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ABSTRACT

Artificial intelligence explainability and machine learning interpretability are relatively
young and fast-growing research fields that may seem chaotic and difficult to navigate
at times. Despite these immense endeavours, a universally agreed terminology and evalu-

ation criteria are still elusive, with many methods introduced to solve a commonly acknowledged
yet undefined problem, and their success judged based on ad hoc measures. To address this chal-
lenge and lay foundation for our research, we formalise explainability (our preferred term) as a
technology providing insights that lead to understanding, which both defines such techniques and
fixes their evaluation criterion. While the premise is clear, understanding largely depends upon
the explanation recipients, who come with a diverse range of background knowledge, mental mod-
els and expectations. Therefore, in addition to technical requirements, explainability tools should
also embody various social traits as their output is predominantly aimed at humans. To tackle
this duality and organise a comprehensive collection of relevant properties, we introduce a unified
explainable artificial intelligence taxonomy, which is a principled framework for reasoning
about explainers. While most of our contributions are strictly technical, this formalisation allows
us to develop them with a human component in mind, which leads us to consider explainability
as a social, bi-directional process based on contrastive statements. Stemming from this research
direction is Glass-Box – a conversational explainer that empowers its users to customise and
personalise explanations in a natural language dialogue.

With strong foundations, clear requirements and fixed goals, we set out to design an appropri-
ate explainer of predictive black boxes. In particular, we examine post-hoc and model-agnostic
methods given that they are universally applicable to a wide variety of preëxisting models,
thereby increasing their potential reach and impact. While such explainers are appealing, their
design can be an inherent cause of low-fidelity explanations, which lack truthfulness with respect
to the underlying black box. Furthermore, their flexibility means that technically they can be
applied to any predictive model, however they may not necessarily be equally well suited to the
intricacies of each and every one of them. To address these challenges, we propose bLIMEy – a
meta-algorithm for building tailor-made explainers composed of interchangeable building blocks
spanning three dimensions: data augmentation, interpretable representation composition and
explanation generation. Our method is a generic framework for developing surrogate explainers,
which fits an explainable model in a desired decision subspace of a black box to mimic, thus
simplify, its behaviour. We then investigate bLIMEy design principles to uncover that certain
combinations of the aforementioned components may yield subpar explanations, pointing to-
wards the benefits of using decision trees as the surrogate explanation generation model, which
poses further challenges. While in some cases decision trees may be considered transparent, e.g.,
shallow and narrow trees, we argue that this does not imply their explainability. To achieve
the latter, we propose CtreeX – an algorithm for extracting contrastive prediction explanations
from decision trees, which are the gold standard of artificial intelligence explainability due to
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their succinctness and human appeal. Finally, we merge our two findings in an approach called
LIMEtree, which uses surrogate multi-output (regression) trees to explain several classes at the
same time, thus capturing their inter-dependencies within high-fidelity contrastive explanations.
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What I cannot create, I do not understand.

(Richard Feynman)
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WHAT, WHY AND HOW OF EXPLAINABLE AI

Transparency, interpretability and explainability engender understanding and confidence.

As a society, we strive for transparent governance and justified actions that can be

scrutinised and contested. Such a strong foundation provides a principled mechanism

for reasoning about fairness and accountability, which we have come to expect. While widely

applicable to our society, artificial intelligence systems are not universally held up to the same

standards. This becomes problematic when such systems permeate to applications that either

implicitly or explicitly affect peoples’ lives, for example in banking, parole hearings, job screen-

ings or school admissions. In such cases, creating explainable predictive models or retrofitting

transparency to preëxisting algorithms is usually expected by the affected individuals, or simply

required by law. A number of techniques and algorithms are being proposed to this end, however

as a relatively young research area, there is no consensus on a suite of technology addressing

these challenges.

1.1 Black-Box Artificial Intelligence

The term black box can be used to describe a system whose internal workings are opaque to

the observer – its operation may only be traced by analysing its inputs and outputs [13, 24].

Similarly, in computer science, Artificial Intelligence (AI) and Machine Learning (ML), black box

is a (data-driven) algorithm that can be understood as an automated process that we cannot

reason about beyond observing its behaviour. For AI in particular, Rudin [133] points out two

main sources of opaqueness:

1. a proprietary system, which may be transparent to its creators, but operates as a black box;

and
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2. a system that is too complex to be comprehend by any human.

While the latter case concerns systems that are universally opaque for the entire population,

essentially, this definition of black boxes establishes a spectrum of understanding in contrast to a

binary quantification [32].

Perception and comprehension of a phenomenon depend upon the observer’s cognitive cap-

abilities and mental model, which is an internal representation of this phenomenon built on

real-world experiences [80]. For example, Kulesza et al. [80] outline a fidelity-based understanding

spectrum spanning two dimensions:

completeness how truthful the understanding is overall (generality); and

soundness how accurate the understanding is for a particular phenomenon (specificity).

Therefore, a complete understanding of an event from a certain domain is equivalently applicable

to other, possibly unrelated, events from the same domain. A sound understanding, on the

other hand, accurately describes an event without (over-)simplifications, which may result in

misconceptions. Striking the right balance between the two depends upon the observer and may

be challenging: completeness without soundness is likely to be too broad, hence uninformative;

and the opposite can be too specific to the same effect.

Within this space, Kulesza et al. [80] identify two particularly appealing types of a mental

model:

functional which is enough to operationalise a concept but does not necessarily entail the

understanding of its underlying mechanism (akin to The Chinese Room Argument [139]);

and

structural which warrants a detailed understanding of how and why a concept operates.

For example, a functional understanding of a switch and a light bulb circuit can just be the

dependency between flipping the switch and the bulb lighting up. Whereas, a structural under-

standing of the same phenomenon may focus on the underlying physical processes, e.g., closing

an electrical circuit allows electrons to move, which heats up the bulb’s filament, thus emitting

light. The former understanding is confined to operating a light switch, while the latter can

be generalised to many other electrical circuits. Each one is suitable for a different audience

and their complexity should be fine-tuned for the intended purpose as explanations misdirected

towards an inappropriate audience may be incomprehensible, leaving the system in question

opaque.

Making AI systems intelligible faces similar challenges, especially given their varied, and

sometimes ambiguous, audience [72, 124], purpose [56] and application domain [18]. While

intelligent systems are often deemed (unconditionally) opaque, it is not a definitive property

and it largely depends on all of the aforementioned aspects, some of which fall beyond the
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standard AI development lifecycle. Without clearly defined explainability desiderata addressing

them can be challenging, in contrast to designing AI systems purely based on their predictive

performance, which is often treated as a quality proxy and can be universally measured, reported

and compared. In view of this disparity, many engineers (incorrectly) consider these two objectives

as competing [133], thus choosing to pursue high predictive performance at the expense of

opaqueness, which may be incentivised by business opportunities.

While high predictive power of an AI system makes it useful, its explainability is equally

important. The pervasiveness of automated decision-making in our everyday life, some of which

with social consequences, requires striking a balance between the two that is appropriate for what

is at stake, e.g., approaching differently a car autopilot and an automated food recommendation.

A different domain that could benefit from powerful and explainable AI is (scientific) discovery

– intelligent systems may achieve super-human performance, e.g., AlphaGo [143], however a

lack of transparency renders their mastery and ingenuity unattainable. Such observations have

prompted the Defense Advanced Research Projects Agency (DARPA) to announce the eXplainable

AI (XAI) programme [53, 54] that promotes building a suite of techniques to:

• create more explainable models, while preserving their high predictive performance; and

• enable humans to understand, trust and effectively manage intelligent systems.

We address this call by taking a closer look at explainability by design and removing opaque-

ness from preëxisting black boxes. To this end, we develop an explainability taxonomy (Chapter 2)

to reason about such systems within a well-defined framework, which spans five distinct di-

mensions of social and technical requirements: functional, operational, usability, safety and

validation. It covers human aspects of explanations, thus giving us a platform to consider the

audience (explainees), explanation complexity and the interaction mode, among many others.

This diversity of, sometimes competing, objectives prompts us to investigate an explanatory

process akin to conversational explanations between humans. In such a scenario, an explainee

can customise and contest various aspects of an opaque system within a congruent interaction

that enables explanation personalisation (Chapter 6). Additionally, our taxonomy comprises of

technical aspect of explanations such as compatibility with predictive models and information

leakage, thereby allowing to judge their suitability for the problem at hand.

Furthermore, we show how transparency, and other terms often used to denote similar

concepts, can be differentiated from explainability – both overcome opaqueness, but only the

latter leads to understanding – which we exemplify with decision trees (Chapter 4). With this

goal in mind, we develop two explainability techniques:

• contrastive and supportive explanations of decision trees (Chapter 4) that are inspired by

explainability research in the social sciences [106]; and
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Figure 1.1: Fictitious depiction of an anecdotal trade-off between transparency and predictive
power of AI systems.

• a model-agnostic surrogate explainer based on multi-output regression trees that is capable

of delivering the same explanation types for any predictive black box (Chapter 5).

The former is ante-hoc as the same model is used for predicting and explaining, thus it is

specific to decision trees, whereas the latter is post-hoc since a simpler surrogate model, which

mimics the behaviour of the black box, is used to generate explanations, making it model-

agnostic. While the design of the tree explainer guarantees faithfulness, the fidelity of post-

hoc methods is a well-known issue, which we analyse and address for tree-based surrogates.

Creating a faithful surrogate requires choosing specific components of otherwise highly-modular

explainability framework, which we develop in Chapter 3, where we also discuss its building

blocks, parameterisation and trade-offs.

1.1.1 Trading off Transparency for Predictive Power

A common belief perpetuating the XAI community and motivating many methods published

in the literature is the universal dichotomy between transparency and predictive power of AI

systems. A popular example supporting this hypothesis is the unparalleled effectiveness of deep

neural networks, whose ever increasing complexity, e.g., the number of layers and hidden units,

improves their performance at the expense of transparency. This trade-off has been reiterated in

the DARPA XAI program’s Broad Agency Announcement [53] and supported by an appealing

graph reproduced in Figure 1.1. However, it is a theory based mostly on anecdotal evidence [133],

with Rudin [133] criticising plots like Figure 1.1 given their lack of scale, transparency or

performance metrics, and supporting data. Notably, Rudin [133] argues that investing more effort
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into feature engineering can help to build inherently explainable AI systems that perform on a

par with their black-box competitors [27].

This anecdotal trade-off and a tendency to focus on the predictive power alone mean that

explainability is often only an afterthought. Such a mindset contributes to an AI landscape

with an abundance of well-performing but inherently opaque algorithms that are in need of

explainability, thus creating a demand for universal explainers that are post-hoc and model-

agnostic, such as surrogates. This seemingly uncompromising development approach where

state-of-the-art performance remains the main objective that is later complemented with a post-

hoc explainer creates an attractive alternative (and rebuttal) to designing inherently explainable

AI system, whose creation arguably requires more effort. While such explainers are compatible

with any black-box model, they are not necessarily equally well suited for all of them – after all

the computer science folklore of “no free lunch” applies here as well. Some post-hoc and model-

agnostic explainers boast appealing properties and guarantees, however upon closer inspection

caveats and assumptions required for them to hold, such as the underlying “black box” being a

linear model [100], can often be found. Making an explainer model-agnostic introduces an extra

layer of complexity that often entails a degree of randomness and lacklustre fidelity [158, 183],

in which case using them becomes a stopgap to claim explainability of an inherently opaque AI

system.

In Rudin’s [133] view, many high-stakes AI systems can be explainable by design with enough

effort put towards data pre-processing and feature engineering (which otherwise, e.g., for neural

networks, may go into architecture search and parameter tuning – a phenomenon humorously

known as graduate student descent). Such ante-hoc explainers are usually domain-specific and

after the initial engineering endeavour they are easy to manage and maintain. While such

an approach should be championed for structured (tabular) data where it has been shown to

perform on a par with state-of-the-art black boxes [27], the same may be unachievable for sensory

data such as images and sounds, for which opaque models, e.g., deep neural networks, have

the upper hand. In addition to black boxes modelling sensory data, preëxisting, inaccessible

or legacy AI systems may require interpretability, in which case they can be retrofitted with

post-hoc explainers. However, falling back on off-the-shelf solutions may not guarantee advertised

fidelity [158] (in particular, soundness and completeness), which is of paramount importance

and may require tailor-made explainers and transparent communication of their limitations. We

briefly discuss ante- and post-hoc explainability in Section 1.3 and cover it extensively, along

other important properties, in the taxonomy introduced in Chapter 2.

1.1.2 Explaining the Machine Learning Process

So far we have mostly focused on explaining predictions and actions of intelligent systems

since they are observable and can be related to by a wide range of explainees regardless of

their background. However, automated predictions are just artefacts of a more elaborate AI
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or ML process that additionally consists of data and models, where any part of this pipeline

may be opaque and in need of explaining. Predictive artificial intelligence and machine learning

processes manipulate data to learn models that generalise well and are capable of predicting

(previously unseen) instances [153, 154]. Explaining data may be challenging without any

modelling assumptions, in which case it is mostly limited to summary statistics and descriptive

properties. On the other hand, models and predictions are more apt to be explained with a

wide range of diverse explanation types such as contrastive, exemplar and attribute importance.

Since AI and ML processes are directional – from data, through models, to predictions – the

latter components depend on the former, which also applies to their respective explanations.

For example, if data attributes are incomprehensible, explanations of models and predictions

expressed in terms of these features will also be opaque. To better understand the intricacies of

such processes, we need methods and tools capable of peeking inside these three components.

Data can be considered the most difficult component to explain as doing so usually requires us

to first develop a mental model of the underlying phenomenon itself. Therefore, there may not

necessarily exist a pure data explanation method except simple summary statistics, such as class

ratio or per-class feature distribution, and descriptors, e.g., “the classes are balanced”, “the data

are bimodal” and “these features are highly correlated”. Note that the former simply state well

defined properties and may not be considered explanations, whereas the latter can be contrastive

and lead to understanding. Importantly, data are already a model – they express a (subjective and

partial) view of a phenomenon and come with certain assumptions, measurement errors or even

embedded cultural biases (e.g., “How much is a lot?”). “Data statements” [15], “data sheets” [47]

and “nutrition labels” [60] attempt to address such concerns by capturing these (often implicit)

assumptions. As a form of data explanations, they characterise important aspects of data and

their collection process in a coherent way, e.g., experimental setup, collection methodology (by

whom and for what purpose), applied pre-processing (cleaning and aggregation), privacy aspects

and the data owners, among many others.

Models as a whole or their parts (e.g., specific subspaces or cohorts) can be explained to

engender a general understanding of their functionality. While some models may be inherently

transparent, e.g., shallow decision trees, their simulatability [96] – the explainee’s ability to

simulate their decisive process mentally in vivo – may not necessarily warrant understanding.

(Recall the differentiation between the functional and operational mental models and The Chinese

Room Argument [139].) Popular model explanations include feature importance [22, 40], feature

influence on predictions [44], presenting the model in cognitively-digestible portions [76, 146]

and model simplification [28] (e.g., mimicking its behaviour or a global surrogate). Since not all

models operate directly on the input features, an interpretable representation may be necessary

to convey an explanation, e.g., a super-pixel segmentation of an image [129]; alternatively, if the

data are comprehensible, landmark exemplars can be used to explain the behaviour of a model
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Figure 1.2: An explanation of a model’s prediction of the versicolor class when varying the petal
length feature value for the Iris data set [41]. ICE of a selected instance is plotted in red; grey
represents ICEs of all the training data; and orange is the PD of the model achieved by averaging
all the individual ICEs.

or its parts [68, 70]. Regardless of the explanations’ type and scope, they should always lead to

understanding in addition to presenting truthful and accurate behaviour of a model.

Predictions are explained to communicate a rationale behind a particular decision of a model.

Depending on the explanation type, a range of diverse aspects concerning the model’s decisive

process can be provided to the explainee. For example, the user may be interested in feature

importance [22], feature influence [100, 129], relevant data examples [69] and training points [74],

or contrastive statements [123, 173], to name a few. Note that while some of these explanation

types are similar to model explanations, here they are explicitly generated with respect to a

single data point and may not necessarily generalise beyond this particular case, whereas for

model explanations they convey similar information for all data (i.e., the model). A good example

of this duality is information communicated by Individual Conditional Expectation [48] (ICE)

and Partial Dependence [44] (PD), both of which are feature influence explanations – the first

with respect to a single data point and the latter concerning a whole data set. ICE measures a

change in response of a predictive model when modifying a selected feature of a data point of

interest; and PD averages such responses for a collection of data points, e.g., the training set of

this model, to approximate its overall behaviour – see Figure 1.2. Similar to model explanations,

the information can be conveyed in the raw feature space or, when the original domain is unin-

telligible, using an interpretable representation. Finally, multiple explanation types spanning

data, models and predictions can be bundled together in a shared user interface to provide a

multi-faceted view on behaviour of an AI or ML system [76, 77, 178].
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With such a diverse range of explanations, their presentation media also differ [153, 154]. A

simple approach to characterise an AI component is (statistical) summarisation – it is commonly

used for describing properties of data with numerical tables and vectors, which can be difficult to

digest for non-experts. Visualisation – a graphical representation of a phenomenon – is a more

advanced, insightful and flexible analytical tool. Static figures communicate information in one

direction, similar to summarisation; however, creating interactive plots can facilitate a “dialogue”

with an explainee, thereby catering to a more diverse audience. Visualisations are often supported

by a short narrative in the form of a caption, which increases their informativeness. Textualisation

– a natural language description of a phenomenon – can express concepts of higher complexity

and dimensionality than plots, which can help to overcome the curse of dimensionality and the

inherent limitation of the human visual system to, arguably, three dimensions. Communicating

with text enables a true dialogue and has been shown to be more insightful and effective than

presenting raw, numerical and visual data [122], which can accompany the narrative to improve

its expressiveness. A further refinement of textualisation is formal argumentation [35] – a

structured and logically-coherent dialogue accounting for every disputable statement and giving

the explainee an opportunity to contest the narrative, thus providing explanations leading to

understanding rather than informative descriptions. The type of presentation medium and the

communication protocol between the explainer and the explainee are just two properties of XAI

systems, which we discuss in more detail in the taxonomy introduced in Chapter 2.

1.1.3 Transparency Is Not the Preferred Nomenclature

A monumental amount of research into explainable AI and Interpretable ML (IML) published in

recent years may suggest that it is a freshly established field, however in reality it is more of

a renaissance. While work in this area indeed picked up the pace in the past decade, interest

in creating transparent and explainable, data-driven algorithms dates back at least to the

1990s [133], and further back to the 1970s if expert systems [92] are taken into account. With such

a rich history and the increased publication velocity attributed to the more recent reëstablishment

of the field, one may think that this research area has clearly defined objectives and a widely

shared and adopted terminology. However, with an abundance of keywords that are often used

interchangeably in the literature – without precisely defining their meaning – this is not yet the

case. The most common terms include, but are not limited to:

explainability,• observability,• transparency,•

explicability,• intelligibility,• comprehensibility,•

interpretability,• simulatability,• justification,•
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evidence,• reason, and• cause.•

While early research might have missed out on an opportunity to clearly define its goals

and nomenclature, recent work [19, 133] has attempted to tackle this problem. Biran and

McKeown [19] were concerned with explanations, which they characterised as “giving a reason

for a prediction” and answering “how a system arrives at its prediction”. They also defined

justifications as “putting an explanation in a context” and conveying “why we should believe

that the prediction is correct”, which, they note, do not necessarily have to correspond to how

the predictive system actually works. Another important term is cause, which may not be used

that often in the XAI and IML literature, however it should be reserved for insights extracted

from causal models [118]. More recently, Rudin [133] defined interpretability as a domain-specific

notion that imposes “a set of application-specific constraints on the model”, thus making this

notion only applicable to predictive models that can provide their own explanations (i.e., ante-

hoc interpretability). Therefore, in Rudin’s view a predictive model is interpretable if it “obeys

structural knowledge of the domain, such as monotonicity, causality, structural (generative)

constraints, additivity or physical constraints that come from domain knowledge”, which positions

it on a transparency spectrum. Finally, Rudin [133] objects to using the term explanation when

referring to “approximations to black box model predictions” (i.e., post-hoc explainability).

Each definition conveys a more or less precise meaning that can be used to label relevant

techniques, however they do not necessarily clarify and help to navigate the complex landscape

of IML and XAI research. In our work, we categorise this terminology based on three aspects:

• properties of systems,

• functions and roles which they serve, and

• actions required to process and assimilate them.

The core concept around which we build our nomenclature is explainability, which we define

as insights that lead to understanding (the role of an explanation) – a popular rationale in

the social sciences [12, 73, 97]. While it may seem abstract, understanding can be assessed with

questioning dialogues [10, 101, 174–176] – e.g., a machine questioning the explainees to verify

their understanding of the phenomenon being explained – which are the opposite of explanatory

dialogues. Such a process reflects how understanding is tested in education, where the quality

of tuition and knowledge of pupils is evaluated through standardised tests and exams (albeit

not without criticism [104]). Furthermore, encouraging people to explain a phenomenon helps

them to realise the extent of their ignorance and confront the complexity of the problem, which

are important factors in uncovering The Illusion of Explanatory Depth [132] – a belief that one

understands more than one actually does.

This notion of explainability and the three building blocks of XAI and IML terminology allow

us to precisely define the other popular terms. Therefore,
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observability,• transparency,• explicability,•

intelligibility,• comprehensibility, and• interpretability•

are properties of an AI system. They can convey information of varied complexity, understanding

which depends upon the cognitive capabilities and (domain) expertise of the explainee. For

example, observing an object falling from a table is a transparent phenomenon per se, but the

level of its understanding, if any, is based upon the depth of observer’s physical knowledge, which

underpins understanding. This transparency provides

evidence,• reason, and• justification•

(roles) that can be used to

reason about,• interpret, or• comprehend•

(note that here the three are used as verbs) behaviour of a black box, all three of which are actions
that possibly lead to understanding. While simulatability (action) is also based upon observing a

transparent behaviour and replicating it, such an action does not necessarily imply understanding

of the underlying phenomenon – recall the difference between structural and functional mental

models [80] and The Chinese Room Argument [139] discussed in the introduction. Lastly, a

cause has a similar meaning to a reason, but the first one is derived from a proper causal model,

whereas the latter is based purely on observation of the black-box model’s behaviour.

Such a setting paints an appealing dependency between the XAI and IML terminology where:

Explainability = Reasoning
(
Transparency | Background Knowledge

)︸ ︷︷ ︸
understanding

,

which defines Explainability as the process of deriving understanding through Reasoning

applied to Transparent insights from the black box adjusted to the explainee’s Background

Knowledge. In this process, the Reasoning can either be done by the explainer or the explainee,

and there is an implicit assumption that the explainee’s Background Knowledge aligns with the

Transparent representation of the black box. If the latter is not the case, mitigation techniques

such as employing an interpretable representation (see Chapter 3 for more details) can be used

to communicate concepts that are otherwise incomprehensible. Reasoning also comes in many

different shapes and sizes, depending on the underlying black box (Transparency) as well as the

explainer and the explainee (Background Knowledge), for example:

• logical reasoning with facts,

• causal reasoning over a causal graph,

• case-based reasoning with a fixed similarity metric, and
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• artificial neuron activation analysis for a shallow neural network.

Therefore, linear models are transparent (assuming a reasonable number of features), and

with the right ML and domain background knowledge – requirement of normalised features,

effect of feature correlation and the meaning of coefficients – the explainee can reason about

their properties, leading to an explanation based on understanding. Similarly, visualisation of a

shallow decision tree can be considered both transparent and explainable given that the explainee

understands how to navigate its structure (ML background knowledge) and the features are

meaningful (domain background knowledge); again, it is up to the explainee to reason about

these insights. When the size of a tree increases, however, its visualisation loses the explanatory

power because many explainees will be unable to process and reason about its structure. In this

case, restoring the explainability of a deep tree requires delegating the reasoning process to

an algorithm that can digest and output sought after insights in a concise representation. For

example, when explaining a prediction, the tree structure can be traversed to identify a similar

instance with a different prediction, e.g., as encoded by two neighbouring leaves with a shared

parent, thus demystifying the automated decision – more on that in Chapter 4.

1.2 Humans and Explanations: Two Sides of the Same Coin

Defining explainability as “leading to understanding” and our categorisation into properties,

functions and actions highlight an important aspect of this research topic: explanations are

directed at some autonomous agent, either a human or machine, which is as important as the

explainability algorithm itself. Notably, up until recently XAI and IML research has been under-

taken predominantly within the computer science realm [107], thus bringing in numerous biases

and implicit assumptions from this overwhelmingly technical field. While some explainability

research has found its way into other scientific outlets, e.g., law [173], its considerable part

gravitated purely around technical properties, which resulted in explaining AI for the sake of

(possibly undefined) explainability. This research agenda was disrupted by Miller et al. [107],

who observed that the function of an explanation and its recipients are largely neglected – a phe-

nomenon which they dubbed “inmates running the asylum” – leading to a substantial paradigm

shift. Miller’s [106] follow-on work grounded this observation in (human) explainability research

in the social sciences, where this topic has been studied for decades, thus providing invaluable

insights that can benefit XAI and IML.

Miller’s findings have arguably reshaped the field, with a substantial share of the ensuing

research acknowledging the explainees – their goals, expectations, intentions and interactions.

While explainability of autonomous systems has widespread benefits (see Section 1.3), it is usually

requested when an AI agent operates inconsistently with the explainee’s expectations or mental

model, e.g., an unexpected ML prediction resulting in a disagreement. In such a case, explainees’

preferences and goals should be considered to cater to their needs and maximise the effectiveness
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of an explanation, for example by appropriately adjusting its complexity [106]. This step can be

improved by treating explainability as a process instead of one-off information offloading [106]; by

satisfying the explainees’ natural desire to interact and communicate with the explainer within

a predictable protocol, they are provided with an opportunity to customise and personalise the

explanation [151]. Perhaps the most influential of Miller’s [106] observations is the humans’

preference for contrastive explanations given their predominance in our everyday life. In the

following subsections, we discuss these three aspects of human-centred explainability in more

detail, with a more comprehensive account of this topic presented as usability requirements

(Section 2.2.3) in our XAI taxonomy, which is introduced in Chapter 2.

1.2.1 Explanation Audience

Understanding is an elusive objective when it comes to explaining intelligent systems since

different explainees may expect the explanations to convey different information. When taken

into account, the purpose of explainability and the explainee’s goal also affect the explanation

composition. For example, an explanation will look differently when its purpose is to help debug

an ML model as opposed to justify a negative outcome of a loan application; note that the target

audience also differs, with the former aimed at ML engineers and the latter at lay people. In

certain cases, such as the aforementioned loan application, the actionability of insights provided

to the explainees is important, e.g., saying that one would receive a loan had he or she been 10

years younger is futile. Multiplicity of apparently indistinguishable arguments can also decrease

the perceived quality of an explanation when one is chosen at random without a user-centred

heuristic in place, which, again, depends on the domain and audience. For example, research

suggests [106] that if one of multiple, otherwise equivalent, time-ordered events has to be chosen

as an explanation, the most recent one will best resonate with the explainee.

Another, related guiding principle is explanation brevity, which helps to avoid overwhelming

the explainee with (redundant) insights or details. An explanation that aims to resolve a disagree-

ment between an explainee and a black-box model should only present evidence that is novel,

as reiterating facts that the explainees have already acknowledged may be detrimental to their

attention. Filtering out mundane and optimising for surprising explanation content helps the

audience to discover missing pieces of information that may resolve the underlying disagreement

or signify an unexpected bug in the predictive model. Addressing this desideratum, however, is

complicated as it requires access to the explainee’s background knowledge and mental model,

which are vague and often undefined concepts that cannot be easily extracted and processed.

Accounting for the explainee’s cognitive capabilities and skill level, on the other hand, is more

practical and allows to adjust the complexity of an explanation towards the anticipated audience.

For example, a medical diagnosis can be expressed in terms of test results as opposed to observ-

able symptoms when it is targeted at medical staff and not patients, thus leading to a desired

level of understanding. Here, we implicitly assume that the explanation recipient is a human,
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but it can as well be another algorithm that further processes such insights, in which case other,

more appropriate properties may be of interest.

While useful, brevity of an explanation can sometimes be at odds with its comprehensiveness

– sacrificing the big picture for concise communication [81]. An explanation that accounts for

all aspects contributing to a particular black-box prediction is complete, however it may be

too convoluted to understand. For example, a collection of logical conditions may be sufficient

for a particular prediction, thereby constituting a complete explanation, but only their small

subset is necessary to guarantee this prediction. Nonetheless, explanatory minimalism, which

is at the other end of the spectrum, bears a danger of oversimplification. When brevity is a

strict requirement, explanation soundness can be favoured to focus on factors pertinent to

the explained instance and filter out more general ones that are largely irrelevant. Such an

approach can introduce inaccuracies with respect to the overall black-box system, but remain

truthful for the individual instance, e.g., removing some of the necessary conditions in the

aforementioned example. Finding the right balance between generality and specificity of an

explanation often requires tuning its soundness and completeness according to the intended

audience and application.

1.2.2 Explanatory Process

While difficult to achieve for an AI explainer, satisfying this wide range of diverse assumptions

and expectations comes naturally for humans when they engage in an explanatory process among

themselves. This is partly due to shared background knowledge, nonetheless it would amount to

nothing without the interactive communication that allows to rapidly iterate through questions

and refine answers to arrive at understanding. One explanation does not fit all – as we show

in Chapter 6 – and treating explainability as a bi-directional process provides a platform to

appreciate uniqueness of each explainee with personalised explanations. Dialogue is fundamental

to human explainability, however it is largely absent in XAI techniques [151], which are often

based on one-way communication, where the user receives a description of the black box without

an opportunity to request more details or contest it. A similar interaction in a form of the

aforementioned questioning dialogues can also be used to judge the explainee’s understanding of

the explained concept, thus be a proxy for assessing effectiveness of the explainer.

Designing interactive explainers that operate in accordance with users’ expectations may

require an interdisciplinary approach borrowing from the Human–Computer Interaction (HCI)

research. However, an intelligible interface and a natural communication protocol are just one

aspect influencing user satisfaction. The other is an alignment of the explainer’s behaviour with

the explainee’s goals and intentions. While the latter topic has not received much attention in the

literature, we can draw design insights and inspirations from research on explanatory debugging

of predictive models [81]. For example, such a process should be iterative, enabling the explainee

to learn, provide feedback and receive updated insights until reaching a satisfactory conclusion.
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The explainer ought to always honour user feedback by incorporating it into the explanation

generation process, or clearly communicate a precise reason if it is impossible. Furthermore, a

reversible communication will allow the explainee to retract a requested change or annul a piece

of feedback when it was provided by mistake or to explore an interesting part of the black box.

To easily attribute each piece of feedback to an explanation change, the whole process should be

incremental, thereby showing up-to-date results even after small tweaks.

Human dialogue tends to be verbal or written, both of which are based on natural language.

While ubiquitous, this form of communication is not equally effective in conveying all types

of information. To overcome this challenge, humans augment it with visual aids, which are

especially helpful when the interaction serves explanatory purposes. The same strategy can

be adopted in XAI, where the explainer would switch between various explanatory artefacts,

such as natural language, images, plots, mathematical formulation, numbers and tables, that

are best suited for the type of information being communicated, i.e., the context. Mixing and

combining them is also possible and sometimes may be beneficial as the whole can be greater

than the sum of its parts, e.g., a numerical table or a plot complemented with a caption. Using

visualisation, textualisation and (statistical) summarisation, however, does not mean that there

is a coherent relation, structure or story conveyed by these communication media, which can

possibly be achieved by grounding them in logical reasoning or formal argumentation [35]. Finally,

depending on the explanatory artefact, a compatible explanation type needs to be matched, such

as contrastive statements, exemplars, feature importance or feature attribution, among many

others.

1.2.3 Contrastive Explanations

Contrastive explanations dominate the human explanatory process and are considered a gold

standard in XAI [106]. They juxtapose a hypothetical situation (foil) next to the factual account,

highlighting their differences and the consequences or “would be” change in the outcome. They

are appropriate for a lay audience and domain experts, can use concepts of varying difficulty and

be expressed in different media such as natural language and images. Contrastive explanations

are parsimonious as the foil tends to be based on a single factor, but, if desired, they can account

for an arbitrary degree of feature covariance. They support interaction, customisation and

personalisation, e.g., a foil built around a user-selected feature, which can be used to restrict

their search space, possibly making them easier to retrieve. When deployed in a user-centred

application, they can provide the explainees with appealing insights by only using actionable

features in the foil. However, their effectiveness may be problematic when explaining a black

box that is proprietary (e.g., protecting a trade secret) since contrastive explanations can leak

sensitive information, thereby allowing the explainee to steal or game the underlying model.

In an open world, they also suffer from vaguely defined or imprecise notions known as non-

concepts [112], e.g., “What is not-a-dog?”
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In XAI, a black box can be explained with various types of contrastive statements. Class-

contrastive explanations, often called counterfactuals, are the most popular type. They provide a

slight variation of feature values held by a factual data point under which its prediction changes.

The contrast with respect to the predicted class can either be implicit, i.e., “Why class X (and

not any other class)?”, or explicit, i.e., “Why class X and not Y ?” For binary classifiers these two

cases are equivalent, however multi-class models would respectively produce a one-vs-rest and

one-vs-other explanations. Instance-contrastive explanations, on the other hand, are used when

the explainee seeks to understand why two data points, which from the user’s perspective are

similar, do not share the same prediction, i.e., the explainee wants to learn what change would

result in an identical classification outcome. Contrastive statements can also be characterised by

their lineage: model-driven explanations are represented by an artificial data point (akin to a

centroid), whereas data-driven explanations are instances recovered from a (training) data set

(similar to a medoid).

All of the aforementioned properties make contrastive statements appealing, but some of

them may be lost in practice, e.g., an imperfect implementation, resulting in subpar explanations.

Notably, contrastive explanations resemble causal insights, but unless they are generated with a

full causal model [119, Chapter 4], they should not be treated as such and instead be interpreted

as insights about the black box’s decision boundary. If they are model-driven, as opposed to

data-driven, they may not necessarily come from the data manifold, yielding explanations that

are neither feasible nor actionable in the real life, e.g., “Had you been 200 years old, . . . ” Even

if they are coherent with the data distribution, the foil may still come from a sparse region,

thus prescribing possible but improbable feature values [123]. Contrastive explanations are

often specific to a single data point, although humans are known to generalise such insights to

unseen and possibly unrelated cases (“The Illusion of Explanatory Depth” effect [132]), which may

result in overconfidence. Observing such discrepancies should encourage creators of contrastive

explainers to report them for the benefit of the explainees and the engineers deploying these

algorithms.

1.3 Benefits of Explainability

The predominant role of explainability is to engender understanding of selected aspects of an

intelligent black-box system. Nonetheless, it can also become a tool to assess fairness and inspect

accountability of such systems, which, along explainability, have recently become important

research topics [147]. While some researchers claim that we should not expect machine learning

algorithms, such as deep neural networks, to be explainable and instead regulate them purely

based on their real-life performance [144], it is not a widely shared belief [65]. This insight

comes from the alleged inability of humans to explain their actions since such justifications are

post-factum stories that are concocted and retrofitted for the benefit of the audience. Certifying
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autonomous agents based on their output, on the other hand, is consistent with human values

as one can hypothesise about committing a crime, but one cannot be punished unless such a

thought is acted upon. While the origin of human thought process may be shrouded in mystery,

its formulation is expected to follow the reason of logic to be (socially) acceptable. In particular,

Miller [105] refutes performance-based validation by arguing that explainability stemming from

regulatory requirements is secondary to concerns arising from societal values such as ethics and

trust.

Interpretability The direct and intended benefit of explainability is the ability to interpret

and understand a selected aspect of an intelligent system. If the system is a glass box, as opposed

to a black box, it has been developed with (ante-hoc) explainability in mind, making it transparent

by design and easy to examine. Black box systems that require post-hoc explainability, on the

other hand, need to be retrofitted with an explainer that can provide the insights of interest.

Choosing an appropriate explainer, however, can be challenging given the diversity of explanation

types, their different communication media and varied difficulty of conveyed concepts, all of

which need to be suitable for the intended audience and application as discussed earlier. As each

method may just give a small, and quite possibly distorted, reflection of the true behaviour of

a black box, achieving the desired level of transparency can require multiple, complementary

explainers working together. This multiplicity of explanatory insights can be compared to unique

probing and inspection techniques that without a shared context may yield competing or even

contradictory evidence akin to the parable of “The Blind Men and the Elephant” [135], which is

visualised in Figure 1.3.1 While daunting, this versatility has its benefits: it allows us to tackle

certain fairness and accountability issues of predictive systems.

Fairness Algorithmic decisions are mostly a reflection of the patterns elicited from training

data, augmented by the inductive bias inherent to the chosen modelling technique. With the

increase in predictive power of our models, more of such insights can be unearthed, some of which

biased towards certain individuals or groups. Unfairness stemming from (historical) data [25,

114], however, may not necessarily be the only source of bias as predictive algorithms [136, 137],

in particular their training procedure, can introduce or intensify these phenomena because of

the underlying technical assumptions. Bias often manifests itself in unfair predictions, where a

certain individual or a group is treated differently than comparable data points varying only in

sensitive attributes such as gender or ethnicity. These notions are usually labelled as individual

and group fairness or disparate treatment and disparate impact, corresponding to predictions or

(ground-truth) labels of individual data points and their subgroups respectively.

In this setting, explainability can become an investigative toolkit for identifying various types

of bias and its source. For example, feature importance and influence can reveal which sensitive

1https://en.wikipedia.org/wiki/Blind_men_and_an_elephant

16

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant


1.3. BENEFITS OF EXPLAINABILITY

It's like a spear!
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Figure 1.3: Depiction of “The Blind Men and the Elephant” parable. It symbolises that individual
pieces of evidence may be contradictory and can often be insufficient to understand the bigger
picture without first being aggregated and grounded in a shared context.

attributes contribute to an (unfair) decision, whereas exemplars and influential training examples

can be used to identify training data responsible for bias. Counterfactuals are particularly

versatile since in addition to their very appealing explanatory properties (see Section 1.2.3), they

are well suited to inspect individual counterfactual fairness [83]. A simple example of this practice

is a contrastive statement conditioned on a protected attribute, e.g., “your loan application would

have been accepted had you been a male”. This role of explainability is especially convenient for

the end user when the explainer is provided as an interactive system that can be queried to receive

customised and personalised counterfactual explanations, which, if feasible, are conditioned on

selected (sensitive) attributes or their subsets.

Accountability Explainability can also help in discerning accountability of black-box models,

including their robustness, safety and security. This is particularly important when such systems

are used for high-stakes decisions, for example, parole hearings [9] and autonomous vehicle

steering [52]. Ensuring that they are not susceptible to technological attacks or hacking can

prevent life-threatening situations such as an autonomous vehicle performing a dangerous

manoeuvre when a collection of small stickers is glued on the tarmac at a crossroads [3]. This is a

real-life example of a phenomenon called adversarial attack [49], where human-imperceptible

changes are introduced to a data point – an image captured by the car’s camera system in this

case – causing it to be misclassified by the underlying predictive model. Notably, their similarity

to counterfactuals [173] suggests that this type of explanations can help to identify and eradicate

such undesirable model behaviour; the main difference between the two is the human ability

to observe the modification in explanations but not in adversarial instances. In addition to
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adversarial robustness, other aspects of intelligent systems accountability and their relation

to explainability are worth investigating, e.g., susceptibility to recovering or stealing (parts of)

predictive models and their training data, and validating monotonicity constraints.

1.4 Explainability Research

Thus far we have been mainly concerned with AI and ML explainability on a relatively abstract

level, all of which constitute just a small portion of XAI and IML research. We touched upon

the societal expectations of predictive black boxes and discussed popular terminology used in

the field, including the differentiation between notions such as explainability and transparency.

We introduced the illusory trade-off between explainability and predictive performance, which

links to choosing between a post-hoc and an ante-hoc explainer. We also discussed the scope of

explainability for the entire machine learning process: data, models and predictions, showing the

objective at each stage and highlighting their interconnections. Notably, we looked at XAI and

IML from the explainee’s perspective, outlining a range of crucial factors for adapting or designing

human-friendly explanations. We rounded the discussion off with an overview of far-reaching

benefits of explainability, which include improved interpretability of black-box systems as well a

means of assessing their fairness and evaluating their accountability. This diverse theoretical

overview of XAI and IML concepts sets the scene for a high-level survey of practical explainability

approaches that follows. In particular, we examine explainers that are specific to a particular

model, and universal algorithms applicable to any predictive black box.

Explainability in Practice With the theoretical and social aspects of explainers out of the

way, we dive into practical explainability research. In an ideal world, XAI and IML publications

would consider the aforementioned factors and build their mechanics around them, however it

has only recently become a trend and numerous early pieces of work lack such a reflection. The

technicalities of explainers, while often the main focus, can also be unintentionally misleading

or misreported. For example, implementations that accompany papers may be inconsistent

with the theoretical findings, pseudo-code or a restrictive toy example presented therein due to

implicit assumptions embedded into utilised optimisation strategies or employed approximations.

Therefore, treating an explainer at face value or judging it purely based on the theory outlined in

the corresponding publication may have unintended consequences and an in-detail inspection

should be considered before committing to it. The most prominent example of such a phenomenon

are model-agnostic explainers, which by design can work with any type of a predictive black

box, but are not equally well suited for each – a common misconception that we discuss in the

following section.

A critical evaluation of explainers requires a collection of well-defined properties, which can

also be used to categorise and describe explainability algorithms. We collect a comprehensive list of

these characteristics in our XAI taxonomy presented in Chapter 2; for the benefit of the literature
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overview that follows, we outline a relevant subset here. The biggest differentiating factor is

black box compatibility – explainers can either be model-agnostic, i.e., work with any model; or

model-specific, designed separately for each individual model type. Explainability approaches

can further be categorised based on their relation to the black box: ante-hoc explanations are

sourced from the black box itself (thus making it a glass box), and post-hoc explanations rely

upon an additional model (i.e., a transparency layer) built on top of the black box. Furthermore,

explanations can be local, i.e., pertaining to a data point or prediction; cohort-specific – applicable

to a data or model subspace; or global to summarise a data set or simplify the behaviour of an

entire black box. For some data types, explanations produced in the original data domain or the

internal representation used by a black box may be unintelligible, in which case an interpretable

representation is used to communicate the explanations. Finally, there are different explanation

types: feature importance, influence of features on predictions, influence of training data on

predictions, data exemplars, contrastive statements and supportive statements, among many

others.

Generic Explainers The most popular explainers are model-agnostic and post-hoc since

they can be retrofitted into any predictive black box. These include RuleFit [45], Local Inter-

pretable Model-agnostic Explanations (LIME [129]), anchors [130], SHapley Additive exPlana-

tions (SHAP [100]), Black-box Explanations through Transparent Approximations (BETA [85,

86]), PD [44], ICE [48] and Permutation Importance (PI [22]), among many others. Most of

these methods operate directly on raw data, with the exception of LIME and anchors, which use

interpretable representations to improve intelligibility of explanations composed for complex

data domains such as text and images. While RuleFit is limited to tabular data, it represents

instances with conjunctions of logical conditions, which are used to communicate the explanations

to the user. RuleFit, LIME and anchors are predominantly local explainers, whereas permutation

importance is global. SHAP is designed to provide local explanations, which can be generalised to

cohort or global explanations; similarly, individual conditional expectation is a local explainer,

which generalises to cohort or global explanations in the form of partial dependence. BETA is

unique in this aspect as it produces a scoped global approximation of a black box, which naturally

provides cohort and local explanations without additional processing. Both anchors and BETA

use a form of contrastive and supportive statements; PI is based on feature importance; and

RuleFit, LIME, SHAP, ICE and PD are expressed as (interpretable) feature influence.

Given that all of these methods are post-hoc, they create an additional modelling layer

on top of a black box to generate the explanations. This independence from the underlying

predictor comes at the expense of increased overall complexity, which can be detrimental to

the explanation fidelity, as well as implicitly limit explanatory scope. RuleFit first generates

logical rules that serve as binary characteristics of the explained data; then it quantifies the

importance of these logical concepts by modelling them with a linear classifier. Similarly, LIME

constructs an interpretable representation of the explained instance and fits a transparent
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surrogate model – a sparse linear regressor – in its neighbourhood to approximate a nearby

black-box decision boundary, thereby computing influence of the interpretable concepts. Anchors

take a complementary approach and generate conditions on this instance-specific interpretable

representation that are “sufficient” for a particular prediction to hold. BETA operates somewhat

in-between, building a simple nested rule set that on the outer level globally mimics a black

box; it optimises for explanation completeness, while the local “generalisation” of anchors and

“specification” of LIME strive for soundness, which is a common trade-off for post-hoc techniques.

These three approaches are examples of surrogate explainers, which explicitly create a simple

and transparent predictive model for a selected part of a black box to mimic its operation in a

human-intelligible fashion.

Individual conditional expectation (ICE) and partial dependence (PD) are both based on

the same premise, except the former is intended for an individual instance and the latter for

a selected data subset. They both record the response change of a black box with respect to

user-specified features when varying them within a predefined range while keeping all the other

attributes unchanged – an example of these two explainers has already been shown in Figure 1.2.

Permutation importance works similarly, however its objective is to measure the importance of a

selected feature for a black-box predictor. It shuffles values of this feature within a subset of data

to quantify how sensitive the underlying model is with respect to it; this effect is measured by the

magnitude of change in the predictions as compared to the original data. SHAP also measures

feature influence, however it does so for all of the features for an individual prediction. It uses

a concept from game theory called Shapley Values [140] to compute how much each feature

contributes, positively or negatively, to a prediction.

Deep Learning Explainers Another attractive avenue of explainability research, which

partly overlaps with post-hoc methods, is opening up (deep) neural networks by designing tools

and techniques specific to these models or, more broadly, compatible with differentiable predictors.

These models tend to be notorious black boxes, however their superior predictive performance

for a wide spectrum of applications accelerates their popularity and widespread adoption [91].

Early work [28] dating back to 1996 concerns approximating the global behaviour of an entire

neural network with a decision tree – a post-hoc, global model explanation. While still being an

inspiration for explainability research, modern neural networks have grown tremendously in

size, processing large amounts of diverse data types. These technical improvements and applic-

ation diversification shifted the demand towards more compact and informative explainability

approaches.

Saliency maps are an example of such an auditing technique, which is often used with image

data to highlight pixels that are important for a particular prediction of a black-box neural

network – a local feature importance metric [184]. A different approach is to identify training

data that “bias” a model to predict an instance in a particular way, which can be achieved

with influence functions [74], i.e., local exemplar-based explanations. Methods for generating
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class-contrastive counterfactual explanations are another appealing technique used to inspect

predictions of deep neural networks [173]; they can be computed by optimising an objective

similar to the one used in adversarial learning [49]. Testing with Concept Activation Vectors

(TCAV [71]) is a more recent approach that creates a collection of high-level, human-intelligible

concepts used to reason about the behaviour of a neural network. It uses concept exemplars

and class-contrastive statements – the influence of presence and absence of these concepts on a

particular class – to engender global understanding of the underlying model.

Specialised Explainers An alternative XAI and IML research agenda concentrates on inher-

ently explainable predictive models and ante-hoc explainers designed for popular black boxes. An

example of the former are generalised additive models, which usually have good predictive power

and are transparent – users can inspect their operation, although a technical understanding

of their inner workings may be required [99]. A more explainee-friendly predictive model is a

falling rule list – an ordered list of if–then rules helping the user to quickly grasp the reason

behind a particular prediction [177]. A similar approach processes internals of a black box to

compose its faithful explanation, i.e., ante-hoc explainability. A naïve Bayes classifier can be

explained by presenting its user with a visualisation of the model’s weights for a particular class

and feature contribution for an individual prediction [81], i.e., global and local explanations

based on feature importance and contribution respectively. Another example is explaining clus-

tering outcomes by showing exemplars and highlighting dominating features for each cluster [68].

This high-level literature review is far from exhaustive, instead focusing on landmark research

contributions that have influenced our work. In particular, we omitted techniques that can be

considered a part of the explainability research but do not address this issue directly. These

include interactive exploratory user interfaces [63, 179], creative visualisations of explainability

approaches [77] and systems combining multiple explainability techniques within a single

tool [178]. Due to the diversity of concepts, spanning different disciplines and touching upon

independent ideas, rather than compiling them into a single literature review, we introduce

publications specific to each topic in relevant chapters of this thesis. Meanwhile, this overview of

practical explainability approaches complements the theoretical account of this topic presented

in the preceding sections and allows us to formulate our research agenda, which adheres to our

findings, addresses identified shortcomings and improves upon current solutions.

1.5 Designing Intelligible and Robust Explainers

Theoretical expectations and desiderata do not always align with operationalisation and prac-

ticalities of XAI and IML algorithms, and the latter are what ends up affecting our lives. For

example, explainability is an inherently social process that usually involves bi-directional com-

munication, but most implementations – even the ones using contrastive statements [169, 173]
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– output a single explanation that is optimised according to some predefined metric, thus not

necessarily addressing concerns of every individual explainee [151]. Similarly, while inherently

transparent predictive models and ante-hoc explainers may be preferred [133], such solutions are

model-dependent, usually labour-intensive and tend to be application-specific, therefore limiting

their scope and wider applicability. Instead, post-hoc and model-agnostic explainers dominate

the field [100, 129, 130] since they are considered one-stop solutions – a unified explainability

experience without a cross-domain adaptation overhead. This silver bullet attitude, however,

comes at a cost: subpar fidelity that can result in misleading or incorrect explanations. While

increasingly all such considerations find their way into publications, they are often limited to

acknowledging the method’s shortcomings without offering a viable solution.

1.5.1 Research Motivation

Observing these discrepancies has prompted us to investigate XAI and IML approaches that

respect explainees’ expectations in addition to being both post-hoc and model-agnostic. The

latter choice is motivated by the widespread impact that such techniques could have if designed

with high fidelity in mind. However, explainability is no different to many other concepts in

computer science, in so far as there is no proverbial free lunch – a single, universal algorithm

cannot outperform all the others across the board. In machine learning and data mining this

often comes down to a series of investigative steps to guide algorithmic choices down the line,

which can be operationalised within a standardised process for knowledge discovery such as

KDD [38], CRISP-DM [26, 103] or BigData [6]. For example, by analysing feature correlation,

data uniformity and class imbalance, we can account for these phenomena when engineering

features and training models, thereby making the resulting AI systems more accountable and

robust. Nonetheless, XAI and IML lack such a process or even a set of universal properties that

could guide the development and assessment of explainers – their requirements and needs –

which likely hinders adherence to best practice.

While developing a predictive pipeline, we have an abundance of pre-processing and modelling

tools and techniques at our disposal, a selection of which will end up in the final system. The XAI

and IML landscape, on the other hand, is quite different: explainers tend to be end-to-end tools

with only a handful of parameters exposed to the user. In view of the “no free lunch” theorem,

this is undesirable as despite being model-agnostic, i.e., compatible with any model type, these

monolithic algorithms do not perform equally well for every one of them [158]. This variability in

their behaviour can often be attributed to a misalignment between the assumptions baked into

an explainer and the properties of the explained system, which manifests itself in low fidelity.

Model-specific or ante-hoc explainers can be used to address this issue; however, as discussed

earlier, such a solution may have limited applicability and cannot be retrofitted to preëxisting AI

systems. This impasse points towards a need for flexible model-agnostic and post-hoc explainers

that could be easily adapted for each individual predictive black box.
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Another essential aspect of AI explainers is the human factor. The insights provided to the

user should strive for explainability and not just transparency, which entails understanding

the requirements and expectations of the intended audience and use case. This is particularly

important when an explanation is provided to the users as a one-off “take it or leave it” statement

– an approach that currently dominates the field [151] – in which case it needs to account for a

wide range of social and technical aspects. However, when the audience is diverse, one predefined

type of an explanation may be insufficient as it is unlikely to address all the possible questions

and unique perspectives. In such cases, the solution comes from a bi-directional communication

that gives the explainees an opportunity to interactively customise and personalise the explana-

tion [101]; and if they disagree, it allows them to contest and rebut it. Finally, the explanation

type and delivery medium should also be adjusted according to the circumstances, with the

current literature [106, 173] suggesting contrastive explanations as the gold standard.

1.5.2 Research Aims and Objectives

Putting all of our preliminary findings together allows us to identify gaps and compose a self-

contained research agenda to advance the field with human-centred, model-agnostic and post-

hoc explainers that exhibit high fidelity. To this end, we first collect and organise technical

and social properties of AI and ML explainers to create a reference list that can be used to

systematically evaluate and compare preëxisting approaches, and express design desiderata and

guidelines. Second, we develop a highly-customisable, model-agnostic and post-hoc explainer that

can be easily adapted to the problem at hand, thus guaranteeing high fidelity of the resulting

explanations. Third, we identify a composition and configuration of such an explainer enabling

the explainees to interact with it to receive personalised experience that addresses their concerns

and answers their questions. We ensure that regardless of the interaction mode, the explanations

feel familiar, e.g., by using contrastive statements, and engender trust and understanding.

Framework for Reasoning About Explainers We collect and organise a set of technical

and social aspects of AI and ML explainers, some of which are scattered throughout this chapter

and summarised in the preceding section. Such a reference list is invaluable when designing

and developing novel explainers; in particular, we use it to guide the creation of our flexible,

model-agnostic and post-hoc explainer. Additionally, it serves as a principled evaluation tool for

preëxisting explainers, thus helping to systematically compare and contrast their properties

when choosing an approach suitable for the problem at hand. We make the framework compatible

with abstract explainers and algorithmic implementations to allow investigating discrepancies

between their theoretical and practical aspects. All of these constitute unified and multi-purpose

explainability desiderata that clearly communicate capabilities of an arbitrary explainer, which

is an improvement over current practices where reporting is non-existent or selective at best.
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Post-hoc and Model-agnostic Explainers Our second objective is to design a flexible, highly-

customisable, model-agnostic and post-hoc explainer that is faithful to the underlying black box.

Instead of an end-to-end tool, we develop an explainability meta-algorithm to empower engineers

to build tailor-made explainers that reflect their needs and respect the restrictions imposed by

the explained system. We further ensure that our method works with any data type: tabular,

image and text, and that the complexity of its explanations can be adapted to the expectations

of the intended audience. To this end, we look into creating proxies for unintelligible data, e.g.,

raw pixels, to appropriately adjust the difficulty of their explanations. While we envisage many

configurations of our meta-algorithm, navigating this landscape without an accompanying “user

guide” may be challenging. Therefore, we study its selected configurations to understand their

influence on the capabilities and limitations of the resulting explainer, thus recognising the

consequences of certain choices.

Human-centred Explainers Having taken care of the explainer technicalities, we focus on

its social setting and aligning its operation with the explainee’s expectations. To this end, we

consider using an appealing and versatile explanation type, such as contrastive statements, to

serve a diverse range of audiences and applications. We also investigate interaction protocols

between the explainer and the explainee to facilitate customisation and personalisation of the

explanatory process, thereby delivering explanations that answer each individual explainees’

unique questions. Additionally, we evaluate our meta-algorithm against other social aspects of AI

and ML explainability that have surfaced when composing our framework for reasoning about

explainers, and adapt it appropriately.

1.5.3 Research Contributions

Based on our aims and objectives, we devised and executed a research agenda, the findings

of which are summarised below. These include a taxonomy of XAI and a modular surrogate

explainer meta-algorithm called bLIMEy (build LIME yourself). We further compose a tree-

based surrogate explainer, named LIMEtree, for which we show how to achieve high fidelity and

meaningful explanations. To this end, we analyse explanatory capabilities of decision trees and

propose an algorithm for generating counterfactual statements based on the tree structure, which

we call CtreeX (Contrastive tree eXplainer). We then show how to deploy this algorithm – in

a device called Glass-Box – to allow the user to interactively control the content of contrastive

explanations via a voice-driven dialogue. A list of relevant publications resulting from our research

and supporting each contribution is included at the end of each of the following paragraphs,

which pertain to these individual contributions. A more detailed outline of the thesis structure

and content is presented in Section 1.6.
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Explainable AI Taxonomy

We collate and organise a comprehensive list of social and technical properties of XAI and IML
systems into a taxonomy, which we present in Chapter 2. We categorise them into five dimensions:
functional, operational, usability, safety and validation, which are specific to certain audiences
and applications, thus enabling easy navigation. This grouping is both role-driven – appealing to
researchers, engineers and auditors – and application-driven – suitable for creation, reporting,
evaluation and comparison of novel and preëxisting explainers. In Appendix A, we also show how
to operationalise the taxonomy as Explainability Fact Sheets, which in this case are composed for
LIME [129], CtreeX (Chapter 4) and LIMEtree (Chapter 5). The following publications relate to
the explainable AI taxonomy:

[157] Kacper Sokol and Peter A Flach. Counterfactual explanations of machine learning predictions: Opportunit-
ies and challenges for AI safety. In Proceedings of the SafeAI Workshop at the AAAI Conference on Artificial
Intelligence, 2019.

[147] Kacper Sokol. Fairness, accountability and transparency in artificial intelligence: A case study of logical
predictive models. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages
541–542, 2019.

[148] Kacper Sokol and Peter Flach. Desiderata for interpretability: Explaining decision tree predictions
with counterfactuals. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
10035–10036, 2019.

[149] Kacper Sokol and Peter Flach. Explainability fact sheets: A framework for systematic assessment of
explainable approaches. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,
pages 56–67, 2020.

The publications authored by Kacper Sokol and Peter Flach are Kacper’s original ideas invest-

igated under Peter’s supervision. This arrangement holds for all the publications, with the

exceptions clearly marked by a footnote explaining individual contributions of relevant authors.

Modular Surrogates

We design bLIMEy: a meta-algorithm for building modular surrogate explainers, which are both

model-agnostic and post-hoc, allowing them to be configured and adapted for the problem at

hand. This framework consists of three components: data sampling, interpretable representation

transformation and explanation generation, each one analysed and discussed in Chapter 3. In

particular, we show that the first two are mostly responsible for the explainer’s fidelity, and

the latter two influence the complexity and appeal of the resulting explanations. Additionally,

we introduce a selection of algorithms suitable for each building block of our meta-algorithm,

investigate their pros and cons, and implement them in FAT Forensics – an open source Python

package presented in Appendix B. An important finding of this in-depth analysis illustrates that,

in certain circumstances, using a linear model as the explanation generation mechanism – a

popular choice in the literature [45, 129] – may severely limit the explanation expressiveness as

we demonstrate in Appendix C.3.

These discoveries lead us towards employing classification and regression trees to generate

explanations as part of the surrogate meta-algorithm. While in certain cases decision trees are
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transparent, in Chapter 4 we show that they are not inherently explainable and propose CtreeX

as a remedy – an algorithm to generate contrastive and supportive statements for tree predictions.

These two explanation types have wide-reaching social and technical benefits and are appealing

to humans. In Chapter 5, we combine our findings and propose LIMEtree: a surrogate explainer

of probabilistic black boxes that is based on multi-output regression trees. We show how using

this particular tree type for modelling the underlying predictor accounts for class dependencies

and that our configuration of the surrogate achieves high fidelity. Our work on decision trees,

surrogate explainers and their implementations is published in the following papers:

[158]2 Kacper Sokol, Alexander Hepburn, Raul Santos-Rodriguez, and Peter Flach. bLIMEy: Surrogate predic-
tion explanations beyond LIME. 2019 Workshop on Human-Centric Machine Learning (HCML 2019) at the
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 2019. URL
https://arxiv.org/abs/1910.13016. arXiv preprint arXiv:1910.13016.

[152] Kacper Sokol and Peter Flach. Towards faithful and meaningful interpretable representations. arXiv
preprint arXiv:2008.07007, 2020. URL http://arxiv.org/abs/2008.07007.

[150] Kacper Sokol and Peter Flach. LIMEtree: Interactively customisable explanations based on local surrogate
multi-output regression trees. arXiv preprint arXiv:2005.01427, 2020. URL https://arxiv.org/abs/2005.
01427.

[159]3 Kacper Sokol, Raul Santos-Rodriguez, and Peter Flach. FAT Forensics: A Python toolbox for algorithmic
fairness, accountability and transparency. arXiv preprint arXiv:1909.05167, 2019. URL https://arxiv.
org/abs/1909.05167.

[160]4 Kacper Sokol, Alexander Hepburn, Rafael Poyiadzi, Matthew Clifford, Raul Santos-Rodriguez, and
Peter Flach. FAT Forensics: A Python toolbox for implementing and deploying fairness, accountability and
transparency algorithms in predictive systems. Journal of Open Source Software, 5(49):1904, 2020.

[161]5 Kacper Sokol, Alexander Hepburn, Raul Santos-Rodriguez, and Peter Flach. What and how of machine
learning transparency: Building bespoke explainability tools with interoperable algorithmic components.
Hands-on Tutorial at The European Conference on Machine Learning and Principles and Practice of Know-
ledge Discovery in Databases (ECML-PKDD), Ghent, Belgium, 2020. URL https://events.fat-forensics.
org/2020_ecml-pkdd.

Interactive Explainers

We investigate how each component of our surrogate meta-algorithm can become interactive

to support explanation customisation and personalisation for the benefit of the explainees. In

Chapter 6 we demonstrate how data sampling can be configured to adjust the explanation scope

to focus it on a single instance or a predefined neighbourhood, thus controlling the explanation

generalisation. We further show how the interpretable representation can be shaped to encode
2bLIMEy is Kacper’s original idea researched under Raul’s and Peter’s supervision with help from Alexander, who

contributed experiment design and code.
3Kacper was the lead designer and developer of the FAT Forensics package, which was developed under Peter’s

and Raul’s supervision.
4Kacper was the lead designer and developer of the FAT Forensics package, which was developed under Peter’s

and Raul’s supervision. Alexander, Rafael and Matthew contributed code.
5Kacper has planned and organised the tutorial in collaboration with Alexander, Raul and Peter, who contributed

talks and hands-on resources.
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personalised, human-intelligible concepts used to communicate the explanations – a significant

improvement over machine-generated proxies. Finally, we illustrate how to customise the content

of explanations by interacting with the explanation generation step, which appears to be the

most beneficial. For example, when using contrastive explanations, the user can request certain

attributes and prevent others from appearing in the conditional part of the statement; and if the

black box models more than two classes, the explainee can also explicitly specify the contrast.

We take advantage of these findings (especially the last one) to design and deploy Glass-Box:

an interactive, voice-driven system that explains its predictions to the user in a dialogue built

atop class-contrastive, counterfactual statements. This interface allows the explainees to ask

very specific, contrastive questions via which they can personalise the explanations, e.g., by

requesting a particular subset of features to be included and/or excluded from the counterfactual

condition (if at all possible). Glass-Box uses a decision tree as the underlying predictive model

and generates contrastive explanations with our bespoke tree-specific algorithm. Nevertheless,

interacting with and personalising contrastive explanations can be generalised to an arbitrary

black box when using a tree-based surrogate explainer, such as LIMEtree, which can also take

advantage of interactively customising the data sampling and interpretable representation

generation steps specific to surrogates. A discussion of various modes of interactive customisation

and personalisation of XAI and IML explanations via a dialogue or otherwise is published in the

following papers:

[154] Kacper Sokol and Peter A Flach. The role of textualisation and argumentation in understanding the
machine learning process: A position paper. In Automated Reasoning Workshop, pages 11–12, 2017.

[153] Kacper Sokol and Peter A Flach. The role of textualisation and argumentation in understanding the
machine learning process. In IJCAI, pages 5211–5212, 2017.

[155] Kacper Sokol and Peter A Flach. Conversational explanations of machine learning predictions through
class-contrastive counterfactual statements. In IJCAI, pages 5785–5786, 2018.

[156] Kacper Sokol and Peter A Flach. Glass-Box: Explaining AI decisions with counterfactual statements
through conversation with a voice-enabled virtual assistant. In IJCAI, pages 5868–5870, 2018.

[151] Kacper Sokol and Peter Flach. One explanation does not fit all. KI-Künstliche Intelligenz, pages 1–16,
2020.

1.6 Outline of the Thesis

Our contributions are distributed across five chapters as follows.

Chapter 2 outlines the explainable AI taxonomy, with

Appendix A showing examples of its operationalisation as Fact Sheets for (A.1) LIME,

(A.2) CtreeX and (A.3) LIMEtree;

Chapter 3 introduces the bLIMEy meta-algorithm for building modular surrogates and

discusses properties of each surrogate building block, with
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Appendix B describing bLIMEy implementation within FAT Forensics and

Appendix C showing theoretical limitations of explaining tabular data with surrog-

ates based on linear models (C.3), analysing benefits of tree-based interpretable

representations for tabular data (C.2), and investigating the influence of occlusion

colour and segmentation granularity on interpretable representations of images

(C.1);

Chapter 4 highlights the difference between transparency and explainability of decision

trees and proposes CtreeX – an algorithm for generating contrastive and supportive

explanations of their predictions;

Chapter 5 presents LIMEtree – a high-fidelity surrogate based on multi-output regression

trees for explaining predictions of black-box probabilistic models; and

Chapter 6 discusses interactive customisation and personalisation of various explanation

aspects, and showcases Glass-Box – a voice-driven conversational user interface that

allows explainees to influence and steer the explanation content.

We summarise these findings, discuss their implications and outline future research directions in

Chapter 7. We also overview the content of chapters and review their respective contributions

below to help the reader navigate this thesis.

XAI Taxonomy Our first contribution (Chapter 2) is an explainable AI taxonomy that can be

used as a principled framework for reasoning about explainers. To this end, we collect a wide

range of social and technical properties expected of explainability approaches and organise them

into five distinct dimensions:

functional determines technical suitability of an explainer based on supported feature types,

compatible black boxes and the explanation target, among many others;

operational describes how explainees interact with the explainer and what is expected of

them, e.g., interaction mode, expected audience and the explanation medium;

usability spans explanation characteristics that are important from an explainee’s viewpoint,

e.g., fidelity, coherence with the recipient’s mental model and actionability;

safety tackles the effect of explainability on robustness, security and privacy aspects of the

underlying predictive system such as information leakage and explanation misuse; and

validation outlines a range of explainer evaluation techniques spanning synthetic validation

and user studies.
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This diverse taxonomy enables us to systematically evaluate available explainers, identify

their shortcomings and recognise properties that are universally desired of them. We use these

desiderata to plan research and guide development of an explainee-centred, fidelity-oriented,

post-hoc, model-agnostic and highly-customisable explainer. Such analysis can be formalised in

Explainability Fact Sheets, examples of which characterising the LIME, CtreeX and LIMEtree

algorithms are shown in Appendix A – they discuss theoretical properties, implementation details

and the discrepancies between the two for the aforementioned explainers.

bLIMEy Surrogate explainers (Chapter 3) best fit our desiderata, in so far as they are model-

agnostic and post-hoc. Surrogates are simple and explainable models trained to mimic the

underlying black box in the neighbourhood of a particular instance (local), for a specific data

subspace (cohort) or spanning the entire instance space (global). Their apparent complexity is

beneficial to our end since we can decompose them into functional building blocks, which allows

us to reconfigure or replace each module to satisfy the diverse desiderata and further tune it

to the needs of each individual use case. This flexible meta-algorithm, which we call bLIMEy,

consists of three self-contained components:

data sampling generates (synthetic) data to cover the region of the decision space selected

to be explained – these data are predicted by the black box to record its behaviour;

interpretable representation encodes the data in a format that is appropriate for the inten-

ded audience, e.g., numerical features of tabular data can be grouped into meaningful

categories such as low, medium and high; and

explanation generation fits a simple and explainable model to the interpretable representa-

tion of the sampled data using their black-box predictions as the target.

This functional separation inspired us to implement these modular surrogate explainers in

Python, which we publish in an open source package – called FAT Forensics and described in

Appendix B – distributed under the BSD 3-Clause licence.

In order to satisfy the other two desiderata – high fidelity and explainee’s satisfaction – we

investigate properties and trade-offs of each individual surrogate building block. In particular,

we show that the explainees can benefit from the interpretable representation complexity being

tuned to their individual background knowledge and mental model; and that selecting a surrogate

model capable of delivering familiar explanation types and, possibly, supporting user interactions

is desirable as well. We also discover that class-aware sampling and determinism of the inter-

pretable representation transformation are crucial for high fidelity of the resulting explainer.

Moreover, the interpretable representation generation mechanism has to be functionally compat-

ible with the employed surrogate model type – the mismatch may be detrimental to fidelity of the

explainer. We investigate this pairing issue for tabular data to find that a discretisation-based
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interpretable representation coupled with a linear model – a combination used by a popular sur-

rogate explainer called LIME [129] – is sub-optimal and results in information loss. (We present

analytical evidence of this phenomenon for Ordinary Least Squares regression in Appendix C.3.)

Our findings further suggest that using decision trees as the surrogate model can substantially

improve the quality of explanations, and their inherent transparency renders them a perfect

candidate.

CtreeX While small decision trees are transparent, they are not necessarily explainable as we

argued earlier in this chapter. This phenomenon is particularly striking when targeting a lay

audience, who may find such insights uninformative or even unintelligible. The most common

transparency techniques for decision trees include:

tree structure visualisation;• tree-based feature importance;•

root-to-leaf logical conditions;• leaf-based exemplars; and•

model-based what-if statements.•

We overcome this limitation by proposing CtreeX (Chapter 4), which is an efficient algorithm for

extracting two types of human-centred explanations:

contrastive retrieved by applying logical reasoning to compare and contrast different root-to-

leaf tree paths; and

supportive achieved by generalising logical conditions imposed on individual root-to-leaf tree

paths.

In addition to being advocated in the literature [106, 173] for their appeal and versatility,

such explanations visibly improve explainability of decision trees by decoupling the size of the

explanations from the model size. For example, regardless of the tree depth, a class-contrastive

counterfactual statement is only as large as the number of conditions in its foil. Our algorithm is

ante-hoc, making the explanations fully faithful with respect to the underlying tree – they are

computed based on a binary representation of the internal structure of the explained tree. While

the approach is model-specific, it can be generalised to an arbitrary black box by using a tree as

the explanation generation module in surrogate explainers. Such an approach allows us to reap

the benefits of contrastive and supportive explanations for any type of a black-box model as long

as the surrogate exhibits satisfactory fidelity.

LIMEtree We explore the intricacies of building tree-based surrogate explainers (Chapter 5)

by focusing on image classification with deep neural networks, which deliver state-of-the-art

performance but are notorious black boxes. While decision trees are designated for tabular
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data and often cannot compete with neural networks on sensory data, thereby foregoing their

explanatory powers, they can be used as surrogates to explain images and text. Given that

the underlying black box can be a regressor, a probabilistic classifier or a crisp classifier, we

investigate the suitability of surrogate regression and classification trees. We find that multi-

output regression trees are best suited for approximating probabilistic black boxes since they

can simultaneously model multiple classes and their inter-dependencies, thus improving upon

current solutions. We further discuss how to design the data sampling algorithm, compose the

interpretable representation and train the surrogate tree to achieve near-full or full fidelity of

the explainer, which allows us to overcome the biggest criticism of post-hoc explainability. We

back our findings with theoretical guarantees, synthetic evaluation, real data experiments and

user studies.

Glass-Box Explainers that output a human-friendly explanation type may still meet with a

mixed reception and have a limited success when the audience is diverse as one explanation does

not fit all. Such systems acknowledge the human recipients but miss out on appreciating their

uniqueness – a challenge that we address with interactive customisation and personalisation

of the explanatory process (Chapter 6). In particular, we investigate how each component of a

surrogate – data sampling, interpretable representation creation and explanation generation –

can be tuned by the explainee to improve the perceived explainability of the underlying black box

and boost user satisfaction and confidence. For example, the explainee can influence the sampling

breadth to alter the explanation scope from local to cohort to global. Similarly, an interpretable

representation can be personalised to reflect beliefs of an explainee, e.g., the user may adjust the

thresholds for dividing a numerical feature into small, medium and high categories. However, the

biggest gains come from customising the explanation content; counterfactuals, for example, can

answer specific questions by being conditioned on user-requested features. As a proof of concept,

we operationalise these findings in Glass-Box – an interactive, voice-driven, conversational, coun-

terfactual explainer of black-box predictions that is designed upon the operational and usability

dimensions of our XAI taxonomy. We then present this explainability system to a lay audience

and domain experts to seek diverse feedback and insights that may be useful for building and

deploying such algorithms in the real life.

We conclude this thesis (Chapter 7) by summarising our key findings and discussing future

research directions. In the light of our contributions, we revisit our definition of explainabil-

ity, look back on the importance of explanation fidelity and reconsider the role of humans in

the explanatory process. Moreover, we show how all of our findings – taxonomy, surrogates,

counterfactual explanations of decision trees, tree-based surrogates and interactive explanation

personalisation – fit together in the broader explainability context. This discussion distills our

contributions and paves a way towards more intelligible and robust surrogate explainers. It

also highlights areas for future work, which, among others, include searching for appealing
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interpretable representations and investigating data sampling strategies that reduce the number

of generated instances while maintaining a certain level of surrogate model fidelity. The inter-

active, human-like explanatory process also opens up a possible research avenue where both

human–machine and machine–machine can communicate and exchange explanations (e.g., using

the formal argumentation framework) to reduce their number and refine their content, offering a

principled solution to explanation personalisation and multiplicity.
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EXPLAINABLE AI TAXONOMY

Explanations in machine learning come in many forms, but a consensus regarding their

desired properties is yet to emerge. To organise this landscape, we introduce a taxonomy

and a set of descriptors that can be used to characterise and systematically assess

explainable systems along five key dimensions: functional, operational, usability, safety and

validation. In order to design a comprehensive and representative taxonomy and associated

descriptors we survey the explainable artificial intelligence literature, extracting the criteria

and desiderata that other authors have proposed or implicitly used in their research. Our review

includes papers introducing new explainability algorithms to see what criteria are used to guide

their development and how these algorithms are evaluated, as well as papers proposing such

criteria from both computer science and social science perspectives. This novel framework allows

to systematically compare and contrast explainability approaches, not just to better understand

their capabilities but also to identify discrepancies between their theoretical qualities and

properties of their implementations. We develop an operationalisation of the framework in the

form of an explainability Fact Sheet, which enables researchers and practitioners alike to quickly

grasp capabilities and limitations of a particular explainability method. We present example fact

sheets developed for (A.1) LIME, (A.2) CtreeX and (A.3) LIMEtree in Appendix A. When used as

a Work Sheet, on the other hand, our taxonomy can guide the development of new explainability

approaches by aiding in their critical evaluation along the five proposed dimensions.

2.1 Organising Explainability

With the current surge in explainable AI research, it has become a challenge to keep track

of, analyse and compare many of these approaches. A lack of clearly defined properties that

explainable systems should be evaluated against hinders progress of this fast moving research
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field. This can result in undiscovered (or undisclosed) limitations and properties of XAI approaches

and their implementations, as well as discrepancies between the two. Regardless of whether the

intention is to propose a novel explainer, implement an already published approach or deploy

an existing tool, identifying the characteristics of interest is an elaborate and time consuming

process prone to overlooking some of the implicit factors. The diversity of these requirements

further complicates the task – while the research field is predominantly concerned with technical

properties of the explainers, their social aspects should not be neglected since explanations are

often targeted at human recipients.

To address this issue, we propose that every explainability method designed for predictive sys-

tems should be evaluated against a taxonomy that assesses its (1) functional and (2) operational

requirements, which determine its technical properties. Moreover, the quality of explanations

should be evaluated against a list of (3) usability criteria to better understand their usefulness

from a user’s perspective, i.e., their social aspects. Their (4) security, privacy and any vulner-

abilities that they may introduce into the underlying predictive system should also be part of

the taxonomy, thereby disclosing their technical implications. Lastly, their (5) validation, either

via user studies or synthetic experiments, should be communicated. Therefore, a standardised

list of explainability properties – or, to put it otherwise, desiderata – spanning all of these five

dimensions would facilitate a common ground for evaluation and comparison of explainability

approaches, and help their designers consider a range of clearly defined aspects important for

this type of techniques.

Despite theoretical guarantees for selected explainability approaches, some of these properties

can be lost in implementation due to a particular optimiser, algorithmic proxy, application domain

or data set used. As it stands, many implementations do not exploit the full potential of the

selected explainability technique, for example, a method based on counterfactuals may not take

advantage [173] of their social and interactive aspects [106]. Similarly, model-agnostic approaches

can render some desiderata difficult to achieve since these explainers cannot benefit from model-

specific insights such as direct access to the internals of the underlying predictive algorithm. A

use of guidelines or a systematic evaluation of an approach with a standardised taxonomy could

help discover these unexpected functionality losses and account for or simply report them for the

benefit of the research community and end users.

Interpretability, explainability and accountability of AI and ML systems have recently become

important research issues triggered by the pervasiveness of automated decision making in our

everyday life. Despite broad interest in these topics, there is no agreement on their definitions

and desiderata, with a large part of the XAI and IML literature revolving around three main

trends:

1. discussions of what is generally desired of explanations from a user’s perspective [34, 70,

80, 81, 96];
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2. investigations of theoretical properties of selected explainability approaches, e.g., Miller

[106] does that for counterfactuals; and

3. reports on implementations and experimental results of selected explainers, e.g., Wachter

et al. [173] propose and study generating counterfactuals for differentiable models.

What appears to be lacking is a connection between universal properties expected of explainability

systems and their presence in specific methods and their implementations; at best, some stud-

ies [80, 81, 178] propose a narrow list of desiderata and use it to evaluate the method proposed

therein. For example, Kulesza et al. evaluate interactive visualisations of: music recommenda-

tions with respect to explanation fidelity [80], and naïve Bayes spam email classification with

respect to fidelity, interactiveness, parsimony and actionability [81].

To help address the need of consensus regarding a common set of properties that every explain-

ability method should be evaluated against, we collect, review and organise a comprehensive set

of characteristics that span both computer and social science insights on that matter. Our goal is

to provide the community with an XAI taxonomy that users of explainable systems – researchers

and practitioners alike – can utilise to systematically discuss, evaluate and report properties of

their techniques. This will not only benefit research, but will be of particular importance as a

guideline for designing, deploying and evaluating explainability methods. Such a framework can

especially benefit applications where adhering to best practices, legal regulations or certification

is of essence, e.g., compliance with the “right to explanation” foreshadowed by the European

Union’s General Data Protection Regulation (GDPR1) [50, 172, 173].

In such circumstances, creators of explainability methods can consult the taxonomy and

use it as a Work Sheet to understand and operationalise their specific requirements without

overlooking some obscure properties. A similar approach can be taken retrospectively with regard

to preëxisting explainers by using the taxonomy as a Fact Sheet, which enables a systematic

evaluation and comparison of these methods. We demonstrate the usefulness and practical aspects

of these explainability Fact Sheets in Appendix A, which holds their particular instantiation

created for LIME [129], CtreeX (Chapter 4) and LIMEtree (Chapter 5).

2.2 Taxonomic Ranks: Dimensions of Explainability

Our XAI taxonomy is intended to probe explainability systems along five dimensions, which are

summarised in Table 2.1. First, the functional one, which considers algorithmic requirements such

as the type of applicable predictive systems (classification, regression, etc.) and the component of

a black box for which it is designed (data, models or predictions). This dimension also tackles the

scope of the technique (e.g., local vs. global explanation) and its relation to the underlying model

(post-hoc vs. ante-hoc), among others. Second, the operational dimension, which includes the type

1https://publications.europa.eu/s/inbX
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of interaction with the end user, dichotomy between explainability and predictive performance,

and the user’s background knowledge required to fully utilise the embodied explainability power,

to name a few. Third, the usability dimension, which takes a user-centred perspective and

deals with properties of the explanation that make it feel “natural” and easy to comprehend

by the explainee. To fulfil the user’s expectations these include: fidelity of the explanation, its

actionability from the explainee’s perspective and its brevity, to give just a few examples.

The fourth dimension is safety, which discusses robustness and security of an explainability

approach as well as any hazards associated with it. For example, this includes an analysis of

how much information about the predictive model or its training data an explanation leaks and

whether an explanation for a fixed data point is consistent throughout different models given

the same training data. Finally, the taxonomy deals with the validation process used to evaluate

and prove the effectiveness of an explainability approach by auditing a user study or synthetic

verification that was carried out. Since the taxonomy can evolve over time, we encourage the

users to systematically version its implementations [15], such as Fact Sheets and Work Sheets,

thereby making the recipients aware of any updates. Furthermore, given that the taxonomy is

applicable to a (theoretical) algorithmic approach, an actual implementation or a mixture of the

two, its operationalisation should clearly indicate how the properties of interest correspond to

these. To put the dimensions of our proposed taxonomy into context, exemplar explainability Fact

Sheets for (A.1) LIME, (A.2) CtreeX and (A.3) LIMEtree are provided in Appendix A.

2.2.1 Functional Requirements

These can help to determine whether a particular approach is suitable for a desired application,

therefore they resemble a classification of machine learning and explainability approaches. The

list of nine functional requirements provided below (F1–F9) can be thought of as a check-list

of an engineer who was tasked with identifying and deploying the most suitable explainability

algorithm for a particular use case. All of these properties are well-defined and flexible enough to

accommodate any explainability approach.

F1 Problem Supervision Level

An explainability approach can be applicable to any of the following learning tasks: unsupervised,

semi-supervised, supervised and reinforcement. A large part of the literature focuses on supervised

learning, where explanations serve as a justification of a prediction. Nevertheless, explainability

can also benefit unsupervised learning, where the user may want to learn about the data insights

elicited by a model; reinforcement learning, where the user is interested in autonomous agent’s

decisions; and semi-supervised learning, where the user can help the system choose the most

informative data points for learning by understanding the system’s behaviour.
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F2 Problem Type

We can identify four main problem types in machine learning: classification (binary/multi-class/

multi-label and probabilistic/non-probabilistic), regression, reinforcement learning, and clustering.

(Additionally, we can consider types such as ranking and collaborative filtering.) By clearly

defining the applicable type of a learning task for an explainability method, potential users can

easily identify ones that are useful to them.

F3 Explanation Target

The machine learning process has three main components: data (both raw data and features),

models and predictions. Explaining the first one may be difficult or even impossible without any

modelling assumptions; these are usually summary statistics, class ratio, feature plots, feature

correlation and dimensionality reduction techniques. Note that a data collection process requires

adopting a view or model of the world and the underlying (natural) phenomenon as well as

physical characteristics of the tools used to measure the attributes of interest, thereby expressing

data within this implicit and possibly subjective framework. Explaining models is concerned with

its general functionality and conveying its conceptual behaviour to the explainee. Explaining

predictions provide a rationale behind the model’s output for any particular data point.

F4 Explanation Breadth/Scope

This notion varies across data, models and predictions. It tells the user to what extent an

explanation can be generalised. (See U3 for a complementary view on this property from the

usability perspective.) The main three explanation generalisability stages are: local – a single

data point or a prediction; cohort – a subgroup in a data set or a subspace in the model’s decision

space; and global – a comprehensive model explanation.

F5 Computational Complexity

Given that some applications may have either time, memory or computational power constrains,

each explainability approach should consider these. If, for example, a given method is capable

of explaining both a single prediction and the whole model, both of these aspects should be

discussed. Algorithmic complexity measures such as Big-O or Little-O notations can be used to

assess these aspects of an explainable system. Alternatively to theoretical performance bounds,

empirical evaluation can also be discussed, e.g., the average time over 1,000 iterations that it

took to generate an explanation for a single data point with fixed parameters of the explainability

algorithm on a single-core CPU with 16GB of RAM.
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F6 Applicable Model Class

Every explainability method is designed to either work with a particular model class or it is

model-independent. We can identify three main degrees of portability [131] for explainability

algorithms: model-agnostic – working with any model family; model class-specific – designed for

a particular model family, e.g., logical or linear models; and model-specific – only applicable to a

particular model, e.g., decision trees.

F7 Relation to the Predictive System

We can characterise two main relations between a predictive model and an explainability tech-

nique. Ante-hoc approaches use the same model for predicting and explaining, e.g., explaining a

linear regression with its feature weights. It is important to note that some of these techniques

may come with caveats and assumptions about the training data or the training process (see F9),

which need to be satisfied for the explanation to work as intended. With post-hoc approaches,

on the other hand, predictions and explanations are made with different models, e.g., a local

surrogate explainer. One can also name a third type – a special case of the post-hoc family – a

(local, cohort or global) mimic approach, where to explain a complex (black-box) model a simpler

(inherently transparent) model is built in an attempt to mimic the behaviour of the more complex

one, e.g., a global surrogate explainer.

F8 Compatible Feature Types

Not all models are capable of handling all the feature types, for example, categorical features

are at odds with predictive algorithms that use optimisation as their backbone. Furthermore,

selected model implementations require categorical features to be pre-processed, one-hot encoded

for example, rendering them incompatible with some explainability approaches. Therefore, every

method should have a clear description of compatible feature types: numerical, ordinal (we

differentiate numerical and ordinal features as the latter may have a bounded range) and

categorical. In addition to these standard feature types, some tasks may come with a hierarchy

of features and/or their values, in which case the explainability algorithm should clearly state

whether these are beneficial for the quality of the resulting explanation and how to utilise this

information.

F9 Caveats and Assumptions

Finally, any functional aspects of an explainability approach that do not fit into the previous

categories should be included under this catch-all item. In particular, restrictions with respect to

input and output of predictive models and explainability techniques [108]. These may include:

support for black-and-white images only; validated behaviour on text corpora up to 100 tokens;

numerical confidence of a prediction or an explanation; assumptions such as feature independ-
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ence; the effect of correlated features on the quality of an explanation; or explainer-specific

requirements such as feature normalisation when explaining a linear model with its weights.

2.2.2 Operational Requirements

The following ten properties (O1–O10) characterise how users interact with an explainability

system and what is expected of them. These requirements can be thought of as considerations

from a deployment point of view.

O1 Explanation Family

A very useful categorisation, which we believe is still up to date, of explainability approaches

accounting for their presence in philosophy, psychology and cognitive science was introduced by

Johnson and Johnson [64] for expert systems. The authors have identified three main types of

explanations: associations between antecedent and consequent, e.g., model internals such as its

parameters, feature(s)–prediction relations such as explanations based on feature attribution

or importance and item(s)–prediction relations [76] such as influential training instances [74]

(or neighbouring data points); contrasts and differences (using examples), e.g., prototypes and

criticisms [68, 70] (similarities and dissimilarities) and class-contrastive counterfactual state-

ments [106]; and causal mechanisms, e.g., a full causal model [118].

O2 Explanatory Medium

An explanation can be delivered as a: (statistical) summarisation, visualisation, textualisation,

formal argumentation or mixture of the above. Examples of the first one are usually given as

numbers, for example, coefficients of a linear model or summary statistics of a data set. The

second one comprises all sort of plots that can be used to help the user comprehend behaviour

of a predictive system, e.g., Individual Conditional Expectation [48] or Partial Dependence [44]

plots. Textualisation is understood as any explanation in form of a natural language description,

e.g., a dialogue system that can be queried by an explainee. Explainers based on a formal

argumentation framework [35] encompass approaches that can output logical reasoning in

support of an explanation, hence provide the explainee with an opportunity to argue against

it, whether in a form of a natural language conversation or highlighting important regions in

an image. Finally, an example of a mixture of these representations can be a plot accompanied

by a caption that helps to convey the explanation to the end user. Such a mixture may be

necessary at times as not all of the media are able to communicate the same amount or type

of information [37]. For example, visualisations are confined to three dimensions (four when

counting time, i.e., animations) due to the limitations of the human visual perception system and

counterintuitiveness of higher dimensions – a phenomenon known as the curse of dimensionality.
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The choice of an explanatory medium is also important as it may limit the expressive power of an

explanation.

O3 System Interaction

The communication protocol that an explainability method employs can either be static or

interactive (with and without user feedback). The first one is a one-size-fits-most approach where

the system outputs an explanation based on a predefined protocol specified by the system designer,

hence may not always satisfy the user’s expectations, for example, always outputting the most

significant factors in favour and against a particular prediction when the user is interested in

a feature not included therein. Alternatively, the system can be interactive, thereby allowing

an explainee to explore all aspects of a particular explanation. These include interactive user

interfaces and dialogue systems, among others. Furthermore, in case of an interactive system,

its creator should indicate whether the explainer can incorporate any feedback (and in what

form) given by the explainee and how, if at all, it influences the underlying predictive model (e.g.,

incremental-learning algorithms) [81].

O4 Explanation Domain

Explanations are usually expressed in terms of the underlying model’s parameters or data

exemplars and their features – original domain. However, it may be the case that the explanation

is presented in a different form – transformed domain. Consider, for example, a system explaining

image classification results where the data domain is an image and the explanation is a natural

language description as opposed to a saliency map superimposed onto the image. Another

approach can be an interpretable data representation, e.g., super-pixels instead of raw pixel

values, introduced by Ribeiro et al. [129] as part of the LIME algorithm (cf. O5).

O5 Data and Model Transparency

An explainability approach should clearly indicate whether the underlying predictive algorithm

and/or the (training) data are expected to be transparent, or they can be opaque. (This require-

ment is tightly related to F7, in particular when we are dealing with ante-hoc explainability

approaches.) In case of model explanations, does an explainee need to understand the inner

workings of a predictive model? When data or predictions are being explained, do the data

features need to be human-understandable in the first place? (This concept, in turn, is related to

Lipton’s [96] validation approaches discussed in the last paragraph of Section 2.2.5: what sort

of understanding of the model and/or features is expected of the user.) For example, consider

explaining a prediction in terms of a room temperature as opposed to using a squared sum of a

room temperature and its height. In cases where the input domain is incomprehensible, the sys-

tem designer may decide to give a list of meaningful data transformations as a remedy or choose
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an exemplar-based explainer instead [138]. For example, applying a super-pixel segmentation to

an image and using its output as higher-level features that are intelligible to humans can help to

explain image classification tasks, as shown by LIME.

O6 Explanation Audience

The intended audience of an explainability method may range from a domain expert, through a

requirement of a general knowledge about a problem, all the way to a lay audience. Considering

the type of the domain expertise is also important: ML and AI knowledge can be distinct from

domain knowledge. Therefore, discussing the level and type of background knowledge required

to comprehend an explanation is crucial [20, 124, 167]. Certain techniques may allow to adjust

(U4 and U5) the size (U11) or complexity (U9) of an explanation based on the intended audience

(U10) via some of the usability requirements (see Section 2.2.3). Furthermore, the transparency

of the features (and/or the model – refer to O5) should be judged with respect to the explanation

recipients. For example, consider a system that explains its predictions using natural language

sentences. Given the language skills of the recipient, the system can use text of varying lexical

and grammatical complexity to facilitate its easier comprehension [174]. Finally, the system may

be able to adjust the granularity of an explanation to suit the recipients’ needs based on their

cognitive capacity, e.g., explaining a disease diagnosis to doctors as opposed to patients or their

families. One of the goals of decreasing the complexity of an explanation (which is sometimes

at odds with its fidelity, cf. U1 and U2) may be making it easy enough for the explainees to

comprehend it in full [96], hence enable them to simulate the decisive process in vivo, i.e.,

simulatability. (See the validation requirements discussed in the last paragraph of Section 2.2.5

for a detailed description of this concept.)

O7 Function of the Explanation

Every explainability approach should be accompanied by a list of its intended applications [76].

Most of them are designed for transparency: explaining a component of the ML pipeline to an end

user, whether it is to support decisions, compare models, elicit knowledge form a black box or the

data used to build it, or extract a causal relation. Nonetheless, some of them can also be used to

assess accountability of the underlying predictive model, e.g., debug and diagnose it to engender

trust; or demonstrate its fairness, e.g., uncover disparate treatment with counterfactuals. It

is important to provide the user with the envisaged (and validated) deployment context to

prevent explainer misuse, which may lead to an unintentional harm when deployed in high-risk

applications or autonomous systems.

O8 Causality vs. Actionability

Most explanations are not of a causal nature. If this is the case, lack of causal relations needs to be

explicitly communicated to the users so that they can avoid drawing incorrect conclusions. Given
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an actionable, and not causal, explanation, the users should understand that the insight provided

by the explanation will result in, say, a different classification outcome, however interpreting it

causally, no matter how tempting, can lead to inaccurate conclusions [118]. Similarly, explanations

that are derived from a full causal model should be advertised as causal and used to their full

potential. This concept is closely related to O1, which specifies the explanation family.

O9 Trust vs. Performance

All of the explainability approaches should be accompanied by a critical discussion of performance–

explainability trade-offs that the user has to face. By and large, explainability can improve the

user’s trust in a predictive system, but sometimes the decrease in predictive performance (if any)

that is associated with making a particular system more explainable may not be worth it. For

example, consider a case where making a predictive algorithm explainable renders its predictions

to be incorrect most of the time. Therefore, the user of an explainability method needs to decide

whether the main objective of a predictive system is to make it more efficient or learn something

from data. While the existence of a clear-cut performance–explainability dichotomy has recently

been questioned [133], an insightful discussion on this topic published along each explainer could

provide a rich source of data and evidence for a scientific evaluation of this phenomenon and its

existence.

O10 Provenance

Finally, the operational requirements should record the provenance of an explainability system

and of the explanations that it produces, i.e., be translucent [131] about the information that

contribute to them. Most often, provenance of an explanation can be attributed to its reliance

on: a predictive model – achieved via interacting with the (black-box) model or using its internal

representation (glass-box) [76]; a data set – introduced by inspecting or comparing data points

originating from one or a mixture of the training, evaluation and validation data sets; or, ideally,

both a predictive model and a data set. An example of a purely model-driven explanation is

interpreting a k-means model with its centroids. An exclusively data-driven explanation is, for

example, explaining predictions of a k-nearest neighbours model by accounting only for the k

neighbours closest to the data point being explained. If possible, every explanation should be

accompanied by an explainability trace indicating which training data points were influential

for a prediction [74] and the role that the model and its parameters played. In most of the cases,

a model-specific explainability algorithm (F6) will rely heavily on internal parameters of the

underlying predictive model, whereas a model-agnostic approach will depend more on data and

behaviour of a predictive model.
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2.2.3 Usability Requirements

Here, we discuss eleven properties of explanations that are important from an explainee’s point of

view (U1–U11). Many of these are grounded in social science research and aim at – whenever

applicable – making algorithmic explanations feel more natural to the end users regardless of

their background knowledge and prior experience with this type of a system or technology in

general.

U1 Soundness

This property measures how truthful an explanation is with respect to the underlying predictive

model [81] (sometimes called concordance). Its goal is to quantify local or global adherence of

the explanation to the black box. If the explanation is of the ante-hoc type, this property does

not apply as both the explanation and the prediction are derived from the same model. However,

post-hoc (or mimic) explanations should measure and report this property to quantify the error

introduced by the explainability technique. This can be done by comparing a selected performance

metric between the outputs of predictive and explanatory models, e.g., average rank correlation

between the two. A high value of such a metric would assure the user that an explanation is

consistent and aligned with predictions of the underlying model. This requirement can also be

understood as “truthfulness” of an explanation – Grice et al. [51] have noted in their maxim

of quality, which is one of the rules for coöperative communication, that a user should only be

presented with claims supported by evidence. Soundness is one of the two explanation fidelity

measures, with the other one being completeness (U2).

U2 Completeness

For an explanation to be trusted, it also needs to generalise well beyond the particular case for

which it was produced. This mostly applies to local and cohort explanations as the user may

want to apply insights learnt from one of these explanations to a “similar” case: pars pro toto.

Completeness measures how well an explanation generalises [80, 98, 107], hence to what extent

it covers the underlying predictive model. This property can be quantified by checking correctness

of an explanation across similar data points (individuals) across multiple groups within a data

set. In particular, cardinality of a support set – the number of instances to which the explanation

applies divided by the total number of instances – can be used to measure completeness. Given

the context-dependent nature of this metric, there is no silver bullet to assess how well an

explanation encompasses the model. In addition to soundness, this is the second explanation

fidelity metric.
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U3 Contextfulness

If there are known issues with completeness of an explanation, a user may not trust it. To

overcome this and help the user better understand how an explanation can be generalised, it can

be framed in a context, thereby allowing the user to assess its soundness and completeness. For

example, the user will better recognise the limitations of an explanation if it is accompanied by

all the necessary conditions for it to hold, critiques (i.e., explanation oddities) and its similarities

to other cases [68, 70, 81, 106]. Contextfulness can help to make a local explanation either

explicitly local, allow the explainee to safely generalise it to a cohort-based explanation, or even

indicate that despite it being derived for a single prediction it can be treated as a global one.

A specific (quantitative) case of this property, called representativeness, aims to measure how

many instances in a (validation) data set does a single explanation cover, akin to the support

set cardinality. Another aspect of contextfulness is the degree of importance for each factor

contributing to an explanation. For example, if an explanation is supported by three causes, how

important are they individually? One observation worth making is that an order in which they

are presented rarely ever indicates their relative importance, e.g., a list of conditions in a decision

rule. This usability requirement can also be compared to the maxim of manner (from the rules

for coöperative communication [51]) that entails being as clear as possible in order to avoid any

ambiguity that may lead to confusion at any point.

U4 Interactiveness

As explainees may have a broad range of experience and background knowledge, a single explana-

tion rarely satisfies a potentially wide spectrum of their expectations. To improve the overall user

experience the explanation process should be controllable. For example, it should be reversible

(in case the user inputs a wrong answer), respect user’s preferences and feedback, be “social”

(bidirectional communication is preferred to one-way information offloading), allow to adjust

the granularity of an explanation, and be interactive [68, 70, 80, 81, 106, 167, 178]. This means

that, whenever possible, the users should be able to customise and personalise the explanation

that they get to suit their needs [138]. For example, if the system explains its decisions with

counterfactual statements and a foil used in such a statement does not contain information that

the users are interested in, they should be able to request an explanation conditioned on the

desired foil (if one exists).

U5 Actionability

When an explanation is provided to help users understand a reason behind an algorithmic

decision, then the users prefer explanations that they can treat as guidelines towards the

desired outcome [77, 166]. For example, in a banking context, given an explanation based on

counterfactual statements, it is better (from the user’s perspective) to get a statement conditioned
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on a number of active loans rather than the user’s age. The first one provides the user with an

action towards the desired outcome (i.e., pay back one of the loans before reapplying), while the

latter leaves the user without any options.

U6 Chronology

Some aspects of an explanation may have inherent time ordering, for example, loans taken by a

borrower. In such cases, if one of the reasons given in an explanation has a timeline associated

with it, users prefer explanations that account for more recent events as their cause, i.e., proximal

causes [106]. For example, consider multiple events of the same type contributing equally to

a decision: an applicant has three current loans and will not be given a new one unless an

outstanding one is paid back. Repaying any of the three loans is a sufficient explanation, however

from the user’s perspective taking the most recent loan is a more natural reason behind the

unfavourable loan application outcome than having any of the first two loans.

U7 Coherence

Some users of explainability systems may have prior background knowledge and beliefs about the

matter that is being predicted and explained – their mental model of the domain. In such cases,

any resulting explanation should be consistent with the explainee’s prior knowledge [37, 98, 107],

which can only be achieved when the explainee’s mental model is part of the explainability system

(U10) as otherwise there is nothing to be coherent with. (A mental model can either be functional,

i.e., shallow, in which case the end users know how to interact with something but not how it

works in detail; or structural, i.e., deep, in which case they have a detailed understanding of how

and why something works [79].) If a prediction of a black-box model is consistent with the users’

expectations, then the reasoning behind it will not be contested most of the time unless its logic

is fundamentally flawed (internal inconsistency) or it is at odds with the general knowledge [174]

– humans tend to ignore information that is coherent with their beliefs (confirmation bias). If

the output of a predictive model is unexpected, on the other hand, the users will contrast the

explanation against their mental model to understand the prediction, in which case the explainer

should identify and fill in these knowledge gaps [64]. Therefore, if an explanation uses arguments

that are consistent with the users’ beliefs, they will be more likely to accept it. While this property

is highly subjective, basic coherence with the universal laws, e.g., number ordering, should be

satisfied.

U8 Novelty

Providing users with a mundane or expected explanation should be avoided. Explanations

should contain surprising or abnormal characteristics (that have low probability of happening,

e.g., a rare feature value) to point the user’s attention in an interesting direction [19, 80, 106]
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(recall U7 where anomalies prompt the user to request an explanation). However, this objective

requires balancing the trade-off between coherence with the explainee’s mental model, novelty

and overall plausibility [174]. For example, consider an ML system where explanations help to

better understand a given phenomenon. In this scenario, providing the users with explanations

that highlight relations that they already know should be avoided. The explainees’ background

knowledge should be considered before producing an explanation to ensure that it is novel and

surprising; at the same time, consistency with their mental model should be preserved as long

as it is correct. Again, this usability criterion can only be built on top of the explainees’ mental

models since this knowledge is essential for assessing novelty of causes.

U9 Complexity

Given a wide spectrum of explainees’ skills and background knowledge, the complexity of explan-

ations should be tuned to the recipients [106, 167]. This can be an operational property of an

explainable system (O6), however it is also important to consider it from a user’s perspective.

If the system does not allow for explanation complexity to be adjusted by the user, it should be

as simple as possible by default (unless the explainee explicitly asks for a more complex one).

For example, given an explanation of an automated medical diagnosis, it should use observable

symptoms rather than the underlying biological processes responsible for the condition. Choosing

the right complexity automatically may only be possible given the availability of the explainee’s

mental model.

U10 Personalisation

Tuning an explanation to its intended recipients requires the explainability technique to ap-

proximate explainees’ background knowledge and mental model [138, 178]. This is particularly

important when attempting to adjust the complexity of an explanation (U9) as well as its novelty

(U8) and coherence (U7). An explanation can either be personalised on-line via an interaction or

off-line by incorporating the necessary information into the model (e.g., parameterisation) or data.

Personalising an explanation is related to yet another rule of coöperative communication [51]:

the maxim of relation. According to this rule, a communication should only relay information that

are relevant and necessary at any given point in time. Therefore, an explainability system has to

discern what the user knows and expects in order to determine the content of the explanation [37].

U11 Parsimony

Finally, explanations should be selective and succinct enough to avoid overwhelming the ex-

plainee with unnecessary information, i.e., fill in the most knowledge gaps with the fewest

arguments [81, 98, 106, 107, 174]. This is somewhat connected to explanation novelty (U8) as

it can be partially attained by avoiding premisses that an explainee is already familiar with.
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Furthermore, parsimony can be used as a tool to reduce complexity (U9) of an explanation

regardless of the explainee’s background knowledge. For example, brevity of a counterfactual

explanation can be achieved by giving as few reasons (number of conditions) in the statement’s

foil as possible. This requirement is also related to another rule of coöperative communication

presented by Grice et al. [51]; the maxim of quantity states that one should only communicate as

much information as necessary and no more (a partial explanation).

2.2.4 Safety Requirements

Explainability can become a toolkit for improving trust and validating safety of black-box AI

systems [54], however in certain cases it may also cause unintended harm and have adverse

consequences. Explainers tend to reveal partial information about the data used to train predict-

ive models, these models’ internal mechanics or parameters, and their prediction boundaries.

Therefore, our taxonomy considers the effect of explainability on robustness, security and privacy

aspects of predictive systems which they are built on top of as well as robustness of explainers

and explanations themselves [157] (S1–S4), outlining all the known hazards that come into play

when they are deployed.

S1 Information Leakage

Every explainability approach should be accompanied by a critical evaluation of its privacy and

security implications and a discussion about mitigating these factors. It is important to consider

how much information an explanation reveals about the underlying model and its training data,

as well as consequences of this leakage. For example, consider a counterfactual explanation

generated for a logical machine learning model; given that this model family applies precise

thresholds to data features, this type of an explanation is likely to disclose them. Similarly,

explanations of a k-nearest neighbours model can reveal training data points and explaining a

support vector machine classifier can leak data points constituting the support vectors. Another

example can be a security trade-off between ante-hoc approaches that reveal information about

the predictive model itself and local post-hoc explanations that can only leak behaviour of

the decision boundary in the neighbourhood of a selected point. We could partially mitigate

these threats by increasing the parsimony of explanations (U11), producing explanations for

aggregated data or obfuscating the exact thresholds or data points. This can be achieved by

k-anonymising [134] the data, outputting fuzzy thresholds in the explanations or providing

general directions of change (e.g., “slightly more”) to avoid giving out the exact values, among

many others.
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S2 Explanation Misuse

With information leakage in mind one can ask: How many explanations and of how many different

data points does it take to gather enough insight to steal or game the underlying predictive

model? This can be a major concern especially if the model is obfuscated to protect a trade secret.

Furthermore, explanations can be used by adversaries to game a model; consider a case where

a malicious user was able to find a bug in the model by inspecting its explanations, hence is

now able to take advantage of it. While the explainer may have been designed for debugging a

predictive model and identifying its vulnerabilities, e.g., discovering its non-monotonic behaviour,

the net outcome of these actions ultimately depends on the explainee. In particular, this observa-

tion indicates a close relation and fine line between explanations and adversarial attacks [49].

Therefore, having a clear target audience in mind (O6) is crucial since explanation misuse is

closely linked to a consideration of the intended application of an explainability system (O7). For

example, a system designed as a certification tool will usually reveal more information than one

providing explanations to customers.

S3 Explanation Invariance

Given a phenomenon to be modelled by a predictive system, (training) data that we gather are

just a way to quantify its observed effects (see F3 for more details). Therefore, the objective

of a predictive system should be to elicit insights about the underlying phenomenon and the

explanations ought to be a medium to foster their understanding in a human comprehensible

context. Ideally, explanations should be based on a property of the underlying phenomenon rather

than an artefact of a black-box model, which may require a proper causal model [119]. In this

setting it is natural to expect an explainability system to be [59]:

consistent Explanations of “similar” data points should be similar for a fixed model (training

procedure and data) and explanations of a fixed data point should be comparable across

different predictive models or different training runs of the same model (trained using

the same data).

stable An explainability approach should provide the same explanation given the same

inputs (model and/or data point). This can be measured by investigating variance of an

explanation over multiple executions of an explainability algorithm.

Furthermore, explanations produced by one method should be comparable to those produced

using another explainability technique (given fixed training data). If one of these properties

does not hold, the designer of an explainer should investigate how model configuration and

parameterisation influence its explanations. Such inconsistency – where the same event is given

different, often contradictory, explanations by different actors (explainable algorithms in our
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case) – is well documented in the social sciences as “The Rashmon Effect” [31] and should be

avoided.

S4 Explanation Quality

The final safety requirement concerns evaluating the quality and correctness of an explanation

with respect to the “confidence” of the underlying predictive model and the distribution of its

(training) data. This criterion is in place as poor predictive performance, whether overall or for

specific data points, usually leads to uninformative explanations. After all, if a prediction is of

subpar quality, it would be unreasonable to expect its explanation to be sensible. We suggest

for each explanation to be accompanied by a list of uncertainty sources, one of which may be

the predictive confidence [121] assigned by the underlying model to the explained instance. For

example, if a method relies on synthetic data (as opposed to real data), this should be clearly

stated as a source of variability, hence randomness and uncertainty. Another example of an

explanation that does not convey its possibly inferior quality is a counterfactual that lies in a

sparse region of the (training) data distribution – since we have not seen many data points in that

region, we should not trust the explanation without further investigation [90, 123]. Explanation

multiplicity – existence of numerous explanations for each model or prediction – can also add to

this problem as the explainee needs to prioritise such insights, especially when some of them are

divergent or contradictory.

2.2.5 Validation Requirements

Finally, explainability systems should be validated with user studies (V1) or synthetic experiments

(V2) in a setting similar to the intended deployment scenario. This research area has seen

increasing interest in the recent years with Doshi-Velez and Kim [34] providing evaluation criteria

and proposing various approaches to validate explainers. Other researchers [124, 167] highlighted

the importance of considering the stakeholders of an explanation before validating it, akin to the

intended application (O7) and audience (O6) sections included in our taxonomy. Nevertheless,

this research branch lacks a universal consensus regarding a validation protocol, which hinders

the progress of explainable AI research by making explainability methods incomparable. A

commonly agreed validation protocol could help to:

• eliminate confirmation bias – when two explanations are presented side by side,

• mitigate selection bias – when a study is carried out via Amazon Mechanical Turk all of the

participants are computer-literate,

• avoid outcome bias – when an explanation supports a given prediction or it agrees with the

explainee’s mental model regardless of the prediction, and
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• fight a phenomenon called The Illusion of Explanatory Depth [132] – to overcome explana-

tion ignorance.

For example, when users are asked to choose the best explainability approach out of all the

options presented to them, they should not be forced to choose any single one unless they consider

at least one of them to be useful. When validating explainers, one should also be aware of a

phenomenon called Change Blindness [145] – humans’ inability to notice all of the changes in a

presented medium – which is especially prominent for visual explanatory media (O2), e.g., images.

A good practice in such cases is ensuring that two explanations, or the instance to be explained

and the explanation, are clearly distinguishable by, for example, highlighting the differences

(U9).

Furthermore, a well-designed user study could also provide a clear answer to some of the

(qualitative) explanation properties listed in the previous sections. For example, it can help to

evaluate the effectiveness of an explanation for a particular audience (O6), assess the background

knowledge necessary to benefit from an explanation (O5) or check the level of technical skills

required to use it (O2) as not all explainees may be comfortable with a particular explanatory

medium. Since user studies are the most acceptable approach to validate the explanatory powers

of a new method, an XAI-specific protocol – such as randomised controlled trails in medical

sciences – should be developed to make the evaluation results comparable and prevent influence

of various biases. For example, Doshi-Velez and Kim [34] identified three types of evaluation

approaches:

application-level Validating an explainability approach on a real task with user studies

(V1), e.g., comparing explanations given by doctors (domain experts) against an explainab-

ility algorithm for X-ray imaging.

human-level Validating an explainability approach on a simplified task (within the same

domain) and a lay audience (to avoid using domain experts whose time is often scarce

and expensive) with user studies (V1), e.g., an Amazon Mechanical Turk experiment

asking the explainees to choose the most appealing explanation from a range of different

techniques.

function-level Validating an explainability approach on a proxy task, i.e., synthetic valida-

tion (V2). For example, given an already proven explainability method such as explaining

decision trees by visualising their structure, a proxy can be its measure of complexity

given by the tree depth or width.

A different set of, mostly synthetic (V2), validation approaches was proposed by Herman [59]:

• using simulated data with known characteristics to validate correctness of explanations,

and
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• testing stability and consistency of explanations – see the invariance safety requirement

(S3) for more details.

The latter validation strategy can be either quantitative (V2), given a well-defined metric, or

qualitative (V1), given user’s perceptual evaluation.

Lastly, Lipton [96] has come up with three distinct approaches to evaluate how well an

explanation is understood based on user studies (V1):

simulatability Measuring how well a human can recreate or repeat (simulate) a black-box

computational process based on its explanations, for example, by asking the explainee a

series of counterfactual what-if questions.

algorithmic transparency Measuring the extent to which a human can fully understand a

predictive algorithm: its training procedure, provenance of its parameters and the process

governing its predictions.

decomposability Quantifying the ability of an explainee to comprehend individual parts

(and their functionality) of a predictive model: understanding input features, model

parameters (e.g., a monotonic relationship of one of the features) and outputs of the model.

Lipton’s [96] motivation is to gauge explainees’ understanding, which resembles our definition

of explainability presented in Chapter 1 (transparent insights leading to understanding), however

his evaluation criteria expose that the two are based on fundamentally different premisses.

Lipton’s first two metrics arguably fail to measure (human) understanding, whereas the last

one highlights various explanation targets (data, models and predictions according to F3), their

assumed transparency (O5) as well as model and explanation provenance (O10), all of which are

covered by our taxonomy. The type of understanding that follows from simulatability is embodied

by a functional mental model (Section 1.1), which is relatively superficial and mechanistic. This

criterion measures whether a human can replicate behaviour of a predictive black box, which

we deemed insufficient (Section 1.1.3) based on The Chinese Room Argument [139]. Similarly,

algorithmic transparency entails an in-depth appreciation of how a black box operates, i.e.,

developing a structural mental model (Section 1.1), which may require machine learning expertise

and leads to understanding the technical process but not necessarily the reason for outcomes.

2.3 Taxonomy Trade-offs

Multiple questions arise when developing explainers or evaluating them based on our list of

desiderata. Are all of the properties equally important? Are they compatible with each other or

are some of them at odds? In practice, many of these characteristics cannot be attained at the

same time and their respective importance and prioritisation often depend on the application

area [37]. Even though certain explanation types may be flexible enough to comply with most

52



2.3. TAXONOMY TRADE-OFFS

of the requirements in theory, e.g., counterfactuals, some of these properties can be lost in

implementation due to particular algorithmic choices. While both functional and operational

requirements are properties of a specific explainability approach and its implementation, the

usability desiderata are general properties and any explainer should aim to satisfy all of them. For

example, making an explainability system model-agnostic forces it to be a post-hoc (or a mimic)

technique and prevents it from taking advantage of specifics of a particular black-box model

implementation. Furthermore, in contrast to ante-hoc techniques, such approaches create an

extra layer of complexity on top of the predictive model, which can be detrimental to explanation

fidelity – a trade-off between completeness and soundness that is common to model-agnostic

explainers.

Some of the trade-offs affecting design and implementation of explainability systems have

already been observed in the literature. Lombrozo [98] points out that explanations that are

simpler (U11), i.e., with fewer causes, more general (U2) and coherent (U7) are usually more

appealing to humans, however depending on the application (O7) and target audience (O6), this

may not always be desirable. Moreover, when considering coherence of an explanation, we may

run into difficulties defining the complement of the concept being explained, which may simply

be ill-defined – consider a non-concept [112] such as not-a-car. Kulesza et al. [80], on the other

hand, show that both completeness (U2) and soundness (U1) are important, however if faced

with a trade-off, one should choose the former over the latter. Notably, Eiband et al. [37] point

out that this is not a universal principle and the selection largely depends on the application

domain. Similarly, Walton [174] argues that users prefer explanations that are more plausible

(U1), consistent with multiple outcomes (U2), i.e., explain many things at once, and simple (U9,

U11). While daunting, all of these dichotomies are important to consider as they can help to

identify and make informed choices about the trade-offs that every explainability method is

facing.

In particular, vanilla counterfactual explanations prioritise completeness over soundness as

they are always data point-specific. Nevertheless, Miller [106] shows that, in theory, counterfac-

tuals – which he considers the most human-friendly explanation type since they are contrastive

and answer a “Why?” question – can satisfy most of the desiderata and the aforementioned

observation is an artefact of algorithmic implementations. Moreover, he shows that based on

social sciences research some of the properties of explainability systems should be prioritised:

• necessary causes (U2, U3) are preferred to sufficient ones;

• intentional actions (U10, U7) form more appealing explanations than those taken without

deliberation;

• the fact and the foil of a (counterfactual) explanation should be clearly distinguishable

(U9);

• short and selective (U11) explanations are preferred to complete ones;
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• the social context (U10, U9, O6) should drive the content and the nature of an explanation;

and

• one explanation covering multiple phenomena (U2) is preferred to a collection of unique

explanations.

Some of these properties can be employed to achieve more than one goal. For example,

completeness can be partially fulfilled by having contextful explanations. If an explainability

system is not inherently interactive, this desideratum can be accomplished by deploying the

explainer within an interactive platform such as a dialogue system for explanations delivered in

natural language or an interactive web page for visualisations. Actionability and chronology are

usually data set-specific and can be achieved by manually annotating features that are actionable

and ordering the time-sensitive attributes. Personalisation – along with coherence, novelty and

complexity, which all depend on it – is the most difficult criterion to be satisfied. On the one

hand, we can argue that the complexity (as well as novelty and coherence) of an explanation may

be adjusted by personalising it via system design (O2, O6, O7), through user interaction (O3,

U4) or with parsimony (U11). Alternatively, we can imagine encoding a hierarchy of explanation

complexity (based on the user’s mental model) and utilising this heuristic to serve explanations

of desired complexity.

2.4 Applying the XAI Taxonomy

Systematically evaluating properties of explainability techniques can be a useful precursor to

user studies (e.g., aiding in their design) to show their capabilities and compliance with the

best practices in the field. Furthermore, despite theoretical guarantees of selected desiderata

for some explainability systems, these properties can be lost in implementation. For example,

model-agnostic explainers can render some desiderata difficult to achieve since these approaches

cannot take advantage of model-specific aspects of predictive black boxes. LIME [129] has recently

been subjected to studies aiming to validate its usability [89, 158, 183], which discovered that its

explanations lack stability (S3) and struggle to capture locality (U1), thereby raising questions

about the validation methods (V2) used to evaluate this technique in the first place. We concur

that had a taxonomy such as one presented in this chapter been available, some of these issues

could have been addressed early in the design and avoided. To support this claim we show

examples of taxonomy-inspired explainability Fact Sheets in Appendix A, which closely inspects

properties of LIME, CtreeX and LIMEtree along all the five dimensions.

2.4.1 Target Audience

A comprehensive list of requirements expected of explainability systems spanning both their

technical and social aspects is needed amid a lack of general consensus among researchers and
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practitioners in this space. Some papers discuss a subset of the properties presented in Section 2.2,

with many of them scattered throughout explainability literature, rendering it difficult to get a

coherent and complete view on the matter. Having a taxonomy that collects and organises all of

the requirements in one place will empower designers (researchers) and users of explainability

systems to:

• guide the development, implementation, evaluation and comparison of explainers in a

systematic and consistent manner;

• identify gaps in (theoretical) capabilities of explainers and divergence from those in their

respective implementations; and

• quickly grasp properties of a given method to choose an explainer that is appropriate for

the desired application – similarly to the food nutrition labels [180], the users know what

to expect and how to navigate our taxonomy.

In addition to serving these two communities and their use cases, our list of desiderata can

be utilised as a reporting tool aimed at regulators and certification bodies by providing them

with the necessary information in a standardised and comparable format. Given the topic

separation within the structure of our taxonomy, browsing through it should be sufficient to make

explainability systems more appealing and transparent to a wider public, e.g., a non-technical

audience.

2.4.2 Delivery Format and Medium

We chose to present our explainability requirements in the form of a taxonomy to empower

the designers and users of explainability systems to make better choices and consider a wide

spectrum of functional, operational, usability, safety and validation aspects when building or

using explainers. Such a flexible and comprehensive structure makes the taxonomy suitable for a

wide range of applications and allows its users to take as much, or as little, as they want from it

rather than feel obliged to report on all the requirements in full length and complexity. We opted

for introducing our desiderata of explainability systems as a “taxonomy” to convey this intrinsic

flexibility of our framework, which otherwise could have been overlooked if presented as “fact

sheet”, ”work sheet”, “check list”, “standard”, “guideline” or “recommendation”. We acknowledge

that our requirements list can form the basis of future standards or recommendations, but

not being in a position to enforce this, we leave this task to bodies such as IEEE and their

Global Initiative on Ethics of Autonomous and Intelligent Systems, which has already produced

recommendations for Transparency and Autonomy [115]. Furthermore, posing our taxonomy as

a “standard reporting tool” could undermine its adoption since enforcing standards may impede

the pace of explainability research.
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In addition to clear, transparent and well-defined structure and composition, framing our

requirements list as a taxonomy has one major advantage: it can be adapted to serve as any of

the aforementioned tools. For example, it can be used as an explainability Fact Sheet (examples

included in Appendix A), which is a very common framework for self-reporting inspired by food

nutrition labels [11, 15, 47, 60, 67, 108, 126, 180] – we discuss the adaptation of this concept in

AI and ML more broadly in Section 2.5. Alternatively, the taxonomy can be used as a development

and deployment checklist for explainability approaches as it has been shown that even experienced

practitioners can make obvious mistakes despite their presence of mind, especially if working

under stressful conditions or simply due to the repetitiveness of a task. While this use case is not

very common in AI and ML, checklists have been demonstrated to eradicate most of such trivial,

and often dangerous, human errors, e.g., checklists that help to account for all the tools used

during a surgical procedure after it is finished [178]. A similar line of reasoning can be applied

to designing and deploying explainers, but instead of a checklist, the user is provided with a

taxonomy to aid critical evaluation of their capabilities and draw attention to their features that

otherwise may have been overlooked.

Given the evolving nature of the requirements included in our taxonomy and the structure of

its dimensions, we propose to host it on-line, accompanied by a collection of explainer-specific

reference materials, i.e., manuals, within a single repository that will serve as their catalogue

and a reference guide. Since the requirements can change over time with publication of new

research, hosting the taxonomy and explainability method-specific manuals on-line will enable

their natural evolution and encourage versioning, dissemination and revision supported by the

community effort. Such contributions can be peer-reviewed and scrutinised following a process

similar to OpenReview or review of open source software submitted to code hosting and versioning

repositories such as GitHub. We anticipate that our taxonomy accompanied by such a collection

of explainer-specific manuals and guidelines for their creation will become a go-to resource for

learning about explainability of predictive AI systems.

2.4.3 Operationalisation

The effort required to apply our taxonomy, e.g., to create an explainer-specific manual such as a

Fact Sheet, may seem prohibitively time consuming, thereby hindering its widespread adoption.

However, doing so can be selective and incremental, especially that the process is not limited to

the creator of an explainability technique and it is not required during the development of an

explainer since it can be applied post-hoc. Nevertheless, we suggest consulting our taxonomy

throughout the development of explainability systems as a reference material, a guideline and

a checklist to adhere to best practices. The process of creating explainer-specific manuals can

be further sped up by allowing the entire explainable AI community to contribute, which may

even lead to improving the method itself by identifying its shortcomings and straightforward

extensions. All of this is possible because our taxonomy can be applied retrospectively since it
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only requires familiarity with the explainability approach or its implementation, unlike similar

solutions for data sets [15, 47, 60] (which require knowledge of the data collection process) or AI

services [11] (which are usually opaque to protect trade secrets). All things considered, we argue

that researchers designing explainability methods and software engineers implementing them

are best suited (and would benefit most) from applying our explainable AI taxonomy.

2.4.4 Selecting Dimensions and Requirements

Certain requirements included in the taxonomy may appear very similar or strongly related to

one another at first glance, hence their choice may seem arbitrary, with some arguing to merge

or reorganise them. One reason for the repetitiveness of selected concepts is the fact that the

requirements span five distinct dimensions some of which are presented from a social sciences

perspective, e.g., the perception of users, while others are rather technical, e.g., deployment or

performance. Another reason for the fine detail is to ensure versatility and flexibility of our

taxonomy: in its current form it is applicable to both inherently explainable predictive algorithms

as well as standalone explainers. One could imagine a taxonomy-based manual discussing how to

interpret linear models based on their parameters, thereby highlighting caveats such as feature

normalisation and independence assumptions. Such an elaborate structure also allows the users

to quickly browse through the hierarchy, e.g., just inspecting the headings, without delving into

details, thus making it more appealing and accessible.

Many requirements included in the taxonomy originate from diverse XAI literature – academic

and on-line articles – and have proven to be of value in multiple instances, both theoretical and

practical. The outer-level categorisation (dimensions) is role-driven, e.g., deployment, certification

and users’ perception. When composing the list we were as comprehensive as possible (to avoid

bias) and our intervention was limited to grouping together similar concepts presented under

different names. Even so, we acknowledge that our taxonomy by no means should be treated as

final and definitive. We plan to validate and revise it over time based on the feedback provided by

its users (who create and deploy explainability solutions) and the XAI community.

Despite a well-defined list of requirements, exhaustively applying the taxonomy to any single

explainability approach is a labour-intensive and time-consuming challenge. While some of these

properties are purely analytical, others are empirical. We hence identify two approaches to

validate them:

quantitative for properties that should be measured or can be precisely and definitely

answered by assertion; and

qualitative for properties that should be defined in the context of a given explainability

approach and either justified by a critical discussion (informal argument) or validated

with user studies since they may lack a unique answer, be subjective or be difficult to

measure.
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This lack of a “correct” answer, however, should not be held against the taxonomy as even

a qualitative discussion – of fuzzy properties that cannot be directly operationalised – is of

considerable importance in advancing transparency of explainability approaches. Among other

benefits, it encourages reporting on properties that are ambiguous and clarifying aspects of

explainers that cannot be precisely measured, e.g., describing and justifying the chosen validation

procedure allows the users to judge suitability of a given explainer for their individual use case.

2.5 Systematic Evaluation Approaches in AI

The recent surge in interpretability and explainability research in AI and ML may suggest

that this is a new research topic, but in fact (human) explainability has been an active area

of study for much longer in the humanities [106]. This observation encouraged Miller [106]

to review XAI and IML approaches in the technical literature using insights from the social

sciences, which shows how human-centred design can benefit AI explainability [107]. To date,

a scattered landscape of explainability systems desiderata has been presented in a wide range

of publications [56, 70, 77, 80, 81, 96, 127, 138, 167] that propose to evaluate explanations by

defining their properties and interaction protocol. Despite many of these researchers converging

towards a coherent list of requirements expected of explainability approaches, none of them

collected and organised such a systematic list to serve as a guideline for other people interested

in the topic.

Some studies [178] discuss a subset of requirements included in our taxonomy and support

them with illustrative examples, but their main aim is to familiarise the readers with such con-

cepts and not provide them with an evaluation framework. Other research avenues use a selection

of these properties to evaluate a given explainability approach for a fixed task. For example,

Kulesza et al. evaluate interactive explanatory visualisations for: music recommendations [80]

with respect to explanation fidelity (soundness and completeness), and naïve Bayes classification

of emails [81] with respect to fidelity, interactiveness, parsimony and actionability. Lakkaraju

et al. [86] mathematically define some of the desiderata, e.g., soundness and completeness, to

facilitate quantitative evaluation of the explainability method that they propose. Alternatively,

organisations such as IEEE attempt to develop standards (either imposed or self-regulated) for

transparency of autonomous systems [115].

Another, related branch of explainability research deals with user studies, which in this field

are often considered the gold standard of validation. Doshi-Velez and Kim [34] come up with

guidelines and best practices for evaluating effectiveness of explainers with user studies and syn-

thetic verification, whereas others [115, 124, 167] consider validating explainability techniques

by focusing on their audience. In particular, Tomsett et al. [167] suggests that effectiveness of

explainers should be demonstrated separately for each stakeholder:

• system creators,
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• system operators,

• executors making a decision on the basis of system outputs,

• decision subjects affected by an executor’s decision,

• data subjects whose personal data is used to train a system, and

• system examiners such as auditors or ombudsmen.

Similarly, IEEE [115] proposes to consider: users, safety certification agencies, accident investig-

ators, lawyers or expert witnesses, and wider society. Nonetheless, some research argues that

user studies cannot fully assess the effectiveness of an explanation due to a phenomenon called

The Illusion of Explanatory Depth [132], or that their results can yield unjustified positive results

(confirmation and outcome biases) as simply offering an explanation makes its recipients believe

that the underlying event is more likely to be true than not [73].

A different approach towards clarifying explainability properties in ML and AI is self-

reporting and certification. Techniques such as “data statements” [15], “data sheets for data

sets” [47] and “nutrition labels for data sets” [60] can help to characterise a data set in a coherent

way. Kelley et al. [67] argue for a similar concept (“nutrition labels for privacy”) to assess privacy

of systems that handle personal (and sensitive) information. All of these methods revolve around

recording details about the data themselves, e.g., the units of features, the data collection process

and their intended purpose. Other researchers propose an analogous approach for predictive

models: “model cards for model reporting” [108], “nutrition labels for rankings” [180] and “al-

gorithmic impact assessment” forms [126]. Finally, Arnold et al. [11] suggest “fact sheets” for

ML and AI services (also called “Supplier’s Declarations of Conformity”) to communicate their

capabilities, constrains, biases and transparency, which are predominantly aimed at casual users

since access barriers to these tools are relatively low.

2.6 In Search of the Explainer: Surrogates Desiderata

Our XAI taxonomy collates and discusses a list of functional, operational and usability charac-

teristics of explainability techniques designated for predictive systems. It also examines safety

(security, privacy and robustness) properties of explainers and explanations, in addition to

reviewing their validation methods such as user studies and synthetic verification. For each

individual desideratum, we show how it can be used to systematically characterise AI and ML

explainability approaches, point out their caveats, and highlight disagreements and trade-offs

between their theoretical algorithms and available implementations. The taxonomy was designed

to be as comprehensive as possible, spanning both technical and social properties, thus serving

diverse audiences and creating a basis for building various tools such as fact sheets, manuals,

work sheets and check lists. Based on this flexibility, we propose that explainability approaches
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are accompanied and assessed by means of applying our taxonomy, for example in a form of

explainability Fact Sheets, three of which are included in Appendix A.

Having collected, organised and reviewed a wealth of XAI desiderata to build our taxonomy,

we identified post-hoc and model-agnostic explainers as the most promising research direc-

tion given their universality and a potential for satisfying many of these diverse properties.

Furthermore, juxtaposing our usability requirements with Miller’s [106] review of contrastive

explanations highlights their appeal when employed as AI and ML explainers. Since suitability

of an explainability system depends on a wide range of factors, including the intended audience

and application domain, developing a process for building explainers that can be adapted to the

requirements of a particular use case seems more beneficial than searching for a fixed algorithm.

All of these observations led us towards surrogate explainers – approximating a black box with

an inherently interpretable model in a selected data subspace – which we identified as the most

promising candidate. As a starting point, we looked into the algorithmic design and implementa-

tion of LIME [129], which is one of the most prominent examples of surrogate explainers – in

Appendix A.1 we review it based on our taxonomy. This investigation became the foundation

of our follow-on research in which we modularise surrogates, study rules of their composition,

identify common pitfalls and propose their improved design, all guided by our taxonomy.
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BLIMEY: MODULAR SURROGATE EXPLAINERS

Surrogate explainers play an important role in explainable artificial intelligence since they

are post-hoc, model-agnostic and compatible with a variety of data types. They gained

considerable popularity in recent years following publication of the Local Interpretable

Model-agnostic Explanations (LIME) algorithm, which instantly became their main representat-

ive. While it is the most prominent surrogate explainer, a much broader family of these methods

remains to be explored. Without understanding their inherent properties, such techniques may

result in subpar explanations due to a fundamental mismatch between individual transparency

requirements and properties of the employed explainer. To fill this gap, we propose a principled

algorithmic framework and a meta-algorithm for composing a wide range of tailor-made local

surrogate explainers of black-box models and their predictions in an effort to empower the

community to “build LIME yourself” (bLIMEy).

In particular, we demonstrate how to decompose surrogates into independent and interoper-

able modules – interpretable feature representation, data sampling and explanation generation –

and discuss the influence of these component choices on the functional capabilities of the resulting

explainer. We then investigate individual properties and compatibility of these various building

blocks to discover: a) fragility of occlusion-based interpretable representations of images with

respect to their segmentation granularity and occlusion colour; b) information loss when explain-

ing binary interpretable representations of tabular data with linear models; and c) evidence

suggesting superiority of decision trees as a replacement for both the interpretable representation

and explanation generation steps when dealing with tabular data. We support these findings with

experimental results and a formal derivation presented in Appendix C. With such a high degree of

customisability and numerous pitfalls, this chapter introduces a conceptual framework, outlines

desiderata and provides guidelines for building bespoke surrogate explainers. On a practical
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level, it mainly deals with tabular data; this analysis is complemented in Chapter 5 by a quantit-

ative evaluation of tree-based surrogates applied to images (and by extension text). bLIMEy is

accompanied by an open source implementation distributed within the FAT Forensics Python

package (described in Appendix B), which includes a selection of algorithms for each component

of surrogate explainers.

3.1 The Family of Surrogate Explainers

Achieving state-of-the-art predictive performance with AI techniques typically requires consider-

able time and effort to wrangle data, engineer informative features and fine-tune the machine

learning algorithm of choice. To guide the development, deployment and maintenance of such

systems, researchers and practitioners have established standardised, iterative, multi-stage

processes for knowledge discovery, e.g., KDD [38], CRISP-DM [26, 103, 141] and BigData [6].

However, as Rudin [133] points out, complementary tasks – including explainability (see Sec-

tion 1.5.1) – often lack such an operational framework. While in recent years IML and XAI

research has yielded an abundance of promising algorithms, using them outside of a laboratory

setting tends to be more difficult than portrayed by scientific publications. Similar to a ma-

chine learning pipeline focused on optimising for predictive accuracy, explainers of black-box

models should be treated as modular frameworks requiring configuration and tuning to ensure

meaningful explanations.

Missing Link Our XAI taxonomy introduced in Chapter 2 is a step in this direction, but it

cannot replace a formal process for designing, deploying and maintaining explainers of data-

driven systems. Given the relatively young age and ongoing development of explainability

research, creating a generic XAI process appears beyond our reach at this stage; nonetheless,

limiting its scope to a selected family of explainers is more promising. Such a framework can

prove especially useful for methods that are:

post-hoc can be retrofitted into any predictive pipeline,

model-agnostic work with any black-box system, and

data-universal are compatible with diverse data types such as image, text and tabular

since they can be applied to an array of diverse black boxes. These properties, however, create a

risk of considering such explainers as panaceas that work straight out of the box; yet in reality

they may not always be suitable, leading to inconsistent performance and subpar explanations.

We argue that decomposing and modularising such techniques will improve their customisability,

functionality and overall quality, especially if accompanied by comprehensive design guidelines.

Applying these composition principles and process to post-hoc and model-agnostic approaches, in

particular, will address a major concern with fidelity of their explanations [133].
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While the ultimate goal is to develop an XAI process that is agnostic of the selected explainer,

this chapter forays into designing a principled algorithmic framework and a meta-algorithm

for composing a wide range of bespoke local surrogate explainers of black-box models and

their predictions. Such methods construct an interpretable “surrogate” model, e.g., a shallow

decision tree, to mimic and explain the behaviour of (a part of) an independently trained black

box. Explainers from this family are in general post-hoc, model-agnostic and data-universal, thus

versatile and flexible, but also complex from an engineering standpoint. With many components

to choose from and parameters to tune, supporting the user in making informed choices to build

a custom surrogate explainer that is optimal for a specific task can considerably improve the

quality of the resulting explanations [158] and promote a wider adoption of this set of techniques.

The aforementioned properties of surrogate explainers lower the technological barrier to

their adoption, making them an important and highly impactful technique in XAI and IML.

Surrogates have also the potential to become the go-to explainer by pairing their versatility with

improved accessibility, reliability, accountability and fidelity, all of which stem from enhanced

customisability formalised through a surrogate XAI process. By empowering the users to take

advantage of this modularity, they can compose bespoke configurations tailored to their individual

use cases, building the best possible explainer that the surrogate family has to offer. This process

can be further improved by educating the creators about the available component choices, their

properties, advantages, caveats, inter-compatibility and influence on the produced explanations.

This intuition is in line with the proverbial “no free lunch” theorem – described in Section 1.1.1

with respect to explainability – which, to reiterate, implies that a single explainer cannot

outperform all the other approaches across the board. Finally, addressing all of these challenges

by formalising a surrogate XAI process has the potential of becoming a trailblazer for creating

such frameworks for other explainer families (possibly based on our taxonomy), and ultimately

generalise to XAI and IML as a whole.

LIME The idea of using surrogates to explain a black-box model can be traced back to Craven

and Shavlik [28], who approximated a neural network with a decision tree. It was recently

re-introduced and popularised by Ribeiro et al. [129] through Local Interpretable Model-agnostic

Explanations (LIME), which extend surrogates with the concept of interpretable representations

and gear them towards black-box predictions. While appealing, their sometimes inconsistent

behaviour, instability and low fidelity are a well documented problem [84, 87, 89, 133, 183].

Notably, this body of research is predominantly concerned with such undesired and detrimental

artefacts pertaining to explanations produced with LIME’s official open source implementation1,

thus largely limiting their applicability to this particular software. Such insights are very

informative, however they often do not pinpoint the root causes of the observed issues, with

individual papers [89] addressing some of these challenges with (algorithmic) stopgap measures.

1https://github.com/marcotcr/lime
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For example, Laugel et al. [89] attempted to “fix” LIME for tabular data by replacing its data

augmentation method with an explicitly local sampler. Nonetheless, their experiments used LIME

with disabled discretisation – a step responsible for generating the interpretable representation

of data. This modification unintentionally compromised the integrity of the algorithm, rendering

the two methods incomparable and the reported improvements inapplicable to more general

cases beyond the specific ones presented in their research. This study is not an isolated case; the

prevailing research theme appears to investigate explainers as monolithic tools by probing them

with doctored inputs in order to identify their weaknesses [84, 183], or applying quick-fixes to

their individual algorithmic components without considering the broader implications of such

actions [89]. (A more detailed discussion of relevant work is presented in Section 3.5.) While this

type of (mostly empirical) reports may be of some use, it falls short of a fundamental analysis of

these techniques, thus overlooking their possible modularity and an opportunity to learn how

each individual component operates on its own and in relation to each other, both of which affect

the final “product”. These observations inspired us to look for solutions beyond modifying the

original LIME algorithm, which can be applied to the entire family of surrogate explainers.

bLIMEy LIME is a very popular technique for explaining predictions of black-box machine

learning models and a prototypical IML surrogate, but it is just one possible realisation of the

highly modular family of surrogate explainers. Nonetheless, taking advantage of this observation

in practice is far from trivial on both conceptual and functional levels due to LIME’s design: it

is introduced as a self-contained algorithm and modifying its default behaviour (beyond simple

parameterisation) often requires tinkering with its source code. We address these challenges by

establishing a design process and a complementary meta-algorithm that formalise the task of

building bespoke surrogate explainers, such as LIME, within a unified algorithmic framework.

Our approach, which we call bLIMEy (build LIME yourself), takes advantage of the inherent

modularity of surrogates, enabling systematic development and evaluation of techniques from

their extensive family. In particular, it supports creation of a suite of customisable surrogate

explainers by employing a range of diverse algorithms for each of their modules.

We present bLIMEy as a meta-algorithm for surrogate explainability of tabular, text and

image data, improving upon LIME’s fixed structure – a generalisation outlined in Section 3.2.

It can explain a black box in its entirety by mimicking its behaviour with a simpler, human-

comprehensible model; or instead explain a user-selected prediction by fitting the surrogate in

its neighbourhood. bLIMEy consists of three building blocks: interpretable data representation,

data sampling and explanation generation, each one offering a wide selection of algorithms and

parameterisation possibilities. Since the varying capabilities and restrictions of these components

greatly influence the resulting surrogate explainer, we argue that each of them should be

accompanied by a critical discussion and operationalisation suggestions. The most important

choices and their properties are examined in Section 3.3, which can be treated as guidance for

researchers and practitioners to help them navigate around frequent issues, the most prominent
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of which are summarised below.

Interpretable Data Representation The determinism of this transformation plays an

important role in preventing the interpretable representation from causing the result-

ing explanations to be unstable. This property is also crucial in preserving the local

faithfulness of interpretable representations, especially for tabular data. Its parameterisa-

tion tends to bias explanations since it determines their type, content and quality – we

demonstrate this phenomenon experimentally for image data in Appendix C.1.

Data Sampling Local and class-aware sampling tends to be superior for tabular data,

whereas exhaustive binary sampling has advantages for image and text data.

Explanation Generation The choice of the surrogate model strongly influences the type,

content and meaning of the output explanations. Logical models, such as decision trees,

exhibit many properties that are desirable in this setting, which we demonstrate experi-

mentally for tabular data in Appendix C.2.

While individual properties of each surrogate building block are important, these modules

also need to be compatible with each other to ensure quality and faithfulness of the resulting

explanations – we examine this relation in Section 3.4. In particular, we analyse a popular pairing

of an interpretable data representation with a surrogate model (used to generate explanations)

for tabular data, which is employed by LIME: quartile-based discretisation and binarisation

of numerical features explained with coefficients of a linear model. An analytical derivation of

such explanations for Ordinary Least Squares (OLS) – outlined in Appendix C.3 – demonstrates

that this type of a surrogate has inherent limits to its explanatory power. We then show how

to mitigate this issue by using surrogate decision trees instead. Such a configuration combines

these two independent steps in a way that solves many problems pertinent to the pairing of a

discretisation-based interpretable representation with a linear surrogate.

Since some of our discoveries are based on rather specific theoretical findings, they may not

be applicable to individual use cases, thereby limiting their utility. To address this problem, we

conclude our analysis of surrogate explainers by introducing a range of diverse quantitative

measures of explanation faithfulness. Each one is suitable for a different type of a high-level

evaluation objective such as fidelity of the black-box decision boundary approximation (model-

driven) or the quality of predictive mimicry in the neighbourhood of the explained instance

(data-driven). We conclude our work on modular surrogates in Section 3.6 with a summary of our

key findings and a motivation for further investigation of decision tree explainability (Chapter 4)

spurred by the aforementioned evidence of their wide-reaching advantages across the family of

surrogate explainers.

Since bLIMEy decomposes surrogates into independent functional building blocks, we publish

their open source implementation to complement our conceptual meta-algorithm. For each of

them, we coded a choice of algorithms in Python and released them under the BSD 3-Clause
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licence – which allows commercial use – within the FAT Forensics2 package [159, 160], as

described in Appendix B. Our implementation is accompanied by a collection of on-line “how-

to” guides3 and a hands-on tutorial4 [162] explaining how to compose custom surrogates and

discussing pros and cons of individual component choices. It is also capable of recreating the

LIME algorithm for tabular, image and text data in a way that mitigates most of the issues

reported in the literature [84, 87, 89, 133, 183]. Lastly, it can be used to reproduce all of the

experiments and results presented in this thesis.

3.2 From LIME to bLIMEy: Beyond Linear Surrogates

The versatility of LIME is impressive, especially with respect to compatible types of data – a

significant improvement over preceding explainers that were mostly limited to a single domain.

This generalisation leap is enabled by the introduction of interpretable data representations [129],

which make the explanatory process agnostic of data and their unique characteristics. This

proxy between data and explanations greatly extends the capabilities of surrogate explainers

by making them applicable to images and text in addition to tabular data, while maintaining

a familiar explanation appearance, thereby creating a uniform user experience. This flexibility

(disguised in apparent simplicity) inspired us to investigate the inner workings of surrogate

explainers and push their capabilities to their limits. To this end, we first take a closer look at the

design principles and roles of interpretable representations. Having a functional understanding

of this concept allows us to review individual steps of the LIME algorithm through the lens of

the surrogate framework, hence identify distinct and self-contained operations of this particular

method. These insights contribute to the foundation of bLIMEy, which generalises LIME to a

customisable meta-algorithm that serves as a workflow for building a wide range of surrogate

explainers.

3.2.1 Benefits of Interpretable Representations

Interpretable Representations (IRs) are the foundation of many explainability methods for black-

box machine learning [45, 100, 129], particularly so for surrogate explainers. They facilitate

translating the “language” of ML models – low-level data representations required for good pre-

dictive performance, such as raw feature values and their complex embeddings – into high-level

concepts that are intelligible and relatable for humans. Therefore, IRs establish an interface

between a computer-readable encoding of a phenomenon (collected data) and cognitively digest-

ible chunks of information, creating a suitable medium for conveying explanations. Notably,

the explanation type and its (perceived) complexity are directly controlled by the underlying

2https://fat-forensics.org/
3For example, https://fat-forensics.org/how_to/transparency/tabular-surrogates.html.
4https://events.fat-forensics.org/
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interpretable representation, making IR-based explainers highly flexible, versatile and appealing.

By personalising an interpretable representation we can adjust the content of the resulting

explanations, thus allowing its creators to target a selected audience and use case.

In most cases, the function transforming data from their original domain into an interpretable

representation is defined by the user and built into the surrogate. Uniquely for tabular data,

however, it can be learnt as part of the explanation generation step depending on the choice of the

surrogate model – see Section 3.3.2 for more details. An IR of images, for example, can be created

with a super-pixel segmentation, i.e., partitioning images into non-overlapping segments, each

one representing an object of interest or pieces thereof. Similarly, text can be split into tokens

denoting individual words, their stems or collections of words that are not necessarily adjacent.

Tabular data containing numerical features can be discretised to capture meaningful patterns,

e.g., people in different age groups. Notably, the first two types of representation change facilitate

explainability of sensory data [129]. The operationalisation of IRs also vary across different data

types – tabular, image and text – but their machine-readable format is usually consistent. The

most common approach is to use a binary vector to encode presence (fact denoted by 1) or absence

(foil denoted by 0) of certain human-understandable concepts captured by an interpretable

representation generated for a selected data point. Importantly, choosing the foil may not always

be straightforward or even feasible in certain domains, requiring a problem-specific proxy.

Interpretable Representations for Text and Image Data

The interpretable representations of image and text data come naturally, are intuitive and

share many properties. Images are partitioned into non-overlapping segments called super-

pixels, which are then represented in the interpretable binary space as either present or absent.

Similarly, text is split into tokens that can encode individual words, their stems or collections

of words, the presence or absence of which is expressed in the IR. These two interpretable

representations are relatively easy to generate automatically and, when configured correctly,

capture (computationally) meaningful concepts. Notably, the high dimensionality of raw data

does not impact comprehensibility, as is the case with tabular data where we are generally

confined to three dimensions given the spatio-temporal limitations inherent to human visual

system. Moreover, dimensionality reduction for images and text is unnecessary or even harmful:

removing super-pixels from images is an ill-defined procedure and would result in “holes”,

whereas for text it can be used to discard stop words and punctuation, but such pruning is often

incorporated into the preceding tokenisation step.

Text The interpretable domain based on presence and absence of tokens in text is very natural

and appealing to humans. Individual words and groups thereof encode understandable concepts,

the absence of which may alter the meaning of a sentence, reflecting how humans comprehend

text. A naïve IR can represent text as a bag of words – where each word becomes a token – thereby
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f 0 This

f 1 sentence f 2 has

f 3 a f 4 positive

f 5 sentiment f 6 ,
f 7 maybe f 8 .

(a) Words are the compon-
ents of this particular inter-
pretable representation.
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(b) Explanation captures in-
fluence of the interpretable
components on a prediction.

Figure 3.1: Example of an influence-based explanation of text with a bag-of-words interpretable
representation. Panel (a) illustrates a sentence whose (positive) sentiment is being decided by a
black-box model. The colouring of each word in Panel (a) conveys its influence on the prediction,
with Panel (b) depicting the corresponding magnitudes.

forfeiting the influence of word ordering and the information carried by their co-appearance. We

can easily improve upon that and capture the dependencies between words by including n-gram

groupings. Applying other pre-processing steps, e.g., extracting word stems, can also be beneficial

for the human-comprehensibility of such interpretable representations. Machine processing of

text is a well-established research field [102], providing plenty of inspiration for the design of

appealing IRs.

Once text is pre-processed and tokenised, it is deterministically transformed into the binary

interpretable representation. To this end, a sentence is encoded as a Boolean vector of length

equal to the number of unique tokens in the IR, where 1 indicates presence of a given token

and 0 its absence; the original sentence is therefore represented by an all-1 vector. By flipping

some components of this vector to 0, we effectively remove tokens from the underlying sentence

and create its variations. Notably, the high dimensionality of this IR does not undermine the

comprehensibility of the resulting explanations since altered text cannot have more tokens than

the original sentence. Explanations based on token influence can be overlaid on top of text by

highlighting each token with a different shade of green (positive) or red (negative) given their

respective impact on the explained class – see Figure 3.1 for an example.

Images The interpretable representation of image data operates similarly to text IRs – see

Figure 3.2. Images are algorithmically segmented into super-pixels, often using edge-based

methods [129] such as quick shift [171], but the resulting partition may not convey (cognitively)

meaningful concepts from a human perspective. Semantic segmentation or delegating this task to

the user usually yields better results [150, 151]. Next, the segments are represented as a binary

vector encoding presence (1) or absence (0) of information in each super-pixel; an all-1 vector

corresponds to the original image. However, removing a super-pixel from an image when setting
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(a) Image segments are the
components of this particular
interpretable representation.
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(b) Explanation captures in-
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on Eskimo dog prediction.

Figure 3.2: Example of an influence-based explanation of image data with the interpretable
representation built upon segmentation. Panel (a) illustrates an image that is being classified by
a black-box model. The colouring of each super-pixel in Panel (a) conveys its influence on Eskimo
dog prediction, with Panel (b) depicting the corresponding magnitudes.

one of the interpretable components to 0 is an ill-defined procedure. The most appealing and

semantically-meaningful solution would be to “delete” the content of a segment by occluding it

with another object, akin to Benchmarking Attribution Methods (BAM [181]), or retouching it

in a context-aware manner, e.g., with what is anticipated in the background, thus preserving

the colour continuity of the image. Both of these approaches are intuitive, but they are difficult

to automate and scale since they are mostly limited to image partitions where each super-pixel

represents a self-contained and semantically-coherent object.

Instead, a computationally-feasible proxy is commonly employed to hide the information

carried by the super-pixels: segments are occluded with a solid colour. For example, LIME uses

the mean colour of each segment to mask its content [129] – see Figure 3.3a. Alternatively, a

single colour can be applied to all of the super-pixels that are assigned 0 in the interpretable

domain to cover them up, for example with the black colour as pictured in Figure 3.3b. In

addition to choosing the occlusion colour, we can also adjust the granularity of the segmentation,

effectively increasing or decreasing the size of super-pixels. Both of these parameters influence

the resulting explanations to varying degrees; for example, two different colouring strategies

may yield disparate black-box predictions (probabilities) of the same class for a partially occluded

image as shown in Figure 3.3. We discuss these phenomena in more detail in Section 3.3.2,

supporting our findings with experimental results (presented in full in Appendix C.1), all of

which lead to a collection of recommendations for designing sound interpretable representations

of images.

Tabular Interpretable Representations

In contrast to raw pixel values and word embeddings, tabular data do not require an interpretable

representation to be explainable since their features are often human-comprehensible. However,
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(a) Mean-colour occlusion. (b) Black occlusion.

Figure 3.3: Image occlusion strategy influences the resulting explanations (see Appendix C.1).
The picture shown in Figure 3.2a is classified by a black box as Eskimo dog with 83% probability.
Mean-colour occlusion of all the segments but one (a) results in 77% and black occlusion (b) in
9% probability of the same class, showing that the former approach cannot effectively remove
information from this particular image.

if the explanation is to answer a specific question – as was the case for images and text – using an

IR may be necessary. Continuing with the interpretable sensitivity analysis setting (i.e., computing

influence of selected factors on black-box predictions) for tabular data, we are interested in how

presence and absence of certain binary concepts pertaining to the explained instance affects its

prediction. One approach is to treat the specific feature values of the explained data point as

concepts: if an attribute value of and instance is identical to the value of the same feature for

the explained instance, the concept is present (1), otherwise it is absent (0). While appealing for

categorical attributes, considering each and every unique value of a numerical feature is counter-

intuitive given their inherent continuity. Moreover, doing so may not reflect the corresponding

human thought process, e.g., “high sugar content” in contrast to “70g of sugar per 100g of a

product”, with both 0g and 100g in the latter case encoded as an absent concept in the underlying

IR.

Building up on this observation, a natural extension of such an IR is to consider intervals

of numerical features as interpretable concepts: if an attribute value of a data point is within

the same range as the value of the same feature for the explained instance, the concept is

present (1), otherwise it is absent (0). To this end, tabular data with numerical attributes need

to be discretised, creating a hyper-rectangle partition of the space. The binary interpretable

representation is unique to each hyper-rectangle, hence one of the partitions has to be chosen as

the explanation target. The binary IR of a selected data point is then computed by comparing the

hyper-rectangle it belongs to along every feature (i.e., its discrete encoding) with the equivalent

representation of the explained instance. This procedure results in a binary on/off vector that for

each discrete dimension (captured by the underlying IR) indicates whether the chosen data point

lies in the same partition as the explained hyper-rectangle or not.

Therefore, IRs of tabular data are generated by preserving categorical features and discret-

ising numerical attributes into “categorical” bins, for example, x2 < 5, 5≤ x2 < 7 and 7≤ x2. Next,
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the binary on/off representation is computed based on the data point selected to be explained,

which facilitates expressing influence of each interpretable concept on the black-box prediction of

this instance. Since a binary representation allows to encode only two events for each attribute, it

commonly indicates a feature value belonging to the same (1) or different (0) numerical bin as the

explained data point. For example, if the second feature x2 of the explained instance x̊ is x̊2 = 6.5,

based on the aforementioned bin boundaries any data point x whose second attribute is within

the 5≤ x2 < 7 range is assigned x̂2 = 1 in the underlying binary IR, and 0 otherwise. Notably, if

any feature in the discretised representation has more than two unique values, this procedure

will “merge” some of the hyper-rectangles – see the (x?1 , x?2 ) coördinates in Figure 3.4a, where two

(out of three) partitions of the x2 attribute (y-axis) are assigned x?2 = 0 in the binary IR.

By default, LIME uses quartile-based discretisation followed by the aforementioned binar-

isation procedure. The former step is done once based on a data set chosen for training the

LIME explainer, thus building a reusable binning of numerical features that becomes the found-

ation of all subsequent binary IRs for the problem at hand. While the discretisation is shared

between such interpretable representations, each explained data point receives an individual

IR that is determined by the hyper-rectangle it belongs to. However, the final binary encod-

ings lose information since all of the instances residing in the same partition of the feature

space receive an identical interpretable representation (assuming that the modelled data set

has discretised numerical features). When paired with a surrogate linear model, this IR allows

us to investigate how each attribute value of the chosen data point being within its respective

partition (the concept “switched on”) influences predicting a selected class. (Such insights reflect

the behaviour of the underlying black box, which is captured by its predictions across different

hyper-rectangles.) Therefore, the non-uniqueness of binary IRs within a single data set (given

presence of discretised numerical features) also applies to the resulting explanations, which are

specific to a hyper-rectangle (likely containing multiple instances) rather than an individual

data point – see Figure 3.4 for an example (note that the discretisation presented therein is not

based on quartiles). In Section 3.3.2, we investigate other properties of tabular interpretable

representations obtained through a discretisation step followed by a binarisation procedure; we

propose to replace them with a tree-based partition of the feature space, which achieves better

faithfulness as shown by experimental results outlined in Appendix C.2.

3.2.2 LIME: A Surrogate Explainer of Black-box Predictions

On a conceptual level, LIME strives for low complexity of the surrogate model and high fidelity

of the resulting explanations with respect to the black box; this is achieved by optimising the

objective function O given in Equation 3.1. Complexity Ω, in the case of linear models, is given by

the number of non-zero (or significantly larger than zero) coefficients of the surrogate model g ∈G ,

where G is the set of all the possible (sparse linear) surrogate models. High fidelity is attained by

minimising the loss L (defined in Equation 3.2) calculated between the outputs of the black box
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predicting the ? instance –
and more broadly the x? =
(1,1) partition – as grey.

Figure 3.4: Example of an influence-based explanation of tabular data with the interpretable
representation built upon discretisation and binarisation. Panel (a) illustrates an instance (red
?) that is being predicted by a black-box model. The dashed blue lines mark feature partitions;
grey and green denote two predicted classes; and x? is the binary IR created for the ? data point.
Panel (b) depicts the magnitude of the influence that x?1 : 75 ≤ x1 and x?2 : 40 ≤ x2 < 80 have on
predicting the grey class for the ? instance (as well as any other data point located within the
same hyper-rectangle).

f and the surrogate model g – it measures how well the latter approximates the former.5 In our

notation, x ∈X is a data point described in the original domain, which can be transformed into

an interpretable representation x′ ∈X ′ with a user-defined mapping IR : X →X ′ (the inverse

transformation is denoted by IR−1 if it exists). The explanation locality is enforced by weighting

the individual loss incurred by each instance (drawn from the validation set) with a kernelised

k : R→ R distance L : R×R→ R computed in the interpretable domain X ′ in relation to the

explained data point x′ = IR(x). More details about this optimisation procedure can be found in

the LIME paper [129].

O (G ; f )= argmin
g∈G

complexity︷ ︸︸ ︷
Ω(g) +

fidelity︷ ︸︸ ︷
L ( f , g) (3.1)

L ( f , g; x, X ′)=
∑

x′∈X ′
k

(
L

(
IR(x), x′

))︸ ︷︷ ︸
weighting factor

× (
fc

(
IR−1(x′)

)− g(x′)
)2︸ ︷︷ ︸

individual loss

(3.2)

Here, however, we are interested in the algorithmic approach to this optimisation procedure,

seeking to obtain enough insights to build modular surrogate explainers in practice. LIME

assumes that the explained model is a probabilistic classifier (or regressor) and fits a sparse linear

regression (surrogate) to the interpretable representation of data sampled in the neighbourhood

of the instance selected to be explained, with every sample weighted by its kernelised distance to

5The subscript c in fc – used in Equation 3.2 – indicates the probability predicted for a selected class c ∈ C.
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the explained data point. The target of this regression are probabilities of a user-selected class

predicted by the black box for the augmented data. In this setting6, LIME explains the specified

data point with respect to the chosen class – usually the one assigned to it by the black box – in

terms of interpretable feature influence, which quantifies the positive or negative effect of each

concept being switched “on” as shown by Figures 3.1, 3.2 and 3.4. Therefore, for a data point

x̊ ∈X selected to be explained and a given probabilistic black-box model f : X → [0,1]|C| – where

C is the set of modelled classes and |C| is their number – the vanilla LIME algorithm proceeds as

follows.

1. Determine the human-interpretable representation x̊′ ∈X ′ of the data point x̊ chosen to be

explained, where X ′ denotes the interpretable domain and IR(x̊)= x̊′.

2. Sample data X ′ from the interpretable domain X ′ in the neighbourhood of x̊′.

• For image and text data, this is done by uniformly replacing 1s in x̊′ with values

from the {0,1} set to generate new data points in the “neighbourhood” of x̊. This

step produces variations of the image or sentence being explained, e.g., by randomly

occluding segments in the image or removing tokens (words) from the sentence.

• For tabular data, the sampling is performed on the discretised but not binarised

representation to ensure that each instance is assigned to a unique hyper-rectangle.

The data sample is then transformed into the binary interpretable representation X ′.
(The need for sampling from this intermediate representation is explained in more

details in Section 3.3.3.)

3. Map the sampled data X ′ from the interpretable representation X ′ back to their original

domain X using the inverse function IR−1. (See the discussion of the determinism of this

transformation procedure and operationalisation of the IR−1 function in Section 3.3.2 for

more details.) Expressing the sampled data in the original feature space X is required to

predict their probabilities for a selected class c ∈ C using the black-box model f . Usually,

c is chosen to be the class assigned to the explained data point x̊ by the black-box model

f , i.e., c = argmax f (x̊), however the user can selected a different class. The probability of

class c predicted by the black box f for an instance x is denoted with fc(x).

4. Calculate the distances between the sampled data and the explained instance in the binary

interpretable representation X ′, e.g., using the Manhattan, Euclidean or cosine distance.

Next, kernelise these distances – e.g., using the exponential kernel – to transform them

into proximity scores. These similarity measurements are then used to weight the sampled

data when training the local surrogate model, thus reinforcing locality of the explanation.

6More details about this algorithm can be found in the official LIME implementation linked in Footnote 1.
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5. Use a dimensionality reduction technique, e.g., K-LASSO [36], to limit the number of

the interpretable representation components that are used to compose the explanation

(i.e., train the local surrogate model). This step is especially useful for high-dimensional

tabular data, where it decreases the explanation complexity by only considering the most

prominent interpretable concepts – recall that the original domain X and the interpretable

representation X ′ have the same dimensionality. For image and text data, however, the

feature selection step is omitted as it would result in pictures or sentences with missing

parts, which is undesirable in general. Notably, the high dimensionality of these two data

types is not a problem as the explanation is inherently tied to the selected instance, which

had to be intelligible in the first place. Figures 3.1 and 3.2, depicting a sentence and an

image explanation respectively, are examples of this dependency.

6. Finally, fit a sparse linear regression to the subset of interpretable components selected in

the previous step, weighting each sampled instance according to its kernelised distance from

the explained data point. The target of this surrogate model are the black-box predictions

calculated in step 3, i.e., probabilities of the previously selected class c computed with the

black-box model for the sampled data. The coefficients of this linear regression (weights of

the interpretable features) are then used to express the (positive or negative) influence of

each human-comprehensible concept modelled by the surrogate.

In summary, LIME can be understood as a sensitivity analysis tool that operates on the

interpretable domain X ′, judging the influence of presence and absence of human-intelligible

concepts on a given class in the vicinity of the explained instance based on the behaviour of the

underlying black-box model (i.e., its predictions). For image and text data, such explanations

can be visualised either by merging them with the explained instance or as a self-contained bar

plot – see Figures 3.1 and 3.2. Tabular data, on the other hand, can only be explained through a

bar plot (Figure 3.4), with the exception of trivial cases where the data set has just two features

(even such toy examples may be difficult to interpret for untrained explainees). This disparity

in the presentation of explanations is mainly the result of a fundamental difference between

operationalisation of sensory and tabular IRs: the former does not have to “simplify” the perceived

complexity of the data since they are intelligible in their raw form, whereas the latter deals

with a possibly large quantity of factors that need to be considered individually. While tabular

interpretable representations are not necessary for explaining this type of data, they determine

the meaning of explained concepts, which changes drastically if IRs are abandoned. Therefore,

such an alteration requires additional processing steps to ensure trustworthiness of the resulting

explanations, e.g., data features must be normalised to the same range for the coefficients of the

surrogate linear model to be directly comparable.
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3.2.3 bLIMEy: A Meta-algorithm for Building Modular Surrogate Explainers

The bLIMEy meta-algorithm decomposes surrogate explainers of black-box models and their

(individual) predictions into three distinct steps:

• creation of an interpretable data representation;

• data sampling (augmentation); and

• explanation generation.

Each component is operationally independent, making them technologically cross-compatible

regardless of their implementation details. Nonetheless, certain types of these modules may

not be best suited for one another given that their assumptions, caveats and requirements may

diverge on a conceptual level, thus resulting in subpar surrogates despite functionally sound

building blocks. This duality is an important aspect of composing bespoke surrogate explainers

with bLIMEy and we discuss it in detail throughout the remainder of this chapter.

Interpretable Data Representation This surrogate building block has already been in-

troduced in Section 3.2.1. It transforms the low-level data representation necessary for good

predictive performance (the original feature space or its embedding) into high-level, human-

intelligible concepts (the interpretable representation) used to convey the explanations. Some

surrogate explainers, LIME in particular, require this process to be reversible, and ideally de-

terministic. Interpretable domains tend to be binary spaces encoding presence and absence of

human-comprehensible characteristics found in the data. This step is optional for tabular data,

but necessary for images and text. Nonetheless, an interpretable representation may still be

desired for tabular data since it determines the type of the resulting explanations as well as their

content and cognitive complexity, thus allowing to target a particular audience and use case. It

also implicitly defines the explanation scope: an interpretable representation can be specific to an

individual instance, e.g., segmentation of an image, or it can be universally applicable to all (or a

selection of) instances in a data set, e.g., logical rules for tabular data [45].

Data Sampling This module is responsible for generating data in the neighbourhood of the

instance selected by the user to be explained. This set of data points captures the behaviour of the

black-box model in the vicinity of the explained instance, therefore it determines the scope and

coverage of the explanation. When explaining an individual prediction, data should be sampled

in its direct neighbourhood. Alternatively, the sampling region can be expanded to cover a feature

subspace spanning instances considered similar by the user, thus generalising the explanation

from a prediction to a cohort. It is also possible to explain the entire black box by simplifying its

decisive process with a (global) surrogate mimicking its behaviour, which requires training it on

a sample that represents the whole data distribution.
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For images and text, sampling must be performed in the interpretable domain since doing so

in the raw feature space is either ill-defined, e.g., sampling individual pixel values for an image,

or lacks meaningfully correspondence to human-intelligible concepts. Tabular data, however, can

be sampled in either of the domains, which provides a greater control over the explanation scope;

when sampling in the original domain, this procedure explicitly defines the region from which data

points are drawn. Regardless of the domain, the sampling procedure does not necessarily have to

be random, especially if it is executed for a low-dimensional binary interpretable representation,

in which case generating a complete set of instances is a viable alternative. The last step of this

building block is predicting the data sample with the black-box model being explained to capture

its behaviour in the decision space covered by these instances. If the data were sampled in the

interpretable domain, they first need to be converted back to the original feature space using the

inverse of the interpretable representation transformation function.

Explanation Generation The final building block of a surrogate explainer is an inherently

transparent model, which is trained on the interpretable representation (if used) of the sampled

data and a selected class of their black-box predictions. The built-in transparency mechanism

of the employed surrogate model provides insights into the behaviour of our black box within

the space encompassed by the data sample and expressed in terms of human-understandable

concepts. In particular, the type of surrogate model determines the category of our explanations

and the medium through which they can be delivered to the explainee. As we have seen with

LIME, a binary interpretable representation encoding presence and absence of human-intelligible

concepts in data paired with a surrogate linear model produces explanations based on influence

of these concepts on predicting a specific class for a selected instance. For image and text data,

these can be visualised in both the original data domain and as a self-contained bar plot, however

tabular data only support the latter explanation type. A decision tree surrogate, on the other

hand, can provide a diverse range of explanations – outlined in Chapter 4 – which, among

others, include textualisation of counterfactual statements [169]. This building block can also

alter the explanation characteristics by pre-processing the data used to train the surrogate model,

e.g., explanation sparsity may be enforced by applying a dimensionality reduction technique.

Furthermore, this step provides an opportunity to fine-tune the explanation scope by focusing the

surrogate leaning process on a selected subset (region) of the data sample. To this end, the data

can be weighted according to the explainee’s interests when training the surrogate, for example,

using similarity scores computed with kernelised distance between the explained instance and

the sampled data (in either representation).

In summary, bLIMEy is a modular meta-algorithm built upon three components: interpretable

representation, data sampling and explanation generation. Our framework – captured by Al-

gorithm 3.1 – enables creation of bespoke surrogate explainers by introducing a sound engineering

process that addresses multiple challenges arising for both individual building blocks and their
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Algorithm 3.1: bLIMEy meta-algorithm. Sampling (Step 2) and weighting (Step 5) are
done in the interpretable domain X ′. The order of Steps 5 and 6 – which are optional –
can be reversed.

Data: • instance to be explained x̊ • class to be explained c • black-box model f
Result: explanation e

/* Interpretable Data Representation */
1 x̊′ ← IR(x̊);
/* Data Sampling */

2 X ′ ← sample_data(x̊′, scope= {local, cohort, global}); /* Performed in X ′ */
3 X ← IR−1(X ′);
4 y← fc(X );
/* Explanation Generation */

5 w ← k(L(x̊′, X ′)); /* Get weights via kernelised distance */

6 X
′ ← reduce_dimensionality(X ′);

7 g ← fit_surrogate(X
′
, y, sample_weight= w);

8 e ← extract_explanation(g);

custom compositions. To this end, we identify roles of each module and discuss its influence on the

resulting explanations, in both cases looking for the most universal techniques and best practices

when choosing individual components and welding them together. Furthermore, we show how to

generate insights of varying complexity by adjusting the content of explanations and selecting

their appropriate type to present the explainee with useful artefacts such as interpretable feature

influence and counterfactuals, among many others.

blIMEy neither directly improves upon LIME nor competes with it since our method is a

conceptual approach to building surrogates and not an explainer per se. However, it provides

guidance for constructing a local surrogate explainer of black-box predictions that is based on

a binary interpretable representation and a sparse linear model, which potentially improves

on vanilla LIME and addresses its shortcomings. In particular, we propose to use an explicitly

local sampler applied to the original domain of tabular data, and to generate a complete sample

in the interpretable representation of sensory data. We also show how to reduce instability of

LIME by replacing the quartile-based IR of tabular data with a feature space partition extracted

from a decision tree, and changing the colouring strategy of the occlusion-based interpretable

representation of images from mean colour to a single colour, e.g., black. We discuss these

alternative building blocks individually in the following section, after which (Section 3.4) we

inspect their interactions and influence on the resulting explainers in addition to reviewing

methods for evaluating quality of surrogates.
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(a) Generic validation of surrogate explainers, such
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(b) Each surrogate component should be evaluated
separately based on the intended use case.

Figure 3.5: Validating a surrogate explainer as a whole may be insufficient (a) given its diverse
building blocks and their parameterisation. Instead, each individual component – data sampling,
interpretable representation and explanation generation – should be evaluated on its own (b).

3.3 bLIMEy Modules

When composing a surrogate with bLIMEy, every module choice and parameterisation may

limit the overall functionality of the resulting explainer. Moreover, fixing one building block can

restrict the range of algorithms supported by other modules on a conceptual level – while they

may be mechanistically compatible, their conjoined operation can be detrimental to the quality of

explanations. This section discusses (often unintended) consequences of choosing a particular

algorithm for each individual bLIMEy module (interpretable representation, data sampling

and explanation generation) and offers best practices for this selection process. Throughout our

discussion we refer to LIME – given its prevalence among surrogate explainers – identifying its

possible sources of undesired behaviour and suggesting alternative modules that address many of

such issues. We support our investigation with an in-depth theoretical analysis, empirical evidence

and a collection of experimental results, providing a comprehensive view on the challenges of

choosing appropriate surrogate building blocks.

3.3.1 The Challenge of Building Surrogate Explainers

Given the complex nature of end-to-end surrogate explainers, many of them are built from generic

and versatile components, focusing on the overall performance of such tools and not delving into

selection and optimisation of their individual building blocks – see Figure 3.5. Understandably,

these explainers seek to automate the whole process, which requires modules that can be operated

without human guidance or intervention, thereby enabling their initialisation, deployment and

evaluation at scale. This hands-off attitude is particularly detrimental to interpretable data

representations, which tend to be based on (quantile) discretisation for numerical features of

tabular data, (edge-based) super-pixel segmentation for images (e.g., quick shift [171]) and

(whitespace-based) tokenisation for text. This design choice can be easily justified since creating

an IR that is intelligible is often user- and application-dependent or even unique to the explained

data point, therefore scaling it up is impractical without a concrete use case. However, the core
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premise of interpretable representations is to encode concepts that are meaningful to the target

audience, and so relying upon computer-generated IRs without understanding their behaviour

and properties may be counterproductive.

As a result the important task of choosing appropriate surrogate components is often over-

looked in the literature. It is common to assume that a particular module is given or to reuse

one that was introduced in prior work without reviewing its suitability, (often implicit) assump-

tions, properties and caveats [84, 89, 183]. Such an attitude hampers creation of novel surrogate

components and limits the scope of such explainers to measuring the influence of interpretable

components on black-box predictions. Nonetheless, this type of sensitivity analysis geared to-

wards explainability comes with numerous unaddressed issues, many of which originate from

misconfiguration of individual surrogate building blocks. For example, to discern how a particular

interpretable component (encoded by the IR) influences a black-box prediction, it needs to be

“removed” and the resulting change in the model’s prediction quantified. Many black-box models,

however, cannot predict incomplete instances, especially for tabular and image data, in which

case this procedure becomes ill-defined and has to be replaced with a proxy – such as segment

occlusion for images – possibly leading to biased and untrustworthy explanations.

The consequences of treating surrogates as end-to-end explainers without appreciating their

individual modules reach beyond the aforementioned undesired behaviour of the interpretable

representation, which is just one component needed to build them. When it comes to data

sampling, it may be beneficial to perform this step in different representations depending on

the data type. Recall that it is necessary to sample from the binary IR for sensory data (images

and text), whereas for tabular data it can be done in either the interpretable or the original data

domain. In particular, by sampling in the binary IR regardless of the data type, we forfeit control

over locality of this procedure for tabular data – it was implicit for images and text (an individual

image or sentence), however for tabular data it spans all of the hyper-rectangles, i.e., the entire

feature space. Moreover, because of the ill-defined inverse transformation from the interpretable

into the original domain of tabular data, it is difficult to avoid introducing explanation instability

in this step; evaluating the quality of sampled data is also uncommon. The significance of the

explanation generation steps is often overlooked as well – it defines the type of explanations and

their presentation medium in addition to imposing limitations that are inherent to the chosen

surrogate model, e.g., the assumption of feature independence for linear models. Notably, some

types of local models may have benefits spanning multiple surrogate building blocks, for example,

a tree-based surrogate can unify the interpretable representation and explanation generation

steps for tabular data, thus decreasing the explainer’s complexity and introducing explanation

types such as counterfactuals.

The versatility and adaptability of surrogate explainers, however, come at a cost: these tools

are complex entities suffering from overparameterisation, which often manifests itself in multiple

contributing sources of instability and low fidelity of the resulting explanations [84, 87, 133, 183].
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Nonetheless, by carefully choosing and configuring surrogate components we can alleviate most,

if not all, of such issues. To this end, this section analyses individual building blocks in isolation;

a view complemented by Section 3.4, which investigates how they work together and interact.

Understanding both of these aspects is important as, for example, certain pairings of interpretable

representations and surrogate model types can magnify otherwise insignificant problems or even

render the entire explainer unreliable, especially when the implicit assumptions underpinning

these components are at odds. These two areas of research are mostly under-explored for surrogate

modules on their own and as a part of an explainer, potentially leading to sub-optimal design

choices and inadequate explanations.

3.3.2 Interpretable Data Representation

Interpretable representations – introduced in Section 3.2.1 – are arguably the most import-

ant component of surrogate explainers. To reiterate, they translate the low-level data domain

necessary for good predictive performance into high-level human-intelligible concepts used to

communicate the explanation. In particular, the explanation type and its cognitive complexity

are directly controlled by the IR, allowing to target a particular audience and use case. These

ramifications make the task of choosing an appropriate interpretable representation particularly

important, but many explainers that rely on IRs overlook their merit and fall back on default

solutions, which may introduce implicit assumptions, degrading the explanatory power of such

techniques. To address this problem, we study properties and limitations of interpretable rep-

resentations that encode presence and absence of human-comprehensible concepts with binary

vectors, discussing their strengths and weaknesses for tabular, image and text data.

Our findings are a stepping stone towards building custom IRs that can be generated auto-

matically while still representing (computationally) meaningful concepts and yielding faithful

explanations. Among others, we discuss the implicit assumption of the explanation locality that

is detrimental to its completeness, and a transformation between the original and interpretable

domains that is non-deterministic in the opposite direction, which introduces unnecessary in-

stability of the explanation, reducing its fidelity and soundness [149, 158]. We also touch upon

discretisation-based IRs for tabular data, which impose an axis-parallel, grid-like structure,

focusing on approaches such as quartile binning and feature space partition learnt with decision

trees to better understand importance of black-box decision boundaries and possible information

loss. Furthermore, we investigate implicit assumptions and consequences of using proxies when

it is impossible to remove information from data as imposed by an IR. We support our claims

with a range of experimental results that illustrate principles of designing reliable interpretable

representations. In particular, we show how:

• parameterisation of the information removal proxies for images – such as segmentation

granularity and occlusion colour – links to explanation volatility; and
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Binary  
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[1, 1, ..., 1, 1]

(a) Transformation from the original domain into the interpretable representation X →X ′.

[0, 1, ..., 0, 0]

Original 
Domain

(b) Transformation from the interpretable representation into the original domain X ′ →X .

Figure 3.6: Example of interpretable representation transformation in both directions for image
data. Panel (a) depicts steps required to represent a picture as a binary on/off vector, and Panel (b)
illustrates this procedure in the opposite direction. Both transformations are deterministic given
a fixed image segmentation and occlusion colour.

• purity of feature space partition with respect to black-box predictions for tabular data

affects explanation faithfulness.

This section provides an overview of our experimental findings, with additional results and

derivations presented in Appendices C.1 and C.2.

Understanding Interpretable Representations and Their Properties

The interpretable representations of image and text data (introduced earlier in Section 3.2.1)

are implicitly local – they are only valid for the data point (image or sentence) for which they

were created. Another shared property is determinism of the IR transformation procedure in both

directions (within the scope of a single instance); there is a one-to-one correspondence between

a data point and its interpretable representation given that the IR captures the structure of

the explained instance (image or sentence) and operates within a fixed framework (segment

occlusion with a predetermined colour or token removal) – see Figure 3.6. Transforming between

the two domains deterministically therefore requires the IR to memorise adjacency of segments

and their original pixel values for images, and order of tokens and their pre-processing for text.

Notably, this property helps to ensure uniqueness of explanations, which is very important for

their stability, hence preserving explainees’ trust [133, 149]. Out of the two IRs, the one for text

has the advantage of allowing the interpretable components (tokens) to be truly removed from an

explained instance (sentence) without a proxy that may be inconsistent with human perception

81



CHAPTER 3. BLIMEY: MODULAR SURROGATE EXPLAINERS

of meaningful changes applied to the relevant data domain. In this case, however, it is more of a

property of the underlying predictive model rather than the IR itself – text classifiers are more

flexible and do not assume input of a fixed length, while vision models cannot handle “missing”

pixels.

Interpretable representations should encode concepts that are meaningful to humans as they

are the foundation of the resulting explanatory artefacts. For image and text data, this is achieved

by using (pre-processed) words instead of letters and ensuring that picture segments coincide

with visually meaningful entities, e.g., ears, nose and tail in a dog photograph. For tabular data,

instead of using each individual feature value of the explained instance as interpretable concepts,

numerical attributes are discretised and categorical features can be optionally grouped, which

is followed by binarisation – refer to Section 3.2.1 for more details. However, selecting the bin

boundaries when discretising numerical attributes is non-trivial and biases the explanation akin

to the influence of the segmentation granularity and occlusion colour on image explanations. Since

generic, computer-generated interpretable representations may not capture meaningful concepts,

explainee-driven interactive personalisation of IRs is an interesting avenue of research in this

direction on the crossroads of interpretable ML and Human–Computer Interaction [151]. It has

the potential to formulate guidelines for the design and operationalisation of IRs for individual

applications – see Chapter 6 – but such a solution comes at the expense of a user-in-the-loop

architecture that poses challenges for automation and scaling.

We can address this problem by borrowing from both approaches: building interpretable

representations algorithmically with tools that are manually tuned (off-line) for each individual

explanatory task. This research direction can create a considerable impact as it allows for auto-

matic creation of IRs that encode (computationally) meaningful concepts. While interpretable

representations for images and text naturally come with many of the desired properties, pre-

serving them for tabular data is challenging – an observation that we explore throughout the

remainder of this section. Notably, an IR defines the question that the explanation answers

and restricts the types of explanation that can intelligibly communicate this information, e.g.,

importance and influence of interpretable concepts, counterfactuals or what-if statements. By

understanding characteristics and behaviour of each interpretable representation and its influ-

ence on the resulting explanation – both on its own and in conjunction with a particular type of a

surrogate model (see Section 3.4.1) – we can uncover the theoretical properties of such explainers

and assess their applicability and usefulness for a problem at hand.

Faithfulness

Interpretable representations of image and text data are computationally faithful since they are

implicitly local, i.e., constructed with respect to the individual instance being explained. On the

other hand, building IRs of tabular data that are conceptually equivalent and exhibit similar

properties is an open challenge, which in the best case would require domain experts to manually
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ŷ = (1, 0)

y′ = 1
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(a) Distribution-aware discretisation.

x′ = 0
x̂ = (1, 0, 0, 0)

x′ = 2
x̂ = (0, 0, 1, 0)

x′ = 1
x̂ = (0, 1, 0, 0)

x′ = 3
x̂ = (0, 0, 0, 1)

y′ = 0
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(b) Class-aware (black-box predictions) discretisation.

Figure 3.7: Discretisation is the main building block of interpretable representations of tabular
data. It can either be learnt based on data features alone – Panel (a) – or additionally consider
their black-box predictions (background shading) – Panel (b).

partition the attribute values to create meaningful concepts. Nonetheless, when composing them

algorithmically, two factors determine their quality and faithfulness: the data point selected to

be explained – which specifies the reference hyper-rectangle and neighbourhood – and the ability

of the discretisation algorithm to locally approximate the black-box decision boundaries. Since

the former is chosen by the explainee, only the latter can be controlled, making the discretisation

either explicitly global, i.e., learnt with respect to a whole data set, or local, thus focusing on a

specific region. Moreover, each type can either observe just the data distribution, or additionally

take into account their black-box predictions, presenting us with two distinct approaches:

distribution-aware discretisation – Figure 3.7a – is based on the density of data in the

local or global region being explained, e.g., quantile discretisaton; and

class-aware discretisation – Figure 3.7b – partitions data according to black-box decision

boundaries confined within the local or global region being explained.

Since the predominant role of local surrogate explanations is to approximate and simplify

the behaviour of a black box near a selected instance, the latter type should be preferred. It

is a stepping stone towards representing human-intelligible concepts that are coherent with

predictions of the investigated model, thus producing faithful and appealing insights. However,

to the best of our knowledge, class-aware discretisation approaches have not been explored in

the XAI and IML literature. Computationally, their objective can be expressed as maximising

the purity or uniformity of each hyper-rectangle with respect to the black-box predictions of

data that it encloses, weighted by the proportion of these data to account for their uneven

distribution across partitions. For example, for probabilistic and regression black boxes this

criterion can be calculated as the Mean Squared Error (MSE), and for crisp classifiers as the

Gini impurity. This observation suggests that learning interpretable representations with
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(a) Weighted average of the Gini impurity computed for IRs generated for the wine data set (classification).
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(b) Weighted average of the mean squared error computed for IRs generated for the housing data set (regression).

Figure 3.8: Interpretable representations based on decision trees result in purer hyper-rectangles
(y-axis, lower is better) and fewer encodings (x-axis) when compared to equivalent quartile-based
IRs, i.e., they are more flexible and expressive. The number of unique encodings used by quartile-
based IRs is constant for a data set and is displayed in the legend (presented as the number
of encodings used, out of the theoretical limit supported by the representation); whereas for
tree-based IRs, it is equivalent to the number of leaves, which is recorded on the x-axis. See
Figure C.2 and Appendix C.2 for more details.

decision trees (specifically, the data space partitions they create) is a promising approach to

optimising the aforementioned objective. Our experiments to assess purity of IRs generated with

various methods – summarised in Figure 3.8 – support this claim, with a more detailed analysis

presented in Appendix C.2. Notably, while tree training procedures tend to be greedy, alternatives

that consider multiple features at any given iteration could improve the quality of the resulting

IRs even further.

Similar to images and text, the binary interpretable representation of tabular data is specific

to the explained data point and, more generally, its hyper-rectangle. Nonetheless, the underlying

discretisation can be reused for explaining any instance from the same data set. While a common

practice [129], such an approach undermines faithfulness of the resulting explanations – the goal

is to produce a local explanation of the selected data point, hence the discretisation should be

truthful within the explained neighbourhood. Neither globally (based on an entire data set) nor

locally (based on a local data sample) faithful discretisation can capture uniqueness of a black-box

decision boundary universally well for all the possible data subspaces [158]. Therefore, reusing

the same discretisation to generate individual IRs for tabular data can be compared to creating a
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(d) Tree-based discretisa-
tion for a local sample.

Figure 3.9: Interpretable representations learnt for the two-dimensional two moons data set.
A global (a&c) or a local (b&d) data sample is used in combination with a quartile (a&b) or
a decision tree-based (c&d) discretisation. Local approaches (b&d) are better at capturing the
intricate behaviour of the black-box decision boundary in the neighbourhood of the explained
instance (black dot). Additionally, tree-based interpretable representations (c&d) require less
partitions and are more faithful since they account for the black-box predictions.

super-pixel partition of a specific image and reapplying it to other, unrelated images, yielding

conceptually meaningless interpretable representations. This phenomenon can be observed in

Figure 3.9, which depicts local – Panels (b) and (d) – and global – (a) and (c) – discretisations

based on quartiles and decision trees. Additionally, Figure 3.9d shows how trees, which account

for the black-box predictions, can faithfully approximate a decision boundary with a relatively

few partitions in the explained neighbourhood.

Information Removal and Loss

Any operationalisation of interpretable representations requires “switching off” human-intel-

ligible concepts, which translates to removing tokens for text, however a similar procedure is

impossible for image and tabular data, where a proxy is needed. To this end, image segments

are often occluded with patches of a solid colour, but such a strategy comes with its own implicit

assumptions and limitations, which are often overlooked. For example, LIME [128] replaces super-

pixels with their mean colour to remove their content without acknowledging the unintended

consequences of this choice. In such a setting, segments that have a relatively uniform colour

gamut may, effectively, be impossible to occlude; this is especially common for segments that are in

the background or out of focus, e.g., bokeh and depth-of-field effects. Furthermore, whenever the

segmentation coincides with objects’ edges or regions of an image where colour continuity is not

preserved (which is common for edge-based segmenters), occluding super-pixels with their mean

colour causes (slight) colour variations between adjacent segments. These artefacts preserve

edges in a (partially) occluded image, and they often retain enough information for a black-box

model to correctly recognise its class (for an example refer back to Figure 3.3). Segmentation

granularity is also important: the smaller the segments are, the more likely it is that their colour
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(a) Mean squared error for a 5-segment partition.
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(b) Mean squared error for a 40-segment partition.

Figure 3.10: Mean squared error (y-axis) calculated between the top prediction of an image
(probability estimate) and predictions of the same class when progressively occluding a higher
number of segments (x-axis) with a given colouring strategy. The panels show that the mean
occlusion strategy is not as effective at hiding information from the black box as using a single
colour for all of the super-pixels (regardless of the colour choice). Similarly, randomising the
occlusion colour for each individual segment does not seem to have the detrimental effect observed
for the mean colouring. The plots also indicate that when an image is split into more segments,
the ineffectiveness of the mean colouring approach gets magnified due to the increased colour
uniformity of individual super-pixels – a “blurring” effect. See Appendix C.1 and Figure C.1 for
more details.

composition is uniform given the “continuity” of images, i.e., high correlation of adjacent pixels,

resulting in a similar effect as above.

Since most of these issues are consequences of using the mean-colour occlusion, it may

appear that fixing a single masking colour for all of the segments would eradicate some of these

problems. Such an approach hides the edges between occluded super-pixels and discards their

content instead of just “blurring” the image, however the edges between occluded and preserved

segments remain visible. Moreover, the choice of the masking colour may impact the explanations

themselves regardless of the colouring strategy. This particular type of proxy for removing

information from image segments implicitly assumes that the black-box model is neutral with

respect to the occlusion colour, i.e., none of the modelled classes is biased towards it. Adjusting

the granularity of the segmentation also plays an important role given the high correlation

of adjacent super-pixels. We support these observations with a range of experiments done for

occlusion-based interpretable representations of images, the results of which are detailed in

Appendix C.1 and summarised in Figure 3.10. In particular, they exemplify the degree to which

the segmentation granularity as well as the occlusion strategy and colour affect the resulting

explanations.

For tabular data – in contrast to text and comparably to images – removing information

from the original representation by setting a member of the binary IR to 0 is not possible and

requires a proxy. Within our operationalisation of the interpretable representation of tabular data,
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Figure 3.11: Some hyper-rectangles (x′, y′) – created with discretisation – become indistinguish-
able in the binary interpretable representation (x?, y?) of tabular data. The ? marker indicates
the explained instance and the background shading illustrates unique binary (IR) encodings.

“switching off” an interpretable component is equivalent to placing the value of the corresponding

numerical feature outside of the range encoded by this concept. Similarly, for categorical features

this step is equivalent to choosing any other value not encoded by the corresponding interpretable

concept. This procedure ensures diversity of data in the explained neighbourhood at a high price

of introducing two sources of randomness when manipulating the IR, which is a consequence of

information loss incurred by non-deterministic transformations between various data domains.

The intermediate discrete representation of a tabular IR uniquely encodes each hyper-

rectangle – see the (x′, y′) coördinates in Figure 3.11. However, the same is not true for the

binary interpretable representation if any categorical feature has more than two unique values

or any numerical attribute is partitioned into more than two intervals. In such cases, the trans-

formation between these two representations loses information as depicted by the background

shading and the (x?, y?) coördinates in Figure 3.11. For each of these binary features, 1 is as-

signed to the partition that contains the explained data point and 0 to all the other intervals,

effectively making them indistinguishable. Similarly, information is lost when transitioning from

the original representation of data into their discretised form: each hyper-rectangle, which has

unique coördinates in this domain, contains multiple data points that become indistinguishable –

see Figure 3.7 for reference. These two many-to-one transformations – needed to create an inter-

pretable representation of tabular data based on discretisation – contribute to non-determinism,

which is discussed below.

The impossibility to distinguish data belonging to different hyper-rectangles in the binary

interpretable representation is particularly detrimental to capturing the complexity of a black-

box decision boundary. While the underlying discretisation may have closely approximated

its intricacies, this information can be lost when transitioning into the binary representation,

especially if the decision boundary runs across hyper-rectangles that were merged in this process.

For example, consider the discretisation shown in Figure 3.7b assuming that the explained
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Data 
Discretisation

Binary 
Representation  

 

(a) Transformation from the original domain into the interpretable representation X →X ′.

Original 
Domain 

 

(b) Transformation from the interpretable representation into the original domain X ′ →X .

Figure 3.12: Example of interpretable representation transformation in both directions for
tabular data. Panel (a) depicts the discretisation and binarisation steps required to represent
a data point as a binary on/off vector, and Panel (b) illustrates this procedure in the opposite
direction. The forward transformation is deterministic given a fixed discretisation (binning of
numerical features), however moving from the IR to the original domain is non-deterministic and
requires random sampling.

instance resides in the (x′, y′) = (1,1) hyper-rectangle – top row, second from the left. In the

binary representation, the remaining top-row hyper-rectangles (0,1), (2,1) and (3,1) would be

grouped – akin to the process depicted by the background shading in Figure 3.11 – thus losing

the information that the first one belongs to the red class and the latter two to the green class.

Transformation Determinism

A direct consequence of the information loss suffered by tabular data is non-determinism of

the transformation from the interpretable representation to the original data domain – see

Figure 3.12 – which increases the volatility and instability of the resulting explanations. Note

that this is not the case for image and text IRs, which we have discussed earlier – refer back to

Figure 3.6. Recall that a sentence can be easily represented as a binary vector encoding presence

or absence of unique word-based tokens and such a binary vector can be then deterministically

transformed back into a sentence. In particular, by memorising the skeleton of the sentence, i.e.,

the pre-processing applied to words and their ordering, we can fully reconstruct the original text

structure without selected words. Similar reasoning applies to images where a binary vector

indicates whether a super-pixel should be occluded or preserved; capturing the location, adjacency

and pixel values of each segment therefore allows us to deterministically recreate the original

image without selected parts (through occlusions).

88



3.3. BLIMEY MODULES

To avoid the (unnecessary) IR randomness adversely affecting the stability of explanations

produced by surrogate explainers, transforming the data from their original domain X into an

interpretable representation X ′ and the reverse procedure must both be deterministic, i.e.,

the mapping between X and X ′ has to be a one-to-one correspondence. However, transitioning

from the original into a discrete representation for tabular data is a many-to-one operation if the

underlying data set contains numerical attributes – see Figure 3.12. Furthermore, transforming

the discrete representation into a binary IR is also a many-to-one mapping if the former has more

than two unique values for any discretised feature. The original data point therefore cannot be

reconstructed after passing through these two steps.

Recall that surrogate explainers tend to sample data from the (binary) interpretable repres-

entation, which implicitly introduces locality of these instances and the resulting explanations.

While reasonable for images and text, following the same procedure for a tabular IR entails re-

versing the binary sample back to the original domain, which requires random sampling, making

this transformation non-deterministic [152, 158]. This process involves, first, choosing at random

one of the concatenated hyper-rectangles if the binary component is 0 (1 uniquely identifies a

hyper-rectangle); next, sampling a numerical value from the range defined by this partition,

e.g., using a Gaussian distribution (with clipping at bin boundaries) fitted to the (training) data

enclosed by this hyper-rectangle (cf. Figure 3.12b). The value of a categorical feature, on the other

hand, is uniquely identified by a hyper-rectangle, making the second – but not necessarily the

first – part of this transition deterministic. Notably, the (numerical) sampling step embedded in

this procedure is the unidentified source of randomness reported by Zhang et al. [183].

Image and text data require manipulating the binary IR since sampling from raw text or

pixels is semantically an ill-defined procedure. However, tabular data can be augmented in their

original representation, providing an opportunity for an algorithmic workaround of the non-

deterministic transformation from X ′ to X . Data drawn from the original domain can be directly

predicted by a black box to capture its behaviour, and then easily transformed into a discrete and

binary representation (the IR) to train a surrogate model. Doing so no longer requires the X ′ to

X transition, but in such a setting this procedure can be made (algorithmically) deterministic

by memorising the correspondence of sampled data between different representations when

executing the forward (X → X ′) transformation. This matching can be compared to storing

segment adjacency and original pixel values for images or a sentence skeleton and word pre-

processing for text.

Therefore, by sampling in the original domain and memorising different representations of

each instance, we avoid using the non-deterministic inverse IR transformation of tabular data,

hence reduce randomness and improve stability of the resulting explanations. Importantly, if

a need for this step arises, we can always exploit the data point mapping, making the X ′ →X

transition algorithmically deterministic. Nonetheless, this sampling strategy forfeits the implicit

locality (albeit weak for tabular data) achieved by operating directly on the binary representation,
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therefore the substitute sampling algorithm should be explicitly local to capture the explained

subspace in detail [158]. While the binary representations of images and text are local, this is not

entirely the case for tabular data where the all-1 vector encodes the explained hyper-rectangle

but the remaining partitions span the entire feature space. In this scenario, additional measures

to enforce explanation locality may be useful, for example, it can be controlled by weighting the

sample by their closeness to the explained instance (in the original domain X ).

3.3.3 Data Sampling

The sampler and its configuration determine the breadth and scope of data that the surrogate

model is trained upon, which affects the faithfulness of the explanations. Recall that images

and text require us to sample in the interpretable domain, which makes the augmented data

implicitly local and of relatively small dimensionality since they are drawn from a binary space.

In particular, a binary domain with d dimensions has |Bd| = 2d unique elements, therefore for

small IRs it is often more beneficial to use the entire data space instead of a random sample. In

our experience, images are usually partitioned into roughly 10 interpretable concepts, and plain

English sentences have 15–20 words on average [29] including stop words; a random sample of

10,000 instances is a common practice [129] but an IR with 13 concepts has only 213 = 8,192

unique data points. This observation suggests that generating a complete sample is an attractive

alternative to random sampling, helping to improve the fidelity of surrogates, as we show in

Chapter 5.

For tabular data, a similar approach – sampling in the binary interpretable domain – is

feasible but impractical since the number of interpretable features is proportional to the number

of attributes in the original domain, which tends to be high. Moreover, the non-determinism of

the X ′ →X transformation procedure and problems with sample locality are detrimental to the

uniqueness and comprehensiveness of the augmented data, making this strategy less attractive.

Instead, sampling can be performed in the original data domain, however the algorithm should

guarantee a diverse and explicitly local sample. Generating data that extensively cover the

neighbourhood of the explained instance helps to improve fidelity of the surrogate model, and

ensuring that they span multiple classes (or a diverse range of class probabilities/regression

values) allows to discover nearby decision boundaries, thereby fit a meaningful local surrogate.

The former often depends on the parameterisation of the sampler, whereas the latter requires an

algorithm that accounts for the data labels or their black-box predictions, with Mixup [182] and

Growing Spheres [88] being good candidates. The sample diversity can be measured with the

Gini impurity and mean squared error respectively for crisp and probabilistic classifiers (and

regressors), which is an approach similar to monitoring purity of tabular IRs; however, here we

strive for diversity, not purity.

Figure 3.13 explores the behaviour of different sampling strategies applied to the original

domain of the Iris data set [41] (tabular), exemplifying the importance of choosing an appropriate
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Figure 3.13: Effect of different sampling algorithms on the locality and diversity of the sample
when applied to the original domain of the Iris data set. The panels are plotted along sepal length
(cm) on the x-axis and sepal width (cm) on the y-axis, and the black dot represents the explained
instance for which the sample is generated. Red, blue and green markers – the three classes
of the Iris data set – capture black-box predictions. These experiments show the advantage of
sampling algorithms that are aware of the class distribution – (c) Mixup and (d) normal class
discovery [160] – which allows them to generate a diverse sample that discovers the local decision
boundary. This information helps the surrogate to better approximate the behaviour of the black
box in the explained neighbourhood, thus improving explanation faithfulness.

sampler when building surrogate explainers. It plots the data along two dimensions – sepal

length (cm) on the x-axis and sepal width (cm) on the y-axis – to facilitate easy visual comparison.

The three marker colours indicate the setosa, virginica and versicolor classes of the Iris data

set. We initialise each sampler with the full data set and generate 150 instances around the

explained data point, which is represented by the black dot. Some of the data samplers can have

difficulties locating the closes black-box decision boundary when the explained instance is in

a high-confidence region, which may be common for a large number of attributes due to the

curse of dimensionality – see Panels (a) and (b) in Figure 3.13. When the black-box predictions

of the generated data are relatively uniform, fitting a local surrogate model may be impossible

or it may under-perform, thereby providing misleading or meaningless explanations. Another

important aspect of the sampled data is their class imbalance, which needs to be accounted for

when training the surrogate predictor.

Sampling from the original domain of tabular data can be improved further by adapting

active learning algorithms. Such a strategy can explore the space around the explained instance

according to some diversity criterion, treating the black-box model as an oracle, thus reducing

the size and improving the quality of the generated data. While querying the black box may be

expensive, the data sample has to be predicted anyway since this information is needed to train

the local surrogate. Another caveat is consistency of the sample with respect to the density of

the underlying data as out-of-distribution instances may be detrimental to the quality of the

resulting explanations [123]. Alternatively, the sampling may be centred on a black-box decision

boundary that is closest to the explained data point to shift the focus of the explanations more
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towards the behaviour of the black box [89]. Regardless of the approach taken, the data sampling

component of surrogate explainers built with bLIMEy tends to be inherently random. In such a

setting, ensuring explanation reproducibility requires always outputting the same (local) sample,

which can only be achieved by fixing the random seed, thereby creating an illusion of stability.

3.3.4 Explanation Generation

The final building block of surrogates is explanation generation, which consists of:

• computing similarity between the explained instance and sampled data;

• selecting a subset of interpretable features; and

• fitting a (local) surrogate model.

The first two steps are optional and are, respectively, responsible for focusing the explanations on

a chosen neighbourhood and introducing explanation sparsity. The surrogate model is trained

on the interpretable representation of the sampled data and their black-box predictions (for a

selected class), which can be weighted by similarity scores. In the case of tabular data, where the

number of (interpretable) features may be overwhelming, a dimensionality reduction technique

can be applied to introduce explanation sparsity. The type of the surrogate model as well as the

choice, configuration and parameterisation of these steps all affect the resulting explanation to a

varying degree.

Sample Similarity By weighting the sampled data based on their similarity to the explained

instance, we can introduce or enforce locality of the explanation and refine its scope. Explanations

of images and text are already local since the underlying interpretable representation operates

within a single picture or sentence. Nonetheless, weighting the binary data sample during the

surrogate training procedure, e.g., by using the edit distance passed through a kernel, can

induce preference for shorter explanations, i.e., a smaller number of tokens removed and super-

pixels occluded. For tabular data, on the other hand, the utility of this step varies depending

on the data domain in which sampling is performed. If data were augmented in the discrete or

binary representation, the sample may span the entire feature space, making this step the only

mechanism to introduce explanation locality. When sampling in the original domain, however,

the scope of the resulting data depends on the properties of the sampling algorithm, therefore

weighting can either be the only apparatus to introduce explanation locality, or it can reinforce

the result achieved with an explicitly local sampler.

Image and text data present us with little choice with respect to the domain in which we can

calculate the similarity scores. There is no meaningful distance metric (from an explainability

standpoint) that works directly on individual pixels or letters, therefore it has to be computed on

the binary interpretable representation. Selecting an appropriate distance function depends on

92



3.3. BLIMEY MODULES

the application and expected results, hence this task remains an open research question; however,

the edit distance is an appealing choice given the structure of the corresponding IRs, in which

setting it counts the number of “switched off” concepts. For tabular data, on the other hand, this

procedure is more flexible and the distance can be computed in the original, discrete or binary

domain, using a chosen metric such as the Euclidean, Manhattan or cosine distance. Again,

either of the choices depends on the intended use, the data domain and the selected surrogate

model, without clear guidelines originating from our research. Finally, since we are interested in

similarity – which is inversely proportional to distance – we need to transform these measures

with a kernel, for example, the exponential kernel used by LIME [129]. Kernel choice and its

parameterisation are subjective and application-dependent, and they should be adapted based on

the desired degree of locality enforcement. In summary, there are no obvious choices for this step

of the explanation generation module and any decision should be based on a thorough analysis of

each individual use case.

Explanation Sparsity Reducing the dimensionality of the interpretable domain for image

and text data is detrimental to the quality of explanations as it would result in “black holes” in

images and missing words in sentences, therefore it should be avoided. While bar plots depicting

such explanations may become overwhelming for a large number of interpretable components, the

influence measures can also be superimposed on top of the original data point, which alleviates

this problem – refer back to Figures 3.1 and 3.2. Nonetheless, tabular data can only be explained

with bar plots when they have more than two attributes since it is impossible to visualise high-

dimensional spaces. Therefore, when the number of (interpretable) features is large, a subset

should be selected to shrink the collection of “influential factors” presented to the explainee,

which leads to shorter and more comprehensible explanations. This type of explanation sparsity

can be achieved by discarding uninformative (interpretable) attributes with methods such as

lasso path (K-LASSO), forward selection or highest weights [129], and it should be considered a

necessity for tabular data with many features.

Surrogate Model With all the other components in place, the final stage of building a surrogate

explainer is fitting a local model, which can be done in a number of different ways:

• a regressor of probabilities output by a black-box classifier;

• a regressor of numerical values predicted by a black-box regressor; or

• a classifier trained for a crisp black-box classifier or a thresholded probabilistic model.

Another choice is the training scheme: the surrogate model can either be trained as a multi-class

or one-vs-rest predictor, a distinction that applies naturally to surrogate classifiers but needs to be

adjusted for surrogate regressors. A plain surrogate regressor mimicking a probabilistic black-box

predictor is restricted to modelling, hence explaining, probabilities of a single class selected by the
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user, which establishes a one-vs-rest approach since the complementary probability spans all of

the classes that are not being explained. However, by using multi-output regression models [21]

an arbitrary number of classes can be modelled and explained simultaneously, thus imitating a

multi-class scenario – see Chapter 5 for more details. In our experience, surrogate regressors

tend to perform better than surrogate classifiers for black-box probabilistic models as treating

them as argmax classifiers may result in low fidelity of the surrogate whenever these models are

overconfident or otherwise poorly calibrated [82].

Choosing the type of a surrogate model is also crucial as it determines the explanatory

artefacts and their meaning. If local influence of (interpretable) concepts is desired, a linear

model is a good pick as long as all of the features are normalised to the same range and they

are “reasonably” independent. While such an approach is limited to measuring influence, a

different type of explanations can be generated with a tree surrogate, e.g., counterfactuals and

logical conditions outlining the behaviour of a black-box model in the neighbourhood of the

selected instance. In the simplest form, the last split of the tree can be used to retrieve a class-

contrastive (counterfactual) statement conditioned on a single (interpretable) feature, for example,

“had this word not been in the sentence. . . ” or “had this image segment been occluded. . . the

prediction would be different”. The selection here should be motivated by the desired type of

the explanation – e.g., “Why class A?” or “Why class A and not B?” – and its format – feature

importance or influence depicted as a bar plot, or a conjunction of logical conditions – both of

which are application-dependent.

3.4 Tailor-made Surrogate Explainers

Having discussed the ins and outs of each individual surrogate building block, we move on to

analyse the properties of their various compositions. For example, a surrogate explainer can be

built to inspect different aspects of a black box either locally for a selected prediction or globally

by mimicking its behaviour in the entire data space. Depending on the intended audience, the

expected level of domain expertise and familiarity with machine learning concepts, one type of

explanation may be more appealing than another. Notably, the choice of interpretable representa-

tion and surrogate model family determines the kind and meaning of the resulting explanations.

This is an important observation since conflicting pairings of these two components tend to be

the main source of poor explanatory performance. Tabular data are particularly vulnerable to

such effects given the intrinsic complexity of the underlying IR and all of its inefficacies, which

are especially pronounced when modelling it with a linear surrogate. Therefore, data samplers,

interpretable representations and surrogate models need to be studied on their own and as parts

of an end-to-end explainer, providing invaluable insights for building, orchestrating and tuning

surrogates.

In particular, this section examines how the choice of a surrogate model influences the
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resulting explanations in view of the properties and limitations of the underlying IR. We study

the characteristics and constraints of surrogate explainers originating from the properties and

caveats of their building blocks, e.g., the assumption of (interpretable) feature independence

imposed by linear models. To this end, we analyse tabular data with numerical features in a LIME-

like surrogate setting, where influence-based explanations are determined by the coefficients of a

linear model. Specifically, we illustrate the limited explanatory capabilities of an interpretable

representation built upon discretisation of continuous attributes when paired with Ordinary

Least Squares (OLS), a detailed derivation of which is given in Appendix C.3. Such explainers

lose a precise encoding of the black-box decision boundary and can be manipulated by altering

the distribution of the data sample used to train the OLS, undermining the reliability of the

resulting explanations. As a solution, we propose using decision trees to both partition (discretise)

the feature space and generate explanations, e.g., with counterfactuals [169], thus merging the

creation of interpretable representation and explanation generation steps. We finish with an

overview of fidelity-based evaluation strategies – measuring how well surrogates approximate the

black box with a loss function such as the one given in Equation 3.2 – which are complementary

to the inspection approaches that we proposed separately for each individual building block.

3.4.1 Compatibility of bLIMEy Modules

Binary interpretable representations can be paired with linear models [45, 129] to explain black-

box predictions with concept importance or influence, meaning that such explanations are subject

to assumptions and limitations of these models. In particular, the coefficients of linear models can

be deceiving when the target variable is non-linear with respect to data features, the attributes are

co-dependent or correlated, and the feature values are not normalised to the same range [150, 158].

Intuitively, the first two properties may not hold for high-level interpretable representations since

their components are highly inter-dependent, e.g., adjacent image segments, neighbouring words

and bordering hyper-rectangles, thus the resulting explanations can misrepresent the relations

between these concepts. Friedman et al. [45] addressed some of these issues by using logical

rules extracted from random forests as binary interpretable concepts, which they modelled with

a linear predictor, but the overlap between these rules still violates the feature independence

assumption. A lack of attribute normalisation, on the other hand, causes the model coefficients to

be incomparable, rendering the explanation uninformative and misleading. LIME satisfies this

criterion by using binary interpretable representations or otherwise explicitly normalising the

features.

To overcome these limitations and facilitate explanations more diverse than influence of

interpretable concepts, alternative surrogate models can be used [158]. Logical models, such

as decision trees, are particularly appealing given that they provide a wide range of explana-

tions (see Chapter 4) and do not introduce any restrictions on the features, although they do

impose axis-parallel partitions of the data space [150]. Decision trees are particularly suited
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for explaining tabular data, for which they alleviate the need for an independent interpretable

representation as noted in Section 3.2.1. In particular, they can automatically learn a locally

faithful, class-aware feature discretisation, with the added benefits of modelling combinations of

hyper-rectangles, not suffering from information loss and not requiring the non-deterministic

X ′ →X transformation [158].

On the other hand, using linear models to capture influence of binary concepts for tabular

data is particularly problematic when utilising the interpretable representation introduced in

Section 3.2.1. The information loss suffered when transitioning from the discrete into the binary

representation partially forfeits the preceding effort to faithfully capture the black-box decision

boundary (during the discretisation step). We can demonstrate this by deriving an analytical

solution to OLS, which is shown in Equation 3.3. Notably, it highlights an unexpected influence

of the number of data points sampled in each hyper-rectangle on the resulting explanations

(magnitudes of concept influence) and irrelevance of feature partitions other than the ones

directly enclosing the explained instance.

Θ=


1 w11+w10∑

wi j

w11+w01∑
wi j

1 1 w11
w11+w10

1 w11
w11+w01

1


−1

×


ȳW

ȳW11∪W10

ȳW11∪W01

. (3.3)

Equation 3.3 shows the dependence of OLS coefficients on various characteristics of the

binary interpretable representation of tabular data with two numerical features, both when the

intercept is modelled (red & blue shading) and without it (blue shading). For comprehensibility,

our analysis is limited to two-dimensional data such as those shown in Figure 3.11, but the result

generalises to an arbitrary number of dimensions. Similarly, Equation 3.3 is specific to surrogate

regressors, however it can be easily extended to linear classifiers. In particular, Wi j is the set

of (sampled) data points enclosed by the hyper-rectangle with (i, j) coördinates in the binary

interpretable representation; W is the set of all the (sampled) data; wi j is the count of instances

in the Wi j partition (i.e., |Wi j| = wi j); and ȳWi j is the average black-box prediction of the instances

within the Wi j hyper-rectangle. Therefore, the influence of interpretable concepts is solely based

on:

• the proportion determined by the number of the data points residing in the ex-

plained partition W11 divided by the hyper-rectangles aligned with the explained partition

along every axis, i.e., W11 ∪W10 for the first feature and W11 ∪W01 for the second; and

• the average value predicted in the latter two subspaces – W11 ∪W10 and W11 ∪W01 – by

the black box (scaled appropriately when the intercept is modelled).

Additionally, the intercept value is determined by:

• the proportion given by the number of data points in the hyper-rectangles aligned with the

explained partition along every axis divided by the total number of data points; and
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• the average value predicted by the black box for all the data points.

The full derivation of Equation 3.3 and an in-depth analysis of the consequences of this result

are presented in Appendix C.3.

3.4.2 Tree-based Surrogates

LIME’s goal is to explain a prediction by quantifying its sensitivity with respect to changes in the

interpretable domain such as removal of tokens (words) for text, occlusion of segments in images

and jumping between hyper-rectangles for tabular data. This setting can be understood as a

sensitivity analysis tool operating on an interpretable representation, thus motivating the use of

a linear model as the local surrogate with its coefficients serving as the explanation. However,

this is the only possible explanation type that can be extracted from such a surrogate, which

may be inappropriate for a lay audience due to the technical background knowledge required to

understand it, especially for tabular data. Notably, during our analysis of individual surrogate

building blocks and their end-to-end compositions, decision trees exhibited favourable properties

in numerous situations. Here, we investigate this advantage for tabular data, for which decision

trees unify the interpretable representation and explanation generation modules, thus mitigating

the need for the problematic discretisation and binarisation steps.

The (local) partition of a feature space learnt by a tree optimises for purity by default since

each region (hyper-rectangle) is determined by a single leaf. The tree fitting objective is consistent

with the goals of creating an interpretable representation for tabular data, thereby allowing to

faithfully approximate a decision boundary of the explained black box. Furthermore, the quality of

this IR can be controlled by relaxing various generalisation constrains (such as the depth or width

limit of the tree and the number of training instance required to build a leaf), thus allowing the

tree to overfit the explained region. Appendix C.2 gathers a collection of experiments documenting

these benefits. Additionally, tree-based surrogates are capable of generating appealing class-

contrastive (counterfactual) explanations [169], which are the foundation of human-centred

explainability [106]. To compare this explainer type with a linear surrogate, accentuate the

difference in their respective explanations and demonstrate the importance of selecting a good

surrogate model, we explain a carefully selected instance from a two-dimensional toy data set.

For our investigation, we use the two moons data set, which is a synthetic collection of

instances with a complex decision boundary intended for binary classification tasks. It is par-

ticularly suitable for this type of experiments as depending on which data point is chosen, the

resulting explanations can be quite diverse. Figure 3.14 shows two different surrogates for

explaining the instance marked with the black dot in this setting: (a) based on a linear model

without an interpretable representation and (b) built upon a decision tree. It is clear that for

complex decision boundaries a tree-based approach is superior in this particular case, where the

dimensionality of the data is low and their density is high. In addition to better approximating

the local decision boundary of the underlying probabilistic black-box random forest classifier, the
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(a) Linear surrogate without an interpretable repres-
entation. If the classification threshold is set at 0.5,
the yellow bar would be partially predicted as blue,
therefore incorrectly classifying the upper-left part of
the red cloud of points. The influence of the x-axis fea-
ture is −1.10 and the influence of the y-axis feature
is 0.69. Since an interpretable representation is not
used, these numbers are difficult to interpret beyond
comparing their values in relation to each other.
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(b) Tree-based explainer for which the interpretable
representation is the feature partition learnt by the
surrogate itself. The green and light green back-
ground areas have high probability of the blue class,
providing a good approximation of the fairly complex
local decision boundary. The orange and yellow back-
ground blocks have low probability of the blue class,
offering a precise approximation of the distribution
of the red class. A possible explanation that can be
derived from the local decision tree is: “Predict the
blue class for the x-axis attribute ≤ 0.3 or the y-axis
attribute > 0.6; predict the red class for the y-axis
feature ≤ 0.6 and the x-axis feature bounded between
(0.3,0.5].” Notably, such rules can also be generated
for high-dimensional data sets that cannot be easily
visualised.

Figure 3.14: Comparison of linear and tree-based local surrogates for a toy tabular data set.
The background shading represents the probability of the blue class predicted by the local (a)
ridge regression and (b) regression tree surrogate models built to explain the instance marked
with the black dot. The encoding of values predicted by these surrogates is given by the adjacent
colour-bar. Since the output of a linear model (a) is unbounded, the predicted values may be
outside of the expected [0,1] range.

tree-based surrogate generates a locally-faithful interpretable representation from the feature

splits that it learns. This can be particularly useful for high-dimensional tabular data, for which

explanation visualisations are impossible but rule-based explanations consisting of a conjunction

of logical conditions extracted from root-to-leaf paths are still viable. While this section (and the

chapter as a whole) focuses predominantly on explaining tabular data, Chapter 5 is devoted to

surrogate explainers of images (and by extension text) based on multi-output regression trees. To

this end, explainability of decision trees as a standalone model is discussed in Chapter 4.

3.4.3 Evaluating Surrogate Explainers

Two of the main barriers for a wider adoption of surrogates are the instability and low fidelity

of their explanations [133]. The former can be reduced by following best practices for building

interpretable representations and sampling data, which are outlined in Sections 3.3.2 and 3.3.3.

The fidelity of surrogate explanations, on the other hand, can be improved by composing bespoke

algorithms tailored to the problem at hand and ensuring that each individual building block
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(b) Local faithfulness of a
surrogate model.
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(c) Faithfulness of the
global decision boundary
approximation.
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(d) Faithfulness of the local
decision boundary approx-
imation.

Figure 3.15: Various approaches to quantitative evaluation of surrogate models based on their
faithfulness with respect to the underlying black box are possible. These metrics determine
the ability of the surrogate (the red lines in the panels above) to mimic the predictions of the
explained model (the green contours) by measuring its fidelity within a certain region. We can
either compute global (a&c) or local (b&d) faithfulness with respect to the location of the explained
instance (a&b) or the (closest) decision boundary (c&d).

performs as expected based on the proposed metrics: sample diversity and discretisation purity

for tabular data, and segmentation granularity and colouring strategy for images. Nonetheless, to

better understand whether such explanations can be trusted, the fidelity of the surrogate model

should be measured with respect to the underlying black box. The evaluation metric used to this

end depends on the type of both the black box and the surrogate, but usually it is a variation

of the loss function given in Equation 3.2. For example, when both models are crisp classifiers,

predictive accuracy can be used; when they output numbers, squared error is a good choice; and

when the black box is a crisp classifier and the surrogate is probabilistic, log-loss is an option.

Evaluating surrogates based on the XAI taxonomy introduced in Chapter 2 is also possible – it

can provide a holistic view on the explainer and its functionality.

Depending on the intended use of a surrogate explainer, different strategies can be taken to

measure its fidelity since its objective may either be to locally or globally approximate the black

box decision boundary, or instead be faithful to a local or global data sample. These approaches

are either data-driven and measured based on the scope of a relevant data sample (Figures 3.15a

and 3.15b), or they are model-driven and determined by the shape of a decision boundary

(Figures 3.15c and 3.15d). Satisfying each of these four competing objectives may require a

unique surrogate whose explanations will only be truthful for the specific type of approximation:

global data-driven – Figure 3.15a – measures how well the surrogate performs in the

entire data space;

local data-driven – Figure 3.15b – measures how well the surrogate performs in the vicinity

of the explained instance;
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global model-driven – Figure 3.15c – measures how well the surrogate can mimic the

black-box model globally; and

local model-driven – Figure 3.15d – measures how well the surrogate approximates the

black box locally.

Notably, the two local variants can be at odds if the closest black-box decision boundary is far

from the explained data point, which is likely in high-dimensional spaces due to the curse of

dimensionality. A high fidelity score is a sign of a well-crafted surrogate that is fit for purpose,

thus engendering trust in explainees.

3.5 Perspectives on Surrogate Explainers

To better understand the role of surrogate explainers in XAI and IML, we briefly review relevant

literature. Many disciplines benefit from various types of (explanatory) surrogates, which can be

used as fast and low-complexity approximators of processes and functions that are too difficult

to model or too complicated to comprehend [125]. In machine learning, Craven and Shavlik [28]

proposed TREPAN, which is an algorithm for explaining neural networks by extracting their

intelligible symbolic representation with a global surrogate tree. A similar approach, called

RuleFit, was proposed by Friedman et al. [45], who used a surrogate linear model to assign

importance to logical rules extracted from root-to-leaf paths of a (locally fitted) random forest.

Friedman et al.’s idea to treat logical rules as explanatory artefacts can be thought of as a very

early example of an interpretable representation (nonetheless not labelled with this name) that

is limited to tabular data. Ribeiro et al. [129] then improved upon these concepts and offered a

unified local surrogate explainer of black-box predictions for tabular, image and text data called

LIME – it builds a local sparse linear model to explain human-intelligible concepts encoded by

an interpretable representation, which allows explaining diverse data types.

When examining the individual components of surrogate explainers, choosing the inter-

pretable representation and surrogate model for our analysis was motivated by the popularity

of these particular approaches in the literature. Namely, LIME [129] and RuleFit [45] use a

surrogate linear model to estimate importance or influence of interpretable concepts. Additionally,

LIME and SHAP [100] employ an interpretable representation that encodes presence and absence

of intelligible concepts to formulate their explanations. Similarly, RuleFit automatically learns

a more complex IR by training a random forest and extracting rules from therein, which are

then treated as binary concepts whose importance is determined by coefficients of a linear model,

thus improving the expressiveness of discretisation-based interpretable representations. More

recently, Garreau and Luxburg [46] analysed theoretical properties and parameterisation of

vanilla LIME for tabular data, including its interpretable representation and surrogate linear

model, however their work treated the explainer as an end-to-end algorithm and operated under

quite restrictive assumptions, e.g., linearity of the black-box model.
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Other (mostly empirical) research on surrogate explainability investigates the occasional

instability of LIME explanations [87, 183], however it does not pinpoint the root causes of these

undesired glitches. Lakkaraju and Bastani [84] show experimentally that surrogate explainers,

such as LIME, can be tricked into producing misleading explanations by modelling the difference

between the distribution of the explained data and the local sample used to train the explainer.

Nonetheless, they do not thoroughly examine the affected explainers to understand the origin

of such behaviour, which in case of LIME is caused by sampling tabular data from the discrete

representation, making the distributions of the two sets relatively distinct. Similarly, Zhang et al.

[183] show empirical evidence of LIME’s unexpected incoherence in certain cases, however they

do not explore the origin of these issues, which based on our investigation are the artefact of the

official LIME implementation and not the explainer per se (again, sampling from the discrete

representation). Such observations prompted Laugel et al. [89] to propose minor modifications to

the LIME algorithm, which have positive effects on the quality of its explanations but are limited

to tabular data. Moreover, these alterations unintentionally compromise the integrity of LIME,

making the two methods incomparable and the improvements not applicable to more general

cases beyond the specific ones presented in Laugel et al.’s research.

Another relevant area of research aims to consolidate various explainers within a single

schema, an abstract example of which is the XAI taxonomy presented in Chapter 2. Similarly,

Henin and Le Métayer [58] introduced a unified (theoretical) framework that allows for systematic

comparison of black-box explainers by characterising them along two dimensions: data sampling

and explanation generation. In contrast, our (practical) approach is focused on algorithmic and

implementation aspects of the subset of black-box explainers that operate as surrogates. Our meta-

algorithm extends Henin and Le Métayer’s decomposition with a third dimension: interpretable

representation, allowing our framework to be applied to a broader spectrum of data types. It also

offers an in-depth analysis of individual surrogate building blocks and examines issues with their

parings, providing a practical guideline for composing bespoke explainers. In particular, such an

approach allows bLIMEy to bridge the gap between LIME and the family of surrogate explainers,

thus unleashing their full potential.

3.6 If You Were to Choose One

In this chapter we introduced bLIMEy: a modular meta-algorithm for composing bespoke sur-

rogate explainers of black-box models and their predictions. The bLIMEy framework consists of

three building blocks – interpretable representation, data sampling and explanation generation –

offering a range of algorithmic choices for each individual component. We analysed these modules

both independently and when joined together as an end-to-end explainer to understand their

properties, strengths and weaknesses. The results of our investigation provide guidance on

choosing building blocks that are suitable for the problem at hand, which helps to construct the
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best explainer that the surrogate family has to offer by avoiding common pitfalls. bLIMEy is

accompanied by an open source implementation distributed within the FAT Forensics [159, 160]

Python package (cf. Appendix B), which includes a selection of algorithms for every module of the

meta-algorithm, therefore empowering the community to build tailored surrogate explainers.

Among others, our findings show the importance of building semantically and computationally

meaningful interpretable representations, and their role in defining the question answered by

the resulting explanations. We demonstrated that generic algorithms for building IRs may be

insufficient, and that the intended application domain and audience, as well as interactive

customisation and personalisation, should be considered. In particular, we discussed a popular

operationalisation of IRs for image, text and tabular data, where they are used as binary

indicators of presence and absence of interpretable concepts. This framework is then used

in conjunction with surrogate models to quantify influence of such concepts on individual black-

box predictions. In this setting, we identified challenges such as information removal proxies,

parameterisation, faithfulness and determinism (of interpretable representations) – which are

particularly prominent for tabular data – and explained how to overcome them.

Moreover, we showed that the choice of the data sampling algorithm and the representation

in which this procedure is performed depend on the type of data. For relatively small binary

interpretable representations that are often used with images and text, it is usually advantageous

to generate a complete sample instead of employing a sampling method. When it comes to tabular

data, however, it is more beneficial to randomly sample from the original data domain with an

explicitly local and class-aware algorithm. Next, we analysed properties of different types of

surrogate models and showed how their inherent constraints influence the resulting explanations.

This investigation has not resulted in any clear selection guidelines, however we provided

evidence that certain module pairings may unintentionally hurt the explainer. In particular, we

demonstrated the limitations of explaining binary interpretable representations of tabular data

with linear models and suggested logical models (such as decision trees) as a viable alternative.

While throughout this chapter we encouraged the users to evaluate all modules individually, we

also discussed various conceptual approaches to measuring fidelity of end-to-end surrogates, each

one serving a different purpose.

Since bLIMEy consists of a conceptual framework for building surrogate explainers and a

corresponding meta-algorithm, its utility lies entirely in the XAI process that it enables. The main

message underlying our approach is that bespoke explainers must be tailored to the problem at

hand despite such techniques being post-hoc, model-agnostic and data-universal. In particular,

being able to build a superior surrogate explainer for one data set gives no precedent for the

same strategy performing comparably well for similar data, let alone a completely distinct task.

Therefore, showing a qualitative or quantitative dominance of a single realisation of bLIMEy

on a collection of benchmarks with a chosen evaluation strategy would be counterproductive

and conflict with the idea of championing tailor-made surrogates. All things considered, the
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insights presented in this chapter clearly highlight the promises and perils of using out-of-

the-box, one-size-fits-all, silver-bullet approaches such as surrogate explainers without much

afterthought.

While a panacea is nowhere to be found, throughout our investigation we noted a pattern

suggesting that decision trees are a good candidate for the surrogate model. We observed that

they neither impose feature independence nor a linear relation between the intelligible concepts

and the explained quantity, which are essential for high-level interpretable representations. For

tabular data, they can combine two of the surrogate building blocks – creation of interpretable

representations and generation of explanations – in an arguably optimal way since decision trees

strive for leaf purity, which translates into a faithful approximation of the black-box decision

boundary. Moreover, they are compatible with a diverse range of black-box models, supporting

binary and multi-class classification as well as classic and multi-output regression. While they

offer a wide range of meaningful and appealing explanatory artefacts – a big advantage over

linear models, which are restricted to (interpretable) feature importance or influence – we need

to be able to reliably extract them to utilise the aforementioned advantages. The next chapter

addresses this problem since the inherent transparency of decision trees may not always be

sufficient to warrant their explainability, for example, deep and wide trees are transparent but

not explainable.
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CTREEX: CONTRASTIVE EXPLANATIONS FOR DECISION TREES

Having seen the wide-reaching benefits of classification and regression trees when used

as surrogate explainers, in this chapter we investigate shortcomings of their inherent

interpretability. Decision trees are often presented as a prime example of transparent

machine learning models, in contrast to, for example, black-box deep neural networks. They

classify a data point by following a hierarchy of logical conditions applied to its features, which can

be mechanistically simulated by humans. This argument is often used to label them transparent,

interpretable and explainable, which shifts the focus of the XAI research community away from

this family of models. Replicating their decisive process in vivo, however, does not necessarily lead

to understanding, which, as we argued in Chapter 1, is required for explainability. While indeed

transparent, large trees are neither particularly comprehensible nor explainable using their

inherent explanations – such as visualisations of the tree structure and logical rules extracted

from root-to-leaf paths – whose complexity grows proportionally to the model size. We address

these challenges with CtreeX: an algorithm for generating class-contrastive and supportive

explanations of decision tree predictions, which are commended in the literature for their appeal,

brevity and actionability. Our explanations outline a succinct reason behind a prediction instead

of listing the underlying chain of logical conditions, thereby decoupling the complexity of the

explanation from the tree size. In Appendix A.2, we analyse and describe our method in form of a

Fact Sheet based on the XAI taxonomy introduced in Chapter 2.

4.1 Decision Trees: Transparent but Not Explainable

Decision Trees (DTs) [23] are efficient, flexible and transparent machine learning models, making

them a popular choice. These algorithms are considered glass-box predictors mainly because they

sequentially partition the raw input feature space, thus narrowing down the region of interest.
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This easy-to-trace procedure allows one to inspect the logical conditions leading to a particular

prediction and to simulate this in silico decision process in vivo. Simulatability [96] makes them

especially appealing for high-stakes applications where transparency is of paramount importance

or simply a legal requirement. This property, however, does not ascertain interpretability or

explainability in all cases – a crucial distinction outlined in Section 1.1.3. Manually replicating

the decision process of a tree does not warrant any understanding of the reason behind its

predictions, which follows from The Chinese Room Argument [139].

Decision trees, as a model, are commonly “explained” by visualising their structure; their

predictions, on the other hand, are justified with lists of logical conditions extracted from relevant

root-to-leaf paths. However, as data grow in size – both in the number of instances and features –

the trees and their explanations can become overwhelmingly complex, thereby rendering these

transparent models and their decision logic incomprehensible. As the depth of a tree increases,

the number of logical conditions that must be satisfied to classify a data point increases as well.

When used as an “explanation”, such a long decision trace only tells the user that all the listed

logical conditions are responsible for a prediction, without attributing it to any individual one

in particular. This large amount of information combined with a lack of domain expertise may

undermine the user’s ability to narrow down the reason behind the prediction to a subset of

these predicates without an in-depth analysis. Therefore, we argue that inspecting the internal

structure of decision trees in an effort to trace and mimic their decision logic for a particular

prediction is insufficient for their explainability. Making sense of such information requires

logical reasoning – exercised either by the explainee (human) or the explainer (machine) – to

achieve proper interpretability and explainability built on top of the inherent transparency of

decision trees; for example, the splitting criteria learnt by a tree can be processed to generate

easy-to-digest explanations.

While the transparency of DTs does not imply their interpretability, we can leverage access to

their internal logical structure to compose insightful and appealing statements. To this end, we

investigate contrastive and supportive explanations, which are known for their human appeal

grounded in social science research [106] and compliance with various legal requirements [173]

including the “right to explanation” proposed by, but ultimately excluded from, the European

Union’s General Data Protection Regulation [50, 172]. The most popular and informative variant

of the former – class-contrastive explanations also known as counterfactuals – adheres to the

following template:

“The prediction is <prediction>. Had a small subset of features been different

<foil>, the prediction would have been <contrastive prediction> instead.”

Supportive explanations, on the other hand, prescribe, possibly one of many, minimal sets of

requirements – i.e., logical conditions – sufficient for a particular prediction to hold. Their

phrasing tends to conform to the following pattern:
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“The prediction is <prediction>. Had any of the following conditions not been

satisfied <support>, the prediction would have changed.”

These two explanation types respectively answer “Why not?” and “Why?” a predictive model

behaved in a certain way, both of which have been shown to enhance explainee’s understanding,

trust and acceptance of an intelligent system [94].

A straightforward class-contrastive explanation of a tree prediction – extraction of which

does not require extensive processing of the tree structure – is a counterfactual based on the

neighbouring leaf. It prescribes a change of just one feature value – captured by the last tree split

– that results in a different prediction. A more principled approach to generating counterfactuals

from the tree structure could nonetheless allow to customise them by imposing (user-defined)

restrictions and requirements, thereby forcing some of the features and preventing others from

appearing in such explanations, e.g., conditioning on a person’s age – which is non-actionable

– can be avoided. Such (personalised) explanations can empower explainees without domain

expertise to obtain an intelligible list of actions, helping them to understand predictions made by

the tree and guiding them towards achieving a desired outcome. In particular, class-contrastive

explanations are sparse, prescriptive and communicate the smallest change that results in

a different prediction. The last property is, arguably, a simple form of logical reasoning that

warrants the explanatory power of counterfactuals – a drastic improvement over the inherent

transparency of decision trees that only enables listing a (possibly large) collection of logical

conditions leading to a particular prediction. Notably, supportive explanations directly improve

upon such an exhaustive list by reducing its size and complexity to only include sufficient

conditions, thereby making such explanations more general, concise and comprehensible.

Because of their apparent transparency, research on interpretability of classification and

regression trees, and more broadly logical ML models and their ensembles, receives relatively

little attention. Nonetheless, an explainability suite tailored to decision trees can help practi-

tioners to debug such models, discover their biases and identify their unfair behaviour (e.g.,

via counterfactual disparate treatment), in addition to explaining them and their predictions.

The inherent transparency of decision trees facilitates a diverse range of model and prediction

interpretability:

• visualisation of the tree structure;

• tree-based feature importance;

• conjunction of logical conditions extracted from a root-to-leaf path;

• exemplar explanations sourced from training data assigned to a single leaf;

• answers to what-if questions generated either based on the tree structure or by querying

the model;
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• class-contrastive explanations (counterfactuals) retrieved by applying logical reasoning

to compare different tree paths; and

• supportive explanations composed by generalising logical conditions imposed on a root-to-

leaf path.

Each explanation type serves a different purpose and answers a different question, with the

first two concerning model transparency and the remaining five improving the interpretability

of predictions. However, based on our distinction between transparency and explainability in-

troduced in Chapter 1, the first five (discussed in Section 4.2) can only improve transparency of

decision trees, whereas the final two (investigated in Section 4.3) are capable of explaining their

predictions.

In this chapter, we propose a novel algorithm called Contrastive tree eXplainer (CtreeX)

designed to generate class-contrastive and supportive explanations of decision tree predictions

to improve their interpretability and comprehensibility by decoupling the tree size from the

explanation length. We advocate a model-specific approach to take advantage of all the theoretical

capabilities of such explanations [106], which can be easily lost in a more generic, model-agnostic

setting. To this end, we exploit access to the internal structure of a decision tree, which allows us

to extract a collection of logical conditions for each of its decision leaves. Next, we collate them

and create a meta-feature space in which each leaf is described with applicable logical conditions.

We use this new representation to compute a leaf-to-leaf distance matrix between every pair of

leaves, with the underlying metric measuring the number of features whose values need to be

changed to jump to another leaf. By tuning the distance function, the user can control which

features appear in the explanation and which ones should be avoided. Moreover, it can account for

the perceived importance of each attribute and, possibly, quantify the magnitude of the proposed

changes for numerical features. We describe the algorithm, its guarantees and properties such as

retrieval efficiency, customisability and completeness of generated explanations in Sections 4.3

and 4.4. Additionally, in Appendix A.2 we present a CtreeX Fact Sheet based on our XAI taxonomy

(Chapter 2).

Our approach avoids a naïve search through the entire feature space when retrieving an

explanation by representing all the meaningful attribute tweaks in a meta-feature distance

matrix, thereby making the algorithm computationally feasible for any tree size. Furthermore,

the length of the resulting class-contrastive and supportive statements is decoupled from the size

of the underlying model, which in turn guarantees succinct and appealing explanations. They

provide a (lay) explainee with a sparse rationale behind a particular prediction, which naturally

leads to understanding since these explanation types do not presuppose any background in

computer science or artificial intelligence. While CtreeX is specific to decision trees, its benefits

can be generalised to a model-agnostic setting by using a tree-based surrogate [142] built upon

the bLIMEy framework [152, 158] – see Chapter 3 for more details. An example of such an

explainer is the LIMEtree [150] algorithm presented in Chapter 5, where we show its superiority
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to the more established linear surrogate [129]. Moreover, our meta-feature representation creates

an interoperable interface that allows to generalise our approach to other logical predictive

models, such as rule lists and sets, and their ensembles, e.g., random forests.

Contrastive explanations are becoming the de facto standard for explaining automated

decisions, mainly because of their aforementioned legal compliance [173] and social appeal [106].

While apt in theory, recent findings [123] have highlighted issues with algorithms used for their

generation, as these approaches tend to produce impractical and non-actionable explanations –

e.g., suggesting to change one’s age – or retrieve them from regions of low data density, making

them volatile or impossible to achieve in the real life. Notably, our method is not susceptible to

such problems since the class-contrastive explanations are extracted directly from the predictive

model – an advantage of a tree-specific (ante-hoc) approach. Similar algorithms for generating

counterfactuals from decision trees have been proposed in the literature [166, 169], however our

method provides more flexibility, outputs a complete set of feasible explanations and supports

their comprehensive customisation. Moreover, our class-contrastive statements are complemented

by supportive explanations, which resemble the output of a model-agnostic explainer called

anchors [130]. At the expense of being model-specific, CtreeX guarantees full fidelity of the

supportive (and class-contrastive) statements, which is highly desirable [133]. Section 4.5 – which

reviews research related to decision tree interpretability – discusses all of these algorithms in

more detail.

4.2 Inherent Transparency of Decision Trees

Decision trees are a family of predictive models that is inherently transparent. This property

allows us to inspect their internal structure and process it either manually or algorithmically. It

also facilitates a variety of interpretability approaches, each one providing unique insights that

serve a specific purpose and have a distinct set of limitations. Nonetheless, they share the same

explanatory mechanism: the users drive the investigation and it is up to them to understand

the behaviour of a tree and its predictions based on “manual” examination of the evidence. This

delegation of processing (often technical) insights in search of explanations usually requires

in-depth technical knowledge of decision trees, domain expertise and a well defined question,

thus narrowing down the user base of these methods. In this section, we discuss the five most

prominent types of insights stemming from the inherent transparency of decision trees, namely:

tree structure visualisation, tree-based feature importance, root-to-leaf paths, exemplars and

what-if statements. For each of them, we provide an example explanation extracted from a

classification tree learnt on the popular Iris data set [41].

Tree Structure Visualisation is a model inspection approach in which the structure of a

decision tree is plotted as a graph – see Figure 4.1. To benefit from the information represented

therein, the explainee needs to understand the theory behind decision trees, therefore it may
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petal length (cm) ≤ 2.45
[setosa]

setosa

True

petal width (cm) ≤ 1.75
[versicolor]

False

versicolor virginica

Figure 4.1: Visualisation of a classification tree trained on the Iris data set. It is an example
of a decision tree-specific transparency approach that helps the explainee to comprehend the
(global) behaviour of such models. Its complexity grows with the size of the tree and it may not be
suitable for a lay audience who lacks relevant machine learning knowledge.

be unintelligible to a lay audience. The visualisation complexity increases with the size of the

tree, therefore tracing a prediction from the root to a leaf becomes challenging for large models.

This issue can be partially overcome by making the visualisation interactive, however multiple

conditions applied to the same feature may be scattered throughout a root-to-leaf path, thus

concealing the bigger picture.

Feature Importance is another model inspection technique that communicates to the ex-

plainee which features are the most informative (in separating the classes) when modelling the

underlying data – see Figure 4.2 for an example. It is relatively compact in comparison to a

tree structure visualisation because its size is limited by the number of attributes in a data set.

Interpreting feature importance does not require technical knowledge, making it more appealing

to a lay audience at the expense of being less insightful and informative. Importance I( fn) of the

nth feature fn is computed as the sum of importance i(s) of every node s ∈S fn splitting on this

feature divided by the total importance of every node s ∈S in the tree, i.e:

I( fn)=
∑

s∈S fn
i(s)∑

s∈S i(s)
.

Importance i(s) of a splitting node s is calculated as information gain – the decrease in the node’s

impurity L (in relation to its children) weighted by the probability of reaching this node, which

is often determined by the number of samples that reach the node divided by the total number of

samples, i.e.:

i(s)= |s|
|X |L (s)− |sleft|

|X | L (sleft)−
|sright|
|X | L (sright) .

In this formulation |s| is the number of instances reaching the splitting node s and |X | is the

total number of instances in the data set X . The definition of L depends on the type of the tree:

classification trees can use the Gini impurity or entropy, and regression trees can use the mean

squared error.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
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0.56
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0.00

Figure 4.2: Bar plot depicting feature importance extracted from a classification tree trained on
the Iris data set. It is an example of a decision tree-specific transparency approach that helps
the explainee to comprehend the overall (global) importance of data attributes. In many cases,
interpreting the plot only requires being familiar with the meaning of the underlying features.

Logical Rules are used to inspect predictions of a tree by extracting a conjunction of logical

conditions from the corresponding root-to-leaf paths – see Figure 4.3 for an example. They may

be suitable for lay explainees who understand the meaning of the underlying data attributes,

however they can mislead the recipients into thinking that all of the conditions are equally

important if their visualisation does not convey this information (i.e., feature importance). The

length of logical rules can grow proportionally to the size of a tree, however, in contrast to tree

structure visualisations, they can be compressed by merging multiple splits applied to the same

attribute (cf. Figure 4.3b). This grouping approach improves their readability at the expense of

forfeiting the original order of logical conditions, which implicitly indicates the significance of

each split and its corresponding feature. This concern can be partially addressed by presenting

feature importance beside logical rules – see the vertical numbers to the left of each box in

Figure 4.3.

0.
56 2.45< petal length (cm)

0.
44 petal width (cm)≤ 1.75

⇒ versicolor
(a) Logical rule for the versicolor class extracted
from the classification tree shown in Figure 4.1.

0.
56 2.45< petal length (cm)≤ 3.75

0.
44 1.25< petal width (cm)≤ 1.75

⇒ virginica
(b) Fictitious logical rule for the virginica class show-
ing a simplistic compression of root-to-leaf conditions.

Figure 4.3: Visualisation of logical rules – presented as a conjunction of logical conditions –
extracted from root-to-leaf paths of a classification tree trained on the Iris data set. It is an
example of a decision tree-specific transparency approach that helps the explainee to understand
conditions imposed on data attributes that lead to a particular prediction (a local or cohort
explanation). In many cases, interpreting the figure only requires being familiar with the meaning
of the underlying features. The vertical number to the left of each logical condition reports the
importance of the corresponding feature.
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setosa ⇒

N
/A sepal length (cm)= 4.6

N
/A sepal width (cm)= 3.1

0.
56 petal length (cm)= 1.5

0.
44 petal width (cm)= 0.2

setosa ⇒

N
/A sepal length (cm)= 4.4

N
/A sepal width (cm)= 3.2

0.
56 petal length (cm)= 1.3

0.
44 petal width (cm)= 0.2

Figure 4.4: Visualisation of two setosa class exemplars extracted from the training data as-
signed to a selected leaf of a classification tree fitted to the Iris data set. It is an example of a
decision tree-specific transparency approach that helps the explainee to understand similarities
between instances grouped together (within a single leaf) by the underlying tree (a local or
cohort explanation). In many cases, interpreting the figure only requires being familiar with the
meaning of the data features, however it is up to the explainee to reason about the connections
between the output instances. Since some of the features may be redundant – i.e., not conditioned
on the root-to-leaf path leading to the selected leaf – they should be marked as such (indicated
with N/A in this figure) to avoid misleading the explainee.

Exemplars can be used to inspect a prediction of a tree by presenting the explainee with

(training) data assigned to the same leaf as the explained instance – see Figure 4.4 for an example.

When the model is overfitted, this transparency approach can become ineffective since each leaf

may be built upon a single data point. Showing data that, according to the underlying tree, are

related to the instance in question requires the explainee to reason about their similarities and

differences, which may render this approach inappropriate for a lay audience. Exemplars have a

size equivalent to the number of features in the training data set and they can carry redundant

information since not all of the attributes may be conditioned upon on a given root-to-leaf path (cf.

Figure 4.3a). Depending on the user’s expectations and privacy constraints, these explanations

can either be based on real training data points or synthetic instances (which may be unrealistic).

Exemplars and logical rules convey similar information – all of the exemplars comply with the

logical conditions of the corresponding root-to-leaf path; the main advantage of the former is clear

indication of feature values that are feasible in the real world as long as these explanations are

based on training data.

What-ifs are both a model and a prediction inspection mechanism – see Figure 4.5 for an

example. They are user-driven – the explainee defines the foil of a what-if question – and their

effective use may require the explainee to have a search agenda or heuristic, which depends

on the user’s understanding of the underlying problem and general structure of tree-based

models. Nonetheless, their presentation is sparse and informative making them appealing to a

lay audience, especially that they resemble class-contrastive (counterfactual) explanations. In

case of decision trees, computing them would not benefit from a dedicated algorithm since the

predictive function of trees has linear computational complexity with respect to the tree depth.
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N
/A sepal length (cm)= 4.4

N
/A sepal width (cm)= 3.2

0.
56 petal length (cm)= 1.3

0.
44 petal width (cm)= 0.2

⇒ setosa

N
/A sepal length (cm)= 4.4

N
/A sepal width (cm)= 4.2

0.
56 petal length (cm)= 2.6

0.
44 petal width (cm)= 0.2

⇒ versicolor

Figure 4.5: Visualisation of a what-if explanation extracted from a classification tree trained
on the Iris data set. The left part of the plot depicts an instance selected to be explained, which
is classified as setosa. The data point to the right has two of its attribute values modified by an
explainee (red and blue/green shading), thus posing a what-if question leading to a versicolor
prediction. This (local) explanation is an example of a decision tree-specific transparency approach
that helps the explainee to understand influence of selected feature values on a tree prediction.
In many cases, being familiar with the meaning of the data features is sufficient to interpret the
figure. Often, only the differentiating factors are highlighted, i.e., the foil, to make the explanation
sparse, however this example lists all of the features given their low number. Additionally, the
visualisation indicates which feature value changes proposed by the user are meaningful – green
shading – given that some attributes may not appear on the root-to-leaf path responsible for
predicting the what-if instance or be used by the tree altogether (captured by blue shading and
N/A markers to the left of each box). The change of prediction is shown by orange tint.

4.3 Tree-based Class-contrastive and Supportive Explanations

All of the transparency approaches discussed in the previous section place the explanatory

burden on the user, who is required to reason about various model and prediction insights to

elicit understanding. However, we can improve upon this procedure and make it more attractive

(especially to non-technical users) by delegating the information processing responsibility to

an algorithm while simultaneously preserving the explainee’s investigative power and control

over the explanatory process via meaningful interactions. To this end, we propose CtreeX: a

theoretically sound algorithm for generating supportive and class-contrastive (counterfactual)

explanations of decision tree predictions. We take advantage of access to the internal structure of

trees, which allows us to extract logical conditions leading to each decision leaf. We demonstrate

how to process this information to construct a meta-representation of a tree in which each leaf

is assigned a collection of meta-features that are based upon logical conditions extracted from

the splitting nodes corresponding to its root-to-leaf path. This new encoding of the tree structure

allows us to measure similarity of its leaves determined by the number of attribute values that

need to be altered to jump to another leaf (of a different class). Additionally, it can account for

other factors such as (user-provided) feature preference and quantification of tweaks applied to

attribute values. Our approach avoids a naïve search through the entire feature space, making

the explanation generation process computationally feasible regardless of the tree size.

When humans receive a decision supported by a collection of logical conditions, they often skip

further analysis unless the outcome disagrees with their expectations or mental model [80, 106].
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In such cases two types of reasoning are commonly used to help identify factors that influenced

the automated decision the most:

by example where we identify similar instances and draw analogies to support our expecta-

tions; and

by contrast where, to argue our case, we create hypothetical conditions under which the

desired outcome is achieved.

These two approaches are firmly grounded in the social sciences, where researchers have studied

the human explanatory process for decades [106] – see Section 1.2.3 for more details about the

origin and benefits of such explanations. The first type is based on similarities, e.g., exemplar

transparency, and is the motivation for our supportive explanations, whereas the latter builds

upon differences, e.g., what-if transparency, and is the foundation of our contrastive explanations.

The second type can further be divided into [106]:

class-contrastive identifying a similar instance (a few attribute value changes) that yields

a different prediction; and

instance-contrastive determining a different data point (many attribute value changes)

that yields the same prediction – it is similar to reasoning by example.

CtreeX focuses on the first type, i.e, class-contrastive (counterfactual) explanations.

4.3.1 Meta-feature Tree Representation

Assume a decision tree t : X →Y of depth d fitted to a data space X and its corresponding binary

label space Y = {+,−}. We denote the splitting nodes of the tree as S = {s1, . . . , sm}, where m is

the number of unique splits. We further denote its leaves as L = {l1, . . . , lw}, where w is the tree

width; additionally, we define function tl : X →L that assigns a leaf to a data point based on

the underlying tree t. In this setting, each leaf l i ∈L is uniquely identified by a root-to-leaf path

of length n (with 0 < n ≤ d) that can also be described with a collection of n logical conditions

extracted by function tp : L →S n from the tree splitting nodes. For convenience, we indicate the

class ŷ ∈Y predicted by a leaf l i in its superscript, e.g., l−i if the ith leaf predicts the negative

class. Figure 4.6 depicts a toy tree with annotated splitting nodes and leaves.

In such a tree, the logical conditions S create a meta-feature space B; this representation

captures all the non-overlapping attribute partitions determined by the thresholds extrac-

ted from the tree splitting nodes. A meta-feature representation of a particular leaf is computed

by function tb : L → B based on a collection of logical conditions extracted from the splitting

nodes corresponding to its root-to-leaf path. The meta-features can take values bi ∈ {−1,0,1}

respectively for failing a logical condition, it being undecided (i.e., not used) or satisfying it; for

reference see Table 4.1, which outlines the splits S , meta-features B and distance measurements
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Figure 4.6: Balanced decision tree of depth d = 2 with three splits si applied to two features
xi resulting in four leaves l i. Feature x1 ∈ {red,green,blue} is categorical, and feature x2 ∈Z is
numerical. Branching left corresponds to satisfying the split’s logical condition (si = True), and
branching right denotes failing it (si = False).

between leaves for the decision tree shown in Figure 4.6. While we assume a two-class classifica-

tion task and binary tree splits, our method generalises to multi-class classification (however, the

user may need to explicitly specify the contrast class) and multi-way splitting nodes. It can also

be applied to regression trees, where the contrast becomes predicting a different number.

For example, consider a data point x̊ ∈X that is assigned to the leaf tl(x̊)= l−3 by the decision

tree shown in Figure 4.6. This leaf can be represented with the logical conditions extracted from

the applicable splitting nodes as:

l−3 ≡ [7≤ x2 ∧ x1 = red] .

Alternatively, its root-to-leaf path can be given by the splitting nodes:

tp(l−3 ) = [s1 = False, s2 = Undecided, s3 = True] ,

s1 s2 s3 b11 b12 b21 b22 b23 l+1 l+4 l−2 l−3
l+1 T T U 0 0 1 −1 −1 0 1 1 1
l+4 F U F −1 1 −1 −1 1 1 0 1 1
l−2 T F U 0 0 −1 1 −1 1 1 0 1
l−3 F U T 1 −1 −1 −1 1 1 1 1 0

Table 4.1: Tree splits S (left), meta-feature representation B (middle) and pairwise leaf distance
(right) for the decision tree given in Figure 4.6. The splits si ∈S are annotated as T for True, F
for False and U for Undecided (i.e., not used/applicable). The meta-feature space built upon these
splits is determined by B = {b11 : x1 = red, b12 : x1 = (green∨blue), b21 : x2 < 5, b22 : 5 ≤ x2 <
7, b23 : 7≤ x2}. The right part of the table groups the leaves by their predicted class to highlight
similarity of leaves with the same (diagonal quadrants) and opposite (off-diagonal) predictions.
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where Undecided is used for splits that do not appear on (i.e., are not applicable to) a given

path. Since a tree can split each numerical feature multiple times, we translate these thresholds

into half-closed intervals; for example, splits s1 : x2 < 7 and s2 : x2 < 5 in Figure 4.6 partition

feature x2 into b21 : x2 < 5, b22 : 5≤ x2 < 7 and b23 : 7≤ x2 bins in our meta-feature representation

B. Similarly, feature x1 (which is categorical) is partitioned into b11 : x1 = red and b12 : x1 =
(green∨blue) by split s3 : x1 = red. Therefore, in the meta-feature space B leaf l−3 is represented

as:

tb(l−3 ) = [b11 = 1, b12 =−1, b21 =−1, b22 =−1, b23 = 1] .

Notably, categorical features with more than two values may create disjunctions in the set of

logical conditions for binary decision trees, e.g., feature x1 ∈ {red,green,blue} and (binary) split

s3 : x1 = red imply x1 = (green∨blue) for leaf l+4 . Had an extra categorical split se : x1 = blue

appeared in the tree, our meta-feature representation would be partitioned into {red,green,blue}

instead of {red, (green∨blue)}, thus helping to resolve this issue. Similarly, two independent root-

to-leaf paths can divide a single numerical feature into (partially) overlapping bins, e.g., xi < 42

and 24≤ xi < 88, which may be problematic. Such splits require special treatment when computing

similarity between two affected leaves since a logical disjunction and overlapping numerical

intervals are likely to cause the underlying distance metric to be ill-defined. Nonetheless, by

fixing a data point prior to computing such a metric this issue can be easily resolved because the

attribute values of the selected instance uniquely determine the meta-features – see Section 4.3.2

for more details.

4.3.2 Distance Metrics

Computing a distance between two arbitrary leaves l i and l j represented in the meta-feature

space may not always be possible as noted in the previous section. Imagine (3≤ xm < 7) ∈ tp(l i)

and (xm < 7) ∈ tp(l j) for a numerical feature xm, or (xn = red) ∈ tp(l i) and (xn = red∨blue) ∈ tp(l j)

for a categorical feature xn. Without assuming an arbitrary heuristic, computing similarity

between overlapping feature ranges or sets is an ill-defined procedure and as such a metric

m : B ×B → R can become asymmetric, i.e., m
(
tb(l i), tb(l j)

) 6= m
(
tb(l j), tb(l i)

)
. However, by

specifying a reference data point x? – which we want to explain – the meta-feature values become

fixed, thereby grounding the logical conditions represented by S and B. This step allows us

to compute a similarity or distance between any two leaves l i and l j as m
(
tb(l i), tb(l j); x?

)
.

For example, using the aforementioned root-to-leaf paths tp(l i) and tp(l j) represented in the

meta-feature space as tb(l i) and tb(l j), if x?n = blue, the corresponding splits are grounded

with (xn = red) = False and (xn = red∨blue) = True, thus making the metric symmetric, i.e.,

m
(
tb(l i), tb(l j); x?

) = m
(
tb(l j), tb(l i); x?

)
. Therefore, by choosing a data point – which the

application domain requires anyway since we are explaining a prediction – a meaningful distance

metric can be defined on the meta-feature representation of a tree.
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To this end, we modify Hamming distance since it behaves similarly to the L1-norm for binary

vectors, thereby favouring sparsity. This property is desired when retrieving class-contrastive

and supportive explanations as it ensures that the closest foils and furthest supports respectively

differ in the fewest and overlap in the most attributes within the original feature space X . The

metric is extended to handle a representation that in addition to satisfied (1) and unsatisfied

(−1) logical conditions also encodes meta-features that are undecided (0). Therefore, we define

the distance between two arbitrary leaves lm and ln represented in the meta-feature space as

b(m)= tb(lm) and b(n)= tb(ln), and grounded with a data point x? as:

m
(
b(m), b(n); x?

)= ∑
i∈X

1

( ∑
j∈Bi

1̃
(
bi j(m), bi j(n)

))
, (4.1)

where the first indexing i ∈X chooses a feature in the original data space and the second j ∈Bi

iterates through all of the meta-features pertaining to this attribute – see the bi j indexing in

Table 4.1 for reference. In this equation, the indicator function 1 is defined as:

1 (x)=
1 for 0< x,

0 otherwise;

and the modified indicator function 1̃ is defined as:

1̃ (x, y)=
1 for (x, y) ∈ { (−1,1), (1,−1) } ,

0 otherwise.

Recall that 0 in the meta-feature space denotes a logical condition that is undecided for (i.e., not

applicable to) a given root-to-leaf path. Therefore, the latter formulation can be understood as

returning 1 if such a condition is satisfied for one leaf and failed for the other, and 0 if it yields

the same result on both branches or is undecided for one of them regardless of the outcome for

the other. Therefore, the distance function defined in Equation 4.1 reaches its maximum when

two leaves differ in the most number of features when represented in the original data domain

X , and it is at its minimum for similar leaves; note that the smallest distance is 1 since any two

leaves must at least differ in the split imposed at the root of a tree.

Our metric quantifies the number of tweaks required in the original feature space X but it does

not consider the magnitude of these changes, therefore it prefers shorter, more comprehensible

counterfactuals, and more general supportive explanations. It is a pseudo-metric in theory

as points in this space are not necessarily distinguishable, i.e., m
(
tb(lm), tb(ln); x?

) = 0 for

some tb(lm) 6= tb(ln), for example, tb(lm) = (−1,1) and tb(ln) = (0,0). In practice, however, such

data points cannot exist as they are exclusively determined by the structure of a tree; for any

tb(lm) ∈ B and tb(ln) ∈ B, the distance m
(
tb(lm), tb(ln); x?

) = 0 for all tb(lm) = tb(ln) and

m
(
tb(lm), tb(ln); x?

)> 0 for all tb(lm) 6= tb(ln). Table 4.1 lists distances computed according to

this metric for the decision tree shown in Figure 4.6; note that in this case we can calculate the leaf-

to-leaf metric without grounding it with an (explained) data point as the corresponding feature
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partitions are non-overlapping. Alternative distance formulations (discussed in Section 4.4) can,

for example, take into account user preferences or the importance of each feature as determined

by the tree.

4.3.3 Explanation Generation

Class-contrastive Explanations Given a leaf-to-leaf distance matrix computed for a tree

t and grounded with a data point chosen to be explained x?, we generate class-contrastive

(counterfactual) explanations by minimising the following objective:

lmin = argmin
l i∈L

m
(
tb(tl(x?)), tb(l i); x?

)
for t(x?) 6= class(l i).

To this end, given a data point x? to be explained, we find its meta-feature representation

b? = tb(l?) based on the leaf l? = tl(x?) assigned to it by the decision tree t. Next, we compute

its similarity m(b?,bi) to all the other tree leaves l i – represented in the meta-feature space

as bi = tb(l i) – that yield a different prediction class(l i) than the one assigned by our tree t

to the explained instance x?, i.e., t(x?) 6= class(l i), thus identifying a leaf lmin that minimises

our distance. To derive a counterfactual explanation for the explained instance x? based on the

closest leaf lmin, we compare their meta-feature representations b? = tb(tl(x?)) and bmin = tb(lmin)

respectively. By doing so we can identify feature value changes prescribed by the i jth components

bi j of the meta-feature space B and determined by the 1̃
(
b?i j, bmin

i j

)
= 1 factors of the distance

metric.

The outcome of this procedure is a class-contrastive explanation of x? that outlines a minimal

change to its attribute values resulting in a different prediction. These counterfactuals are

not necessarily specific data points, but rather feature tweaks expressed with valid ranges for

numerical attributes and allowed values for categorical attributes. Such explanations are an

improvement over vanilla counterfactuals since they additionally provide a context that implicitly

generalises them – see Section 4.4 for more details. Moreover, our algorithm is guaranteed to

return at least one explanation for each leaf as there always exists an explanation within distance

1, which is determined by the neighbouring leaf of tl(x?). Our approach will also retrieve all other

explanations within distance 1, which may be found for two mostly disjoint root-to-leaf paths

leading to non-neighbouring leaves and agreeing on all features except the one at the root of the

underlying tree. If several explanations within the same distance exist – see Table 4.1 for an

example – we can choose one at random; alternatively, a heuristic based on feature importance or

user preferences can be employed to break ties and address explanation multiplicity as discussed

in Section 4.4.

Supportive Explanations The minimal and most general set of features for which specific

ranges of numerical attributes and sets of values for categorical attributes guarantee a particular

prediction can be computed for an arbitrary tree leaf and serve as a supportive explanation
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(akin to the post-hoc anchors explainer [130]). In particular, such statements can be composed

with generalisation algorithms [110], which are widely used in logic programming [42, 109]. To

this end, we modify an appropriate off-the-shelf tool to support our meta-feature space, where

the additional 0 value is introduced to indicate logical conditions that are undecided for a

particular root-to-leaf path. Generating these explanations neither requires a similarity metric

nor grounding the explained leaf with a fixed data point, making them unique to the structure of

the explained tree t, for which they can be pre-computed and stored to facilitate a constant-time

retrieval.

4.4 Making Trees Explainable

Our explanations exhibit a number of desired properties beyond their social [106] and legal [173]

appeal reported by others. The explanatory power of contrastive statements (counterfactuals

in particular) is widely documented in the XAI literature and verified by numerous studies in

a variety of contexts [83, 107, 123, 155–157, 169, 173]. Therefore, in lieu of user studies we

discuss explainability desiderata of CtreeX based on our taxonomy introduced in Chapter 2. This

allows us to focus on inherent characteristics of class-contrastive and supportive explanations

that are valued in the literature but may be lost unintentionally and unconsciously with their

implementation, thus negatively affecting their effectiveness. For example, counterfactuals are

deemed a natural explanatory mechanism because they are interactive and dialogue-like [106],

however only a few explainers take advantage of this observation [151, 156]. Despite the mostly

positive sentiment exhibited by the XAI community towards class-contrastive explanations, some

of their (algorithmic) operationalisations simply lack what made them attractive in the first place.

While not all of such desiderata are properties of the explainer per se, but rather the overall

explanatory system within which it is deployed, our method seeks to enable and support their

broadest possible range, which is partially made possible by its ante-hoc design (guarantee of

retrieving a complete and faithful set of explanations) and duality of its output (counterfactual

and supportive statements).

Counterfactual explanations appeal to humans because of their simplicity and versatility,

whereas supportive statements provide a comprehensive overview of a black-box prediction,

thus grounding it in a context. CtreeX uses both of them as their distinct scopes make them

complementary: the former identifies specific and the latter general conditions leading to a

particular prediction, helping to balance explanation fidelity. Both of our explanations are

sound (U1, see Table 4.2 for reference) since they are derived with a tree-specific (F6), ante-hoc

(F7) algorithm, thus guaranteeing full faithfulness. While it is common for class-contrastive

explanations to lack completeness (U2) as their foil applies only to the explained instance and

does not generalise to similar data points, CtreeX manages to partially overcome this limitation

by contextualising them (U3) in three distinct ways.
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Functional Operational Usability Safety

F6 Applicable Model
Class

F7 Relation to
Predictive
System

O7 Function of
Explanation

U1 Soundness
U2 Completeness
U3 Contextfullness
U4 Interactiveness
U5 Actionability
U6 Chronology
U8 Novelty
U9 Complexity
U10 Personalisation
U11 Parsimony

S1 Information
Leakage

S2 Explanation
Misuse

S3 Explanation
Invariance

S4 Explanation
Quality

Table 4.2: Summary reference of a subset of the XAI taxonomy (cf. Chapter 2) applicable to
CtreeX.

1. Our foils are not specific data points (exact feature value tweaks) but instead ranges for

numerical and sets for categorical attributes that lead to a different prediction, thereby

providing a wider perspective that is valid for a whole sub-population instead of an indi-

vidual prediction.

2. CtreeX can ground such explanations in a broader context with exemplars extracted from

relevant fact and foil tree leaves (based on the underlying training data) or generate

equivalent synthetic instances.

3. Class-contrastive statements can be accompanied by a supportive explanation that lays out

a comprehensive view of the limitations pertaining to the counterfactual foil.

Supportive explanations, on the other hand, are not affected by completeness (U2) shortcom-

ings since they explicitly state their generalisation limits – a region of the feature subspace for

which a prediction is guaranteed. Unless the tree is overfitted, both of CtreeX explanation types

are stable (S3) since they come from high-density (training) data regions [123] encapsulated by

tree leaves – explanation quality can be measured by coverage and impurity of relevant leaves

(S4). Furthermore, the explanations are always short and sparse since our approach optimises

for brevity (U9 & U11), which is improved even further by merging multiple logical conditions

imposed on the same feature. In addition to enhanced interpretability, class-contrastive and

supportive statements can also help to assess the model’s fairness [147], identify its biases [173]

and uncover modelling bugs [166] (O7).

In Section 4.3.2, we proposed a basic distance metric that treats all of the attributes equally

and does not quantify the size of change required in each dimension of the original data feature

space X . Furthermore, our metric selects an explanation at random when multiple other exist

within the same distance. Both of these assumptions can be easily overridden by weighting
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components of the meta-feature representation B (e.g., according to the Euclidean distance

between fact and foil) and applying a suitable counterfactual retrieval heuristic. Nonetheless,

custom metrics may be specific to individual use cases; for example, chronology of events (U6),

novelty of data points (U8, e.g., instances with rare or unexpected attribute values) and feature

importance or actionability (U5, e.g., preferring foils based on income rather than ones conditioned

on age) often need to be annotated separately for each data set.

Some of these objectives can be achieved algorithmically by tuning the distance function

to explicitly include or exclude from the foil conditions imposed on certain attributes (U10).

Alternatively, if deployed in a dynamic user interface, CtreeX can support explainee-driven

iterative personalisation of the explanations, which is particularly useful when adopting such

an algorithm in an interactive setting (U4), e.g., a conversational agent [151, 156], thus making

it more appealing to a lay audience who can directly influence the explanatory process – see

Chapter 6 for more details. However, such an operationalisation raises security concerns if the

model is proprietary [157] since multiple customised explanations can reveal (S1) exact splitting

thresholds of the underlying decision tree, thus allowing an adversary to reverse-engineer and

steal the predictive model (S2). A more comprehensive evaluation of CtreeX based on the XAI

taxonomy outlined in Chapter 2 is presented in Appendix A.2 in form of an explainability Fact

Sheet [149].

4.5 Tree Explainability in the Literature

Explainable AI and ML research is largely concerned with inherently opaque predictive mod-

els [71, 100, 129, 130] such as deep neural networks [91], which grew in popularity due to their

impressive performance for a wide array of domains and applications. For example, Ribeiro et al.

[128] introduced a model-agnostic explainer called LIME, which explains black-box predictions

with influence of relevant interpretable concepts by locally approximating the behaviour of the

black box with a simple and transparent surrogate model (see Chapter 3 for more details). Later,

Ribeiro et al. [130] proposed anchors, which is a model-agnostic explainer that prescribes con-

ditions guaranteeing a particular black-box prediction; the resulting explanations are similar

to supportive statements generated by CtreeX since both of them determine a data subspace

where a model prediction does not change. Similarly, Kim et al. [71] created TCAV, which identi-

fies human-understandable concepts important for classification of images; and Lundberg and

Lee [100] introduced SHAP, which computes contribution of individual features to black-box

predictions.

Out of these four methods LIME, anchors and SHAP are model-agnostic and post-hoc, i.e., they

are independent from the underlying black box and can be retrofitted to a preëxisting predictive

model. However, this flexibility comes at a cost: post-hoc explainers create an additional layer of

complexity that can be detrimental to the quality and faithfulness of their explanations [133]
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– see Section 1.1 for an in-depth discussion of this topic. Therefore, in certain cases inherently

transparent models such as rule lists and sets, linear models, naïve Bayes classifiers and decision

trees may be preferred. While their operation can be traced and their parameters are meaningful

to humans, explainability and interpretability of such models is questionable as we argued in

Section 4.1. This presumption of intrinsic intelligibility makes such models easy to overlook for

the explainable AI community, yet their transparency provides a solid foundation for creating

faithful and robust ante-hoc explainers.

Explainability comes in many different shapes and forms, but contrastive statements – in

particular class-contrastive, counterfactual, explanations – are proven to be the most natural

and appealing for a lay audience and domain experts alike [106]. They can be used to audit

fairness of ML models [83, 147] and they comply with various legal frameworks [173]. Notably,

we should distinguish between two different types of counterfactuals. The notion proposed by

Lewis [93] is based on an abstract idea of similarity among hypothetical worlds; these can

be (synthetic) instances that produce different predictions for a given data-driven model – a

paradigm dominating the XAI and IML landscape. Counterfactuals introduced by Pearl [117],

on the other hand, are grounded in causality research and built directly upon the mechanism

governing the underlying natural process or phenomenon, thus independent of any particular

predictive algorithm used to model it.

Algorithmic approaches to counterfactual (class-contrastive) explainability include, among

others, an optimisation technique compatible with differentiable predictive models such as

neural networks and support vector machines [173], and a graph-based method called FACE

(Feasible and Actionable Counterfactual Explanations [123]) for retrieving foils that are realistic

with respect to the distribution of the underlying training data. Additionally, Tolomei et al.

[166] offered a particular type of counterfactual statements – identifying features that can

be tweaked to transform a true negative instance into one predicted as positive – designed

for tree ensembles and used to improve on-line advertisements. However, their algorithm is

limited to adjusting feature values in fixed intervals and perturbing attributes combinatorially,

which makes it inefficient and prevents it from guaranteeing reproducibility with respect to

the output explanations. Finally, van der Waa et al. [169] showed how to train surrogate binary

foil trees, which locally explain a selected class (one-vs-rest) with counterfactuals, however the

resulting explanations may not be symmetrical and the proposed method is focused more on the

surrogate aspect of the technique than developing a principled tree explainer. Notably, all of these

approaches, except FACE, boast benefits of contrastive explanations, but none of them considers

their human aspects such as interactiveness, personalisation and actionability.
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4.6 Explainable Tree-based Surrogates

This chapter introduced a novel approach to explaining decision tree predictions with sparse

class-contrastive (counterfactual) and supportive statements composed by leveraging access to

the internal structure of classification and regression trees. To this end, we proposed a meta-

feature representation of the tree structure, allowing us to efficiently compute similarity between

leaves of the tree using a custom distance function. Our approach is an improvement over the

inherent tree transparency, which we argued is insufficient for true explainability since it lacks

a reasoning mechanism that leads to understanding. We opted for counterfactual explanations

given their strong theoretical foundations and practical capabilities grounded in the social science

research on human explainability and its recent connection to artificial intelligence. Beyond

improved interpretability of predictions, such explanations can be used to debug decision trees,

e.g., identify a lack of predictive monotonicity for certain features, and expose their biases and

unfair behaviour, e.g., a prediction change conditioned on gender.

Since CtreeX is ante-hoc, it exhibits a range of advantages and guarantees including full

fidelity, explanation completeness, interactivity and customisability. These benefits, however,

come at the expense of our method being tree-specific. In the next chapter we explore how to lift

this limitation while preserving all of the desired properties. To this end, we revisit bLIMEy –

our surrogate meta-algorithm introduced in Chapter 3 – which we employ to construct a faithful,

model-agnostic and post-hoc surrogate explainer based on classification and regression trees.

By using a decision tree-based surrogate, we can explain black-box predictions of image, text

and tabular data with high-fidelity class-contrastive and supportive statements generated by

CtreeX. Additionally, we show how such an explainer can address many issues exhibited by its

more popular alternative that is built upon a linear surrogate, a prominent example of which is

LIME. In particular, we focus on black-box image classification given the intuitiveness of such

predictions and their (counterfactual and supportive) explanations.
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5
LIMETREE: TREE-BASED SURROGATES

Systems based on artificial intelligence and machine learning models should be transparent,

in the sense of being capable of explaining their decisions to gain humans’ approval and

trust. While there are a number of explainability techniques that can be used to this end,

many of them are only able to output a single one-size-fits-all explanation that simply cannot

address all of the explainees’ diverse needs. Having seen the power, flexibility and shortcomings

of surrogate explainers as well as measures to mitigate them with the use of local decision

trees (Chapter 3), we introduce a model-agnostic and post-hoc explainability technique for

black-box predictions that employs surrogate multi-output regression trees. We validate our

algorithm on a deep neural network trained for object detection in images and compare it against

Local Interpretable Model-agnostic Explanations. Our method, which we call LIMEtree, comes

with local fidelity guarantees and can produce a range of diverse explanation types, including

contrastive (counterfactual) and supportive statements recommended in the literature – the

result of combining bLIMEy with our findings from Chapter 4, namely CtreeX. Some of these

explanations can be interactively personalised to create bespoke, meaningful and actionable

insights into the model’s behaviour – a topic which we discuss further in Chapter 6. While other

methods may give an illusion of customisability by wrapping, otherwise static, explanations in

an interactive interface, our explanations are truly interactive, in the sense of allowing the user

to “interrogate” a black-box model. LIMEtree can therefore produce consistent explanations,

providing a solid foundation for an interactive exploratory process. The properties of our approach

are summarised in Appendix A.3 in the form of an explainability Fact Sheet, which is based on

our XAI taxonomy introduced in Chapter 2.
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5.1 Surrogates for Humans

Transparency of predictive systems based on machine learning and artificial intelligence al-

gorithms is desired for a variety of reasons. It can help to debug black-box models, inspect their

fairness, evaluate their accountability and explain their decisions to relevant stakeholders. With

this wide range of applications and diverse audiences, output of a single transparency algorithm

cannot be expect to satisfy everyone’s needs and expectations. While this may possibly be ad-

dressed by a dedicated team of data scientists responding to explainability requests by tweaking

and tuning their toolkit, such an approach is inefficient. A more streamlined solution is to build

interactive interpretability tools, through which the users can “ask” directly for the desired

insights. This type of exploratory interaction gives users the flexibility to request customised

and personalised analysis of a black box, possibly alleviating a need for technical skills and

knowledge.

Interactive explainability in AI and ML is a somewhat overloaded term; it encompasses both

explainability methods presented within interactive interfaces and truly interactive explanations.

While the first kind may be desirable and is prevalent in the Human–Computer Interaction

realm [77], many members of the explainable artificial intelligence and interpretable machine

learning communities opt for the second, which, they argue, is the cornerstone of natural and

human-like explanations rooted deeply in social sciences [106]. The latter approach bears promise

for black-box predictive systems, which, fitted with such techniques, could interactively explain

their nuances and decisions in a process that is intuitive to humans, for example, a voice-enabled

natural language conversation. However, the interactivity of these explanations should extend

beyond their delivery mechanism and allow the explainee to customise and personalise them by

interrogating the black box. This aggregated approach marks a departure from one-size-fits-all

explanation practices, accounting for the diversity of explainees’ skills and backgrounds.

Designing such systems comes with two challenges: modelling the user interaction (an HCI

component) and creating an explainability technique that can output personalised explana-

tions based on user-provided information (an XAI component). Ideally, the approach should be

independent of the underlying predictive algorithm and versatile enough to provide multiple

explanation types of varying complexity. The latter property ensures coherence of the explanatory

process as including explanations generated with different methods may lead to inconsistencies

that can hurt users’ trust [178]. Providing explainees with an opportunity to personalise the

explanations empowers them to investigate properties of black boxes that fall beyond their

transparency and interpretability. Bespoke explanations can inspect individual fairness of a

prediction [83], e.g., counterfactual cues indicating disparate treatment, or help to debug the

underlying black box [78].

Research into AI and ML transparency has recently seen major progress with numerous post-

hoc and model-agnostic tools being proposed [28, 129, 142, 158, 169]. Some of these methods can

implicitly produce customised explanations, achieved by off-line, non-interactive parameterisation.
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Work on counterfactual explanations [169, 173] is quite prominent as well since they are natural

to humans [106] and compliant with various legal regulations [173]. In theory, they are also

capable of interactive personalisation [151, 156], however this property has not been widely

adopted.

Explainability methods that allow the end user, i.e., the explainee, to customise and personalise

the explanation via an interaction are largely non-existent [138]. Some researchers [10, 101, 174]

studied the formal communication and interaction protocols (e.g. in the form of a conversation)

that in theory can facilitate an explanatory dialogue between two intelligent agents (humans,

machines or one of each), but these concepts are yet to find applications in practical explainability

tools. Non-personalised explanations and interactions with predictive systems have mainly

come together to help the user debug [81] or customise and improve [69] the underlying ML

algorithm. Interactive explainability systems allowing the user to request different types of static

explanations have also been described [77, 178]. All of these techniques are discussed in more

detail in Section 5.7.

In this chapter we draw inspiration from all these approaches and show how to achieve

interactively customisable explanations of black-box predictions derived from surrogate multi-

output regression trees (discussed in Section 5.3). Since surrogate explainers are post-hoc, model-

agnostic and domain-independent (working with text, tabular and image data), our technique,

which we call LIMEtree, can be retrofitted into any black-box predictive system. It enables

explainees to interrogate an opaque ML model to understand and gain trust in its predictions,

account for important decisive factors or prove fairness of its decisions. We chose trees as

the surrogate model based on their ability to produce diverse and appealing explanations (cf.

Chapter 4) such as:

• visualisation of the tree structure;

• tree-based feature importance;

• logical conditions extracted from a root-to-leaf path;

• exemplar explanations taken from training data falling into a single leaf;

• answers to what-if questions generated either based on the tree structure or by querying

the model;

• contrastive explanations (including counterfactuals) retrieved by applying logical reason-

ing to compare different tree paths; and

• supportive explanations achieved by generalising logical conditions imposed on a tree

path.

We already showed examples of these explanation types – accompanied by an extensive discussion

– in Section 4.2 of the CtreeX chapter. The first two uncover the behaviour of a black box in a given
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Figure 5.1: An example of a multi-output regression tree used to explain an image (taken from
Figure 5.10) labelled as tennis ball by a black-box deep neural network image classifier. The
super-pixels, i.e., segments, shaded in blue are not important to the explanation at any given
tree node. A super-pixel which value is 0 in the interpretable representation is “removed” by
occluding it with a solid black colour. A super-pixel assigned 1 in the interpretable representation
is preserved. The probabilities estimated by the surrogate tree usually do not sum up to 1 in each
tree node as these values may only represent a subset of modelled classes and are a result of a
regression, thereby should not be treated as probabilities.

predictive subspace, whereas the remaining five target a specific prediction. While some of these

explanations are inherently static, others can be embedded in an interactive explanatory
dialogue, enabling the explainee to customise and personalise them in a natural way (more

details in Section 5.5.1 and Chapter 6). We opted for multi-output regression trees – depicted

in Figure 5.1 – to avoid common pitfalls associated with surrogate explainers and allow for

modelling of multiple classes within the same surrogate model, thus creating a common source of

explanations (see Section 5.3).

Our method builds upon Local Interpretable Model-agnostic Explanations [129] and build

LIME yourself [158], described earlier in Chapter 3 and revisited in Section 5.2.1. LIMEtree

addresses many of LIME’s shortcomings and limitations (Section 5.2.2), and facilitates meaningful

interaction with explanations to satisfy users’ expectations. By using a (shallow) regression tree

as the surrogate model, we can guarantee its full fidelity with respect to the underlying black-box

model under certain conditions. We demonstrate the explanatory power of our method with

qualitative experiments and quantitative comparison on image classification tasks using a black-

box deep neural network (Section 5.6). In Appendix A.3, we summarise properties of LIMEtree

within an explainability Fact Sheet, which is based on our XAI taxonomy introduced in Chapter 2.
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(a) Image to be explained
with LIME, predicted as
Eskimo dog with 83% prob-
ability by a black-box model.

(b) Interpretable represent-
ation of the image based on
super-pixel segmentation.
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(c) Eskimo dog explanation
presented as influence of the
top five segments (regres-
sion coefficients).

(d) Eskimo dog explanation
shown in Panel (c) overlaid
on top of the explained im-
age from Panel (a).

Figure 5.2: Visual decomposition of a surrogate explanatory process for image data based on the
LIME algorithm. The steps include generating an interpretable representation (b) and presenting
an explanation in two different formats: a bar plot (c) and an image mask (d).

5.2 Surrogate Explainers, Revisited

The momentum behind surrogate methods can be attributed to several appealing properties that

make them a universal explainability framework. They mimic behaviour of a complex black-

box predictor either locally [129] or globally [28] with a simpler, inherently transparent model,

thereby providing human-comprehensible insights into its operations. Surrogates are:

model-agnostic – can be used with any predictive system;

post-hoc – can be retrofitted into preëxisting predictors; and

data-universal – are compatible with tabular, text and image data, which is enabled by

interpretable representations.

LIME [129] is the most popular surrogate technique geared towards explaining predictions of

black-box models – Figure 5.2 outlines its explanatory process for image data. Chapter 3 provides

a more in-depth analysis of surrogate explainers in artificial intelligence and machine learning.

5.2.1 Local Surrogates of Images

LIME improves upon vanilla surrogate explainers by introducing an interpretable data rep-

resentation (cf. Section 3.2.1). This concept extends their applicability beyond the inherently

interpretable raw features such as height or weight for tabular data, allowing them to be used

with sensory data such as images and structured data such as text. In this chapter we focus

on applying surrogate explainers to image recognition tasks, which facilitates straightforward

qualitative and quantitative evaluation of explanations by means of visual inspection, alleviating

the need for technical background knowledge during user studies. Furthermore, a representation

based on super-pixels, which is popular for images, exhibits properties that are necessary for
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LIMEtree to achieve full fidelity. Nonetheless, all of our technical contributions can be applied to

other data domains for which the interpretable representation satisfies the requirements outlined

in Section 5.3.

The LIME algorithm trains a local surrogate used to explain an image x̊ for a black-box

probabilistic model f by taking the following steps:

1. Find the human-interpretable representation x̊′ ∈ X ′ of the data point x̊ by defining a

mapping IR : X → X ′ that transforms a data point from its original domain X into the

interpretable representation X ′. This mapping is usually provided by the user, although

in certain cases it can be learnt, for example when the data is tabular and the surrogate

model is a decision tree [158] – see Section 3.3.4 for more details. In the case of image data,

the interpretable domain X ′ is a (super-pixel) segmentation of the image x̊ represented

as a binary vector x̊′ ∈ X ′ = {0,1}d, where d is the number of segments. Such binary

vectors x′ ∈X ′ indicate whether a given segment should be preserved (1) or occluded (0),

therefore the original image x̊ expressed in the interpretable representation is an all-1

vector x̊′ = [1, . . . ,1]. In practice, this is achieved with an image segmentation technique

such as quick shift [171] implemented as part of the scikit-image Python package1 [170].

2. Sample n data points uniformly at random from the interpretable representation X ′ to

get an n×d binary matrix X ′ ⊆X ′ describing the neighbourhood of the explained image

x̊. Transform each data point (row) in this matrix back into the original representation

X using the inverse of the IR function – IR−1 : X ′ → X . In practice, this is achieved by

generating images that preserve the pixel values from the original image in the ith segment

if the ith component of a binary vector x′ ∈ X ′ is 1, i.e., x′i = 1, and replacing all of the pixels

in this segment with the mean RGB colour of this segment if x′i = 0. Next, the images

recovered from the sampled data are classified with the black-box probabilistic model f

to get an n× c matrix holding probabilities for every class modelled by f , where c is the

number of modelled classes.

3. Calculate a distance2 L : X ′×X ′ →R between the explained data point and the sampled

data in the interpretable representation X ′. Next, compute proximity/similarity scores

by kernelising these distances using the exponential kernel k :R→R defined as k(s; w)=√
exp

(
−( s

w
)2

)
, where w is the kernel width set to 0.25 by default.

4. Train a linear regression g : X ′ →R as the surrogate model. A sparse regression is favoured

to identify as few as possible important factors contributing to the explanation, thereby

making it more comprehensible. The model is fitted to the data sampled in the binary

interpretable representation X ′ weighted by the kernelised distances (similarity scores).
1The skimage.segmentation.quickshift function.
2LIME suggests using either the Euclidean (L2-norm) or cosine (Lcos) distance. We will use the cosine distance

since our experiments suggested that it yields more intelligible explanations for images.
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The target of the regression are probabilities – computed with the black-box model for the

data X ′ sampled in step 2 – of a class c̊ ∈ {1, . . . , c} selected by the user to be explained, which

tends to be the top prediction output by the black-box f for the explained image x̊. The

coefficients of this model are then used to quantify and interpret the positive or negative

influence of each image segment on the black-box prediction of the explained instance. The

feature weights of the surrogate model are directly comparable because all of them are

within the same [0,1] range, either 0 or 1 to be more precise. Usually, a separate linear

regression is fitted for each of the top two or three classes predicted by the black-box model

f for the original image x̊ as each surrogate can only explain a single class. In practice,

this step is achieved with a ridge regression algorithm3 implemented in the scikit-learn

Python package [120].

A detailed description of LIME for other data domains can be found in Section 3.2.2 and the

LIME paper [129].

This 4-step process optimises the fidelity of the surrogate model and the complexity of the

resulting explanation. The first task translates into a small loss L calculated between the output

of the black-box model f and the surrogate model g – it measures how well the surrogate mimics

the black box. Complexity Ω, in the case of linear models, is computed as the number of non-zero

(or significantly larger than zero) coefficients of the surrogate g. The mathematical formulation

of this objective O is given in Equation 5.1, where G is the set of all the possible (sparse linear)

surrogate models.

O (G ; f , x̊, X ′)= argmin
g∈G

complexity︷ ︸︸ ︷
Ω(g) +

fidelity︷ ︸︸ ︷
L ( f , g; x̊, X ′) (5.1)

The fidelity of the surrogate model is measured empirically in the vicinity of the explained

data point x̊ by evaluating the loss function L given in Equation 5.2 for all the data points

sampled from the interpretable representation X ′ ⊆X ′. The locality of the metric is enforced by

the sampling strategy in X ′, which only covers a small region around x̊ (namely, variations of

the explained image), and weighting individual squared differences in predictions (probabilities

of the explained class) by the similarity scores, i.e., kernelised distances. This particular loss

function is inspired by the Weighted Least Squares, where the weights are distances L passed

through the exponential kernel k and computed in the interpretable domain X ′ between IR(x̊),

i.e., the explained data point transformed into the interpretable representation X ′, and the

sampled data points x′ ∈ X ′. In Equation 5.2, the c̊ subscript in f c̊ indicates the probability of the

class c̊ ∈ {1, . . . , c} computed with the black-box model f .

L ( f , g; x̊, X ′)=
∑

x′∈X ′
k

(
L

(
IR(x̊), x′

))︸ ︷︷ ︸
weighting factor

× (
f c̊

(
IR−1(x′)

)− g(x′)
)2︸ ︷︷ ︸

individual loss

(5.2)

3The sklearn.linear_model.Ridge class.
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Figure 5.2 shows the various stages of the LIME image explainer. Panel 5.2a depicts the pic-

ture to be explained, which has been classified by the black-box Inception v3 neural network [164]

as Eskimo dog. Panel 5.2b shows the interpretable representation of this image – a (super-pixel)

segmentation with d = 11 interpretable features. The last two panels of Figure 5.2 present

a LIME explanation of the Eskimo dog prediction in different formats: Panel 5.2c shows the

influence of interpretable features (regression coefficients) as a bar plot and Panel 5.2d displays

these segments superimposed on top of the original image.

5.2.2 LIME Trade-offs

Given the versatility and complexity of the LIME algorithm, it is subjected to various trade-offs. In

particular, we look into the independence and linearity assumptions imposed on the interpretable

features by the use of a linear model as the surrogate. We also examine the consequences of

the explanations being limited to a single class. Next, we inspect various properties of the

interpretable domain, i.e., image segmentation, and show how choices such as using the mean

colour of a segment for its occlusion, granularity of the partition and object edges affect the

explanations. Furthermore, we touch upon the impossibility of removing information from

tabular and image data in the operationalisation of their respective interpretable representations,

which is doable for text. We also analyse fidelity issues exhibited by surrogates, which can be

attributed to inherent randomness and high level of parameterisation of the LIME algorithm. A

more extensive discussion of these topics for all data domains – tabular, image and text – was

given in Section 3.3 of the bLIMEy chapter.

One Class Limitation LIME explanations are confined to a single class, which makes the pro-

cess of discovering the dependencies between different classes a challenge. For example, the same

super-pixels may be important – in varying degrees – for two separate classes, potentially leading

to confusion. Explaining multiple classes requires training a separate linear model for each one,

therefore the explanations have to be interpreted independently, forcing the user to relate them

and draw conclusions that may lack theoretical grounding and validation. Furthermore, when

the underlying black-box model is not calibrated and the estimated class probabilities are pushed

to the extrema (model over-confidence), the linear surrogate trained for any other but the top

class may be very sensitive to variations in the sampled data.

Linear Model Assumptions Using the family of linear models as surrogates propagates

their assumptions and restrictions to the resulting explanations. Linear classifiers are unable

to model target variables that are non-linear with respect to the data features, which property

does not necessarily hold for high-level meta-features such as image segments. Correlations

and interactions among the data features may also have an adverse effect on the quality of

such explanations. The latter observation is particularly important for interpretable domains

132



5.2. SURROGATE EXPLAINERS, REVISITED

(a) Mean-colour occlusion res-
ults in predicting Eskimo dog
with 77% probability.

(b) Solid black colour occlu-
sion yields 9% probability of
Eskimo dog, with the top two
predictions being chihuahua
(17%) and Siberian husky
(59%).

Figure 5.3: Black-box predictions for a single segment (#3) using different occlusion techniques.
The chosen super-pixel is the most important part of the image according to its LIME explanation
shown in Panel 5.2c. (This figure is an altered reproduction of Figure 3.3.)

with features that are highly structured or inter-dependent, e.g., adjacent image segments.

This phenomenon can be observed by occluding all of the segments but #3 – visualised in

Panel 5.3a – which is the most important meta-feature according to LIME. In this case, the

probability assigned to Eskimo dog is 77% according to the black box, compared to 83% without

any occlusions (Panel 5.2a), i.e., one segment “carries most of the probability mass”. However,

with both segments #3 and #7 preserved – the two most important, and adjacent, segments with

respective LIME scores of 0.4 and 0.3 – the probability of the same class increases by just 4

percentage points to 81%, i.e., due to their high correlation the surrogate model overestimates

their individual importance. The observed behaviour is not uncommon given the nature of the

interpretable representation and the intrinsic characteristics of linear models. Without replacing

either of these two components, fixing this issue is simply impractical.

Mean-colour Occlusion LIME uses the mean colour of a segment for its occlusion, see

Panel 5.3a for an example. This approach may have undesired effects for certain segmenta-

tion patterns and colour distribution of an image, in some cases undermining the utility of the

occlusion procedure altogether. We already touched upon these issues in Section 3.3.2, however

we revisit them here for completeness.

Colour Uniformity Segments that have a relatively uniform colour gamut may, effect-

ively, be impossible to occlude. This is especially common for segments that are in the

background or out of focus, e.g., bokeh and depth-of-field effects.

Segmentation Granularity The smaller the segments become, the more likely it is that

their colour composition is uniform given the “continuity” of images, i.e., high correlation
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of adjacent pixels, resulting in a similar effect as above.

Edges Preservation Whenever the segmentation coincides with objects’ edges or regions

of images where colour continuity is not preserved, which is common for edge-based

segmenters, occluding super-pixels with their mean colour causes (slight) colour variations

of adjacent segments, thus preserving the edges in the (partially) occluded images. Such

patterns may convey enough information for the black-box model to recognise the image

class correctly. This phenomenon can be observed in Panel 5.3a where despite occluding

all of the segments but #3 with their mean colour, the black-box model still recognises the

picture as Eskimo dog with a slight decrease in probability: 77% down from 83%.

Since these issues are artefacts of using the mean colour of each segment for its occlusion,

it may seem that fixing a single occlusion colour for all of the super-pixels would eradicate

some of these issues. However, from the discussion in Section 3.3.2, we already know that such

an approach is not a silver bullet. It hides the edges between occluded segments and removes

their content instead of just blurring the image, but the edges between occluded and preserved

super-pixels are still present. Furthermore, the choice of the occlusion colour significantly impacts

the explanations regardless of the colouring strategy. This type of interpretable representation

implicitly assumes that the black-box model is indifferent to the occlusion colour, i.e., none of the

modelled classes is biased towards it. Adjusting the granularity of the segmentation also plays

an important role given high correlation of adjacent super-pixels.

To better understand the effect of a single colour occlusion on black-box image classification

and LIME explanations we tweak the algorithm to occlude segments with a solid black colour, see

Panel 5.3b for an example. In this case, when all of the segments but #3 are occluded, the top three

classes predicted by the black-box model are Siberian husky with 59% probability, chihuahua with

17% and Eskimo dog with 9%. This is a drastic change from predicting 77% probability of Eskimo

dog when using the mean-colour occlusion as illustrated in Figure 5.3. With a similar effect

on other images partially occluded with a solid black colour instead, the corresponding LIME

explanations are different despite using the same data sampled from the interpretable domain in

each case – see Figure 5.4 for an example. Notably, the implicit assumptions of linear models

transferred onto the surrogate explanations are also pertinent with this occlusion technique.

The two most important segments are still #3 and #7, but in reversed order and with respective

influence of 0.299 and 0.332 in contrast to 0.409 and 0.326 for the mean-colour occlusion.

Observing the influence of each algorithmic component on the variability of LIME explana-

tions has prompted us to reëxamine Ribeiro et al.’s conclusions drawn from experimental results

presented in the LIME paper [129]. In particular, the unintended consequences of occlusion

colour sensitivity cast doubt on the importance of snow in the background of the image shown in

Panel 5.2a as suggested by Ribeiro et al. [129]. Replacing the segments of this picture showing

snow with their respective mean-coloured patches produces off-white mosaic that still resembles

snow, for example, compare the bottom-left and the bottom-right segments in Panels 5.3a and 5.2a.
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Figure 5.4: LIME explanation for the Husky image (Panel 5.2a) when using black occlusions.
It was generated based on the same interpretable representation and (binary) data sample as
the explanation for the mean-colour occlusion presented in Panel 5.2c, making them directly
comparable. (Segment #5 is the one below #1.)

These almost visually indistinguishable alterations may therefore have insignificant influence on

the probabilities output by a black-box model, as shown in Figure 5.3, thereby decreasing the

soundness of LIME explanations.

Impossibility of Information Removal The influence of the occlusion colour stems from the

impossibility of truly removing a super-pixel as many image classifiers cannot handle “missing”

data. Occlusion is thus a proxy for hiding information from a black-box model, which is a means

for testing its sensitivity to the information contained therein – step 2 of the LIME algorithm

outlined in Section 5.2.1. A similar phenomenon can be observed for explanations of tabular

data when using an interpretable representation based on discretisation and binarisation of

continuous features [129, 158] (cf. Section 3.2.1). This type of an interpretable representation

combined with a linear surrogate model yields an explanation that indicates the influence of

a particular feature value being within or outside of a given numerical range on the black-box

prediction of the explained instance. Selecting these bin boundaries is non-trivial and biases the

explanation in a similar way to the effect of the occlusion colour choice when explaining images.

However, the third data domain – text – is less prone to such issues as many black-box text

classifiers do not impose length or content restrictions on their input. This means that words

or tokens can be explicitly removed from the explained text excerpt, thereby not biasing the

explanation in any way.

Fidelity Issues Finally, the flexibility and generality of LIME – it is post-hoc and model-

agnostic – also contribute to the instability of its explanations [89, 158, 183]. Since the training

data for a local surrogate is sampled randomly, there are no guarantees with respect to reprodu-

cibility and stability of the explanations unless the random seed is fixed, which only provides

an illusion of stability. These problems with local fidelity of surrogates, i.e., their predictive

coherence with respect to the underlying black-box model, are not limited to LIME and are the

major factor inhibiting their uptake as reported by Rudin [133]. The multitude of parameters
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and possible component choices when building surrogates further contribute to this phenomenon:

number of samples, distance metric, kernel (width), interpretable representation (segmentation)

and occlusion colour, to name a few [46]. All in all, surrogates only (locally) approximate complex

behaviour of a black-box model and if their fidelity is miscommunicated to the explainee, such

explanations may be misleading.

5.3 Surrogate Multi-output Regression Trees

In order to alleviate LIME’s implicit assumption of a linear relation between the interpretable

features and the target variable as well as independence of the interpretable features, we propose

a surrogate explainer based on regression trees. Given the rich family of decision trees and their

diverse capabilities – regression and binary or multi-class classification trees, which are often

referred to as CART (Classification And Regression Trees) [23] – choosing the appropriate tree

type is crucial.

5.3.1 Advantages of Multi-output Regression Surrogates

Regression and Non-probabilistic Classification When the explained black box is a re-

gressor, the surrogate model also has to be a regressor unless we are willing to discretise the

output of the black box. Similar reasoning applies to non-probabilistic black-box classifiers: the

surrogate must be a classifier unless we encode the class predictions as probability vectors.

Furthermore, if the black-box classifier is multi-class, the surrogate can either be fitted to predict

(and explain) one of the classes, i.e., binary one-vs-rest, or to model a selected subset of classes, i.e.,

multi-class. Naturally, these two cases are indistinguishable for binary black-box models. Each

decision, including the choice of a model family, entails different assumptions and explanatory

power of the resulting surrogate.

When the black box is a regressor and the surrogate is a regression tree, the optimisation

objective O as defined in Equation 5.1 and the loss function L given in Equation 5.2 remain

unchanged. The model complexity function Ω, however, is adapted to trees, thereby measuring

either the depth of the surrogate or its width (number of leaves) as shown later by Equation 5.5

in Section 5.3.2. The choice between the two mostly depends on the type of explanation that we

want to extract from the surrogate tree, for example, depth may be preferred when visualising

the tree structure or extracting rules. Nevertheless, in certain cases, e.g., unbalanced trees with

the extreme case being one-sided trees, optimising for width or a combination of the two can be

more helpful.

When the black-box model is a non-probabilistic classifier and the surrogate is a classification

tree, the optimisation objective O remains as defined in Equation 5.1, but the loss function L

given in Equation 5.2 is adapted from regression to classification. To this end, the squared error

component of the loss function L is replaced with an indicator function, resulting in a weighted
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accuracy. This loss function for classification is shown in Equation 5.3, with the underlined term

indicating the altered part. Any other classification evaluation metric can be used within L by

modifying it in this manner. Similarly to surrogate regression, the model complexity function Ω

is adapted to trees using Equation 5.5 shown later in Section 5.3.2.

L ( f , g; x̊, X ′)=
∑

x′∈X ′
k

(
L

(
IR(x̊), x′

)) × 1
(
f c̊

(
IR−1(x′)

)
, g(x′)

)
(5.3)

Probabilistic Classification This chapter focuses on a more common scenario, especially for

object recognition tasks built on top of neural networks, where the black box is a probabilistic

classifier. One approach is to transform such models into non-probabilistic classifiers by applying

argmax to the vector of predicted probabilities and proceeding as described above. Doing so,

however, is sub-optimal as it leads to losing vital information about the confidence of the model’s

prediction. For example, the top two classes may be almost equally likely – 49% Labrador

retriever and 48% golden retriever – or one of them may be dominant – 98% Siberian husky. The

latter disproportion is often visible when the number of modelled classes is relatively large, e.g.,

the popular ImageNet data set [33] has 200 classes, many of which are highly correlated, e.g.,

malamute, Eskimo dog, (Siberian) husky and (grey/Arctic) wolf. Such adverse behaviour is not

uncommon and can be partially attributed to a model’s overconfidence and poor calibration [82],

which get magnified when treating a probabilistic predictor as an argmax classifier.

A more natural approach in this case is fitting a surrogate regressor to the probabilities

predicted by the black box. In this setting, one surrogate model is required for every explained

class where it implicitly acts as a one-vs-rest explainer with respect to the classes predicted by

the black box. Intuitively, a surrogate regression tree for a class A can only answer questions

about the probability of this single class, with the complementary probability p(¬A)= 1− p(A)

modelling the union of all the other possible classes ¬A = B∪C∪·· ·∪Z. The explanations, e.g.,

counterfactuals, extracted from surrogate regressors are thus limited to answering “Why A rather

than ¬A?” questions, which may have insufficient explanatory power for non-binary tasks. Other

viable explanation types follow a similar pattern: “How important are selected features for class

A?”, “How does the tree structure tell apart class A from all the other classes?”, and “What are

the logical rules used to identify class A?”

The magnitude of the probability p(A) predicted by the surrogate when explaining class A

can also be problematic in certain cases and presents us with similar challenges to treating the

black box as an argmax classifier. If p(A) is (much) greater than 0.5, class A is clearly dominant

and often we do not need to worry about the other classes. However, if p(A) ≤ 0.5 we cannot

be certain whether there is a single event B with p(B) ≥ p(A), or alternatively the combined

probability of all the complementary events p(¬A) is greater than or equal to p(A) with no single

event dominating over A. To complicate matters even further, the numerical output of some

surrogate regressors is unbounded, which will be confusing to an explainee expecting a proper
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probability within the [0,1] range. This last property affects linear models but not regression

trees since the latter output the mean of the target value for training data points in each leaf,

which lies between their minimum and maximum value, therefore is guaranteed to be within the

[0,1] range.

The training procedure of surrogate regression trees utilises the unchanged optimisation

objective O and loss function L as defined in Equations 5.1 and 5.2 respectively. Since we are

using regression trees, the model complexity function Ω has to be adapted appropriately, as given

by Equation 5.5 in Section 5.3.2.

Trade-offs Between Regression and Classification Surrogates There is a clear trade-off

between regression and multi-class classification surrogate trees when dealing with probabilistic

black boxes. While the mechanism of the former is appealing, it comes with sever restrictions

and caveats impeding its widespread applicability. For example, fitting a separate surrogate for

each explained class, which is required for surrogate regressors, can cause the resulting trees

to be structurally inconsistent. This means that juxtaposing explanations for different classes

may present competing or even contradictory evidence, which risks confusing the explainees

and puts their trust at stake. Surrogate (multi-class) classifiers, on the other hand, overcome

this challenge and explicitly allow to answer both “Why A rather than ¬A?” and “Why A rather

than B?” questions, thereby uncovering relations between multiple classes. Such explanations

are more powerful and more natural to the explainee but come at the cost of losing important

information when applying argmax to the probabilistic output of a black-box classifier.

5.3.2 LIMEtree

To address the issues discussed in the previous section, we propose to use a multi-output
regression tree as the surrogate model, which in many ways provides the best of both worlds.

It simulates multi-class modelling in a regression setting, allowing the surrogate to capture

interactions between multiple classes, hence explain them coherently. This is a significant

improvement over training a separate one-vs-rest regression surrogate for each explained class,

which may produce diverse and competing explanations because these models do not necessarily

share a common tree structure or may split on different feature subsets. Since class probabilities

predicted by the black box and used as target variables for training the surrogates are highly

correlated, independent one-vs-rest surrogates cannot replicate this behaviour. For example,

an increase in the predicted probability of class A causes the probability of another event B to

decrease, which plays an important role among the top classes output by the black box. Notably,

since each leaf can model probabilities of multiple classes, their sum may be greater than 1 for

any given leaf, which can be addressed by rescaling them to avoid confusing the explainee.

To ensure low complexity and high fidelity of our multi-output regression trees, we employ

the same optimisation objective O as given in Equation 5.1 and use either of the decision tree-
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specific complexity functions Ω given in Equation 5.5, where d is the dimensionality of the binary

interpretable domain X ′. We also adapt the loss function L to account for the surrogate tree g

outputting multiple values in a single prediction as shown in Equation 5.4, where C ⊆ {1, . . . , c}

is the subset of classes chosen to be explained by g, for which the c̊ subscript in g c̊(x′) indicates

a prediction of the class c̊ ∈ C for a data point x′. In practice, this is achieved by training

a multi-output tree regressor4 implemented by the scikit-learn Python package [120] and

iteratively increasing the depth or width bound of the tree to optimise the objective function

O . The optimisation procedure terminates when the loss L defined in Equation 5.4 reaches a

certain, user-defined level ε ∈ [0,1], which corresponds to the fidelity of the local surrogate, i.e.,

L ( f , g; x̊, X ′)≤ ε. Increasing the complexity of the surrogate model Ω(g) improves its predictive

power, which allows to further minimise the loss L .

L ( f , g; x̊, X ′)= 1∑
x′∈X ′ω(x′; x̊)

∑
x′∈X ′

ω(x′; x̊)
1
2

∑̊
c∈C

(
f c̊

(
IR−1(x′)

)− g c̊(x′)
)2


where ω(x′; x̊)= k

(
Lcos

(
IR(x̊), x′

)) (5.4)

Ω(g; d)= depth(g)
d

or Ω(g; d)= width(g)
2d (5.5)

Note that the inner sum
∑

c̊∈C over the explained classes is scaled by a factor 1
2 since the

biggest squared difference can be 2. This happens when the predictions of f and g assign a

probability of 1 to two different classes, e.g., [1,0,0] and [0,0,1]. The underlying assumption

is that the sum of values predicted by each leaf of the surrogate tree is smaller or equal to 1,

which may require normalisation in some cases. The outer sum
∑

x′∈X ′ is normalised by the sum

of weights ω(x′; x̊) to ensure that the loss L is bounded between 0 and 1, facilitating a direct

comparison of different surrogates and allowing for a meaningful user-defined parameter ε.

Putting everything together we arrive at Algorithm 5.1, which we call LIMEtree. While the

algorithm itself is relatively lightweight, manipulating images and querying black-box models

may become a bottleneck. The explainee has no control over the computational and memory

complexity of querying the black-box model f , which is executed n times, where n is the number

of data points sampled from the interpretable domain. Given the recent advances in hardware

dedicated for machine learning applications, this step should not be a burden when utilising

GPUs, and manageable with just CPUs. Moreover, transforming the interpretable representation

(binary vectors) into the original domain (images) requires a considerable amount of RAM. The

explained image has to be duplicated for every data point sampled from the interpretable domain,

and its RGB pixel values need to be altered to reflect segment occlusions. The efficiency of these

two steps can be improved significantly with batch processing and parallelisation, therefore

reducing the use of operational memory and decreasing the overall processing time. Other parts

of the algorithm, which are executed just once, are relatively efficient: sampling a binary matrix

4The sklearn.tree.DecisionTreeRegressor class.
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Algorithm 5.1: LIMEtree.
Data: • black-box model f • explained data point x̊ • interpretable representation

transformation function IR and its inverse IR−1 • samples number n • set of
classes to be explained C ⊆ {1, . . . , c} • distance function L • kernel k • tree depth
bound d • expected fidelity of the local surrogate ε

Result: local surrogate multi-output regression tree

1 X ′ ← sample n data points from the interpretable domain X ′;
2 Transform the sample into the original domain X with X = IR−1(X ′);
3 Predict the probabilities of X with the black-box model f ;
4 Compute the distances between IR(x̊) and the sample X ′ using L;
5 Compute the weights by kernelising the distances with k;
6 for i ∈ [1, . . . ,d] do
7 Fit a multi-output regression tree g with a depth bound i to the weighted data set X ′

using the specified subset C of class probabilities from Step 3 as the target;
8 Break the loop if the surrogate reaches the user-defined fidelity ε, i.e., L ( f , g)≤ ε;
9 end

10 Return the optimal tree;

from the interpretable domain, fitting a multi-output regression tree to binary data with feature

thresholds fixed at 0.5 and segmenting the explained image.

5.3.3 Improved Surrogate Fidelity

Our multi-output regression trees can significantly improve the local fidelity of explanations,

which, as already discussed, has been identified as a major drawback of surrogate explainers [133].

To this end, we use Definition 5.1 to retrieve the minimal interpretable representation X ′
T , which

is unique for each tree. Intuitively, this set is composed of binary vectors x′t from the interpretable

representation X ′ – one for each leaf t ∈ T of the decision tree – that have the least possible

number of 0 components while still being assigned to the leaf t. For images, this can be understood

as looking for the minimal possible occlusion of an image for each leaf of the tree – a 0 component

of a vector in the interpretable representation indicates an occluded segment.

Definition 5.1. Assume a binary decision tree g with a set of leaves T fitted to a binary d-

dimensional data set X ′ ⊆X ′ = {0,1}d. This tree assigns a data point x′ ∈X ′ to a leaf t ∈ T with

the function gid(x′)= t. For a selected tree leaf t, its unique minimal data point x′t is given by:

x′t = argmax
x′∈X ′

d∑
i=1

x′i for gid(x′)= t,

where x′i is the ith component of the binary vector x′. We can further define a minimal set of data

points X ′
T ⊆X ′ that uniquely represents the tree g and the set of its leaves T. It is composed of
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all the minimal data points for this tree:

X ′
T = {x′t : t ∈ T}.

Next, we transform this minimal representation set X ′
T from the interpretable into the ori-

ginal domain X , i.e., images, using the inverse of the interpretable representation transformation

function with a fixed occlusion colour, e.g., black, resulting in XT = {IR−1 (
x′t

)
: x′t ∈ X ′

T }. We then

predict class probabilities for each image in XT with the black box f and replace the values

estimated by the surrogate tree with these probabilities for each leaf t ∈ T, i.e., modify the

surrogate tree by overriding its predictions. Doing so is only feasible for the tree leaves as the

minimal data points for some of the splitting nodes are indistinguishable; for example, all of the

nodes on the root-to-leaf path that decides every interpretable feature to be 1 are non-unique and

would be represented by the original (non-occluded) image. This procedure ensures full local
fidelity of the surrogate tree with respect to the explanations derived from the tree structure such

as counterfactuals and root-to-leaf decision rules. However, for this property to hold, the function

that transforms the data points from the original domain into the interpretable representation

IR has to be deterministic as outlined by Lemma 5.2. This assertion follows from the discussion

presented in Section 3.3.2, which is summarised in the next paragraph.

Lemma 5.2. A decision tree surrogate can achieve full fidelity with respect to the explanations

derived from the structure of this tree – model-driven explanations – if the function IR : X →X ′

transforming data from their original domain X into an interpretable representation X ′ is

deterministic. This means that the mapping from X to X ′ is a one-to-one correspondence, with

the IR function having a corresponding and uniquely defined inverse function IR−1 : X ′ → X .

Therefore, a data point x ∈X can be translated into a unique data point IR(x)= x′ ∈X ′ and vice

versa IR−1(x′)= x.

Intuitively, the determinism of the interpretable representation transformation function

imposed in Lemma 5.2 implies that each leaf in the surrogate tree is associated with only a

single minimal data point xt in the original representation X . This data point is derived from the

minimal interpretable data point x′t by applying the inverse of the interpretable representation

transformation function IR−1, i.e., xt = IR−1(x′t). Therefore, xt represents the original image with

the smallest possible number of occluded segments with gid(x′t)= t. By assigning the probabilities

predicted by the black box for each data point xt to the corresponding leaf t of the surrogate, it

achieves full fidelity for the minimal representation set, which is the backbone of faithful model-

driven explanations. The interpretable representation of images introduced in this chapter, and

used by LIME [129], is deterministic since a single image partition is created and the underlying

occlusion strategy is fixed: an identical colour for all segments in our experiments (Panel 5.3b)

and a segment-specific mean colour occlusion in LIME (Panel 5.3a).

While such a setting ensures full fidelity of model-driven explanations, the same is not

guaranteed for data-driven explanations such as answers to what-if questions, e.g., “What if
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segments #3, #5 and #9 were absent?” Root-to-leaf paths that do not condition on all of the binary

interpretable features allow for more than one data point to be assigned to that leaf, e.g., for

three binary features (x1, x2, x3) ∈ {0,1}3, a root-to-leaf path with x1 ≤ 0.5∧ x3 ≤ 0.5 conditions

assigns (0,0,0) and (0,1,0) to the corresponding leaf. This observation prompted us to specify

the minimal interpretable representation X ′
T (Definition 5.1) that chooses a single data point to

represent each leaf, thus enabling full fidelity of model-driven explanations without additional

assumptions. However, to achieve full fidelity for data-driven explanations as well, the surrogate

tree must faithfully model the entire interpretable feature space, i.e., have one leaf for every data

point in this feature space, which can be thought of as extreme overfitting. Since the cardinality

of a binary d-dimensional space Bd = {0,1}d is equal to |Bd| = 2d, and a complete and balanced

binary decision tree of 2d width (number of leaves) is d-deep, relaxing the tree complexity bound

Ω accordingly guarantees full fidelity of all the explanations. This finding is expressed by the

following corollary, which stems from Lemma 5.2.

Corollary 5.3. If the complexity bound Ω (width) of a surrogate tree g is relaxed to be equal to

the cardinality of a binary interpretable domain X ′, i.e., Ω(g)= |X ′|, the surrogate is guaranteed

to achieve full fidelity. This property applies to explanations that are both:

data-driven – derived from any data point in the interpretable representation, and

model-driven – derived from the structure of the surrogate tree.

Therefore, a surrogate tree that guarantees faithfulness of model-driven explanations (Lem-

ma 5.2) can only deliver trustworthy counterfactuals and exemplar explanations sourced from the

minimal representation set. For such surrogates, we can also generate what-if explanations with

full fidelity by bypassing the surrogate tree and directly querying the black-box model. This may

be an attractive alternative for more complex surrogate trees that additionally guarantee faith-

fulness of data-driven explanations (Corollary 5.3) whenever the black-box predictive function is

accessible to the explainee and querying it is not prohibitively expensive in time or compute. This

latter surrogate type, which usually results in deeper trees, can deliver a broader spectrum of

trustworthy explanations: tree structure-based explanations, feature importance, decision rules

(root-to-leaf paths), answers to what-if questions and exemplar explanations based on any data

point, in addition to counterfactuals.

5.4 Examples of LIMEtree Explanations

To support the discussion and experimental results presented in the following sections, we

first introduce examples of LIMEtree explanations and compare them with the corresponding

explanations produced by LIME [129]. After personalising the interpretable representation, as

shown in Panel 5.5a, we explain the top three classes predicted by a black-box model: tennis ball

(99.56%), golden retriever (0.42%) and Labrador retriever (0.02%). Their LIME explanations are
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(a) Segments of the ex-
plained image.
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(b) LIME explanation of
tennis ball (99.56%).
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(c) LIME explanation of
golden retriever (0.42%).
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(d) LIME explanation of
Labrador retriever (0.02%).

Figure 5.5: LIME explanations for the top three classes predicted by a black-box model for
the image shown in Panel (a): tennis ball with 99.56% (b), golden retriever with 0.42% (c) and
Labrador retriever with 0.02% (d).

given in Figure 5.5. As expected, segment #7, which depicts the ball, has an overwhelmingly

positive influence on the tennis ball prediction – see Panel 5.5b. We can also see that this

explanation is significantly affected by the correlation of the interpretable features since all

of the important segments following #7 – i.e., #1, #0 and #6 – are adjacent and fully surround

it. The second most important segment for this class is #1, with magnitude that is almost six

times larger than the magnitude of the next two segments. Intuitively, the reason behind this

configuration is the white stripe – a characteristic feature of tennis balls – appearing in this

segment.

The other two LIME explanations shown in Panels 5.5c and 5.5d are for golden retriever and

Labrador retriever respectively. For both predictions, segment #7 has a relatively large negative

influence, which is expected, and segments #2 and #4, forming the dog’s face, have a positive

effect. The difference between predicting these two dog breeds is determined by the positive

effect of segment #0 on the golden retriever class (maybe because it reveals the long coat) and

the negative influence of segment #1, which includes the white stripe of the tennis ball, strongly

indicating the Labrador retriever class. Based on this evidence alone, it is difficult to determine

the model’s heuristic for telling apart the two classes; in particular, the role played by segment

#1.

Next, we explain these three classes with LIMEtree, which can produce various types of

explanations, thus helping us to analyse the behaviour of the underlying black box. We have

already shown one type of explanation – the surrogate tree structure visualisation – in Figure 5.1.

The depth of this tree was limited to two for the purpose of presentation, therefore it complies

with Lemma 5.2 but not with Corollary 5.3, only achieving full fidelity with respect to model-

driven explanations. Another explanation type, which closely resembles LIME explanations,

gives the importance of interpretable features (calculated with the Gini importance [22] as

described earlier in Section 4.2) and is shown in Panel 5.6a. Since LIMEtree models all three

classes simultaneously, the importance explanation captures the image segments that help to
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(a) LIMEtree feature im-
portance; all three classes
share one explanation.

(b) LIMEtree what-if ex-
planation – “What if the
ball was not there?” –
yields 98% golden retriever.

(c) LIMEtree exemplar ex-
planation: “Show me an ex-
ample of a Labrador re-
triever.”

(d) LIMEtree exemplar ex-
planation: “Show me an
example of a golden re-
triever.”

Figure 5.6: Three types of LIMEtree explanations: (a) feature importance, (b) what-if explanation
and (c–d) exemplar explanation.

differentiate between these classes. Comparing Panel 5.6a with analogous LIME explanations in

Figure 5.5 shows a satisfying overlap, with each LIME explanation sharing three of its important

segments with the LIMEtree explanation. The tree-based feature importance clearly indicates

that segments #7 and #1 (depicting the ball) are the most important, owing to the dominant

prediction of tennis ball (99.56%), and are followed by segments #0 and #2, which together

encompass most of the dog. While informative, these insights cannot be explicitly attributed to

any single class and the feature importance values can only be positive adding to this issue.

Since all of the LIMEtree explanations are coherent – they come from the same surrogate tree

– with some help of another explanation type, e.g., the tree structure visualisation presented in

Figure 5.1, we can discover the relation between each important feature and the three explained

classes. Comparing the two leftmost with the two rightmost leaves – the result of the root split

on segment #7 – tells us that this segment has positive influence on the tennis ball prediction.

Additionally, when segment #1 is present, this prediction strengthens, however without it, while

tennis ball is still the most likely prediction, Labrador retriever is almost equally likely and

nearly twice as likely as golden retriever. On the other hand, when the ball is absent, i.e., segment

#7 is occluded, both dog breeds are almost equally likely with the presence of segment #2 being

the deciding factor: it is Labrador retriever if it is occluded and golden retriever if it is present.

Arriving at these conclusions required us to use feature importance and simultaneously

inspect the tree structure, which cannot be expected of a lay explainee or when the surrogate

tree is complex. In such cases, we can use other types of explanations, for example, interactive

what-if questions. Since the tree presented in Figure 5.1 is not complete (see Corollary 5.3), we

use the black-box model instead of the tree to evaluate hypothetical scenarios. Because segment

#7, depicting the ball, is the most important factor, we are interested in what if this segment was

not there; as expected, the new prediction is 98% golden retriever – see Panel 5.6b. We can also

ask for exemplar explanations of the Labrador retriever and golden retriever classes, which are

shown in Panels 5.6c and 5.6d respectively.
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(a) When segments #7 and
#1 are preserved, the pre-
diction is 90% tennis ball.

(b) Preserving segments #7
and #6 yields 66% tennis
ball.

Figure 5.7: The shortest LIMEtree explana-
tions of tennis ball.

Figure 5.8: Visual representation of a LI-
MEtree rule explanation that maximises the
Labrador retriever prediction (99%).

In order to take full advantage of LIMEtree explanations, we train a complete surrogate

tree (see Corollary 5.3). We use it to ask for the shortest possible explanation, i.e., the highest

number of occluded segments, of tennis ball. There are two such explanations of length 2: one

with segments #7 and #1 and another with segments #7 and #6 preserved, both of which are

shown in Figure 5.7. We can also ask the tree for a rule explanation (root-to-leaf path) of Labrador

retriever that results in the maximal possible confidence of the black-box model for this class.

This explanation is f0 = 0∧ f1 = 0∧ f2 = 1∧ f3 = 0∧ f4 = 1∧ f5 = 1∧ f6 = 1∧ f7 = 0, giving us

99% confidence. This particular representation of our logical rule is not particularly appealing,

however, as discussed in Section 5.5.2, we can express it in the visual domain as well – see

Figure 5.8.

The biggest advantage of LIMEtree is its ability to output personalised counterfactual explan-

ations. For example, we can ask the following question: “Given segment #7 (the ball), what would

have to change for the image to be classified as golden retriever?” Therefore, we are looking for

an image modification with the ball segment (#7) preserved that is classified as golden retriever.

LIMEtree tells us that by occluding segments #1 and #6 – the smallest viable occlusion shown in

Panel 5.9a – the model predicts golden retriever (91%). Since occluding segment #7, i.e., the ball,

on its own results in 98% golden retriever (see Panel 5.6b), another interesting question is: “Had

segment #7 not been there, can we revert the prediction to tennis ball?” LIMEtree indicates that

this is impossible, however when segments #7, #2 and #0 are occluded, the image is not predicted

as golden retriever anymore – see Panel 5.9b.

5.5 Advantages of LIMEtree

LIMEtree is highly flexible, supports different types of explanations and comes with fidelity

guarantees. By tailoring the interpretable representation to a particular data set or individual

instance, the explanations can be customised even further. We explore the personalisation and
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(a) Getting a golden retriever
prediction (91%) when seg-
ment #7 (the ball) is pre-
served.

(b) Tennis ball cannot be pre-
dicted when segment #7 is oc-
cluded, however hiding seg-
ments #0, #2 and #7 as well
yields volcano (17%).

Figure 5.9: Customised (personalised) counterfactual explanations generated with LIMEtree.

interactiveness of LIMEtree explanations in Section 5.5.1, which demonstrates how to customise

the interpretable representation, the explanation type and its content. Importantly, using a multi-

output regression tree as the surrogate model enables accurate local mimicking of black-box

probabilistic models simultaneously for multiple classes, making it appealing and compatible

with modern predictors such as deep neural networks. LIMEtree works equally well for data

types other than images, e.g., tabular and text, and its full fidelity desideratum can be achieved in

practice while preserving low complexity of explanations, which is discussed in Section 5.5.2. All

of the LIMEtree design choices empower the users to build an explainer that best fits a particular

use case, targeting a wide range of stakeholders and purposes, for example, model debugging,

robustness analysis, fairness evaluation and prediction explanation.

5.5.1 Personalised and Interactive Explainability

No matter how comprehensive an explanation is, it may not appeal to all explainees or exhaust-

ively answer their diverse questions [151] as we show later in Chapter 6. Humans are accustomed

to an explanatory process that entails interactive questioning, arguing and rebutting, which

comes naturally in a conversation. Thus, for explanations of predictive systems to be intuitive,

they should imitate this process [106]. LIMEtree allows various aspects of its explanations to be

interactively personalised, in particular the interpretable representation, type of an explanation

and its content. This approach enables the explainees to steer the explanatory process in a

selected direction, thereby achieving an explanation that satisfies their curiosity or answers

specific questions.

Interpretable Representation The first step towards personalised surrogate explanations

is tuning the interpretable representation of the data. While, in the case of images, computer

generated segments (Panel 5.10a) may be good enough to produce meaningful explanations, we
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(a) Default, computer-
generated segmentation of
an image (quick shift).

(b) Personalised image
segmentation created by
merging user-specified
super-pixels.

Figure 5.10: Default (a) and custom (b) interpretable representations of an image. The top two
classes predicted by a black box are 99.6% tennis ball and 0.4% golden retriever.

encourage the users to either provide custom segmentation or indicate which of the computer-

generated segments should be merged (Panel 5.10b). This step aims to achieve an interpretable

representation, i.e., image segmentation, that conveys meaningful concepts, which may be differ-

ent for individuals with different levels of domain expertise and background knowledge. Similar

reasoning applies to tabular and text data where the explainee can respectively customise bin-

ning of continuous features and tokenisation of sentences, e.g., bundle selected words to form

a tuple considered as a single token in the interpretable representation [151]. After fixing the

interpretable representation, a surrogate tree is fitted and its leaves relabelled as per Lemma 5.2,

which model is then used to extract various explanations. Since personalised interpretable repres-

entations tend to be small in size (see Figure 5.10), a complete tree – according to Corollary 5.3 –

can often be fitted, yielding more diverse and faithful explanations.

Explanation Type A surrogate based on linear regression is limited to explaining inter-

pretable features (image segments) with their influence on a black-box prediction separately for

each class. A multi-output regression tree, on the other hand, can explain the (local) behaviour of

a black box with a wide range of high-fidelity artefacts discussed earlier in Section 5.1, namely:

tree structure visualisation;• interpretable feature importance;•

logical conditions;• exemplar explanations;•

answers to what-if questions;• contrastive statements; and•

supportive statements.•

More importantly, beyond customising the interpretable domain, a linear surrogate is confined to

static, one-off and one-size-fits-all explanations. In contrast, some of the decision tree explanations
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can be framed in an interactive explanatory process, giving the explainees control over their

content [151, 156] – a topic explored further in Chapter 6.

Explanation Content Contrastive and supportive statements (counterfactuals in particular)

are a very prominent and appealing explanation type, which is arguably the most natural

explanatory mechanism for humans [106] and complies with various legal regulations [173]. Such

explanations can be simple “Why?” questions with either explicit or implicit class contrast, e.g.,

“Why is it a cat?” where the implicit contrast is interpreted as “Why is it a cat and not anything

else?”, or “Why is it a cat and not a lion?” where the explainee explicitly provides a contrast.

Additionally, the user can ask “Why given?” and “Why despite?” questions to also take control of

and personalise the interpretable features appearing in the conditional part of the contrastive

explanations. An explainee may prefer a counterfactual that, respectively, must and/or must not

be conditioned on certain interpretable features, e.g., “Why is it a golden retriever and not a

Labrador retriever, given occluded segment #3 and despite visible segments #1 and #6?”, which

specifies both of these conditions and uses an explicit class contrast. Moreover, such explanations

are capable of supporting interactions via an explanatory dialogue [151, 156] (Chapter 6), and

are easy and efficient to derive from decision trees (Chapter 4). These observations generalise to

LIMEtree, which uses multi-output regression trees as its underlying surrogate model.

Another type of interactive explanations derived from a surrogate tree are answers to what-

if questions: the explainee can formulate conditions on the features of a data point in an

interpretable domain, e.g., image segments, and ask the tree for its prediction. For example,

“What if segments #1 and #5 were occluded?”, which can be answered using either the black-box

model or the surrogate tree depending on the desired fidelity of the explanation and completeness

of the surrogate – see Section 5.3 for more details. Other, somewhat interactive, explanations

are decision rules, i.e., root-to-leaf paths, and exemplars, i.e, similar data points. The first type

allows the explainees to inspect the influence of each logical condition included in this path on

the prediction. For example, in the image domain each root-to-leaf path could be visualised as

the original image with a subset of segments occluded and the interactive interface would allow

the explainee to click on each segment to switch its occlusion on or off, thereby changing the

tree path, to understand its influence on the prediction. Similar interactive approaches can be

developed for tabular and text data by allowing the explainee to change a value of a feature and

add or remove a token from a sentence. Exemplar explanations, on the other hand, are generated

by identifying all the data points in the interpretable representation that fall into the same and

nearby, e.g., determined based on the Hamming distance, leaves of the surrogate tree. To better

understand the local behaviour, the explainee can interactively select a leaf for which exemplars

will be generated and specify whether these should be data points that are assigned the same or

a different prediction to the one of the selected leaf.

Finally, the least interactive explanations are tree structure visualisation and interpretable

feature importance, both of which can only be made interactive by embedding them in an
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interactive user interface and are otherwise static. For example, the tree structure can be

presented in an interface that allows the explainee to zoom in and out, thereby improving its

comprehensibility by focusing only on one of its branches. This interface can also be a gateway to

other, more interactive, explanations, e.g., selecting a leaf or a root-to-leaf path can give access

to counterfactuals, exemplars and logical rules. Since all the seven types of explanations that

we discussed in this section are derived from a single surrogate model, they are guaranteed to

be coherent and their diverse nature should appeal to a wide range of explainees. Section 5.4

presented examples of these explanations, showcasing their power and the benefits of their

interactiveness.

5.5.2 Generalisability and Applicability

LIMEtree explanations are versatile and flexible but their fidelity guarantees require a determ-

inistic interpretable representation transformation function IR – which has a unique inverse

IR−1 (Lemma 5.2) – and a complete surrogate tree (Corollary 5.3), as outlined in Section 5.3.3.

These conditions may seem strict and difficult to satisfy for a generic case, thereby hampering

the adoption of LIMEtree, however in this section we show that these challenges can be easily

overcome. We mainly focus on practical implications and requirements of our fidelity guarantees

as many potential users will find this property the most appealing. We also discuss how to

generalise LIMEtree to other data domains – tabular and text – while maintaining its core

properties. We address concerns about the increased complexity of the surrogate tree and its

adverse influence (or lack thereof) on the comprehensibility of the explanations, showing that

this does not affect the most important types of explanations. All of these arguments should

convince the reader that in many cases LIMEtree can be easily generalised and safely deployed

while preserving its attractive explanatory properties.

Tabular and Text Data

This chapter largely focuses on explaining black-box probabilistic image classifiers, but in Sec-

tion 5.3.1 we briefly discussed how surrogate explainers, such as LIMEtree, are also applicable to

regression and binary or multi-class classification tasks. The core component in all of these use

cases is the function responsible for transforming data between the original and interpretable

representations. For images, we provided an example of this mechanism – a binary representation

encoding super-pixel occlusions – analysed its properties and discussed its pros, cons and implica-

tions, showing how to design it to mitigate possible issues (Section 5.2.2). This overview led us to

conclude that making the interpretable representation transformation function deterministic is

crucial for guaranteeing full fidelity of LIMEtree – see Section 5.3.3.

A very similar line of reasoning applies to text data. Here, the most appealing interpretable

domain is representing an excerpt of text as a bag of words (tokens), with the binary interpretable

vector indicating their individual presence (1) or absence (0). This representation complies with all
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of the properties discussed in Section 5.3.3 and required for LIMEtree to achieve high fidelity. To

ensure that the interpretable representation transformation function is deterministic, the order

of words (tokens) in the text excerpt must be memorised, which is equivalent to remembering the

adjacency of segments in an image and their occlusion colour. This interpretable domain for text

has a major advantage over the one presented for images: it does not require an arbitrary protocol

for removing words, akin to the occlusion colour for images, since they can be explicitly removed

from the text (see the discussion in Sections 3.2.1 and 5.2.2). Searching for an interpretable

representation for images with a similar property may be futile since for text it is an artefact of

the black boxes rather than the interpretable domain itself – language models do not presuppose

input of fix length or shape.

In contrast, defining an interpretable representation transformation function for tabular

data with numerical features that is deterministic – hence has a unique inverse and complies

with Lemma 5.2 – is challenging. The most popular approach [129] is discretisation followed by

binarisation, e.g., a numerical feature x3 = 7 can be discretised into three intervals: (−∞,−3],

(−3,8] and (8,∞), which are binarised as [0,1,0], indicating that x3 falls into the middle bin (see

Section 3.2.1 for more details). While this does not affect categorical features since they do not

have to be discretised beforehand – their original representation can be uniquely reconstructed

from the binary encoding – the same is not true for numerical attributes, making the transform-

ation function non-deterministic. A number can be uniquely mapped to a bin as shown above,

however the inverse procedure is ill-defined: reconstructing a number from a bin that spans a

numerical range is impossible [158]. For example, LIME [129] bypasses this inverse by sampling

from a truncated (at bin boundaries) Gaussian distribution fitted to each numerical bin, thereby

introducing an additional source of randomness to the explanations.

While it is possible to use a surrogate explainer without an interpretable domain for tabular

data, it becomes a fragile procedure and significantly alters the meaning of the explanations. For

example, when the surrogate is a linear model (LIME’s approach), the explainer ceases to be a

sensitivity analysis tool of interpretable features; instead the explanations convey the influence of

raw attributes. In this case, dropping the interpretable representation also requires normalising

all numerical features to the [0,1] range and one-hot encoding the categorical attributes to

ensure that the coefficients of the linear surrogate are comparable. Applying the interpretable

representation comes with problems of its own; defining the right bin boundaries is non-trivial

and requires a choice of an arbitrary algorithmic method, e.g., quartile discretisation. This can be

partially addressed by allowing the user to interactively adjust the numerical bin boundaries

and group categorical feature values as discussed in Section 5.5.1.

Depending on the surrogate model choice, coming up with an interpretable domain may

be unnecessary altogether. Notably, decision trees learn their own discrete representation of

tabular data by applying binary splits, thereby creating locally faithful and meaningful binning

for continuous and grouping for categorical features [158] (see Section 3.3.2 for more details).
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Furthermore, non-determinism of this interpretable representation transformation function can

be overcome algorithmically by first locally sampling data within their original domain and

then transforming them into the interpretable representation [158]. This is uniquely possible

for tabular data and is the reverse of the standard procedure – steps 1–3 in Algorithm 5.1

corresponding to step 2 described in Section 5.2.1 – nonetheless, this strategy mitigates the

need of using the ill-defined IR−1 function. Applying this “trick”, however, will not allow the

surrogate to achieve full fidelity, which requires the interpretable domain transformation function

to be deterministic (Lemma 5.2). Without satisfying this property it is also impossible to build a

complete surrogate tree (Corollary 5.3), nevertheless since we are dealing with raw tabular data,

we can overfit the tree to the local sample, thereby achieving high enough fidelity.

Full Fidelity in Practice

Assuming that the interpretable representation transformation function satisfies the properties

outlined in Lemma 5.2, i.e., it is deterministic and invertible, full fidelity of the surrogate is

achieved in practice by adjusting the sample size n and relaxing the complexity bound Ω of the

tree (i.e., removing the depth constrain d) in Algorithm 5.1. While the conditions underpinning

Lemma 5.2 cannot be satisfied for tabular data with continuous features, reordering a few steps in

the LIMEtree algorithm provides a close approximation since the interpretable domain is learnt

by the tree as discussed earlier. For image and text data, on the other hand, these requirements

are easily met in practice, with Corollary 5.3 prescribing how to choose an appropriate sample

size and tree depth bound to achieve full fidelity. For these data types, each dimension of the

interpretable domain can be treated as a human-comprehensible concept, e.g., ears, eyes, muzzle

and background for a dog image, which will often result in a relatively few concepts for each

explained data point. Note that words (tokens) or image super-pixels do not have to be adjacent to

be treated as a single entry in the interpretable domain, which, for example, allows to represent

scattered background segments as one concept.

Following the logic presented in Section 5.3.3, a binary interpretable representation with 10

dimensions has 210 = 1024 unique data points since the cardinality of a binary d-dimensional

space Bd = {0,1}d is equal to |Bd| = 2d. If we use all of these points (there is no benefit from

oversampling) to train the local surrogate with its complexity bound Ω relaxed to allow trees

of depth 10, the model is guaranteed to achieve full fidelity – a complete, balanced binary tree

of depth d has 2d leaves (its width), allowing one leaf per data point. The depth bound and

the sample size can be adjust dynamically prior to training the local surrogate tree since the

dimensionality of the interpretable domain is known beforehand. For every additional feature

in the interpretable space, the number of sampled data points doubles and the tree depth is

incremented by one in order to provide the interpretable domain and the surrogate tree with

enough capacity to preserve the full fidelity guarantee. This exponential growth in the number

of interpretable data points may seem overwhelming, however in our experience the number
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of concepts is usually relatively small and training decision trees on binary data is fast. The

exponential growth of the width of the surrogate tree increases its complexity and can have

adverse effect on the intelligibility of some explanations, but it does not affect the most important

and versatile explanation types as discussed below.

Preserving Low Complexity of Explanations

Since a moderate number of interpretable features may yield a relatively large tree, one may

worry about the increased complexity of the resulting explanations. After all, guaranteeing their

full fidelity requires relaxing the depth bound of the surrogateΩ, which the optimisation objective

O tries to minimise (Equation 5.1). While high complexity of a surrogate tree may render the

explanations based on the tree structure, e.g., model visualisation, less comprehensible, these

are not the most appealing explanation types and possibly require machine learning expertise to

become intelligible in the first place. The interpretable feature importance, what-if explanations,

exemplars, contrastive and supportive statements, on the other hand, are not affected by the tree

complexity and remain highly interpretable, compact and accessible [156] with their interactive

and customisable nature adding to their appeal as discussed in Section 5.5.1. The decision rules –

logical conditions extracted from root-to-leaf paths – may indeed become overwhelmingly long,

in fact as long as the tree depth, however this does not affect all the data types equally and the

presentation medium can alleviate this issue regardless of the tree size.

Notably, rules generated for image and text data are always comprehensible regardless of

their length. These rules cannot have more literals than the dimensionality of the interpretable

domain, i.e., the number of segments for images and words or tokens for text. Presenting such a

rule in the former case corresponds to displaying an image with various segments occluded (recall

Figure 5.8) and in the latter producing a text excerpt with specific words or tokens removed. For

tabular data, however, these rules may become relatively long and incomprehensible, with the

exception of root-to-leaf paths that apply multiple conditions to a single feature, which allows

to compress their length. In this case, visualisations are also not a viable alternative due to the

inherent limitation of the human perceptual system to three dimensions, with an additional

capacity enabled by considering time, e.g., when explaining a time series. Finally, a general

criticism of rule-based explanations postulating that it is difficult to understand how each logical

condition independently affects the prediction makes them less appealing than alternative tree

explanation types.

In summary, if explanations based on the tree structure are not required for image and text

data, and additionally rule-based explanations are not needed for tabular data, the complexity of

the tree Ω does not have to be controlled. In this case, the surrogate complexity measure Ω(g) can

be removed from the optimisation objective O given in Equation 5.1 and the corresponding step

(#7) in Algorithm 5.1 can be skipped, paving the way for full fidelity. It is worth mentioning that

a complete surrogate tree will produce more counterfactual explanations for every data point,
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thereby leaking information about the black-box model, which may be a trade secret [157].

5.6 Experimental Results

To demonstrate and assess the explanatory power of LIMEtree we use a multi-tier evaluation ap-

proach that consists of functionally-grounded (Section 5.6.1) and human-grounded (Section 5.6.2)

experiments [34]. The first involves a proxy task – numerically comparing the surrogate fidelity

for different variants of LIME and LIMEtree; the latter is a user study. For all of our experiments

we used the pre-trained Inception v3 neural network [164] distributed within PyTorch [116], with

our surrogate explainers built on top of FAT Forensics [159, 160] (cf. Appendix B) using the

bLIMEy algorithmic framework [158] (see Chapter 3).

5.6.1 Synthetic Validation

To understand how LIMEtree behaves in various settings, we use a number of proxy metrics

to experimentally evaluate its explanatory performance. First, we measure the faithfulness of

the surrogate with respect to the black box, i.e., its ability to mimic the underlying predictor,

which indirectly indicates the trustworthiness of its explanations. To this end, we report fidelity

as measured by the LIME loss L given in Equation 5.2 and the LIMEtree loss L defined in

Equation 5.4. We do so when modelling the top three classes predicted by the black box for

four different surrogate approaches: LIME and three variants of LIMEtree. To complement the

discussion presented in the previous section, we also analyse the complexity Ω of LIMEtree

surrogates as defined in Equation 5.5, i.e., the depth of the tree normalised by the dimensionality

of the interpretable domain, in relation to its fidelity.

Surrogate Fidelity We compare the fidelity of our method with a modified version of the

LIME algorithm [159], which uses black as the occlusion colour and does not use feature selection,

making it the most powerful variant of LIME since it has access to all of the interpretable

features. The results presented in Tables 5.1 and 5.2 capture fidelity of three distinct LIMEtree

variants:

LIMEt a tree optimised for complexity, i.e., the shallowest tree that offers a certain level of

performance;

LIMEt a tree optimised for complexity, whose predictions are post-processed to guarantee

full fidelity of model-driven explanations (see Section 5.3.2 for more details); and

LIMEt? a surrogate tree without complexity constraints, allowing the algorithm to learn

complete trees with full fidelity.
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nth top LIME LIMEt LIMEt LIMEt?

1st class 0.0172±0.0001 0.00700.00700.0070±0.0001 0.0144±0.0003 000±0
2nd class 0.0056±0.0001 0.00270.00270.0027±0.0000 0.0045±0.0001 000±0
3rd class 0.0029±0.0001 0.00120.00120.0012±0.0000 0.0029±0.0001 000±0

Table 5.1: Per-class fidelity computed with the LIME loss (Equation 5.2) for different surrogate
approaches (cf. Section 5.6.1). The results are based on explanations of 100 images for their top
three predicted classes. (Lower is better.)

top n LIME LIMEt LIMEt LIMEt?

1 class 0.0343±0.0004 0.00690.00690.0069±0.0001 0.0144±0.0003 000±0
2 classes 0.0227±0.0002 0.00260.00260.0026±0.0000 0.0045±0.0000 000±0
3 classes 0.0255±0.0002 0.00120.00120.0012±0.0000 0.0029±0.0001 000±0

Table 5.2: Fidelity of the top n classes computed with the LIMEtree loss (Equation 5.4) for
different surrogate approaches (cf. Section 5.6.1). The results are based on explanations of 100
images for their top three predicted classes. When computing the LIMEtree loss for one class, the
factor of 1

2 is removed. (Lower is better.)

Table 5.1 reports the fidelity of the surrogates computed with the LIME loss (given in

Equation 5.2) separately for each of the top three classes predicted by the black box. The LIME

algorithm produces three independent linear surrogates – one for each class – while the variants

of LIMEtree give a single surrogate that models all of the classes simultaneously. Measuring the

fidelity of each class separately helps us to capture the disparity of the probabilities predicted by

the black box. Since the model is overconfident, the most probability mass is assigned to the top

prediction, with the probabilities of the other two classes being much smaller. Similarly, Table 5.2

lists the fidelity of the surrogates computed with the LIMEtree loss (given in Equation 5.4) for the

top one, two and three classes predicted by the black box. Again, the LIME algorithm produces

three independent linear surrogates – one for each class – whereas the variants of LIMEtree

give a separate model for the 1-class, 2-class and 3-class task. These results capture the mean

fidelity of surrogates built to explain 100 random pictures from the ImageNet [33] validation set,

computed over all the possible data points in the binary interpretable domain.

Both Tables 5.1 and 5.2 show that our base method – LIMEt – outperforms LIME. The

LIMEtree variant that achieves full fidelity for model-driven explanations (via prediction post-

processing) – LIMEt – performs comparably to LIME when measuring fidelity using the LIME

loss and outperforms it when the LIMEtree loss is computed. The performance drop suffered by

the latter approach is due to sub-optimal predictions made by the tree leaves for the majority of

the interpretable space since this method is tuned to be faithful to the minimal interpretable data

points representing the tree. The surrogate complexity Ω of both LIMEtree variants expressed as

the proportion of interpretable features used by the tree is 56±3% on average, meaning that the

surrogate requires only half of the interpretable features (i.e., half of the maximum depth) to

achieve this level of performance. Finally, surrogate trees with unconstrained depth – LIMEt? –
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achieve full fidelity across the board, which is expected as these trees are expressive enough to

cover the entire interpretable data space, creating one leaf for each data point if needed.

Surrogate Complexity Next, we investigate the relation between the depth-based complexity

Ω of a surrogate tree and its fidelity. Since various images may have different number of segments,

i.e., interpretable features, our formulation of the tree complexity in Equation 5.5 accounts for

that by scaling the tree depth according to the number of super-pixels, which can be interpreted

as the tree completeness level. We compare this change in fidelity against a baseline achieved

with the aforementioned configuration of LIME, which uses all of the interpretable features and

occludes segments with a solid black colour. The empirical evidence provided by this study –

visualised in Figure 5.11 – supports our discussion presented earlier in Section 5.5.2.

When using the LIME loss as our fidelity metric, LIMEt requires at most 33% and LIMEt
needs at most 55% of all the interpretable features to perform on a par with LIME regardless of

the number or configuration of the explained classes. For the LIMEtree loss, LIMEt performs

better than LIME with just 20% of interpretable features and LIMEt needs at most 30% of them.

LIMEt requires deeper trees to achieve the same level of performance as LIMEt since the post-

processing step applied to ensure full fidelity of model-driven explanations causes the surrogate

to be a sub-optimal predictor for the majority of the interpretable data space. By allowing deeper

trees we reduce the variance of their leaves, which improves the overall performance of the

surrogates – a clear connection between the complexity Ω of a tree and its fidelity. A more

ambiguous dependency is between the surrogate complexity and the number of modelled classes,

which affects the leaves impurity – visible in Panels 5.11d, e & f as different rates of convergence.

5.6.2 User Study

To assess the usefulness of LIMEtree explanations in practice, we carried out a pilot user study.

Our goal was to evaluate the potential impact of our method by comparing it to LIME [129], which

is an established black-box surrogate explainer. Since in the pilot phase the study only allowed

to serve non-interactive explanations, the participants were shown a surrogate tree, similar to

the one in Figure 5.1, accompanied by a brief tutorial explaining how to obtain different kinds

of explanations and their purpose. We recruited 8 participants (6 males and 2 females), evenly

distributed across the 18–45 age group, 6 of whom had a background in machine learning, with 3

participants being familiar with ML explainability. The participants were not compensated for

their involvement in the experiment.

The study consisted of two main sections – one devoted to LIME and one concerning LIMEtree

– displaying an image divided into three segments, with each partition enclosing a unique object,

e.g., a cat, a dog and a ball. The two most applicable predictions of the black-box model for each

object were explained with both methods and presented to the participants. For example, tabby

and tiger cat for the cat object; golden retriever and Labrador retriever for the dog object; and
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(d) The LIMEtree loss for the top class.
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(f) The LIMEtree loss for the top 3 classes.

Figure 5.11: Fidelity of the surrogate (y-axis) plotted against the depth-based complexity of
the tree (x-axis), i.e., the ratio between the tree depth and the number of interpretable features.
The results are computed for the top three classes predicted by the black box. Panels (a), (b)
& (c) depict the LIME loss (Equation 5.2); and Panels (d), (e) & (f) depict the LIMEtree loss
(Equation 5.4). Note the different scales on the y-axes.

tennis ball and croquet ball for the ball object. Thus in this case, the explainee was exposed to

six LIME explanations, each one showing the influence of three image segments (one per object),

and a single tree of depth three modelling all the six predictions. For each explainability method,

the participants were asked about the expected behaviour of the black-box model in relation

to any two out of the three displayed objects, totalling in six questions since the relations are
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assumed to be non-reflective. For example, “How does the presence of the cat object affect the

model’s confidence of the presence of the dog object?”, with three possible answers: confidence

decreases, confidence not affected and confidence increases.

This particular question was chosen to avoid a bias towards either explainability method –

we could neither ask for the importance of each object for a particular prediction (LIME) nor

the influence of an object on a prediction, e.g., a counterfactual question (LIMEtree). Moreover,

the participants were randomly assigned to one of two variants of the study, where they would

either be exposed to LIME explanations first, followed by LIMEtree, or vice versa. We used this

approach in conjunction with obfuscating the explainability method name to assess and account

for any ordering and priming effects. Before viewing the explanations, the participants were

asked to answer a similar set of questions using only their intuition. We used these answers to

judge whether they still relied on their intuition when explicitly asked to work with explanations

later.

Our findings show that regardless of the exposure order LIMEtree helped the participants to

answer correctly 25% more questions as compared to LIME. The negligible overlap between the

responses based on the participants’ intuition and for either of the two explainability methods

shows that the participants based their answers on the explanatory evidence when instructed

to do so. Despite the majority of the participants having a machine learning background, and

some of them being familiar with XAI concepts, all of them found the process of manually

extracting LIMEtree explanations challenging or daunting and rated the experience as either

difficult or very difficult. This result was somewhat expected as LIMEtree explanations are meant

to be interactive and a suite of suitable explanation presentation methods is needed to this

end; however, despite poorly rated experience, LIMEtree explanations were still very insightful

showing a great potential when presented to explainees within an intuitive interface. On the

other hand, all of the participants indicated that using LIME explanations was either easy or very

easy, which in conjunction with poor performance when compared to LIMEtree indicates that

the participants were overconfident in their judgement of the quality and usefulness of LIME

insights. Given all of these results, we conclude that LIMEtree explanations are promising and

delivering them interactively instead of leaving this task up to the user will further improve our

method’s success rate and overall user satisfaction.

5.7 Interactive and Surrogate Explainability Research

Our research on LIMEtree shows how to connect two important concepts from explainable AI

and interpretable ML: interactive (dialogue-like) explainability and surrogate explainers. The

former is often based on contrastive explanations (counterfactuals, in particular) since they

occur naturally in human interactions [106]. Miller’s [106] foundational work in this area has

summarised importance of such explanations, grounding them in social sciences, highlighting
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the essential role they play in human explainability and showing the lack of consideration for

human aspects in the current literature [107]. Following this observation, explainee-centred

XAI and IML research has proliferated in the past years [169, 173], however another aspect of

human-oriented explainability pointed out by Miller has largely gone unnoticed: their interactive,

bi-directional and dialogue-like nature, which allows the explainee to guide the explainer, hence

receive tailored explanations. Schneider and Handali [138] have recently reviewed an array of

explainability approaches taking into consideration their interactivity, which led them to conclude

that personalised explanations are generally unavailable.

While this is true for practical explainability approaches, extensive research has been under-

taken to analyse theoretical properties of and frameworks designed to model explanatory interac-

tions between two intelligent agents, be them humans, machines or one of each [10, 101, 174].

Weld and Bansal [178], on the other hand, discussed various properties of explanatory systems

supporting user input and hypothesised how such interactions could look like in the real life,

albeit focusing more on multiple explanatory modalities instead of explanation personalisation

per se. A mixture of explainability and interactivity has also been used to refine (e.g., personalise)

and improve some data modelling techniques. Kulesza et al. [81] adopted explanations of a naïve

Bayes classifier to help the user debug and personalise classification of electronic mail and Kim

et al. [69] showed how the users can personalise clustering results when they are given an explan-

ation based on cluster centroids. Alternatively, otherwise static explainability approaches, such

as partial dependence plots [44], were fitted into interactive user interfaces [76, 77] to provide the

explainee with the freedom to explore these explanations. The following chapter focuses entirely

on user-centred explainability, discussing the importance of interactive personalisation in AI

and ML interpretability and showing how class-contrastive counterfactual explanations can be

dynamically customised based on explainees’ preferences [151, 156].

The second concept that our work builds upon is surrogate explainability [28, 129]: a model-

agnostic and post-hoc technique that is compatible with any type of data (tabular, image and text).

Surrogate explainers can either be used to explain an individual prediction by building a local

surrogate, e.g., LIME [129], which makes use of a sparse linear regression; or to approximate the

inner workings of an entire black-box model by building a global surrogate, e.g., TREEPAN [28],

which is based on a decision tree. High modularity and flexibility of these explainers [158] (cf.

Chapter 3) encouraged the research community to compose their different variant, some of which

use decision trees as their local surrogate models [142, 158, 169]. For example, van der Waa

et al. [169] showed how a local one-vs-rest classification tree can be used to produce contrastive

explanations, and Shi et al. [142] fitted a local shallow regression tree and used its structure as

an explanation. Both of these methods use local tree surrogates, however none of them utilises

the full explainability (and interactivity) potential that they enable. Explainability of decision

trees [156] and their ensembles [166] have also been investigated outside of the surrogate context,

e.g., Tolomei et al. [166] proposed a method to explain predictions made by ensembles of decision
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tree classifiers with class-contrastive counterfactuals. Similarly, in Chapter 4 we introduced

CtreeX: a tree-specific algorithm for generating contrastive and supportive explanations of

predictions made by classification and regression trees. The following chapter shows how to use

this explainer to compose personalised counterfactual statements by interacting with a decision

tree via a voice interface [156].

5.8 Forging a Human–Machine Link

This chapter introduced LIMEtree: a local surrogate explainer of black-box predictions based

on multi-output regression trees. We analysed properties of interpretable domains – which are

required to make such explainers work with any type of data (image, text and tabular) – and

showed how they can be designed and used to achieve the best explanatory performance, focusing

on images but discussing text and tabular data as well. We then demonstrated how LIMEtree

improves upon LIME [129] by simultaneously modelling multiple classes and examined all

the benefits of using surrogate trees with respect to the explanations that they produce. Next,

we reviewed this diverse range of explanations and showed how some of them can be utilised

in an interactive setting, thereby enabling their personalisation. We also provided various

guarantees with respect to the local fidelity of surrogate trees, which we supported with a critical

discussion and a guideline for operationalising these concepts. We showed examples of LIMEtree

explanations as well as evaluated our approach with quantitative experiments and a qualitative

user study, all in the image classification domain.

With all of these properties, surrogate multi-output regression trees can be used to enhance

transparency of black-box machine learning models in a way that feels natural to humans.

Notably, our user study has highlighted the critical role of the delivery mechanism of explanatory

artefacts. The participants of our experiment had to manually extract explanations from the

structure of a surrogate tree rating this process as difficult, which prompted us to examine

more natural (explanatory) interactions – a topic we explore in the next chapter. In particular,

Chapter 6 investigates this interactive human aspect in a simplified setting, where predictions of

a classification tree trained on tabular data are explained with class-contrastive counterfactual

statements extracted with CtreeX. We deploy it in a (voice-driven) conversational agent, allowing

the explainees to freely explore and personalise the explanations. We gauge the reception of

such a system among domain experts and a lay audience, and identify user expectations and

desiderata that should be considered to ensure explainee satisfaction.
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GLASS-BOX: ONE EXPLANATION DOES NOT FIT ALL

The need for transparency of predictive systems based on machine learning algorithms

arises as a consequence of their ever-increasing proliferation in the industry. Whenever

black-box predictions affect human affairs, the inner workings of these models should be

scrutinised and their decisions explained to the relevant stakeholders, including their engineers,

operators and the individuals whose case is being decided. While a variety of interpretability

and explainability methods is available, none of them is a panacea that can satisfy all of the

diverse expectations and competing objectives that may be required by the parties involved. We

address this challenge by discussing the promises of interactive machine learning for improved

transparency of black-box systems using the example of contrastive explanations – a state-of-the-

art approach to interpretable machine learning.

Specifically, we show how to personalise counterfactual explanations by interactively adjust-

ing their conditional statements and extract additional insights by asking follow-up “What if?”

questions. Our experience in building, deploying and presenting this type of a system allowed us

to list its desired properties as well as potential limitations, which can guide the development

of interactive explainers. While dynamically customising the medium of interaction, i.e., the

user interface comprised of various communication channels, may give an impression of per-

sonalisation, we argue that adjusting the explanation itself and its content is more important.

To this end, properties such as breadth, scope, context, purpose and target of the explanation

have to be considered, in addition to explicitly informing the explainee about its limitations

and caveats – a subset of properties borrowed from our XAI taxonomy introduced in Chapter 2.

Furthermore, we discuss the challenges of mirroring the explainee’s mental model, which is the

foundation of intelligible human–machine interactions. We also deliberate on the risks of allowing

the explainee to freely manipulate the explanations as it facilitates extracting information about

161



CHAPTER 6. GLASS-BOX: ONE EXPLANATION DOES NOT FIT ALL

the underlying predictive model, which may be leveraged by malicious actors to steal or game

it. Finally, building an end-to-end interactive explainability system is an engineering challenge;

unless the main goal is its deployment, we recommend “Wizard of Oz” studies as a proxy for

testing and evaluating standalone interactive explainability algorithms.

6.1 Interactive Explainability

Given the opaque, black-box nature of complex machine learning systems, their deployment in

high-stakes domains is limited by the extent to which they can be interpreted or validated. In

particular, predictions, (trained) models and (training) data should be accounted for. One way

to achieve this is with “transparency by design”, so that all components of a predictive system

are “glass boxes”, i.e., ante-hoc explainability [133]. Alternatively, transparency may be obtained

with post-hoc tools, which have the advantage of not limiting the choice of a predictive model

in advance [129]. The latter approaches can either be model-specific or model-agnostic [131].1

Despite this wide range of available tools and techniques, many of them are non-interactive,

providing the explainee (explanation recipient) with a single insight that has been optimised

according to some predefined metric. While a number of these methods simply cannot be custom-

ised by the end user without an in-depth understanding of their inner workings, others can take

direct input from explainees with a varying level of domain expertise: from a lay audience – e.g.,

selecting regions of an image in order to query their influence on a classification outcome – to

domain experts – e.g., tuning explanation parameters such as the underlying distance function.

A particular risk of a lack of interaction and personalisation mechanisms is that the explanation

may not always align with users’ expectations, thus reducing its overall value and usefulness.

Allowing the user to guide and customise an explanation, e.g., by adjusting its content and

complexity, can benefit the transparency of a predictive system by making it more suitable

and appealing to the explainee. Therefore, personalisation can be understood as influencing

an explanation or an explanatory process to answer user-specific questions. For counterfactual

explanations of the form: “had feature xi been different, the prediction of the model would have

been different too”, these can be user-defined constrains on the number and type of features that

are allowed and prevented from appearing in the conditional statement. Delegating the task of

customising and personalising explanations to the end user via interaction mitigates the need for

the difficult process of capturing the user’s mental model beforehand, rendering the task feasible

and making the whole process feel more natural, engaging and less frustrating.

In human interactions, understanding is naturally achieved via an explanatory dialogue [106],

possibly supported with visual aids. Mirroring this explanatory process for ML transparency

would make it attractive and accessible to a wide audience. Furthermore, allowing the user to

customise explanations extends their utility beyond ML transparency. The explainee can steer

1Ante-hoc explainability, on the other hand, is predominantly model-specific.
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(a) Default segmentation. (b) User-altered partition.

Figure 6.1: Surrogate explainers of image classifiers require an interpretable representation,
such as super-pixel segmentation, to effectively communicate the explanation to the user. These
explainers try to identify portions of an image that influence its classification the most, i.e., seg-
ments of high positive or negative importance. Since the default outcome of image segmentation
(a) may be unintuitive, we encourage the explainee to personalise the segmentation (b), e.g., by
merging its elements, such that it represents (semantically) meaningful concepts.

the explanatory process to inspect fairness (e.g., identify biases towards protected groups2) [83],

assess accountability (e.g., identify model errors such as non-monotonic predictions with respect

to monotonic features) [95] or debug predictive models [81, 157]. In contrast to ML tasks [66] –

where any interaction may be impeded by human-incomprehensible internal representations

utilised by a predictive model – interacting with explainability systems is feasible as the em-

ployed representation has to be human-understandable in the first place, thereby enabling a

bi-directional communication. Interaction with explanatory systems also allows incorporating

new knowledge into the underlying ML algorithm and building a proxy of the explainee’s mental

model, which will help to customise the resulting explanations down the line.

Consider the example of explaining an image with a local surrogate method that relies upon

segmentation, e.g., the LIME algorithm introduced by Ribeiro et al. [129]. While super-pixel

discovery may be good at separating colour patches based on their edges, these segments often

do not correspond to semantically meaningful concepts such as ears or a tail in a dog picture –

see Figure 6.1 for an example. The resulting explanation, nonetheless, can be personalised by

allowing the explainee to merge and split segments before analysing their influence on the output

of a black-box model, thereby implicitly addressing the doubt that prompted the explainee to alter

the segmentation. User input is a welcome addition given the complexity of images; a similar

approach is possible for tabular and text data, although user input carries less value in these two

cases. For tabular data, the explainee may select certain feature values that are of interest or

create meaningful binning for some of the continuous attributes; for text data (treated as a bag of

words), the user may group some words into a token that conveys the correct meaning in that

particular sentence. This exchange of knowledge between the explainee and the explainability

2A protected group is a sub-population in a data set created by fixing a value of a protected attribute such as age,
gender or ethnicity, which discriminating upon is illegal.
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system can considerably increase the quality of explanations, but also poses significant safety,

security and privacy risks. A malicious actor may abuse such a system to uncover sensitive

data used to train the underlying predictive (or explanatory) model, extract proprietary model

components, or learn its behaviour in an attempt to game it (see Section 6.2.2 for a discussion).

After Miller’s [106] seminal work (inspired by explanation research in the social sciences)

drew attention to the lack of human-aspect considerations in the explainable artificial intelligence

literature – with many such systems being designed by the technical community for the technical

community [107] – researchers started acknowledging the end user when designing XAI solutions.

While this has advanced human-centred design and validation of explanations produced by XAI

tools, another of Miller’s insights received relatively little attention: the interactive, dialogue-

like nature of explanations. Many of the state-of-the-art explainability approaches are static,

one-off systems that do not take user input or preferences into consideration beyond the initial

configuration and parameterisation [44, 48, 100, 129, 130, 173].3 While sometimes the underlying

explanatory algorithms are simply incapable of a meaningful interaction, others do apply a

technique or utilise an explanatory artefact that can support it in principle. Part of this trend

can be attributed to the lack of a well-defined protocol for appraising interactive explanations

and the challenging process of assessing their quality and effectiveness, which – in contrast

to one-shot evaluation – is a software system engineering challenge4 and requires time- and

resource-consuming user studies.

Schneider and Handali [138] noted that bespoke explanations in AI – achieved through

interaction or otherwise – are largely absent within the existing literature. Research in this space

usually touches upon three aspects of “personalised” explanations. First, there are interactive

machine learning systems where the user input is harnessed to improve performance of a

predictive model or align the data processing with its operator’s prior beliefs. While the classic

active learning paradigm dominates this space, Kulesza et al. [81] designed a system that presents

its users with classification explanations to help them refine and personalise the predictive task,

hence focusing the interaction on the underlying ML model and not the explanations. Similarly,

Kim et al. [69] introduced an interactive ML system with an explainability component, allowing

its users to alter the data clustering based on their preferences. Second, the work of Krause et al.

[77] and Weld and Bansal [178] focused on interactive (multi-modal) explainability systems. Here,

the interaction allows the explainee to elicit more information about an ML system by receiving

a range of diverse explanations derived from a collection of XAI approaches such as Partial

Dependence [44] and Individual Conditional Expectation [48] plots. While this body of research

illustrates what such an interaction (with multiple explanatory modalities) may look like and

3To clarify, the notion of interaction is with respect to the explanation, e.g., the ability of the explainee to
personalise it, and not the overall interactiveness of the explainability system.

4Building such systems requires a range of diverse components: user interface, natural language processing
unit, natural language generation module, conversation management system and a suitable and well-designed XAI
algorithm. Furthermore, most of these components are domain-specific and cannot be generalised beyond the selected
data set and use case.
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persuasively argues its benefits [178], the advocated interaction is mostly with respect to the

presentation medium itself – e.g., an interactive PD plot – and cannot be used to customise and

personalise the explanation per se. Third, Madumal et al. [101] and Schneider and Handali [138]

developed theoretical frameworks for interactive, personalised explainability that prescribe the

interaction protocol and design of such systems. However, these theoretical foundations have not

yet been employed to conceptualise and implement an interactive explainability system coherent

with the XAI desiderata outlined by Miller [106], which could offer customisable explanations. A

more detailed overview and discussion of the relevant literature is presented in Section 6.4.

In contrast, this chapter proposes an architecture of a truly interactive explainability system,

demonstrates how to build it, analyses its desiderata and examines how a diverse range of

explanations can be personalised (Section 6.2). Additionally, we discuss lessons learnt from

presenting our prototype to both a technical and a lay audience, and outline a plan for future

research in this direction (Section 6.3). For our first attempt to build an XAI system that allows

the explainee to customise and personalise the explanations we decided to use a classification

tree as the underlying predictive model. This choice simplifies many steps of our initial study,

allowing us to validate (and guarantee correctness of) the explanations and reduce the overall

complexity of the explanation generation and tuning process by simply inspecting the structure of

our decision tree, all of which is facilitated by CtreeX (cf. Chapter 4). Using ante-hoc explanations

derived from a single predictive model also allows us to mitigate engineering challenges that

come with combining multiple independent XAI algorithms as proposed by Weld and Bansal [178].

Furthermore, a decision tree can provide a wide range of diverse explanation types, many of

which can be customised and personalised. Specifically, for global model explanations we provide

• model visualisation, and

• feature importance;

whereas for prediction explanations we rely on

• decision rule – extracted from a root-to-leaf path,

• exemplar – a similar (training) data point extracted from the tree leaves,

• what-if – an answer to a “What if?” question,

• supportive statement – achieved by generalising logical conditions imposed on tree leaves,

and

• contrastive explanation – retrieved by comparing decision rules for different tree leaves.

When presented to the user, all of these explanations span a wide range of explanatory

artefacts in visual (image) and textual (natural language) domains, thereby allowing us to test the

extent to which they can be interactively personalised. For our prototype, we focus on contrastive
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explanations, in particular class-contrastive counterfactual statements, which are the foundation

of our system. These take the form of: “had one of the attributes been different in a particular

way, the classification outcome would have changed as follows. . . .” Arguably, they are the most

suitable, natural and appealing explanations targeted at humans [106, 173]. In addition to all

of their desired properties grounded in the social sciences [106] and legal considerations [173],

they can be easily adapted to an interactive dialogue aimed at their personalisation, which,

notably, is not widely utilised. In our system, they are delivered in this exact format – a natural

language conversation, which is the most intuitive explanatory mechanism [106]. In summary,

our prototype encompasses a holistic and diverse interactive XAI system where the interaction

is focused on personalising explanations (in accordance with Miller’s [106] notion of XAI

interactivity) as opposed to simply building an XAI system that delivers explanations interactively

(to explain different aspects of a black-box system using a range of XAI algorithms) – a subtle but

significant distinction.

6.2 Conversational Explanations

As a first step towards interactive XAI systems capable of outputting personalised explanations

we developed Glass-Box [156]: a class-contrastive counterfactual explainer that can be queried

within a natural language dialogue (described in Section 6.2.1). It supports a range of “Why?”

questions that can be posed either through a voice- or chat-based interface. Building this prototype

and testing it in the wild provided us with invaluable experience and insights, which we report

here to aid similar development and deployment efforts – Sections 6.2.2 and 6.2.3 respectively

discuss desiderata and properties of interactive explainers. The feedback that helped us to

refine our idea of responsive XAI systems delivering personalised explanations (presented in

Section 6.2.4) was collected while demonstrating Glass-Box to a diverse audience consisting of

both domain experts, approached during the 27th International Joint Conference on Artificial

Intelligence (IJCAI 2018), and a lay audience, who visited a local “Research without Borders”

festival5 that is open to the public and attended by pupils from local schools. While at the time of

presentation our system was limited to class-contrastive counterfactual explanations personalised

by choosing data features upon which the counterfactual statements should and should not be

conditioned, and provided to the user in natural language, we believe that our observations

remain valid beyond this particular XAI technique. We hope to test this assumption in our future

work – see Section 6.3 for more details – by employing the remaining decision tree explainability

modalities listed in the introduction, albeit in an XAI system refined based on our experience to

date.

5The festival spans a wide range of research projects both in social sciences and engineering.
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6.2.1 Glass-Box Design

Glass-Box has been designed as a piece of hardware built upon the Google AIY (Artificial Intelli-

gence Yourself) Voice Kit6 – a customisable hardware and software platform for development of

voice interface-enabled interactive agents. The first prototype of Glass-Box utilised the Amazon

Alexa skill API, however the limitations of this platform at the time (the processing of data had

to be deployed to an on-line server and invoked via an API call) hampered our progress and

prompted us to switch to the aforementioned Google AIY Voice Kit. These recent technological

advancements in automated speech-to-text transcription and speech synthesis (which are offered

as a service) allowed us to utilise an off-the-shelf, voice-enabled, virtual digital assistant to pro-

cess explainees’ speech and read out answers to their questions – something that would not have

been feasible had we decided to build this component ourselves. We extended the voice-driven

user interface with a (textual) chat-based web application that displays the transcription of each

conversation and its history – to improve accessibility of the system, among other things – in

addition to allowing the explainee to type in the queries instead of saying them out loud.

To avoid a lengthy and possibly off-putting process of submitting (mock) personal details,

i.e., a data point, to be predicted by the underlying machine learning model and explained by

Glass-Box, we opted for a predefined set of ten instances. Any of them could be selected and

submitted to Glass-Box by scanning a QR code placed on a printed card that also listed details of

this fictitious individual. Once a data point is chosen, the explainee can alter personal details

of the selected individual by interacting with Glass-Box, e.g., “I am 27 years old, not 45.” Any

input to the system is passed to a natural language processing and understanding module built

using rasa7. Our prototype of the Glass-Box system was based on the UCI German credit data

set8 (using a subset of its features) for which a decision tree classifier was trained with scikit-

learn [120]. Since the German credit data set has a binary target variable (“good” or “bad” credit

score), the class contrast in the resulting counterfactual explanations is implicit. Nonetheless,

this restriction can be easily overcome and the system generalised to a multi-class setting by

requiring the explainee to explicitly specify the contrast class, taking the second-most likely one

or providing one explanation per class. A conceptual design of Glass-Box is shown in Figure 6.2.

To facilitate some of the user interactions, the data set had to be manually annotated. This

process allowed the generation of engaging natural language responses and enabled answering

questions pertaining to individual fairness of black-box predictions. The latter functionality was

achieved by indicating which features (and combinations thereof) should be treated as protected

attributes – had a counterfactual data point conditioned on one of these features been found,

Glass-Box would indicate unfair treatment of this individual. This functionality could be invoked

by asking an “Is the decision fair?” question and further interrogating the resulting counterfactual

6https://aiyprojects.withgoogle.com/voice
7https://github.com/RasaHQ/rasa
8https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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Figure 6.2: Glass-Box design and information flow.

explanation if unfair treatment was identified. Depending on the explainability and interaction

capabilities expected of the system, other data set annotations may be necessary. Since this

augmentation process is a predominantly manual task, it can be time- and resource-consuming.

As noted before, the main objective of Glass-Box is to provide the users with personalised

explanations whenever they decide to challenge the decision of the underlying machine learning

model. The explainee can request and interactively customise the resulting counterfactual

explanations through a natural language interface with appropriate dialogue cues. This can be

done in three different ways by asking the following questions:

“Why?” – a plain counterfactual explanation – the system returns the shortest possible

class-contrastive counterfactual;

“Why despite?” – a counterfactual explanation not conditioned on the indicated feature(s) –

the system returns a class-contrastive counterfactual that does not use a specified (set of)

feature(s) as its condition; and

“Why given?” – a (partially-)fixed counterfactual explanation – the system returns a class-

contrastive counterfactual that is conditioned on the specified (set of) feature(s).

By repetitively asking any of the above “Why?” questions, the system will enumerate all the

possible explanations with the condition set (the feature values that need to change) increasing in

size until no more counterfactuals can be found. It is also possible to mix the latter two questions

into “Why given . . . and despite . . . ?”, thereby introducing even stronger restrictions on the

resulting explanations. In addition to “Why?” questions, the explainee can also ask “What if?” In

this case it is the user who provides the contrast and wants to learn the classification outcome of

this hypothetical instance. Such a question can be either applied to the selected data point (which

is currently being explained) or any of the counterfactual data points offered by the system as

an explanation. All of these requirements imposed by the user are processed by a simple logical

unit that translates them into constraints applied to the set of features that the counterfactual
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of £750, it would have been accepted.

Despite my income and employment type,
what could I do to get the loan?

You already have 2 loans. Had you paid
them back, you would have got this loan.

Figure 6.3: Example explanatory conversation between Glass-Box and an explainee who person-
alises the explanations by asking counterfactual questions.

is allowed and/or required to be conditioned upon. All of this is facilitated through a natural

language dialogue, an example of which is presented in Figure 6.3.

The method employed to generate counterfactual explanations from the underlying decision

tree classifier relies upon the CtreeX algorithm (cf. Chapter 4) configured with a bespoke leaf-to-

leaf distance metric. It allows to find leaves of classes that are different to the one assigned to the

selected instance while requiring the fewest possible tweaks to its feature values. One self-evident

solution to this problem is the neighbouring leaf, which must be of a different class and requires

just one feature to be altered. However, there may as well exist a counterfactual leaf that is

relatively distant in the decision tree structure but also requires just one feature value change,

for example when such two decision tree paths share relatively few features. To identify both

of these distinct cases, our distance metric is computed on a meta-feature space (an alternative

representation of the tree structure) that is determined by all the unique feature partitions

extracted from the splits of the decision tree. Finally, an L1-like metric (when a particular feature

is present on one branch and absent on the other, this distance component is assumed to be 0) is

calculated and minimised to derive a list of counterfactual explanations ordered by their length –

see Section 4.3 for an in-depth description of this procedure.

6.2.2 Explanation Desiderata

During the development stage and early trials of Glass-Box we identified a collection of desiderata

and properties that should be considered when building such systems. Some of these characterist-

ics are inspired by relevant literature [81, 106, 138, 178], while others come from our experience

gained in the process of building the system, presenting it to various audiences, discussing its

properties at different events and collecting feedback about interacting with it. While this and the

following sections focus exclusively on desiderata for interactive and customisable explanations,

these features are only a subset of a more comprehensive XAI taxonomy that we introduced

earlier in Chapter 2. The relevant selection of these desiderata are summarised in Table 6.1 as

well as collected and discussed below. Section 6.2.3, on the other hand, examines the properties of
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Functional Operational Usability

F3 Explanation Target
F4 Explanation

Breadth/Scope
F7 Relation to the Predictive

System

O7 Function of the
Explanation

O8 Causality vs.
Actionability

U3 Contextfullness
U6 Chronology
U7 Coherence
U8 Novelty
U9 Complexity
U10 Personalisation
U11 Parsimony

Table 6.1: Summary of a subset of the XAI taxonomy (cf. Chapter 2) applicable to interactive
explainers that support personalisation. (See Section 6.2.2 for a comprehensive discussion of
these properties.)

interactive explainability systems.

Given the complex nature of such systems, it is to be expected that some of these objectives

might be at odds with each other, their definitions may be “fuzzy”, they might be difficult to

operationalise, their “correct” application might depend on the use case, etc. Similarly, striking

the right balance between these desiderata can be challenging. Nonetheless, we argue that

simply considering them while designing interactive explainers will improve the overall quality

of the system, help the creators and users understand their strengths and limitations, and make

the interaction feel more natural to humans. Furthermore, some of these desired properties

can be achieved (and “optimised” towards the explainees) by simply allowing user interaction,

thereby alleviating the need for baking them explicitly into the system. For example, interactive

personalisation of the explanations – on-line, via user input – is an attractive alternative to

solving this challenge off-line, which would require a dedicated algorithm.

The main advantage of Glass-Box interactiveness is the explainee’s ability to transfer know-

ledge onto the system, specifically various preferences with respect to the desired explanations,

which are used to personalise them (U10, see Table 6.1). In our experience, customisation can

come in many different shapes and forms, some of which are discussed below. For one, by in-

teracting with the system the explainee should be able to adjust the breadth and scope of an

explanation (F4). Given the complexity of the underlying predictive model, the explainee may

start by asking for an explanation of a single data point (black-box prediction) and continue the

interrogation by generalising it to an explanation of a data subspace (cohort) with the final stage

entailing an explanation of the entire black-box model. Such a shift in the explainee’s focus may

require the explainability method to adapt and respond by changing the target of the explanation

(F3). The user may request an explanation of a single data point or a summary of an entire data

set (training, test, validation, etc.), but also an explanation of a predictive model (or its subspace)

or any number of its predictions. Furthermore, interactive personalisation of an explanation can

increase the overall versatility of such systems as bespoke insights may serve a variety purposes
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and have different functions (O7). An appropriately phrased explanation may be used as evidence

that the system is fair – either with respect to a group or an individual depending on the scope

and breadth of the explanation – or that it is accountable, which again can be investigated with

varied scope, for example, a “What if?” question uncovering that two perceptually indistinguish-

able data points yield significantly different class predictions, such as adversarial examples [49].

Notably, if the explainer is flexible enough and the interaction allows such customisation but the

explanations were designed to serve only one purpose, e.g., transparency, the explainee should be

explicitly warned of such limitations to avoid any unintended consequences. For example, the

explanations may be counterfactually actionable but they are not causal since they were not

derived from a proper causal model (O8).

Some of the aforementioned principles can be observed in how Glass-Box operates. The con-

trastive statements about the underlying black-box model can be used to assess its transparency

(their main purpose), fairness (disparate treatment via contrastive statements conditioned on

protected attributes) and accountability (e.g., answers to “What if?” questions that capture un-

expected non-monotonic behaviour). Glass-Box explanations are personalised via user-specified

constrains imposed on the conditional part (foil) of the counterfactual statements, and by de-

fault they are specific to a single prediction. However, cohort-based insights can be retrieved by

asking “What if?” questions pertaining to counterfactual explanations generated by Glass-Box;

Section 6.3 discusses how the scope and the target of our system can be interactively broadened to

include global explanations of the black-box model. Given the wide range of possible explanations

and their diverse purposes, some systems may produce contradictory or competing insights.

Glass-Box is less prone to such issues as the employed explainer is ante-hoc (F7), i.e., predictions

and explanations are derived from the same ML model, hence they are always truthful with

respect to it. This means that contradictory explanations are indicative of flaws in the underlying

predictive model, in which case they can be very helpful in improving its accountability.

In day-to-day human interactions we are able to communicate effectively and efficiently

because we share common background knowledge about the world that surrounds us – a mental

model of how to interact with the world and each other [79]. Often, human–machine interactions

lack this implicit link, causing the entire process to feel unnatural and frustrating. Creators of

interactive explainability techniques should therefore strive to make their systems coherent with

the explainee’s mental model to mitigate this phenomenon as much as possible (U7). While this

objective may not be feasible in general, modelling a part of the user’s mental model, however

small, can make a significant difference. The two main approaches to extracting the explainee’s

mental model are: interactive querying of the user in an iterative dialogue (on-line), or embedding

the explainee’s characteristics and preferences in the data or in the parameters of the explainer

(off-line), both of which are discussed in Section 6.4.

For explainability systems, capturing the explainee’s mental model is possible to some extent

as the purpose and behaviour of such tools are limited in scope; especially in comparison to more
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challenges tasks within this domain, e.g., building a generic virtual personal assistant. Designers

of explainability algorithms should also be aware that many interactions rely upon implicit

assumptions that are embedded in the explainee’s mental model and perceived as mundane,

hence not voiced, for example, the context of a (Glass-Box) follow-up question. Importantly, within

human–machine interactions the context and its dynamic changes can be much more subtle, which

may cause the coherence between the internal state of an explainer and the explainee’s mental

model to diverge abruptly (U3). This issue can be partially mitigated by explicitly grounding

explanations in a context at certain stages, for example, whenever the context shifts, which will

help the users to adapt by updating their mental model and any assumptions. Contextfullness

will also help the explainee better understand the limitations of the system, e.g., whether an

explanation produced for a single prediction can (or must not) be generalised to other (similar)

instances: “Please note that this explanation can be generalised to other data points that – in

relation to the explained instance – have all of their feature values the same with the exception

of attribute x5, which can span the 0.4≤ x5 < 1.7 range.”

Regardless of how interactive the system is, the explanations should strive to be parsimonious

– as short as possible but no shorter than necessary – to convey the required information without

overwhelming the explainee (U11). Maintaining a mental model of the user can help to achieve

this objective as the system can provide the explainee only with novel explanations – accounting

for factors that are unfamiliar to the user – therefore reducing the amount of information carried

by the explanation (U8). Further user-centred aspects of an explanation are its complexity and

granularity (U9). The former should be adjusted according to the depth of the technical knowledge

expected of the envisaged audience, and the latter chosen appropriately to the intended use of

the explanation. This can either be achieved by design (i.e., incorporated into the explainability

technique), be part of the system configuration and parameterisation step (off-line), or adjusted

interactively by the user as part of the explanatory dialogue (on-line). Another aspect of an

explanation, which is often expected by humans [106], is the chronology of factors presented

therein as the explainee anticipates to hear more recent events first (U6). When the underlying

data set supports it, the explainee should be given the opportunity to trace the explanation back

in time, which can be easily facilitated through interaction.

Glass-Box attempts to approximate its users’ mental models by mapping their interests and

interaction context (inferred from regularly asked questions) to data features that are used to

compose counterfactual explanations. Memorising previous interactions, their sequence and

the frequency of features invoked by the user help to achieve this goal and avoid repeating

the same answers – once all of the explanations satisfying given constraints are presented,

the system explicitly states this fact. Contextfullness of our explanations is also based on user

interactions; it is implicitly preserved for follow-up queries (within an interrogative dialogue)

that are initiated by the user and do not affect the context. Whenever the assumptions shifts

– e.g., a new personalised explanation is requested by the user or an interaction is triggered
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Operational Usability Safety

O1 Explanation Family
O2 Explanatory Medium
O3 System Interaction
O4 Explanation Domain
O5 Data and Model

Transparency
O6 Explanation Audience
O10 Provenance

U4 Interactiveness S3 Explanation Invariance

Table 6.2: Summary of a subset of the XAI taxonomy (cf. Chapter 2) specifically applicable to
Glass-Box. (See Section 6.2.3 for a comprehensive discussion of these properties.)

by Glass-Box – the new context is explicitly communicated to the explainee. While contrastive

statements are inherently succinct, their lack of parsimony could be observed for some Glass-Box

explanations, which took the form of a long “monologue” delivered by the device. In most of the

cases, this was caused by the system “deciding” to repeat the personalisation conditions provided

by the user to ensure their coherence with the explainee’s mental model.

Glass-Box is capable of producing novel contrastive explanations by conditioning them on

features that have not yet been acknowledged by the user during the interaction. Notably,

there is a trade-off between novelty of explanations and their coherence with the user’s mental

model, which we have not explored when presenting our system but which should be navigated

carefully to avoid jeopardising explainee’s trust. Glass-Box was built to explain predictions of

the underlying ML model and did not account for possible generalisation of its explanations to

other data points (the users were informed about this limitation prior to interacting with the

device). However, the explainees can ask “What if?” questions with respect to the counterfactual

explanations, for example using slight variations of the explained data point, to explicitly check

whether their intuition about broader scope of an explanation holds up. Finally, chronology was

not required of Glass-Box explanations as the data set used to train the underlying predictive

model does not have any time-ordered features.

6.2.3 Glass-Box Properties

In addition to a set of desiderata for interactive explainability systems, we review a number of

their general properties and requirements that should be considered prior to their development.

These are summarised in Table 6.2 and discussed below.

Assuming that the system is interactive, the communication protocol between the explainee

and the explainer should be carefully chosen to support the expected input and deliver the

explanations in the most natural way possible. For example, clearly indicating which parts of

the explanation can be personalised and the limitations of this process should be disclosed to
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the user (O3, see Table 6.2). The choice of explanatory medium used to convey the explanation

is also crucial. Plots, interactive or not, can be very informative but may not communicate the

entire story due to the curse of dimensionality and the inherent limitations of the human visual

system (O2). Supporting visualisations with a textual description, and vice versa, can greatly

improve their intelligibility, nonetheless relying entirely on natural language explanations may

be sub-optimal in certain cases, for example, explaining images exclusively via a chat interface.

The intended audience should be considered in conjunction with the communication protocol to

choose a suitable explanation type (O6). Domain experts may expect explanations expressed in

terms of the internal parameters of the underlying predictive model, but a lay audience may

rather prefer exemplar explanations that rely on relevant data points – choosing the appropriate

explanation domain (O4). The audience also determines the purpose of the explanation. For

example, inspecting a predictive model for debugging purposes will need a different system

than guiding the explainee with an actionable advice towards a certain goal such as receiving a

loan. Interactive explainers can support a wide spectrum of these desirable properties simply by

allowing the explainee to dynamically personalise the output of the explainer as discussed in

Section 6.2.2.

Achieving some of these objectives may require the features of the underlying data set or

the predictive model itself to be transparent (O5). For example, consider explaining a model

trained on a data set whose features are measurements of an object given in metres as opposed to

magnitudes of some embedding vectors. When the raw features (original domain) are not human-

intelligible, the system designer may decide to use an interpretable representation (transformed

domain) instead to aid the explainee. Additionally, providing the users with the provenance of

an explanation may help them to better understanding its origin, e.g., an explanation purely

based on data, model parameters or both (O10). Choosing the right explanation family is also

important, for example: relation between data features and the prediction, relevant examples

such as similar data points, or causal mechanisms (O1). Again, interactive explainers have the

advantage of giving the user the opportunity to switch between multiple different explanation

types. Furthermore, the design of the user interface should be grounded in Interactive Machine

Learning, Human–Computer Interaction, User Experience and eXplainable Artificial Intelligence

research to seamlessly deliver the explanations. For example, the explainee should be given

the opportunity to reverse the effect of any actions that may influence the internal state of the

explainer, and the system should always respect preferences and feedback provided by the user

(U4). Finally, if an explanation of the same event can change over time or is influenced by a

random factor, user’s trust is at stake. The explainee should always be informed about the degree

of explanation invariance and its manifestation in the explainer’s output (S3). We discuss this

property in more detail in Section 6.3 as it is vital to Glass-Box’s success.
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6.2.4 Glass-Box Reception and Feedback

We presented Glass-Box to domain experts (general AI background knowledge) and a lay audience

with the intention to gauge their reception of our prototype and collect feedback that would

help us revise and improve our explainability system. To this end, we opted for informal and

unstructured free-form feedback, which was primarily user-driven and, whenever helpful, guided

by reference questions based on our list of desiderata. We decided to take this approach given the

nature of the events at which we presented our prototype – a scientific conference and a research

festival.

Glass-Box is composed of multiple independent components, all of which play a role in the

user’s reception of the system:

• natural language understanding and generation;

• speech transcription and synthesis;

• voice and text user interfaces; and

• domain of the modelling task determined by the data set.

Therefore, collecting free-form feedback at this early stage helped us to pinpoint components of

the system that required more attention and identify possible avenues for formal testing and

design of subsequent user studies.

While presenting the device we only approached members of the audience who expressed

interest in interacting with the device and who afterwards were willing to describe their experi-

ence. In total, we collected feedback from 6 domain experts and 11 participants of the research

festival of varying demographics. When introducing the system and its modes of operation to the

participants, we assessed their level of AI and ML expertise by asking background questions,

which allowed us to appropriately structure the feedback session.

While discussing the system with the participants, we were mainly interested in their

perception of its individual components and suggestions about how these can be improved.

Most of the participants enjoyed asking questions and interacting with the device via the voice

interface, however some of them found the speech synthesis module that answered their questions

“slow”, “unnatural” and “clunky”. These observations have prompted some of the participants to

disable voice-based responses and use the text-based chat interface to read the answers instead

of listening to them. When asked about the quality of explanations, their comprehensibility and

content, many participants were satisfied with received answers. They claimed that personalised

explanations provided them with information that they were seeking for, in contrast to the default

explanation given at first. However, some of them expressed concerns regarding the deployment

of such systems in everyday life and taking the human out of the loop. The most common worry

was the impossibility to “argue” with and “convince” the explainer that the decision is incorrect

and the explanation does not capture the complexity of one’s case. Some participants were also
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sceptical of the general idea of interacting with an AI agent and the fail-safe mode of the device,

which produced “I cannot help you with this query.” response whenever the explainer could not

answer the user’s question.

6.3 Real-life Deployment

Developing Glass-Box and demonstrating it to a diverse audience provided us with a unique

experience of building, deploying and refining interactive explainers. To help researchers and

engineers who have a similar agenda, we summarise the lessons learnt in Section 6.3.1. We also

discuss possible extensions of Glass-Box, focusing on interactive and personalised explainability,

in Section 6.3.2 to draw attention to interesting open questions.

6.3.1 Lessons Learnt

The major challenge of building Glass-Box was the development overhead associated with setting

up the hardware and software needed to make it capable of processing the natural language,

and voice interaction. While ready-made components were adapted for these purposes, the effort

required to build such a system is still significant and may not always be justified. We encourage

the community to build such a device if the research value lies in the system itself, or it is used

as a means to an end, for example, investigation of interactive explainability systems. In this

case, one should be aware of generalisability issues as each new data set used within such a

framework must be adapted by preparing appropriate annotations and (possibly) training a new

natural language processing model. In many cases, based on our observations, it seems that all

this effort is only justified when the creator of the system is committed to deploying it in the real

life. For research purposes, however, the engineering overhead can be overwhelming, in which

case we suggest using the Wizard of Oz studies [30] as an accessible alternative.

Once Glass-Box was operational, a major barrier to its usability was the time-consuming

process of inputting personal data when role-playing the loan application process. At first, we

implemented this step as a voice-driven question-answering task, but even with just 13 attributes

(most of which were categorical) this proved to be a challenge for the explainee. We overcame this

issue by predefining ten individuals whom the explainee could impersonate. We then allowed the

explainee to further customise the attributes of the selected individual by asking Glass-Box to

edit them (with voice- and text-based commands). In hindsight, we believe that this kind of a

task should be completed with a dedicated input form (e.g., a questionnaire delivered as a web

page), thereby giving the explainee the full control of the data input stage and mitigating the

lengthy “interrogation” process.

The interactive aspect of Glass-Box (discussed in length in Section 6.2.1) provides many

advantages from the explainability point of view. For example, it enables the explainee to assess

individual fairness of the underlying predictive model and personalise the explanations (see
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Sections 6.2.2 and 6.2.3 for more details). However, not all types of explainability algorithms

allow for the resulting explanation to be interactively customised and personalised, restricting

the set of tools that can be deployed in such a setting. If incorporating the user feedback (captured

as part of the interaction, e.g., via argumentation [101]) into the underlying predictive model is

desired, this model has to support refinements beyond the training phase, further reducing the

number of applicable machine learning and explainability techniques. As noted in Section 6.2.2,

some of the interactivity and personalisation desiderata cannot be achieved without “simulating”

the explainee’s mental model. While we believe that solving this problem will be a cornerstone of

delivering explanations that feel natural to humans, we do not expect it to be solved across the

board in the near future.

In case of Glass-Box, where the explanations are presented to the user as counterfactual

statements, we observed a tendency amongst the explainees to apply an explanation of a single

data point to other, subjectively similar, instances. However tempting, Glass-Box explanations

cannot be generalised as they are derived from a predictive model (internals of a decision tree)

that neither encodes nor accounts for the causal structure of the underlying phenomenon. This

practice may sometimes lead to contradictory explanations, which can be detrimental to the

explainee’s trust. Since Glass-Box uses an ante-hoc explainability algorithm (i.e., predictions

and explanations are derived from the same ML model), contradictory, incorrect or incoherent

explanations are indicative of issues embedded in the underlying predictive model, which should

be reported to and addressed by its creators. However, if a post-hoc explainability tool is em-

ployed (i.e., explanations are not derived directly from the predictive model, e.g., with surrogate

explainers), contradictory explanations manifest an undetermined problem with the system. This

issue cannot be uniquely pinpointed and can either be attributed to low fidelity of the explainer

or to an underperforming predictive model, in both cases putting the explainee’s trust at risk.

Clearly communicating the limitations of such explanations can help to partially mitigate this

problem; grounding the explanations in a context (see Section 6.2.2) is another viable approach.

While truthful to the underlying black box, an ante-hoc explainability approach may not be

available for a chosen predictive model. For example, deep neural networks are intrinsically com-

plex, which encumbers explaining them without resorting to proxies. This observation highlights

the importance of choosing an appropriate predictive model when explainability is a priority or

a requirement [55]. Simpler models such as decision trees tend to be less expressive but more

interpretable. Complex models such as deep neural networks, on the other hand, are arguably

more powerful at the expense of transparency. It is still possible to explain the latter model

family with proxies and post-hoc approaches, but issues with the fidelity and truthfulness of

these explanations may be unacceptable, e.g., in high-stakes situations such as criminal justice or

financial matters [133]. These conclusions have led some researchers [133] to deem low-fidelity,

post-hoc explainers as outright harmful. Instead, they argue, developers behind predictive sys-

tems for high-stake applications should invest more time in feature engineering and restrict their
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toolkit to inherently transparent ML models – see Section 1.1.1 for an in-depth discussion of this

dilemma.

As one might expect, the power and flexibility of Glass-Box explanations come at a cost.

The interactiveness of the process enables malicious users to ask for explanations of arbitrary

data points, which in large quantities may expose internals of the underlying predictive model

(S1 and S2). Adversaries can misuse the information leaked by the system in an attempt to

reverse-engineer the black box (which may be proprietary) or use such knowledge to game it. This

situation is particularly prominent for Glass-Box where the conditional part of the counterfactual

explanations is derived from one of the splits in the underlying decision tree, thereby revealing

the exact threshold applied to an individual feature, e.g., “had you been older than 25, . . . ” implies

the age > 25 internal splitting node. Since every explanation reveals a part of the tree structure

(at least one split), with a certain budget of queries the adversary can reconstruct the entire tree.

This issue is intrinsic to ante-hoc explainers but may also affect high-fidelity post-hoc ap-

proaches, albeit to a lesser extent since in the latter case the explanations are not generated

directly from the black-box model. This undesired side effect can be somewhat controlled by limit-

ing the explanation query budget for untrustworthy users or obfuscating the precise (numerical)

thresholds. The latter can be achieved either by injecting random noise (possibly at the expense

of explainees’ trust) or replacing the numerical values with quantitative adjectives, e.g., “slightly

older” (which is also shown to enhance user satisfaction [19]). The trade-off between transparency

and security of interactive explainers should be explicitly considered during their design stage,

with appropriate mitigation technique implemented and documented.

6.3.2 Improving Glass-Box

One of the main contributions of Glass-Box lies in the composition of its software stack and hard-

ware architecture. While investigating the challenge of readying such a system for a deployment

is one possible avenue for future research, we believe that a more interesting direction is to

design explainability tools and techniques that facilitate (interactive) personalisation of their

explanations. Since the latter research aspect is conditioned upon the availability of the former,

we suggest using the Wizard of Oz approach [30] to mitigate the need for building an interactive

user interface that is responsible for processing the natural language. In this scenario, the input

handling and the output generation are done by a human disguised as an intelligent interface,

who can access all the components of the tested explainability approach and is only allowed to

take predefined actions. Therefore, bypassing an algorithmic natural language interface by using

the Wizard of Oz approach allows the research agenda to focus exclusively on designing and

evaluating the properties of personalised explanations. Such an approach also ensures that the

findings are not adversely affected by poor performance of the natural language interface.

To facilitate interactive explainability of an arbitrary black box, the underlying explainer can

be based on LIMEtree (cf. Chapter 5). It has well-understood properties, high (or full) fidelity
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and provides a wide variety of explanations, including contrastive and supportive statements.

Furthermore, LIMEtree can be applied to three different data domains: tabular, text and image,

allowing to test its capacity of interactively generating personalised explanations for a range

of diverse tasks. We expect object recognition for images and sentiment analysis for text to be

the most fruitful evaluation studies as they do not presuppose any (technical or domain-specific)

background knowledge. In particular, the explainees can be asked to interactively personalise

two important aspects of these explanations: their content and interpretable representation of

the data features.

The objective of the second task depends on the data domain. For text – in contrast to the

default bag-of-words interpretable representation – it allows the explainees to introduce bespoke

concepts captured by groups of words that are not necessarily adjacent. For images, the users can

modify their machine-generated super-pixel segmentation to separate semantically meaningful

regions – see the example shown in Figure 6.1 and discussed in Section 6.1. For tabular data,

the interpretable representation is constructed by discretising continuous features. Since the

local surrogate model is a decision tree, this representation is learnt automatically and cannot be

explicitly modified by the explainees. Nonetheless, we could give the users indirect control over

the feature splits by allowing them to adjust the tree structure in terms of its maximum depth,

the number of data points required for a split and the minimum number of data points residing

in a leaf.

Personalising the explanation content, on the other hand, could allow the explainee to choose

the explanation type and customise it accordingly. The visualisation of the surrogate tree structure

can either depict the whole tree or zoom in on its selected part. The explainee could also inspect

tree-based feature importance either by viewing it as a list spanning all of them or by querying

the importance of selected features. These two explanation types allow the user to grasp the

overall behaviour of the black-box model in the vicinity of the explained data point. For text and

images these are the interactions between the words and super-pixels in that region, i.e., within

a sentence and an image respectively, and for tabular data the influence of raw features and

ranges of their values.

Furthermore, the explainee could get personalised explanations of individual predictions. A

counterfactual retrieved from the local tree – e.g., “had these two super-pixels/words not been

there, the image/sentence would be classified differently” – can be customised by specifying

constraints pertaining to its condition. The explainee could also request a logical rule – e.g.,

“these three super-pixels/words must be present and these two must be removed to classify this

instance as . . . ” – for any leaf in the tree, which is extracted from the corresponding root-to-leaf

path. Both of these explanations allow the user to understand how parts of an image or a sentence

(super-pixels and words respectively) come together to predict a data point. Finally, the user

could view exemplar explanations of any prediction; these are given by instances drawn from the

surrogate model training set (generated by perturbing the explained data point) that are assigned
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to the relevant tree leaf. The exemplars will therefore be images with occluded super-pixels,

sentences with missing words and, for tabular data, slight variations of the explained data point

in its original feature space. We believe that this diverse set of personalised explanations will

encourage the user to investigate different aspects of the black-box model, leading to a much

better understanding of its behaviour.

Interacting with an explainer that is capable of delivering an array of different explanation

types gives rise to another, investigative aspect of explainability. An explainee who has learnt

which features are important may want to know whether one of the counterfactual explanations

is conditioned upon them. Understanding whether the user would discount counterfactuals

based on unimportant features and focus on the ones that include important factors instead

could provide invaluable insights for designing better explainers. A similar experiment could

gauge how the user’s confidence is affected upon discovering that most of the (counterfactual)

explanations are conditioned on features labelled as unimportant by a different explanation type.

Such meta-explainability studies could additionally uncover limitations of the interaction and

personalisation aspects of currently available systems, for example by taking note of the requests

that failed according to the user.

Focusing on counterfactuals, the possibility of retrieving multiple explanations of the same

length (equal number of conditions) brings up the question of their ordering. One approach

is to use a predefined, feature-specific “cost” of including a condition on that attribute into

the explanation. This heuristic can be based on the purity (accuracy) of the corresponding

counterfactual leaf, the cumulative importance of features that appear on the relevant root-

to-leaf path, the collective importance of features listed in its conditional statement or, simply,

the number of training data points falling into that leaf [169]. However, a more user-centred

approach is to allow the explainee to supply this information either implicitly or explicitly during

the interaction.

To improve the quality of explanatory interactions, one may choose to partially replicate the

mental model of the explainee using a formal argumentative [35] dialogue introduced by Madumal

et al. [101]. Certain statements provided by the user can be parsed into logical requirements,

allowing for further personalisation and more convincing explanations. The roles in this dialogue

can also be reversed to assess and validate the explainee’s understanding of the black-box model –

the machine questioning the human [175, 176]. In this interrogative dialogue, if an insight about

the black box voiced by the user is incorrect, the system can provide a personalised explanation in

an attempt to correct the relevant beliefs of the explainee. Asking the user “What if?” questions

can further assist in this task by directing the explainee’s attention towards evidence relevant to

the identified misconceptions. When an interaction is finished, a succinct excerpt summarising

the whole explanatory process (similar to a court transcript) can be provided to the user as a

reference material. This document should only contain explanations that the user has challenged

or investigated in detail, avoiding the ones that agree with the explainee’s beliefs.
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The mental model approximation can also be utilised to adjust the granularity and complexity

of explanations. For example, a disease can be explained in medical terms – e.g., on a bacterial

level – or with easily observable external symptoms – e.g., cough and abnormal body temperature

– depending on the audience. While solving this task across the board is currently an open

challenge, it may be somewhat possible for individual cases that are highly structured, such

as a data set that exhibits a hierarchy of low-level features, which can be hand-crafted and

incorporated into the explainer.

6.4 Interactive Explainability in the Literature

Throughout our work on Glass-Box we have identified three distinct research strands relevant to

interactive explanations and prominent in the literature:

• Interactive Artificial Intelligence and Machine Learning (mostly from the perspective of

Human–Computer Interaction);

• interactive explainability tools, which are interactive with respect to the user interface that

delivers the explanations; and

• theory of explanatory interactions – for example through a natural language dialogue –

between two intelligent agents (be them humans, machines or one of each).

6.4.1 Technical Points of View

HCI Approach The Human–Computer Interaction community has identified numerous bene-

fits of human input for tools powered by AI and ML algorithms, many of which extend beyond the

active learning paradigm where people act as data labelling oracles [8]. For example, consider a

movie recommendation system where the user provides both explicit feedback, such as movie rat-

ings, and implicit cues, e.g., movies that the person did not finish watching. In order to utilise the

full potential of any feedback and ensure good experience, the users have to understand how their

input and actions affect the system (in particular, its underlying predictive model). Among others,

the users should be informed whether their feedback is incorporated into recommendations

immediately or with a delay, and how “liking” a movie influences future recommendations (e.g.,

similar genre and shared cast members). Here, this understanding is mostly achieved (in the case

of user studies) by inviting people to onboarding sessions or (progressively) disclosing relevant

information via the user interface, hence the explanation is provided outside of the autonomous

system. These actions help the users to build a correct mental model of the “intelligent agent”,

thus allowing them to seamlessly interact with it. Ideally, the users would develop a structural

mental model that gives them a deep and in-detailed understanding of how the ML or AI operates,

however a functional mental model (a shallow understanding) often suffices (cf. Section 1.1).
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While explanations tend to be provided outside of the system here, several researchers

demonstrated how to integrate them directly into the interaction via the underlying user inter-

face [69, 78, 80, 81]. This is especially useful when the system is dynamic – e.g., its underlying

predictive model evolves over time – in which case the explanations support and inform users’ in-

teraction with the system and guide them towards achieving the desired objective. There are two

prominent examples of such systems in the literature. Kulesza et al. [81] developed an interactive,

topic-based naïve Bayes classifier for electronic mail to help the users “debug” and “personalise”

email labelling. The users are presented with explanations pertaining to every classified email –

words in the email that contribute towards and signal against a given label – and are encouraged

to adjust the weights of these factors if they do not agree with their premise, thereby refining and

personalising the model in a process which the authors call explanatory debugging [78, 80, 81].

Kim et al. [69] designed a similar system where the users can interactively personalise clustering

results – which are explained with cluster centroids and prominent exemplars – by promoting and

demoting data points within each cluster. In this literature, explanations of predictive models are

used to improve users’ understanding (mental model) of an autonomous system to empower them

to better utilise its capabilities (e.g., via improved personalisation) by interactively providing

beneficial input. Therefore, AI and ML explainability is not the main research objective in this

setting and the explanations are not interactive themselves.

Interactive Explainers The second relevant research strand that we identified in the liter-

ature covers interactive, multi-modal explainability tools in AI and ML. These systems help to

investigate a black-box model and its predictions by providing the user with a variety of explana-

tions produced with a range of diverse explainability techniques delivered via (an interactive)

user interface. For example, Krause et al. [77] built an interactive system that allows its users

to inspect Partial Dependence [44] of selected features (model explanation) and investigate how

changing attribute values for an individual data point would affect its classification (prediction

explanation) [76, 77]. While combining multiple explainability techniques within a single system

with a unified user interface is feasible, ensuring coherence of these diverse explanations poses

significant challenges as some of them may be at odds with each other and provide contradictory

evidence for the same outcome. Weld and Bansal [178] showed an idealised example of such a

system and persuasively argued its benefits, however they have not discussed how to mitigate the

issue with contradictory and competing explanations. Despite both of these explainability tools

being interactive, the interaction itself is limited to the presentation medium of the explanations

and a choice of the explainability technique, which, we argue, is insufficient – the system is

interactive but the explanations are not. Truly interactive explanations allow the user to tweak,

tune and personalise them (i.e., their content) via an interaction, hence the explainee is given an

opportunity to guide them in a direction that helps to answer selected questions.
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Explanatory Process The third research strand found in the literature characterises explan-

atory communication as an interaction between two intelligent agents [10, 101, 138, 176]. Arioua

and Croitoru [10] formalised explanatory dialogues in Dung’s argumentation framework [35] and

introduced “questioning” dialogues to evaluate success of explanations. Walton [176] introduced

a similar shift model composed of two distinct dialogue modes: an explanation dialogue and an

examination dialogue, where the latter is used to evaluate the success of the former [174–176].

Madumal et al. [101] refined these two approaches and proposed an interactive communication

schema that supports explanatory and questioning dialogues, which additionally allow the ex-

plainee to formally challenge and argue against some of the (automated) decisions and their

explanations. The authors have also empirically evaluated their explanatory dialogue protocol

on various text corpora to show its flexibility and applicability to a range of different scenarios.

Schneider and Handali [138] approached this problem on a more conceptual level discussing

interactions with various explainability tools and showing examples of how they could allow for

personalised explanations. Most of the findings published in this body of literature are purely

theoretical and have not yet been embraced by practical explainability tools.

6.4.2 Interdisciplinary Perspective

These diverse research paths come together to help explainable AI and interpretable ML re-

searchers and practitioners design appealing and useful explainability tools. While prominent

in computer science literature, many of the insights and recommendations discussed in the

previous section actually originate from studies of explanatory interactions between humans.

This observation has prompted Miller [106] to review a diverse body of research on human ex-

planations in social sciences and propose an agenda for human-centred explainability in artificial

intelligence and machine learning. In particular, Miller et al. [107] noticed that explainabil-

ity systems built for autonomous agents and predictive systems rarely ever consider the end

users and their expectations, as they are mostly “built by engineers, for engineers”. Since then,

XAI and IML research has taken a more human-centred direction, with many academics and

engineers [58, 138, 169, 173, 178] developing and evaluating their approaches against Miller’s

guidelines to help mitigate such issues.

Insights from Social Sciences Two of Miller’s recommendations are of particular importance:

interactive (dialogue-like) nature of explanations and popularity of contrastive explanations

among humans. While interactivity of explanations [138] has been investigated from various

viewpoints in the literature (and discussed in the previous section), explanations delivered

through a bi-directional conversation – giving the explainee the opportunity to customise and

personalise them – have not seen much uptake in practice. One-off explanations are still the most

popular operationalisation of explainability algorithms [138], where the explainer outputs a one-

size-fits-all explanation in an attempt to make the behaviour of a predictive system transparent.
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A slight improvement over this scenario is to enable the explainer to account for user preferences

when generating the explanations [87, 123], but this modality is not common either. Interactively

personalising an explanation allows the users to adjust its complexity to suit their background

knowledge, experience and mental capacity; for example, explaining a disease to a medical

student should differ from explaining it to a patient. Therefore, an interactive system can satisfy

a wide range of explainees’ expectations, including objectives other than improving algorithmic

transparency itself, e.g., inspecting individual fairness of black-box predictions [83].

The prominence of contrastive statements in human explanations is another important insight

from the social sciences, which also highlights their capacity to be interactively customised and

personalised. In the recent years this type of explanations has proliferated into the XAI and IML

literature in the form of class-contrastive counterfactual statements: “Had you earned twice as

much, your loan application would have been successful.” This uptake can also be attributed

to their legal compliance with the “right to explanation” originally proposed as part of (but

ultimately excluded from) the European Union’s General Data Protection Regulation [172, 173].

However, their capacity to be customised and personalised by the explainees themselves is often

overlooked in practice [106, 123, 169, 173].

All in all, many of Miller’s insights from the social sciences have found their way into research

and real-life applications. An example of the latter is Google’s People + AI Guidebook9 describing

best practices for designing human-centred AI and ML products and acknowledging the import-

ance of interaction and explainability in such systems. The lack of customisable explanations has

also received attention in the literature [37, 58, 138]. Schneider and Handali [138] have reviewed

an array of explainability approaches focusing on the personalisation capabilities of the insights

they generate. The authors have observed that bespoke explanations are generally absent in

the existing XAI and IML literature. To help researchers design and implement such methods,

Schneider and Handali [138] proposed a generic framework for personalised explanations that

identifies their three adjustable properties: complexity, content (called “decision information”, i.e.,

what to explain) and presentation (how to explain, e.g., figures or text). Similarly, Eiband et al.

[37] discussed the latter two properties from a perspective of user interface design. Furthermore,

Schneider and Handali [138] highlighted that interactive explanation personalisation can either

be an iterative, e.g., a conversation, or a one-off process, e.g., specifying constrains (passed on to

the explainer) before the explanation is generated. The latter approach does not, however, require

the explainability system to be interactive as the same personalisation can be achieved off-line

by extracting the explanation specification from the explainee and subsequently incorporating it

into the data or algorithm (when it is initialised). Interaction with explainability systems has

also been acknowledged by Henin and Le Métayer [58], who proposed a generic mathematical

formulation of black-box explainers consisting of three distinct steps: sampling, generation and

interaction.

9https://pair.withgoogle.com
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Missing in Action While some explainability approaches introduced in the literature are

simply incapable of interactive personalisation – a number of them may still support off-line

explanation customisation – others are [123], nonetheless this property is neither utilised nor

acknowledged [173]. This lack of recognition may be because the explainability system designers

do not see the benefits of this step, or due to the difficulties with building such systems (from

the engineering perspective) as well as evaluating them. To facilitate interactive personalisa-

tion, the user interface has to be capable of delivering explanations and collecting explainees’

feedback, which may require an interdisciplinary collaboration with User Experience and Human–

Computer Interaction researchers. Systematic evaluation and validation of this type of explainers

is also more elaborate, possibly requiring multiple rounds of time-consuming user studies.

Despite these hurdles, a number of explainability tools and techniques allow the user to per-

sonalise explanations to some extent. Akula et al. [7] presented a dialogue-driven explainability

system that uses contrastive explanations based on predictions derived from And-Or graphs and

bespoke ontology, however generalising this technique may be challenging as it requires hand-

crafting separate ontology and And-Or graph for each individual application. Lakkaraju et al.

[87] introduced rule-based explanations that the user can personalise by specifying the features

to appear in the explanation – an off-line customisation. Google published their what-if tool10,

which provides the explainee with an interactive interface that supports generating contrastive

explanations of selected data points by modifying their features, i.e., asking “What if?” questions.

With Glass-Box, we strive to bring together the most important concepts from this wide spectrum

of research to enable creation of truly interactive and personalised explanations.

6.5 It Is All about the Explainee

This chapter discussed how personalised explanations can improve the transparency of machine

learning models and how they can be generated via a human–machine interaction. While other

aspects of an explainability system can also be made interactive, we argued that one of the major

benefits stems from personalisation. In particular, we showed the difference between interactive-

ness of an explainability system – such as an interactive user interface – and interactiveness of

an explanation – e.g., explanation content customisation. To ground our study we have reviewed

relevant literature, where we identified three related research strands and showed how our work

has the potential to bridge them together. We also supported our discussion and claims with

experience gained from building and demonstrating Glass-Box: a class-contrastive counterfactual

explainability system that communicates with its users via a natural language dialogue. To the

best of our knowledge, it is the first XAI system tested in the wild that supports explanation

customisation and personalisation via interaction.

10https://pair-code.github.io/what-if-tool/
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Our experience with building Glass-Box and experimenting with it helped us to identify a

collection of desired functionality and a set of properties that such systems should exhibit (which

indirectly benefited other parts of our research, for example, LIMEtree and the XAI taxonomy).

We discussed their selection applicable to Glass-Box and summarised a list of lessons that we

have learnt. Our most important insight draws attention to the engineering overhead required

to build such a system despite adapting many off-the-shelf components. We concluded that one

should eschew this effort in favour of Wizard of Oz studies when the main objective is to use

such a platform as a test bed for various explainability techniques, unless the intention is to

deploy it afterwards. Other key observations concerned both the importance and impossibility

of simulating the mental model of explainees. While doing so is desirable and highly beneficial,

fully satisfying this requirement is out of reach at present. Nonetheless, we observed that by

using a formal argumentation framework to model parts of the user–machine interaction, it may

be possible to extract relevant fragments of the explainee’s background knowledge that can be

later utilised to this end. In summary, our findings allowed us to critically evaluate properties of

interactive explainers and formulate their desiderata as well as development and deployment

guidelines, all of which are a versatile and powerful aid to people building real-life explainers of

predictive systems.
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7
CONCLUSIONS AND FUTURE DIRECTIONS

This thesis explored various explainability and interpretability concepts in artificial intel-

ligence and machine learning. In particular, we investigated the theory behind IML and

XAI algorithms and identified their social and technical desiderata, which we formalised

as a taxonomy. Then, we examined state-of-the-art surrogate explainers and appraised them

based on our list of requirements. We chose this particular explainability approach because of its

advertised flexibility and apparent versatility – it is post-hoc, model-agnostic and data-universal.

While superficially surrogates may seem like a silver bullet, especially once the issue with their

faithfulness is resolved, behind the facade of universality hides a complex process governing their

composition and influencing their quality. Therefore, to better understand their inner workings,

we decomposed surrogates into independent building blocks, providing us with an opportunity to

analyse their fidelity, and design a framework and a meta-algorithm, called bLIMEy, for building

tailored surrogate explainers. Insights from bLIMEy uncovered that this seemingly easy-to-use

technique conceals crucial complexities away from the end user. Even though composing a be-

spoke surrogate may be an involved process, we showed that the freedom to build an explainer

with desired qualities allows to adjust the type of the resulting explanations, their complexity

and delivery mechanism, to name just a few customisation possibilities.

We then tapped into the potential of our bLIMEy framework by proposing LIMEtree – a

surrogate explainer based on multi-output regression trees that, among others, produces human-

centred explanations, accounts for interactions between the predicted classes and comes with

fidelity guarantees. To this end, we adapted CtreeX, which is our (ante-hoc) decision tree explainer

designed to output widely acclaimed contrastive insights for multi-output regression and multi-

class classification trees. Despite all of the progress with surrogate explainers laid out by this

thesis, the exceptional effort required to set them up illuminates one question: Why should
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we expend so much time and effort into configuring surrogates if instead we can invest these

resources in building inherently explainable predictive models? Regardless of the answer – which

depends on numerous factors – we cannot overlook the explanation recipients who ultimately

judge success of these technologies; simply put, there is much more to artificial intelligence

explainability and machine learning interpretability than their purely technical aspects. In

particular, our XAI taxonomy and experience with interactively customisable explanations gained

through Glass-Box show the importance and benefit of an interdisciplinary approach, spanning

multiple fields of computer and social sciences, when building explainability systems.

7.1 Explainability, What Is It Good For?

In this thesis, we delved into relatively recent and still dynamic fields of artificial intelligence

explainability and machine learning interpretability. We introduced these topics in Chapter 1,

which provides a philosophical and theoretical background needed to appreciate the depth

and complexity of this research. We reviewed diverse notions of explainability, interpretability,

transparency, intelligibility and many others that are often used interchangeably in the literature,

and argued in favour of explainability. We defined this concept (depicted by Equation 7.1) as

(logical) reasoning applied to transparent XAI and IML insights interpreted under certain

background knowledge – a process that engenders understanding in explainees. We also inspected

the machine learning workflow – which consists of data, models and predictions – and showed how

each of these components may be in need of interpretability. In view of a variety of explainability

approaches, each one operating in a unique way, we looked at the disputed trade-off between

explainability and predictive power, existence of which has only been supported by anecdotal

evidence thus far. Our research on surrogate explainers addresses this debate to some extent

since one of the main arguments for post-hoc transparency revolves around its flexibility and

universality at the expense of fidelity. Such methods are often contrasted with intrinsically

explainable predictive models (i.e., ante-hoc interpretability), which provide explanations of

superior quality but require extensive engineering effort to be built. However, having seen the

complexity of composing bespoke surrogate explainers within the bLIMEy framework, achieving

trustworthy post-hoc explainability may require just as much commitment.

Explainability = Reasoning
(
Transparency | Background Knowledge

)︸ ︷︷ ︸
understanding

(7.1)

While the most visible aspect of XAI research is the technology that makes it possible,

the recipients of such explanations are just as important since their understanding of the

underlying predictive system determines the ultimate success of an explainer. We explored

this topic by looking at human-centred explainability and various desiderata that this concept

entails, in particular focusing on explicitly acknowledging presence of humans and projecting

the explanations directly at them. To this end, we pursued important insights from the social
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sciences that prescribe how to adapt machine explainability to fulfil expectations of the explainees,

hence achieve seamless explanatory interaction. The two crucial observations in this space are: a

preference for contrastive explanations and facilitating a bi-directional explanatory process – akin

to a conversation – as opposed to delivering a one-off, one-size-fits-all explanation. In addition to

enhancing explainee satisfaction, operating within this purview has other, far-reaching benefits

such as enabling evaluation of algorithmic fairness, accountability assessment of predictive

models and their debugging. We concluded Chapter 1 with a high-level overview of landmark

literature in the field of explainable artificial intelligence and interpretable machine learning,

which set the scene for the contributions of this thesis.

Explaining Decision Trees As part of the introduction, we highlighted two different mental

models: functional – enough understanding to operationalise a concept; and structural – in-

depth, theoretical appreciation of underlying processes. We further argued that the former –

a shallow form of understanding – aligns with The Chinese Room Argument [139] and the

notion of simulatability [96]. We used this observation in Chapter 4 to challenge a popular

view that decision trees are interpretable because they are transparent. Deep and/or wide trees

are transparent but lack interpretability, which can be restored by applying a suitable form of

logical reasoning – a prerequisite of explainability (see Equation 7.1) – undertaken by either

an algorithm or a human investigator. We addressed this challenge with CtreeX: a tree-specific

explainability algorithm that generates contrastive and supportive statements for individual

predictions, the former of which is considered the gold standard of XAI. Since our approach is

ante-hoc, it comes with a range of desirable properties achieved at the expense of the method

being model-specific.

Intelligible and Robust Surrogate Explainers While making trees truly explainable is a

contribution in itself, we also showed how to generalise CtreeX to an arbitrary black-box model.

To this end, in Chapter 3 we introduced bLIMEy – a principled meta-algorithm and framework for

building bespoke surrogate explainers. Surrogates are a powerful and flexible XAI technique that

builds an interpretable model to approximate and explain a selected region of a black box: a single

prediction, a cohort or an entire predictive model. bLIMEy consists of three modules: interpretable

data representation, data sampling and explanation generation – depicted in Figure 7.1 – that are

embedded in a structured process instructing how to build effective explainers, and accompanied

by a collection of practical recommendations for individual algorithmic components. This theory

is complemented by an open source implementation of selected surrogate building blocks within

the FAT Forensics Python package, which we introduced in Appendix B.

In particular, we discussed the sensitivity of segmentation-based interpretable representa-

tions of images to the occlusion colour and partition granularity, concluding that mean-colour

occlusion should be avoided. We also uncovered the ineffectiveness of discretisation&binarisation-

based interpretable representation of tabular data, which results in a significant information
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Surrogate Explainer Framework

bLIMEy

Data
Sampling

Explanation
Generation

Interpretable
Representation

Validation

Figure 7.1: Depiction of the bLIMEy meta-algorithm and framework (Chapter 3) for developing
bespoke surrogate explainers. It consists of: interpretable data representation, data sampling
and explanation generation steps.

loss, especially when paired with a linear surrogate model. We identified label-aware methods as

a viable alternative and showed how such partitioning of a feature space can be learnt with a

decision tree. For sampling of tabular data, we proposed an explicitly local approach that takes

into consideration the black-box predictions of the augmented data, which ensures a diverse

sample and identifies the closest decision boundary. In case of images and text, we argued for

generating a complete sample instead, which allows to improve fidelity of our surrogate. When

fitting a (local) surrogate model to generate an explanation, we demonstrated various benefits

of using decision – classification or regression – trees. For example, they do not assume feature

linearity and independence, and alleviate the need for a separate interpretable representation

when dealing with tabular data. Some of these findings were shown experimentally, whereas

others were proven analytically – the main conclusions are presented in Chapter 3 with additional

results included in Appendix C.

The mounting evidence of wide-ranging advantages of surrogate decision trees encouraged

us to examine this particular explainer configuration in more detail by joining together CtreeX

and bLIMEy. In particular, we investigated explainability of black-box image classifiers given

their overall popularity and ease of explanation validation by means of visual inspection. To

this end, in Chapter 5 we introduced LIMEtree: a surrogate explainer based on multi-output

regression trees, the use of which enables modelling class interactions for probabilistic black

boxes. In addition to its inherent ability to model probabilistic multi-class predictors without

resorting to the “one-vs-rest” approach, such surrogates have a number of advantages over the

ones based on linear models (e.g., LIME), including but not limited to:

• appealing built-in explanation types such as feature importance, decision rules, tree struc-

ture visualisation and exemplars, many of which remain meaningful for high-dimensional

data, albeit they can become overwhelmingly large;

• native support for categorical attributes;
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• out-of-the-box compatibility with unnormalised features – no need to scale the underlying

(interpretable) features to the same range;

• inherent capability to model feature interactions;

• desirable modelling assumptions – not imposing linearity of the target but enforcing

axis-parallel splits; and

• opportunity to overfit the tree to better represent the black-box decision boundary being

approximated, thus enabling high-fidelity explanations.

Additionally, we supported LIMEtree with a range of theoretical guarantees for achieving full

fidelity and showed how to operationalise these concepts in practice. All of our findings were

grounded with a pilot user study and a collection of synthetic experiments, showing superiority

of our approach over LIME, which is an alternative surrogate explainer.

Human Aspects While most of our contributions described so far revolve around technical

aspects of AI and ML interpretability, explainees – explanation recipients who tend to be humans

– are just as important and ought to be treated as first-class citizens in such systems. For example,

the use of CtreeX in a surrogate setting enabled extraction of user-focused and meaningful

contrastive and supportive explanations, with the former being the cornerstone of human-centred

explainability inspired by research in social sciences. The second pillar of this XAI design agenda

is making explainability systems interactive and dialogue-like in nature to ensure coherence with

people’s expectations regardless of their background knowledge and prior experience with this

type of technologies. In Chapter 6, we showed how both of these desiderata can be achieved in

practice with Glass-Box: a voice-driven interactive explainer that allows its users to dynamically

customise contrastive explanations to answer their unique questions. We also discussed how

explainees can engage with explanations on multiple levels to personalise their various aspects

such as complexity, content, scope, target and delivery mechanism, among many others.

Given these diverse technical and social requirements, in Chapter 2 we introduced an explain-

able artificial intelligence taxonomy that covers a broad range of topics spanning five distinct

dimensions: functional, operational, usability, safety and validation. Individual properties from

within these categories are summarised in Table 7.1. One possible application of the taxonomy,

which we adopted throughout this thesis, is a reference guide for systematic construction and

evaluation of explainers. Following a well-defined list of properties helped us to direct the devel-

opment of our XAI approaches – CtreeX and LIMEtree – and compare them to LIME, for which

we prepared Explainability Fact Sheets based on the taxonomy – see Appendix A. In addition to a

strong foundation for reporting characteristics of an explainer, our taxonomy can serve as a basis

for various other use cases such as work sheets, check lists or a reference for certification and

standardisation procedures – see Figure 7.2.
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7.2. TOWARDS HUMAN-LIKE EXPLANATIONS

Check 
List

XAI 
Taxonomy

Fact 
Sheet

Work 
Sheet

Certification/ 
Standardisation

Figure 7.2: Possible use cases of the explainable artificial intelligence taxonomy (Chapter 2)
include: fact sheets, work sheets, check lists and a reference for certification or standardisation
procedures.

7.2 Towards Human-like Explanations

This thesis investigated a collection of diverse technical and social topics in explainable artificial

intelligence and interpretable machine learning. Its centrepiece were modular surrogate explain-

ers and a rigorous engineering process allowing to develop methodologically sound explainability

systems that are appealing to both lay and technical audiences. The latter desideratum prompted

the creation of an interactive explainer that empowers the users to dynamically personalise

contrastive explanations in a human–machine natural language conversation. With such a broad

range of findings, there are many possible research directions stemming from our work, some of

which more promising than others. One of the incremental improvements could be a generalisa-

tion of the CtreeX algorithm to other logical predictive models and their ensembles. Similarly,

our XAI taxonomy establishes a strong foundation for a systematic review and classification of

existing explainability literature. The research presented in this thesis also uncovers a need

and an opportunity to create a collection of clever components of surrogate explainers and a

structured bi-directional explanation delivery mechanism.

Meaningful Interpretable Representations Popular interpretable representations encode

presence and absence of relevant high-level concepts. However, image and tabular data domains

require a proxy to achieve this objective: super-pixel occlusion and placing an instance outside of

the explained hyper-rectangle respectively. To prevent a surrogate from introducing unintended

bias into explanations, we should identify better strategies for removing information from data,

e.g., via randomisation and contextual substitution. For tabular data, we proposed an alternative

approach where instances were separated and described with logical rules learnt by a decision
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tree, thus avoiding the ill-defined procedure of “switching off” an element of the interpretable

representation. A similar approach would be highly beneficial for images, where the explainer

could perform conceptually meaningful (substitution) operations that go beyond “deleting” parts

of an image by occluding them via a predefined colouring strategy.

Efficient Sampling Another potential improvement of surrogate explainers concerns the

data sampling module. Among others, bLIMEy showed the importance of creating diverse

data samples in the selected neighbourhood by considering their predictions provided by the

explained black box. However, we did not investigate how to reduce the number of samples while

preserving high fidelity of the explainer. Minimising the quantity of augmented data is important

as these instances need to be processed by the black box to capture its predictive behaviour

(i.e., approximate its decision boundary), which can be expensive in time and/or compute. One

particularly promising avenue of research in this direction is active learning. By placing the

samples strategically along the black-box decision boundaries within the explained region, one

could minimise the number of queries submitted to the explained model and improve the quality

of data used to train the (local) surrogate.

Explanatory Process and Argumentation The final idea for follow-on research applies to

the entire field and not just surrogate explainers. With Glass-Box, we showed a basic form

of explainer–explainee interaction that, simply put, was a question-answering system lacking

sufficient reasoning capacity on the machine side. Since each explanation reveals just a fragment

of the black box and only the right mixture of evidence can paint the full picture, the explainer

needs to be responsive and adapt seamlessly to the user’s requests and expectations. Such an

engaging algorithmic interlocutor should build logically consistent narratives and serve more

as a guide and a teacher than a facts reporter. To this end, we need to develop an explanatory

process built on top of a system that enables logical reasoning between intelligent agents:

human–machine or machine–machine. The formal argumentation framework can provide such a

foundation, managing the dialogue as well as tracking and storing the evolving knowledge base

of the involved parties. In the end, nonetheless, the explainee needs to be a savvy interrogator,

asking the right questions and firmly navigating the entire process to understand the behaviour

of such super-charged silicone oracles. After all, in Arthur C. Clarke’s words:

Any sufficiently advanced technology is indistinguishable from magic.
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Explainable AI taxonomy presented in Chapter 2 can be operationalised in a number

of ways depending on the intended application. For example, it can form the basis of

fact sheets, work sheets, check lists, standards, guidelines or recommendations – see

Section 2.4.2 for more details. Nonetheless, the most comprehensive application for preëxisting

explainers is an explainability Fact Sheet [149], which can serve as a reference guide or a manual

for each popular explainer. To aid our future research, we composed such explainability Fact

Sheets (based on our explainable AI taxonomy) for the three explainers central to our work.

We start with Local Interpretable Model-agnostic Explanations (LIME [129]) – Section A.1 on

page 196 – which are the most prominent example of surrogate explainers. Their choice is the

result of our search for a promising explainer – summarised in Section 2.6 – which led us towards

surrogate-based explainability approaches. Next, in Section A.2 starting on page 206, we present

an explainability Fact Sheet for the Contrastive tree eXplainer (CtreeX) introduced in Chapter 4.

This model-specific method is the core building block of our final explainer – LIMEtree (Chapter 5)

– which is a surrogate based on multi-output regression trees. It is characterised by a Fact Sheet

included in Section A.3 on page 215. Notably, neither bLIMEy nor Glass-Box received a dedicated

Fact Sheet since the former is a meta-algorithm and not a specific explainer, whereas the latter is

an interactive natural-language voice interface built around CtreeX. We present said Fact Sheets

on the following pages of this appendix.
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Local Interpretable
Model-agnostic
Explanations

Approach Characteristic

Description
Local Interpretable Model-agnostic Explanations (LIME) is a surrogate explainability method (post-hoc and
model-agnostic) that aims to approximate local (in the neighbourhood of a specific data point) behaviour of a
black box with a sparse linear model to interpret individual predictions. It was introduced by Marco Tulio
Ribeiro, et al., who also published its open source implementation that is capable of explaining tabular, image
and text data.

Citation

@inproceedings{ribeiro2016why,
  title     = {``{W}hy Should {I} Trust You?'': {E}xplaining the Predictions
               of Any Classifier},
  author    = {Ribeiro, Marco Tulio and Singh, Sameer and Guestrin, Carlos},
  booktitle = {Proceedings of the 22\textsuperscript{nd} ACM SIGKDD
               International Conference on Knowledge Discovery and
               Data Mining, San Francisco, CA, USA, August 13-17, 2016},
  pages     = {1135--1144},
  year      = {2016},
  url       = {https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf}
}

Variants

bLIMEy

build LIME yourself (bLIMEy) – a modular meta-algorithm for building custom surrogate explainers.

@article{sokol2019blimey,
  title   = {b{LIME}y: {S}urrogate Prediction Explanations Beyond {LIME}},
  author  = {Sokol, Kacper and Hepburn, Alexander and Santos-Rodriguez, Raul
             and Flach, Peter},
  journal = {2019 Workshop on Human-Centric Machine Learning (HCML 2019) at
             the 33\textsuperscript{rd} Conference on Neural Information
             Processing Systems (NeurIPS 2019), Vancouver, Canada},
  year    = {2019},
  url     = {https://arxiv.org/abs/1910.13016},
  note    = {arXiv preprint arXiv:1910.13016}
}

APPENDIX A. EXPLAINABILITY FACT SHEET EXAMPLES
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Implementations

Python

LIME https://github.com/marcotcr/lime

FAT Forensics (bLIMEy) https://fat-forensics.org/how_to/transparency/tabular-surrogates.html

Related Approaches
N/A

A.1. LIME: LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATIONS
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Functional Requirements

F1: Problem Supervision Level
LIME works with:

• supervised predictive algorithms; and

• semi-supervised predictive algorithms.

F2: Problem Type
LIME is designed for:

• probabilistic classifiers, and supports binary and multi-class classification tasks; and

• regression problems.

F3: Explanation Target
LIME can only explain predictions of a machine learning model.

F4: Explanation Breadth/Scope
Explanations produced by LIME are local.

F5: Computational Complexity
For every explained data point, the LIME algorithm performs the following computationally- and/or
time-expensive steps, with the cost of each one depending on the actual algorithmic component used:

• Generating an interpretable data representation may be necessary for some applications. Tabular
data may be binned (e.g., using quartile discretisation) to form human-comprehensible features (i.e.,
concepts) such as 15 < age ≤ 18. Images need to be pre-processed to identify super-pixels. Similarly,
text has to be (possibly, pre-processed and) transformed into the bag-of-words representation.

• In order to train the surrogate model to approximate the local behaviour of a black box, we need to
sample data around the instance being explained. For tabular data, the data augmentation algorithm
needs to sample data points with the same number and type of features as the original data set. When an
interpretable representation is used, on the other hand, the number of features is still the same, but each
one becomes a multinomial feature with its values indicating different bins defined on this feature. For
images and text, the sampling procedure is performed on a binary vector of length equal to the number of
unique words (or tokens) for text and super-pixels for images.

• Each sampled data point has to be predicted with the underlying black-box model.

• To enforce the locality of an explanation, sampled data are weighted based on their distance to the
explained instance, which has to be computed for every synthetic data point. While for text and images this
distance is computed on binary vectors, for tabular data without an interpretable data representation this
procedure is likely to be computationally-heavy, e.g., the Euclidean distance computed on numerical
features.

• A feature selection algorithm may be run on tabular data to introduce sparsity into the explanations.

• For every data point being explained, a local model has to be trained for each explained class as the local
model's task is to predict one class vs. the rest.

F6: Applicable Model Class
The LIME algorithm is model-agnostic, therefore it works with any predictive model.

The official LIME implementation uses linear regression for the local surrogate model, therefore for
classification tasks, the explained black box has to be a probabilistic model (i.e., output class probabilities).

APPENDIX A. EXPLAINABILITY FACT SHEET EXAMPLES
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F7: Relation to the Predictive System
This approach is post-hoc, therefore it can be retrofitted to any (preëxisting) predictive system.

F8: Compatible Feature Types

Tabular Data

Tabular LIME works with both categorical and numerical features. If an interpretable data representation is
used (default behaviour in the official implementation), all of the features become categorical (bins) to improve
legibility of the explanations.

Images

Images are always transformed into an interpretable data representation, namely super-pixels represented as a
binary "on/off" vector.

Text

Text data are always transformed into an interpretable data representation, namely a bag of words represented
as a binary "on/off" vector.

F9: Caveats and Assumptions
By default, the LIME implementation discretises tabular data before the sampling procedure, which leads to the
sampled data resembling more of a global rather than a local neighbourhood. This is counterbalanced with the
data point weighting step based on the proximity of each synthetic data point to the instance being explained.
Moreover, discretising first means that in order to predict the sampled data with the underlying black-box
model, we need to "un-discretise" them first. In the LIME implementation, this step is performed by uniformly
sampling data from each bin, therefore introducing another source of randomness.

For more details, please see "bLIMEy: Surrogate Prediction Explanations Beyond LIME" by Kacper Sokol, et al.

A.1. LIME: LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATIONS
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Operational Requirements

O1: Explanation Family
Associations between antecedent and consequent. (Influence of interpretable concepts generated by
applying an interpretable data representation.)

Tabular Data

The explanations produced by tabular LIME are associations between antecedent and consequent – each
feature, or a particular bin on that feature if data are transformed into an interpretable representation, is
assigned a positive or negative influence on the local (probabilistic) prediction of a user-selected class.

Images and Text

The explanations produced by image and text LIME are associations between antecedent and
consequent – each word or super-pixel is assigned a positive or negative influence on the local (image-specific
or sentence-specific) prediction of a user-selected class.

O2: Explanatory Medium
LIME explanations are delivered as visualisations. For tabular data, this is interpretable feature influence,
e.g.:

For text, this is word influence, e.g.:

Finally, for images, this is super-pixel influence, e.g.:

(The figures are taken from the LIME package documentation.)

APPENDIX A. EXPLAINABILITY FACT SHEET EXAMPLES
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O3: System Interaction
LIME explanations are static visualisations.

O4: Explanation Domain
LIME explanations are expressed in terms of local interpretable feature influence determined by the coefficients
extracted from the locally fitted linear model. For tabular data, the explanation can either be represented in the
original data domain (training data features) or in an interpretable domain (quartile feature binning). For
images these influence factors correspond to super-pixels and for text these are unique tokens (words) within the
explained sentence.

O5: Data and Model Transparency
For image and text data there is no need for transparency as an interpretable data representation is used. For
tabular data, on the other hand, regardless of whether an interpretable data representation is used or not, the
features need to be human-comprehensible.

Since this is a model-agnostic interpretability approach, there is no need for the underlying predictive model to
be inherently transparent in any way.

O6: Explanation Audience
For tabular data, the audience should be familiar with the general domain of the problem to be able to interpret
the meaning of the data features. For images and text, any audience is suitable.

The audience is not required to be familiar with machine learning concepts.

O7: Function of the Explanation
The main function of LIME is to increase transparency of a prediction output by a black-box model. However,
with enough background knowledge, the algorithm can also be used as a diagnostic tool when debugging a
black-box predictive system.

O8: Causality vs. Actionability
LIME explanations are not of a causal nature. The explanations also lack a direct actionable interpretation.

O9: Trust vs. Performance
There is no performance penalty since LIME is post-hoc and model-agnostic. Trust in LIME explanations may
suffer given instability and randomness of the components making up the explanation generation process (see
S3 for more details).

O10: Provenance
LIME explanations are based on interactions with the black-box model and synthetic data sampled around the
explained instance, which both affect construction of the local, interpretable, surrogate linear model. The
coefficients of this model are used as an explanation.

A.1. LIME: LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATIONS
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Usability Requirements

U1: Soundness
There are two types of local soundness and one type of global soundness that should be measured to evaluate
quality of a LIME explanation. First, mean squared error (or any other performance metric for numerical
values) between the underlying (black-box) model and the local surrogate model (used to generate the
explanations) should be evaluated in the neighbourhood of the instance being explained to understand
soundness of the surrogate model around that instance. Then, mean squared error in the neighbourhood of the
closest black-box decision boundary should be measured to understand how well the surrogate model
approximates the black-box decision boundary in that region. Finally, mean squared error on the whole data set
(e.g., the training data) should be calculated to understand the overall soundness of the surrogate model.

U2: Completeness
LIME explanations are not complete in their nature. For images the explanations are image-specific and for text
the explanations are sentence-specific. For tabular data, interpretable feature influence should not be
generalised beyond the single data point for which it was generated.

U3: Contextfullness
Not applicable. LIME explanations do not generalise beyond the data point for which they were composed.

U4: Interactiveness
LIME explanations are static visualisations. Interactiveness can only be achieved (reserved for technical users)
by modifying the interpretable data representation, e.g., adjusting super-pixel boundaries for images.

U5: Actionability
LIME explanations can only provide influence of a given factor (determined by the interpretable data
representation) on the black-box prediction of a selected data point. They cannot however formulate this
dependency such as to precisely guide future actions of the explainees.

U6: Chronology
Chronology is not taken into account by LIME explanations.

U7: Coherence
Coherence is not modelled by LIME explanations.

U8: Novelty
Novelty is not considered by LIME explanations.

U9: Complexity
Complexity of LIME explanations cannot be directly adjusted. It can only be fine-tuned via changes to the
interpretable data representation.

U10: Personalisation
LIME explanations cannot be personalised.

APPENDIX A. EXPLAINABILITY FACT SHEET EXAMPLES
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U11: Parsimony
Parsimony for tabular data is introduced by the feature selection step. Sparsity of text and image
explanations is not necessary as these explanations are overlaid on top of the original image or sentence. For
text, parsimony can also be achieved by presenting the top k words in favour and against a given prediction.

A.1. LIME: LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATIONS
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Safety Requirements

S1: Information Leakage
Since LIME explanations are expressed in terms of the local model coefficients, they do not directly leak any
information. However, if the black-box decision boundary approximation is precise enough, the surrogate model
can be used to partially reconstruct the black-box model (for example by extracting its local gradient) – for more
details please refer to "Model Reconstruction from Model Explanations" by Smitha Milli, et al. Another leakage
may occur when creating an interpretable data representation for tabular data as some of the discretisation
(binning) techniques may reveal characteristics of the data, e.g., quartile binning.

S2: Explanation Misuse
LIME explanations can be misused by modifying the explained data point according to the feature influence
output by the local surrogate model. Nonetheless, this is not an easy task given that the explanation can be
expressed in an interpretable data representation. Moreover, this influence is derived for a single data point with
a local surrogate model, therefore these insights often do not generalise beyond this individual case. Discovering
that the same set of factors is influential for multiple individual explanations (data points) may be taken
advantage of, however given that each insight is derived from a unique local surrogate model, this is rather
unlikely. Finally, given the flexibility and complexity of surrogate explainers such as LIME, this technique can be
used for fairwashing – for more details please refer to "Fairwashing: The Risk of Rationalization" by Ulrich
Aïvodji, et al.

S3: Explanation Invariance
LIME explanations may be unstable given that the local models are trained with synthetic data. To ensure
consistency, the sampling procedure needs to be controlled either by fixing the random seed or by using a
deterministic sampling algorithm. Ideally, the explanations would be imperceptibly different regardless of the
data sample. This may be true in the limit of the number of sampled data points, however there is no
consideration of the minimum quantity of synthetic data required to guarantee the explanation stability.

For images, explanation invariance also depends on the stochasticity of the segmenter, which generates
super-pixels. For text, on the other hand, the interpretable data representation – a bag of words – is
deterministic and stable.

Another source of explanation instability for tabular data is the un-discretisation step applied to sampled data
by the LIME implementation. As it stands, the LIME algorithm first discretises the data (to create an
interpretable data representation) and then samples within this discretised representation. It means that in
order to get predictions of the underlying (black-box) model for each sampled data point, they first have to be
un-discretised. (For images and text this is a well-defined procedure as the binary interpretable representation
has 1-to-1 mapping with super-pixels in an image and words in a sentence.) The LIME algorithm does that by
sampling each feature value from within the bin boundaries (determined earlier by the discretisation), therefore
introducing an additional source of randomness to each explanation. For more details, please refer to "bLIMEy:
Surrogate Prediction Explanations Beyond LIME" by Kacper Sokol, et al.

The consistency of LIME explanations has not been studied.

S4: Explanation Quality
The quality of LIME explanations is neither considered with respect to the confidence of predictions given by
the underlying model nor the distribution of the (black-box) training data.

APPENDIX A. EXPLAINABILITY FACT SHEET EXAMPLES
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Validation Requirements

V1: User Studies
LIME has been evaluated with three different user studies:

1. choosing which of two classifiers generalises better given a LIME explanation;

2. performing feature engineering to improve a model given insights gathered from LIME explanations; and

3. identifying and describing classifier irregularities based on LIME explanations.
Details of these experiments are available in Section 6 of the LIME paper.

V2: Synthetic Experiments
LIME has been evaluated with three different simulated user experiments:

1. validating faithfulness of explanations with respect to the underlying predictive model – the agreement
between the top k most influential features given by an inherently transparent classifier and the top k
features chosen by LIME as its explanation;

2. assessing trust in predictions engendered by LIME explanations – identifying redundant features; and

3. identifying a better model based on LIME explanations.
Details of these experiments are available in Section 5 of the LIME paper.

A.1. LIME: LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATIONS
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Contrastive tree
eXplainer

Approach Characteristic

Description
Contrastive tree eXplainer (CtreeX) is a model-specific explainability method (designated for classification and
regression trees) that generates class-contrastive counterfactual explanations of a specific prediction (local).
Nonetheless, CtreeX explanations generalise to other instances within the same leaf of the tree (cohort) without
additional processing. Alternatively, CtreeX can generate class-supportive counterfactuals, which are
explanations based on "differences that make instances similar", i.e., adjustments to feature values that do not
yield prediction change. CtreeX is limited to explaining tabular data and its explanations are generated by
processing the structure of a decision tree – the algorithm requires a direct access to the model's internals. Since
it is an ante-hoc approach, its explanations are truthful with respect to the tree, i.e., they exhibit full fidelity.

Citation

@phdthesis{sokol2021intelligible,
  title     = {{T}owards Intelligible and Robust Surrogate Explainers:
               {A} Decision Tree Perspective},
  author    = {Sokol, Kacper},
  school    = {School of Computer Science, Electrical and Electronic
               Engineering, and Engineering Maths, University of Bristol},
  year      = {2021}
}

Variants
N/A

Implementations

Python

FAT Forensics (CtreeX) https://github.com/fat-forensics/fat-forensics

Related Approaches

Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking

This technique exploits the internals of a tree-based ensemble classifier to offer recommendations for
transforming true negative instances into positively predicted ones.

@inproceedings{tolomei2017interpretable,
  title        = {{I}nterpretable Predictions of Tree-based
                  Ensembles via Actionable Feature Tweaking},
  author       = {Tolomei, Gabriele and Silvestri, Fabrizio
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                  and Haines, Andrew and Lalmas, Mounia},
  booktitle    = {Proceedings of the 23\textsuperscript{rd}
                  ACM SIGKDD International Conference on
                  Knowledge Discovery and Data Mining},
  pages        = {465--474},
  year         = {2017},
  organization = {ACM}
}

Contrastive Explanations with Local Foil Trees

This technique utilises locally trained one-versus-rest decision trees (surrogates) to identify the disjoint set of
rules that causes the tree to classify data points as the foil and not as the fact.

@article{waa2018contrastive,
  title   = {{C}ontrastive Explanations with Local Foil Trees},
  author  = {van der Waa, Jasper and Robeer, Marcel
             and van Diggelen, Jurriaan and Brinkhuis, Matthieu
             and Neerincx, Mark},
  journal = {Workshop on Human Interpretability in Machine Learning
             (WHI 2018) at the 35\textsuperscript{th} International
             Conference on Machine Learning (ICML 2018), Stockholm,
             Sweden},
  year    = {2018},
  url     = {https://arxiv.org/abs/1806.07470},
  note    = {arXiv preprint arXiv:1806.07470}
}
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Functional Requirements

F1: Problem Supervision Level
CtreeX works with:

• supervised classification and regression trees; and

• semi-supervised classification and regression trees.

F2: Problem Type
CtreeX is designed for:

• crisp and probabilistic classification trees, supporting binary and multi-class classification tasks;
and

• regression trees.

F3: Explanation Target
CtreeX can only explain predictions of a decision tree.

F4: Explanation Breadth/Scope
Explanations produced by CtreeX are local, however they generalise to other instances residing in the same tree
leaf, therefore they can be considered cohort explanations as well.

F5: Computational Complexity
Before generating individual explanations, CtreeX needs to pre-process the tree structure, which is a one-off
procedure that requires visiting each tree leaf – it extracts the conjunction of logical conditions appearing on all
root-to-leaf paths. This creates a partially initialised two-dimensional binary meta-feature table, with the
number of rows corresponding to the leaves count and the number of columns not exceeding the number of
unique logical conditions extracted from the tree splitting nodes (some of them can be merged). Then, CtreeX
finds a row in the table that corresponds to an explained instance, initialises the missing values in the table and
computes a (modified) Hamming distance between its rows to get a ranking of contrastive statements.

F6: Applicable Model Class
The CtreeX algorithm is model-specific, therefore it only works with decision (classification and regression)
trees.

F7: Relation to the Predictive System
This approach is ante-hoc, but it can be applied to preëxisting decision trees as long as it is given access to their
internal structure.

F8: Compatible Feature Types
CtreeX only works with tabular data, supporting both categorical and numerical attributes.

APPENDIX A. EXPLAINABILITY FACT SHEET EXAMPLES

208



F9: Caveats and Assumptions
Processing the tree structure results in a partially initialised meta-feature representation – see F5 – since splits
of a (binary) tree may results in ambiguous or overlapping encodings. For example, a categorical feature with
three values, A, B and C, may be split into {A} and {B, C} (i.e., not A), which compared to another split on the
same feature, e.g., {A, C} and {B}, provides incomparable logical conditions (unless additional assumptions
are made). When a feature value is in the {B, C} set, which partially overlaps with the {A, C} set, these two
logical conditions can either encode the same event (C) or a different even (B), thus introducing ambiguity. A
similar phenomenon arises for partially overlapping numerical intervals, e.g., 7 < x ≤ 10 and 8 < x ≤ 11,
which either encode the same or a different event depending on the value of x. Therefore, a definite explanation
cannot be generated without seeing a data point, which fixes the value of each feature, thereby uniquely
determining the state of the logical conditions extracted from the tree structure.
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Operational Requirements

O1: Explanation Family
CtreeX explanations – class-contrastive and class-supportive statements – are based on contrasts and
differences. They show variants of the explained instance (examples) that differ in a subset of feature values,
causing respectively a change or preservation of its prediction.

O2: Explanatory Medium
CtreeX explanations are delivered as textualisation highlighting the change in attribute values of the explained
instance.

O3: System Interaction
CtreeX explanations are static statements.

O4: Explanation Domain
CtreeX explanations are expressed in the original data domain, indicating changes of individual feature values or
ranges thereof.

O5: Data and Model Transparency
The features of tabular data used to train the underlying tree need to be human-comprehensible. Since CtreeX
decouples the size of the explanation from the size of the tree, the model complexity is irrelevant – the tree does
not need to be intelligible with respect to its structure.

O6: Explanation Audience
The audience should be familiar with the general domain of the problem to be able to interpret the meaning of
the data features. The audience is not required to be familiar with machine learning concepts.

O7: Function of the Explanation
The primary objective of CtreeX is to increase transparency of decision tree predictions. Additionally, the nature
of contrastive and supportive explanations allows them to be used as a gauge of individual fairness (disparate
treatment). With enough background knowledge, the algorithm can also be used as a diagnostic tool for
debugging decision trees.

O8: Causality vs. Actionability
CtreeX explanations are not of a causal nature, however they are actionable, provided that the features upon
which contrastive and supportive statements are conditioned are actionable themselves.

O9: Trust vs. Performance
There is no performance penalty since CtreeX can be applied to preëxisting decision trees without any
modifications. CtreeX explanations are also trustworthy since the algorithm is ante-hoc, i.e., the explanations
are derived directly from the predictive model.

O10: Provenance
CtreeX explanations are based on the structure of the explained tree, which is determined by its training
procedure and data. The differences in logical conditions extracted from the two root-to-leaf paths
corresponding to fact and foil are the source of feature value contrast shown in the explanation.
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Usability Requirements

U1: Soundness
CtreeX explanations are sound since they are ante-hoc.

U2: Completeness
CtreeX explanations are generated for a single instance (local), however they generalise to other data points
assigned to the same tree leaf (cohort). Their completeness is determined by the logical conditions extracted
from the corresponding root-to-leaf paths -- this auxiliary information may be presented along the explanations
to place them in a context (see U3).

U3: Contextfullness
Context of CtreeX explanations is given by the logical conditions extracted from the corresponding root-to-leaf
paths – see U2 for more details. It is possible to broaden such a context by determining its anti-unification (least
general generalisation) based on other leaves with the same prediction (using the binary meta-feature
representation).

U4: Interactiveness
CtreeX explanations are static statements, however they can be easily deployed in an interactive (dialogue)
system, thus forming the basis of an interactive explainer. Glass-Box is an example of such a system: it uses
CtreeX to generate contrastive explanations communicated to the explainee via a voice-driven interactive agent.
For more details, please refer to "Glass-Box: Explaining AI Decisions With Counterfactual Statements Through
Conversation With a Voice-enabled Virtual Assistant" by Kacper Sokol, et al.

U5: Actionability
Contrastive explanations provided by CtreeX are inherently actionable, however the suggested change may
not be feasible in the real world, e.g., "had you been 5 years older". Such behaviour can be controlled by
annotating human actionability of features and altering the explanation retrieval heuristic to penalise impossible
actions appearing in the foil of contrastive statements.

U6: Chronology
Chronology is not taken into account by vanilla CtreeX explanations, however the user can annotate features
subjected to the effect of time and customise the explanation retrieval heuristic to take this information into
account (see U5 for more details).

U7: Coherence
Coherence is not modelled by CtreeX explanations, however it can be achieved by deploying the explainer in an
interactive system (see U4). This allows to collect beliefs of the explainee and encode them as logical facts with
respect to the feature values. Next, they can be juxtaposed against logical conditions of the explanations and
incorporated into the explanation retrieval heuristic to achieve a simple form of coherence with the explainee's
mental model.

U8: Novelty
Novelty is not considered by CtreeX explanations, however it can be achieved with a strategy similar to the one
outlined in U7.
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U9: Complexity
CtreeX retrieves explanations of varying length, measured by the number of logical conditions appearing in the
foil of each contrastive statement. By default, these explanations are presented in the order of increasing length,
however this can be altered by modifying the explanation retrieval heuristic. For example, certain features may
be penalised to control for the contents of the foil – see U5 for an example. If CtreeX is deployed in an interactive
system, the user can provide such restrictions on the fly instead of hard-coding them within the explanation
retrieval strategy.

U10: Personalisation
CtreeX explanations can be personalised either by adjusting the explanation retrieval heuristic (by the
deployment engineers) or through interaction (by the explainees) – see U9 for more details.

U11: Parsimony
Contrastive explanations delivered by CtreeX are inherently sparse since they explain a prediction in terms of
the smallest possible change to its feature values.
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Safety Requirements

S1: Information Leakage
Since CtreeX is an ante-hoc explainer, it has direct access to the internals of the explained decision tree. All of the
logical conditions included in the explanations are extracted from the tree splitting nodes, therefore they reveal
parts of the model. This problem can be addressed by obfuscating such thresholds when displaying the
explanations. One strategy is to add random noise to the precise numerical thresholds; alternatively, they can be
replaced with adjectives quantifying the degree of required change. When explanations are accompanied by a
context (U3), the risk of leaking information is even greater.

S2: Explanation Misuse
When adversaries extract enough information from CtreeX explanations (if they were not obfuscated – see S1),
they can steal or game the underlying decision tree.

S3: Explanation Invariance
CtreeX explanations are stable – their reproducibility is guaranteed for each explained data point given a fixed
structure of the underlying decision tree and unchanged explanation retrieval heuristic. Moreover, in many cases
"slight" variations to the explained instance will not affect validity of its explanations since they remain accurate
as long as the explained data point stays in its original leaf.

S4: Explanation Quality
The quality of CtreeX explanations can be measured by the number of training instances in the leaf determined
by the foil of each contrastive statement. It can be understood as a proxy metric for the density of this particular
feature space partition, hence confidence of the tree in this region. For example, when the explained decision
tree is overfitted, the stability of CtreeX explanations may decrease since cohorts (instances assigned to a single
leaf) become smaller.
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Validation Requirements
CtreeX has neither been evaluated with user studies (V1) nor with synthetic experiments (V2). This lack of
explicit validation is motivated by the approach being ante-hoc, making it completely truthful with respect to the
explained tree. Moreover, CtreeX uses contrastive statements, which are a widely acclaimed explanation type
that does not require validation per se.

V1: User Studies
N/A

V2: Synthetic Experiments
N/A
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Tree-based Surrogate
Explainer

Approach Characteristic

Description
Tree-based Surrogate Explainer (LIMEtree) is a post-hoc and model-agnostic explainability method of
individual black-box predictions. It approximates local (in the neighbourhood of a specific data point) behaviour
of a black box using a decision tree. The type of the surrogate tree depends on the black box:

• probabilistic models are approximated with multi-output regression trees;

• regressors are modelled with regression trees; and

• classifiers are mimicked with (multi-class) classification trees.
Among others, the surrogate trees are explained with the Contrastive tree eXplainer (CtreeX), which composes
appealing counterfactual statements. Nonetheless, explanations that are inherent to decision trees are possible
as well: feature importance, tree structure visualisation and logical conditions extracted from root-to-leaf paths,
to name a few (see O1 for more details). LIMEtree is capable of explaining tabular, image and text data – the
latter two types require using an interpretable data representation.

Citation

@article{sokol2020limetree,
  title   = {{LIME}tree: {I}nteractively Customisable Explanations Based
             on Local Surrogate Multi-output Regression Trees},
  author  = {Sokol, Kacper and Flach, Peter},
  year    = {2020},
  url     = {https://arxiv.org/abs/2005.01427},
  note    = {arXiv preprint arXiv:2005.01427}
}

Variants
N/A

Implementations

Python

FAT Forensics (LIMEtree) https://github.com/fat-forensics/fat-forensics

Related Approaches

bLIMEy

LIMEtree is based upon the bLIMEy (build LIME yourself) framework – a modular meta-algorithm for building
custom surrogate explainers.
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@article{sokol2019blimey,
  title   = {b{LIME}y: {S}urrogate Prediction Explanations Beyond {LIME}},
  author  = {Sokol, Kacper and Hepburn, Alexander and Santos-Rodriguez, Raul
             and Flach, Peter},
  journal = {2019 Workshop on Human-Centric Machine Learning (HCML 2019) at
             the 33\textsuperscript{rd} Conference on Neural Information
             Processing Systems (NeurIPS 2019), Vancouver, Canada},
  year    = {2019},
  url     = {https://arxiv.org/abs/1910.13016},
  note    = {arXiv preprint arXiv:1910.13016}
}

LIME

LIMEtree is an alternative to LIME (Local Interpretable Model-agnostic Explanations). The major difference
between the two is the type of the local surrogate model used to approximate the behaviour of the explained
black box. The former is a tree-based surrogate explainer, whereas the later uses sparse linear models instead.

@inproceedings{ribeiro2016why,
  title     = {``{W}hy Should {I} Trust You?'': {E}xplaining the Predictions
               of Any Classifier},
  author    = {Ribeiro, Marco Tulio and Singh, Sameer and Guestrin, Carlos},
  booktitle = {Proceedings of the 22\textsuperscript{nd} ACM SIGKDD
               International Conference on Knowledge Discovery and
               Data Mining, San Francisco, CA, USA, August 13-17, 2016},
  pages     = {1135--1144},
  year      = {2016},
  url       = {https://www.kdd.org/kdd2016/papers/files/rfp0573-ribeiroA.pdf}
}
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Functional Requirements

F1: Problem Supervision Level
LIMEtree works with:

• supervised black boxes; and

• semi-supervised predictive algorithms.

F2: Problem Type
LIMEtree is designed for:

• crisp and probabilistic classifiers, supporting binary and multi-class classification tasks; and

• regression problems.

F3: Explanation Target
LIMEtree can only explain predictions of a machine learning model.

F4: Explanation Breadth/Scope
Explanations produced by LIMEtree are local.

F5: Computational Complexity
For every explained data point, the LIMEtree algorithm performs the following computationally- and/or
time-expensive steps, with the cost of each one depending on the actual algorithmic component used:

• Generating an interpretable data representation is necessary for images and text. Images need to
be segmented to identify their super-pixels. Similarly, text has to be (possibly, pre-processed and)
tokenised. Tabular data, on the other hand, do not require an interpretable representation since the
surrogate tree partitions the feature space into (computationally) meaningful regions.

• In order to train the surrogate model to approximate the local behaviour of a black box, data need to be
sampled around the explained instance. For tabular data, the augmentation algorithm needs to sample
data points with the same number and type of features as the original data set. For images and text, the
sampling procedure is performed on a binary vector of length equal to the number of unique tokens for text
and super-pixels for images. In the latter case, a complete binary sample can be generated instead of a
random sample depending on the cardinality of the interpretable representation.

• Each sampled data point has to be predicted with the underlying black-box model.

• To enforce locality of the explanations, sampled data may be weighted based on their distance to the
explained instance, which has to be computed for every synthetic data point. While for text and images this
distance is computed on binary vectors, for tabular data this procedure is likely to be
computationally-heavy, e.g., calculating the Euclidean distance on numerical features.

• For every explained data point, an individual local tree has to be trained.

F6: Applicable Model Class
The LIMEtree algorithm is model-agnostic, therefore it works with any predictive model.

F7: Relation to the Predictive System
This approach is post-hoc, therefore it can be retrofitted to any (preëxisting) predictive system.
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F8: Compatible Feature Types

Tabular Data

LIMEtree works with both categorical and numerical features.

Images

Images are transformed into an interpretable data representation, e.g., super-pixel segmentation, expressed as
binary "on/off" vectors.

Text

Text data are transformed into an interpretable data representation, e.g., tokenisation such as a bag of words,
expressed as binary "on/off" vectors.

F9: Caveats and Assumptions
The choice of an interpretable representation (and its parameterisation) may affect the explanations. For
example, segmentation-based interpretable representations of images are sensitive to segmentation granularity
and occlusion colour.

If an interpretable representation is employed, generating a complete binary sample instead of a random sample
is recommended when the dimensionality of this space is relatively low (up to around 13).
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Operational Requirements

O1: Explanation Family
(Surrogate) trees support an array of interpretability techniques:

• tree-based feature importance (associations between antecedent and consequent);

• visualisation of the tree structure (associations between antecedent and consequent);

• logical conditions extracted from a root-to-leaf path (associations between antecedent and
consequent);

• exemplar explanations taken from training data falling into a single leaf (contrasts and differences);

• answers to what-if questions generated based on the tree structure or by querying the model (contrasts
and differences);

• class-contrastive explanations retrieved with CtreeX (contrasts and differences); and

• class-supportive explanations extracted with CtreeX (contrasts and differences).

O2: Explanatory Medium
Depending on the chosen explanation type (see O1), the explanatory medium will vary. Tree-based feature
importance is usually visualised as a bar plot, e.g.:

Tree structure tends to be plotted as a diagram, which can be adapted to the type of explained data to improve
its readability, e.g.:
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Logical conditions can be textualised as a conjunction of literals based on each individual feature for all data
types. Exclusively for text and images, these logical conditions can also be applied to an individual data point to
enable their visualisation. Sentences will appear with missing tokens (e.g., words) and images will see their
super-pixels occluded, e.g.:

Exemplars are expressed in the domain of the data that are used to train the surrogate tree, however if this is an
interpretable data representation, the explanations can be translated into the original data domain as well.
Therefore, exemplars of tabular data can only be presented in the corresponding feature space, whereas images
and text can either be shown as binary interpretable vectors or transformed into their native data representation.
The latter approach would produce variants of the explained image or sentence, which are similar to the
examples generated for logical conditions – see the figure above.

Finally, what-if class-contrastive and class-supportive explanations behave similarly to exemplars. However,
instead of being derived from the surrogate tree, they are prompted by a search for instances that are similar to
the explained data point and either change or preserve its prediction.

O3: System Interaction
The interactivity of LIMEtree explanations depends on the chosen explanation type – see (O1). Tree-based
feature importance, visualisation of the tree structure, logical conditions and exemplar explanations are mostly
static (unless deployed in an interactive user interface). However, what-if class-contrastive and class-supportive
explanations are inherently interactive – see CtreeX for more details.

O4: Explanation Domain
For tabular data, the explanations are represented in the original data domain, e.g., importance of features,
possible feature value changes, example data points and (logical) conditions applied to a subset of features. For
images and text, the explanations are expressed with respect to the components of interpretable representations
– their presence or absence – which are super-pixels and tokens respectively.

O5: Data and Model Transparency
For image and text data there is no need for transparency as an interpretable data representation is used. The
features of tabular data, on the other hand, need to be human-comprehensible.

Since this is a model-agnostic interpretability approach, there is no need for the underlying predictive model to
be inherently transparent in any way.

O6: Explanation Audience
For tabular data, the audience should be familiar with the general domain of the problem in so far as to interpret
the meaning of the data features. For images and text, any audience is suitable.

The audience is not required to be familiar with machine learning concepts.
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O7: Function of the Explanation
The main function of LIMEtree is to increase transparency of a prediction output by a black-box model.
However, with enough background knowledge and expertise, the algorithm can also be used as a diagnostic tool
for debugging a black-box predictive system.

O8: Causality vs. Actionability
LIMEtree explanations are not of a causal nature. Depending on the explanation type (see O1), the insights
provided by LIMEtree may be actionable, e.g., what-if class-contrastive and class-supportive explanations.

O9: Trust vs. Performance
There is no performance penalty since LIMEtree is post-hoc and model-agnostic. However, these two properties
also increase the risk of explanation instability – see S3 – which may undermine trust of the explainees.

O10: Provenance
LIMEtree explanations are based on interactions with the black-box model and synthetic data sampled around
the explained instance, both of which affect construction of the local surrogate tree.
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Usability Requirements

U1: Soundness
There are two types of local soundness and one type of global soundness that should be measured to evaluate
quality of LIMEtree explanations. First, predictive performance error, e.g., mean squared error, computed
between the underlying black box and the local surrogate tree should be evaluated in the neighbourhood of
the explained instance to understand soundness of the surrogate model around that data point. Then, predictive
performance in the neighbourhood of the closest black-box decision boundary should be measured to
understand how well the surrogate model approximates the black-box decision boundary in that region. Finally,
predictive performance on the whole data set (e.g., the training data) should be calculated to understand the
overall soundness of the surrogate model.

U2: Completeness
LIMEtree explanations are not complete per se. For images, the explanations are image-specific; for text, the
explanations are sentence-specific. For tabular data, the surrogate tree is only valid for the neighbourhood in
which it was trained and its explanations should not be generalised beyond data points from within this
subspace.

U3: Contextfullness
Contextfullness depends on the explanation type (see O1):

• tree-based feature importance lacks any context;

• visualisation of the tree structure does not require a context since the whole surrogate model is presented
to the explainee;

• logical conditions also do not require a context given their completeness;

• exemplar explanations can be considered a generic source of a context;

• what-if explanations are phrased within a context, hence they do not require one;

• class-contrastive explanations need to be contextualised – see the CtreeX Fact Sheet for more details; and

• class-supportive explanations need to be contextualised – see the CtreeX Fact Sheet for more details.

U4: Interactiveness
The degree of interactiveness depends on the explanation type (see O1). Tree-based feature importance,
visualisation of the tree structure, logical conditions, exemplar and what-if explanations are inherently static.
Their interactiveness can only be achieved (reserved for technical users) by placing them within an interactive
user interface. Class-contrastive and class-supportive explanations, on the other hand, can become interactive –
see the CtreeX Fact Sheet for more details.

U5: Actionability
The degree of actionability depends on the explanation type (see O1). Actionability is easiest to achieve with
what-if and class-contrastive explanations since they can guide actions of the explainee precisely towards the
desired outcome.

U6: Chronology
In general, chronology is not taken into account by LIMEtree explanations. However, class-contrastive and
class-supportive explanations based on CtreeX can consider such information – see the CtreeX Fact Sheet for
more details.
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U7: Coherence
In general, coherence is not modelled by LIMEtree explanations. However, class-contrastive and
class-supportive explanations based on CtreeX can take such information into account – see the CtreeX Fact
Sheet for more details.

U8: Novelty
In general, novelty is not considered by LIMEtree explanations. However, class-contrastive and class-supportive
explanations based on CtreeX can take such information into account – see the CtreeX Fact Sheet for more
details.

U9: Complexity
In general, the complexity of LIMEtree explanations cannot be controlled directly. However, class-contrastive
and class-supportive explanations based on CtreeX can be optimised for simplicity – see the CtreeX Fact Sheet
for more details. Additionally, if the surrogate is built on top of an interpretable representation, this data domain
can be fine-tuned to suit the explainee's requirements.

U10: Personalisation
In general, LIMEtree explanations cannot be personalised. However, class-contrastive and class-supportive
explanations based on CtreeX can be customised via user interaction or modification of the explanation retrieval
strategy – see the CtreeX Fact Sheet for more details.

U11: Parsimony
The parsimony of LIMEtree explanations depends upon the explanation type (see O1) and explanatory medium
(see O2).

• Visualisation of the tree structure can be overwhelming when the model is deep or wide.

• Tree-based feature importance, on the other hand, tends to be comprehensible regardless of the model
size.

• Exemplar explanations can be overwhelming for tabular data if the number of features is large. However,
exemplars of images and text are inherently understandable.

• Similarly, a collection of logical conditions may be too large to understand for tabular data, as well as
images and text when they are expressed in a binary interpretable representation. However, in the latter
two cases transforming such explanations into the original data domain renders them intelligible – they
are overlaid on top of the original image or sentence (see O2).

• What-if class-contrastive and class-supportive explanations are inherently sparse.
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Safety Requirements

S1: Information Leakage
High-fidelity local surrogate trees may reveal the precise behaviour of a black box in the modelled
neighbourhood. See the LIME Fact Sheet for a more detailed discussion.

S2: Explanation Misuse
LIMEtree explanations can be misused by modifying the explained data point according to the insights gathered
from the local surrogate tree. Some explanation types (see O1) reveal more information than others, e.g.,
visualising the tree structure gives out the entire surrogate model, whereas presenting the explainee with feature
importance only conveys a rough behaviour of the explained black box. Moreover, the surrogate model is trained
for a single data point (using instances in its neighbourhood), therefore the explanations it produces tend not to
generalise beyond this individual case. Since some of the explanations are expressed in an interpretable
representation, misusing them may be more difficult.

S3: Explanation Invariance
LIMEtree explanations may be unstable given that the local models are trained with synthetic data. To ensure
consistency, the sampling procedure needs to be controlled either by fixing the random seed or by using a
deterministic sampling algorithm. Ideally, the explanations would be imperceptibly different regardless of the
data sample. This may be true in the limit of the number of sampled data points, however there is no
consideration of the minimum quantity of synthetic data required to guarantee stability of explanations.

If a binary interpretable representation is used (images and text), the random sampling procedure may be
replaced by generating a complete sample when the size of this representation is relatively small – see F9 for
more details. Doing so can significantly improve explanation stability. For images, explanation invariance also
depends on the stochasticity of the segmenter, which generates super-pixels. For text, on the other hand, the
interpretable data representation (based on tokenisation) tends to be deterministic and stable.

The consistency of LIMEtree explanations depends on how much the surrogate tree is locally overfitted – see the
CtreeX Fact Sheet for a discussion of this phenomenon.

S4: Explanation Quality
The quality of LIMEtree explanations is neither considered with respect to the confidence of predictions given
by the underlying model nor distribution of the (black-box) training data. However, the post-processed variant
of LIMEtree mirrors the precise predictions of the black box to ensure full fidelity of surrogate model-driven
explanations.

APPENDIX A. EXPLAINABILITY FACT SHEET EXAMPLES
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Validation Requirements
(LIMEtree has only been validated for image data.)

V1: User Studies
The practical (human-grounded) effectiveness of LIMEtree explanations was assessed with a pilot user study.
In addition to relevant LIME explanations, the participants were shown a surrogate tree trained to explain an
image. They were also presented with a brief tutorial outlining how to obtain different kinds of explanations from
such a surrogate tree and their purpose (an extended version of O1). For each explainability method, the
participants were asked about the expected behaviour of the black-box model in relation to objects visible in the
image. An example of such a question is "How does the presence of the cat object affect the model's confidence of
a presence of the dog object?", with three possible answers: confidence decreases, confidence not affected and
confidence increases.

The study showed that LIMEtree helped the participants to answer correctly 25% more questions when
compared to equivalent LIME explanations. Details of this experiment are available in Section 6.2 of the
LIMEtree paper.

V2: Synthetic Experiments
LIMEtree has been evaluated with two different (functionally-grounded) proxy metrics: surrogate fidelity
and surrogate complexity.

1. The faithfulness of the surrogate with respect to the black box, i.e., its ability to mimic it, was measured as
an indirect proxy of its trustworthiness, showing superiority of LIMEtree over LIME.

2. The complexity of LIMEtree surrogates, i.e., the tree depth, was evaluated in relation to its fidelity,
showing that shallow trees can outperform LIME.

Details of these experiments are available in Section 6.1 of the LIMEtree paper.

A.3. LIMETREE: TREE-BASED SURROGATE EXPLAINER
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FAT FORENSICS AND REPRODUCIBILITY

Open source software is the backbone of accessible and reproducible research. This real-

isation is especially significant for artificial intelligence and machine learning, which

rely heavily on community-backed toolkits such as scikit-learn, TensorFlow and PyTorch.

Notably, these technologies give birth to predictive systems that can take important, and some-

times legally binding, decisions about our everyday life. In most cases, however, these models

and their output are neither regulated nor certified. Given the potential harm of data-driven

applications, their qualities such as fairness, accountability and transparency are of paramount

importance, yet the landscape of publicly available software to operationalise these concepts is

scarce and irregular. To ensure high-quality, fair, interpretable and reliable predictive systems,

we developed an open source Python package called FAT Forensics. It can inspect important

fairness, accountability and transparency aspects of artificial intelligence and machine learning

algorithms to automatically and objectively report them back to engineers and users of such

technologies. Our toolbox supports a wide range of use cases and can evaluate all elements of a

predictive pipeline: data (and their features), models and predictions. Published under the BSD 3-

Clause open source licence, FAT Forensics is suitable for personal and commercial applications

alike.

B.1 Origin of FAT Forensics

Reproducibility in AI and ML can be tricky at times since changing the seed of a random number

generator may degrade a state-of-the-art predictive system into a subpar model. This phenomenon

has long been plaguing both communities, with many prominent researchers promoting publica-

tion of high-quality, open source software used for scientific experiments as well as advocating

such a requirement as part of the academic peer-review and publishing process [163]. Despite the
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encouragement, recommendations and, more recently, requirements of releasing code and data

along research papers, AI and ML are still grappling with a widespread reproducibility crisis [62].

While the importance of publicly available implementations is acknowledged almost unanimously,

they are commonly treated as a research by-product and often abandoned after publishing a piece

of work that benefited from their utility – after all we tend not to revise already published papers.

Numerous implementations of scientific contributions and experiments are released as stan-

dalone scripts or packages that do not follow best practices of software engineering. Lack of

versioning, testing and documentation can render such code difficult to use for a wider community,

thereby hampering its usability and reproducibility in general. Some of these issues can be attrib-

uted to the arduous and time-consuming process of designing, developing and maintaining open

source software. In other cases, it may simply be due to poor reporting, a desire to protect trade

secrets or deliberate obscurity that helps to maintain an edge over competitors while reaping the

benefits of free thought embodied by the research community. Regardless of the underlying reas-

ons, the effects are detrimental to the progress of the field. We call this phenomenon paperware –

code intended to see a paper towards publication rather than implement any particular concept

with thorough software engineering practice.

To help mitigate such undesired practices in the field of AI and ML Fairness, Account-

ability and Transparency (FAT), we developed an open source Python package called FAT

Forensics [159, 160], which can serve as a reproducibility vehicle for work published in this

area.1 Its source code is hosted on GitHub2 and it is accompanied by comprehensive and beginner-

friendly documentation3, which includes API (Application Programming Interface) reference,

usage examples, how-to guides, tutorials and a user guide. The toolbox is capable of analysing all

components of a predictive pipeline – data (and their features), models and predictions – by con-

sidering their fairness, accountability (robustness, security, safety and privacy) and transparency

(interpretability and explainability). It is designed as an interoperable framework for implement-

ing, testing and deploying novel algorithms devised by the FAT research community in addition

to facilitating their evaluation and comparison against the state-of-the-art solutions. Therefore,

the package is flexible enough to support work of researchers and practitioners alike, bearing the

promise of democratising access to these techniques. This versatility should encourage creators

of FAT algorithms to contribute their approaches to FAT Forensics instead of releasing them as

standalone software, given a sturdy foundation and visibility of our toolbox.

FAT Forensics, in and of itself, is a long-term contribution to the machine learning and

artificial intelligence research. In the context of the work presented in this thesis, however,

it enables and supports reproducibility of our findings and their easy implementation and

operationalisation. Most of our experiments are executed within the scope of the package, building

1This project was originally funded by Thales, and has started as the result of a collaborative research agreement
between Thales and the University of Bristol.

2https://github.com/fat-forensics/fat-forensics
3https://fat-forensics.org
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FAT Presentation
(visualisation, textualisation, etc.)

FAT Presentation
(visualisation, textualisation, etc.)

Figure B.1: Typical architecture exhibited by academic software landscape – standalone code-
bases, distributed with unnecessary dependencies, offering incompatible and non-standard APIs.

upon its low-level API intended for ML researchers, e.g., a Jupyter Notebook4 demonstrating

our initial investigation of bLIMEy [158]. While some studies require custom code that is not

distributed with the software, these snippets are specific to processing the selected data and

models as well as visualising the results, therefore their absence does not undermine the overall

reproducibility. In particular, Fat Forensics is an integral part of the bLIMEy framework and

meta-algorithm (Chapter 3), whose inherent algorithmic modularity takes full advantage of the

multi-layered architecture of the package. Nonetheless, others parts of our research – CtreeX

(Chapter 4), LIMEtree (Chapter 5) and Glass-Box (Chapter 6) – also benefit from its versatility.

B.2 Toolbox Overview

When FAT software is developed exclusively in support of research outputs, it is often distributed

as a monolithic code-base accessible via an atypical user-facing API. Given the primary objective

of such programmes, they also tend to be burdened with specific data sets, predictive models

and (interactive) visualisations, all of which are determined by the envisaged use case, e.g.,

experiments required for publishing a paper – see Figure B.1. To mitigate these issues, FAT

Forensics decouples the core functionality of FAT algorithms from their possible applications

and presentation artefacts (e.g., visualisation). This is achieved with a modular design that allows

to share and reuse a collection of low-level building blocks, thereby freeing the package from

4https://github.com/So-Cool/bLIMEy/blob/master/HCML_2019/bLIMEy.ipynb
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2-D array
numpy

Python object
fit(X, y), predict(X),
predict_proba(X)

scikit-learn
Some
data

Some
model

‧‧‧ 1-D Array Description

Data Grouping

Data Augmentation

Local Explanations

‧‧‧

‧‧‧

Fairness Metrics

FAT Functionality

FAT Presentation
(visualisation, textualisation, etc.)

Figure B.2: Modular architecture of FAT Forensics. The input requirements for data sets and
predictive models are kept to a minimum and are very flexible: 2-dimensional NumPy arrays and
Python objects with fit, predict and, optionally, predict_proba methods respectively. The FAT
functionality is composed with atomic building blocks, making the process of constructing new
tools, or creating variants of existing algorithms, as easy as connecting the right components.

unnecessary dependencies and creating a comprehensive and appealing API. This architecture

makes the process of constructing new FAT tools, or creating variants of existing ones, as easy

as connecting the right components, therefore supporting a range of diverse use cases – see

Figure B.2. Since visualisations constitute a vital part of some FAT algorithms, FAT Forensics

provides a basic plotting module, however its functionality is conditioned on an optional Matplot-

lib [61] software dependency, making the package suitable for plain numerical analysis fed into

custom presentation interfaces such as dashboards and reporting tools.

The software architecture shown in Figure B.2 allows FAT Forensics to make minimal

assumptions about the operational setting of its key FAT implementations – a generalisation

achieved with a shared interface layer. Within this infrastructure, the format requirements for

data sets and predictive models are kept to a minimum, lowering any barriers for adoption of

the package in new and preëxisting projects. In this abstraction a data set is assumed to be

a 2-dimensional NumPy [113] array. Both classic and structured arrays are supported – the

latter is a welcome addition given that some of the features may be categorical (string-based). A

predictive model, on the other hand, is assumed to be a plain Python object that has fit, predict

and, optionally, predict_proba methods. This flexibility ensures that our package works with

scikit-learn [120] – the most popular Python machine learning toolbox – without introducing

additional dependencies. Moreover, our approach makes FAT Forensics compatible with other

AI and ML software packages – e.g., TensorFlow [1], PyTorch [116] and custom models, even
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ones hosted on the Internet and accessible via a web API – since their predictive functions can be

easily wrapped inside a Python object with all the required methods. In addition to the relaxed

input formats, all of the techniques incorporated into the package are decomposed into atomic

components that can later be reused to create new functionality.

FAT Forensics improves over existing solutions as it collates algorithms from across the FAT

domains, taking advantage of their shared functional building blocks. This interoperability allows,

for example, a counterfactual data point generator to be used as a post-hoc explainer of black-box

predictions on the one hand, and as an individual fairness (disparate treatment) inspection tool

on the other. The modular architecture enables the package to deliver robust and tested low-level

FAT building blocks as well as a collection of user-ready FAT techniques built on top of them.

Users can choose from these ready-made tools or, alternatively, combine the available building

blocks to create their own bespoke algorithms without the need of modifying the code-base. We

discuss this diversity and re-usability – often happening across the FAT borders – individually

for fairness, accountability and transparency later in this section.

Furthermore, the common interface layer of the toolbox enables two distinct modes of opera-

tion. In the research mode (data in – visualisation out), the tool can be loaded into an interactive

Python session, e.g., a Jupyter Notebook5, supporting rapid prototyping and exploratory analysis.

This mode is intended for FAT researchers who can use it to propose new fairness metrics,

compare them with the existing ones or use them to inspect a new predictive system or data

set. The deployment mode (data in – data out), on the other hand, can be used to incorporate

FAT functionality into a data processing pipeline to enable (numerical) analytics, providing a

foundation of automated reporting and dashboarding. This mode is intended for machine learning

engineers and data scientists who may use it to monitor or evaluate a predictive pipeline during

its development and deployment.

FAT Forensics is published under the BSD 3-Clause open source licence, which permits

personal and commercial applications. To ensure its longevity, sustainability, extensibility and

streamlined maintenance, the package employs software engineering best practice such as unit

testing, continuous integration, well-defined module structure and consistent code formatting.

Moreover, the development workflow established around the toolbox provides an easy way for the

community to report bugs, submit patches and contribute novel FAT algorithms. Notably, FAT

Forensics is accompanied by a thorough and beginner-friendly documentation that is carefully

crafted to cater a wide range of users and applications. It is based on four pillars, which together

build up the user’s confidence in working with the package, and consists of:

• narrative-driven tutorials designed for new users – they provide step-by-step guidance

through practical use cases of all the main aspects of the toolbox;

• how-to guides created for relatively new users of the package – they showcase the flex-

5https://jupyter.org
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Fairness Accountability Transparency
Data/
Features

• Systemic bias • Sample size
disparity

• Sampling bias • Data
density checker

• Data description

Models • Group-based fairness
• Systematic performance

bias

• Global surrogates (bLIMEy)
• Individual Conditional

Expectation • Partial
Dependence

Predictions • Counterfactual fairness • Prediction confidence
• Counterfactuals • Local
surrogates (bLIMEy and

LIME)

Table B.1: Fairness, accountability and transparency functionality implemented in the latest
release (version 0.1.0) of FAT Forensics6.

ibility of the software and explain how to use it to solve common FAT challenges such as

building a custom surrogate explainer with bLIMEy [158];

• API documentation describing functional aspects of the algorithms implemented in the

toolbox and intended for a technical audience as a reference material – it is complemented

by task-focused minimal code examples that put the objects, methods and functions in

context; and

• user guide discussing theoretical aspects of the algorithms implemented in the package

such as their properties, restrictions, caveats, computational time and memory complexity,

among others.

We envisage that the versatility and flexibility of FAT Forensics will encourage the FAT

community to contribute their algorithms to the package. We offer our toolbox as an attractive

alternative to releasing standalone implementations, thus reaching a wider audience and keeping

the package itself at the frontiers of algorithmic fairness, accountability and transparency

research. At the time of writing, FAT Forensics implements a collection of basic methods

summarised in Table B.1 – the current version of the software is 0.1.0, which reflects its user-

readiness but also highlights the early development stage. This list includes only end-to-end

tools, with a plethora of their core building blocks available to more savvy users who can create

alternative, bespoke FAT algorithms. To show practicalities of how this modular design influences

the functionality of the toolbox, we discuss below examples of the interoperability exhibited by

these components separately for fairness, accountability and transparency.

Fairness All of the:

• sample-size disparity;

• sub-population fairness [57] such as group-unaware, equal opportunity, equal accuracy and

demographic parity;
6https://fat-forensics.org/getting_started/structure.html#structure-of-the-package
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• sub-population predictive performance disparity; and

• summary statistics

can be built upon a function that partitions data with respect to a chosen (sensitive) attribute.

This grouping is implemented as one of the core components of the package and can be coupled

with any standard predictive performance metric to evaluate group-based fairness. With the

addition of a module that fits a separate threshold for probabilistic predictions of individuals

belonging to different groups, a variety of fairness criteria – not limited to those implemented in

the package itself – can be derived. To this end, the user simply needs to provide a function that

measures some sort of performance exclusively based on true labels and predictions. Moreover,

the grouping function enables evaluating quality of predictions separately for each user-defined

sub-population including group-specific predictive performance, and analysis of the number of

data points and their feature distribution across different (possibly underrepresented) groups,

all of which can help to debug a black-box model. For example, if a data set contains a limited

number of samples for some sub-population, this group will most likely face bigger predictive

errors, which in turn may have fairness implications down the line.

Accountability Estimating density of a data set in a selected feature subspace can provide

important insights about the data themselves and any model trained with them. By doing so in

the neighbourhood of an individual instance, we can gather important clues about the robustness

of its prediction, e.g., a density score can be treated as a proxy measure of predictive models’

confidence [121]. In addition to engendering trust in predictions, a density estimate can help to

compute and validate realistic counterfactual explanations [123]. Such a strategy can discount

counterfactuals that reside in low-density regions (with respect to the distribution of the training

data) since these instances tend to be impossible to achieve in the real life. Suggesting that a

person ought to be 200 years old to receive the desired outcome or presenting a case of a male

who gave birth to three children are examples of unrealistic and undesired explanations that are

expected to lie in sparse areas.

Transparency A black-box counterfactual explainer can be used to generate explicit (of a

selected class) or implicit (of any class) contrastive explanations, i.e., hypothetical what-if scen-

arios. By restricting the set of features upon which a counterfactual statement is conditioned,

e.g., to only include protected attributes, such an explanation can gauge individual fairness via

disparate treatment. An alternative application of a contrastive explainer is identifying possible

feature variations of a given data point that do not affect its prediction, i.e., explanations based

on supportive instances disguised as “counterfactuals of the same class”. Surrogate models

built within the bLIMEy framework [158] also exhibit a high level of modularity, albeit their

building blocks have limited use outside of their primary function. Nonetheless, a selection of
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algorithms enabling customisation of their individual components – interpretable representation,

data augmentation and explanation generation – is at the user’s disposal7.

B.3 Related Software

A recent attempt to create a comprehensive framework for FAT algorithms is the What-If tool8,

which implements various fairness and explainability approaches. However, combining more

than one domain in such a toolbox is rather uncommon. Instead, packages tend to focus on

either fairness, accountability or transparency, collecting the most relevant state-of-the-art

implementations from within a chosen realm. Among them, algorithmic fairness frameworks

written in Python are relatively ubiquitous, for example:

Microsoft’s Fairlearn9 [5];• IBM’s AI Fairness 36010 [14];•

FairTest11 [168];• BlackBoxAuditing12 [4, 39];•

FairML13; and• fairness-comparison14 [43].•

Transparency libraries collating multiple explainability algorithms as well as inherently

interpretable predictive models are also gaining in popularity. These include:

Microsoft’s InterpretML15 [111];• IBM’s AI Explainability 36016;•

Oracle’s Skater17 [75];• ELI518; and•

Yellowbrick19 [16, 17].•

Packages implementing individual algorithms – often released by the researchers who published

a given method – are also common, for example:

• LIME20 for Local Interpretable Model-agnostic Explanations [129];

7See the bLIMEy how-to guide: https://fat-forensics.org/how_to/transparency/tabular-surrogates.
html.

8https://pair-code.github.io/what-if-tool
9https://github.com/fairlearn/fairlearn

10https://github.com/IBM/AIF360
11https://github.com/columbia/fairtest
12https://github.com/algofairness/BlackBoxAuditing
13https://github.com/adebayoj/fairml
14https://github.com/algofairness/fairness-comparison
15https://github.com/interpretml/interpret
16https://github.com/IBM/AIX360
17https://github.com/oracle/Skater
18https://github.com/TeamHG-Memex/eli5
19https://github.com/DistrictDataLabs/yellowbrick
20https://github.com/marcotcr/lime
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• SHAP21 for SHapley Additive exPlanations [100];

• anchor22 for local high-precision rules [130]; and

• PyCEbox23 for visualising Partial Dependence [44] and Individual Conditional Expecta-

tion [48].

Accountability software, on the other hand, is relatively under-explored. The most prominent

implementations in this space deal with robustness of predictive systems against adversarial

attacks, for example:

FoolBox24;• CleverHans25; and•

IBM’s Adversarial Robustness Toolbox26.•

Even more scarce are open source packages for AI and ML accountability (security and privacy).

The most visible software solutions in this space are:

TensorFlow Privacy27;• OpenMined’s PyGrid28; and•

DeepGame29(neural network verification).•

With its modular design, FAT Forensics aims to bring together selected functionality from

across algorithmic fairness, accountability and transparency domains. The development of the

toolbox adheres to best practices of (open source) software engineering and the package is

accompanied by a comprehensive documentation, both of which make it stand out amongst its

peers. Our implementation abstracts away from a fixed input format for data and predictive

models, creating a versatile and appealing API. Furthermore, the philosophy behind the design

and development of our toolbox enables it to support two distinct modes of operation – research

and deployment – thus catering to a diverse audience and supporting a range of tasks such as

implementing, testing and deploying FAT solutions. All of these principles sitting at the core of

FAT Forensics give it the capacity (as a piece of software) to improve reproducibility of fairness,

accountability and transparency research in AI and ML.

21https://github.com/slundberg/shap
22https://github.com/marcotcr/anchor
23https://github.com/AustinRochford/PyCEbox
24https://github.com/bethgelab/foolbox
25https://github.com/tensorflow/cleverhans
26https://github.com/IBM/adversarial-robustness-toolbox
27https://github.com/tensorflow/privacy
28https://github.com/OpenMined/PyGrid
29https://github.com/TrustAI/DeepGame
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ANALYSIS OF BLIMEY COMPONENTS AND THEIR INTERACTIONS

Each building block of bLIMEy – interpretable representation, data sampling and ex-

planation generation – can be operationalised with a range of diverse algorithms, which

have their own assumptions, caveats and requirements. Ensuring that their properties

are well-understood and adequate for the use case at hand is the key to composing powerful

and effective bespoke surrogate explainers. In this appendix we explore a collection of relevant

modules that are popular in the literature, reporting on their strengths and weaknesses, in each

case suggesting best practices and suitable alternatives. We inspect them individually as well as

in conjunction with their accompanying components, providing recommendations in both settings.

In particular, we tackle occlusion-based interpretable representations of images in Section C.1,

investigating the significance of segmentation granularity and occlusion colour. We show that

mean-colour occlusion should be avoided in favour of single-colour occlusion, especially when the

super-pixels are small, with the findings grounded in experimental results.

Next, in Section C.2, we analyse the importance of discretisation quality when building

interpretable representations of tabular data. We find that feature space segmentation generated

with decision trees (which are aware of the target variable) results in improved purity of hyper-

rectangles when compared to a discretisation that relies solely on the distribution of data –

we show this relation experimentally on four distinct data sets. Finally, we investigate the

provenance of LIME-like surrogate explanations for tabular data, where the binary interpretable

representation is built upon discretisation and modelled with a linear predictor, thus outputting

influence of presence and absence of human-intelligible concepts. To this end, in Section C.3, we

derive a mathematical formulation of such explanations for ordinary least squares and analyse

significance of surrogate training data distribution and their black-box predictions. We find that

the hyper-rectangle allocation of this data sample has a large effect on the influence scores,
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whereas the quality of the discretisation is somewhat unimportant and splitting numerical

features into more than three bins provides no added benefit.

C.1 Occlusion-based Interpretable Representations of Images

Occlusion-based Interpretable Representations (IRs) of images are parameterised by the seg-

mentation granularity and the colouring strategy, which is used for “removing” the content of

super-pixels to hide them from a black box. The exact relation between these two properties and

the resulting explanations is discussed in Section 3.3.2, with the main conclusions summarised in

this appendix. We support our findings with a collection of experimental results presented in Fig-

ure C.1, the technical setup of which is outlined in the following paragraph. Notably, while image

IRs are influenced by both segmentation granularity and occlusion strategy (i.e., an information

removal proxy), text data do not require the latter given that language models usually allow

flexible input size – see Section 3.2.1 for more details. Studying the effect of text pre-processing

and tokenisation (which correspond to image partitioning) on the quality of relevant interpretable

representations, however, is a challenging task that may not provide comprehensive insights

given the breadth and scope of available techniques.

Experiment Setup For all of the experiments, our black box was the pre-trained Inception

v3 neural network distributed with PyTorch [116]. We sampled 100 (square and no smaller

than 256×256 pixels) test images at random from the ImageNet [33] validation set, which

were next resized to 256×256 pixels. We segmented these images with SLIC [2] – k-means

clustering in the RGB (Red, Green Blue) colour space – using the implementation provided

by scikit-image (skimage.segmentation.slic) [170]. We executed our experiments using the

bLIMEy algorithmic framework [158], which modularises surrogate explainers into: interpretable

representation, data sampling and explanation generation, and implements these building blocks

within the FAT Forensics Python package [159, 160].

Segment occlusion was done with the following selection of colours described in the RGB

space:

black (0, 0, 0);

white (255, 255, 255);

red (255, 0, 0);

green (0, 255, 0);

blue (0, 0, 255);

pink (255, 192, 203);
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mean each super-pixel is replaced with a solid patch of the mean colour computed for the

pixels residing within this segment; and

random a separate random colour, sampled uniformly from the RGB space, is used to occlude

each individual super-pixel.

We partitioned the test images into 5, 10, 15, 20, 30 and 40 regions to capture the influence of the

segmentation granularity on the IR – these tiers are visualised in separate panels of Figure C.1.

For a fixed number of segments, we iterated over the quantity of occluded super-pixels from 0 to

all of the partitions (x-axes in Figure C.1), randomising the occlusion pattern 20 times at each

step. We applied this procedure to all of our test images, separately for every colouring strategy.

Finally, we measured the influence of each occlusion strategy and segmentation granularity by

calculating the Mean Squared Error (MSE) between the probability of the top class predicted for

an original image and the prediction of the same class when the image was (partially) occluded

(y-axes in Figure C.1).

Occlusion Colour Figure C.1 provides clear evidence that the mean-colour occlusion strategy

behaves unlike any other approach, including the random method. The lower MSE for this

particular technique indicates that it is not as effective in “removing” class-identifying inform-

ation from images as any other occlusion strategy that we tested. Intuitively, the reason for

this behaviour is the “blurring” effect described in the Information Removal and Loss part of

Section 3.3.2 and exemplified in Figure 3.3. This phenomenon becomes especially pronounced

when images are segmented into small super-pixels, as having more of them for a fixed image

size makes each partition more uniform with respect to the colour of its individual pixels – the

increasing separation of the mean strategy MSE line when moving from 5 (Panel C.1f) to 40

segments (Panel C.1a).

Segmentation Granularity By inspecting each panel of Figure C.1, we can see that the gran-

ularity of segmentation directly affects the mean-colour occlusion strategy – the aforementioned

separation between the MSE line of the mean approach and every other line. The behaviour of all

the fixed-colour approaches, on the other hand, is very similar for any number of segments regard-

less of the exact occlusion colour – these MSE lines are clustered together in Figure C.1. Notably,

this observation also applies to the random strategy, which can be very volatile since it uses a

different occlusion colour for each individual super-pixel. Both of these insights are clear evidence

that using the mean colouring should be avoided in occlusion-based interpretable representations

of images. Figure C.1 substantiates our observation that this occlusion strategy becomes less

effective as the number of super-pixels increases since relatively small segments tend to have a

uniform colour distribution because of the pixel “continuity”, i.e., high correlation of neighbouring

pixels, making them visually similar to their respective mean-coloured patches. Additionally, this

phenomenon may affect images that have an out-of-focus background, e.g., portraits, since their
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(a) Mean squared error for a 40-segment partition.
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(b) Mean squared error for a 30-segment partition.
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(c) Mean squared error for a 20-segment partition.
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(d) Mean squared error for a 15-segment partition.
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(e) Mean squared error for a 10-segment partition.
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(f) Mean squared error for a 5-segment partition.

Figure C.1: Mean squared error calculated between the top prediction of an image (probability
estimate) and predictions of the same class when progressively occluding a higher number of
segments with a given colouring strategy. We use eight different approaches, the RGB (Red,
Green, Blue) colour encodings of which are: white (255, 255, 255); black (0, 0, 0); red (255, 0,
0); green (0, 255, 0); blue (0, 0, 255); pink (255, 192, 203); random – drawn from a uniformly
distributed colour space separately for each super-pixel of an individual image; and mean – each
segment is occluded with its mean RGB colour. The panels show that the mean occlusion strategy
is not as effective at hiding information from the black box as using a single colour for all of the
super-pixels (regardless of the colour choice). Similarly, randomising the occlusion colour for each
individual segment does not seem to have the detrimental effects observed for the mean colouring.
The plots also reveal that when an image is split into more segments, the ineffectiveness of the
mean-colouring approach gets magnified due to the increased colour uniformity of individual
super-pixels. (See Appendix C.1 for the description of our experimental setup.)
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blurry regions will be difficult to “remove” with the mean-colour occlusion strategy – refer to the

Information Removal and Loss part of Section 3.3.2 for an in-detail discussion.

C.2 Tree-based Interpretable Representations of Tabular Data

Faithfulness of interpretable representations is important for capturing the local behaviour of

a black box. In Section 3.3.2, we argue that this property can be measured by investigating

purity of hyper-rectangles that constitute an IR. In particular, if the underlying task is crisp

classification, we can use the Gini impurity (LG) defined in Equation C.1, where Hi is a set of

data points and their labels (x, y) situated within the ith hyper-rectangle and C is the set of all

the unique labels c.

pHi (c)= 1
|Hi|

∑
(x,y)∈Hi

1y=c

LG(Hi)=
∑
c∈C

pHi (c)
(
1− pHi (c)

) (C.1)

When the task is regression or probabilistic classification (the formula applies to each individual

class separately in the latter case), on the other hand, we can use the mean squared error (LMSE)

– defined in Equation C.2 – to quantify numerical uniformity of each hyper-rectangle.

ȳHi =
1

|Hi|
∑

(x,y)∈Hi

y

LMSE(Hi)= 1
|Hi|

∑
(x,y)∈Hi

(y− ȳHi )
2

(C.2)

When combining scores of multiple hyper-rectangles to assess the overall quality Q of an inter-

pretable representation, we opt for a weighted average of individual scores L to account for the

(possibly unbalanced) distribution of data points among these partitions – see Equation C.3.

Q = 1∑
Hi |Hi|

∑
Hi

|Hi| L (Hi) (C.3)

This formalisation prompted us to propose using decision trees to divide a feature space

according to the separation criteria given by Equations C.1 and C.2 respectively for crisp classific-

ation and regression/probabilistic classification tasks when building interpretable representations

of tabular data. In case of surrogate explainers, the target variable becomes the collection of black-

box predictions generated for instances drawn from the explained neighbourhood. While this

approach appears sound, we further support it with quantitative experiments on four different

data sets, two of which are classification and the other two regression problems:

• wine recognition1 (classification),

1https://archive.ics.uci.edu/ml/datasets/wine
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• breast cancer Wisconsin diagnostic2 (classification),

• Boston house prices3 (regression), and

• diabetes4 (regression).

Using these data, we compare quartile and tree-based interpretable representations in two

variants: global – based on a single discretisation created for all of the data points, and local

– based on a collection of distinct discretisations composed separately for each individual data

point. The results of our experiments are depicted in Figure C.2, which shows that tree-based

IRs require a fraction of the expressiveness (unique encodings in the interpretable space) used by

the quartile-based IRs to achieve a comparable level of hyper-rectangle purity, especially for the

local interpretable representations.

Quartile-based Interpretable Representation This IR is based on quartile discretisation

of continuous features [129]. The partition of the data space is global, i.e., with respect to the

entire data set, however each individual instance receives a distinct IR due to the binarisation

step that follows. Therefore, global evaluation is computed on the entire discretised data set using

the formula given by Equation C.3. Local IR purity, on the other hand, is calculated individually

for each instance in the data set based on its distinct binary interpretable representation. This

validation is performed for a subset of data that, centred around the explained data point, is

within the radius of 60 per cent of the maximum Euclidean distance computed between any two

instances in the data set, which simulates locality of the IR.

Tree-based Interpretable Representation This IR is based on a partition of the feature

space determined by the thresholds learnt with a tree model. Global evaluation is performed

by computing purity of the hyper-rectangles created by a tree fitted to the entire data set and

validated on this training data, which is a fair comparison given that the quartile-based IR can

also access the whole data set. Local IR purity, on the other hand, is calculated independently for

each instance in the data set by learning a tree model on a subset of data that, centred around

the explained data point, is within the radius of 60 per cent of the maximum Euclidean distance

computed between any two instances in the data set, with the same data subset used to compute

purity of the resulting hyper-rectangles. Notably, the local method is somewhat disadvantaged

when compared to its quartile-based counterpart since the trees are fitted to a subset of the data,

whereas the quartile discretisation has access to all the data.

2https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
3https://archive.ics.uci.edu/ml/machine-learning-databases/housing
4https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
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(a) Weighted average of the Gini impurity computed for IRs generated for the wine data set.
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(b) Weighted average of the Gini impurity computed for IRs generated for the cancer data set.
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(c) Weighted average of the mean-squared-error purity computed for IRs generated for the housing data set.
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(d) Weighted average of the mean-squared-error purity computed for IRs generated for the diabetes data set.

Figure C.2: Interpretable representations based on decision trees achieve higher purity of hyper-
rectangles (y-axes, lower is better) with fewer encodings (x-axes), i.e., they are more flexible
and expressive. The number of unique encodings used by quartile-based IRs is constant for a
data set and it is displayed in the legend (presented as the number of encodings used, out of the
theoretical limit supported by the representation); whereas for tree-based IRs, it is equivalent to
the number of leaves, which is recorded on the x-axes. Panels (c) and (d) do not capture the tree
width at which this IR globally outperforms the quartile-based IR, which is 80 (compared to 441)
and 224 (compared to 428) respectively for the housing and diabetes data sets. For more details,
see the Interpreting the Results paragraph in Appendix C.2.
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Interpreting the Results Figure C.2 shows the results of our experiments for the aforemen-

tioned data sets, highlighting the purity of interpretable representations achieved with a range of

different tree widths (x-axes). In each case, the number of tree leaves is compared to the number

of unique hyper-rectangles generated by the corresponding quartile-based IR; specifically, its

discretisation step in the global variant and its binarisation step in the local variant. Each plot

depicts the weighted Gini impurity or mean squared error (y-axes, Equation C.3), respectively

for classification and regression tasks, computed for all the hyper-rectangles of each individual

IR. The dotted green line labelled as “quartile global” is the measure of purity for the quartile

discretisation that underlies this type of an interpretable representation – it is unique to a data

set. The solid green line surrounded by the shading – marked as “quartile local” – corresponds to

the mean and standard deviation of the hyper-rectangle purity computed for the quartile-based

IR (discretisation followed by binarisation) of each individual instance in a data set. Equivalent

calculations are done for the global and local tree-based IRs for a range of tree widths: “tree

global” denoted by the blue ? symbol and “tree local” depicted by the blue line, with the error bars

indicating the standard deviation. In all of the plots, a lower number on the y-axes – weighted

“impurity” of an IR – is better.

The pair of numbers placed in brackets next to the “quartile global” and “quartile local”

labels in the legend of each plot communicates how many distinct hyper-rectangles for the global

approach, and their combinations for the local approach, are being used by the validation data, out

of all the possible unique values that, respectively, the quartile discretisation and its binarisation

can theoretically encode. These quantities are directly comparable to the width of trees (x-axes)

used for partitioning the feature space in the tree-based IRs. Given a lack of a black-box model,

whose predictions should be used to capture the distribution of the target variable within each

hyper-rectangle, we utilise the ground truth provided with the aforementioned data sets instead

– this proxy does not affect our experiments in any way. In summary, Figure C.2 illustrates that

interpretable representations created with decision trees are more pure than their quartile-based

alternatives, therefore they are superior at capturing the intricacies of the underlying labelling

mechanism, whatever it may be. Furthermore, they achieve better performance with just a

fraction of the encodings required by the other method, i.e., they are more expressive because of

the elaborate mechanism used by decision trees to partition and merge a feature space.

C.3 Binary Interpretable Representations of Tabular Data

When analysing the behaviour of algorithmic black boxes with surrogate explainers, linear models

can be used to quantify (positive or negative) influence of interpretable concepts (extracted from

the data in question) on individual predictions [45, 129]. For some binary interpretable domains,

however, such an approach is inherently flawed. In this section, we show how the influence

of an interpretable concept measured by the coefficients of a linear model may be deceiving.
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This phenomenon is particularly prominent for tabular data transformed into the binary inter-

pretable representation introduced earlier in the Tabular Interpretable Representations part of

Section 3.2.1. The insights stemming from our analysis can be used to manipulate surrogate

explanations, e.g., those produced with LIME [129], by using specially crafted, yet perfectly valid,

IR discretisation and data sample.

Our results are based on the analytical solution to unweighted (Θ) and weighted (ΘW)

Ordinary Least Squares (OLS) outlined in the equations below, where W is the weight matrix, X
is the binary interpretable representation data matrix, and y is a vector holding the corresponding

black-box predictions. In our analysis, we assume that the black box is a probabilistic classifier,

in which case y captures probabilities of the explained class; nonetheless, a similar line of

reasoning applies to regressors and crisp classifiers. In the latter scenario, the elements of y
are assumed to be 1 when the black-box predictions are the same as the explained class, and 0

for any other class. Modelling y in such a way generates one-vs-rest explanations (i.e., evidence

for the black box predicting the explained rather than any other class), akin to the insights

produced for probabilistic black boxes, for which the linear surrogate only models the explained

class probabilities. Regardless, both approaches capture the influence of interpretable concepts –

measured by the coefficients of a linear model – on a selected class when tasked with telling it

apart from the other classes.

Θ= (XTX)−1 XTy

ΘW = (XTWX)−1 XTWy

In the interest of brevity and readability, we analyse tabular data with two numerical

features – similar to the example shown in Figure 3.11 – nonetheless our findings generalise

to an arbitrary number of attributes that are both categorical and numerical. In a generic

setting, for n features there will be n binary concepts with 2n unique encodings (cardinality) in

the interpretable representation. If additionally we choose to model the intercept of the linear

surrogate, a phantom all-1 column vector is inserted at the front of the data matrix X. Therefore,

the XTX and XTWX components of Θ and ΘW respectively are square matrices of n×n shape

sans the intercept or (n+1)× (n+1) when the intercept is modelled.

Figure 3.11 depicts a simplistic view of sampling for two numerical features with just one

data point in each hyper-rectangle. In reality, however, we should expect their large number since

it allows to better approximate the behaviour of the underlying black box, especially when we are

dealing with a lot of features. For our toy problem, the binary interpretable representation data

matrix X – with the first column (red) inserted to model the intercept and the remaining columns
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(blue) representing the binary data – is:

X=



1 1 1

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

1 0 0

1 0 0



,

which gives:

XTX=


1 1 1 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0

×



1 1 1

1 1 0

1 1 0

1 0 1

1 0 1

1 0 0

1 0 0

1 0 0

1 0 0



=


9 3 3

3 3 1

3 1 3

.

Since some of the hyper-rectangles are merged when transitioning from the discrete into

the binary interpretable representation, X contains duplicated rows. The influence of this phe-

nomenon is magnified even more when multiple data points are sampled within a single hyper-

rectangle. Without loss of generality, we can use the weighted variant of OLS with the data set X
containing only one copy of each unique binary data point and the weights corresponding to their

counts. In this case:

X=


1 1 1

1 1 0

1 0 1

1 0 0

 and W=


w11 0 0 0

0 w10 0 0

0 0 w01 0

0 0 0 w00

,

where wi j is the count of data points residing in all of the hyper-rectangles that are assigned

the (i, j) coördinates in the binary interpretable representation – see the (x?, y?) coördinates in

Figure 3.11 for reference. Therefore, for an arbitrary number of data points with two numerical
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features when modelling the intercept:

XTWX=


1 1 1 1

1 1 0 0

1 0 1 0

×


w11 0 0 0

0 w10 0 0

0 0 w01 0

0 0 0 w00

×


1 1 1

1 1 0

1 0 1

1 0 0



=


w11 w10 w01 w00

w11 w10 0 0

w11 0 w01 0

×


1 1 1

1 1 0

1 0 1

1 0 0



=


∑

wi j w11 +w10 w11 +w01

w11 +w10 w11 +w10 w11

w11 +w01 w11 w11 +w01

.

Notably, a derivation of this weighted formula for the toy data presented in Figure 3.11 – where

w11 = 1, w10 = 2, w01 = 2 and w00 = 4 – agrees with the previous result computed directly for XTX.

Next, we analyse the second component of the ΘW formula:

XTWy=


1 1 1 1

1 1 0 0

1 0 1 0

×


w11 0 0 0

0 w10 0 0

0 0 w01 0

0 0 0 w00

×


y11

y10

y01

y00



=


w11 w10 w01 w00

w11 w10 0 0

w11 0 w01 0

×


y11

y10

y01

y00



=


∑

wi j yi j

w11 y11 +w10 y10

w11 y11 +w01 y01

.

This formulation, however, implies that all of the data points that share the same (i, j) coördinates

in the binary interpretable representation have the same target value (black-box prediction) yi j.

To allow multiple copies of the same data point with distinct target values, we generalise this

result by going back to Θ, which is the solution to the classic OLS. This approach is valid since

weighted OLS for which the weights represent the count of each unique data point is equivalent

to classic OLS for a data set whose instances are duplicated according to the counts given by the

corresponding weights.

Let us denote f : X → Y as the black-box model and IR : X → X ? as the transformation

function from tabular data X into their binary interpretable representation X ?. Let us further

define Wi j = {x ∈X : IR(x)= (i, j)} as the set of all the data points that are assigned the same binary
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interpretable representation (i, j), and W =X as the set of all the data points. Now, recall that wi j

is the count of data points whose binary interpretable representation is (i, j), therefore |Wi j| = wi j

and |W | =∑
wi j. Without loss of generality, we can reformulate the XTWy part of ΘW as XTy by

summing over the black-box predictions corresponding to the relevant hyper-rectangles:

XTy=


∑

wi j yi j

w11 y11 +w10 y10

w11 y11 +w01 y01

=


∑

i∈W yi∑
i∈W11∪W10 yi∑
i∈W11∪W01 yi

.

This step allows us to relax the assumption of duplicated target values yi j, hence avoid imposing

restrictions on the type of the black box (probabilistic, crisp or regressor) and whether the binary

representation has full fidelity with respect to the black box.5

Finally, to better understand the meaning of influence-based explanations, we reformulate

the sum of black-box predictions into their average:

XTy=


∑

i∈W yi∑
i∈W11∪W10 yi∑
i∈W11∪W01 yi

=


∑

i∈W yi/
∑

wi j ∗∑
wi j∑

i∈W11∪W10 yi/(w11 +w10)∗ (w11 +w10)∑
i∈W11∪W01 yi/(w11 +w01)∗ (w11 +w01)

=


ȳW ∗∑

wi j

ȳW11∪W10 ∗ (w11 +w10)

ȳW11∪W01 ∗ (w11 +w01)



=


1 0 0

0 1 0

0 0 1

×


ȳW ∗∑

wi j

ȳW11∪W10 ∗ (w11 +w10)

ȳW11∪W01 ∗ (w11 +w01)



=


∑

wi j 0 0

0 w11 +w10 0

0 0 w11 +w01

×


ȳW

ȳW11∪W10

ȳW11∪W01

,

5Note that in the original formulation of XTWy, instances within each hyper-rectangle determined by the
underlying interpretable representation are assumed to share the same black-box prediction. This constraint makes
our solution almost impossible to apply to black-box regressors and probabilistic classifiers; it also means that for
crisp classifiers the binarised data space would have to respect the black-box decision surface (to achieve full fidelity).
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and combine this result with XTWX:
∑

wi j w11 +w10 w11 +w01

w11 +w10 w11 +w10 w11

w11 +w01 w11 w11 +w01


−1

×


∑

wi j 0 0

0 w11 +w10 0

0 0 w11 +w01

×


ȳW

ȳW11∪W10

ȳW11∪W01



=


∑

wi j w11 +w10 w11 +w01

w11 +w10 w11 +w10 w11

w11 +w01 w11 w11 +w01


−1

×


1∑
wi j

0 0

0 1
w11+w10

0

0 0 1
w11+w01


−1

×


ȳW

ȳW11∪W10

ȳW11∪W01



=




1∑
wi j

0 0

0 1
w11+w10

0

0 0 1
w11+w01

×


∑

wi j w11 +w10 w11 +w01

w11 +w10 w11 +w10 w11

w11 +w01 w11 w11 +w01



−1

×


ȳW

ȳW11∪W10

ȳW11∪W01



=


1 w11+w10∑

wi j

w11+w01∑
wi j

1 1 w11
w11+w10

1 w11
w11+w01

1


−1

×


ȳW

ȳW11∪W10

ȳW11∪W01

.

This outcome allows us to draw conclusions about the meaning of interpretable concept

influence given by the coefficients of a surrogate linear model when the intercept is modelled (red

& blue) and without it (blue). In particular, the influence of interpretable concepts is solely based

on:

• the proportion determined by the number of the data points residing in the ex-

plained hyper-rectangle (W11) divided by the hyper-rectangles aligned with the explained

hyper-rectangle along every axis: W11∪W10 for the first feature and W11∪W01 for the second;

and

• the average value predicted in the latter two subspaces – W11 ∪W10 and W11 ∪W01 – by

the black box (appropriately scaled when the intercept is modelled).

For example, consider Figure C.3 where x?1 denotes the first binary interpretable feature and x?2
the second. In this case, W11 is the yellow hyper-rectangle; W11 ∪W10 is the union of the yellow

and green hyper-rectangles; and W11∪W01 is the combination of yellow and blue hyper-rectangles.

Then, ȳW11∪W10 is the average prediction in the vertical green&yellow segment, and ȳW11∪W01 is the

average prediction in the horizontal blue&yellow stripe.

When modelled, the intercept value is additionally determined by:

• the proportion given by the number of data points in the hyper-rectangles aligned with the

explained hyper-rectangle along every axis divided by the total number of data points; and

• the average value predicted by the black box for all the data points.

Intuitively, the instances not aligned with the explained hyper-rectangle – red blocks in Figure C.3

– are assigned the (0,0) coördinates in the binary interpretable representation, therefore they
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x′1 = 0
x?1 = 0

x′1 = 1
x?1 = 1

x′1 = 2
x?1 = 0

x′2 = 0
x?2 = 0

x′2 = 1
x?2 = 1

x′2 = 2
x?2 = 0

Figure C.3: Example of discrete (x′1, x′2) and binary (x?1 , x?2 ) interpretable representations of
tabular data. ? represents the explained instance.

cannot contribute to the feature coefficients of a linear model, just the intercept. This can be

easily seen with the g(x?;Θ)=∑n
i=0Θix?i formula where x?0 = 1 is the phantom feature and the

remaining data features x?1 , . . . , x?n are 0; these instances can only influence the intercept Θ0.

An important insight uncovered by our results is partial insignificance of the discretisa-
tion quality given a fixed number of data points placed in the identified collections of relevant

hyper-rectangles. Using this property, we can manipulate the explanation by altering the number

of data points in meaningful partitions, with the discretisation faithfulness having relatively

small influence. For example, consider the two discretisations depicted earlier in Figure 3.7,

assuming that the explained hyper-rectangle is (x′, y′) = (1,1) for both sub-plots and that the

(x′, y′)= (1,0) and (x′, y′)= (1,1) partitions in Figure 3.7b have three additional data points each.

In this case, when modelling the influence of interpretable components without the intercept, the

only difference between these two sub-plots are the black-box predictions of the instances placed

in the (x′, y′)= (1,0) and (x′, y′)= (1,1) hyper-rectangles since:

Figure 3.7a w11 = 4, w01 = 4+4= 8 and w10 = 4, leading to w11
w11+w10

= 4
4+4 = 1

2 and w11
w11+w01

=
4

4+8 = 1
3 ; and

Figure 3.7b w11 = 2+3= 5, w01 = 4+4+2= 10 and w10 = 2+3= 5, leading to w11
w11+w10

= 5
5+5 = 1

2

and w11
w11+w01

= 5
5+10 = 1

3 .

Depending on the gradient smoothness of the underlying probabilistic black box, these explana-

tions may slightly differ. However, if the additional six instances are placed such that the average

black-box predictions of W11 ∪W10 and W11 ∪W01 are identical across both discretisations, the

resulting explanations will be the same. (In general, it is easier to manipulate the explanations

when dealing with crisp predictions instead of probabilities as we only have to consider which
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side of the black-box decision surface – if one runs across a given hyper-rectangle – to place each

data point.) Notably, this observation highlights that partitioning numerical features into more

than three splits is unnecessary, with the bin boundaries enclosing the explained instance being

the only important ones.
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