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Abstract

This thesis is dichotomised into two main types of problems which are briefly
introduced in Chapter 1. In the first, linear water wave theory is used to understand
the interaction of small amplitude gravity waves with a particular type of submerged
metamaterials in finite water depth. Within this study, metamaterials are viewed as
arrays of closely-spaced thin vertical barriers protruding from the sea bed.

A summary of linear water wave theory in the framework of this study, is
provided in Chapter 2, followed by the problem of scattering of obliquely-incident
plane waves by a submerged metamaterial, in Chapter 3. Three different barrier
orientations are analysed, whose solutions require different mathematical techniques.
Whereas these all ultimately require numerical computation, simplified expressions
for the reflected and transmitted wave amplitudes are derived explicitly under a
shallow water assumption. The focus of this chapter relates to the unusual wave
propagation properties of the plate array, particularly that of negative refraction. In
Chapter 4 we consider a final example of wave interaction with an immersed plate
array. The plate array is made to extend fully through the water depth and occupies
periodic arrangement of triangular inclusions embedded into a wall. The inclusion
of damping in a water wave setting or an analogous acoustic setting allows us to
consider the broadbanded absorption characteristics of this device.

In the second part of this thesis, the scattering of incident waves by an
open water lead in an otherwise infinite and thin ice sheet on water, is considered. A
variety of problems, with different degree of complexity are solved with the ultimate
goal being to derive a model capable of describing energy loss due to viscous effects
in narrow gaps between ice floes. The scattering problem of an obliquely-incident
flexural wave across a crack of finite width, is considered in Chapter 5. A much sim-
pler closed-form solution is derived in the case when the two semi-infinite ice sheets
are separated by a narrow crack. Finally, the fluid in the narrow gap between the
two vertical faces of opposing ice sheets is replaced by a viscous fluid which compli-
cates the interaction between the ice sheet and the fluid and introduces dissipation.
A basic outline calculation is made to determine if this proposed model for energy
dissipation fits reported field data for wave attenuation in regions of broken ice.
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Chapter 1

Introduction

In this thesis, semi-analytical methods are used to find important features of the
solution to a variety of boundary-value problems arising from the application of
linear water and acoustic wave theory to scattering problems.

In chapters 2 to 4, the interaction of water waves (in some cases sound waves
as well) and some particular metamaterials is examined. The term metamaterial is
used to describe a physical medium which propagates information in a manner not
generally associated with a natural material[4][5]. One of their principal features that
is responsible for these abnormal properties, is that they possess a microstructure
that has some form of periodicity, with a period much smaller than the lengthscale
of variations in the underlying macroscopic field variable [6][7]. This is the main
metamaterial feature that allows this medium to have an effect upon the macroscale
and to create unusual characteristics. These typically include a spatially varying
anisotropy of a quantity which one normally associates with being isotropic. There-
fore, metamaterials owe their properties to subwavelength structural details rather
than to their chemical composition and their freedom of design allow us to create
phenomena that are difficult or impossible to find in nature.

The science of metamaterials has developed rapidly over the last years pre-
dominantly in response to applications emerging from the study of electromagnetic
waves and their manipulation. Metamaterials have led to the realisation of phenom-
ena such as negative refraction, invisibility cloaking and sound absorption [8][9][10].
Negative refraction is a phenomenon usually related to electromagnetics, whereby
the change of direction of a wave passing from one medium to another is not the
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one typically observed to natural materials’ refractive properties. For example, [6]
maintained negative refraction by considering the scattering of a Gaussian beam by
a square lattice of platonic clusters in a thin elastic plate. Also, [8] showed that
using a silver slab that behaved as a metamaterial with a negative refractive index,
one is able to control the wave and to focus light intensely onto some regions of an
image plane via unusual routes. Some other important findings on electromagnetic
invisibility cloaking, were the ones of [4] and [9], where the principal idea was to use
the metamaterial to modify parameters like permittivity and permeability in such a
way so as to bend waves around it, so that the metamaterial renders another object
invisible to the observer. Another invisibility cloaking device was the one of [5],
where a woodpile photonic crystal with a tailored polymer filling fraction was able
to hide a bump in a gold reflector. Owing to the similarity between governing equa-
tions describing different physical applications, many of the techniques and results
developed for electromagnetic wave scattering, have found analogues in acoustics,
elasticity and, to a lesser extent, in water waves.

It is the development of metamaterials for water waves that inspire this
study [11]. The physical setting for water waves differs from the other field theories
previously mentioned on account that waves exist due to the action of gravity which
acts in one direction (aligned with the depth) and that waves exist only due to the
presence of a domain boundary (the free surface) of the background medium (the
fluid). However, when the fluid is of constant depth, apart from vertical structures
which have constant cross-section throughout the depth, then the depth dependence
can be factorised from the field equation and the two-dimensional wave equation
results. [7] exploited this and was able to adopt techniques from two-dimensional
electromagnetics and acoustics to design an annular metamaterial water-wave cloak.
The metamaterial structure used for the cloaking device consisted of a doubly pe-
riodic circular array of small vertical posts whose approximate effect predicted by
homogenisation theory, was to produce the spatially varying anisotropic wave speeds
required for a cloak. Inspired from this idea of controlling waves via a fluid bed that
act as a device for producing anisotropic and spatially varying wave speeds, many
other mechanisms have been proven to produce similar water wave scattering phe-
nomena. The idea of small closely spaced cylindrical obstacles was also adopted in
[12] to produce the effect of negative refraction and ultra-refraction for water waves.
A numerical comparison between multipole expansions and finite element methods
was made followed by an experimental verification of a flat “water lens”. Notable
work in this context is the one of [13] who designed a microstructured corrugated bed
to act as a water-wave metamaterial and used as a means of perfectly transmitting
waves through a sharp-angled junction of two-dimensional channel of uniform width.
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The experimental design of the metamaterial was based on a theoretical calculation
using homogenisation methods applied to a particular approximation to the water
wave equations, namely shallow water theory [14][15]. However, standard shallow
water theory requires that the bed gradients are continuous and vary slowly when
compared to the ratio of local wavelength to depth and its use therefore appears
incompatible with a corrugated bed metamaterial. In spite of this, [13] produced
experimental results which matched the theoretical predictions reasonably well for
reasons explained later in this thesis. Part of this success may be explained by the
subsequent work of [1] who revisited the issue of the adoption of standard shallow
water theory as the foundation for the realisation of a metamaterial bed. Instead, a
new approach was taken involving the application of homogenisation theory to the
full three-dimensional (depth-dependent) water wave equations while continuing to
work under the assumptions of shallow water theory (the depth to wavelength ratio
forms the small parameter used in the homogenisation methodology). The result of
that model was a reduced, depth-independent, wave propagation model very much
like the shallow water model but with coefficients in the diagonal depth tensor (of
rank 2) which were based on a fully three-dimensional potential theory calculation.
[1] showed that one of these coefficients was identical to the predictions of the earlier
shallow water model of [13], whilst the other coefficient was in terms of an averaged
velocity potential associated to a simple potential flow problem. As their problem was
able to predict the effective depths for any spacing between the barriers that made
the corrugated bed, they verified numerically that when the spacing was increasing,
the effective depth tended to that of [13]. Subsequently, this new theory was adopted
by [16] to determine the reflection and the transmission of obliquely-incident plane
waves by a metamaterial bed of finite width. The principal new feature in this work
was the derivation and application of matching conditions at the junction between a
flat bed and the metamaterial. These matching conditions, which apply through the
depth of the fluid, had to be applied in conjunction with the use of the depth aver-
aged model devised by [1] and required the extension of the homogenisation theory
to second order in the small parameter in order to mitigate against discontinuities
in the fluid surface.

The work described in the previous paragraph assumes the small parameter
(needed for the application of homogenisation methods) to be the depth to wave-
length ratio and thus constrains the results for use in the shallow water regime. In
this thesis, the same corrugated metamaterial bed configuration is considered, but
now another small parameter (ratio of the separation between the corrugations and
the wavelength) is chosen as well. Thus, a metamaterial bed with narrow fluid-filled
gaps between closely spaced protrusions is envisaged, similar to the one considered
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by [11]. This approach also allows homogenisation theory to simplify the effect of the
microstructure, but in an arguably much more straightforward way. Thus, the region
occupied by the metamaterial is governed by a reduced Laplace equation allowing
us to solve the three-dimensional problem directly using standard separation of vari-
ables and mode-matching methods. The interface conditions between the fluid and
the metamaterial bed are derived using the same principles used for the homogeni-
sation in the bulk. Following [16], the scattering by a finite width of metamaterial
bed is considered and also a more general configuration is allowed in which the cor-
rugated structure forming the bed can be oriented in an arbitrary direction. This is
particularly useful as it allows us to connect with the work of [11] who considered
a rotated corrugation involving infinitely-thin protrusions from the flat bed which
extends throughout the depth. He showed that this full-depth metamaterial could
act as an all-frequency negative refraction medium for plane waves having incident
angles exactly opposed to the angle of orientation of the array. Thus, one of the
purposes for this work is to examine this effect when the metamaterial only partially
extends throughout the depth. To complement the fully three-dimensional problem
outlined above, a shallow water equation (SWE) for a corrugated bed based on the
same close-spacing assumption is also derived. Unlike the earlier work, the model is
derived from first principles taking into account the rapid discontinuities in depth
whilst allowing for a slow variation in the vertical extent of the corrugations. Like
the traditional SWE for normal isotropic depths [14][15], the equation for a corru-
gated bed is a reduced (or depth-averaged) model which will be shown to provide
the spatially-varying anisotropy required of the metamaterial and provides a much
simpler method for determining solutions to scattering problems. This gives rise to
explicit solutions that can be compared with both the work of [1] and with the re-
sults of our three-dimensional approach. Numerical results are contained in Chapter
3 where one of the main tasks is to determine the conditions under which the shallow
water theory can effectively be deployed by comparing the same results for full linear
theory.

Metamaterials found applications into acoustics as well. For example, [17]
manage to cloak an acoustic wave around an incompressible cylindrical scatterer
surrounded by a cloaking shell to mimic the electromagnetic analogue of [9]. Another
important effect of acoustic metamaterials is sound absorption. Such absorbers can
be found in nature too. Moth wings have a membrane that forms a metamaterial,
made by an intricate scale layer that acts as an ultrasound absorber. This sound
absorber provides them with an acoustic camouflage against echolocating bats [18].
Also, the work of [10] showed (both theoretically and experimentally) that an ultra-
thin acoustic metamaterial rigid panel made of a periodic distribution of thin closed
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slits whose upper wall is loaded by Helmholtz resonators, can be used for perfect and
quasi-omnidirectional absorption. The resonators produce a slow sound propagation,
shifting the resonance frequency of the slit to subwavelength regime and thus by
controlling the geometry of the problem the viscothermal losses can be tuned in a
way so that the so-called metasurface, acts as a high-efficiency absorber. This is
the most common metamaterial design used for acoustic absorption – multi-coiled
metasurface absorbers composed of “labyrinthine” narrow passages like the one of
[19]. Similar sound absorbers found applications on noise transfer reduction through
car body panels [20]. An even simpler absorber is the one used in [21] where the
reflection and transmission of acoustic waves along a waveguide of uniform width,
is considered. A metamaterial cavity is attached to the waveguide and is comprised
of a closely spaced array of micro-channels separated by thin plates between which
the field may be damped. Some results have demonstrated that this metamaterial
cavity is an extremely effective broadbanded absorber for an acoustic wave.

Inspired from these problems, a similar idea will be examined in this thesis.
An obliquely-incident wave will interact with a metamaterial wall made of a sequence
of triangular shaped arrays similar to the one described above. Within those arrays,
parallel barriers that extend throughout the vertical direction will be oriented at an
arbitrary acute angle. The vertical symmetry of the geometry allows the problem to
be applicable to water, acoustic and electromagnetic waves due to the similarity of
the governing equations (2D Helmholtz equation). A linear damping model will be
derived for the effective medium within the cavity. In the case of water waves, [22]
identifies a number of ways to model the damping within a cylindrical metamaterial
that extends throughout the depth. In the first, it was assumed that the fluid’s
surface was covered by a thin layer of a porous medium. Within the layer, the
vertical velocity and the pressure gradient are related through the Darcy’s Law.
Then by matching pressures across the boundary of the thin layer and assuming
that the vertical velocity is linearly related to the surface velocity through a blockage
coefficient [23], the new linear surface condition that arises, adds a small imaginary
part to the angular velocity found in the standard surface condition. The same
kind of effect upon the angular velocity (found in the surface condition), happen
also when the surface is covered by a doubly periodic configuration of closely spaced
small cylindrical buoys that act as energy converter mechanisms [24]. Finally, the
setting which is most similar to our problem is the one of [25] and [26] (Section 9,
Exercise 9.2). They showed the effect of viscosity near the walls of a narrow channel
due to a wave travelling within it, shifts the wavenumber by a small imaginary part.

In the case of sound waves, the derivation will start from the standard
acoustic wave equations [27] and finding an expression for the tangential shearing
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stress near a vertical wall by solving the Stokes boundary layer problem. Then,
according to the pioneering work of [28], the tangential shearing stress expression,
which is in terms of a far field velocity, can be used in the narrow duct problem
(presence of two parallel walls) with the background velocity be replaced by the
actual wave velocity across the duct. It will turn out that the governing equation for
the velocity along the duct will coincide with the 1D Helmholtz equation but again
the wavenumber will be complex valued with a small imaginary part.

By formulating the problem including the thermoviscous effects within the
metamaterial, then it will allow comparisons on how the numerical results are affected
even by a small damping contribution [21]. Also, it will be shown that the number and
amplitudes of the reflective modes can be manipulated by changing the geometry of
the structure and in some cases the metamaterial will act as an effective broadbanded
absorption wall. As this problem allows an arbitrary direction of incidence and
channel orientation, it will be shown that in some cases the metawall will violate the
reflection law to the eyes of a far-field observer.

The second part of this thesis follows in Chapter 5 and it involves the
interaction between flexural waves in thin floating ice sheets and ocean water waves.
An obliquely-incident flexural wave propagates within an ice floe, in a direction
towards a crack of uniform width in a sea of finite depth. The fluid within the crack
interacts with the incident wave, causing scattering modes to the adjacent ice sheets.

Over the last few years, scientists want to understand the cause of energy
dissipation of a flexural wave within a multi-cracked ice floe. A number of field
data sets collected over several decades have all shown that the energy in waves,
originating in the open seas and passing through large regions of broken ice (the
Marginal Ice Zone - MIZ) are attenuated with distance [2][3][29]. There is good
evidence to suggest a robust relationship between the attenuation and the wave
period although the different ice conditions make the data noisy and hard to analyse.
The answer to the question as to what causes this attenuation is not known.

One of the goals of this thesis is to derive a model which might be capable
of reproducing this natural effect. Since the width of those cracks is typically small
with respect to the thickness of the ice sheets, then the fluid in between those cracks
can be assumed to be viscous. The fluid viscosity within the small crack will have
an effect upon the motion of the ice floes. The existence of a viscous fluid within
the small cracks is an assumption based on physical grounds as when the separation
distance of the ice sheets becomes small, then the fluid within the gap is expected to
have an intermediate state between liquid and solid (its density and temperature lie
within the ones of water and ice). In order to arrive at the point where this problem
will be presented, first a series of simpler problems will be considered.
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The study of problems involving thin rigid bodies that cover a part of the
sea surface, has a long history. Many authors studied the influence of a rigid dock
on water waves, using a variety of solution methods. The common feature of those
methods was that the velocity potential solution was assumed to possess a line source
at the edge of the dock presented by a logarithmic singularity (see [30], pg.11). In
the case of a semi-infinite dock, the boundary value problems yield explicit solutions.
For example, [31] used the Wiener-Hopf technique to study the interaction of water
waves in the free surface with a straight-edged dock in a fluid of finite depth. In
the case of infinite depth [32] showed that the solution can be found using complex
variable theory and a method related to Laplace transforms. In the case of a finite
dock in infinite depth, the solution to the boundary value problem for the velocity
potential can be reduced to an integral equation which can be solved by making
an appropriate choice for the value of the potential on the dock (typically involving
a Green’s function). For instance, in the series of papers of [33][34], it was shown
that the kernel of this integral equation of the second kind vanishes in the limit of
small ratio between the wavelength and the dock width. Therefore, the solution was
maintained through short-wave asymptotics to the original problem. Years later, [35]
solved the finite dock problem at finite depth, using a method called residue calculus
technique (RCT), which is a very useful tool to solve a linear system of equations
of infinite size. This method applies only to problems of finite water depth and it
works best as an approximate tool for large spacings between end points, but for small
spacings you have to solve larger and larger systems of equations. However, it is the
solution method of [36] that is mostly related to the solution of the finite crack (in ice
sheets) problem, studied in this thesis. [36] solved the so-called finite dock problem at
infinite depth by creating an integral equation maintained from the Fourier transform
of the scattering part of the velocity potential. The Fourier transform method works
well for small spacings as it provides explicit approximations but requires numerical
solutions with larger matrix truncation sizes for larger spacings. So, this is the reason
why this method is used in this thesis as the interest lies upon small gaps between ice
sheets. The solution presented in Chapter 5 for the finite crack problem, is calculated
by creating an integral equation whose kernel can be found by making an appropriate
choice of the free surface velocity in the crack.

Now when the floating body from rigid becomes elastic, then a new bound-
ary condition between the water and the elastic sheet must be imposed. There is
a long literature for the modelling of a floating ice floe as a thin elastic plate. [37]
was the first who adapted this idea to create a dispersion relation based on Euler-
Bernoulli beam theory. The derivation of the linear ice-water boundary condition
can be found in [38] together with the conditions on the edge of an elastic plate. [39]
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adopted the Wiener-Hopf technique to examine the scattering of a water wave and
a single straight-edged semi-infinite ice sheet at finite depth. The finite gap problem
(two semi-infinite ice sheets at a distance) was solved again by [40] using the RCT
(for finite water depth), allowing comparisons of numerical results of the problem
solved in this thesis. In Chapter 5, the finite gap problem will be decomposed into
symmetric and antisymmetric parts due to the geometrical symmetry of the problem
and solved using Fourier sine and cosine transforms respectively. This is an idea
adopted from [41] where he considered the trapping of waves by a thin floating ice
sheet. The first difference between the problem solved in [41] and the one of this
thesis is that the regions of open sea and ice-covered sea are inverted. The advantage
of finite depth in the problem solved in this thesis is that it allows the semi-infinite
integrals that are part of the solution, to be written as infinite sums through the
Cauchy’s residue theorem. The sum representation of the solution is much more
computationally efficient than the integral representation.

When the crack between the two semi-infinite ice sheets becomes small in
the sense that limit ratio between the gap and the ice thickness is infinitesimal,
then the problem achieves an explicit solution. For example, [42] derived closed-
form expressions for the reflection and transmission coefficients of a single small
crack in the case of normal incidence at infinite depth, using a Green’s function
approach. The extension to oblique incidence of the same problem, can be found
in [43]. In the case of finite depth, the Wiener-Hopf technique was used by [44] to
extend the work of their own paper of the same year [39], for the scattering by a
narrow crack, by adding another semi-infinite ice floe at an infinitesimal distance
from the other. Their work was adopted from [45]. It is worth noting that the
closed-form solution for the scattering coefficients of the single small crack problem
at finite depth found in Chapter 5, is identical to the one of [46]. The symmetry
of the geometry allowed their solution to be written as a sum of symmetric and
antisymmetric solutions, which are simpler to calculate using a Green’s function
approach (a method much different than the one used in this thesis). However, the
symmetric and antisymmetric velocity potential decomposition is an idea adopted
in all the problems of Chapter 5. The explicit solutions of the scattering coefficients
for the small crack problem, are calculated in the same chapter by making a single
term approximation in the free surface velocity in the crack. This method will allow
numerical comparisons with all the work discussed above.

Then, in order to understand how energy dissipates through a multi-cracked
ice floe, a new linear surface condition is derived that describes the effect of viscous
fluid within a single narrow crack, on the two adjacent ice sheets. In this derivation,
the assumption of small ratio between the ice sheets gap and thickness is used,
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allowing the application of lubrication theory. Similarly, to the inviscid small crack
problem, a single term approximation to the fluid’s velocity in the gap is used.

After maintaining the scattering coefficients for the single viscous ice crack,
then the scattering coefficients for multiple cracks can be found through the scattering
matrix. This is a concept that can be applied in the context of any type of waves
travelling through a sequence of scatterers [47][48]. In the context of water waves
travelling over a periodically rippled bed, the application of the scattering matrix
can be found in [49] and [50]. Now if the scatterers are placed in an equal distance
from each other, then instead of calculating the scattering matrix to the power of
the number of scatterers, a simplification due to a matrix decomposition can be
imposed [51]. In the context of waves in ice floes, the more recent work of [52]
extends the problem of [46], from single to multiple narrow cracks, by creating a
finite-dimensional linear system of equations for the jumps in the displacements and
gradients across each crack, through the scattering matrix. However, the methods
used in this thesis will be slightly different than the ones discussed above as they do
not assume energy conservation after the interaction at each crack.

The dissipation of waves within ice floes was modelled by many authors,
trying to match experimental results. For example, the scheme of [53] assumes that
the cause of wave dissipation is the turbulence near the ice-water boundary which is
represented by an eddy viscosity parameter. Also, [54] modelled ice as a viscoelastic
layer and some years later [55] simply added a small imaginary part to the actual
wavenumber, that represents the exponential decay rate of amplitude in space, i.e.
k̂ = k + iki where k = 2π/λ (λ is the wavelength) and ki � k. A value for ki can
be extracted from the viscoelastic layer model introduced in [54]. Neither of these
models are close in predicting the relationship observed in the experimental data
between the attenuation rate and the wave period. Such experimental results can be
found from [2], in which buoy measurements of wave spectra were used to analyse the
dissipation of wind-generated waves in pancake and frazil ice in the Arctic Ocean.
The optimal ki from the viscoelastic ice sheet model, was determined in a variety of
situations to provide a match to the buoy spectrum.

Working on the assumption that attenuation is caused by a physical damp-
ing mechanism, then the possibility that this may be due to the forces that exist in
the small gaps between adjacent ice floes that are typical in the MIZ, is investigated.
Additionally, it is often the case that the fluid trapped in the cracks between floes is
a slushy mixture of ice and water which has a higher viscosity than pure sea water.
Thus, the model used in this thesis to characterise the wave dissipation in a multi-
cracked ice floe, is based on the assumption that the fluid within the narrow cracks
is viscous. After calculating the reflection and transmission coefficients for a single
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crack, then by using the scattering matrix the multi-cracked scattering coefficients
are calculated. From the result, an analogue value for ki as specified above from
[55], can be derived in terms of the single crack scattering coefficients, the incident
wavenumber and the crack spacing. Therefore, numerical comparisons for ki will be
achieved with the experimental results reported in [2][3][29].
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Chapter 2

Background Theory

2.1 Conservation laws for a fluid

In this section, the mass and the momentum conservation law are derived. First, a
fluid of density ρ is considered to flow through an arbitrary volume V (see figure 2.1
below). Thus, the instanteneous mass of the fluid contained in V is given by

m(t) ≡
ˆ

V

ρ(r, t)dV, (2.1.1)

where r is the integrating space variable and t is time. Now in a short time δt, the
mass leaving δS (small part of the boundary of V ) is δm = ρu · n̂δtδS, where u is
the velocity of the fluid and u · n̂ is the speed in the direction of n̂ (outward pointing
normal to V ). So, the rate of change of mass leaving V through δS is ρu · n̂δS.
Therefore, the total flux into V is

Q(t) ≡ −
ˆ

S

ρu · n̂dS. (2.1.2)
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Using the fact that the fluid is neither created or destroyed in a closed system, then
the rate of change of mass in V must be equal to the rate of change of mass into V
through S. Or algebraically ṁ(t) = Q(t) and so by using (2.1.1), (2.1.2), then

d

dt

ˆ

V

ρ(r, t)dV = −
ˆ

S

ρu · n̂dS, (2.1.3)

according to [56]. Using that V is fixed in space and time and by applying the

S

δS

n̂

Figure 2.1: Arbitrary volume V bounded by S, with n̂ be the unit normal to the

surface that points outwards of V and δS be the elemental small surface on S.

divergence theorem to the right-hand side of (2.1.3), then

ˆ

V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0 (2.1.4)

and since V was chosen arbitrarily, then the integrand of (2.1.4) must be identically
equal to zero. So, the mass conservation law becomes

∂ρ

∂t
+∇ · (ρu) = 0. (2.1.5)
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Now for the momentum conservation law, the total momentum of the fluid
within V is considered, namely ˆ

V

ρudV. (2.1.6)

Also, in the short time δt, the momentum through δS is δmu = ρu(u · n̂)δtδS,
according to the δm expression stated above. So, the rate of change of momentum
leaving V through δS is ρu(u · n̂)δS. Therefore, by applying the Newton’s Law in
V using (2.1.6), then

d

dt

ˆ

V

ρuidV = −
ˆ

S

ρuiujn̂jdS −
ˆ

S

Pijn̂jdS +

ˆ

V

fidV, (2.1.7)

where −Pij represents the fluid stress tensor and fi is an external force density (like
the gravitational force). By using the space-time independence of the volume V and
the divergence theorem on the surface integrals of (2.1.7), then

ˆ

V

∂

∂t
(ρu)dV = −

ˆ

V

∇ · (ρu⊗ u)dV −
ˆ

V

∇ ·PdV +

ˆ

V

fdV. (2.1.8)

The first integral of the right-hand side is found by applying the divergence theorem
componentwise, on the first surface integral of the right-hand side of (2.1.7). Again,
since the fixed volume V was arbitrary, then

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇ ·P = f . (2.1.9)

Choosing P = pI − µ[∇u + (∇u)T ] + 2
3
µ(∇ · u)I where p is the fluid’s pressure, µ

is the dynamic viscosity and I is the identity matrix, according to [27][56] and using
(2.1.5), then the momentum conservation law becomes

ρ
Du

Dt
= −∇p+ f + µ∇2u +

1

3
µ∇(∇ · u). (2.1.10)
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2.2 Derivation of the linear water wave equations

In this section the water wave equation and the boundary conditions of an inviscid
fluid of constant density ρ in a domain V are derived. Cartesian coordinates are
chosen such that z = 0 coincides with the undisturbed fluid’s surface. V is bounded
above by the free surface and bounded below by a rigid, not necessarily flat bed at
z = −h(x, y) (see figure 2.2 below). Using that the density is constant, then from
the mass conservation (2.1.5), it yields that ∇ · u = 0. Now assuming that the
flow is irrotational, i.e. ∇× u = 0, then the flow is potential or algebraically there
exists a scalar function Φ(x, y, z, t) (called the velocity potential) such that u = ∇Φ.
From now on, instead of dealing with three unknowns to the problem (three velocity
components), is much easier to solve for the velocity potential and find the velocity
field through its gradient. Also n̂ is the unit normal to the bed, pointing out of the
fluid and it can be related to h, via n̂ = −∇S/|∇S| with S = z + h(x, y). Writing
the mass conservation and the no flow condition through the bed (namely u · n̂ = 0
at z = −h(x, y)) in terms of the velocity potential, then

∇2Φ = 0 in V , (2.2.1)

∂Φ

∂z
+
(
∇hΦ

)
·
(
∇hh

)
= 0 on z = −h, (2.2.2)

x

z

z = ζ(x, y, t)

z = −h(x, y)

ρ

ρ0

Figure 2.2: Inviscid water of constant density ρ bounded by −h(x, y) ≤ z ≤ ζ(x, y, t)

below air of density ρ0 (with ρ� ρ0).

where ∇2 ≡ ∇ · ∇ is called the Laplacian operator and ∇h = (∂x, ∂y) is the two
dimensional version of ∇.
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So, now only the kinematic and dynamic boundary condition of the moving
surface ζ(x, y, t) should be derived. There are many sources for this derivation, but
the one of [26] will be followed here. By letting S(x, y, z, t) = z − ζ(x, y, t) and
requiring DS

Dt
= 0 on z = ζ(x, y, t), then

∂Φ

∂z

∣∣∣∣
z=ζ

=
∂ζ

∂t
+
∂Φ

∂x

∣∣∣∣
z=ζ

∂ζ

∂x
+
∂Φ

∂y

∣∣∣∣
z=ζ

∂ζ

∂y
. (2.2.3)

Now, taking the momentum conservation (2.1.10), writing it in terms of the potential
through u = ∇Φ, substituting f = −ρgẑ and µ = 0, then it becomes

∇
[
ρ
∂Φ

∂t
+ p+ ρgz

]
= −ρ

(
u · ∇

)
u. (2.2.4)

Now, linearisation can be allowed by assuming small amplitudes and steepness to
the free surface in the sense of |∇ζ| ∼ U ≡ Aλ2/H3 � 1, where A is the local
amplitude, λ is the horizontal wavelength and H is the mean depth. U � 1 is called
the Ursell’s number and it was proposed by [57]. One could neglect the acceleration
term

∣∣(u · ∇)u∣∣ of the right hand side based on the small wave slope assumption
[26]. Thus, dividing by ρ, integrating and setting z = ζ, then

∂Φ

∂t

∣∣∣∣
z=ζ

+
patm
ρ

+ gζ = C(t), (2.2.5)

where C(t) is the integration constant and patm = p(x, y, ζ, t) is the atmospheric
pressure. Since Φ satisfies the Laplace’s equation (2.2.1), the no flow condition
(2.2.2) and the kinematic surface condition (2.2.3), then if any time dependent term
is added to the solution is still a solution. Thus, relabelling Φ by Φ− patm

ρ
t+

´ t
C(τ)dτ ,

then equation (2.2.5) reads

Φt + gζ = 0 on z = 0, (2.2.6)

Φz = ζt on z = 0, (2.2.7)
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where the second equation is (2.2.3) but with the products of motion terms at the
surface neglected (as they are assumed to be small). These two equations are the
dynamic and kinematic boundary conditions on the sufrace respectively. Note that
they are evaluated on z = 0 instead of z = ζ. But these evaluations of the potential,
are proven to be equal at leading order by Taylor expanding Φz and Φt about z = 0,
evaluating them at z = ζ and neglecting products of motion terms. The last two
equations can be combined into a single surface condition, by eliminating ζ. Thus,
by taking a time derivative of the dynamic condition (2.2.6) and eliminating ζt from
the kinematic condition (2.2.7), then

Φtt + gΦz = 0 on z = 0. (2.2.8)

This well-known condition is also derived by many authors e.g. [14][15][26].
Since the equations (2.2.1), (2.2.2) and (2.2.8) satisfied by Φ are linear, then

any time-solution can be inferred via inverse Fourier transforms of frequency domain
solutions as

Φ(x, y, z, t) = <{φ(x, y, z)e−iωt}, (2.2.9)

for ω be angular frequency of a time-harmonic incident wave. So, under this substitu-
tion, the governing equation of the potential Φ gives cos(ωt)<{∇2φ}+sin(ωt)={∇2φ} =
0, for any time t. Therefore, we must have <{∇2φ},={∇2φ} = 0. So, φ(x, y, z) must
satisfy

∇2φ(x, y, z) = 0,

φz +
(
∇hφ

)
·
(
∇hh

)
= 0 on z = −h,

φz = Kφ on z = 0,

(2.2.10)

where K ≡ ω2/g and then the total wave potential in the time domain can be found
from (2.2.9).
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Chapter 3

Wave interaction with a submerged

bottom-mounted metamaterial

3.1 Introduction

This chapter is concerned with the scattering of linear water waves by a certain type
of a submerged microstructure in finite depth. Problems involving the control of
water waves through microstructures sitting in the fluid’s bed have a recent history
[11][13][58]. The microscale possessed by the submerged structure has an effect upon
the macroscale (incident wave). This is the underlying feature of those structures,
often called metamaterials as they typically affect the waves in ways not necessarily
associated with natural (isotropic) materials. Often the metamaterial can be proven
to act as an effective medium by using homogenisation methods with the small
parameter frequently associated with the ratio of the structural periodicity and the
incident wavelength. The validity of this approximation (homogenisation theory)
was tested against exact results [16][22].

Typically, the submerged structure looks like a doubly periodic array of
closely spaced vertical posts or barriers. If the long-wave limit (or equivalently the
shallow water regime) is assumed, then the model can be simplified and a closed-form
solution can be calculated. The simplified formula for the solution can be manip-
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ulated accordingly through the other variables such as structural lengths, incident
frequency and direction. For example, [59] have considered a periodic array of verti-
cal cylinders placed on the fluid’s bed. It was shown that in the long-wave limit, the
structure gave rise to an effective depth and an effective gravitational constant that
depended on the filling ratio of the cylinders, leading to wave focusing phenomena.
[60] achieved surface wave focusing in a channel by adopting an idea from the fo-
cusing lens in electromagnetics and acoustics, called the gradient index lens (GRIN)
which can be achieved by a periodic array of vertical cylinders at the sea bed where
the filling fraction was gradually modified. Also, [61] investigated both numerically
and experimentally, the effect of an “invisibility carpet” made of vertical poles of
trapezoidal cross-section on an incident water wave travelling parallel to a channel
with a curved wall at the end. They achieved the so-called wave cloaking in the
channel as in the absence of the “invisibility carpet” the scattered wave would be
a “rippled” wave due to the curved wall. However, through a choice of geometrical
parameters of the carpet, the response wave was manipulated in a way as if the end
wall was flat (cloaking). Recently, [62] used a network of narrow water channels
which were coupled at junctions to create a medium supporting wave propagation
with metamaterial qualities. Their metamaterial can be thought of as vertical posts
which occupy a large fraction of the available domain leaving small channels. It
turned out that the metamaterial was acting as a negative refraction medium for
small oblique angles.

In this chapter, an attempt of creating similar phenomena through meta-
materials of similar type in deep water, will be made. For example, it will be shown
later that negative refraction can be achieved for all oblique angles (not just small),
when the effective medium was made by closely spaced thick barriers perpendicular
to the bed. This is expected on physical grounds, as the fluid motion within closely
spaced plates is restricted at a greater degree than in medium of closely spaced ver-
tical posts, because of less openings. Therefore, such metamaterials (vertical plates)
achieve the behaviour of a negative refraction medium much easier.

The main purpose of the problems solved in this section, is to what extent
a plate array which extends partially through the depth is able to reproduce the
negative refraction results shown by [11] whose metamaterial plate array extended
uniformly through the depth. An example of a such remarkable result produced by
the author was that for certain angles of incidence there was all-frequency perfect
transmission with negative refraction. However, the only literature that deals with
metamaterials formed by submerged barriers are only under the shallow water regime.
For example, [13] have considered the submerged layered structure made of vertical
barriers in shallow water, to bend an incident water wave in a waveguide and align it
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with the bending angle of the channel. The idea behind the modelling of the effective
medium, was to use homogenisation theory on the standard shallow water equation
to derive a new equation where the scalar depth was replaced by a diagonal 2 × 2
tensor (of rank 2) with entries the effective depths of a wave travelling in directions
parallel and perpendicular to the barriers. Then [1], used homogenisation theory but
now starting from the full linear potential problem and managed to derive the same
effective depth tensor equation in shallow water, at leading order. However, one of
the diagonal elements of the depth tensor was found to be different than the one
of [13]. It turned out that this element was in terms of an integral over the “unit
cell” (due to the structural periodicity) of a velocity potential associated to a simple
potential flow problem. Two years later, [16] used a similar homogenisation theory
to derive the matching conditions across the metamaterial interfaces to higher order
of the small parameter associated with the ratio between the structural periodicity
and the incident wavelength. The new matching conditions at the metamaterial
boundaries were derived by accessing inner and outer asymptotic expansions near
the vertical interface of the effective medium. This idea was also adopted in [63]
and in [64] (leading and second order respectively) to derive continuity relations for
similar type of metamaterials but in the context of electromagnetics.

However, this section starts by considering the full linear potential problem
for the scattering of surface waves by a layered medium of arbitrarily oriented thick
vertical barriers that cover a region of the fluid. An effective medium equation arises
by applying a perturbation theory using a small parameter (structural periodicity
to wavelength ratio). The derivation of the effective equation satisfied by the ve-
locity potential and the matching conditions through the metamaterial interfaces, is
based on the work of [11], where the barriers had zero thickness and they extended
throughout the depth. The effective conditions will correspond to the continuity of
pressure and normal flux on the effective medium boundaries. Using the fact that
the structure extends uniformly in one direction and that the only “forcing” to the
problem is a time-harmonic obliquely-incident wave that propagates from the far-
field, then the time and the space dimension, which is aligned with the extension of
the structure, can be factored out of the problem, in the same manner as the incident
wave. Then after applying the far-field conditions, the procedure follows by calcu-
lating vertical eigenfunctions over the open-sea and metamaterial regions which can
be sought through separation of variables and roots of certain dispersion relations
coming from the boundary conditions in the vertical direction. Then it remains to
apply the matching conditions on the vertical interfaces of the submerged structure.
This matching procedure needs different approaches depending on the orientation of
the barriers. Three cases for different barrier orientations will be considered later in
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this section.
Cartesian coordinates are chosen such that z = 0 is aligned with the undis-

turbed free surface of the sea. The metamaterial sits on the flat sea bed z = −h
and cover the region |x| < b, −∞ < y < ∞ and z ∈ [−h,−d] (where d > 0 is
a constant). The structure will consist of parallel closely spaced barriers of length
2L and of thickness θl, where l is the periodicity of the structure in the direction
perpendicular to the barriers and θ ∈ [0, 1) is a dimensionless parameter which de-
scribes the filling fraction. Thus, (1− θ)l is the spacing between the walls with the
gaps closing when θ → 1 and the barriers become infinitely thin when θ → 0. The
barriers will be perpendicular to the sea bed and oriented at some angle δ ∈ [0◦, 90◦]
with the positive x-axis. Since those barriers will not extend throughout the depth
then there will be no uniformity in depth that typically simplify the problem into
2D (as in [11]). A tilted two-dimensional coordinate system (X, Y ) is employed in
the metamaterial region and it can be maintained by rotating counterclockwise the
Cartesian coordinates (x, y), such that X is aligned with the barrier orientation and
Y is perpendicular to the barriers.

An incident water wave of wavenumber k and angular frequency ω prop-
agates from x � −b, in a direction θ0 ∈ (−90◦, 90◦) with the positive x-axis and
interacts with the submerged structure and causes some reflection and transmission
to the problem.

Solutions to the full microstructured problem within the metamaterial re-
gion, can be calculated using Bloch-Floquet theory to the problem involving an infi-
nite periodic medium, to find the velocity potential everywhere in terms of the value
it takes in a fundamental cell of the array. One can then derive an integral equa-
tion over the barrier within that cell whose solution can be numerically calculated.
Evidently this is a complicated approach [65].

Alternatively, using the periodicity of the structure and the underlying as-
sumption that the separation between barriers is small both with respect to the
wavelength and the plate length (kl � 1, l/L � 1), then the region within the
metamaterial can be replaced by an effective medium in which the wave field will
satisfy a homogenised equation. A more general derivation of the one of [11] will
follow. Due to the generality that comes from the barrier thickness and height, new
matching conditions through the x = ±b and z = −d metamaterial interfaces, must
be taken into account.

Three different problems will be analysed into this chapter, each one solved
with a different method. The geometry of those problems differ just by the orientation
of the barriers, i.e. δ = 0◦, δ = 90◦ and δ ∈ (0◦, 90◦). One would question the
necessity of the first two problems as they can be covered in the general case of
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Figure 3.1: Geometry of the submerged metamaterial made of tilted thick barriers.

The incident direction θ0 and the barrier orientation δ are measured counterclockwise

from the positive x-axis. In the figure on the left, a negative value of δ was chosen

and on the right a positive one.

δ ∈ [0◦, 90◦]. The issue with starting directly from an angle δ ∈ (0◦, 90◦), is that the
matching conditions of the wave across the top interface of the metamaterial, will
produce a dispersion relation whose roots (that give important information about the
waves within |x| < b) lie on the complex plane but off the real and imaginary axes.
Therefore, the 2D Newton’s method will be used, which is applicable to functions of
two variables, like f(x+iy) for real x, y (see equation (3.2.73)). This method requires
initial guesses for each root position which must be relatively close to the roots. But
there will be no way to make a good initial guess for the approximated position of
each root of the complicated dispersion relation. However, when δ is 0◦ or 90◦, those
roots lie on the axes and they can be captured very efficiently using the bisection
method on small intervals of those axes (which is applicable on 1D functions like f(x)
or f(iy) with real x, y). Thus, if the dispersion roots for an acute δ are required,
the numerical code will first capture the δ = 0◦ roots and then by shifting δ from 0◦

to the desired angle in small intervals, it will use 2D Newton’s method in each step,
with initial guesses the roots of the previous δ-iteration. Without loss of generality,
one could capture the δ = 90◦ roots first, and then shift δ at small intervals from
90◦ down to the required angle. The difference is that the dispersion relation in the
initial case of δ = 90◦ has a simpler form and its roots can be captured easier as
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they lie in certain known intervals. Also, it is worth noting that when the barriers
are aligned with the y-axis (δ = 90◦) a different approach is taken into account when
it comes to the wave matching across x = ±b, compared to the other orientations.
This method involves solutions to integral equations using variational principles and
the Galerkin method [66]. In that case (δ = 90◦), when the incident wave arrives at
the first barrier at x = −b, it would “feel” a rigid step. Such problems are solved
using the Galerkin method and this is the technique that will be adopted in that
case.

Then, the same problem will be solved in the shallow water regime allowing
comparisons with the literature discussed in the beginning of this section (barrier
metamaterial in the shallow water regime). The simplification that typically occurs
under the shallow water assumption (equation becoming independent of the verti-
cal coordinate), allows us to make the generality of spatially varying metamaterial
interfaces. Starting from first principles of the 3D problem, a coordinate transfor-
mation will be followed such that the coordinate in the direction perpendicular to
the barriers consists of a macroscale and a microscale (due to the local effects of
the closely spaced barriers that might occur). Then a mixed perturbation analysis
over three small parameters will be carried out - water shallowness, barrier spac-
ing to wavelength ratio and surface amplitude to depth ratio. The first two will
be coupled together through some particular relation so that the barrier separation
is much smaller than the depth. It will turn out that at leading order the result
will be the standard shallow water equation (over a slowly varying depth), but now
the depth will be replaced by a diagonal 2× 2 tensor (of rank 2) with elements the
effective depths for waves travelling parallel and perpendicular to the barriers. This
is a typical result according to the literature, but the two diagonal elements differ
from the ones of [1][13][16]. One reason for that is because the theory used in this
thesis is based on the assumption of closely spaced barriers. Further differences and
numerical comparisons will be discussed later through the chapter.

Then, using as starting point the fact that the depth in the shallow water
equation becomes a diagonal tensor in the presence of a metamaterial, some new
effective depths in the directions parallel and perpendicular to the barriers are de-
rived starting from 3D linear theory. This is a different approach than the model
derived from first principles. It turns out that the effective depth in the direction
perpendicular to the barriers is the same as the one of the derived model described
in the previous paragraph. However, the effective depth in the direction parallel to
the barriers will be slightly different than the one before. Algebraic and numerical
comparisons between the two models will be discussed later.
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3.2 Scattering problems using full linear theory

3.2.1 Effective medium equations

In this section, the wave governing equation describing the metamaterial medium
will be derived. Also, the matching conditions of the wave across any interface of the
metamaterial will be employed. This is similar to the work of [11] but the barriers
now cover a portion of the fluid’s depth and a non-zero barrier thickness fraction θ
is allowed.

To derive the effective equation within the medium shown in figure 3.1,
we consider the region far enough from the metamaterial boundaries so that we
can assume there is no influence from the edges. The tilted orthogonal coordinates
(X, Y ) are employed within the structure, such that X is aligned with the barrier
orientation and they are related to (x, y) via

(
X
Y

)
=

(
cos δ sin δ
− sin δ cos δ

)(
x
y

)
. (3.2.1)

Therefore under this coordinate transformation, the Laplace equation and the no
flow condition through the flat bed found in (2.2.10) to be satisfied by the time-
independent potential, become

(
∂XX + ∂Y Y + ∂zz

)
φ(X, Y, z) = 0,

φY = 0 on Y − Yn = lθ, −L < X − (lθ + Yn) tan δ < L, z ∈ (−h,−d),

and on Y − Yn = l, −L < X − (l + Yn) tan δ < L, z ∈ (−h,−d),

φz = 0 on z = −h,

(3.2.2)

where now the depth at z = −h is assumed to be constant, with L = bsecδ and
Yn = nl, for n ∈ Z, where n stands for the nth channel. The remaining equations
represent the no flow through the vertical faces of the barriers and the sea bed.
Letting ε = l/L � 1 with kL ∼ O(1) (so that kl = εkL ∼ O(ε) � 1), then under
the transformation X = Yn tan δ + LX ′, Y = Yn + lY ′ and z = Lz′, equation (3.2.2)
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becomes

(
ε2∂X′X′ + ∂Y ′Y ′ + ε2∂z′z′

)
φn = 0,

∂Y ′φn = 0 on Y ′ = θ, −1 < X ′ − εθ tan δ < 1, z′ ∈ (−h′,−d′),
and on Y ′ = 1, −1 < X ′ − ε tan δ < 1, z′ ∈ (−h′,−d′),

∂z′φn = 0 on z′ = −h′,

(3.2.3)

where (h, d) = L(h′, d′) and φ(X, Y, z) = φn(X ′, Y ′, z′) is the potential in the nth

channel. In the second equation above (no flow through the vertical faces of the
barriers), ε can be neglected from the range of X ′. Thus, since there are only even
powers of ε in (3.2.3) after this assumption, then by expanding the potential φn ≈
φ

(0)
n + ε2φ

(1)
n , the leading order O(ε0) gives

φ(0)
n ≡ φ(0)

n (X ′, z′) with ∂z′φ
(0)
n = 0 at z′ = −h′. (3.2.4)

This is a standard result in multiscale asymptotic expansions - the leading order
terms are typically independent of the microscale Y [67]. Proceeding to the next
order O(ε2) of (3.2.3), the following yields

∂Y ′Y ′φ
(1)
n +

(
∂X′X′ + ∂z′z′

)
φ(0)
n = 0 with ∂Y ′φ

(1)
n = 0 on Y ′ = θ, 1. (3.2.5)

Integrating the latter result in θ < Y ′ < 1 and using the boundary condition of φ
(1)
n

on Y ′ = θ, 1, then

(
∂X′X′ + ∂z′z′

)
φ(0)
n (X ′, z′) = 0 with ∂z′φ

(0)
n = 0 at z′ = −h′, (3.2.6)

which is what was expected on physical grounds - the waves at leading order (ne-
glecting O(ε2)) are confined to propagate only in the direction parallel to the barriers
and the amplitudes in different channels are independent. [11] assumed that these
independent amplitudes (call them Cn), can be represented as discrete evaluations of
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continuous functions of the macroscale coordinate (replace Cn by C(Yn) where C(Y )
is continuous). This approximation was justified by [22] when comparing the solution
of the continuum model with the exact solution (using boundary element method).
This means writing Cn = C(Yn) and consequently when d > 0 (barriers covering a
portion of the fluid’s depth) then C(Yn) = C(Y ) by assuming that the smoothness
of the wave field just above the structure forces the smoothness of the “field” within
the homogeneous effective medium. Then, by writing φ

(0)
n ≈ φn (to leading order) in

(3.2.6), going back to (X, Y, z) coordinates and using the assumption on the ampli-
tude’s Y -variation described above, then the homogeneous equation in the effective
medium becomes (

∂XX + ∂zz

)
φ(X, Y, z) = 0. (3.2.7)

Now we have to deal with the matching conditions across the metamate-
rial interfaces. In [11] (same problem but for thin plates that extend throughout
the depth), it was shown that the leading order (in the small parameter) condi-
tions, matching solutions inside the plate array to the domain outside was the local
matching of pressure and flux i.e. φ(−b−, y, z) = φn(−L+, Y, z) and φx(−b−, y, z) =
cos δ∂Xφn(−L+, Y, z), where φn is the potential inside the nth channel (expressed in
the coordinate system of figure 3.1 and in the language used in this section). These
conditions were derived by solving for the potential in two regions - in the thin rect-
angular strip parallel to the barriers within a single channel and the thin rectangular
strip parallel to the x-axis that is attached to the channel opening (Bloch-Floquet
theory was used for the potential across the two long sides of the strip). Then, using
the equations satisfied by the potential within the triangular region that connect
those strips and application of the Green’s identity, the potential and normal mass
flux matching specified before, were derived. Finally, since the metamaterial occupies
a homogeneous medium, then these matching conditions can be assumed that they
can be imposed continuously throughout the interface (not only at a single channel
opening).

Now since in our case a barrier thickness is included, then a factor of (1−θ)
must be introduced to the flux within the narrow channel. Therefore, starting from
the top horizontal interface, by concentrating only in the “unit cell” again, it can be
seen that the fluxes just outside and inside are lφz and l(1 − θ)φz to leading order
respectively. Now applying the same idea onto the vertical interfaces at x = ±b, the
barrier orientation must be taken into account. Thus, the fluxes just outside and
inside those interfaces are lsecδφx and l(1 − θ)φX respectively. Thus, the matching
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conditions will be

φ
∣∣
z=−d+ = φ

∣∣
z=−d− and φz

∣∣
z=−d+ = (1− θ)φz

∣∣
z=−d− in |x| < b,

φ
∣∣
x=±b± = φ

∣∣
x=±b∓ in z ∈ (−h, 0),

φx
∣∣
x=±b± =

{
φx
∣∣
x=±b∓ , z ∈ (−d, 0),

(1− θ) cos δφX
∣∣
x=±b∓ , z ∈ (−h,−d),

(3.2.8)

using the same idea used in [11] - extending the condition throughout the ho-
mogenised medium. A formal derivation of these matching conditions in the shallow
water regime, using matched asymptotic expansions will follow in section 3.3.

Problems of this type, can be simplified even further. Although these prob-
lems are 3D due to vertical non-uniformity in the presence of the metamaterial, the
y coordinate dependence can be factored out under some reasonable assumptions.
The model in the regions outside the submerged structure, can be simplified using
that the y variation of the incident wave can be separated from the propagating
field (factored out) due to the constant cross-sections in the y direction within those
regions. Therefore since the incident wave that propagates from x� −b towards the
structure is of the form of φinc(x, y, z) = eiβxeiαyψ0(z), with β = k cos θ0, α = k sin θ0

and ψ0(z) (specified later) that satisfies the surface condition ψ′0(0) = Kψ0(0) and
the flat-bed condition ψ′0(−h) = 0 coming from (2.2.10), then the whole response
field can be assumed to have its y variation separated through eiαy as the incident
wave drives the total motion of the scattering field. Now since within the metamate-
rial structure the wave field was shown to satisfy a homogeneous effective equation,
then the cross-section in the y direction is assumed to be constant again. Therefore
the y variation of the field within that region can be assumed to be also eiαy, to
be compatible with the forcing of the incident wave outside that region. That is to
say that the total wave field is compatible with the variation in y of the incident
wave. Thus, in the simplification of (2.2.9), y can be dropped as well by arguing
that φ(x, y, z) can be replaced by eiαyφ(x, z). Therefore, the analogue of (2.2.10) in
the y-independent domain is

(∇2 − α2)φ(x, z) = 0,

φz = 0 on z = −h,
φz = Kφ on z = 0,

(3.2.9)
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which can be applied to the problem involving any barrier orientation (the invariance
of the geometry in the y direction holds for any δ).

Also, the problem must be supplied with a far field-condition. Using the
idea of single scattered wave in x < −b and x > b, described above, then

φ(x, z) ∼

{
φinc(x, z) +Rφinc(−x, z), x→ −∞,
Tφinc(x, z), x→∞,

(3.2.10)

where now φinc(x, z) = eiβxψ0(z) and R, T are the reflection and transmission coef-
ficients which they satisfy |R|2 + |T |2 = 1 (conservation of energy).

3.2.2 Barriers normal to the side interfaces

By inspection of figure 3.1, one could see that when δ = 0◦ and δ = 90◦ the geometry
of the problem becomes symmetric about the yz-plane. Therefore problems with
such symmetric structural geometries, like the one solved in this section (δ = 0◦),
can be decomposed into two easier problems to solve [68][69]. First, we define the
following velocity potentials as

φs(x, z) = φ(x, z) + φ(−x, z), φa(x, z) = φ(x, z)− φ(−x, z), (3.2.11)

where the superscripts s, a stand for the symmetric and antisymmetric potential. It
follows that φs,a satisfy the same governing equations and boundary conditions as
the actual potential φ. This was expected as the geometry is symmetric about x = 0.
Further, it can be easily shown that

φs(x, z) = φs(−x, z), φa(x, z) = −φa(−x, z), (3.2.12)

which implies that φs is even and φa is odd. Also since φ and φx are assumed to be
continuous at x = 0, it follows that

φsx(0, z) = 0, φa(0, z) = 0. (3.2.13)
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It is therefore sufficient to consider the problems for φs,a only in x > 0 (or x < 0)
supplemented by (3.2.13). Also (3.2.11), implies that

φ(x, z) =
1

2

[
φs(x, z) + φa(x, z)

]
, φ(−x, z) =

1

2

[
φs(x, z)− φa(x, z)

]
, (3.2.14)

which provides the total potential in x > 0 and x < 0 respectively, in terms of φs,a

only in x > 0 (or x < 0).
Therefore, back to the scattering problem when the barriers are aligned

the x-axis (δ = 0◦), then the four equations of (3.2.8) will give us the coupled
system of equations for the four sets of unknowns - two sets of Fourier coefficients in
|x| < b and one set for each scattered wave (reflection and transmission). This will
be very complicated to solve. Instead, by the yz-plane symmetry of the problem,
the potential can be decomposed into symmetric and antisymmetric problems (even
and odd functions in x) and be solved only in the semi-infinite domain x < 0. Thus,
the two problems in the semi-infinite domain x < 0, translate to

(∇2 − α2)φs,a(x, z) = 0, φs,az (x,−h) = 0, φs,az (x, 0) = Kφs,a(x, 0),

φs,a(x, z) ∼ φs,ainc(x, z) +Rs,aφs,ainc(−x, z) as x→ −∞,
(3.2.15)

for the region outside the metamaterial, with φs,ainc(x, z) = φinc(x, z) (the factor of
1/2 can be neglected without the loss of generality as the governing equation and
its boundary conditions are linear). This decomposition would not be possible if the
geometry was not symmetric. This is because according to the decomposition of the
potential, the boundary conditions in x > 0 and x < 0 must be the same in order
to be satisfied by φ(x, z) and φ(−x, z) simultaneously. The differential equation
and boundary conditions satisfied by φ, will be the same for φs,a most of the times
since all the x-derivatives are typically of even order (zeroth, second or sometimes
fourth order) and so φ(±x, z) remains invariant under those operators. Note that
in the semi-infinite problems there are only reflection coefficients (Rs and Ra) which
according to (3.2.10) are related to the original scattering coefficients by

R =
Rs +Ra

2
, T =

Rs −Ra

2
, (3.2.16)
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by carrying out a simple algebra.
The effective medium equation within the metamaterial, specified in (3.2.7),

becomes (
∂xx + ∂zz

)
φs,a(x, z) = 0, (3.2.17)

by going back to Cartesian coordinates, dropping y-dependence through eiαy and
substituting δ = 0◦. The corresponding matching conditions across the interfaces
from (3.2.8), are

φs,a
∣∣
z=−d+ = φs,a

∣∣
z=−d− and φs,az

∣∣
z=−d+ = (1− θ)φs,az

∣∣
z=−d− in |x| < b,

φs,a
∣∣
x=±b± = φs,a

∣∣
x=±b∓ in z ∈ (−h, 0),

φs,ax
∣∣
x=±b± =

{
φs,ax
∣∣
x=±b∓ , z ∈ (−d, 0),

(1− θ)φs,ax
∣∣
x=±b∓ , z ∈ (−h,−d).

(3.2.18)

The two semi-infinite boundary-value problems, are now supplied with all the infor-
mation needed from equations (3.2.15) to (3.2.18). The total wave in x < −b is com-
prised of the incident and response wave. The incident wave φs,ainc(x, z) = eiβxψ0(z)
satisfies all the equalities of (3.2.15) and the response wave can be found by sepa-
rating variables in the reduced Laplace equation. Thus,

− Zs,a(z)′′

Zs,a(z)
= −κ2 with Zs,a(−h)′ = 0 and Zs,a(0)′ = KZs,a(0), (3.2.19)

Xs,a(x)′′ − α2Xs,a(x)

Xs,a(x)
= −κ2 with Xs,a(x) ∼ Rs,ae−iβx as x→ −∞, (3.2.20)

where −κ2 is the separation constant. Solving (3.2.19) and applying the boundary
condition on the sea bed, then the z variation of the response wave is Zs,a(z) =
As,a cosh[κ(z + h)]. The unknown κ can be found by the surface condition to satisfy
κ tanh(κh) = K (water wave dispersion relation). The only real solutions to this
dispersion relation are ±k and the infinite non-real solutions lie on the imaginary
axis (symmetric about zero as the relation is even). Those roots may be called ±kn
for n ∈ N0, where k0 = k and kn = iξn with ξn ∈ R>0, for all n ∈ N. In this thesis,
the set of natural numbers N is defined to be {1, 2, 3, ...}, i.e. excluding zero and thus
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N0 ≡ N ∪ {0}. The non-existence of complex roots is a well-known result [70][71].
Solving the differential equation in (3.2.20), with κ replaced by kn, then

Xs,a
n (x) = as,an e−iγnx + bs,an eiγnx for γn =

√
k2
n − α2, (3.2.21)

where it can be verified that γ0 = β and γn = i
√
ξ2
n + α2 for n ∈ N. Since the

response wave must travel only in the negative x direction and must be bounded as
x→ −∞, then bs,an = 0 for all n ∈ N0. Combining the information given in the last
three equations, then the total wave potential in x < −b, will be

φs,a(x, z) = eiβxψ0(z) +
∞∑
n=0

as,an eβn(x+b)ψn(z),

ψn(z) = N−1/2
n cosh[kn(z + h)],

with Nn =
1

2
+

sinh(2knh)

4knh
, βn =

√
ξ2
n + α2,

(3.2.22)

where as,an was rescaled by eβnb for numerical purposes, β0 = −iβ, as,a0 = Rs,aeiβb and

N
−1/2
n (the normalised factor of the orthogonal eigenfunctions ψn ∈ R), was chosen

that way so that
0ˆ

−h

ψn(z)ψm(z)dz = hδnm, (3.2.23)

where δnm is the Kronecker delta function that takes the value of 1 if n = m and
0 otherwise. This is a standard representation for the depth eigenfunctions over
a constant bed [26]. Problems of this type that are supported with self-adjoint
boundary conditions (Sturm–Liouville problem of equation (3.2.19)), are guaranteed
to have an unbounded sequence of eigenvalues (wavenumbers kn) each associated with
a normalised eigenfunction (ψn defined in (3.2.22)) from Sturm–Liouville theory. The
normalised eigenfunctions are also guaranteed to form an orthonormal basis under an
inner product. The sum in (3.2.22) corresponds to a single reflective wave (n = 0)
and to an infinite sequence of decaying or evanescent modes (n > 0), which are
included to describe the fluid motion near the metamaterial. Normally the sum,
should be over all the integers. However, the symmetry of βn and ψn about kn allows
this simplification, due to the symmetry of the dispersion relation over a flat bed.
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Now for the potential φ̂s,a(x, z) in x ∈ (−b, 0), the regions within and above
the metamaterial will be considered separately.

(∇2 − α2)φ̂s,a(x, z) = 0, φ̂s,az (x, 0) = Kφ̂s,a(x, 0) in z ∈ Lg, (3.2.24)

(
∂xx + ∂zz

)
φ̂s,a(x, z) = 0, φ̂s,az (x,−h) = 0 in z ∈ Lb, (3.2.25)

with the conditions (3.2.13) on x = 0, be satisfied throughout the depth. The
depth partitions Lg = (−d, 0) and Lb = (−h,−d) stand for “gap” and “barrier”
respectively. This is a notation owed to [72], from problems involving scattering
by thin barriers throughout the depth with gaps. Also the first two equations of
(3.2.18) must be considered, as the potential must be matched across the horizontal
interface of the metamaterial. Proceeding to the separation of variables in (3.2.24)
and (3.2.25), then

−
Zs,a
g (z)′′ − α2Zs,a

g (z)

Zs,a
g (z)

= −µ2, Zs,a
g (0)′ = KZs,a

g (0),

−Z
s,a
b (z)′′

Zs,a
b (z)

= −µ2, Zs,a
b (−h)′ = 0,

(3.2.26)

Xs,a(x)′′

Xs,a(x)
= −µ2, Xs(0)′ = Xa(0) = 0, (3.2.27)

where the subscripts g and b in the depth functions stand for the regions Lg and
Lb respectively within x ∈ (−b, 0). Now the matching conditions through the hor-
izontal interface of the metamaterial read Zs,a

g (−d) = Zs,a
b (−d) and Zs,a

g (−d)′ =
(1 − θ)Zs,a

b (−d)′. The solutions of (3.2.26), (3.2.27), after the application of their
boundary conditions are

Zs,a
g (z) = As,ag

[
cosh

(
z
√
α2 + µ2

)
+

K√
α2 + µ2

sinh
(
z
√
α2 + µ2

)]
,

Zs,a
b (z) = As,ab cosh[µ(z + h)],

(3.2.28)
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Xs(x) = as
cos(µx)

cos(µb)
, Xa(x) = aa

sin(µx)

sin(µb)
, (3.2.29)

where the multiplicative constants in the functions of x were chosen like that to
avoid numerical instabilities. The unknown coefficients µ can be found by applying
the matching conditions at z = −d on the depth functions. This is because if the
two matching conditions are applied to find As,ag , As,ab , then it yields that

As,ag

[
cosh

(
d
√
α2 + µ2

)
− K√

α2 + µ2
sinh

(
d
√
α2 + µ2

)]
= As,ab cosh

[
µ(h− d)

]
,

As,ag

[
K cosh

(
d
√
α2 + µ2

)
−
√
α2 + µ2 sinh

(
d
√
α2 + µ2

)]
= As,ab µ(1− θ) sinh

[
µ(h− d)

]
.

(3.2.30)
Therefore for non-zero z-variations (As,ag , As,ab 6= 0), the determinant of the linear
system in (3.2.30) must be zero. This gives rise to the dispersion relation

µ(1− θ) tanh
[
µ(h− d)

]{K tanh
(
d
√
α2 + µ2)√

α2 + µ2
− 1

}
=
√
α2 + µ2 tanh

(
d
√
α2 + µ2

)
−K.

(3.2.31)

It is worth noting that in the case of normal incidence and thin plates (θ0 = 0◦ and
θ = 0), the equation above transforms to z tanh(zh) = K which is what was expected
on physical grounds i.e., the wave travels through the thin plates uneffected. The
roots of (3.2.31) (call them ±µn) are located only on the real and imaginary axes in
the same manner as ±kn, with µ0 ∈ R>0 and µn = iχn with χn ∈ R>0 for n ∈ N (see
discussion in Appendix A.1).

Therefore, the depth functions in x ∈ (−b, 0) are

ψ̂n(z) = N̂−1/2
n

{
cosh(rnz) + K

rn
sinh(rnz), z ∈ Lg,

Dn cosh[µn(z + h)], z ∈ Lb,

where Dn =
rn cosh(rnd)−K sinh(rnd)

rn cosh
[
µn(h− d)

] , rn =
√
α2 + µ2

n,

(3.2.32)
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where Dn was chosen by setting As,ag = 1 into the first equation of (3.2.30) and the

normalisation factor N̂
−1/2
n was chosen as

N̂n =
d

h

[
1

2
+

sinh(2rnd)

4rnd

]
− K2d

r2
nh

[
1

2
− sinh(2rnd)

4rnd

]
− K

r2
nh

sinh2(rnd)

+
h− d
h

(1− θ)D2
n

[
1

2
+

sinh
(
2µn(h− d)

)
4µn(h− d)

]
,

(3.2.33)

so that the eigenfunctions satisfy an orthogonality relation, specified later. Also,
one can observe that µn represent the wavenumbers of the propagated modes in the
metamaterial region. Note that ψ̂n ∈ R for all n ∈ N0 (using that N̂n and Dn are
real as well) and it is independent of the superscripts s, a, as the depth functions will
have the same form in the symmetric and antisymmetric problem. Also, it will be
shown in the Appendix B.1 that these eigenfunctions are orthogonal but not with
respect to the inner product defined in (3.2.23). This is due to the fact that this
inner product involves an integral over (−h, 0) and there is a gradient discontinuity
of the eigenfunctions at z = −d (according to the matching conditions). Thus the
orthogonality relation of the eigenfunctions in |x| < b is

〈ψ̂n, ψ̂m〉 ≡
0ˆ

−d

ψ̂n(z)ψ̂m(z)dz + (1− θ)
−dˆ

−h

ψ̂n(z)ψ̂m(z)dz = hδnm, (3.2.34)

due to the choice of the normalisation factor in (3.2.33).
Thus, the general solution of the potential in x ∈ (−b, 0) is

φ̂s(x, z) =
∞∑
n=0

âsn
cos(µnx)

cos(µnb)
ψ̂n(z), φ̂a(x, z) =

∞∑
n=0

âan
sin(µnx)

sin(µnb)
ψ̂n(z). (3.2.35)

Again, as in (3.2.22), the solution is written over a semi-infinite sum from the sym-
metry of µn. Also, a key feature of this problem is that the y-independent potentials
are symmetric in θ0 (and therefore, so does the solution).

The final step of this problem is the matching of the potential across x =
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−b as stated in the last two equations of (3.2.18). These two conditions create a
coupled linear system for as,an and âs,an after taking an inner product (either (3.2.23)
or (3.2.34)). Therefore, by applying the inner product defined in (3.2.23) on the
matching conditions, then the result in vectorial form is

e−iβbJ + as,a = As,aâs,a, −e−iβbJ + as,a = Bs,aâs,a,

with Jn = δn0, Asnm = Gnm +Bnm, Aanm = −Asnm,

Bs
nm =

µm tan(µmb)

βn

(
Gnm + (1− θ)Bnm

)
,

Ba
nm =

µm cot(µmb)

βn

(
Gnm + (1− θ)Bnm

)
,

Gnm =
1

h

0ˆ

−d

ψn(z)ψ̂m(z)dz, Bnm =
1

h

−dˆ

−h

ψn(z)ψ̂m(z)dz,

(3.2.36)

where As,anm and Bs,a
nm come by integrating throughout the depth, the pressure and

normal flux matching conditions (last two equations of (3.2.18)). The complicated
integralsGnm, Bnm (standing from integral over the “gap” and “barrier” respectively)
are calculated analytically in the Appendix B.3 as

Gnm =
N
−1/2
n N̂

−1/2
n Dm

(k2
n − r2

m)h

{
(1− θ)µm cosh

[
kn(h− d)

]
sinh

[
µm(h− d)

]
−kn sinh

[
kn(h− d)

]
cosh

[
µm(h− d)

]}
,

Bnm =
N
−1/2
n N̂

−1/2
n Dm

(k2
n − µ2

m)h

{
kn sinh

[
kn(h− d)

]
cosh

[
µm(h− d)

]
−µm cosh

[
kn(h− d)

]
sinh

[
µm(h− d)

]}
.

(3.2.37)
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Elimination between as,a and âs,a from the system above, results to

âs,a = 2e−iβb(As,a −Bs,a)−1J,

as,a = e−iβb
[
2As,a(As,a −Bs,a)−1 − I

]
J,

(3.2.38)

where I is the identity matrix, while using R = (Rs + Ra)/2 and T = (Rs − Ra)/2
from (3.2.16) (the reflection and transmission coefficients) with Rs,a = as,a0 e−iβb then

R =
1

2
e−iβb(as0 + aa0), T =

1

2
e−iβb(as0 − aa0). (3.2.39)

Now, an alternative way to get the unknown Fourier coefficients (3.2.38), is
to use the orthogonality of ψ̂n, namely (3.2.34). Therefore, by taking the matching
conditions at x = −b (continuity of φ and normal flux), multiplying them by ψ̂m now
and applying the (3.2.34) inner product in the first and the (3.2.23) in the second,
then

âs,a = e−iβbĴs,a1 + Âs,aas,a, âs,a = −e−iβbĴs,a2 + B̂s,aas,a,

with Âsnm = Gmn + (1− θ)Bmn, Âanm = −Âsnm, Ĵs,a1,n = Âs,an0 ,

B̂s
nm = βm(Gmn +Bmn) cot(µnb)/µn,

B̂a
nm = βm(Gmn +Bmn) tan(µnb)/µn, Ĵs,a2,n = B̂s,a

n0 ,

(3.2.40)

where the expressions of Gnm and Bnm can be found from (3.2.37). Through elim-
ination of the two equations above, the unknown scattering coefficients in vectorial
form are

as,a = e−iβb
(
B̂s,a − Âs,a

)−1(
Ĵs,a1 + Ĵs,a2

)
,

âs,a = e−iβb

[
Âs,a

(
B̂s,a − Âs,a

)−1(
Ĵs,a1 + Ĵs,a2

)
+ Ĵs,a1

]
.

(3.2.41)
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Note that this method requires a matrix inversion to find as,a directly (which is the
main goal because it includes the reflection and transmission coefficients) while the
previous method required an inversion to find âs,a and then using this approxima-
tion to get as,a. Although the two methods must be equivalent, since there will be
truncation of infinite systems of equations in numerical solutions we expect small
differences in computed results which we shall compare later.

The scattering coefficients to the physical problem (R and T ) can be found
again from (3.2.39).

3.2.3 Numerical results

In this section, numerical results for the problem involving the submerged meta-
material made of vertical thick barriers oriented normally to the side interfaces are
considered. The numerical strategy is to take the general solution of the wave field
found in (3.2.22) and (3.2.35) and find their unknown Fourier coefficients through
the linear truncated systems (3.2.36) or (3.2.40), depending on which eigenfunction
orthogonality is used (ψn or ψ̂n orthogonality).

N |R| |T | pe fe
8 0.00783954889 0.9999692702643 5.6×10−6 4.1×10−6

16 0.xxxxxx46140 0.xxxxxxxx10502 1.0×10−6 2.0×10−6

32 0.xxxxxxx4144 0.xxxxxxxx11067 8.5×10−7 1.1×10−6

64 0.xxxxxxx3597 0.xxxxxxxxxx497 6.2×10−7 5.2×10−7

128 0.xxxxxxxx461 0.xxxxxxxxxx603 3.7×10−7 2.7×10−7

256 0.xxxxxxxxx26 0.xxxxxxxxxxx31 9.3×10−8 1.4×10−7

512 0.xxxxxxxxx17 0.xxxxxxxxxxxx7 7.6×10−8 7.6×10−8

1024 0.xxxxxxxxxx5 0.xxxxxxxxxxxx9 5.1×10−8 4.6×10−8

Table 3.1: Scattering coefficients convergence and matching error against truncation
size N using the orthogonality of ψn. The geometrical parameters are kb = 0.1,
θ0 = 30◦, d/h = 0.6, b/h = 1 and θ = 0.1.

Starting from the comparison of two methods, we consider the table 3.1. It
can be verified that N = 1024 gives an accuracy of 10 decimal places to the scattering
coefficients |R| and |T |. The last two columns of the table represent the error of the
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pressure and flux matching conditions at x = −b, namely

pe ≡
1

M + 1

M∑
j=0

∣∣φ(−b, zj)− φ̂(−b, zj)
∣∣2, fe ≡

1

M + 1

M∑
j=0

∣∣φx(−b, zj)− fj∣∣2,
for zj = −0.01jh and fj =

{
φ̂x(−b, zj), zj > −d,
(1− θ)φ̂x(−b, zj), zj ≤ −d,

(3.2.42)
for M = 107. A variety of geometrical choices were tested and the resulting trunca-
tion error was the same. Also, the ψ̂n orthogonality method was not included in the
table as for the same choice of geometrical parameters and truncation, the numbers
were found to be the same with the numbers of the ψn orthogonality method (as
shown in the table). Therefore, from now on the truncation size will be chosen to be
N = 1024 and the ψn orthogonality method will be used as there is no significant
difference between the two methods.
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Figure 3.2: |R| against kb, with d/h = 0.5, b/h = 1 and θ = 0, for incident directions

θ0 = 30◦ (full) and θ0 = 45◦ (dashed).

Moving on to the calculation of |R|, figure 3.2 shows how reflection varies
with the dimensionless parameter kb. The zero-thickness barriers cover 50% of the
depth and their width is twice the depth (2b = 2h). The two curves represent two
different incident directions i.e., θ0 = 30◦ and θ0 = 45◦. Firstly, a common feature of
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this kind of plots is that the larger interaction (as in curve modulation) happens for
smaller kb and it decays as kb increases. This has to do with the penetration of the
motion of the fluid. In the case of long waves (λ/b large or kb small), the energy decay
of the wave from the surface to the bed is small. This can be seen from the fact that
the z variation of a wave travelling over a flat bed looks like cosh[k(z+h)] and so small
k means small decay as z goes from 0 to −h. By the same analogy, large kb (short
waves) corresponds to larger energy decay. This is expected on physical grounds
as the energy in a fluid column decays exponentially away from the surface with an
exponential inversely proportional to wavelength and therefore short waves do not get
affected (significantly) from submerged obstacles to the bed. Also, another typical
characteristic of such plots is that reflection vanishes as kb→ 0. This is because the
equivalent limit λ/b→∞ corresponds to an undisturbed surface. The features of the
reflection modulus found in our problem, can also be found in [68] and [73] where the
scattering problem by a submerged, rigid and horizontal plate is analysed. Moreover,
another typical feature of such plots is that the level of interaction depends on the
direction of the incident wave. It can be seen from figure 3.2 that as the incident
direction approaches the direction of the barriers orientation, then the interaction
is smaller. This is again what was expected, as when θ0 varies from 0◦ to 90◦, the
sliding ability of the wave through the barriers reduces.

Next, the reflection modulus is plotted against the dimensionless parameter
λ/b in figure 3.3. The array size is now larger as d/h = 0.1, b/h = 1 and the
direction of incidence is θ0 = 60◦. The curve shows that the interaction is larger
not only because the incident wave is more oblique than the previous plot, but also
because the barriers are now higher. Actually, the barriers now occupy almost all
the depth (90%). If the barriers were extended throughout the depth (d/h = 0),
then the problem becomes two-dimensional. This problem was solved in [11] for
thin barriers of general orientation. Also, the reflection coefficient here has the same
behaviour under the variation λ/b, as before. More reflection is always expected at
larger wavelengths and the reflection vanishes for λ/b → 0 as the energy decay of
the wave across the depth becomes much larger and so the submerged obstacles do
not have a great effect on the wave. Another key feature of this kind of plots, is that
|R| and |T | have an oscillatory behaviour of a non-constant period as the wavelength
varies. This shift in periodicity is expected from the dispersion relation.

In figure 3.4(i), it can be seen that as kb increases |T | converges to 1 as
expected. Also, as θ increases the scattering coefficients “approach” the solution of
the rigid step problem. Results of indicating the scattering by a submerged rigid
step will be computed in the numerical section of the problem where the barriers are
aligned with the y-axis. We derive those results later, as the metamaterial of the
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Figure 3.3: Variation of |R| with λ/b, for θ0 = 60◦, d/h = 0.1, b/h = 1 and θ = 0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.88

0.9

0.92

0.94

0.96

0.98

1

kb

(i)

|T |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ

(ii)

|R|

|T |

Figure 3.4: (i) |T | against kb, for θ = 0.1 (dashed) and θ = 0.5 (full) with d/h = 0.3,

b/h = 1 and θ0 = 60◦. (ii) |R| (blue) and |T | (red) against θ, for kb = 0.2 (full) and

kb = 1 (dashed) with d/h, b/h and θ0 same as in (i).

next section behaves like a rigid step, not only when θ → 1 but also when θ0 → 0◦

(normal incidence). Also, in the same figure, one can see that even if the array covers
70% of the depth and the angle between the incident wave and the barriers is 60◦, the
transmission is still high. In this problem it is very difficult to drop the local minima
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of |T | while in the metamaterial described in the next section, it will be easier even for
the same array height. This happens from the nature of this particular metamaterial
which has more openings than the metamaterial whose barriers are aligned with the
y-axis i.e. the wave energy escapes the metamaterial from the two side interfaces
and the one top interface while in “y-aligned metamaterial”, only from the top.

In figure 3.4(ii), kb is now fixed to 0.2 (full line) and 1 (dashed line) and θ
now varies in [0, 1] and thus reflection does not go through the origin as happened
at kb → 0. Here it can be seen that the interaction is smaller for larger kb. It
seems that this contradicts the fact discussed in figure 3.2, but it is not. The largest
interaction in figure 3.2, that happens in smaller kb, occur at certain frequencies.
Due to the oscillatory behaviour of the scattering coefficients, there is a possibility
to pick a largest wavenumber that corresponds to a smaller reflection coefficient and
this case is demonstrated in figure 3.4(ii).

Next the surface plot of the elevation ζ(x, y, t) for some t, is considered
in figure 3.5(i) with its cross-section at y = 0 in figure 3.5(ii). The free surface
elevation can be found from the linear dynamic boundary condition at z = 0 in
(2.2.6) namely η(x) = (iω/g)φ(x, 0) for ζ(x, y, t) = <{η(x)eiαye−iωt}. Therefore,
the surface elevation can be found in terms of the complex potential as ζ(x, y, t) =
−(ω/g)={φ(x, 0)eiαye−iωt} where φ can be taken from (3.2.14). The unknown co-
efficients of the symmetric and antisymmetric potential, namely as,a, âs,a, can be
found from (3.2.38). The x and y axes are non-dimensionalised by b so that the
metamaterial covers the “small” region |x/b| < 1.

This kind of results are similar (not the same due to particular barrier
orientation) to the ones of [16]. In x/b > 1, there is a single mode travelling in the
direction of incidence (θ0 = 60◦) and in x/b < −1 there is a periodic pattern of nodes
and antinodes due to multiple interference of the incident mode and the reflected
wave. Also, it is known that within the metamaterial array, the wave is confined
to travel in the x-direction. Therefore, if the barriers covered 100% of the depth
(d→ 0) then within |x/b| < 1, the wave would be confined to travel in the direction
parallel to the barriers. It is also known that if d→ h (short barrier limit), the wave
will be scattered unaffected in the direction of incidence (this can be verified also by
taking this limit in (3.2.31)). Therefore, by the continuity of d, it is expected that
for 0 < d < h, the wave bends at a direction somewhere between the direction of the
barrier orientation and the incident direction. One could also calculate the direction
of the phase speeds of the two waves in |x| < b as θ

(1)
p ≈ 42.41◦ with θ

(2)
p = −θ(1)

p

from the symmetry of the real roots µn of the dispersion relation (3.2.31) - angles
calculated as arctan

[
α/(±µ0)

]
. However, phase speeds say nothing about refraction.

Certain refraction properties will be shown though the wave’s group velocity later
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Figure 3.5: (i) Instantaneous surface elevation and (ii) wave profile at y = 0, for

kb = 0.8, θ0 = 60◦, d/h = 0.1, b/h = 1 and θ = 0.

under the shallow water approximation. The closed-form solution of this simplified
problem, will allow us to define and understand the so-called negative refraction.

Now in figure 3.5(ii), it can be seen that the wave amplitude was almost
halved after passing the metamaterial medium. It can be seen also from here that
when the barriers are aligned with the x-axis, it is very difficult to maintain low
transmission because of the multiple openings of the structure. Even with barriers
that cover 90% of the depth, a structure width which is double the size of the depth
and an oblique incidence, the transmitted wave energy was found to be |T |2 ≈ 68%
of the incident wave energy.
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3.2.4 Barriers parallel to the side interfaces

In this section, the barriers have an orientation of δ = 90◦. Therefore, the barriers
now have infinite length (this can be seen also from L = bsecδ from (3.2.2)) and
they extend uniformly in the y-direction. Also, this problem can be generalised by
assuming that the lower metamaterial interface is located at z = −c for 0 < d < c, h,
instead of z = −h. In the case of c < h the metamaterial sits on a flat step of height
h − c and in the case of c > h, the barriers of height c − d are sunken in the sea
bed by a distance of c− h. This generalisation can be assumed without making the
algebra harder, because the incident wave has no direct contact through x = −b,
z ∈ (−h,−d) with the wave within the metamaterial, in contrast to the previous
problem. Since the first barrier located at x = −b acts like a wall, then only through
z = −d, |x| < b (vertical interface) the wave inside and outside the metamaterial
exchange information. Therefore, the alternating depths within |x| < b can be set
to be z = −d and z = −c instead of z = −h. It is not straightforward to make this

x

z
φinc

x = −b x = b

d

c
h

Figure 3.6: Geometry of the metamaterial for δ = 90◦ with alternating interfaces at

z = −d,−c. The lower interface could be below the sea bed level (0 < d < c, h).

generalisation to any other barrier orientation (δ 6= 90◦) as the matching through
the vertical interfaces (x = ±b) must be separated in three cases instead of two,
depending on the vertical level.

This problem is similar to the one of [1][16], as the alternating depths within
the metamaterial can be different from the depth outside. The difference lies upon
the fluid’s shallowness assumption. The geometry of the problem is symmetric about
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the yz-plane, even for this barrier orientation and this allows the decomposition into
symmetric and antisymmetric problems specified in equations (3.2.13) to (3.2.15).
Again, due to the time-harmonicity of the problem and the global y-compatibility
with the incident wave, the total wave field is assumed to be compatible with the t
and y variation of the incident wave. Therefore, the solution to the reduced Laplace
equation in (3.2.15) is again

φs,a(x, z) =
(
eiβx +Rs,ae−iβx

)
ψ0(z) +

∞∑
n=1

as,an eβn(x+b)ψn(z) in x < −b, (3.2.43)

using separation of variables, where ψn, βn are defined in (3.2.22).
Within x ∈ (−b, 0), the governing equation for the potential will be different

in the regions Lg and Lb where now Lg = (−d, 0) and Lb = (−c,−d). In Lg, the model
will be the reduced Laplacian equation combined with the free surface condition (all
specified in (3.2.24)) and in Lb according to (3.2.7), the effective medium equation
within the metamaterial becomes

(
∂zz − α2

)
φ̂s,a(x, z) = 0, (3.2.44)

by dropping y and t dependence again through the wave field proportionality of
eiαye−iωt. This equation is combined with the no flow condition at the sea bed and
a Neumann/Dirichlet condition at x = 0 must be applied throughout the depth for
the symmetric/antisymmetric problem (equation (3.2.13)). By separating variables
in x ∈ (−b, 0) throughout Lg ∪ Lb, it follows that

−
Zs,a
g (z)′′ − α2Zs,a

g (z)

Zg(z)
= −µ2, Zs,a

g (0)′ = KZs,a
g (0),

Zs,a
b (z)′′ = α2Zs,a

b (z), Zs,a
b (−c)′ = 0,

(3.2.45)

X̂s,a(x)′′

X̂s,a(x)
= −µ2, X̂s(0)′ = X̂a(0) = 0, (3.2.46)

where −µ2 is again the separation constant. The solutions to Zs,a
g (z) and Xs,a(x) are
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identical to the ones in (3.2.28) and (3.2.29) and the solution to the depth function
in Lb is

Zs,a
b (z) = As,ab cosh

[
α(z + c)

]
. (3.2.47)

The wavenumbers µ will be different than the ones of the previous problem as the
dispersion relation satisfied by them will not be the same due to the µ-independent
depth function within the barriers, specified in (3.2.47). Also, note that for normal
incidence (θ0 = 0◦), the depth function becomes constant within the barriers sug-
gesting that the vertical velocity (potential gradient) will vanish. This is what was
expected on physical grounds as the fluid is assumed to be incompressible and the
distance between the barriers is much smaller than all the underlying variables of
the problem (wavelength and depth). A wave that propagates in a direction perpen-
dicular to the narrow gap, will have no z variation within the barriers. However, if
it makes a non-zero angle θ0 with the gap, then the difference in phase will create
some vertical fluctuation of the fluid within the metamaterial. Therefore, for normal
incidence the metamaterial acts as a rigid step at a depth z = −d.

Matching the depth functions in the same way as in (3.2.30), then the new
dispersion relation is

α(1− θ) tanh
[
α(c− d)

]{K tanh
(
d
√
α2 + µ2)√

α2 + µ2
− 1

}
=
√
α2 + µ2 tanh

(
d
√
α2 + µ2

)
−K.

(3.2.48)

Those roots (call them ±µn) are shown in the Appendix A.1 to be located only on the
real or imaginary axes of the complex plane as before, with µ0 ∈ R>0 and µn = iχn
with χn ∈ R>0 (n ∈ N). Now the depth functions within x ∈ (−b, 0) are chosen in a
slightly different manner, as

ψ̂n(z) =

N̂
−1/2
n

(
cosh(rnz) + K

rn
sinh(rnz)

)
, z ∈ Lg,

N̂
−1/2
n Dn cosh

[
α(z + c)

]
, z ∈ Lb,

with Dn =
rn cosh(rnd)−K sinh(rnd)

rn cosh[α(c− d)]
,

N̂n =
1

2

(
1− K2

r2
n

)
+

sinh(2rnd)

4rnd

(
1 +

K2

r2
n

)
− K

r2
nd

sinh2(rnd),

(3.2.49)
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where again rn =
√
α2 + µ2

n. Note, that the rigid step behaviour of the metama-
terial described above (when θ0 = 0◦) can be achieved also if θ = 1 or c = d for
any θ0. Geometrically, this translates to letting the filling fraction of the barriers
(metamaterial contrast) to be 100% or the metamaterial interfaces to have the same
level. Algebraically, this can be seen from (3.2.48) as if θ = 1 or c = d, the dispersion
relation becomes rn tanh(rnd) = K, which coincides with the standard water wave
dispersion relation over a flat bed at z = −d. In contrast to the previous problem
(δ = 0◦) now Dn was chosen by setting As,ag = 1 in the first equation of the analogue
of (3.2.30). Note that again the z-variation is independent of the symmetric/an-
tisymmetric problem. The multiplicative constant N̂n ∈ R was chosen that way so
that the orthogonality condition (shown analytically in Appendix B.2) of the depth
eigenfunctions ψ̂n ∈ R becomes

0ˆ

−d

ψ̂n(z)ψ̂m(z)dz = dδnm. (3.2.50)

Finally, the solutions to the potential within x ∈ (−b, 0) and z ∈ Lg ∪ Lb
for each subproblem, are found to be

φ̂s(x, z) = âs0 cos(µ0x)ψ̂0(z) +
∞∑
n=1

âsn
cosh(χnx)

cosh(χnb)
ψ̂n(z),

φ̂a(x, z) = iâa0 sin(µ0x)ψ̂0(z) +
∞∑
n=1

âan
sinh(χnx)

sinh(χnb)
ψ̂n(z),

(3.2.51)

where âs,a0 are rescaled in a way that simplifies the forthcoming algebra a bit. Here,
it can be verified again that the y-independent potentials are even in θ0 from the µn
dispersion relation and thus the scattering coefficients as well.

A very simple and computationally inexpensive variational approach was
used in [72] for the scattering by a single line vertical barriers with gaps. It relies on
using the matching conditions on the interfaces to yield two integral equations of the
first kind for two functions typically related to the unknown horizontal velocity across
the gaps and the pressure difference across the barrier. This follows the principle
adopted by [74]. These integral equations are solved using the Galerkin method,
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specified in [72].
This method can be applied here as it requires the existence of orthogonal

functions in both |x| < b and |x| > b. For example in the next section (arbitrary
oriented barriers), the eigenfunctions will not be orthogonal in |x| < b and thus the
problem can be only solved using mode matching methods. Mode matching could
be used here as well. However the new conditions at x = ±b imply the existence
of a flow over a step-like structure and [72] showed that the Galerkin method (with
orthogonal eigenfunctions) gives more accurate and efficient results. The validity
of this approximation will be verified later by comparing results of the problem in
section 3.2.7 which is solved using mode matching methods. It will be shown that
by taking the limit δ → 90◦ (where δ is the orientation angle of the barriers), the
results converge to the ones of this section.

First, for the symmetric problem, the method starts by defining the follow-
ing functions

φsx(−b, z) = φ̂sx(−b, z) =

{
U s(z), z ∈ Lg,
0, z ∈ Lb,

(3.2.52)

P s(z) = φs(−b, z)− φ̂s(−b, z), (3.2.53)

which they represent the velocity and the pressure jump at the interface x = −b
respectively. Concentrating on the two representations of the velocity function, by
multiplying the first by ψm(z) and integrate throughout the depth and multiplying
the second by ψ̂m(z) and integrate in Lg, then

iβ
(
e−iβb −Rseiβb

)
=

1

h

ˆ

Lg

U s(z)ψ0(z)dz,

βna
s
n =

1

h

ˆ

Lg

U s(z)ψn(z)dz (n ∈ N),

âs0µ0 sin(µ0b) =
1

d

ˆ

Lg

U s(z)ψ̂0(z)dz,

−χnâsn tanh(χnb) =
1

d

ˆ

Lg

U s(z)ψ̂n(z)dz (n ∈ N),

(3.2.54)
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using the orthogonality relations of ψn and ψ̂n specified in (3.2.23), (3.2.50).
It is crucial to understand how the integration “throughout the depth” is

executed in (3.2.54). In the case of c < h the metamaterial sits on a rigid step.
Thus, ψn is defined in (−h, 0) from (3.2.22) and so must ψ̂n. Therefore in the case
of c < h, ψ̂n from (3.2.49) is defined over (−h, 0) by adding an extra case of ψ̂n = 0
in (−h,−c) in its definition (as there is no flow within that region) and the integral
equations above were derived by integrating in (−h, 0). Now in the case of c > h,
the metamaterial is buried in the ground. Therefore, in this case the opposite trick
happens i.e. ψ̂n is defined over (−c, 0) from (3.2.49) and now ψn must be redefined

over (−c, 0). Thus, ψn(z) can be defined to be N
−1/2
n cosh

[
kn(z + h)

]
over (−h, 0)

and ψn = 0 over (−c,−h) so that the integral equations above, come by integrating
in (−c, 0). The result is the same independently of the sign of c− h.

Now concentrating on the pressure jump function specified in (3.2.53), using
the fact that P s(z) = 0 in z ∈ Lg, then

(
e−iβb +Rseiβb

)
ψ0(z) +

∞∑
n=1

asnψn(z)

= âs0 cos(µ0b)ψ̂0(z) +
∞∑
n=1

âsnψ̂n(z) in z ∈ Lg.
(3.2.55)

Eliminating the Fourier coeffiecients inside the sums from (3.2.54), then

−
(
e−iβb +Rseiβb

)
ψ0(z) + âs0 cos(µ0b)ψ̂0(z) =

ˆ

Lg

U s(t)Ks(z, t)dt,

for Ks(z, t) =
∞∑
n=1

[
ψn(z)ψn(t)

βnh
+

ψ̂n(z)ψ̂n(t)

χnd tanh(χnb)

]
.

(3.2.56)

By introducing the functions us1(z) and us2(z) to satisfy 〈us1, Ks〉 = ψ0 and 〈us2, Ks〉 =
ψ̂0 with the inner product defined as 〈f, g〉 ≡

´
Lg
f(t)g(t)dt, then it can be seen

that us1, u
s
2 ∈ R since ψ0, ψ̂0, K

s ∈ R. It is worth noting that Ks is a linear, pos-
itive definite, self-adjoint operator over the inner product discussed above. It can
also be observed that equation (3.2.56) is satisfied by choosing U s(t) = −

(
e−iβb +

Rseiβb
)
us1(t) + âs0 cos(µ0b)u

s
2(t). Therefore, by substituting this particular choice of
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U s in the first and third equation of (3.2.54), then

iβh
(
e−iβb −Rseiβb

)
= −

(
e−iβb +Rseiβb

)
〈us1, ψ0〉+ âs0 cos(µ0b)〈us2, ψ0〉,

âs0µ0d sin(µ0b) = −
(
e−iβb +Rseiβb

)
〈us1, ψ̂0〉+ âs0 cos(µ0b)〈us2, ψ̂0〉.

(3.2.57)

Next, âs0 can be eliminated in the system above, by solving the second equation for
âs0 cos(µ0b) and substituting it into the first equation. Therefore,

iβh
(
e−iβb −Rseiβb

)
e−iβb +Rseiβb

=
〈us1, ψ̂0〉〈us2, ψ0〉

〈us2, ψ̂0〉 − µ0d tan(µ0b)
− 〈us1, ψ0〉 ≡ As ∈ R , (3.2.58)

where As is real since all the inner products in (3.2.58) are real. By rearranging,
then

Rs = e−2iβb iβh− As

iβh+ As
, (3.2.59)

leaving the only unknown to the scattering problem to be As. One of the advantages
of this method is that conservation of energy is automatically satisfied. This can be
seen by using the fact that As is real and so |Rs| = 1. Note that once Rs is calculated
from (3.2.59) then all the other unknown Fourier coefficients to the problem can be
found. For example, âs0 can be found from the system (3.2.57) and asn and âsn from
(3.2.55) by using the orthogonality of ψn, ψ̂n accordingly. However, the interest of
this section lies upon the reflection coefficient Rs only.

Now it remains to choose the unknown functions us1 and us2 appropriately.
This is done using the Galerkin’s method which involves an integral equation Ku = f
where K is an integral operator (equation of the (3.2.56) form). The approximate
solution u can be expanded into some finite orthogonal basis un. The idea of this
method is to assume that the error of that solution is orthogonal to the space of
functions described by the expansion basis. That is

〈
N∑
n=0

σnKun − f, um

〉
= 0, (3.2.60)

where σn are the unknown expansion coefficients and the first component of the
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inner product is the solution error. From now on, the procedure follows from [72].
Therefore, by expanding the unknown functions in a finite orthogonal basis as us1(z) ≈∑N

n=0 σ
s
nv

s
n(z) and us2(z) ≈

∑N
n=0 τ

s
nv

s
n(z), with σsn, τ

s
n, v

s
n ∈ R, then the equations

〈us1, Ks〉 = ψ0 and 〈us2, Ks〉 = ψ̂0 become

N∑
m=0

Ks
nmσ

s
m = F s

n0 and
N∑
m=0

Ks
nmτ

s
m = F̂ s

n0, for F s
nm = 〈vsn, ψm〉,

F̂ s
nm = 〈vsn, ψ̂m〉, Ks

nm =
∞∑
r=1

[
F s
nrF

s
mr

βrh
+

F̂ s
nrF̂

s
mr

χrd tanh(χrb)

]
,

(3.2.61)

after taking an inner product with vsn(z). Now the continuous problem became
discrete and that is the essence of this method. Note that the sum in Ks

nm, is really
running over the purely imaginary dispersion roots of kr and µr. Using the same
procedure in (3.2.58), then

Ãs ≈ As =

(
f̂ s·σs

)(
f s· τ s

)(
f̂ s· τ s

)
− µ0d tan(µ0b)

− f s·σs,

for
[
f s
]
n

= F s
n0,

[
f̂ s
]
n

= F̂ s
n0,

[
σs
]
n

= σsn,
[
τ s
]
n

= τ sn,

(3.2.62)

where σs and τ s can be eliminated using the linear systems in(3.2.61). The Ãs term
is a numerical approximation (because of the truncated/approximated solution) of
As. Thus, by elimination

Ãs ≈
(
f̂ s
T
Ks−1

f s
)(

f s
T
Ks−1

f̂ s
)(

f̂ sTKs−1 f̂ s
)
− µ0d tan(µ0b)

− f s
T

Ks−1

f s for
[
Ks
]
nm

= Ks
nm. (3.2.63)

49



It remains to choose the finite basis vsn. So from inner product definitions in (3.2.61),

F s
nm = N−1/2

m

[
cosh(kmh)

0ˆ

−d

vsn(z) cosh(kmz)dz + sinh(kmh)

0ˆ

−d

vsn(z) sinh(kmz)dz

]
,

F̂ s
nm = N̂−1/2

m

0ˆ

−d

vsn(z) cosh(rmz)dz +
KN̂

−1/2
m

rm

0ˆ

−d

vsn(z) sinh(rmz)dz,

(3.2.64)
after expanding the hyperbolic cosine term of ψn(z). Now by writing vsn(z) = f s

′
n (z),

for f sn(z) =
´ z
−d v

s
n(t)dt and integrating by parts the second terms of each equation

in (3.2.64), then

F s
nm = N−1/2

m cosh(kmh)

0ˆ

−d

[
vsn(z)−Kf sn(z)

]
cosh(kmz)dz,

F̂ s
nm = N̂−1/2

m

0ˆ

−d

[
vsn(z)−Kf sn(z)

]
cosh(rmz)dz,

(3.2.65)

using f sn(−d) = 0 and km sinh(kmh) = K cosh(kmh), from the dispersion relation.
Therefore, a choice for v̂sn(z) ≡ vsn(z)−Kf sn(z) needed to be made.

Firstly, v̂sn must satisfy a Neumann’s boundary condition on the surface
as vs

′
n (0) = Kvsn(0). Also, an analysis of the flow close to the edge of the barrier

would reveal that vsn(z) ∼ (d2 − z2)−1/2 as z → −d+ (see the work of [72]). The
same asymptotic behaviour must hold for v̂sn. So an appropriate choice for v̂sn(z) ∈ R
satisfying the properties described above is

v̂sn(z) =
2(−1)n

π
√
d2 − z2

T2n

(z
d

)
, z ∈ Lg, (3.2.66)

where the orthogonal functions T2n for n = 0, ..., N , are the even Chebyshev polyno-
mials of the first kind. These properties, namely v̂s

′
n (0) = 0 and v̂sn(z) ∼ (d2−z2)−1/2

as z → −d+, can be verified using that T ′n(x) = nUn−1(x) straight from their trigono-
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metric forms (where Un are the Chebyshev polynomials of the second kind) and the
special values T2n(0) = (−1)n, T2n(1) = 1, U2n−1(0) = 0 from [75] §22. Substituting
(3.2.66) into (3.2.65), then

F s
nm = (−1)nN−1/2

m cosh(kmh)I2n(kmd), F̂ s
nm = (−1)nN̂−1/2

m I2n(rmd), (3.2.67)

using the cosine integral transform for the even Chebyshev polynomial with respect to
the weight function (d2−z2)−1/2 from [76] §1.10 combined with J2n(ix) = (−1)nI2n(x)
from [75] §9 (where Jn and In are the Bessel and Modified Bessel function respec-
tively). Thus, Rs can be found from (3.2.59) with As ≈ Ãs from (3.2.63), using F s

nm,
F̂ s
nm from (3.2.67).

The same procedure starting from (3.2.52), is followed for the antisymmetric
problem as well. So after a considerable, but almost identical algebra, the expressions
for Rs,a and everything else needed for their calculation, are

Rs,a = e−2iβb iβh− As,a

iβh+ As,a
with As,a ∈ R which implies |Rs,a| = 1,

Ãs ≈ As =

(
f̂TKs−1

f
)(

fTKs−1
f̂
)(

f̂TKs−1 f̂
)
− µ0d tan(µ0b)

− fTKs−1

f for fn = Fn0,

Ãa ≈ Aa =

(
f̂TKa−1

f
)(

fTKa−1
f̂
)(

f̂TKa−1 f̂
)

+ µ0d cot(µ0b)
− fTKa−1

f for f̂n = F̂n0,

Fnm = (−1)nN−1/2
m cosh(kmh)I2n(kmd), F̂nm = (−1)nN̂−1/2

m I2n(rmd),

Ks
nm =

∞∑
r=1

[
FnrFmr
βrh

+
F̂nrF̂mr

χrd tanh(χrb)

]
, Ka

nm =
∞∑
r=1

[
FnrFmr
βrh

+
F̂nrF̂mr

χrd coth(χrb)

]
.

(3.2.68)
Note that the superscripts from f s,a, f̂ s,a, F s,a

nm, F̂ s,a
nm, were dropped as those expres-

sions happen to coincide in both problems. Also, it is worth mentioning that the only
impact of the lower metamaterial interface at z = −c on the solution of this problem,
is on the µn dispersion relation (3.2.48). However, the reflection and transmission
for general metamaterial interfaces, can be found from (3.2.16) using the reflection
coefficients specified in the previous equation.
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3.2.5 Numerical results

In this section, computational results for the scattering problem of section 3.2.4 are
provided. Note that the solution for the scattering coefficients Rs,a can be found
numerically only by truncating the vectors f , f̂ and the square matrix Ks,a from
(3.2.68) at some truncation parameter M , where M + 1 represents the number of
modes taken to the velocity expansion in z ∈ Lg. But since each element of the
matrix Ks,a can be found through an infinite sum over the dispersion roots of the
regions |x| > b and |x| < b, then the infinite sum must be truncated at an independent
truncation parameter N . Also, the energy conservation is satisfied for every choice
of parameters as expected from |Rs,a| = 1.

N |R| M |R| N |T | M |T |
8 0.06901334 2 0.07046862 8 0.91184888 2 0.910082293763
16 0.xxx41031 4 0.xxx11516 16 0.xx071942 4 0.xxx310297682
32 0.xxx91521 6 0.xxxx0149 32 0.xxx47045 6 0.xxxx25196762
64 0.x7007521 8 0.xxx09879 64 0.xxx37985 8 0.xxxx27834733
128 0.xxxx9161 10 0.xxxxx792 128 0.xxxx2969 10 0.xxxxx8425663
256 0.xxxxx707 12 0.xxxxxx57 256 0.xxxxx877 12 0.xxxxxx548724
512 0.xxxxxx33 14 0.xxxxxx37 512 0.xxxxxx59 14 0.xxxxxxx65945
1024 0.xxxxxxx4 16 0.xxxxxxx4 1024 0.xxxxxxx6 16 0.xxxxxxxxxxx6

Table 3.2: The geometrical parameters used for the reflection |R| calculation are
(θ0, d/h, b/h, c/h, θ, kb) = (30◦, 0.9, 1, 2, 0.1, 0.2) and for the |T | calculation are
(θ0, d/h, b/h, c/h, θ, kb) = (60◦, 0.1, 1, 1, 0, 1.5). When N is varying, M is fixed at
16 and when M is varying, N is fixed at 1024.

Moving to the truncation convergence table, one can see from 3.2 that the
choice of (N,M) = (1024, 16) gives a truncation error of at least 7 decimal places.
It can be seen from the last column, the when the gap between the metamaterial
structure and the free surface became smaller (d/h = 0.1), then fewer modes M were
needed to get the accuracy of 7 decimal places. This is because M represents the
number of modes needed to characterise the normal velocity through the gap Lg.
Therefore, from now on the truncation parameters will be chosen to be (N,M) =
(1024, 16). The choice of N can be also be verified as the terms inside the infinite sum
of Ks,a goes like r−2 as r → ∞, (since kr, µr → r, for sufficiently large r) and that
the sum of the reciprocals of square numbers typically needs 210 terms to converge
to 7 decimal places of accuracy.

Starting from figure 3.7, the reflection modulus |R| is plotted against the
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Figure 3.7: |R| against kb, with d/h = 0.9, c/h = b/h = 1 and θ = 0, for incident

directions θ0 = 45◦ (full) and θ0 = 30◦ (dashed).

dimensionless wavenumber kb. It can be seen that the interaction for θ0 = 30◦ is
higher than the one of θ0 = 45◦. As in the previous problem, this has to do with the
incident wave sliding ability through the thin barriers (as θ = 0). Also, |R| shares a
similar behaviour with the previous problem, as it passes through the origin, decays
at infinity and it is oscillatory with a non-constant period in kb, for reasons explained
in section 3.2.3.

Moving on to the interaction of obliquely-incident waves with a metamate-
rial sitting on a step, then the figure 3.8 is analysed. One can see that there is more
interaction than previous figures due to the larger height of the barriers i.e., as in
the limit d → 0 the first barrier at x = −b tends to be a block wall which implies
total reflection. Also, the results of this section indicate a higher interaction than
the ones of the previous problem because now the metamaterial has less openings
than before and so the wave energy within it cannot easily transmitted. Even though
the previous problem the barriers formed sharp corners to bed, they were only of
length lθ, but now the sharped cornered side of the barriers extend uniformly in the
y-direction. Moreover, it can be seen again that for smaller incident angles there
is a slightly higher interaction, but now the difference looks smaller due to higher
barriers.
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Figure 3.8: Variation of |R| with kb, for d/h = 0.1, c/h = 0.7, b/h = 1 and θ = 0,

for incident directions θ0 = 60◦ (full) and θ0 = 30◦ (dashed).
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Figure 3.9: |R| against kb for θ = 0. The parameters are (i) (θ0, d/h, b/h) =

(45◦, 0.3, 1) for c/h = 2 (full), 1 (chained), 0.5 (dashed) and (ii) (θ0, c/h, b/h) =

(0◦, 1, 0.5) for d/h = 0.7 (full), 0.2 (dashed).
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Next, the same type of curves (|R| against kb) are shown in figure 3.9(i) to
see how they are affected by c/h. The gap between the barriers and the free surface
covers the top 30% of the fluid. The full line curve corresponds to “buried” (in the
sea bed) barriers at a level twice the fluid’s depth. The chained curve corresponds to
barriers sitting on the bed while the dashed curve corresponds to barriers sitting on
a step that occupies the lower 50% of the fluid. Therefore, the interaction increases
with c/h as this parameter controls the height of the barriers.

Now figure 3.9(ii) shows how the metamaterial structure affects a normally
incident wave (θ0 = 0◦). The thin barriers (θ = 0) now sit on the bed (c/h = 1) and
the width of the structure is the same as the fluid’s depth (2b/h = 1). For the full
line curve, the barriers cover the lower 30% of the depth in the case of the dashed
line curve, they cover 80%. It can be seen that in the case of higher barriers (dashed
curve), the interaction is almost as large in figure 3.9(i) for c/h = 2. Normally, it
should be expected to have more interaction in the current figure because the gap
between the barriers and the free surface is smaller now (20% against 30%) and
because the sliding ability of the incident wave within the barriers is weaker (θ0 = 0◦

against θ0 = 45◦). However the reason behind this, is that in the previous figure, the
gaps between the barriers extend vertically downwards below the level of the bed i.e.
c/h > 1.

Also, the curves of figure 3.9(ii) are invariant for any θ ∈ [0, 1] and c ∈
(d,∞) as the structure behaves like a rigid step in the case of normal incidence and
thus the parameters that characterise the medium within its domain do not affect the
solution. These results were compared with the analogous results of the rigid step
problem and it turned out that they were identical. The technique used to solve that
problem is again the Galerkin method (described in section 3.2.4), where the potential
in x < −b is the same and the potential in x ∈ (−b, 0) can be sought be separating
variables in z ∈ (−d, 0) and applying the free surface condition at z = 0 and the no
flow condition at z = −d. This will imply that the solution in x ∈ (−b, 0) is again

(3.2.51) but now the vertical eigenfunctions are ψ̂n(z) = N̂
−1/2
n cosh

[
µn(z+d)

]
, with

µn tanh(µnd) = K (wave dispersion relation over a constant rigid bed at z = −d).

The normalisation factor is chosen to be N̂n = 1
2

+ sinh(2µnd)
4µnd

so that
´ 0

−d ψ̂nψ̂mdz =
dδnm. Therefore, by following the same solution method as before, then the scattering
coefficient curves were found to be identical in the case of θ0 = 0◦.

Next figure 3.10 shows how the reflection modulus is affected by the incident
direction θ0. Even though the figures are plotted in θ0 ∈ (0◦, 90◦), it was shown
analytically before (and verified numerically as well) that the problem is symmetric
about θ0 = 0◦. Thus |R| is even in θ0. Firstly, it can be verified that as θ0 → 90◦ then
|R| → 0 as expected from the sliding ability of the incident wave through the barriers.
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Figure 3.10: |R| against θ0, with d/h = 0.5, c/h = b/h = 1 and θ = 0 for kb = 3

(full) and kb = 0.2 (dashed).

The full line curve that corresponds to a smaller incident wavelength (kb = 3) has
a larger number of zeros than the dashed curve (kb = 0.2) due to the effect of the
wave multiple interference.

[1] considered the same problem but in the shallow water regime, with
barriers sitting on a step and oriented in the same way as here (δ = 90◦). But
numerical comparisons between the 3D problem (full linear theory) analysed here
and [1][16], will follow in section 3.3.4, where the numerics of a shallow water model
introduced in this thesis are included.

Now, a surface plot of the total wave field will be demonstrated in figure
3.11(i). A long obliquely-incident wave (kb = 0.8 and θ0 = 30◦) interacts with
the high, thin barriers (d/h = 0.1 and θ = 0) that sit on the bed (c/h = 1).
Again the surface elevation is found from ζ(x, y, t) = −(ω/g)={φ(x, 0)eiαye−iωt}
and φ = (φs + φa)/2. A similar wave behaviour with the previous problem can
be seen here, as there is again a transmitted wave in x > b travelling parallel to
the direction of incidence and in x < −b there is a doubly periodic configuration
of nodes and antinodes due the interaction of the incident wave and the reflection
mode. The direction of the phase speeds in |x| < b were found to be θ

(1)
p ≈ 11.45◦

with θ
(2)
p = −θ(1)

p from the symmetry of the real roots µn of the dispersion relation
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Figure 3.11: (i) Instantaneous surface elevation and (ii) wave profile at y = 0 for

kb = 0.8, θ0 = 30◦, d/h = 0.1, c/h = b/h = 1 and θ = 0.

(3.2.48). However, the arbitrary barrier orientation of the two next problems, will
allow us to direct the wave in a more straightforward way. The surface cross-section
at y = 0 is shown in figure 3.11(ii). Again the curve is continuous and smooth at
x/b = ±1 as expected from the corresponding matching conditions of φs,a(x, 0) at
x = ±b. The transmitted wave energy was found to be |T |2 ≈ 42% of the incident
wave energy.
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3.2.6 Barriers oriented at an acute angle

Finally, in this section the solution to the full linear problem of a general barrier
orientation is presented (see figure 3.1). Now the geometry is not symmetric about
the x = 0 plane and so the decomposition of the problem into even and odd parts, is
not allowed as now ∂XX is not invariant if x is replaced with−x (see equations (3.2.1),
(3.2.7)). However, the y and t dependence of the potential can be factored out of
the model through eiαye−iωt, due to the assumption that the incident wave is time-
harmonic and it is compatible with the total field in the y-direction. Therefore, due
to the asymmetry of the problem, the solution into the regions x < −b, |x| < b and
x > b must be considered with φ1, φ2 and φ3 the velocity potentials in those regions
respectively. Therefore, in the regions outside the metamaterial, the potentials must
be solutions to (3.2.9), (3.2.10), namely

φ1(x, z) = eiβxψ0(z) +
∞∑
n=0

ane
βn(x+b)ψn(z) in x < −b,

φ3(x, z) =
∞∑
n=0

ãne
−βn(x−b)ψn(z) in x > b,

(3.2.69)

using separation of variables, with βn and ψn be defined in (3.2.22), β0 = −iβ and
R = a0e

−iβb, T = ã0e
−iβb for convention. Note that the y-independent potentials

outside the metamaterial region are even in θ0. However, it cannot be concluded
that the scattering coefficients are θ0-symmetric as well, as it is not known if the
potential within |x| < b is symmetric in θ0 or not.

Now again the regions above and inside the metamaterial must be con-
sidered within |x| < b. By assuming only the time-harmonicity of the total po-
tential, without dropping y-dependence yet, the solution in z ∈ Lb must satisfy(
∂XX + ∂zz

)
φ(X, Y, z) = 0 according to (3.2.7). Here, the (X, Y ) coordinates can be

found by rotating counterclockwise (x, y) by an angle δ so that X is aligned with the
barrier direction, i.e. see equation (3.2.1). Therefore, by expressing this differential
equation into Cartesian coordinates and then dropping y through eiαy, it yields that

(
∇2 − α2

)
φ2(x, z) = 0 , ∂zφ2(x, 0) = Kφ2(x, 0) in z ∈ Lg,[

cos2 δ∂xx + 2iα sin δ cos δ∂x − α2 sin2 δ + ∂zz

]
φ2(x, z) = 0,

∂zφ2(x,−h) = 0 in z ∈ Lb,

(3.2.70)
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using ∂X = cos δ∂x + sin δ∂y. It can also be seen that when δ = 0◦, 90◦, then
the model simplifies to the ones specified in sections 3.2.2 and 3.2.4 respectively.
Seeking solutions of the form eiµxZ(z) (equivalent of separating variables with −µ2

the separation constant), then

Z ′′g (z) = (α2 + µ2)Zg(z), Z ′g(0) = KZg(0),

Z ′′b (z) = (α sin δ + µ cos δ)2Zb(z), Z ′b(−h) = 0,
(3.2.71)

where the depth functions are matched through z = −d via the first two equations of
(3.2.8). The solutions of these ordinary differential equations, after the application
of their boundary conditions, are

Zg(z) = Ag

[
cosh

(
z
√
α2 + µ2

)
+

K√
α2 + µ2

sinh
(
z
√
α2 + µ2

)]
,

Zb(z) = Ab cosh
[
(α sin δ + µ cos δ)(z + h)

]
,

(3.2.72)

with the dispersion relation, coming from the matching across the horizontal inter-
face, be

γ(1− θ) tanh[γ(h− d)]

(
K tanh

(
d
√
α2 + µ2

)√
α2 + µ2

− 1

)
=
√
α2 + µ2 tanh

(
d
√
α2 + µ2

)
−K,

(3.2.73)

where γ = α sin δ + µ cos δ.
It will be shown in Appendix A.2, that for a general acute angle δ, there

will be exactly two real and non-symmetric roots (one positive and one negative).
However when δ = 0◦, 90◦, these roots becomes symmetric as the dispersion relation
becomes even (this can be seen from the µ-relations of the previous two problems).
Also, at the δ endpoints, it will be shown by substituting µ = iy in the dispersion
relation, that there is a symmetric infinite sequence of purely imaginary roots. But for
a general δ ∈ (0◦, 90◦), if µ = iy is substituted in (3.2.73), then the dispersion relation
will still have i in it due to the asymmetry of γ, suggesting the existence of complex
roots. At least those complex roots will be symmetric about the real axis as if the
dispersion relation is written in the form F (µ) = 0, then it will satisfy F (µ) = F (µ).
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Those roots will be analysed in Appendix A.2. Note that the complexity of the roots
is not happening at the δ endpoints as γ reduces to µ or α, making µ tanh[µ(h− d)]
or α tanh[α(h− d)] real under µ = iy.

Therefore at a first glance, the potential cannot be written in a semi-infinite
sum over µn. However, if the roots of the dispersion relation are divided into two
sets, say into positive and negative imaginary parts, then the solution can be written
as a sum that runs from n = 0 to n = ∞ over those two sets. This allows the
matching across x = ±b to be simplified as the potentials outside that region are
again written in semi-infinite sums. By introducing the notation of µ

(1)
n to be the

sequence containing the single positive real root (n = 0) and the complex roots with

positive imaginary parts (n ∈ N) and similarly µ
(2)
n containing the single negative

real root (n = 0) and the complex roots with negative imaginary parts (n ∈ N), then
the solution within |x| < b becomes

φ2(x, z) =
∞∑
n=0

[
âne

iµ
(1)
n (x+b)ψ̂(1)

n (z) + b̂ne
iµ

(2)
n (x−b)ψ̂(2)

n (z)

]
,

ψ̂(i)
n (z) =

D̂
(i)
n

(
cosh(r

(i)
n z) + K

r
(i)
n

sinh(r
(i)
n z)

)
, z ∈ Lg,

cosh
[
γ

(i)
n (z + h)

]
, z ∈ Lb,

(3.2.74)

where r
(i)
n =

√
α2 + µ

(i)
n

2
and γ

(i)
n = α sin δ + µ

(i)
n cos δ for i = 1, 2. The rescaling

of the exponentials guarantees a decaying behaviour at x = ±b as n becomes large
which is an efficient trick for numerical purposes (an approach taken into the previous
simpler problems as well). The coefficient of the depth function over Lb was chosen
as

D̂(i)
n =

r
(i)
n cosh

[
γ

(i)
n (h− d)

]
r

(i)
n cosh

(
r

(i)
n d
)
−K sinh

(
r

(i)
n d
) . (3.2.75)

This can be derived by substituting Ag = 1 in the continuity condition of the depth
functions in (3.2.72) at z = −d. The matching across the vertical interfaces x = ±b
will be executed using the orthogonality of ψn as there is not a clear way on how to
find the inner product associated with the orthogonality of ψ̂

(i)
n . Also, here it is not

obvious that the potential φ2 is even in θ0, from the asymmetry of the dispersion
relation satisfied by µ

(i)
n . However, it will be verified numerically later that the

scattering coefficients are even in θ0.
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The unknown coefficients an, ãn, ân, b̂n, will be found by matching φ1 and φ3

with φ2 across x = ±b using the pressure and normal flux conditions determined in
(3.2.8). Expressing them in unrotated coordinates using ∂X = cos δ∂x + sin δ∂y and
then using the fact that the y-dependence is contained in the multiplicative factor
eiαy, then they become

φ(±b±, z) = φ(±b∓, z), in z ∈ Lg ∪ Lb,

φx(±b±, z) =

{
φx(±b∓, z), z ∈ Lg,
(1− θ) cos δ

[
cos δφx(±b∓, z) + iα sin δφ(±b∓, z)

]
, z ∈ Lb,

(3.2.76)
where the subscripts of the potential φi (for i = 1, 2, 3) were removed but they can be
retained depending on the evaluation of x. These four equations after been multiplied
by ψm and integrated throughout the depth, become

e−iβbδn0 + an =
∞∑
m=0

[
âmW

(1)
nm + b̂me

−2iµ
(2)
m bW (2)

nm

]
,

ãn =
∞∑
m=0

[
âme

2iµ
(1)
m bW (1)

nm + b̂mW
(2)
nm

]
,

−e−iβbδn0 + an

= i
∞∑
m=0

1

βn

[
µ(1)
m (G(1)

nm + (1− θ) cos2 δB(1)
nm) + α(1− θ) sin δ cos δB(1)

nm

]
âm

+i
∞∑
m=0

e−2iµ
(2)
m b

βn

[
µ(2)
m (G(2)

nm + (1− θ) cos2 δB(2)
nm) + α(1− θ) sin δ cos δB(2)

nm

]
b̂m,

−ãn = i
∞∑
m=0

e2iµ
(1)
m b

βn

[
µ(1)
m (G(1)

nm + (1− θ) cos2 δB(1)
nm) + α(1− θ) sin δ cos δB(1)

nm

]
âm

+i
∞∑
m=0

1

βn

[
µ(2)
m (G(2)

nm + (1− θ) cos2 δB(2)
nm) + α(1− θ) sin δ cos δB(2)

nm

]
b̂m,

(3.2.77)
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where W
(i)
nm will be given by the complicated but explicit integral

W (i)
nm ≡

1

h

0ˆ

−h

ψn(z)ψ̂(i)
m (z)dz = G(i)

nm +B(i)
nm

=
N
−1/2
n(

k2
n − r

(i)
m

2)
h

[
(1− θ)γ(i)

m cosh
[
kn(h− d)

]
sinh

[
γ(i)
m (h− d)

]]

− N
−1/2
n(

k2
n − r

(i)
m

2)
h

[
kn sinh

[
kn(h− d)

]
cosh

[
γ(i)
m (h− d)

]]

+
N
−1/2
n(

k2
n − γ

(i)
m

2)
h

[
kn sinh

[
kn(h− d)

]
cosh

[
γ(i)
m (h− d)

]]

− N
−1/2
n(

k2
n − γ

(i)
m

2)
h

[
γ(i)
m cosh

[
kn(h− d)

]
sinh

[
γ(i)
m (h− d)

]]
,

(3.2.78)

where G
(i)
nm are the first two terms which come from integral over Lg, B

(i)
nm are the

last two terms which come from the integral over Lb and so W
(i)
nm comes from the

integral over the whole depth. Therefore, by writing (3.2.77) in vectorial form and
solving it, then

â = 2e−iβb

[(
W(1) −R(1)

)
−
(
Q(2) − S(2)

)(
W(2) + R(2)

)−1(
Q(1) + S(1)

)]−1

J,

b̂ = 2e−iβb

[(
Q(2) − S(2)

)
−
(
W(1) −R(1)

)(
Q(1) + S(1)

)−1(
W(2) + R(2)

)]−1

J,

a = W(1)â + Q(2)b̂− e−iβbJ,
ã = Q(1)â + W(2)b̂,

(3.2.79)
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where the matrices and vectors above, are defined as

Jn = δn0, Q(i)
nm = e−2i(−1)iµ

(i)
m bW (i)

nm,

R(i)
nm =

i

βn

[
µ(i)
m (G(i)

nm + (1− θ) cos2 δB(i)
nm) + α(1− θ) sin δ cos δB(i)

nm

]
,

S(i)
nm = e−2i(−1)iµ

(i)
m bR(i)

nm.

(3.2.80)

Therefore, the scattering coefficients of the problem can be found using just the first
components of the vectors a, ã, namely R = a0e

−iβb and T = ã0e
−iβb.

3.2.7 Numerical results

In this section, numerical results for the problem solved in section 3.2.6 are pro-
vided. The scattering coefficients convergence with respect to the single truncation
parameter associated with the infinitude of the scattering coefficients (see equation
(3.2.79)) is tested in table 3.3. The data shows two different cases of low frequency
and high frequency for barriers covering 75% of the water depth. At lower frecuen-
cies we expect fluid velocities to decrease less rapidly with the depth than at higher
frequencies. It is therefore typical that more depth functions are needed to resolve
the interaction with the submerged metamatarial for lower frequencies. However,
this expected feature is not particularly shown in the table results as they show that
only a few modes are required for 2 or 3 decimal place accuracy. Also, the table
includes the values of |E| where E = 1 − |R|2 − |T |2 and conservation of energy
demands E = 0. It seems from the table and other computations performed in the
preparation of this section, that energy conservation is automatically satisfied for
normal incidence and is only used as an indicator of convergence for values θ0 6= 0.
The numerical convergence is much slower for extreme choices of parameters such as
θ → 1, d/h→ 0 or δ → 90◦. For example, for δ = 89◦, kb = 2.5, d/h = 0.1, θ = 0.9
and b/h = 1, we find that |E| = 3.8 × 10−3 for N = 64 and |E| = 2.2 × 10−3 for
N = 128. In the figures that follow, we choose N depending on the choice of these
parameters to display accurately certain types of curves.

In figure 3.12 we examine the variation of the reflection modulus against the
dimensionless wavenumber kb. Similar features of these curves can be found in the
previous problems, such as the oscillatory behaviour with a non-constant period in kb,
passing through the origin, decay for large wavenumbers and interaction proportional
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N |R| |E| |R| |E|
4 0.162670 10−16 0.139759 8.1 ×10−6

8 0.xxx727 10−16 0.xxx991 1.7 ×10−6

16 0.xxxx43 10−16 0.140059 3.5 ×10−8

32 0.xxxxx6 10−15 0.xxxx77 2.5 ×10−8

64 0.xxxxx7 10−16 0.xxxx82 2.8 ×10−9

Table 3.3: Scattering coefficients convergence against truncation size N for two set
of parameters. Namely, (kb, θ0) = (0.25, 0◦) for the first two columns and (kb, θ0) =
(2.5, 60◦) for the last two with common variables (d/h, δ, b/h, θ) = (0.25, 60◦, 1, 0.1).

to the barriers height (short barriers in figure 3.12(i) and large barriers in 3.12(ii)).
The array consists of thin barriers (θ = 0) and has a width twice the depth (2b = 2h).
In figure 3.12(i), the short barriers (d/h = 0.9) are oriented at an angle δ = 60◦ and
the two curves represent incident angles of θ0 = 45◦ (full line) and θ0 = 30◦ (dashed
line). As in the previous problems, the reflection becomes generally smaller for
incident directions that are closer to the barrier orientation or in other words the
sliding ability of the incident wave increases as θ0 → δ. A variety of geometrical
cases was tested for θ0 = δ and the result was total transmission (or zero reflection).
The increase of interaction due to the change of incident direction, is even larger in
the case of high barriers (see figure 3.12(ii) where d/h = 0.2). Also, it was shown
that as δ approached 0◦ and 90◦, then the curves were approaching to the ones of
section 3.2.3 and 3.3.5 respectively. This is because of the alignment of the roots of
the corresponding dispersion relations (the path of the dispersion roots as δ varies
will be shown in Appendix A.2).

Next, figure 3.13 indicates how the reflection coefficient varies with kb. In
3.13(i) a normally incident wave (θ0 = 0◦) interacts with the submerged barriers
oriented at an angle δ = 45◦. The dashed line corresponds to thick barriers (θ = 0.8)
and the full line to thinner (θ = 0.2). One can see that as θ → 1, the features tend
to the rigid step analogues found in the results of the previous section (maintained
through normal incidence due to the particular barrier orientation i.e. δ = 90◦).

In figure 3.13(ii) an obliquely-incident wave (θ0 = −45◦) now interacts with
thin barriers (θ = 0) of larger height (d/h = 0.1). Different curves correspond to
different barrier orientations δ. It can be verified that as δ → −θ0 there is total
transmission (no reflection). This is the “transparency” property shown in [11] but
now it seems to hold for barriers that extend partially through the depth as well.

Moving on, the figures found in 3.14 indicate the surface plots of the free
elevation ζ(x, y, t) = −(ω/g)={φ(x, 0)eiαye−iωt}. The barrier configuration is chosen
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Figure 3.12: (i) |R| against kb, with δ = 60◦, d/h = 0.9, b/h = 1 and θ = 0 for

θ0 = 45◦ (full) and θ0 = 30◦ (dashed). (ii) Same result but with δ = 30◦, d/h = 0.2,

b/h = 1 and θ = 0 for θ0 = 45◦ (full) and θ0 = 60◦ (dashed).
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Figure 3.13: |R| against kb for b/h = 1. In (i) the parameters are (θ0, d/h, δ) =

(0◦, 0.3, 45◦) for θ = 0.2 (full) and θ = 0.8 (dashed) and in (ii) (θ0, d/h, θ) =

(−45◦, 0.1, 0) for δ = 10◦ (dotted), δ = 35◦ (chained), δ = 42◦ (dashed) and δ = 44◦

(full).
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Figure 3.14: Instantaneous surface elevation for (i) d/h = 0.02 and (ii) d/h = 0.5.

The common parameters are kb = 1, θ0 = −δ = −45◦, b/h = 1 and θ = 0.

such that θ0 = −δ and θ = 0. In this case it was numerically verified that R ≈ 0 and
|T | ≈ 1 for a variety of geometrical parameters. This is the transparency property
specified in [11], where the thin barriers (θ = 0) were extended throughout the depth.
In that paper, the vertical uniformity allowed closed-form solutions to the reflection
and transmission coefficients (due to the independence from the vertical coordinate),
showing the transparency property analytically. However, in the following sections
when the simplification of the shallow water regime will be used (again the model
will become independent of the vertical coordinate), then closed-form solutions to the
scattering coefficients will be yielded, even though the barriers will extend partially
though the depth. Now in the figure 3.14, the geometrical parameters are θ0 = −δ =
−45◦, b/h = 1, kb = 1 and θ = 0. The only difference between figure 3.14(i) and
3.14(ii), is that in the first the barriers cover the 98% of the fluid’s depth, but only
the 50% in the second. Figure 3.14(i) shows that this problem converges to the one
with the fully-extended barriers as the surface plot looks identical with [11], Fig.
2. However, in our case the transparency property appears to hold for any barrier
height and θ = 0. The only thing that changes is the bending of the wave towards
the barrier orientation. Therefore, the negative refraction effect that occurs always
for θ0 = −δ and d/h → 0 (as specified in [11]), seems to fade away as d → h. This
is expected on physical grounds as in the limit d → h the structure “disappears”
and the wave is transmitted unaffected. Unfortunately here, there is no direct way
to calculate a value for the wave phase speeds within |x| < b of figure 3.14. In the
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previous problems (sections 3.2.2 and 3.2.4) ±µn was real for n = 0, corresponding
to travelling waves of phase speed direction ±arctan(α/µ0), and purely imaginary
for n ∈ N corresponding to evanescent modes that have no effect on the phase speed.
However, in this problem, even though the roots of the dispersion relation are real for
n = 0, they become complex for n ∈ N (lying in the complex quadrants). Therefore
the calculation of the phase speeds in |x| < b becomes more difficult as these waves
are comprised of an infinite number of travelling waves (with a decaying part as well

from the µ
(i)
n complexity). The rate at which the negative refraction phenomenon

fades away with the barrier height, will be seen in the next sections, where the same
problem is considered but under the shallow water approximation.
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Figure 3.15: Variation of |R| with θ0. In (i) d/h = 0.5, b/h = 1, θ = 0 and δ = 60◦

with kb = 1 (full) and kb = 0.5 (dashed) and in (ii) kb = 0.5, d/h = 0.6, b/h = 1

and δ = 45◦ with θ = 0 (full) and θ = 0.5 (dashed).

Moving on, the variation of |R| with respect to θ0 is shown in figure 3.15.
The modulus of the scattering coefficients seems to be even in θ0. This is a property
shown analytically in [11] for d → 0 and it will be shown to hold in the shallow
water regime later. Also, the figures indicate that in the limit θ0 → ±90◦ there is a
total reflection and that in the case of thin barriers (θ = 0), there are exactly two
symmetric zeros at θ0 = ±δ (transparency property discussed above). However as θ
increases from zero, then these two roots are shifted. This happens due to the fact
that as θ → 1, the metamaterial behaves like a rigid step and therefore the zeros of
the reflection coefficient will be shifted.
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3.3 Shallow water approximation

3.3.1 Effective medium equations

In this section, we will consider waves that are long with respect to the depth and
allow the depth of the fluid and variations of the height of the plate array to vary
slowly with respect to space (compared to the wavelength). Under these assumptions,
a shallow water model can be developed in which depth averaging leads to a 2D
governing equation in two horizontal space dimensions in which the effect of the
varying depth is captured in the coefficients of the differential equation. Thus, we
can consider a much broader class of problems than in the previous sections but will
be restricted to long waves.

From the work of [15][77], in the absence of any structure in the fluid’s
domain, the linear shallow water equation for the surface elevation ζ(x, y, t) bounded
below by a space-varying sea bed at z = −h(x, y) under the action of gravity g is
ζtt = g∇·(h∇ζ) to leading order of the small parameter (H/L)2 (depth to wavelength
ratio). Under this description the wave is non-dispersive and its speed is

√
gh. The

long wave limit was assumed (wavelengths much larger than the depth) and the
standard linearity assumption that the wave amplitudes are much smaller that the
depth. The derivation of this equation was built upon the assumption of the small
parameter h3/λ2η0 � 1 (or h2/λ2 � η0/h� 1), where λ is the wavelength and η0 is
the incident amplitude.

Recently, [78] proposed an extension to the linear shallow water equation
that includes higher order terms. This equation showed that the wave speed is slowed
by the gradients of the sea bed. The controlling of wave speeds in different directions,
is often a requirement in the design of the metamaterials. This is the idea used also
in [58][79] to show how a submerged metamaterial structure of circular shape could
rotate a water wave locally by controlling speeds in different directions.

In this section, a new model that describes the wave motion in the presence
of a submerged microstructure made of vertical barriers in the shallow water regime,
will be derived by starting from the first principles of mass and momentum conser-
vation of the fluid. It will turn out that at leading order, the scalar function h(x, y)
in the standard linear shallow water equation will be replaced by a 2×2 diagonal
tensor (of rank 2) whose components will be the effective depths that the wave feels
in the directions perpendicular and parallel to the barriers (from now on called the
“depth tensor”).

This type of equation structure has been derived in other models involving
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submerged beds based on different modelling assumptions to the ones used here.
For example, [1][13] presented different methods for deriving the tensorial model
with effective depths in the directions parallel and perpendicular to the barriers of
a structured bed in the shallow water setting. In both models, the effective depth
in the direction parallel to the barriers was found to be 〈h〉 = θh+ + (1− θ)h− with
h+ < h− be the two constant metamaterial interfaces. This is the same result that
will be deduced later in this section and it is expected on physical grounds as it
represents the averaged depth over the unit cell i.e. 〈h〉 = h− when θ = 0 (wave
travelling parallel to thin barriers feels only the fluid’s depth) and 〈h〉 = h+ when
θ = 1 (rigid step analogue). The result will be more general, as the effective depth in
that direction will be found to be the same as the previous authors (θh+ +(1−θ)h−)
even if the metamaterial interfaces are space-varying i.e. located at z = −h±(x, y)
where (x, y) are the horizontal space variables.

However, the difference between all models lies upon the expression of the
effective depth in the direction perpendicular to the barriers. For example, [13] used
shallow water theory in a standard “layered-medium” homogenisation formulation
(see [67] for an elasticity analogue example) to derive a model for a structured bed
with rapid fluctuations in depth. They found that the effective depth in that direction
to be 〈h−1〉−1 which tends to h− when θ → 0 and to h+ when θ → 1. This will
contrast the constant (in θ) value of h+ which will be derived later in this section.
However, it can be seen that the result of [13] works for widely-spaced barriers in
the sense of l/h± � 1 (where l is the barrier periodicity). This is because the
standard shallow water theory assumes small bed gradients and it can only be used
in the presence of discontinuous “steps” in an asymptotic sense [26] and the wide-
spacing limit of the barriers ensures this happens. The assumption of closely spaced
barriers or l/h± � 1, is the main difference between our work and the work of
the authors discussed above. [1] proposed a numerically-determined value for the
effective depth in the perpendicular direction to the barriers, that includes both of
the two limiting cases of barrier spacing. The spacing generalisation requires the
effective depth expression to be an integral over the unit cell of a velocity potential
associated to a simple potential flow problem. Numerical comparisons were made in
that paper showing that the effective depth converges slowly to the one of [13] in
the large spacing limit and to the constant value of h+ in the small spacing limit (as
derived in this section). Then, in [16], the same problem involving vertical barriers
in shallow water was revisited but now new matching conditions across the vertical
interfaces of the metamaterial structure were derived at a higher order in the small
parameter describing the ratio of the barrier spacing and the wavelength, to match
solutions between standard and structured beds.
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The shallow water equation that will be used in our problem, will be derived
using a multiscale homogenisation technique applied to the governing equations de-
scribing mass and momentum conservation. The small parameters will now be three,
namely the fluid shallowness, the metamaterial contrast and the linearisation param-
eter of the ratio between amplitude and depth. As promised, the generalisation of
the spatially-varying barrier height, will be assumed. The derivation is formulated
using a Cartesian framework in the same manner as the problem of the previous sec-
tions, but now the fluid is bounded below by a bed which fluctuates rapidly between
two surfaces described by the functions z = −h−(x, y) and an upper surface given
by z = −h+(x, y) such that h+ ≤ h− for (x, y) inside the metamaterial region and
h+ = h− otherwise. The notation of h± is used to align this work to the work of [1].

y

x

z

h+(x, y)h−(x, y)

Figure 3.16: Structure made of thick barriers of periodicity l and thickness θl, with

spatially varying interfaces h±(x, y), under the swallow water approximation.

We are interested in developing a governing equation in the region occupied by the
parallel-structured bathymetry and are not yet interested in how this connects to ex-
terior domains. We therefore align our coordinate system with the orientation of the
barriers i.e., y coordinate is aligned with the barriers and we will use a rotated coor-
dinate transformation later on when considering barriers aligned at different angles
to the x and y axes.
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The derivation starts from the mass and momentum conservation laws and
the boundary conditions. The no flow conditions through the rigid interfaces of each
barrier should now be w +∇h+ · u = 0 on the top of each barrier, w +∇h− · u = 0
at the bed between the gaps and u = 0 on the vertical faces of each barrier (where
u = (u, v) are the horizontal components of the fluid’s velocity). Now there are
four lengthscales in the problem: (i) L is a characteristic horizontal lengthscale
either representing the underlying wavelength or the scale over which macroscopic
changes to the fluid depth occur; (ii) H is a characteristic depth of fluid; (iii) l is the
lengthscale of the structured bed; (iv) a is the wave amplitude. The following three
dimensionless quantities from these parameters are formed as

µ = H/L, ε = l/L, δ = a/H, (3.3.1)

which represent shallowness, microstructure contrast and wave-linearisation respec-
tively. Each one is supposed to be small and the theory is demanded to work in the
limit δ → 0◦ (i.e. in the linearised regime) independently of the size of ε and µ. We
further assume that the barriers are closely spaced when compared to the shallow
depth of the fluid (namely ε � µ). This underlying assumption of closely spaced
barriers is the main difference between our model and the models of [1][13]. The
parameters of microstructure contrast and shallowness are coupled together through
ε = O(µ2) and this relation is required for generating theory to second order.

In the definition of dimensionless variables, two distinct lengthscales in the
x-direction must be taken into account. Therefore,

x = lX ′ + Lx′, y = Ly′, z = Hz′, t =
L√
gH

t′,

u =
a
√
gH

H
u′, w =

a
√
gH

L
w′, p = ρgHp′, ζ = aζ ′, h = Hh′,

(3.3.2)

where the vertical velocity scale was set to be a/T , where T is the time scale and the
horizontal velocity scales were found from the continuity equation (mass conserva-
tion). Under the transformation above, the mass, momentum and surface equations
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read

u′X′ + ε
(
∇′ · u′ + w′z′

)
= 0,

p′X′ + ε
(
p′x′ + δu′t′

)
= 0, p′y′ + δv′t′ = 0, p′z′ + 1 + δµ2w′t′ = 0,

w′ = ζ ′t′ , p′ = p′atm on z′ = 0,

(3.3.3)

where the higher order of δ in the momentum and surface equation was neglected to
be consistent with the linearisation process and as δ is assumed to be significantly
smaller than any power of ε under consideration. Also, here the differential operator
over the macroscale horizontal coordinates is ∇′ = (∂x′ , ∂y′). The set of conditions
on the fixed submerged bed must be abbreviated to (u′, w′) · n̂ = 0, where n̂ is the
unit normal to the bed.

From now on, the primes are dropped from the dimensionless variables for
simplicity and the unknowns are expanded as

u ≈ u(0) + εu(1) + . . . , w ≈ w(0) + εw(1) + . . . ,

p ≈ p̃(0) + δ
(
p(0) + εp(1) + . . .

)
, ζ ≈ ζ(0) + εζ(1) + . . . ,

(3.3.4)

where all the superscripted velocity and pressure terms depend on (x, y, z, t,X) and
all the elevation terms, depends only on (x, y, t,X). This is predominantly a multiple-
scales expansion in the contrast parameter ε, although the expansion is mixed with
that used in the derivation of the linearised shallow water equation [15]. Then the
equations in (3.3.3) become

u
(0)
X + ε

(
u

(1)
X +∇ · u(0) + w(0)

z

)
= 0, (3.3.5)

p̃
(0)
X + δp

(0)
X + ε

(
p̃(0)
x + δ

(
p

(1)
X + p(0)

x + u
(0)
t

))
= 0, (3.3.6)

p̃(0)
y + δ

(
p(0)
y + v

(0)
t

)
+ εδ

(
p(1)
y + v

(1)
t

)
= 0, (3.3.7)

p̃(0)
z + 1 + δp(0)

z + εδ
(
p(1)
z + w

(0)
t

)
= 0, (3.3.8)
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w(0) + εw(1) = ζ
(0)
t + εζ

(1)
t on z = 0, (3.3.9)

p̃(0) − patm + δ
(
ζ(0)p̃(0)

z + p(0)
)

+ εδ
(
ζ(1)p̃(0)

z + p(1)
)

= 0 on z = 0. (3.3.10)

Also, the no flow conditions though the rigid boundaries of the structured bathymetry
must be imposed to the problem. Namely,

0 =


w(n) + u(n) · ∇h+, 0 < X < θ, z = −h+,

w(n) + u(n) · ∇h−, θ < X < 1, z = −h−,
u(n), X = θ, 1, −h− < z < −h+,

(3.3.11)

for n = 0, 1, 2, ..., standing for O(εn).
From now on, powers of ε and δ of the equations (3.3.5) to (3.3.11) will be

compared. Also, if for example a superscripted expansion function is known to be
independent of some variable, then the sum of all the other functions included in the
same equation and order, must be independent of that variable as well. This idea
will be applied throughout this derivation. Therefore, starting from O(ε0δ0), then
equation (3.3.5) implies that u(0) is independent of X throughout the depth and the
third equation of (3.3.11) imply that

u(0) ≡

{
u(0)(x, y, z, t), −h+ < z < 0,

0, −h− < z < −h+,
(3.3.12)

while equations (3.3.6) to (3.3.10) give

p̃(0)(z) = patm − z, (3.3.13)

which is just the background hydrostatic pressure in the fluid. Since u(0) is now
discontinuous at z = −h+, then the continuity of velocity normal to this surface
requires that

[
w(0) + u(0) · ∇h+

]
z=−h++0+

=
[
w(0) + v(0)h+

y

]
z=−h+−0+

, (3.3.14)
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by using (3.3.12).
One may ask if there is an additional contribution near the boundary z =

−h+ due to the local flow detailed around the top face of the barrier. To see that
this effect is negligible at leading order, a multiple scales method to the vertical
coordinate near the boundary must be taken into account using matched asymptotic
expansions to the inner and outer regions. This is a technique used to derive matching
conditions near sharp-ends boundaries. For example, in [16], a similar procedure was
followed to derive matching conditions across the vertical interface of a rectangular
shaped metamaterial. This is essentially the same procedure, but the inner and
outer regions are in the vertical coordinate instead of the horizontal. Forgetting for
now the analysis from (3.3.2) until the last equation, the solution of the flow in the
inner region can be found by introducing a small scale to the vertical variation near
the boundary z = −h+. That is to set z = −h+ + εHz′ in (3.3.2) instead of just
z = Hz′ and leave the x, y, t scales as they were. Next, using this transformation
of coordinates in the mass conservation law and the x and z component of the
momentum conservation law, then

uX + wz + ε(ux + vy) = 0, pX + ε(px + δut) = 0, pz + ε = 0, (3.3.15)

by non-dimensionalising all the variables in the same fashion as in (3.3.3), removing
the dashes and neglecting orders of ε2. Introducing ε expansions to all variables
according to (3.3.4) the last two equations at O(ε0) imply that p̃(0) ≡ p̃(0)(x, y, t) in
the inner region. Using the fact that the inner expansion of the outer pressure (call
it P̃ (0)) must match p̃(0)(x, y, t) to leading order, then

lim
z→0+

P̃ (0) = lim
z→∞

p̃(0)(x, y, t) = lim
z→−∞

p̃(0)(x, y, t) = lim
z→0−

P̃ (0), (3.3.16)

which imply the continuity of pressure across the metamaterial boundary. A similar
idea can be used also in full linear theory to show the same result. Since the pressure
is proportional to the velocity potential under the assumptions of full linear theory,
then the continuity of φ across metamaterial boundaries can be imposed as happened
back in (3.2.8).

Continuing on the leading order O(ε0) of mass conservation in (3.3.15),
gives ∇ · U(0) = 0 where now ∇ = (∂X , ∂z) and U(0) = (u(0), w(0)). Integrating it
over the unit cell of the inner region, namely Ω∗ which is comprised of the regions
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(X, z) ∈ (0, 1)× (0, z∗) and (X, z) ∈ (θ, 1)× (−z∗, 0), then

0 =

ˆ

Ω∗

∇ ·U(0)dV =

ˆ

∂Ω∗

U(0) · n̂dS =

z∗ˆ

0

(
u(0)
∣∣∣
X=1
− u(0)

∣∣∣
X=0

)
dz

−
1ˆ

0

w(0)
∣∣∣
z=z∗

dX +

1ˆ

θ

w(0)
∣∣∣
z=−z∗

dX,

(3.3.17)

where here the divergence theorem was used supported with no flow conditions across
the rigid boundaries X ∈ (0, θ), z = 0 and z ∈ (−z∗, 0), X = θ, 1. The first term
of the right-hand side can be neglected after making the standard assumption of X
periodicity to all variables. Thus, the result is the balance of the local vertical flux
across the boundary. Therefore, by matching the inner expansions of the outer flux
to the outer expansions of the inner flux, then

1ˆ

0

[
w(0) + u(0) · ∇h+

]
z=−h++0+

dX = lim
z∗→∞

1ˆ

0

w(0)
∣∣∣
z=z∗

dX

= lim
z∗→∞

1ˆ

θ

w(0)
∣∣∣
z=−z∗

dX =

1ˆ

θ

[
w(0) + v(0)h+

y

]
z=−h+−0+

dX,

(3.3.18)

which results to the integrated version of (3.3.14). It will be seen later that eventually
this equation will be integrated in over the cell. Therefore, the equations (3.3.15)
to (3.3.18) are giving a verification of equation (3.3.14) and so they can be ignored
from now on.

Proceeding to O(ε0δ1), the equations (3.3.6), (3.3.8) imply that p̃(0) is in-
dependent of z and X. Then the equations (3.3.10), (3.3.13), will give

p(0)(x, y, t) = ζ(0)(x, y, t), (3.3.19)

which imply the X-independence of ζ(0). Using the last equation, then (3.3.7) corre-
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sponds to
v

(0)
t (x, y, t) = −ζ(0)

y (x, y, t), (3.3.20)

which imply that v(0) is independent of X. Additionally, since v(0) is independent of
z from the equation above, then (3.3.14) is transformed to

[
w(0)

]−h++0+

−h+−0+
= −

[
u(0)h+

x

]
z=−h++0+

in X ∈ (θ, 1). (3.3.21)

Moving on to O(ε1δ0), then equation (3.3.5) gives

∇ · u(0) + w(0)
z = −u(1)

X , (3.3.22)

while continuing to O(ε1δ1) of (3.3.6), using (3.3.19), then

u
(0)
t + ζ(0)

x = −p(1)
X . (3.3.23)

The two terms of the left-hand side are independent of X from (3.3.12) and (3.3.19)
respectively. Thus by integrating the equation above with respect to X ∈ (0, 1), then
the left-hand side will remain invariant and on the right-hand side the fundamental
theorem of calculus can be applied to give a contribution that is proportional to l
(after returning to original coordinates). This is due to the assumption that all higher
order variables (for example the ones that are superscripted by (1)) are periodic in
X with a period of order ε. The fact that the periodicity of higher order variables
in the microscale is small, is a standard assumption to multiscale expansions for
homogenisation purposes [67]. Therefore, equation (3.3.23) will imply that

u
(0)
t (x, y, t) = −ζ(0)

x (x, y, t), (3.3.24)
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which imply the z-independence of u(0). Integrating (3.3.22) over a single cell, then

1ˆ

0

0ˆ

−h+

(
∇ · u(0) + w(0)

z

)
dzdX +

1ˆ

θ

−h+ˆ

−h−

(
v(0)
y + w(0)

z

)
dzdX = 0, (3.3.25)

after using (3.3.12) and neglecting the u
(1)
X term from both integrands. The reason

for neglecting u
(1)
X in the first integral is from the fact that higher order variables

are assumed to have X-periodicity of order ε (same reason for why p
(1)
X is neglected

from (3.3.23)) while the reason it is neglected from the second integral is by applying
the fundamental theorem of calculus on X and make use of the no flow conditions
through the barriers. Next, using the z,X independence of u(0), v(0) from (3.3.24)

and (3.3.20) respectively and applying the fundamental theorem of calculus on w
(0)
z

in the first integral with w(0) = ζ
(0)
t on z = 0 from the O(ε0) of (3.3.9), then

ζ
(0)
t + h+u(0)

x + hv(0)
y −

1ˆ

0

w(0)
∣∣
z=−h++0+

dX +

1ˆ

θ

−h+ˆ

−h−

w(0)
z dzdX = 0, (3.3.26)

where h = θh+ + (1− θ)h− denotes the averaged depth over the single cell. Now, by
dichotomising the first integral about X = θ, then applying again the fundamental
theorem of calculus in the second integral with w(0) = −h−y v(0) on z = −h− from
O(ε0) of the second equation of (3.3.11) using (3.3.12) and combining the integrals
over (1, θ), then

ζ
(0)
t + h+u(0)

x + hv(0)
y + (1− θ)h−y v(0)−

θˆ

0

w(0)

∣∣∣∣
z=−h++0+

dX −
1ˆ

θ

[
w(0)

]−h++0+

−h+−0
dX = 0,

(3.3.27)
using the X-independence of v(0) again. Next, the first integral (including the minus
sign) is identical to θh+

x u
(0) + θh+

y v
(0) using the O(ε0) of the first equation of (3.3.11)

and the z, X of u(0), v(0). Similarly, the second integral (including the minus sign)
is (1 − θ)h+

x u
(0) using (3.3.21) and the fact that u(0) is independent of z, X again.
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Therefore in matrix form the equation reads

ζ
(0)
t +∇ ·

(
hu(0)

)
= 0 where h = diag{h+, h}. (3.3.28)

Now by combing the leading order momentum equations (3.3.24), (3.3.20)
in a vectorial form and then

u
(0)
t +∇ζ(0) = 0. (3.3.29)

Elimination of u(0) between (3.3.28) and (3.3.29) gives ζ
(0)
tt = ∇ ·

(
h∇ζ(0)

)
. But

ζ(0) can be replaced by ζ as they are the same to leading order by neglecting O(ε).
Also, this governing equation for ζ is written in the dimensionless dashed variables.
Therefore by returning to the original Cartesian coordinates through (3.3.2), then

ζtt = g∇ ·
(
h∇ζ

)
, (3.3.30)

where ζ(x, y, t) is the surface elevation to the actual physical problem. The equation
(3.3.30) is an extension to the standard shallow water equation ζtt = g∇ · (h∇ζ),
describing again the surface elevation ζ(x, y, t) of a fluid bounded below by the bed
z = −h(x, y). This can be seen by taking h± → h (setting both metamaterial
interfaces at the fluid’s depth level), then h→ hI using h→ h (where I is the 2× 2
identity matrix) which transforms the metamaterial shallow water equation (3.3.30),
to the standard one (matrix h replaced by the scalar h).

Now in the presence of a metamaterial made of closely spaced barriers,
the scalar h(x, y) becomes a 2×2 diagonal tensor, with elements the effective depths
which an incident wave feels by travelling in the directions perpendicular and parallel
to the barriers respectively. This can be seen from the fact that if the wave was
travelling only in the x-direction, then the equation would read ζtt = g∂x

(
h+ζx

)
which coincides with the standard 1D shallow water equation for an effective depth
h+. Similarly, if the wave was travelling only in the y-direction then the equation
would be ζtt = g∂y

(
hζy
)
, which describes the same thing. This is essentially the

equation discussed in [80], but now derived using asymptotic multiscale expansions.

78



3.3.2 Solution to the scattering problem

Although the new, linear shallow water model works for spatially varying interfaces
describing the alternating bed in the metamaterial region, now for the problem of
this section they are assumed to be constant. Therefore, the modified shallow water
equation derived in the previous section, can be used for propagation of long waves
over a flat bed and a submerged metamaterial made of identical, thick barriers to
consider the same scattering problems that were treated with full linear theory in
previous sections. Also, in this problem, a similar generalisation as in section 3.2.4
can be made, namely let the metamaterial sit on a rigid step on z = −h−. Thus,
the constant alternating beds in the metamaterial region are z = −h+,−h− with
h+ < h− < h, where h is the constant depth outside the metamaterial region.

However, in section 3.2.4, the lower metamaterial interface was allowed to
be below the depth level (this case of the problem was referred to “buried” barriers).
However here, the case of h+ < h < h− is not allowed as in some geometrical
cases the metamaterial scatters modes whose phase speeds are not associated with
the expected ones, namely two modes travelling in opposite directions above the
structure. The recent paper of [81] includes a wider range of results which include
scattering by structured beds in which h− is larger than h (“buried” metamaterial).
This produces some interesting results, but the focus here is on comparing with the
earlier work in this thesis in which h− is not greater than h and involves scattering
over finite width ridges. Therefore in the shallow water problem described in this
section, only the h+ < h− < h case is considered.

A plane-crested incident wave of unit amplitude propagates from −∞ with
wavenumber k in a direction θ0 ∈ [−90◦, 90◦] with the x-axis and is partially reflected
and transmitted by the structure of arbitrarily oriented barriers. The governing
equation in |x| > b is the standard shallow water equation over a flat bed at z = −h,
namely ζtt = g∇ · (h∇ζ).

In |x| < b, an arbitrary orientation to the barriers is allowed. Therefore,
using the (X, Y ) coordinates found in (3.2.1), then X and Y are parallel and per-
pendicular to the rotated barriers (by an angle δ), respectively. Thus, the governing
equation over the metamaterial region |x| < b is ζ̂tt = g∇̂·(h∇̂ζ̂) from (3.3.30), where
ζ̂ is the elevation expressed in (X, Y ) and therefore ∇̂ = (∂X , ∂Y ). Thus, in Cartesian
coordinates is ζtt = g∇·

(
R−1hR∇ζ

)
, using ∇̂ = R∇ (chain rule), where R is the

conventional rotation matrix defined in (3.2.1). In the equation above the identity(
R∇

)
· f = ∇·

(
R−1f

)
for any f was implemented, given that the inverse of the rota-

tion matrix is its transpose. Note that since the tilted coordinate system looks like
the one in figure 3.1 (but in the shallow water regime and the metamaterial sits on a
rigid step), then the shallow water depth tensor is chosen to be h = diag{h, h+}, so
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that its first element represent the effective depth in the direction parallel to barriers
and the second in the direction perpendicular to barriers. Here the averaged depth
in the unit cell will be h = θh+ + (1 − θ)h−. Also, now the domain of δ can be
[−90◦, 90◦], as under shallow water approximation, there are no vertical eigenfunc-
tions to match. Therefore, the three different barrier orientations considered in the
previous section (full linear theory) can be combined to a single case due to the fact
that the shallow water model is independent of the vertical coordinate.

Assuming the time harmonicity of the incident wave and the global y-
variation compatibility of the total field with the incident wave due to the con-
stant cross-sectional geometry of the problem (as the metamaterial acts as an ef-
fective homogenised medium), then y and t can be factored out from the solu-
tion as ζ(x, y, t) = <{η(x)eiαye−iωt} for ω be the incident angular frequency and
α = k sin θ0 be the wavenumber in the y-direction. The incident wave is given by
ζinc(x, y, t) = <{ηinc(x)eiαye−iωt} with ηinc(x) = eiβx for β = k cos θ0. After this sim-
plification the governing equation for the scattering modes outside the metamaterial
region, becomes

η′′(x) = −β2η(x) in |x| > b, (3.3.31)

using that K ≡ ω2/g = k2h from the dispersion relation and the shallow water
approximation. Note that this equation is satisfied by the incident wave as well.

Now in the region |x| < b, the effective equation that describes the surface
elevation over a metamaterial consist of arbitrarily oriented barriers, namely ζtt =
g∇·

(
R−1hR∇ζ

)
, becomes

H1η
′′(x) + 2iH̃η′(x) +

(
K − α2H2

)
η(x) = 0 in |x| < b, (3.3.32)

for H1 = h+ sin2 δ + h cos2 δ, H2 = h+ cos2 δ + h sin2 δ and H̃ = α(1 − θ)(h− −
h+) sin δ cos δ by using the surface field proportionality to eiαye−iωt. By seeking
solutions η(x) ∼ eiµx in (3.3.32), then µ will satisfy a quadratic equation whose
explicit solutions are given by

µ1,2 =
−H̃ ±

√
H̃2 +H1(k2h− α2H2)

H1

, (3.3.33)
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using that K = k2h again. Note that the bracket term inside the square root is
positive due to the fact that α2H2 < k2H2 < k2(h cos2 δ + h sin2 δ) = k2h as h
lies somewhere in between h+ and h− which are both smaller than h. This means
that µ1,2 ∈ R (positive discriminant) with the two roots having different sign as
H2

1µ1µ2 = −H1(k2h − α2H2) < 0. That means they will be two waves travelling in
opposite directions in the region |x| < b. Without the loss of generality µ1 is chosen
to be the positive root and µ2 the negative. However the existence of two real roots
(opposite in sign) is guaranteed from the fact that the lower metamaterial interface
lies above the level of the exterior sea bed (h− < h). It was shown in [81] that when
this interface lies below the sea bed (h− > h), then the nature of the roots µ1,2 could
change i.e. two real and negative roots or two complex conjugate roots. However
these cases will not be included in this thesis.

Providing to the problem the usual far field condition

η(x) ∼

{
ηinc(x) +Rηinc(−x), x→ −∞,
T ηinc(x), x→∞,

(3.3.34)

where R and T are the reflection and transmission coefficients, then the solutions of
(3.3.31), (3.3.32) will be

η1(x) = eiβx +Re−iβx, x < −b,
η2(x) = Aeiµ1x +Beiµ2x, |x| < b,

η3(x) = Teiβx, x > b,

(3.3.35)

where η1, η2 and η3 describe the total surface elevation. Note that if h+ < h < h−

was assumed (instead of h+ < h− < h), then there would be cases for which µ1 and
µ2 could be complex [81].

According to [26], the elevation and mass flux must be matched across
straight depth discontinuities at leading order. Normally in the presence of straight
depth discontinuities, matching conditions of higher order must be imposed. How-
ever, [26] showed that the higher order matching conditions applied to the scattering
over a step of conventional bathymetry changes the phase but not the modulus of
the scattering coefficients. Also, in the work of [16] the metamaterial matching
conditions to leading and higher order in ε = ω

√
l/g were derived using a formal
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asymptotic matching process of an inner and outer region of the metamaterial in-
terface. However, the higher order contribution of these conditions can be neglected
as the governing equation (3.3.30) is also of leading order. Therefore, the elevation
matching translates to

η1(−b) = η2(−b), η2(b) = η3(b). (3.3.36)

Now flux expressions for outside and within the structure must be introduced. In
the derivation of the standard shallow water equation bounded by a slow-varying
bed, at some point the horizontal components of the momentum equation will give
ut = −g∇ζ. Thus, by denoting q to be the velocity flux, then by multiplying
both sides by h, then the flux in the absence of submerged obstacles is given by qt =
−gh∇ζ. Now for deriving an expression for the velocity flux within the metamaterial
region, equation (3.3.29) is considered. First approximating each variable by its
zeroth order term and then returning to the original Cartesian coordinates, then the
result is again ut = −g∇ζ. But before multiplying this equation with h to get the
velocity flux expression within the metamaterial region, first the barrier orientation
should be considered. Thus the velocity flux expression over the submerged structure
becomes q̂t = −gh∇̂ζ̂, with q̂ = Rq and ∇̂ζ̂ = R∇ζ where again R is the rotation
matrix used to derive equation (3.3.32). Therefore, the flux expression for generally
oriented barriers in Cartesian coordinates is qt = −gR−1hR∇ζ where the matrix
product can be calculated trivially. Thus, by taking the flux expressions in the two
regions, factoring out the y and t dependence through eiαye−iωt and matching their
x-components across the interfaces x = ±b, then

hη′1(−b) = H1η
′
2(−b) + iH̃η2(−b), hη′3(b) = H1η

′
2(b) + iH̃η2(b). (3.3.37)

Now equations (3.3.36) and (3.3.37) give a 4× 4 linear system for R, T,A,B. Their
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formulas are complicated but explicit and they are found to be

A = e−iβbeiµ2b
2βhγ

(2)
−

γ
(1)
+ γ

(2)
− e−i(µ1−µ2)b − γ(1)

− γ
(2)
+ ei(µ1−µ2)b

,

B = −e−iβbeiµ1b 2βhγ
(1)
−

γ
(1)
+ γ

(2)
− e−i(µ1−µ2)b − γ(1)

− γ
(2)
+ ei(µ1−µ2)b

,

R = −ie−2iβb 2γ
(1)
− γ

(2)
− sin[(µ1 − µ2)b]

γ
(1)
+ γ

(2)
− e−i(µ1−µ2)b − γ(1)

− γ
(2)
+ ei(µ1−µ2)b

,

T = e−2iβbei(µ1+µ2)b 2βhH1(µ1 − µ2)

γ
(1)
+ γ

(2)
− e−i(µ1−µ2)b − γ(1)

− γ
(2)
+ ei(µ1−µ2)b

,

(3.3.38)

where γ
(i)
± = βh±(H̃+µiH1) for i = 1, 2. It is easier to derive the expressions above if

η2(±b) in (3.3.37) is written in terms of η1 and η3 from (3.3.36). The formulas for the
amplitudes A abnd B will be used in the numerical results section to produce surface
plots for ζ(x, y, t). The advantage of the scattering coefficients in the shallow water
regime is that they are always in closed-form. Therefore, a variety of scattering
properties such as energy conservation, transparency, negative refraction etc. will
now be shown analytically. Similar properties were shown analytically in [11], where
the closed-form solutions came from the extension of the barriers throughout the
depth (instead of the shallow water limit). However here, the expressions are more
complicated and the proof of the scattering properties require some more complicated
algebra.

Starting from the proof of energy conservation i.e. |R|2 + |T |2 = 1, then

|R|2 + |T |2 =
4
(
γ

(1)
− γ

(2)
−

)2

sin2
[
(µ1 − µ2)b

]
+ 4β2h2H2

1 (µ1 − µ2)2∣∣∣γ(1)
+ γ

(2)
− e−i(µ1−µ2)b − γ(1)

− γ
(2)
+ ei(µ1−µ2)b

∣∣∣2 (3.3.39)

and then, it will be proven that the denominator of this expression, equals the nu-
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merator. Therefore, using the identity |z1 + z2|2 = |z1|2 + |z2|2 + 2<{z1z2}, then

∣∣∣γ(1)
+ γ

(2)
− e−i(µ1−µ2)b − γ(1)

− γ
(2)
+ ei(µ1−µ2)b

∣∣∣2
=
(
γ

(1)
+ γ

(2)
−

)2

+
(
γ

(1)
− γ

(2)
+

)2

− 2γ
(1)
+ γ

(2)
+ γ

(1)
− γ

(2)
− cos

[
2(µ1 − µ2)b

]
= 4γ

(1)
+ γ

(2)
+ γ

(1)
− γ

(2)
− sin2

[
(µ1 − µ2)b

]
+
(
γ

(1)
+ γ

(2)
− − γ

(1)
− γ

(2)
+

)2

,

(3.3.40)

by applying the cosine double angle formula. Now one may use the γ
(i)
± definitions

to prove the straightforward result γ
(1)
+ γ

(2)
− − γ

(1)
− γ

(2)
+ = 2βhH1(µ1 − µ2) and the

more demanding formula γ
(1)
+ γ

(2)
+ = β2h2 − H̃2 + µ1µ2H

2
1 = γ

(1)
− γ

(2)
− . The latter can

be derived by expanding the products into 9 terms and group the µ1 + µ2 terms
together, so that µ1 + µ2 = −2H̃/H1 is used from (3.3.33). These two formulas
prove that the result in (3.3.40) is identical to the numerator of (3.3.39), verifying
the conservation of energy analytically i.e. |R|2 + |T |2 = 1. Using the two formulas
discussed here, from now on the scattering coefficients expressions used will be

R = −ie−2iβb 2γ
(1)
+ γ

(2)
+ sin[(µ1 − µ2)b]

γ
(1)
+ γ

(2)
− e−i(µ1−µ2)b − γ(1)

− γ
(2)
+ ei(µ1−µ2)b

,

T = e−2iβbe−2iH̃b/H1
2βhH1(µ1 − µ2)

γ
(1)
+ γ

(2)
− e−i(µ1−µ2)b − γ(1)

− γ
(2)
+ ei(µ1−µ2)b

.

(3.3.41)

The next property that will be shown, is the incident and barrier symmetry,
in the sense that R, |T |, |A| and |B| are even in both θ0 and δ. Starting from

γ
(i)
± = βh±

(
H̃ + µiH1

)
= βh± (−1)i+1

√
H̃2 +H1

(
k2h− α2H2

)
,

µ1 − µ2 =
2
√
H̃2 +H1

(
k2h− α2H2

)
H1

,

(3.3.42)

and using that H1, H2 are independent of θ0, then it can be seen that the two
expressions above are even in both θ0 and δ. This implies that R is symmetric in θ0
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and δ. However, when θ0 is replaced by −θ0 or δ by −δ, then T , A and B change
only by a phase. Therefore |T |, |A| and |B| are even in θ0 and δ as well. The θ0

symmetry is a property shared with the modulus of scattering coefficients of the full
linear theory problems defined in section 3.2. However, for a general angle δ, it was
difficult to show analytically the θ0 symmetry but it was verified numerically. But
in the special cases of δ = 0◦, 90◦, the symmetry could be shown analytically. Now
in this section, even when δ is arbitrary, the shallow water approximation seems to
simplify the problem at a level where the θ0 symmetry can be shown as well.

Now we consider a special geometrical case that gives rise to the “trans-
parency” property. Inspired from [11], it was shown that if the barriers were thin,
started from the bed and extended throughout the depth (no shallow water assumed),
then there was a total transmission if the barriers were parallel to the incident di-
rection or the symmetric about θ0 = 0◦ direction. Therefore, it will be proven now
that the same result holds for barriers that extend partially throughout the depth in
shallow water. The geometrical assumptions are

θ = 0, h− = h, θ0 = ±δ, (3.3.43)

meaning that the barriers are assumed to be thin and they sit on the bed instead of
an extra step. The incident direction is chosen such that θ0 = δ represents a wave
that travels parallel to the barriers orientation and θ0 = −δ represents the same wave
but its direction is reflected about the x-axis.

The geometrical assumptions above, imply that α = ±k sin δ, β = k cos δ,
h = h, H1 = h+ sin2 δ + h cos2 δ, H2 = h+ cos2 δ + h sin2 δ and H̃ = ±k(h −
h+) sin2 δ cos δ after some simple algebraic manipulation. The discriminant of the
polynomial satisfied by µ1,2 (the term which is inside the square root of (3.3.33)),
will simplify to H̃2 + H1(k2h − α2H2) = β2h2. Thus, the final simplifications are

µ1 − µ2 = 2βh/H1, γ
(1)
+ = γ

(2)
− = 2βh and γ

(1)
− = γ

(2)
+ = 0 from the definitions of γ

(i)
±

found after the equation (3.3.38).
Using all those simplified formulas derived above, then it can be easily

proven that R = B = 0 and

T = exp

[
2iβb

H1

(
h∓ (h− h+) sin2 δ − h+ sin2 δ − h cos2 δ

)]
,

A = exp

[
iβb

H1

(
h∓ (h− h+) sin2 δ − h+ sin2 δ − h cos2 δ

)]
,

(3.3.44)
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where the ∓ sign corresponds to the θ0 cases found in (3.3.43). Therefore, it can
be seen that when the incident direction is aligned with the barriers (that is θ0 = δ
or take the minus sign of the transmission formula above), the result is T = A = 1
which is what was expected on physical grounds - the incident wave slides through the
barriers unaffected. However when the incident direction is flipped about the x-axis
(that is θ0 = −δ or take the plus sign of the transmission formula above), the result
is T = exp

[
4ikb(h− h+) sin2 δ cos δ/H1

]
and A = exp

[
2ikb(h− h+) sin2 δ cos δ/H1

]
which imply that |T | = |A| = 1. Also, from these last expressions of T and A one
could see that when the barrier height tends to zero (h+ → h), then T = A = 1.
This is the transparency property proved in [11]. Actually it can be seen when the
barriers extend throughout the fluid’s depth (h+ → 0), then T = exp(4ikL sin2 δ),
where L = bsecδ is the half-length of the barriers.

In order to show certain refraction phenomena in |x| < b, we need define
the group velocity as

c(i)
g =

(
∂ω

∂µi
,
∂ω

∂α

)
, (3.3.45)

for i = 1, 2 standing for the two travelling waves (eiµix). Here the angular frequency
can be found from ω =

√
Kg, where K can be expressed in terms of µi and α by

rearranging equation (3.3.33) as K = α2H2 + µi
(
µiH1 + 2H̃

)
. Therefore, the partial

derivatives can be calculated using the chain rule as

c(i)
g =

(
g

K

)1/2(
µiH1 + H̃, αH2 + µi(1− θ)(h− − h+) sin δ cos δ

)
. (3.3.46)

The direction of the vector above coincides with the direction of energy propagation.
This angle, call it θ

(i)
g for i = 1, 2, which gives important information about refraction

within the metamaterial region, is not always the same as the wave phase speed
θ

(i)
p = arctan(α/µi). Also, it can be verified from (3.3.33) that the x-component of

θ
(1)
g is positive and the one of θ

(2)
g is negative as expected (even though for sunken

barriers is not always true - see [81]).
Therefore, by calculating the directions of energy propagation for the two

waves within the region |x| < b from the equation above, we have that

θ(i)
g = arctan

(
αH2 + µi(1− θ)

(
h− − h+

)
sin δ cos δ

µiH1 + H̃

)
, (3.3.47)
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where the first property can be verified easily, namely the independence of θ
(i)
g from

k and b. Firstly, all the variables specified above are independent of b clearly. Also,
since the numerator and denominator of the fraction above is linearly proportional
to k (from µi and H̃), then θ

(i)
g is shown to be independent of k and b. Therefore

the direction of energy propagation within the structural region depend only on the
incident direction θ0, the barriers orientation and thickness (δ and θ respectively),
the flat depth outside the structural region (h) and the two metamaterial interfaces
(h±).

Next, a special case of negative refraction will be shown. Considering again,
the geometrical case of (3.3.43) and using the “transparency” property shown above

then only θ
(1)
g should be calculated as the amplitude of the second mode was found

to be zero. The geometrical assumptions of this special case, simplify the parameters
as discussed after equation (3.3.43). Therefore,

θ(1)
g = arctan

(
−H1H2k sin δ + (h− h+)(βh− H̃) sin δ cos δ

βhH1

)

= arctan

(
h2 sin δ cos2 δ − hh+ sin δ(1 + cos2 δ)

hH1 cos δ

)

= arctan

(
(h− h+) sin δ cos2 δ − h+ sin δ

cos δ(h+ sin2 δ + h cos2 δ)

)
,

(3.3.48)

where in the first step, the geometrical simplifications were made and the numer-
ator and denominator were multiplied by H1. In the second step the numerator
and denominator were divided by k and a long algebraic simplification was carried
out. In the last step the numerator and denominator were divided by h. The trivial
limit h+ → h is verified as it gives θ

(1)
g → arctan(−h sin δ/h cos δ) = −δ = θ0 which

implies that as the barrier height becomes small (when compared to the depth),
the direction of energy propagation in |x| < b is aligned with the incident direc-
tion of the wave. Now by taking the limit h+ → 0, then it can be shown that
θ

(1)
g → arctan(h sin δ/h cos δ) = δ. This property suggests that for thin barriers that

extend through the whole depth, the wave energy direction is aligned with the barrier
orientation and thus the metamaterial acts as an all-frequency negative refraction
medium [11].
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3.3.3 Alternative effective depth tensor representation

In this subsection, an alternative representation of the diagonal depth tensor within
the metamaterial region, will be derived. Here instead of starting from first principles,
a hybrid method involving ideas combining full linear wave theory and shallow water
theory will be considered.

Here, we consider the equations that hold within |x| < b for the problem
solved in section 3.2.4. The alternating beds are located at z = −h+ and z = −h−
with 0 < h+ < h− to have the same notation with the previous section. After finding
the effective depths in the direction parallel and perpendicular to the barriers, then
the barriers can be tilted at any angle and the effect upon the governing equation will
be to multiply from each side the depth tensor with a rotation matrix, as happened
in the previous section. Now the velocity potential from full linear theory (shallow
water assumption not used yet) will satisfy the Laplacian equation ∇2Φ = 0 in Lg =
(−h+, 0) and the reduced Laplacian equation

(
∂yy + ∂zz

)
Φ = 0 in Lb = (−h−,−h+)

as the barriers are aligned with the y-axis and no x-variation is allowed into narrow
channels. Now we consider a time-harmonic incident wave of wavenumber k and
angular frequency ω. The idea now is to solve the dispersion relation for wave
propagation over the structured bed under full linear theory for two different wave
directions: parallel and perpendicular to the ridges. With the wavenumbers in those
directions, one could infer equivalent “effective depths” of section 3.3.1 through a
dispersion relation and use these instead of h+ and h in the shallow water model.
Writing the wavenumber as k2 = k2

‖ + k2
⊥ , with k‖, k⊥ be the components of the

wavenumber in the directions parallel and perpendicular to the barriers, then the
total potential can be expressed as Φ(x, y, z, t) = <{φ(x, z)eik‖ye−iωt} under the
usual assumption of y and t variation compatibility with the incident wave. Note
that because of the special barrier orientation, the actual incident wavenumbers in
x, y directions (β = k cos θ0 and α = k sin θ0 in the notation of the previous sections)
coincide with k⊥, k‖. Under these simplifications the model becomes

(
∇2 − k2

‖
)
φg(x, z) = 0, z ∈ Lg,(

∂zz − k2
‖
)
φb(x, z) = 0, z ∈ Lb.

(3.3.49)
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Seeking solutions of separable form as eik⊥xZg,b(z), then

Z ′′g (z) = k2Zg(z), Z ′g(0) = KZg(0),

Z ′′b (z) = k2
‖Zb(z), Z ′b(−h−) = 0,

(3.3.50)

where K = ω2/g and using that k2 = k2
⊥ + k2

‖. The particular solutions of (3.3.50)
are

Zg(z) = Ag

[
cosh(kz) +

K

k
sinh(kz)

]
,

Zb(z) = Ab cosh
[
k‖(z + h−)

]
.

(3.3.51)

By applying the continuity of pressure and normal flux at the top interface i.e.
Zg(−h+) = Zb(−h+) and Z ′g(−h+) = (1 − θ)Z ′b(−h+), then the dispersion relation
coming from the vanishing determinant of the linear (Ag, Ab) system will be the same
as in section 3.2.4, namely

(1− θ)k‖ tanh
[
k‖(h

− − h+)
]

=
K − k tanh(kh+)

k −K tanh(kh+)
k. (3.3.52)

Now this is where the hybrid nature of this method will be used. According
to the shallow water model over a metamaterial specified in (3.3.30), the existence
of effective depths in the directions perpendicular and parallel to the barriers, is
assumed. Those depths are included in the diagonal tensor h = diag{h⊥, h‖} with
h⊥ be the effective depth in the x-direction (perpendicular to the barriers) and h‖ be
the effective depth in the y-direction (parallel to the barriers). To find an expression
for h⊥, the assumption k‖ = 0 and (and so k = k⊥) in the dispersion relation (3.3.52)
can be used. This gives

K = k tanh(kh+), (3.3.53)

which suggests that h⊥ = h+ from the standard water dispersion relation.
Similarly, to get the effective depth for a wave travelling in the y-direction,

k⊥ = 0 (and so k = k‖) can be assumed in the same equation to get

(1− θ) tanh
[
k‖(h

− − h+)
]

=
K − k‖ tanh(k‖h

+)

k‖ −K tanh(k‖h+)
. (3.3.54)
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One can see that there are no explicit solutions to the wavenumber k‖. However, the
location of the roots is known as this dispersion relation is identical to (3.2.31) (up
to some trivial rearrangement) but with the renamed variables h→ h− and d→ h+.
There are two real and symmetric roots and a sequence of purely imaginary ones,
but because in the shallow water regime there are no depth eigenfunction expansions
(depth is always averaged out of the equation), then the only root of interest is the
positive real one. This root (call it k‖ ∈ R>0) can be found computationally using
the bisection method and using the dispersion relation k‖ tanh(k‖h‖) = K, then the
effective depth in the direction parallel to the barriers can be found to be

h‖ =
1

k‖
tanh−1

(
K

k‖

)
. (3.3.55)

Therefore a slightly different model to the one of subsection 3.3.1 has been
derived, namely

ζtt = g∇ ·
(
h∇ζ

)
, with h = diag{h+, h‖}, (3.3.56)

with h‖ found from the equations (3.3.54) and (3.3.55). The only difference is that

the averaged depth h is replaced h‖. Therefore, R and T can be found from (3.3.41)

with H1,2 and H̃ affected by the averaged depth h replacement.
Now, the useful inequality h‖ ≤ h (where the equality holds only for θ =

0, 1) will be derived. This result will prove that there are again two modes travelling
in opposite directions within the metamaterial. The proof starts by substituting
K = k‖ tanh(k‖h‖) from (3.3.55) into (3.3.54) and use the hyperbolic tangent of
difference formula, to get

tanh
[
k‖(h‖ − h+)

]
= (1− θ) tanh

[
k‖(h

− − h+)
]
. (3.3.57)

From this equality, one can see that h‖ = h− for θ = 0 and h‖ = h+ for θ = 1 (using

that the hyperbolic tangent is a bijective function). Note that by definition, h gets
the same values with h‖ at the endpoints of θ. Now for a general θ ∈ (0, 1), the
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previous equality gives rise to the useful inequality

0 < tanh
[
k‖(h‖ − h+)

]
< tanh

[
k‖(h

− − h+)
]
. (3.3.58)

The middle term is positive as the right-hand side of (3.3.57) was positive. Therefore
from the triple inequality one can see that h+ < h‖ < h− for θ ∈ (0, 1), by using
again the increasing behaviour of the hyperbolic tangent. Using the upper bound
of h‖, then α2H2 < k2(h+ cos2 δ + h‖ sin2 δ) ≤ k2(h+ cos2 δ + h− sin2 δ) < k2h as the
alternating depths of the structure are both smaller than the actual depth of the
fluid. This inequality proves that µ1,2 from (3.3.33) are real and opposite in sign
which on physical grounds means that there are two waves travelling in opposite
directions within |x| < b.

Although h‖ and h have the same bounds at the same θ values (endpoints),

it can be also be proved that h‖ is always smaller than h for any θ ∈ (0, 1). The
proof starts from the inequality tanh(ax) > a tanh(x) for any a ∈ (0, 1) and x > 0
which can be proved by using f ′(x) > g′(x) for x > 0 and f(0) = g(0) for f , g be the
left and right-hand side of the inequality. Then by substituting a = (1− θ) ∈ (0, 1)
and x = k‖(h

− − h+) > 0, the following inequality yields

tanh
[
(1− θ)k‖(h− − h+)

]
> (1− θ) tanh

[
k‖(h

− − h+)
]
. (3.3.59)

Using that h−h+ = (1−θ)(h−−h+) (by definition) in the left-hand side and (3.3.57)
in the right-hand side, then (3.3.59) becomes

tanh
[
k‖(h− h+)

]
> tanh

[
k‖(h‖ − h+)

]
. (3.3.60)

Again from the increasing behaviour of the hyperbolic tangent then the final result
follows as

h‖ ≤ h, ∀θ ∈ [0, 1], (3.3.61)

with the equality holding at the θ-endpoints, namely h‖ = h = h− for θ = 0 and

h‖ = h = h+ for θ = 1.
Also, since the effective depth of this model is found to depend on the

wavenumber k‖, it will now be shown that in the long wave limit, h‖ = h. First it
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is worth noting that if k becomes small, then so does k‖ as they are related through
k2 = k2

‖ + k2
⊥. Therefore by approximating the hyperbolic tangents of equation

(3.3.54) by their small arguments, then

(1− θ)k‖(h− − h+) =
K − k2

‖h
+

k‖(1−Kh+)
. (3.3.62)

Using that h− h+ = (1− θ)(h−− h+) (by definition) and K = k‖ tanh(k‖h‖) ≈ k2
‖h‖

from (3.3.55), then the equation above can be rearranged to

h‖ − h+

h− h+
= 1− k2

‖h‖h
+ ≈ 1, (3.3.63)

which implies that h‖ = h in the long wave limit.

3.3.4 Numerical results

In this section, numerical results for the scattering problem introduced in section 3.3.1
will be demonstrated using the two different solutions of sections 3.3.2 and 3.3.3.
The two models over the metamaterial region, have the same equation structure,
namely the first can be found from (3.3.32) with H1 = h+ sin2 δ + h cos2 δ, H2 =
h+ cos2 δ + h sin2 δ and H̃ = α(h − h+) sin δ cos δ and the second from the same
equation but with h replaced by h‖ from (3.3.55). From now on, these models will
be referred to SW1 and SW2 respectively.

First, a comparison between the SW1 and SW2 models is made in figure
3.17(i) by plotting the ratio h‖/h against the thickness parameter θ. Note that h‖
requires a value of k. The geometrical parameters (in dimensionless form) of the
two curves are (kh, h+/h, h−/h) = (0.6, 0.4, 0.8) (full line) and (kh, h+/h, h−/h) =
(0.2, 0.1, 0.9) (dashed line). It can be verified that h‖ ≤ h with the equality hold
only at θ = 0, 1 (as shown analytically in the previous section). It will be verified
later that the difference between these two effective depths is significantly small in
the long wave limit.

Now in figure 3.17(ii), different effective depths from different authors are
plotted (in dimensional form with h+ = 0.4 and h− = 1.4). [1] and [13] considered the
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Figure 3.17: (i) h‖/h against θ for (kh, h+/h, h−/h) = (0.6, 0.4, 0.8) (full) and

(kh, h+/h, h−/h) = (0.2, 0.1, 0.9) (dashed). (ii) h (dashed) and 〈h−1〉−1 (chained)

for h+ = 0.4 and h− = 1.4. The coloured curves are the effective depths found from

[1] for l/h− = 0.04 (red), l/h− = 0.4 (blue), l/h− = 4 (green).

scattering by a bed with barriers in the shallow water regime and they have derived
the same structure of equation as in section 3.3.1, using different assumptions and
methods. They determined the effective depth tensor as h = diag{h1, h2} and both
authors found that h2 = h = θh+ + (1− θ)h− which coincides with the one used in
our model (SW1). This common effective depth is demonstrated from the dashed
curve of figure 3.17(ii) and it can be seen that it is linear in θ as expected from
its closed-form expression. The difference between the models discussed above, lies
upon the definition of h1. The modelling assumption of [13] resulted in h1 = 〈h−1〉−1

for 〈f〉 ≡ θf+ +(1−θ)f− which is represented by the chained curve of figure 3.17(ii).
This effective depth tends to h− as θ → 0 and to h+ as θ → 1, in contrast to the
constant value h1 = h+ found in the previous sections. However the model of [13]
is expected to work for widely-spaced barriers (l/h− � 1) as in the homogenisation
method used, there was no extra dimensionless small variable taken into account
apart from H/L � 1 (as happened with ε = l/L found in equation (3.3.1)). The
numerically-determined value of [1], which covers the two limiting cases (closely and
widely spaced barriers), is shown in figure 3.17(ii) by the coloured curves (each colour
represent different spacing). This value was determined based on the shallow water
assumptions and by solving a potential flow problem in a fundamental cell which
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Figure 3.18: h‖/h against kh for parameters (θ, h+/h, h−/h) = (0.1, 0.2, 0.6) (full)

and (θ, h+/h, h−/h) = (0.5, 0.4, 0.9) (dashed).

resulted from their homogenisation, without making any assumptions of the size
of l/h−. In their paper the details to determine the value of h1 numerically are
provided and in their Fig. 8(a) a comparison between their model and the one of
[13], is provided (identical to the curves plotted here). Evidently, it can be seen
from figure 3.17(ii), that in the wide-spacing limit their model approaches the value
of 〈h−1〉−1 [13] and as l/h− decreases their results converge to the constant value
h1 = h+, which is a result from our effective shallow water models (SW1 & SW2).
As highlighted from [1], it is the closely-spaced limit that gives rise to the largest
difference between h1 and h2 and therefore the greatest anisotropy in propagating
wave speeds (which is required for many metamaterial properties as discussed in
Chapter 1, such as negative refraction, wave bending, cloaking etc.).

Next in figure 3.18, the kh-variation of the dimensionless effective depth of
SW2, namely h‖/h, is presented. The analogue SW1 curve (h/h) was not plotted as
it is known to be constant in kh and according to the geometrical parameters chosen
in figure 3.18 it turns out that h/h = 0.56 for the full line analogue and h/h = 0.65
for the dashed curve. It can be verified numerically that the two models coincide in
the limit kh→ 0 (long wave limit) as shown analytically in the previous section.

Moving on to figure 3.19, the full linear model represented by the full line
(depth-dependent) of section 3.2.6 is compared with the shallow water models SW1
and SW2 (dashed and chained line respectively) with barriers sitting on the bed
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Figure 3.19: |R| against kh using full linear theory (full), SW1 (dashed)

and SW2 (chained). The geometrical parameters are (i) (δ, θ0, θ, h
+/h, b/h) =

(30◦, 45◦, 0.3, 0.5, 1) and (ii) (δ, θ0, θ, h
+/h, b/h) = (45◦, 60◦, 0.1, 0.2, 1).
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Figure 3.20: |R| against θ0 for kh = 0.07, δ = 0◦, h+/h = 0.025, h−/h = 0.5,

b/h = 9.1, θ = 0.1 using full linear theory of section 3.2.4 (full), SW1 (dashed) and

SW2 (chained).
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(h−/h = 1 to be comparable with the 3D model). The reflection modulus is plotted
against kh for two different geometries. In both figures the behaviour of all the
curves has the typical features discussed in all the previous numerical results of this
chapter (oscillatory curves with non-constant kh period, passing through the origin,
decay for large kh, interaction depend on barrier height etc.). The most interesting
feature of the figures above, is that there is a good agreement between the three
curves as kh → 0 (shallow water limit). This provides us with evidence that SW1
and SW2 are good models as the full linear problem converge to them in the long
wave limit. The shallow water curves of figure 3.19(i) start to diverge from each
other for a smaller kh if compared to figure 3.19(ii). This is because in figure 3.19(ii)
the thickness parameter was chosen to be θ = 0.1 (instead of θ = 0.3 from figure (i))
which is closer to the endpoint θ = 0 at which it is known that SW1 and SW2 are
exactly the same. So the hybrid method of SW2 does not seem to provide any extra
accuracy here.

Continuing with the comparison of the three models, the reflection modulus
against the incident angle θ0 is plotted in figure 3.20 with the full line presenting the
3D model of section 3.2.4 and the dashed and chained curves present SW1 and SW2
respectively for δ = 90◦ to be comparable with the full lined curve. Note that
this particular barrier orientation of the 3D problem, allows the two metamaterial
interfaces to take any value in 0 < h+ < h−, h, but in the shallow water problem the
restriction of 0 < h+ < h− < h is implemented to allow us to prove certain features
of the solution. Therefore, in this numerical comparison, the particular geometry of
0 < h+ < h− < h, will be considered.

The choice of geometrical parameters of figure 3.20 was made in a way
to compare directly these curves with the ones of [16], Fig. 11(a)(ii), where they
considered a long wave (kh = 0.07) interacting with thick barriers (θ = 0.1) parallel
to the y-axis (δ = 90◦) that sit on a step (h−/h = 0.5) and extend almost all the
way up to the free surface (h+/h = 0.025). First, there is a good agreement between
the 3 curves as kh = 0.07 is reasonably small and it was verified above that SW2
converges to SW1 in that limit. Also, there are two roots in θ0 ∈ (0◦, 90◦), namely at
69.8 and 82.8 for the 3D problem and 68.5 and 83.2 for the shallow water problems.
The analogue result of [16], had two zeros as well but comparing the position of
those zeros with ours, it can be seen that here the zeros are shifted to the right when
compared to their Fig. 11(a)(ii) at leading order. The reason behind this might
be the difference in the asymptotic relation between the two small parameters that
they use, namely ε = ω

√
l/g � 1 with ω

√
h/g = O(ε) which suggests that the

barrier spacing is of the same order of magnitude with the depth. This assumption
is different than the one used in section 3.3.1 where the parameters are related as
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Figure 3.21: θ
(1)
g against h+/h with h− = h. (i) θ = 0.7 for (θ0, δ) = (30◦,−45◦)

(full), (θ0, δ) = (0◦,−30◦) (dashed) and (θ0, δ) = (−30◦,−15◦) (dotted). (ii) Special

case of θ = 0, θ0 = −δ with θ0 = 30◦ (dotted), θ0 = 45◦ (chained), θ0 = 60◦ (dashed)

and θ0 = 75◦ (full).

µ = H/L and ε = l/L with ε = O(µ2).

Next, the variation of the direction of energy propagation in degrees, θ
(1)
g ,

with respect to the gap ratio h+/h is demonstrated in the figures of 3.21. The

common features of these plots is that the value of θ
(1)
g is always lying between the

values of θ0 and δ and θ
(1)
g → θ0 when h+ → h, as expected from the theory and on

physical grounds. Also, in figure 3.21(ii) it can be verified that θ
(1)
g → δ for h+ → 0

as shown in section 3.3.2. The remarkable result is that the same property holds for
non-zero thickness θ as shown in 3.21(i), even though was not shown analytically.

In figure 3.22 the direction of energy propagation is plotted against the
incident direction θ0 for thin barriers (θ = 0) that are rotated at an angle δ = −45◦.
The barriers sit on the bed (h− = h) and we plot curves for different gap ratio (h+/h).

It can be verified that θ
(1)
g → θ0 in the limit h+/h → 1 as the structure disappears

and there is no scattering (presented in the plot by the straight line θ
(1)
g = θ0). Also,

as h+/h decreases the metamaterial structure extends throughout the depth and the

curves tend to the constant value θ
(1)
g = −45◦ (in θ0) coinciding with the limiting

case considered in [11]. For θ0 = −45◦, we get θ
(1)
g = −45◦ which means that the

incident wave passes uninterrupted between the thin barriers for all h+/h. Negative

refraction occurs when θ
(1)
g and θ0 have different signs and so it can be verified that
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Figure 3.22: θ
(1)
g against θ0 for θ = 0, h− = h and δ = −45◦ with h+/h = 1/2 (full),

h+/h = 1/4 (dashed), h+/h = 1/8 (chained) and h+/h = 1/16 (dotted).

this phenomenon occurs for h+/h < 1/4 (approximately) and for all θ0 > 0◦.
Next, the free surface plots and their cross-sections at y = 0, are demon-

strated in figures 3.23 and 3.24, for the special case of θ0 = −δ, h− = h and
θ = 0. The elevation is found from the piecewise definition of the free surface
(3.3.35) through ζ(x, y, t) = <{η(x)eiαye−iωt} and the reflection and transmission
found in (3.3.38). In figure 3.23, it can be verified that there is a single travelling
wave in |x| < b travelling at a direction parallel to the barriers. These features agree
with the analytical proof of the transparency property (thin barriers sitting on the
flat bed with θ0 = −δ produce R = B = 0 and |T | = |A| = 1 from (3.3.44)) and
verify the negative refraction property discussed after (3.3.48) for high barriers (since
h+/h = 0.01). In figure 3.23, the direction of the energy propagation and the direc-

tion of the phase speed in |x| < b was found to be θ
(1)
g ≈ 43.84◦ and θ

(1)
p ≈ −18.66◦

respectively. This is a verification to the negative refraction case specified in (3.3.48)

since θ
(1)
g ≈ δ. However, the direction of the phase speed has a different sign than

the direction of the energy propagation. In contrast with the surface plots of the
problem solved using non-shallow assumptions (problem of section 3.2.6), here there
is a gradient discontinuity at x = ±b. This is expected from the flux matching
conditions supplied with the shallow water model. In the 3D problem, the possible
gradient discontinuities of the velocity potential where located only in z ∈ Lb, but
at the surface the matching conditions implied the smoothness of the potential (and
therefore the free surface).

In figure 3.24, again there is a single scattering mode in the metamaterial
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Figure 3.23: (i) Instantaneous surface elevation and (ii) wave profile at y = 0, for

kh = 1, θ0 = −δ = −45◦, θ = 0, h+/h = 0.01 and h−/h = b/h = 1.

region (as expected from the special geometrical case), but now it travels at a di-
rection almost parallel to the incident wave. This is because now the barriers are
relatively short (h+/h = 0.5) and it is known from the analysis of section 3.3.2 that
the negative refraction effect is fading away with the decrease of the structural height
(and after a point, negative refraction becomes “positive”). Here, the direction of the
energy propagation and the direction of the phase speed in |x| < b was found to be

θ
(1)
g ≈ −18.43◦ and θ

(1)
p ≈ −30.96◦ respectively. This indicates “positive” refraction

as θ
(1)
g and θ0 have the same sign.
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Figure 3.24: (i) Instantaneous surface elevation and (ii) wave profile at y = 0, for

kh = 1, θ0 = −δ = −45◦, θ = 0, h+/h = 0.5 and h−/h = b/h = 1.

100



Chapter 4

Wave interaction with a microstructured

metamaterial wall

4.1 Introduction

This chapter investigates the scattering properties of a microstructured wall that
consists of a periodic sequence of barrier configurations which have a triangular
shape and they are uniform in the vertical coordinate. Each triangle is comprised
of a closely-spaced array of thin plates with narrow channels between them (see
figure 4.1). The goal is to find ways control the transmission and/or the wave energy
absorption.

The most common device that produces acoustic absorption in a waveguide
is the Helmholtz resonator. This device consists of a chamber attached to the waveg-
uide via a narrow channel. The geometrical parameters of the device control the
resonant frequencies and therefore the interaction between the propagating waves
and the device becomes significant close to these frequencies [82]. High-efficiency
absorbers can be achieved by connecting multiple resonators of different resonant
frequencies to extend the absorption over a broadband region of frequencies [10],
creating the analogous phenomenon of “rainbow trapping” from electromagnetics
[83].
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Rainbow trapping effects in the context of acoustics can be achieved also
through micro-resonators in two or three dimensions. For example, [84] produced
this effect through a metamaterial “carpet” made of thin grooves, allowing spectral
control of acoustic waves. However, the problem of discrete micro-channels is hard to
solve by exact analytical methods and typically its numerical solution can be obtained
using finite element method [85]. But by taking advantage of the small channel
width (with respect to other field variables) and using homogenisation theory, then
the microstructured metamaterial wall can be replaced by an effective medium. For
the scales of operation that are being conceived of the spacing between elements in
the array are small enough that it is likely that acoustic damping effects cannot be
neglected. This is a similar description of the one of [21], where they considered a
normally-incident acoustic wave travelling within a waveguide on which a cavity was
attached. The cavity was made of narrow channels perpendicular to the waveguide,
where the field in the cavity was damped.

The derivation of a model that includes damping in the case of water and
acoustic waves, will be included in the next two sections, following established theory
of other authors. Then, the solution to the problem will be sought using Fourier
analysis (or separation of variables) and the theory will be supported with numerical
results.

Starting from the description of our problem, the metamaterial wall that
consists of a periodic sequence of barrier configurations will have a triangle shape
of hypotenuse L. Each triangle is made of closely spaced thick barriers of small
periodicity l and thickness θl (where θ ∈ (0, 1) is the filling fraction), that are parallel
to one of the two adjacent sides. The adjacent sides are closed such that the only
way for the wave to enter or leave the configuration, is the openings between the
barriers through the hypotenuse. Cartesian coordinates (x, y) are chosen such that
the hypotenuse of the first triangle is aligned with y = 0 and x ∈ (0, L). Without
the loss of generality, the orientation of the barriers is set to make an acute angle
δ ∈ (0◦, 90◦) with the positive y-axis. Now in contrast to the previous metamaterial
problems, the coordinate that is aligned with the barrier orientation is called Y
(instead of X) and it can be found by rotating y towards x by an angle δ. Then,
copies of the first triangle are placed next to each other to create an infinite periodic
sequence that forms the metamaterial wall. The hypotenuse of the nth triangle is set
to be aligned with y = 0 and x ∈ ((n− 1)L, nL).

The lack of dependence of the geometry on the vertical coordinate makes
the problem applicable to various types of waves. In this thesis only the water and
acoustic wave case are considered. In the water waves context, the vertical coordinate
z is chosen such that, z = 0 is aligned with the undisturbed free surface of the sea. In
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the case of sound waves, we are considering a 2D acoustic problem which is uniform
in the vertical coordinate (plane wave aligned with the z-axis). The solution method
to both problems is identical. An incident wave of wavenumber k, propagates from
y → −∞ and makes an angle θ0 ∈ (−90◦, 90◦) with the positive y-axis. The wave
enters the homogenised medium through y = 0, then travels along the narrow ducts,
reflected through the closed adjacent side of the triangles and eventually reflected
back into y < 0.

l
θl

L

φincθ0

δ

x

y

X

Y

Figure 4.1: Geometry of the metamaterial wall made of a periodic sequence of trian-

gular barrier configurations. The incident wave φinc interacts with the metawall and

then it is reflected back into y < 0.

In that case of water waves, the z-dependence of the velocity potential
can be factored out through cosh[k(z + h)], so that there is no flow through the
constant bed at z = −h and the surface condition is satisfied (using the water
dispersion relation k tanh(kh) = ω2/g for ω be the incident angular frequency and g
be the gravity constant). Therefore, writing the velocity potential as Φ(x, y, z, t) =
<
{
φ(x, y) cosh[k(z+h)]e−iωt

}
, then the Laplace’s equation reduces to the Helmholtz

equation, namely (
∇2 + k2

)
φ(x, y) = 0 in y < 0, (4.1.1)

with the surface and bed conditions been satisfied (in the case of water waves). The
Helmholtz equation is satisfied by the acoustic wave as well for k = ω/c0 where c0

is the isentropic speed of sound [27]. Also, a far-field condition must be included to
the problem i.e., the potential is required to be bounded at y → −∞. Next, since
there is a plane wave incident on a periodic geometry, some periodic conditions to
the problem arise. The change in phase of the incident wave as we move from a point
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(x, y) to (x+L, y) is eiα0L and therefore the resulting potential must also be subject
to the same change in phase across a period in x. Therefore, the far field condition
and the two “periodic” boundary conditions (coming from Bloch-Floquet Theory)
that must be imposed to the problem are

lim
y→−∞

|φ(x, y)| <∞, φ(x+L, y) = eiα0Lφ(x, y), φx(x+L, y) = eiα0Lφx(x, y), (4.1.2)

for all x ∈ R and with α0 = k sin θ0 be the incident wavenumber in the x-direction.
Finally, homogeneous matching conditions of the potential and the normal flux
through y = 0 must be introduced. The analogue of (3.2.76) in this problem is

φ(x, 0) = φ̂(x cos δ, x sin δ), φy(x, 0) = (1− θ) cos δφ̂Y (x cos δ, x sin δ), (4.1.3)

after a geometrical inspection close to the metamaterial boundary.

4.2 Linear damping within the metamaterial wall

4.2.1 Effective equations in the water waves context

In this section we derive the damped effective equation within the arrays in the case
of water waves. For example in [22], a number of ways are identified that modelled
this phenomenon. For example in the first, it is assumed that a small porous medium
is added on top of an inviscid water such that z ∈ (−d, 0) covers the porous layer and
z ∈ (−h,−d) the inviscid domain, with d� λ (incident wavelength). Then the slow
viscous-dominated flow within that porous medium will obey the vertical component
of the Darcy’s Law, namely w(x, y, t) = −κ[pz(x, y, z, t) + ρg]/µ [23]. Here w is the
vertical velocity which is independent of z as d� λ, κ is the permeability (in m2), µ is
the dynamic viscosity and ρ is the density of the porous layer. Integrating in z using
that w = ζt and p = patm on z = ζ, then p = patm + ρg(ζ − z)−µzζt/κ by neglecting
products of motion terms. Matching this pressure across z = −d, with the pressure
in z ∈ (−h,−d), namely p = patm − ρΦt − ρgz, and then eliminating ζ using that
Φz(x, y,−d, t) = βζt(x, y, t) for some dimensionless blockage coefficient 0 < β ≤ 1

104



(represents the fractional area of the medium occupied by pores in a horizontal
cross-section), it follows that φz = K̃φ on z = 0 for K̃ = Kβ/(1 − iωµd/ρgκ) after
assuming time harmonicity through e−iωt. Normally the condition should be applied
on z = −d, but due to d� λ it can be evaluated on z = 0.

Also, in [24], a periodic array of buoys on the surface that work as wave
energy extractors, affect the surface condition in a similar way. Using multiscale
homogenisation theory with the small parameter be the ratio between the buoys
separation and the depth, then the modified wavenumber in the surface condition
results to K̃ = K(1 + iω(f − 1)c)/(1 − iωc) after assuming time harmonic motion.
Here f = πa2/d2 with a be the radius of each buoy and d is the separation from their
centres and therefore f ∈ (0, π/4) to guarantee that the buoys do not overlap. Also
c = λ/ρgπa2, with ρ be the water density and λ be a constant coefficient such that
−λζt represents a linear load force on the surface that models the buoys as energy
extraction devices.

The final setting, which is closer to the geometry of our problem, is the one
solved by [25] and [26] (Section 9, Exercise 9.2). They showed that the effect of the
dynamic viscosity µ due to the fluid interaction with the a narrow channel of height
h and width dp, shifts the wavenumber k ∈ R>0 to

k′ = k(1 + iε) for ε =
1

dp

√
2µ

ρω

(
kdp + sinh(2kh)

2kh+ sinh(2kh)

)
, (4.2.1)

provided that ε is small and ω is the angular frequency of the wave.
Following the homogenisation method of section 3.2.1, the Helmholtz equa-

tion (4.1.1) becomes
(
∂Y Y +k2

)
φ̂(X, Y ) = 0 (reduced Helmholtz equation) at leading

order of the small ratio of the barrier spacing and width. Here, φ̂ is the potential
within the triangular metamaterial arrays and (X, Y ) is the rotated orthogonal co-
ordinates as shown in figure 4.1, related to (x, y) through X = x cos δ − y sin δ and
Y = x sin δ + y cos δ. Adopting ideas from the previous paragraphs, we charac-
terise the damping effects that occur within the metamaterial wall by shifting the
wavenumber in the reduced Helmholtz equation by a small imaginary part. So the
effective medium equations within the metamaterial arrays become

(
∂Y Y + k̂2

)
φ̂(X, Y ) = 0, φ̂Y (X,L sin δ) = 0, (4.2.2)
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where k̂ = k + ki (0 ≤ ki � k) with its real part giving information about the
frequency of the wave and the imaginary part about the damping. The second
equation is the homogeneous no flux condition at the end of narrow channel.

4.2.2 Effective equations in the sound waves context

The key ingredients to derive the acoustic equation is to start from the two dimen-
sional mass and momentum conservation laws found in (2.1.5), (2.1.10) (with f = 0
assuming that gravity has no effect on the wave) and write the three dependent
variables as small fluctuations about an equilibrium i.e. ρ = ρ0 + ρ′, p = p0 + p′,
u = u′. Another equation is needed to get the same number of equations and un-
knowns. Namely, ∂p

∂ρ
= c2

0 where c0 is the isentropic speed of sound [27]. The general

solution is p = c2
0ρ + const. and in the equilibrium state (switching off p′ and ρ′)

it becomes p0 = c2
0ρ0 + const. By eliminating the integration constant, the three

equations become

∂ρ′

∂t
+ ρ0∇ · u′ = 0, ρ0

∂u′

∂t
= −∇p′ + 1

3
µ∇
(
∇ · u′

)
+ µ∇2u′, p′ = c2

0ρ
′. (4.2.3)

Note that in the case of µ = 0, then through elimination it turns out that all the
variables (ρ′, p′ and Φ′ - the velocity potential i.e. u′ = ∇Φ′) satisfy

(
∂tt−c2

0∇2
)
Φ′ =

0 which results to the Helmholtz equation
(
∇2 +k2

)
φ′ = 0 for k = ω/c0 by assuming

time harmonic motion with angular frequency ω.
However by adding viscosity, then an expression for the tangential shearing

stress near a wall must be derived. This can be found by solving the Stokes boundary
layer problem [28] in the presence of a wall at y = 0 and a fluid in y < 0 oscillating
in the direction parallel to the wall. Writing the velocity as u′(y, t) = u′(y, t)x̂, then
the two components of the second equation in (4.2.3), give

− iωρ0u
′(y) = −p′x + µu′yy(y), 0 = −p′y, (4.2.4)

by assuming time harmonic motion. The second equation implies that the pressure
must be only a function of x and since in the first equation all the other terms apart
from the pressure are independent of x, then it follows that p′x is a constant. This

constant can be found using that p′x = ∂p′∞
∂x

= iωρ0u
′
∞, where the terms with the
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subscripted infinity symbol means that the function is evaluated far from the wall
(y → −∞). In the first equality the fact that p′x is constant was used, while in the
second equality was found from the first equation of (4.2.4) using that far from the
wall the viscous effects are negligible. Substituting back p′x = iωρ0u

′
∞ into the first

equation of (4.2.4), then an ordinary differential equation for the velocity arises. The
particular solution of that differential equation can be found easily as

u′(y) = u′∞

[
1− exp

(
1− i
δV

y

)]
for δV =

(
2µ

ρ0ω

)1/2

, (4.2.5)

using that u′(0) = 0 (no flow through the wall) and u′ → u′∞ as y → −∞. Also,
δV is defined to be the viscous boundary layer length [27]. Therefore, the tangential
shearing stress near the wall is

S ≡ µ
∂u′

∂y

∣∣∣
y=0

= −µu′∞
1− i
δV

. (4.2.6)

Now using this stress expression, the problem of the narrow duct should
be considered (two walls at y = 0 and y = −a). Using the leading order result (in
a homogenisation under a small gap assumption) of (3.2.7), that the wave within
two closely spaced barriers tends to move only in the direction parallel to barriers
orientation, the velocity field can be written as u′(x, y, t) = u′(x, y, t)x̂ (acoustic
waves are independent of z as gravity effects are negligible). Substituting this velocity
into the first component of the second equation of (4.2.3) then it follows that

− iωρ0u
′ = −p′x +

Lp
A
S ′, (4.2.7)

where Lp and A are the cross-sectional perimeter and area of the narrow duct and
S ′ can be found from (4.2.6) by replacing u′∞ with u′ (method also found in [27]).
Note that that the pressure can be writen in terms of the velocity using the first
and third equations of (4.2.3) in the frequency domain i.e. −iωρ′ + ρ0u

′
x = 0 and

p′ = c2
0ρ
′. Thus, after a considerable algebra, the velocity is found to satisfy the
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modified Helmholtz equation
(
∂xx + k̂2

)
u′ = 0 with

k̂2 = k2

(
1 +

Lp
2A

(1 + i)δV

)
, (4.2.8)

using that k = ω/c0. One can see that the fraction LpδV /2A = (1+a/h)δV /a is small
since δV � a, where a is the barrier separation. Therefore, by taking the square root
of (4.2.8) and expanding

√
1 + x ≈ 1 + x/2 for small x, then

k̂ = k

(
1 +

Lp
4A

(1 + i)δV

)
. (4.2.9)

This expression of the modified wavenumber should be used in (4.2.2), as the barriers
are confined to be parallel in the Y direction.

4.3 Solution to the problem

The aim of the problem is to find the general solution of the potential in the regions
y < 0 and y > 0 and then apply the matching conditions across y = 0. Note that
because of the periodicity of the geometry (see figure 4.1), the problem need only be
solved only in a single strip x ∈ (0, L). The solution in 0 < x < L can be extended
to x < 0 and x > L using the periodicity conditions found in (4.1.2).

Therefore the effective equations in (x, y) ∈ (0, L)×R<0 are (4.1.1), (4.1.2)
with the periodic conditions now be applied on the x-endpoints of the strip, namely
φ(L, y) = eiα0Lφ(0, y) and same for φx. The effective equations that needed to be
solved within the single barrier configuration are the equations found in (4.2.2). At
the end the two potentials must be matched using the two conditions found in (4.1.3)
for x ∈ (0, L).

The unit amplitude incident wave is chosen to be φinc(x, y) = eiα0xeiβ0y for
α0 = k sin θ0 and β0 = k cos θ0 so that it satisfies the Helmholtz equation (4.1.1)
and the far-field condition specified in (4.1.2). Then, the response field (or reflected
modes) can be found separately and added to the incident wave to get the total
potential field. Thus, separating variables in

(
∇2 + k2

)
φres(x, y) = 0 as φres ∼
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eiαxY (y) (with φres be the response field and α be the separation constant), then

Y ′′(y) = −β2Y (y) for β =
√
k2 − α2. (4.3.1)

Note that α, can be found by applying the periodic boundary conditions found in
(4.1.2) into eiαxY (y). Both of these conditions result to eiαL = eiα0L, which gives
α ≡ αn = α0 + 2nπ/L for all n ∈ Z. Therefore the solution for the response field
becomes

φres(x, y) =
∞∑

n=−∞

eiαnx
(
ane

−iβny + bne
iβny
)
,

αn = α0 +
2nπ

L
, βn =

√
k2 − α2

n.

(4.3.2)

It remains to make sure that the far-field condition is satisfied and the
scattering wave travels in the correct direction (negative y-direction). To do that,
first note that depending on the integer value of n, βn is either a positive real or a
purely imaginary number with a positive imaginary part. Let S be the subset of the
integers that makes βn ∈ R>0 for all n ∈ S. Consequently βn will be purely imaginary
for all n 6∈ S. Therefore the bne

iβny term of the sum in (4.3.2) represents either a wave
that travels in the positive y-direction or a non-decaying wave at y → −∞. Since the
scattering potential must be either a wave travelling in the negative y-direction or a
decaying wave in the far-field, then bn = 0 for n ∈ Z. Therefore, the total potential
is represented by

φ(x, y) = eiα0xeiβ0y +
∞∑

n=−∞

ane
iαnxe−iβny, y < 0. (4.3.3)

Note that the expressions of αn and βn that were defined in (4.3.2) were chosen such
that when n = 0, they actually coincide with the incident wavenumbers in the x and
y directions i.e. α0 = k sin θ0 and β0 = k sin θ0. Also it would be useful to identify the
elements of S, as the number and direction of reflective modes could be determined
by that. The eiαnx term of the sum is the change of phase over the “periodic” variable
x and therefore the e−iβny term really indicates if the wave is travelling or decaying.
It remains to find the elements of S which are all the n ∈ Z that make βn real or
equivalently α2

n < k2. After some algebraic inequality manipulation, it turns out that
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−kL(1 + sin θ0)/2π < n < kL(1 − sin θ0)/2π which suggests that the set of indices
that correspond to travelling waves is defined to be

S = {−r, ..., s} with r =

⌊
kL

2π
(1 + sin θ0)

⌋
, s =

⌊
kL

2π
(1− sin θ0)

⌋
, (4.3.4)

where b·c indicate the floor function that gives the largest integer which is smallest
than its argument. From now on S will be referred to the scattering set. It can
be seen that r, s ∈ N0 for all possible geometries (thus 0 ∈ S always) and when
θ0 > 0◦, then r ≥ s and vice versa. The equality r = s is guaranteed for normal
incidence (θ0 = 0◦). Also the direction of the reflected modes can be found through
the relation k sin θn = αn for all n ∈ S with αn defined in (4.3.2). The reflected angle
θn ∈ (−90◦, 90◦) is formed by the negative y-axis and the reflected wave where the
positive direction is measured counterclockwise from the negative y-axis.

Proceeding to the solution inside the triangular homogenised medium, the
wave must satisfy the differential equation found in (4.2.2) whose general solution is

φ̂(X, Y ) = Â1(X)eik̂Y + Â2(X)e−ik̂Y , (4.3.5)

with k̂ ∈ C found in (4.2.9) in the case of acoustic waves and k̂ = k+ iki in the case
of water waves with ki defined in (??). Applying the no flux condition at the end of
the narrow channels at Y = L sin δ, then one of the unknown coefficient X-functions
can be eliminated, for example Â2(X) = Â1(X)e2ik̂L sin δ. Substituting this back to
(4.3.5), then after some algebraic manipulation it follows that

φ̂(X, Y ) = Â(X) cos[k̂(L sin δ − Y )], (4.3.6)

for Â(X) be an unknown function to be found.
Now the matching conditions in (4.1.3) should be applied into (4.3.3) and
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(4.3.6) to get a linear system for an and ân, namely

eiα0x +
∞∑

m=−∞

ame
iαmx = â(x) cos[k̂(L− x) sin δ],

iβ0e
iα0x − i

∞∑
m=−∞

amβme
iαmx = â(x)(1− θ)k̂ cos δ sin[k̂(L− x) sin δ],

(4.3.7)

where â(x) = Â(x cos δ).
Since, the potential in y < 0 is written as a sum over some unknown Fourier

coefficients then it would be ideal if the right-hand sides of the previous equations
were written in a similar form, so that the matching procedure would be simpler.
To do that, first it can verified that eiαnx spans the space of complex differentiable
functions in (0, L), since they are eigenfunctions of a Sturm–Liouville problem. They
also satisfy the orthogonality relation

L̂

0

eiαnxeiαmxdx =

L̂

0

e2i(n−m)πx/Ldx = Lδnm. (4.3.8)

Therefore any complex function can be written as a sum over that basis. In our case,
after expanding â(x), the matching conditions above become

eiα0x +
∞∑

m=−∞

ame
iαmx = cos[k̂(L− x) sin δ]

∞∑
m=−∞

âme
iαmx,

iβ0e
iα0x − i

∞∑
m=−∞

amβme
iαmx = (1− θ)k̂ cos δ sin[k̂(L− x) sin δ]

∞∑
m=−∞

âme
iαmx.

(4.3.9)
Next, the orthogonality relation in (4.3.8) must be used, so that the sums of the
left-hand sides are removed to get a system for an and ân. Thus, by multiplying the
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equations by e−iαnx and integrate in x ∈ (0, L), the system in vectorial form becomes

J + a = Aâ, −J + a = Bâ for Jn = δn0, Anm =
1

2i

[
Tnm(δ) + Tnm(−δ)

]
,

Bnm =
(1− θ)k̂ cos δ

2iβn

[
Tnm(δ)− Tnm(−δ)

]
with Tnm(δ) =

1− eik̂L sin δ

2(m− n)π − k̂L sin δ
,

(4.3.10)
where Tnm(±δ) comes from the integrals in (0, L) over the product of the eigenfunc-
tions and certain trigonometric functions. Also, one can see from the second vectorial
equation above, that in the limit θ → 1 it follows that Bnm = 0 and thus the scat-
tering coefficients are found analytically as an = δn0. This is expected on physical
grounds as in the presence of a rigid wall at y = 0, there should be a single reflected
mode in the θ0 direction (measured counterclockwise from the negative y-axis to
the direction of the reflected wave) according to the law of reflection. Elimination
between the unknown coefficients of (4.3.10), results to

â = 2(A−B)−1J, a =

(
2A(A−B)−1 − I

)
J, (4.3.11)

where I is the identity matrix.
Now an analytical solution to this problem, will be introduced. First the

length of the longest channel of the triangular barrier configuration is set to be a
half wavelength (that is L sin δ = λ/2 or kL sin δ = π), and the direction of incidence
is aligned with the barriers (θ0 = δ ∈ (0◦, 90◦)). The features of this geometry
result to α−1 = −α0 and β−1 = β0 after a simple algebraic manipulation. Then, by
assuming that the barriers are thin (θ = 0) and no thermoviscous effects inside the
metamaterial wall occur (k̂ = k), then an = δn,−1 is a closed-form solution to the
problem. To prove this, then the wave field (4.3.3) in y < 0 and (4.3.6) inside the
metamaterial, must be simplified under these geometrical assumptions. Thus,

φ(x, y) = 2 cos(α0x+ β0y) and φ̂(X, Y ) = −Â(X) cos(kY ), (4.3.12)

after using the guessed solution of an in y < 0 combined with the values α−1, β−1 in
terms of the incident wavenumbers in x and y directions. In the triangular region, the
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inviscid assumption was used with the fact that cos(π−kY ) = − cos(kY ). Note that
the unknown coefficients within the metamaterial are written compactly in terms of
the function Â(X) instead of the infinite sum.

Applying the matching conditions (4.1.3) into the simplified potentials above,
then the system of equations become

2 cos(α0x) = −â(x) cos(kx sin δ),

−2β0 sin(α0x) = â(x)k cos δ sin(kx sin δ),
(4.3.13)

where after the cancellations of the x-dependent trigonometric functions, both equa-
tions independently result to â(x) = −2. Therefore, an = δn,−1 must be a solution.

Now it will be shown that the single non-zero amplitude a−1 = 1, correspond
to a scattering mode that travels in the direction opposite to the incident wave. First
to show that this particular mode corresponds to a travelling wave, then it must be
verified that r ≥ 1 so that −1 ∈ S (the scattering set). Let us assume the contrary,
namely r = 0 as it is known that r ∈ N0. Then by using the geometrical feature
kL sin δ = π, it follows that

0 = r =

⌊
kL

2π
+

1

2

⌋
, (4.3.14)

which implies that the term inside the floor function must be in (0, 1) (zero is excluded
as kL > 0). Therefore by starting from

0 <
kL

2π
+

1

2
< 1, (4.3.15)

subtracting a half from each side, multiply by 2 sin δ and making use of kL sin δ = π,
then the result is 1 < sin δ which is of course a contradiction. Therefore r must be
greater or equal to 1 and so a−1 corresponds to the amplitude of a travelling wave. Its
direction θ−1 can be calculated from the equation k sin θ−1 = α−1. By substituting
α−1 = −α0 which was found above, then the equation becomes sin θ−1 = sin(−θ0)
whose solution is θ−1 = −θ0 as θ−1 ∈ (−90◦, 90◦). This implies that there is a
single scattering mode (with non-zero amplitude) that travels directly opposite to
the incident wave.
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4.4 Expression for the normalised output energy

In this section, an expression for the normalised output energy will be calculated.
First, the strip x ∈ (0, L) and y < 0 is defined to be V − and the triangular configu-
ration above to be V +. The integral counterclockwise contour that characterise the
boundary of V − is comprised by four line segments, namely Ci for i ∈ {1, 2, 3, 4},
starting from the right vertical (C1), then upper horizontal (C2), then left vertical
(C3) and finally lower horizontal (C4).

Beginning by defining the time-averaged energy flux through a boundary S
[26], we have that

− ωρ

2
=
ˆ

S

φφndS, (4.4.1)

where φn = n̂ · ∇φ with n̂ be the unit normal pointing out of the boundary S. If
this quantity is divided by ωρβ0L/2, we get the normalised absorption coefficient

η ≡ − 1

β0L
=
ˆ
C2

φφndS, (4.4.2)

where C2 is the metamaterial boundary. Now it remains to calculate the surface
integral. First a useful formula is proved by using the divergence theorem, namely

=
ˆ

∂V −

φφndS = =
ˆ

V −

(
φ∇2φ+ |∇φ|2

)
dV = =

ˆ

V −

(
|∇φ|2 − k2|φ|

)
dV = 0, (4.4.3)

since ∇2φ = −k2φ in V −. Therefore, the equation above suggests that the sum of
the imaginary part of the four contributions Ci vanishes. However the sum of the
vertical contributions results in

(ˆ
C1

+

ˆ
C3

)
φφndS =

0ˆ

−∞

φ(L, y)φx(L, y)dy +

−∞ˆ

0

φ(0, y)φx(0, y)dy = 0, (4.4.4)

where here the periodic conditions (4.1.2) coming from Bloch-Floquet theory are
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used. Therefore, the surface integral over C2 (in (4.4.2)) is minus the surface integral
over C4. Thus it remains to calculate the C4 contribution as

=
ˆ
C4

φφndS = lim
y→−∞

=
L̂

0

φ(x, y)φy(x, y)dx. (4.4.5)

Next, the product of φ and φy in the far-field will give

φ(x, y)φy(x, y) ∼ −iβ0 + ieiα0xeiβ0y
∑
n

′
βnane

−iαnxeiβny

−iβ0e
−iα0xe−iβ0y

∑
n

′
ane

iαnxe−iβny + i
∑
n,m

′
βmaname

iαnxe−iαmxe−iβnyeiβmy,
(4.4.6)

as y → −∞. The dashed sums run over S only as for integers not in S, e−iβny

represent a decaying wave. The scattering set S is defined in (4.3.4). Next, by
integrating the previous result in x ∈ (0, L) and making use of (4.3.8), then

L̂

0

φ(x, y)φy(x, y)dx ∼ −iβ0L+ iL
∑
n

′
βn|an|2 + 2β0L={a0e

−2iβ0y}, (4.4.7)

which when it is substituted into (4.4.5), it results in the normalised absorption
coefficient

η = 1−
s∑

n=−r

βn
β0

|an|2. (4.4.8)

Since when η = 0 energy is conserved (no absorption) and when η = 1 we have total
absorption, then the sum in (4.4.8) represents the normalised output energy (that
is the ratio between the energy though the metamaterial opening and incident wave
energy). We call this

E ≡ 1− η =
s∑

n=−r

βn
β0

|an|2. (4.4.9)
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This formula will be used in the numerical results to show how the energy losses
vary over a number of geometrical parameters and what influence do they have on
the scattering coefficients. The energy will be conserved when E = 1 and for E = 0
the incident wave will be totally absorbed by the metamaterial wall.

This formula can easily be used to verify the energy conservation of the
problem with the special geometrical configuration that is described by the wave
field in (4.3.12). Using the fact that in this case r ≥ 1 (proven by contradiction in
the previous section), an = δn,−1 and β−1 = β0, then according to the formula above,
the output energy can be found to be E = 1, which is expected on physical grounds
as damping was assumed to be zero in that case.

4.5 Numerical results

In this section, computational results of the problem above will be illustrated through
truncation of the system solution (4.3.11). The truncation parameter is defined to
be N and the truncated vectors include 2N + 1 components i.e., from −N to N .
The scattering coefficients can be found from the components of the vector a while
the normalised output energy across the metamaterial wall boundary (y = 0) is E
from(4.4.9).

From now on the “amount” of damping will be included in the parameter
ki from k̂ = k + iki. One may question that this is not the complex wavenumber
form specified in (4.2.9) for the acoustic problem. However, using that the viscous
boundary layer length δV is small when compared to the width of the channels then
one could calculate that LpδV /2A ≈ δV /a� 1 (where Lp, A and a is the perimeter,
area and width of the channel respectively) in the large wall height limit (when
compared to the other field variables). Thus, using the small viscous boundary layer
limit, one could see that the description k̂ = k + iki for small ki � k, fits the
description of (4.2.9). At this point it will be seen why the classic linear model that
describes the problem, needed to include a damping coefficient.

Starting from figure 4.2, note that |a0| was plotted for all kL as it is known
that for all wavenumbers it represents the fundamental reflected wave i.e. 0 ∈ S
always. A common feature of such plots is that |a0| → 1 as kL→ 0. It is expected on
physical grounds that |a0| → 1 in the limit kL→ 0 as when the incident wavelength
becomes large with respect to the size of the arrays, the wave would not “feel” any
obstacles. However |a−1|, was plotted only for values greater than kL ≈ 3.68, which
is the value where the particular index of the mode become an element of S i.e. the
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Figure 4.2: Modulus of the scattering coefficients |a0| (red), |a−1| (blue) and nor-

malised output energy E (green) against the dimensionless wavenumber kL, for

(N, θ0, δ, θ) = (210, 45◦, 30◦, 0). In figure (i) kiL = 0 and in figure (ii) kiL = 10−2.

value at which r is switched from 0 to 1. The next reflected wave would appear
when s is switched from 0 to 1 (for |a1|) and when r is switched from 1 to 2 (for
|a−2|). This happens for the values kL ≈ 21.45 and kL ≈ 7.36 respectively which
are outside the plotting region.

In figure 4.2(i), the curves converge up to a particular value of kL which
corresponds to the longest microchannel in the array that becomes “resonant”. Be-
cause there is a continuum of microchannel lengths for all values of kL above this
point, then the existence of a resonant microchannel in the array is guaranteed. The
solution fails to converge with increasing N for any of these values of kL. This lack
of convergence is manifested by the numerically noisy lines in figure 4.2(i) and persist
after the second reflected wave is cut on. This is because the mathematical model is
based on homogenisation of the microstructure and this requires there to be a clear
separation of scales. However, when there is resonance at one discrete location in
the microstructure array then, by definition, is a local effect and not a macroscale
behaviour. So the fundamental problem is that homogenisation fails when there is
resonance. The introduction of damping, which is a reasonable addition, removed
the local effect and ensures that the variation of the field variable is everywhere on a
macroscale. This is verified in figure 4.2(ii) where the same parameters as in figure
4.2(i) were used but a small additional damping was introduced.
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kiL 100 10−1 10−2 10−3 0
N 23 27 29 212 ∞

-3 -2.5 -2 -1.5 -1 -0.5 0
0.5

1

1.5

2

2.5

3

3.5

4

log10(kiL)

lo
g 1

0
(N

)

Table 4.1: The table indicates the truncation parameter N needed for conver-
gent results for each kiL. In the figure below, the line of best fit for the pairs
(log10(kiL), log10(N)) from the table, is plotted.

Also, it was noticed that as kiL was chosen to be smaller, a larger value of
N was needed to get convergence. Therefore, by plotting the reflection coefficients
for a variety of geometries, the optimal N was found by graph inspection for each
value of kiL. Table 4.1 shows the number of modes needed to get convergence for
each kiL. When damping coefficient was zero there was no truncation that could
give stable results (and that is the reason behind N →∞). This table suggests that
there might be a power law between the two parameters, namely N = (kiL)p. The
exponent p can be found by taking logarithms as p = log10(N)/log10(kiL). In the
figure under the table 4.1, log10(N) was plotted against log10(kiL) from the table’s
data and thus the gradient of the line of best fit gives an approximate value for the
exponent p. This exponent was found to be p = −0.873 and its negative value verifies
that N = (kiL)p tends to infinity as kiL approaches zero. Therefore, since this power
law between N and kiL was tested in many geometrical cases, then from now on N
will be chosen according to the table above.

Next in figure 4.3, the normalised output energy is plotted against kL. Note
that the value of N was chosen according to the damping parameter kiL from the
table 4.1. In the first figure, the plates are thin (θ = 0) and in the second they
are thick (θ = 0.5). In both plots, there is a wide range of frequencies over which
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Figure 4.3: Normalised output energy E against kL for (kiL,N) = (10−2, 29) (full

line), (kiL,N) = (10−1, 27) (dashed line), (kiL,N) = (100, 23) (chained line). The

parameters are (θ0, δ) = (30◦, 60◦) and for figure (i) θ = 0 and for figure (ii) θ = 0.5.

a high proportion of the incident wave energy is absorbed by the wall, more so in
the case of thin barriers. This frequency region ends at kL = 4π/3 ≈ 4.19 or at
the value for which r turns from 0 to 1 according to the geometrical parameters.
When this happens, a new scattering mode is added and increases the normalised
output energy, but just before that point the single mode seems to have a “weak”
effect on energy. Before this value it can be verified that r = s = 0. Also, it can
be seen that as θ increases, the normalised output energy increases as well since the
metamaterial array tends to be a rigid wall at y = 0. The normalised output energy
is generally dropped with the increase of the damping parameter, as expected on
physical grounds.

Now the variation of the scattering coefficients with respect to the incident
direction θ0, can be seen in figure 4.4. Again N was chosen accordingly with the
value of kiL i.e. (kiL,N) = (10−2, 29). Also, the modulus of the fundamental mode
|a0| (red curve) seems to be even in θ0. This was verified numerically for many test
cases, but not analytically. Again, there is a wide region of direction of incidence
for which a high percentage of the incident wave energy is absorbed by the wall i.e.
roughly θ0 ∈ (−60◦, 34◦). The approximate values ±34◦ are where another modes
(blue and magenta curves representing |a−1| and |a1| respectively) are switched on
(when r and s turn from 0 to 1) and contribute to the increase of the normalised
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Figure 4.4: Modulus of the scattering coefficients |a0| (red), |a1| (magenta),

|a−1| (blue) and normalised output energy E (green) against θ0, for parameters

(N, kL, kiL, δ, θ) = (512, 4, 10−2, 45◦, 0).

output energy. Near the endpoints of this interval, the |a0| mode is weak enough to
say that for angles within (−60◦, 34◦), the metamaterial acts as an absorption wall.
Also, it can be verified that there are no other scattering modes apart from |a0|, |a−1|
and |a1| as from the simple algebra discussed above, 0 ≤ r, s ≤ bkL/πc = 1.

Next, the free surface elevation of a water wave is plotted by consider-
ing the formula ζ(x, y, t) = −(ω/g)={φ(x, y)e−iωt} (neglecting the hyperbolic cosine
term) in figure 4.5(i) and in figure 4.5(ii) its y = 0 cross-section (wave profile at the
metamaterial boundary). Note that the surface is plotted only in the single strip
x ∈ (0, L), but all the other strips can be plotted through the periodic boundary
conditions found in (4.1.2). The surface at y = 0 is continuous but with the gradient
discontinuity. This is expected as the flux matching conditions are not the same as
matching the gradient of φ and the local distortion in the gradient at the matching
boundary is a local effect which is not resolved at the level of the modelling used
here. Also, the colour variation in y < 0 seem to be small compared to the one in
y > 0. This is because typically there are microchannels in which resonance occurs
and the wave amplitude in there becomes extremely large when compared with the
other field variables. From now on the surface of water waves will be plotted only
in y < 0 (scattering region), as this is our only region of interest because a far-field
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Figure 4.5: (i) Instantaneous surface elevation of a water wave for the set of geomet-

rical parameters (N, kL, kiL, θ0, δ, θ) = (27, 4, 10−1, 30◦, 45◦, 0.5) and (ii) its profile at

the metamaterial boundary y = 0.

observer in y < 0, will only see what comes out from the microstructured wall.
Now the same surface is plotted for (kL, θ0, θ) = (2π/

√
3, 60◦, 0) in figure

4.6. The amplitudes within the metamaterial (y > 0), were found to be huge at a level
for which the colour variation in y < 0 was indistinguishable to the eye. Therefore,
the surface is plotted only in y < 0 for the reasons explained above. The difference
between figures 4.6(i) and 4.6(ii) is that in the first (N, kiL, δ) = (29, 10−2, 30◦) and
in the second (N, kiL, δ) = (212, 10−3, 60◦). The truncation parameter N was chosen
accordingly from the value of kiL (see table 4.1 above).

In figure 4.6(i), it can be observed that there is a pattern of nodes and
antinodes. This effect is expected as there are reflected modes travelling in different
directions from the incident wave. However, in figure 4.6(ii) the barrier orientation
is aligned with the incident direction i.e. δ = θ0 = 60◦. Also, it can be easily
verified that kL sin δ = π and since the barriers are thin (θ = 0), then the figure
represents the approximate effect of the special case solution found in (4.3.12). The
analytical solution required kiL = 0, but the numerical computations required a
non-zero damping parameter to converge. Here the lack of convergence in the special
case of kiL = 0 is related to truncation of infinite systems of equations. Although
we confirmed analytically that for an infinite system of equations there is an exact
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Figure 4.6: Instantaneous surface elevation for (kL, θ0, θ) = (2π/
√

3, 60◦, 0) with (i)

(N, kiL, δ) = (29, 10−2, 30◦) and (ii) (N, kiL, δ) = (212, 10−3, 60◦).

solution (the one we anticipate), numerically once the infinite system of equations
is truncated we cannot get the exact solution. This is a strange result because one
normally expects truncation to be well behaved. However, it is never guaranteed
that it gives a convergent result. Thus, we picked a significantly small value of
the damping parameter (kiL = 10−3) at the cost of choosing a large truncation
(N = 212). One could easily verify from the analysis of the problem found in the
previous sections, that r = 1 and s = 0 according to the geometrical parameters.
Therefore there are two reflected modes as S = {−1, 0}. It can also be checked that
θ−1 = −60◦ = −θ0 which implies that the |a−1| mode travels opposite the incident
wave. But it is expected that an = δn,−1 will not be a solution to the problem because
kiL 6= 0. However, in the limit kiL→ 0, we get the expected result by choosing the
appropriate truncation N . This is the reason why the node-antinode pattern is not
observed in the second figure. Thus, for this particular geometrical configuration,
the metamaterial wall violates the reflection law in the eyes of a far-field observer in
y < 0.
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Chapter 5

Wave scattering by cracks on floating ice

sheets

5.1 Introduction

From this point onward, the second type of problems explored in this thesis will
be considered. Two thin semi-infinite ice sheets float on the surface of an inviscid
fluid of finite constant depth and they are separated by a crack of finite length and
uniform width. An obliquely-incident wave in one of the two ice sheets, propagates
from the far-field with a direction towards the crack. Therefore, the fluid within the
crack region acts a scattering mechanism to the problem.

Cartesian coordinates (x, y, z) are chosen such that z = 0 coincides with
the midplane of the two semi-infinite floating ice sheets of small thickness d (with
repsect to the incident wavelength and fluid depth). The fluid is bounded below by a
rigid, flat bed at z = −h and the ice sheet separation distance is 2a. Therefore, the
ice sheets cover the region |x| > a, −∞ < y < ∞. Using the Archimedes Principle,
it can be verified that in the presence of the static ice sheets the fluid surface is
displaced at z = δ − d/2, where δ = (ρi/ρw)d (where ρi/ρw ≈ 0.9 is the ice to water
density ratio). Also, E and ν are defined to be the Young’s modulus and the Poisson
ratio of the ice sheets (material parameters). An obliquely-incident flexural wave
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propagates from x → ∞ towards the crack region |x| < a, at an angle θ0 with the
negative x-axis and an angular frequency ω. The value of the depth h will vary
between 20m and 160m (so not shallow water but not necessarily infinite depth) and
the thickness d about 0.5-2m. The crack width 2a can take any positive value and
this is the main parameter we want to explore.

x

y
z

x = ax = −a

θ0

φinc

d

h

T
θ0

R
θ0

Figure 5.1: Two thin semi-infinite floating ice sheets of thickness d, separated by a

distance 2a in a fluid of depth h. The incident wave φinc of angular frequency ω and

direction θ0 is scattered by the crack creating reflection and transmission (R, T ).

Taking advantage of the constant depth (geometry is uniform in y) and
the time harmonicity of the incident wave, then the fluid’s velocity potential can be
written in the form

Φ(x, y, z, t) = <{φ(x, z)eiα0ye−iωt}, (5.1.1)

where α0 = k0 sin θ0, with k0 be the incident wavenumber and ω is the incident
angular frequency. Therefore the fluid’s continuity equation (2.2.1) and the no flow
condition through the bed (2.2.2) are

(
∇2 − α2

0

)
φ(x, z) = 0, −∞ < x <∞, −h < z < 0, (5.1.2)

φz(x,−h) = 0, −∞ < x <∞. (5.1.3)

The combined kinematic and dynamical fluid’s surface conditions over the gap and
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the ice-covered sea [38] are

φz(x, 0) = Kφ(x, 0), |x| < a, (5.1.4)

Lφ ≡
{[
β
(
∂xx − α2

0

)2
+ 1−Kδ

]
∂z −K

}
φ(x, 0) = 0, |x| > a, (5.1.5)

where K = ω2/g with g be the gravitational acceleration and the ice sheet parameter
β is now defined by β = Ed3/12ρwg(1− ν2).

Since the incident wave of the problem comes from |x| � a, then by sepa-
rating variables in the velocity potential below the ice sheets (in equation (5.1.2)),
then it follows that

φ(x, z) ∼ e±iβnx cosh[kn(z + h)], β2
n + α2

0 = k2
n, (5.1.6)

where −k2
n is the separation constant and using the no flow condition (5.1.3) at the

bed. Then, by substituting this φ expression into the surface condition between
the fluid and the floating ice sheet, then the following dispersion relation for the
wavenumbers kn rises. Namely,

∆(kn) ≡
(
βk4

n + 1−Kδ
)
kn tanh(knh)−K = 0, (5.1.7)

the roots of which represent the possible wavenumbers of flexural waves travelling
in a thin floating ice sheet. This dispersion relation has two symmetric real roots
(±k0 for k0 > 0), an infinite sequence of symmetric purely imaginary roots (±kn
for n ∈ N with ={kn} > 0) and four complex roots - one in each quadrant of the
complex plane [71]. The four complex roots are related to each other from the
two symmetries of the function ∆(z) defined above. Since the dispersion function
satisfies ∆(−z) = ∆(z) and ∆(z) = ∆(z), then the four roots are called ±k−1 and
±k−2 where <{k−1}, ={k−1} > 0 and k−2 = −k−1. Also, the complex root of the
first quadrant satisfies ={k−1} > <{k−1} which gives important information when
calculating it numerically [39]. A listing of MatLab codes to compute k−1 is included
in [86]. It can be seen that when the ice thickness tends to zero (d → 0), then the
equation above becomes kn tanh(knh) = K which is what was expected as this is the
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standard water dispersion relation for a wave travelling in a fluid of constant depth
in the absence of ice sheets.

Now at the straight edge of a semi-infinite plate (see figure 5.1) some bound-
ary conditions must be imposed, namely at the free edges of an elastic plate must be
free of bending and moments and vertical shear forces [38][87]. This translates to

(
∂xx − να2

0

)
φz(±a±, 0) = 0,

(
∂xxx − (2− ν)α2

0∂x

)
φz(±a±, 0) = 0. (5.1.8)

The problem is supported with a far-field condition (usually called the ra-
diation condition) which is

φ(x, z) ∼

{
φinc(x, z) +Rφinc(−x, z), x→∞,
Tφinc(x, z), x→ −∞,

(5.1.9)

where φinc(x, z) = e−iβ0x cosh[k0(z + h)] for β0 = k0 cos θ0, is the incident wave that
arrives from x =∞ that satisfy (5.1.2), (5.1.3) and R and T are the complex-valued
reflection and transmission coefficients of the scattering problem (see figure 5.1).

5.2 Scattering using inviscid theory

5.2.1 Ice crack of finite width

In this section, the problem formulated in section 5.1 will be solved using Fourier
cosine and sine transforms to the scattering part of the wave, similar to the approach
taken in [41]. One of the problems that he considered, was the trapped waves in an
open water lead between two ice sheets in infinite depth. In the problem analysed
in this section, the incident flexural wave interacts with the fluid in the crack. The
assumption of finite depth can be used as an advantage to convert certain integrals
into infinite sums over the ice sheet dispersion relation roots (which are easier to be
evaluated numerically). This will be discussed in greater detail later in this section.

First, it can be seen that the geometry of the problem is symmetric about
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the x = 0 plane. Therefore, similar to the first problems solved in Chapter 3, the
problem can be decomposed into symmetric and antisymmetric parts which can be
solved only in x > 0 as

(∇2 − α2
0)φs,a(x, z) = 0, (5.2.1)

φs,az (x,−h) = 0, (5.2.2)

(
∂z −K

)
φs,a(x, 0) = H(x− a)

(
Kδ − β

(
∂xx − α2

0

)2
)
φs,az (x, 0), (5.2.3)

φsx(0, z) = 0, φa(0, z) = 0, (5.2.4)

Bφs,az (a+, 0) ≡
(
∂xx − να2

0

)
φs,az (a+, 0) = 0,

Sφs,az (a+, 0) ≡
(
∂xxx − (2− ν)α2

0∂x

)
φs,az (a+, 0) = 0,

(5.2.5)

where H is the Heaviside function that gives 1 for positive arguments and 0 for
negative. The first three equations can easily be verified as their x derivatives are of
even order (zeroth, second and fourth). The third equation is the continuous surface
condition to guarantee that the potential satisfies the free surface condition in the
fluid region x ∈ (0, a) and the surface condition between the fluid and the elastic
sheet in x ∈ (a,∞) (see equation (5.1.5)). The fourth equation is the conditions
that needed to be satisfied in order for φs, φa being even and odd respectively. The
conditions for the free edge at x = a+ are specified in the fifth equation. The
differential operators B and S stand for the bending moment and the shear stress
respectively. Also, separate far field conditions at x → ∞ for the symmetric and
antisymmetric problems must be introduced. It can be seen that if

φs,a(x, z) ∼ 1

2

(
e−iβ0x +Rs,aeiβ0x

)
cosh

[
k0(z + h)

]
as x→∞, (5.2.6)

is chosen then the far field condition (5.1.9) is satisfied provided that

R =
Rs +Ra

2
, T =

Rs −Ra

2
. (5.2.7)

Since the solution method involves the Fourier cosine and sine transform
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for the scattering part the algebra can be simplified by choosing the incident waves
in a way to satisfy the conditions at x = 0, namely

φsinc(x, z) = cos(β0x) cosh
[
k0(z + h)

]
,

φainc(x, z) = −i sin(β0x) cosh
[
k0(z + h)

]
.

(5.2.8)

It can be easily verified that those incident waves satisfy equations (5.2.1), (5.2.2),
(5.2.4) and (5.2.3) in x > a from the dispersion relation (5.1.7).

The symmetric solution starts by introducing the Fourier cosine transform
for the scattering part of the velocity potential as

φ̃s(ξ, z) ≡
∞̂

0

[
φs(x, z)− φsinc(x, z)

]
cos(ξx)dx. (5.2.9)

The reason why the incident wave is removed from the transform, is to make sure
that the integrand is outgoing as x → ∞ and this is important for imposing the
radiation condition as it determines the path of the integration contour in the inverse
transform. Under the (5.2.9) transformation, equations (5.2.1), (5.2.2) and (5.2.3)
become (

∂zz − k2(ξ)

)
φ̃s(ξ, z) = 0, (5.2.10)

φ̃sz(ξ,−h) = 0, (5.2.11)

(
∂z −K

) ∞̂
0

φs(x, 0) cos(ξx)dx =

∞̂

a

{(
Kδ − β

(
∂xx − α2

0

)2
)
φsz(x, 0)

}
cos(ξx)dx,

(5.2.12)
in 0 < ξ <∞, where k2(ξ) = ξ2+α2

0. Successively integrating by parts the right-hand
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side of (5.2.12) and using the edge conditions (5.2.5), then

(
βk4 + 1−Kδ

) ∞̂

0

φsz(x, 0) cos(ξx)dx−K
∞̂

0

φs(x, 0) cos(ξx)dx

= (βk4 −Kδ)
aˆ

0

φsz(x, 0) cos(ξx)dx− P sf s1 (ξ)−Qsf s2 (ξ),

(5.2.13)

after expressing the integral over (a,∞) as the difference between the integrals over
(0,∞) and (0, a). Also, in the equation above the following quantities are defined as
P s = φsxz(a

+, 0), Qs = φsz(a
+, 0) and

f s1 (ξ) ≡ β
(
ξ2 + να2

0

)
cos(aξ), f s2 (ξ) ≡ β

(
ξ3 + (2− ν)α2

0ξ
)

sin(aξ). (5.2.14)

Now using the fact that φsinc(x, z) satisfies (5.2.3) in x > a, multiplying it by cos(ξx)
and integrating in x ∈ (0,∞), then

0 =

∞̂

0

{(
β
(
∂xx − α2

0

)2

+ 1−Kδ
)
∂φsinc
∂z

(x, 0)−Kφsinc(x, 0)

}
cos(ξx)dx

=
(
βk4 + 1−Kδ

) ∞̂

0

∂φsinc
∂z

(x, 0) cos(ξx)dx−K
∞̂

0

φsinc(x, 0) cos(ξx)dx,

(5.2.15)

where the second equality came by integration by parts. Using the vanishing right-
hand side of (5.2.15) into (5.2.13), then

(
βk4 + 1−Kδ

)
φ̃sz(ξ, 0)−Kφ̃s(ξ, 0)

= (βk4 −Kδ)
aˆ

0

φsz(x, 0) cos(ξx)dx− P sf s1 (ξ)−Qsf s2 (ξ),
(5.2.16)
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which is the surface condition for the symmetric potential in the Fourier space.
Therefore the governing equation in the Fourier space (5.2.10), gives the general
solution φ̃s(ξ, z) = Ãs(ξ) cosh[k(z + h)] (using the no flow condition at the bed),
where Ãs(ξ) can be found from (5.2.16). Therefore, by inverting the transform it
follows that

φs(x, z) = φsinc(x, z) +
2

π

∞&

0

cosh[k(z + h)]

∆(k) cosh(kh)

{
− P sf s1 (ξ)−Qsf s2 (ξ)

+
(
βk4 −Kδ

) aˆ

0

φsz(t, 0) cos(ξt)dt

}
cos(ξx)dξ,

(5.2.17)

where the ξ-integral symbol, means that contour avoids the integrand pole β0 from
below in order that the radiation condition is satisfied.

This solution satisfies all conditions specified above. It remains to find the
unknown parameters P s and Qs. A coupled 2 × 2 system between those unknown
will arise if the xz and z partial derivatives of (5.2.17) (evaluated at the edge x = a+,
z = 0) are taken into account. First, the solution of the potential is differentiated
with respect to z and evaluated at z = 0 to give

k0 cos(β0x) sinh(k0h)− P sF s
1 (x)−QsF s

2 (x)

+
2

π

∞&

0

K − k tanh(kh)

∆(k)
cos(ξx)

aˆ

0

φsz(t, 0) cos(ξt)dtdξ =

{
φsz(x, 0), x > a,

0, 0 < x < a,

(5.2.18)
after making use of the equation

∞̂

0

cos(ξx) cos(ξt)dξ =
π

2
δ(x− t). (5.2.19)

The equation above can be derived by calculating the Fourier cosine transform of
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δ(x− t) as cos(ξt) (assuming that t > 0) and then inverting the transform. Also,

F s
i (x) ≡ 2

π

∞&

0

k tanh(kh)

∆(k)
f si (ξ) cos(ξx)dξ for i = 1, 2, (5.2.20)

was used in equation (5.2.18) which was derived after making use of the dispersion
relation on the integral term that is proportional to (βk4 −Kδ).

Now, the linear system for P s and Qs can be created by substituting x = a+

into the equation above and its x-derivative. Namely,

P sF s
1 (a+) +Qs

[
1 + F s

2 (a+)
]
−Ksφsz = k0 cos(β0a) sinh(k0h),

P s
[
1 + F s′

1 (a+)
]

+QsF s′

2 (a+) +Ks′φsz = −k0β0 sin(β0a) sinh(k0h),

Ksφsz ≡
2

π

∞&

0

K − k tanh(kh)

∆(k)
cos(aξ)

aˆ

0

φsz(t, 0) cos(ξt)dtdξ,

Ks′φsz ≡
2

π

∞&

0

K − k tanh(kh)

∆(k)
ξ sin(aξ)

aˆ

0

φsz(t, 0) cos(ξt)dtdξ.

(5.2.21)

Therefore the system can be solved once the vertical velocity φsz(x, 0) in the region
of the crack 0 < x < a is found. Thus, the choice of

φsz(x, 0) ≡ π

2

[
P sRs

1(x) +QsRs
2(x)− k0 sinh(k0h)Rs

3(x)
]
, 0 < x < a, (5.2.22)

is made, for some unknown functions Rs
1(x), Rs

2(x) and Rs
3(x) that satisfy

∞&

0

K − k tanh(kh)

∆(k)
cos(ξx)

aˆ

0

Rs
i (t) cos(ξt)dtdξ =

{
F s
i (x), i = 1, 2,

cos(β0x), i = 3,
(5.2.23)
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to guarantee that equation (5.2.18) is satisfied in 0 < x < a. It remains to solve the
three integral equations satisfied by Rs

i (t) (i = 1, 2, 3) in (5.2.23).
The vertical velocity of the fluid surface in the crack, can be approximated

by the orthogonal family of Legendre polynomials. The reason behind this choice,
is that Legendre polynomials have no particular weighting associated with the end
points of the intervals. Also under this choice, certain integrals can be evaluated in
closed form. This choice was also used in [36], where a floating rigid plate of finite
width was interacting with the fluid surface surrounding it. Therefore is appropriate
to expand

Rs
i (t) ≈

N∑
m=0

b
(i)
2m(−1)mP2m

(
t

a

)
, (5.2.24)

where P2m are the even Legendre polynomials (to guarantee that the condition at

x = 0 is satisfied) and b
(i)
2m are the unknown expansion coefficients to be found.

Here N is a truncation parameter typically proportional to the ratio a/d, because
as the gap between the ice sheets increases (with respect to the ice thickness), then
more polynomial terms are needed to characterise the fluid surface motion (more
wavelengths will fit in the crack region). This is the Galerkin method discussed in
(3.2.60). Substituting the expansion (5.2.24) into the integral equation of Rs

i , then

N∑
m=0

M s
2n,2mb

(i)
2m = f

(i)
2n for M s

2n,2m = a

∞&

0

K − k tanh(kh)

∆(k)
j2n(aξ)j2m(aξ)dξ,

f
(i)
2n =

2

π

∞&

0

k tanh(kh)

∆(k)
f si (ξ)j2n(aξ)dξ for i = 1, 2 and f

(3)
2n = j2n(β0a),

(5.2.25)
where j2m(z) are the spherical Bessel function of even order, using the useful formula
(−1)m

´ a
0
P2m(t/a) cos(ξt)dt = aj2m(aξ) found from [76], pg. 38(4). Note that the

x-dependence was removed from (5.2.23), by multiplying it with 1
a
(−1)nP2n(x/a)

and integrating it in x ∈ (0, a). That is essentially the application of the Galerkin
method, where the solution error due to truncation is assumed to be orthogonal to the
space of functions described by the expansion basis. Therefore, the equation (5.2.25)
is basically a linear system of N equations for N unknowns i.e. the coefficients
b

(i)
2m. Finally, using the expansion (5.2.24) into the 2 × 2 system for P s, Qs found

in (5.2.21), after taking the expansion coefficients to be b
(i)
s = M−1

s f
(i)
s (in vectorial
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form), then

(
F s

1 (a+)−KT
s M−1

s f
(1)
s 1 + F s

2 (a+)−KT
s M−1

s f
(2)
s

1 + F s′
1 (a+) + K′Ts M−1

s f
(1)
s F s′

2 (a+) + K′Ts M−1
s f

(2)
s

)(
P s

Qs

)

= k0 sinh(k0h)

(
cos(β0a)−KT

s M−1
s f

(3)
s

K′Ts M−1
s f

(3)
s − β0 sin(β0a)

)
,

Ks
2n ≡ a

∞&

0

K − k tanh(kh)

∆(k)
cos(aξ)j2n(aξ)dξ,

Ks′

2n ≡ a

∞&

0

K − k tanh(kh)

∆(k)
ξ sin(aξ)j2n(aξ)dξ.

(5.2.26)

Now the formula for the reflection coefficient Rs must be derived by sending
x→∞ in (5.2.17) using the far-field condition (5.2.6) and the incident wave defini-
tion (5.2.8). By writing the vertical fluid velocity in the crack as a linear combination
of Rs

i (t) from (5.2.22) and using the (5.2.24) expansion, then

1

2
(Rs − 1)eiβ0x cosh[k0(z + h)]

= − 2

π

∞&

0

cosh[k(z + h)]

∆(k) cosh(kh)

[
P sf s1 (ξ) +Qsf s2 (ξ)

]
cos(ξx)dξ

+a
N∑
m=0

(
P sb

(1)
2m +Qsb

(2)
2m

) ∞&
0

cosh[k(z + h)]

∆(k) cosh(kh)
(βk4 −Kδ)j2m(aξ) cos(ξx)dξ

−ak0 sinh(k0h)
N∑
m=0

b
(3)
2m

∞&

0

cosh[k(z + h)]

∆(k) cosh(kh)
(βk4 −Kδ)j2m(aξ) cos(ξx)dξ.

(5.2.27)

Now using the advantage of finite depth, a method that transforms the
semi-infinite integrals into sums over the residues of the integrand poles, will follow.
It can be seen that the poles of the integrands are ±βn for n ≥ −2. Note that the
roots ±βn are scattered to the complex plane in the same fashion as ±kn due to the
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relation between them, i.e. k2
n = β2

n + α2
0. Therefore, β0 ∈ R>0, βn for n ∈ N are

purely imaginary with ={βn} > 0 and β−1 lie in the first quadrant with β−2 = −β−1

in the second. In the case of infinite depth, the purely imaginary roots get infinitely
close to each other as the purely imaginary roots tend to ±inπ/h as n→ ±∞ [39].
Therefore, this method is applicable only in finite depth as is the only case where the
sum over the dispersion roots makes sense because the roots are discrete (at a finite
distance from each other) and not as in continuous line (branch cut). This method
will be used also in Appendix C.1, to transform all the integrals used to find P s, Qs

in (5.2.25), (5.2.26), into sums over the dispersion roots.
The method starts by using the fact that the integrands are always even.

Therefore, they can be expressed as half of the infinite integrals, avoiding the negative
real pole−β0 from above and the positive real pole β0 from below (as before) to satisfy
the radiation condition. The second step will be to express a part of the integrands,
in terms of decaying functions in the upper and lower half complex planes (typically
trigonometric functions in terms of complex exponentials and in some cases spherical
Bessel functions in terms of spherical Hankel functions). The third step will be to
write the integral as an integral over the closed semicircular loop that covers the
upper or lower complex plane (this will give the sum over the residues from the
Cauchy’s residue theorem), minus the contribution at infinity which it will turn out
to be zero always. For example, by considering an arbitrary even function f(ξ), with
f(ξ)eiaξ decaying on the boundary of a semicircular contour of radius R � 1 that
covers the upper half complex plane, then

∞&

0

f(ξ)

∆(k)
cos(aξ)dξ =

1

4

∞ 

−∞

f(ξ)

∆(k)
eiaξdξ +

1

4

∞ 

−∞

f(ξ)

∆(k)
e−iaξdξ = iπ

∞∑
r=−2

krf(βr)

βr∆′(kr)
eiβra,

(5.2.28)
where the dashed integral symbol means the β0 pole is avoided from below and the
−β0 from above. In the equation above, the first infinite integral was decomposed
into the upper half plane (considering βn poles), the second to the lower (considering
−βn poles) and the even behaviour of the integrand was implemented to combine
the two infinite sums. Also, the chain rule d

dξ

[
∆(k)

]
= ξ

k
∆′(k) was used. Applying

this trick to the expression of (5.2.27), some infinite sums over the dispersion roots
will emerge (summed over r ≥ −2). Since all the summation terms are proportional
to eiβrx and x � a, then all the r 6= 0 terms will be vanished since ={βr} > 0
and x → ∞. So by retaining only the r = 0 term of the infinite sum and using
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b
(i)
s = M−1

s f
(i)
s (in vectorial form), then

Rs = 1 +
2ik0

β0∆′(k0) cosh(k0h)

{
P s

[
πa(βk4

0 −Kδ)jTs M−1
s f (1)

s − 2f s1 (β0)

]

+Qs

[
πa(βk4

0 −Kδ)jTs M−1
s f (2)

s − 2f s2 (β0)

]
− πa(βk4

0 −Kδ)k0 sinh(k0h)jTs M−1
s f (3)

s

}
,

(5.2.29)

where
[
js

]
m

= j2m(β0a), using that j2m(aξ)eiξx ∼ sin(aξ)eiξx/ξ (times a multiplica-

tive constant that depends on m) decays in the upper half plane as x > a from [75],
equation (9.2.1).

Now to find an expression for the antisymmetric scattering coefficient Ra,
the same process that starts from (5.2.9) and ends at (5.2.29) must be followed. The
Fourier sine transform for the scattering part of the velocity potential is

φ̃a(ξ, z) ≡
∞̂

0

[
φa(x, z)− φainc(x, z)

]
sin(ξx)dx. (5.2.30)

Under this transformation, the continuity equation (5.2.10) and the no flow condi-
tion (5.2.11) is satisfied by φ̃a(ξ, z). However, the integrated version of the surface
condition (5.2.3), becomes

(
∂z −K

) ∞̂
0

φa(x, 0) sin(ξx)dx =

∞̂

a

{(
Kδ − β

(
∂xx − α2

0

)2
)
φaz(x, 0)

}
sin(ξx)dx,

(5.2.31)
in 0 < ξ < ∞. Through integration by parts and application of zero bending
moment and shear stress at the edge (equation (5.2.5)), the analogue equation for
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the antisymmetric modes becomes

(
βk4 + 1−Kδ

) ∞̂

0

φaz(x, 0) sin(ξx)dx−K
∞̂

0

φa(x, 0) sin(ξx)dx

= (βk4 −Kδ)
aˆ

0

φaz(x, 0) sin(ξx)dx− P afa1 (ξ) +Qafa2 (ξ),

for fa1 (ξ) ≡ β
(
ξ2 + να2

0

)
sin(aξ), fa2 (ξ) ≡ β

(
ξ3 + (2− ν)α2

0ξ
)

cos(aξ),

(5.2.32)

and P a = φaxz(a
+, 0), Qa = φaz(a

+, 0). Now using again that φainc(x, z) satisfies (5.2.3)
in x > a, multiplying this condition by sin(ξx) and integrating in x ∈ (0,∞), then

0 =

∞̂

0

{(
β
(
∂xx − α2

0

)2

+ 1−Kδ
)
∂φainc
∂z

(x, 0)−Kφainc(x, 0)

}
sin(ξx)dx

=
(
βk4 + 1−Kδ

) ∞̂

0

∂φainc
∂z

(x, 0) sin(ξx)dx−K
∞̂

0

φainc(x, 0) sin(ξx)dx,

(5.2.33)

where the second equality came by integration by parts. Therefore, by combining
the last two equations, then

(
βk4 + 1−Kδ

)
φ̃az(ξ, 0)−Kφ̃a(ξ, 0)

= (βk4 −Kδ)
aˆ

0

φaz(x, 0) sin(ξx)dx− P afa1 (ξ) +Qaf s2 (ξ),
(5.2.34)

which is the surface condition for the antisymmetric potential in the Fourier space.
The antisymmetric potential in the Fourier space can be calculated from the continu-
ity equation and the no flow condition at the bed as φ̃a(ξ, z) = Ãa(ξ) cosh[k(z + h)],
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where Ãa(ξ) can be found from (5.2.34). Inversion of the transform results to

φa(x, z) = φainc(x, z) +
2

π

∞&

0

cosh[k(z + h)]

∆(k) cosh(kh)

{
− P afa1 (ξ) +Qafa2 (ξ)

+
(
βk4 −Kδ

) aˆ

0

φaz(t, 0) sin(ξt)dt

}
sin(ξx)dξ.

(5.2.35)

Proceeding to the 2×2 system for P a and Qa, the equation is differentiated
with respect to z and evaluated at z = 0, to give

−ik0 sin(β0x) sinh(k0h)− P aF a
1 (x) +QaF a

2 (x)

+
2

π

∞&

0

K − k tanh(kh)

∆(k)
sin(ξx)

aˆ

0

φaz(t, 0) sin(ξt)dtdξ =

{
φaz(x, 0), x > a,

0, 0 < x < a,

(5.2.36)
after making use of the equation

∞̂

0

sin(ξx) sin(ξt)dξ =
π

2
δ(x− t). (5.2.37)

The equation above can be derived by calculating the Fourier sine transform of
δ(x− t) as sin(ξt) (assuming that t > 0) and then inverting the transform. Also

F a
i (x) ≡ 2

π

∞&

0

k tanh(kh)

∆(k)
fai (ξ) sin(ξx)dξ for i = 1, 2, (5.2.38)

was used in equation (5.2.36) above.
The analogue linear system for P a and Qa is created again by substituting
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x = a+ into the equation above and its x-derivative. Namely,

P aF a
1 (a+) +Qa

[
1− F a

2 (a+)
]
−Kaφaz = −ik0 sin(β0a) sinh(k0h),

P a
[
1 + F a′

1 (a+)
]
−QaF a′

2 (a+)−Ka′φaz = −ik0β0 cos(β0a) sinh(k0h),

Kaφaz ≡
2

π

∞&

0

K − k tanh(kh)

∆(k)
sin(aξ)

aˆ

0

φaz(t, 0) sin(ξt)dtdξ,

Ka′φaz ≡
2

π

∞&

0

K − k tanh(kh)

∆(k)
ξ cos(aξ)

aˆ

0

φaz(t, 0) sin(ξt)dtdξ.

(5.2.39)

The fluid surface vertical velocity φaz(x, 0) in the region of the crack is chosen to be

φaz(x, 0) ≡ π

2

[
P aRa

1(x)−QaRa
2(x) + ik0 sinh(k0h)Ra

3(x)
]
, 0 < x < a, (5.2.40)

for some unknown functions Ra
1(x), Ra

2(x) and Ra
3(x) that satisfy

∞&

0

K − k tanh(kh)

∆(k)
sin(ξx)

aˆ

0

Ra
i (t) sin(ξt)dtdξ =

{
F a
i (x), i = 1, 2,

sin(β0x), i = 3,
(5.2.41)

so that the surface equation in the crack is satisfied. In the equation above, if the un-

known surface functions are expanded in the basis ofRa
i (t) ≈

N∑
m=0

b
(i)
2m+1(−1)mP2m+1(t/a)
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(where P2m+1 are the odd Legendre polynomials), then

N∑
m=0

Ma
2n+1,2m+1b

(i)
2m+1 = f

(i)
2n+1,

for Ma
2n+1,2m+1 = a

∞&

0

K − k tanh(kh)

∆(k)
j2n+1(aξ)j2m+1(aξ)dξ,

f
(i)
2n+1 =

2

π

∞&

0

k tanh(kh)

∆(k)
fai (ξ)j2n+1(aξ)dξ for i = 1, 2 and f

(3)
2n+1 = j2n+1(β0a),

(5.2.42)
where j2m+1(z) are the spherical Bessel function of odd order, using the useful formula
(−1)m

´ a
0
P2m+1(t/a) sin(ξt)dt = aj2m+1(aξ) found from [76], pg. 94(4). Similarly to

the symmetric problem, the x-dependence was removed from (5.2.41), by multiplying

it with 1
a
(−1)nP2n+1(x/a) and integrating it in x ∈ (0, a). Using b

(i)
a = M−1

a f
(i)
a in

vectorial form, then equations (5.2.39) become

(
F a

1 (a+)−KT
aM−1

a f
(1)
a 1− F a

2 (a+) + KT
aM−1

a f
(2)
a

1 + F a′
1 (a+)−K′TaM−1

a f
(1)
a K′TaM−1

a f
(2)
a − F a′

2 (a+)

)(
P a

Qa

)

= ik0 sinh(k0h)

(
KT
aM−1

a f
(3)
a − sin(β0a)

K′TaM−1
a f

(3)
a − β0 cos(β0a)

)
for

Ka
2n+1 ≡ a

∞̂

0

K − k tanh(kh)

∆(k)
sin(aξ)j2n+1(aξ)dξ,

Ka′

2n+1 ≡ a

∞̂

0

K − k tanh(kh)

∆(k)
ξ cos(aξ)j2n+1(aξ)dξ.

(5.2.43)

Next, the equation (5.2.35) as x → ∞ is considered to get an expression
for Ra. The far-field condition (5.2.6) and the incident wave definition (5.2.8) must
be implemented as well as the vertical velocity expansion in the crack (equation
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(5.2.40)) to give

1

2
(Ra + 1)eiβ0x cosh[k0(z + h)]

= − 2

π

∞&

0

cosh[k(z + h)]

∆(k) cosh(kh)

[
P afa1 (ξ)−Qafa2 (ξ)

]
sin(ξx)dξ

+a
N∑
m=0

(
P ab

(1)
2m+1 −Qab

(2)
2m+1

) ∞&
0

cosh[k(z + h)]

∆(k) cosh(kh)
(βk4 −Kδ)j2m+1(aξ) sin(ξx)dξ

+ik0a sinh(k0h)
N∑
m=0

b
(3)
2m+1

∞&

0

cosh[k(z + h)]

∆(k) cosh(kh)
(βk4 −Kδ)j2m+1(aξ) sin(ξx)dξ.

(5.2.44)
Proceeding to the final calculation for Ra by expressing the integrals in the infinite
domain (due to even integrands), writing sin(ξx) in terms of complex exponentials
and applying the Cauchy’s residue theorem in the upper and lower half plane ac-
cordingly (as in the symmetric case), then

Ra = −1 +
2k0

β0∆′(k0) cosh(k0h)

{
P a

[
πa(βk4

0 −Kδ)jTaM−1
a f (1)

a − 2fa1 (β0)

]

−Qa

[
πa(βk4

0 −Kδ)jTaM−1
a f (2)

a − 2fa2 (β0)

]
+ iπa(βk4

0 −Kδ)k0 sinh(k0h)jTaM−1
a f (3)

a

}
,

(5.2.45)

where
[
ja

]
m

= j2m+1(β0a), using that j2m+1(aξ)eiξx ∼ cos(aξ)eiξx/ξ (times a multi-

plicative constant that depends on m) decays in the upper half plane as x > a, from
[75], equation (9.2.1). In this calculation, also the fact that j2m+1 is odd was taken
into account to combine the two infinite sums (upper and lower half planes) into one
and only the r = 0 term survives from that sum as ={βr} > 0 for r 6= 0.

Note that in the symmetric and antisymmetric problems there is no trans-
mission but only reflection. Therefore, the conservation of energy is translated into
|Rs,a| = 1, which can be used as a checkpoint in the numerical results. Note that
the scattering coefficients to the physical problem can be found in terms of Rs,a from
(5.2.7) and using that |Rs,a| = 1 then it can be verified that the energy conservation
|R|2 + |T |2 = 1 is satisfied.
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5.2.2 Approximation for small crack width

Over the years, it was noticed that when the gap between the ice sheets is narrow,
then the problem admits a closed-form solution. For example, [42] and [43] showed
that such expressions can be maintained using a Green’s function approach at infinite
depth. In the case of finite depth [44] adopted the Wiener-Hopf technique and [46]
using two approaches: the Green’s function and an eigenfunction expansion method.

In this thesis, the approach of maintaining a closed-form solution for a small
crack will be to expand the vertical velocity of the fluid surface in the crack as a
single term approximation. This is appropriate as if you expand a function f(x) over
0 < x < a and a is “small” then, by Taylor expansion f(x) ≈ f(0) + xf ′(0) +O(x2)
whose symmetric part is f s(x) = f(0) + O(x2). But since x2 < a2 and a is small
then f s(x) = f(0) which is a constant. The antisymmetric part of the expansion
fa(x) = xf ′(0) + O(x3) and its leading order is fa(x) = xf ′(0) which is a constant
times x. Physically this means that a short segment of a curve is approximately a
straight line (or Ax+B). Thus, we truncate the Rs,a

i (t) expansions at N = 0 or use
φsz(x, 0) = Cs and φaz(x, 0) = Cax/a in 0 < x < a� d for Cs, Ca constants, instead
of equations (5.2.22) and (5.2.40). This suggest that the dimension of all the vectors
and matrices could be dropped to 1 as the products of the form KTM−1f (i) will be
equivalent to a scalar product that looks like K0f

(i)
0 /M0,0 at leading order of O(a0).

Also, all the definitions involved in the remaining equations, are approxi-
mated at leading order in a. However, by doing that, in some cases the convergent
integrals could become divergent. For example, if within a convergent integral the
terms tend to ξ−2 sin(aξ) as ξ → ∞, then if the trigonometric function is approx-
imated by aξ (to leading order), then the integrand is asymptotic to ξ−1 which is
divergent. Therefore, before approximating any function inside integrals, first the
dispersion relation must be used to guarantee that even after the approximation, the
integral is still convergent.

Normally, one could start by approximating the integrals of the 2×2 linear
systems for P s,a and Qs,a in (5.2.26) and (5.2.43). Starting from the integrals of
the symmetric case, by approximating sin(aξ) ≈ aξ, cos(aξ) ≈ 1, j2n(aξ) ≈ δn0,

then it can be proved that at leading order F s
1 (a+) ≈ f

(1)
0 , F s

2 (a+), F s′
2 (a+) ≈ 0,

F s′
1 (a+) ≈ −1, Ks

0 ≈ M s
0,0, Ks′

0 /M
s
0,0 ∼ O(a) and f

(2)
0 , f

(3)
0 ≈ 1 by using the dis-

persion relation where appropriate (the application of this trick can be found in
Appendix C.1). Using this information, one could see by direct substitution that
the system in (5.2.26) has no unique solutions as all the matrix elements and the
right-hand side become zero. The same happens in the antisymmteric system of
(5.2.43) as F a

1 (a+), F a′
1 (a+) ≈ 0, F a′

2 ≈ 1, Ka
1f

(i)
1 /Ma

1,1 ∼ O(a), Ka′
1 f

(1)
1 /Ma

1,1 ≈ 1,

141



Ka′
1 f

(2)
1 /Ma

1,1 ≈ F a′
2 (a+), Ka

1f
(3)
1 /Ma

1,1 ≈ β0a and Ka′
1 f

(3)
1 /Ma

1,1 ≈ β0. Therefore, the
closed-form solution will be derived using a slightly different approach.

Starting from symmetric problem, the edge conditions Bφsz(a+, 0) = 0 and
Sφsz(a+, 0) = 0 are applied to the right-hand side of the surface condition (5.2.18) in
x > a. These two equations result to

(
CsRs

1 + BF s
1 (a+) CsRs

2 + BF s
2 (a+)

Cs′Rs
1 − SF s

1 (a+) Cs′Rs
2 − SF s

2 (a+)

)(
P s

Qs

)
= k0 sinh(k0h)

(
CsRs

3 − (β2
0 + να2

0) cos(β0a)
Cs′Rs

3 − (β3
0 + (2− ν)α2

0β0) sin(β0a)

)
,

(5.2.46)

after expanding the vertical velocity of the fluid surface in 0 < x < a from (5.2.22)
and the following integrals are used

CsRs
i ≡

∞&

0

K − k tanh(kh)

∆(k)
(ξ2 + να2

0) cos(aξ)

aˆ

0

Rs
i (t) cos(ξt)dtdξ,

Cs′Rs
i ≡

∞&

0

K − k tanh(kh)

∆(k)
(ξ3 + (2− ν)α2

0ξ) sin(aξ)

aˆ

0

Rs
i (t) cos(ξt)dtdξ,

(5.2.47)

with Rs
i (t) satisfy (5.2.23) to guarantee that the surface condition in the crack is

satisfied.
Now by making a single term approximation (small crack assumption) to

142



Rs
i from (5.2.24) using b

(i)
0 = f

(i)
0 /M s

0,0, then the system above becomes

(
(cs0f

(1)
0 /M s

0,0) + BF s
1 (a+) (cs0f

(2)
0 /M s

0,0) + BF s
2 (a+)

(cs
′

0 f
(1)
0 /M s

0,0)− SF s
1 (a+) (cs

′
0 f

(2)
0 /M s

0,0)− SF s
2 (a+)

)(
P s

Qs

)

= k0 sinh(k0h)

(
(cs0f

(3)
0 /M s

0,0)− (β2
0 + να2

0) cos(β0a)

(cs
′

0 f
(3)
0 /M s

0,0)− (β3
0 + (2− ν)α2

0β0) sin(β0a)

)
,

cs0 ≡ a

∞&

0

K − k tanh(kh)

∆(k)
(ξ2 + να2

0) cos(aξ)j0(aξ)dξ,

cs
′

0 ≡ a

∞&

0

K − k tanh(kh)

∆(k)
(ξ3 + (2− ν)α2

0ξ) sin(aξ)j0(aξ)dξ.

(5.2.48)

Note that some of the integrals above become divergent in the small a limit and
therefore the dispersion relation should be used appropriately before approximating
the trigonometric and Bessel functions. Starting from BF s

1 (a+) and SF s
1 (a+), then

all the derivatives are considered as

F s
1 (a+) =

2

π

& ∞
0

βk tanh(kh)

∆(k)
(ξ2 + να2

0) cos2(aξ)dξ,

F s′

1 (a+) = −1 +
1

π

& ∞
0

[
βα2

0(α2
0 + (2− ν)ξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F s′′

1 (a+) =
2

π

& ∞
0

[
βα2

0(α2
0 + (2− ν)ξ2) + 1−Kδ

]
k tanh(kh)−K

∆(k)
cos2(aξ)dξ,

F s′′′

1 (a+) = − 1

π

& ∞
0

[
β(2ν − 3)α4

0 + 1−Kδ
]
k tanh(kh)−K

∆(k)
ξ sin(2aξ)dξ

−(2− ν)α2
0 +

(2− ν)α2
0

π

& ∞
0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

(5.2.49)
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where the second equation was maintained using (C.1.3) and the fourth by using

[
βα2

0(α2
0 + (2− ν)ξ2) + 1−Kδ

]
k tanh(kh)−K

∆(k)
=

(2− ν)α2
0

ξ2

+

[
β(2ν − 3)α4

0 + 1−Kδ
]
k tanh(kh)−K

∆(k)

−(2− ν)α2
0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

ξ2∆(k)
.

(5.2.50)

The advantage with this kind of formulas is that ν can be relabelled with any other
function of ν as the only dependence on the Poisson ratio in the dispersion relation,
is β. Also in the derivatives of F s

1 above, the formulas

∞̂

0

sin(Aξ) cos(Bξ)

ξ
dξ =

π

4

[
sgn(A+B) + sgn(A−B)

]
,

∞̂

0

sin2(Aξ)

ξ2
dξ =

π

2
|A|,

(5.2.51)

were used. Therefore by approximating sin(2aξ) ≈ 2aξ and cos(aξ) ≈ 1 to the
expressions above, then it can be verified that

BF s
1 (a+) ≈ 2

π

∞&

0

[
βα2

0(1− ν)
(
2ξ2 + (1 + ν)α2

0

)
+ 1−Kδ

]
k tanh(kh)−K

∆(k)
dξ,

(5.2.52)
and SF s

1 (a+) ≈ 0 by neglecting O(a). Proceeding onto the expressions for BF s
2 (a+)
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and SF s
2 (a+), the higher derivatives of F s

2 are calculated as follows.

F s
2 (a+) = − 1

π

& ∞
0

[
βα2

0(α2
0 + νξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F s′

2 (a+) = να2
0a+

2

π

& ∞
0

[
β(1− 2ν)α4

0 + 1−Kδ
]
k tanh(kh)−K

∆(k)
sin2(aξ)dξ

−2να2
0

π

& ∞
0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

ξ2∆(k)
sin2(aξ)dξ,

F s′′

2 (a+) =
1

π

& ∞
0

[
β(1− 2ν)α4

0 + 1−Kδ
]
k tanh(kh)−K

∆(k)
ξ sin(2aξ)dξ

−να
2
0

π

& ∞
0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F s′′′

2 (a+) =
2να2

0

π

& ∞
0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

ξ2∆(k)
sin2(aξ)dξ

+
K

β

[
1

α0 tanh(α0h)
− 2

π

∞&

0

βα2
0(α2

0 + 2ξ2)k tanh(kh)−K
ξ2k tanh(kh)∆(k)

sin2(aξ)dξ

]

−β(1− 2ν)α4
0 + 1−Kδ
β

[
a− 2

π

∞&

0

βα2
0(α2

0 + 2ξ2)k tanh(kh)−K
ξ2∆(k)

sin2(aξ)dξ

]
,

(5.2.53)
where the first equation was maintained using (C.1.3), the second by (5.2.50) and
the fourth by

ξ2k tanh(kh)

∆(k)
=

1

βξ2
− βα2

0(α2
0 + 2ξ2)k tanh(kh)−K

βξ2∆(k)
. (5.2.54)

Also in the F s′′′
2 formula above, the Cauchy’s residue theorem was used to get the

(non-integral) terms that are proportional to β−1 by expressing sin(aξ) in terms of
complex exponentials and considering the new pole at ξ = 0. Therefore, it can be
seen that at leading order BF s

2 (a+),SF s
2 (a+) ≈ 0 by neglecting O(a).

Proceeding to the integrals found in equations (5.2.25) (for n = m = 0) and
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(5.2.48), it follows that

M s
0,0 ≈ a

∞&

0

K − k tanh(kh)

∆(k)
dξ ≡ aM s∗

0,0,

f
(1)
0 ≈ 2β

π

∞&

0

k tanh(kh)

∆(k)
(ξ2 + να2

0)dξ, f
(2)
0 ≈ 1, f

(3)
0 ≈ 1,

cs0 ≈ a

∞&

0

K − k tanh(kh)

∆(k)
(ξ2 + να2

0)dξ ≡ acs
∗

0 , cs
′

0 ≈ π
α0a tanh(α0h)−K

2βα0 tanh(α0h)
,

(5.2.55)
where the approximations cos(aξ), j0(aξ) ≈ 1 and sin(aξ) ≈ aξ were used. Also for

the f
(2)
0 expression, equation (C.1.3) was used and for the last expression above, the

following identity was implemented.

βξ3
(
K − k tanh(kh)

)
∆(k)

=
K

ξk tanh(kh)
− 1

ξ

+
K + k tanh(kh)

ξk tanh(kh)∆(k)

{
1−

[
βα2

0(α2
0 + 2ξ2) + 1−Kδ

]
k tanh(kh)

}
.

(5.2.56)

Then, using the simplified integrals found in equations (5.2.52) and (5.2.68)
the 2× 2 system of (5.2.48) transforms to

(
cs
∗

0 f
(1)
0 +M s∗

0,0BF s
1 (a+) cs

∗
0

cs
′

0 f
(1)
0 cs

′
0

)(
P s

Qs

)
= k0 sinh(k0h)

(
cs
∗

0 −M s∗
0,0(β2

0 + να2
0)

cs
′

0 − β0aM
s
0,0(β3

0 + (2− ν)α2
0β0)

)
.

(5.2.57)

By neglecting the term that is proportional to aM s
0,0 ∼ O(a2), then cs

′
0 can be

cancelled from the second equation. Then by solving analytically the system by
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inversion the 2× 2 matrix, the result is

(
P s

Qs

)
=
k0 sinh(k0h)

BF s
1 (a+)

(
−(β2

0 + να2
0)

BF s
1 (a+) + (β2

0 + να2
0)f

(1)
0

)
, (5.2.58)

which is a closed-form solution for P s andQs which is much simpler than the solutions
when the separation distance between the ice sheets is finite.

Now, the simplified expression for the reflection coefficient Rs from (5.2.29)
will be calculated using the P s and Qs formulas from (5.2.58). Approximating
j2m(β0a) ≈ δm0 in the Rs expression, cos(β0a) ≈ 1 and sin(β0a) ≈ β0a in f si (β0)
from (5.2.14) then

Rs = 1 +
4iβk2

0 tanh(k0h)

β0∆′(k0)BF s
1 (a+)

(
β2

0 + να2
0

)2

, (5.2.59)

by using the simplified integrals of equation (5.2.68). This is a much simpler formula
than the one of the previous section (crack of finite length) as it requires only the
calculation of the single integral BF s

1 (a+) instead of N2 + 4N + 4 where N is the
number of modes required to characterise the surface expansion within the crack (N2

from the single integral matrix, 4N from the four integral vectors and 4 from the
four scalar integrals). Also, the simple expression of Rs in (5.2.59) will be proven to
satisfy the energy conservation relation |Rs|2 = 1 analytically. Using the formula for
the modulus of the sum, then

|Rs|2 = 1+
8β
(
β2

0 + να2
0

)2
k2

0 tanh(k0h)

β0∆′(k0)|BF s
1 (a+)|2

[
=
{
BF s

1 (a+)
}

+
2βk2

0 tanh(k0h)

β0∆′(k0)

(
β2

0 +να2
0

)2
]
,

(5.2.60)
using <{i/z} = ={z}/|z|2 and ∆′(k0) ∈ R. Therefore, it remains to prove that
the square bracket is zero. According to (C.1.1), the only imaginary contribution of
BF s

1 (a+) is half the contribution of the integrand’s residue at ξ = β0. This translates
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to

=
{
BF s

1 (a+)
}

=
2k0

β0

[
βα2

0(1− ν)
(

2β2
0 + (1 + ν)α2

0

)
+ 1−Kδ

]
k0 tanh(k0h)−K

∆′(k0)

= −2βk2
0 tanh(k0h)

β0∆′(k0)

(
β2

0 + να2
0

)2
,

(5.2.61)
by expanding the terms of the numerator and using K = (βk4

0 +1−Kδ)k0 tanh(k0h)
from the dispersion relation. In conclusion, this result proves that the energy is con-
served analytically through |Rs|2 = 1. Therefore, Rs can be found from (5.2.59),
where the BF s

1 (a+) integral can be converted into an infinite sum through the
Cauchy’s residue theorem, by writing the integral in the infinite domain (even inte-
grand) and decomposing the contour in the upper half complex plane. Thus,

BF s
1 (a+) = 2i

∞∑
r=−2

kr

[
βα2

0(1− ν)
(
2β2

r + (1 + ν)α2
0

)
+ 1−Kδ

]
kr tanh(krh)−K

βr∆′(kr)
.

(5.2.62)
Now the same procedure will be followed for the derivation of the closed-

form solution of Ra. Starting by applying the antisymmetric conditions Bφaz(a+, 0) =
0 and Sφaz(a+, 0) = 0 (zero bending moment and zero shear stress at the edge of the
ice sheet) into (5.2.36) in x > a, then the system for P a and Qa becomes

(
CaRa

1 + BF a
1 (a+) −CaRa

2 − BF a
2 (a+)

Ca′Ra
1 + SF a

1 (a+) −Ca′Ra
2 − SF a

2 (a+)

)(
P a

Qa

)
= ik0 sinh(k0h)

(
(β2

0 + να2
0) sin(β0a)− CaRa

3

(β3
0 + (2− ν)α2

0β0) cos(β0a)− Ca′Ra
3

)
,

CaRa
i ≡

∞&

0

K − k tanh(kh)

∆(k)
(ξ2 + να2

0) sin(aξ)

aˆ

0

Ra
i (t) sin(ξt)dtdξ,

Ca′Ra
i ≡

∞&

0

K − k tanh(kh)

∆(k)
(ξ3 + (2− ν)α2

0ξ) cos(aξ)

aˆ

0

Ra
i (t) sin(ξt)dtdξ,

(5.2.63)

after expanding the vertical velocity of the fluid surface in the crack from (5.2.40),
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with Ra
i (t) satisfy (5.2.41) to guarantee that the surface condition in 0 < x < a is

satisfied. Next, by making a single term approximation to Ra
i (t) ≈ b

(i)
1 P1(t/a) using

b
(i)
1 = f

(i)
1 /Ma

1,1 from (5.2.42), then the P a, Qa system becomes

(
(ca1f

(1)
1 /Ma

1,1) + BF a
1 (a+) −(ca1f

(2)
1 /Ma

1,1)− BF a
2 (a+)

(ca
′

1 f
(1)
1 /Ma

1,1) + SF a
1 (a+) −(ca

′
1 f

(2)
1 /Ma

1,1)− SF a
2 (a+)

)(
P a

Qa

)

= ik0 sinh(k0h)

(
(β2

0 + να2
0) sin(β0a)− (ca1f

(3)
1 /Ma

1,1)

(β3
0 + (2− ν)α2

0β0) cos(β0a)− (ca
′

1 f
(3)
1 /Ma

1,1)

)
,

ca1 ≡ a

∞&

0

K − k tanh(kh)

∆(k)
(ξ2 + να2

0) sin(aξ)j1(aξ)dξ,

ca
′

1 ≡ a

∞&

0

K − k tanh(kh)

∆(k)
(ξ3 + (2− ν)α2

0ξ) cos(aξ)j1(aξ)dξ.

(5.2.64)

Now, the integral expressions should be derived by making sure that they
converge through the dispersion relation. Starting from BF a

1 (a+) and SF a
1 (a+), then

all the derivatives are considered as

F a
1 (a+) = a− 2

π

& ∞
0

[
βα2

0(α2
0 + (2− ν)ξ2) + 1−Kδ

]
k tanh(kh)−K

ξ2∆(k)
sin2(aξ)dξ,

F a′

1 (a+) = − 1

π

& ∞
0

[
βα2

0(α2
0 + (2− ν)ξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F a′′

1 (a+) = να2
0a+

2

π

& ∞
0

[
β(2ν − 3)α4

0 + 1−Kδ
]
k tanh(kh)−K

∆(k)
sin2(aξ)dξ

−2να2
0

π

& ∞
0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

ξ2∆(k)
sin2(aξ)dξ,

F a′′′

1 (a+) =
1

π

& ∞
0

[
β(2ν − 3)α4

0 + 1−Kδ
]
k tanh(kh)−K

∆(k)
ξ sin(2aξ)dξ

−να
2
0

π

& ∞
0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

(5.2.65)
where in the first and third expressions, equations (C.1.3) and (5.2.50) for ν → (2−ν)
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were used respectively. Also, similar identities as in the symmetric case were used
where appropriate. By neglecting O(a), then it can be shown that BF a

1 (a+) ≈ 0 and
SF a

1 (a+) ≈ 0. Moving on to the higher derivatives of F a
2 , then

F a
2 (a+) = 1− 1

π

& ∞
0

[
βα2

0(α2
0 + νξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F a′

2 (a+) = − 2

π

& ∞
0

[
βα2

0(α2
0 + νξ2) + 1−Kδ

]
k tanh(kh)−K

∆(k)
cos2(aξ)dξ,

F a′′

2 (a+) = να2
0 +

1

π

& ∞
0

[
β(1− 2ν)α4

0 + 1−Kδ
]
k tanh(kh)−K

∆(k)
ξ sin(2aξ)dξ

−να
2
0

π

& ∞
0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F a′′′

2 (a+) =
2

π

& ∞
0

[
β(1− 2ν)α4

0 + 1−Kδ
]
k tanh(kh)−K

∆(k)
ξ2 cos2(aξ)dξ

−2να2
0

π

∞&

0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

∆(k)
cos2(aξ)dξ,

(5.2.66)
where the same equations as in (5.2.65) were used. Now by retaining only the leading
order (neglect O(a)) then BF a

2 (a+) ≈ 0 and

SF a
2 (a+) ≈ 4α2

0(1− ν)

π

∞&

0

(
βα4

0 + 1−Kδ
)
k tanh(kh)−K

∆(k)
dξ

+
2

π

∞&

0

[
βα4

0(1− ν2) + 1−Kδ
]
k tanh(kh)−K

∆(k)
ξ2dξ.

(5.2.67)

Proceeding to the remaining integrals found in (5.2.25) (for n = m = 0)
and (5.2.64), then by approximating j1(aξ) ≈ aξ/3 and use the dispersion relation
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where appropriate, it follows that

Ma
1,1 ≈

a3

9

∞&

0

K − k tanh(kh)

∆(k)
ξ2dξ ≡ a3Ma∗

1,1, f
(1)
1 ≈ a

3
,

f
(2)
1 ≈ −2a

3π

∞&

0

[
βα2

0(α2
0 + νξ2) + 1−Kδ

]
k tanh(kh)−K

∆(k)
dξ ≡ af

(2)∗

1 ,

f
(3)
1 ≈ β0a

3
, ca1 ≈

πa2

6β

K − α0 tanh(α0h)

α0 tanh(α0h)
≡ a2ca

∗

1 ,

ca
′

1 ≈
(2− ν)α2

0a
2

3

∞&

0

K − k tanh(kh)

∆(k)
ξ2dξ

+
a2

3β

∞&

0

[
K + k tanh(kh)

]1−
[
βα2

0(α2
0 + 2ξ2) + 1−Kδ

]
k tanh(kh)

k tanh(kh)∆(k)
dξ ≡ a2ca

′∗

1 .

(5.2.68)

For the f
(1)
1 and f

(2)
1 expressions, equation (C.1.3) was used. Also the useful identities

ˆ ∞
0

sin(aξ)

ξ
dξ =

π

2
and

ˆ ∞
0

cos(aξ)j1(aξ)

ξ
dξ = 0, (5.2.69)

which were derived by applying the Cauchy’s Residue theorem after expanding
cos(aξ), were used. In the last two expressions, equation (5.2.56) was used with

ˆ ∞
0

sin(aξ)j1(aξ)

ξ2
dξ =

πa

6
and

ˆ ∞
0

cos(aξ)j1(aξ)

ξk tanh(kh)
dξ = 0. (5.2.70)

Note that if the P a and Qa equations found in (5.2.64), were multiplied
by Ma

1,1, then a3 will be the minimum power of a coming from the Ma
1,1SF a

2 (a+)

term. Also using that a2 is the minimum power of a in ca1 and ca
′

1 , then in the f
(i)
1

expansions, O(a2) were neglected. Therefore after a considerable algebra similar to
the one of the symmetric case, the closed-form solutions for P a, Qa and Ra are found
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from (5.2.64) and (5.2.45), as

(
P a

Qa

)
= −ik0 sinh(k0h)

SF a
2 (a+)

(
β0SF a

2 (a+) + 3
(
β3

0 + (2− ν)α2
0β0

)
f

(2)∗

1

β3
0 + (2− ν)α2

0β0

)
,

Ra = −1− 4iβk2
0 tanh(k0h)

β0∆′(k0)SF a
2 (a+)

(
β3

0 + (2− ν)α2
0β0

)2

,

(5.2.71)

Again the closed-form solution of Ra requires only the calculation of a single integral.
The energy conservation |Ra|2 = 1 will be analytically proven in the antisymmetric
case as well. Again by using the formula for the modulus of the sum, then

|Ra|2 = 1 +
8βΓ2

0k
2
0 tanh(k0h)

β0∆′(k0)|SF a
2 (a+)|2

[
=
{
SF a

2 (a+)
}

+
2βk2

0 tanh(k0h)

β0∆′(k0)
Γ2

0

]
, (5.2.72)

for Γ0 = β3
0 + (2−ν)α2

0β0. If the square bracket is proven to be zero, then the energy
conservation will be proved. Using that the only imaginary contribution of SF a

2 (a+)
is half the contribution of the integrand’s residue at ξ = β0, then

=
{
SF a

2 (a+)
}

=
2k0

β0∆′(k0)

[
2α2

0(1− ν)
{(
βα4

0 + 1−Kδ
)
k0 tanh(k0h)−K

}
+β2

0

{(
βα4

0(1− ν2) + 1−Kδ
)
k0 tanh(k0h)−K

}]
= −2βk2

0 tanh(k0h)

β0∆′(k0)
Γ2

0,

(5.2.73)
by simplifying terms in the numerator and using K from the dispersion relation.
Therefore, the energy is again conserved analytically through |Ra|2 = 1. Using that
|Rs,a| = 1, then the energy to the actual problem is conserved as |R|2 + |T |2 = 1 from
(5.2.7). Therefore, Ra will be calculated numerically from (5.2.71) and the SF a

2 (a+)
integral can be turned into an infinite sum through the Cauchy’s residue theorem
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again, namely,

SF a
2 (a+) = 4iα2

0(1− ν)
∞∑

r=−2

kr

(
βα4

0 + 1−Kδ
)
kr tanh(krh)−K

βr∆′(kr)

+2i
∞∑

r=−2

krβr

[
βα4

0(1− ν2) + 1−Kδ
]
kr tanh(krh)−K

∆′(kr)
.

(5.2.74)

Many authors have solved a “zero gap” problem since it is mathematically
convenient. Note that from the asymptotic analysis in the a/d � 1 regime above,
one could retain higher orders in a (meaning the solution will depend explicitly on
a) and then show that the “zero gap” limit is a good approximation to a small gap.

There is a variety of reasons why the higher order solution is not included in
this thesis. First, the huge simplification allowed by the O(a) negligence (calculation
of only two integrals) did not happen by its retainment as we still had to calculate nine
integrals in the symmetric problem and nine in the antisymmetric (N2 + 4N + 4 for
N = 1). This complicated algebra produced a computationally expensive numerical
code that did not have any significant impact on the results.

The theory above shows analytically that by starting with a gap of finite
width and taking the limit a/d → 0, then the solution converge to the “zero gap”
problem solved by many authors. Actually, the leading order expressions of Rs,a

found in (5.2.59) and (5.2.71) are identical to the ones of [46] who solved the “zero
gap” problem using a much different method (Green’s function approach). This is
a remarkable result. However, it is not very obvious to see that the solutions are
identical, since the notation is different (written in non-dimensionalised language
as well) and the far field conditions (and therefore the reflection and transmission
coefficients) were chosen differently than the ones used here.

5.2.3 Numerical results for the inviscid problems

In this section, numerical results for the sections 5.2.1 and 5.2.2 are presented. From
now on, we choose the typical physical parameters for such ice-water problems as
E = 5GPa, ν = 0.3, g = 9.81ms−2, ρi = 922.5kgm−3, ρw = 1025kgm−3, to get
β/d4 = 45536/d and δ/d = 0.9 [42]. Therefore, the ice thickness d (which is always
measured in meters) is left as a parameter that we can vary.

First, we show in 5.2 how the dispersion relation root k−1 varies in the
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Figure 5.2: Path of k−1 root as k0 varies from 0.01 to 0.3 for (d, h) = (1, 40). The

dotted line represents arg(z) = π/4.

complex plane by shifting the incident wavenumber k0. Note that the remaining
complex roots are not plotted as they can be found from k−1 by the symmetry in
the real and imaginary axes of the dispersion relation. Also, it can be verified that
the root lies always in the first quadrant with ={k−1} > <{k−1} (as dotted line
represents arg(z) = π/4). It can be verified that for small wavenumbers k0, the root
k−1 lies near arg(z) = π/4. Starting from the dispersion relation for small k0 one
can get the approximate value K ≈ k2

0h by neglecting O(k4
0). Substituting this value

back in the dispersion relation for k−1 and neglecting O(k2
0), then one could easily

derive that βk4
−1 + 1 ≈ 0, which results to k−1 ≈ β−1/4eiπ/4 (using that k−1 must lie

in the first quadrant). As all the simulations start from a small k0, then β−1/4eiπ/4

is a good initial guess for capturing the k−1 root accurately and the by shifting k0 in
small increments the initial guess can be taken from the previous iterations.

Moving on to the solution of section 5.2.1, one can see that there are two
truncation parameters. The first is Nm which represents the number of modes taken
to describe the free surface in the gap x ∈ (−a, a) (actually is 2Nm Legendre poly-
nomial modes as the problem is divided into symmetric and antisymmetric parts)
and the second truncation parameter is the one for calculating the infinite integrals
(Ni) or infinite sums (Nr). From now on the summation method will be used with
Nr = 1024 as it is a much more computationally inexpensive technique than calcu-
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a/d 2−10 2−7 2−5 2−3 2−1 20 21 22 23 24

Nm 1 1 1 1 1 2 2 4 8 8

Table 5.1: Table showing number of modes Nm needed to get convergence (7 decimal
places) for certain values of a/d. The results come from a variety of geometrical cases.

lating infinite integrals, to get the same level of accuracy (7 decimal places). The
infinite sums are split into a sum over the k−2, k−1, k0 roots and a truncated infinite
sum over the imaginary root sequence kn (n ∈ N), so that a simplification of func-
tions at purely imaginary evaluations is made for numerical stability. Depending on
the gap size, a suitable Nm must be chosen to characterise the fluctuations of the
free surface. A variety of geometrical cases was tested (reflection and transmission
coefficients against wavenumber k0d) and the optimal Nm for each gap size a/d was
found (see table 5.1).
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Figure 5.3: |R| against k0d for (d, h/d, a/d, θ0) = (1, 40, 4, 45◦) and number of modes

Nm = 1 (chained), 2 (dashed), 4 (full).

An example of that is figure 5.3, where the reflection modulus |R| is plotted
against k0d for gap size a/d = 4. One can see that as Nm increases, the number of
spikes increases as well, but then at some point the curves converge. Some spikes
do not touch the axis as larger resolution is required (this is a typical feature [40]).
For example, if the gap is small (a/d ≤ 0.5) then Nm = 1 is enough but for larger
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gaps more modes are required. The values of Nm stated in the table 5.1, are the
ones needed to get to the convergence of 7 decimal places for each a/d. Also, energy
was accurately conserved at 8 decimal places, so there will be no need to plot both
scattering coefficients as they are linked though |R|2 + |T |2 = 1. The typical features
of total transmission for long waves (obstacle invisibility) and total reflection for
short waves are verified as well.

Now a comparison with [40] will follow. They plotted their results on a
different axis due to the way in which they chose to non-dimensionalise their problem
from the outset. In order to make this conversion we need to plot |R| against β1/8

√
K

and take h/d = a/d = (β1/4/d)π/3. The number of modes Nm = 8 is the optimal
from the table above, as a/d = (β1/4/d)π/3 ≈ 15.3 for d = 1. The oblique incidence
of θ0 = 60◦ makes the curve in figure 5.4 to look like their figure 2(d), even though
their solution method is different (the residue calculus technique).
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0
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√
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Figure 5.4: |R| against β1/8
√
K for parameters (Nm, d, θ0) = (8, 1, 60◦) and h/d =

a/d = (β1/4/d)π/3.

Now a comparison between the solutions of section 5.2.1 and 5.2.2 will be
made by plotting |R| curves against k0d for a decreasing sequence of gap sizes (figure
5.5). Only one mode is taken (Nm = 1) as it can be verified from the table 5.1 that is
enough for a/d < 1 and the rest variables were chosen to be h/d = 30, θ0 = 30◦ and
a smaller ice thickness of d = 0.69462 to produce the value of β/d4 ≈ 65555. The
typical behaviour of the solution in the long and short wave limit happens in all cases
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(total transmission and reflection respectively). The “finite gap” curves converge to
the small crack approximation solution (5.2.59), (5.2.71) (which is identical to the
“zero gap” solution of [46] in the limit a/d→ 0). As the gap size decreases, the spikes
are shifted to the right. However, even though the small crack approximation comes
from taking the limit a/d → 0 in the “finite gap” problem the numerical results
converge to each other very gradually with a/d for larger k0d. Nevertheless, we
developed a method which only needs one term in the symmetric and antisymmetric
solution when a/d is small but not zero. So, this is numerically efficient compared
to [40] who need to increase the number of terms in their numerical scheme as
a/d tends to zero. Comparisons between the approximated solution of the previous
section and the work of other authors will follow later. The solution of the small
crack approximation satisfies energy conservation again as expected from the previous
section (|Rs,a| = 1 analytically).
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Figure 5.5: |R| against k0d with (Nm, d, h/d, θ0) = (1, 0.69462, 30, 30◦) for a/d = 0.9

(dotted), 0.7 (chained), 0.4 (dashed), 0.2 (full) and small crack approximation (red).

Moving on to the last two figures, one can see the variation of |R| with the
incident wave period in 5.6(i) and the variation of |T | with the incident direction θ0

in 5.6(ii). In the first, we see an analogue (normally incident) plot of [42] which is
verified three years later by [46]. However, [42] used infinite depth and [46] finite
and larger than the one used here (h/d = 80 for all ice thicknesses). But it is clear
from 5.6(i) that h/d = 40 is sufficient to replicate infinite depth to a good degree of
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accuracy (by graphical inspection). Note that h = 40d corresponds to h = 20, 40,
80 for d = 0.5, 1, 2.
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Figure 5.6: (i) |R| against wave period for ice thicknesses d = 0.5 (chained), 1

(dashed), 2 (full) and (ii) |T | against θ0 with d = 1 and k0d = 0.1168 (dashed),

0.0736 (full). The common variables are β/d4 = 45536/d and h/d = 40.

Next for figure 5.6(ii), the k0d values were chosen in a way to produce a
wave period of 2 and 5 which are the ones used by [43] (extension of [42] to oblique
incidence). The remarkable result in figure 5.6(ii), shows that the solution analysed
here matches theirs even though their solution technique is much different (Green’s
function method). The solution is always even in θ0 as expected from physical
grounds. This can also be verified from the theory as all α0 dependence comes only
in even powers (inside sums or within βr). Also, the crack has a minimal effect on
long waves as when k0d → 0, |T | → 1. This phenomenon was verified again by
[46]. Overall, the results of this section are well known as these two problems (crack
of finite and small width) were solved in the past by many authors with different
methods.
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5.3 Small crack filled with viscous fluid

5.3.1 New ice conditions for normal incidence

In this section, two semi-infinite elastic ice sheets of density ρi and thickness d are
separated by a small distance 2a � d. They float on top of the free surface of
an incompressible and irrotational fluid of density ρw of finite depth. Cartesian
coordinates are employed such that x = ±a are aligned with the vertical faces of
the static ice sheets and z = 0 is aligned with their lower horizontal interfaces. The
interface z = 0 now does not coincide with the one of the problem defined in section
5.1 i.e. midplane of the ice sheet. However due to the linearisation assumption
d� λ0, at the end all conditions will be evaluated on the same level as before. The
flat sea bed is located at z = −h. The fluid within |x| < a and z > 0 is assumed to
have a non-zero viscosity µ and some density ρ. The Reynolds number for the flow
in the crack is Re = ρUl/µ, where U is the characteristic velocity, l is the lengthscale
associated with the ice sheets spacing, µ is the dynamic viscosity and ρ is the viscous
fluid density. Using U = Aω = 2πA/T where A and T are the wave amplitude and
period with A ∼ O(1m), T ∼ O(10s), µ/ρ ∼ O(10−2m2s−1) and l ∼ O(10−1m), then
Re ∼ O(1). The order of magnitude of µ/ρ was estimated from laboratory and field
data to characterise the viscosity of a grease ice cover and a frazil-pancake ice field
[2][54].

A normally incident flexural wave (θ0 = 0◦ and now the problem is two-
dimensional) of wavenumber k0, propagates from x → ∞ towards the small crack.
The propagating wave in x > a, sets in motion the viscous fluid within the crack
and consequently causes scattering modes to the ice sheets. If the ice floes were at
rest, then from the Archimedean principle their vertical faces would be wetted in
the domain of z ∈ (0, δ) for δ = (ρi/ρw)d. However, when the fluid surface is set
into motion the surface elevation ζ(x, t) can be approximated by its average in x, i.e.
ζ(t) ≈ 1

2a

´ a
−a ζ(x, t)dx. This simplification is based on the one term approximation

of the previous section which assumes that the vertical fluid velocity within a narrow
crack, is comprised only by a constant term (symmetric) and a term proportional
to x (antisymmetric). The antisymmetric term vanishes under integration over the
symmetric interval (−a, a). The same can be assumed for the surface elevation due
to their linear relation (2.2.7). The vertical faces of the ice sheets have velocities U±

and angular velocities Ω± about their midpoints and they are assumed to be small
in the sense Ω±, U±/d� ω (where ω is the angular frequency of the fluid motion).

The small crack assumption 2a � d, allows the application of lubrication
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Figure 5.7: Geometric configuration of the thin, elastic, floating ice sheets separated

by a small crack filled with a fluid of dynamic viscosity µ.

theory in z > 0 and the resulting equations are just the Stokes equations for a slow
viscous flow under a rescaling of coordinates to bring out the contrast in lengthscales,
as there is in the gap [56][88]. Namely,

∂p

∂x
= 0,

∂p

∂z
+ ρg = µ

∂2w

∂x2
, (5.3.1)

where w(x, z, t) is the vertical component of the fluid velocity u(x, z, t) = ux̂ + wẑ
and p is the pressure. The equations above are the two component of the momentum
equation at leading order of a small parameter associated with the ratio a/d.

Moving back to the problem specified in figure 5.7, then it can be seen that
the velocity of the vertical faces of the ice sheets at x = ±a is

U±vf (z, t) = −
(
z − d

2

)
Ω±(t)x̂ + U±(t)ẑ. (5.3.2)

Solving the second equation of (5.3.1) by applying the no-slip conditions of the
vertical walls,

[
u(±a, z, t)−U±vf (z, t)

]
· ẑ = 0, then

w(x, z, t) =
x2 − a2

2µ

[
pz(z, t) + ρg

]
+
U+(t) + U−(t)

2
+
x

a

U+(t)− U−(t)

2
, (5.3.3)
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using (5.3.2) and the x independence of pressure from (5.3.1). Now by x-averaging
in (−a, a) the mass conservation ux + wz = 0 and then integrating in z, then

pz(z, t) + ρg = C(t) +
3µ

2a3

Ω+(t)− Ω−(t)

2
z(d− z), (5.3.4)

where C(t) is a constant coming from the integration in z and after making use of[
u(±a, z, t)−U±vf (z, t)

]
· x̂ = 0. Taking the average in x of equation (5.3.3), then

w(z, t) =
U+(t) + U−(t)

2
− a2

3µ

[
pz(z, t) + ρg

]
. (5.3.5)

Next, by writing explicitly the pressure gradient and the x-averaged vertical velocity
from the last two equations by eliminating C(t) (by evaluating the pressure gradient
at z = 0), then

pz(z, t) + ρg =
3µ

a2

[
U+(t) + U−(t)

2
− w(0, t) +

1

2a

Ω+(t)− Ω−(t)

2
z(d− z)

]
,

w(z, t) = w(0, t)− 1

2a

Ω+(t)− Ω−(t)

2
z(d− z).

(5.3.6)

Integrating the pressure gradient equation above, with respect to z in (z, ζ(t) + δ)
using that the pressure evaluated at the upper integration limit is patm, then

p(z, t) = patm + ρg

[
ζ(t) + δ − z

]
+

3µ

a2

[
w(0, t)− U+(t) + U−(t)

2

]
(δ − z)

− µ

4a3

Ω+(t)− Ω−(t)

2

[
δ2(3d− 2δ)− z2(3d− 2z)

]
,

(5.3.7)

after neglecting products of time dependent terms. Balancing pressures at z = 0
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using that the pressure in z < 0 is p(x, z, t) = patm+ρigd−ρwΦt(x, z, t)−ρwgz, then

ρΦt(x, 0, t) + ρgζ(t) +
3µδ

a2

(
w(0, t)− U+(t) + U−(t)

2

)
−µδ

2

4a3
(3d− 2δ)

Ω+(t)− Ω−(t)

2
= 0,

(5.3.8)

after using that the fluid density at the interface z = 0 is ρ. The x-averaged elevation
ζ(t) above, can be eliminated by taking a time derivative and making use the x-
averaged version of the linear surface condition (2.2.7), namely ζt(t) = w

(
ζ(t) +

δ, t
)
≈ w(0, t)− 1

2a
Ω+(t)−Ω−(t)

2
δ(d− δ) by neglecting again products of motion terms.

Therefore, the condition across the viscous fluid interface becomes

ρΦtt(x, 0, t) + ρg

(
w(0, t)− 1

2a

Ω+(t)− Ω−(t)

2
δ(d− δ)

)
+

3µδ

a2

[
w(0, t)− U+(t) + U−(t)

2

]
t

− µδ2

4a3
(3d− 2δ)

[
Ω+(t)− Ω−(t)

2

]
t

= 0.

(5.3.9)

Now an expression for the fluid vertical velocity at z = 0 will be given.
Normally, the fluid vertical velocity on the surface is of the form Ax+B after using
the single term approximation from the previous section. But due to the linearisation
condition d � λ0, then the same approximation can be used in the fluid vertical
velocity at z = 0. Therefore, Φz(x, 0, t) is chosen to be

Φz(x, 0, t) = w(0, t) +
x

a

U+(t)− U−(t)

2
. (5.3.10)

This guess suggests that the flow through the small crack at z = 0, can be written
as a sum of a plug flow and a shear flow. The plug flow w(0, t) was chosen such
that the equation above is satisfied under x-averaging. The antisymmetric term in
the right-hand side of the equation above (term proportional to x), is chosen such
that when the vertical faces are synchronised (in the case of U+(t) = U−(t)), the
shear flow contribution vanishes. Therefore, by eliminating w(0, t) from (5.3.9) using
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(5.3.10), then

Kφ(x, 0) = (1− 3iτ)φz(x, 0)− (1− 3iτ)
x

a

U+ − U−

2

+3iτ
U+ + U−

2
− δ

2a

[
d− δ − iτ

2
(3d− 2δ)

]Ω+ − Ω−

2
,

(5.3.11)

for K = ω2/g, τ = µδω/ρga2 after writing the condition in the frequency domain
through Φ(x, z, t) = <{φ(x, z)e−iωt}. Note that now U± and Ω± are independent of
time. Also, when the viscosity is switched off (setting µ = 0), the condition becomes(
∂z −K

)
φ(x, 0) = x

a
U+−U−

2
+ δ

2a
(d− δ)Ω+−Ω−

2
, where the left-hand side includes the

usual linear terms from inviscid theory. The right-hand side express the sum of a flux
term (which has zero average over the crack) and a term coming from the rotation
of the vertical faces of the ice sheets. This condition is based on the assumption
that the pressures and fluxes are matched at the interface between the viscous and
inviscid flows. Although this is a fair assumption, one should have a local solution
in the vicinity of the matching region in which the matching conditions should be
derived precisely.

The analogue conditions for the bending moments and shearing stresses at
the edges of the ice floes found in equation (5.1.8), will be affected as well. First
α0 = 0 should be used in their left-hand sides (as the propagating wave is normally
incident) and their right-hand sides will no longer be zero due to the moments and
stresses exerted from the viscous fluid onto the vertical faces of the ice sheets. The
formulas of these exerted moments and stresses should be calculated separately.

Back in the time domain, θ±(t) are defined to be the angles between the
rotated vertical faces of the ice sheets (at x = ±a) and the z-axis (measured coun-
terclockwise). The unit normal vectors to the rotated faces pointing onto each ice
sheet, are found to be n̂± = ±

[
cos θ±(t), 0, sin θ±(t)

]
in the (x, y, z) coordinates,

where y is the coordinate perpendicular to both x and z. Then the vertical faces
moment vector M±(t) =

[
M±

x (t),M±
y (t),M±

z (t)
]

(where the components represent
the bending moments in all directions), is defined to be

M±(t) =

ζ(±a,t)+δˆ

z±0 (t)

r±(z, t)×
[
σ̃(±a, z, t)n̂±(t)

]
dz, (5.3.12)
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where the stress tensor is defined as σ̃ = −p̃I + µ
[
(∇u) + (∇u)T

]
with I be the

3 × 3 identity matrix and u = ux̂ + wẑ be the viscous fluid velocity. Here p̃ is the
non-hydrostatic pressure of the viscous fluid (includes only dynamical terms or small
motion terms) given by p̃(z, t) = p(z, t)− patm − ρg(δ − z) with p defined in (5.3.7).
Note that p̃ is independent of x from lubrication theory. The integration region is
the wetted surface of the vertical faces (with z±0 be the moving lower corners) and
r± is the relative position of any point on the vertical faces from the pivot which can

be found by rotating the vector
(
0, 0, z − d/2

)T
counterclockwise by an angle θ±(t).

Namely,

r±(z, t) =

cos θ± 0 − sin θ±

0 1 0
sin θ± 0 cos θ±

 0
0

z − d
2

 =

(
z − d

2

)− sin θ±

0
cos θ±

 . (5.3.13)

Using the result above, then the integrant of (5.3.12) becomes

r±(z, t)×
[
σ̃(x, z, t)n̂±(t)

]
=

±
(
z − d

2

)[
− p̃(z, t) + 2µ

(
ux cos2 θ± + wz sin2 θ± + (uz + wx) sin θ± cos θ±

)]
ŷ,

(5.3.14)
after a considerable algebra. The next step is to evaluate it at x = ±a. First one
could see that ux(±a, z, t) = wz(±a, z, t) = 0 from (5.3.3) and the mass conservation
law. Using again the equation (5.3.3) with the pressure gradient from (5.3.6), then

wx(±a, z, t) = ±3

a

[
U+(t) + U−(t)

2
− w(0, t) +

1

2a
z(d− z)

Ω+(t)− Ω−(t)

2

]

+
1

a

U+(t)− U−(t)

2
,

(5.3.15)

which can be seen that is proportional to time dependent terms only. Since wx from
equation (5.3.14) is proportional to sin θ± cos θ± ≈ θ± (using that |θ±| � 1), then its
contribution at the boundaries x = ±a can be neglected (product of motion terms).
Also one could see that uz(±a, z, t) = −Ω±(t) straight from the boundary condition[
u(±a, z, t) −U±vf (z, t)

]
· x̂ = 0. Alternatively one could find a general solution for
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u by integrating the mass conservation law with respect to x. Then by applying
the same boundary condition to find the particular solution of u and by taking a
z-derivative, the same result yields i.e. uz(±a, z, t) = −Ω±(t). Now since uz is
proportional to motion terms only on the boundaries x = ±a, then its contibution
can be neglected (as it is multiplied by sin θ± cos θ± ≈ θ± again).

Using the results above in the moment vector defined in (5.3.12), then it
can be seen that M±

x = M±
z = 0, with

M±
y (t) ≈ ∓

δˆ

0

p̃(z, t)

(
z − d

2

)
dz, (5.3.16)

where the time dependent terms in the integration limits were neglected due to the
dynamic behaviour of p̃ (products of motion terms are assumed to be small). It is
known from intuition that if a positive pressure is applied on the lower halves of the
vertical faces then M+

y should be positive and M−
y negative. This is compatible with

the result found in the previous equation. But if M+
y > 0, then Dζxx(a

+, t) > 0 from
the local plate curvature at the edge, where D is the flexural rigidity. Similarly if
M−

y < 0, then Dζxx(−a−, t) > 0 (as Dζxx represents the local moment on the ice
sheet). So by balancing moments carefully at each vertical face, then

±Dζxx(±a±, t) = M±
y (t) = ∓

δˆ

0

p̃(z, t)

(
z − d

2

)
dz, (5.3.17)

and by evaluating the non-hydrostatic pressure p̃ with p defined in (5.3.7), then

Dζxx(±a±, t) = −
δˆ

0

p̃(z, t)

(
z − d

2

)
dz =

ρgδ

2
(d− δ)ζ(t)

+
µδ2

4a2
(3d− 2δ)

[
w(0, t)− U+(t) + U−(t)

2

]
− µδ3

40a3
(10d2 − 15δd+ 6δ2)

Ω+(t)− Ω−(t)

2
.

(5.3.18)
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Note that by taking a time derivative of the equation above, the left-hand side
becomes DΦxxz(±a±, 0, t) from the linearised surface condition. Also, ζt should be
eliminated in the same way as in (5.3.9). Therefore the moment balance equation
above, written in the frequency domain due to the assumption of time harmonicity
of the incident wave, becomes

βφxxz(±a±, 0) =
δ

2

[
d− δ − iτ

2
(3d− 2δ)

]
w(0) +

iδτ

4
(3d− 2δ)

U+ + U−

2

− δ
2

4a

[
(d− δ)2 − iτ

10
(10d2 − 15δd+ 6δ2)

]Ω+ − Ω−

2
.

(5.3.19)

Moving into the calculation of the shear stress exerted from the viscous
fluid on the vertical faces of the ice sheets, then the following formula is considered

S±(t) = −zT
ζ(±a,t)+δˆ

z±0 (t)

σ̃(±a±, z, t)n̂±(t)dz. (5.3.20)

After some calculations, the matrix-vectors product above becomes

− zT σ̃(±a±, z, t)n̂±(t) ≈ ±µΩ±(t)∓ µwx(±a±, z, t), (5.3.21)

after using that |θ±| � 1 and neglecting the products of motion terms. Also,
wz(±a, z, t) = 0 and uz(±a, z, t) = −Ω±(t) were used from the calculations after
equation (5.3.14). One could see from equation (5.3.15) that wx(±a, z, t) is propor-
tional only to motion terms. Therefore, the integration limits of (5.3.20) can be
reduced to (0, δ). Thus, the shear stresses on the vertical faces are found to be

S±(t) =
3µδ

a

[
w(0, t)− U+(t) + U−(t)

2

]
− µδ2

4a2
(3d− 2δ)

Ω+(t)− Ω−(t)

2

±µδΩ±(t)∓ µδ

a

U+(t)− U−(t)

2
.

(5.3.22)
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Now since the shear stress exerted by the fluid on the edges of the ice sheets is
D d

dn
ζxx(±a±, t) ≡ Dn̂±· ∇ζxx(±a±, t) ≈ ±Dζxxx(±a±, t) (using |θ±| � 1), then

the stress balance becomes ±Dζxxx(±a±, t) = S±(t). Taking a time derivative of
this condition to write it in terms of the velocity potential (instead of the surface
elevation) then

βφxxxz(±a±, 0) = ±3iaτ

[
U+ + U−

2
− w(0)

]
± iδτ

4
(3d− 2δ)

Ω+ − Ω−

2

−ia2τΩ± + iaτ
U+ − U−

2
,

(5.3.23)

in the frequency domain using the time harmonicity of the incident wave and making
use of (5.3.22).

The modified surface condition over the ice-covered sea found in (5.3.11)
and the moment and stress balance conditions on the ice sheet edges derived in
(5.3.19) and (5.3.23) respectively, are all in terms of the new variables U±, Ω± and
w(0). It will be explained in the next section how these variables will be chosen.

5.3.2 Solution to the problem

In this section, a semi-analytical solution to the scattering problem involving a small
crack in an ice sheet filled with a viscous fluid is provided. Due to the limitations of
the new conditions derived in the previous section, the incident wave of wavenumber
k and angular frequency ω is assumed to propagate from x→∞ at normal incidence.
Also the thin ice sheets float at a sea of finite depth. Therefore, the geometry of
the problem is the same as the one of section 5.2.2, with the only differences be the
existence of a viscous fluid within the small gap and the normal incidence of the
propagated wave.

Since the geometry of the problem is symmetric by the yz-plane, then the
velocity potential can be decomposed into even and odd parts. Therefore the govern-
ing equation for the potentials, the no flow condition at the bed and the conditions
on the boundary x = 0 are

∇2φs,a(x, z) = 0, φs,az (x,−h) = 0, φsx(0, z) = φa(0, z) = 0, (5.3.24)
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according to equations (5.2.1), (5.2.2) and (5.2.4). Choosing the incident waves of
each problem to be the ones defined in (5.2.8) then the far field condition is again
(5.2.6) (where β0 is replaced by k0 as α0 = 0 from normal incidence) with Rs,a found
from (5.2.7). Also, the potentials must satisfy the standard condition in the region
of the ice covered sea (x > a). Since this problem will be solved using Fourier cosine
and sine transforms (for the symmetric and antisymmetric problems respectively),
then the transformed version of the surface conditions (5.2.3) in x > a become

∞̂

a

[(
β∂xxxx + 1−Kδ

)
φsz(x, 0)−Kφs(x, 0)

]
cos(ξx)dx = 0,

∞̂

a

[(
β∂xxxx + 1−Kδ

)
φaz(x, 0)−Kφa(x, 0)

]
sin(ξx)dx = 0.

(5.3.25)

It remains to formulate the conditions at the surface in the gap and at the
edges of the ice sheets. Note that these equations, namely (5.3.11), (5.3.19), (5.3.23),
are in terms of the unknowns U±, Ω± and w(0). To eliminate them, first they
must be related to the coefficients P s,a ≡ φs,axz (a+, 0) and Qs,a ≡ φs,az (a+, 0). Using
that φxz(±a±, 0) = Ω± and φz(±a±, 0) = U± by assuming the standard linearity
condition (thin ice sheet) with a� d and by writing φs,a in terms of φ (through the
decomposition discussed above), then

P s =
Ω+ − Ω−

2
, Qs =

U+ + U−

2
, P a =

Ω+ + Ω−

2
, Qa =

U+ − U−

2
. (5.3.26)

Now starting from the integrated version of the surface condition of the symmetric
potential in the “opening”, it follows that

aˆ

0

[
φsz(x, 0)−Kφs(x, 0)

]
cos(ξx)dx =

(
ssuC

s + ssPP
s + ssQQ

s

)
aj0(aξ),

ssu = 3iτ, ssP =
δ

2a

[
d− δ − iτ

2
(3d− 2δ)

]
, ssQ = −3iτ.

(5.3.27)
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This condition is derived by starting from the left-hand side and writing the integral
over (0, a) as half the integral over (−a, a) (as integrand is even). Then inside the
(−a, a) integral, φs can be replaced by φ as the odd φa gives no contribution over
the symmetric integral. Thus, by substituting φz(x, 0)−Kφ(x, 0) from the “viscous”
surface condition (5.3.11) and replacing φ with φs (for the same reason explained
above) then the resulting integrand will consist of even and odd terms. Since the
region of integration is symmetric, the odd terms have no contribution and the (−a, a)
integral over the remaining even terms can be written as twice the (0, a) integral.
Therefore by making use of φsz(x, 0) ≈ Cs over the opening and equations (5.3.26)
then the right-hand side yields. A similar procedure follows for the antisymmetric
surface condition over the gap and the result gives

aˆ

0

[
φaz(x, 0)−Kφa(x, 0)

]
sin(ξx)dx =

(
sauC

a + saQQ
a

)
aj1(aξ),

sau = 3iτ, saQ = 1− 3iτ,

(5.3.28)

after using φaz(x, 0) ≈ Cax/a in (0, a).
Proceeding to the ice sheet edge conditions for the symmetric and antisym-

metric problem, the idea is to write βφs,axxz and βφs,axxxz in terms of the potential φ
(note that depending on the number of x-derivatives the chain rule must be applied
accordingly) and then making use of equations (5.3.19), (5.3.23). The only expres-
sion that needs to be written independently of the unknown variables U± and Ω±,
is w(0). One can easily derive this expression by starting from equation (5.3.10) in
the frequency domain, integrating it in x ∈ (−a, a) to remove the odd parts and
writing the (−a, a) integral over the remaining even terms as two times the (0, a)
integral. Then using φsz(x, 0) ≈ Cs in the gap, it follows that w(0) = Cs. Using
the ideas discussed here, then the ice sheet edge conditions for the symmetric and

169



antisymmetric problems, are

φsxxz(a
+, 0) = es,1u Cs + es,1P P s + es,1Q Qs, φsxxxz(a

+, 0) = es,2u Cs + es,2P P s + es,2Q Qs,

φaxxz(a
+, 0) = 0, φaxxxz(a

+, 0) = ea,2P P a + ea,2Q Qa, where

es,1u =
δ

2β

[
d− δ − iτ

2
(3d− 2δ)

]
, es,1P = − δ2

4aβ

[
(d− δ)2 − iτ

10
(10d2 − 15δd+ 6δ2)

]
,

es,1Q =
iδτ

4β
(3d− 2δ), es,2u = −3iaτ

β
, es,2P =

iτ

β

[
δ

4
(3d− 2δ)− a2

]
,

es,2Q =
3iaτ

β
, ea,2P = −ia

2τ

β
, ea,2Q =

iaτ

β
.

(5.3.29)
Now the boundary value problem is fully described. Starting from the sym-

metric problem by defining the Fourier cosine transform (5.2.9), then the governing
equation, the no flow condition at the bed and the surface condition become

(
∂zz − ξ2

)
φ̃s(ξ, z) = 0, φ̃sz(ξ,−h) = 0,

∞̂

a

[(
β∂xxxx + 1−Kδ

)
φsz(x, 0)−Kφs(x, 0)

]
cos(ξx)dx = 0

=
(
βξ4 + 1−Kδ

) ∞̂

0

∂φsinc
∂z

(x, 0) cos(ξx)dx−K
∞̂

0

φsinc(x, 0) cos(ξx)dx,

(5.3.30)

where in the second equality of the surface condition equation, (5.2.15) was used
with α0 = 0 (normal incidence). Then, the left-hand side of the surface condition
above is integrated by parts four times, to replace the ∂xxxx by ξ4 at the cost of
adding some extra terms coming from the edge conditions (5.3.29) (and using that
P s = φsxz(a

+, 0) and Qs = φsz(a
+, 0)). Next by writing the (a,∞) integral of the left-

hand side as the semi-infinite integral minus the (0, a) integral and making use of
the surface condition (5.3.27) over the gap, then the surface condition in the Fourier
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space becomes

(
βξ4 + 1−Kδ

)
φ̃sz(ξ, 0)−Kφ̃s(ξ, 0) = Csf s0 (ξ) + P sf s1 (ξ) +Qsf s2 (ξ),

for f s0 (ξ) =
(
βξ4 + ssu −Kδ

)
aj0(aξ) + βξes,1u sin(aξ) + βes,2u cos(aξ),

f s1 (ξ) = ssPaj0(aξ) + βξes,1P sin(aξ) + β
(
es,2P − ξ

2
)

cos(aξ),

f s2 (ξ) = ssQaj0(aξ) + βξ
(
es,1Q − ξ

2
)

sin(aξ) + βes,2Q cos(aξ).

(5.3.31)

Now the Fourier problem can be solved uniquely since the general solution
of the first two equations of (5.3.30) is φ̃s(ξ, z) = Ãs(ξ) cosh[ξ(z + h)] and Ãs(ξ) can
be found from (5.3.31). Thus, by inverting the transform, the solution in the real
space is

φs(x, z) = φsinc(x, z) +
2

π

∞&

0

cosh[ξ(z + h)]

∆(ξ) cosh(ξh)

[
Csf s0 (ξ) + P sf s1 (ξ) +Qsf s2 (ξ)

]
cos(ξx)dξ

(5.3.32)
and by differentiating it with respect to z and set z = 0, then

φsz(x, 0) = k0 cos(k0x) sinh(k0h) + CsF s
0 (x) + P sF s

1 (x) +QsF s
2 (x),

for F s
i (x) =

2

π

∞&

0

ξ tanh(ξh)

∆(ξ)
f si (ξ) cos(ξx)dξ, i = 0, 1, 2.

(5.3.33)

Since the goal is to create a system for (P s, Qs), then Cs must be eliminated from
the equation above. This will be done by multiplying with P0(x/a) = 1 and integrate
in x ∈ (0, a) (to remove the x-dependence), namely

Cs =
P sF̃ s

1 +QsF̃ s
2 + k0j0(k0a) sinh(k0h)

1− F̃ s
0

for F̃ s
i =

2

π

∞&

0

ξ tanh(ξh)

∆(ξ)
f si (ξ)j0(aξ)dξ.

(5.3.34)
Using the equation above in (5.3.33) then the system for P s and Qs, can be created by
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applying ∂xx and ∂xxx at x = a+ and use (5.3.29). Thus, the linear system becomes

(
Ĩs0I

s′′
1 + Ĩs1I

s′′
0 Ĩs0I

s′′
2 + Ĩs2I

s′′
0

Ĩs0I
s′′′
1 + Ĩs1I

s′′′
0 Ĩs0I

s′′′
2 + Ĩs2I

s′′′
0

)(
P s

Qs

)
= −k0 sinh(k0h)

(
Is
′′

0 j0(k0a)− Ĩs0k2
0 cos(k0a)

Is
′′′

0 j0(k0a) + Ĩs0k
3
0 sin(k0a)

)
where

Ĩs0 = 1− F̃ s
0 , Ĩsi = F̃ s

i for i = 1, 2, Is
′′

0 = F s′′

0 (a+)− es,1u ,

Is
′′

1 = F s′′

1 (a+)− es,1P , Is
′′

2 = F s′′

2 (a+)− es,1Q , Is
′′′

0 = F s′′′

0 (a+)− es,2u ,

Is
′′′

1 = F s′′′

1 (a+)− es,2P , Is
′′′

2 = F s′′′

2 (a+)− es,2Q ,

(5.3.35)

where the nine integrals need to be written in a convergent form (like the two previous
problems). The algebra here is much harder than the previous problems. Starting
from the Ĩsi formulas, then

Ĩs0 = −2β

π
es,1u

∞&

0

ξ2 tanh(ξh)

∆(ξ)
j0(aξ) sin(aξ)dξ − 2β

π
es,2u

∞&

0

ξ tanh(ξh)

∆(ξ)
j0(aξ) cos(aξ)dξ

−2a

π

∞&

0

K − (1− ssu)ξ tanh(ξh)

∆(ξ)
j2

0(aξ)dξ,

Ĩs1 =
2β

π
es,2P

∞&

0

ξ tanh(ξh)

∆(ξ)
j0(aξ) cos(aξ)dξ − 2β

π

∞&

0

ξ3 tanh(ξh)

∆(ξ)
j0(aξ) cos(aξ)dξ

+
2β

π
es,1P

∞&

0

ξ2 tanh(ξh)

∆(ξ)
j0(aξ) sin(aξ)dξ +

2a

π
ssP

∞&

0

ξ tanh(ξh)

∆(ξ)
j2

0(aξ)dξ,

Ĩs2 =
2β

π
es,1Q

∞&

0

ξ2 tanh(ξh)

∆(ξ)
j0(aξ) sin(aξ)dξ − 1 +

2

π

∞&

0

E(ξ)

ξ∆(ξ)
j0(aξ) sin(aξ)dξ

+
2β

π
es,2Q

∞&

0

ξ tanh(ξh)

∆(ξ)
j0(aξ) cos(aξ)dξ +

2a

π
ssQ

∞&

0

ξ tanh(ξh)

∆(ξ)
j2

0(aξ)dξ,

(5.3.36)
where E(ξ) = (1−Kδ)ξ tanh(ξh)−K, by using the ice-covered sea dispersion relation.
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Also, the formulas
´∞

0
j2

0(aξ)dξ = π/2a and
´∞

0
j0(aξ) sin(aξ)/ξdξ = π/2 were used

in the integrals above. Moving on to the next set of integrals that involve the second
derivatives of the functionals, then

Is
′′

0 = −2a

π

∞&

0

K − (1− ssu)ξ tanh(ξh)

∆(ξ)
ξ2j0(aξ) cos(aξ)dξ − 3

2
es,1u

+
1

π
es,1u

∞&

0

E(ξ)

ξ∆(ξ)
sin(2aξ)dξ − 2β

π
es,2u

∞&

0

ξ3 tanh(ξh)

∆(ξ)
cos2(aξ)dξ,

Is
′′

1 = −2a

π
ssP

∞&

0

ξ3 tanh(ξh)

∆(ξ)
j0(aξ) cos(aξ)dξ +

1

π
es,1P

∞&

0

E(ξ)

ξ∆(ξ)
sin(2aξ)dξ

−3

2
es,1P −

2β

π
es,2P

∞&

0

ξ3 tanh(ξh)

∆(ξ)
cos2(aξ)dξ − 2

π

∞&

0

E(ξ)

∆(ξ)
cos2(aξ)dξ,

Is
′′

2 = −2a

π
ssQ

∞&

0

ξ3 tanh(ξh)

∆(ξ)
j0(aξ) cos(aξ)dξ +

1

π
es,1Q

∞&

0

E(ξ)

ξ∆(ξ)
sin(2aξ)dξ

−3

2
es,1Q −

2β

π
es,2Q

∞&

0

ξ3 tanh(ξh)

∆(ξ)
cos2(aξ)dξ − 1

π

∞&

0

E(ξ)

∆(ξ)
ξ sin(2aξ)dξ.

(5.3.37)

To carry out the algebra used above, it is worth noting that before taking any
derivative, first it is needed to make sure that the integral is convergent by making
use of the dispersion relation. This is because after making use of the dispersion
relation, then some constants (outside the integral with ∆(ξ) in its integrand) might
rise from standard integrals such as

´∞
0

sin(aξ)/ξdξ. These constants will disappear
when taking the “next” derivative. Therefore, the strategy is to be careful every time
a derivative is applied (by making sure that the integral at each step is convergent),
instead of taking two derivatives from the beginning and then try to remove the
divergence. Continuing to the next integrals that include the third derivatives of the
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functionals, then

Is
′′′

0 =
2a

βπ
(1− ssu)

∞&

0

E(ξ)

ξ∆(ξ)
j0(aξ) sin(aξ)dξ +

2aK

π

∞&

0

ξ3

∆(ξ)
j0(aξ) sin(aξ)dξ

− 1

π
es,2u

∞&

0

E(ξ)

ξ∆(ξ)
sin(2aξ)dξ − 2

π
es,1u

∞&

0

E(ξ)

∆(ξ)
sin2(aξ)dξ − a

β
(1− ssu)−

1

2
es,2u ,

Is
′′′

1 = − 2a

βπ
ssP

∞&

0

E(ξ)

ξ∆(ξ)
j0(aξ) sin(aξ)dξ − 1

π
es,2P

∞&

0

E(ξ)

ξ∆(ξ)
sin(2aξ)dξ

+
a

β
ssP −

1

2
es,2P −

2

π
es,1P

∞&

0

E(ξ)

∆(ξ)
sin2(aξ)dξ +

1

π

∞&

0

E(ξ)

∆(ξ)
ξ sin(2aξ)dξ,

Is
′′′

2 = − 2a

βπ
ssQ

∞&

0

E(ξ)

ξ∆(ξ)
j0(aξ) sin(aξ)dξ − 2

π
es,1Q

∞&

0

E(ξ)

∆(ξ)
sin2(aξ)dξ

+
a

β
ssQ −

1

2
es,2Q +

2

π

∞&

0

E(ξ)

∆(ξ)
ξ2 sin2(aξ)dξ − 1

π
es,2Q

∞&

0

E(ξ)

ξ∆(ξ)
sin(2aξ)dξ.

(5.3.38)
Now by using the nine integrals defined in the last three equations, then P s

and Qs can be found from the linear system in (5.3.35). Later in the Appendix C.2,
it will be shown how these integrals can be written as infinite sums (a numerically
inexpensive method through truncation). Note that one could use the small a ap-
proximation to simplify this system and get closed-form solutions for P s and Qs and
eventually Rs (as happened in the previous problem). The difference in this problem
is that the extra nine (superscripted and subscripted) constants coming from the sur-
face and edge conditions (5.3.27) and (5.3.29), include the dimensionless parameter
τ which is proportional to a−2. Therefore, it will be very hard to apply the small a
approximation and neglect certain terms. Thus, this simplification will not be used
and the solution to the problem will be sought through the complicated (but still
explicit) formulas defined in the previous equations.

Using the known values of P s and Qs, then an expression for Rs can be
derived by sending x→∞ in (5.3.32) and making use of the far field condition (5.2.6),
the incident wave formula (5.2.8) and the Cs definition in (5.3.34). By carrying out
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the same procedure used in (5.2.29), to calculate the semi-infinite integral then

Rs = 1 +
4i

Ĩs0∆′(k0) cosh(k0h)

{
P s

(
Ĩs0f

s
1 (k0) + Ĩs1f

s
0 (k0)

)

+Qs

(
Ĩs0f

s
2 (k0) + Ĩs2f

s
0 (k0)

)
+ k0j0(k0a) sinh(k0h)f s0 (k0)

}
.

(5.3.39)

It is expected that |Rs| < 1 for µ > 0, due to energy loss. This will be verified
numerically later as it is very hard to show this analytically.

Now for the antisymmetric problem, the analogue of (5.3.30) is

(
∂zz − ξ2

)
φ̃a(ξ, z) = 0, φ̃az(ξ,−h) = 0,

∞̂

a

[(
β∂xxxx + 1−Kδ

)
φaz(x, 0)−Kφa(x, 0)

]
sin(ξx)dx = 0

=
(
βξ4 + 1−Kδ

) ∞̂

0

∂φainc
∂z

(x, 0) sin(ξx)dx−K
∞̂

0

φainc(x, 0) sin(ξx)dx,

(5.3.40)

by taking the Fourier sine transforms of the model equations. Carrying out the same
long procedure as in the symmetric problem, the surface condition in the Fourier
space becomes

(
βξ4 + 1−Kδ

)
φ̃az(ξ, 0)−Kφ̃a(ξ, 0) = Cafa0 (ξ) + P afa1 (ξ) +Qafa2 (ξ),

for fa0 (ξ) =
(
βξ4 + sau −Kδ

)
aj1(aξ), fa1 (ξ) = β

(
ea,2P − ξ

2
)

sin(aξ),

fa2 (ξ) = saQaj1(aξ) + βea,2Q sin(aξ) + βξ3 cos(aξ).

(5.3.41)

The general solution of the antisymmetric potential after applying the no flow condi-
tion at the bed is φ̃a(ξ, z) = Ãa(ξ) cosh[ξ(z+h)], where the unknown function Ãa(ξ)
can be found by using the surface equation above. Thus, by inverting the transform
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the solution in the real space is given by

φa(x, z) = φainc(x, z) +
2

π

∞&

0

cosh[ξ(z + h)]

∆(ξ) cosh(ξh)

[
Cafa0 (ξ) +P afa1 (ξ) +Qafa2 (ξ)

]
sin(ξx)dξ.

(5.3.42)
Then to create a linear system for P a and Qa, the equation above is differ-

entiated with respect to z and evaluated at z = 0, namely

φaz(x, 0) = −ik0 sin(k0x) sinh(k0h) + CaF a
0 (x) + P aF a

1 (x) +QaF a
2 (x),

for F a
i (x) =

2

π

∞&

0

ξ tanh(ξh)

∆(ξ)
fai (ξ) sin(ξx)dξ, i = 0, 1, 2.

(5.3.43)

The third unknown Ca can be found from the equation above, by multiplying through
x/a and then integrate with respect to x ∈ (0, a) to remove the x-dependence. Using
that φaz(x, 0) = Cax/a in the opening x ∈ (0, a), then Ca is found to be

Ca =
P aF̃ a

1 +QaF̃ a
2 − ik0j1(k0a) sinh(k0h)

1
3
− F̃ a

0

for F̃ a
i =

2

π

∞&

0

ξ tanh(ξh)

∆(ξ)
fai (ξ)j1(aξ)dξ.

(5.3.44)
Creating the (P a, Qa) system by differentiating twice and thrice equation (5.3.43),
then (

Ĩa0 I
a′′
1 + Ĩa1 I

a′′
0 Ĩa0 I

a′′
2 + Ĩa2 I

a′′
0

Ĩa0 I
a′′′
1 + Ĩa1 I

a′′′
0 Ĩa0 I

a′′′
2 + Ĩa2 I

a′′′
0

)(
P a

Qa

)
= ik0 sinh(k0h)
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Ia
′′

0 j1(k0a)− Ĩa0k2
0 sin(k0a)

Ia
′′′

0 j1(k0a) + Ĩa0k
3
0 cos(k0a)

)
,

for Ĩa0 =
1

3
− F̃ a

0 , Ĩai = F̃ a
i for i = 1, 2,

Ia
′′

i = F a′′

i (a+) for i = 0, 1, 2, Ia
′′′

0 = F a′′′

0 (a+),

Ia
′′′

1 = F a′′′

1 (a+)− ea,2P , Ia
′′′

2 = F a′′′

2 (a+)− ea,2Q ,

(5.3.45)
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where the first three (x-averaged) integrals are calculated as

Ĩa0 = −2a

π

∞&

0

K − (1− sau)ξ tanh(ξh)

∆(ξ)
j2

1(aξ)dξ,

Ĩa1 =
2β

π

∞&

0

ξ tanh(ξh)

∆(ξ)

(
ea,2P − ξ

2
)

sin(aξ)j1(aξ)dξ,

Ĩa2 =
2a

π
saQ

∞&

0

ξ tanh(ξh)

∆(ξ)
j2

1(aξ)dξ − 2

π

∞&

0

E(ξ)

ξ∆(ξ)
j1(aξ) cos(aξ)dξ

+
2β

π
ea,2Q

∞&

0

ξ tanh(ξh)

∆(ξ)
j1(aξ) sin(aξ)dξ,

(5.3.46)

with the formulas
´∞

0
j2

1(aξ)dξ = π/6a and
´∞

0
j1(aξ) cos(aξ)/ξdξ = 0 being used.

The formulas now seem to be simpler than the ones of the symmetric problem and
this is due to the simpler expressions of fa0 (ξ) and fa1 (ξ) (single term formulas). The
reason behind this simplification is that instead of having nine constants in the water
surface and edge conditions (as in the symmetric problem), now there are only four
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- see equations (5.3.28) and (5.3.29). Moving on to the next six integrals, then
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(5.3.47)
Now all the tools needed for the calculation of P a and Qa from (5.3.45), are

derived in the last two equations. Using their known values, the derivation of the Ra

expression starts by taking x → ∞ in (5.3.42) using Ca from (5.3.44). Following a
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similar procedure as in the symmetric problem, then

Ra = −1 +
4

Ĩa0 ∆′(k0) cosh(k0h)

{
P a

(
Ĩa0f

a
1 (k0) + Ĩa1f

a
0 (k0)

)

+Qa

(
Ĩa0f

a
2 (k0) + Ĩa2f

a
0 (k0)

)
− ik0j1(k0a) sinh(k0h)fa0 (k0)

}
,

(5.3.48)

where again the actual scattering coefficients R and T can be found from (5.2.7) as
usual. Also, the output energy after the wave-crack interaction, can be calculated
through |R|2 + |T |2 which is expected to be less than one for µ > 0.

5.3.3 Scattering by multiple cracks

In this section, the scattering by a sequence of small cracks filled with a viscous
fluid, as the one described above, will be considered. The propagating wave will
be of normal incidence to coincide with the two-dimensional theory analysed in the
previous sections. The idea is to imagine that those cracks act as identical scatterers
i.e., same gap length and same viscous fluid properties (such as viscosity and density).

First, it should be assumed that the adjacent cracks are far from each other
in the sense that the spacings are sufficiently large with respect to the wavelength of
the propagating modes within the ice-sheets. This assumption implies that only the
scattering modes survive after travelling from one crack to another as the remaining
modes decay exponentially by travelling away from the crack (evanescent waves).
This is basically the wide-spacing approximation [89].

Next, by deriving the scattering matrix to relate adjacent amplitudes at
each crack, then expressions for the reflection and transmission coefficients by a finite
sequence of cracks, will be derived. Normally this calculation requires us to find the
amplitudes after each gap interaction recurrently. But by assuming that the cracks
are at an equal distance from their neighbouring cracks, then instead of calculating
the scattering matrix to a large power, a huge algebraic simplification will be allowed
through diagonalisation. Therefore, the reflection and transmission coefficients by
a finite sequence of cracks will be calculated through simple expressions in terms
of the numerical solutions R and T (from the single crack problem of the previous
section). The resulting expressions will be similar to the ones of [52] where they
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solve the same problem with no viscosity (scattering by multiple narrow cracks).
Their methods were based on [49] and [90] who dealt with wave scattering problems
of different setting. However, the methods used here are different from the previous
ones as they do not assume energy conservation after each wave-scatterer interaction.

xn xn+1xn−1 xNx1

(i)
A0 A1 An−1 An An+1 AN

B0 B1 An−1 Bn Bn+1 BN

(ii)

x = xn

Bn−1e
−ik0xne−ik0(x−xn)

An−1e
ik0xneik0(x−xn)

Bne
−ik0xne−ik0(x−xn)

Ane
ik0xneik0(x−xn)

Figure 5.8: Figure (i) shows the ingoing and outgoing wave amplitudes in each ice

sheet. Figure (ii) specifies the wave near a crack (no z-dependence) by assuming that

the adjacent evanescent modes are negligible there (wide-spacing approximation).

The geometrical picture now is the same as the problem of the previous
section, with the difference that now N cracks are placed at positions x = xn for
n = 1, ..., N with x1 < ... < xN (see figure 5.8). The wide-spacing approximation is
based on 2k0a � k0(xn − xn−1) � 1 for n = 2, ..., N so that the spacing between
neighbouring cracks is much larger than the scattering wavelengths. The argument
above states that the gaps are much smaller than the floes size so that, in the
vicinity of a single crack, the two neighbouring ice sheets appear semi-infinite in
extent allowing the use of R and T from the previous section. The ingoing (from left
to right) and outgoing (from right to left) amplitudes in each ice floe are defined as
An and Bn respectively for n = 0, 1, ..., N . Without the loss of generality, the incident
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wave propagates from the left (x = −∞) instead from the right (x = ∞) as in the
previous section and the same scattering (reflection and transmission coefficients) is
expected when it meets the first crack. Thus, it can be set that A0 = 1, B0 = RN ,
AN = TN and BN = 0, where RN and TN are the reflection and transmission
coefficients respectively for the scattering problem involving the N cracks.

First, the recurrence relation between the amplitudes must be stated by
matching waves across cracks. By inspecting figure 5.8(ii), it follows that

Ane
ik0xn = R

(
Bne

−ik0xn
)

+ T
(
An−1e

ik0xn
)
,

Bn−1e
−ik0xn = R

(
An−1e

ik0xn
)

+ T
(
Bne

−ik0xn
)
,

(5.3.49)

as outgoing waves are the sum of reflected and transmitted waves with R and T
calculated numerically from the single crack problem. Starting from the linear system
above and solving for {An, Bn} in terms of {An−1, Bn−1}, then

(
An
Bn

)
= Pn

(
An−1

Bn−1

)
for Pn =

1

T

(
T 2 −R2 Re−2ik0xn

−Re2ik0xn 1

)
. (5.3.50)

Substituting n = N into (5.3.50) and using the amplitude matching recurrence rela-
tion, then

(
TN
0

)
= P̃N

(
1
RN

)
where P̃N = PNPN−1 · · ·P2P1. (5.3.51)

Now a simplification of the matrix P̃N will be made so that its calculation
is computationally inexpensive even for a large number of cracks. First, one could
rewrite Pn from (5.3.50) as

Pn =

(
e−ik0xn 0

0 eik0xn

)
Q

(
eik0xn 0

0 e−ik0xn

)
for Q =

1

T

(
T 2 −R2 R
−R 1

)
(5.3.52)

and then through matrix multiplication and assuming equal spacing between the

181



cracks (i.e. xn = nb for n = 1, ..., N with 2k0a� k0b� 1), then

P̃N =

(
e−ik0Nb 0

0 eik0Nb

)
Q̃N for Q̃ = Q

(
eik0b 0

0 e−ik0b

)
. (5.3.53)

Note that when N � 1, the calculation of Q̃N might create numerical instabilities
as some of the eigenvalues of Q̃ might be greater than one in modulus. Therefore
by writing Q̃ = XΛX−1 through decomposition, with Λ = diag{λ1, λ2} (where
|λ1| > |λ2| without the loss of generality) and X = {v1,v2} for {λi,vi}i=1,2 be the
eigenvalues and eigenvectors of Q̃, then Q̃N = XΛNX−1 with ΛN = diag{λN1 , λN2 }.
Thus,

Q̃N =
λN1

det(X)

(
X11X22 − µNX12X21 −(1− µN)X11X12

(1− µN)X21X22 µNX11X22 −X12X21

)
for µN =

(
λ2

λ1

)N
,

(5.3.54)
where Xij are the elements of the matrix formed by the eigenvectors of Q̃. Also, the
coefficient µN was chosen like that to avoid numerical instabilities when N becomes
large (as |λ2| < |λ1|). Next, substituting (5.3.54) into (5.3.53), then RN , TN can be
found from (5.3.51) as

RN =
(1− µN)X21X22

X12X21 − µNX11X22

and TN =
λN2 e

−ik0Nb
(
X12X21 −X11X22

)
X12X21 − µNX11X22

. (5.3.55)

Firstly, the coefficient RN was found by the second equation of the system (5.3.51)
and then it was used in the first to get TN . From here the output energy after the
incident wave interacts with the N cracks is given by |RN |2 + |TN |2 and is expected
to be less than one given a non-zero viscosity within the narrow cracks. This result
is based on the so-called “wide spacing” approximation. In practice one often finds
that this approximation works remarkably well even when the assumption of wide
spacing is violated and, without any evidence for this, we shall assume this is the
case here. This is because we are testing a hypothesis that the attenuation in broken
ice could be attributed to viscous effects due to the differential motion of small floes
of ice with narrow gaps in between.

It is expected that TN → 0 as N → ∞ in the presence of a viscous fluid
within the cracks. By applying the infinite crack limit, it can be seen from the
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formulas above that RN is always bounded and TN is decaying only if |λ2| < 1. This
can be proved by calculating the characteristic polynomial of Q̃, i.e. det

(
Q̃−λI

)
= 0.

The characteristic polynomial will be of the form λ2 + Aλ + 1 = 0, where A is a
constant depending on R, T and eik0b and thus it can be easily verified that its
roots satisfy λ1λ2 = 1. Therefore, using that |λ2| = 1/|λ1| with |λ1| > |λ2| (by
construction), then it follows that |λ2| < 1 (required result).

The wave attenuation is defined by how much the wave amplitude decays
over a given distance. In our problem we can define this by the ratio of wave ampli-
tudes across a distance b between two successive cracks. Thus the decaying rate for
N � 1 cracks tends to

∣∣∣∣ TNTN−1

∣∣∣∣ ≈ ∣∣∣λ2e
−ik0b

∣∣∣ = |λ2| < 1 as N →∞. (5.3.56)

A number of authors found a different way to model the attenuation rate of a wave
travelling within an ice sheet. For example, [54] simply added a small imaginary
part to the wavenumber, i.e. k̂ = k + iki. This formula arises from the treatment
of a homogeneous layer of ice which has damping mechanism built into it. Now the
attenuation over a distance b (for comparison with the previous formula) is given by
considering a propagating wave in the models of [54] and [55] whose imaginary parts
give rise to attenuation and so

∣∣λ2

∣∣ =
∣∣eik̂b∣∣ =

∣∣ei(k+iki)b
∣∣ = e−kib ⇒ ki = −1

b
ln
∣∣λ2

∣∣ (5.3.57)

and note that since
∣∣λ2

∣∣ < 1, then ki > 0 is verified as ki represents the exponential
decay coefficient.

Now an expression for all ingoing wave amplitudes An will be derived so that
numerical results showing the attenuation after the wave interaction at each crack,
can be presented later. Substituting the Pn expression from (5.3.52) in (5.3.50) using
the equal crack spacing xn = nb, then

(
An
Bn

)
=

(
e−ik0nb 0

0 eik0nb

)
Q̃n

(
1
RN

)
, (5.3.58)
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by applying the formula recurrently and using A0 = 1 and B0 = RN . Also, Q̃ is the
one defined in (5.3.53) and therefore by making the decomposition Q̃ = XΛX−1,
then Q̃n can be calculated easily. Finally, by taking the RN expression from (5.3.55)
and after a considerable algebra, then

An = e−ik0nb
λn2X12X21 − µ̃X11X22

X12X21 − µNX11X22

for µn =

(
λ2

λ1

)n
, µ̃ =

λN2
λN−n1

, (5.3.59)

where again the coeffiecients µn and µ̃ were chosen like that to avoid numerical
instabilities for large N . Also, it can be verified by substituting n = 0 and n = N
into the expression above that A0 = 1 and AN = TN indeed.

5.3.4 Numerical results for the viscous problem

In this section, computational results of the previous section (which is a generalisation
of section 5.2.2) are presented. Here we do not always assume that β/d4 = 45536/d,
as in some cases we choose a different value of E, to compare results with the work
of other authors. However, the ice to water density ratio and the truncation of dis-
persion roots are chosen again to be δ/d = ρi/ρw = 0.9 and Nr = 1024 throughout
this section. Also, from now on the subscript in the scattering coefficients will in-
dicate the number of cracks e.g. |R8| means total reflection for 8 cracks. Moreover
using that ω =

√
Kg, then one could show that τ = σδ̂K̂1/2/â2 where the hatted

variables are non-dimensionalised by d and σ = µ/(ρd3/2g1/2) is the dimensionless
parameter that describes damping. The order of magnitude of this parameter is
σ ∼ O(10−3) according to the magnitudes described in the beginning of section 5.3.1
(given d ∼ O(1m)). However, in some cases we will choose this parameter differently
to indicate certain physical phenomena or to match field data from the literature.

Starting from figure 5.9, the convergence of the viscous problem solution to
the small crack approximation of section 5.2.2 is shown, by plotting |R1| against the
dimensionless wavenumber k0d for a decreasing sequence of the damping parameter
σ. The curves coincide for small wavenumbers as any obstacle or scatterer (in this
case the crack) has a smaller effect on long waves. Also, if the viscosity parameter
increases significantly then the zero of reflection is removed (chained curve). However,
the curves tend slowly to the small crack approximation curve (red) as even a small
value of σ can have an effect on the solution. However the σ → 0 limit is uniform.

Moving on to figure 5.10, a direct comparison to the work of [52] can be
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Figure 5.9: |R1| against k0d for (β/d4, h/d, a/d) = (45536, 40, 0.1) and σ = 0.5

(chained), 0.1 (full), 0.01 (dashed) and small crack approximation (red).

made as they considered the scattering by multiple narrow cracks but ignoring energy
losses (used inviscid theory). In figure 5.10(i), the total transmission and output
energy by 2 cracks is shown. The parameters were chosen in the same way as figure
3 of the work of the authors discussed above (number of cracks, crack separation
distance, ice and water parameters, water depth). The only difference here is that a
viscosity parameter is added to the fluid within the cracks (σ = 0.01) and the crack
width is chosen to be a/d = 0.1. It can be seen that the wavenumber positions of the
transmission spikes do not change by adding viscosity, but the spikes diverge from 1
in the short-wave limit. Also, the output energy is less than 1 as expected.

In figure 5.10(ii), the viscous analogue of [52] figure 7(a) is plotted. The
crack width is chosen to be the same as above (a/d = 0.1) for two different viscosity
parameters. Again, the wavenumber positions of the reflection spikes do not change
by adding viscosity, but the spikes diverge from 0 in the short-wave limit. The
scattering coefficients in general tend to zero with the rise of viscosity. For larger
viscosity (dashed) the curve is deformed at a greater degree when compared to a
smaller viscosity (full) as expected.

Next, in figure 5.11(i) the transmitted amplitudes |An| (as |A0| = 1 by
construction) after the interaction with each of the 80 cracks, is calculated. Each
curve represents different ice thickness with the incident wavenumber chosen to be
k0d = 0.2. As expected from physical grounds, the amplitude decreases exponen-
tially after the interaction between the transmitted wave and each crack. The curves
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Figure 5.10: (i) |T2| (full) and energy E2 = |R2|2 + |T2|2 (dashed) against k0d for

(σ, b/d) = (0.01, 40) and (ii) |R4| against k0d for b/d = 20 and σ = 0.5 (dashed),

10−3 (full). The common variables are (β/d4, h/d, a/d) = (45536, 40, 0.1).
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Figure 5.11: (i) |An/A0| against n for k0d = 0.2, β/d4 = 45536/d with d = 1 (full),

0.5 (dashed), 0.25 (chained), 0.125 (dotted) and (ii) kid against the wave period for

β/d4 = 256 (dotted), 512 (chained), 1024 (dashed), 2048 (full). The parameters are

(h/d, a/d, σ, b/d) = (40, 10−4, 0.1, 20) for 80 cracks.

of |An/A0| coincided with |λ2|n, as |λ2| was shown to represent the decaying ampli-
tude rate for a large number of cracks. Figure 5.11(ii) shows the variation of the
exponential decay coefficient with the incident wave period for multiple values of ice
material parameters. The reason behind the extreme choices of β/d4 is to compare
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results with [54] figure 8, where they achieved energy dissipation by assuming that
the ice sheet is a homogeneous viscous layer model (their viscous parameters repre-
sent different characteristics than ours). They chose an ice thickness of d = 0.5 and
water depth of h = 100. We chose smaller values of β/d4 in our plot to mimic their
viscoelastic model which is associated with a very small elasticity (smaller values of
shear modulus G). The decaying curves have the same order of magnitude for an
incident wave of period around 4 seconds with the authors discussed above. However,
our curves are not completely aligned with theirs as the energy dissipation is based
on a completely different assumption.
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Figure 5.12: (i) kid against frequency for (β/d4, h/d, a/d, b/d) = (45536, 40, 10−4, 40)

for 80 cracks and σ = 10−1 (dotted), 10−2 (chained), 10−3 (dashed), 10−4 (full). (ii)

Experimental result of [2] figure 10.

Moving on in figure 5.12 one can see the comparison between our solution
and the experimental result of [2] figure 10. Their curves are very noisy when com-
pared to ours, as they come from experimental measurements. But it seems that
when our viscosity parameter gets larger, the curves tend to theirs as they start from
10−7 and end at about 10−3 for the same frequency range.

Now figure 5.13 shows the comparison between our solution and the result
of [3] figure 2 (same as in [29]) which comes from field data. Their plot presents the
log-log plot of the dissipation rate ki and the incident angular frequency ω extracted
from the experimental data median values found from the work of [91], [92], [93],
[94]. Their data points seem to be aligned in the log-log plots suggesting that there
is a power law ki ∝ ωn. Their exponent n varies between 1.9 and 3.6 (depending
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Figure 5.13: (i) log10(kid) against log10ω for 80 cracks and σ = 0.003 (blue), 0.03

(red), 0.3 (black) with their best fits (dotted lines). The geometrical parameters are

(β/d4, h/d, a/d, b/d) = (45536, 40, 10−4, 40). (ii) Analogue result of [3] figure 2.

on the data set of each author discussed above). However, in our plot, we get a
different exponent n depending on the value of viscosity. It seems that our curves
do not tend to their best fits (straight lines) even though we use the best fits to
compare the exponents of the power law with the literature. It looks that according
to our model, that the exponent lies between 2.810 and 3.323 (approximately) as
the damping parameter varies which is a good alignment with the field data of the
previous authors.
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Chapter 6

Conclusion

In this thesis we have considered a plethora of linear scattering problems whose
solutions were semi-analytical. The results have been compared to one extent, with
the work of other authors.

In Chapter 3 we considered the scattering by a submerged bottom-mounted
metamaterial. By finding eigenfunction expansions we matched pressures and normal
fluxes across the microstructure boundaries. However in the special case where the
barriers were aligned with the longshore direction, the matching conditions along
the boundaries of the metamaterial changed character. Therefore, the matching
at these boundaries was done using the Galerkin method which gives approximate
solutions to integral equations. Also, when the barriers were normal or parallel to
the side interfaces, then the dispersion relation roots (eigenvalues) of the the depth
eigenfunction over the microstructure, were lying only on the real and imaginary axis.
Therefore their numerical computation was relatively easy and by calculating 1024
of them was enough to give a 7 decimal place accuracy to the solution. However,
when the barriers were oriented at an angle to the side interface, the dispersion
relation roots became complex (off the real and imaginary axis) and therefore their
computation was more complicated. An accuracy of 4 decimal places was achieved
by calculating only 64 of them. Despite that, special cases that showed negative
refraction phenomena were presented and compared to the literature [11].

Then the same problem of arbitrarily oriented barriers, was considered in
the shallow water regime. A new model based on first principles was derived using
a multi-scaled asymptotic analysis. The simplification under this approximation,
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allowed a closed-form solution to the problem, even when the lower interface of the
metamaterial was not aligned with the exterior sea bed. However, we considered
only the case when this lower interface is above or at the same level as the exterior
sea bed since this restriction guaranteed the existence of two wave modes within the
metamaterial region. If we allowed the lower metamaterial interface to be below the
exterior sea bed, then there would be cases for which the modes within the structure
are evanescent waves [81].

In Chapter 4, the reflection properties of a metamaterial wall were inves-
tigated. This problem was motivated by the law of reflection “violation”. The
numerical solution required the inclusion of a damping parameter within the narrow
channel of the microstructure, to achieve accurate results. This is a reasonable as-
sumption as the lack of convergence happened at incident frequencies close to the
resonant frequency of the array. Evidently, the “metawall” acted as a broadbanded
high-efficiency wave energy absorber, with the inclusion of damping.

In Chapter 5, the scattering of flexural waves by cracks on ice floes is con-
sidered. The so-called “finite gap” problem was solved in a different method than the
variety of solutions found in the literature. The issue with other methods is that they
require most expensive computation as the gap between the ice sheets gets smaller.
However, the Fourier transform method used here works in the opposite way. Then
the solution to the “small gap” problem was found by taking the appropriate limit
to the solution of the “finite gap” problem. At leading order, the problem achieved a
simple closed-form solution which verified to be identical to the one of [46] who solved
the “zero gap” problem (using a different approach). The advantage of our method
is that high order terms (in a small gap parameter) could be retained, while in the
literature only leading order solutions were found. In the analysis of our problem,
we derived only the leading order solution for two reasons. First, the higher order
solution was much complicated as it required the calculation of more integrals and
also the higher order terms did not have any significant impact on the solution.

Then the problem involving the scattering by small cracks filled with a vis-
cous fluid is solved by deriving new ice-water conditions. This modelling assumption
was used to mimic the effect of wave attenuation within ice sheets in the Arctic
Ocean. Although many authors attempted to understand the energy dissipation in
ice floes [91], [92], [93], [94], the natural cause of this phenomenon is still unknown.
The numerical results matched, to some extent, the field measurements.
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Appendix A

Roots of dispersion relations

A.1 Dispersion relation of section 3.2.2 and 3.2.4

In this part of the Appendix, the dispersion relations of (3.2.31)and (3.2.48) com-
ing from the matching conditions across the top interface of the metamaterial, are
analysed. Their roots give important information about the possible types of water
waves that can travel over the metamaterial structure. First, we seek the roots of
the (3.2.48) dispersion relation as its structure is simpler and it is easier to show the
non-existence of complex roots. On the other hand, it is hard to show analytically
(for every choice of parameters) the non-existence of complex roots of the (3.2.31)
dispersion relation as it is not straightforward how to count its roots and poles on the
real and imaginary axis of the complex plane. However, a computational approach
on how to count them will be explained at the end of this section.

The analysis again, starts by setting F (µ) the difference between the left
and right-hand side of the dispersion relation (3.2.48) and seeking its roots. However
since the dependence on µ of F (µ), comes only in

√
µ2 + α2, then by changing
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variables from µ to
√
µ2 − α2, it follows that

G(µ) ≡ F
(√

µ2 − α2
)

= (1− θ)α tanh[α(c− d)]

(
K tanh(µd)

µ
− 1

)
+K − µ tanh(µd),

(A.1.1)

where now G(µ) is easier to handle. The roots of F (µ) and G(µ) are called µn and rn
respectively and they are related through µn =

√
r2
n − α2. So, since µn represent the

wavenumbers in the x-direction, then rn represent the wavenumbers in the direction
of incidence as µ2

n + α2 = r2
n.

Now for simplification purposes, the possible values which θ0 can take, will
be (0◦, 90◦). This can be seen from the fact that if α is exchanged with −α, then
G(µ) is invariant, which implies that only the α ≥ 0 case can be considered. This
can be seen by the symmetric geometry of the problem as well. Also, the case of
α = 0 can be neglected as in that case the roots of G(µ) will satisfy µ tanh(µd) = K,
which is the water wave dispersion relation over a flat bed at z = −d. This happens
because the metamaterial behaves like a rigid step for normal incidence for reasons
explained in section 3.2.4. Thus, only the case α > 0 is considered as for α = 0 the
location of the roots is known from the water dispersion relation over a flat bed at
z = −d. Also, the same argument goes for θ = 1 as in that case the filling fraction
becomes 100% and the metamaterial becomes a rigid step again. Thus, the possible
values of the filling fraction are taken to be θ ∈ [0, 1). Also, only the special case
of c ≤ h (metamaterial sitting on step) is considered here as for c > h (barriers
buried to the sea bed) a different treatment is needed. However, the methodology is
the same even though we do not consider the special case of c > h for the sake of
simplicity of the proof.

Starting from the case µ ∈ R, the roots of G(µ) will satisfy

(1− θ)α tanh[α(c− d)]

(
K tanh(µd)

µ
− 1

)
= µ tanh(µd)−K, (A.1.2)

which can represented as the points of intersection of the left and right-hand sides
(call them L(µ) and R(µ) respectively). Starting from R(µ) one can see that is even
with R(0) = −K < 0. Also, it can be derived that R′(µ) = tanh(µd)+µdsech2(µd) >
0 for all µ ∈ R>0, R′(0) = 0 and R(µ) ∼ µ as µ → ∞. Now for L(µ) one can see
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that is even with

L′(µ) =
K(1− θ)α

µ
tanh[α(c− d)]sech2(µd)

[
d− sinh(2µd)

2µ

]
< 0, (A.1.3)

for all µ ∈ R>0 using sinhx > x for all x > 0. Also it can be seen from (A.1.2)
that L(µ) is finite and smooth at µ = 0 which implies that L′(0) = 0 (as L(µ) is
even). Therefore, using that L(µ) ∼ −(1 − θ)α tanh[α(c − d)] < 0 as µ → ∞, then
the plots of R(µ) and L(µ) are the ones of figure A.1. The function L(µ) intercepts
the vertical axis at L(0) = (1− θ)(Kd− 1)α tanh[α(c− d)]. Note that the horizontal
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Figure A.1: R(µ) (full) and L(µ) (dotted) for (h, c, d, θ0, θ) = (8, 4, 2, 60◦, 0.1) for (i)

k = 1 and (ii) k = 0.4 (which result to a different sign of L(0) or Kd − 1). The

curves intersect at ±r0, with the horizontal asymptote (dashed) of L(µ) be located

at −(1− θ)α tanh[α(c− d)] < 0.

asymptote of L(µ) will be always lying above the global minimiser of R(µ) as

(1−θ)α tanh[α(c−d)] < (1−θ)k tanh[k(h−d)] ≤ k tanh[k(h−d)] < k tanh(kh) = K.
(A.1.4)

Therefore, since the real roots of G(µ) are represented by the intersection points of
R(µ) and L(µ), then G(µ) has exactly two real and opposite roots, call them ±r0
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with r0 > 0.
Now, it will be proved that G(α) > 0 which implies that r0 > α by the

Intermediate value theorem as G(µ) ∼ K − (1 − θ)α tanh[α(c − d)] − µ < 0, as
µ → ∞. It remains to prove that L(α) > R(α). In the limit θ → 0, after a
considerable algebra, it follows that

L(α)−R(α) =
K − α tanh(αc)

1− tanh(αc) tanh(αd)
sech2(αd) > 0, (A.1.5)

using that α tanh(αc) < k tanh(kh) = K. Now for θ = 1, then L(α) − R(α) =
K − α tanh(αd) > 0 clearly as α tanh(αd) < k tanh(kh) = K. Therefore, since G(α)
is a linear function of θ which is positive at θ = 0 and θ = 1, then is must be positive
for all θ ∈ [0, 1]. Thus, the two real roots (±r0) of G(µ), correspond to two real
roots (±µ0) of F (µ) as µ0 =

√
r2

0 − α2 and r0 > α. So, within |x| < b, there are
two travelling waves of the same wavelength travelling in opposite directions. The
positive real root can be calculated computationally by looking for a sign change of
G(µ) in [α,∞] and then using the bisection method.

Now for the purely imaginary roots, since µ = 0 is not a root, then by
rearranging σG(iσ) = 0 for σ ∈ R, it follows that

tan(σd) = − Aσ

σ2 +B
for A = K − (1− θ)α tanh[α(c− d)]

and B = K(1− θ)α tanh[α(c− d)].
(A.1.6)

Clearly B > 0 and since (1−θ)α tanh[α(c−d)] < k tanh[k(h−d)] < k tanh(kh) = K,
then A > 0 as well. Therefore the imaginary part of the purely imaginary dispersion
roots can be represented as the common points of the curves described in the left
and right-hand side of (A.1.6) (see figure A.2). The σ = 0 root must be excluded
as it was introduced by the rearrangement of σG(iσ) = 0. Also, the roots (common
points) and poles of the plot are symmetric as G(µ) is even. The poles are located at
τn = 2n−1

2d
π for n ∈ Z. The sequence of the purely imaginary roots of G(µ) is called

±rn = ±iσn for n ∈ N, with σn ∈ R>0 calculated computationally by bisecting the
interval (τn, nπ/d). Also, it can be seen graphically that σn → nπ/d as n → ∞.
Therefore, after a large number of roots, they can set to be nπ/d. Thus, by Taylor
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Figure A.2: tan(σd) (dotted) and −Aσ/(σ2 + B) (full) that intersect at ±σn for

(k, h, c, d, θ0, θ) = (1.5, 4, 2, 1, 60◦, 0.1). The vertical asymptotes of tan(σd) are lo-

cated at τn for n ∈ Z and it can be seen that σn → nπ/d as n→∞.

expanding tan(σd) about nπ/d in (A.1.6) then

εn ≈
Anπ

n2π2 + (A+Bd)d
, (A.1.7)

where εn = nπ/d − σn is the small positive decreasing error. Using the fact that
n is large the expression above can be simplified to εn = A/nπ. Thus, after the
computation of about n =

⌈
A
π

10de roots for d ∈ N, the error becomes εn ≈ 10−d.
Also, note that the sequence ±rn for n ∈ N, which are roots of G(µ), corresponds to
another sequence of purely imaginary roots of F (µ), namely ±µn = ±iχn for n ∈ N
and this can be seen from µ2

n + α2 = r2
n.

Now the non-existence of complex roots off the real and imaginary axes,
will be proved. Such proofs require the application of the argument principle (see
examples in [95]). This principle relates the number of roots and the number of
poles of a complex function within a closed positively oriented contour. The complex
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function will be the rearranged dispersion relation

g(µ) =
2µeµd cosh(µd)

B − µ2 + Aµ
G(µ) = e2µd − µ2 + Aµ−B

µ2 − Aµ−B
, (A.1.8)

where A and B are defined in (A.1.6). Note that g(µ) has the same zeros as G(µ)
but with the extra root at µ = 0 as G(µ) was multiplied by µ. However, it does
not have its iτn poles (for n ∈ Z) as G(µ) was multiplied by cosh(µd). Instead, it
has two poles coming from the denominator of the right-hand side of (A.1.8) which
happen to be real as the discriminant of the denominator is positive.

Thus, by applying the argument principle on g(µ) in the square centred at
the origin with vertices ±R(1± i) for R = 4N+1

4d
π for N ∈ N with N � 1, then

c̃+ 2N + 1 =
1

2π
=
˛
g′(µ)

g(µ)
dµ, (A.1.9)

where c̃ is the number of complex roots of g(µ) off the axes (which it will be proven
to be zero). In the count of the roots and poles on the left-hand side of (A.1.9)
it was used that g(µ) has 2N + 3 roots inside the square (namely ±r0, 0, ±rn for
n = 1, 2, ..., N) and 2 real poles as discussed in the previous paragraph.

Decomposing the integral in (A.1.9), starting from the right vertical contri-
bution, then

1

2π
=

R̂

−R

g′(R + iy)

g(R + iy)
idy ≈ 1

2π
=

R̂

−R

2de2d(R+iy)

e2d(R+iy) − 1
idy ≈ 1

2π
=

R̂

−R

(2id)dy = 2N +
1

2
,

(A.1.10)
after some asymptotic analysis on g(µ) and g′(µ) and the evaluation of R. Similarly,
for the left vertical contribution, it follows that

− 1

2π
=

R̂

−R

g′(−R + iy)

g(−R + iy)
idy ≈ − 1

2π
=

R̂

−R

0

0− 1
idy = 0. (A.1.11)
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Moving on the sum of the horizontal contributions, using that g(µ) = g(µ)
and g′(µ) = g′(µ), then

− 1

2π
=

R̂

−R

g′(x+ iR)

g(x+ iR)
dx+

1

2π
=

R̂

−R

g′(x− iR)

g(x− iR)
dx = − 1

π
=

R̂

−R

g′(x+ iR)

g(x+ iR)
dx. (A.1.12)

Now, the right-hand side of (A.1.12) is asymptotic to

− 2d

π
=

R̂

−R

e2d(x+iR)

e2d(x+iR) − 1
dx ≈ 1

π

∞̂

−∞

2de2dx

1 + (e2dx)2
dx =

1

π

∞̂

0

dy

1 + y2
=

1

2
, (A.1.13)

using that e2idR = i, then taking the imaginary part and using the substitution
y = e2dx. Using the four contributions from equations (A.1.10), (A.1.11), (A.1.13)
to get the number of complex zeros from (A.1.9), then the result gives c̃ = 0.

Therefore, since there are no complex roots of g(µ) off the real and imagi-
nary axes, then the only roots of G(µ) are ±rn for n ∈ N0. After the computation
of those roots, then the actual roots of F (µ) that are important for the solution of
the physical problem, can be simply found from ±µn = ±

√
r2
n − α2.

Now, one may question why the root analysis of the dispersion relation
(3.2.31) was skipped. The reason is because the non-existence of complex roots
cannot be proved using the argument principle as the µ dependence inside the hy-
perbolic trigonometric functions, does not come in a single form, i.e. like

√
µ2 + α2

of (3.2.48).
However, it can be proved that this relation has two real and symmetric

roots and in the purely imaginary case the roots can be represented as the intersection
points of a graph similar to the one of A.2. Unfortunately, the nth root of that
plot, will not lie in a standard interval that depends on n (as happened to the
previous dispersion relation). This is because there are two independent sets of

asymptotes, namely ±τn = ±i 2n−1
2(h−d)

π and ±tn = ±i
√(

2n−1
2d

π
)2

+ α2 for n ∈ N.

Since the roots do not lie in a single known interval then if the bisection method
is applied for their calculation, it will create numerical instabilities because of the
two types of asymptotes. Thus, by multiplying the dispersion relation by the two
types of hyperbolic cosine functions, then those poles will be removed and the roots
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will remain unchanged. After doing that then the bisection method can be used
efficiently to capture all the purely imaginary roots.

Even though the roots on the axes can be calculated numerically, the non-
existence of complex roots cannot be proved. This is because if the argument prin-
ciple is applied on the dispersion relation (or a rearranged version of it similar to
(A.1.8)) over a closed loop, then even if the integral contributions are calculated
analytically, there is not straightforward way to count the roots and poles within
the closed loop for any choice of geometrical parameters. However, a complicated
semi-analytical proof can be maintained by counting the roots and poles computa-
tionally within the closed loop. By taking the closed loop to be the circle of radius
R = max{τN , tN} + (e−N/d) for N � 1, centred at the origin and applying the
argument principle over the dispersion relation, then it was shown computationally
that for all N = 210, . . . , 213 there were no complex zeros off the axes.

The non-existence of complex roots of the dispersion relation of section
3.2.2 can be verified also by the next section, where it can be seen computationally
that for an arbitrary barrier orientation (angle δ as defined in section 3.2.6), as δ
varies from 0◦ to 90◦, the purely imaginary roots start from the imaginary axis, then
follow a path in the complex plane and eventually land on the imaginary axis again
when δ = π/2 (problem of section 3.2.4).

A.2 Dispersion relation of section 3.2.6

The roots of the dispersion relation specified in (3.2.73) will be analysed. The method
starts again by defining

F (µ) = γ(1− θ) tanh[γ(h− d)]

(
K tanh

(
d
√
α2 + µ2

)√
α2 + µ2

− 1

)
+K −

√
α2 + µ2 tanh

(
d
√
α2 + µ2

)
,

(A.2.1)

for γ = α sin δ+µ cos δ and seeking its roots. First of all, it can be seen when δ = 0◦

or δ = 90◦, the dispersion relation coincides with the dispersion relations of sections
3.2.2 and 3.3.4 respectively. The location of the roots for those two special cases is
analysed in the previous section. They have two real and symmetric roots with a
symmetric sequence of purely imaginary roots. The non-existence of complex roots
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off the axes is proven analytically for the case δ = 90◦ but verified semi-analytically
for δ = 0◦. In this part of the Appendix, a new numerical verification will be produced
to indicate the non-existence of complex roots off the axes for the two limiting cases
of barrier orientation.

Starting from the dispersion relation (A.2.1) for a general angle δ ∈ (0◦, 90◦),
then it can be seen that for µ ∈ R the function is real and therefore its roots can be
presented graphically. Naming L(µ) = B(µ)C(µ) for B(µ) = γ(1− θ) tanh[γ(h−d)],
C(µ) =

[
K tanh

(
d
√
α2 + µ2

)
/
√
α2 + µ2

]
− 1 (the left-hand side of (3.2.73)) and

R(µ) =
√
α2 + µ2 tanh

(
d
√
α2 + µ2

)
− K (the right-hand side of the same equa-

tion), then the real roots can be represented as the points of intersection of the real
functions L(µ) and R(µ). Note that for the general case of δ ∈ (0◦, 90◦), the roots
will no longer be symmetric as the dispersion relation is not even. Therefore, the
generalisation of α ∈ R (not only positive as before) must be imposed again as there
is no symmetry between −θ0 and θ0. Also, the case θ0 = 0◦ cannot be neglected as
before because it is not clear how the wave interaction will be affected.

Starting from the plot of B(µ), one may notice that the function is not
even. However, using that B(−α tan δ) = 0, B(µ) > 0 for µ ∈ R \ {−α tan δ},
B′(−α tan δ) = 0 with B′(µ) be positive on the right of −α tan δ and negative on the
left, then the plot of B(µ) can be seen from figure A.3. Also, note that |B′(µ)| ∼
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Figure A.3: B(µ) for (k, h, d, δ, θ) = (1, 4, 2, 45◦, 0.1) with θ0 = 30◦ (full) and θ0 =

−60◦ (dashed). The sign of the minimiser of B(µ) (namely −α tan δ) depends on the

sign of θ0 since δ ∈ (0◦, 90◦.

(1 − θ) cos δ as µ → ±∞. Proceeding to the graph of C(µ) which is even, one can
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prove that

C ′(µ) =
Kµ

q
sech2(dq)

[
d− sinh(2dq)

2q

]
< 0, ∀µ ∈ R>0, (A.2.2)

for q =
√
α2 + µ2, using sinh x > x for all x > 0. Using also the facts that C(µ)→ −1

as µ → ∞ and C ′(0) = 0, then the graph of C(µ) will have the same shape as
L(µ) in figure A.1. The only difference would be that the horizontal asymptote will
be located at −1 with the sign of the global maximum depending on the sign of
K tanh(αd)/α− 1.

As R(µ) is even with R(0) = α tanh(αd) − K < k tanh(kh) − K = 0,
R′(µ) = µdsech2[d

√
α2 + µ2] + µ tanh[d

√
α2 + µ2]/

√
α2 + µ2 > 0 for all µ ∈ R>0,

R′(0) = 0 with R(µ) ∼ µ as µ→∞, then its shape will be the same as R(µ) in figure
A.1, with the only difference be the minimum value of the function. Therefore, by
combining this information with figure A.3, then the non-symmetric real roots of the
dispersion relation can be represented by the intersection points of figure A.4.
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Figure A.4: R(µ) (full) and L(µ) (dotted) for (h, d, θ0, δ, θ) = (2, 1, 30◦, 45◦, 0.1) that

intersect at µ
(i)
0 for i = 1, 2. The wavenumber was chosen to be k = 2 in (i) and k = 1

in (ii). These choices result to a different sign of L(0) (or C(0) = K tanh(αd)/α−1).

For completeness, it remains to prove analytically R(0) < L(0) to guaran-
tee the existence of exactly two real solutions (one positive and one negative and
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symmetry arises only when δ = 0◦, 90◦). So, by defining

Λ ≡ cosh(αd) cosh[α sin δ(h− d)]{R(0)− L(0)}

=
1 + (1− θ) sin δ

2
coshA+

[
α tanhA+ −K

]
+

1− (1− θ) sin δ

2
coshA−

[
α tanhA− −K

]
,

(A.2.3)

for A± = α[d ± (h − d) sin δ], using the formulas for products between hyperbolic
trigonometric functions. Firstly, in the case of α = 0, one can see that A± = 0 which
results to Λ = −K < 0. Next, in the case of α > 0, one can prove that αd < A+ < αh
and A− < αd. Using these bounds, then α tanhA+ < α tanh(αh) < k tanh(kh) = K
and α tanhA− < α tanh(αd) < k tanh(kh) = K which proves that Λ < 0. Finally,
when α < 0 one could prove that A+ < αd and A− > αd which results to A+ < A−.
Therefore, using α tanhA− < α tanhA+ in the second term of (A.2.3) and then
α tanhA+ < α tanh(αd) < k tanh(kh) = K, then it follows that again Λ < 0.

Proceeding to the next step, assuming that there are purely imaginary roots,
then one would seek the solutions of f(ξ) ≡ F (iξ) = 0 for ξ ∈ R. Doing that, then
the dispersion relation transforms to

f(ξ) = Γ(1− θ) tanh[Γ(h− d)]

(
K tan

(
d
√
ξ2 − α2

)√
ξ2 − α2

− 1

)
+K +

√
ξ2 − α2 tan

(
d
√
ξ2 − α2

)
,

(A.2.4)

where Γ = α sin δ + iξ cos δ, which clearly has no real solutions in ξ because of
the complex multiplicative term Γ. The complexity of the roots raised from the real
differential operator ∂XX +∂zz (which acted on the velocity potential of the problem)
that transformed into the complex operator cos2 δ∂xx+2iα sin δ cos δ∂x+∂zz−α2 sin2 δ
after the assumption of incident time-harmonicity and the y-compatibility of the total
wave from the incident wave (eiαye−iωt). However, when δ = 0◦ and δ = 90◦ only,
equation (A.2.4) becomes real and even, suggesting that the roots lie symmetrically
on the imaginary axis. Therefore, the numerical strategy to get the those roots for a
general δ ∈ (0◦, 90◦) is to use the known sequence of roots of the δ = 90◦ case (found
in the previous section of the Appendix), then by the δ continuity of the dispersion
relation, δ can be switched in small steps from 90◦ to the required angle and at each
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iteration the roots can be found by applying 2D Newton’s method on the complex
plane, with initial guesses the roots of the previous iteration.
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Figure A.5: Path of µ
(i)
n as δ varies from 90◦ to 0◦, for i = 1, 2 and n = 1 (red), n = 2

(blue), n = 3 (green) and n = 4 (magenta). The geometrical parameters are k = 1,

h = 2, d = 1.5, θ0 = 30◦ and θ = 0.1.

The real roots are excluded from the plot as it was proven that for δ = 90◦

there are two real and symmetric roots and as δ decreases the symmetry breaks (but
the existence of one positive and one negative root is guaranteed) and eventually
when δ = 0◦ the symmetry on those real roots, rises again.

It can be seen from the plot that as δ decreases, the complex roots escape
the imaginary axis and as δ approaches 0◦, the roots land back on the imaginary axis
again. Also, the spacing between the dots in each coloured curve in A.5, shows the
speed at which the roots move on the complex plane as the value of δ decreases at
equal steps. One can see that the roots are symmetric about the real axis and this
is because F (µ) from (A.2.1) satisfies F (µ) = F (µ). The complex roots most of the
times, escape the imaginary axis from the left. Despite that, there were cases when
those roots escaped the imaginary axis from the right, for example when θ0 < 0◦.

This can be seen by approximating γ tanh[γ(h−d)] for 0 ≤ ε ≡ 90− δ � 1.
Thus, by approximating cos δ ≈ ε and sin δ ≈ 1 and using the formula for the
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Figure A.6: Path of µ
(i)
n as δ varies from 90◦ to 0◦, for i = 1, 2 and n = 1 (red),

n = 2 (blue), n = 3 (green) and n = 4 (magenta). The geometrical parameters are

k = 0.5, h = 1.5, d = 1, θ0 = −45◦ and θ = 0.3.

hyperbolic tangent of the sum then it can be proven that

γ tanh[γ(h− d)] ≈ α tanh[α(h− d)] + εz

[
tanh[α(h− d)] + α(h− d)sech2[α(h− d)]

]
,

(A.2.5)
by neglecting O(ε2). It can be seen that when δ is exactly 90◦ (or ε = 0), then
γ tanh[γ(h − d)] = α tanh[α(h − d)] which is what was expected according to the
previous section dispersion relation. However for a value of δ close but not equal
to 90◦, it can be seen that γ tanh[γ(h − d)] is shifted “linearly” by an infinitesimal
distance (since the extra small term is proportional to z). Namely, γ tanh[γ(h−d)] ≈
α tanh[α(h− d)] + εzf(α). According to (A.2.5), the sign of f(α) is the same as the
sign of θ0. Therefore if θ0 > 0◦, then the δ-dependent part of the dispersion relation
is shifted slightly on the left and when θ0 < 0◦ is shifted slightly on the right.

Thus, the numerical method to capture those roots will involve only the
calculation of the real roots µ

(1)
0 , µ

(2)
0 (by bisecting the positive and negative real axis)

and the complex roots µ
(1)
n (for n = 1, ...N where N is some truncation parameter).

There is no need to calculate the set of µ
(2)
n roots (for n = 1, ...N) as it can be found
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directly by conjugating µ
(1)
n .

For example, if the calculation of |R| in terms of kb is needed, initially the
first kb iteration is considered. In that iteration, the roots for δ = 90◦ are calculated
easily through bisection across the real and imaginary axis (as it is known from the
previous section that the roots lie on the axes) and then δ is shifted down into small
steps to the desired angle. In each of these steps, 2D Newton’s method is applied on
F (x + iy) using, as initial guesses, the roots of the previous δ iteration. Therefore,

recurrently the µ
(1)
n roots for the first kb iteration are captured. Then, in the next kb

iteration, instead of the shifting δ from 90◦ to the desired orientation, the roots of
the previous kb iteration can be used as initial guesses for applying the 2D Newton’s
method directly. This makes the code running much faster. The same idea can be
applied for the numerical calculation of any scattering coefficient against any other
geometrical parameter.
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Appendix B

Eigenfunctions properties

B.1 Eigenfunction orthogonality of section 3.2.2

In this part of the Appendix, the depth eigenfunctions of (3.2.32) (which describe
the z-variation of the velocity potential over the metamaterial) will be proved to
be orthogonal under the inner product defined in (3.2.34). Although the problems
involving this type of depth eigenfunctions are not Sturm–Liouville, it will be shown
that they are orthogonal. There are many authors that showed orthogonality of depth
eigenfunctions for problems that are not Sturm–Liouville involving fluid-structural
interactions [96] or floating bodies over two-layer fluids [97][98].

Starting from the case of n 6= m, only the governing equation and boundary
conditions of the eigenfunctions should be considered. Namely,

ψ̂′′n(z) = r2
nψ̂n(z), ψ̂′n(0) = Kψ̂n(0) in z ∈ Lg,

ψ̂′′n(z) = µ2
nψ̂n(z), ψ̂′n(−h) = 0 in z ∈ Lb,

with ψ̂n(−d+) = ψ̂n(−d−), ψ̂′n(−d+) = (1− θ)ψ̂′n(−d−),

(B.1.1)
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where r2
n = α2 + µ2

n. Using that µn 6= µm for n 6= m, then

(
µ2
n − µ2

m

)
〈ψ̂n, ψ̂m〉 = (1− θ)

−dˆ

−h

(
ψ̂′′n(z)ψ̂m(z)− ψ̂n(z)ψ̂′′m(z)

)
dz

+

0ˆ

−d

[(
ψ̂′′n(z)− α2ψ̂n(z)

)
ψ̂m(z)− ψ̂n(z)

(
ψ̂′′m(z)− α2ψ̂m(z)

)]
dz.

(B.1.2)

Note, that the first integrand (and the second integrand as they are identical after
the ψ̂nψ̂m cancellation) can be written as

(
ψ̂′n(z)ψ̂m(z)− ψ̂n(z)ψ̂′m(z)

)′
. Applying the

fundamental theorem of calculus on both integrands supported by the surface and
bed conditions, then (B.1.2) is transformed into

(
µ2
n − µ2

m

)
〈ψ̂n, ψ̂m〉 = ψ̂n(−d)ψ̂′m(−d+)− ψ̂′n(−d+)ψ̂m(−d)

+(1− θ)ψ̂′n(−d−)ψ̂m(−d)− (1− θ)ψ̂n(−d)ψ̂′m(−d−) = 0,
(B.1.3)

where the evaluations at z = 0 and z = −h are eliminated after applying the con-
ditions on the surface and the bed. Now that the zeroth derivative of ψ̂n above is
evaluated exactly at z = −d (instead of the right or left side limits) as it is known that
is continuous there from the first matching condition. In the last step the matching
conditions at z = −d were applied.

Moving on to the case of n = m to verify the N̂n expression specified in
(3.2.33), then the inner product between ψ̂n and ψ̂m results to

〈ψ̂n, ψ̂n〉 = N̂−1
n

0ˆ

−d

(
cosh2(rnz) +

K2

r2
n

sinh2(rnz) +
K

rn
sinh(2rnz)

)
dz

+N̂−1
n (1− θ)D2

n

−dˆ

−h

cosh2[µn(z + h)]dz.

(B.1.4)
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Using the formulas sinh2 x =
(

cosh(2x)−1
)
/2 and cosh2 x =

(
cosh(2x)+1

)
/2, then

after a considerable algebra the result to the integral above is found to be

〈ψ̂n, ψ̂m〉 = hδnm for N̂n =
d

h

[
1

2
+

sinh(2rnd)

4rnd

]
−K

2d

r2
nh

[
1

2
− sinh(2rnd)

4rnd

]
− K

r2
nh

sinh2(rnd)

+
h− d
h

(1− θ)D2
n

[
1

2
+

sinh
(
2µn(h− d)

)
4µn(h− d)

]
.

(B.1.5)

B.2 Eigenfunction orthogonality of section 3.2.4

Now the orthogonality of the depth eigenfunctions in (3.2.49) over the gap between
the metamaterial and the free surface will be proved. In the case of n 6= m, the
governing equation and boundary conditions of ψ̂ are considered. Namely,

ψ̂′′n(z) = r2
nψ̂n(z), ψ̂′n(0) = Kψ̂n(0) in z ∈ Lg,

with ψ̂n(−d+) = ψ̂n(−d−), ψ̂′n(−d+) = (1− θ)ψ̂′n(−d−),
(B.2.1)

where r2
n = α2 + µ2

n. Starting from n 6= m, then

(
µ2
n − µ2

m

) 0ˆ

−d

ψ̂n(z)ψ̂m(z)dz

=

0ˆ

−d

[(
ψ̂′′n(z)− α2ψ̂n(z)

)
ψ̂m(z)− ψ̂n(z)

(
ψ̂′′m(z)− α2ψ̂m(z)

)]
dz.

(B.2.2)

Then after the ψ̂nψ̂m cancellation one could see that the integrand can be written as
a full derivative i.e.

(
ψ̂′n(z)ψ̂m(z)−ψ̂n(z)ψ̂′m(z)

)′
. Thus, by applying the fundamental
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theorem of calculus and making use of the surface condition, then

(
µ2
n − µ2

m

) 0ˆ

−d

ψ̂n(z)ψ̂m(z)dz = ψ̂n(−d+)ψ̂′m(−d+)− ψ̂′n(−d+)ψ̂m(−d+)

= (1− θ)
[
ψ̂n(−d−)ψ̂′m(−d−)− ψ̂′n(−d−)ψ̂m(−d−)

]
,

(B.2.3)

after the cancellation of the evaluations at z = 0 and making use of the matching
conditions at z = −d. Then using the definition of ψ̂n(z) in Lb from (3.2.49), it will
turn out that the result is zero because the only dependence of the eigenfunction in
n and m comes only in the normalisation factors N̂

−1/2
n , Dn and not in the hyper-

bolic cosine function (multiplicative coefficients can be taken outside the brackets as
common factors even under differentiation). Therefore by this direct calculation, it
is proved that the eigenfunctions are orthogonal.

Continuing on the case of n = m, then by using the ψ̂n(z) expression, we
get

0ˆ

−d

ψ̂2
n(z)dz = N̂−1

n

0ˆ

−d

(
cosh2(rnz) +

K2

r2
n

sinh2(rnz) +
K

rn
sinh(2rnz)

)
dz. (B.2.4)

Again by using the formulas sinh2 x =
(

cosh(2x)− 1
)
/2 and cosh2 x =

(
cosh(2x) +

1
)
/2, then after integrating the answer above is found to be d. Therefore, the or-

thogonality relation of ψ̂n(z) becomes

0ˆ

−d

ψ̂n(z)ψ̂m(z)dz = dδnm. (B.2.5)
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B.3 Calculation of Gnm and Bnm of section 3.2.2

In this section the integral expressions of Gnm and Bnm specified in (3.2.36) will be
calculated using ideas from the previous sections. First, the integral over ψnψ̂m in
Lg and Lb separetly, are considered. Starting from the integral over the gap Lg, then

(
k2
n − r2

m

) 0ˆ

−d

ψn(z)ψ̂m(z)dz =

0ˆ

−d

(
ψ′′n(z)ψ̂m(z)− ψn(z)ψ̂′′m(z)

)
dz

=

0ˆ

−d

(
ψ′n(z)ψ̂m(z)− ψn(z)ψ̂′m(z)

)′
dz.

(B.3.1)

Next, by applying the fundamental theorem of calculus and making use of the surface
condition at z = 0, then

(
k2
n − r2

m

) 0ˆ

−d

ψn(z)ψ̂m(z)dz = (1− θ)ψn(−d)ψ̂′m(−d−)− ψ′n(−d)ψ̂m(−d−), (B.3.2)

by matching the eigenfunctions through z = −d. Using the solutions of ψn and ψ̂m
found in (3.2.22) and (3.2.32) respectively, then

Gnm =
1

h

0ˆ

−d

ψn(z)ψ̂m(z)dz =

{
(1− θ)µm cosh[kn(h− d)] sinh[µm(h− d)]

−kn sinh[kn(h− d)] cosh[µm(h− d)]

}
N
−1/2
n N̂

−1/2
m Dm(

k2
n − r2

m

)
h

.

(B.3.3)

Following the same procedure as in (B.3.1), but using the multiplicative
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factor (k2
n − µ2

m) instead of (k2
n − r2

m), then

(
k2
n − µ2

m

) −dˆ

−h

ψn(z)ψ̂m(z)dz = ψ′n(−d)ψ̂m(−d−)− ψn(−d)ψ̂′m(−d−), (B.3.4)

by applying the fundamental theorem of calculus again. Using the eigenfunction
definitions again, then the integral over the barrier Lb, becomes

Bnm =
1

h

0ˆ

−d

ψn(z)ψ̂m(z)dz =

{
kn sinh[kn(h− d)] cosh[µm(h− d)]

−µm cosh[kn(h− d)] sinh[µm(h− d)]

}
N
−1/2
n N̂

−1/2
m Dm(

k2
n − µ2

m

)
h

.

(B.3.5)
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Appendix C

Integral terms simplification of Chapter 5

C.1 Crack of finite width

In this part of the Appendix, the integrals needed to calculate numerically the re-
flection and transmission coefficients of the problem analysed in section 5.2.1, are
considered. First, an explanation is given on how to compute numerically the inte-
grals used in the linear systems (5.2.26), (5.2.43) to find P s,a and Qs,a. Some of those
semi-infinite integrals can be transformed into fast convergent integrals by using the
ice sheet dispersion relation properly. Then using the Cauchy’s residue theorem,
those integrals can be evaluated as infinite sums.

All the integrals of the problem, are along the positive real line but they
avoid the β0 pole from below. Therefore, for an integrand f(ξ) with a pole at β0 the
numerical integral will be calculated as follows

∞&

0

f(ξ)dξ =

( β0−εˆ

0

+

∞̂

β0+ε

)
f(ξ)dξ + iπRes

[
f(ξ); ξ = β0

]
≈

≈
β0−εˆ

0

[
f(ξ) + f(2β0 − ξ)

]
dξ +

Niˆ

2β0

f(ξ)dξ + iπRes
[
f(ξ); ξ = β0

]
,

(C.1.1)

211



where the first line is equating an integral with a contour passing below the pole to a
real Cauchy-principal value integral plus the contribution from the indentation below
the pole which equates to half a residue. On the last step, the infinite integral was
split into two integrals over (β0+ε, 2β0) and (2β0,∞) and the substitution ξ = 2β0−t
was introduced in the first. The approximately equal sign came by truncating the
infinite integral to Ni � 1.

Starting from the semi-infinite integrals of the symmetric problem (see equa-
tion (5.2.26)), then

F s
1 (a+) =

2β

π

∞&

0

k tanh(kh)

∆(k)

(
ξ2 + να2

0

)
cos2(aξ)dξ, (C.1.2)

written in compact notation, instead of (C.1.1). It can be seen that this integral is
convergent as its integrand is asymptotic to ξ−2 cos2(aξ) as ξ →∞. However, F s

2 (x)
and F s′

1 (x) need some extra treatment to avoid divergence as their integrands are
asymptotic to ξ−1 times some trigonometric functions as ξ → ∞. Therefore using
the ∆(k) definition from (5.1.7), then

βk tanh(kh)

∆(k)

(
ξ3 + (2− ν)α2

0ξ
)

=
1

ξ
−
[
βα2

0(α2
0 + νξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
,

βk tanh(kh)

∆(k)
ξ
(
ξ2 + να2

0

)
=

1

ξ
−
[
βα2

0(α2
0 + (2− ν)ξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
,

(C.1.3)

where by making use of the identity
∞́

0

sin(Ax) cos(Bx)
x

dx = π
4

[
sgn(A+B)+sgn(A−B)

]
,
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the expressions for the required quantities become

F s
2 (a+) = − 1

π

∞&

0

[
βα2

0(α2
0 + νξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F s′

1 (a+) = −1 +
1

π

∞&

0

[
βα2

0(α2
0 + (2− ν)ξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F s′

2 (a+) =
2

π

∞&

0

[
βα2

0(α2
0 + νξ2) + 1−Kδ

]
k tanh(kh)−K

∆(k)
sin2(aξ)dξ,

(C.1.4)
where the last equation can be maintained by differentiating the F s

2 with respect to
x after making use of the dispersion relation. This procedure was used in [41] to
improve convergence in integrals. Note that now the first two integrands go like ξ−3

and the last as ξ−2 as ξ → ∞ (times a trigonometric function), which means that
they converge mush faster now.

The quantities defined above are the scalar integrals needed for the problem.
Proceeding to the vectors and matrices of the system (5.2.26), M s

2n,2m and f
(i)
2n (i =

1, 2, 3) can be found from (5.2.25) and Ks
2n and Ks′

2n from (5.2.26) in integral form.
All those integrals are convergent as j2n(z) ∼ sin(z)/z (times a multiplicative factor
that depends on n) as z →∞, so there is no need to modify them. The expressions

of f
(i)
2n for i = 1, 2, 3 in explicit form are

f
(1)
2n =

2β

π

∞&

0

k tanh(kh)

∆(k)

(
ξ2 + να2

0

)
cos(aξ)j2n(aξ)dξ,

f
(2)
2n =

2β

π

∞&

0

k tanh(kh)

∆(k)

(
ξ3 + (2− ν)α2

0ξ
)

sin(aξ)j2n(aξ)dξ.

(C.1.5)

and f
(3)
2n = j2n(β0a).

Now, all the integrals defined above will be evaluated as infinite sums using
the Cauchy’s residue theorem. The procedure is very similar to the one used to
calculate the Rs expression in (5.2.45). The first step is to write the semi-integrals
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as half of the infinite integrals since all integrands are even. However, the −β0

pole must be avoided from above so that the radiation condition is satisfied. Then,
typically a trigonometric function of the integrand is written in terms of two complex
exponentials and then the integral is split into two - one integral over a function
proportional to eiaξ and the other integral over a function proportional to e−iaξ.
Next, the first integral can be written as the sum of the residues of the poles βr
(for r ≥ −2) which lie in the upper half plane using the Cauchy’s residue theorem.
The contribution at infinity is zero because the integrand is asymptotic to ξ−neiaξ

(for some n ∈ N) times a trigonometric function (possibly) evaluated at aξ. For
the second integral over e−iaξ, the same method is applied but now the contour
must be over the lower half plane to guarantee the decay of e−iaξ at infinity. The
second sum will now be over the −βr (r ≥ −2) poles but due to the even behaviour
of the integrated functions, it will always turn out that the two infinite sums are
identical and can be combined to one. Here, one may point out that the trigonometric
functions evaluated at βr are blowing up exponentially as r → ∞. However they
are balanced as they are always balanced by eiβra which are exponentially decaying.
Therefore by applying this procedure into the convergent integral of (C.1.2), then

F s
1 (a+) = iβ

∞∑
r=−2

k2
r tanh(krh)

βr∆′(kr)

(
β2
r + να2

0

)(
1 + e2iβra

)
, (C.1.6)

where the last bracket came by writing cos(βra)eiβra into complex exponentials for
numerical stability purposes. It is known that the roots kr (or βr) tend to irπ/h as
r → ∞ and so the terms of the sum above tend to r−2(1 + e−2rπa/h) which implies
that the sums converge fast.

Proceeding to the integrals of (C.1.4), there are two ways to write them
as infinite sums. First is to expand sin(2aξ) in terms of complex exponentials and
apply the Cauchy’s residue theorem as usual. But by doing that a new pole at zero
is created as now there will be two integrals over e±2iaξ/ξ. The residue of this pole
must be calculated separately from the residues of ±βr. Therefore the result will be
a constant (coming from the residue of the pole at zero) plus an infinite sum over
a fractional expression evaluated at βr times e2iβra. The second way, will be to use
the formula sin(2aξ) = 2 sin(aξ) cos(aξ) and write only cos(aξ) in terms of complex
exponentials. The decay at infinity will be guaranteed and now there will be no
creation of extra poles as it is known that sin(aξ)/ξ has a removable singularity at
ξ = 0. The result will be an infinite sum over the same expression as before but now
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times (1− e2iβra). By equating the two results (as they come from the same integral
expression), then values for some infinite sums can be calculated [52]. However, our
interest does not lie on the explicit calculation of these sums so these formulas will not
be included here, but their derivation is relatively straightforward if the procedure
discussed here is followed. Thus, from now on, only the first way will be used i.e.
expanding sin(2aξ) in terms of complex exponentials and treating the extra pole at
zero separately. Therefore, the integrals of (C.1.4) and (C.1.5) become

F s
2 (a+) = −1

2
−

∞∑
r=−2

kr

[
βα2

0(α2
0 + νβ2

r ) + 1−Kδ
]
kr tanh(krh)−K

β2
r∆
′(kr)

e2iβra,

F s′

1 (a+) = −1

2
+

∞∑
r=−2

kr

[
βα2

0(α2
0 + (2− ν)β2

r ) + 1−Kδ
]
kr tanh(krh)−K

β2
r∆
′(kr)

e2iβra,

F s′

2 (a+) = i
∞∑

r=−2

kr

[
βα2

0(α2
0 + νβ2

r ) + 1−Kδ
]
kr tanh(krh)−K

βr∆′(kr)

(
1− e2iβra

)
,

f
(1)
2n = 2iβ

∞∑
r=−2

k2
r tanh(krh)

βr∆′(kr)
(β2

r + να2
0)j2n(βra)eiβra,

f
(2)
2n = 2β

∞∑
r=−2

k2
r tanh(krh)

βr∆′(kr)

(
β3
r + (2− ν)α2

0βr
)
j2n(βra)eiβra,

(C.1.7)
where in the first three sums the trigonometric functions were combined with the
complex exponentials. Note that all those sums converge very quickly as in the first
two their terms tend to r−3(1 − e−2rπa/h), the third to r−2(1 − e−2rπa/h), the fourth
to r−2j2n(irπa/h)e−rπa/h and the fifth to r−1j2n(irπa/h)e−rπa/h. The convergence of
the last two can be proved using the fact that j2n(ix) ∼ ex/x (times a multiplicative
constant that depends on n) from [75], equations (9.6.3) and (9.7.1). Next, the
expressions of Ks

2n and Ks′
2n from (5.2.26) are transformed to

Ks
2n = iπa

∞∑
r=−2

kr
K − kr tanh(krh)

βr∆′(kr)
j2n(βra)eiβra,

Ks′

2n = πa

∞∑
r=−2

kr
K − kr tanh(krh)

∆′(kr)
j2n(βra)eiβra,

(C.1.8)
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where again the convergence is guaranteed. It remains to write M s
2n,2m in summation

form. First, the semi-infinite integral is written as half of the infinite integral (due to
even integrand), but since its integrand is proportional to j2n(aξ)j2m(aξ) (instead of
trigonometric functions) then one of the spherical Bessel functions should be written

as j2m(aξ) =
[
h

(1)
2m(aξ) + h

(2)
2m(aξ)

]
/2 where h

(p)
2m(z) = j2m(z) − i(−1)py2m(z) is the

spherical Hankel functions (or Bessel functions of third kind) and y2m(z) is the spher-
ical Weber function (or Bessel function of second kind). By doing that, if the integral

is divided into two integrals - one over h
(1)
2m and the other over h

(2)
2m - then the decay is

guaranteed in the far field of upper and lower half of the complex plane respectively,
as j2n(z)h

(p)
2m(z) ∼ sin(z)e−i(−1)pz/z2 (times a multiplicative constant that depends

on n and m) as |z| → ∞. But by doing that, a pole at ξ = 0 is created as h2m is sin-
gular at the origin. So, once the integrand is written in in terms of Hankel functions
then the pole at ξ = 0 is avoided from below (without the loss of generality) and so
when the Cauchy’s residue theorem is applied, the contribution of that pole will be
included in the contour over the upper half plane. Also, a key feature of the matrix
M s

2n,2m is that it is symmetric, which can be seen from its integral representation in
(5.2.25). Therefore, only the n ≥ m elements of it should be calculated without the
loss of generality, and the remaining elements above the diagonal can be copied from
the elements below the diagonal. Thus by writing the integral over the whole real
line, then decomposing j2m in terms of Hankel functions, splitting the integral and
applying the Cauchy’s residue theorem, then

M s
2n,2m = iπa

∞∑
r=−2

kr
K − kr tanh(krh)

βr∆′(kr)
j2n(βra)h

(1)
2m(βra)

+
iπa

2

K − α0 tanh(α0h)

∆(α0)
Res
[
j2n(aξ)h

(1)
2m(aξ); ξ = 0

]
for n ≥ m,

(C.1.9)

where the sum is the combined contribution of the ±βr poles using that h
(2)
2m(−z) =

h
(1)
2m(z) from [75], equation (10.1.37) and the last term is the contribution of the

pole at ξ = 0. The residue found in the equation above is calculated using the
asymptotic formulas for j2m and y2m for small arguments from [75], equations (10.1.4)
and (10.1.5) as

j2n(z)h
(1)
2m(z) ∼ z2(n+m)

(4n+ 1)!!(4m+ 1)!!
− i(4m− 1)!!

(4n+ 1)!!

z2(n−m)

z
as |z| → 0, (C.1.10)
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where the double factorial n!! is defined as the product of all integers from 1 to n that
have the same parity as n. Note that normally n,m ∈ N0 and so the first term of the
right-hand side above becomes δn0δm0 in the small z limit, which has no residue as it
is not a pole. Now the second term is asymptotic to −iδnm/(4n + 1)z, since n ≥ m

which imply that the residue of the product j2n(aξ)h
(1)
2m(aξ) at the pole at ξ = 0 is

−iδnm/(4n+ 1)a. Combining (C.1.9) with the information specified above, then

M s
2n,2m = iπa

∞∑
r=−2

kr
K − kr tanh(krh)

βr∆′(kr)
j2n(βra)h

(1)
2m(βra)

+
πδnm

2(4n+ 1)

K − α0 tanh(α0h)

∆(α0)
for n ≥ m,

(C.1.11)

which converges as j2n(ix)h
(1)
2m(ix) ∼ x−2 (times a multiplicative factor that depends

on n and m) as x→∞ from [75], equations (9.6.3), (9.7.1), (9.6.4) and (9.7.2). This
asymptotic formula can also be verified by substituting z = ix into the asymptotic
formula discussed after equation (C.1.8). The last equation concludes the calculations
for all the quantities needed to find Rs from (5.2.29).

Proceeding to the calculation of the antisymmetric integrals, then it can
be seen that F a

1 (a+) is convergent but for the integrals F a
2 (a+), F a′

1 (a+), F a′
2 (a+)

equation (C.1.3) must be used. Therefore,

F a
1 (a+) =

2β

π

∞&

0

k tanh(kh)

∆(k)

(
ξ2 + να2

0

)
sin2(aξ)dξ,

F a
2 (a+) = 1− 1

π

∞&

0

[
βα2

0(α2
0 + νξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F a′

1 (a+) = − 1

π

∞&

0

[
βα2

0(α2
0 + (2− ν)ξ2) + 1−Kδ

]
k tanh(kh)−K

ξ∆(k)
sin(2aξ)dξ,

F a′

2 (a+) = − 2

π

∞&

0

[
βα2

0(α2
0 + νξ2) + 1−Kδ

]
k tanh(kh)−K

∆(k)
cos2(aξ)dξ,

(C.1.12)
where some antisymmetric integrals can be related to the symmetric ones, namely
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F a
2 (a+) = 1 +F s

2 (a+) and F a′
1 (a+) = −1−F s′

1 (a+). The convergence of the integrals
above is guaranteed as the integrands tend to ξ−n times a trigonometric function for
n = 2, 3 as ξ →∞.

Moving on, by considering the integrals of Ma
2n+1,2m+1, f

(i)
2n+1 for i = 1, 2

(since f
(3)
2n+1 = j2n+1(β0a) is explicit) from (5.2.42) and Ka

2n+1, Ka′
2n+1 from (5.2.43),

then it can be seen that they are convergent as j2n+1(z) ∼ cos(z)/z (times a mul-
tiplicative constant that depends on n) as z → ∞. The integral representation of

f
(i)
2n+1 (i = 1, 2) is

f
(1)
2n+1 =

2β

π

∞&

0

k tanh(kh)

∆(k)

(
ξ2 + να2

0

)
sin(aξ)j2n+1(aξ)dξ,

f
(2)
2n+1 =

2β

π

∞&

0

k tanh(kh)

∆(k)

(
ξ3 + (2− ν)α2

0ξ
)

cos(aξ)j2n+1(aξ)dξ.

(C.1.13)

Now the same principles used in the symmetric integrals, will be used here
as well to turn again the infinite integrals into infinite sums through the Cauchy’s
residue theorem. Note, that again all the integrands are even and so the integrals can
be expressed over the real line in the same way as before. The first set of integrals
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specified in (C.1.12) and (C.1.13) become

F a
1 (a+) = iβ

∞∑
r=−2

k2
r tanh(krh)

βr∆′(kr)

(
β2
r + να2

0

)(
1− e2iβra

)
,

F a
2 (a+) =

1

2
−

∞∑
r=−2

kr

[
βα2

0(α2
0 + νβ2

r ) + 1−Kδ
]
kr tanh(krh)−K

β2
r∆
′(kr)

e2iβra,

F a′

1 (a+) = −1

2
−

∞∑
r=−2

kr

[
βα2

0(α2
0 + (2− ν)β2

r ) + 1−Kδ
]
kr tanh(krh)−K

β2
r∆
′(kr)

e2iβra,

F a′

2 (a+) = −i
∞∑

r=−2

kr

[
βα2

0(α2
0 + νβ2

r ) + 1−Kδ
]
kr tanh(krh)−K

βr∆′(kr)

(
1 + e2iβra

)
,

f
(1)
2n+1 = 2β

∞∑
r=−2

k2
r tanh(krh)

βr∆′(kr)
(β2

r + να2
0)j2n+1(βra)eiβra,

f
(2)
2n+1 = 2iβ

∞∑
r=−2

k2
r tanh(krh)

βr∆′(kr)

(
β3
r + (2− ν)α2

0βr
)
j2n+1(βra)eiβra,

(C.1.14)
where in the last two equations, the two infinite sums (one over βr and the other over
−βr) were combined into one using the fact the j2n+1 is odd. Also, it can be verified
that all the sums converge. The terms of the first four sums tend to r−n(1±e−2rπa/h)
for n = 2, 3 as r → ∞ and the terms of the last two, tend to r−n for n = 2, 3 as
j2n+1(ix) ∼ ex/x (times a multiplicative constant that depends on n). Moving on to
the next quantities specified in (5.2.43), then

Ka
2n+1 = πa

∞∑
r=−2

kr
K − kr tanh(krh)

βr∆′(kr)
j2n+1(βra)eiβra,

Ka′

2n+1 = iπa
∞∑

r=−2

kr
K − kr tanh(krh)

∆′(kr)
j2n+1(βra)eiβra.

(C.1.15)

Lastly, the integral representation of the matrix Ma
2n+1,2m+1, should be con-

sidered. Again, this will be a more demanding calculation as the integral is over a
product of spherical Bessel functions instead of trigonometric functions. Note that
since this matrix is symmetric, then only the lower off-diagonal entries could be cal-
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culated (n ≥ m). The reason for not calculating the upper off-diagonal elements,
will be explained later. First by expressing the integral over the whole real line (as
integrand is even), then one of the two spherical Bessel functions is rewritten as

j2m+1(z) =
[
h

(1)
2m+1(z) + h

(2)
2m+1(z)

]
/2. By doing that, then if the integral is divided

into two (one over h
(1)
2m+1 and the other over h

(2)
2m+1), then the decay is guaranteed in

the upper and lower half planes respectively. However by doing that, a new pole at
the origin is created from h

(p)
2m+1 and its contribution must be taken into account at

one of the two integrals (upper half plane or for p = 1 without the loss of generality).
Therefore,

Ma
2n+1,2m+1 = iπa

∞∑
r=−2

kr
K − kr tanh(krh)

βr∆′(kr)
j2n+1(βra)h

(1)
2m+1(βra)

+
iπa

2

K − α0 tanh(α0h)

∆(α0)
Res
[
j2n+1(aξ)h

(1)
2m+1(aξ); ξ = 0

]
for n ≥ m,

(C.1.16)

by combing the two sums through h
(2)
2m+1(−z) = −h(2)

2m+1(z) from [75], equation
(10.1.37). Now the residue specified above must be calculated using the asymp-
totic expansions for small arguments in the Bessel and Hankel function (see equa-

tion (C.1.10)). Therefore when n ≥ m, it can be seen that j2n+1(z)h
(1)
2m+1(z) ∼

−iδnm/(4n+ 3)z as |z| → 0. Thus, the last integral written in summation form is

Ma
2n+1,2m+1 = iπa

∞∑
r=−2

kr
K − kr tanh(krh)

βr∆′(kr)
j2n+1(βra)h

(1)
2m+1(βra)

+
πδnm

2(4n+ 3)

K − α0 tanh(α0h)

∆(α0)
for n ≥ m.

(C.1.17)

C.2 Small crack filled with viscous fluid

In this section, all the integrals of section 5.3.2 will be turned into infinite sums using
the Cauchy’s residue theorem. The viscous problem will be formulated with infinite
sums as their calculation is generally more computationally inexpensive. Starting
from the first three (x-averaged) integrals of the symmetric problem found in (5.3.36),
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then

Ĩs0 = 1− 2ia
∞∑

r=−2

K − (1− ssu)kr tanh(krh)

∆′(kr)
j0(kra)h

(1)
0 (kra)

−2βes,1u

∞∑
r=−2

k2
r tanh(krh)

∆′(kr)
j0(kra)eikra − 2iβes,2u

∞∑
r=−2

kr tanh(krh)

∆′(kr)
j0(kra)eikra,

Ĩs1 = 2iβes,2P

∞∑
r=−2

kr tanh(krh)

∆′(kr)
j0(kra)eikra − 2iβ

∞∑
r=−2

k3
r tanh(krh)

∆′(kr)
j0(kra)eikra

+2βes,1P

∞∑
r=−2

k2
r tanh(krh)

∆′(kr)
j0(kra)eikra + 2iassP

∞∑
r=−2

kr tanh(krh)

∆′(kr)
j0(kra)h

(1)
0 (kra),

Ĩs2 = 2iassQ

∞∑
r=−2

kr tanh(krh)

∆′(kr)
j0(kra)h

(1)
0 (kra) + 2

∞∑
r=−2

E(kr)

kr∆′(kr)
j0(kra)eikra

+2βes,1Q

∞∑
r=−2

k2
r tanh(krh)

∆′(kr)
j0(kra)eikra + 2iβes,2Q

∞∑
r=−2

kr tanh(krh)

∆′(kr)
j0(kra)eikra,

(C.2.1)
where the +1 term in Ĩs0 came from the contribution of the pole at zero of the integral

over j0(aξ)h
(1)
0 (aξ) (when splitting the integral contour into the lower and upper half

complex plane to guarantee decay at infinity). This residue can be calculated easily
using the asymptotic formula (C.1.10). Moving on to the three second derivatives
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and three third derivatives of functionals found in (5.3.37) and (5.3.38), then

Is
′′

0 = −2ia
∞∑

r=−2

K − (1− ssu)kr tanh(krh)

∆′(kr)
k2
rj0(kra)eikra − es,1u

+es,1u

∞∑
r=−2

E(kr)

kr∆′(kr)
e2ikra − iβes,2u

∞∑
r=−2

k3
r tanh(krh)

∆′(kr)
(1 + e2ikra),

Is
′′

1 = −2iassP

∞∑
r=−2

k3
r tanh(krh)

∆′(kr)
j0(kra)eikra − i

∞∑
r=−2

E(kr)

∆′(kr)
(1 + e2ikra)

−es,1P + es,1P

∞∑
r=−2

E(kr)

kr∆′(kr)
e2ikra − iβes,2P

∞∑
r=−2

k3
r tanh(krh)

∆′(kr)
(1 + e2ikra),

Is
′′

2 = −2iassQ

∞∑
r=−2

k3
r tanh(krh)

∆′(kr)
j0(kra)eikra −

∞∑
r=−2

E(kr)

∆′(kr)
kre

2ikra

−es,1Q + es,1Q

∞∑
r=−2

E(kr)

kr∆′(kr)
e2ikra − iβes,2Q

∞∑
r=−2

k3
r tanh(krh)

∆′(kr)
(1 + e2ikra),

Is
′′′

0 =
2a

β
(1− ssu)

∞∑
r=−2

E(kr)

kr∆′(kr)
j0(kra)eikra + 2aK

∞∑
r=−2

k3
r

∆′(kr)
j0(kra)eikra

−es,2u − es,2u
∞∑

r=−2

E(kr)

kr∆′(kr)
e2ikra − ies,1u

∞∑
r=−2

E(kr)

∆′(kr)
(1− e2ikra),

Is
′′′

1 = −2a

β
ssP

∞∑
r=−2

E(kr)

kr∆′(kr)
j0(kra)eikra +

∞∑
r=−2

E(kr)

∆′(kr)
kre

2ikra

−es,2P − ie
s,1
P

∞∑
r=−2

E(kr)

∆′(kr)
(1− e2ikra)− es,2P

∞∑
r=−2

E(kr)

kr∆′(kr)
e2ikra,

Is
′′′

2 = −2a

β
ssP

∞∑
r=−2

E(kr)

kr∆′(kr)
j0(kra)eikra + i

∞∑
r=−2

E(kr)

∆′(kr)
k2
r(1− e2ikra)

−es,2Q − ie
s,1
Q

∞∑
r=−2

E(kr)

∆′(kr)
(1− e2ikra)− es,2Q

∞∑
r=−2

E(kr)

kr∆′(kr)
e2ikra,

(C.2.2)

after calculating the residue of the pole at zero in some of these integrals.

222



Now the nine integrals of the antisymmetric problem will be turned into
infinite sums over the dispersion roots using the same principles as before. Therefore,
starting from the integrals found in equations (5.3.46), (5.3.47), then

Ĩa0 =
1

3
− 2ia

∞∑
r=−2

K − (1− sau)kr tanh(krh)

∆′(kr)
j1(kra)h

(1)
1 (kra),

Ĩa1 = 2β
∞∑

r=−2

kr tanh(krh)

∆′(kr)

(
ea,2P − k

2
r

)
j1(kra)eikra,

Ĩa2 = 2iasaQ

∞∑
r=−2

kr tanh(krh)

∆′(kr)
j1(kra)h

(1)
1 (kra)

−2i
∞∑

r=−2

E(kr)

kr∆′(kr)
j1(kra)eikra + 2βea,2Q

∞∑
r=−2

kr tanh(krh)

∆′(kr)
j1(kra)eikra,

Ia
′′

0 = −2a
∞∑

r=−2

K − (1− sau)kr tanh(krh)

∆′(kr)
k2
rj1(kra)eikra,

Ia
′′

1 = −i
∞∑

r=−2

(
βea,2P k2

r + 1−Kδ
)
kr tanh(krh)−K

∆′(kr)
(1− e2ikra),

Ia
′′

2 = −2asaQ

∞∑
r=−2

k3
r tanh(krh)

∆′(kr)
j1(kra)eikra +

∞∑
r=−2

E(kr)

∆′(kr)
kre

2ikra

−iβea,2Q
∞∑

r=−2

k3
r tanh(krh)

∆′(kr)
(1− e2ikra),

Ia
′′′

0 = −2ia

β
(1− sau)

∞∑
r=−2

E(kr)

kr∆′(kr)
j1(kra)eikra − 2iaK

∞∑
r=−2

k3
r

∆′(kr)
j1(kra)eikra,

Ia
′′′

1 = ea,2P

∞∑
r=−2

E(kr)

kr∆′(kr)
e2ikra − ea,2P −

∞∑
r=−2

E(kr)

∆′(kr)
kre

2ikra,

Ia
′′′
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