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ABSTRACT 

Introduction 

Traditional observational epidemiology has described an association between reduced lung function 
and lung disease with extra-pulmonary diseases. However, this method cannot establish causality 
and is affected by bias from residual confounding and reverse causation. If the observed association 
is causal, then treatments to maintain or improve lung function could reduce the huge burden of 
extra-pulmonary co-morbidity. My objective was to utilise novel genetic epidemiological techniques 
to determine if reduced lung function or lung disease has a causal effect on extra-pulmonary 
disease. I used both traditional and genetic epidemiology to research an understudied pathological 
lung function state, Preserved Ratio Impaired Spirometry (PRISm), and its extra-pulmonary 
associations. The COVID pandemic created a need to examine asthma and mental health during 
lockdown. 

Methods 

Two Sample Mendelian Randomisation (MR) techniques were used to determine if reduced lung 
function and COPD have a causal effect on Alzheimer’s Disease, cardiovascular disease, and cognitive 
function. I used the UK Biobank to examine the risk factors, associations, and mortality of PRISm and 
then performed a Genome-Wide Association Study of PRISm. Traditional epidemiology was used to 
examine the effect of asthma on mental health outcomes during COVID-19 lockdown in the Avon 
Longitudinal Parents and Child Cohort. 

Results 

MR studies showed no strong evidence for an effect of reduced lung function/lung disease on 
cognitive function or the risk of Alzheimer’s disease. However, there was strong evidence that 
reduced Forced Vital Capacity (FVC), but not Forced Expiratory Volume in one second (FEV1), causes 
an increased risk of coronary artery disease. PRISm is common, and despite being a relatively 
transient state is associated with co-morbidities and an increase in mortality compared to those with 
normal spirometry. Genetic studies show that there may be shared genetic risk factors for PRISm 
and its co-morbidities. Mental health outcomes in those with asthma worsened during the lockdown 
to lower levels than the general population. 

Discussion 

There is a strong association between lung function, lung disease and extra-pulmonary disease, with 
genetic epidemiology providing evidence that this relationship is causal, and there may be shared 
genetic risk factors. This thesis demonstrates the value of triangulating different epidemiological 
methods and highlights future areas of research that may lead to lung function becoming a 
screening tool and/or modifiable risk factor for extra-pulmonary diseases. 
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CHAPTER 1. INTRODUCTION 
 

Diseases of the lungs are common and are leading causes of morbidity and death worldwide.1 In 

2017, 544.9 million people worldwide had a chronic respiratory disease and 3.91 million people died 

from this.2 Many lung diseases were previously thought of as single organ diseases, however, there 

is increasing evidence they are associated with diseases outside the lungs, known as extra-

pulmonary disease.3 For example, in the UK >80% of patients with Chronic Obstructive Pulmonary 

Disease (COPD) will have at least one other medical condition.4 This can range from cognitive issues 

such as dementia, to physical health problems including cardiovascular disease. When lung and 

extra-pulmonary diseases co-exist, there is an increased treatment burden, healthcare utilisation, 

and worse health outcomes including death.5 Evidence shows that even in those with severe COPD, 

two-thirds of deaths are not from respiratory failure, but from extra-pulmonary diseases.6 Therefore, 

successful management of patients with lung disease, will require understanding of the relationship 

between lung disease and extra-pulmonary disease. 

However, determining the causality of the relationship between lung and extra-pulmonary disease is 

challenging. The common causes of both these disease groups are shared e.g. smoking. Traditional 

epidemiological methods are only able to describe associations between lung diseases and extra-

pulmonary diseases rather than determine causality, as this method suffers from bias including 

residual confounding and reverse causation. Genetic epidemiological techniques may be able to 

determine causality, if they are used in robust studies.7  

Determining causality is essential to justify ongoing research and trial clinical interventions. If 

reduced lung function and lung diseases are causing these extra-pulmonary diseases, then measures 

to improve lung function and reduce lung disease could reduce the burden of extra-pulmonary 

disease, improving patients’ quality of life and survival. 
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The overall aim of this work was to use different epidemiological techniques to examine associations 

between reduced lung function and lung disease on extra-pulmonary diseases, with a focus on using 

genetic epidemiology. 

1.1 Lung function 

The measurement of lung function is essential in clinical medicine. The diagnosis and severity of 

some lung diseases are defined by the pattern of lung function abnormality they produce. 

Treatments for lung diseases are sometimes restricted to those with certain degrees of lung function 

deficit.8 Although it is possible to have significant respiratory symptoms with normal lung function, 

the measurement of lung function traits is widely available, inexpensive and one of the most 

powerful predictors of clinically relevant outcomes, including symptoms, exacerbations, and 

mortailty.9 Reduced lung function, even in the absence of a specific respiratory diagnosis, has been 

associated with extra-pulmonary disease and all-cause mortality.10-12 Therefore I thought it was 

important to investigate the effect of reduced lung function, as well as lung disease, on the risk of 

extra-pulmonary disease. 

1.1.1 Measuring lung function 

Lung function is commonly tested with spirometry, as shown in Figure 1, which measures the ability 

to move air in and out of the lungs, the “bellows” function. Spirometry can be performed easily in 

hospital, at GP practices, and even by patients independently at home. Multiple types of 

measurements can be obtained, but the most clinically useful measures for assessing the airways are 

recorded when the patient is exhaling maximally.13  



22 
 

Figure 1. A patient performing spirometry 

 

 

As depicted in Figure 2, Forced Expiratory Volume in 1 second (FEV1) is the volume of air exhaled 

within the first second of a maximal exhalation. The total volume exhaled during a forced 

manoeuvre is the Forced Vital Capacity (FVC). A ratio is produced by dividing the FEV1 by the FVC, 

known as the FEV1/FVC ratio. Normal values of FEV1 and FVC vary dependent on factors including 

ethnicity, sex, age, and height. Reference equations can be used to determine what the patient’s 

results are as a percentage of predicted results after taking these factors into account.14 This 

produces the FEV1 and FVC percent predicted (FEV1 % predicted, and FVC % predicted). 

Figure 2. Flow volume loops produced by spirometry 

 

Figure 2 shows the flow volume loops produced when performing spirometry, and is labelled with the volumes that are 

measured for FEV1 and FVC 

1.1.2 Obstructive lung function 

Many lung diseases can be categorised into two types based on spirometry. When the FEV1/FVC 

ratio is reduced below 70%, the lung function results can be defined as obstructive.13 Other defining 
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criteria can be used, such as when the FEV1/FVC ratio is below the lower limit of normal (LLN).15 The 

lower limit of normal value is calculated as the 5th percentile of the standard deviation for a lung 

function trait in a healthy non-smoking population. Obstructive lung diseases denote an inability to 

exhale air as quickly as would be expected. Common underlying mechanisms are inflammation and 

thickening of the airway wall, reducing the width of the airways, thus increasing resistance to the 

flow of air. Mucus produced by inflamed airways can worsen this obstruction.16,17 One of the most 

common causes of obstructive lung disease is COPD.13 

1.2 Chronic Obstructive Pulmonary Disease 

COPD is characterised by persistent respiratory symptoms and airflow obstruction that is due to 

bronchitis affecting the airways and/or emphysema causing alveolar abnormalities.18 Spirometry 

showing airflow obstruction is essential for the diagnosis of COPD, and the severity of the disease 

has been defined by different thresholds of FEV1 % predicted e.g. FEV1 >80% is mild, and FEV1 <30% 

is very severe. Therefore, reduced lung function and COPD are inextricably linked. Historically COPD 

has been thought to be due to smoking. Although smoking remains the predominant risk factor, 

biomass fuel exposure, air pollution as well as host factors such as genetic abnormalities are 

involved.18 COPD was considered a single organ lung disease.19 However, COPD is associated with 

multiple extra-pulmonary co-morbidities, such as cardiovascular disease, cognitive dysfunction, 

dementia, diabetes, depression, and osteoporosis.3,20 Understanding the association between lung 

function, COPD and these extra-pulmonary diseases is essential to managing complex patients. If the 

association is causal, lung function and COPD diagnoses may be a useful screening tool to estimate 

the future risk of extra-pulmonary disease. Treatments for reduce lung function and COPD may be 

used as modifiable risk factor to reduce the risk or severity of extra-pulmonary disease. 
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1.3 COPD, reduced lung function and extra-pulmonary disease 

1.3.1 I chose to examine the possible causal effect of COPD and reduced lung function 
on Alzheimer’s Disease, cardiovascular disease, and cognitive function. These 
three extra-pulmonary associations were chosen for a variety of reasons. 
Cardiovascular diseases are an extremely common cause of morbidity and death 
globally, and particularly in those with reduced lung function and COPD, and so 
deserve research attention.6,21,22 The lungs may have a different effect on 
cognitive function & dementia compared to cardiovascular diseases as they 
comprise different disease groups with different pathological processes. There 
had not been previous adequate research utilising genetic techniques exploring 
the relationship between lung function or COPD and these extra-pulmonary 
outcomes. To conduct an MR study genetic data with exposure and outcome 
measures are required. This was available for Alzheimer’s disease, cardiovascular 
disease, and cognitive function. COPD, reduced lung function, and dementia 

Dementia is a syndrome in which there is deterioration in memory, cognition, behaviour, and the 

ability to perform everyday activities.23 It is not part of normal aging. Its prevalence is rapidly 

increasing, and it is a significant co-morbidity. In England there were 232,000 people with dementia 

in 2008 which increased to 850,000 in 2014.24 Globally there are an estimated 50 million people with 

dementia and this is set to reach 152 million in 2050.23 The global cost of care provision is high and is 

estimated that to amount to 1.09% of aggregated global gross domestic product.25 Alzheimer’s 

disease (AD) is the most common type of dementia,26 and reports of a potential link between COPD 

and AD was first described nearly 30 years ago.27 Large retrospective observational case-control 

cohorts have reported increased risk of AD in patients with both COPD and reduced lung 

function.28,29  A large cohort study reported an OR of 1.24 for AD-type dementia or mild cognitive 

impairment (MCI) in patients with COPD and OR 1.79 for those with a restrictive impairment 

compared to controls.29 Chapter 3 uses Mendelian Randomization to determine if there is evidence 

of a causal effect of lung function and COPD on the risk of AD. 

1.3.2 COPD, reduced lung function and cardiovascular disease 

Impaired FEV1 and FVC are strongly associated with multi-morbidity and are reported as 

independent predictors of cardiovascular disease.30 Although research has often focused on the 
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contribution of FEV1 and obstructive airways disease to cardiovascular risk, FVC is a stronger 

predictor of overall survival and appears to add value when predicting of mortality in those with 

intermediate risk of cardiovascular disease.31,32 

Observational studies have reported that COPD, decreased FEV1, FVC and FEV1/FVC ratio are all 

associated with an increased risk of coronary artery disease.33,34 However results are inconsistent, 

with some studies reporting no association,35 or that the association is limited to those with 

abnormally high blood pressure.36 There is evidence suggesting that COPD and impaired lung 

function are associated with an increased risk of both haemorrhagic and ischaemic stroke.37,38 

Chapter 4 uses Mendelian randomisation to examine for a causal effect of reduced lung function and 

COPD on the risk of cardiovascular disease. 

1.3.3 COPD, reduced lung function and cognitive function 

Cognitive function impacts important physical and mental health outcomes including mortality and 

educational attainment.39 It exists on a continuum from normal cognitive function, to the potentially 

reversible state of MCI, which can lead to irreversible dementia.40,41 There are very limited 

therapeutic options that effectively increase cognitive function or treat MCI, so finding modifiable 

risk factors is important. 

Co-morbid lung disease and cognitive impairment is associated with worse health outcomes, quality 

of life, and increased healthcare utilisation. 42 The association between lung function and cognition 

may be due to shared risk factors seen more commonly in those with lung disease e.g. smoking.43,44 

The pattern of cognitive impairment has also been studied, with evidence of a global impairment in 

some groups, whilst others show a COPD specific pattern of deficits in attention, memory, learning, 

and motor functions.45. Neuroimaging provides further evidence of a relationship between lung 

function and cognition. After adjustment for smoking, reduced lung function remains associated 

with white matter brain lesions, 46 and a ‘dose response’ relationship is seen between severity of 

lung function deficit and risk of cognitive impairment.47 Chapter 5 uses Mendelian Randomisation to 
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determine if there is evidence of lung function and COPD having a causal effect on cognitive 

function. 

1.3.4 Underlying mechanisms between COPD, reduced lung function and extra-
pulmonary disease 

The described association between COPD, reduced lung function and extra-pulmonary disease may 

be related to confounding factors such as smoking and ageing. However, plausible independent 

mechanisms have been proposed. There may be a “spill-over” of inflammatory mediators from 

diseased lungs into the circulation increasing oxidative stress.3,20,48 Plasma fibrinogen, interlukin-6, 

and interlukin-7 have been found in higher levels in those with COPD and heart disease.49 Other 

possible inflammatory mediators include tumour necrosis factor related apoptosis-inducing ligand 

which is reduced in smokers with comorbid emphysema and Coronary Artery Disease (CAD), and is 

associated with reduced survival.50 Inflammation may be driven by airway bacterial colonisation, 

which is increased in patients with COPD and higher levels of systemic inflammation.51 

Hypoxia mediated neuronal damage or reduction in neurotransmitters that require oxygen-

dependent enzymes for synthesis has been suggested as causing impairment to cognitive function. A 

meta-analysis of nine studies found a negative correlation between partial pressure of oxygen in 

arterial blood and cognitive function, but cognitive deficits have been found in both hypoxic and 

non-hypoxaemic patients with COPD.52,53 The relationship with carbon dioxide is even less clear with 

some studies showing a relationship with executive function, attention, and verbal memory with 

others showing no relationship.45 

1.4 Restrictive lung function 

Restrictive lung diseases are less common than obstructive lung diseases. They are a heterogenous 

group of conditions that can be divided into conditions which are intrinsic and extrinsic to the lungs. 

Intrinsic causes occur when inflammatory changes damage the alveolar Interstitium. Extrinsic causes 

are due to restrictions of chest wall movements such as obesity, chest wall abnormalities, or 
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neuromuscular disease.54 This can reduce the FVC and FEV1, so the FEV1/FVC ratio remains above 

70%, and is often increased as the reduction in FVC compared to FEV1 is proportionally higher. 

Restrictive lung function requires the measurement of Total Lung Capacity (TLC) to confirm that the 

volume of the lungs has reduced. The TLC cannot be measured by spirometry, but requires more in-

depth assessment, generally only possible in the hospital setting. Not all those with restrictive 

spirometry will have true restriction, therefore it cannot be diagnosed based on spirometry 

alone.55,56  

1.5 Preserved Ratio Impaired Spirometry 

Preserved Ratio Impaired Spirometry (PRISm), also referred to as ‘restrictive pattern’ spirometry, is 

defined as an FEV1 <80% predicted, with a FEV1/FVC ratio ≥0.70. The diagnosis is purely based on 

spirometry, with no requirement to measure TLC, nor are there specific characteristic symptoms or 

confirmed underlying pathological mechanism. PRISm is currently being used as a research term, 

rather than a clinical diagnosis. PRISm has received considerably less research attention compared to 

obstructive and restrictive lung function. This is probably because the two most common respiratory 

diseases, asthma and COPD, both cause obstruction. Additionally there are likely to be many 

different pathological subgroups causing PRISm.57 The true population prevalence of PRISm is 

unknown with estimates from 4% to 48% depending on gender, ancestry, geographical location, and 

smoking history.58-61 Analyses from cohort studies show an association between PRISm and 

respiratory symptoms, increased healthcare utilisation, co-morbidities such as obesity, diabetes, 

cardiac disease, and increased overall mortality.57,60,62-64 I believe PRISm deserves research attention, 

due to its prevalence and association with symptoms and extra-pulmonary disease. 

1.5.1 Underlying mechanism between PRISm and extra-pulmonary disease 

PRISm has received considerably less research attention compared to asthma or COPD, so 

underlying mechanisms of co-morbidity haven’t yet been studied. However, as it is a construct of 
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reduced lung function, mechanisms leading to extra-pulmonary effects of reduced lung function 

described above (1.3.4) would be relevant. 

1.5.2 PRISm – previous research issues and the need for further investigation 

Definitive epidemiological understanding of PRISm has been limited to cohorts with relatively small 

patient numbers, rarely containing >1000 cases.57,60 Some cohorts have used selected populations 

e.g. only smokers.57,59,65  A finding of previous PRISm research had been that up to 50% of those with 

PRISm would transition to COPD on follow up. This finding may not be generalizable to non-smokers, 

which make up the majority of the general population and the majority of those with PRISm. 

Duration of follow-up has often been limited to ≤ 5 years, which limits insight into possible longer 

term associations such as mortality.57,60,66 These issues of small samples, selection bias, and 

confounding limit conclusions.67 Therefore there was a clear need to study PRISm in a large 

generalizable cohort, that has not restricted recruitment to smokers, with a prolonged follow up 

period. The UK Biobank fulfilled these requirements. It is an ongoing cohort study that started 

recruiting participants in 2006 aged between 40- and 69-years old living in the UK. It has collected an 

unprecedented amount of biological and medical data on ~500,000 participants that includes lung 

function measures, genetic data, lifestyle information, and symptoms with linkage to health 

records.68 It is now the largest and most in depth cohort study in the world. I applied to use its data 

to produce the largest and most generalisable study of PRISm published to date, with novel findings 

that differed from previous research which had been impaired by bias. This is described in Chapter 6.  

1.6 Genetic determinants of lung function 

It was believed that people attained predicted maximal lung function for their age/sex/height as 

young adults, and then the rate of decline was uniform, except in those who smoked and 

experienced a rapid decline.69 This hypothesis suggested that those who smoked developed 

obstruction and COPD due to the rapidly declining FEV1 % predicted as shown in Figure 3. 
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Figure 3. Adaption of Fletcher & Peto 1977.70 The (previously believed) natural history of FEV1 % predicted leading to COPD 

 

Figure 3 shows what was previously considered to be lung function trajectory of FEV1 % predicted. Note that the X-axis 

shows the graph starting at age 25 (rather than birth) and that everyone starts from 100% FEV1 % predicted on the y-axis. 

However, it is now known that there are a number of lung function trajectories that start from 

different baselines at birth, before again diverging during childhood, puberty and adulthood. Some 

people will never achieve their predicted maximal lung function. The rate of decline from maximal 

lung function varies, with some declining quicker than others, not just due to smoking. These 

trajectories can be seen in Figure 4. 
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Figure 4. Lung function trajectories71 

 

Figure 4 shows that there are a number of lung function trajectories, that differ from different starting points at birth, and 

then can display phenomena such as “catch-up” improvement in puberty, and early rapid decline 

It is estimated that half of those with COPD will have had a normal rate of lung function decline but 

will have started declining from a lower lung function peak.72 Factors influencing these trajectories 

are not fully known but include genetic risk factors.  

To understand the pathogenesis of reduced lung function and lung disease, genetic studies are 

essential. Understanding which genetic variants cause reduced lung function could lead to better 

prediction of lung disease, and early instigation of treatment. Genetic variants that cause better lung 

function could potentially be used as treatment targets for reduced lung function. This could then 

reduce the risk of extra-pulmonary disease. It may be that genetic variants that cause reduced lung 

function also act to increase the risk of extra-pulmonary disease. If this is found it would explain an 

underlying causal mechanism and could be used for screening or treatments for extra-pulmonary 

disease. 
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1.6.1 Current understanding of genetic determinants of lung function, and the need 
for further research 

Multiple studies have discovered genetic variants associated with lung function and lung disease.73,74 

The largest of these identified 279 Single Nucleotide Polymorphisms (SNPs) for the continuous lung 

function traits FEV1, FVC, FEV1/FVC and Peak Expiratory Flow (PEFR).75 These SNPs were divided into 

deciles of a genetic risk score, in the highest decile there was a 82.4% risk of developing COPD 

whereas in the lowest it was 17.4%. This demonstrates the large impact genetic variation has on lung 

function and lung disease.  

Thus far genetic studies have focused on discovering variants by examining continuous traits of 

spirometric measurements, as well as common respiratory diseases such as  asthma and COPD. 

Studies of different lung function/disease phenotypes have found different genetic variants that 

influence lung function, so by expanding the phenotypes studied novel genetic variants may still be 

found.  

There has only been one published genetic study of PRISm. It used a small number of cases and 

failed to find any variants. I decided to undertake a genetic study of PRISm using a large cohort to 

increase power and the chance of successfully finding associated genetic variants. As described in 

Chapter 7, this produced the first successful genetic study of PRISm, and found novel variants that 

influence lung function. It then allowed for studies to determine if there is a shared genetic 

predisposition between PRISm and its associated extra-pulmonary co-morbidities. 

1.7 Limitations of traditional observational epidemiology 

Traditional observational epidemiology has provided major advances in identifying causes of 

diseases and changed public health practices.76 In a traditional observational study, a population is 

examined to see if an exposure e.g. FEV1 is associated with an increased risk of an outcome e.g. 

cardiovascular disease, after adjustment for measured confounding factors e.g. smoking, see Figure 

5.  
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Figure 5. A Directed Acyclic Graph (DAG) demonstrating a traditional observational epidemiological study 

 

This figure shows a DAG for a traditional observational study. Although some known confounders can be 

measured and adjusted for, there is likely to always be residual confounding present. 

 

Estimated associations are of value but are not an estimation of a causal effect. An association does 

not equate to causality, limiting conclusions and relevance to clinical practice. Additionally, 

traditional observational epidemiology is prone to certain sources of bias.77 This includes; 

unmeasured confounding – when not all confounders can be identified and adjusted for,78 and 

reverse causation – where the outcome can influence the exposure. It is essential to determine 

causality as this indicates the potential for intervention. Randomisation can be used to reduce these 

sources of bias and determine a causal estimate.79,80 Therefore causal effects can be determined in 

randomised controlled trials (RCT’s), which provide the highest grade of evidence.81 There are many 

examples of promising disease-modifiable associations that are shown to not have any effect in RCTs 

due to bias in traditional epidemiological studies.77,82,83 However, it is not feasible to randomise 

participants to some exposures of interest e.g. COPD or reduced lung function. Therefore, methods 

that determine causal estimates for exposures beyond the constraints of RCTs are required. This can 

be done using genetic epidemiology, particularly Genome-Wide Association Studies (GWAS) and 

Mendelian Randomization (MR).  
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1.8 The role of genetic epidemiology and Mendelian Randomisation 

Genome-Wide Association Studies (GWAS) are performed to identify genetic variants associated 

with a disease or trait. This determines if diseases/traits are heritable, identifies biological pathways 

that cause them, and can provide therapeutic targets.84-86 Genetic variants discovered can also be 

used as instrumental variables in Mendelian Randomisation studies.7  

Mendelian Randomisation (MR) is a method that can overcome problems of unmeasured 

confounding and reverse causation typical of conventional observational epidemiology.87 In a robust 

study, MR allows causal inference through the use of genetic variants as proxies for modifiable risk 

factors or health outcomes.88 MR has multiple advantages, it uses genetic variants which are 

randomly allocated at conception so they can be exploited to simulate randomisation.89 Genetic 

variants are not influenced by behavioural or environmental factors and are far less susceptible to 

bias from reverse causation. Additionally, the effects are equivalent to lifetime differences, reducing 

issues relating to transient fluctuations in exposures.83 Chapter 2 will discuss genetic epidemiology, 

GWAS and Mendelian Randomisation in detail.  

1.9 Thesis overview and research questions 

This thesis aims to explore both physical and mental extra-pulmonary co-morbidity associated with 

reduced lung function, COPD, PRISm, and asthma. 

Firstly, MR was used to determine if reduced lung function or COPD has a causal effect on extra-

pulmonary diseases and traits: Alzheimer’s Disease, cardiovascular disease, and cognitive function. 

Secondly, to surmount limitations in current PRISm research, I utilised UK Biobank to undertake a 

traditional epidemiological study of PRISm and its extra-pulmonary associations. Genetic 

epidemiology was used to gain a better understanding of whether PRISm is a heritable trait and any 

underlying pathogenesis for PRISm and its co-morbidities.  

Lastly, the COVID-19 pandemic offered an important opportunity to investigate the effect of asthma 

on mental health during social isolation measures. 
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The research questions of this thesis are; 

1. Can genetic epidemiology be used to determine the extra-pulmonary effects of lung function 

and COPD? Specifically; 

a. Does reduced lung function or COPD cause an increased risk of Alzheimer’s disease? 

b. Does reduced lung function or COPD cause an increased risk of cardiovascular 

disease? 

c. Does reduced lung function of COPD reduce general cognitive function? 

2. What is the prevalence, co-morbidity, and mortality of PRISm in a large generalizable 

cohort? 

3. Is PRISm heritable, and can genetic studies give an insight into the pathogenesis of PRISm 

and its co-morbidities? 

4. Is asthma associated with worse mental health and well-being during COVID-19 lockdown  
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CHAPTER 2. GENETIC EPIDEMIOLOGY METHODS 

2.1 Genetic background 

The human genome consists of 23 pairs of chromosomes that are randomly assigned at conception 

from the biological parents. Chromosomes are constructed of condensed deoxyribonucleic acid 

(DNA). DNA is a sequence of pairs of nucleic acids, which are made of a nucleobase; cytosine (C), 

guanine (G), adenine (A), and thymine (T), combined with a sugar and a phosphate group. Humans 

have approximately 3 billion pairs of DNA. Although ~99.9% of the DNA sequence between humans 

is identical, there remain >15 million places where the nucleobase differs at a specific location in 

more than 1% of the population.90 These locations are called Single Nucleotide Polymorphisms 

(SNPs) and are known by their reference number or by their genomic position (Chromosome: 

position), for example, rs11113127 or 12:107228443. The different nucleobase possibilities at the 

SNP are the different alleles e.g. an A allele or a G allele.91 Humans have ~21,000 genes that are 

made of sequences of DNA that encode the synthesis of rib0nucleic acid (RNA) or proteins. Different 

alleles can change the function of a gene, these are known as mutations and form the basis of 

genetic variation. More than 50,000 associations between alleles and common diseases or traits 

have been discovered by GWAS.92  

2.2 GWAS 

GWAS aim to identify SNPs associated with phenotypic variation. They can be performed in either a 

case-control population e.g. COPD vs control, or with continuous traits e.g. FEV1. Participants donate 

a DNA sample, and alleles at SNPs are detected by a SNP array.  Imputation can be performed to 

predict alleles at SNPs that haven’t been directly tested for by the SNP array. GWAS are performed 

by conducting a regression analysis on the alleles at each SNP to determine if they are associated 

with a disease or trait. GWAS usually test millions of SNPs to increase the likelihood of finding a 

result in a candidate free approach There is a high potential for false positive results due to repeated 

testing, so stringent p-value thresholds are used, typically p <5-8.93 The associated effect size of each 
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SNP discovered is usually small, so large numbers of individuals are tested to increase power. GWAS 

using sample sizes of over a million individuals are now being reported.94,95  

2.3 MR method 

MR uses genetic variants for modifiable health traits as instrumental variables (IV) to allow for causal 

inference, if all the MR assumptions are met.88 SNPs discovered in GWAS can be used as IV’s. For 

example, in a population of cases and controls for coronary artery disease, if SNPs that reduce FEV1 

are found more commonly in those with coronary artery disease, then reduced FEV1 has a causal 

effect on coronary artery disease in a robust MR study. An effect size can then be calculated. 

2.3.1 Effect Estimate 

Different statistical methods are used to calculate the causal effect depending on the number of 

exposure SNPs and whether the exposure and/or outcome is binary or continuous.89 As shown in 

Figure 6, when using only one SNP a simple ratio can be calculated which is the regression 

coefficient of the SNP on the outcome (βẑ y) divided by the regression coefficient of the SNP on the 

exposure (βz^x).96  
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Figure 6. A DAG showing how to calculate the effect of an exposure on an outcome 

 

 

This figure shows a DAG for an MR study, and demonstrates how the effect of an exposure on an outcome is 

calculated 

In this thesis I used multiple SNPs as instruments, so the primary method used was Inverse-Variance 

Weighted (IVW) estimate. This method combines the ratio estimates and standard errors for all the 

SNPs in a fixed-effects meta-analysis model.97  
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2.3.2 MR assumptions 

For the model to work the IV must adhere to three assumptions, depicted in Figure 7.98 

Figure 7. DAG to demonstrate the assumptions of IV analysis 

 

 

The DAG in this figure demonstrates the three assumptions of an IV analysis, as is used in MR 

Assumption 1. The IV must be strongly associated with the exposure. The relevance assumption. 

Assumption 2. The IV-outcome association is not confounded. The independence assumption. 

Assumption 3. The IV must only affect the outcome via the exposure. The exclusion 

restrictionassumption. 

 

Assumption 1 can be directly tested by using SNPs that are known to be strongly associated with the 

exposure from GWAS (p-value <5-8) and assessing the strength of the SNPs as instruments, for 

example with an F statistic.99 If a SNP is affected by genetic confounding e.g. population 

stratification, then assumption 2 is violated. If a SNP is violating assumption 3 there is horizontal 

pleiotropy. SNPs can be excluded if they are strongly associated with known confounders, but there 
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can be unknown/unmeasured confounding, so it is not possible to directly test for assumption 2 or 

3.  

2.3.3 MR Sensitivity analyses  

To avoid horizontal pleiotropy a biological method can be used, where only SNPs that have firm 

biological mechanisms for association with the exposure can be used, although this is not always 

practical, and pleiotropy could still be present. Pleiotropic SNPs may be seen as outliers, when SNPs 

exhibit a larger influence on the outcome than would be expected given the effect on the exposure. 

Statistical methods can identify and remove outlier SNPs causing horizontal pleiotropy. MR-Egger 

and other methods to detect horizontal pleiotropy are described below. Heterogeneity (the 

variability in causal estimates obtained for each SNP) is an indication of a potential violation of 

assumptions. This can be calculated and assessed with a Q statistic.100 MR-Radial can be used which 

identifies and removes outlier SNPs that contribute more to heterogeneity than would be 

expected.101  
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A variety of visual plots can be used to identify outliers. A single-SNP plot, as shown in Figure 8, 

allows comparison of each SNPs effect size for the exposure on the outcome.  

Figure 8. Single-SNP analysis plot with obvious outlier 

 

Figure 8 shows that SNP rs1249096 at the top of the y axis has a far larger effect size for the exposure on the 
outcome than the other SNPs and has a very large standard error. Therefore, it is an outlier, and a repeat 
analysis without it should be performed.  
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A scatter plot plots the SNPs effect on the exposure on the x-axis, and the same SNPs effect on the 

outcome of the y axis. This can also show outliers as in Figure 9. 

Figure 9. Scatter plots showing each SNPs effect 

 

In Figure 9 the red arrow indicates a SNP having a much smaller effect on the exposure than the other SNPs 
but is having a comparatively large effect on the outcome so could be considered an outlier (effect on the 
outcome due to an alternate pathway). 

 

Other plots used include leave-one-out analysis, which is a forest plot of the IVW after selectively 

removing one SNP at a time. This will identify if individual SNPs are responsible for large changes in 

the causal estimate.96 A funnel plot of instrument strength versus causal effect can be used to see if 

weak instruments are driving the causal estimate.102 

IVW assumes that all variants are valid, so sensitivity analysis can be performed with MR-Egger, 

weighted median, and weighted mode that provide robust estimates even if this assumption is 

violated. As IVW assumes all instruments are valid, the regression intercept is constrained to zero, as 

indicated by the red line in Figure 9. MR Egger also estimates the causal effect from the gradient of 

the slope from a weighted regression of IV-outcome on IV-exposure, but the intercept is the average 

pleiotropic effect of the SNPs, and so is not constrained to zero.103 The MR-Egger gradient can be 

seen as the blue line in Figure 9. This makes a more robust estimate of the causal effect accounting 

for potential horizontal pleiotropy. A weighted median estimate is robust when up to 50% of genetic 
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variants are invalid IV’s and violation of assumptions 2 and 3 are allowed.96 Weighted mode is robust 

when the largest number of similar estimates comes from valid instruments, even if the majority of 

instruments are invalid.104 Steiger filtering can be used which removes SNPs that that may be 

affecting the exposure via a pathway that uses the outcome, ensuring the correct direction of effect 

is being examined i.e. SNP→Exposure→Outcome.105 All these methods can be used in a MR paper to 

ensure the most reliable results. 

2.3.4 One and Two sample MR 

The SNP effect on the exposure and outcome can be measured in the same sample, which is known 

as one-sample MR. When the SNP effect on the exposure is measured in one sample, and the SNP 

effect on the outcome is measured in another sample, this is known as two-sample MR (2SMR).102 It 

is not always possible to perform one-sample MR studies, if genotyped cohorts have not measured 

both the exposure and the outcome in the sample population. For this reason, only 2SMR is used in 

this thesis. 

2.4 Benefits of MR 

If the assumptions of MR are met, then it can be used to determine the causal effect of an exposure 

on an outcome, avoiding bias from residual confounding.87 SNPs are not influenced by behavioural 

or environmental factors which minimizes reverse causation.88 Additionally, the effects are 

equivalent to lifetime differences, reducing issues relating to transient fluctuations in exposures.83 

Genetic variants are randomly allocated at conception, so can be used to simulate randomisation.89 

If genetic and phenotypic data already exists, an MR study can be conducted quickly and cheaply.83   
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CHAPTER 3. EXAMINING THE POSSIBLE CAUSAL RELATIONSHIP 
BETWEEN LUNG FUNCTION, COPD AND ALZHEIMER’S DISEASE: A 
MENDELIAN RANDOMISATION STUDY 

 

3.1 Publication and contributions 

This chapter has been published. 

Examining the possible causal relationship between lung function, COPD and Alzheimer's disease: a 

Mendelian randomisation study. Daniel Higbee, Raquel Granell, Esther Walton, Roxana Korologou-

Linden, George Davey Smith, James Dodd. BMJ Open Respir Res. 2021 Jul;8(1):e000759.  

DH and JD developed the concept. DH and RG designed the data analysis plan. EW provided advice 

regarding code for the analysis. RKL provided the outcome GWAS with UK Biobank cases removed, 

and advice regarding Steiger filtering. DH performed the data analysis and wrote the paper. GDS and 

JD provided supervision. 

3.2 Introduction 

Impairment of cognitive function is a well described extra-pulmonary complication of COPD, with a 

reported prevalence ranging from 10-61%. Cognitive impairment in COPD is associated with greater 

disability,42 poorer medication compliance,106 and risk of exacerbation and mortality.42 Cognitive 

function is made up of different domains including motor skills and memory. When multiple 

cognitive domains are impaired and general function is permanently impaired, dementia is 

diagnosed. Around 25% of older adults with dementia also have COPD.45 Poor pulmonary function in 

early life has been associated with increased odds of dementia later in life, even after adjustment for 

smoking.107  

Alzheimer’s disease (AD) is the most common type of dementia,26 its association with COPD is less 

well defined than general cognitive ability, but reports of a potential link between COPD and AD 

were first described nearly 30 years ago.27 Large retrospective observational case-control cohorts 
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have reported increased risk of AD in patients with both COPD and reduced lung function.28,29  For 

example, Lutsey et al reviewed hospitalisation codes in the Atherosclerosis Risk In Communities 

Study for AD-related outcomes and reported an Odds Ratio (OR) of 1.24 (0.97–1.60) for AD-type 

dementia or mild cognitive impairment (MCI) in patients with COPD and OR 1.79 (1.24–2.58) for 

those with a restrictive impairment compared to controls.29 If lung function and COPD have a causal 

effect on the risk of AD, then they could be modifiable risk factors. 

My objective was to use MR to investigate if there is any evidence of a causal effect between the 

exposures of reduced lung function and liability to COPD, with the outcome of Alzheimer’s disease. 
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3.3 Methods 

3.3.1 Lung Function 

I used data from the Shrine et al. GWAS as it is the largest currently available lung function GWAS in 

terms of both sample population size (N = 400,102) and number of reported SNPs (279 genome-

wide significant SNPs, p<5×10−9).75 The Shrine et al GWAS discovered SNPs for Forced Expiratory 

Volume in 1 second (FEV1), Forced Vital Capacity (FVC), FEV1/FVC ratio, and Peak Expiratory Flow 

(PEFR). 140 of the SNPs were previously reported and explained 5.0%, 3.4%, 9.2%, and 4.5% of the 

estimated heritability of FEV1, FVC, FEV1/FVC, and PEFR, respectively. The 139 new signals reported 

explained an additional 4.3%, 3.3%, 3.9%, and 3.3% of the estimated heritability, respectively. The 

SNPs discovered were strongly associated with risk of COPD (p= 6.64x10-63), with an Odds ratio of 

1.55 (1.47-1.63) for COPD with each standard deviation of the risk score.75,108 This satisfies the first 

assumptions of MR analysis, that the IV is strongly associated with the exposure. Further details of 

the study population can be found in the reference.75 

3.3.2 Liability to COPD 

I used 82 SNPs associated with COPD, as identified in Sarkonsakaplat et al. case-control GWAS.109 

This study was performed in 35,735 cases and 222,076 controls via the meta-analysis of 25 studies. 

COPD was defined by Global Initiative for Chronic Obstructive Lung Disease criteria; FEV1/FVC 

<0.7 and FEV1 <80% predicted. SNPs discovered explained up to 7% of phenotypic variance. 

Further details of the study population can be found in the reference.109  

COPD is a binary trait; it is either present or not. As this was a two sample MR study, it is not 

known if the participants in the outcome GWAS had COPD or not. Therefore, I can only say that 

MR study demonstrates evidence of the effect of liability to COPD on Alzheimer’s disease, rather 

than COPD itself. 

80% and 77% of the Shrine et al and Sarkonsakaplat et al GWAS samples respectively were from the 

UKBiobank.68 As described in 1.5.2, the UK Biobank is a large prospective cohort study where 
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>500,000 participants were recruited from 2006 – 2010 in the United Kingdom (54% female). Pre-

bronchodilation lung function testing was performed by trained healthcare staff.  

3.3.3 Alzheimer’s disease  

I used data from a meta-analysis of the International Genomics of Alzheimer’s disease (IGAP) 

consortium,110 Alzheimer’s Disease Sequencing Project (ADSP),111 and Psychiatric Genomics 

Consortium (PGC) totalling 24,807 AD cases and 55,058 controls.112,113 All cases had a clinical 

diagnosis of AD. Some participants of the ADSP cohort were previously also included in IGAP, so 

ADSP individuals that were duplicates in IGAP and ADSP were excluded. This was based on the 

comparison of individual level genetic data.  

There was no sample overlap between the exposure and outcome samples. All participants were of 

European ancestry. 

3.3.4 Statistical Analysis 

Statistical analysis was done using R Studio version 3.5.1. and the MRCIEU/TwoSampleMR R 

package.114  

For all exposures SNPs LD-clumping was performed using European reference population and the 

ieugwasr:ld_clump tool. (kb = 10000, r2 0.001). This filters SNPs that are close to each other (within 

10000 base pairs) and SNPs that are highly correlated with one another (r2 0.001), retaining the most 

significant SNP (lowest p-value), and removing those less significant. This ensures that the SNPs used 

are all independent signals. Palindromic SNPs (i.e. A/T and C/G SNPs) with intermediate allele 

frequencies were excluded to ensure the correct effect allele is being used. The remaining SNPs 

were harmonised.98 This ensures that the effect allele from the exposure GWAS is the same as the 

allele being examined in the outcome GWAS. Steiger filtering was performed to remove SNPs that 

explained more variance in the outcome than the exposure.105  This ensures the the correct direction 

of effect (exposure to outcome) is being examined. F-statistics of the SNPs used in the analysis were 
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calculated (F statistic = beta2/standard error2). The higher the F-statistic the lower the chance of 

weak instrument bias, and therefore the lower the chance of violating the first MR assumption.99 An 

F-statistic of <10 would indicate a weak instrument. 

3.3.5 Main Mendelian Randomisation Analysis 

The analysis methods have been described in 2.3.3. Inverse Variance Weighting (IVW) was used for 

the main effect estimate. To account for the possibility of horizontal pleiotropy (SNPs influence 

exposure and/or outcome through independent pathways), MR Egger was performed. To minimise 

the effect of unbalanced instruments on an overall estimate of the mean, weighted median and 

mode MR methods were performed. To assess for horizontal pleiotropy a funnel plot was made by 

plotting the effect against its precision (beta against standard error). To ensure the results were not 

due to outliers with a large effect, a leave-one-out analysis was performed by re-estimating the total 

effect after sequentially excluding one SNP at a time and a single-SNP analysis, where the effect of 

each SNP was individually assessed via IVW analysis and represented in a forest plot.  

Heterogeneity (the variability in causal estimates obtained for each SNP) is an indication of the 

potential violation of assumptions. This was calculated and assessed with a Q statistic.  

3.4 Results 

3.4.1 Lung function traits as exposure (Shrine et al GWAS75) 

After clumping, extracting SNPs from outcome GWAS, Steiger filtering, and removal of palindromic 

SNPs, 131 SNPs were available for analysis. A flow chart is shown in Figure 10. F-statistic for lung 

function GWAS exposures were all >10 making weak instrument bias unlikely. The F-statistics for all 

lung function traits combined was = 114, FEV1 = 72, FVC = 75 and FEV1/FVC = 150.75 
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Figure 10. Flow Chart of SNPs used in analysis of all lung function traits effect on Alzheimer's 
Disease 

 

This flow chart shows the exposure SNPs being clumped, harmonised and Steiger filtered prior to analysis 

  

Minimal evidence for a causal effect of lung function (all traits combined) on Alzheimer’s disease was 

found, (IVW Odds Ratio [OR]:1.02 per SD; 95% CI: 0.91-1.13; p-value = 0.68). Figure 10 shows these 

results in a scatter plot. This result was further confirmed in a sensitivity analysis using both 

weighted median (OR:1.01 per SD; 95% CI:0.86-1.19, p-value 0.81), and weighted mode MR (OR 0.99 

per SD;95% CI 0.78-1.19), p-value 0.81). The MR-Egger causal estimation produced similar results 

with an OR 1.05 per SD (95% CI 0.79-1.34, p-value 0.71). The confidence interval of the MR-Egger is 

wider than that of IVW, consistent with the lower statistical power of this test.   
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Figure 11. Scatter plot of the SNP-effect on lung function trait and SNP-effect on Alzheimer’s disease 

 

Figure 10 plots each individual SNP-exposure effect against SNP-outcome with the coloured lines representing each 
statistical test. Increasing lung function (exposure) does not have a consistent effect on Alzheimer’s disease (outcome). This 
shows no effect of lung function on Alzheimer’s disease. MR Egger intercept is close to zero indicating no unbalanced 
directional pleiotropy. 

 

Table 1 shows that these results were consistent when analysing lung function traits FEV1, FVC, and 

FEV1/FVC individually with no good evidence of a causal association on Alzheimer’s disease with 

confidence intervals crossing 1 for all statistical tests.   
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Table 1. Two-sample MR results of lung function traits75 effect on risk of Alzheimer’s disease112 

  
Lung Function Trait (Exposure) 

 

    
FEV1, FVC, 
FEV1/FVC, PEF 

FEV1 FVC FEV1/FVC 

  No. SNPs used 131 42  46 73 

IVW 

OR of AD per SD  1.02  1.04  1.08  0.99  

(95% CI) (0.91 – 1.13) (0.82 – 1.32) (0.85 – 1.37) (0.88 – 1.13) 

p-value 0.68 0.73 0.51 0.97 

Q_p-value* 0.26 0.30  0.19 0.71 

Weighted 
Median 

 OR per SD  1.01  1.15   1.14  0.95  

(95% CI) (0.86 – 1.19) (0.82 – 1.61) (0.83 – 1.58) (0.79 – 1.15) 

p-value 0.81 0.39  0.39 0.62 

Weighted 
Mode  

OR per SD  0.99  1.07   1.04  0.97  

(95% CI) (0.78 – 1.26) (0.60 - 1.90) (0.61 – 1.78) (0.74 – 1.26) 

p-value 0.97 0.80 0.86  0.84 

MR-
Egger  

OR per SD  1.05  1.22 0.97  0.95 

(95% CI) (0.79 – 1.34) (0.57 - 2.59) (0.36 – 2.62) (0.69 – 1.31) 

p-value 0.71 0.59  0.96 0.77 

 
*A test for heterogeneity. If this was <0.05 it would suggest heterogeneity 

OR – Odd ratio; CI – Confidence Interval; IVW – Inverse Variance Weighting  

 

A single-SNP analyses was used to determine the effect of each lung function SNP on the odds of 

Alzheimer’s disease (Figure 11). The SNP rs2070600 may be considered as an outlier due to its 

comparatively large effect on both lung function and AD. Polymorphisms in this SNP have been 

described as having a weak effect on Alzheimer’s disease risk, which would violate the third MR 

assumption .115 However, despite excluding this SNP from the analysis the results were similar (e.g. 

see leave-one-out plot in Figure 12).  
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Figure 12. Single SNP analysis of lung function traits on Alzheimer’s disease 

 

Single SNP plot showing no obvious outliers. 
 

Figure 13. Leave-one out analysis of lung function on risk of Alzheimer’s’ Disease 

 

There is no meaningful change in the effect estimate one leaving out each SNP sequentially. This means the 
estimate is not being driven by a single outlier causing horizontal pleiotropy 
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Each SNP beta was plotted against its inverse standard error (Figure 13) producing a funnel shape 

indicating no heterogeneity. In addition to these visual tests, there was little evidence of 

heterogeneity using a Q statistic when lung function traits were combined or assessed individually 

(Table 1. Q_p-value >0.51). MR-Egger intercept was <0.001, visually displayed in Figure 10, indicating 

there was no unbalanced horizontal pleiotropy.  

Figure 14. Funnel plot. SNPs affecting lung function have their effect plotted against the inverse of their 
standard error 

 

As the plot if funnel shaped it indicates to issues with horizontal pleiotropy 

3.4.2 COPD as exposure (Sakornsakolpat GWAS109) 

After clumping, extracting SNPs from outcome GWAS, Steiger filtering, and removal of 

palindromic SNPs, 53 SNPs for liability to COPD were available for analysis in the Alzheimer’s 

outcome GWAS. The remaining SNPs had an F-statistic of 54, making weak instrument bias unlikely. 

Results are displayed in Table 2.  
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Table 2. Two-sample MR results of COPD194 effect on risk of Alzheimer’s disease206 

  COPD 

  No. SNPs used 53 

IVW 

OR of AD per SD (95% CI) 0.97 (0.92 – 1.03) 

p-value 0.40 

Q_p-value 0.57 

Weighted 
Median 

 OR per SD (95% CI) 0.97 (0.90 – 1.05) 

p-value 0.52 

Weighted 
Mode  

OR per SD (95% CI) 0.96 (0.86 – 1.08) 

p-value 0.56 

MR-Egger  
OR per SD (95% CI) 1.10 (0.93 – 1.31) 

p-value 0.23 

 

OR – Odd ratio; CI – Confidence Interval; IVW – Inverse Variance Weighting 

There was minimal evidence for an effect of liability to COPD on the risk of Alzheimer’s disease (IVW 

OR: 0.97 per SD; 95% CI: 0.92 – 1.03; p-value 0.40). This result was further confirmed in the 

sensitivity analysis using both weighted median (OR: 0.97 per SD; 95% CI: 0.90-1.05; p-value = 0.52), 

and weighted mode MR (OR: 0.96 per SD; 95% CI: 0.86-1.08; p-value = 0.56). The MR-Egger causal 

estimation produced an OR 1.11 per SD (95% CI: 0.93-1.31; p-value 0.2), the only test to show a 

direction of effect of increasing COPD causing an increased risk of Alzheimer’s disease. There was no 

evidence of heterogeneity, with a Q-p-value 0.57.  
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3.5 Discussion 

3.5.1 Evidence before this study 

These results indicate that there is minimal evidence of a causal effect of reduced lung function or 

liability to COPD on the risk of Alzheimer’s disease. This contrasts with two large observational 

studies,28,29 which report a strong association between COPD and Alzheimer’s disease. The observed 

associations may be due to unmeasured confounding by risk factors common to both COPD and 

Alzheimer’s disease such as smoking, physical inactivity, social deprivation, and lower educational 

attainment.116  

Apolipoprotein e4 allele is the biggest risk factor for Alzheimer’s disease whereas it is thought that 

COPD affects cognition via vascular effects. There is evidence that COPD and reduced lung function is 

associated with micro and macrovascular damage that could mediate the relationship.46,117,118 

Different causes of dementia can be hard to differentiate. The observational studies may have 

inadvertently included other forms of dementia other than Alzheimer’s disease, such as vascular 

dementia. Vascular dementia may be causally linked to COPD and lung function, but this outcome 

was not included in the analysis which was restricted to Alzheimer’s disease only. 

Cognitive dysfunction and Mild Cognitive Impairment are well described in COPD.45 It may be that 

this association is causal, but that patients do not progress from these states to Alzheimer’s disease 

due to their lung disease.  

3.5.2 Impact of this study 

This analysis uses two-sample MR to explore a causal association between lung function, COPD, and 

Alzheimer’s disease. The increasing incidence of Alzheimer’s disease in Western society has been 

described as an epidemic.119 COPD is responsible for 5% of global disability-adjusted life years and 

5% of total deaths.120 Consequently, prevention and treatment of both COPD and Alzheimer’s 

disease is a global health priority.  Although there have been efforts to search for causal mechanisms 

linking the two diseases, this analysis using multiple means of assessing causation would suggest 
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scientific attention and health prevention resources may be better focused on overlapping risk 

factors such as smoking, diet, and physical activity,121,122 rather than attempts to reduce risk of AD by 

improving lung function or reducing liability to COPD alone.  

 

3.5.3 Strengths and Limitations 

I used a large number of SNPs that are strongly associated with lung function and COPD, that were 

discovered in large samples using stringent significance thresholds.75,109 A large number of exposure 

SNPs were removed due to clumping and more were removed because they were not found in the 

outcome GWAS. At the time of the original study, I did not check for proxies for exposure SNPs not 

found in the outcome GWAS. For my thesis minor corrections, I have repeated the analysis using 

proxies r2≥0.8. This has not changed interpretation of the results for any analysis e.g. for all lung 

function traits with proxies IVW OR: 0.98 (95% CI: 0.87 – 1.09, p-value 0.72). 

MR Steiger was used in the main analysis, although it should be used as a sensitivity test. As per 

Figure 10, only 1 SNP was removed with MR Steiger, so it is unlikely to have caused a meaningful 

change in the estimates in this study. MR Steiger is a useful test to ensure the correct direction of 

SNP effect, it has limitations.105 MR Steiger may provide the wrong direction of causality for several 

reasons leading to SNPs being falsely removed. Unmeasured confounding can have large influences 

on inferring causal direction, which can adversely affect the MR Steiger. Measurement error of the 

phenotypes can cause MR Steiger to provide the wrong direction of causality. If there is a large 

imbalance of power between the exposure and outcome GWAS, it can falsely be interpreted by MR 

Steiger as the wrong direction of effect. 

It is important to ensure that the assumptions of MR are met when dealing with SNPs for complex 

phenotypes like lung function and COPD. None of the sensitivity tests provided strong evidence for a 

violation of the MR assumptions. The 15q25 locus is known to have strong associations with smoking 

behaviour, which could bias the results.123 When reviewing the SNPs in the 2SMR analysis, only 6 of 



56 
 

the 279 SNPs are in chromosome 15, and none of them are in the region of concern.75 When 

reviewing the COPD GWAS, only 4 of the 82 SNPs are in chromosome 15, and only one SNP from the 

COPD GWAS is in this locus (rs55676755).109 However, this SNP was not found in the outcome GWAS 

so was not included in the analysis. Therefore, none of the SNPs used were from the 15q25 locus. 

COPD is a clinical diagnosis with set spirometric thresholds, whereas in the discovery GWAS a 

diagnosis of COPD was made based on spirometric criteria alone (i.e.. by dichotomising continuous 

traits). As discussed in the methods, COPD is a binary trait, so the SNPs confer liability to COPD. As 

this is a 2SMR study, it is not possible to know how many participants in the outcome population had 

COPD. The dichotomisation of continuous traits in MR studies can make interpretation of the causal 

estimate less reliable, but MR has still been shown to be a valid test of the causal null hypothesis for 

a binary exposure.124 

Survivor bias occurs when selection into a study is dependent patients being alive to enable 

recruitment. Additionally selective drop out due to death of certain populations under follow up can 

lead to bias. This bias should be considered in studies involving potentially fatal diseases of later 

life.125 Potentially, patients with COPD would be less likely to be recruited to a GWAS, biasing the MR 

towards a null result. Observational studies performed by analysing health records may be less likely 

to be affected by this. It is not possible to directly test for this in an MR study.  

As the SNPs were discovered in populations of those with European ancestry, the results may not be 

generalisable to other populations.  

 

3.5.4 Conclusions 

No strong evidence that lung function and liability to COPD are causally associated with an increased 

risk of Alzheimer’s disease was found in this study. Previous observational studies showing an 
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association between impaired lung function or COPD and Alzheimer’s disease are most likely biased 

by unmeasured confounding. 
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CHAPTER 4. LUNG FUNCTION AND CARDIOVASCULAR DISEASE: A 
TWO-SAMPLE MENDELIAN RANDOMISATION STUDY 

 

4.1 Publications and contributions 

 

This chapter has been published. 

Lung Function and cardiovascular disease: a two-sample Mendelian randomisation study. Daniel 

Higbee, Raquel Granell, Eleanor Sanderson, George Davey Smith, James Dodd. European Respiratory 

Journal. 2021 Sep 9;58(3)2003196. 

DH and JD developed the concept of the study. DH and ES developed the data analysis plan. Dh 

performed the data analysis. GDS and JD provided supervision. 

4.2 Introduction  

 

Impaired lung function measures such as FEV1 and FVC are strongly associated with extra-pulmonary 

disease and are reported as independent predictors of cardiovascular disease.30 Although research 

has often focused on the contribution of FEV1 and obstructive airways disease to cardiovascular risk, 

FVC is a stronger predictor of survival, and appears to add value to the Framingham Risk Score for 

prediction of mortality.31,32 However, it is unclear if there is a causal link between lung function and 

extra-pulmonary disease, or if the association is due to confounding factors such as cigarette 

smoking.  

 

Observational studies have reported that COPD, decreased FEV1, FVC and FEV1/FVC ratio are all 

associated with an increased risk of coronary artery disease.33,34 However results are inconsistent, 

with some studies reporting no association,35 or that the association is limited to those with 
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abnormally high blood pressure.36 There is also evidence suggesting that COPD and impaired lung 

function are associated with increased risk of stroke.37  

 

Impaired lung function and associated lung diseases could have a direct detrimental effect on 

cardiovascular health via different biological pathways including systemic inflammation or oxidative 

stress.38,126 However the mechanisms may vary between different lung function traits.127 

 

My objective was to determine if impaired lung function causally increases the risk of two 

cardiovascular diseases, coronary artery disease and stroke.  
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4.3 Methods  

4.3.1 Exposure – Lung function traits, Shrine et al. preliminary analysis 75 

 

For the initial analysis I used data from the largest currently available lung function GWAS, by Shrine 

et al. to undertake a preliminary 2SMR analysis. The Shrine et al. GWAS reported 279 genome wide 

significant SNPs (p<5×10−9) in a European ancestry population and was adjusted for age, age2, height 

and smoking status. Full details are provided elsewhere.75 

4.3.2 Outcomes 

4.3.2.1 Coronary artery disease 

I used the largest published GWAS of coronary artery disease. The CARDIOGRAMplusC4D GWAS 

used 60,901 cases of coronary artery disease (CAD) and 123,504 controls, 77% of whom were of 

European ancestry.128 CAD was defined as a history of myocardial infarction, acute coronary 

syndrome, chronic stable angina, or coronary stenosis of >50%.  

4.3.2.2 Ischaemic stroke 

For stroke I used MEGASTROKE GWAS based on 34,217 cases of acute ischaemic stroke and 406,111 

controls. This was the largest published GWAS of stroke. All participants were of European 

ancestry.129  There was no overlap between the exposure and outcome population samples. 

4.3.3 Statistical Analysis 

 

Statistical analysis was done using R Studio version 3.6.1 with MRCIEU/TwoSampleMR and 

MRInstruments packages.105,130  

F-statistics were calculated to assess exposure instruments strength.99 Linkage disequilibrium 

clumping (LD-clumping) and Steiger filtering were performed.105 Duplicate SNPs and palindromic 
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SNPs were removed, and all SNPs were harmonised. Proxies were identified when CAD was the 

outcome.  

4.3.4 Main Mendelian Randomisation Analysis 

Inverse Variance Weighting (IVW) was used for main effect estimate for 2SMR analyses. Weighted 

median, weighted mode and MR Egger were all used as sensitivity analysis.  
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4.4 Preliminary Results  

4.4.1 Shrine et al. preliminary analysis 

Analyses showed lung function had weak evidence of an effect on both the risk of coronary artery 

disease (Table 3) and ischaemic stroke (Table 4), with variable direction of effect and wide 

confidence intervals. 

Table 3. Results of decreasing lung function traits on risk of coronary artery disease 

    FEV1, FVC, 
FEV1/FVC, 

PEF 

FEV1 FVC FEV1/FVC 

No. 
SNPs 
used 

  173 60  67 93 

IVW OR per SD  0·95  1·14 1·01  0·90  
(95% CI) (0·88 – 1·04) (0·94 – 1·37) (0·86 – 1·18) (0·82 – 0·99) 

Q_p-value* 3.7×10-17 3.07×10-8  3·12×10-6 1·1×10-6 

Weighted 
Median 

 OR per SD  0·95 1·24   0·98  0·96  
(95% CI) (0·86 – 1·05) (1·01 – 1·53) (0·82 – 1·16) (0·85 – 1·07) 

Weighted 
Mode  

OR per SD  0·92  0.80  0·93  0·96  
(95% CI) (0·78 – 1·08) (0·43 – 1.05) (0·66 – 1·31) (0·81 – 1·15) 

MR-
Egger  

OR per SD  0·90  1·06  0·94  1.10 
(95% CI) (0·72 – 1·12) (0·57 - 1·96) (0·51 – 1·74) (0·86 – 1·42) 

Table 3 shows the Odds Ratio of coronary artery disease per SD decrease in lung function traits 
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Table 4. Results of decreasing lung function traits on risk of ischaemic stroke 

    FEV1, FVC, 
FEV1/FVC, 

PEF 

FEV1 FVC FEV1/FVC 

No. 
SNPs 
used 

  171 58  77 93 

IVW OR per SD  1·05 1·01  1·04  1·04  
(95% CI) (0·98 – 1·13) (0·87 – 1·18) (0·91 – 1·19) (0·95 – 1·13) 

Q_p-value 2.2×10-5 0.005  0.04 0.01 
Weighted 
Median 

 OR per decrease 
SD  

1·05  1·05   1·11 1·02  

(95% CI) (0.95 – 1·64) (0·87 – 1·28) (0·93 – 1·32) (0·91 – 1·14) 
Weighted 

Mode  
OR per SD  1·08  1·07   1·06  1·02  

(95% CI) (0·93 – 1·26) (0·77 - 1·51) (0·77 – 1·46) (0·85 – 1·12) 
MR-
Egger  

OR per SD  1·13  0·91  1·47  1·05  
(95% CI) (0·93 – 1·36) (0·55 - 1·49) (0·87 – 2·48) (0·84 – 1·31) 

Table 4 shows the Odds ratio of ischaemic stroke per SD decrease in lung function traits 

4.5 Collider bias 

I was surprised to find no good evidence of an effect of lung function on cardiovascular disease given 

the wealth of observational data suggesting a strong association. It was suggested that collider bias 

could be influencing the results. 

GWAS for lung function and COPD are often adjusted for heritable covariates such as height, 

smoking, and body mass index (BMI). These factors are also covariates for other disease, including 

cardiovascular disease. Adjustment of covariates in GWAS has been shown to affect the SNP-

exposure estimate leading to bias in MR studies. Figure 14 and legend explain some possible 

pathways.  
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Figure 15. Directed acyclic graph demonstrating possible pathways leading to bias 

 

Smoking is used in this example, but it would be true of other heritable covariates, such as height or BMI. 
Figure 14 shows how adjusting for smoking can lead to SNP being incorrectly identified as having an 
association with lung function, as well as biasing the estimate of a SNPs association with lung function if the 
SNP was associated with both smoking and lung function 

 

SNP 1 does not have a direct effect on lung function. However, it has an indirect effect via smoking. 

Smoking and lung function have unmeasured common causes. Therefore, smoking is a collider of the 

path of SNP 1 and lung function (SNP 1 → Smoking ← Unmeasured common causes → Lung 

function). Adjusting on a collider opens the path on the collider, which means that adjusting for 

smoking in the lung function GWAS could wrongly identify SNP 1 as having a direct effect on lung 

function.  

SNP 2 has a direct effect on lung function, but also an indirect effect via smoking. Adjusting for 

smoking in the lung function GWAS will cause a biased estimate for the direct effect of SNP 2 on lung 

function (as it would be a combination of the true direct effect and the bias from the collider 

adjustment of smoking). 

To eliminate the collider bias induced by covariate adjustment, the GWAS would need to be adjusted 

for all measured and unmeasured common causes. Not only is this impractical, but it is impossible as 

by definition some covariates are unmeasured. If there is any residual confounding of the exposure-
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covariate/exposure-outcome/covariable-outcome relationship, then covariate adjustment can bias 

the MR estimate. This is particularly noticeable if there is bias of the covariable-outcome 

relationship. There is a high chance of this in this study where the covariates of height, smoking and 

BMI have a strong effect on cardiovascular disease. The degree of bias will depend on the underlying 

causal structure and can exist in many possibilities beyond what is shown in Figure 14. This 

reference explains in further detail.131 To surmount this issue, a GWAS that has not been adjusted for 

heritable covariates can be used in a multivariable MR model. 

4.5.1 Multivariable Mendelian Randomisation 

Multivariable MR (MVMR) can be used to model the effect of two or more exposures on an 

outcome, as seen in Figure 15. This can be used in situations where a secondary exposure is a 

confounder, collider, mediator, or on the pleiotropic pathway between an exposure and an 

outcome.132 MVMR estimates the direct effect of each exposure in the model, conditional on the 

other exposures. This has the benefit of determining the direct effect of each exposure trait, rather 

than the total effect a pleiotropic SNP may have via multiple exposures. In Figure 15, if non-

multivariable MR was used for the pleiotropic SNP, the causal estimate calculated would be the total 

combined effect of both βMR1 and βMR2. MVMR will estimate the direct effect of each exposure (βMR1 

and βMR2 separately) on the outcome, after conditioning for the other exposure.133  
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Figure 16. DAG demonstrating how MVMR can be used to estimate the direct effect (βMR) of two exposures by 
conditioning their effects 

 

This DAG demonstrates the how MVMR works for a pleiotropic SNP, allowing conditioning for each exposure 
and resulting in a direct effect estimate of each exposure on the outcome 

 

I utilised this to avoid collider bias from using GWAS adjusted for heritable covariates of the 

exposure and outcome described above. I conducted a GWAS of lung function adjusted only for sex 

(sex cannot be a collider) and then used the results in a multivariable model conditioning for the 

covariates height, smoking and BMI. Each SNPs effect on lung function (X1 in Figure 15), is 

conditioned with its effect on the covariate trait (X2). This process occurs vice versa, so each SNP 

used from covariate trait GWAS is conditioned on its effect on lung function. 

This was the first time an MR study had examined lung function in an MVMR model as an exposure 

in this way.   

As MVMR reduces collider bias and gives an estimation of the direct effect of lung function, it is 

more reliable and accurate than the preliminary analysis using the Shrine et al. GWAS. Therefore the 

MVMR analysis should be considered the main analysis.  

4.6 Exposures – MVMR 

To avoid collider bias I required exposure SNPs discovered in GWAS that had not been adjusted for 

covariates. To find suitable exposure SNPs the UKBiobank was used.68 353,315 participants have 
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“best measures” of pre-bronchodilator FEV1 and FVC, measured as absolute values in litres. I 

performed a GWAS on these individuals (adjusting for sex). I also performed a GWAS based on 

55,907 cases of airflow obstruction (defined as FEV1/FVC <0.70) and 297,408 controls (FEV1/FVC 

≥0.70). The SNPs discovered in this unadjusted GWAS were then used in a two-sample MVMR model 

conditioning with the SNPs effect on covariates of exposure and outcome: standing height, BMI, and 

current smoking. SNPs for these covariates were identified in pre-existing GWAS performed in the 

UKBiobank.134  

4.7 MVMR Results 

Using a threshold of p<5×10-8, after quality control and LD-clumping the unadjusted GWAS of lung 

function in UKBiobank identified 360 SNPs for FEV1, 464 SNPs for FVC and 154 SNPs for FEV1/FVC 

<0.70 explaining 3.6%, 4.8% and 0.9% of variance respectively. F-statistic for FEV1 = 38, FVC = 40 and 

Ratio <0.70 = 36. For covariates, F-statistic for standing height, BMI and current smoking were 50, 39 

and 32 respectively.  

4.7.1.1 MVMR results – FVC and FEV1 as exposure, CAD as outcome 

Results are presented as per SD decrease in lung function trait. Analysis showed strong evidence of 

increased risk of CAD per SD decrease in FVC (OR:1.32 per SD; 95% CI; 1.19-1.46) as shown in Table 

5. This effect did not attenuate after conditioning for BMI (1.41; 1.25-1.59) or current smoking (1.32; 

1.19-1.47). The effect size weakened after conditioning for height (1.22; 1.03-1.44) and all 

covariables together (1.44; 1.18-1.76) but strong evidence for an effect remained.  
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Table 5. Multivariable MR results of FEV1 and FVC on Coronary Artery Disease and Ischaemic Stroke using 
UKBiobank lung function GWAS 

Lung 
funct
ion 
trait 

Condition  No. SNPs 
(LF/condition) 

OR (95% CI)* for 
Coronary Artery 

Disease  

No. SNPs 
(LF/condition) 

OR (95% CI)* for 
Ischaemic Stroke 

FEV1 Nil 300/Nil 1.27 (1.12, 1.44) 291/Nil 1.11 (0.97-1.26) 

FEV1 Height 194/744 1.08 (0.89, 1.30) 193/741 1.01 (0.83, 1.22) 

FEV1 BMI 179/645 1.26 (1.08, 1.47) 185/660 1.03 (0.88, 1.20) 

FEV1 Smoking 274/15 1.26 (1.10, 1.44) 273/12 1.11 (0.95, 1.29) 

FEV1 Height/BMI/Smoking 80/432/391/4 1.28 (1.02, 1.61) 85/440/413/3 1.18 (0.94, 1.48) 

FVC Nil 391/Nil 1.32 (1.19-1.46) 384/Nil 1.12 (1.01-1.24) 

FVC Height  272/726 1.22 (1.03, 1.44) 273/728 1.04 (0.88, 1.24) 

FVC BMI 227/599 1.41 (1.25, 1.59) 227/607 1.05 (0.93, 1.19) 

FVC Smoking 359/15 1.32 (1.19, 1.47) 368/11 1.11 (1.00, 1.23) 
FVC Height/BMI/Smoking 105/406/388/4 1.44 (1.18, 1.76) 102/408/399/3 1.05 (0.86, 1.29) 

*Per SD decrease in lung function trait 

OR – Odds Ratio. 95% CI – 95% Confidence Interval. LF – Lung Function 

 

Prior to any conditioning, there was evidence that reduced FEV1 increases risk of CAD (OR: 1.27 per 

SD; 95% CI: 1.12-1.44). However, when conditioning for height the effect size decreases and the 

confidence interval widens (1.08; 0.89-1.30) Table 5. This is probably due to the pleiotropy in the MR 

analysis as the unadjusted GWAS would have discovered SNPs that affected lung function (LF) via 

height. Therefore, there is limited evidence of a direct effect of FEV1 on cardiovascular risk. 

Conditioning for BMI (1.26; 1.08-1.47) and current smoking (1.26; 1.10-1.44) made minimal 

difference to the estimated effect. When conditioning for all covariables together, there is some 

evidence that lower FEV1 increases the risk of coronary artery disease 1.28 (1.02, 1.61). However, 

the point estimate and upper limit of the confidence interval is higher for FEV1 conditioned with all 

covariables than the estimate for unconditioned FEV1, indicating a possible problem with the model. 

It is worth noting the reduction in SNPs for FEV1, as well as all the covariables, available for analysis 
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due to SNPs being removed when clumping, or not being found in the other GWAS. This reduces the 

power making the analysis less reliable. Additionally in this model, each covariable conditions on all 

the other covariables. This will reduce the conditioning effect of each individual covariable. 

 

4.7.1.2 MVMR analysis – FEV1 and FVC as exposure, ischaemic stroke as outcome 

There is little evidence to suggest that lower FEV1 increases the risk of ischaemic stroke (OR: 1.11 per 

SD; 95% CI: 0.97-1.26) Table 5. The magnitude of the effect decreased further when conditioning for 

both height and BMI, although the direction remained consistent. There is evidence that decreased 

FVC increases risk of ischaemic stroke (1.23; 1.01-1.24) but the effect size and strength of evidence 

attenuates after conditioning for height or BMI or all covariables together (1.16; 0.98-1.38 and 1.05; 

0.93-1.19 and 1.05; 0.86-1.29 respectively).  

4.7.1.3 MVMR analysis – FEV1/FVC ratio <0.7 as exposure, CAD and ischaemic stroke as 
outcomes 

Steiger filtering removed 87 SNPs for FEV1/FVC ratio <0.70 with CAD as the outcome and 96 SNPs 

with ischaemic stroke as the outcome. I found very little evidence of an effect of liability to airflow 

obstruction on cardiovascular disease (CVD) as can be seen in Table 6.  

 

Table 6. Multivariable MR results of and FEV1/FVC <0.7 on Coronary Artery Disease and Ischaemic Stroke using 
UKBiobank lung function GWAS 

*Per SD increase in liability to ratio <0.7 

Trait Condition 
upon 

No SNPs 
(LF/condition) 

OR (95% CI)* 
for Coronary 

Artery Disease 

No. SNPs 
(LF/condition) 

OR (95% CI)* 
for Ischaemic 

Stroke 

FEV1/FVC <0.7 Nil  50/Nil 
 

1.00  
(0.60, 1.67) 

39/Nil 0.96  
(0.52, 1.79) 

FEV1/FVC <0.7 Smoking 49/17 
 

1.00  
(0.83, 1.21) 

38/13 0.98  
(0.82, 1.16) 
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4.8 Discussion  

This MVMR study provides evidence that a one standard deviation lower FVC causes approximately a 

20% increased risk of CAD. This finding provides further evidence for causality of previous 

observational associations.33,34 These results are unlikely to be affected by reverse causation or 

confounding factors due to the use of SNPs as instrumental variables. This effect was not seen in the 

preliminary non-MVMR analysis because of collider bias introduced in the model by covariate 

adjustment in the Shrine et al. discovery GWAS. The main analysis used MVMR which is a robust tool 

when a secondary exposure acts as a confounder, a mediator, a pleiotropic pathway, and/or a 

collider.132  

Although historically, most observational studies of cardiovascular morbidity have focused on FEV1 

and COPD, there was little evidence of a causal association between FEV1 and liability to obstructive 

ratio on CVD risk. These results mirror findings that FVC is a stronger predictor of overall survival 

than FEV1.31  The findings suggest that the observed association between low FEV1, obstruction, and 

increased risk of CVD is unlikely to be causal. In healthy individuals, FEV1 and FVC are highly 

correlated. Therefore, I hypothesise that the unknown underlying biological mechanism linking lung 

function and cardiovascular disease may be specific to FVC reduction.  

Finding modifiable risk factors for CAD is important, however, most therapies designed to improve 

lung function (such as inhaled bronchodilators) have a temporary and limited impact on FVC and so 

are unlikely to be sufficient to modify cardiovascular risk. Available treatments which do target 

decline in FVC are for specific and rare lung diseases such as pulmonary fibrosis.135  

There are numerous strengths to this study. First, it utilises large numbers of instrumental variables, 

far more than were available in previous MR studies.136 Secondly, a large exposure sample 

population and multiple robust methods. In a robust study, MR avoids unmeasured confounding and 

reverse causation, problems typical of conventional observational epidemiology and estimates 

causality by the use of randomly assigned genetic instrumental variables.87,137,138 In addition, this 
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study benefited from using MVMR to condition for these covariates avoiding collider bias that could 

have contributed to the weak evidence found in the preliminary analysis using the Shrine et al. 

GWAS.75 MVMR estimates the direct, rather than total effect of an exposure allowing us to show 

that much of the effect of FEV1 on CAD risk was due to pleiotropic SNPs affecting FEV1 via height (an 

established determinant of cardiovascular risk). Finally, this is the first study to use SNPs for 

FEV1/FVC <0.7 ratio. MR has assumptions and is vulnerable to certain biases if not used properly. The 

sensitivity analysis in the pre-liminary analysis using plots, MR Egger, weighted median, and mode 

did not indicate any violation of assumptions.  

4.8.1 Limitations 

The exposure GWAS and the outcome GWAS (MEGASTROKE) used only those of European heritage. 

The CARDIOGRAMplusC4D GWAS was 23% non-European heritage. Lung function SNPs discovered in 

European ancestral populations in the Shrine et al. GWAS have been shown to have a smaller effect 

in non-European populations.75 I did not test to see if the SNPs I used in the MVMR model had a 

similar smaller effect in non-European populations. However as both the Shrine et al. GWAS and my 

unadjusted GWAS used a high proportion of the same sample population and examined similar 

traits, it is likely that in a non-European population the effects of the unadjusted SNPs would be 

smaller. Therefore, these results may not be generalisable to non-European populations. As the 

SNPs in the MVMR analysis were discovered and effects estimated in the same population, the 

effects could have been over-estimated due to “Winner’s Curse” phenomena.139 There was a 

reduction in the number of instruments available for analysis following LD-clumping, removal of 

duplicates, and extraction from exposure and outcome GWAS. This reduces the strength of the 

instruments which may have reduced the power to show an effect of FEV1 or FEV1/FVC <0.7 ratio. In 

the MVMR analysis I used FEV1/FVC <0.7 ratio as an exposure because this is a commonly used 

threshold of obstructive lung function. Using FEV1/FVC ratio as a continuous trait has inherent issues 

in MR analysis. High FEV1/FVC ratio is a sign of restriction and a low FEV1/FVC ratio defines airflow 
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obstruction, both of which are pathological states that could affect cardiovascular disease, making 

interpretation of the continuous variable challenging. Most MR analysis assumes a linear effect, 

which would be violated when using FEV1/FVC as a continuous trait. Dichotomization of continuous 

traits in MR studies can make interpretation of the causal estimate less reliable, but MR can still be a 

valid test of the causal null hypothesis for a binary exposure.124 An assumption of MR is that SNPs 

only affect the outcome via the exposure. To ensure that the SNPs were not affecting the outcomes 

via smoking I checked to see if any of the lung function SNPs were found in the 15q25 locus (a locus 

known to have strong associations with smoking behaviour).140 In the MVMR analysis for FEV1 only 

one SNP (rs72736802) is from the locus, none from the FVC analysis. Therefore, I do not think this 

will affect the results. Lung function is a complex trait and SNPs affect LF via differing pathological 

processes.75 The differing processes may vary in their impact on the risk of co-morbidities, perhaps 

reflected in the assessments of heterogeneity. It is possible the study was limited by the number of 

ischaemic stroke cases in the outcome population. If there is a causal effect of lung function on 

ischaemic stroke, it is likely to only occur with large decline in lung function as seen with CAD.  

4.8.2 Implications 

There are several important implications of these findings. First is that it is FVC not obstructive lung 

function that is causally associated with coronary artery disease. This suggests that attention should 

be focused on understanding the mechanisms by which FVC causes CAD. Secondly, given there are 

limited FVC specific therapies, it is most likely that future interventions to improve CAD outcomes 

through modifying FVC are most likely to be achieved through environmental/ behavioural public 

health interventions designed to achieve optimal lung development and preventing lung function 

decline. Third, FVC is a widely and routinely collected clinical measure (spirometry), this study 

supports the call for FVC measurements to be evaluated as part of cardiovascular prognostication / 

secondary prevention risk assessments.  
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It remains uncertain if lung function has a causal effect on the risk of ischaemic stroke. The MVMR 

models show very little evidence that reduced lung function increases the risk of ischaemic stroke. 

Larger outcome sample sizes may become available as genetic consortia grow which could provide 

more conclusive results. Future studies are needed to determine the mechanism by which FVC 

causes increased coronary artery disease. 

This study highlights issues of collider bias in MR studies when using GWAS adjusted for heritable 

covariates of the exposure-outcome relationship. MVMR should be considered for future MR studies 

that may be affected by these issues. 

4.8.3 Conclusions 

There is strong evidence that reduced FVC is independently and causally associated with coronary 

artery disease. Although the mechanism remains unclear, FVC may play an important contribution in 

the assessment of cardiovascular risk. Further studies are needed to test whether interventions to 

improve or maintain FVC may also modify cardiovascular risk. FEV1 and obstructive lung function do 

not appear to cause increased cardiovascular events, confounding and collider bias may explain 

previous observational and MR findings of a causal association.  
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CHAPTER 5. LUNG FUNCTION, COPD AND COGNITIVE FUNCTION: A 
MULTIVARIABLE AND TWO SAMPLE MENDELIAN RANDOMISATION 

STUDY 
 

5.1 Publication and contributions 

 

This chapter has been published. 

Lung function, COPD, and cognitive function: a multivariable and two sample Mendelian 

randomisation study. Daniel Higbee, Raquel Granell, Gibran Hemani, George Davey Smith, James 

Dodd. BMC Pulmonary Medicine. 2021 Jul 22;21(1):246. 

DH and JD developed the concept. DH planned and performed the analysis plan. GH helped format 

an external GWAS data for use. GDS and JD provided supervision. 

5.2 Introduction 

 

Cognitive function impacts important physical and mental health outcomes including mortality and 

educational attainment.39 It exists on a continuum from normal cognitive function to the potentially 

reversible state of mild cognitive impairment (MCI), which can lead to irreversible dementia.40,41 The 

theory of cognitive reserve suggests that those that reach higher levels of cognitive function are 

more resilient to the development of cognitive ageing or impairment and dementia.141,142 There are 

very limited therapeutic options that effectively increase cognitive function or treat MCI, so finding 

modifiable risk factors to enable people to attain and maintain maximum cognitive function is 

important.  

Co-morbid lung disease and cognitive impairment is associated with worse health outcomes, quality 

of life, and increased healthcare utilisation.42 The association between lung function and cognition 

may be due to shared risk factors seen more commonly in those with lung disease e.g. smoking.43,44 
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However associations independent of these factors mediated through plausible causal pathological 

pathways such as hypoxia, hypercapnia, or chronic lung disease associated inflammation may also 

cause extra-pulmonary end organ damage.45,48 

Neuroimaging provides further evidence of a relationship between lung function and cognition. After 

adjustment for smoking, reduced lung function remains associated with white matter brain lesions, 

46 and a ‘dose response’ like relationship is seen between severity of lung function deficit and risk of 

cognitive impairment.47  

My objective was to use MR and MVMR to determine if lung function or liability to COPD causes 

lower general cognitive function. If the relationship is shown to be causal, then interventions to treat 

lung function could also be used to reduce subsequent cognitive decline or dementia. 

5.3 Methods 

 

5.3.1 Exposure populations 

I used the Shrine et al. lung function GWAS and the COPD GWAS performed by Sarkonsakaplat et al. 

as exposure populations. These GWAS are detailed in section 3.3. 

The lung function GWAS was adjusted for covariates of lung function and cognition e.g. height and 

smoking.43,143 As discussed in chapter 4 this adjustment can lead to collider bias as SNPs can be 

related to the covariates e.g. height, or other adverse risk factors.83  This can result in misleading SNP 

effect estimates and subsequent bias in MR studies.144 To avoid these types of bias I performed 

MVMR using exposure SNPs discovered in GWAS that had not been adjusted for covariates. To find 

suitable exposure SNPs I performed a GWAS (adjusting for sex) based on 353,315 UK BioBank 

participants for “best measure” FEV1 and FVC. The SNPs discovered in the unadjusted GWAS were 

used in a two-sample MVMR model conditioning on SNPs for covariates: standing height, body mass 

index (BMI), current smoking. Educational attainment is a significant determinant of cognitive 
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function, but it was not adjusted for in the outcome GWAS.145 Therefore, I used SNPs identified in a 

GWAS of educational attainment in the UK Biobank. Educational attainment was determined by the 

by asking UK Biobank participants, "At what age did you complete your continuous full time 

education?". Participants were asked this via a touchscreen during the initial assessment. By 

conditioning for educational attainment, I determined the direct effect of lung function on cognitive 

function. SNPs for lung function and cognitive function were found in pre-existing GWAS performed 

in the UK Biobank.134  

5.3.2 Outcome Population 

Data from a meta-analysis of the Cohort of Heart and Aging Research in Genomic Epidemiology 

(CHARGE) and Cognitive Genomics Consortium (COGENT) was used.39 UK Biobank participants were 

excluded from the analysis to ensure no overlap of exposure and outcome populations. This resulted 

in an outcome population of 132,452. The CHARGE and COGENT cohorts had used a wide range of 

cognitive tasks to test for different cognitive domains. The authors of the outcome GWAS 

constructed a general cognitive function phenotype using these different cognitive tasks. The 

general cognitive function phenotype required the consortiums to have tested at least three 

different cognitive domains. As different tasks were used across the different sample populations, a 

consistent method of extracting general cognitive function was used. Principal component analysis 

was applied to the cognitive test scores to derive a measure of general cognitive function. The 

authors avoided taking more than one cognitive score from any individual cognitive test. A GWAS 

meta-analysis adjusting for age, sex and population stratification was performed using the derived 

measure of general cognitive function. Therefore, the outcome used in the analysis represents 

general cognitive function and is not domain specific. For full details of the tasks and samples see the 

supplementary information of the referenced GWAS paper.39 

Both exposure and outcome populations were in those of European ancestry.  
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5.3.3 Statistical Analysis 

 

Statistical analysis was done using R Studio version 3.6.1 with MRCIEU/TwoSampleMR and 

MRInstruments packages.105,130  

F-statistics were calculated to assess exposure instruments’ strength (F statistic = beta2/standard 

error2) to determine the likelihood of weak instrument bias. 99 For all exposures SNPs, LD-clumping 

was performed using European reference population and the ieugwasr:ld_clump tool and Steiger 

filtering was performed.105 Duplicate SNPs were removed. Palindromic SNPs (i.e. A/T and C/G SNPs) 

with intermediate allele frequencies were excluded from the analysis to ensure that the correct 

allele was being used. All SNPs were harmonised to ensure the exposure and outcome alleles were 

the same.  

Inverse Variance Weighting (IVW) was used for the main effect estimate for all analyses. MR Egger, 

weighted median, and mode were all used as sensitivity tests to account for horizontal pleiotropy. 

Heterogeneity was calculated and assessed with a Q statistic, presented as a Q_P-value.  

5.3.3.1 MR Radial 

I used MR Radial as a sensitivity analysis. MR Radial is a way of using a statistical method to identify 

and remove outliers, as opposed to visually identifying outliers using graphs as discussed in the 

previous chapters. MR Radial excluded SNPs that contributed more than 5% heterogeneity to the 

model and re-estimates the IVW 146 If SNPs are causing considerable heterogeneity this could 

indicate a violation of the second and third MR assumptions. I only became aware of MR radial after 

I had completed the studies in the previous chapters. 
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5.4 Results 

5.4.1 Two Sample MR, effect of lung function on cognitive function 

The analysis using the adjusted lung function GWAS in a 2SMR lung function analysis is reported in 

Table 7. 75 The F statistic for all SNPs combined for each lung function trait were: All traits = 111, FEV1 

= 69, FVC = 70, FEV1/FVC = 148, making weak instrument bias unlikely.  

The effect size is given as the beta (β) value, which is the coefficient from the regression analysis, 

and is the change in the general cognitive function score per standard deviation (SD) decrease in 

lung function measure. If the beta is negative, it means there is a decrease in cognitive function with 

a decrease in lung function. 

The predictive causal effects show reduced FEV1 and FVC reduced cognition across all tests, but the 

evidence was weak (Table 7) as demonstrated by the SE being larger than the corresponding beta 

and the high p-values. All lung function measures combined did not show a consistent direction of 

effect across the tests used. There was strong evidence of heterogeneity of effect based on the Q_P-

value, especially when assessing all measures combined. However, there were no visual outliers as 

assessed by leave-one-out, single-SNP and funnel plots.  
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Table 7. 2SMR, decreasing lung function effect on cognitive function 

 Cognitive function 
Lung Function Measure No. of 

SNPs 
Test used Beta (SE) P-value Q_P-value 

FEV1, FVC, FEV1/FVC, PEF 173 IVW -0.002 (0.02) 0.86 1.44 x 1011 
Weighted Median 0.02 (0.02) 0.44 
Weighted Mode -0.004 (0.03) 0.91 
MR Egger -0.005 (0.03) 0.90 

FEV1 59 IVW -0.05 (0.04) 0.44 1.8 x 10-8 
Weighted Median -0.02 (0.04) 0.46 
Weighted Mode -0.05 (0.08) 0.51 
MR Egger -0.09 (0.1) 0.43 

FVC 68 IVW -0.004 (0.03) 0.87 0.01 
Weighted Median -0.02 (0.04) 0.51 
Weighted Mode -0.03 (0.07) 0.65 
MR Egger -0.16 (0.10) 0.13 

FEV1/FVC 93 IVW 0.01 (0.02) 0.52 0.01 
Weighted Median 0.02 (0.02) 0.52 
Weighted Mode 0.007 (0.05) 0.87 
MR Egger 0.02 (0.04) 0.67 

SE – Standard Error. Q_P-value – A measure of Heterogeneity (P-value <0.05 provides strong 
evidence of heterogeneity). Negative beta indicates decreasing cognitive function. 

 

5.4.2 Two Sample MR, effect of COPD on cognitive function 

The F statistic for the COPD SNPs combined is 52, making weak instrument bias unlikely. There is a 

consistent direction of effect that increased liability to COPD causes lower cognition, however, the 

strength of evidence is weak (Table 8). 

Table 8. 2SMR, COPD effect on cognitive function 

 Cognitive Function 
Lung 
Function 
Measure 

No. of 
SNPs 

Test used Beta (SE) P-value Q_P-value 

COPD 67 IVW -0.008 (0.008) 0.35 0.005 
Weighted Median -0.01 (0.01) 0.16 
Weighted Mode -0.03 (0.02) 0.28 
MR Egger -0.01 (0.02) 0.66 

Negative beta indicates decreasing cognitive function. 

 

5.4.3 MVMR Analysis 
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Using a threshold of p<5×10-8, quality control and clumping the unadjusted GWAS of lung function in 

UK Biobank produced 360 SNPs for FEV1 and 464 SNPs for FVC explaining 3.6% and 4.8% of variance, 

respectively. I tested the effect of the covariate’s height, BMI, educational attainment, and current 

smoking on the outcome of cognitive function. Height (Beta 0.05 (SE 0.01), p-value <0.001), BMI (-

0.1 (0.01), p-value <0.001) and educational attainment (0.3 (0.07), p-value <0.001) showed strong 

evidence for an effect on cognitive function. The SNPs discovered in the GWAS of current smoking 

only had very weak evidence of an effect on cognitive function (-0.04 (0.2), p-value 0.84), so they 

were not included in the analysis. The F-statistic were FEV1 = 38, FVC = 40, height = 50, BMI=39 and 

age completed full time education = 1350, making weak instrument bias unlikely. 

Results were calculated per SD decrease in lung function measure and are displayed in Table 9. 

There was strong evidence that reduced FEV1 (-0.06 (0.03), p-value <0.001) and FVC (-0.06 (0.01), p-

value <0.001) causes lower general cognition, however when using MVMR and conditioning with 

educational attainment the evidence became weak. Evidence also became weak after conditioning 

for height. This is probably due to the pleiotropy in the MR analysis as the unadjusted GWAS would 

have identified SNPs that affected LF via height. Educational attainment is likely to be a mediator on 

the pathway of lung function and cognitive function (lung function → educational attainment → 

cognitive function) rather than a confounder (lung function ← educational attainment → cognitive 

function). Therefore, by using MVMR it removes the mediating effect of lung function on cognitive 

function via educational attainment. This demonstrates a potential pathway how lung function could 

affect cognitive function. However, as conditioning for height gives weak evidence of an effect of 

lung function on cognitive function it remains unclear if there is a true causal relationship between 

lung function and cognitive function, via educational attainment or other pathways.  
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Table 9. MVMR Analysis results. Effect of decreasing Lung function trait on cognitive function with and without 
conditioning for covariates 

 Cognitive Function 

Lung 
function 
measure 

Condition 
No SNPs 
(Trait/Condition) 

Beta (SE) P-value 

FEV1 None 298/0 -0.06 (0.03) <0.001 

FEV1 Height 212/299 -0.03 (0.03) 0.29 

FEV1 BMI 180/629 -0.07 (0.03) 0.03 

FEV1 
Educational 
attainment 

274/32 -0.03 (0.03) 
0.33 

FVC None 381/0 -0.06 (0.01) <0.001 

FVC Height  278/314 -0.01 (0.03) 0.62 

FVC BMI 224/595 -0.05 (0.02) 0.004 

FVC 
Educational 
attainment 

335/31 -0.01 (0.02) 
0.35 

SE – Standard Error. Negative beta indicates decreasing cognitive function. 

 

5.4.4 MR Radial 

Exclusion of outliers using MR-Radial only minimally changed effect estimates (Table 10 and Figure 
16). 

Table 10. Results of 2 Sample MR all lung function SNPs (Shrine et al GWAS) effect on cognition using MR 
Radial after outlier exclusion 

 All traits (Beta (SE)) P-value 

IVW (2nd order weights) -0.002 (0.01) 0.90 

MR Egger -0.02 (0.03) 0.58 
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Figure 17. MR Radial plots for 2 sample MR all lung function SNPs (Shrine et al GWAS) effect on cognition 

 
Yellow dots represent outlier SNPs removed as they explained over 5% heterogeneity. Blue dots 
represent SNPs kept in IVW Radial analysis. IVW causal estimate is close to zero with SE higher than 
corresponding beta and high p-values indicating no strong evidence of an effect. 
 

5.4.1 Results for 2SMR COPD effect on cognition using MR Radial 

 

There was a minimal change in effect estimates after using MR-Radial to exclude outliers and 

recalculation of IVW (Table 11 and Figure 17).   
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Table 11. Results of 2SMR COPD effect on cognition using MR Radial after outlier exclusion 

 All traits (Beta (SE)) P-value 

IVW (2nd order weights) -0.008 (0.007) 0.30 

MR Egger -0.001 (002) 0.95 

 
 

Figure 18. MR Radial plot for 2SMR COPD effect on cognition 

 

The radial plot shows no evidence of effect after removal of outliers 

 

5.5 Discussion 

 

The analyses show weak evidence that lung function or liability to COPD causes lower general 

cognitive function. Most of my MR causal estimates show the same direction of effect as 

observational studies, with lower lung function and liability to COPD causing lower general cognitive 
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function. However, the evidence is weak. The previously observed association in traditional 

epidemiology papers may be secondary to residual confounding and collider bias. There may be a 

genuine association between lung function and COPD with general cognitive function, but the 

relationship is unlikely to be causal.45,47,52,147-149  

This analysis suggests that shared risk factors are likely explanations for the observed association 

between lung function and cognition, for example cigarette smoking. The short term effects of 

smoking on cognitive function are complex with acute nicotine consumption improving smokers’ 

cognition, and nicotine abstinence decreasing cognition.43 Longitudinal research has shown that 

lower childhood IQ is associated with an increased risk of smoking, and smokers have significantly 

worse cognition scores in old age than ex- or never-smokers.44 Therefore, public health measures to 

reduce rates of smoking could improve both lung function and cognitive function. 

This study examines the effect of lung function and COPD on general cognitive function in a general 

adult population. COPD has been shown to be associated with general cognitive function, but often 

more specific patterns of cognitive impairment including attention, memory, learning, and motor 

function domains.45 Therefore it may be that COPD does have a causal effect on these domains, not 

detected in the general cognitive function analysis. 

Both cognition and lung function follow life course trajectories, influenced by a combination of 

genetic and life course factors.30 Genetic determinants of lung development and disease are 

increasingly recognised.150 In addition to shared environmental risk for lung function and cognitive 

function, shared genetic risks may be found. Genes involved in growth factors and Vitamin A 

regulation have been found to affect lung function. Both growth patterns and Vitamin A levels may 

have a role in cognitive function.143,151 It may be that genetic pleiotropy can determine both lung 

function and cognitive trajectories. 
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5.5.1 Strengths and Limitations 

MR eliminates many confounders in observational epidemiology.88,137 I used a large number of 

robust SNPs for lung function and SNPs that influence liability to COPD, which have been well 

validated in large samples.75,109 MVMR was utilised to decrease the risk of bias and allowed us to 

condition for the effect of educational attainment. The effects of instrumental variables were 

assessed in a huge outcome population of similar age and the same ancestral population as the 

discovery GWAS. 

It may be that the conclusion of only weak evidence of lung function affecting cognitive function is 

due to the MR study being underpowered. The unconditioned results of lower FEV1 and FVC showed 

strong evidence of an effect on cognitive function. The strength of evidence weakened on 

conditioning for education attainment, however as discussed in results this is because educational 

attainment is a mediating factor, suggesting lung function could affect cognitive function via an 

effect on educational attainment. Conditioning with height led to the evidence becoming weak too, 

and height is unlikely to be a mediating factor. However, repeating the study in future as more lung 

function SNPs are discovered could show different results. Due issues with demography and 

assortative mating, it has been shown that effect estimates for demographic traits such as height 

have been over estimated.152 Therefore, the conditioning effect of height may have been falsely 

high. Repeating the analysis with height SNPs found in within-family GWAS may give different 

results.   

It is worth noting the SNPs for the exposure of COPD refer to ‘liability’  rather than a confirmed 

diagnosis of COPD as no SNP guarantees COPD, but MR is still a valid test of the causal null 

hypothesis for a binary exposure, if the MR assumption are met.124 The mean age in the outcome 

sample was 56, lower than the average age of COPD diagnosis. The effects of SNPs for binary traits 

may be underestimated in the outcome sample, as participants have not yet developed COPD or its 

co-morbidities. However, the exposure SNPs were discovered and validated in large populations that 
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had a similar mean age to the outcome population.75,109 Therefore the SNPs’ estimated effects on 

COPD liability should be accurate in the outcome population. If the mean age of the outcome 

population was older, it could introduce a survivor bias if a proportion of those with the SNPs had 

died from COPD and could not be recruited for the outcome GWAS.125  

One of the proposed mechanisms whereby lung function and COPD may cause reduced cognition is 

via cerebrovascular pathology.153 The outcome population excluded those with a history of clinical 

stroke, this is unlikely to have excluded the proposed COPD-specific brain changes, but would have 

excluded those with large vessel vascular damage causing changes in cognitive function.  

Estimates of cognitive function can be distorted by factors including demography, (when a 

populations’ genetic variance is related to geographical location), assortative mating (partners are 

chosen due to phenotypes e.g. higher cognitive function, rather than randomly), and dynastic effects 

(phenotypic expression of parents genotype affects offspring phenotype e.g. parents with higher 

education giving educational books to their children).154 This can be corrected by using within-family 

GWAS, a possible area for future studies.155 However, MR studies have tended to over-estimate the 

effect of anthropomorphic traits which then attenuate when using within-family studies, and in this 

study I found weak evidence of an effect. Therefore, repeating the study using SNPs from within-

family GWAS is likely to produce even weaker evidence. 

The populations used by the GWAS for exposure SNPs only used European ancestry participants. 

These results may therefore not be generalizable to non-European ancestral populations. I did not 

have a replication cohort for the SNPs used in the MVMR analysis.  The effects of the SNPs could 

have been over-estimated due to the “Winner’s Curse” phenomenon.139 This occurs in GWAS when 

effect estimates are biased towards the SNPs with the strongest association. However, if present this 

phenomenon would bias results towards strong evidence of an effect, whereas I found weak 

evidence of an effect. 
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5.5.2 Future research 

The outcome GWAS was performed with global cognitive function in the general population as a 

continuous outcome. Much research has focused on whether lung function and lung disease causes 

mild cognitive impairment (MCI).156 Normal cognitive function and MCI exist on a spectrum, but this 

study is unable to fully assess whether reduced lung function or lung disease cause MCI. If a GWAS 

of MCI becomes available MR could be used in future studies. 

The results indicate that lung function alone does not cause lower cognition in the general 

population. However, lower lung function and lung disease have been shown to be associated with 

reduced cognitive function, but this is most likely due to shared risk factors. Research should focus 

on reducing exposure to these shared risk factors and optimising the management of co-morbidities 

in those with chronic lung disease. 

5.5.3 Conclusion 

This study provides evidence that lung function and COPD do not cause reduced cognition in the 

general population. Previous observational studies suggesting a causal link may have been biased by 

residual confounding. The observed associations between reduced lung function, COPD, and 

cognitive function remain important. Research should now focus on the management of cognitive 

impairment in these groups, rather than targeting lung function in order to improve cognition in the 

general population. 
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CHAPTER 6. PRESERVED RATIO IMPAIRED SPIROMETRY (PRISM): A 
UKBIOBANK COHORT STUDY 

 

6.1 Publication and contributions 

 

This chapter has been published. 

Prevalence, risk factors, and clinical implications of preserved ratio impaired spirometry: a UK 

Biobank cohort analysis. Daniel Higbee, Raquel Granell, George Davey Smith, James Dodd. Lancet 

Respir Med. 2021 Nov 2; S2213-2600(21)00369-6.  

DH and JD conceived the project. DH determined and performed the analysis plan. RG gave advice 

regarding the analysis plan and some code required. DH wrote the paper. GDS and JD supervised. 

6.2 Introduction 

 

Preserved Ratio Impaired Spirometry (PRISm), also referred to as ‘restrictive pattern’ or ‘unclassified’ 

spirometry, is defined as a FEV1 <80% predicted, despite a normal or preserved FEV1/FVC ratio ≥0.70. 

The true population prevalence of PRISm is unknown with estimates from 4% to 48% depending on 

gender, ancestry, geographical location, and smoking history.58-61 Clinical interest in PRISm comes 

from data that suggest over 5 years, up to 50% may transition to COPD but that 15% return to 

‘normal’ spirometry.57,60 If PRISm is a pre-cursor of COPD, it would be an appealing target for 

interventions to prevent COPD, a leading cause of global mortality.157 Imaging studies suggest that 

PRISm may be associated with a degree of airway disease and emphysema which may affect 

progression to COPD.158,159 Analyses from other cohort studies show an association between PRISm 

and respiratory symptoms, increased healthcare utilisation, extra-pulmonary co-morbidities such as 

obesity, diabetes, cardiac disease, and increased overall mortality.57,60,62-64 
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Definitive epidemiological understanding of PRISm has been limited by cohorts with relatively small 

patient numbers, rarely containing >1000 cases.57,60 Some cohorts have used selected populations 

e.g. only smokers, which limits generalisability.57,59,65. Duration of follow-up is often limited to ≤5 

years57,60,66, limiting conclusions about the long term trajectory of PRISm.67 

My first objective was to use the UK Biobank to examine a large adult general population to 

determine PRISm prevalence, risk factors and associated symptoms and co-morbidity.68 The second 

objective was to use follow-up data to examine the longitudinal outcomes of PRISm including 

transition to other spirometric states and mortality. The large sample size of UK Biobank and broad 

recruitment based on age and the inclusion of non-smokers increases power and improves 

generalizability. The long follow-up of UK Biobank participants compared to other cohorts also 

allows for accurate estimation of PRISm trajectories over time and survival analysis.  
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6.3 Methods 

 

6.3.1 Baseline 

UK Biobank includes 502,543 individuals aged between 40 and 69 at recruitment across the UK.68 

Participants were identified from the NHS register and were invited to assessment appointments by 

letter. No weighting mechanism for recruitment was used. The initial assessment took place from 

2006-2010 and this data were used as the baseline timepoint. All participants were asked to perform 

pre-bronchodilator spirometry. Only pre-bronchodilator spirometry was available, although 

participants were not told to withhold their normal medications. Previously derived variables of 

quality-controlled spirometry were used for “best measure” FEV1 and FVC, which excludes 

participants that do not have acceptable spirometry. Patients with no known smoking status or 

weight were excluded.  FEV1 percent predicted was calculated as per GLI-2012 values using RSpiro R 

package in R studio 3.6.1.160 

PRISm was defined as FEV1 <80% predicted and FEV1/FVC ≥0.70. Airflow obstruction was defined 

using the GOLD criteria for Stage I-IV obstruction, FEV1/FVC <0.70.18 Controls were defined by FEV1 

≥80% with FEV1/FVC ≥0.70.  

Demographic differences between PRISm vs. controls, PRISm vs airflow obstruction, were examined. 

P-values were calculated using Z-score for continuous outcomes and Pearson’s Chi-squared for 

categorical outcomes. Multivariable logistic regression analysis was performed for risk factors 

associated with PRISm (age, sex, BMI, diagnosis of asthma, smoking status, trunk fat 

mass/percentage). Clinically relevant correlates of PRISm were examined (cardiovascular disease, 

diabetes, shortness of breath) adjusting for confounders (age, sex, BMI, smoking status, 

hypertension). If data were missing, it was not imputed, and individuals were excluded from the 

analysis. Statistical analysis was performed using Stata 15.161 
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6.3.2 Follow-up 

From 2014-2019 those that lived close to an assessment centre were invited for a repeat visit, with 

repeat spirometry. Only participants that had been included in baseline were examined in follow-up. 

The highest measures of FEV1 and FVC from acceptable spirometry were used. Those without height, 

body mass index (BMI) and smoking status recorded at follow-up were excluded. Participants with 

PRISm at baseline and follow-up were classified as having persistent PRISm. I examined baseline 

demographic differences between change from PRISm to control or airflow obstruction vs. persistent 

PRISm. Multivariable multinomial logistic regression analysis was performed to determine the risk of 

age, BMI, smoking status, sex, and doctor diagnosis of asthma with change from PRISm to control or 

airflow obstruction vs. persistent PRISm. Results are presented as relative risk (RR). I determined 

what proportion of participants would be expected to revert to control due to regression to the 

mean using Stata package rtmci.162 This is a statistical effect of all longitudinal studies, especially 

those that follow a pathological subset population identified at baseline. It is a well-recognised 

phenomenon in testing any complex trait whereby outlier results are more likely to be followed by 

results closer to the mean. This is due to standard deviation, rather than due to a causal or 

pathophysiological effect.163  

Sensitivity analyses were performed stratifying the sample by sex, asthma diagnosis, and BMI. I 

repeated the analysis with lower limit of normal definition of spirometry criteria as using set 

thresholds can be less reliable in older populations. I also repeated the analysis using GOLD II-IV as 

the definition of obstruction as some previously published work has done this to capture those more 

likely to have clinical impacts of COPD. 

I also repeated the analysis examining those that transitioned from control spirometry and airflow 

obstruction at baseline to other spirometric states at follow-up. 
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6.3.3 Survival analysis 

UK Biobank obtained dates of death from NHS Digital and NHS Central registry. Death records up to 

February 2018 were available allowing me to perform survival analysis covering 12 years. I 

conducted an unadjusted Kaplan-Meir survival analysis, and both univariate and multivariate Cox’s 

proportional hazard model, adjusting for smoking status, BMI, age, and sex. 

6.4 Results 

 

6.4.1 Prevalence of PRISm  

353,315 participants had “best measure” FEV1 and FVC. 1,441 were excluded for missing smoking 

status and/or BMI. This left 351,874 participants for analysis at baseline (see Figure 19). Table 12 

shows a prevalence of 11.0% for PRISm and 15.8% for stage I-IV airflow obstruction. Due to the large 

sample sizes, clinically similar results often showed strong evidence of a statistical difference when 

examining p-values, for example the mean difference in age between PRISm and control is 0.4 years, 

but the when examining for a statistical difference, the p-value < 0.0001.  
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Table 12. Baseline demographics of participants with PRISm, Control and Airflow Obstruction 

Demographic at 
baseline 

PRISm  

N = 38,639 
 

Control  

N= 257,643 
 

P-value* 

PRISm vs 
Control 

Stage I-IV 
Obstruction 

N = 55,592 

P-value* 
PRISM vs I-IV 
Obstruction 

Age (Years) Mean (SD) 56.4 (7) 56.0 (7) <0.0001 59.1 (7) <0.0001 

BMI (kg/m2) Mean (SD) 29.1 (5) 27.2 (4) <0.0001 26.8 (4) <0.0001 

Female (%) 55.4% 55.6% 0.33 44% <0.0001 

FEV1 % predicted 
Median (IQR) 

74% 

(68 - 77) 

98%  

(90 - 106) 

<0.0001 79%  

(67 - 90) 

<0.0001 

FVC % predicted Median 
(IQR) 

76% 

(71 -81) 

99% 

(91 - 108) 

<0.0001 94%  

(83 - 106) 

<0.0001 

FEV1/FVC Median (IQR) 0.75 

(0.72 – 0.78) 

0.77  

(0.74 – 0.80) 

<0.0001 0.64   

(0.62-0.68) 

<0.0001 

Never smoker (%) 51.2% 56.8% <0.0001 40.8% <0.0001 

Ex-smoker (%) 36.4% 35.3% 0.0002 39.9% <0.0001 

Current smoker (%) 12.4% 7.9% <0.0001 19.1% <0.0001 

Pack/years Median 
(IQR) † 

23 (13 -36) 16 (8 - 27) <0.0001 27 (15 - 41) <0.0001 

SOB walking on ground 
(%) 

17.7% 7.1% <0.0001 15.2% <0.0001 

Doctor diagnosed 
asthma 

16.9% 9.9% <0.0001 24.5% <0.0001 

Doctor diagnosed COPD 1.7% 0.4% <0.0001 6.7% <0.0001 

Diabetes (%) 8.7% 3.8% <0.0001 4.8% <0.0001 

Heart attack (%) 3.4% 1.5% <0.0001 3.2% 0.103 

Angina (%) 4.6% 2.2% <0.0001 3.9% <0.0001 

High blood pressure (%) 33.4% 24.3% <0.0001 28.9% <0.0001 

Stroke (%) 2.0% 1.1% <0.0001 2.0% 0.68 

 

*P-values calculated using Z-score for continuous outcomes, Pearson’s chi-squared for categorical 
outcomes. † For ex and current smokers only. SD – Standard Deviation. IQR – Interquartile range  
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6.4.2 Risk factors for PRISm 

55% of PRISm and controls were female vs. 44% with airflow obstruction. Current smokers were 

more common in PRISm than controls (12.4% vs 7.9%, p-value <0.0001), and the smoking pack/years 

of ever smokers was higher (23 vs 16 pack/years, p-value <0.0001). Doctor diagnosed asthma was 

more common in PRISm than in controls (16.9% vs 9.9%, p-value <0.0001). BMI was shown to have a 

non-linear association with PRISm, violating an assumption of logistic regression. Therefore, I 

changed BMI from a continuous variable in the regression analysis to categorical as determined by 

three clinically relevant groups; Not overweight (BMI <25), Overweight (BMI ≥25 and <30), and 

Obese (BMI ≥30).  

Multivariable logistic regression examining the association of age, sex, BMI categories, smoking 

status (never/ex/current) and doctor diagnosed asthma with PRISm vs controls was performed. 

Female gender was statistically associated with PRISm OR 1.08 (95% CI 1.03 -1.13, p-value 0.0010), 

with strong evidence of association found for overweight OR 1.30 (1.23 – 1.37. p-value <0.0001), 

obesity OR 2.40 (2.26 – 2.55. p-value <0.0001), current smoking OR 1.48 (1.36 – 1.62, p-value 

<0.0001) and doctor diagnosis of asthma OR 1.76 (1.66 – 1.88, p-value <0.0001), see Figure 18. 

When examining the association of trunk fat mass (per Kg) and trunk fat percentage (per %) an 

association with PRISm was also seen (OR 1.08 (1.08 – 1.09) and 1.06 (1.06 – 1.07) respectively, p-

values <0.0001).  
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Figure 19. Forest plot showing factors associated with PRISm vs control spirometry 

 

OR derived from multivariable logistic regression 

This figure is a forest plot comparing possible risk factors for PRISm vs control spirometry 
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6.4.3 PRISm symptoms and co-morbidities 

 

There was a higher prevalence of breathlessness in PRISm 17.7% vs 7.1% in controls, p-value 

<0.0001. After adjustment for BMI, age, smoking status, and asthma diagnosis PRISm remained 

associated with increased breathlessness OR 2.0 (95%CI 1.91 – 2.14, p-value <0.0001). Diabetes was 

more common in PRISm than controls or airflow obstruction (8.7% vs 3.8% vs 4.8% respectively, p-

value’s <0.0001) this remained after adjustment for BMI, age, and sex vs. controls OR 1.79 (1.72 – 

1.87, p-value <0.0001). Cardiovascular co-morbidity was higher in PRISm vs. control, with 

approximately double the prevalence of angina (4.6% vs 2.2%, p-value <0.0001), heart attack (3.4% 

vs 1.5%, p-value <0.0001) and stroke (2.0% vs 1.1%, p-value <0.0001). Prevalence of hypertension 

and angina were also higher in PRISm vs. airflow obstruction (p-value <0.0001). After adjustment for 

hypertension, diabetes, BMI, age, smoking status, and sex, PRISm remained associated with an 

increased risk of stroke OR 1.4 (95%CI 1.36 – 1.61), angina OR 1.47 (95%CI 1.35 – 1.60) and heart 

attack OR 1.71 (95%CI 1.64 – 1.83) vs. controls. 

  



98 
 

6.4.4 Longitudinal analysis of PRISm 

 

Follow-up data was available for 29,609 participants. 4,712 did not have acceptable spirometry. 493 

were excluded for not having a recorded height, smoking status, or BMI at follow-up leaving 24,404 

participants for analysis.  

Figure 20. CONSORT diagram 

 

CONSORT diagram showing the number of participants used for baseline and follow up analysis in the PRISm 
analysis 

 

Participants with follow-up data were younger, less overweight, with better lung function and lower 

rates of smoking at baseline compared to the population that did not have follow-up, rates of asthma 

diagnosis were similar (see Table 13).   
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Table 13. Baseline demographics of participants that only had baseline data vs participants included in follow 
up 

Demographic at 
baseline 

No Follow up 

(N = 327470) 

Follow up 

(N = 24404) 

P-value 

Age (Years) Mean (SD) 56.7 (8) 54.5 (7) <0.0001 

BMI (kg/m2) Mean (SD) 27.4 (5) 26.7 (4) <0.0001 

Female (%) 54.0% 51.0% <0.0001 

FEV1 % predicted 
Median (IQR) 

93% (83 – 
103) 

96% (86 – 
104) 

<0.0001 

FVC % predicted Median 
(IQR) 

97% (87 – 
106) 

99% (90 – 
108)  

<0.0001 

FEV1/FVC Median (IQR) 76% (72 – 
80) 

77% (73 – 
80) 

<0.0001 

Never smoker (%) 53.2% 59.8% <0.0001 

Ex-smoker (%) 36.3% 33.8% <0.0001 

Current smoker (%) 10.5% 6.3% <0.0001 

Pack/years Median 
(IQR) † 

19 (10 – 32) 15 (8 – 26) <0.0001 

Doctor diagnosed 
asthma 

12.9% 13.0% 0.71 

Doctor diagnosed COPD 1.4% 0.88% <0.0001 

 

The mean FEV1 for the cohort at follow-up was higher vs. baseline (3.0 litres [SD 0.8] vs 2.8 litres [SD 

0.8]). The mean annual FEV1 decline for individual participants between baseline and follow-up of -

30mls/yr [SD 46]. Prevalence of PRISm at follow-up was lower than at baseline PRISm (7.1% vs 

11.0%). Full comparison of lung function states cross-sectionally at the follow-up time point are in 

Table 14.  
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Table 14. Demographics of participants by PRISm trajectory at follow up 

Demographic at follow 
up 

PRISm to 
PRISm 

N = 745 

PRISm to 
Control 

N = 987 

P-value* PRISm to 
Airflow 
Obstruction 

N = 241 

P-value†  

Age (Years) Mean (SD) 62 (7) 62 (7) 0.86 65 (8) <0.0001 

BMI (kg/m2) Mean (SD) 29.0 (6) 27.5 (5) 0.0012 26.8 (5) <0.0001 

Mean change in BMI 
(SD) 

0.24 (2) -0.48 (2) <0.0001 -0.58 (2) <0.0001 

Female (%) 56% 52% 0.12 58% 0.43 

FEV1 % predicted 
Median (IQR) 

74% (69 – 
77) 

87% (84 – 
90) 

<0.0001 73% (63 – 
80) 

0.0014 

FVC % predicted 
Median (IQR) 

75% (70 – 
79) 

89% (84 – 
96) 

<0.0001 58% (76 – 
81) 

<0.0001 

FEV1/FVC Median (IQR) 76% (73 – 
78) 

77% (74 – 
80) 

<0.0001 68% (65 – 
69) 

<0.0001 

Mean change in FEV1 
(mls) 

-210mls 265mls <0.0001 -269mls 0.004 

Mean change in FVC 
(mls) 

-260mls 304mls <0.0001 -43mls <0.0001 

Never smoker (%) 59% 61% 0.31 56% 0.15 

Ex-smoker (%) 36% 35% 0.66 38% 0.62 

Current smoker (%) 5% 3% 0.14 8% 0.43 

Pack/years Median 
(IQR)** 

21 (12 – 
35) 

18 (10 – 26) 0.0004 19 (8 – 35) 0.23 

SOB walking on ground 
(%) 

17.0% 7.5% <0.0001 13% 0.44 

Diabetes (%) 14.6% 8.8% 0.0090 8% 0.039 

Heart attack (%) 3% 3% 0.68 3% 0.65 

Angina (%) 4% 2% 0.12 2% 0.45 

High blood pressure (%) 27% 27% 0.89 30% 0.57 

Stroke (%) 1% 1% 0.83 4% 0.21 

Years between phases. 
Median (IQR) 

9 (8 – 10) 9 (7 -10) 0.010 9 (8 – 10) 0.26 
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*P-value comparing those with PRISm at baseline and follow up, with those that transitioned from PRISm at 
baseline to control at follow up. †P-value comparing those with PRISm at baseline and follow up, with those 
that transitioned from PRISm at baseline to airflow obstruction at follow up. P-values Calculated using Z-score 
for continuous outcomes, Pearson’s chi-squared for categorical outcomes. ** For ex and current smokers only 

 

6.4.5 PRISm trajectories 

 

The median time between baseline and follow-up was 9.0 years [IQR 8.0 – 10.0]. 1,973 participants 

with PRISm at baseline were included in follow-up (Figure 19). As shown in Figure 20, 37.8% had 

persistent PRISm, 50.0% reverted to normal control spirometry and 12.2% transitioned to airflow 

obstruction. More participants with PRISm at baseline transitioned to a different lung function state 

(62.2%) vs controls (11.6%) and airflow obstruction (34.0%). Those that transitioned from PRISm to 

control (i.e. normal spirometry) had nominal evidence of slightly shorter times between baseline and 

follow-up than those with persistent PRISm (median 9 years [IQR 7 -10] vs 9 years [IQR 8 – 10], p-

value 0.010).  

Regression to the mean analysis of PRISm and controls at baseline estimated that 11.8% (95%CI 11.4 

-12.2) of PRISm would be expected to revert to control if one follow-up analysis is performed. If this 

is taken into account, then rates of persistent PRISm and reversion to control would be similar.  

As per Table 14, cross-sectionally at follow up time point, participants with persistent PRISm had 

higher mean BMIs than participants who transitioned from PRISm to control spirometry (29 [SD 6] vs 

27 [SD 5]), median pack/years (21 [IQR 12-35] vs 18 [10 – 26]), more diabetes (14.6% vs 8.8%), and 

shortness of breath (17.0% vs 7.5%). At follow up participants with persistent PRISm vs. PRISm to 

COPD trajectories were younger, mean age (62 [SD 7] vs 65 [SD 8] years) and had a higher mean BMI 

(28 kg/m2 [5] vs 26 [5]).  
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Figure 21. Lung function trajectories from Baseline to Follow-up 

 
This figure demonstrates the trajectories of the different lung function states between baseline and follow up. 
PRISm is a much more transient state than control and airflow obstruction. Only a minority of those with PRISm 
developed COPD on follow up 

 

6.4.6 Persistent PRISm vs PRISm to control trajectories 

 

As can be seen in Table 15, those with persistent PRISm had reduced FEV1 and FVC % predicted at 

baseline compared to those that reverted to control, however with a median difference of ~2% 

predicted it is not clinically meaningful. Persistent PRISm had a high baseline and mean change in 

BMI (0.8 and 0.24 kg/m2 [SD 2.33] respectively), whilst those that transitioned to control had a mean 
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change of -0.48 kg/m2. There was a clinically significant difference in smoking at baseline was 

observed between participants with persistent PRISm and participants with PRISm that transitioned 

to control, with higher pack/years in the group with persistent PRISm (20 pack/yrs [IQR 12-34] vs 16 

[8-26], p-value <0.0001).  

Multivariable multinomial logistic regression analysis showed strong evidence of a negative 

association between doctor diagnosed asthma with PRISm changing to control vs persistent PRISm 

(RR 0.67 (95% CI 0.47 – 0.96, p-value 0.030). Change in BMI, per mg/kg2 increase, was also strongly 

negatively associated with PRISm changing to control vs persistent PRISm after adjustment (RR 0.86 

(95% CI 0.81 – 0.91, p-value <0.0001).  
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Table 15. Baseline demographics of participants by PRISm trajectory 

Demographic at baseline PRISm to 
PRISm 

N = 745 

PRISm to 
Control 
Spirometry 

N = 987 

P-value* PRISm to Stage I-IV 
Obstruction 

N = 241 

P-value† 

Age (Years) Mean (SD) 53.6 (7) 53.8 (7) 0.56 56.7 (7) <0.0001 

BMI (kg/m2) Mean (SD) 28.8 (5) 28.0 (4) 0.0011 27.3 (4) 0.0001 

Female (%) 56% 52% 0.12 58% 0.51 

FEV1 % predicted Median 
(IQR) 

74% (69 – 
77) 

76% (71 – 
78) 

0.0044 74% (69-77) 0.85 

FVC % predicted Median 
(IQR) 

76% (71 – 
80) 

77% (77 – 
81) 

0.0023 80% (73 – 83) <0.0001 

FEV1/FVC Median (IQR) 76% (73 – 
79) 

76% (73 – 
79) 

0.76 73% (71 – 75) <0.0001 

Never smoker (%) 57% 59% 0.41 52% 0.17 

Ex-smoker (%) 34% 34% 0.99 35% 0.79 

Current smoker (%) 8% 6% 0.12 12% 0.056 

Pack/years Median (IQR) ** 20 (12 – 34) 16 (8 – 26) <0.0001 19 (9 – 34) 0.136 

SOB walking on ground (%) 9% 7% 0.28 16% 0.083 

Doctor diagnosed asthma 18% 13% 0.017 25% 0.078 

Doctor diagnosed COPD 1% 1% 0.43 1% 0.57 

 

*P-value comparing those with PRISm at baseline and follow-up (persistent PRISm), with those that 
transitioned from PRISm to control at follow-up. †P-value comparing persistent PRISm with those 
that transitioned from PRISm to airflow obstruction at follow-up. ** For ex and current smokers 
only. P-values calculated using Z-score for continuous outcomes, Pearson’s chi-squared for 
categorical outcomes 
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6.4.7 Persistent PRISm vs PRISm progressing to airflow obstruction trajectories 

 

At baseline participants with persistent PRISm vs. PRISm to airflow obstruction were younger (53.6 

years [SD 7.5] vs 56.7 years [SD 7.7], p-value < 0.0001). Although there were more current smokers 

and fewer never smokers at baseline in those that transitioned from PRISm to airflow obstruction, 

statistical evidence was weak (p-value > 0.05). Those with persistent PRISm had higher BMI’s 

(28.8kg/m2 [SD 5] vs 27.3 [SD 4], p-value < 0.0001) and higher FEV1/FVC ratios (76% [IQR 73-79] vs 

73% [71-75], p-value < 0.0001) vs PRISm to airflow obstruction at baseline. Change in BMI differed 

between those with persistent PRISm (mean change in BMI of 0.24kg/m2 [2.33]) vs, PRISm to airflow 

obstruction (mean change of -0.58kg/m2 [SD 2.34]). 

Multivariable multinomial regression analysis showed a change from PRISm to airflow obstruction 

was strongly positively associated with increased age, RR 1.07 (95%CI 1.04 – 1.10, p-value < 0.0001) 

and a doctor diagnosis of asthma RR 1.91 (95% CI, 1.17 – 3.13, p-value 0.010). Change in BMI (per 

mg/kg2) increase showed a strong negative (RR 0.86, (0.79 – 0.95, p-value 0.0022) of PRISm changing 

to airflow obstruction vs persistent PRISm after adjustment.  

6.4.7.1 Sensitivity Analysis 

The sensitivity analysis (stratifying by sex, BMI, asthma, smoking status) showed similar rates of 

persistent PRISm (ranging from 32 – 39%), PRISm changing to control (48 – 63%) and PRISm changing 

to airflow obstruction (5 – 15%) across the sensitivity analyses (Table 16). 
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Table 16. PRISm trajectory in different subgroups 

 

PRISm 
trajectory 

Main analysis 
(N= 1,973) 

PRISm LLN 
(N = 1532) 

COPD as 
stage II-IV 
(1,973) 

Men only 
(N = 905) 

Women only 
(N = 1068) 

Never 
smokers 
(N = 1138) 

Ever 
smokers 
(N = 835) 

Non-
asthmatics 
(N = 923) 

BMI <25 
(N= 547) 

PRISm to 
PRISm 

38% 32% 38% 37% 39% 38% 38% 37% 35% 

PRISm to 
control 

50% 63% 50% 52% 48% 51% 49% 53% 50% 

PRISM to 
COPD 

12% 5% 9% 11% 13% 11% 14% 10% 15% 



 

 

6.4.7.2 Transition from control spirometry at baseline 

Regression analysis showed that female sex, being overweight, obesity, and current smoking were all 

associated with transition from control spirometry at baseline to PRISm, whereas doctor diagnosis of 

asthma was not. Doctor diagnosed asthma was strongly associated with a change from control to 

airflow obstruction (Table 17).  

Table 17. Multivariable multinomial logistic regression of baseline demographics association with control to 
prism and control to airflow obstruction vs. persistent control trajectories 

 

 

 

 

 

 

 

 

 

 

 

RRR – Relative risk ratio. 

 

6.5 Survival Analysis 

 

12,810 deaths were recorded during follow-up, 2.8% of controls, 5.0% of PRISm, and 6.7% of airflow 

obstruction. All 351,874 participants were included in survival analysis which showed 3 deaths per 

1000 individuals per year in the control, 6 in PRISm, and 7 for airflow obstruction. An unadjusted 

Kaplan-Meier plot (Figure 21) was produced which showed strong evidence of difference in survival 

between the groups, log rank p-value <0.0001.  

Demographic RRR (95% CI) 
Control to PRISm 

RRR (95% CI)  
Control to airflow 
obstruction 

Age 1.00 (0.99 – 1.02) 
pval 0.61   

1.06 (1.04 - 1.07) 
pval <0.0001 

Sex (Female) 1.23 (1.11 – 1.74) 
pval 0.039  

0.97 (0.83 - 1.12) 
pval 0.67 

Overweight (BMI ≥25 
and <30) 

1.39 (1.11 – 1.74) 
pval 0.0040 

0.65 (0.55 - 0.76) 
pval <0.0001 

Obese (BMI ≥30) 1.82 (1.40 - 2.37)  
pval <0.0001  

0.57 (0.45 - 0.71) 
pval <0.0001 

Ex-smoker 0.88 (0.71 – 1.10) 
pval 0.26  

1.18 (1.01 - 1.38) 
pval 0.041 

Current smoker 2.46 (1.78 - 3.39) 
pval <0.0001 

2.13 (1.60 - 2.85) 
pval <0.0001 

Doctor diagnosis of 
asthma 

1.26 (0.94 – 1.69) 
pval 0.12 

1.45 (1.15 - 1.81) 
Pval 0.0015 



108 
 

 

Figure 22. Kaplan-Meier survival estimates based on spirometric group at baseline 

 

 

 

The Kaplan-Meier graph shows a clear difference in survival between the three lung function states 

PRISm vs controls Hazard Ratio for all-cause mortality was 1.79 (CI 1.70 – 1.88, p-value <0.0001). 

After adjustment for smoking status, age (grouped as quintiles), sex, BMI (categorised) this reduced 

to 1.61 (CI 1.53 – 1.69, p-value <0.0001). Assumptions were checked with log-log plots.  
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6.6 Discussion 

This study in UK Biobank shows that PRISm is common at 11% in this population. This is lower than 

some estimates in cohorts of smokers, but similar to a cohort that included never smokers.60 

Longitudinal analysis showed 62.2% of those with PRISm changed to a different lung function state 

over 9 years. After regression to the mean was considered, rates of persistent PRISm and reverting 

from PRISm back to control were similar at ~40%. Considerably lower rates of progression from PRISm 

to airflow obstruction were found compared to previous reports.57,60 This is likely due to other cohorts’ 

recruiting based on smoking. Restricting analysis to ever smokers is likely to bias other factors 

associated with smoking that can influence PRISm transition to airflow obstruction e.g., age, sex, BMI, 

and asthma which could further confound results. As age also had a strong association with PRISm 

progressing to airflow obstruction, cohorts with older populations are also likely to see higher rates of 

impaired spirometry, especially with longitudinal follow-up.  

There was strong statistical evidence of an association between BMI, particularly obesity, and both 

incident and persistent PRISm. This difference is unlikely to be explained solely by extra-thoracic 

restriction as 62% of those with PRISm had BMI <30 kg/m2 and restricting the analysis to only those 

with BMI <25 kg/m2 showed that 7.6% had PRISm. It may be that BMI is contributing to PRISm risk via 

a different pathway such as metabolic and inflammatory effects of adipose tissue itself.164 

The high prevalence of cardiovascular disease and diabetes in PRISm even after adjustment for 

confounders is important. COPD may have a direct causal effect on extra-pulmonary disease, for 

example through systemic inflammation or oxidative stress.126 Therefore it is conceivable this could 

also occur in PRISm. In addition, reduced FVC (as seen in PRISm), has been shown to be associated 

with death and causally linked with risk of coronary artery disease.31,165  

Despite the variable state of PRISm over time, survival analysis showed strong evidence of an 

increased risk of death. This may be due to increased co-morbidities in PRISm, but further work is 

needed to determine if this is causal and/or whether it would be a modifiable risk factor. However, 
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even if no causal pathway were to be found between PRISm and co-morbidity, this could be due to 

shared environmental or genetic factors and studies such as those screening for diabetes and 

cardiovascular disease in PRISm would still be of interest.  

The strong association of current smoking to incident PRISm, persistent PRISm, and progression to 

airflow obstruction shows that smoking cessation is important. PRISm is a variable state, and so it is 

possible that quitting smoking will improve the chance of reversion to control spirometry and prevent 

progression to COPD. Imaging studies quantifying smoking-associated features such as emphysema, 

airway wall thickness and air trapping may be used to predict more rapid lung function decline in those 

with PRISm.166  

The observed relationship between asthma and PRISm may be complicated by self-report rather than 

objectively confirmed diagnoses. For example, people with PRISm and respiratory symptoms may 

manifest with ‘asthma like symptoms’ and be incorrectly diagnosed. However, there are plausible 

mechanisms by which asthma may contribute to both PRISm and airflow obstruction via small airways 

obstruction and gas trapping.167,168 I performed a sensitivity analysis by excluding participants with 

asthma which suggested that neither lung function trait of PRISm or its association with co-morbidities 

are solely due to an asthma misdiagnosis or effect. 

The large sample size of UKBiobank, which has recruited participants based on age, instead of smoking 

history, has allowed the largest and most generalisable study of PRISm to date and a more powerful 

analysis of its relationship with comorbidities. This is the first study to estimate the effect of regression 

to the mean, an important source of bias in longitudinal studies, especially when examining an outlier 

group. The follow-up period of this study is particularly long with a median of 9 years between data 

sets reducing the risk of short-term changes. Having mortality records for up to 12 years after 

recruitment also allows for accurate estimation of mortality associations with PRISm. 
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6.6.1 Limitations 

UK Biobank collects only pre-bronchodilator spirometry, post-bronchodilator spirometry was not 

available. Post-bronchodilator spirometry is not required for a diagnosis of PRISm, but differences 

between pre and post-bronchodilator spirometry have been reported for PRISm and airflow 

obstruction.61,169 If post-bronchodilator spirometry was used, it is likely to have reduced the numbers 

classified as having PRISm and airflow obstruction spirometry in UK Biobank potentially changing some 

conclusions. One study of 18,509 participants showed a prevalence of 22.3% PRISm pre-

bronchodilator, that reduced to 17.7% post-bronchodilator. It would be valuable for a study of PRISm 

to be performed in subjects who had post-bronchodilator spirometry.  I hope that by performing 

sensitivity analysis using LLN criteria and classifying airflow obstruction as GOLD II-IV it may have 

eliminated a proportion of individuals whose FEV1/FVC ratio would have normalised post-

bronchodilation. There was a lower prevalence of PRISm and a higher mean FEV1 at follow-up 

compared to baseline. However, the mean annual decline in FEV1 is similar to a normal population. 

Participants that have follow-up data were younger with lower rates of smoking. The rate of current 

smoking at follow-up was low at 6.3%. This is a potential source of bias. Recruitment to follow-up was 

based solely on participants proximity to assessment centres. Participants with health problems may 

be less inclined to repeatedly attend. Due to increased mortality associated with PRISm and airflow 

obstruction survivor bias may play a role, although the proportion of the cohort that died was low. It 

may be those participants living closer to recruitment centres have healthier lung function. UK Biobank 

has been shown to have a “healthy volunteer” bias as no weighted sampling was undertaken. Despite 

this, research has shown that established associations between risk factors and outcomes are 

comparable to studies with more representative sample populations.170 Additionally, due to its large 

size and heterogeneity of exposure methods, associations between exposures and health outcomes 

are generalizable to other populations.171 There were two time points available for analysis. More time 

points would allow for a more nuanced understanding of change over time, increased power and 

precision of estimates, and regression to the mean analysis. Spirometry was used to defined airflow 
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obstruction. Airflow obstruction is not the same as COPD which remains a clinical diagnosis assuming 

spirometric criteria are fulfilled. There is no more detailed lung physiology such as lung volumes or gas 

transfer, but they are not necessary for the diagnosis of PRISm. Interstitial lung diseases are very rare 

and comprise <0.1% of UK Biobank so are unlikely to influence results. The sample was 100% European 

ancestry. Therefore, these results may not be generalisable to non-European ancestral populations. 

There results may not be generalizable to people under the age of 40. Finally, traditional observational 

epidemiological analysis such as this could be affected by collider bias.172 By stratifying lung function, 

a continuous trait influenced by multiple exposures, into conditional phenotypes, lung function can 

become a collider. This can induce associations between exposures for both lung function and other 

outcomes e.g. cardiovascular disease. Time-varying covariates can become colliders. For example, 

participants could decide to quit smoking due to a lung disease, which could affect the transition to 

other lung function states. If this did occur, then the observed associations may be induced by the 

statistical model.  

6.6.2 Future Research 

Studies assessing structural, functional lung changes and genetics of PRISm are now needed. For 

example, the frequency and severity of small airways dysfunction in PRISm will provide further insight 

into underlying pathophysiology and future risk of COPD. Importantly, small airways obstruction may 

be amenable to treatment. Genetic studies of PRISm have so far failed to find associated variants,59 

but discovery of genetic markers for PRISm in larger cohorts could help explain underlying pathological 

mechanisms for PRISm and be used for Mendelian Randomisation studies to determine if the is 

evidence that the observed association with co-morbidity is causal. 

6.6.3 Conclusion 

This analysis of UK BIOBANK shows a general adult population prevalence of PRISm of 11%. PRISm is 

associated with breathlessness, diabetes, and cardiovascular co-morbidity, and death even after 

adjustment for shared risk factors including smoking. PRISm is often a transient state with 50% 
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returning to normal lung function and 12% progressing to airflow obstruction over ~9 years. While 

PRISm is strongly associated with asthma, BMI and smoking, these factors do not appear to entirely 

account for this lung function trait and the mechanisms remain unclear. 
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CHAPTER 7. GENOME WIDE ASSOCIATION STUDY OF PRESERVED 
RATIO IMPAIRED SPIROMETRY (PRISM) IN UK BIOBANK 

 

7.1 Publications and Contributions 

This chapter is currently being submitted for publication. 

DH and JD conceived the study. DH planned and performed the data analysis and wrote the paper. 

RG, GDS and JD provided supervision. Alvin Lirio (University of Lecester) performed the LD 

correlation studies. Fergus Hamilton assisted with the LDSC analysis. 

7.2 Introduction 

 

Preserved Ratio Impaired Spirometry (PRISm), also referred to as ‘restrictive pattern’ or ‘unclassified’ 

spirometry, is defined as FEV1 percent predicted <80%, and FEV1/FVC ratio ≥0.70. It was thought that 

PRISm was a pre-cursor of COPD, with some data suggesting that over 5 years, up to 50% may 

transition to COPD while 15% return to ‘normal’ spirometry.57,60 However this work may have been 

affected by selection and small cohort bias. My research in a larger more generalizable cohort has 

shown that PRISm can be a transient state, with only 12% of those with PRISm developing airflow 

obstruction. However, clinical interest remains as PRISm is associated with respiratory symptoms, co-

morbidities such as obesity, diabetes, cardiac disease, and an increased overall mortality.57,60 

There are several factors associated with the risk of PRISm including Body Mass Index (BMI) and 

smoking. Whether PRISm has genetic risk factors is not yet known. There has been just one 

attempted Genome Wide Association Study (GWAS) of PRISm, but numbers were small (N=1257), 

restricted to ever smokers, and failed to find any significant (p-value <5x10-8) SNPs. 59 Lung function 

traits, trajectories and diseases are known to be associated with genetic variants, 30,75 and the same 

may be true of PRISm.  

If found, genetic variants could provide insight into pathogenesis of PRISm, and potentially provide 

therapeutic targets. Genetic variants for PRISm could be used for Mendelian Randomisation studies 
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to determine if there is evidence of causality of associations of PRISm. It may be that PRISm and its 

associated co-morbidities have shared genetic risk factors. 

My objective was to perform a case-control GWAS of PRISm to determine if PRISm is heritable and 

report novel associated SNPs. For the discovery cohort I used the UK Biobank, and for replication I 

used cohorts within the SpiroMeta and CHARGE consortiums. I focused on variants that had not 

been described in the Shrine GWAS of continuous lung function, the largest lung function GWAS to 

date.75 I undertook a Phenome Wide Association Study (PheWAS) and literature review of any 

successfully replicated SNPs.  
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7.3 Method 

7.3.1 Study Populations 

UK Biobank includes 502,543 individuals aged between 40 and 69 years at recruitment across the 

UK.68 Only previously derived variables of quality-controlled pre-bronchodilator spirometry were 

used for “best measure” FEV1 and FVC, excluding participants without acceptable spirometry. Only 

those of European ancestry were included to reduce population stratification and maintain a large 

sample size. Patients with no known smoking status or weight were excluded. FEV1 percent 

predicted was calculated as per GLI-2012 values using RSpiro R package in R studio 3.6.1.160 PRISm 

was defined as FEV1 % predicted <80% and FEV1/FVC ratio ≥0.70, controls as FEV1 % predicted ≥80% 

and FEV1/FVC ratio ≥0.70. Genotyping was performed by the UK Biobank using the Axiom UK BiLEVE 

array and the Axiom Biobank array (Affymetrix) and imputed to the Haplotype Reference 

Consortium (HRC) panel.173 

Replication GWAS was performed individually in 13 cohorts from the SpiroMeta consortium. 

Although not formally tested, there was no overlap between the discovery and replication samples. 

Replication was only performed in those of European ancestry.  

7.3.2 GWAS 

 

A GWAS of PRISm and controls was performed using BOLT-LMM logistic regression via the IEU GWAS 

pipeline adjusting for sex, body mass index (BMI), age, and smoking status.174 BOLT-LLM uses a linear 

mixed model to account for both cryptic relatedness and population stratification. SNPs used all met 

the criteria: Mean Allele Frequency >0.01, Genotyping rate >0.015, Hardy-Weinberg equilibrium p-

value <0.0001, r2 threshold of 0.10.174,175 Mean allele frequency refers to the frequency of alleles in 

the population (i.e. A and a), genotype rate is the frequency of genotypes in the population (i.e. AA, 

Aa, aa). Therefore, the criteria ensures rare alleles and genotypes are excluded. The Hardy-Weinberg 

equilibrium excludes genotypes that do not occur at a rate expected in a normal population, 



117 
 

reducing the risk of population stratification. The r2 threshold means that closely correlated SNPs are 

removed. Stringent linkage disequilibrium clumping (r2 0.001, kb 10,000) was applied to SNPs 

reaching significance threshold of p-value 5-08, this retains the most significant SNP at a locus to 

ensure all signals are independent. Only SNPs not reported in the largest published GWAS of lung 

function to date were then investigated in the replicating cohorts.  

Replicating cohorts performed a logistic regression of the remaining SNPs in those with PRISm and 

control spirometry. Adjustment for age, BMI, sex, smoking status (either pack/years or as above), 

and population substructure by either principal components or using linear mixed models was done. 

Meta-analysis of the replicating cohorts was performed using an inverse-weighted random-effects 

model with the STATA command metan. A priori determined significance thresholds were tier 1 (p-

value <5-08 in UK Biobank, and in replication p-value = 0.05/number stage 1 SNPs) and tier 2 (p-value 

<5-08 in UK Biobank, and in replication p-value < 0.05). Both tiers required SNPs to have consistent 

direction of effect in discovery and replication analysis. 

7.3.3 Analysis of GWAS and replicated SNPs 

I conducted a PheWAS of replicated SNPs reporting associations of p-value <5-8. LD-correlation 

analysis was performed to assess the correlation of all SNPs tested in the discovery PRISm GWAS 

with other GWAS including continuous lung function traits, moderate to severe asthma, asthma-

COPD overlap, respiratory tract infections and eosinophils. I also examined the LD-correlation 

between PRISm and extra-pulmonary traits including type II diabetes, BMI, hypertension, and 

myocardial infarction. LD-correlation studies are reported with rg, a measure of the genetic 

correlation between PRISm and the other trait. A rg of 1 implies identical genetic influences, an rg of 

0 implies the genetic effect on one trait is independent of the other. Replicated SNPs were cross 

referenced with online resources to determine their function and expression.176,177 Phenoscanner 

was used to determine the nearest gene to replicated SNPs.176 The previously documented genes 

function was found using Genecards, with results in Table 19.178 Online resources were used to see if 
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SNPs are known to be expressed in mouse lung tissue and if nearest genes are associated with 

Mendelian inherited diseases.179,180  
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7.4 Results 

 

7.4.1 Discovery GWAS 

 

353,315 participants had “best measure” FEV1 and FVC. 1,440 were excluded for missing smoking 

status and/or BMI. This left 351,874 participants, including 38,639 PRISm cases and 257,643 

controls. A GWAS of 296,282 individuals was performed (after removing 6,490 without genotypes). 

12,321,875 SNPs (imputed or genotyped) were tested. 8,233 reached p-value <5×10-8 as shown in 

Figure 22. After LD-clumping (r2 0.001, kb 10,000) 34 SNPs from 18 chromosomes remained. I then 

attempted to replicate the 27 SNPs from 16 chromosomes that had not been previously reported as 

being associated with lung function.75 

 

Figure 23. Manhattan plot of discovery PRISm GWAS 

 

Each circular point in the Manhattan plot represents a SNP tested in the GWAS. The figure shows which 
chromosome the SNPs are on and their significance threshold for PRISm. 
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7.4.2 Replication analysis 

 

13 cohorts performed a replication analysis. Replicating cohorts used proxies if SNPs were not found 

in their panel (r2 ≥0.8). The meta-analysis totalled 5,165 PRISm cases and 47,729 controls. No SNPs 

were replicated to tier 1 threshold, but 6 SNPs were replicated to tier 2 threshold. A flow chart 

showing the process can be seen in Figure 23. 

Figure 24. Flow chart of analysis 

 

Flow chart showing the process of SNP discovery and replication in the PRISm GWAS 

 

7.4.3 Analysis of GWAS 

 

LD-correlation analysis showed an extremely strong negative correlation between the genetic causes 

of increasing risk of PRISm and increasing continuous FEV1 (rg -0.95, p-value <0.001) and FVC (rg -

0.93, p-value <0.001). There was strong correlation with peak flow rate (rg -0.65, p-value <0.001) 

and asthma-COPD overlap (rg 0.52, p-value <0.001), moderate-severe asthma (rg 0.31, p-value 

Discovery analysis in UK Biobank
38,639 cases, 257,643 controls

12,321,875 SNPs

34 SNPs

P value 5-08

Clumping (r2 0.001, kb 10,000)

Replica�on meta-analysis of 27 SNPs in 13 cohorts
5,165 cases and 47,729 controls

7 SNPs previously reported 
associated with lung func�on

0 SNPs Tier 1 (p value 0.05/27) 6 SNPs Tier 2 (p value 0.05)
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<0.001). Despite the definition of PRISm requiring a preserved ratio, there was a moderate 

correlation between PRISm and FEV1/FVC (rg-0.23, p-value <0.001). Type II diabetes showed a 

moderate correlation with PRISm (rg 0.12, p-value 0.007). The other extra-pulmonary traits all had 

some evidence of correlation, but the strength of correlation is less meaningful with rg’s ≤0.08 as 

shown in Table 18.  

 

Table 18. Results of LD-correlation study between PRISm and both pulmonary and extra-pulmonary GWAS 

Trait rg with PRISm SE P-value 
FEV1 -0.96 0.01 <0.001 
FVC -0.93 0.01 <0.001 
PEFR -0.65 0.02 <0.001 
FEV1/FVC -0.23 0.02 <0.001 
Asthma-COPD overlap 0.52 0.04 <0.001 
Mod-severe asthma 0.31 0.05 <0.001 
Respiratory infection 0.18 0.6 0.003 
Eosinophils 0.06 0.02 0.012 
Type II Diabetes 0.12 0.03 0.007 
BMI -0.04 0.02 0.031 
Systolic hypertension 0.08 0.02 <0.001 
Diastolic hypertension 0.05 0.02 0.035 
Myocardial infarction 0.07 0.03 0.007 

 

7.4.4 Analysis of replicated SNPs 

 

Table 19 shows the replicated SNPs. LD hub181 was used to see if the replicated SNPs are in high LD 

with any previously reported SNPs for lung function in the largest published GWAS to date by Shrine 

et al.75 Of the six replicated SNPs, three (rs6923462/rs2240885/rs9421040) are in high LD (r2 ≥0.7) 

with a SNP reported as a tier 1 SNP by Shrine et al, and two replicated SNPs (rs780151/rs10278266) 

are in high LD with tier 3 SNPs from the same GWAS.75 Rs11113127 is not in the 1000G reference 

panel of LD hub so it is not possible to report r2, but it is in close proximity (0.4Mb) to SNPs that 

showed p-value 1-06 for FVC in UK Biobank and the meta-analysis of the Shrine GWAS. 

PheWAS showed that all SNPs discovered have been associated with lung function traits in UK 

Biobank. Rs780151 is associated with anthropomorphic traits in UK Biobank including weight, trunk 
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fat mass, and basal metabolic rate. Rs2240885 is associated with BMI. Rs2240885 has been 

associated with risk of type II diabetes in East Asian populations.182 Rs6923462 has been associated 

with basal metabolic rate, trunk mass and trunk fat free mass. Rs10278266 has been associated with 

fasting blood sugar level in both UK Biobank and a non-UK Biobank GWAS.183 

GTEX177 examining for SNP association with eQTL showed that rs2240885 is associated with change 

in gene expression in the CLUAP1 gene. CLUAP1 gene has been shown to affect cilia biogenesis by 

affecting function within the multiple intra-flagellar transport complex B.  

None of the SNPs found have been expressed in mouse lungs.179 None of the nearest genes to the 

SNPs have been shown to affect Mendelian inherited diseases.180 



 

 

 

Table 19. Replicated SNPs results from discovery and replication GWAS 

SNP Gene Gene function CHR:BP A1F A1/A0 UK BioBank Replication meta 
OR 95% CI P-value OR 95% CI P-

value 
rs9431040 HLX Enables sequence-specific DNA binding. 

Effects organ development and T Helper cell 
differentiation 

1:221152299 0.28 T/C 0.992 0.990 – 0.994 9.2-16 0.945 0.901 – 0.991 0.02 

rs6923462 BMP6 Encodes a ligand of TNF-beta. 
Effects iron homeostasis, bone and fat 
development 

6:7801112 0.75 T/C 0.993 0.991 – 0.995 2.9-8 0.912 0.851 – 0.977 0.009 

rs10278266 DGKB Regulators secondary messenger 
diacylglycerol , involved in cellular processes. 

7:14943333 0.79 A/G 0.994 0.992 – 0.996 2.5-8 0.924 0.875 – 0.976 0.005 

rs780151 ZMIZ1 Encodes a protein inhibitor.This regulates 
transcription factors including an androgen 
receptor. 

10:80931481 0.58 G/A 1.005 1.003 - 1.007 3.5-9 1.062 1.005 – 1.123 0.033 

rs11113127 RIC8B Enables G-protein alpha-subunit binding 
activity, affecting receptor signaling pathway. 

12:107597518 0.38 T/C 0.995 0.993 – 0.997 2.4-8 0.945 0.901 – 0.991 0.02 

rs2240885 SLX4 Encodes a protein that functions as an 
assembly component for multiple structure-
specific endonucleases required for repair 
DNA lesions. 

16:3647098 0.78 G/A 0.994 0.991 – 0.996 9.4-9 0.938 0.889 – 0.989 0.018 

A1F – Allele 1 Frequency. A1 – Allele 1 or effect allele. A0 – Allele 0 or reference allele. OR – Odds Ratio. 95% CI – 95% confidence interval. CHR:BP – 
chromosome:base pair position 



 

 

7.5 Discussion 

 

This is the first GWAS of PRISm to successfully discover and replicate SNPs, showing that there is a 

heritable component for the development of PRISm. Modifiable risk factors for PRISm such as 

smoking and obesity remain important, but not all PRISm risk will be amenable to medical 

intervention. COPD is no longer viewed as a single organ self-inflicted smoking disease, but a result 

of genetic and early life factors that determine lung function trajectories.30,75 PRISm is also a 

heterogenous condition with variable trajectories that can change to COPD in a minority of cases. 

Given PRISm and COPD both have genetic risk factors affecting lung function traits, this could 

partially explain the transition between them. 

PRISm has been shown to be associated with systemic co-morbidities such as diabetes, heart 

disease, and increased risk of mortality in observational studies. One PRISm SNP reported has been 

associated with type II diabetes, and there was moderate LD-correlation with a type II diabetes 

GWAS, suggesting that genetic pleiotropy could contribute to co-morbidity as opposed to a causal 

effect. Similarly, a few SNPs discovered have been associated with BMI and weight which are strong 

risk factors for PRISm, indicating a shared genetic risk. 

All my successfully replicated SNPs are likely to represent loci that have been shown or suspected to 

be associated with lung function measures as continuous traits. The LD-correlation analysis shows 

extremely strong correlation between PRISm and continuous lung function traits. This is not 

surprising given PRISm is an artificial construct of spirometry, as opposed to a disease defined by a 

unique pathogenic mechanism. Similarly, previous GWAS of COPD based on spirometric criteria have 

discovered loci that have been described as associated with diverse range of lung diseases including 

asthma and idiopathic pulmonary fibrosis.109 This is likely to reflect the genetic heterogeneity of lung 

diseases, as well as the similar traits used for diagnosis and analysis. 
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Lung function is a continuous trait, and dichotomisation of continuous traits reduces power of 

GWAS. Despite a large sample, a small number of SNPS have been discovered that are likely to all 

represent loci previously discovered for lung function. GWAS of larger samples of PRISm vs control 

are unlikely to discover SNPs that are unique to PRISm, or novel to lung function. This is 

compounded by the fact that PRISm is likely to represent heterogenous subtypes. It may be that 

better phenotyping of PRISm from a more homogenous population could lead to more specific SNP 

discovery e.g. those with PRISm and a BMI <25 as they may represent a distinct pathological 

mechanism. Given the high proportion that transition from PRISm to other lung function states over 

time, it would seem sensible that if future genetic studies were undertaken, those with persistent 

PRISm are used as cases. However, this will limit total sample size reducing power. 

The GWAS was only performed in those of European heritage, these results may not be 

generalizable to other ancestral populations. The discovery GWAS was performed using pre-

bronchodilator values, although medication was not withheld prior to spirometric testing. Although 

post-bronchodilator values are not required for PRISm diagnosis, there is evidence that spirometric 

values can change in those with PRISm post-bronchodilation.169 None of the SNPS found met 

Bonferroni corrected p-values on replication meta-analysis, potentially leading to the reporting of 

false positive results. 

7.5.1 Genomic Inflation 

After completing the first draft of this paper, an external co-author suggested I adjust for genomic 

inflation. Genomic inflation can lead to false positive SNPs discovery. It can be caused by population 

stratification, high LD between SNPs, or strong association between the SNPs and the phenotypes 

tested.  A Quantile-Quantile (QQ) plot and lambda value can be used to assess for genomic inflation 

visually and numerically respectively. A QQ plot is made by plotting SNPs observed p-value against 

their expected p-value and the lambda is calculated from this. If a straight line is shown on the QQ 

plot, and the lambda is below 1.1 it indicates no genomic inflation. As can be shown in Figure 24, the 
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QQ plot for the PRISm discovery GWAS has a large deviation from the straight line (in light grey) and 

the lambda value was 2.0, which is a very high value.  

Figure 25. QQ plot of PRISm GWAS 

 

The plot deviates considerably from the predicted line. The associated lambda was 2.0. This indicates many 
more SNPs discovered than expected and probable genomic inflation.  

 

At the time of writing the first draft of this paper I thought that the genomic inflation was purely 

driven by the large number of SNPs discovered below the p-value <5-08 threshold. Most of these 

SNPs removed by clumping and not reported, so not a concern (as discussed in 7.4.1 clumping 

reduced the number of significant SNPs from 8,223 to 34). Figure 22 shows that there was a hit in 

the major histocompatibility complex region of chromosome 6 which can introduce many pre-

clumping hits due to its high gene density, polymorphism, and linkage disequilibrium.184  

To further assess and adjust for genomic inflation I used the LD score regression package. This 

further filtered the SNPs in the discovery GWAS which reduced the lambda to a less concerning 1.25. 

The LDSC intercept value (a measure of confounding due to population stratification) was low at 

1.02. To control for genomic inflation due to population stratification I adjusted the GWAS for the 



127 
 

LDSC intercept value. After clumping the LDSC intercept adjusted GWAS and removing SNPs already 

reported in the Shrine et al. GWAS, 26 SNPs reached significance threshold. 20 of these SNPs are the 

same that I reported prior to LDSC intercept adjustment. The 6 SNPs that are differ between the pre 

and post adjustment results are all in high LD (r2 ≥0.8) with each other and therefore likely represent 

the same signals. Therefore the conclusions drawn from my earlier results are still valid despite the 

high lambda.  

7.5.2 Replication method 

The same external co-author informed me the replication method I used is not standard. I 

performed the replication meta-analysis just in the replicating cohorts. This is still of value, and can 

be reported, but is quite stringent as the replicating cohorts have a much smaller population so are 

less likely to replicate the SNPs. Instead I intend to combine the replicating cohorts with the 

discovery cohort in a meta-analysis, and report SNPs that meet p-value <5-08. I still hope to 

undertake this analysis. It is likely to increase the number of SNPs replicated furthering the strength 

and novelty of the study. 

7.6  Conclusion 

This is the first GWAS of PRISm to successfully identify SNPs, showing that PRISm has genetic risk 

factors. It may be that genetic pleiotropy pre-disposes to PRISm and associated anthropomorphic 

traits and diseases. All SNPs reported have been associated with lung function before and there was 

an extremely strong correlation with continuous lung function trait GWAS. Further GWAS of PRISm is 

unlikely to reveal neither novel SNPs for lung function nor SNPs unique to PRISm, unless 

homogenous subpopulations are used. 
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CHAPTER 8. THE IMPACT OF ASTHMA ON MENTAL HEALTH AND 
WELL-BEING DURING COVID-19 LOCKDOWN 

 

8.1 Disclaimer 

 

This paper on which this chapter is based was written during and immediately after the first 

lockdown for COVID-19. Since then, there have been dramatic changes in the understanding and 

treatments of COVID-19 as well as evolving social isolation measures, including further lockdowns. 

However, this paper remains a robust exploration of the impact of asthma on mental health during a 

period of social isolation. I have included it as my final research chapter as there is no genetic 

epidemiology element, it focusses on asthma rather than reduced lung function (or states defined by 

reduced lung function like COPD or PRISm), and it relates to a specific unusual period. It was 

unplanned, given COVID-19 did not exist in the UK until I was 1 year into my PhD. Despite these 

differences it is an exploration of extra-pulmonary disease associated with a chronic lung disease so 

is well suited to this thesis. I begin with a background discussion of asthma, its associated co-

morbidities and COVID-19 as these issues have not been discussed previously.  

8.2 Publication and contributions 

 

This chapter has been published as a letter. 

The impact of asthma on mental health and wellbeing during COVID-19 lockdown. Daniel Higbee, 

George Nava, Alex Kwong, James Dodd, Raquel Granell. European Respiratory Journal. 2021 Jul 

29;58(1):2004497. 

DH, JD, and RG conceived the project and determined the data analysis plan. RG performed the data 

analysis. DH, GN and RG wrote the paper. AK provided advice regarding utilising the data. JD 

provided overall supervision. 
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8.3 Background 

8.3.1 Asthma 

Asthma was first described as a collection of symptoms in the 4th century BC by the ancient Greeks 

characterised by spasms of breathing difficulty.185 Asthma affects 300 million people worldwide and 

is a heterogenous condition characterised by symptoms, such as wheezing, shortness of breath, 

chest tightness, and cough that vary with onset, frequency and intensity.186 Airway inflammation and 

mucus hypersecretion leads to bronchial hyperresponsiveness and airflow obstruction.187 

 

8.3.2 Asthma and co-morbidity 

Asthma is in the top 10 most prevalent conditions associated with co-morbidity, being associated 

most frequently with hypertension, pain, anxiety & depression. 188 Anxiety and depression are more 

common in people with multi-morbidity which can impact their ability to manage their conditions, 

with negative consequences. 189 The National Registry of Asthma Deaths audited the notes of 

patients that died from asthma.190 They found that psychological co-morbidity contributed to the 

risk of asthma death, with 16% of those that died having depression and mental health issues. 

8.3.2.1 Asthma & Anxiety 

Studies examining the association of asthma and anxiety have been conducted in different sample 

populations and controlled for different confounding factors. Results vary so the true nature of the 

association is uncertain. 

 A meta-analysis found that across 15 studies comprising 15,443 patients there was 22% prevalence 

of anxiety in asthmatic people.191 11 of the studies comprising 10,223 people under the age of 18 

found that young people with asthma had a ~30% higher number anxiety disorders (Cohen’s d = 

0.37, 95%CI: 0.24-0.50) and anxiety symptoms (d = 0.29, 95%CI: 0.19-0.39) compared to those 

without asthma. This effect is not just seen in youth, a case-controlled study using patients with a 
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mean age of 40-41 years compared 96 asthmatics with controls and found that asthma was 

associated with Odds Ratio (OR) of 3.03 (1.41–6.84) of lifetime anxiety.192  

The effect is maintained, to varying degrees across racial groups. A large study of US citizens found 

that stratified by ethnicity there was an increased risk of generalised anxiety was seen in Latinos and 

black patients but not in Asians.193 These findings differ from a large Taiwanese study that found that 

asthma was an independent risk factor for anxiety with an adjusted hazard ratio of 1.8 (1.66-1.95). 

194 

When asthma and anxiety do co-exist research has shown that they produce a worse quality of life, 

195-198 and increased healthcare utilisation compared to asthma without anxiety. 199  

However, the association between asthma and anxiety is not seen in all studies and may be 

confounded by a number of factors. One study found that after controlling for confounding factors, 

asthma was no longer associated with increased odds of anxiety disorders. 200  A case-controlled 

study found that in those with well controlled asthma, as evidenced by a low Asthma Control 

Questionnaire score, there was no increased risk of anxiety. 201 

8.3.2.2 Asthma & Depression 

The relationship between asthma and depression is also uncertain. Some studies have found an 

increase in depression amongst asthmatics 202-204 with one study (Cases = 1453, Controls = 5812) 

reporting a Hazards Ratio (HR) of 1.81 (1.14–2.89) for major depression and 1.74 (1.27–2.37) for any 

depressive disorder. A large prospective multi-national cohort (N= 85,088) estimated an OR of 1.6 

(1.4-1.8).205 A meta-analysis of 51 paper found a higher risk of depression was observed in patients 

with asthma Relative Risk (RR) 1.58 (1.44 – 1.74).206 The severity of asthma control may affect the 

relationship. A small (N = 140) case-controlled study of well-controlled asthmatics found no 

correlation201 between asthma and worse scores for depression compared to healthy controls. A 

meta-analysis of 8 papers found that severity of asthma was not a moderator for the asthma-

depression risk.204 The direction of affect is not certain and bi-directionality has been explored. A 
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large cohort study found an increased risk of developing asthma after a major depressive disorder 207 

and a meta-analysis of prospective studies found that depression predicted the development of 

asthma, but notably not the other way around.208 

Having co-existent depression worsens quality of life,196,209 and asthma control 197 with a meta-

analysis of 10 papers (N = 31,432 adults with asthma) showing that depression increased the risk of 

hospitalisations (RR 1.07 (1.04-1.11) and A&E visits (RR 1.06 (1.02-1.11) due to asthma.210  

8.3.2.3 Underlying Mechanisms between asthma and mental health coi-morbidity 

Asthma may cause these psychological disorders, the psychological disorders may cause asthma, or 

there may be a shared common pathway. What the underlying pathological mechanisms could be 

remains uncertain, but various pathways have been hypothesised for both shared and directional 

causality. Interactions between behavioural, neural, endocrine, and immune processes suggest that 

psychological factors play an active role in causing asthma.211 However, there is also research 

demonstrating biological pathways whereby asthma can cause anxiety, particularly via the 

hypothalamus-pituitary axis.212 This effect can be influenced by the presence of depression. From a 

behavioural perspective, physical manifestations of anxiety and panic can worsen asthma symptoms 

and reduce treatment response via hyperventilation, changes in self-management behaviour, and 

physician response.213 

8.3.2.4 Coronavirus 

The novel severe acute respiratory syndrome coronavirus 2 (COVID-19) global pandemic has resulted 

in hundreds of millions of infections and millions of deaths.214 I began my PhD in January 2018, 

before the pandemic. During the first and second wave of COVID-19 in the UK I returned to my 

previous clinical role as a respiratory and general medicine registrar. My primary supervisor also had 

a huge increase in his clinical duties. During both the first and second wave I was involved in the 

recruitment of patients for the multi-armed Randomised Evaluation of COVID-19 Therapy 

(RECOVERY Trial) leading to multiple treatment findings and publications of which I am a co-
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author.215-219 Although this reduced research time, it also prompted research questions and 

opportunities.  

To reduce transmission of COVID-19 in the population and decrease pressure on hospitals, social 

isolation measures were introduced. It was assumed that people living with pre-existing respiratory 

diseases would be at higher risk of developing severe COVID-19 illness, despite a lack of available 

evidence at the time.220 This meant that there were prolonged periods when recommended social 

isolation measures were stricter for those with respiratory disease. Cross-sectional studies showed a 

high prevalence of anxiety and depression during COVID-19 across ages and countries.221,222 

Research to assess the impact of having asthma on mental health during the first lockdown was 

required, especially given the debate about the risk-benefit of further lockdowns underway at the 

time of research. Available sample populations had not included longitudinal data (including pre-

pandemic measures) or detailed clinical history, prior physical or psychological assessment, meaning 

that conclusions about the effect of COVID-19 on people with asthma were impossible.  

 

8.4 Introduction 

 

To mitigate the risk of harm of COVID-19 to those with chronic respiratory disease, and to reduce 

transmission in the general population, measures to restrict social interaction including social 

distancing, self-isolation, and quarantining were introduced. Similar measures were used during the 

Severe Acute Respiratory Syndrome (SARS) epidemics leading to negative mental health impacts even 

in those not exposed to the virus.223 Unlike SARS, COVID-19 has caused a high proportion of the global 

population to endure social isolation measures and financial instability, increasing the potential for 

psychological harm. The UK, and other countries around the world, have had repeated social isolation 

measures and may re-instate them. This is an ongoing threat to mental health. 
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Asthma is a common respiratory disease of co-morbidity affecting ~10% of the UK’s population and 

is associated with anxiety and depression.188,224 The presence of psychological co-morbidity with 

asthma decreases quality of life, increases healthcare utilisation, and contributes to the risk of 

asthma death.190,198,199 

Cross-sectional studies have shown a high prevalence of anxiety and depression during COVID-19 

across ages and countries.221,222 Available sample populations thus far have not included longitudinal 

data (including pre-pandemic measures) or detailed clinical history, prior physical or psychological 

assessment, meaning that conclusions about the effect of COVID-19 on people with asthma have 

been impossible. 

My objective was to determine if people with asthma experienced worse anxiety, depression and/or 

wellbeing during the first lockdown for COVID-19 compared to people without asthma. The 

secondary objectives were to explore the additional impact of the COVID-19 pandemic on factors 

associated with the disease and lockdown. I hypothesized that physical symptoms such as having a 

suspected COVID-19 infection or difficulty breathing, as well as social factors such as worry of losing 

a job, could impact people with asthma more severely than people without asthma.  

If there is a more severe worsening of mental health or wellbeing among people with asthma, it 

could be used to help identify those at risk for support. Associated factors may be modifiable 

reducing the impact. Results may also help balance public health decisions regarding re-instigation 

of lockdown measures. 

8.5 Methods 
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8.5.1 Study Samples 

Data from the Avon Longitudinal Study of Parent and Children (ALSPAC), a British longitudinal cohort 

of children born in 1991 and their parents, was utilised to compare associations of asthma in young 

and middle-aged adults.225  

ALSPAC is an ongoing longitudinal population-based study that recruited pregnant women residing 

in Avon in the south-west of England with expected delivery dates between 1st April 1991 and 31st 

December 1992.225,226 The cohort consists of 13,761 mothers and their partners (referred to as 

ALSPAC-G0), and their 14,901 children (ALSPAC-G1).227 The cohort has been extensively investigated 

with at regular time points allowing us to compare pre-COVID-19 levels of mental and physical 

disease to anxiety and depression assessed during lockdown. This study uses data from 3737 

ALSPAC-G0 and 2942 ALSPAC-G1 who completed an online questionnaire in April 2020 covering 

COVID-19 symptoms, mental health, lifestyle, finances, and family life.228 This questionnaire was 

designed to quantify the impact of COVID-19, how it is transmitted among the general population, 

and learn more about the psychosocial and economic impact of the government’s lockdown 

strategy. The first lockdown was announced in the UK on the 23rd of March. 

8.5.2 Self-reported Current Asthma 

Current asthma was assessed in the COVID-19 surveys with the question - Participant has asthma 

yes/no- at mean age 28 years in ALSPAC-G1 and at mean 59 years in ALSPAC-G0. In ALSPAC-G1 the 

proportion of participants with asthma correlated well with previous reports of current asthma at 23 

years (92% overlap); in ALSPAC-G0 the overlap with previous reports of asthma was 72% with 

‘asthma ever’ at 39 years. 

8.5.3 Pre-COVID-19 vs COVID-19 Mental Health 

The measures used in the COVID-19 survey examine symptoms in the preceding 2 weeks, thus 

represent mental health in lockdown. Depressive symptoms in both ALSPAC-G0 and ALSPAC-G1 

samples were measured using the Short Mood and Feelings Questionnaire (SMFQ).[18] Scores range 
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between 0-26 with higher scores indicating higher depressive symptoms. Anxiety symptoms were 

measured using the Generalised Anxiety Disorder Assessment (GAD-7).[19] Scores range between 0-

21 with higher scores indicating higher anxiety symptoms. Mental wellbeing was measured using the 

Warwick-Edinburgh Mental Wellbeing Scale (WEMWBS).[20] Scores range between 14-70, with 

higher scores indicating better mental wellbeing. 

In ALSPAC-G1 the same scores measured at the COVID-19 survey (mean age=28) were available pre-

pandemic: WEMWBS-14 for wellbeing at 24 years, SMFQ-13 score for depression at 26 years, and 

GAD-7 score for anxiety at 22 years. 

In the older ALSPAC-G0 population (mean age=59), mental wellbeing was not previously assessed. 

The Edinburgh Postnatal Depression Scale score was used for depression 229 at 52 years (scoring 

ranges from 0-30) and State-Trait Anxiety Inventory score for anxiety 230 at 39 years (scoring ranges 

from 20-80), as pre-pandemic measures for adjustment. 

8.5.4 Symptoms, Change in Activities, and Worries during lockdown 

In participants with and without asthma I explored factors relating to COVID-19 and lockdown 

available in the ALSPAC COVID questionnaire including symptoms (e.g. breathlessness), changes in 

activities (e.g. self-isolation), worries during lockdown (e.g. job losses), and the differences in those 

with confirmed or suspected COVID-19. 

8.5.5 Statistical analyses 

Analysis was conducted in Stata (version 15).161 

P-values were reported from Pearson Chi-square tests when comparing categorical characteristics 

and Z-test from logistic regression when comparing continuous characteristics in people with asthma 

vs. people without asthma. Two-sample Kolmogorov-Smirnov tests for equality of distribution 

functions were used to compare mental health scores between the younger population with asthma 

(ALSPAC-G1) vs. the older population with asthma (ALSPAC-G0). 
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Poisson and logistic regression models were used to estimate the effect of asthma on wellbeing, 

anxiety and depression, and other factors relating to COVID-19 and lockdown. Missing data was not 

imputed as a different analysis using the same data resources did not find it changed results.231 

Analysis was conducted separately for ALSPAC-G0 and ALSPAC-G1. 

For ALSPAC-G0 adjustment was performed for sex, age, smoking/vaping status and overweight. 

Adjustment for sex used ALSPAC variable kz021, taken from Cohort profile data file version 2b232. 

Age and smoking/vaping status were adjusted using two participant reported variables taken from 

the COVID questionnaire (variables covid1yp_1004 and covid1yp_3053 from datset COVID1_YP_1b 

dat for age and smoking/vaping status respectively). Overweight was a variable created from 

participant reported BMI (overweight defined as BMI >25) from the COVID questionnaire, variable 

covid1yp_1004.  

For ALSPAC G0 adjustment was performed using variables from self-reported data from the COVID 

questionnaire. Adjustment for age used covid1m_9650 for mothers and covid1p_9650 for partners. 

For smoking/vaping status covid1m_3053 for mothers and covid1p_3053 for partners. For 

overweight adjustment a variable calculated from BMI was used. For mothers covid1m_1004 and 

covid1p_1004 for partners. Mothers’ variables come from data set COVID1_Mum_1b and partners 

from data set COVID1_G0partner_1b. 

Analyses were also adjusted for pre-existing mental health as described in detail above. 

Demographics for these variables are presented in Table 20 below. 

 Exponentiated Poisson regression estimates, exp(b), were reported as symptom count ratios (SCRs), 

known as incident rate ratios. These can be interpreted as a percentage increase/decrease of the 

outcome score in asthmatics, compared to non-asthmatics given as (SCR-1)×100 233,234. 

2-sample Z-test were used to compare the asthma effects in the younger population (ALSPAC-G1) vs. 

the older population (ALSPAC-G0). 
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8.6 Results 

8.6.1 Demographics 

410 (13.9%) participants in ALSPAC-G1 (mean age 28) and 400 (10.7%) in ALSPAC-G0 (mean age 59 

years) responded yes to having asthma in the COVID-19 survey. Full details in Table 20. Participants 

with asthma reported being overweight more (28% vs. 19% p = 1.4×10-5 in ALSPAC-G0 and 39% vs 

33% p = 0.02 in ALSPAC-G1) and taking regular medications (72% vs. 40% p=1.8×10-32 in ALSPAC-G0 

and 89% vs. 60% p = 1.4×10-29 in ALSPAC-G1), compared to participants without asthma. 

Furthermore, in ALSPAC-G0 there were more females (79% vs. 72% p = 0.01) and keyworkers (38% 

vs. 31% p = 0.01) among people with asthma, compared to those without. 
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Table 20. Demographics in G1-Index children and G0 parents’ cohorts 

  G1-Index Children G0 Parents 

 No Asthma at 28 years Asthma at 28 years  No Asthma at 59 years Asthma at 59 years  

 
 

N=2532 (86.1%) 

 

N=410 (13.9%)  
 

 

N=3337 (89.3%) 

 

N=400 (10.7%) 
 

  Total Mean (SD) Total Mean (SD) P-value† Total Mean (SD) Total Mean (SD) P-value† 

Age in years 2532  27.6 (0.5)  410  27.6 (0.5)  0.18 3337  58.7 (4.8)  400  57.8 (5.0)  2.13E-04 

 Demographics at 28 years Demographics at 59 years 

  Total N (%) Total N (%) P-value† Total N (%) Total N (%) P-value† 

Gender (male) 2530  727 (28.7) 410  112 (27.3) 0.56 3337  917 (27.5) 400  85 (21.3) 0.008 

Smoking/vaping 2479  494 (19.9) 403  85 (21.1) 0.59 3228  297 (9.2) 378  27 (7.1) 0.19 

Overweight 2517  471 (18.7) 407  114 (28) 1.36E-05 3309  1079 (32.6) 399  154 (38.6) 0.016 

Diabetes 2528  11 (0.4) 408  5 (1.2) 0.04 3324  130 (3.9) 397  21 (5.3) 0.19 

Keyworker 2393  1303 (54.5) 392  215 (54.8) 0.88 3122  967 (31) 375  141 (37.6) 0.01 

Taking regular medications 2530  1014 (40.1) 410  293 (71.5) 1.83E-32 3334  1997 (59.9) 400  355 (88.8) 1.42E-29 

† Pearson Chi-square Test for categorical variables, Z-test from logistic regression for continuous variables 
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8.6.2 Pre-COVID-19 vs COVID-19 Mental Health 

The younger ALSPAC-G1 participants with asthma reported worse pre-existing wellbeing scores at 24 

years (mean WEMWBS-14 score 47.5 (SD 9.4) vs. 49.0 (8.7) p=0.01) and worse pre-existing 

depression scores at 26 years (mean SMFQ-13 score 8.1 (6.6) vs. 6.6 (6.2) p=1.6×10-4), compared to 

participants with no asthma. Little or no evidence for worse pre-existing anxiety scores using GAD-7 

score at 22 years (p=0.22) was found. However, in the COVID-19 survey G1 participants with asthma 

reported worse wellbeing (42.2 (8.8) vs. 44.4 (8.4) p=1.9×10-6), more depression (8.3 (6.2) vs. 6.7 

(5.3) p=1.6×10-7) and more anxiety (8.3 (5.4) vs. 6.9 (5.0) p=1.9×10-6), compared to younger people 

with no asthma (see Table 21). In the older ALSPAC-G0 population, there was little evidence of 

people with asthma reporting worse pre-COVID-19 lockdown depression or anxiety (p≥0.06), 

however they did report worse depression (3.6 (4.4) vs. 2.9 (3.6) p=4.5×10-4) and anxiety (4.2 (4.9) 

vs. 3.4 (4.0) p=2.3×10-4) at the lockdown COVID-19 survey, compared to older people with no asthma 

(see Table 21).   
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Table 21. Lockdown and pre-existing mental health: asthma vs. no asthma 

G1-Index Children 

 
No Asthma at 28 years Asthma at 28 years 

 
 N=2532 (86.1%) N=410 (13.9%)   

  Total Mean (SD) Total Mean (SD) P-value† 

Pre-existing Mental Health 

WEMWBS-14 Wellbeing score at 24 years 1959  49.0 (8.7)  313  47.5 (9.4)  0.007 

SMFQ-13 Depression score at 26 years 1979  6.6 (6.2)  313  8.1 (6.6)  1.56E-04 

GAD-7 Anxiety score at 22 years 1615  4.5 (4.4)  245  4.9 (4.4)  0.22 

Mental Health during lockdown 

WEMWBS-14 Wellbeing score at 28 years 2399  44.4 (8.4)  392  42.2 (8.8)  1.93E-06 

SMFQ-13 Depression score at 28 years 2148  6.7 (5.3) 362  8.3 (6.2) 1.62E-07 

GAD-7 Anxiety score at 28 years 2113  6.9 (5.0)  362  8.3 (5.4)  1.90E-06 

G0 Parents 

 
No Asthma at 59 years Asthma at 59 years 

 
 N=3337 (89.3%) N=400 (10.7%)  

  Total Mean (SD) Total Mean (SD) P-value† 

Pre-existing Mental Health 

EPDS-10 Depression score at 52 years 2591  6.3 (5.3)  307  6.9 (5.3)  0.06 

STAI-20 Anxiety score at 39 years 2831  35.0 (10.2)  332  35.7 (10.6)  0.23 

Mental Health during lockdown 

WEMWBS-14 Wellbeing score at 59 years 3087  48.1 (8.4)  364  48.1 (8.8)  0.96 

SMFQ-13 Depression score at 59 years 3076  2.9 (3.6)  364  3.6 (4.4)  4.49E-04 

GAD-7 Anxiety score at 59 years 3138  3.4 (4.0)  371  4.2 (4.9)  2.32E-04 

† Z-test from logistic regression  
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Well-being, depression, and anxiety levels were all worse in G1 asthmatics compared to G0 

asthmatics during COVID-19 lockdown (p-value <0.001, see Figures 25, 26, 27). This was tested using 

the Two-sample Kolmogorov-Smirnov test which used for equality of distribution functions to 

compare mental health scores between the younger population with asthma (ALSPAC-G1) vs. the 

older population with asthma (ALSPAC-G0).  
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Figure 26. WEMWBS-14 Wellbeing score during lockdown in G0-ALSPAC children with asthma vs G1-ALSPAC 

parents with asthma 

 

This plot and corresponding p-value showing strong evidence for a difference in well-being scores between the 
G1 and G0 groups during lockdown  

 

Figure 27. SMFQ-13 Depression score during lockdown in G0-ALSPAC children with asthma vs G1-ALSPAC parents 
with asthma 

 

This plot and corresponding p-value showing strong evidence for a difference in depression scores between the 
G1 and G0 groups during lockdown  
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Figure 28. GAD-7 Anxiety score during lockdown in G0-ALSPAC children with asthma vs G1-ALSPAC parents with 
asthma 

 

 

This plot and corresponding p-value showing strong evidence for a difference in anxiety scores between the G1 
and G0 groups during lockdown  

 

In addition to the absolute mental health scores in asthmatics vs. non-asthmatics, the expected 

difference in mental health scores during COVID-19 between asthmatics and non-asthmatics was 

examined after adjusting for pre-existing mental health, gender, age, smoking, and being overweight 

as shown in Tables 22 and 23. Asthma was associated with a 13% increase in depression score in 

ALSPAC-G1 (adjusted SCR 1.13 95%CI (1.04,1.22), p=0.005 in ALSPAC-G1) and 15% increase in 

ALSPAC-G0 (1.15 (1.00,1.31), p=0.05), compared to those without asthma. Anxiety scores in people 

with asthma increased by 14% in ALSPAC-G1 (1.14 (1.04,1.26), p=0.005) and by 16% in ALSPAC-G0 

(1.16 (1.02,1.32), p=0.02 in ALSPAC-G0), compared to no asthma. Well-being score in people with 

asthma decreased by 3% (0.97 (0.95,1.00), p=0.02) in ALSPAC-G1, compared to those without 

asthma (NA in ALSPAC-G0 as no previous well-being score). 
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Table 22. Effect of current asthma on outcomes specific to lockdown adjusted for age, gender, smoking, overweight and pre-existing mental health in G1-Index Children 

  Effect of Current Asthma at 27 years on Lockdown in G1-Index Children 

  R2 Crude Model-restricted Wald Test  
P-value 

N R2 Adjusted Model* Wald Test  
P-value 

N 

Count Outcomes   SCR (95% CI) 
  

  SCR (95% CI) 
  

WEMWBS-14 Wellbeing score (14-70) 0.001  0.96 (0.93,0.98) 0.001 2153 0.05  0.97 (0.95,1.00) 0.016 2153 

SMFQ-13 Depression score (0-26) 0.007  1.26 (1.14,1.38) 3.03E-06 1963 0.16  1.13 (1.04,1.22) 0.005 1963 

GAD-7 Anxiety score (0-21) 0.003  1.17 (1.06,1.29) 0.002 1557 0.08  1.14 (1.04,1.26) 0.005 1557 

Length of self-isolation in weeks (0-13) 0.002  1.32 (0.95,1.84) 0.09 2144 0.02  1.27 (0.91,1.77) 0.15 2144 

Worried about getting COVID-19 score (1-5) 0.002  1.14 (1.09,1.19) 6.27E-09 2186 0.01  1.12 (1.08,1.17) 7.55E-08 2186 

Worried about losing their job score (1-5) 0.001  1.12 (1.03,1.21) 0.005 1980 0.005  1.10 (1.02,1.19) 0.016 1980 

Binary Outcomes   OR (95%CI) 
  

  OR (95%CI) 
  

Confirmed or suspected COVID19 0.00 0.76 (0.54,1.08) 0.13 2218 0.00 0.76 (0.53,1.08) 0.13 2218 

Shortness of breath or difficulty in breathing 0.02 2.81 (1.51,5.21) 0.001 2136 0.05 2.42 (1.29,4.55) 0.01 2136 

Difficulty sleeping 0.00 1.34 (1.01,1.79) 0.046 2170 0.03 1.23 (0.92,1.66) 0.17 2170 

Participant has or is self-isolating 0.00 1.08 (0.81,1.42) 0.61 2202 0.01 1.03 (0.78,1.36) 0.84 2202 

Eating change since lockdown 0.00 1.20 (0.94,1.54) 0.13 2210 0.02 1.12 (0.88,1.44) 0.36 2210 

 † Adjusted by pre-existing mental health, overweight, smoking, gender, and age; * scale is 1 (not-at-all) to 5 (very); ‡ WEMWBS score not available for G0-ALSPACSCR= 
symptom count ratios from Poisson regression models; OR=odds ratios from logistic regression models 
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Table 23. Effect of current asthma on outcomes specific to lockdown adjusted for age, gender, smoking, overweight and pre-existing mental health in G0-parents 

  Effect of Current Asthma at 59 years on Lockdown in G0-Parents 

  R2 Crude Model-restricted Wald 
Test  

P-value 

N R2 Adjusted Model* Wald 
Test  

P-value 

N 

Count Outcomes 
 

SCR (95%CI) 
   

SCR (95%CI) 
  

SMFQ-13 Depression score (0-26) 0.002  1.23 (1.06,1.43) 0.007 2652 0.14  1.15 (1.00,1.31) 0.05 2652 

GAD-7 Anxiety score (0-21) 0.003  1.26 (1.10,1.45) 9.97E-04 2940 0.11  1.16 (1.02,1.32) 0.02 2940 

Length of self-isolation in weeks (0-13) 0.024  2.52 (1.89,3.36) 2.87E-10 2689 0.05  2.48 (1.86,3.30) 5.8E-10 2689 

Worried about getting COVID-19 score (1-5) 0.001  1.09 (1.04,1.14) 9.44E-05 2758 0.004  1.08 (1.03,1.13) 4.1E-04 2758 

Worried about losing their job score (1-5) 0.000  1.04 (0.94,1.15) 0.41 1784 0.01  1.02 (0.92,1.12) 0.73 1784 

Binary Outcomes 
 

OR (95%CI) 
   

OR (95%CI) 
  

Confirmed or suspected COVID19 0.00 1.63 (1.18,2.25) 0.003 2770 0.01 1.54 (1.11,2.13) 0.01 2770 

Shortness of breath or difficulty in breathing 0.07 5.75 (4.21,7.84) 3.01E-28 2748 0.10 5.39 (3.92,7.41) 3.4E-25 2748 

Difficulty sleeping 0.00 1.45 (1.09,1.93) 0.01 2685 0.04 1.35 (1.01,1.80) 0.04 2685 

Participant has or is self-isolating 0.01 2.39 (1.82,3.13) 3.92E-10 2769 0.02 2.37 (1.80,3.12) 8.5E-10 2769 

Eating change since lockdown 0.00 1.20 (0.94,1.54) 0.150 2771 0.04 1.08 (0.83,1.39) 0.57 2771 

† Adjusted by pre-existing mental health, overweight, smoking, gender, and age. In the parents, WEMWBS-14 Wellbeing score is not available at a previous timepoint. We 
used previous STAI score at 39 years to adjust current GAD-7 anxiety at 59 years. For all other variables we used previous EPDS score for depression at 52 years to adjust for 
pre-existing mental health. * Scale is 1 (not-at-all) to 5 (very) 

SCR= symptom count ratios from Poisson regression models; OR=odds ratios from logistic regression models



 

 

 Asthma was associated with a similar change of anxiety and depression scores during COVID-19 in 

both generations (Z test p-values >0.80. See Figure 28, Table 26). 

 

Figure 29. Effect of current asthma on factors specific to lockdown adjusted for age, gender, smoking status, 
overweight and pre-existing mental health. 

  

P-values are from Z-test for 2-sample (2-sided).  

Figure 28 is a Forest plot comparing the effect of asthma on different outcomes in G1 and G0 cohorts. The 
brackets indicate outcomes where there was strong evidence of a difference between the two generations. 

 

8.6.3 Symptoms, Change in Activities, and Worries during lockdown 

Since lockdown, ALSPAC-G1 participants with asthma reported more shortness of breath or difficulty 

in breathing, more difficulty sleeping, longer self-isolation, more eating and sleep changes, more 

worry about getting COVID-19 and losing their job compared to those without asthma (Table 24).  

 



 

 

Table 24. Lockdown characteristics: asthma vs. no asthma in G1-Index Children 

  G1 Index Children 

 No Asthma at 28 years Asthma at 28 years  

 N=2532 (86.1%) N=410 (13.9%)  

  Total N (%) Total N (%)  P-value† 

Symptoms during lockdown      

Confirmed COVID-19 by test 2529  47 (1.9) 410  5 (1.2) 0.36 

Confirmed or suspected COVID-19 2529  406 (16.1) 410  60 (14.6) 0.47 

Shortness of breath or difficulty in breathing in last week 2425  44 (1.8) 391  25 (6.4) 5.47E-08 

Contact with confirmed COVID-19 in last 2 weeks 2527  109 (4.3) 410  14 (3.4) 0.40 

Contact with confirmed or suspected COVID-19 in last 2 weeks 2527  278 (11.0) 410  47 (11.5) 0.78 

Difficulty sleeping in last week 2479  486 (19.6) 396  98 (24.7) 0.018 

Severe fatigue in last week 2459  82 (3.3) 396  16 (4) 0.47 

Went to A&E about symptoms last week 2532  3 (0.1) 410  0 (0.0) 0.49 

Sought medical attention last week 2532  4 (0.2) 410  2 (0.5) 0.17 

Change of activities during lockdown      

Participant has or is self-isolating 2459  621 (25.3) 400  114 (28.5) 0.17 

Sleep change since lockdown 2461  1379 (56) 401  248 (61.8) 0.029 

Exercise change since lockdown 2468  1843 (74.7) 401  289 (72.1) 0.27 

Alcohol drinking change since lockdown 1942  1216 (62.6) 297  191 (64.3) 0.57 

Eating change since lockdown 2474  1226 (49.6) 401  226 (56.4) 0.011 

 Total Mean (SD) Total Mean (SD) P-value‡ 

Length of self-isolation in weeks  2394  0.92 (2.54)  383  1.36 (3.32)  0.003 

Worries during lockdown      

Worried about getting COVID-19 * 2431  2.82 (1.17)  402  3.24 (1.17)  8.71E-11 

Worried about losing their job* 2211  2.13 (1.30)  359  2.32 (1.43)  0.010 

† Pearson Chi-square Test; ‡ Z-test from logistic regression; * scale is 1 (not-at-all) to 5 (very) 

 

The older ALSPAC-G0 participants with asthma also reported more shortness of breath, difficulty 

sleeping, longer self-isolation, more sleep and eating changes, more worry about getting COVID-19, 

and more loneliness, compared to those without asthma. Additionally, the older G0-ALSPAC 



 

 

participants with asthma reported more confirmed or suspected COVID-19 and more self-isolation 

(Table 25).  

Table 25. Lockdown characteristics: asthma vs. no asthma in G0 Parents 

  G0 Parents 

 
No Asthma at 59 years Asthma at 59 years 

 
 N=3337 (89.3%) N=400 (10.7%)  

  Total N (%) Total N (%) P-value† 

Symptoms during lockdown  
    

Confirmed COVID-19 by test 3318  22 (.7) 396  11 (2.8) 2.25E-5 

Confirmed or suspected COVID-19 3318  390 (11.8) 396  70 (17.7) 0.001 

Shortness of breath or difficulty in breathing in last week 3295  210 (6.4) 391  103 (26.3) 6.64E-41 

Contact with confirmed COVID-19 in last 2 weeks 3327  50 (1.5) 396  4 (1) 0.44 

Contact with confirmed or suspected COVID-19 in last 2 weeks 3327  166 (5) 396  20 (5.1) 0.96 

Difficulty sleeping in last week 3202  656 (20.5) 387  102 (26.4) 0.008 

Severe fatigue in last week 3186  46 (1.4) 384  9 (2.3) 0.18 

Went to A&E about symptoms last week 3336  2 (0.1) 399  3 (0.8) 3.54E-04 

Sought medical attention last week 3336  11 (.3) 399  1 (.3) 0.79 

Change of activities during lockdown  
    

Participant has or is self-isolating 3222  538 (16.7) 374  121 (32.4) 1.29E-13 

Sleep change since lockdown 3216  1227 (38.2) 377  172 (45.6) 0.005 

Exercise change since lockdown 3219  2250 (69.9) 378  267 (70.6) 0.77 

Alcohol drinking change since lockdown 2609  1054 (40.4) 291  133 (45.7) 0.08 

Eating change since lockdown 3222  1182 (36.7) 379  166 (43.8) 0.007 

 Total Mean (SD) Total Mean (SD) P-value‡ 

Length of self-isolation in weeks 3135  0.75 (2.52)  353  1.97 (4.02)  6.14E-14 

Worries during lockdown  
    

Worried about getting COVID-19 score* 3206  3.32 (1.16)  376  3.68 (1.21)  3.29E-08 

Worried about losing their job score* 2100  1.95 (1.24)  266  2.09 (1.35)  0.09 

 

† Pearson Chi-square Test, ‡ Z-test from logistic regression 

* Scale is 1 (not-at-all) to 5 (very) 

  



 

 

When comparing G1 with G0 participants with asthma during COVID-19, the older G0 reported more 

confirmed or suspected COVID-19 (G1 vs G0 Z-test p = 0.005), more shortness of breath (p = 0.03), 

more self-isolation (p = 3.0×10-5), and longer self-isolation (p = 0.003), compared to participants with 

asthma in the younger ALSPAC-G1 population. (Figure 28, Table 26).  



 

 

Table 26. Comparison of asthma-effects in ALSPAC-G0 vs. ALSPAC-G1 

  G0-Parents G1-Children Coef_G1-
Coef_G0 

SE_G1-
SE_G0 

    

Count Outcomes Coef1 SE1 Coef1 SE1 Coef_diff SE_diff Z=Coeff_diff/SE_diff Z test  
P-value 

SMFQ-13 Depression score (0-26) 0.14 0.07 0.12 0.04 -0.02 0.08 -0.25 0.80 
GAD-7 Anxiety score (0-21) 0.15 0.07 0.13 0.05 -0.02 0.09 -0.23 0.82 
Length of self-isolation in weeks (0-13) 0.91 0.15 0.24 0.17 -0.67 0.23 -2.96 0.003 
Worried about getting COVID-19 score (1-5) 0.08 0.02 0.12 0.02 0.04 0.03 1.41 0.16 
Worried about losing their job score (1-5) 0.02 0.05 0.10 0.04 0.08 0.06 1.25 0.21 
Binary Outcomes Coef2 SE2 Coef2 SE2 Coef_diff SE_diff Z=Coeff_diff/SE_diff Z test  

P-value 
Confirmed or suspected COVID19 0.43 0.17 -0.27 0.18 -0.70 0.25 -2.83 0.005 
Shortness of breath or difficulty in breathing 1.68 0.16 0.88 0.32 -0.80 0.36 -2.24 0.025 
Difficulty sleeping 0.3 0.15 0.21 0.15 -0.09 0.21 -0.42 0.67 
Participant has or is self-isolating 0.86 0.14 0.03 0.14 -0.83 0.20 -4.19 3.00E-05 
Eating change since lockdown 0.07 0.13 0.11 0.13 0.04 0.18 0.22 0.83 

Coef1, SE1 are the logarithmic form of the SRC and corresponding standard error; Coef2, SE2 are the logarithmic form of the OR and corresponding standard error  



 

 

8.7 Discussion 

Surveys suggest that the mental health and wellbeing of populations across the world have been 

affected by the COVID-19 pandemic.221,222  It was hypothesised that asthma was associated with a 

greater mental health impact during COVID-19 lockdown, and that this difference could be related to 

the psychological effects of the outbreak rather than the physical symptoms of asthma. This 

longitudinal study provides evidence that levels of anxiety, mood, and wellbeing in the whole 

ALSPAC population worsened during the pandemic. However, having asthma was associated with a 

decline to lower levels of mental health, with the younger asthmatics reaching the lowest levels. The 

data highlights that a range of psychological factors might be mediating this difference and that 

these differ by age. 

During the first lockdown, those with asthma in the younger ALSPAC-G1 population had higher levels 

of depression & anxiety and lower well-being scores than those without asthma. These differences 

were also evident pre-lockdown for well-being and depression but not anxiety.  Worse scores for 

anxiety and depression in the older ALSPAC-G0 participants with asthma, compared to participants 

without asthma were identified; these differences were not present pre-outbreak with the available 

scores (different scores to the ones used at the COVID-19 survey). The change in anxiety and 

depression scores of asthmatics vs non-asthmatics between the two generations was similar. 

The mean WEMWBS-14 score for the younger ALSPAC-G1 participants with asthma dropped from 

47.5 to 42.2 across the COVID-19 outbreak, whereas the participants without asthma dropped from 

49.0 to 44.4. This decrease in well-being is clinically meaningful for both groups, with mean scores 

declining to below the cut-off for identifying patients at risk of depression in those with asthma.235 

The minimal clinically important difference for the GAD-7 anxiety score has been estimated as 4 236 

and a score of 10+ has a high sensitivity and specificity for the diagnosis of generalised anxiety 

disorder.237 The mean magnitude of increase (post minus pre-COVID-19 score) in the GAD-7 score 

was 3.4 (mean absolute score during lockdown 8.27) for those with asthma and 2.4 (6.9) for those 



 

 

without asthma in ALSPAC-G1. Therefore, although this does not reach a meaningful clinical change, 

with repeated lockdowns it may. 

The older ALSPAC-G0 participants with asthma reported worse breathlessness and had more 

confirmed or suspected COVID-19 than the younger ALSPAC-G1 participants with asthma when 

compared to their peers without asthma. There were no pre-lockdown measurements of 

breathlessness available, so it is not possible to say whether the high levels of breathlessness in 

participants with asthma are pre-existing. If symptoms of respiratory disease were the cause of the 

anxiety, then it would be expected the older ALSPAC-G0 participants with asthma to be the most 

anxious group. Whilst there was no direct record of asthma control in the data, a British Lung 

Foundation survey has estimated that 24.6% of people with asthma triggered by pollution reported 

an improvement in their symptoms since lockdown.238 Furthermore, control of asthma in paediatric 

patients has generally improved since the outbreak.239 This reduction in asthma symptoms may 

relate to an interruption of transmission of other viruses that cause exacerbations, decline in 

pollution levels, or improved medication adherence. This supports the findings and suggests that 

patients with asthma are not more anxious because of their physical symptoms. 

Other factors that differed in the population with asthma were identified which might provide more 

detailed insight into the origins of the increased anxiety. Participants with asthma in the younger 

ALSPAC-G1 group reported greater concerns about catching COVID-19 and worry of losing their jobs 

when compared to those without asthma. Participants with asthma in the older ALSPAC-G0 group 

reported increased frequency and length of self-isolation, increased loneliness, and worry of 

catching COVID-19. On the 16th of March 2020 British Prime Minister Boris Johnson announced that 

vulnerable groups of people will need to shield from social contact for 12 weeks.240 Such groups at 

increased risk of severe illness from COVID-19 included those with mild-moderate asthma.241 This 

guidance might result in participants with asthma feeling more isolated and having greater concerns 

for their physical and financial health than those without asthma. The implementation of social 



 

 

isolation measures and the way that they are communicated to the public may have significantly 

affected the mental health of patients with asthma more so than those without asthma. 

8.7.1 Strengths & Limitations 

The strength of this study lies in the detailed data available from the large ALSPAC population. The 

longitudinal data has provided not just a snapshot of the state of mind of the population during the 

crisis but has allowed an assessment of its development from a pre-pandemic baseline state. The 

detailed questionnaires provided details about specific concerns during the first lockdown.  

There are limitations to the data. Asthma diagnoses were self-reported, so may over or under-

represent the true asthma population within the group. Whilst this might confound the effect of the 

physical symptoms of asthma on mental health during the pandemic, it will not affect the 

psychological outcome of those carrying the label of an asthma diagnosis that is central to the 

hypothesis. Furthermore, there is evidence of the validity of self-reported asthma in ALSPAC.242 

The ALSPAC-G0 pre-pandemic assessments of anxiety and depression were made using different 

assessment tools to those used in the COVID-19 assessment, but it was still possible to assess the 

mental state of this population over time. 

It is difficult to say whether the increase in anxiety and decrease in mental wellbeing in the 

participants with asthma translates to a significant pathological effect. There is no data regarding 

healthcare utilisation of the cohorts pre- and post-lockdown. It is uncertain whether people have 

sought help for their asthma or mental health issues, or whether there has been reduced contact 

with mental health services for those patients already in the system.  

8.7.2 Future Research 

This study highlights higher levels of anxiety and persistently worse markers of depression and 

mental wellbeing in participants with asthma during the COVID-19 pandemic. This is married with an 



 

 

increased frequency and length of self-isolation and more prominent concerns for physical and 

financial health. People with asthma were thought to be at higher risk of severe COVID-19 infections 

and it is vital to protect the physical health of this population. Yet there was mixed evidence 

regarding this risk,243 and the psychological health of this population must not be forgotten. It is also 

important to further clarify the origins of mental health issues in people with asthma. This 

information should remind the healthcare profession to screen people with asthma for symptoms of 

anxiety and depression. It will also help to inform government policies which whilst intended to 

protect the population, are not without negative consequences. 

8.7.3 Conclusion 

In conclusion, this study highlights the increased prevalence of anxiety and reduced mental 

wellbeing in a population with asthma following the start of the COVID-19 pandemic. Clinicians 

should be made aware of this, and further investigation is required to help inform national policies 

to try to prevent it. 

  



 

 

CHAPTER 9. SUMMARY OF KEY FINDINGS, MY LEARNING, FUTURE 
RESEARCH, AND CONCLUSIONS 

 

9.1 Introduction 

Reduced lung function and lung diseases are common and are frequently found in combination with 

a wide range of extra-pulmonary diseases.3,6,20,191,244,245 This co-morbidity is increasing, particularly 

with an ageing population.188,246-249 Traditional observational epidemiology has been used to 

describe co-morbidity. However, some conditions such as PRISm, have been neglected. Additionally, 

the impact of widely studied diseases may change depending on circumstances, such as asthma and 

mental health during social isolation. Given the limitations of this traditional observational 

epidemiology, genetic epidemiology can be used to provide an understanding of the causality of 

these associations and provide insight into the underlying causes of lung disease.7,79,96 If the 

associations are causal, then research to discover underlying mechanisms should be performed with 

the potential to treat lung function as a modifiable risk factor for extra-pulmonary disease.  

In this final chapter, I will summarise the findings of my papers, suggest future areas for research, 

and describe what I learned in the process. I will then write about the limitations of genetic 

epidemiology and discuss how different epidemiological methods can be used together to provide 

robust evidence. 

 

9.1 Examining the possible relationship between Lung function, COPD and Alzheimer’s’ 
Disease: A Mendelian Randomisation Study 

9.1.1 Summary 

Observational studies have described an association between reduced lung function, COPD, and an 

increased risk of Alzheimer’s disease. If causal, then measures to improve lung function and 

decrease COPD could reduce the risk of Alzheimer’s Disease. This was the first 2SMR study to 

examine for a causal effect of lung function and COPD on the risk of Alzheimer’s disease. Little 



 

 

evidence for a causal effect was found. Observational studies describing an association are likely to 

be affected by residual confounding. 

9.1.2 Future Research 

Measures trying to establish an underlying mechanism between lung function/disease and 

Alzheimer’s may be best avoided as is if there is no causal pathway then it could waste research 

efforts. However, lung function and lung disease are more strongly associated with a different type 

of dementia, known as vascular dementia. Residual confounding is a particular issue when 

examining lung function/COPD and vascular dementia as smoking is a strong risk factor for both, and 

both are more common in those with lower educational attainment.250,251 Unfortunately at present it 

is not possible to undertake an MR study into this as there has only been one GWAS of vascular 

dementia which had only 67 cases.252 If the UK Biobank continues to link diagnosis from 

hospital/community records to their participants, then in the future it may be possible to perform a 

one sample MR study examining this association could be performed. 

9.1.3 My learning 

This was the first study of any kind I performed during my PhD. It required me to become familiar 

with coding programmes, enabling me to import, store and analyse huge data sets. I came to 

understand the methodology of MR and how to perform MR studies. The challenges of trying to 

communicate complex relatively novel genetic epidemiology techniques to the readers of a clinical 

respiratory journal when trying to publish the paper became clear. Additionally, despite virtually all 

authorities agreeing that using terms such as “significant” based on p-value threshold of 0.05 is 

incorrect, it is still a common practice in clinical journals.253,254 The use of more accurate terms in my 

paper such as “weak evidence” or “minimal evidence” was criticised and led to mis-interpretation of 

the results by peer reviewers. Despite increasing the challenge of publishing papers, I shall not 

regress to conclusions based on binary interpretation of an arbitrary p-value threshold for the 

purpose of easier publication. 



 

 

9.2 Lung function and cardiovascular disease: A two-sample Mendelian Randomisation 
study 

9.2.1 Summary 

Lung function and COPD have been strongly associated with cardiovascular disease including 

coronary artery disease and strokes.10,12,21,33-36,38,46,48,49,126,127,153,255-260  I used 2SMR and an MVMR 

model to test if lung function or COPD had a causal effect on the risk of coronary artery disease 

and/or ischaemic stroke. This found that reduced FVC, but not FEV1, increased the risk of coronary 

artery disease. 

9.2.2 My Learning 

I initially conducted this study using a GWAS adjusted for heritable covariates of lung function and 

cardiovascular disease in a two-sample model. The lack of evidence of a causal effect seemed 

surprising given the wealth of observational data. I was then introduced to the concept of collider 

bias and its role in biasing GWAS and MR studies. Although challenging concepts to understand at 

first, I have gained essential knowledge into these potential pitfalls. I then learned about MVMR and 

how this bias could be avoided by using unadjusted GWAS and conditioning for heritable covariates. 

This led to me applying for access to UK Biobank data and performing a GWAS of FEV1 and FVC 

adjusted only for sex. Using the results, I learned how to perform MVMR studies. Publishing this 

paper took many attempts and re-writes but it was valuable to learn how to communicate with a 

clinical audience about collider bias and MVMR.  

9.2.3 Future research 

The finding that there is evidence that FVC has a causal effect on the risk of coronary artery disease 

has multiple clinical implications. It has been suggested previously that FVC can add weight to the 

Framingham risk score prediction of cardiovascular disease and all-cause mortality.32 This could be 

investigated further with other risk prediction models to guide preventative treatment.  



 

 

FVC could be a modifiable risk factor for cardiovascular disease. Treatments to improve FVC may 

decrease the risk of heart attacks, a leading cause of morbidity and mortality. Further work to 

identify the underlying mechanism could reveal potential drug targets. MR could be used to achieve 

this. Using an MVMR model and conditioning on SNPs for potential mediators, such as inflammatory 

cytokines, could confirm suitable treatment targets.  

Cohorts are trying to understand lung function trajectories to predict COPD and extra-pulmonary 

disease but tend to focus on FEV1.71,72,261 FVC should be prioritised given there is both traditional 

observational and MR evidence of a causal effect on coronary artery disease, a major cause of 

morbidity and mortality. Public health interventions to achieve the highest FVC possible and to 

reduce decline may prevent coronary artery disease. 

  



 

 

9.3 Lung function, COPD and cognitive function: A multivariable and two sample 
Mendelian Randomisation Study  

 

9.3.1 Summary 

Lung function and COPD have both been associated with cognitive function.27,53,147,148,262-264 I 

performed a two-sample MR studies using lung function and COPD SNPs as the exposures. This 

showed no strong evidence of a causal effect of lung function/COPD on cognitive function. I then 

performed an MVMR study which showed that although decreasing FEV1 and FVC were both 

strongly associated with a decrease in cognitive function, the evidence became weak after adjusting 

for either height or educational attainment. Therefore, observational research showing an 

association between lung function and COPD with cognitive function may be affected by residual 

confounding and other sources of bias.  

9.3.2 Future research 

The outcome used for this study was general cognitive function in a normal population. Although 

lung function and COPD have been associated with general cognitive function, more research has 

focused on their association with mild cognitive impairment (MCI). Although not featured in this 

thesis, during this PhD I wrote an editorial discussing COPD and co-morbid MCI.156 Unfortunately 

there are no published GWAS of MCI. This may be partly due to logistical challenges. People with 

MCI may not have capacity to consent to take part in a GWAS, and as it is a transient state it makes 

recruitment more challenging. Were a GWAS of MCI to become available, performing another MR 

study using the same exposure populations would provide valuable insight into this damaging extra-

pulmonary morbidity. 

9.3.3 My learning 

Having attended an MR conference, I learned about techniques that iteratively remove outliers using 

models such as MR PRESSO and MR radial.146,265 I had been relying on identifying outliers visually 



 

 

from scatter plots, single SNP analysis, and leave-one-out-analysis. In this paper I used MR radial to 

exclude outliers. Although it did not change the interpretation of the results, I am pleased to utilise 

these techniques. 

Cognitive function is a complex trait that can be affected by demography, assortative mating, and 

dynastic effects. These issues can lead to bias in GWAS effect estimates which can then cause bias in 

MR studies. I only became familiar with these concepts when writing up this study towards the end 

of my PhD, however, they can be limitations of genetic epidemiology and MR more generally. I 

discuss them in more detail later in this chapter. 

 

  



 

 

  



 

 

9.4 Preserved Ratio Impaired Spirometry (PRISm): A UKBiobank cohort study 

9.4.1 Summary 

Prior to my study, it was thought that ~50% of those with PRISm would transition to COPD.57,60 

However scientific knowledge was derived from small cohorts affected by selection bias. Using the 

UK Biobank allowed me access to a large well-phenotyped cohort, with a long follow-up time, that 

was less affected by selection bias.  

This showed that PRISm was common at 11% with obesity, current smoking, and asthma diagnosis 

being strongly associated risk factors. Those with PRISm have an increased risk of breathlessness, 

with high rates of diabetes and cardiovascular co-morbidity. On follow-up, only 12% developed 

COPD, with the remainder approximately evenly split into those with persistent PRISm and those 

that changed to normal spirometry (once regression to the mean is considered). Despite PRISm 

being a relatively transient state, follow-up rates of all-cause mortality are higher for PRISm 

compared to control, over an 18-year period and after adjustment for sex, smoking, BMI, and age. 

9.4.2 Future research 

The underlying pathophysiology of PRISm is not clear. Given it is defined by an artificial construct of 

lung function it will contain numerous subtypes rather than any single unifying pathology. 

Radiological studies of PRISm have looked for small airway changes and other early COPD signs in 

those with PRISm. However, much of this work has been performed in COPDGene, and so the results 

may not be generalizable to non-smokers.158,166 A non-COPDGene imaging study comparing those 

with chronic bronchitis, chronic bronchitis with PRISm, and GOLD I and II has been performed in 

China.159 However, 82% of those with PRISm were current smokers with a mean pack/year of 32. 

This will limit generalisability, particularly when examining radiological changes that are related to 

progression to COPD. Studies examining radiographic changes, such as airway wall thickness, lung 

density, lung volume, and emphysema in more generalizable cohorts are required. 



 

 

It may be that small airway obstruction is contributing to PRISm. Tests for small airway obstruction 

such as impulse oscillometry testing or FEF25-75 (Forced Expiratory Flow over the middle half on an 

FVC) could provide answers.266 Most PRISm research has been carried out in older populations. Using 

birth cohorts with longitudinal data to see study prevalence, co-morbidities of PRISm may provide a 

much better understanding of the pathogenesis PRISm. 

Obesity is a significant risk factor for PRISm. It is probable that one sub-type of PRISm is purely 

caused by extra-thoracic restriction due to obesity. Researching those with PRISm without obesity 

using imaging and in-depth lung function tests will uncover a subtype with an unknown pathological 

mechanism that may have treatable traits.  

Many cohorts and consortiums are trying to understand FEV1 trajectory and COPD prediction. This 

thesis has demonstrated the association of PRISm with morbidity and mortality, which aligns with 

observational evidence that FVC rather than FEV1 of FEV1/FVC is a predictor of all-cause 

mortality,10,31. Additionally, this thesis has used Mendelian Randomisation to show evidence for a 

causal effect of FVC, but not FEV1, on the risk of coronary artery disease. This points towards the 

need for better understanding of FVC and PRISm trajectories. 

9.4.3 My learning 

Prior to my PhD, I was unaware of the term PRISm but was familiar with the concept of restrictive 

spirometry. I performed an informal literature review to increase my insight into the current 

scientific knowledge of PRISm and identify the fundamental issues. I completed a first draft of a 

paper about PRISm in UK Biobank cross-sectionally with a GWAS. When submitting the first draft the 

editor of a journal informed that I had used a UK Biobank FEV1 variable that was only measured in 

healthy never smokers, and smokers with symptoms. Therefore, the paper was flawed. Although this 

was frustrating and caused a huge time delay, I became aware of the pitfalls in analysing large 

databases collated by external groups. It was only after the re-drafting that I realised UK Biobank 

had enough data to perform longitudinal and survival analysis, which lead to a much stronger paper. 



 

 

Although I had heard of regression to the mean, exploring ways to account for it has increased my 

knowledge of this common phenomenon and how to manage it. The Lancet Respiratory had five 

peer reviewers give feedback on the paper including a thorough statistical review. Through this I 

became aware of numerous issues with statistical models and how to test and correct them.  This 

included linear assumption of logistic regression models, censoring of survival analysis, using 

medians and IQR for non-normally distributed data. This knowledge will help me to both produce 

and peer review epidemiological papers in the future. 

  



 

 

9.5 Genome-Wide Association Study of Preserved Ratio Impaired Spirometry 

9.5.1 Summary 

Prior to my study, there was only one published attempted GWAS of PRISm, which had not 

discovered any SNPs.59 I conducted a GWAS of PRISm hoping to uncover information about the 

heritability of PRISm, underlying mechanisms, and discover SNPs that could be used for MR studies. 

However, few SNPs were successfully replicated, and none are likely to be specific to PRISm or 

represent novel loci for lung function. Additionally, LD-correlation study showed an extremely strong 

correlation between the PRISm GWAS, and GWAS for continuous lung function traits.  

PheWAS showed that there may be shared genetic risks for PRISm and its co-morbidities. The LD-

correlation study provides further evidence for this with a moderate correlation between the GWAs 

for PRISm and a GWAS of type II diabetes. 

9.5.2 Future research 

Future genetic studies of PRISm are unlikely to discover loci that are specific to PRISm or novel for 

lung function. GWAS of well-phenotyped sub-types of PRISm could still be of value, but genotyped 

populations of these subtypes large enough to power discovery and replication studies may not 

exist. Better use of resources would be to perform GWAS of continuous lung function traits in larger 

populations. This can be achieved by incorporating more consortiums into meta-analysis. Increased 

understanding of the genetic contribution to lung trajectories could allow for novel treatment 

targets and prevention of PRISm and COPD. 

9.5.3 My learning 

This project has taught me the importance of replication analysis for GWAS, and how to conduct 

them. I was fortunate to have the support of Professor Tobin and the SpiroMeta and CHARGE 

consortiums which enabled the replication analysis. Liaising with multiple global cohorts that used 

different methodologies and reporting terms made it initially challenging to perform the meta-



 

 

analysis. The limited findings reduced the impact and further research plans but was valuable for me 

to learn about the limitations of GWAS. The knowledge I gained from this project has meant I can 

contribute to discussions between 23andme and the UK Severe Asthma Registry regarding a GWAS 

of the severe asthma population. 

9.6 The impact of asthma on mental health and wellbeing during COVID-19 lockdown 

 

9.6.1 Summary 

This study was designed to determine if asthma was associated with worse mental health outcomes 

during the COVID-19 lockdown. 

During the first lockdown, those with asthma in the younger ALSPAC-G1 population had higher levels 

of depression & anxiety and lower well-being scores than those without asthma. Worse scores for 

anxiety and depression were found in the older ALSPAC-G0 participants with asthma, compared to 

participants without asthma. Participants with asthma in the younger ALSPAC-G1 group reported 

greater concerns about catching COVID-19 and worry of losing their jobs when compared to those 

without asthma. Participants with asthma in the older ALSPAC-G0 group reported increased 

frequency and length of self-isolation, increased loneliness, and worry of catching COVID-19.  

At the time of the first lockdown, there was intense speculation about the negative impacts of 

lockdown. This was the first study to model asthma as the exposure and have mental health 

measures from before and during the lockdown. Having this data across two generations with an 

array of physical symptoms and psychosocial concerns were additional factors that made this study 

unique. I was extremely pleased that the study was cited by www.gov.uk in their communication 

about weighing the risk-benefit of lockdowns demonstrating the studies clinical utility and impact. 



 

 

9.6.2 Future research 

Since this study was written evidence has shown that those with asthma are probably not at 

increased risk of severe illness or death due to COVID-19.267,268 Many treatments for asthma such as 

steroid inhalers and tablets are now used routinely to treat COVID-19 and effective vaccines are 

widely available.218,269 Although another lockdown was instigated since this study, it seems less likely 

another will be required for COVID-19, and those with asthma may now be less concerned about 

contracting the disease. However, pandemics with as-yet-unknown pathogens affecting the 

respiratory system are a possibility, which could lead to social restrictions.  

Studies have shown shared genetic risk factors for asthma with anxiety and major depressive 

disorders.270 A MR study has shown some evidence of causal effect of asthma on the risk of 

depression and anxiety.271 Therefore, the association between asthma and mental health may be 

causal. Larger GWAS of more phenotyped asthma populations could give further insight into shared 

heritability and underlying pathways between asthma and mental health. 2SMR studies using MVMR 

to determine the direct effect of asthma on mental health outcomes are warranted.  

However, even if future evidence shows association is not found to be causal, supporting the mental 

health of those with asthma, particularly during social isolation, should be considered by health 

policymakers and clinicians. 

9.6.3 My learning 

This study showed me the value of “from birth” cohorts with extensive phenotyping. Few cohorts in 

the world would have been able to produce the breadth of data ALSPAC made, nor have the data 

available at such speed. Due to the multiple comparisons performed e.g. before/during lockdown, 

between those with/without asthma, and comparing this between the generations, a wide range of 

statistical tests was required. This included tests that were previously unknown to me, such as 



 

 

exponentiated Poisson regression and Two-sample Kolmogorov-Smirnov tests. Communicating this 

to an audience was a challenging and valuable experience.   



 

 

9.7 Traditional observational epidemiology and the benefits of MR 

Traditional observational epidemiology is limited by sources of bias such as residual confounding and 

reverse causation. It cannot determine causality, just describe associations. It is unfeasible to 

randomise participants of a trial to exposures such as COPD or reduced lung function. MR does not 

suffer from the same limitations as observational epidemiology. Genetic variants are randomly 

assigned at conception and can be exploited as proxies for traits to provide evidence for causality. 

However, as I learned whilst producing my papers, there are limitations of genetic epidemiology 

which can lead to potential sources of bias. 

9.8 Limitations of genetic epidemiology and MR 

Research attention has been focused on dealing with problems of horizontal pleiotropy as discussed 

in chapter 4, and implemented in chapters 6, 7, and 8. However, it is important to consider factors 

that could bias the instrument and the outcome. 

9.8.1 Demography, assortative mating, and dynastic effects 

Demography, the composition of the human population, is influenced by genetic variation which 

occurs because of geographical location. This may be due to geological, political, or cultural divides 

preventing mixing of populations. 

 

 

 

 

 

 



 

 

 

Figure 30. Showing the global frequency of allele B for blood type 272 

 

World map showing the natural variation in frequency of a common allele causing B blood type across 

different geographical areas 

Complex traits can be strongly affected by demography as demonstrated in Figure 29. If this 

variation is not accounted for it can lead to population stratification in a GWAS and bias the results. 

If the effect estimate is biased, this bias is carried through into MR studies and will bias estimations 

of causal effects. Assortative mating describes the process whereby reproductive partners are 

selected due to certain traits e.g. cognitive function or educational attainment. Therefore, although 

SNPs may be assigned randomly at conception from biological parents, the process of parents 

mating is not random, leading to changes in allele frequencies in populations. If this is not accounted 

for when using different populations it could lead to bias and reduces generalizability of studies 

outside the populations examined. 

Dynastic effects describe the indirect effects of the parents’ genotype on their offspring, mediated 

by the parent’s phenotype.273 This is a particular issue in traits such as educational attainment and 

age having first child, but also affects height, BMI, and smoking. For example, parents that provide a 



 

 

strong learning environment for their children are likely to have children with higher educational 

attainment. A GWAS performed in the children could falsely identify SNPs associated with 

educational attainment, for exaggerate the effect size of these SNPs. SNPs that increase parents 

smoking may be falsely identified in their offspring as SNPs that causes wheezing, even if the 

offspring did not smoke but had wheeze induced by a smoky environment. 

9.8.2 Within family MR 

Issues with population stratification, demography, assortative mating, and dynastic effects can all 

lead to biased estimates for SNP-phenotype association of commonly studied traits. How this affects 

MR studies will depend on the research question but could bias causal estimates. To surmount this 

problem within-family GWAS and MR could be used. One model is using studies performed within 

siblings. When comparing siblings, the genetic difference between them reflects true random 

allocation of alleles and should remove most potential environmental confounding.155 Another 

model is to use MVMR and condition the effect of the offspring’s SNPs with the parents’ SNPs. The 

effects of assortative mating can tested for by using spousal pairs, where the trait of one spouse is 

the exposure, and the other spouses’ trait is the outcome.273 

These study models are becoming increasingly possible as large data banks containing offspring, 

spouses, and siblings become increasingly available and should be utilised. 

9.8.3 Limited genetic data for different ancestral populations 

In 2009 over 96% of participants in published GWAS were of European ancestral populations.274 By 

2016 this decreased to 80% but was almost entirely driven by increasing genotyping of Asians. The 

proportion of GWAS including those of African and Hispanic descent has barely changed. Genetic 

variants have different effects in different ancestral populations. For example, 25% of variants 

discovered in European populations that affect BMI are found to have different strengths of 

association in >20% of non-European ancestral groups.275 Therefore, genetic variants discovered in 



 

 

European populations cannot necessarily be exploited as IVs in other ancestral populations and 

results of MR studies may not be generalizable to non-European populations. Clearly, there is a need 

to increase participation in GWAS from non-European ancestral groups. 

9.8.4 Mendelian Randomisation and RCTs 

Mendel’s second law, the law of random assortment, states that the inheritance of one trait is 

independent of the inheritance of another.276 Therefore, traits caused by genetic variation are 

randomly assigned in the population and are not related to confounders.87 This is exploited in MR, 

and it was thought that this allowed MR studies to be analogous to randomised trials as shown in 

Figure 30. 

 

Figure 31. Schematic demonstrating how it was thought that MR and RCT’s were analogous277 

 

Schematic shows how a MR can be thought of as potentially analogous to an RCT, using the example of a 

drug/allele that cause a change in a blood maker 

 

However, there are fundamental differences between these study designs.  



 

 

• In MR the IV is used both as a randomisation tool and as the exposure, whereas in a RCT 

randomisation determines the groups that receive the different exposures.  

• Due to demography and assortative mating the alleles may not be randomly distributed in 

the population compromising the randomization process.  

• The effect of the allele may differ between individuals due to dynastic effects. 

• MR studies are designed to assess whether an exposure-outcome relationship is causal. A 

RCT doesn’t just test causality, but it is also designed to evaluate if the effect of the exposure 

on the outcome causes a clinically significant change. Generally, most SNPs have a small 

effect on the exposure and this effect is present from conception. Whereas a RCT will tend 

to investigate a large exposure effect, over a relatively short period of time, starting 

considerably later in participants’ lives which may well relate better to clinical interventions. 

These differences can explain discrepancies between my finding that FVC causally affects the risk of 

coronary artery disease, and the lack of evidence from trials of inhalers and other therapeutics 

reduce mortality. It may be that interventions instigated later in life (rather than from birth) may not 

have an impact. The MR model estimated the increased odds of coronary artery disease based on a 

standard deviation of FVC, which in the discovery sample equated to nearly a litre, an amount far 

beyond any benefit delivered by current therapies.  

Despite these differences, MR studies can be used in conjunction with RCTs to great effect. RCTs are 

often expensive and time-consuming, so determining the causality of an association if a robust MR 

study is possible before undertaking an RCT could save resources. MR has been used to identify side 

effects e.g. MR studies showed that lipid-lowering drugs could increase the risk of diabetes, and this 

was then found in some RCTs of the drugs.278 By estimating the amount an exposure needs to 

change to affect an outcome, MR can be used to guide the minimum clinically significant difference 

and the inclusion/exclusion criteria of a RCT.279 



 

 

9.9 Final summary 

In this thesis, I have used traditional epidemiology to describe extra-pulmonary associations of 

asthma and PRISm. I have used genetic epidemiology to show that not all reported extra-pulmonary 

associations of lung function/disease are likely to be causal, but certain lung function traits do 

causally affect the risk of certain extra-pulmonary disease. The causal relationships warrant further 

investigations as to their underlying mechanisms. Lung function could be used as a screening tool or 

modifiable risk factor for the extra-pulmonary diseases it causally affects.  

Determining the causality of extra-pulmonary associations of lung function and lung disease is 

essential. Traditional observational epidemiology, genetic epidemiology, and randomised controlled 

trials all suffer from different sources of bias and weaknesses. Genetic epidemiology has undergone 

huge advances in recent years, both due to the wealth of genetic data now available, and evolving 

understanding of bias and novel methods to counteract them. Traditional and genetic epidemiology 

should be used in combination to enhance the strength of evidence in a process of triangulation to 

gain more reliable insights into the extra-pulmonary effects of lung function and lung disease.  



 

 

 

REFERENCES 
 

1. Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 
countries and territories, 1990&#x2013;2019: a systematic analysis for the Global Burden of 
Disease Study 2019. The Lancet 2020; 396(10258): 1204-22. 
2. Li X, Cao X, Guo M, Xie M, Liu X. Trends and risk factors of mortality and disability 
adjusted life years for chronic respiratory diseases from 1990 to 2017: systematic analysis 
for the Global Burden of Disease Study 2017. 2020; 368: m234. 
3. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. The 
European respiratory journal 2009; 33(5): 1165-85. 
4. Brilleman SL, Purdy S, Salisbury C, Windmeijer F, Gravelle H, Hollinghurst S. 
Implications of comorbidity for primary care costs in the UK: a retrospective observational 
study. Br J Gen Pract 2013; 63(609): e274-e82. 
5. Morrison D, Agur K, Mercer S, Eiras A, González-Montalvo JI, Gruffydd-Jones K. 
Managing multimorbidity in primary care in patients with chronic respiratory conditions. 
NPJ Prim Care Respir Med 2016; 26: 16043. 
6. Sin DD, Anthonisen NR, Soriano JB, Agusti AG. Mortality in COPD: Role of 
comorbidities. The European respiratory journal 2006; 28(6): 1245-57. 
7. Burgess S, Foley CN, Zuber V. Inferring Causal Relationships Between Risk Factors 
and Outcomes from Genome-Wide Association Study Data. Annual review of genomics and 
human genetics 2018; 19: 303-27. 
8. NICE. Nintedanib fro treating progressive fibrosing interstitial lung diseases. 2021. 
9. Han MK, Agusti A, Celli BR, et al. From GOLD 0 to Pre-COPD. American journal of 
respiratory and critical care medicine 2021; 203(4): 414-23. 
10. Magnussen C, Ojeda FM, Rzayeva N, et al. FEV1 and FVC predict all-cause mortality 
independent of cardiac function - Results from the population-based Gutenberg Health 
Study. International journal of cardiology 2017; 234: 64-8. 
11. Honda Y, Watanabe T, Shibata Y, et al. Impact of restrictive lung disorder on 
cardiovascular mortality in a general population: The Yamagata (Takahata) study. 
International journal of cardiology 2017; 241: 395-400. 
12. Sin DD, Wu L, Man SF. The relationship between reduced lung function and 
cardiovascular mortality: a population-based study and a systematic review of the literature. 
Chest 2005; 127(6): 1952-9. 
13. Liou TG, Kanner RE. Spirometry. Clinical Reviews in Allergy & Immunology 2009; 
37(3): 137-52. 
14. Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry 
for the 3-95-yr age range: the global lung function 2012 equations. The European respiratory 
journal 2012; 40(6): 1324-43. 
15. Culver BH. How should the lower limit of the normal range be defined? Respiratory 
care 2012; 57(1): 136-45; discussion 43-5. 
16. Lambrecht BN, Hammad H. The airway epithelium in asthma. Nature medicine 2012; 
18(5): 684-92. 
17. Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. 
Lancet (London, England) 2012; 379(9823): 1341-51. 



 

 

18. Global Iniative for Chronic Obstructive Pulmonary Lung Disease, 2019. 
19. Agustí A, Hogg JC. Update on the Pathogenesis of Chronic Obstructive Pulmonary 
Disease. The New England journal of medicine 2019; 381(13): 1248-56. 
20. Cavaillès A, Brinchault-Rabin G, Dixmier A, et al. Comorbidities of COPD. Eur Respir 
Rev 2013; 22(130): 454-75. 
21. Feary JR, Rodrigues LC, Smith CJ, Hubbard RB, Gibson JE. Prevalence of major 
comorbidities in subjects with COPD and incidence of myocardial infarction and stroke: a 
comprehensive analysis using data from primary care. Thorax 2010; 65(11): 956-62. 
22. Laforest L, Roche N, Devouassoux G, et al. Frequency of comorbidities in chronic 
obstructive pulmonary disease, and impact on all-cause mortality: A population-based 
cohort study. Respiratory medicine 2016; 117: 33-9. 
23. Dementia: A public health priority. The World Health Organization. 
24. Behrman S, Valkanova V, Allan CL. Diagnosing and managing mild cognitive 
impairment. The Practitioner 2017; 261(1804): 17-20. 
25. Wimo A, Guerchet M, Ali GC, et al. The worldwide costs of dementia 2015 and 
comparisons with 2010. Alzheimer's & dementia : the journal of the Alzheimer's Association 
2017; 13(1): 1-7. 
26. Silva MVF, Loures CdMG, Alves LCV, de Souza LC, Borges KBG, Carvalho MdG. 
Alzheimer's disease: risk factors and potentially protective measures. J Biomed Sci 2019; 
26(1): 33-. 
27. Incalzi RA, Gemma A, Marra C, Muzzolon R, Capparella O, Carbonin P. Chronic 
obstructive pulmonary disease. An original model of cognitive decline. The American review 
of respiratory disease 1993; 148(2): 418-24. 
28. Liao KM, Ho CH, Ko SC, Li CY. Increased Risk of Dementia in Patients With Chronic 
Obstructive Pulmonary Disease. Medicine 2015; 94(23): e930. 
29. Lutsey PL, Chen N, Mirabelli MC, et al. Impaired Lung Function, Lung Disease and Risk 
of Incident Dementia. American journal of respiratory and critical care medicine 2018. 
30. Agusti A, Noell G, Brugada J, Faner R. Lung function in early adulthood and health in 
later life: a transgenerational cohort analysis. The Lancet Respiratory medicine 2017; 5(12): 
935-45. 
31. Burney PGJ, Hooper R. Forced vital capacity, airway obstruction and survival in a 
general population sample from the USA. Thorax 2011; 66(1): 49. 
32. Lee HM, Le H, Lee BT, Lopez VA, Wong ND. Forced vital capacity paired with 
Framingham Risk Score for prediction of all-cause mortality. European Respiratory Journal 
2010; 36(5): 1002. 
33. Schroeder EB, Welch VL, Couper D, et al. Lung Function and Incident Coronary Heart 
Disease: The Atherosclerosis Risk in Communities Study. American Journal of Epidemiology 
2003; 158(12): 1171-81. 
34. Kim JJ, Kim DB, Jang SW, et al. Relationship between airflow obstruction and 
coronary atherosclerosis in asymptomatic individuals: evaluation by coronary CT 
angiography. The international journal of cardiovascular imaging 2018; 34(4): 641-8. 
35. Cuttica MJ, Colangelo LA, Dransfield MT, et al. Lung Function in Young Adults and 
Risk of Cardiovascular Events Over 29 Years: The CARDIA Study. Journal of the American 
Heart Association 2018; 7(24): e010672. 
36. Engstrom G, Hedblad B, Valind S, Janzon L. Increased incidence of myocardial 
infarction and stroke in hypertensive men with reduced lung function. Journal of 
hypertension 2001; 19(2): 295-301. 



 

 

37. Hozawa A, Billings JL, Shahar E, Ohira T, Rosamond WD, Folsom AR. Lung function 
and ischemic stroke incidence: the Atherosclerosis Risk in Communities study. Chest 2006; 
130(6): 1642-9. 
38. Corlateanu A, Covantev S, Mathioudakis AG, Botnaru V, Cazzola M, Siafakas N. 
Chronic Obstructive Pulmonary Disease and Stroke. Copd 2018; 15(4): 405-13. 
39. Davies G, Lam M, Harris SE, et al. Study of 300,486 individuals identifies 148 
independent genetic loci influencing general cognitive function. Nature communications 
2018; 9(1): 2098-. 
40. Sanford AM. Mild Cognitive Impairment. Clinics in geriatric medicine 2017; 33(3): 
325-37. 
41. Jongsiriyanyong S, Limpawattana P. Mild Cognitive Impairment in Clinical Practice: A 
Review Article. American journal of Alzheimer's disease and other dementias 2018; 33(8): 
500-7. 
42. Chang SS, Chen S, McAvay GJ, Tinetti ME. Effect of coexisting chronic obstructive 
pulmonary disease and cognitive impairment on health outcomes in older adults. Journal of 
the American Geriatrics Society 2012; 60(10): 1839-46. 
43. Campos MW, Serebrisky D, Castaldelli-Maia JM. Smoking and Cognition. Current drug 
abuse reviews 2016; 9(2): 76-9. 
44. Corley J, Gow AJ, Starr JM, Deary IJ. Smoking, childhood IQ, and cognitive function in 
old age. Journal of psychosomatic research 2012; 73(2): 132-8. 
45. Dodd JW. Lung disease as a determinant of cognitive decline and dementia. 
Alzheimer's research & therapy 2015; 7(1): 32. 
46. Liao D, Higgins M, Bryan NR, et al. Lower pulmonary function and cerebral subclinical 
abnormalities detected by MRI: the Atherosclerosis Risk in Communities study. Chest 1999; 
116(1): 150-6. 
47. Brunner EJ, Welch CA, Shipley MJ, Ahmadi-Abhari S, Singh-Manoux A, Kivimäki M. 
Midlife Risk Factors for Impaired Physical and Cognitive Functioning at Older Ages: A Cohort 
Study. The journals of gerontology Series A, Biological sciences and medical sciences 2017; 
72(2): 237-42. 
48. Austin V, Crack PJ, Bozinovski S, Miller AA, Vlahos R. COPD and stroke: are systemic 
inflammation and oxidative stress the missing links? Clinical science (London, England : 
1979) 2016; 130(13): 1039-50. 
49. Miller J, Edwards LD, Agusti A, et al. Comorbidity, systemic inflammation and 
outcomes in the ECLIPSE cohort. Respiratory medicine 2013; 107(9): 1376-84. 
50. Ajala O, Zhang Y, Gupta A, Bon J, Sciurba F, Chandra D. Decreased serum TRAIL is 
associated with increased mortality in smokers with comorbid emphysema and coronary 
artery disease. Respiratory medicine 2018; 145: 21-7. 
51. Fuschillo S, Martucci M, Donner CF, Balzano G. Airway bacterial colonization: the 
missing link between COPD and cardiovascular events? Respiratory medicine 2012; 106(7): 
915-23. 
52. Wen XH, Li Y, Han D, Sun L, Ren PX, Ren D. The relationship between cognitive 
function and arterial partial pressure O2 in patients with COPD: A meta-analysis. Medicine 
2018; 97(4): e9599. 
53. Dodd JW, Getov SV, Jones PW. Cognitive function in COPD. The European respiratory 
journal 2010; 35(4): 913-22. 
54. Martinez-Pitre PJ, Sabbula BR, Cascella M. Restrictive Lung Disease.  StatPearls. 
Treasure Island (FL): StatPearls Publishing 



 

 

Copyright © 2021, StatPearls Publishing LLC.; 2021. 
55. Liou TG, Kanner RE. Spirometry. Clin Rev Allergy Immunol 2009; 37(3): 137-52. 
56. Aaron SD, Dales RE, Cardinal P. How Accurate Is Spirometry at Predicting Restrictive 
Pulmonary Impairment? Chest 1999; 115(3): 869-73. 
57. Wan ES, Fortis S, Regan EA, et al. Longitudinal Phenotypes and Mortality in 
Preserved Ratio Impaired Spirometry in the COPDGene Study. American journal of 
respiratory and critical care medicine 2018; 198(11): 1397-405. 
58. Mannino DM, McBurnie MA, Tan W, et al. Restricted spirometry in the Burden of 
Lung Disease Study. The international journal of tuberculosis and lung disease : the official 
journal of the International Union against Tuberculosis and Lung Disease 2012; 16(10): 1405-
11. 
59. Wan ES, Castaldi PJ, Cho MH, et al. Epidemiology, genetics, and subtyping of 
preserved ratio impaired spirometry (PRISm) in COPDGene. Respiratory research 2014; 
15(1): 89-. 
60. Wijnant SRA, De Roos E, Kavousi M, et al. Trajectory and mortality of preserved ratio 
impaired spirometry: the Rotterdam Study. The European respiratory journal 2020; 55(1): 
1901217. 
61. Schwartz A, Arnold N, Skinner B, et al. Preserved Ratio Impaired Spirometry in a 
Spirometry Database. Respiratory care 2021; 66(1): 58-65. 
62. Heo IR, Kim HC, Kim TH. Health-Related Quality of Life and Related Factors in Persons 
with Preserved Ratio Impaired Spirometry: Data from the Korea National Health and 
Nutrition Examination Surve. Medicina (Kaunas, Lithuania) 2020; 57(1). 
63. Park HJ, Byun MK, Rhee CK, Kim K, Kim HJ, Yoo KH. Significant predictors of medically 
diagnosed chronic obstructive pulmonary disease in patients with preserved ratio impaired 
spirometry: a 3-year cohort study. Respiratory research 2018; 19(1): 185. 
64. Jankowich M, Elston B, Liu Q, et al. Restrictive Spirometry Pattern, Cardiac Structure 
and Function, and Incident Heart Failure in African Americans. The Jackson Heart Study. 
Annals of the American Thoracic Society 2018; 15(10): 1186-96. 
65. Barnes PJ, Vestbo J, Calverley PM. The Pressing Need to Redefine "COPD". Chronic 
Obstr Pulm Dis 2019; 6(5): 380-3. 
66. Sood A, Petersen H, Qualls C, et al. Spirometric variability in smokers: transitions in 
COPD diagnosis in a five-year longitudinal study. Respiratory research 2016; 17(1): 147. 
67. Lundbäck B, Backman H, Calverley PMA. Lung Function through the PRISm. 
Spreading Light or Creating Confusion? American journal of respiratory and critical care 
medicine 2018; 198(11): 1358-60. 
68. https://www.ukbiobank.ac.uk/. 
69. Agusti A, Faner R. Chronic Obstructive Pulmonary Disease Pathogenesis. Clinics in 
Chest Medicine 2020; 41(3): 307-14. 
70. Kotz D, Wesseling G, Huibers M, Schayck O. Efficacy of confrontational counselling 
for smoking cessation in smokers with previously undiagnosed mild to moderate airflow 
limitation: Study protocol of a randomized controlled trial. BMC public health 2007; 7: 332. 
71. Agusti A, Faner R. Lung function trajectories in health and disease. The Lancet 
Respiratory medicine 2019; 7(4): 358-64. 
72. Lange P, Celli B, Agustí A, et al. Lung-Function Trajectories Leading to Chronic 
Obstructive Pulmonary Disease. The New England journal of medicine 2015; 373(2): 111-22. 
73. Hall R, Hall IP, Sayers I. Genetic risk factors for the development of pulmonary 
disease identified by genome-wide association. 2019; 24(3): 204-14. 

https://www.ukbiobank.ac.uk/


 

 

74. Kim KW, Ober C. Lessons Learned From GWAS of Asthma. Allergy Asthma Immunol 
Res 2019; 11(2): 170-87. 
75. Shrine N, Guyatt AL, Erzurumluoglu AM, et al. New genetic signals for lung function 
highlight pathways and chronic obstructive pulmonary disease associations across multiple 
ancestries. Nature Genetics 2019; 51(3): 481-93. 
76. Smith GD, Ebrahim S. Epidemiology—is it time to call it a day? International journal 
of epidemiology 2001; 30(1): 1-11. 
77. Belbasis L, Bellou V. Introduction to Epidemiological Studies. Methods Mol Biol 2018; 
1793: 1-6. 
78. Data MITC, Danziger J, Zimolzak AJ. Residual Confounding Lurking in Big Data: A 
Source of Error.  Secondary Analysis of Electronic Health Records. Cham (CH): Springer 

Copyright 2016, The Author(s). 2016: 71-8. 
79. Ebrahim S, Davey Smith G. Mendelian randomization: can genetic epidemiology help 
redress the failures of observational epidemiology? Hum Genet 2008; 123(1): 15-33. 
80. Sheehan NA, Didelez V. Epidemiology, genetic epidemiology and Mendelian 
randomisation: more need than ever to attend to detail. Hum Genet 2020; 139(1): 121-36. 
81. Collins R, Bowman L, Landray M, Peto R. The Magic of Randomization versus the 
Myth of Real-World Evidence. The New England journal of medicine 2020; 382(7): 674-8. 
82. Taubes G. Epidemiology faces its limits. Science (New York, NY) 1995; 269(5221): 
164-9. 
83. Davey Smith G, Paternoster L, Relton C. When Will Mendelian Randomization 
Become Relevant for Clinical Practice and Public Health?Mendelian Randomization and 
Clinical Practice and Public HealthEditorial. JAMA 2017; 317(6): 589-91. 
84. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of 
genome-wide association studies. Nature reviews Genetics 2019; 20(8): 467-84. 
85. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J 
Hum Genet 2012; 90(1): 7-24. 
86. Visscher PM, Wray NR, Zhang Q, et al. 10 Years of GWAS Discovery: Biology, 
Function, and Translation. American journal of human genetics 2017; 101(1): 5-22. 
87. Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology 
contribute to understanding environmental determinants of disease? International journal 
of epidemiology 2003; 32(1): 1-22. 
88. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal 
inference in epidemiological studies. Human Molecular Genetics 2014; 23(R1): R89-R98. 
89. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for 
Mendelian randomization. Statistical methods in medical research 2017; 26(5): 2333-55. 
90. NHGRI. Introduction to Genetics. https://www.genome.gov/About-
Genomics/Introduction-to-Genomics. 
91. Brookes AJ. The essence of SNPs. Gene 1999; 234(2): 177-86. 
92. MacArthur J, Bowler E, Cerezo M, et al. The new NHGRI-EBI Catalog of published 
genome-wide association studies (GWAS Catalog). Nucleic acids research 2017; 45(D1): 
D896-d901. 
93. Fadista J, Manning AK, Florez JC, Groop L. The (in)famous GWAS P-value threshold 
revisited and updated for low-frequency variants. European journal of human genetics : 
EJHG 2016; 24(8): 1202-5. 

https://www.genome.gov/About-Genomics/Introduction-to-Genomics
https://www.genome.gov/About-Genomics/Introduction-to-Genomics


 

 

94. Lee JJ, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a 
genome-wide association study of educational attainment in 1.1 million individuals. Nat 
Genet 2018; 50(8): 1112-21. 
95. Liu M, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals 
yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 2019; 
51(2): 237-44. 
96. Pagoni P, Dimou NL, Murphy N, Stergiakouli E. Using Mendelian randomisation to 
assess causality in observational studies. Evid Based Ment Health 2019; 22(2): 67-71. 
97. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with 
multiple genetic variants using summarized data. Genetic epidemiology 2013; 37(7): 658-65. 
98. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-
forgotten) practices: the design, analysis, and interpretation of Mendelian randomization 
studies. Am J Clin Nutr 2016; 103(4): 965-78. 
99. Burgess S, Thompson SG, Collaboration CCG. Avoiding bias from weak instruments in 
Mendelian randomization studies. International journal of epidemiology 2011; 40(3): 755-
64. 
100. Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian 
randomisation studies with summary data and a continuous outcome. Statistics in medicine 
2015; 34(21): 2926-40. 
101. Bowden J, Del Greco M F, Minelli C, et al. Improving the accuracy of two-sample 
summary-data Mendelian randomization: moving beyond the NOME assumption. 
International journal of epidemiology 2018; 48(3): 728-42. 
102. Zheng J, Baird D, Borges M-C, et al. Recent Developments in Mendelian 
Randomization Studies. Curr Epidemiol Rep 2017; 4(4): 330-45. 
103. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid 
instruments: effect estimation and bias detection through Egger regression. International 
journal of epidemiology 2015; 44(2): 512-25. 
104. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian 
randomization via the zero modal pleiotropy assumption. International journal of 
epidemiology 2017; 46(6): 1985-98. 
105. Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between 
imprecisely measured traits using GWAS summary data. PLoS genetics 2017; 13(11): 
e1007081. 
106. Incalzi RA, Gemma A, Marra C, Capparella O, Fuso L, Carbonin P. Verbal Memory 
Impairment in COPD: Its Mechanisms and Clinical Relevance. Chest 1997; 112(6): 1506-13. 
107. Gilsanz P, Mayeda ER, Flatt J, Glymour MM, Quesenberry CP, Jr., Whitmer RA. Early 
Midlife Pulmonary Function and Dementia Risk. Alzheimer disease and associated disorders 
2018; 32(4): 270-5. 
108. Wain L, Shrine N, Guyatt A, et al. A weighted genetic risk score based on 279 signals 
of association with lung function predicts Chronic Obstructive Pulmonary Disease. European 
Respiratory Journal 2018; 52(suppl 62): OA2188. 
109. Sakornsakolpat P, Prokopenko D, Lamontagne M, et al. Genetic landscape of chronic 
obstructive pulmonary disease identifies heterogeneous cell-type and phenotype 
associations. Nature Genetics 2019; 51(3): 494-505. 
110. Lambert J-C, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals 
identifies 11 new susceptibility loci for Alzheimer&#39;s disease. Nature Genetics 2013; 45: 
1452. 



 

 

111. dbGaP. Genotypes and Phenotypes. https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000572.v7.p42019). 
112. Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new 
loci and functional pathways influencing Alzheimer’s disease risk. Nature Genetics 2019; 
51(3): 404-13. 
113. Medicine USo. 2019. https://www.med.unc.edu/pgc/pgc-workgroups/alzheimers-
disease-workgroup/. 
114. Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic 
causal inference across the human phenome. eLife 2018; 7. 
115. Daborg J, von Otter M, Sjölander A, et al. Association of the RAGE G82S 
polymorphism with Alzheimer's disease. Journal of neural transmission (Vienna, Austria : 
1996) 2010; 117(7): 861-7. 
116. Crous-Bou M, Minguillón C, Gramunt N, Molinuevo JL. Alzheimer's disease 
prevention: from risk factors to early intervention. Alzheimer's research & therapy 2017; 
9(1): 71-. 
117. McKay GJ, McCarter RV, Hogg RE, et al. Simple non-mydriatic retinal photography is 
feasible and demonstrates retinal microvascular dilation in Chronic Obstructive Pulmonary 
Disease (COPD). PloS one 2020; 15(1): e0227175. 
118. Dodd JW, Chung AW, van den Broek MD, Barrick TR, Charlton RA, Jones PW. Brain 
structure and function in chronic obstructive pulmonary disease: a multimodal cranial 
magnetic resonance imaging study. American journal of respiratory and critical care 
medicine 2012; 186(3): 240-5. 
119. Johnson N, Davis T, Bosanquet N. The Epidemic of Alzheimer’s Disease. 
PharmacoEconomics 2000; 18(3): 215-23. 
120. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 
causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global 
Burden of Disease Study 2010. Lancet (London, England) 2012; 380(9859): 2095-128. 
121. Xu W, Tan L, Wang HF, et al. Meta-analysis of modifiable risk factors for Alzheimer's 
disease. Journal of neurology, neurosurgery, and psychiatry 2015; 86(12): 1299-306. 
122. Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic 
obstructive pulmonary disease. The Lancet 2015; 385(9971): 899-909. 
123. Genome-wide meta-analyses identify multiple loci associated with smoking 
behavior. Nat Genet 2010; 42(5): 441-7. 
124. Burgess S, Labrecque JA. Mendelian randomization with a binary exposure variable: 
interpretation and presentation of causal estimates. Eur J Epidemiol 2018; 33(10): 947-52. 
125. Vansteelandt S, Dukes O, Martinussen T. Survivor bias in Mendelian randomization 
analysis. Biostatistics 2017; 19(4): 426-43. 
126. Maclay JD, MacNee W. Cardiovascular disease in COPD: mechanisms. Chest 2013; 
143(3): 798-807. 
127. Ramalho SHR, Shah AM. Lung function and cardiovascular disease: A link. Trends in 
Cardiovascular Medicine 2020. 
128. Nikpay M, Goel A, Won H-H, et al. A comprehensive 1,000 Genomes-based genome-
wide association meta-analysis of coronary artery disease. Nature genetics 2015; 47(10): 
1121-30. 
129. Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study 
of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nature 
genetics 2018; 50(4): 524-37. 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000572.v7.p42019
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000572.v7.p42019
https://www.med.unc.edu/pgc/pgc-workgroups/alzheimers-disease-workgroup/
https://www.med.unc.edu/pgc/pgc-workgroups/alzheimers-disease-workgroup/


 

 

130. Sanderson E, Davey Smith G, Windmeijer F, Bowden J. An examination of 
multivariable Mendelian randomization in the single-sample and two-sample summary data 
settings. International journal of epidemiology 2018; 48(3): 713-27. 
131. Hartwig FP, Tilling K, Davey Smith G, Lawlor DA, Borges MC. Bias in two-sample 
Mendelian randomization when using heritable covariable-adjusted summary associations. 
International journal of epidemiology 2021. 
132. Sanderson E, Davey Smith G, Windmeijer F, Bowden J. An examination of 
multivariable Mendelian randomization in the single sample and two-sample summary data 
settings. 2018: 306209. 
133. Sanderson E. Multivariable Mendelian Randomization and Mediation. Cold Spring 
Harbor perspectives in medicine 2021; 11(2). 
134. IEU. https://gwas.mrcieu.ac.uk/. 2020. 
135. Bonella F, Stowasser S, Wollin L. Idiopathic pulmonary fibrosis: current treatment 
options and critical appraisal of nintedanib. Drug design, development and therapy 2015; 9: 
6407-19. 
136. Au Yeung SL, Borges MC, Lawlor DA. Association of Genetic Instrumental Variables 
for Lung Function on Coronary Artery Disease Risk: A 2-Sample Mendelian Randomization 
Study. Circulation Genomic and precision medicine 2018; 11(4): e001952. 
137. Smith GD, Ebrahim S. What can mendelian randomisation tell us about modifiable 
behavioural and environmental exposures? 2005; 330(7499): 1076-9. 
138. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: a 
guide, glossary, and checklist for clinicians. BMJ (Clinical research ed) 2018; 362: k601. 
139. Kraft P. Curses--winner's and otherwise--in genetic epidemiology. Epidemiology 
(Cambridge, Mass) 2008; 19(5): 649-51; discussion 57-8. 
140. Furberg H, Kim Y, Dackor J, et al. Genome-wide meta-analyses identify multiple loci 
associated with smoking behavior. Nature Genetics 2010; 42(5): 441-7. 
141. Soldan A, Pettigrew C, Cai Q, et al. Cognitive reserve and long-term change in 
cognition in aging and preclinical Alzheimer's disease. Neurobiol Aging 2017; 60: 164-72. 
142. Stern Y. Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology 
2012; 11(11): 1006-12. 
143. Cohen-Manheim I, Doniger GM, Sinnreich R, et al. Body Mass Index, Height and 
Socioeconomic Position in Adolescence, Their Trajectories into Adulthood, and Cognitive 
Function in Midlife. J Alzheimers Dis 2017; 55(3): 1207-21. 
144. Aschard H, Vilhjálmsson Bjarni J, Joshi Amit D, Price Alkes L, Kraft P. Adjusting for 
Heritable Covariates Can Bias Effect Estimates in Genome-Wide Association Studies. The 
American Journal of Human Genetics 2015; 96(2): 329-39. 
145. Leggett A, Clarke P, Zivin K, McCammon RJ, Elliott MR, Langa KM. Recent 
Improvements in Cognitive Functioning Among Older U.S. Adults: How Much Does 
Increasing Educational Attainment Explain? J Gerontol B Psychol Sci Soc Sci 2019; 74(3): 536-
45. 
146. Bowden J, Spiller W, Del Greco MF, et al. Improving the visualization, interpretation 
and analysis of two-sample summary data Mendelian randomization via the Radial plot and 
Radial regression. International journal of epidemiology 2018; 47(4): 1264-78. 
147. Suglia SF, Wright RO, Schwartz J, Wright RJ. Association between lung function and 
cognition among children in a prospective birth cohort study. Psychosomatic medicine 2008; 
70(3): 356-62. 

https://gwas.mrcieu.ac.uk/


 

 

148. Liesker JJ, Postma DS, Beukema RJ, et al. Cognitive performance in patients with 
COPD. Respiratory medicine 2004; 98(4): 351-6. 
149. Bajaj MK, Burrage DR, Tappouni A, Dodd JW, Jones PW, Baker EH. COPD patients 
hospitalized with exacerbations have greater cognitive impairment than patients 
hospitalized with decompensated heart failure. Clinical interventions in aging 2019; 14: 1-8. 
150. Portas L, Pereira M, Shaheen SO, et al. Lung Development Genes and Adult Lung 
Function. American journal of respiratory and critical care medicine 2020; 202(6): 853-65. 
151. Wołoszynowska-Fraser MU, Kouchmeshky A, McCaffery P. Vitamin A and Retinoic 
Acid in Cognition and Cognitive Disease. Annual review of nutrition 2020; 40: 247-72. 
152. Howe LJ, Nivard MG, Morris TT, et al. Within-sibship GWAS improve estimates of 
direct genetic effects. bioRxiv 2021: 2021.03.05.433935. 
153. Spilling CA, Bajaj M-PK, Burrage DR, et al. Contributions of cardiovascular risk and 
smoking to chronic obstructive pulmonary disease (COPD)-related changes in brain structure 
and function. International journal of chronic obstructive pulmonary disease 2019; 14: 1855-
66. 
154. Trejo S, Domingue BW. Genetic nature or genetic nurture? Introducing social genetic 
parameters to quantify bias in polygenic score analyses. Biodemography Soc Biol 2018; 64(3-
4): 187-215. 
155. Brumpton B, Sanderson E, Heilbron K, et al. Avoiding dynastic, assortative mating, 
and population stratification biases in Mendelian randomization through within-family 
analyses. Nature communications 2020; 11(1): 3519. 
156. Higbee DH, Dodd JW. Cognitive impairment in COPD: an often overlooked co-
morbidity. Expert review of respiratory medicine 2020. 
157. WHO T. 
https://www.who.int/gho/mortality_burden_disease/causes_death/top_10/en/. 2020. 
158. Young KA, Strand M, Ragland MF, et al. Pulmonary Subtypes Exhibit Differential 
Global Initiative for Chronic Obstructive Lung Disease Spirometry Stage Progression: The 
COPDGene® Study. Chronic Obstr Pulm Dis 2019; 6(5): 414-29. 
159. Wei X, Ding Q, Yu N, et al. Imaging Features of Chronic Bronchitis with Preserved 
Ratio and Impaired Spirometry (PRISm). Lung 2018; 196(6): 649-58. 
160. Lytras T. 2020. https://github.com/thlytras/rspiro2020). 
161. STATACorp. Stata Statistical Software: Release 15. 2017. 
162. Linden A. RTMCI: Stata module to estimate regression to the mean effects with 
confidence intervals. In: S457757 SSC, editor.; 2013. 
163. Barnett AG, van der Pols JC, Dobson AJ. Regression to the mean: what it is and how 
to deal with it. International journal of epidemiology 2005; 34(1): 215-20. 
164. Wijnant SRA, Lahousse L, Brusselle GG. The global significance of PRISm: how data 
from low- and middle-income countries link physiology to inflammation. European 
Respiratory Journal 2020; 55(4): 2000354. 
165. Higbee DH, Granell R, Sanderson E, Davey Smith G, Dodd JW. Lung function & 
cardiovascular disease. A Two Sample Mendelian Randomisation Study. The European 
respiratory journal 2021. 
166. Pompe E, Strand M, van Rikxoort EM, et al. Five-year Progression of Emphysema and 
Air Trapping at CT in Smokers with and Those without Chronic Obstructive Pulmonary 
Disease: Results from the COPDGene Study. Radiology 2020; 295(1): 218-26. 
167. Bonini M, Usmani OS. The role of the small airways in the pathophysiology of asthma 
and chronic obstructive pulmonary disease. Ther Adv Respir Dis 2015; 9(6): 281-93. 

https://www.who.int/gho/mortality_burden_disease/causes_death/top_10/en/
https://github.com/thlytras/rspiro2020


 

 

168. Hartley RA, Barker BL, Newby C, et al. Relationship between lung function and 
quantitative computed tomographic parameters of airway remodeling, air trapping, and 
emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-
center study. The Journal of allergy and clinical immunology 2016; 137(5): 1413-22.e12. 
169. Backman H, Eriksson B, Hedman L, et al. Restrictive spirometric pattern in the 
general adult population: Methods of defining the condition and consequences on 
prevalence. Respiratory medicine 2016; 120: 116-23. 
170. Batty GD, Gale CR, Kivimäki M, Deary IJ, Bell S. Comparison of risk factor associations 
in UK Biobank against representative, general population based studies with conventional 
response rates: prospective cohort study and individual participant meta-analysis. BMJ 
(Clinical research ed) 2020; 368: m131. 
171. Fry A, Littlejohns T, Sudlow C, Doherty N, Allen N. OP41 The representativeness of 
the UK Biobank cohort on a range of sociodemographic, physical, lifestyle and health-related 
characteristics. Journal of epidemiology and community health 2016; 70(Suppl 1): A26-A. 
172. Munafò MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Collider scope: when 
selection bias can substantially influence observed associations. International journal of 
epidemiology 2018; 47(1): 226-35. 
173. McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for 
genotype imputation. Nature Genetics 2016; 48(10): 1279-83. 
174. Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for 
biobank-scale datasets. Nat Genet 2018; 50(7): 906-8. 
175. Ruth Mitchell GH, Tom Dudding, Laura Corbin, Sean Harrison, Lavinia Paternoster. 
UK BioBank Genetic Data: MRC-IEU Quality Control, version 2. 2019. 
176. Staley JR, Blackshaw J, Kamat MA, et al. PhenoScanner: a database of human 
genotype-phenotype associations. Bioinformatics (Oxford, England) 2016; 32(20): 3207-9. 
177. https://www.gtexportal.org/home/.  (accessed 20/07/2020. 
178. Science WIo. www.genecards.org.  (accessed 20/07/2020. 
179. http://www.informatics.jax.org/.  (accessed 20/07/2020. 
180. 2021. https://omim.org/. 
181. Zheng J, Erzurumluoglu AM, Elsworth BL, et al. LD Hub: a centralized database and 
web interface to perform LD score regression that maximizes the potential of summary level 
GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics (Oxford, 
England) 2017; 33(2): 272-9. 
182. Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 
433,540 East Asian individuals. Nature 2020; 582(7811): 240-5. 
183. Manning AK, Hivert MF, Scott RA, et al. A genome-wide approach accounting for 
body mass index identifies genetic variants influencing fasting glycemic traits and insulin 
resistance. Nat Genet 2012; 44(6): 659-69. 
184. Mungall AJ, Palmer SA, Sims SK, et al. The DNA sequence and analysis of human 
chromosome 6. Nature 2003; 425(6960): 805-11. 
185. Pavord ID, Beasley R, Agusti A, et al. After asthma: redefining airways diseases. 
Lancet (London, England) 2018; 391(10118): 350-400. 
186. GINA. The Global Strategy for Asthma Management and Prevention; 2017. 
187. Mims JW. Asthma: definitions and pathophysiology. International forum of allergy & 
rhinology 2015; 5 Suppl 1: S2-6. 

https://www.gtexportal.org/home/
http://www.informatics.jax.org/
https://omim.org/


 

 

188. Morrison D, Agur K, Mercer S, Eiras A, González-Montalvo JI, Gruffydd-Jones K. 
Managing multimorbidity in primary care in patients with chronic respiratory conditions. 
NPJ primary care respiratory medicine 2016; 26: 16043-. 
189. Bosley CM, Fosbury JA, Cochrane GM. The psychological factors associated with poor 
compliance with treatment in asthma. The European respiratory journal 1995; 8(6): 899-904. 
190. Physicians TRCo. Why asthma still kills. The National Review of Asthma Deaths. In: 
Partnership HQI, editor.; 2014. 
191. Dudeney J, Sharpe L, Jaffe A, Jones EB, Hunt C. Anxiety in youth with asthma: A 
meta-analysis. Pediatric pulmonology 2017; 52(9): 1121-9. 
192. Del Giacco SR, Cappai A, Gambula L, et al. The asthma-anxiety connection. 
Respiratory medicine 2016; 120: 44-53. 
193. Oh H, Stickley A, Singh F, Koyanagi A. Self-reported asthma diagnosis and mental 
health: Findings from the Collaborative Psychiatric Epidemiology Surveys. Psychiatry 
research 2019; 271: 721-5. 
194. Lee YC, Lee CT, Lai YR, Chen VC, Stewart R. Association of asthma and anxiety: A 
nationwide population-based study in Taiwan. Journal of affective disorders 2016; 189: 98-
105. 
195. Geraldo José Cunha Â, Zbonik Mendes A, Dias Wanderley de Carvalho F, Aparecida 
Ribeiro de Paula M, Gonçalves Brasil T. The impact of asthma on quality of life and anxiety: a 
pilot study. Journal of Asthma 2018: 1-6. 
196. Lomper K, Chudiak A, Uchmanowicz I, Rosinczuk J, Jankowska-Polanska B. Effects of 
depression and anxiety on asthma-related quality of life. Pneumonologia i alergologia 
polska 2016; 84(4): 212-21. 
197. Ciprandi G, Schiavetti I, Rindone E, Ricciardolo FL. The impact of anxiety and 
depression on outpatients with asthma. Annals of allergy, asthma & immunology : official 
publication of the American College of Allergy, Asthma, & Immunology 2015; 115(5): 408-14. 
198. Urrutia I, Aguirre U, Pascual S, et al. Impact of anxiety and depression on disease 
control and quality of life in asthma patients. The Journal of asthma : official journal of the 
Association for the Care of Asthma 2012; 49(2): 201-8. 
199. Di Marco F, Verga M, Santus P, et al. Close correlation between anxiety, depression, 
and asthma control. Respiratory medicine 2010; 104(1): 22-8. 
200. Goodwin RD, Fergusson DM, Horwood LJ. Asthma and depressive and anxiety 
disorders among young persons in the community. Psychological Medicine 2004; 34(8): 
1465-74. 
201. Letitre SL, de Groot EP, Draaisma E, Brand PL. Anxiety, depression and self-esteem in 
children with well-controlled asthma: case-control study. Archives of disease in childhood 
2014; 99(8): 744-8. 
202. Chen MH, Su TP, Chen YS, et al. Higher risk of developing major depression and 
bipolar disorder in later life among adolescents with asthma: a nationwide prospective 
study. Journal of psychiatric research 2014; 49: 25-30. 
203. Goldney RD, Ruffin R, Fisher LJ, Wilson DH. Asthma symptoms associated with 
depression and lower quality of life: a population survey. The Medical journal of Australia 
2003; 178(9): 437-41. 
204. Yonas MA, Marsland AL, Emeremni CA, Moore CG, Holguin F, Wenzel S. Depressive 
symptomatology, quality of life and disease control among individuals with well-
characterized severe asthma. The Journal of asthma : official journal of the Association for 
the Care of Asthma 2013; 50(8): 884-90. 



 

 

205. Scott KM, Von Korff M, Ormel J, et al. Mental disorders among adults with asthma: 
results from the World Mental Health Survey. General hospital psychiatry 2007; 29(2): 123-
33. 
206. Lu Z, Chen L, Xu S, et al. Allergic disorders and risk of depression: A systematic review 
and meta-analysis of 51 large-scale studies. Annals of allergy, asthma & immunology : 
official publication of the American College of Allergy, Asthma, & Immunology 2018; 120(3): 
310-7.e2. 
207. Shen TC, Lin CL, Liao CH, Wei CC, Sung FC, Kao CH. Major depressive disorder is 
associated with subsequent adult-onset asthma: a population-based cohort study. 
Epidemiology and psychiatric sciences 2017; 26(6): 664-71. 
208. Gao YH, Zhao HS, Zhang FR, et al. The Relationship between Depression and Asthma: 
A Meta-Analysis of Prospective Studies. PloS one 2015; 10(7): e0132424. 
209. Mangold R, Salzman GA, Williams KB, Hanania NA. Factors associated with 
depressive symptoms in uncontrolled asthmatics. The Journal of asthma : official journal of 
the Association for the Care of Asthma 2018; 55(5): 555-60. 
210. Zhang L, Zhang X, Zheng J, et al. Co-morbid psychological dysfunction is associated 
with a higher risk of asthma exacerbations: a systematic review and meta-analysis. Journal 
of thoracic disease 2016; 8(6): 1257-68. 
211. Di Marco F, Santus P, Centanni S. Anxiety and depression in asthma. Current opinion 
in pulmonary medicine 2011; 17(1): 39-44. 
212. Chen E, Miller GE. Stress and inflammation in exacerbations of asthma. Brain, 
behavior, and immunity 2007; 21(8): 993-9. 
213. Deshmukh VM, Toelle BG, Usherwood T, O'Grady B, Jenkins CR. Anxiety, panic and 
adult asthma: a cognitive-behavioral perspective. Respiratory medicine 2007; 101(2): 194-
202. 
214. University JH. COVID-19 Dashboard. https://coronavirus.jhu.edu/map.html (accessed 
27/08/2020. 
215. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a 
randomised, controlled, open-label, platform trial. Lancet (London, England) 2020; 
396(10259): 1345-52. 
216. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a 
randomised, controlled, open-label, platform trial. Lancet (London, England) 2021; 
397(10285): 1637-45. 
217. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a 
randomised, controlled, open-label, platform trial. Lancet (London, England) 2021; 
397(10274): 605-12. 
218. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with 
Covid-19. The New England journal of medicine 2021; 384(8): 693-704. 
219. Horby P, Mafham M, Linsell L, et al. Effect of Hydroxychloroquine in Hospitalized 
Patients with Covid-19. The New England journal of medicine 2020; 383(21): 2030-40. 
220. Wang R, Bikov A, Fowler SJ. Treating asthma in the COVID-19 pandemic. Thorax 
2020. 
221. Odriozola-González P, Planchuelo-Gómez Á, Irurtia MJ, de Luis-García R. 
Psychological effects of the COVID-19 outbreak and lockdown among students and workers 
of a Spanish university. Psychiatry research 2020; 290: 113108. 

https://coronavirus.jhu.edu/map.html


 

 

222. Qiu J, Shen B, Zhao M, Wang Z, Xie B, Xu Y. A nationwide survey of psychological 
distress among Chinese people in the COVID-19 epidemic: implications and policy 
recommendations. General Psychiatry 2020; 33(2): e100213. 
223. Hawryluck L, Gold WL, Robinson S, Pogorski S, Galea S, Styra R. SARS control and 
psychological effects of quarantine, Toronto, Canada. Emerg Infect Dis 2004; 10(7): 1206-12. 
224. Sears MR. Descriptive epidemiology of asthma. Lancet (London, England) 1997; 350 
Suppl 2: Sii1-4. 
225. Fraser A, Macdonald-Wallis C, Tilling K, et al. Cohort Profile: the Avon Longitudinal 
Study of Parents and Children: ALSPAC mothers cohort. International journal of 
epidemiology 2013; 42(1): 97-110. 
226. Boyd A, Golding J, Macleod J, et al. Cohort Profile: the 'children of the 90s'--the index 
offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol 2013; 42(1): 
111-27. 
227. Northstone K, Lewcock M, Groom A, et al. The Avon Longitudinal Study of Parents 
and Children (ALSPAC): an update on the enrolled sample of index children in 2019. 
Wellcome Open Res 2019; 4: 51. 
228. Northstone K, Haworth S, Smith D, Bowring C, Wells N, Timpson N. The Avon 
Longitudinal Study of Parents and Children - A resource for COVID-19 research: 
Questionnaire data capture April-May 2020 [version 1; peer review: awaiting peer review]. 
Wellcome Open Research 2020; 5(127). 
229. Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression. Development of 
the 10-item Edinburgh Postnatal Depression Scale. The British journal of psychiatry : the 
journal of mental science 1987; 150: 782-6. 
230. Spielberger C, Gorsuch R, Lushene R, Vagg PR, Jacobs G. Manual for the State-Trait 
Anxiety Inventory (Form Y1 – Y2); 1983. 
231. Kwong ASF, Pearson RM, Adams MJ, et al. Mental health during the COVID-19 
pandemic in two longitudinal UK population cohorts. medRxiv 2020: 2020.06.16.20133116. 
232. Northstone K, Lewcock M, Groom A, et al. The Avon Longitudinal Study of Parents 
and Children (ALSPAC): an update on the enrolled sample of index children in 2019. 
Wellcome Open Res 2019; 4: 51-. 
233. Glaser B, Gunnell D, Timpson NJ, et al. Age- and puberty-dependent association 
between IQ score in early childhood and depressive symptoms in adolescence. Psychol Med 
2011; 41(2): 333-43. 
234. Hill G. Data Analysis using Regression and Multilevel/Hierarchical Models. 
Cambridge, UK: Cambridge University Press; 2007. 
235. Bianco. Performance of the Warwick-Edinburgh Mental Well-Being Scale (WEMWBS) 
as a screening tool for depression in UK and Italy  
236. Toussaint A, Hüsing P, Gumz A, et al. Sensitivity to change and minimal clinically 
important difference of the 7-item Generalized Anxiety Disorder Questionnaire (GAD-7). 
Journal of affective disorders 2020; 265: 395-401. 
237. Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized 
anxiety disorder: the GAD-7. Archives of internal medicine 2006; 166(10): 1092-7. 
238. BLF. Nearly 2 million people with lung conditions notice improved symptoms as a 
result of drop in air pollution. https://www.blf.org.uk/media-centre/press-releases/nearly-
2-million-people-with-lung-conditions-notice-improved-symptoms-as (accessed 
27/08/2020. 

https://www.blf.org.uk/media-centre/press-releases/nearly-2-million-people-with-lung-conditions-notice-improved-symptoms-as
https://www.blf.org.uk/media-centre/press-releases/nearly-2-million-people-with-lung-conditions-notice-improved-symptoms-as


 

 

239. Papadopoulos NG, Custovic A, Deschildre A, et al. Impact of COVID-19 on Pediatric 
Asthma: Practice Adjustments and Disease Burden. The journal of allergy and clinical 
immunology In practice 2020; 8(8): 2592-9.e3. 
240. Johnson B. https://www.gov.uk/government/speeches/pm-statement-on-
coronavirus-16-march-2020 (accessed 27/08/2020. 
241. PHE. Guidance on social distancing for everyone in the UK 
https://www.gov.uk/government/publications/covid-19-guidance-on-social-distancing-and-
for-vulnerable-people/guidance-on-social-distancing-for-everyone-in-the-uk-and-
protecting-older-people-and-vulnerable-adults (accessed 27/08/2020. 
242. Cornish RP, Henderson J, Boyd AW, Granell R, Van Staa T, Macleod J. Validating 
childhood asthma in an epidemiological study using linked electronic patient records. BMJ 
Open 2014; 4(4): e005345. 
243. Bousquet J, Jutel M, Akdis CA, et al. ARIA-EAACI statement on Asthma and COVID-19 
(June 2, 2020). Allergy 2020. 
244. Lu Y, Mak KK, van Bever HP, Ng TP, Mak A, Ho RC. Prevalence of anxiety and 
depressive symptoms in adolescents with asthma: a meta-analysis and meta-regression. 
Pediatric allergy and immunology : official publication of the European Society of Pediatric 
Allergy and Immunology 2012; 23(8): 707-15. 
245. Negewo NA, Gibson PG, McDonald VM. COPD and its comorbidities: Impact, 
measurement and mechanisms. Respirology (Carlton, Vic) 2015; 20(8): 1160-71. 
246. Uijen AA, van de Lisdonk EH. Multimorbidity in primary care: prevalence and trend 
over the last 20 years. The European journal of general practice 2008; 14 Suppl 1: 28-32. 
247. Multimorbidity: clinical assessment and management. In: Excellence NIfHaC, editor.; 
2016. 
248. Organization TWH. Multimorbidity: Technical Series on Safer Primary Care Geneva, 
2016. 
249. Farmer C, Fenu E, O’Flynn N, Guthrie B. Clinical assessment and management of 
multimorbidity: summary of NICE guidance. 2016; 354: i4843. 
250. Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular 
dementia. Biochim Biophys Acta 2016; 1862(5): 915-25. 
251. Assari S, Chalian H, Bazargan M. Race, Ethnicity, Socioeconomic Status, and Chronic 
Lung Disease in the U.S. Res Health Sci 2020; 5(1): 48-63. 
252. Schrijvers EM, Schürmann B, Koudstaal PJ, et al. Genome-wide association study of 
vascular dementia. Stroke 2012; 43(2): 315-9. 
253. Sterne JA, Davey Smith G. Sifting the evidence-what's wrong with significance tests? 
BMJ (Clinical research ed) 2001; 322(7280): 226-31. 
254. Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. 
Nature 2019; 567(7748): 305-7. 
255. Baum C, Ojeda FM, Wild PS, et al. Subclinical impairment of lung function is related 
to mild cardiac dysfunction and manifest heart failure in the general population. 
International journal of cardiology 2016; 218: 298-304. 
256. Franssen FM, Soriano JB, Roche N, et al. Lung Function Abnormalities in Smokers 
with Ischemic Heart Disease. American journal of respiratory and critical care medicine 
2016; 194(5): 568-76. 
257. Liang Y, Wang M, Xu X, Li N, Zhou Q, He B. Reduced Forced Expiratory Volume in 1 
Second Percentage Predicted Is Associated With Diffuse Coronary Atherosclerosis in 

https://www.gov.uk/government/speeches/pm-statement-on-coronavirus-16-march-2020
https://www.gov.uk/government/speeches/pm-statement-on-coronavirus-16-march-2020
https://www.gov.uk/government/publications/covid-19-guidance-on-social-distancing-and-for-vulnerable-people/guidance-on-social-distancing-for-everyone-in-the-uk-and-protecting-older-people-and-vulnerable-adults
https://www.gov.uk/government/publications/covid-19-guidance-on-social-distancing-and-for-vulnerable-people/guidance-on-social-distancing-for-everyone-in-the-uk-and-protecting-older-people-and-vulnerable-adults
https://www.gov.uk/government/publications/covid-19-guidance-on-social-distancing-and-for-vulnerable-people/guidance-on-social-distancing-for-everyone-in-the-uk-and-protecting-older-people-and-vulnerable-adults


 

 

Hospitalized Patients Undergoing Coronary Angiography. The American journal of the 
medical sciences 2018; 355(4): 307-13. 
258. Mannino DM, Thorn D, Swensen A, Holguin F. Prevalence and outcomes of diabetes, 
hypertension and cardiovascular disease in COPD. The European respiratory journal 2008; 
32(4): 962-9. 
259. Soler EP, Ruiz VC. Epidemiology and risk factors of cerebral ischemia and ischemic 
heart diseases: similarities and differences. Current cardiology reviews 2010; 6(3): 138-49. 
260. Vivodtzev I, Tamisier R, Baguet J-P, Borel JC, Levy P, Pépin J-L. Arterial stiffness in 
COPD. Chest 2014; 145(4): 861-75. 
261. Belgrave DCM, Granell R, Turner SW, et al. Lung function trajectories from pre-
school age to adulthood and their associations with early life factors: a retrospective 
analysis of three population-based birth cohort studies. The Lancet Respiratory medicine 
2018; 6(7): 526-34. 
262. Finkel D, Reynolds CA, Emery CF, Pedersen NL. Genetic and environmental variation 
in lung function drives subsequent variation in aging of fluid intelligence. Behav Genet 2013; 
43(4): 274-85. 
263. Schou L, Ostergaard B, Rasmussen LS, Rydahl-Hansen S, Phanareth K. Cognitive 
dysfunction in patients with chronic obstructive pulmonary disease--a systematic review. 
Respiratory medicine 2012; 106(8): 1071-81. 
264. Vasilopoulos T, Kremen WS, Grant MD, et al. Individual differences in cognitive 
ability at age 20 predict pulmonary function 35 years later. Journal of epidemiology and 
community health 2015; 69(3): 261-5. 
265. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy 
in causal relationships inferred from Mendelian randomization between complex traits and 
diseases. Nature Genetics 2018; 50(5): 693-8. 
266. Chiu HY, Hsiao YH, Su KC, Lee YC, Ko HK, Perng DW. Small Airway Dysfunction by 
Impulse Oscillometry in Symptomatic Patients with Preserved Pulmonary Function. The 
journal of allergy and clinical immunology In practice 2020; 8(1): 229-35.e3. 
267. Carli G, Cecchi L, Stebbing J, Parronchi P, Farsi A. Is asthma protective against COVID-
19? Allergy 2021; 76(3): 866-8. 
268. Eger K, Bel EH. Asthma and COVID-19: do we finally have answers? The European 
respiratory journal 2021; 57(3). 
269. Ramakrishnan S, Nicolau DV, Jr., Langford B, et al. Inhaled budesonide in the 
treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. The 
Lancet Respiratory medicine 2021; 9(7): 763-72. 
270. Zhu Z, Hasegawa K, Camargo CA, Jr., Liang L. Investigating asthma heterogeneity 
through shared and distinct genetics: Insights from genome-wide cross-trait analysis. The 
Journal of allergy and clinical immunology 2020: S0091-6749(20)30966-0. 
271. Budu-Aggrey A, Joyce S, Davies NM, et al. Investigating the causal relationship 
between allergic disease and mental health. Clinical and experimental allergy : journal of the 
British Society for Allergy and Clinical Immunology 2021; 51(11): 1449-58. 
272. A.E.Mourant. The distribution of the Human blood groups and other polymorphisms. 
2nd ed; 1976. 
273. Davies NM, Howe LJ, Brumpton B, Havdahl A, Evans DM, Davey Smith G. Within 
family Mendelian randomization studies. Human Molecular Genetics 2019; 28(R2): R170-R9. 
274. Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature 2016; 538(7624): 
161-4. 



 

 

275. Carlson CS, Matise TC, North KE, et al. Generalization and Dilution of Association 
Results from European GWAS in Populations of Non-European Ancestry: The PAGE Study. 
PLOS Biology 2013; 11(9): e1001661. 
276. Salanti G, Sanderson S, Higgins JP. Obstacles and opportunities in meta-analysis of 
genetic association studies. Genet Med 2005; 7(1): 13-20. 
277. Tada H, Nohara A, Kawashiri M-a. Serum Triglycerides and Atherosclerotic 
Cardiovascular Disease: Insights from Clinical and Genetic Studies. Nutrients 2018; 10(11): 
1789. 
278. Swerdlow DI, Preiss D, Kuchenbaecker KB, et al. HMG-coenzyme A reductase 
inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised 
trials. The Lancet 2015; 385(9965): 351-61. 
279. Ference BA, Holmes MV, Smith GD. Using Mendelian Randomization to Improve the 
Design of Randomized Trials. Cold Spring Harbor perspectives in medicine 2021; 11(7). 

 


	ABSTRACT
	Introduction
	Methods
	Results
	Discussion

	AUTHOR’S DECLARATION
	ACKNOWLEDGEMENTS
	ABBREVIATIONS
	CONTENTS
	Table of Contents
	List of Tables
	List of Figures

	CHAPTER 1. INTRODUCTION
	1.1 Lung function
	1.1.1 Measuring lung function
	1.1.2 Obstructive lung function

	1.2 Chronic Obstructive Pulmonary Disease
	1.3 COPD, reduced lung function and extra-pulmonary disease
	1.3.1 I chose to examine the possible causal effect of COPD and reduced lung function on Alzheimer’s Disease, cardiovascular disease, and cognitive function. These three extra-pulmonary associations were chosen for a variety of reasons. Cardiovascular...
	1.3.2 COPD, reduced lung function and cardiovascular disease
	1.3.3 COPD, reduced lung function and cognitive function
	1.3.4 Underlying mechanisms between COPD, reduced lung function and extra-pulmonary disease

	1.4 Restrictive lung function
	1.5 Preserved Ratio Impaired Spirometry
	1.5.1 Underlying mechanism between PRISm and extra-pulmonary disease
	1.5.2 PRISm – previous research issues and the need for further investigation

	1.6 Genetic determinants of lung function
	1.6.1 Current understanding of genetic determinants of lung function, and the need for further research

	1.7 Limitations of traditional observational epidemiology
	1.8 The role of genetic epidemiology and Mendelian Randomisation
	1.9 Thesis overview and research questions

	CHAPTER 2. GENETIC EPIDEMIOLOGY METHODS
	2.1 Genetic background
	2.2 GWAS
	2.3 MR method
	2.3.1 Effect Estimate
	2.3.2 MR assumptions
	2.3.3 MR Sensitivity analyses
	2.3.4 One and Two sample MR

	2.4 Benefits of MR

	CHAPTER 3. EXAMINING THE POSSIBLE CAUSAL RELATIONSHIP BETWEEN LUNG FUNCTION, COPD AND ALZHEIMER’S DISEASE: A MENDELIAN RANDOMISATION STUDY
	3.1 Publication and contributions
	3.2 Introduction
	3.3 Methods
	3.3.1 Lung Function
	3.3.2 Liability to COPD
	3.3.3 Alzheimer’s disease
	3.3.4 Statistical Analysis
	3.3.5 Main Mendelian Randomisation Analysis

	3.4 Results
	3.4.1 Lung function traits as exposure (Shrine et al GWAS75)
	3.4.2 COPD as exposure (Sakornsakolpat GWAS109)

	3.5 Discussion
	3.5.1 Evidence before this study
	3.5.2 Impact of this study
	3.5.3 Strengths and Limitations
	3.5.4 Conclusions


	CHAPTER 4. LUNG FUNCTION AND CARDIOVASCULAR DISEASE: A TWO-SAMPLE MENDELIAN RANDOMISATION STUDY
	4.1 Publications and contributions
	4.2 Introduction
	4.3 Methods
	4.3.1 Exposure – Lung function traits, Shrine et al. preliminary analysis 75
	4.3.2 Outcomes
	4.3.2.1 Coronary artery disease
	4.3.2.2 Ischaemic stroke

	4.3.3 Statistical Analysis
	4.3.4 Main Mendelian Randomisation Analysis

	4.4 Preliminary Results
	4.4.1 Shrine et al. preliminary analysis

	4.5 Collider bias
	4.5.1 Multivariable Mendelian Randomisation

	4.6 Exposures – MVMR
	4.7 MVMR Results
	4.7.1.1 MVMR results – FVC and FEV1 as exposure, CAD as outcome
	4.7.1.2 MVMR analysis – FEV1 and FVC as exposure, ischaemic stroke as outcome
	4.7.1.3 MVMR analysis – FEV1/FVC ratio <0.7 as exposure, CAD and ischaemic stroke as outcomes

	4.8 Discussion
	4.8.1 Limitations
	4.8.2 Implications
	4.8.3 Conclusions


	CHAPTER 5. LUNG FUNCTION, COPD AND COGNITIVE FUNCTION: A MULTIVARIABLE AND TWO SAMPLE MENDELIAN RANDOMISATION STUDY
	5.1 Publication and contributions
	5.2 Introduction
	5.3 Methods
	5.3.1 Exposure populations
	5.3.2 Outcome Population
	5.3.3 Statistical Analysis
	5.3.3.1 MR Radial


	5.4 Results
	5.4.1 Two Sample MR, effect of lung function on cognitive function
	5.4.2 Two Sample MR, effect of COPD on cognitive function
	5.4.3 MVMR Analysis
	5.4.4 MR Radial
	5.4.1 Results for 2SMR COPD effect on cognition using MR Radial

	5.5 Discussion
	5.5.1 Strengths and Limitations
	5.5.2 Future research
	5.5.3 Conclusion


	CHAPTER 6.  PRESERVED RATIO IMPAIRED SPIROMETRY (PRISm): A UKBIOBANK COHORT STUDY
	6.1 Publication and contributions
	6.2 Introduction
	6.3 Methods
	6.3.1 Baseline
	6.3.2 Follow-up
	6.3.3 Survival analysis

	6.4 Results
	6.4.1 Prevalence of PRISm
	6.4.2 Risk factors for PRISm
	6.4.3 PRISm symptoms and co-morbidities
	6.4.4 Longitudinal analysis of PRISm
	6.4.5 PRISm trajectories
	6.4.6 Persistent PRISm vs PRISm to control trajectories
	6.4.7 Persistent PRISm vs PRISm progressing to airflow obstruction trajectories
	6.4.7.1 Sensitivity Analysis
	6.4.7.2 Transition from control spirometry at baseline


	6.5 Survival Analysis
	6.6 Discussion
	6.6.1 Limitations
	6.6.2 Future Research
	6.6.3 Conclusion


	CHAPTER 7.  GENOME WIDE ASSOCIATION STUDY OF PRESERVED RATIO IMPAIRED SPIROMETRY (PRISm) IN UK BIOBANK
	7.1 Publications and Contributions
	7.2 Introduction
	7.3 Method
	7.3.1 Study Populations
	7.3.2 GWAS
	7.3.3 Analysis of GWAS and replicated SNPs

	7.4 Results
	7.4.1 Discovery GWAS
	7.4.2 Replication analysis
	7.4.3 Analysis of GWAS
	7.4.4 Analysis of replicated SNPs

	7.5 Discussion
	7.5.1 Genomic Inflation
	7.5.2 Replication method

	7.6  Conclusion

	CHAPTER 8. THE IMPACT OF ASTHMA ON MENTAL HEALTH AND WELL-BEING DURING COVID-19 LOCKDOWN
	8.1 Disclaimer
	8.2 Publication and contributions
	8.3 Background
	8.3.1 Asthma
	8.3.2 Asthma and co-morbidity
	8.3.2.1 Asthma & Anxiety
	8.3.2.2 Asthma & Depression
	8.3.2.3 Underlying Mechanisms between asthma and mental health coi-morbidity
	8.3.2.4 Coronavirus


	8.4 Introduction
	8.5 Methods
	8.5.1 Study Samples
	8.5.2 Self-reported Current Asthma
	8.5.3 Pre-COVID-19 vs COVID-19 Mental Health
	8.5.4 Symptoms, Change in Activities, and Worries during lockdown
	8.5.5 Statistical analyses

	8.6 Results
	8.6.1 Demographics
	8.6.2 Pre-COVID-19 vs COVID-19 Mental Health
	8.6.3 Symptoms, Change in Activities, and Worries during lockdown

	8.7 Discussion
	8.7.1 Strengths & Limitations
	8.7.2 Future Research
	8.7.3 Conclusion


	CHAPTER 9. SUMMARY OF KEY FINDINGS, MY LEARNING, FUTURE RESEARCH, AND CONCLUSIONS
	9.1 Introduction
	9.1 Examining the possible relationship between Lung function, COPD and Alzheimer’s’ Disease: A Mendelian Randomisation Study
	9.1.1 Summary
	9.1.2 Future Research
	9.1.3 My learning

	9.2 Lung function and cardiovascular disease: A two-sample Mendelian Randomisation study
	9.2.1 Summary
	9.2.2 My Learning
	9.2.3 Future research

	9.3 Lung function, COPD and cognitive function: A multivariable and two sample Mendelian Randomisation Study
	9.3.1 Summary
	9.3.2 Future research
	9.3.3 My learning

	9.4 Preserved Ratio Impaired Spirometry (PRISm): A UKBiobank cohort study
	9.4.1 Summary
	9.4.2 Future research
	9.4.3 My learning

	9.5 Genome-Wide Association Study of Preserved Ratio Impaired Spirometry
	9.5.1 Summary
	9.5.2 Future research
	9.5.3 My learning

	9.6 The impact of asthma on mental health and wellbeing during COVID-19 lockdown
	9.6.1 Summary
	9.6.2 Future research
	9.6.3 My learning

	9.7 Traditional observational epidemiology and the benefits of MR
	9.8 Limitations of genetic epidemiology and MR
	9.8.1 Demography, assortative mating, and dynastic effects
	9.8.2 Within family MR
	9.8.3 Limited genetic data for different ancestral populations
	9.8.4 Mendelian Randomisation and RCTs

	9.9 Final summary

	REFERENCES



