution of the features. Since the location of the fatigue crack (distance

from the array) cannot be controlled, any dynamic control over the sensitivity profile of the

array would be very beneficial.
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FIGURE 3.9: Multi-view propagation configuration.

3.5.3 Multi-view diffuse image

The previous study evaluated the sensitivity of the phased array, determining a specific distance

from the array where there is significant and heightened sensitivity. In real specimens where

fatigue samples are to be analysed without destructive measures (such as machining) it is

desirable to examine nonlinear features (i.e. closed crack tips) using the highest sensitivity

point of the array. Since the location of crack tips in samples cannot be controlled and the

phased array sensitivity for NUI is not dynamic, a multi-view NUI method is proposed to

focus at points within the image space reflected off the back-wall. The method is implemented

by focusing at image pixel points past the back-wall, as illustrated in Fig. 3.9(a), causing the

beam-formed wave to reflect off the back wall and focus in the material. If the sensitivity of the

array is heightened at this point, assuming there is minimal transmission loss at the boundary,

it is expected that there will be increased sensitivity to the crack tip using the reflected focus

over the direct focus, as seen in the illustration in Fig. 3.9(b)). For this experiment a total of 3

reflection images will be captured in the following order: back-wall (BW), front-wall (FW) and
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back-wall (BW). This process is conducted by focusing past the back-wall at focal positions z f

up to a maximum of three times the depth of the sample.

22 mm 17 mm

BW

FW

BW

FW

BW

FW

BW

FW

FIGURE 3.10: Multi-view diffuse nonlinear image γ transmitting at 5 MHz for
machining depths 22 mm and 17 mm.

The multi-view NUI results transmitting at 5 MHz are presented in Fig. 3.10, where the full

nonlinear images are plotted displaying multiple reflections through depth for two machining

depth sizes: 22 mm and 17mm. The white lines indicate the location of the front and back-wall

for multiple reverberations. At the 22 mm machining depth size it is clear from these results

that there is no detectability of the feature in the direct image (focusing from 0 to 22 mm).

When evaluating the sensitivity profile for a 5MHz transmission (see Fig. 3.5), at this focusing

range the feature is undetectable. Therefore in the direct image in-sufficient incident energy

is exciting the crack tip. The nonlinear feature has been detected in the 1st reflection image

focusing past the BW (focusing from 22 to 44 mm) at a depth of 25 mm in the image. The 2nd

reflection past BW-FW (focusing from 44 to 66 mm) shows detectability of the feature at 61

mm in the image. The 3rd reflection image focuses past the BW-FW-BW (focusing from 66 to

88 mm) is not able to resolve the feature. This is expected to be caused by low level ultrasonic
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energy at the focal point caused by the limited sensitivity a large distances from the array. Once

again, this is confirmed by the experimental sensitivity profile in Fig. 3.5, which shows the

crack tip is undetectable when focusing past 50 mm depth. The energy captured in this image is

attributed to random noise dominating the nonlinear energy captured and polluting the metric.

At a 17 mm machining depth the nonlinear feature becomes slightly more dominant in the

2nd reflections image at a depth of 48 mm, suggesting a more sensitive region of the array is

detecting the feature at this point. The feature is still undetectable in the direct image and is still

detectable in the 1st reflection image. The detected crack tip and additional nonlinear artefacts

throughout all image views are consistent across machining stages (offset from each other by 4

mm, as expected from machining). This confirms the response of the known crack tip is being

detected and implies the additional artefacts are detected nonlinearity in the material.

22 mm 17 mm

BW

FW

BW

BW

FW

BW

FWFW

FIGURE 3.11: Multi-view diffuse nonlinear image γ transmitting at 2.5 MHz
for machining depths 22 mm and 17 mm.

The 2.5 MHz transmission results are presented in Fig. 3.11 where the feature is only

detectable in the direct images for both depths. Some energy is observed in the reflection
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images for the 22 mm depth size sample, however the crack tip is not fully resolvable. The

experimental sensitivity results presented in Fig. 3.5 show reduced sensitivity in the direct

image, and increased sensitivity in the 1st and 2nd reflection images. This in-consistency can

be associated with energy transmission at the reflection walls, meaning less energy is focused

at the focal point. The lower energy focusing at the crack-tip causes a reduction in excited

nonlinearity meaning less nonlinear information is available for capture. This reduction in

incident energy at the focal point will increase with the number of wall reflections, and results

in lower detectability compared with the direct image (despite reduced sensitivity at this range).

The 1 MHz transmission results are presented in Fig. 3.12 where the 22 mm machining size

results show the feature is resolvable only in the direct image (focusing from 0 to 22 mm).

The simulated sensitivity results in Fig. 3.8 show low sensitivity at this range, therefore the

detectability of the feature in the direct image is inconsistent with the simulation. It is possible

that the crack tip at a particular distance from the array and transmitting at 1MHz have induced

a resonant nonlinearity causing this anomaly. At 17 mm depth size the nonlinear feature is not

resolved in any of the views which supports this reasoning. The limited detectability in the

reflection images is also associated with energy transmission at the reflection walls, reducing

incident energy at the focal point.

The multi-view NUI method results show some benefit transmitting 5 MHz where in some

cases the direct image is not capable of detecting the feature. The results for the 1 and 2.5

MHz transmissions are unclear and do not show any benefit to capturing multiple views.

3.5.4 Conclusion

The sensitivity profile of NUI has been established through experimental and simulation

analysis. The point of maximum sensitivity for both the experimental and simulated profile is

consistent for 2.5 MHz and 5 MHz transmission frequencies. However, the sensitivity profiles
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FIGURE 3.12: Multi-view diffuse nonlinear image γ when transmitting at 1
MHz for machining depths 22 mm and 17 mm.

display inconsistencies in sensitivity distribution which has been associated with the exposure

to the crack tip during incident excitation. This varying effect leads to a highly localised

nonlinear sensitivity profile in the case of the experimental study and has resulted in a limited

validation in the z-axis. Along the x-axis the results are more consistent between simulated

and experimental analysis.

The influence of attenuation on sensitivity has been investigated through simulations con-

firming the sensitivity of the profile of the array is shifted towards the array in the presence

of attenuation. As expected, this effect is increased at higher frequencies where the influence

of attenuation is much higher. In addition, the magnitude of sensitivity (nonlinear work done)

reduces in the presence of attenuation as expected. These results confirm that the competing

effects of increased attenuation and increased nonlinearity means the performance of the se-

lected transmission frequencies is consistent. However, the distribution of the sensitivity profile

should be considered as varying array sizes will change the sensitivity profile significantly.
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Amulti-view method has been proposed to ensure the most sensitive imaging region below

the array is used to detect nonlinear features. This method has proven to be effective for 5

MHz where the nonlinear feature is not detectable using the single-view method. It is therefore

suggested that amulti-view approach should be applied to industrial samples where the location

of the feature is unknown.

The nonlinear sensitivity profiles for both simulated and experimental work have been

determined and it is of interest to further optimise the sensitivity of the NUI method. The next

chapter investigates a multi-frequency NUI method for increasing the detectability of closed

crack tips in Aluminium.





Chapter 4

Multi-frequency diffuse imaging

4.1 Introduction

In this chapter, a multi-frequency nonlinear ultrasonic diffuse energy imaging (NUI) method is

explored to obtain the benefits of nonlinear spectroscopy and is shown to have clear advantages

over the single frequency method used in Section 3.2. In particular, this method allows for the

effective separation of underlying ultrasonic nonlinear mechanics, such as low-frequency, sub-

harmonic and second harmonic components using parallel-sequential modes of transmission

(the same transmission modes used in Section 3.2) to create spatial maps for each nonlinear

frequency component and increase the signal-to-noise ratio (SNR). The individual frequency

components are detected using a dual array configuration, where an additional receiving

array with a centre frequency matching the desired frequency component is coupled to the

material. An increase in sensitivity is expected at lower frequency components due to reduced

attenuation rates, meaning more nonlinear energy is captured. However, at higher frequency

components more nonlinearity is induced and therefore an increase in sensitivity is expected

despite relatively higher levels of attenuation. Both are expected to provide significant gains

for detecting fatigue cracks compared with the current single frequency method [5], which

77
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potentially allows for increased sensitivity to small nonlinear features.

4.2 Multi-frequency diffuse method

The single frequency NUI method determines the nonlinearity at each focal/pixel point by

measuring the energy lost from the fundamental frequency. The measurement of energy

lost from the fundamental to other frequency components (such as sub-harmonic and second

harmonic components) accounts for both quadratic nonlinearity from the material and non-

classical nonlinearity from the crack tip. The multi-frequency method measures nonlinearity

by evaluating three frequency components: low, sub-harmonic and second harmonic. The low

frequency component is induced by mixing within the transmission bandwidth, causing energy

to be transferred to the DC component up to approximately the bandwidth of the fundamental

frequency. This phenomena is caused by the superposition of two frequencies within the

transmission bandwidth and results in the formation of a frequency component at the sum and

difference of the two frequencies. When these two frequencies are very close to each other

(i.e. in the same bandwidth), the difference of of the two frequencies will be very small and

therefore a low frequency component will be generated. The magnitude of energy transferred

to he low frequency is elevated in the presence of nonlinearity. When an ultrasonic wave is

incident on a closed crack tip, energy is transferred to the sub-harmonic component, at half

the fundamental frequency [39–41]. The detection of the sub-harmonic allows for isolation

of nonlinearity induced by the crack tip, meaning contributions from material nonlinearity

are potentially excluded. The second-harmonic component is induced by quadratic material

nonlinearity [15, 30]. It is expected that transmission bandwidth mixing will also contribute

to a transfer of energy to the second harmonic.

The detection of elastic nonlinearity as the difference of the statistical diffuse energy between

parallel and sequential transmission modes has already been proven to work on fatigue crack
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samples [5, 6]. NUI determines the nonlinearity at the focal point by evaluating the relative

energy lost a the fundamental frequency between the parallel and sequential fields. The

requirement to measure in the diffuse field is consistent with the single frequency method,

where the start time, tr , (the time when elements start receiving signals) and the window length

T (the time the elements receive signals for) must be set appropriately for the method to work.

The selection of these parameters is a compromise between two competing effects. Firstly,

later in time the field converges more closely to a diffuse field. However, further in time the

signals will attenuate during propagation leading to a reduced SNR. In the case of detecting

multiple frequency components, the correct selection of window length, T , will be paramount

for each transmitting and receiving frequency combination, since the range of frequencies have

varying attenuation rates, therefore the signals will degrade at different rates. As frequency

increases the rate of attenuation increases, meaning the ultrasonic signals will attenuate at a

faster rate and a reduced SNR will occur sooner in time. An important consideration when

defining the start time tr is volume, since the convergence rate of a diffuse field is expected to be

proportional to the volume of the sample. The more frequent propagating waves are incident

with the reflective boundaries (decrease in propagation paths between geometric boundaries)

the quicker a diffuse field is formed. This will be discussed in detail in Chapter 6.

Assuming f j,k(t) are the time-domain received signals for each combination of transmit ( j)

and receive (k) elements in the sequential case. The transmission delay law δT
j (r̄) is applied

to the j th element to focus at point r̄ . The parallel time-domain signals are denoted h j(t)

received on element k for the parallel transmission of elements delayed independently by

δT
j (r̄). The frequency spectra of f j,k(t) and h j,k(t) are given by Fj,k(ω) =

∫ tr+T
tr

f j,k(t)e−iωt dt

and Hk(ω) =
∫ tr+T

tr
hk(t)e−iωt dt, respectively. The diffuse acoustic energy for N element array

in sequential transmission Es at focal point r̄ is evaluated as follows,
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Es(r) =
N∑

k=1
(

∫ 4
3ωR

2
3ωR

ω2 |
N∑

j=1
Fj,k(ω)e

iωδTj (r̄) |2 dω) (4.1)

and the parallel transmission Ep,

Ep(r) =
N∑

k=1
(

∫ 4
3ωR

2
3ωR

ω2 | Hk(ω) |
2 dω) (4.2)

The energy at the desired frequency component is determined by integrating over the relative

frequency bandwidth. Increasing the bandwidth will increase the ultrasonic energy captured,

increasing the resolution of the feature. However, a broad bandwidth will increase sensitivity

to more nonlinear components, reducing the selectivity to individual nonlinear frequency

components. Therefore the evaluated bandwidth of the signals is defined as 2
3ωR and 4

3ωR

for the sub-harmonic, fundamental and second harmonic components [5]. The low-frequency

component exists around the DC frequency, therefore the limits are set between 0 Hz and 1
4ωT ,

where ωT is the transmission frequency. The upper limit for the low frequency is to ensure

the bandwidth is sufficient to capture all the energy transferred to the DC component without

capturing nonlinear energy present at the sub-harmonic. The general implementation of

these bandwidths ensures sufficient energy is captured, whilst maintaining that the frequency

components are separated and do not over lap. This is a key requirement for the study to

ensure performances of the different frequencies are only attributed to the nonlinear mechanics

desired.

The sensitivity of NUI to fatigue cracks is expected to increase when evaluating energy

at additional frequency components. Firstly, the noise will be lower at frequencies outside

of the transmission bandwidth (since noise will be generated at the transmission bandwidth),

resulting in less noise energy in the nonlinearity metric. Secondly, the attenuation rates at

the low frequency component are lower than at the transmission bandwidth, therefore more

energy is available to measure in the diffuse field leading to increased sensitivity to nonlinear
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features. The sensitivity of the single-frequency method to closed crack tips has already been

established [5, 6], and in this study the low, sub-harmonic and second harmonic frequency

components will be validated against the performance of the single-frequency method. Since

the multi-frequency method requires two arrays, any gains in sensitivity must justify the more

complicated configuration.

Another important consideration is the hard-ware filtering in the controller which has

the potential to effect relatively lower frequency measurements. The array controller pre-

amplification stage has a high-pass filter for removing ultrasonic energy at very low frequen-

cies. This is expected to limit the nonlinear energy captured up to the cut-off of the filter,

consequentially effecting the sensitivity of the multi-frequency method when detecting lower

frequency components.

4.3 Experimental procedure

For this study, two types of fatigue samples will be tested: 3 point-bend (3PB) test samples

and compact tension (CT) specimens. Using both methods of fatigue crack growth, samples of

varying geometries and nonlinear features are produced. The 3PB samples were approximately

423 mm x 76 mm and 31.5 mm aluminium samples with initial starter notches machined in

the centre of the sample via electrical discharge machining (EDM). Using the INSTRON

8872 hydraulic test machine a vertical fatigue crack was grown through the 3-point bending

(as seen in Fig. 4.1). The loading varied sinusoidally from a minimum force of 1 kN

and a maximum force 18 kN . The aluminium CT specimens were prepared following the

E647 ATSM (American Standard of Test Materials) using a INSTRON 8800 hydraulic testing

machine (as discussed in full in Appendix C). An initial starter notch was produced via EDM

in the centre of the specimen to produce a stress concentration.
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a)

b)
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FIGURE 4.1: Sample drawings for: (a) 3PB specimens
and (b) CT specimens.

All nonlinear experiments were facilitated using a Verasonics 128 element array controller

(with a Hypertronics connector) with 5 Imasonic 64 element arrays with the following nominal

centre frequencies: 1, 2.5, 5, 10 and 15 MHz (array specifications are presented below in Tab.

4.1). For each experiment two 64 elements arrays were connected to the controller, channels

1-64 were used for transmitting and receiving, whilst channels 65-128 were used for receiving

only.

Centre frequency
(MHz)

No. of El.
(mm)

El. width
(mm)

El. pitch
(mm)

1 64 15 1.5
2.5 64 15 0.5
5 64 10 0.6
10 64 10 0.3
15 64 n/a 0.21

TABLE 4.1: Phased array specifications used for experiments.

For this study, the experiments were conducted transmitting on 1, 2.5, 5 and 10 MHz.

Generally, is expected that the higher transmission frequencies will induce more nonlinearity,
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but will also be more susceptible to noise (due to higher attenuation rates). The most effective

frequency will also depend on the crack tip (orientation). The reverse is expected for lower

transmission frequencies. The additional frequency components (low, sub and second) were

evaluated using the secondary array. For example, when transmitting at 5MHz the energy in the

received signals were analysed at <1.25, 2.5 and 10 MHz. The array with the closest nominal

frequency to the frequency components was then selected to ensure increased sensitivity to the

energy at the frequency. The array configuration for each transmitting and receiving frequency

combination is presented in Tab. 4.2. Depending on the frequency component of interest

the receiving array is set accordingly for each experiment. The notation T-R is introduced

to represent the centre frequency of the transmitting array (T) and the receiving array (R)

frequency respectively. The values denoted in parenthesis represent the the centre frequency

of the nonlinear component to be measured in MHz.

Frequency comp. T1 T2.5 T5 T10
Low R1(<0.25) R1(<0.625) R1(<1.25) R1(<2.5)
Sub R1(0.5) R1(1.25) R2.5(2.5) R5(5)
Fund. R1(1) R2.5(2.5) R5(5) R10 (10)
Second R2.5(2) R5(5) R10(10) R15(20)

TABLE 4.2: Array selection for transmitting (T) and receiving (R) frequency
combinations. The parenthesised values are the frequency component values
in MHz.

The multi-frequency method is implemented by positioning the transmitting array on the

surface opposite and centred on the crack tip, as shown in 4.2(a-b). This positioning is

consistent with previous studies implementing the NUI technique and successfully detecting

nonlinear features [5, 6]. The receiving array for the study was positioned side-by-side as

seen in Fig. 4.2. NUI does not require focusing on reception (in post-processing) meaning

the exact location of the receiving array is not necessary since the relative delay laws are not

required. This is advantageous for samples with single-sided access or complex geometries

(i.e. undefined surfaces which are hard to determine delay laws). However, it is suggested that
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the receiving array be positioned as close to the receiver or nonlinear feature as possible to

ensure sufficient energy is received by the array before noise dominates.

FIGURE 4.2: Dual array configuration for the multi-frequency method: a) The
Verasonics channel assignment for transmitting (T) and receiving (R) using a
single side access configuration.

For this study, arbitrary wave-form generation was facilitated (by the Verasonics controller)

and 10 cycles was selected for the transmission signal. This was the highest cycle length avail-

able on the Verasonics controller and was selected to ensure maximum energy is transmitted

into the material, and to maintain a narrow bandwidth for maximum separation of frequency

components, enhancing the selectivity.

The diffuse times (tr and T) as discussed previously are adjusted depending on the trans-

mission frequency and the volume of the specimen, and are presented in the Tab. 4.3. These

parameters are based on preliminary experiments to establish the most effective gate times in

resolving the feature for each transmitting frequency and each sample type.
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Trans. Frequency tr T
T1 1.55 0.24
T2.5 0.4 0.20
T5 0.25 0.16
T10 0.1 0.08

TABLE 4.3: Start-time (tr ) and window length (T) for
each transmission frequency used for the 3PB specimens.

4.4 Noise study

Before conducting the multi-frequency sensitivity study, it is necessary to evaluate the level

of nonlinearity induced by the crack tip, giving insight into the level of nonlinearity present

in each loaded sample compared with the unloaded samples. Fig. 4.3 presents the single

frequency NUI (T5-R5) results for the undamaged sample and loaded samples, confirming the

3PB loading has successfully produced a detectable fatigue crack in the sample.

a) b)

c) d)

FIGURE 4.3: Nonlinear diffuse images for 3PB samples: (a) un-
damaged, (b) 3PB-1, (c) 3PB-2 and (d) 3PB-3.



86 CHAPTER 4. MULTI-FREQUENCY DIFFUSE IMAGING

The undamaged specimen provides insight into background noise levels and the charac-

teristics of influential boundaries in the diffuse image. The grain structure of Aluminium

contributes to energy absorption, degrading the signal and increasing the effect of incoherent

noise (i.e. time varying and random) effecting SNR in the diffuse field. The grain structure

will also contribute coherent noise (e.g. scattering from the grain structure) causing nonlinear

noise artefacts in the images from imperfect subtraction. Therefore the background noise levels

in Fig. 4.3(a) will inevitably mask some nonlinear features and set a clear detection threshold.

In addition, time-variant perturbations in the system (such as variations in transmission energy

between elements and environmental changes) are likely to occur between sequential and par-

allel acquisitions causing the subtraction of the two fields to be imperfect, contributing to the

nonlinear background levels. Additionally, there is an increase in incoherent noise in the lower

amplitude sequential measurements since the amplitude of the propagating waves are closer

to the noise floor compared with the parallel case. This contributes further to an imperfect

subtraction resulting in an increase baseline noise level in the nonlinear images. The baseline

noise for all transmission frequency and frequency component configurations was assessed

using the undamaged specimen and is presented in Fig. 4.4. These results display the back-

ground noise level indicating the detection threshold for each configuration (i.e. transmission

and reception combination). When evaluating the performance of the multi-frequency method

to known crack tips, understanding the spatial distribution of the noise within the image is to

differentiate between features in the image caused by nonlinearity in the material (such as the

kissing bond) and nonlinearity induced by noise.

Since the performance of the proposed multi-frequency method will be assessed against the

established single frequency method, a normalised nonlinear metric is introduced to measure

the relative sensitivity between frequency configurations. The nonlinear metric is normalised

to the surrounding noise in the image forming a SNRmetric. To determine the noise, the signal

must first be defined spatially in the image, in this case the nonlinear feature (the fatigue crack)
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FIGURE 4.4: Nonlinear multi-frequency diffuse images displaying γ for all transmission
and frequency component configurations for the undamaged sample.

must be known. The single frequency method has been validated for detecting fatigue crack

growth [5,6], therefore the location of the fatigue crack will be established by the location of the

maximum nonlinear feature from the T5-R5 configuration. Using the location of the nonlinear

feature, a box is drawn around the feature to establish a boundary between the signal (including

the point spread function of the feature) and the noise (defined as any information that is not

signal), as seen in Fig. 4.5. The boundary is adapted to each NUI image and is tightly fitted

to the point spread function to ensure any nonlinear energy from the crack tip is not included

in the noise measurement. This ensures the measurement of noise across images is consistent.

The nonlinear noise γn is then calculated as the rms of all the nonlinear information outside the
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white box. This normalisation allows for direct comparison of the results for various frequency

configurations when assessing sensitivity, which is vital considering the drastic variation in

background noise between frequency configurations.

FIGURE 4.5: Diffuse imaging results displaying the nonlinearity
parameter for a T5-R5 configuration on a 3PB specimen. The signal-
noise boundary is indicated by the white box and the location of the
nonlinear feature (i.e. the fatigue crack) is indicated by the red
marker.

4.5 Sensitivity study

4.5.1 High nonlinearity features

The first consideration is the performance of the fundamental frequency component for different

transmission frequencies since the excitation of the fatigue crack at different frequencies will

have a significant influence on the sensitivity of the reception frequency components. It is

expected that as the transmission frequency increases, nonlinearity at the focal point will be

higher, increasing the energy lost from the fundamental subsequently increasing the energy

measured in the nonlinearity metric. However, an increased transmission frequency will

experience higher attenuation rates, accelerating the degradation of the signal, thus reducing

the relative losses between the sequential and parallel fields, ultimately reducing sensitivity. It



4.5. SENSITIVITY STUDY 89

is expected that varying excitation amplitudes will also contribute to variations in performance

across transmission frequencies.

The results for 3PB-1 specimen are presented in Fig. 4.6, where the images represent γ/γn

and are plotted for each transmission frequency and receiving frequency component. It is

clear that the fundamental component when transmitting at 1 MHz is the most sensitive to the

fatigue crack, by approximately a factor of 2 compared with the transmission at 2.5 MHz and 5

MHz. Therefore it can be assumed the effects of attenuation at higher frequencies significantly

reduces the nonlinear energy received by the array at the transmission frequency, despite the

increased nonlinear energy induced by the higher transmission frequency. Despite reduced

nonlinearity excitation at 1 MHz the relatively lower attenuation rate facilitates more nonlinear

information to be captured. It is also possible that the crack tip is more sensitive to a 1 MHz

excitation causing a higher nonlinear response, and is therefore a feature of the crack tip as

well as the transmission frequency.

During a 5 MHz transmission the sensitivity is increased when evaluating the energy

at low and second harmonic components by a factor of 6 and 4 respectively, and the sub-

harmonic component has reduced in sensitivity. The increased sensitivity at the low frequency

component is attributed to the reduced levels of attenuation, meaning more nonlinear energy

is received at the array. The increased sensitivity at the second harmonic is potentially caused

by a significant reduction in noise outside the transmission bandwidth, despite significant loss

in energy from higher rates of a attenuation. Similar trends are reflected when transmitting

at 2.5 MHz, the low frequency component and second harmonic images show an increase

sensitivity by approximately a factor of 2, while the sub-harmonic sensitivity has decreased.

When transmitting at 1 MHz, the second harmonic component has increased sensitivity to

the crack tip compared with the fundamental by a factor of approximately 2. However, at the

low and sub-harmonic components only noise is present in the image meaning the crack tip is
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FIGURE 4.6: Nonlinear diffuse multi-frequency images for 3PB-3 presenting a noise
normalised nonlinear metric γ/γn for transmission frequencies: 1, 2.5, 5 and 10 MHz.

undetectable.

When transmitting at 5 MHz for all the 3PB samples (see Fig. 4.7), there is consistent

increased sensitivity at the low harmonic by a factor of 5 and 3 for samples 3PB-1 and 3PB-2

respectively. The improvement in sensitivity is also consistent at the second harmonic where

there is an increase sensitivity of 4 and 3 for samples 3PB-1 and 3PB-2 respectively. This

confirms the increased sensitivity at these additional frequency components is consistent across

multiple nonlinear features.

The results transmitting at 2.5MHz in all samples (presented in Fig. 4.8) display an increase
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FIGURE 4.7: Nonlinear diffuse multi-frequency images for specimens 3PB-1:3 transmit-
ting at 5 MHz. The noise normalised nonlinear metric γ/γn for each receiving frequency
component
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in sensitivity at the second harmonic for all the nonlinear features by factor of 3 and 7 for samples

3PB-2:3 and 3PB-1 respectively. Despite higher rates of attenuation at the second harmonic

component the sensitivity has improved, indicating there is significantly less noise outside of

the transmission bandwidth. There is no improvement at the low frequency component for

samples 3PB-1:2, where unevenly distributed noise is contaminating the metric. This noise

is suspected to be caused by the hardware high-pass filtering in the controller, reducing the

ultrasonic energy at lower frequencies. This is also observed at the sub-harmonic component

for samples 3PB-1:3, indicating that that high-pass filtering is still reducing the ultrasonic

energy up to approximately 1.25 MHz (the sub-harmonic frequency).

When transmitting at 1 MHz the fundamental image shows high sensitivity to the crack

tip, which suggests significant energy is moving away from the fundamental component to

additional frequencies. However, the sensitivity at the low and sub-harmonic frequency

components has reduced significantly and is dominated by spatially distributed noise consistent

with the baseline noise measurements in Fig. 4.4. It can be inferred that the poor detection

is caused by the hardware filtering suppressing the relatively lower nonlinear amplitudes at

these frequencies meaning only hardware noise is being captured. The second harmonic does

show an increase in sensitivity for 2 of the nonlinear features compared with the results for the

fundamental but is not consistent for all the specimens.

For a 10MHz transmission cycle the influence of noise across all the frequency components

for all nonlinear features is significant, and shows no detection at the sub, fundamental and

second harmonic components. It can be assumed that this is due to degradation of nonlinear

energy caused by higher attenuation rates meaning predominately random noise and low

amplitude nonlinear energy is being captured by the array. There is some sensitivity in the

low frequency images, however noise is still dominating the metric meaning the detectability

is low.
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FIGURE 4.8: Nonlinear diffuse multi-frequency images for specimens 3PB-1:3 transmitting at 2.5 MHz. The
noise normalised nonlinear metric γ/γn for each receiving frequency component.
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FIGURE 4.9: Nonlinear diffuse multi-frequency images for specimens 3PB-1:3 transmit-
ting at 1 MHz displaying the noise normalised nonlinear metric γ/γn for each receiving
frequency component.
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FIGURE 4.10: Nonlinear diffuse multi-frequency images for specimens 3PB-1:3 transmit-
ting at 10 MHz displaying the noise normalised nonlinear metric γ/γn for each receiving
frequency component.
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Overall, the most sensitive detection method is a 5 MHz transmission frequency evaluating

energy at the low and second harmonic components. The increased performance using this

configuration is attributed to two processes. Firstly, the increased nonlinearity induced by a

higher transmission frequency meaning more energy is transferred away from the transmission

bandwidth, increasing the detectability of the feature. Secondly, an increase in reception sen-

sitivity at the additional harmonic components caused by more energy being received at those

frequencies. In the case of the low frequency component, as the nonlinear energy propagates

through the materials after focusing, the lower frequency nonlinear energy experiences lower

attenuation rates (compared with the fundamental) meaning more energy at this frequency is

captured. The increased sensitivity at the second harmonic is due to reduced noise outside of

the transmission bandwidth, allowing for nonlinear energy to be captured despite the effects

of increased attenuation.

4.5.2 Low nonlinearity features

The previous study validated the multi-frequency method for detecting fatigue cracks grown

using the 3PB method, in this section the efficacy of this method will be evaluated in detecting

fatigue cracks in CT specimens. This method of growing fatigue has shown to produce crack

tips with lower acoustic nonlinearity, see Fig. 4.11, where the the nonlinearity parameter for

the CT samples is smaller by a factor of 10 compared with 3PB specimens. Another important

observation is that the maximum nonlinear feature noise in the undamaged sample (which

represents the baseline noise floor), is higher than the loaded samples, implying no crack tip

has been detected using the current single frequency method (T5-R5) configuration. Therefore

it is desirable to see if the feature is detectable at alternative frequency components, since the

feature is arguably undetectable relative to the background noise.

The detectability of features when operating at relatively lower and higher frequencies has
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shown to decrease due to a number of influential factors, therefore only the 5MHz transmission

will be evaluated. For the lower volume CT specimens the start gate-time, tr , and window

length, T , are both set to 0.075 ms to ensure the wave-field has homogenised before capturing

data and ensure random noise energy is not considered in the metric.

The results for the 5 MHz transmission are presented in Fig. 4.12 and confirms that the

sub-harmonic component and the second harmonic method have no sensitivity towards all the

features. Sensitivity is observed at the low frequency component, and most notably is able

to resolve the location of the crack tip, showing a clear offset from the back-wall at 30 mm.

This shows a clear increase in sensitivity compared with the fundamental which is unable to

locate the crack. This indicates that the incident wave does in fact excite the nonlinearity at

the focal point and cause energy to be transferred, however the reduction in energy from the

fundamental is so small that detectability at the fundamental is limited. The sensitivity to the

crack tip at the low component is once again attributed to the lower rates of attenuationmeaning

the low frequency component is more measurable in the diffuse field than the loss from the

fundamental component. Once again, it is also possible that the increased sensitivity is a

function of the crack tip, causing an increase in sensitivity for a given transmission frequency.



98 CHAPTER 4. MULTI-FREQUENCY DIFFUSE IMAGING

a) b)

c) d)

FIGURE 4.11: Nonlinear diffuse images for CT samples transmitting at 5 MHz and
receiving at the fundamental: (a) undamaged, (b) CT-B, (c) CT-C and (d) CT-D.
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FIGURE 4.12: Nonlinear diffuse multifrequency images for the CT specimens transmitting
at 5 MHz. The noise normalised nonlinear metric γ/γn for each receiving frequency
component.

4.6 Conclusion

A multi-frequency adaptation of the current NUI method has been proposed to effectively

detect fatigue cracks in two test specimen types containing a variety of nonlinear features. The

proposed technique has displayed an increase in sensitivity by a factor of 4 and 6 compared with
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the current single frequency method for a T5-R1 and T5-R10 frequency combination on the

3PB samples, displaying significant benefits to this dual array multi-frequency configuration.

Only the T5-R1 dual configuration can detect the relatively lower nonlinearity in the CT

specimens. The T5-R10 configuration shows no detection of nonlinearity, and is attributed to

minimal second harmonic nonlinear energy being generated as well as increased attenuation at

this harmonic, resulting in the capture of noise. The limitations of low frequency transmission

are highlighted and are associated with the suppression of nonlinear energy via the hardware

filter used in the instrumentation. Reduced sensitivity in higher transmission frequencies

is observed and are associated with higher rates of attenuation reducing the nonlinear energy

received and increasing noise captured. In addition, low levels of nonlinearity transparent to the

single frequency method have been detected using a T5-R1 configuration, showing significant

benefits in sensitivity for relatively low nonlinear features. Overall, themulti-frequencymethod

has been able to increase the sensitivity of the current NUI method by evaluating the nonlinear

energy contributions at the bandwidth frequency and the second harmonic. The increased

sensitivity of the NUI method is a step closer towards resolving classical forms of nonlinearity

such as dislocations.



Chapter 5

Diffuse Phase Imaging

The previous chapter investigated crack tip detectability using a spectrographic nonlinear

ultrasonic diffuse energy imaging (NUI) technique by isolating various nonlinear frequency

components, and evaluating the energy at these frequencies caused by varying nonlinear

mechanisms. This chapter investigates crack tip detectability by evaluating the change in phase

induced when an ultrasonic wave is incident with a crack interface, measuring the change in

phase between the parallel and sequential fields. When the focused ultrasonic wave is incident

with a kissing bond (i.e. a fatigue crack) the mechanical contact-acoustic nonlinearity (CAN)

that occurs causes a phase shift in the signals. This mechanism induces ultrasonic nonlinearity

causing a change in phase, which can be used to spatially map nonlinearity, localising CAN

(crack tips) within a material. This is analogous to the acousto-elastic effect where a local

stress change induces a variation in sound velocities causing a phase change in the ultrasonic

signals, and have been theoretically established [29, 69, 70]. Therefore, when an ultrasonic

wave experiences a stress change due to non-classical nonlinearity (a crack-tip), a variation in

sound velocity can be expected and therefore a shift in phase.

Since a phase metric would not be associated with energy, the metric is expected to be

less reliant on a diffuse field and therefore more effective in resolving crack tips in larger

101
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geometries. This study implements a linear regression to the phase data, where the gradient

and offset of the fitted line are used as the phase diffuse metrics for each focal point.

5.1 Sequential and parallel fields

The diffuse phase imaging method relies on the same sequential and parallel transmission

implemented in the existing NUI method [5]. This investigation will evaluate the nonlinear

elastic response of fatigue cracks by studying the relative phase properties of the received

signals between the sequential and parallel fields. The nonlinearity induced by the opening

and closing of the crack tip is referred to as contact acoustic nonlinearity (CAN), and causes

the incident wave to experience varying stress states. This change in stress induces varying

sound velocities which will cause the incident wave to experience a shift in phase, which is

known as the acousto-elastic effect. It is possible that the plastic region around the crack tip

will also contribute to this change in phase, since a change in Youngs’ Modulus will alter

the sound velocity. This chapter proposes an adaptation of the current diffuse energy method

which assumes the phase change induced at the crack tip to be proportional to the pressure

amplitude of incident wave, therefore meaning the phase change in the parallel case is expected

to be N times larger than in the sequential case.

The time-domain signals for the sequential field is defined as f j,k for each transmit ( j) and

receiver (k) elements. δ j(r̄) is the delay applied to the j th element to focus at point r̄ . The

frequency spectra of f j,k is defined as,

Fj,k(ω) =

∫ tr+T

tr
f j,k(t)e−iωt dt (5.1)

were tr is the reception start-time and T is the end gate-time. The parallel time-domain

signals are denoted hk(r, t) for signals received on element k for all focal points r in the
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material. The frequency spectra of hk(r, t) is expressed as,

Hk(ω) =

∫ tr+T

tr
hk(t)e−iωt dt . (5.2)

The frequency spectra for the sequential transmission at the focal point r̄ is synthetically

focused during transmission in post-processing using the the focus delay laws δT
j (r̄) and is

summed across all transmitting elements j, rendering the corrected frequency spectra F̂k(r̄,ω),

F̂k(r̄,ω) =
N∑

j=1
Fj,k(r̄,ω)e

−iωδTj (r̄) (5.3)

A cross-correlation vector y(r̄,ω) is calculated bymultiplying the the parallel and sequential

frequency spectra, and summing across all the received signals,

y(r̄,ω) = Im
{ N∑

k=1
F̂k(r̄,ω)H∗k (r̄,ω)

}
(5.4)

where ∗ denotes the complex conjugate and the Im represents the imaginary component of

the complex frequency spectra. Using the cross-correlation vector y(r̄,ω) the phase change

between the parallel and sequential fields for each focal point is calculated by implementing a

linearOrdinaryLeast Squares (OLS) regression to the data. The gradient and off-set coefficients

from the regression are then used for determining the relationship in the cross-correlation

vector, and therefore the phase change between the sequential and parallel fields at each focal

point which represents the nonlinearity. The regression is fitted over the defined frequency

bandwidth (2
3ω and 4

3ω). The cross-correlation vector y(r̄,ω) is presented in Fig. 5.1 for data

captured when focused at the crack tip and in the material (where no fatigue/nonlinearity is

expected to be). As expected, the higher nonlinearity at the crack tip causes the fitted line

to have an increased gradient and offset coefficient compared with the material data. This
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a) b)

FIGURE 5.1: Cross-correlation vector y(r̄,ω) (blue) and fitted line (red) for data
captured when focusing: (a) at the crack tip and (b) material.

preliminary analysis shows that the phase metric is sensitive to changes in nonlinearity, since

the metric can differentiate between data captured in the material and at the crack tip.

It is expected that the phase metric will be less dependent on a diffuse field, since the phase

is not directly associated with energy. The assumption is that the relative phase between the

two fields does not rely on the nonlinearity propagating through the material and reaching a

diffuse state, therefore a statistical diffuse difference between the fields is not required. The

nonlinear information contained in the phase change propagating throughout the material can

therefore be measured at any time. The limitation to the use of the diffuse field in larger

samples caused by attenuation could therefore be resolved. With increasing propagation time,

there are three main field states: coherent field, diffuse field and random noise field. During

the coherent field the phase metric is expected to be more sensitive to the crack tip compared

with the energy metric, since the phase metric is not associated with energy and therefore does

not require the subsequent diffuse field to make an accurate measurement. In the diffuse field,

the energy metric is expected to perform similarly to the phase metric, as the energy in the

material has homogenised (a key requirement of the NUI method). In the later random noise
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field, where the diffuse field has decayed and random noise begins to dominate, it is expected

that the energy and phase metric sensitivity will reduce at the same rate, as information is

suppressed by noise.

The experiments were facilitated using a Verasonics 128 element array controller (with

Hypertronics connectors to independently drive two arrays) with 4 Imasonic 64 element arrays

with the following nominal centre frequencies: 1, 2.5, 5 and 10 MHz (array specifications are

presented in Tab. 4.1). For each experiment one 64 elements array was connected to the array

controller, where only channels 1-64 were used for transmitting and receiving. The array was

coupled in-contact to the top of the sample opposite to the crack tip. The efficacy of the diffuse

phase method is evaluated on the 3PB samples used in the previous studies (see Section 4.3,

which have been loaded to produce crack tips (i.e. known sources of nonlinearity)).

To evaluate the dependency of the diffuse field on all the metrics the time series data is

captured in the earlier coherent field and then truncated in post-processing to a variety of start

gate-times. This process requires the collection of long time traces, for this study a total of

12,000 time points were collected for each acquisition. The sample rate for the acquisition is

25MHz and 50MHz (10MHz transmission only), which results in record lengths, T = 0.48 ms

and T = 0.24 ms respectively. The truncating procedure will emulate capturing data during the

multiple wave-field types: coherent, diffuse and random noise. Next, the SNR of each image

is calculated using the same process described in Section 4.4 to establish how the performance

of the metrics change through the different field types, and ultimately assess how sensitive the

metrics are and to what extent they require a diffuse field.
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5.2 Results

5.2.1 Phase images

The preliminary analysis investigates the phase images to compare them directly with the

performance of the nonlinear energy metric. This was conducted by truncating the long time

signals to a start gate-time for each transmission frequency, presented in Tab. 5.1. The chosen

gate-times have already proven effective in resolving features in Section 4. The nonlinear

images are then normalised to the noise (following the same process defined in Section 4),

meaning performance of the metrics can be compared directly.

Trans. Frequency tr T
T1 1.55 1.80
T2.5 0.39 0.60
T5 0.25 0.53
T10 0.10 0.25

TABLE 5.1: Start-time (tr ) and recordingwindow length
(T) for the phase study for each transmission frequency
used for the 3PB specimens.

The noise normalised γn results are presented in Fig. 5.2, displaying improved sensitivity

while transmitting at 5MHz evaluating the phase off-set (PO) comparedwith the energymetric.

The phase gradient (PG) also displays similar levels of sensitivity compared to the existing

energy method. When transmitting at 2.5 MHz there is a small improvement in sensitivity

using the PO, however this is not observed at the PG where there is no detectability. When

transmitting at 10 MHz both the PO and PG show no detectability of the feature, consistent

with the energy metric which is unable to detect the feature. When transmitting at 1 MHz there

is no detectability using either the PO or PG.

The phase results for 3PB-1 and 3PB-2 (presented in Fig. 5.3 and 5.4) show consistent

results compared with 3PB-3, confirming the PO and PG are not applicable to 1 MHz and
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10 MHz

FIGURE5.2: Nonlinear diffuse images for 3PB-3 displaying the noise normalisedmetric γn
for the energy, phase offset and phase gradient metric for multiple transmission frequencies.

10 MHz transmission frequencies. The 1 MHz transmission frequency induces relatively less

nonlinearity at the focal point, meaning a smaller phase change will be caused at the focal

point, limiting the detectability of the feature in the phase image. At 10 MHz the relatively

higher attenuation rate has caused the signal to degrade significantly, increasing the presence

of random noise, reducing the nonlinear energy and phase information available to localise the

fatigue crack tip above the noise floor.
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FIGURE5.3: Nonlinear diffuse images for 3PB-1 displaying the noise normalisedmetric γn
for the energy, phase offset and phase gradient metric for multiple transmission frequencies.

1MHz 2.5 MHz 5 MHz

Offset

Grad.

Energy

10 MHz

FIGURE5.4: Nonlinear diffuse images for 3PB-2 displaying the noise normalisedmetric γn
for the energy, phase offset and phase gradient metric for multiple transmission frequencies.
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However, the detectability of the crack tip when transmitting at 2.5 MHz and 5 MHz has

shown to provide similar if not better sensitivity in some cases comparedwith the energymetric.

In the next Section, the sensitivity of these metrics to start gate-times will be investigated to

determine whether the phase metric shows reduced sensitivity to a diffuse field, and therefore

is potentially more applicable to larger geometries.

5.2.2 Start gate-time analysis

It is expected that the phase metrics are less sensitive to the diffuse field requirement since

the metrics are not associated with energy and therefore do not require the wave-field energy

to homogenise before capture (assuming relative phase remains consistent). To evaluate this

hypothesis, the time series data is truncated in post-processing to a variety of start gate-

times (ts) to produce nonlinear images which represent nonlinear images captured in the three

different wave-field conditions: coherent, diffuse and random. The 1 MHz and 10 MHz results

have been excluded from this study since the phase metrics show no indication of detecting the

fatigue crack tip even under ideal conditions.

The γsnr for each metric using multiple start gate-times and a 5 MHz transmission is

presented in Fig. 5.5, and shows that the PO and PG provide some benefits. For example, the

results for 3PB-2 (presented in Fig. 5.5(b)) show that early in the coherent field both the PO and

PG provide a higher sensitivity than the energy metric. As the start gate-time is increased the

field becomesmore diffuse the γSNR of the energymetric increases and surpasses the sensitivity

of both the PO and PG, and peaks at approximately 0.25 ms. This peak in sensitivity indicates

that the wave-field has homogenised and the field is now diffuse. Fig. 5.5(c) shows similar

results for sample 3PB-3, where the PO and PG sensitivity is larger than the energy by a

factor of 2 and 3 respectively in the coherent field. When the start gate-time is increased the

sensitivity of the energy metric increases, however the PO and PG during this diffuse time
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period are still more sensitive to the crack tip. Later in time, the sensitivity of all the metrics

are consistent. However, the 3PB-1 results in Fig. 5.5(a) for the energy metric shows that the

energy metric is more sensitive than the PO and PG for all start gate-times. This suggests that

for this sample in particular the energy metric is not sensitive to the diffuse field compared to

samples 3PB-2:3, since the samples are the same volume, this suggests that it is the nonlinear

feature that is causing disparity in the reliance on the diffuse field.

These results can be further validated by evaluating the images of these results. The

nonlinear images for 3PB-2 are presented in Fig. 5.6 transmitting at 5 MHz for coherent (0.05

ms), diffuse (0.25 ms)and random noise (0.53 ms) field start gate-times. These results confirm

the benefits of the phase metrics earlier in time, showing a increase in detection of the feature

in both the PO and PG over the established energy metric in the coherent field. In addition,

these images confirm the relatively consistent performance across metrics during the diffuse

field and reduced performance in the phase metrics in the later random noise field.

When transmitting at 2.5 MHz the PO and PG do not show any clear advantages (see Fig.

5.7(a-c)), despite the PO showing a small improvement in sensitivity for sample 3PB-2 and

3PB-3 using a 0.3 ms start gate-time. The PG is consistently less sensitive than both the PO

and the energy for all start gate-times.

The inconsistent performance of the phase metrics across transmission frequency and

samples could be due to increased noise caused by times series data being collected with a very

early start gate-time (to be truncated in post-processing). During experimental capture the gain

level will be set according to the higher amplitude coherent field (early in time), therefore the

relatively lower amplitude diffuse field (after the coherent field) will not be captured using the

most effective gain level. This will results in random noise dominating during the capture of

the diffuse field meaning less nonlinear information is captured from the focal point, leading

to significant deviations in nonlinear results.
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a)

b)

c)

FIGURE 5.5: Nonlinear diffuse SNR, γSNR for 3PB samples trans-
mitting at 5 MHz: (a) 3PB-1, (b) 3PB-2 and (c) 3PB-3. Both γSNR

for the energy metric (blue), phase offset (red) and phase gradient
(green) are plotted.
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Coherent Diffuse Random noise

Offset

Grad.

Energy

FIGURE 5.6: Nonlinear diffuse images for 3PB-2 displaying the noise normalised metric
γn for the energy, phase offset and phase gradient metric for different start gate-times:
early, medium and late.
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a)

b)

c)

FIGURE 5.7: Nonlinear diffuse SNR, γSNR for 3PB samples trans-
mitting at 2.5MHz: (a) 3PB-1, (b) 3PB-2 and (c) 3PB-3. Both γSNR

for the energy metric (blue), phase offset (red) and phase gradient
(green) are plotted.
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5.3 Conclusion

This study concludes that there are some benefits to implementing the phase metrics for

detecting fatigue crack tips during the NUI process. Using a 5 MHz transmission frequency

the offset and gradient phase metrics are less sensitive to the requirement for a diffuse field for

some samples resulting in a higher detectability of the nonlinear feature. When transmitting

at 2.5 MHz only the offset metric has been effective in resolving the feature and performs

consistently with the energy metric in response to the changing start gate-time.

Further investigation into the performance of the metric using gain levels which reflect the

amplitude level of the diffuse field is desirable. This would further validate the phase metric

for industrial use in larger geometries. Since the phase offset can be computed along side the

energy metric without serious computational demand the metric can be easily implemented in

the NUI processing chain.



Chapter 6

Diffuse field characterisation

6.1 Introduction

In the previous chapters, the diffuse field time is determined through a "trial and error" process

to determine the most effective start gate-time (i.e. which provides the best signal-to noise-

ratio (SNR)) for detecting the known nonlinear feature in the material (the crack tip). In real

life samples where the existence of a crack tip or other nonlinear features is unknown this is

not possible, therefore a robust method for determining the time in which the wave-field has

statistically homogenised is essential. This chapter optimises the nonlinear ultrasonic diffuse

energy imaging (NUI) technique by establishing robust measures to determine the best diffuse

field parameters such as start gate-time and record length.

Ensuring a diffuse field state for the NUI method is essential. Further in time, the field

will be closer to the strict mathematical definition of diffuse, however the influence of noise is

higher, meaning the resolution of the nonlinear feature will be lower, resulting in a degraded

SNR. Hence, the time at which the receivers begin capturing, referred to as the start gate-time,

is key to the accuracy of this technique. The ability to statistically determine the point in time

at which the field is optimally diffuse and implement this as the start gate-time, would improve

115
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reliability, and applicability to industry significantly. More specifically, this would increase

the usefulness of this technique for real-world tests where the state of the sample is unknown.

As well as the start gate-time, the end gate-time is important to minimise the effect of noise in

the captured signals, since further in time random noise contaminates the signals.

Themetrics of diffuse statewill be tested by evaluating the performance of theNUI technique

at multiple start gate-times, and will be assessed for robustness against multiple volumes, cycle

lengths and transmission frequencies. The influence of random noise in the received signals

will also be investigated as an indication of an appropriate end gate-time, providing the most

effective record length. In addition, the repeatability of the NUI method will be investigated

to establish its applicability to real industrial samples where the presence of nonlinear features

are not controlled and give confidence in results.

6.2 Diffuse Field

6.2.1 Theory

The determination of a diffuse field has been of interest across a variety of research areas such

as ultrasonics [71], ocean acoustics [72], room acoustics [73], seismology and structural health

monitoring [74, 75]. A diffuse field is defined by Evans et al. as a wave field with evenly

distributed wave energy, i.e. the amplitude and wave directivity is random throughout the field

and phase is not spatially correlated [75]. This implies that evaluating the phase of the received

signals from the array transducers could be used as an indication of a diffuse field.

A diffuse state is likely to occur if all boundaries in the system are diffuse reflectors, meaning

the distribution of the reflected wave is not a function of the incident wave angle. In practice,

this is not perfectly achievable, however a convergence in approximation will occur if the
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wavelength is approximately the same size as the surface features, as the reflected wave will

be scattered diffusely [75]. When studying diffuse waves in plates, Weaver et al. sawed and

milled the edges of plates to increase the number of reflective boundaries. This was to aid

the generation of a diffuse field in his measurements before the effects of attenuation became

prevalent [76]. In some instances, a diffuse state will not be achieved due to absorption, most

commonly in materials with higher absorption coefficients or in larger samples where the

reflection path back to the array is further, thus leading to higher absorption. This observation

will be relevant to NUI where it is required that the diffuse field is captured before the effects

of attenuation reduce the signal, as this would lead to noise dominating the captured data.

Research into characterisation of diffuse fields in NDT is fairly limited, however there

are investigations of diffuse fields in finite systems and poly-crystals that are applicable to

NDT [71, 77–79]. The use of Green’s functions to correlate with diffuse fields is investigated

by Weaver [77] in a theoretical approach, asserting dependencies on the spectrum of the

diffuse field and the phase of the receivers. Later work by Weaver [78] investigates a model for

uniformly distributed sources in a closed system in which two correlation functions are derived

to determine a diffuse field: the mean square correlator and variance [74, 79, 80]. Prior to a

diffuse state is a coherent state, whereby the phase of the receivers are correlated. In a diffuse

state the phase between receivers are uncorrelated, therefore it is possible to develop a phase

coherence metric to determine diffusivity [75].

This paper presents an adaptation of the phase coherence metric to a phased array config-

uration to allow for diffuse field approximations using full matrix capture (FMC) data. This

implementation allows for themeasurement to be conductedwith the standard nonlinear phased

array configuration [5, 6].
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6.2.2 Definition of metric

As described above in Section 6.2.1, a metric to determine the phase coherence of a system

can be used to determine a diffuse state. Since in a diffuse field the phase of the signals will be

uncorrelated [75] we can define the first derivation of the metric as a sum-square correlator,

which is the relationship between the square of the sums, and the sum of the squares. For two

neighbouring sources s1(t) and s2(t) , the sum square correlator, SSC(t), can be written as,

SSC(t) =
((s1(t)+ s2(t))2

(s1(t)2+ s2(t)2)
(6.1)

if the values are identical (i.e. correlated) then the square of the sum will will be twice the

sum of the squares, and results in the SSC being equal to two. If the signals are non-identical,

then their SSC will be approximately 1.

The sum-square correlator can be adapted to a phased array FMC configuration whose

dimensions are determined by tn x N2, where tn is the number of time points and N is the

number of transducer elements in the array. To process the FMC data a moving time window is

implemented to process the received signals in segments. The phase coherence is then defined

as the general sum squared over the squared sum for all transmit and receive elements over

each time window T as,

αph(t) =

N∑
j=1

∫ Tn+ τ
2

Tn− τ
2

(
N∑

k=1
f j,k(t)

)2

dt

N∑
j=1

N∑
k=1

∫ Tn+ τ
2

Tn− τ
2

f j,k(t)2 dt

(6.2)

where f j,k is the time domain received signal for the j th transmission element and k th
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receiver, τ is the temporal window length and Tn is the window number. Early in time, when

the field is coherent, it is expected that the square of the sums will be approximately twice the

sum of the squares. This is because the received signals are almost identical early in time,

and therefore the summation of the signals which are then squared is generally twice the sum

of the squares. Later in time, in the diffuse field it is expected that the square of the sum

and the sum of the square will become equal because the signals are uncorrelated/random and

thus not identical. This is also expected to occur in the presence of random noise where the

captured data will be random and not be correlated across received signals. Previous work by

Cheng [81] has investigated the application of a phase coherence metric to NUI.

Since NUI is strongly reliant on a diffuse field, the applicability of this metric can be

accurately tested against the performance of the technique, which relies on a diffuse field to

work. This is achieved by assessing the SNR performance of the nonlinear images for various

start gate-times.

6.2.3 Nonlinearity parameter, γ

In this study, the accuracy of the metric for optimising the diffuse field will be tested against the

performance of the NUI technique. For this technique we define the nonlinearity parameter, γ,

as the difference in energy at the transmission frequency between the parallel and sequential

firing modes. The γ parameter is calculated as the subtraction of the parallel energy, Ep, from

the sequential, Es, normalised to the sequential capture,

γ(r) =
Es(r)−Ep(r)

Es(r)
(6.3)

this is calculated for each each focal point, r , in the material, resulting in a map/image of

measured nonlinearity [5]. The sensitivity of this metric to a closed crack tip will be used to
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test the diffuse field metric.

6.3 Repeatability

The experimental procedure for this study consists of two stages: FMC capture and NUI.

The former acquires the FMC data required to compute the diffuse field metric and the latter

is to form the nonlinear images (requiring FMC and parallel focusing). The data for both

stages were captured using a Verasonics commercial array controller with an Imasonic 5 MHz

64-element array with an elementary pitch of 0.6 mm, a configuration which has already been

proved successful for both experimental stages [5,6,63]. For both stages 10,000 sample points

and a sampling frequency of 25 x 106 Hz were selected. A cycle length of 4 was chosen

to ensure that sufficient energy was transmitted into the system, thus increasing the dynamic

range of the nonlinear feature, but no longer to ensure that the spatial resolution of the crack

tip was not reduced.

Before investigating the optimization of NUI, it is important to determine what is the natural

variability of the nonlinear measurements to ensure that any variation in measurements can

be determined as real variability. The repeatability of NUI is limited by two main factors:

coupling gel and the warm up time of the controller. When the array is coupled to the material

using a static load and coupling gel it takes some time for the gel to cover the whole surface area

of the region between the material and the array, meaning there is variation in energy being

efficiently transmitted into the material over this period of time. When the array controller is

first turned on the output energy varies until the array controller is warmed up. Therefore, it

is required that the array controller reaches a static state where the output energy is constant.

Both these factors contribute to a variation in energy being transmitted into the material and

therefore will significantly effect the nonlinear information received by the array, effecting the

repeatability of these nonlinear experiments. This repeatability study was conducted on the
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high volume sample (see Fig. 6.2 and Tab. 6.1 for specifications), which has been three-point

loaded to produce a known closed crack tip (a strong nonlinear source).

In order to assess the effect of the coupling gel on repeatability, the array controller was

turned on for 24 hours before conducting the study. This was to ensure that the variation in

transmission energy is only caused by the coupling gel and not the output energy variation

from the array controller. The variation of the mean nonlinear parameter, γ̄, was investigated

over a period of 135 minutes (with each acquisition taking approximately 3 minutes) and is

displayed in Fig. 6.1(a). From these results it is clear that the variation in γ̄ is consistent

throughout the measurements. The change in γ̄ can therefore be associated with the natural

variation of the measurement, since the settling of the coupling gel shows no improvement or

trend change in sensitivity. Therefore it can be determined that a time delay is not required for

the coupling to settle.

To establish the influence of the controller being warmed up the controller was turned off

24 hours before the experiment. The sample was then coupled 10 minutes before the study to

ensure any deviation in γ̄ is caused only by the warming up of the controller (10 minutes was

based on a trial and error preliminary study). The results from the warm up experiment are

displayed in Fig. 6.1(b). It is clear that after approximately 10 minutes γ̄ stabilises. During the

first 10 minutes of experiments the mean γ reduces by approximately 20%. This reduction tells

us that it is necessary to allow the controller to warm up before conducting these experiments

to achieve reliable results.

After implementing the warm up time delay to ensure repeatability, the effect of re-coupling

was studied. For this experiment the array was re-coupled with new coupling to the material

for each capture using enough coupling gel to cover the surface of all transducers in the

array between every measurement. The same quantity of coupling gel was used for each

measurement to ensure the coupling conditions were kept consistent. The array was held in
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FIGURE 6.1: Repeatability results using the high volume sample displaying the mean
nonlinearity parameter γ̄ for the following studies: (a) coupling, (b) warm up and (c)
re-coupling.

position using a fixed mass of 2 kg to ensure a consistent coupling force. Before this study the

array controller was turned on 10 minutes before the experiment to reach a static state.

Fig. 6.1(c) displays the variation γ̄ over 20 experiments. The variation γ̄ values over the

all the measurements is very low (standard deviation, σ = 0.001). This low standard deviation

indicates a small degree of variation in the nonlinear parameter for the maximum values

(i.e. the crack tip). The remaining variation in the measurements is potentially caused by a

slight change in the position of the array relative to the crack tip between couplings, meaning

varying levels of nonlinearity is excited. The confirmation of low variability in the nonlinear

measurements means these experimental approaches were implemented throughout the rest of

the study to ensure repeatability of results.

6.4 Testing of phase coherence metric

6.4.1 Configuration

Having shown how to make repeatable results, how the diffuse field may be characterised

with the defined metric will now be studied. It is expected that the time taken to reach a

diffuse field is dependent on volume, geometry and cycle length. The cycle length is defined
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as the number of cycles used as the pulse transmission signal to excite the material. It is also

expected that the temporal window length τ will have a significant effect on the convergence of

the metric. A long window will give a better approximation of the diffuse field (and therefore

the convergence will be easier to detect), however if the window length is too long then random

noise will significantly contaminate the metric.

Since the NUI technique can potentially be implemented on any geometry, it is vital that

this metric can statistically determine the optimum time for a diffuse field to form for various

volumes. To assess the metrics sensitivity to volume change, a 3-point bend (3PB) sample

was machined down to various volumes (see Fig. 6.2 and Tab. 6.1 for specifications). By

machining the sample, this means the nonlinear feature is exactly the same across all studies,

therefore the only change to the system is the volume and geometry. The SNR values from the

nonlinear feature across multiple gate times will be used to test the metric as the presence of a

nonlinear crack tip is known.

The volume alteration study was conducted on an Aluminium (2014T6, cl = 6000 ms−1)

fabricated surface breaking crack specimen, 3-point loaded according to ASTM standard

E1820. This sample was machined down to multiple volumes as illustrated in Fig. 6.2. The

volumes from each machining stage are presented in Table 6.1. For each stage of machining

the nonlinear experiments and FMC data captures were conducted.

Investigation into the influence of cycle lengths (i.e. the number of cycles used in a

transmission pulse during FMC) on this metric has also been carried out, as often various input

cycles are used in nonlinear phased array imaging. It is assumed that the change in energy

transmitted into the system will influence the time taken to reach a diffuse field, and therefore

that the convergence of the metric should be dependent of this change in transmission energy.
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FIGURE 6.2: Geometric sizes for multiple volumes: (A) High, (B)
Medium and (C) Low.

Sample ref. Volume mm3

High 7.8 x 105

Medium 5.6 x 105

Low 6.9 x 104

TABLE 6.1: Aluminium volumes for each stage of the multiple volume study.
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6.4.2 Testing of metric with SNR

The nonlinear phased array experiment was conducted at multiple gate times to assess the SNR

for various capture start gate-times. A parameter scan of gate-times was undertaken between

0.01 ms and 0.8 ms at intervals of 0.05 ms. The measure of SNR in these nonlinear images is a

valid metric to test the diffuse metric, as the performance of this technique is reliant on a diffuse

state and therefore the SNR can be used as a indication of a diffuse field. For consistency across

images, we define the signal as the maximum nonlinear metric value in the white box in Fig.

6.3. Any value outside of the white box is considered as noise. The nonlinear values inside

the white box are excluded as a measure of noise to ensure that the point spread function of the

nonlinear feature is not considered in the measurement of noise. This is particularly important

when considering the effect of cycle lengths as this leads to various point spread functions

around the nonlinear feature which should not be considered in the SNR measurement. The

size of the box is altered accordingly for each image to ensure an accurate measure of the SNR.

The γsnr is calculated by the following equation,

γsnr =
γmax

γnoise
(6.4)

where γmax is the maximum nonlinear value within the white box and γnoise is the rms of

the nonlinear region outside of the white box (considered to be the undamaged region of the

material).

Fig. 6.3 shows example nonlinear images to illustrate the typical SNR evolution with start

gate-time. In Fig. 6.3(a), the controller start gate-time is set to 0.05 ms and it is clear from

this nonlinear image that the nonlinear feature cannot be resolved from the background noise.

Early in time, the controller is still capturing the coherent field and therefore the energy is not

uniformly distributed. As such, the nonlinearity at the focal point has not yet spread uniformly
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FIGURE 6.3: Nonlinear imaging results displaying the nonlinear metric γ, and the region
used as signal (white) for various gate times: (a) 0.05 ms, (b) 0.2 ms and (c) 0.5 ms

throughout the material. Therefore, the energy losses between focal points in the nonlinear

image are not relative and the metric is measuring local changes in space. This is caused by

the varying propagation distances to the focal point which is captured in the coherent field. As

a result, the nonlinear image is then distorted and resolution of the crack tip is limited. In Fig.

6.3(c) the start gate-time is set to 0.5 ms, and the feature is resolved, but the influence of noise

begins to dominate. In both cases, the diffuse field has either not fully formed or the signal has

become influenced by random noise, illustrating what happens if the incorrect start gate-time

is selected. When using a start gate-time of 0.2 ms the nonlinear feature is resolved, see Fig.

6.3(b). The challenge now is to determine when the field is optimally diffuse, so that it is

possible to achieve an accurate image without having to produce nonlinear images for multiple

gate-times to select the most accurate. More importantly, when the presence of a crack tip or

other nonlinear feature is unknown, it is not possible to determine an approximate diffuse field

time through SNR analysis, therefore a statistical metric is necessary to ensure the nonlinear

images are reliable.

Nonlinear experiments were conducted at multiple gate times to measure the effect of this

parameter on γsnr and determine a comparative measure of a diffuse field to test this diffuse

metric. The results for the high volume sample are displayed in Fig. 6.4, presenting both the

γsnr and the αph metric implemented with a temporal window length, τ = 50 µs. This window

length was long enough to ensure an accurate approximation of the diffuse field, but not so
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FIGURE 6.4: γsnr results using various gate times and αph

results for the high volume sample.

long that random noise could pollute the metric. The γsnr results clearly indicate that 0.2 ms is

the most appropriate gate time to establish a diffuse field for this specimen. This is determined

as the gate time of the maximum γsnr result, which suggests that the diffuse field dependent

technique operates most successfully at this gate time. The convergence of αph occurs at 0.25

ms, suggesting that the metric has successfully predicted the time at which the field is most

diffuse. The metric is considered to have converged as soon as the metric is equal to or less

than 1.

6.4.3 Window size and cycle length

The effect of temporalwindow size, τ, on the convergencemetricαph has also been investigated.

It is assumed that the larger the window length, the better the approximation of a diffuse field,

however as the window length increases, random noise becomes dominant and contaminates

the metric. To establish the most accurate window length FMC data for the high volume sample

was processed using the following window lengths: 10 µs, 50 µs and 200 µs. The results for
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the varying temporal window sizes are presented in Fig. 6.5. It is clear that implementing

a 200 µs window distorts the convergence of this metric and that the approximation is too

coarse, causing the convergence to occur later in time, which incorrectly predicts a diffuse

field. When using a 10 µs temporal window the coherent reflections from the back-wall

and large boundaries produce dominant spikes in the correlation metric, which is expected

in a coherent field. It is necessary to use a temporal window large enough to smooth-out

the correlation peaks and troughs in order to accurately determine at which point the field is

diffuse.
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FIGURE 6.5: Phase coherence metric for multiple tem-
poral windows: 10 µs (blue), 50 µs (red) and 200 µs
(green).

To evaluate the influence of cycle lengths on the metric, a frame of FMC data was captured

for the following cycle lengths: 2, 4 and 8. This FMC data was then post-processed to calculate

the metric for various cycle lengths, which is displayed in Fig. 6.6. It is clear that the cycle

length of the input signal does not influence the convergence rate of this metric, meaning that

the time taken to reach a diffuse field is uncorrelated to cycle length, suggesting that cycle

length is an independent variable to the diffuse field time. This is a positive feature as it allows
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FIGURE 6.6: Phase coherence metric for multiple cycle lengths: 2
(blue), 4 (red) and 8 (green).

for varying cycle lengths to be implemented during phased array imaging without effecting the

measurement of the diffuse field.

6.4.4 Volume alteration

The NUI technique is often applied to various sample sizes which require different start-gate

times, as the time taken to reach a diffuse field is significantly dependent upon volume. A

diffuse field is expected to converge sooner in relatively small geometries compared to large

ones. It is important that this metric is a function of the volume, therefore it will now be

confirmed that this behaviour should be observed in such experiments.

The effect of volume change was evaluated to test this metric for multiple volumes by

machining down the same sample to various volumes (see Fig. 6.2 and table 6.1), ensuring

that the nonlinear feature is the same across all three volume stages. For each of these stages

FMC data was captured and the phase coherence metric was calculated using a window length
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FIGURE 6.7: Phase coherence metric for multiple volumes:
high (blue), medium (red) and low (green).

of 50 µs. This window length was chosen as it was determined as the most robust window

length for the high volume sample. The results for all three samples are displayed in Fig. 6.7.

The metric converges at 0.19 ms and 0.11 ms for the medium and low volumes respectively.

The convergence is taken when the metric is less than one, as this value indicates there is no

phase correlation between received signals. The convergences of the metric for medium and

low sample volumes have also been successfully tested against γsnr results in Fig. 6.8. In Fig.

6.8(a) the convergence of the metric at 0.19 ms agrees with the maximum γsnr value of 0.15

ms for the medium volume sample. In Fig. 6.8(b) the convergence of the metric occurs at

0.11 ms correlates with the maximum γsnr value of 0.1 ms for the low volume sample. These

results confirm that this metric is dependent upon volume change, an expected outcome as

larger geometries take longer to become diffuse due to reflections occurring later in time (i.e.

increased mean propagation time).
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FIGURE 6.8: γsnr results using various gate times and αph results: (a) medium
and (b) low.

6.4.5 Multi-frequency

The influence of transmission frequency on the rate at which a diffuse field is achieved was also

evaluated. Achieving a diffuse field using higher transmission frequencies will be challenging

due to higher rates of attenuation degrading the signal and allowing random noise to dominate

the energy captured. The arrays used for the multi-frequency study are presented in Table 4.1,

and are used to evaluate the influence of transmission frequency on the convergence of the

phase coherence metric on the low volume fatigue sample (see Fig. 6.2).

The 1 MHz transmission results are presented in Fig. 6.9(a) and it is clear that the

convergence of the phase coherence metrics occurs at 0.19 ms using the 50 µs window. The

time to converge is longer than in the 5 MHz transmission (see Fig. 6.8) by approximately a

factor of 2. The 2.5 MHz transmission converges at approximately 0.1 ms which is consistent

with the 5MHz transmission convergence. For the 10MHz transmission, there is a convergence

at approximately 0.09 ms before the phase coherence begins to ascend. This assent indicates

there is a limitation to the application of a 10 MHz array for the NUI method since the

convergence of a diffuse field immediately results in noise contaminating the metric. This
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is thought to be caused by significant coherent noise between the transducer elements being

captured once the ultrasonic signals have been degraded due to higher attenuation rates. This

is an important result as it suggests a clear limitation to achieving a diffuse field at higher

frequencies.

6.4.6 Large scale geometries

Reaching a diffuse state in larger geometries can be difficult due to rates of attenuation that

reduce the level of the received signal and in turn, result in random noise dominating. For

large scale application, the metric was tested on a 1.0 x 107 mm3 volume cuboid steel sample

which is 1 order of magnitude larger than those previously studied. The FMC data set for

this study was captured using the same experimental parameters as used for the previous

samples. For this experiment, only FMC data was captured and no nonlinear experiments

were conducted, as there is no known nonlinear feature in the material. Using the top and

front configuration highlighted in 6.2 the phase coherence metric was tested. Fig. 6.10 (a)

displays the results for the top configuration and shows a minima around 0.25 ms, which is

most prominent in implementing a temporal window of 50 µs. This indicates a diffuse field

before the linear ascent in the metric after 0.25 ms. Once again, this ascent indicates that later

in time the received signals are becoming increasingly coherent, which is most likely to be

caused by coherent noise between the transducer elements. Since the signals have attenuated

significantly at this point in time the noise is now dominant and significantly effects the metric

over the random noise. The source of this coherent noise is likely to be from the measuring

instruments or grain scattering in the material.

The results for the front configuration in Fig. 6.10(b) display no convergence, only the

influence of instrument noise. The performance of this metric to different configurations on

the same sample is due to a closer backwall reflection from the top position to the front position,
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a)

b)

c)

FIGURE 6.9: Phase coherence metric, αph , for various
transmitting frequencies: (a) 1 MHZ, (b) 2.5 MHz and
(c) 10 MHz.
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FIGURE 6.10: Phase coherence results for steel samples: (a) top configuration
and (b) front configuration.

meaning that more energy is able to propagate back towards the array before attenuation is

significant and random noise dominates. The difference in performance suggests there is

a limitation to achieving a diffuse field in larger geometries. For larger samples the wave

energy will have attenuated significantly before the incident field is able to scatter off multiple

boundaries and homogenise.

6.5 Record length optimisation

Once a diffuse field has formed there is an optimum record length, tr , which is desired in order

to allow for capturing whilst the field is diffuse but before random noise begins to dominate. A

longer capture will allow the signal to have properties closer to being truly diffuse, meaning a

longer signal is desirable but before random noise is included in the capture. An investigation

into instrument noise has been used to indicate the point at which noise is prevalent and

dominant in the field, and is used as an indication of record length. The instrument noise is
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measured as the energy across the array with no material coupled during an FMC. In this air

coupled configuration, the propagating signal will not return to the array and predominately

instrument noise will be captured. The instrument noise energy is then compared to the energy

captured from when the array is coupled to the samples described in Fig. 6.2, and is referred

to as the material energy Emat . The percentage of instrument noise energy, Eins, from the

material energy, Emat , indicates at which point in time instrument noise will be significant. In

the coherent and diffuse field it will be expected that Emat is significantly higher as the wave

energy is still high. Later in time it is expected that Eins will become increasingly significant

as the wave energy will have attenuated.

To establish an appropriate threshold for the percentage of noise energy, the effect of

record length on γsnr was investigated. For this analysis the time series data for the nonlinear

experiments was truncated to vary the record length of the captured data. The record length

is equal to the time interval between the start gate-time and the end gate-time (tr = te − ts),

therefore by analysing the most appropriate end gate-time it is possible to determine the most

efficient record length. For this study the start gate-times implemented was 0.2 ms for the high

volume and the rest of the parameters were consistent with the study in Section 6.4.2.

The percentage of instrument noise energy from the material energy, Eins/Emat , and the

γsnr results for various record lengths is presented in Fig. 6.11. These results confirms that

the γsnr is highest when tr is set to 0.15 ms for the high volume sample. This most effective

record length correlates with a percentage instrument noise of 14 %. Therefore a threshold of

14% for the percentage of noise energy can be derived to determine the record length, ensuring

that enough of the diffuse field is captured, but before random noise begins to dominate. This

process can now be added to the nonlinear imaging methodology.
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FIGURE 6.11: Percentage of instrument noise energy of material noise energy for high volume sample.

6.6 Conclusion

This study concludes that the phase coherence metric is suitable for determining a diffuse field

due to its strong correlation with the highest γsnr for various gate times. The choice of temporal

window has proven to be an important factor for determining correct convergence with a diffuse

field, therefore it is important that the window size is selected carefully. Most importantly this

metric has proved effective and robust for multiple volumes and geometries, cycle lengths and

various transmission frequencies. The investigation into transmission frequency shows that it

is not possible to achieve a diffuse field at 10 MHz, indicating a clear limitation to the NUI

method at higher frequencies. Results for a large-scale geometry suggest that it is challenging

to detect a diffuse field using the metric. The top configuration shows some convergence

before random noise dominates, which can be used as an insight into the most appropriate

start gate-time, despite it not fully converging. Further study into the limitation of the phase

coherence metric based on larger volumes would be valuable to establish a critical limit for
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this metric. It is also concluded that an appropriate recording length can be established by

calculating the percentage of instrument noise energy against energy captured in the material,

therefore providing a procedure to reduce random noise in the nonlinear measurement.

This chapter concludes the following procedure should be conducted on a new sample

where the presence of a crack tip is unknown:

1. Switch on the controller and allow 10 minutes for the controller to warm up.

2. Collect FMC data when the array is un-coupled to calculate the instrument noise.

3. Couple the array to the specimen to collect FMC data and calculate the phase coherence

metric to determine the start gate-time.

4. Process the coupled and un-coupled FMC data to calculate Eins/Emat and determine the

record length for the nonlinear experiment.

5. Conduct the nonlinear experiment using the start gate-time and record length parameters.

The optimisation of NUI has improved this technique’s reliability significantly and now

offers the potential for industrial deployment.





Chapter 7

Classical nonlinearity imaging

7.1 Introduction

The previous chapters of this thesis have been concerned with the optimisation of the nonlinear

ultrasonic diffuse energy imaging (NUI) method for detection of fatigue crack tips (i.e. non-

classical forms of nonlinearity). The enhanced NUI method proposed in Section 4, has shown

to increase the detectability of a fatigue crack tip significantly by evaluating nonlinear energy

at multiple frequencies. The implementation and validation of the phase coherence metric in

Section 6 allows for accurate determination of a diffuse field to ensure energy is only captured

when the wave-field has homogenised, significantly increasing the detectability (i.e. SNR)

of fatigue crack tips. In addition, the optimised multi-view method allows for control over

the point of the sensitivity profile used in detecting nonlinear features through focusing for

multiple reverberations. In this chapter, these optimisations will be implemented in an attempt

to resolve classical nonlinearity changes, induced by lattice anharmonicity and dislocations.

Since classical forms of nonlinearity do not produce linear scattering, the NUI method is

required since its operation does not rely on coherent scattering from nonlinear features. The

optimisation of the NUI method to fatigue crack tips is expected to allow for the detection of

139
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FIGURE 7.1: Dimensions (mm) of the fatigue samples used for the strain field
imaging study. The red dashed lines indicated the scanning position and the
grey box represent the array position along the centre axis.

the relatively lower level nonlinearity induced by classical sources.

7.2 Test specimens

For this study Al2024-T351 fatigue samples loaded using a 4-point bending jig were used. The

dimensions of the sample are presented in Fig. 7.1 and are a "dog bone" shape to increase the

localised strain in the centre (narrowest point in the sample) of the sample when it is deformed.

This increase in localised strain increases in the centre of the sample and forms fatigue focused

on the surfaces. Using a -0.3% to 0.5% strain the fatigued sample was loaded to 80% of fatigue

life, where fatigue life is defined as the number of cycles required to reach failure. The loading

configuration is designed to produce asymmetric strain in-order to establish focused strain on

both sides of the sample.
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7.3 Experimental procedure and parameters

The experimental procedure for this study is facilitated using aVerasonics array controller using

a collection of phased arrays with different centre frequencies. The successful T5-R1 and T5-

R10 dual array methods proposed in Section 4 will be implemented. This is to allow analysis of

the low (bandwidth mixing), fundamental and second harmonic energy which has been proven

to increase the detectability of nonlinear features. For this configuration channels 1-64 were

used for transmitting and receiving, whilst the channels 65-128 were used for receiving only. In

addition, a 128 element 10 MHz single frequency configuration (T10-R10)(identical transmit

and receive frequencies) is evaluated, since the relatively higher transmission frequency and

increased number of elements is expected to increase the nonlinear response of the fatigue. The

increased number of transmission elements and frequency transmission is expected to increase

the nonlinearity induced in the material. Arbitrary waveform generation was implemented and

a cycle length of 10 was selected for the transmission signal. The cycle length allowed for

maximum transmission of energy and maintained a narrow bandwidth, to ensure selectivity

between frequency components. The cycle length selected is also limited to provide sufficient

spatial resolution. The cycle length is longer than those used for detecting crack tips in the

previous chapters, this is to prioritise detection over spatial resolution to increase detectability

to relatively lower level nonlinearity.

The reception time tr is set using the phase coherence metric defined in Section 6, which

approximates the time taken for the wave-field to homogenise, i.e. the time taken to reach

a diffuse field. To calculate the phase coherence metric full matrix capture (FMC) data was

captured for each transmission array used across the configurations. In this case, FMC data

was captured using a 5 MHz and 10 MHz phased array. The phase coherence results for a 5

MHz and 10MHz transmission are presented in Fig. 7.2, and confirm that the metric converges

below 1 at 0.05 for both transmission frequencies. Generally, high frequencies converge to a
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a) b)

FIGURE 7.2: Phase coherence metric using FMC data collected on the dogbone specimens
transmitting at: a) 5 MHz and b) 10 MHz. The phase coherence results are plotted for
multiple time window lengths: 10 µs, 50 µs and 200 µs. The dashed line indicates the
phase coherence metric equals 1.

diffuse field earlier in time due to attenuation rates (as seen in Section 6.4.5). The consistent

convergence of to a diffuse field here is attributed to 128 elements transmitting in the 10 MHz

array and only 64 elements for the 5 MHz array. The higher element contribution will cause

more energy to be transmitted into the material and therefore the convergence to a diffuse field

occurs later in time. When transmitting at 10 MHz the phase coherence metric increases later

in time after converging to 1, which is attributed to coherent noise between the transducer

elements. The convergence times can now be implemented as the start gate-times for the

relevant transmission frequencies to ensure the field is diffuse when capturing data has begun.

In an attempt to increase detectability of the nonlinearity the multi-view method proposed

in Chapter 3 will be implemented to ensure the most effective point in the sensitivity profile

is used to focus at the nonlinear features. This is achieved by focusing past the back wall in

the material and allowing the flat surface on the back-wall (and front-wall) to reflect the beam

formed wave-front and focus in the material. This method is expected to expand the sensitivity

range of the NUI method as it allows for some dynamic control over the sensitivity profile of

the array.
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7.4 Results

7.4.1 γ full image

The T5-R5 results taken at the centre point in the sample (0 mm) for the dog bone samples

are presented in Fig. 7.3, where the full nonlinear images are plotted displaying the multiple

reflections through depth. At the centre point in the sample a high strain field is expected in

the fatigued sample, therefore a high γ is expected compared to the non-fatigued sample. The

non-fatigue sample provides an indication into the noise floor of the material since there is no

fatigued induced nonlinearity in the material, and only background nonlinearity is captured.

The spatial distribution and energy levels are consistent across the fatigued and non-fatigued

samples suggesting that energy detected in the fatigued sample is noise and is not caused

by nonlinearity. This is also seen in the T5-R1 configuration presented in Fig. 7.4 where

the nonlinear energy in the image is consistent between the samples, suggesting that the

nonlinearity in the material is not being detected above the noise floor.

The T5-R10 results presented in Fig. 7.5 for the fatigue sample also show consistent energy

distribution in the image and no clear nonlinear features, once again implying that only noise

is being captured. Unexpectedly, using the T5-R10 configuration highly nonlinear features

have been detected in the non-fatigued samples at the front wall. These features are potentially

caused by nonlinearity induced during the manufacturing process since no mechanical fatigue

has been applied to this sample. These inclusionsmean that the strain fields can not be validated

by comparing the two samples, and therefore is not investigated further.

The T10-R10 configuration shows a similar nonlinear energy distribution between the

samples, however the energy in the fatigued sample is significantly less than the noise floor

determined from the non-fatigued sample, by a factor of 3. This is potentially caused by a
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FIGURE 7.3: Nonlinear diffuse images for multiple reverberations using the
T5-R5 configuration. The white lines indicate the back-wall (BW) and front-
wall (FW).

change in the relative noise between the two fields between the samples, induced by random

noise. It could also suggest that the strain field nonlinearity in the fatigued samples is non-

monotonic and therefore the nonlinear parameter is reduced in the presence of the strain field.

This has been observed in a previous study where the nonlinear parameter β reduces with

loading cycles [82]. This is would explain the loss in nonlinear energy shown in the nonlinear

metric γ in the fatigued sample, and therefore could indicate a positive result in detecting the

nonlinearity.
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FIGURE 7.4: Nonlinear diffuse images for multiple reverberations using the
T5-R1 configuration. The white lines indicate the back-wall (BW) and front-
wall (FW).
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FIGURE 7.5: Nonlinear diffuse images for multiple reverberations using the
T5-R10 configuration. The white lines indicate the back-wall (BW) and front-
wall (FW).
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FIGURE 7.6: Nonlinear diffuse images for multiple reverberations using the
T10-R10 configuration. The white lines indicate the back-wall (BW) and front-
wall (FW).
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7.4.2 γ image separation

To investigate the nonlinear results further, the nonlinear images in the previous section

containing the nonlinear information for all the reflections (all multi-views) are separated

into individual image views. The benefit of this is re-scaling of the image colour axis to allow

for relatively small nonlinear energy to be visible in the image since the colour axis range will

be adjusted to each view image, rather than a range representing all image views. In addition,

the z-axis is has been adjusted and the appropriate reflections have been rotated so the reflected

mirror images can be compared directly.

The T5-R5 results for both the fatigue and non-fatigue dog-bone samples are presented in

Fig. 7.7 for a total of 4 multi-view images. It can be seen across all image views that the

nonlinear energy between the fatigue and non-fatigue samples is relatively consistent both in

maximum nonlinear amplitude and spatial distribution. This once again suggests that the strain

field in the fatigued sample has not been detected, and only the noise floor is being imaged.

This means the nonlinearity induced by the strain field is not causing significant energy loss

from the fundamental bandwidth. This is also reflected in the T5-R1 images in Fig. 7.8, where

the nonlinear energy captured between the samples is consistent. Despite reduced attenuation

rates at the bandwidth mixing frequency causing an increase in nonlinear energy received,

the nonlinearity induced by the strain field is still not detectable. The T10-R10 results are

presented in Fig. 7.9 and concludes that image separation has increased the variation in the

nonlinear parameter between the samples. The reduction in the nonlinear parameter γ by a

factor of 2 indicates a detection of nonlinearity in all the image views (assuming non-monotonic

nonlinearity).
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FIGURE 7.7: Nonlinear diffuse imaging results presenting the nonlinear metric
γ for the T5-R5 configuration on Aluminium dog bone samples receiving at
the fundamental frequency. The fatigued and non-fatigue results are plotted for
both for all 4 image views.
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FIGURE 7.8: Nonlinear diffuse imaging results presenting the nonlinear metric
γ for the T5-R1 configuration on Aluminium dog bone samples receiving at the
bandwidth frequency. The fatigued and non-fatigue results are plotted for both
for all 4 image views.
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FIGURE 7.9: Nonlinear diffuse imaging results presenting the nonlinear metric
γ for the T10-R10 configuration on Aluminium dog bone samples. The fatigued
and non-fatigue results are plotted for both for all 4 image views.
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7.4.3 γ averaging

In this section, nonlinear images are taken at 20 mm intervals along the sample (illustrated in

Fig. 7.1) along the length of thematerial in the scanning direction. A strain gradient is expected

through depth in the material and in the array scanning direction. Therefore, the mean of the

nonlinear metric γ along the x-axis for each image view is computed in an attempt to reduce

the presence of noise in the image (as illustrated in Fig. 7.10), since constant properties are

expected in the x-direction. Despite reduction of localised nonlinearity from the image domain

to a single point, there is still a degree of spatially resolved nonlinearity through the process

of scanning the array across the sample. It is expected that as the array is translated across

the sample the mean nonlinear metric γ will be highest in the centre of the sample (the centre

scanning position), since the narrowest point in the sample will have the highest localised

fatigue. As the array is translated in either direction away from the centre, the fatigue damage

decreases and therefore a variation in γ̄ is expected. Therefore a change in γ is expected at the

surface (the top and bottom of the image) and a decrease in γ in the centre.

FIGURE 7.10: Illustration of γ averaging process used for reducing noise.

The scan results for T5-R5 presented in Fig. 7.11 show consistency in γ across the scanning

lengths for both the fatigued and non-fatigued samples. The distribution of nonlinear energy

γ throughout the scanning positions and the depth is consistent across samples confirming

there is no increase in γ in the presence of fatigue. However, the reduction in the nonlinear
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parameter across all V1-3 could be potentially caused by non-monotonic nonlinearity.

The T5-R1 results in Fig. 7.12 show no clear strain gradient along the scanning positions

and through depth, as well as no significant change in γ between samples in image views V1-2.

This suggests random noise is being captured instead of nonlinear information. In image views

V3-4 there is varying distribution of nonlinear energy between samples, and a reduction in

the nonlinear parameter in the fatigued samples, suggesting some non-monotonic nonlinear

energy is being captured.

The T10-R10 results, presented in Fig. 7.13, show that γ is lower in the fatigued case for

all image views. Interestingly, the distribution of nonlinear energy along the scanning length

is not consistent with the base noise level in the non-fatigued sample. There is significantly

more nonlinear energy present in one direction of the scanning length. It could be suggested

that this is caused by the strain field, however the loading applied to the specimen is expected

to produce a symmetrical strain gradient (line of symmetry at the centre point 0 mm) along

the scanning positions, therefore it is likely that the cause of this change in nonlinear energy

between samples is caused by experimental error. This is caused by inconsistent coupling

between image captures, particularly effecting higher frequency.

It is clear the averaging process has not effectively resolved the strain gradient in the fatigued

sample across the scanning positions and through depth by reducing noise. In addition, this

averaging process has not improved differentiation between the fatigue and non-fatigue samples.
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Non-fatigued Fatigued

V1

V2

V3

V4

FIGURE 7.11: Average nonlinear diffuse imaging results presenting the non-
linear metric γ for the T5-R5 configuration on Aluminium dog bone samples
for each scanning position. The fatigued and non-fatigue results are plotted for
both for all 4 image views.
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Non-fatigued Fatigued

V1

V2

V3

V4

FIGURE 7.12: Average nonlinear diffuse imaging results presenting the non-
linear metric γ for the T5-R1 configuration on Aluminium dog bone samples
for each scanning position. The fatigued and non-fatigue results are plotted for
all 4 image views.
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Non-fatigued Fatigued

V1

V2

V3

FIGURE 7.13: Average nonlinear diffuse imaging results presenting
the nonlinear metric γ for the T10-R10 configuration on Aluminium
dog bone samples for each scanning position. The fatigued and
non-fatigue results are plotted for all 4 image views.
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In an attempt to reduce noise further, the total mean of the nonlinear images for each

scanning position is calculated. Despite loss of spatial resolution it would still be beneficial

to evaluate material nonlinearity as a function of scanning position, providing some spatial

resolution of fatigue. The mean of the nonlinear images, γ̄ are presented in Fig. 7.14. These

results show consistent γ̄ across both samples for all configurations, suggesting once again

that nonlinearity is not being detected in the fatigue sample. Using the T10-R10 configuration

(presented in Fig. 7.15) the fatigue sample across all views shows a reduction in γ̄ across all

scanning positions. This disparity could once again indicate that nonlinearity is varying in a

non-monotonic manner (i.e. the metric reduces in the presence of nonlinearity) and therefore

the nonlinearity parameter is reducing in the presence of the strain field.
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T5-R5 T5-R1

V1

V2

V3

V4

FIGURE 7.14: Average nonlinear diffuse imaging results presenting the nonlinear metric
γ̄ of the full image for the T5-R5:R1 configuration on Aluminium dog bone samples for
each scanning position. The fatigued and non-fatigue results are plotted for all 4 image
views.
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T10-R10

V1

V2

V3

FIGURE 7.15: Average nonlinear diffuse imaging results presenting the non-
linear metric γ̄ of the full image for the T10-R10 configuration on Aluminium
dog bone samples for each scanning position. The fatigued and non-fatigue
results are plotted for all 4 image views.
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7.5 Conclusion

This chapter has attempted to resolve classical nonlinearity using previously optimised NUI

methods for detecting crack tips (non-classical nonlinearity). The results from this study are

in-conclusive and show that the most sensitive multi-frequency NUI configurations (T5-R5,

T5-R1, T5-R10, T10-R10) are only capable of detecting nonlinear energy consistent with the

baseline background noise levels. However, through averaging operations some results show

an indication of non-monotonic nonlinearity from reduced nonlinear parameter levels but this

is yet to be validated. Despite diffuse field time optimisation (phase coherence metric), multi-

frequency optimisation and sensitivity profile control using the multi-view method, the NUI

technique is not sensitive enough in its current configuration to the strain fields.





Chapter 8

Conclusion

8.1 Summary of findings

The aim of this thesis was to optimise and adapt the current nonlinear ultrasonic diffuse energy

imaging (NUI) method for detecting fatigue crack tips. This is to ensure defect sensitivity is

as high as possible, resulting in accurate detection and characterisation of nonlinear features.

Chapter 3 investigated the sensitivity profile of the NUI method and presented a multi-view

adaptation for increased detectability. The sensitivity profile was investigated through experi-

mental and simulation analysis. The sensitivity profiles showed consistency in the location of

maximum sensitivity relative to the array for all frequencies. However, inconsistencies were

observed in the distribution of the sensitivity profile, which has been attributed to exposure

to the crack tip during incident excitation. When evaluating the influence of attenuation and

frequency on the simulated sensitivity profile, the competing effects of increased attenuation

and increased nonlinearity results in consistent nonlinear sensitivity for 1, 2.5 and 5 MHz

transmission frequencies. The proposed multi-view method has proven to be effective at 5

MHz in detecting closed crack tips where the nonlinear feature is close to the array. However,

the results for 1 and 2.5 MHz are inconclusive and require further investigation.
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Chapter 4 presented a multi-frequency NUI method which is an adaptation of the cur-

rent single frequency NUI method for detecting fatigue crack tips in three-point bend (3PB)

Aluminium samples. The experimental results showed increased detectability by analysing

additional nonlinear frequency components. The low and second harmonic frequency com-

ponents when transmitting at 5 MHz displayed an increase in signal-to-noise ratio (SNR) by

a factor of 4 and 6 respectively, compared with the current fundamental frequency method.

In addition, analysis of the low frequency components allowed for detection of features with

relatively lower levels of nonlinearity, which were not detectable using the single frequency

method. The increase in sensitivity across multiple crack tip samples using this dual array

configuration justifies the more complex configuration.

Chapter 5 investigated a diffuse phase metric for detecting fatigue crack tips in 3PB samples.

Two phase metrics were investigated: offset and gradient. These metrics evaluate the change

in phase between the two fields at the focal point and the study evaluated the sensitivity of this

metrics through the various wave-field types (coherent, diffuse, noise). It was concluded that

the phase metrics are less sensitive to a diffuse field when transmitting at 5 MHz resulting in a

higher detectability of features earlier in time in the coherent wave-field. The results suggest

the phase metrics would be effective in samples where a diffuse field is hard to achieve, such

as larger geometries.

An effective phase coherence metric has been validated in Chapter 6 for determining the

time in which the wave-field has homogenised in a structure (i.e. when the field is diffuse).

The metric determines the coherence of the signals stored in a full matrix capture (FMC),

when the signals are no longer coherent the metric converges, indicating a diffuse field. The

convergence of the metric has been validated with NUI results capturing at different wave-

field stages. The convergence of the metric strongly correlates with the time the highest

SNR NUI result is captured, indicating it is correctly identifying a diffuse field. The metrics
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have also proved to be robust to multiple volumes and geometries, cycle length, and various

transmission frequencies. Importantly, a limitation to achieving a diffuse field with higher

transmission frequencies has been established. In addition, a procedure for coupling based on

a repeatability study is concluded to achieve reliable results.

Using the optimisations presented in this thesis for the NUI method, Chapter 7 attempts

to resolve classical nonlinearity in fatigue samples. This study implements the multi-view

NUI method determined from the sensitivity analysis, optimised multi-frequency methods,

phase coherent metric for determining the diffuse time and the procedure for coupling. The

results for this study conclude that there is no sensitivity to the strain field induced from

bending, which suggests the NUI technique requires further optimisations to detect this type of

nonlinear damage and more knowledge about how nonlinearity manifests (i.e. monotonically

or non-monotonically).

8.2 Future work

Future work based on this thesis is as follows:

1. Advances in numerical models (finite element) to characterise the behaviour of nonlinear

mechanisms, such as contact-acoustic nonlinearity (CAN) and material "bulk" nonlin-

earity, to better understand the underlying physics of the interactions. This is especially

required since the sensitivity research in this thesis suggests classical and non-classical

forms of nonlinearity produce different sensitivity profiles. It is also desirable to deter-

mine the level of fatigue for a given γ value from both experimental and numerical results

to understand the level of fatigue and relate the metrics quantitatively to micro-features

(such as roughness, corrosion and state of crack tip). This level of understanding would

contribute to Chapter 4, where the multi-frequency nonlinear contributions of energy
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from different transmission frequencies can be associated with different types of non-

linear damage. A numerical investigation into minimum detectable nonlinearity would

provide valuable insight into the detectability of classical nonlinearity. This level of

analysis would provide beneficial insight into the performance of the multi-frequency

NUI method for detecting strain fields in bending samples investigated in Chapter 7. This

advance in modelling would greatly contribute to defect characterisation for determining

the degree of fatigue and a minimum detection threshold.

2. Future work should implement the phase coherence metrics for determining the time

in-which a field is diffuse, more specifically to determine the start gate-time of NUI

experiments. The phase coherence metric has been validated extensively for determining

when the field is diffuse and has shown to be robust to multiple parameters used in NUI.

A study into determining when the diffuse field has decayed and the random noise field

is approaching is key to optimising this method further. A metric for approximating the

end gate-time would be valuable to improve the SNR of NUI and ultimately increase

detectability.

3. This thesis has been concerned with in-contact coupling through out which is an exhaus-

tive process considering the run time of NUI experiments. The adaptation of the NUI

method to a scanning rig using immersion coupling (water) is desirable for industrial

application. This process will require an investigation into achieving a diffuse field in

water which may be challenging due to transmission of ultrasonic energy from the sample

into the water through all surface boundaries.





Appendix A: Expansion of three-dimensional nonlinear wave

equation

Prior to implementing finite difference stencils it is necessary to expand the Einstein notation for

derivatives in Eq. 3.14 and 3.15. Expanding the linear derivatives in rectangular 2-dimensional

space (co-ordinates 1 and 2) gives the following,
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The nonlinear forcing term derivatives are expanded as,
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Appendix B: Finite Difference Methods

Fig. 1 displays an illustration of the finite difference scheme implemented to solve the deriva-

tives in Eq. 3.14 and 3.15, post the expansion discussed in Appendix A. The 4th order central

difference technique calculates the current value i, j by fitting a quadratic polynomial to the

two adjacent neighbouring points in the ith and jth directions.

FIGURE 1: Schemetic of the 5-point FD stencil implemented

Implementing the 4th order central difference technique we define the partial derivatives

for shear displacement in the x direction as,
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and the partial derivatives for longitudinal displacement in the z direction as,
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For mixed partial derivatives (w.r.t both x and z dimensions) the partial derivative is

simplified and multiple stencils are implemented. For displacement in the x direction this can

be written as,
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and in the z direction as,
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The time-stepping was computed using an explicit Runge-Kutta 4th (RKM4) order scheme

which implements a temporal discretization to approximate the differential equations. The
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RKMmethod is an adaptation of the Taylor Series method but does not require the computation

of higher derivatives, due to the temporal discretization. The RKM4 routine has the higher-

order local truncation error of the Taylor Seriesmethod butwithout the computational demands.

The complete derivation of this method is beyond the scope of this thesis, for further reading

see the publication by Mathews and Kurtis [83].

Firstly, we define the initial value problem as the second order temporal derivative in Eq.

3.14,

∂2u
∂t
= f (t,u),u(t0) = u0 (17)

where u is the generalised displacement values of the current time-step. The step-size h is

defined and u can be calculated for the proceeding time-step,

un+1 = un+
1
6

h(k1+2k2+2k3+ k4) (18)

where h == ∆t and using,

k1 = f (tn,un),

k2 = f (tn+
h
2
,un+ h

k1
2
),

k3 = f (tn+
h
2
,un+ h

k2
2
),

k4 = f (tn+ h,un+ hk3).

(19)

This method was used to compute the derivatives of the wave equation over time. Note

that both the first and second derivatives of this term are computed during the time-stepping

process and are computed for both the longitudinal and shear components separately.





Appendix C: Fatigue crack growth

The CT test specimens described in the previous sections were loaded using a 250 kN hydraulic

testing machine (INSTRON 8800) using a pair of grips and pins (see Fig. 2). The test

specimen was subjected to cyclic loading at a constant amplitude to produce a fatigue crack in

the specimen.

Grips

CT specimen

Pins

Machined slot

EDM notch

FIGURE 2: Experimental set-up of the fatigue testing for CT specimens

To establish the required loads, calculations followed the E647 ATSM (American Standard

of TestingMaterials). The minimum and maximum loads were determined for the cyclic loads.

Firstly, the maximum stress intensity factor Kmax was calculated,

Kmax =
KIC

3
(20)
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where KIC is the nominal fracture toughness of the material. The minimum stress intensity

factor Kmin is calculated using Eq. 21, using a stress ratio value of R = 0.1. The stress ratio R,

is the minimum to maximum load in a cycle and is calculated using the following relationships,

R =
Pmin

Pmax
(21)

R =
Kmin

Kmax
(22)

Next, the stress intensity factor range ∆K is calculated,

∆K = Kmax −Kmin (23)

and finally the load range ∆P is calculated,

∆P = Pmax −Pmin (24)

Complying with the ASTM standard E647-02, the geometry factor for the CT specimen is

known meaning the stress intensity factor ∆K can be expressed as,

∆K =
∆P

B
√

W

(2+α)
(1−α 3

2 )
(0.886+4.64α−13.32α2+14.72α3−5.6α4) (25)

where B is the thickness of the specimen and α = a
W . For CT specimens, a is the distance

from the loading bearing points to the load of the crack tip and W is the width of the CT

specimen. Following this analytical process the loads were determined for the fatigue loading
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test. For aluminium this was found to be 0.5 kN and 6 kN for the minimum and maximum

respectively [84].
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