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ABSTRACT

Single photon sources (SPS) are a promising component for many quantum information
applications, where ideal properties include deterministic, highly efficient indistinguish-

able emission, as this allows for near perfect two–photon interference. This thesis uses open
quantum systems theory to theoretically characterise solid state emitters; a class of single
photon sources which are deterministic in nature.

The main focus of this thesis is on the single molecule SPS dibenzoterrylene (DBT), a
photostable bright emitter when hosted in an anthracene nano–crystal. We present a theoretical
analysis of the temperature dependent optical properties of DBT, including the emission spec-
tra; where dephasing mechanisms which decohere emission and cause linewidth broadening
are underpinned. All observed spectral features are accounted for including, a zero phonon line
and discrete sharp peaks associated with transitions to local vibrational modes. Furthermore,
the model includes a thermal phonon bath, which allows for the inclusion of broad phonon
sidebands.

We present second order correlation function calculations for the DBT molecule where
both Hanbury Brown and Twiss and Hong–Ou–Mandel interferometer set ups are considered
under various driving regimes. In this work we present a novel method to extract photon
indistinguishability with experimental verification from a continuous wave laser measurement
and present results for driving the system with a pulsed laser.

We present a theoretical study of a DBT SPS coupled with different photonic structures. The
structures considered are optical filters and cavities; where a cavity QED master equation model
is developed which accounts for all DBT–anthracene spectral features. For both structures we
show novel predictions of collection efficiency and photon indistinguishability.

Finally, we present calculations of a NV center coupled to an ultrasmall–mode–volume
cavity. Where this work shows that indistinguishable photon extraction is possible at non–
cryogenic temperatures and is readily applicable to other deterministic emitters.
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Flow state. An altered state of consciousness in which the mind functions at its

peak, time may seem distorted, and a sense of happiness prevails. In such a state the

individual feels truly alive and fully attentive to what is being done.

Medical Dictionary, (2009), Farlex and Partners
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1
MOTIVATIONS AND OVERVIEW

The search for an ideal on-demand efficient emitter of single photons has generated great
research efforts over the past couple of decades [32]. This drive predominantly stemmed

from E. Knill, R. Laflamme and G.J. Milburn, who proved in 2000, that quantum computing
(QC) is possible using only single photons, single photon detectors and linear optics [60]. Other
quantum information technologies that rely on single photons as the information carrier (or
qubit) include, quantum communication, quantum sensing and quantum networks [22, 62, 68].
Motivations for using photons as qubits originate from their niche properties, such as, their
ability to be easily manipulated with linear optics and weak interaction with their environment
which leads to high coherence. Moreover, dealing with photons allows for trivial integration
into fibre networks. A key requirement for several quantum information applications including
optical computation and quantum networks is two–photon interference [20]. For near–perfect
quantum interference to be achieved, an ideal source emits indistinguishable photons, which
infers that the interfering photons are identical in every way, including, polarization, spatial
mode and temporal profile [17, 59].

Single photon emitters can be classified into two subgroups, deterministic and probabilistic
sources. An example of a probabilistic source is a crystal with a non–linearity which enables
spontaneous parametric down conversion via non–linear processes [64]. For such crystals,
the bulk system is excited with a pump laser and two single photons termed the signal and
idler are emitted [12]. A benefit of these sources is the ability to herald photons which gives
the user confirmation of an emission event. The major draw back of these sources however,
is due to the probabilistic nature of single events, where if the source is driven too strongly
multi–photon emission events can occur reducing the purity [32]. Conversely, a deterministic
source can be thought of as a two–level system, where only one excitation can occur at any one
time and the corresponding relaxation leads to the emission of a single photon with near–unity
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efficiency. Examples of deterministic emitters include quantum dots (QDs) [116], defect centres
in diamond [29], single molecules [112] and defects in two–dimensional materials such as
hexagonal boron nitride [87]. It is important to note in practice, if collection efficiency isn’t near
unity and due to the inability to herald photons deterministic sources can hold probabilistic
properties. For the purpose of this thesis however the latter described sources will still be
termed ‘deterministic’ due to convention.

The focus of this thesis is on solid state deterministic quantum emitters and seeks to
characterise their optical properties and viability for quantum information applications. Open
quantum system techniques are used to model the emitters and their environments. The
bulk of this thesis considers the single molecule emitter dibenzoterrylene (DBT). A model
is developed which captures all spectral features and the origin of the phonon dephasing
mechanisms are underpinned, where particular attention is paid towards the structure of
the phonon environments. Research on the effect of exciting this molecule under different
driving regimes is presented, including considerations of using either a continuous wave
(cw) or pulsed laser. The well known Hong–Ou–Mandel experiment is simulated under these
different regimes and a novel approach to extract the photon indistinguishability via a cw
measurement is found and experimentally verified by collaborators, where this extraction
technique is readily adaptable for other solid state emitters [104].

The final sections of this thesis are regarding coupling emitters to different photonic
structures, starting with DBT. Structures include a waveguide filter and an optical micro–
cavity. The motivation for this work is to investigate how the emission properties can be
manipulated using such structures and calculate predictions of photon indistinguishability
and efficiency for each case. The DBT cavity work detailed here supports the experimental
efforts lead by Kyle D. Major, outlined in his thesis [72], who is working on developing an
optical micro–cavity under Alex S. Clark’s group at Imperial College London which enhances
DBT molecule emission. In these calculations the parameter constraints for the optical micro–
cavity are relaxed allowing for the calculation of optimal cavity parameters to maximise
detection efficiency and indistinguishability over a wider cryogenic temperature range. This
modification of the system parameters manipulates the model to reflect different photonic
cavity structures.

Finally, original work on a different kind of solid state quantum emitter, a nitrogen vacancy
defect centre in diamond (NV center) is presented. In this chapter calculations coupling a
NV center to an ultrasmall–mode–volume cavity, reflecting recent developments in cavity
engineering, are found [51]. Here, a cavity QED master equation model is developed, in which
the NV center has been modelled with and without linear strain which causes a polarisation
splitting of the excited states. It is important to capture this linear strain as it is known to arise
from defects in the crystal structure [37]. The motivation of this work is to investigate if using
these ultrasmall–mode–volume cavities allows for efficient indistinguishable emission from a

2



deterministic emitter at temperatures above the cryogenic limit at ≥ 200 K, where this base
temperature can be obtained with Peltier cooling.
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2
INTRODUCTORY THEORY

This chapter details the theoretical framework used throughout this thesis. Initially, density
operator formalism is presented leading on to the description of closed and open quantum

systems (OQS). To characterise the dynamics of open quantum systems the theory of master
equations is then introduced. This chapter then presents the theory of harmonic oscillators
and how they are commonly used to describe photonic and phonon environments coupled to
an open quantum system. Finally, the system–environment interaction between an electron
and lattice phonons is derived to first order with respect to lattice displacements following the
reference [71]. This interaction is then taken to second order using a novel approach, where
the motivation for capturing phonon anharmonicity arises from the desire to capture certain
phonon mediated dephasing in single photon sources.

2.1 Closed and open quantum systems

A closed quantum system is one where there is no exchange of information (matter or energy)
with another system or environment. To describe the dynamical behaviour of such systems,
the following Schrödinger equation can be used, given by

ih̄∂t |Ψ⟩ = H |Ψ⟩ , (2.1)

where H is the time independent system Hamiltonian which is a Hermitian operator, and |Ψ⟩
is the state vector of the system. Solving this partial differential equation gives

|Ψ(t)⟩ = U(t, t0) |Ψ(t0)⟩ , (2.2)

where U(t, t0) = e−iH(t−t0)/h̄ is the unitary time evolution operator, which propagates the
state from t0 → t. In nature it is rare that a system can be treated as closed due to interaction
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with environmental degrees of freedom. To account for this one turns to the theory of open
quantum systems (OQS). The theory of OQS seeks to describe the dynamical behaviour of the
system which includes interactions from an environment. In OQS theory, the system can be
described explicitly, whereas the environment cannot, and therefore it is desirable to describe
the influence of the environment by a set of parameters. A well explored physical example of
an open quantum system is a semiconductor quantum dot (QD). The QD system can be treated
as a two–level quantum system, which interacts with a solid-state phonon lattice environment.
The interaction between some sub-system and its environment leads to the inability to describe
the subsystem as a state vector, and instead one must use density operators [15]. The dynamics
of both closed and open quantum systems are outlined in following sections, which starts by
detailing the properties of density operators.

2.1.1 Density operator

The density operator can be defined as a statistical mixture of pure quantum state vectors{
|Ψi⟩

}
[38], given by

ρ = ∑
i

wi |Ψi⟩ ⟨Ψi| , (2.3)

where the set of real numbers
{

wi
}

represent the state probabilities and satisfy the following
conditions, 0 ≤ wi ≤ 1 and ∑i wi = 1. General properties of the density operator include,
hermiticity ρ = ρ†, normalisation Tr(ρ) = 1 and positivity ρ ≥ 0 [33]. When all objects in an
ensemble are in the same state one can define a pure state from ρPURE = |Ψ⟩ ⟨Ψ|. For a pure
state the following normalisation condition holds Tr

(
ρ2

PURE

)
= 1; where if Tr(ρ2) < 1 the state

is mixed.

The expectation value for an operator A can be expressed as an ensemble average of the
expectation values for each quantum state as

⟨A⟩ = ∑
i

wi ⟨Ψi|A|Ψi⟩ . (2.4)

Inserting the resolution of identity 1 = ∑j |j⟩⟨j| where,
{
|j⟩
}

is a complete basis set, gives

⟨A⟩ = ∑
i,j

wi ⟨Ψi|A|j⟩ ⟨j|Ψi⟩ ,

= Tr
(

A ∑
i

wi |Ψi⟩⟨Ψi|
)
,

= Tr
(

Aρ
)
.

(2.5)

Where the definition of the trace has been used, which is

Tr(Z) = ∑
j
⟨j|Z|j⟩ . (2.6)
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2.1.2 Dynamics of closed quantum systems

For a closed system all of the states in the basis
{
|Ψi⟩

}
evolve according to the Schrödinger

equation, (2.1). One can differentiate the mixed state to form the von Neumann equation [15]

∂tρ(t) = ∑
i

wi

(
(∂t |Ψi(t)⟩) ⟨Ψi(t)|+ |Ψi(t)⟩ (∂t ⟨Ψi(t)|)

)
,

= − i
h̄
[
H(t), ρ(t)

]
,

(2.7)

where ∂t |Ψi(t)⟩ = − i
h̄ H(t) |Ψi(t)⟩ and ∂t ⟨Ψi(t)| = i

h̄ ⟨Ψi(t)| H(t) have been used. To prop-
agate the density matrix in time from (t0 → t) the unitary time evolution operators can be
applied such that, ρ(t) = U(t, t0)ρ(t0)U†(t, t0). The equation in Eq. (2.7) is often expressed in
the convenient form

∂tρ(t) = L(t)ρ(t), (2.8)

where L(t) is the Liouvillian super–operator which maps operators to operators.

2.1.3 Dynamics of open quantum systems

When dealing with open quantum systems one has to consider mixed states, as at the very least
the total system consists of two substates corresponding to the system and an environment. To
work with mixed states it is useful to utilise the formalism of reduced density operators which
will now be outlined. Reduced density operators allow one to explicitly write down the density
operator for one part of the larger composite system. For example, consider a system (S), with
basis {|si⟩} which acts only over the system sub space, and environment (E), with basis states
{
∣∣ej
〉
} that act only in the environment space. The subsequent interacting composite system

can be represented by the density operator ρSE. Now introducing the reduced density operator
which describes the state of the system as

ρS = TrE(ρSE). (2.9)

where TrE(Z) = ∑j
〈
ej
∣∣Z∣∣ej

〉
defines the partial trace over the environment, which acts only

on the Hilbert space of E. This definition of reduced density operator can be used to find the
expectation value for the operator AS, which acts only on the subsystem S. First, representing
this operator in the full Hilbert space as ⟨A⟩ = Tr(AS ⊗ 1EρSE), it can be written

⟨A⟩ = Tr(AS ⊗ 1EρSE),

= TrS(ASρS).
(2.10)

The reduced density operator ρS describes all measurements of the system, given that the envi-
ronment is not observed. Conversely, to find the reduced density operator of the environment
one has to take the trace of the composite density operator over the system subspace instead.

7



CHAPTER 2. INTRODUCTORY THEORY

To reiterate, for closed quantum systems the state dynamics are governed by the Schrödinger
equation, where the time evolution of a closed system is mediated with a unitary operator. In
general this approach is not possible for open quantum systems due to classical improbability
which arises from environment interference [15]. To model the dynamics for open quantum
systems it is instead useful to describe the temporal evolution of the density matrix. The
equation of motion used to describe this temporal evolution with respect to the density matrix
is known as a quantum master equation. In other words, a master equation is a differential
equation which describes the evolution of state probabilities [103]. In the following section a
microscopic derivation of a quantum master equation is described using Born–Markov ap-
proximations. A Hamiltonian decomposition method is outlined which allows for evaluation
of such a master equation with an arbitrary system and environment. Finally, the specialised
case of a Markovian Lindblad master equation is detailed.

2.1.4 Master equations

Starting with the open quantum system described by the general Hamiltonian H = HS + HE +

HI, where HS and HE represent the Hamiltonian of the system and environment, respectively.
The interaction Hamiltonian is given by HI, where this term captures the exchange of infor-
mation between the system and the environment and is what makes the quantum system
‘open’. It is desirable to find the continuous time evolution of the open quantum system, as
was shown for the closed case in section (2.1.2). To do so a microscopic derivation of the master
equation is first derived. The benefit of this approach is it allows for the derivation to be from
first principles i.e. from the Hamiltonian of the complete open system.

2.1.4.1 Microscopic derivation

The microscopic derivation of master equation from first principles is possible for certain
assumptions. For the purpose of this thesis the example of an OQS in the weak coupling limit
is derived, as this is applicable to the physical systems explored.

To begin it is desirable to move into interaction picture, which requires the following
unitary transformation,

ρ̃(t) = U†
0 (t)ρ(t)U0(t), (2.11)

where U0(t) = US(t)UE(t) = exp[−i(HS + HE)t/h̄] [15]. Applying this unitary transformation
on Eq. (2.7) gives the von Neumann equation in the interaction picture, as

∂tρ̃(t) = − i
h̄

[
H̃I(t), ρ̃(t)

]
, (2.12)

where the relation H̃I(t) = U†
0 (t)HIU0(t) has been used. Integrating this expression to find

ρ̃(t) = ρ(0)− i
h̄

∫ t

0
ds
[

H̃I(s), ρ̃(s)
]
, (2.13)
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where it has been assumed that at an initial time of t = 0 the quantum states of the interaction
and Schrödinger picture coincide, such that, ρ̃(0) = ρ(0). Substituting this solution into
Eq. (2.12) and taking the trace over the environment subspace we find

∂tρ̃S(t) = − 1
h̄2

∫ t

0
dsTrE

(
[H̃I(t), [H̃(s), ρ̃(s)]]

)
, (2.14)

where
TrE

([
H̃I(t), ρ(0)

])
= 0, (2.15)

has been assumed. To further simplify the above equation a few approximations are now
made. The first being the Born approximation, which allows for the factorisation of the system
and environment density reduced operators on the assumption of weak coupling, such that
ρ̃(t) = ρ̃S(t)ρE; where the time dependence of ρE is dropped due to the assumption the
environment is in a steady state. Finally, the Markovian approximation is applied, which firstly
involves, replacing ρ̃S(s) with ρ̃S(t) in the integral, as this ensures that the evolution of the
system at time t is dependent only on the state at that instant and the initial state preparation;
making the equation local in time. Additionally, making the substitution of variables τ = t − s
and taking the limit of the integral to infinity leads to a Markovian master equation, given by

∂tρ̃S(t) = − 1
h̄2

∫ ∞

0
dτTrE

(
[H̃I(t), [H̃(t − τ), ρ̃S(t)ρE]]

)
, (2.16)

as the evolution no longer depends upon the initial state. Taking the limit to infinity here is
justified so long as the integrand vanishes fast in the limit of τ being greater than the time in
which the environment correlation functions decay, τE. These final assumptions capture the
Markovian approximation, which ensures the evolution of the state of the system depends
only on the state at that instant [44]. Finally, moving back to the Schrödinger picture by using
the relation ∂tρS(t) = −i[HS, ρS(t)] + US(t)(∂tρ̃S(t))U†

S(t) gives the the following equation

∂tρS(t) = − i
h̄
[HS, ρS(t)]−

1
h̄2

∫ ∞

0
dτTrE

(
[HI, [H̃I(−τ), ρS(t)ρE]]

)
. (2.17)

Where this equation is valid to second order with respect to the interaction Hamiltonian.
Making the above approximations this equation is termed the second–order Born–Markov
master equation and will be used throughout this thesis as a tool to describe the evolution of
open quantum systems models.

2.1.4.2 Hamiltonian decomposition

To further this derivation a generalised decomposition of the open quantum system Hamil-
tonian can be substituted into the second order Born–Markov master equation. To begin one
writes the interaction Hamiltonian as a decomposition of the general system operators Ai and
environment operators Bi [19], giving

HI = ∑
i

Ai ⊗ Bi. (2.18)
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The time evolved interaction Hamiltonian can therefore be found from

H̃I(t) = ∑
i

Ãi(t)⊗ B̃i(t), (2.19)

where Ãi(t) = eiHSt/h̄ Aie−iHSt/h̄ and B̃i(t) = eiHEt/h̄Bie−iHEt/h̄. Substituting this interaction
Hamiltonian H̃I(t) into the Born–Markov master equation shown in Eq. (2.17) we find

∂tρS(t) = − i
h̄
[HS, ρS(t)]−

1
h̄2 ∑

ij

∫ ∞

0
dτ TrE

(
[Ai ⊗ Bi, [Ãj(−τ)⊗ B̃j(−τ), ρS(t)ρE]]

)
. (2.20)

Factorising the system and environmental terms and using the cyclic property of a trace gives

∂tρS(t) =− i
h̄
[HS, ρS(t)]−

1
h̄2 ∑

ij

∫ ∞

0
dτ
(
[Ai, Ãj(−τ)ρS(t)]TrE

(
Bi B̃j(−τ)ρE

)
+ [ρS(t)Ãj(−τ), Ai]TrE

(
B̃j(−τ)BiρE

))
.

(2.21)

Considering now the environmental terms by firstly defining the environment correlation
functions with

Cij(τ) = TrE
(

Bi B̃j(−τ)ρE
)
. (2.22)

Making use of Fourier decomposition to explicitly express the system operators time depen-
dence as

Ãi(τ) = ∑
ν

e−iντ Ai(ν), (2.23)

where ν = λm − λn is the difference in the system Hamiltonian eigenvalues and Ai(ν) =

∑n−m=ν |n⟩⟨m| ⟨n|Ai|m⟩ [15]. Combining decomposed system operators with the master equa-
tion shown in Eq. (2.21) to find

∂tρS(t) =− i
h̄
[HS, ρS(t)]−

1
h̄2 ∑

ij
∑
ν

(
Kij(ν)[Ai, Aj(ν)ρS(t)]

+ K∗
ji(ν)[ρS(t)A†

j (ν), Ai]
)

.

(2.24)

Where A†
i (ν) = Ai(−ν) and the environment response function has been introduced which

absorbs the exponent as

Kij(ν) =
∫ ∞

0
dτCij(τ)eiντ, (2.25)

noting that the Markovian approximation has been assumed here such that the upper integra-
tion limit has been taken to t → ∞, which implies the evolution depends on only the systems
present state [44]. To simply this model the response function can be split into its real and
imaginary components, defining

Kij(ν) =
1
2

γij(ν) + iSij(ν). (2.26)
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Substituting this into Eq. (2.24) along with the assumption that the decomposition operators
are Hermitian Ai(τ) = A†

i (τ), gives

∂tρS(t) =− i
h̄
[HS, ρS(t)]−

1
h̄2 ∑

ij
∑
ν

(1
2

γij(ν)[Ai, Aj(ν)ρS(t)− ρS(t)A†
j (ν)]

+ iS∗
ji(ν)[Ai, ρS(t)A†

j (ν) + Aj(ν)ρS(t)]
)

,

(2.27)

where the term multiplied by the imaginary part of the response function Si(ν) is a Lamb shift
which renormalises the system Hamiltonian by HLS such that

∂tρS(t) = − i
h̄
[HS + HLS, ρS(t)]−

1
2

1
h̄2 ∑

ij
∑
ν

γij(ν)[Ai, Aj(ν)ρS(t)− ρS(t)A†
j (ν)]. (2.28)

To define a general Lindblad master equation in its typical form, as the matrix of ∑ij γij(ν) is
inherently positive [75], Eq. (2.28) can be diagonalised using an appropriate unitary operator P
to find

Pγ(ν)P† =


r1(ν) 0 · · · 0

0 r1(ν) · · · 0
...

...
. . . 0

0 0 0 rN(ν)

 . (2.29)

Where ri(ν) are non–negative eigenvalues and the master equation can now be found in a
diagonal form to find

∂tρS(t) = − i
h̄
[HS + HLS, ρS(t)]−

1
h̄2 ∑

i,ν
ri(ν)

(
Li(ν)ρS(t)Li(ν)

† − 1
2
{Li(ν)

†Li(ν), ρS(t)}
)

.

(2.30)
This equation contains the newly defined Lindblad operators Li(ν), which can be found from
Ai(ν) = ∑k PkiLi(ν). When considering physical dissipators the eigenvalues ri(ω) will be
revealed to represent the relaxation rates for the corresponding decay modes and depend on
the environment correlation terms [15]. To go further in this analysis, it is necessary to consider
some properties of the system–environment coupling to reveal the form of these relaxation
rates.

2.2 Harmonic oscillator environments

The environments necessary to model solid–state single photon sources, the focus of this
thesis, are photonic and phonon baths. A photonic bath describes the electromagnetic field
and phonons are a quasi–particle arising from the quantisation of vibrations of atoms in a
lattice [71]. Characterising a photonic bath is necessary to describe the emission from a single
photon source. Phonons, on the other hand, mediate a vast amount of dephasing processes
in solid–state single photon sources. Both the electromagnetic field and a phonon bath can
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be well described by the harmonic oscillator model, which is first detailed in this section [71].
Different forms of bath correlation functions using bosonic operators are then derived which
are necessary to find the decay rates present in master equation when considering photonic
and phonon environments.

To model the influence on phonons in solid–state quantum emitters it is necessary to
consider the interaction between electrons and phonons. In the latter part of this section the
electron–phonon interaction Hamiltonian has been derived up to second order with respect
to the atomic displacements of a regular crystal lattice. This derivation is a novel extension
to that detailed in Many–Particle Physics by Gerald D. Mahan [71], which covers the linear
interaction. The derivation of the quadratic electron–phonon interaction presented here has
been published and can be found in the supplementary material of [23].

2.2.1 Harmonic oscillator

To describe bosonic systems such as phonons and photons, it is typical to use a harmonic
oscillator model, which in second quantisation holds the following Hamiltonian [71],

Hb = h̄ ∑
k

ωk[b†
kbk +

1
2
], (2.31)

where h̄ωk is the eigenenergy of a boson mode with wavevector k. The boson creation b†
k and

annihilation bk operators act on the fock space as

b†
α |n1 . . . nα, . . . , nN⟩ =

√
nα + 1 |n1 . . . (nα + 1), . . . , nN⟩ , (2.32)

and
bα |n1 . . . nα, . . . , nN⟩ =

√
nα |n1 . . . (nα − 1), . . . , nN⟩ , (2.33)

where
∣∣n1, n2, nj . . . , nN

〉
are Fock states with nj = 0, 1, 2 . . . for bosons (spin integer) and when

acting on the vacuum state one finds bα |0⟩ = 0. From this the boson number operator can
be defined as N = ∑k b†

kbk. This formalism to describe phonons and photons will be used
throughout this thesis.

2.2.2 Bosonic correlation functions

In this section two different bosonic bath correlation functions are derived. Both of these are
necessary when evaluating the response functions in Eq. (2.25) present in the microscopic
master equations developed throughout the bulk of this thesis.

2.2.2.1 Bosonic operators

First considering the bosonic annihilation (creation) operators b (b†) introduced in Eq. (2.32)
and (2.33). We define the operators B2 = ∑k gkbk with B1 = B†

2 which sums over the boson
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modes with wavevector k and weighted constants gk, and the time evolved counterpart
as B2(t) = ∑k gkbke−iωkt assuming ωk is the boson eigenenergy. Now considering the bath
correlation function from Eq. (2.22) for these operators we find

C12(τ) = TrE(B1B2(−τ)ρE),

= ∑
k,k′

gkgk′TrE(b†
kbk′ρE)eiωkτ. (2.34)

Next we evaluate the trace in this equation using the following definition of the thermal Gibbs
state [15], given by

ρE =
e−β ∑k ωkb†

kbk

TrE(e−β ∑k ωkb†
kbk)

, (2.35)

with β = 1/kBT. For the case where k ̸= k′ this gives TrE(b†
kbk′ρE) = 0 and for k = k′ the

following relation holds TrE(b†
kbkρEk) = (eβωk − 1)−1 [16]. Using these relations it can therefore

be defined
TrE(b†

kbk′ρE) = δkk′n(ωk). (2.36)

Substituting this trace back into Eq. (2.34) gives

C12(τ) = ∑
k
|gk|2n(ωk)eiωkτ,

=
∫ ∞

0
dω J(ω)n(ω)e±iωτ,

(2.37)

where the continuum limit has been taken using ∑k |gk|2 →
∫ ∞

0 dω J(ω) with J(ω) the spectral
density which can be defined generally as [65]

J(ω) = ∑
k
|gk|2δ(ω − ωk). (2.38)

This function fully captures the coupling strength between the system and the bath, weighted
by the bath density of states. To find the conjugate of this bath correlation function from
C21(τ) = TrE(B2B1(−τ)ρE) using TrE(bkb†

k′ρE) = δkk′(n(ωk) + 1) to find

C21(τ) =
∫ ∞

0
dω J(ω)(n(ω) + 1)e±iωτ. (2.39)

2.2.2.2 Displacement operators

The second bath correlation function considered here and used throughout this thesis is for the
operators

B± = e±∑k(
gk
ωk

b†
k−

g∗k
ωk

bk), (2.40)

which are a product of displacement operators such that, B± = ∏k D(±hk), with D(±hk) =

exp
[
±(hkb†

k − h∗kbk)
]

where hk = gk
ωk

. The time evolution of these operators can be written as
B±(τ) = U†

E(τ)B±UE(τ) = ∏k D(±hkeiωkτ) which gives

B±(τ) = e±∑k hk(b†
keiωkτ−bke−iωkτ). (2.41)

13
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The subsequent correlation function of these operators can therefore be expressed as

G(τ) = TrE(B−(τ)B+ρE),

= TrE

(
∏

k
D(−hkeiωkτ)∏

k′
D(hk′)ρE

)
,

= TrE

(
∏

k
D(−hkeiωkτ)D(hk)ρE

)
,

(2.42)

where last line is justified as the creation and annihilation operators that belong to different
modes k commute. Using the identity

exp
[
Â
]

exp
[
B̂
]
= exp

[
1
2
[Â, B̂]

]
exp

[
Â + B̂

]
, (2.43)

which is valid as long as [Â, B̂] is proportional to the identity [10], we find

∏
k

D(−hkeiωkτ)D(hk) = ∏
k

D(−hkeiωkτ + hk)e
1
2 (h

∗
ke−iωkτhk−hkeiωkτh∗k). (2.44)

Substituting this back into the trace in Eq. (2.42) and evaluating gives TrE(D(hk − hkeiωkτ)ρE) =

exp
[
− 1

2 |hk − hkeiωkτ|2 coth(βω/2)
]

[83]. Substituting this into the correlation function in
Eq. (2.42), we find

G(τ) = exp

[
∑
k
|hk|2(cos(ωτ)− 1) coth(βω/2)

]
exp

[
−∑

k
i sin(ωτ)|hk|2

]
. (2.45)

where trigonometry identities have been used. Taking the continuum limit as before using

∑k |gk|2/ω2
k →

∫ ∞
0 dω J(ω)/ω2 and splitting the time (in)dependent terms we find

G(τ) = exp
[∫ ∞

0
dω

J(ω)

ω2 (cos(ωτ)− i sin(ωτ))

]
exp

[
−
∫ ∞

0
dω

J(ω)

ω2 coth(βω/2)
]

. (2.46)

which can be expressed as
G(τ) = exp[ϕ(τ)] ⟨B⟩2 , (2.47)

with ϕ(τ) =
∫ ∞

0 dω J(ω)
ω2 (coth(βω/2) cos(ωτ)− i sin(ωτ)) and ⟨B⟩2 = e−ϕ(0).

2.2.3 Electron–phonon interaction

In this section the electron phonon interaction Hamiltonian is derived up to second order with
respect to the atomic displacements of a crystal lattice. Taking this interaction to second order
is not typically done [71], however as will be revealed in chapter 4 it is necessary to capture
some of the temperature dephasing mechanisms of solid–state single photon sources [1, 23].

To begin the Hamiltonian describing a lattice of ions interacting with a single electron
shown in Fig. 2.1 is defined as

H = He + Hp + Hei, (2.48)

14



2.2. HARMONIC OSCILLATOR ENVIRONMENTS

where He and Hp represent the electronic (system) and phonon (environment) parts of the
Hamiltonian respectively. The final term Hei is the electron–ion interaction Hamiltonian, where
this term can be written as

Hei = ∑
i

Vei(r − Ri). (2.49)

Each ion subscripted i and has position Ri = R(0)
i + Qi where R(0)

i is the equilibrium position
of the ions and Qi is a small displacement caused from the charge interaction with the electron.
This small displacement of a single ion in real space can be represented in second quantisation
(i.e. in terms of the bosonic creation (annihilation) operators b†

k (bk)) as

Qi = i ∑
k

( 1
2NMωk

)1/2
eik·R(0)

i (bk + b†
k)ξ̂k, (2.50)

where this expression sums over all of the phonon modes with lattice wavevectors k [71]. The
number of ions in the lattice is given by N, M is the ion mass and ωk is the eigenfrequency of
the mode. The polarisation vector is given by ξ̂k, which defines the direction of the quantised
lattice vibration for each wavevector k. Taking a Taylor expansion with respect to Qi gives

Vei(r − R(0)
i − Qi) = Vei(r − R(0)

i )− Qi · ∇Vei(r − R(0)
i )

+
1
2

Qi · ∇∇Vei(r − R(0)
i ) · Qi +O(Q3).

(2.51)

The first term in this expansion is constant and forms a periodic potential in the crystal lattice,
the solution to this is called the Bloch states of the solid. The linear term describes a displace-
ment of the potential well minimum or lattice deformation. The quadratic term, which captures
the anharmonicity, is typically neglected for many systems [71], however, as mentioned in the
introduction of this section it will be seen in chapter 4 for certain circumstances it is necessary
in order to fully capture phonon mediated dephasing processes. This quadratic term results
in fluctuations of the phonon occupancy numbers (change in phonon force constants) for the

𝑹𝑖 = 𝑹𝑖
(0)

+ 𝑸𝑖

𝒓
𝑒−

Figure 2.1: Lattice of ions with the indices i interacting with a single electron at position r.
The ions in their equilibrium positions (hollow circles) are at positions R(0)

i , whereas the ions

displaced by the electron charge (opaque circles) are at positions Ri = R(0)
i + Qi.
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diagonal terms and phonon normal coordinate scrambling (Raman scattering processes) for
the off–diagonal terms [1, 24]. In the next sections the linear and quadratic electron–phonon
interaction terms are independently derived from Eq. (2.51).

2.2.3.1 Linear electron–phonon coupling

Defining the linear electron–phonon potential in terms of the electron–ion potential by sum-
ming over all ions gives

V(1)
ep (r) = ∑

i
Qi · ∇Vei(r − R(0)

i ). (2.52)

To solve for the argument inside the sum of Eq. (2.52), first one expresses that the electron–ion
potential possess a Fourier transform of the form

Vei(x) =
1
N ∑

k
Vei(k)eik·x. (2.53)

Taking the derivative of this scalar field with respect to the real space variable x, we find

∇Vei(x) =
i
N ∑

k
kVei(k)eik·x, (2.54)

with ∇ f (x) = (∂x1 f (x), ∂x2 f (x), ∂x3 f (x)). Using this relationship to rewrite the linear electron–
phonon potential in Eq. (2.52), to find

V(1)
ep (r) =

i
N ∑

q,i
Qi · kVei(k)eik·(r−R(0)

i ),

=
i
N ∑

q,i
Qie−ik·R(0)

i · kVei(k)eik·r.
(2.55)

Transforming the second quantisation form of the lattice displacement shown in Eq. (2.50) into
reciprocal space as

i
N ∑

i
Qie−ik·R(0)

i = −
( 1

2NMωk

)1/2
ξ̂k(bk + b†

k),

= − 1√
N

Qk,
(2.56)

where it has been used that ∑i eik·R(0)
i e−ik·R(0)

i = N, and assuming the wavevector k goes only
over the first Brillouin zone (BZ) which holds so long as one considers low energy excitations
in the system [83]. Substituting Eq. (2.56) into the linear electron–phonon potential, it has been
found

V(1)
ep (r) = −

( 1
2NMωk

)1/2
∑
k

ξ̂k · kVei(k)eik·r(bk + b†
k). (2.57)

The Hamiltonian contribution for the linear electron–phonon coupling can be found from

H(1)
ep =

∫
d3rρ(r)V(1)

ep (r), (2.58)
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where the fermion density operator has been introduced, given by

ρ(r) = ∑
λ,η

c†
λcηψ∗

λ(r)ψη(r), (2.59)

ψλ(r) is the electronic wavefunction with the annihilation (creation) operator cλ (c†
λ) for the

electronic state λ. Substituting in the linear electron–phonon potential shown in Eq. (2.57), it
has been found

H(1)
ep = ∑

k
ρ(k)M(1)(k)(bk + b†

k), (2.60)

where the electron–phonon linear matrix element is given by

M(1)(k) = −
( 1

2NMωk

)1/2
ξ̂k · kVei(k). (2.61)

Noting in Eq. (2.58) the fermion density operator here is represented in wavevector space by
performing the Fourier transform ρ(k) =

∫
d3reik·rρ(r).

2.2.3.2 Quadratic electron–phonon coupling

Finding the quadratic electron–phonon interaction Hamiltonian by first writing the quadratic
potential as

V(2)
ep (r) =

1
2 ∑

i
Qi · ∇∇Vei(r − R(0)

i ) · Qi. (2.62)

Following the same methodology as for the linear case, it is assumed that the electron–ion
potential possesses a Fourier transform in the form

Vei(x) =
1

N2 ∑
k,k′

Vei(k + k′)ei(k+k′)·x, (2.63)

where k and k′ are the phonon mode wavevectors. The gradient of this function with respect
to the real space variable can be expressed as

∇Vei(x) =
i

N2 ∑
k,k′

(k + k′)Vei(k + k′)ei(k+k′)·x, (2.64)

which holds the form of a vector valued potential. Taking a second gradient again with respect
to the real space variable, now gives a scalar valued potential

∇∇Vei(x) = − 1
N2 ∑

k,k′
(k + k′) · (k + k′)Vei(k + k′)ei(k+k′)·x. (2.65)

Substituting in Eq. (2.65) into Eq. (2.62) to find the quadratic electron–photon potential as

V(2)
ep (r) = − 1

2N ∑
k,k′

Qk · (k + k′) · (k + k′)Vei(k + k′)ei(k+k′)·r · Qk′ . (2.66)
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where Eq. (2.56) has been used to convert Qi → Qk similar to the linear case. Finding the
quadratic Hamiltonian contribution by first substituting in Qk from Eq. (2.56) and integrating
over the charge density as shown in Eq. (2.59), gives

H(2)
ep =

1
2 ∑

k,k′
ρ(k + k′)M(2)(k, k′)(bk + b†

k)(bk′ + b†
k′), (2.67)

where the electron–phonon second order matrix element is

M(2)(k, k′) =
1

4NM
√

ωkωk′
ξ̂k · (k + k′) · (k + k′) · ξ̂k′Vei(k + k′). (2.68)

2.2.3.3 Electron–phonon matrix elements

It is advantageous to find an analytical form for the linear and quadratic form of these matrix
elements, M(1)(k) and M(2)(k, k′). Moreover, we now consider an ideal two–level system
with states i = {e, g}, assuming that transitions to higher order electronic states are neglected
due to large energy splitting separations. Substituting in the resolution of identity over the
two–dimensional system Hilbert space, the linear and quadratic interaction Hamiltonian can
therefore be written as

Hep = h̄ ∑
i,j

|i⟩⟨j|∑
k

gk(bk + b†
k) + h̄

1
2 ∑

i,j
|i⟩⟨j| ∑

k,k′
fk,k′(bk + b†

k)(bk′ + b†
k′), (2.69)

with the linear and quadratic electron–phonon coupling strengths gk = ⟨i|M(1)(k)ρ(k)|j⟩
and fk,k′ = 1

2 ⟨i|M(2)(k, k′)ρ(k + k′)|j⟩, respectively. We can simplify this expression further
by neglecting the off diagonal matrix elements ⟨e|. . .|g⟩ and ⟨g|. . .|e⟩, as typical longitudinal
acoustic phonon energies (∼ meV) are not sufficient to drive transitions between the ground
and excited state (∼ eV). Moreover, the ground state matrix elements are normalised to zero
giving

Hep = h̄ |e⟩⟨e|∑
k

gk(bk + b†
k) + h̄

1
2
|e⟩⟨e| ∑

k,k′
fk,k′(bk + b†

k)(bk′ + b†
k′), (2.70)

with the strengths gk = ⟨e|M(1)(k)ρ(k)|e⟩ and fk,k′ = 1
2 ⟨e|M(2)(k, k′)ρ(k + k′)|e⟩, respec-

tively. Substituting the electron density in reciprocal space ρ(k) =
∫

d3r ∑λ,η c†
λcηψ†

λ(r)ψη(r)eik·r

where λ, η = {e, g}, into the linear and quadratic coupling strengths gives

gk = ∑
η,λ

∫
d3rψ†

η(r)ψλ(r)eik·r ⟨e|M(1)(k)c†
ηcλ|e⟩ , (2.71)

fk,k′ =
1
2 ∑

η,λ

∫
d3rψ†

η(r)ψλ(r)ei(k+k′)·r ⟨e|M(2)(k, k′)c†
ηcλ|e⟩ . (2.72)

Substituting in the equation for M(1)(k) and M(2)(k, k′) and assuming the electron–ion po-
tential is equal to a constant deformation potential such that, Vei(k) → Dα with α = {e, g}, to
find

gk =
( k2

2NMωk

)1/2
∑
α

Dα

∫
d3r|ψα(r)|2eik·r, (2.73)
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2.2. HARMONIC OSCILLATOR ENVIRONMENTS

fk,k′ =
1

4NM
√

ωkωk′
(k′ + k cos θkk′)(k + k′ cos θkk′)∑

α

Dα

∫
d3r|ψα(r)|2ei(k+k′)·r, (2.74)

where θkk′ is the angle between k and k′ wave vectors.
In the presented formulation the terms quadratic in the phonon displacements arise because

the electron–phonon coupling is taken to second-order with respect to the atomic displacements
of the crystal lattice. In this approach anharmonicity of the phonon modes is accounted for
through their coupling to the electronic degrees of freedom. A different approach, typically
used to characterise quantum dots, can give rise to similar quadratic terms. In this method
the two–level electronic system assumption is relaxed, allowing for transitions to a higher
lying electronic state, where the inclusion of this state gives rise to virtual phonon transitions
between the first excited and higher order state which captures the phonon anharmonicity [81].
As will be seen in chapter 4 different platforms such as a single molecule require the derived
approach displayed above to accurately account for these effects.

19





C
H

A
P

T
E

R

3
OPTICAL PROPERTIES OF A QUANTUM EMITTER

This chapter reviews general optical properties of solid state quantum emitters covered
through this thesis. Firstly, the dynamics of an ideal two–level system (TLS) coupled to

a photonic environment capturing spontaneous emission is detailed and the corresponding
emission spectrum is found. This generic TLS is then further coupled to a phonon environment,
where the resultant effect on the emission is presented and discussed. The next optical property
introduced in this section is the second order correlation measurement found from both a
Hanbury Brown and Twiss (HBT) and Hong–Ou–Mandel (HOM) experiment. The emitter
properties that can be revealed from these experiments are then discussed. Finally, the effect
on spectral wandering of a quantum emitter is analysed where this work extends up on the
reference given in [42] by including the effect from an emitter simultaneously undergoing pure
dephasing.

3.1 Photonic environment

Deterministic quantum emitters in the most primitive sense can be modelled as a general
optically active two–level electronic system (TLS), shown in Fig. 3.1. The ground |g⟩ and
excited state |e⟩ are split with energy EX. The excited state has lifetime T1 and a spontaneous
decay rate Γ1 = 1/T1. To model the optical properties corresponding to this TLS, this system is
weakly coupled to a quantised vacuum electromagnetic (EM) field environment. Describing
this photonic environment as a harmonic oscillator with annihilation (creation) operators cl(c†

l )

for mode l, the following spontaneous emission (SE) Hamiltonian can be used

HSE = HS + HEM + HEM−TLS
I , (3.1)

where the system term describes the electronic two–level system HS = EXσ†σ and σ = |g⟩⟨e| is
the dipole operator. The electromagnetic field environment term is given by HEM = h̄ ∑l νlc†

l cl
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ۧ|𝑒

ۧ|𝑔

Γ1EX
Environment

Two-level

System

Figure 3.1: Two–level electronic system with a ground state |g⟩ and excited state |e⟩, split by
energy EX. The spontaneous decay rate from the excited state is given by Γ1 and the system
coupled to some arbitrary environment.

where νl is the frequency for electromagnetic mode l. The final term represents exciton–
photon interaction which in its most general form is given by the Hamiltonian in the dipole
approximation [110], as

HEM−TLS
I = −d · EEM, (3.2)

where d is the dipole dot operator which can be expressed in terms of the single emitter basis as
d = dgeσ + degσ† with the dipole moment dge = ⟨g|d|e⟩ and deg = d†

ge. The vacuum photonic
continuum field in Eq. (3.2) is given by

EEM = −∑
l

el

√
h̄νl

2ϵ0V
(c†

l + cl), (3.3)

where el is a polarisation vector of the photon mode l, V is the quantisation volume and ϵ0 is
the permittivity of free space [39, 83]. Finding the interaction Hamiltonian from these vectors
gives

HEM−TLS
I = h̄ ∑

l
(σ† + σ)(p∗l c†

l + plcl), (3.4)

where the constants are wrapped into the linear coupling strength given by pl = −
√

h̄νl
2ϵ0V el ·

dge/h̄. Expanding the terms in Eq. (3.4) and moving into the interaction picture by

H̃I(−τ) = U†
0 (−τ)HIU0(−τ), (3.5)

with U0(t) = exp[−i(HS + HEM)t/h̄], to find

H̃EM−TLS
I = h̄ ∑

l
(p∗l σ†c†

l ei(ωX+νl)t + p∗l σc†
l ei(νl−ωX)t + plσ

†clei(ωX−νl)t + plσcle−i(νl+ωX)t), (3.6)

where ωX = EX/h̄ is the emission frequency of the TLS. To simplify this equation the rotating–
wave approximation (RWA) can be invoked which allows for the removal of the fast oscillating
terms. To make this approximation firstly it is assumed that dipole operators couple to the
electromagnetic environmental modes close to resonance, where this allows for two different
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timescales to be clearly identified. These different timescales correspond to the slow/fast
oscillating terms dependent on ±(νl − ωX)/±(νl + ωX) in Eq. (3.6), respectively. For these fast
oscillating terms, it is expected that they average to zero over the relevant timescale of the
system relaxation time, allowing for their removal [15]. Safely neglecting these off–resonant
terms and moving back into the standard frame leads to

HEM−TLS
I = h̄ ∑

l
pl(σc†

l + σ†cl). (3.7)

To find the emission spectrum for this Hamiltonian, a Born-Markov master equation is now
derived.

3.1.1 Spontaneous emission master equation

In order to find a master equation that describes a TLS coupled to a photonic environment,
first Eq. (2.17) needs to be evaluated. To solve this the interaction picture Hamiltonian from
Eq. (3.5) needs to be found, giving

H̃S−EM(−τ) = h̄σe−iωXτC†(−τ) + h.c., (3.8)

where C(−τ) = ∑l plcleiνlτ. Inserting the expressions for HS−EM and H̃S−EM(−τ) into the
integral shown in Eq. (2.17) gives

∂tρS(t) = − i
h̄
[
HS, ρS(t)

]
− 1

h̄2

∫ ∞

0
dτTrE

(
[HS−EM, [H̃S−EM(−τ), ρS(t)⊗ ρE]]

)
. (3.9)

To solve the integral in this equation the photonic environment correlation functions need
to be evaluated. Drawing on the section on bosonic operators in (2.2.2.1) and as the photonic
bath is assumed in vacuum the temperature of this environment is effectively 0 K, leading to
the only non–zero correlation function to be

TrE(CC†(−τ)ρE) =
∫ ∞

0
dνJEM(ν)(n(ν) + 1)eiντ

=
∫ ∞

0
dνJEM(ν)eiντ = χ(τ),

(3.10)

as n(ν) = (e−βν − 1)−1 the Bose occupation number is zero for a vacuum continuum and
JEM(ν) = ∑l |pl |2δ(ν − νl) is the photonic spectral density. Substituting the non–zero correla-
tion function into Eq. (3.9) gives

∂tρS(t) = − i
h̄
[
HS, ρS(t)

]
−
( ∫ ∞

0
dτχ(τ)e−iωXτ

(
σ†σ(-τ)ρS(t)− σ(-τ)ρS(t)σ†

)
+ h.c.

)
(3.11)
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Solving for the environment response function from Eq. (2.25) gives

K(ωX) =
∫ ∞

0
dτχ(τ)e−iωXτ,

=
∫ ∞

0
dω

∫ ∞

0
dτ JEM(ω)ei(ω−ωX)τ,

=
∫ ∞

0
dωπ JEM(ω)δ

(
ω − ωX

)
+ iP

∫ ∞

0
dω

JEM(ω)

ω − ωX
,

= π JEM(ωX) + iP
∫ ∞

0
dω

JEM(ω)

ω − ωX
.

(3.12)

Where the evaluation of this integral into its real and imaginary parts is found using the
Sokhotski-Plemlj theorem [15], which in its general form for a function f (ω) is∫ ∞

0
dω

∫ ∞

0
dτ f (ω)e±i(ω−ν)τ =

∫ ∞

0
dωπ f (ω)δ

(
ω − ν

)
± iP

∫ ∞

0
dω

f (ω)

ω − ν
, (3.13)

where P is the Cauchy principal value. Substituting the response function in Eq. (3.12) back
into the master equation in Eq. (3.11) to find

∂tρS(t) = − i
h̄
[HS, ρS(t)] +

(
π JEM(ωX) + iP

∫ ∞

0
dω

JEM(ω)

ω − ωX

)
Lσ[ρS(t)], (3.14)

where LA[ρ(t)] = Aρ(t)A† − 1
2

{
A† A, ρ(t)

}
is the Lindblad operator. The term multiplied by

the imaginary contribution of the response function is known as a Lamb shift, as it acts to
renormalise the system Hamiltonian by HLS such that,

∂tρS(t) = − i
h̄
[HS + HLS, ρS(t)] + π JEM(ωX)Lσ[ρS(t)], (3.15)

where this term corresponds to vacuum fluctuations of the electromagnetic field induced by
the system–photonic bath coupling [15]. For the case of a vacuum photonic field it is expected
that the Lamb shift energy for atomic–like systems is negligible compared to the system energy
splitting (which for typical quantum emitters gives HS ∼ 1 eV). Moreover, when modelling
a systems properties it can be advantageous to represent the master equation in a rotated
frame with respect to this renormalised system Hamiltonian, rendering its absolute value
inconsequential (in particular for the systems considered in this thesis, where the Lamb shift
contributions negligible). This rotation can be performed using ρR(t) = UR(t)ρS(t)U†

R(t) with
UR = exp[i(HS + HLS)t] where using [HS, HLS] = 0, gives

∂tρR(t) = π JEM(ωX)Lσ[ρR(t)], (3.16)

where this removes the commutator term and now the system energy is normalised to zero.

3.1.2 Emission spectrum

Now the master equation for this system is found, the one color emission spectrum can be
evaluated, where this can be defined by [110]

S(ω) = 2 Re
[ ∫ ∞

0
dτg(1)(τ)e−iωτ

]
, (3.17)
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which is the Fourier transform of the time averaged first order correlation function of the
electric field operator given by

g(1)(τ) =
∫ ∞

0
dt
〈

E†(t + τ)E(t)
〉

. (3.18)

Defining the positive frequency component of the electric field operator with E(t) = ∑l cl(t),
where to solve for E(t) the following Heisenberg equations of motion can be evaluated

ċl(t) = −i[H(t), cl(t)], (3.19)

which for this Hamiltonian gives [56]

ċl = −iνlcl(t)− iplclσ(t). (3.20)

Solving this equation of motion by first using the product rule we find

∂

∂t
{cl(t)eiνt} = iνcl(t)eiνt +

∂cl(t)
∂t

eiνt. (3.21)

Substituting in ċl(t) and using the Fourier variable c̃l(ν) =
∫ ∞
−∞ dtcl(t)eiνt to find

∂

∂t
{cl(t)eiνt} = i(ν − νl)cl(t)eiνt − iplσ(t)eiνt, (3.22)

∫ ∞

−∞
∂{cl(t)eiνt} = i

∫ ∞

−∞
∂t
(
(ν − νl)cl(t)eiνt − plσ(t)eiνt). (3.23)

Solving the above integrals this can be rearranged to give

c̃l(ν) =
pl
∫ ∞
−∞ dtσ(t)eiνt

(ν − νl)
=

plΞ(ν)
(ν − νl)

, (3.24)

where Ξ(ν) =
∫ ∞
−∞ dtσ(t)eiνt. Summing over the modes to find the electric field operator we

find Ẽ(ν) = ∑l c̃l(ν) = ∑l
pl

(ν−νl)
Ξ(ν). Next taking the continuum limit such that ∑l

pl
ν−νl

→∫ ∞
∞ dω

p(ω)
ν−ω . Solving this improper integral using the Cauchy principal value P and the Kramers–

Kronig relations [9] to find

P
∫ ∞

−∞
dω

p(ω)

(ν − ω)
= −iπp(ν). (3.25)

To evaluate the photonic spectral density at ωX as required for the spontaneous emission dissi-
pator, one assumes this is unchanging for a non–driven emitter allowing for the assumption

JEM(ωX) = π2|p(ωX)|2

=
Γ1

(2π)
,

(3.26)

where Γ1 is the systems spontaneous decay rate. Now Fourier transforming back to the time
domain to find

E(t) = E0(t) +
√

Γ1/2π σ(t), (3.27)
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where E0(t) is the free field vacuum contribution. Substituting in the electric field operators in
to the first order correlation function to find

g(1)(τ) =
Γ1

2π

∫ ∞

0
dt
〈

σ†(t + τ)σ(t)
〉

, (3.28)

where the expectation value of the free field vacuum contribution is zero.

3.1.2.1 Quantum regression theorem

To solve the first order correlation function in the integrand of Eq. (3.28) the quantum regression
theorem can be used which is outlined in this section [48]. Expressing this equation in terms of
the trace over the system and environmental degrees of freedom〈

σ†(t + τ)σ(t)
〉
=

Γ1

2π
TrS+E[U†

0 (t + τ)σ†U0(t + τ)U†
0 (t)σU0(t)ρSE(0)], (3.29)

where ρSE(0) is the initial system-environment density operator. Inserting the resolution of
identity, the factorisation U(t + τ) = U(t)U(τ), and using the cyclic properties of the trace to
find 〈

σ†(t + τ)σ(t)
〉
=

Γ1

2π
TrS+E[σ

†U0(τ)σρS+E(t)U†
0 (τ)], (3.30)

Defining an effective density operator by partially tracing over the environmental degrees of
freedom

Λ(τ, t) = TrE[U(τ)σρS+E(t)U†(τ)], (3.31)

gives
〈
σ†(t + τ)σ(t)

〉
= Γ1

2π TrS[σ
†Λ(τ, t)]. Postulating the equation of motion for Λ(τ, t) as

∂τΛ(τ, t) = L
(
Λ(τ, t)

)
, which is analogous to a master equation ∂tρS(t) = L

(
ρS(t)

)
, where

Λ(0, t) = σρS(t), the time evolution of the effective density operator is found to be Λ(τ, t) =
eLτΛ(0, t), from which 〈

σ†(t + τ)σ(t)
〉
=

Γ1

2π
TrS[σ

†eLτσeLtρS(0)]. (3.32)

For the TLS-photonic open quantum system in question this can be analytically evaluated to
give

g(1)(τ, t) =
Γ1

2π
e−Γ1te−(Γ1/2)τ, (3.33)

where ρS(0) is initially in the excited state. Substituting this back into the equation for the
emission spectrum in Eq. (3.17) to find

S(ω) =
2Γ1

π(Γ2
1 + 4ω2)

. (3.34)

Here it can be concluded that the emission spectrum from an atomic two–level system coupled
to a Markovian photonic bath results in a Lorentzian function with full–width half maximum
Γ1. Using a master equation in a rotating frame with respect to the TLS energy, shown in
Eq. (3.16), to evaluate S(ω) the Lorentizan is centered on zero detuning, see Fig. 3.2 to visualise
this emission.
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Figure 3.2: Emission spectrum of a two–level system as a function of energy splitting detuning.
The spontaneous decay rate Γ1 characterises the full–width half maximum of the Lorentizan
function.

3.2 Phonon environment

For all solid state emitters the optically active electronic system is coupled to some lattice
environment. To describe the interaction between a two–level system and some bosonic field
the independent boson model can be utilised and is reviewed alongside the polaron transform
in this section.

3.2.1 Independent boson model and polaron transform

The independent boson model couples a TLS to a bosonic harmonic oscillator environment
(which is equivalent to a thermal phonon bath). To begin consider a Hamiltonian in the form

HIB = HS + HPH + HS−PH, (3.35)

with the two–level system (TLS) term HS = EXσ†σ as in Eq. (3.1). The phonon environment is
HPH = h̄ ∑k ωkb†

kbk, where b†
k(bk) are creation (annihilation) operators with wavevector k and

frequency ωk. The linear coupling term holds the form HS−PH = h̄σ†σ ∑k gk(b†
k + bk), with

coupling strength gk.
An analytical solution to the independent boson model can be found using a variety of

approaches [71]. In this section the polaron transform approach will be considered, as it will
be revealed that performing this transformation has beneficial consequences for modelling
phonon interactions. To move into the polaron frame, the following transform is acted on the
Hamiltonian HIB,P = UPHIBU†

P where

UP = σσ† + σ†σB+, (3.36)

with the phonon bath displacement operator shown in Eq. (2.40). Performing this transform
gives the polaron frame Hamiltonian to be

HIB,P = E′
Xσ†σ + HE, (3.37)
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where E′
X = EX − h̄ ∑k

g2
k

ωk
is the polaron shifted TLS energy splitting. It can be seen that

performing the polaron transform removes the interaction term HS−PH. To find the time
dynamics of this system, the reduced system density operator needs to be evaluated from

ρS(t) = TrE(U(t)ρS(0)ρE(0)U†(t))], (3.38)

where ρS(0)ρE(0) is factorised initial state complete density operator. The time evolution is
governed by a unitary time evolution operator, by U(t) = e−iHIBt which in the polaron frame
is U(t) = U†

Pe−iHIB,PtUP evaluating to [83]

U(t) = σσ†e−iHEt + σ†σe−iE′
XtB−e−iHEtB+. (3.39)

Noting evolving the system with a unitary is only possible in the polaron frame as it gives
a diagonal Hamiltonian by removing the interaction term. Evaluating Eq. (3.38) using the
definition of the trace in Eq. (2.6) to sum over the environmental basis |i⟩ = {g, e}, in matrix
notation gives

ρS(t) =

(
ρee(0) ρeg(0)e−iE′

XtG∗(t)
ρge(0)eiE′

XtG(t) ρgg(0)

)
(3.40)

where G(t) = TrE(B−(τ)B+ρE(0)) is the bosonic bath correlation function evaluated in
Eq. (2.47). It can be seen that only the off–diagonal density terms hold time dependence.
From performing this polaron transformation it can be seen that the phonon bath degrees of
freedom are included in this description of the system operator. The consequence of performing
this polaron transformation on the emission spectrum is now explored in the next section.

3.2.2 Phonon sideband emission

Considering now emission from a two–level system emitter coupled to both a photonic and
thermal phonon bath environment. The resultant Hamiltonian to describe such a system is
given by

H = HS + HE + HS−EM + HS−PH, (3.41)

where all terms are from the Hamiltonians in Eq. (3.1) and Eq. (3.35) and the environment
is given by HE = HPH + HEM. This open quantum system well captures emission from a
quantum dot coupled to its solid state lattice environment [55].

To find the optical dynamics of this system the Hamiltonian is subjected to a polaron
transformation as performed in the previous section. Applying HP = UPHU†

P using Eq. (3.36),
gives the transformed Hamiltonian is HP = E′

Xσ†σ + HE + HS−EM,P where

HS−EM,P = σC†B− + σ†CB+, (3.42)

where C = ∑l plcl and terms B± are defined in Eq. (2.40). In the polaron frame, the interaction
between the TLS and the thermal phonon environment has been rotated out and where the
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3.2. PHONON ENVIRONMENT

influence of this phonon bath is now present in system–EM interaction term. The second order
Born-Markov master equation for this system is equivalent to that written down in Eq. (3.14).
The difference between the model shown in section (3.1), is that now the basis is in the polaron
frame, where if this were to be moved back into the original frame the master equation would
be non-Markovian.

To calculate the one color spectrum for this system the Fourier transform of the first
order correlation function is required shown in Eq (3.17). To do so the electric field operator
E(t) which makes up g(1)(τ, t) in Eq. (3.18) is needed. Solving the electric field operator
from the Heisenberg equation of motion shown in Eq. (3.19), using the polaron transformed
Hamiltonian, it has been found that [55]

ċl = −iνlcl(t)− i flclσ(t)B−(t). (3.43)

Solving this equation of motion using the Fourier variable c̃(ν) =
∫

dtcl(t)eiωt, it has been
found that [55]

E(t) = E0(t) +

√
Γ1

2π
σ(t)B−(t), (3.44)

where E0(t) is the vacuum contribution which when taking expectation values can be neglected.
Using this definition of the electric field operators, it has been found

g(1)(τ) =
Γ1

2π

〈
σ†(t + τ)B+(t + τ)σ(t)B−(t)

〉
,

≈ Γ1

2π
g(1)(τ, t)G(τ),

(3.45)

where g(1)(τ, t) =
〈
σ†(t + τ)σ(t)

〉
is the photonic correlation function. The phonon correlation

function is given by G(τ) = ⟨B+(t + τ)B−(t)⟩ shown in Eq. (2.47). The factorisation of the
trace can be performed as a consequence of the Born approximation as it is assumed that
the system couples weakly to the phonon environment. Putting this in terms of the emission
spectrum gives

S(ω) =
Γ1

π
Re
[ ∫ ∞

0
dt
∫ ∞

0
dτg(1)(τ, t)G(τ)e−iωτ

]
, (3.46)

where the photonic correlation function can be computationally evaluated using the quantum
regression theorem and the phonon correlation function can be found numerically. To simulate
the emission spectrum for a two–level system coupled to a phonon bath, a typical quantum
dot (QD) emitter has been chosen. The sideband functional form for a QD is characterised
with the choice of the exciton–phonon spectral density JPH(ω). For QDs it is typical to use
a super Ohmic form to reflect the three–dimensional phonon bath and symmetric electronic
wavefunction with

JPH(ω) = ∑
k

g2
kδ(ω − ωk) = α ω3 exp

[
−ω2/ξ2]. (3.47)

29



CHAPTER 3. OPTICAL PROPERTIES OF A QUANTUM EMITTER

-6                        0             6

102

100

10-2

10-4

Detuning ℏω(meV)

E
m

is
s
io

n
 S

p
e
c
tr

a
 (

a
rb

) ZPL

SB(4K)

SB(10K)

Figure 3.3: Emission spectrum of a two–level system coupled to a thermal phonon bath
at 4 K and 10 K. Parameters used simulate linewidth limited quantum dot emission with
Γ1 = 0.15 ps−1, and sideband parameters α = 0.03 ps2 and ξ = 2.2 ps−1

Where α is the exciton–phonon coupling strength and ξ the high-frequency cut-off which is
inversely proportional to the spacial extent of the ground and exciton wavefunction [83]; a
detailed derivation for this functional form can be found in Appendix (A.1). This emission
spectrum simulated at 4 K and 10 K is shown in Fig. 3.3, where the parameters used to simulate
this system are taken from reference [55]. Comparing this spectrum to the ideal two–level
system model in Fig. 3.2, one can observe the broad continuous phonon sideband which
overlays the sharp Lorentzian peak also known as the zero phonon line (ZPL). The observed
sideband originates from the polaron frame treatment, as this allows for the explicit capture of
transitions to and from the phonon lattice bath. Emission into the negatively detuned sideband
originates from the decay into a phonon mode coupled to the ground state and the positively
detuned emission comes from an excitation into a phonon mode coupled to the excited state.
When considering the phonon sideband however, as the temperature decreases a reduction in
emission is observed as well as a shift to the negatively detuned frequency. This shift in the
sideband is due to a lower thermal energy found from kBT, which means fewer phonon modes
from the lattice are excited.

3.3 Second order correlation functions

Until now only the emission spectrum has been considered to explore the optical properties of a
single photon emitter, which is dependent on the first order correlation function. An alternative
approach to this, is to directly probe the second order correlation function, which allows for
two–photon interference effects to be explored. Second order correlation functions can be
found experimentally by interfering photons on a beam splitter and measuring coincidence
events with two detectors [59]. In this section two key experiments including, the Hanbury
Brown and Twiss and Hong–Ou–Mandel experiments are introduced and discussed.
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3.3.1 Hanbury Brown–Twiss experiment

𝐸𝑖𝑛(𝑡)

50:50 BS

Detector

𝐸2(𝑡)

𝐸1(𝑡)

Figure 3.4: Hanbury Brown and Twiss experimental set up, where Ein is the positive input field
and E1 and E2 are the positive fields detected by the detectors after passing through the 50 : 50
beam splitter (BS). The vacuum electric field is incident on the bottom half of the BS.

The most straight forward method to measure a second order intensity correlation function
is with a Hanbury Brown and Twiss (HBT) experiment, see figure 3.4. In this experiment there
is one source which gets split at a 50 : 50 beam splitter and the correlation between detection
events is measured. The HBT experiment is used to verify if a source is emitting temporally
separated single photons. If the source is a single photon emitter then there should be no
coincidence events between the two output detectors at τ = 0 leading to a signature dip to
zero.

Evaluating the second order correlation function by first defining the general form as

G(2)(t, τ) =
〈

E†
1(t)E†

2(t + τ)E2(t + τ)E1(t)
〉

. (3.48)

where τ is the difference time in detection events. This measurement probes the probability
of coincidence events between the two detectors. For the HBT set–up the detected electric
fields can be related to the single input field for a 50 : 50 beam splitter via the following matrix
operation (

E1(t)
E2(t)

)
=

1√
2

(
1 1
−1 1

)(
Ein(t)
E0(t)

)
, (3.49)

where E0(t) is the vacuum electric field incident on the bottom half of the beam splitter.
Solving this equation to find E1(t) = 1√

2
(Ein(t) + E0(t)) and E2(t) = − 1√

2
(Ein(t) + E0(t)).

Substituting the definitions of the output field into Eq. (3.48), where the expectation values of
the free field values average to zero, as are assumed to be in the vacuum state, and dropping
the ‘in′ subscripts to find

G(2)
HBT(t, τ) =

1
4

〈
E†(t)E†(t + τ)E(t + τ)E(t)

〉
. (3.50)
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Normalising this function with the uncorrelated expectation value to find

g(2)HBT(t, τ) =

〈
E†(t)E†(t + τ)E(t + τ)E(t)

〉
⟨E†(t)E(t)⟩ ⟨E†(t + τ)E(t + τ)⟩ . (3.51)

3.3.2 Hong–Ou–Mandel experiment

𝐸𝑖𝑛,1(𝑡)

50:50 

BS

Detector

𝐸2(𝑡)

𝐸1(𝑡)

𝐸𝑖𝑛,2(𝑡)

Figure 3.5: Hong–Ou–Mandel set up, where Ein,1(t) and Ein,2(t) are the positive input fields
and E1(t) and E2(t) are the positive fields detected by the detectors after passing through the
50 : 50 beam splitter (BS).

Now considering the case where two separate photon streams are incident on either side of
the beam splitter. This experimental setup is known as a Hong–Ou–Mandel (HOM) experiment,
see Fig. 3.5. The HOM experiment is used to determine the indistinguishability of the two
streams of incident photons, where indistinguishability describes to what degree are two
photons quantum mechanically identical. The input fields in this experiment could either come
from the same source emitting successive single photons with a variable time delay or from
two different sources.

To find the second order correlating function for the HOM setup by first relating the
detector fields to the input fields gives(

E1(t)
E2(t)

)
=

1√
2

(
1 1
−1 1

)(
Ein,1(t)
Ein,2(t)

)
. (3.52)

Solving this to find E1(t) = 1√
2
(Ein,1(t) + Ein,2(t)) and E2(t) = 1√

2
(Ein,2(t)− Ein,1(t)). Substi-

tuting the detected fields into the general second order correlation function shown in Eq. (3.48)
gives

G(2)
HOM(τ, t) =

1
4

〈(
E†

in,1(t) + E†
in,2(t)

)(
E†

in,2(t + τ)− E†
in,1(t + τ)

)
×
(
Ein,2(t + τ)− Ein,1(t + τ)

)(
Ein,1(t) + Ein,2(t)

)〉
, (3.53)
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where to normalise this function the uncorrelated coincidence events can be used, from

〈
E†

1(t)E1(t)
〉 〈

E†
2(t + τ)E2(t + τ)

〉
=

1
4

〈(
E†

in,1(t) + E†
in,2(t)

)(
Ein,1(t) + Ein,2(t)

)〉
×
〈(

E†
in,2(t + τ)− E†

in,1(t + τ)
)(

Ein,2(t)− Ein,1(t)
)〉

. (3.54)

To further simplify Eq. (3.53) the input fields E1(t) and E2(t) are assumed to originate from
statistically independent sources which have identical emission properties. These assumptions
allow for the factorisation of operators followed by the dropping of subscripts to give

G(2)
HOM(t, τ) =

1
2

(
4G(2)

HBT(t + τ)−
∣∣∣〈E†(t)E(t + τ)

〉∣∣∣2 − ∣∣∣〈E†(t)E†(t + τ)
〉∣∣∣2

+ 2 Re
[
⟨E(t)⟩

〈
E†(t)E†(t + τ)E(t + τ)

〉
− ⟨E(t + τ)⟩

〈
E†(t)E†(t + τ)E(t)

〉 )]
+
〈

E†(t)E(t)
〉 〈

E†(t + τ)E(t + τ)
〉 )

. (3.55)

This equation can be used to capture having both input streams from the one source if there
is sufficient delay between photons such that the photon streams can be approximated to be
statistically independent.

3.3.2.1 Indistinguishability for a two–level system

This section will present how performing a Hong–Ou–Mandel interferometer experiment
under non–resonant pulsed excitation allows for the measurement and calculation of full
wavepacket photon indistinguishability. This pulsed excitation regime represents a very fast
laser rapidly exciting the population to a higher lying state, which first undergoes a decay
process to the first excited state, followed by decay to the ground state with the emission of a
photon. To theoretically model this excitation regime, one can set the population to initially
reside in the first excited state at time zero and time evolve capturing the final decay process.
Using this approach the system can be modelled as two–level system with a ground and
excited state which has a spontaneous decay rate Γ1 and a phenomenological pure dephasing
process is introduced with rate γ. This pure dephasing rate captures an effective jitter of the
excited state electronic state energy which leads to a homogeneous broadening of the emission
line. The dynamics of the reduced system operator ρS(t) for this TLS can be described with the
following second–order Born–Markov master equation

∂tρ(t) = Γ1Lσ[ρ(t)] + 2γLσ†σ[ρ(t)], (3.56)

which is modified from Eq. (3.16) to include the phenomenological pure dephasing dissipa-
tor [55]. As presented in section (3.1) the input fields E(t) and E†(t) can be set to the dipole
operators σ(t) and σ†(t) [59], where numerical factors are dropped and σ = |g⟩ ⟨e|. To simplify
Eq. (3.55) a few steps are taken. Firstly, the terms linear in ⟨E⟩ and the two terms in the form
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⟨EE⟩ all go to zero as expectation values linear in ladder operators are zero. Next, integrating
over t to find the unnormalised ensemble average of coincidence events to find

G(2)
PUL(τ) =

1
2

∫ ∞

0
dt
( 〈

σ†(t)σ(t)
〉 〈

σ†(t + τ)σ(t + τ)
〉
−
∣∣∣〈σ†(t + τ)σ(t)

〉∣∣∣2), (3.57)

where the PUL subscript represents pulsed excitation under the HOM set-up. Under pulsed
excitation G(2)

HBT(t, τ) = 0 for a single photon emitter as σ2 = 0 [115]. The normalised sec-
ond order correlation function can be found by dividing by the uncorrelated peak area
A =

∫ ∞
0 dt

∫
dτ
〈
σ†(t)σ(t)

〉 〈
σ†(t + τ)σ(t + τ)

〉
to find g(2)PUL(τ) = 1

A G(2)
PUL(τ). To find the

uncorrelated coincidence events, experimentally this corresponds to setting a perpendicular
polarisation between interferometer arms, mathematically this relates to

G(2)
⊥PUL

(τ) =
1
2

∫ ∞

0
dt
〈

σ†(t)σ(t)
〉 〈

σ†(t + τ)σ(t + τ)
〉

, (3.58)

where the interference term vanishes.
The indistinguishability of the single quantum emitter can be found from these correlation

measurements by integrating over τ and finding the fraction [17, 58, 59]

I =

∫
dτ G(2)

PUL(τ)−
∫

dτ G(2)
⊥PUL

(τ)∫
dτ G(2)

⊥PUL
(τ)

. (3.59)

Substituting the functions for G(2)
PUL(τ) and G(2)

⊥PUL
(τ) into Eq. (3.59) to find [58]

I =

∫
dt
∫

dτ
∣∣〈σ†(t + τ)σ(t)

〉∣∣2∫
dt
∫

dτ ⟨σ†(t)σ(t)⟩ ⟨σ†(t + τ)σ(t + τ)⟩
. (3.60)

Using the quantum regression theorem outlined in section (3.1.2.1) the correlation function in
the numerator of Eq. (3.60) can be evaluated to give∣∣∣〈σ†(t + τ)σ(t)

〉∣∣∣2 =
∣∣∣TrS

(
σ†eLτσ(eLtρS(0))

)∣∣∣2,

= e−2Γ1te−(Γ1+2γ)τ,
(3.61)

where L is the Liouvillian super–operator. The integrand in the denominator is found using
the same approach, giving

〈
σ†(t)σ(t)

〉 〈
σ†(t + τ)σ(t + τ)

〉
= e−Γ1te−Γ1(t+τ). Integrating over

both t and τ leads to the well documented equation for indistinguishability from a two–level
system emitter with pure dephasing as

Ipulsed =
Γ1

2Γ2
, (3.62)

where Γ2 = Γ1
2 + γ [45, 115]. It can be seen from this relation that in order to achieve high

indistinguishability it is crucial to minimise the pure dephasing rate. If the pure dephasing is
thermal, one way to directly reduce γ is to reduce the temperature of the system, where both
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the reasoning for this and the underlying mechanism of pure dephasing will be revealed in
chapter 4. An alternative approach to increase indistinguishability would be to enhance the
spontaneous emission rate, where this could be done via the means of coupling the TLS to a
cavity, as will explored in chapters 6 and 7 [57].

3.4 Spectral wandering

So far only pure dephasing has been considered as a dephasing mechanism for a two–level
system emitter. Another type of dephasing that is common amongst some solid state emitters
is spectral wandering, also known as spectral diffusion or frequency jitter [28, 36, 50]. This
process refers to the random wandering of central emission frequency, typically attributed
to local fluctuations of the charge environment of the emitter. Spectral wandering leads to
inhomogeneous broadening of the emission linewidth and is typically characterised by a
Gaussian distribution. Pure dephasing on the other hand broadens the zero phonon line
homogeneously and follows a Lorentzian profile. When an emitter exhibits both of these
sources of dephasing the resultant spectral profile can be fit with a Voigt function [14]. In
this section the spectral emission and indistinguishability of a spectrally wandered two–level
system emitter, also dephased by some pure dephasing is derived. Different distribution
functions for the spectral wandering are considered and a direct comparison of both dephasing
mechanisms are presented.

3.4.1 Spectral wandering indistinguishability theory

Previous work to model a single photon emitter undergoing spectral wandering with no
pure dephasing has been found in references [42, 58]. Here, both of these approaches include
spectral wandering by performing a statistical average over the density operator with a
Gaussian profile. Finding the emission spectrum of a spectrally broadened two–level system
(TLS) emitter amounts to taking a convolution of the Lorentizan profile with a Gaussian noise
function [14].

For this work a TLS single photon emitter which undergoes both spectral wandering and
pure dephasing with rate γPD, is modelled. The starting point of this derivation is the second
order Born-Markov master equation for a two–level system

∂tρ(t) = −i[δσ†σ, ρ(t)] + ΓLσ[ρ(t)] + 2γPDLσ†σ[ρ(t)], (3.63)

where to model spectral wandering the stochastic detuning energy δ of the two–level system is
explicitly included here, where in Eq. (3.16) δ = 0. To model the jitter of the emission linewidth
the detuning energy is statistically averaged over some general distribution function f (δ). To
find the dynamics of the TLS with spectral wandering one considers the statistical averaging
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of the first order correlation function g(1)(t, τ) =
〈
σ†(t + τ)σ(t)

〉
with respect to δ giving

g(1)SW(t, τ) =
〈〈

σ†(t + τ)σ(t)
〉〉

SW
,

=
∫

dδ f (δ)g(1)(t, τ).
(3.64)

Defining the first order correlation function for this spectral wandered systems allows for
the calculation of the emission spectra following Eq. (3.17) to give

S(ω) = 2 Re
[ ∫ ∞

0
dτ
∫ ∞

0
dtg(1)SW(τ, t)e−iωτ

]
. (3.65)

Note that this ensemble averaging method in one dimension is equivalent to convolving the
spectral function with a distribution function [14, 47].

The emission spectra of a TLS undergoing spectral wandering is now directly compared
to a TLS undergoing pure dephasing only. For the spectral wandering model, two different
distribution functions are considered for the walk, a Lorentzian distribution in the form

fL(δ, γSW) =
1
π

γSW

δ2 + γ2
SW

, (3.66)

and a Gaussian distribution, given by

fG(δ, σSW) =
1

σSW
√

2π
exp

[
−x2

2σ2
SW

]
. (3.67)

Using these distribution functions the spectral functions from Eq. (3.65) have been found.
When assuming the random walk from spectral wandering follows a Lorentzian distribution,
the resultant emission spectrum is

SL(ω) =
2(2(γSW + γPD) + Γ1)

π(2(γSW + γPD) + Γ1)2 + 4ω2)
, (3.68)
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Figure 3.6: Spectral emission from a TLS comparing different dephasing mechanisms. Pure
dephasing only shown in (dashed black) where, 2γPD = 10/2π THz. Spectral wandering with
no pure dephasing following a Lorentizan distribution with 2γSW = 10/2π THz (solid blue)
and a Gaussian distribution with σFWHM = 10/2π THz (solid pink).
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which, for the case of no pure dephasing γPD = 0 is a spectral function that is equivalent to the
pure dephasing model for γSW = γPD, see Fig 3.6. For the case of a Gaussian distribution the
emission function is found to give

SG(ω) =
exp

[
(2γPD+Γ1−2iω)2

8σ2
SW

](
Erfc

[
2γPD+Γ1−2iω

2
√

2 σSW

]
+ exp

[
i(2γPD+Γ1ω)

σ2
SW

]
Erfc

[
2γPD+Γ1+2iω

2
√

2 σSW

])
2
√

2π σSW
,

(3.69)
noting that the full–width half–maximum (FWHM) is σFWHM = 2

√
2 ln 2 σSW. To visualise

these spectrally wandered emission spectrum see Fig. 3.6. It can be seen that when the FWHM
are set to be equivalent for the Lorentzian and Gaussian spectral walk models, the Gaussian
walk leads to emission which is less spectrally spread.

To find the indistinguishability for a spectrally wandered emitter one substitutes the
ensemble average correlation functions into the definition of indistinguishability shown in
Eq. (3.60) to find

ISW =

∫ ∞
0 dt

∫ ∞
0 dτ

∣∣∣〈〈σ†(t + τ)σ(t)
〉〉

SW

∣∣∣2∫ ∞
0 dt

∫ ∞
0 dτ ⟨⟨σ†(t)σ(t)⟩⟩SW ⟨⟨σ†(t + τ)σ(t + τ)⟩⟩SW

, (3.70)

where ⟨⟨. . .⟩⟩SW represents the ensemble averaging shown in Eq. (3.64). Evaluating the in-
distinguishability for a spectrally wandered emitter with firstly, a Gaussian distribution, by
finding the numerator of the integrand in Eq. (3.70) gives∣∣∣∣〈〈σ†(t + τ)σ(t)

〉〉
SW,G

∣∣∣∣2 = exp
[
− (2Γ1t + (Γ1 + 2γPD + σ2

SW)τ)
]
. (3.71)

The statistically averaged excited state population with a Gaussian walk is found to be〈〈
σ†(t)σ(t)

〉〉
SW,G = exp[−Γ1t] =

〈
σ†(t)σ(t)

〉
, which is independent on the statistical av-

eraging. Putting the evaluated integrands back into Eq. (3.70) and integrating over t and τ to
find

ISW,G(σSW) =

exp
[(

2γPD+Γ1
2σSW

)2
]√

π Γ1Erfc
[

2γPD+Γ1
2σSW

]
2σSW

, (3.72)

which for the case of no pure dephasing γPD = 0 the form found in reference [42] is recovered.
For the case of a Lorentzian distribution the numerator of the integrand in Eq. (3.70) has

been evaluated to∣∣∣∣〈〈σ†(t + τ)σ(t)
〉〉

SW,L

∣∣∣∣2 = exp
[
−(2Γ1t + (Γ1 + 2γPD + 2γSW)τ)

]
. (3.73)

The excited state population with a Lorentzian walk is again found to be independent on the
distribution to give

〈〈
σ†(t)σ(t)

〉〉
SW,L = exp[−Γ1t]. Evaluating the integrals in Eq. (3.70) the

indistinguishability for a Lorentzian walk has been found to be

ISW,L(γSW) =
Γ

Γ + 2(γSW + γPD)
, (3.74)
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Figure 3.7: Indistinguishability vs 2γPD/2γSW for the pure dephasing model and the spectral
wandering model with a Lorentz distribution, respectively. For the spectral wandering model
with a Gaussian distribution the x–axis scales as the full width half maximum of the distribution
σSW.

where this reiterates that spectral wandering under a Lorentzian walk is equivalent to the
process of pure dephasing. To visualise the dependence on the analytical indistinguishability
vs dephasing parameters, see Fig 3.7. To make the parameters for the Gaussian and Lorentzian
walks comparable the distributions FWHM has been plotted on the horizontal axis, which
is σFWHM and 2γSW, respectively. For all of these calculations Γ1 = 0.15 ps−1, which reflects a
typical quantum dot emitter [55]. It can been seen that the indistinguishability for a spectrally
wandering emitter with a Gaussian distribution is relatively higher when compared to a
Lorentzian one. This is attributed to the reduction in spectral frequency distribution when
considering a Gaussian profile as seen in Fig. 3.6, which reduces the distinguishability of
emission.

In practicality no physical emitter will walk exactly like a distribution, as the fluctuations
are random. Moreover, for solid state emitters the phonon sideband effects interfere with TLS
emission and engulf the tails (as seen in Fig. 3.3) which mainly differentiate these distributions.
Therefore in the literature, due to the increase in numerical complexity of dealing with the
Gaussian walk, it is common to model spectral wandering using a Lorentzian profile [47, 115]. A
final comment on spectral wandering is the ability to reduce it. Firstly, if the interfering photons
have not had sufficient time to spectrally shift by ensuring short time delays between pulses,
the effect of spectral wandering can be removed from indistinguishability measurements.
However, as experiments get more complicated and include more optical elements, as well
as the requirement for multi-photon interference; it will get increasingly difficult to interfere
photons without directly addressing the effect of spectral wandering, if present. To get around
this issue there has been a lot of experimental work aiming to reduce the random jitter of
the emission energy, particularly on quantum dots [5]. Methods include, strong illumination
which have been shown to increase crystal homogeneity [67] and electronic feedback loops
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which has shown to increase emission frequency control [93].
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SINGLE MOLECULE QUANTUM EMITTER

In this chapter single molecules of Dibenzoterrylene (DBT), see fig. 4.1 are introduced and
motivated as a suitable platform for single photon emitters with quantum information

applications. Using the formalism of open quantum systems outlined in chapter 2, a theoretical
model is developed which captures a single DBT coupled to a nano–crystal and photonic envi-
ronment. From this model the temperature dependent optical dynamics for a DBT molecule
are explored, including the emission spectra and second order correlation function measure-
ments. Dephasing mechanisms from phonons which decohere the emission from DBT are are
underpinned and characterised. This work directly reflects the publication given in reference
[23]. The theoretical model developed in this work was completed in collaboration with Jake
Iles–Smith. All the experimental aspects detailed in this chapter including measurements taken
and crystal growth of the single photon emitter sample, were completed at Imperial College
London lead by collaborator Alex S. Clark’s group with Ross C. Schofield and Kyle D. Major.

Figure 4.1: Ball and stick model of dibenzoterrylene, C38H20. Length and width of molecule are
∼ 11.1 Å and ∼ 9.7 Å, respectively. Carbon atoms are in dark grey and hydrogen is light grey.
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CHAPTER 4. SINGLE MOLECULE QUANTUM EMITTER

4.1 Dibenzoterrylene

Deterministic sources of single photons are a key requirement for many quantum information
applications [32, 60]. Single molecules of Dibenzoterrylene (DBT) are considered a promising
platform for such a source due to a range of desirable characteristics, see Fig 4.1 [80]. The
characteristic of consistent fluorescence wavelengths between 782 − 784 nm, which doesn’t
exhibit blinking or spectral wandering, leads to tunability across the whole inhomogeneous
distribution [102]. This tunability is a direct advantage over other solid state sources such as
quantum dots (QD) and nitrogen vacancy (NV) centres in diamond, for which is it difficult
to identify two emitters with very similar emission characteristics [32, 111]. An additional
characteristic of DBT is long term photo–stability, which is the ability to withstand photo
bleaching. A DBT molecule can host up to 1012 excitations at room temperature before molecu-
lar bond degradation [70] and at cryogenic temperature can last indefinitely. To explore the
other desirable characteristics of DBT which make it a promising a single photon source the
electronic structure is next considered.

4.1.1 Electronic structure

A schematic energy diagram of a single DBT is given in figure 4.2a, where the purely electronic
transition from the first excited state to the ground state is termed the zero phonon line (ZPL).
At cryogenic temperatures (≤ 3 K) DBT exhibits a very sharp bright [98] lifetime–limited
zero phonon line [112] without the assistance from external control such as photonic cavities,
electrical gating or plasmonic structures. It has been observed by J.-B. Trebbia et. al. at 2 K
the percentage of emission directly into the zero phonon line for a single molecule of DBT is
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Figure 4.2: (a) Electronic structure of a DBT molecule showing the ground (S0), first (S1), and
second (S2) singlet states and the triplet (Tr1) state. (b) Difference density between the ground
(HOMO) and first excited state (LUMO) generated from ORCA.
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4.1. DIBENZOTERRYLENE

33% [112]. This is a relatively high value when considering other sources such as NV centres
which emit 2 − 5% into their ZPL [29]. The lifetime of the first excited state for DBT is ∼ 4 ns.
The second electronic excited state is well separated from the first by ∼ 1 eV. Moreover, the
triplet state has a very low yield 10−7 with a relatively long lifetime of ∼ 70 µs [72]. This
large separation in electronic energy levels and high yield of the ZPL emission allow for the
electronic states involved in single photon emission from a DBT molecule to be well described
using a two–level system. As well as electronic levels, DBT hosts local vibrational modes
which are associated with quantised movements of the molecule structure. Four of these local
vibrational modes with the highest branching ratio are shown in blue on figure 4.2a [105].

To visualise the electronic orbitals the difference density between the ground S0 and the
first excited S1 state has been calculated using the density functional theory computational
package ORCA and is shown in figure 4.2b [84]. For these calculations time dependent density
functional theory (TD-DFT) has been used which allows for the excited state calculation. The
basis state used is the hybrid functional B3LYP/G, which is suitable for hydrocarbon molecules
of this size.

4.1.2 DBT-Ac nano–crystal

The most promising environment to host DBT molecules are thin nano–crystals of anthracene
(Ac) see fig. 4.3a [73, 85, 92]. In this nano–crystal structure DBT replaces three Ac molecules
and causes little distortion to the structure [85]. Moreover, the molecules in the nano–crystal
are bonded via van der Waal interactions which aids in the suppression of phonon dephasing
due to the weak nature of the bonds [45]. See figure 4.3b for a photoluminescence spectra or
emission spectra from a DBT molecule in Ac nano–crystal at 4.7K. The intensity of emission
into the ZPL can be clearly seen when considering the linear scale in the inset of this figure and
typically holds 30% − 50% of the total emission at cryogenic temperatures [117]. As well as a
strong ZPL the emission spectra holds a rich structure of various features. The four sharp peaks
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Figure 4.3: (a) Anthracene nano–crystal hosting DBT molecules, bonded via van der Waals. (b)
Emission spectra collected from driving a DBT molecule embedded in an anthracene nano–
crystal with a laser at 764.8 nm.
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between 790 − 805 nm are associated to the photon emission accompanied by one excitation
of a localised vibrational mode of the molecule, where these modes are shown in figure 4.2a.
Moreover, all distinct sharp peaks are overlaid with a broad sideband which is most prominent
over the ZPL. This broad sideband originates from the simultaneous emission of a photon and
a phonon into the Ac crystal.

The DBT doped nano–crystal of anthracene used to find all measurements presented in this
chapter was grown using a re–precipitation technique at Imperial College London [90]. This
involved mixing two solutions of 5 µL of 1 µMol DBT in toluene and 10 mL of 5 mMol zone-
refined anthracene (Tokyo Chemical Industry UK) in acetone solution together. Sonication of
250 µL of this solution with 5 mL of distilled water at 37 kHz for 30 minuets was then followed
by filtering through a syringe filter with 450 nm pore size. A 25 µL drop of this filtered solution
was then pipetted onto a substrate of silica-on-silicon with a 150 nm gold coating (to improve
collection of emission) and a 220 nm TiO2 spacer layer (to protect against plasmonic losses),
then left to dry via evaporation. Finally, the nano–crystal is spin–coated with a 150 nm poly–
vinyl alcohol polymer layer for increased protection and cooled down in a closed cycle cryostat
(Montana Cryostation) to a base temperature of 4.7 K.

4.2 Theoretical model

With all solid state emitters it is essential that temperature dependence and influence of phonon
coupling and associated decoherence effects are well characterised and understood. The
dominant dephasing mechanism for quantum dots is the coupling of excitons to a longitudinal
acoustic phonon bath from the solid state environment. This coupling to phonons leads to an
incoherent broad sideband which overlaps with the ZPL in the emission spectrum; as well as
a homogeneous broadening to the ZPL at temperatures above ∼ 10 K [14, 42, 55, 56, 81, 96].
The aim for this chapter is to develop a theoretical model which fully captures all observed
features from a single molecule single photon emitter, which allows for the uncovering of the
underlying phonon coupling mechanisms. This theoretical work is aided with an experimental
interrogation of the optical properties of a DBT–Ac nano–crystal at a range of cryogenic
temperatures between 4.7 K and 40 K.

Inspired by the emission spectra in figure 4.3b the open quantum system model of a DBT–
Ac nano–crystal is shown in Fig. 4.4. The model consists of an electronic two–level system
(TLS) with ground and excited state |g⟩ and |e⟩ separated by energy EX and coupled to N
discrete localised vibrational modes (LVMs) both associated to the DBT molecule. Both the TLS
and LVMs are treated within the system degrees of freedom leading to the explicit inclusion of
all orders of interactions and interactions between them. Both the TLS and LVMs are coupled
to a thermal phonon bath from the Ac nano–crystal. The TLS is separately coupled to an
electromagnetic (EM) field which gives rise to spontaneous photon emission. The complete
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Figure 4.4: Open quantum system model of a single DBT molecule doped in an anthracene
(Ac) nano–crystal environment. The system (blue) consists of a two–level electronic system
(TLS) coupled to a discrete set of local vibrational modes (LVM) both associated with the DBT
molecule. The TLS is coupled to a electromagnetic (EM) environment. A thermal phonon bath
is coupled separately to the TLS and LVMs and originates from the nano–crystal environment.
The double sided arrows represent the inclusion of non–Markovian feedback. The schematic
energy level diagram (bottom left) shows the ground S0 and first excited S1 electronic singlet
states split by the energy EX, local vibrational modes and the thermal phonon environment.

Hamiltonian of the open quantum system is

H = HS + HE + HEM−TLS
I + HPH−TLS

I + HPH−LV
I , (4.1)

where the system Hamiltonian is HS = EXσ†σ + h̄ ∑N
i=1[∆iα

†
i αi + ηiσ

†σ(α†
i + αi)], with dipole

operator σ = |g⟩⟨e|. The N LVMs are modelled as harmonic oscillators with annihilation
(creation) operators αi (α†

i ) and separated in energy by ∆i. The LVMs are coupled to the TLS
with strengths ηi to first order with respect to lattice distortions. The term HE = h̄ ∑l νlc†

l cl +

h̄ ∑k ωkb†
kbk + h̄ ∑q zqd†

qdq describes the environment. It contains contributions from harmonic
baths capturing the EM field with frequencies νl and annihilation (creation) operators cl (c†

l )
for mode l, and two thermal phonon baths which couple to the TLS and LVMs separately
with frequencies ωk and zq and annihilation operators bk and dq for wavevectors k and q,
respectively. The interaction Hamiltonian is split into three contributions, the EM environment–
TLS term, derived in section (3.1) and given by HEM−TLS

I = h̄ ∑l pl(σc†
l + σ†cl), where this term

is necessary to capture spontaneous photon emission and pl is the coupling constant. The term
HPH−TLS

I = HPH
L + HPH

Q couples the TLS to the thermal phonon bath, where this includes both
linear

HPH
L = h̄σ†σ ∑

k
gk(b†

k + bk), (4.2)
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and quadratic
HPH

Q = h̄σ†σ ∑
kk′

fkk′(b†
k + bk)(b†

k′ + bk′), (4.3)

contributions, in respect to atomic displacements, where gk ( fkk′) are the linear (quadratic) cou-
pling constants, respectively [40, 120]. The derivation of these terms is found in section (2.2.3).
The linear electron–phonon interaction describes a displacement of the phonon potential well
minima. The quadratic term is a consequence of anharmonicity of the thermal phonon modes,
resulting in a change of phonon force constants (diagonal) and Raman scattering processes
(off–diagonal) [24]. It will be seen, that the quadratic interaction is crucial for capturing the
temperature dependent homogeneous broadening of the zero phonon line [81]. The final
interaction term couples the localised vibrational modes to the thermal phonon bath and is
given by

HPH−LV
I = h̄

N

∑
i,q

hi,q(αid†
q + α†

i dq), (4.4)

where hi,q is the real valued linear coupling strength and the derivation to this term is analogous
to that of HEM−TLS

I .

4.2.1 Polaron transformation

To model the optical dynamics of the single molecule emitter a master equation is developed
using an extension to the polaron transformation approach detailed in section (3.2.1) [55, 78,
83, 101]. In this approach the Hamiltonian is subjected to two transformations which displace
both the thermal phonon bath and the localised vibrational modes. The motivation for using
these polaron transformations are to explicitly account for the phonon sideband present in the
emission spectrum and to simplify the mathematics when dealing with the master equation,
respectively.

Standard Frame Polaron Frame

Figure 4.5: Visual representation (not to scale) of the polaron frame transformation between
the two level system and the nano–crystal environment. The ground and excited state basis in
the original frame is shown on the left. The right image shows the polaron frame basis; where
the distortion in the crystal lattice in the excited state is accounted for.
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4.2.1.1 Phonon bath polaron transform

The first of these transformations is mapped by HP1 = UP1HU†
P1 where UP1 = |g⟩ ⟨g| +

|e⟩ ⟨e| B+ with the thermal phonon bath displacement operator B± = exp[±∑k
gk
ωk

(b†
k − bk)].

Performing this polaron transformation to the Hamiltonian terms dependent on bk/b†
k whilst

using the relation in Eq. (2.43), gives

HPH
L,P1 = h̄σ†σ

(
∑
k

gk(b†
k + bk)− 2 ∑

k

g2
k

ωk

)
, (4.5)

and
HPH

Q,P1 = h̄σ†σ ∑
kk′

fkk′(b†
k + bk)(b†

k′ + bk′) (4.6)

where residual linear terms ∝ ∑k′ fkk′
gk′
ωk′

are not included as they sum to zero due to
spherical symmetry [96]. The transformation to the environment term gives HE,P1 = HE −
h̄σ†σ(∑k gk(b†

k + bk) + ∑k
g2

k
ωk

). Putting together HPH
L,P1, HPH

Q,P1 and HE,P1 results in the removal
of the linear electron–phonon interaction HPH

L leaving the quadratic term HPH
Q and HE un-

changed, where the TLS energy is shifted such that EX → EX − h̄ ∑k
g2

k
ωk

. The final affected
Hamiltonian component modified by this thermal phonon bath polaron transformation is
HEM−TLS

I,P1 = h̄ ∑l pl(σB−c†
l + σ†B+cl), where the dipole operators are dressed in the phonon

bath degrees of freedom. The consequence of this polaron transformation includes the distor-
tion of the Ac lattice in response to the electronic excitation changing the basis, see Fig. 4.5.
Moreover, when moving back into the original frame as the system is dressed with the phonon
bath degrees of freedom non–Markovianity between the system and bath is accounted for in
the model.

4.2.1.2 Local vibrational mode polaron transform

The second polaron transformation acts on the TLS and LVMs, and is defined through HP =

UP2HP1U†
P2 where UP2 = |g⟩ ⟨g| + |e⟩ ⟨e|∏i Ai with Ai = exp[ ηi

∆i
(α†

i − αi)]. The resultant
transformed Hamiltonian is given by

HP = H0 + HI, (4.7)

where H0 = HS,P + HE and HI = HEM−TLS
I,P + HPH

Q + HPH−LV
I,P , with the system term HS,P =

EPσ†σ + h̄ ∑i ∆iα
†
i αi, where EP = EX − h̄(∑i η2

i /∆i + ∑k g2
k/ωk) is the polaron shifted TLS

energy splitting and the TLS-LVM interaction is rotated out. The elimination of the free system
interaction term is useful as it removes issues of conflicting time scales (picoseconds for the
local phonon mode and nano seconds for electronic decay) when solving integrals in the
master equation derivation. The final polaron transformed interaction terms are

HEM−TLS
I,P = h̄ ∑

l
plσαB−c†

l + h.c., (4.8)
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where σα = σ ∏i Ai is the dressed dipole operator and

HPH−LV
I,P = h̄ ∑

i,q
(α†

i −
ηi

∆i
σ†σ)hiqdq + h.c.. (4.9)

4.2.2 Molecule master equation

To model the dynamics of the system a Born-Markov master equation is derived in the polaron
frame, where this begins in general form, derived in section (2.1.4), as

∂tρ(t) = − i
h̄
[HS,P, ρS(t)]− ΦEM[ρS(t)], (4.10)

with the integral term

ΦEM[ρS(t)] = − 1
h̄2

∫ ∞

0
dτ TrE

(
[HI, [H̃I(−τ), ρS(t)⊗ ρE]]

)
, (4.11)

where ρ(t) is the polaron frame reduced system density operator in the Schrödinger picture
and H̃I(−τ) = exp[−iH0τ/h̄]HIexp[iH0τ/h̄] is the interaction picture interaction Hamiltonian.
The Born approximation used here ρSE = ρS(t)⊗ ρE is justified as, the molecules in the DBT
doped nano–crystal are bonded via van der Waals leading to a weak system–environment
coupling. The polaron transformed Hamiltonian contains three interaction terms. The phonon
and EM environment are assumed to hold no correlations between them and fluctuations
experienced by the thermal phonon bath and each of the localised vibrational modes are
uncorrelated. With these assumptions, terms with cross interactions vanish upon evaluation of
the trace and therefore the three dissipators can be evaluated separately for each interaction
Hamiltonian.

4.2.2.1 Spontaneous emission dissipator

To begin, the spontaneous emission dissipator is first evaluated, following steps similar to
what was done in section (3.1) with the alteration of now working in the polaron frame. It is
first required to find the EM-TLS interaction picture Hamiltonian from Eq. (3.5), which gives

H̃EM−TLS
I,P (−τ) = h̄σα(−τ)B−(−τ)C†(−τ) + h.c., (4.12)

with σα(−τ) = σe−iωPτA(−τ), where ωP = EP/h̄ is the polaron shifted TLS frequency
and A(−τ) = exp

[
−∑i

ηi
∆i
(α†e−i∆iτ − αei∆iτ)

]
is the time evolved dressed system operator.

B±(−τ) = exp
[
±∑k

gk
ωk

(b†
ke−iωkτ − bkeiωkτ)

]
and C(−τ) = ∑l plcleiνlτ. Inserting the expres-

sions for HEM−TLS
I,P in Eq. (4.8) and H̃EM

I,P (−τ) in Eq. (4.12) into the integral in Eq. (4.11) gives

ΦEM[ρS(t)] = − 1
h̄2

∫ ∞

0
dτTrE

(
[HEM−TLS

I,P , [H̃EM−TLS
I,P (−τ), ρS(t)⊗ ρE]]

)
. (4.13)
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To simplify this integral the evaluation of the EM and thermal phonon baths are required.
Firstly, these correlation functions can be factorised such that

TrE(B−C†B+(−τ)C(−τ)ρE) = TrE(B−B+(−τ)ρE)TrE(C†C(−τ)ρE), (4.14)

as B± and C commute. Evaluation of the EM 0 K environment correlation function can be
found in Eq. (3.10) given here for clarity TrE(CC†(−τ)ρE) =

∫ ∞
0 dω JEM(ω)eiωτ. The derivation

for thermal phonon bath correlation functions are found in section (2.2.2.2), which finds
G(τ) = TrE(B−B+(−τ)ρE) = ⟨B⟩ exp[ϕ(τ)] where ϕ(τ) =

∫ ∞
0

JPH(ω)
ω2 dν

(
cos(ωτ) coth

( βω
2

)
−

i sin(ωτ)
)

and ⟨B⟩ = exp
[
− 1

2 ϕ(0)
]
. Here, the exciton–phonon spectral density is introduced

JPH(ω) = ∑k g2
kδ(ω − ωk) [55, 100]. Substituting these correlation functions into Eq. (4.13)

gives

ΦEM[ρS(t)] = −
∫ t

0
dτG(τ)χ(τ)

(
σ†

α σα(-τ)ρS(t)− σα(-τ)ρS(t)σ†
α

)
+ G(-τ)χ(-τ)

(
ρS(t)σ†

α (-τ)σα-σαρS(t)σ†
α (-τ)

)
. (4.15)

where the commutation relation

[A, [B, C]] = ABC − BCA + h.c., (4.16)

has been used.

It is now necessary to form the environment response functions by considering the time
dependent integral in Eq. (4.15). To do so a unitary decomposition of the system operators is re-
quired as e±i∆τ cannot be factored out of σα(-τ). First, rewriting σα(−τ) = σe−iωPτA(− ηi

∆i
,−τ)

where, A(− ηi
∆i

,−τ) = exp
[
−∑i

ηi
∆i
(α†e−i∆iτ − αei∆iτ)

]
is the time evolved local vibrational

mode displacement operator. Expressing this time evolved operator in terms of system uni-
tary operator US(−τ) = ei ∑i ∆iα

†
i αiτ, we find A(− ηi

∆i
,−τ) = US(−τ)A(− ηi

∆i
)U†

S(−τ) which
gives A(− ηi

∆i
,−τ) = ∑n,m ⟨n| A(− ηi

∆i
) |m⟩ |n⟩ ⟨m| e−i ∑i ∆i(m−n)τ, where the resolution of iden-

tity, 1 = ∑n |n⟩ ⟨n| has been inserted twice and the relation α†α |n⟩ = n |n⟩ has been used. The
time evolved dressed system operator σα(−τ) can therefore be expressed as

σα(−τ) = σ ∑
n,m

An,m
(
− ηi

∆i

)
e−i(ωP+∑i ∆i(m−n))τ, (4.17)

where An,m(± ηi
∆i
) = ⟨n| A(± ηi

∆i
) |m⟩ |n⟩ ⟨m| are the matrix elements of the system displacement

operator.

Due to differing time scales between the EM field correlation timescale of a few femtosec-
onds and phonon relaxation (picoseconds) (for a TLS energy splitting of EP = h̄ωP ≈ 1.6 eV),
the phonon correlation function barely changes and therefore can be replaced by G(τ) →
G(0) = 1 [79]. Now defining and evaluating the environment response function as was done
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in section (2.1.4), it has been found

K(ϵn,m) =
∫ ∞

0
dτG(0)χ(τ)e−iϵn,mτ,

=
∫ ∞

0
dω

∫ ∞

0
dτ JEM(ω)ei(ω−ϵn,m)τ,

=
∫ ∞

0
dωπ JEM(ω)δ

(
ω − ϵn,m

)
+ iP

∫ ∞

0
dω

JEM(ω)

ω − ϵn,m
,

= π JEM(ϵn,m) + iSEM,

(4.18)

where ϵn,m = ωP + ∑i ∆i(m − n). Approximating the photonic spectral density to be flat over
the relevant frequency scales with respect to the molecule emitter, to write J(ϵn,m) ≈ Γ1/π.
Substituting in this response function into Eq. (4.15) the spontaneous emission master equation
integral becomes

ΦEM[ρS(t)] = (Γ1 + iSEM)Lσα [ρ(t)], (4.19)

where LA[ρ(t)] = Aρ(t)A† − 1
2

{
A† A, ρ(t)

}
is the Lindblad operator. The imaginary term

in this expression contributes to the Lamb shift and re–normalises the system Hamiltonian
term such that HS,P → HS,P + HLS. Moving the Lamb shift component to the commutator in
Eq. (4.10) allows one to define the EM–TLS master equation dissipator as

DEM[ρS(t)] = Γ1Lσα [ρ(t)], (4.20)

4.2.2.2 Pure dephasing dissipator

Next the quadratic electron–phonon interaction term is considered, which leads to the homo-
geneous broadening or pure dephasing dissipator. Finding the interaction picture interaction
Hamiltonian as H̃PH

Q (−τ) = U†
0 (−τ)HPH

Q U0(−τ) gives

H̃PH
Q (−τ) = h̄σ†σ ∑

kk′
fkk′Bk(−τ)Bk′(−τ), (4.21)

where Bk(−τ) = (b†
ke−ih̄ωkτ + bkeih̄ωkτ). Inserting HPH

Q and H̃PH
Q (−τ) into Eq. (4.10) the inte-

gral takes the form

ΦρS(t)] = −
∫ t

0
dτTrE

(
σ†σ

[
∑
kk′

fkk′BkBk′
][

∑
kk′

fkk′Bk(−τ)Bk′(−τ)
]
ρS(t)ρE

− σ†σ
[
∑
kk′

fkk′Bk(−τ)Bk′(−τ)
]
ρS(t)ρEσ†σ

[
∑
kk′

fkk′BkBk′
]
+ h.c.

)
. (4.22)

Considering the trace over the environment degrees of freedom we find〈[
∑
kk′

fkk′BkBk′
][

∑
kk′

fkk′Bk(−τ)Bk′(−τ)
]〉

= ∑
kk′

∑
ll′

fkk′ fll′ ⟨BkBk′Bl(−τ)Bl′(−τ)⟩ ,

= ∑
kk′

| fkk′ |2 ⟨BkBk(−τ)⟩ ⟨Bk′Bk′(−τ)⟩ .
(4.23)
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The factorisation of the correlation function above has been made based on the assumption that
phonons do not scatter into the same mode i.e. k ̸= k′ [96]. Simplifying this expression and
again moving the Lamb shift term from the imaginary component of the response functions
into the commutator gives the pure dephasing dissipator as

DPD[ρS(t)] = 2γ(T)Lσ†σ[ρ(t)], (4.24)

where the pure dephasing rate is

γ(T) = Re
[ ∫ t

0
dτ ∑

kk′
| fkk′ |2 ⟨BkBk(−τ)⟩ ⟨Bk′Bk′(−τ)⟩

]
. (4.25)

To evaluate the pure dephasing rate first the bath correlation functions need to be evaluated
using section (2.2.2), which give

⟨BkBk(−τ)⟩ =
〈

b†
kb†

ke−ikτ
〉

︸ ︷︷ ︸
=0

+
〈

b†
kbkeikτ

〉
+
〈

bkb†
ke−ikτ

〉
+
〈

bkbkeikτ
〉

︸ ︷︷ ︸
=0

,

= n(νk)eiνkτ + (n(νk) + 1)e−iνkτ.

(4.26)

Next taking the sum into the continuum limit ∑kk′ → V2

(2π)6

∫ ∞
0 d3k

∫ ∞
0 d3k′, gives

γ(T) =
V2

(2π)6

∫ ∞

0
d3k

∫ ∞

0
d3k′| fkk′ |2

(
n(ωk)(n(ωk′) + 1)

× δ(ωk − ω′
k) + (n(ωk) + 1)n(ωk′)δ(ωk′ − ωk)

)
. (4.27)

Where the definition of a delta function δ(x − a) = 1
π Re

[ ∫ ∞
0 dτei(x−a)τ] has been used and

linear dispersion ωk = c|k| where |k| = k is assumed, and c is the speed of sound in the nano–
crystal. The presence of the delta functions result in only needing to evaluate the coupling
constant | fkk′ |2 for k = k′. Substituting in an isotropic Gaussian wave function into Eq. (2.74)
ψα(r) = (dα

√
π )−3/2e−r2/2d2

α where dα is the confinement potential for the ground and excited
states which is assumed to be equal, such that dα → d, we find

| fkk′ |2 =
( k

4NMc

)2
(1 + cos θ)4 ∑

α

D2
αe−k2(1+cos θ)d2

, (4.28)

where k · k′ = kk′ cos θ. Substituting this quadratic coupling constant and converting variables
from wavevector magnitude into frequency, as well as defining the phonon cut off frequency
ξ =

√
2 c/d, the pure dephasing rate is found to be

γ(T) = µ
∫ ∞

0
dωω6n(ω)(n(ω) + 1)

∫ π

0
dθ sin(θ)(1 + cos(θ))4e−2ω2(1+cos(θ))/ξ2

, (4.29)

where µ = V2 ∑α D2
α/(128π3(NM)2c8).
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4.2.2.3 Local vibrational mode dissipator

To evaluate the dissipator arising from coupling to the thermal phonon bath, the master
equation is evaluated in the interaction picture found in Eq. (6.23), where the interaction picture
density operator is ρ̃S(t) = eiHS,Pt/h̄ρS(t)e−iHS,Pt/h̄. Working in the interaction picture allows the
secular approximation to be made which simplifies the algebra. Transforming HPH−LV

I,P into the
interaction picture requires H̃PH−LV

I,P (t) = U†
0 (t)HPH−LV

I,P U0(t) where U0(t) = e−i(HS,P+HE)t/h̄,
this leads to the interaction Hamiltonian

H̃PH−LV
I,P (t) = h̄ ∑

i
(αie−i∆it − ηi

∆i
σ†σ)∑

q
hiqd†

qeizqt + h.c. (4.30)

Now, by writing H̃PH−LV
I,P (t) = h̄ ∑α=1,2 Ãα(t)B̃α(t) where B̃1(t) = ∑q hqdqe−izqt and B̃2(t) =

B̃†
1(t), the correlation functions are calculated according to Eq. (2.22), finding

C12(τ) =
∫ ∞

0
dνJPH−LV(ν)n(ν)eiντ, (4.31)

C21(τ) =
∫ ∞

0
dνJPH−LV(ν)(n(ν) + 1)e−iντ, (4.32)

where the local vibrational mode–phonon bath spectral density JPH−LV(ν) = ∑q |hq|2δ(zq − ν)

has been introduced and the Bose occupancy number is n(ν) = (eh̄ν/kBT − 1)−1. Inserting
Eq. (4.30) and the phonon correlation functions into the interaction picture master equation
(6.23) gives

∂tρ̃S(t) = −∑
i

∫ ∞

0
dτ
(

C12(τ)[αi, α†
i ρ̃S(t)]e−i∆iτ + C21(−τ)[α†

i , αiρ̃S(t)]ei∆iτ

+
( ηi

∆i

)2(
C12(τ) + C21(−τ)

)
[σ†σ, σ†σρ̃S(t)] + h.c.

)
,

(4.33)

where the secular (rotating–wave) approximation has been made, which involves neglecting as
all terms with the factor e±i∆t as they are fast oscillating with respect to the time scale of the TLS
relaxation [15]. Performing the time integrals and re-normalising the system Hamiltonian with
the Lamb shift contribution, the master equation rotating back into the Schrödinger picture is

∂tρS(t) = DEM[ρS(t)] +DPH[ρS(t)] + ∑
i

(
− i∆i[α

†
i αi, ρ(t)] + Γi,+Lα† [ρ(t)] + Γi,−La[ρ(t)]

)
.

(4.34)
Where this equation has been moved in the rotating frame to remove EPσ†σ + HLS from
the system Hamiltonian in the commutor via the unitary UR(t) = ei(EPσ†σ+HLS)t. The local
vibrational mode absorption and decay rates Γi,± depend on κi = π JPH−LV(∆i). The local
vibrational mode–phonon bath spectral density is assumed to take a super-Ohmic form
JPH−LV(∆i) ∝ ∆3

i ξ−2e−∆i/ξ , to reflect the three-dimensional and weak nature of the coupling,
where ζ is the phonon bath cut-off frequency [18, 43, 86].
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4.2.3 DBT–Ac emission spectra

We find the one color emission spectra detailed in section (3.1) by, first following Refs. [55, 56],
solving the Heisenberg equations of motion ċl(t) = −i[HP, cl(t)], in the polaron frame, which
gives

ċl = −iνlcl(t)− iplclσα(t)B−(t). (4.35)

Solving this equation of motion using the Fourier variable c̃(ν) =
∫

dtcl(t)eiνt gives

E(t) = E0(t) +
√

Γ1/2π σα(t)B−(t) (4.36)

where E0(t) is the free field, assumed to be in the vacuum. Note that the second source term
contains both TLS and thermal phonon bath degrees of freedom. Substituting in the electric
field operators in to the first order correlation function one finds

g(1)(τ) =
∫ ∞

0
dt

Γ1

2π

〈
σ†

α (t + τ)B+(t + τ)σα(t)B−(t)
〉

,

≈ Γ1

2π
g(1)0 (τ)G(τ),

(4.37)

where the correlation functions are G(τ) = ⟨B⟩2 exp[ϕ(τ)] as previously defined in Eq. (2.47),
while g(1)0 (τ) =

∫ ∞
0 dt

〈
σ†

α (t + τ)σα(t)
〉
, where this first order correlation function explicitly

captures the LVMs via the dressed dipole operators. The factorisation of the correlation
functions is taken using the Born approximation, where it is assumed that the coupling between
the system and the phonon bath is weak. Substituting the first order correlation function into
Eq. (3.17), the emission spectrum can be expressed as S(ω) ∝ SZPL+LVM(ω) + SSB(ω), where

SZPL+LVM(ω) =
Γ1

π
⟨B⟩2 Re

[ ∫ ∞

0
dτg(1)0 (τ)e−iωτ

]
, (4.38)

describes distinct absorption and emission peaks associated with the ZPL and localised vibra-
tional modes, and

SSB(ω) =
Γ1

π
Re
[ ∫ ∞

0
dτg(1)0 (τ)(G(τ)− ⟨B⟩2)e−iωτ

]
. (4.39)

describes a broad phonon sideband which overlaps each spectral peak. A key advantage
of working in the polaron frame is that the correlation function g(1)0 (τ) can be found using
the (Markovian) quantum regression theorem shown in section (3.1.2.1) [48, 77], while non–
Markovian interactions necessary to capture phonon sidebands are naturally captured by the
phonon bath correlation function G(τ) in Eq. (4.39). Furthermore, by writing the spectrum in
this way it is immediately obvious that the Debye–Waller factor (fraction of light not emitted
into sidebands) is given by

∫
SZPL+LV(ω)dω/

∫
S(ω)dω = ⟨B⟩2.
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Figure 4.6: Single molecule of DBT emission spectra taken at 4.7 K (a), 20 K (b) and 31 K (c).
Black-dashed lines show the full theoretical model and grey-solid lines show experimental
data. The theoretical spectrum showing only the system features, zero phonon line (ZPL) and
local vibrational modes is shown in purple, while the broad continuous phonon sideband
contribution is shown in orange. The insets show the spectra on a linear scale to emphasize
ZPL strength.

4.3 Emission spectra results and discussion

Predictions of the OQS model for three different temperatures between 4.7 K − 31 K are shown
by the dashed black lines in figure 4.6. The most prominent peak at zero detuning (or 782.32 nm)
corresponds to the ZPL. While the other sharp peaks between −40 meV to −15 meV arise from
excitation of local vibrational modes during the photon emission process [24, 45]. It has been
found that to reproduce these emission features N = 4 separate DBT vibrational modes are
required. The fitted vibrational mode energies h̄∆i are consistent (to within 2%) with previous
literature [27], and are listed in the Appendix (A.2), together with the fitted LVM coupling
constants ηi. To achieve good spectral fits it is sufficient to account for only the ground and
first excited state for each mode in our calculations, indicating that higher vibronic transitions
contribute little to the observed spectra due to low transition probabilities.

The solid-purple lines in Fig. 4.6 show the calculated emission spectra including only the
system features (ZPL and LVM peaks) using Eq. (4.38), while the solid-orange lines show
the continuous phonon sideband contribution given in Eq. (4.39). The functional shape of
the sideband depends on the form of the spectral density JPH(ω), as this characterises the
frequency spectrum of the electron–phonon coupling. To model the molecule emission a super
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Figure 4.7: Debye–Waller factor given by ⟨B⟩2, for varying temperature. The solid line shows
the theoretical model. Points on the graph are extracted from experimental data using phe-
nomenological fitting techniques. The inset shows the calculated spectrum of the ZPL and
sideband at temperatures where the data was taken.

Ohmic form is chosen, such that

JPH(ω) = α ω3 exp
[
−ω2/ξ2], (4.40)

where α captures the overall TLS–thermal phonon bath coupling strength, and ξ =
√

2 v/d is
a high-frequency cut-off to reflect the suppression of coupling to phonons whose wavelengths
are much smaller than the size of the DBT molecule d, where v is the speed of sound in
anthracene. This spectral function is three-dimensional to reflect the bulk phonon density of
states [18, 83]. These parameters are extracted from fitting the model to the experimental data
and are shown in the appendix A.2. Due to the energy scale of the phonons involved the broad
sideband they are assumed to be longitudinal acoustic phonons. This form for the spectral
density is similar to that used to capture phonon sidebands and excitation-induced dephasing
in semiconductor QDs [14, 55, 56, 78, 83, 96]. The derivation for the exciton–phonon spectral
density is performed by approximating Gaussian wavefunctions for the electronic ground and
excited states, further details of this derivation along with exploring other wavefunctions are
given in the appendix (A.1).

The fraction of emission which goes into the ZPL and LVM peaks compared to the full
emission is given by the Debye–Waller factor, from which as shown in section (2.2.2.2), can
be readily found from ⟨B⟩2 = exp[−

∫ ∞
0 JPH(ω)ω−2 coth(βω/2)dω], which is the square of

the phonon bath displacement operator expectation value. This function is plotted along side
experimentally extracted values in Fig. 4.7. A motivation for a theoretical method to predict
the Debye–Waller factor, is the high uncertainty involved in finding an extracted value from
data. To extract these data points one can either look at the ratio between the ZPL and its
sideband or fit all spectral lines (ZPL and LVMs) and compare this to the total emission spectra.
The uncertainty in these extraction approaches are due several factors such as, high bandpass
filtering upon collection dis-entangling overlapping spectral features and interference from
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Figure 4.8: (a) Squared-linewidths extracted from fluorescence excitation spectra for varying
power at different temperatures. Lines are fits to ∆ν2 = (Γ2/π)2(1 + S). (b) Experimental
values of Γ2 found from the extrapolation in (a), plotted together with prediction from the
theoretical model (solid line). The inset shows the calculated Lorentzian ZPL for temperatures
at which the data was taken.

noise. To find the points shown in figure 4.7 both approaches were used and averaged to
improve reliability. For this molecule the maximum ZPL fraction is found to be 72% (not
considering LVMs). This value is lower than expected for DBT and therefore could in part
account for the reduction from predictions in coupling observed for single molecules in open-
access micro-cavities [116, 117]. Alternatively this slightly reduced fraction could be due to the
close proximity of the nano–crystal surfaces used in the presented experiments [41], future
work using co-sublimation grown crystals [73] may yield a different result.

Broadening of the spectral emission lines shown in Fig. 4.6 is captured by the dissipators in
the master equation (4.34). Of particular interest is the temperature dependent homogeneous
broadening associated with the ZPL. In the theoretical model developed this ZPL broadening
follows

Γ2(T) = Γ1/2 + γ(T), (4.41)

where γ(T), is a phonon-induced pure dephasing rate. To compare this theoretical model
against experiment, power–dependent line scans of fluorescence excitation spectra (FES) across
the ZPL with power measured outside the cryostat before the objective lens are taken, which
remove the influence of the resolution of the spectrometer. The width of the FES measured
zero phonon lines can be expressed as

∆ν =
Γ2(T)

π

√
1 + S , (4.42)

with saturation parameter S, where the temperature dependant results are shown in Fig. 4.8a.
Finding this linewidth ∆ν allow for Γ2(T) to be found by extrapolating the fits to zero power
such that ∆ν(S → 0) = Γ2(T)/π [45]. The extracted Γ2(T) values are shown in Fig. 4.8b,
together with the theoretical model. The DBT molecule examined in this work was slightly
broadened at the base temperature of 4.7 K predicting γ(4.7) = 0.14 ns−1. This model predicts
cooling below 3 K for this molecule would be sufficient to reach a lifetime–limited linewidth
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Γ2(T) = Γ1/2. This homogeneous broadening originates from mixing between vibronic states
induced by anharmonic effects, where the participation of two phonons from the residual bath
is required. To capture this anharmonicity the inclusion of quadratic terms in the Hamiltonian
need to be captured. Furthermore, this multi–phonon absorption process results in the strong
temperature dependence of the ZPL broadening which matches measurement well.

4.4 Driving the molecule

To further demonstrate the adaptability of the theoretical model, time-domain dynamics of
the DBT molecule are now investigated by considering the second-order intensity correlation
function under continuously driven resonant excitation conditions [121].

4.4.1 Theoretical driving model

To account for continuous driving of the molecule the model must be revisited and an ad-
ditional driving term is introduced into the system Hamiltonian defined in Eq. (4.1) such
that,

HS,D = HS + Ω cos(ωdt)(σ + σ†), (4.43)

with Rabi frequency Ω and driving laser frequency ωd. Moving into a rotating frame with
respect to the laser frequency such that H′ = U(t)HU†(t)− iU(t)∂tU†(t) with U(t) = eih̄ωdσ†σt.
Applying this to the full pre-polaron transform driven Hamiltonian given in Eq. (4.1), modifies
the system term to HS,D = HS − h̄ωdσ†σ + h̄Ω

2 (σ + σ†) and the EM-TLS interaction term to

HEM−TLS
I,D = h̄ ∑

l
pl(e−ih̄ωdtσc†

l + e+ih̄ωdtσ†cl). (4.44)

Where this transformation has been found using the relation U(t) = eih̄ωd|e⟩⟨e|t = 1+ ih̄ωdt |e⟩⟨e|+
... = |g⟩⟨g|+ |e⟩⟨e| eih̄ωdt.

Performing now the two polaron transformations on this driven Hamiltonian as described
in section (4.2.1) and considering only terms that differ from the non-driven case. Firstly,
the driving term in the free–system Hamiltonian transforms to Ω

2 (σαB− + σ†
α B+), which now

reflects a system-environment interaction as it has a non-zero expectation value with respect to
the thermal state ρE such that, TrE[σαB− + σ†

α B+] = ⟨B⟩ (σα + σ†
α ) [83]. Rearranging this term

into separate system and interaction contributions using the following system operators X =

(σα + σ†
α ), Y = i(σα − σ†

α ) and bath operators Bx = 1
2 (B+ + B− − 2 ⟨B⟩) and By = i

2 (B+ − B−),
gives the polaron frame driven free system Hamiltonian

HS,D,P = h̄δPσ†σ +
h̄Ω
2

⟨B⟩ X + h̄ ∑
i

∆iα
†
i αi. (4.45)

The case of resonant driving will be considered for these calculations such that δP = EP −
h̄ωd = 0, where the previously defined polaron shifted TLS energy splitting EP = EX −
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h̄(∑i η2
i /∆i + ∑k g2

k/ωk). The driving interaction term found from this rearrangement takes
the form

HDR
I =

h̄Ω
2

(XBx + YBy). (4.46)

Finally the driven EM-TLS polaron frame interaction term is

HEM−TLS
I,P,D = h̄ ∑

l
ple−ih̄ωdtσαB−c†

l + h.c., (4.47)

All other terms HE, HPH−LV
I,P and HPH

Q are unchanged from the non-driven case shown in section
(4.2.1.2).

4.4.1.1 Driven master equation

To find the master equation with this driven Hamiltonian the dissipator for the newly intro-
duced interaction term HDR

I , needs to be evaluated. To begin the driving-induced interaction
Hamiltonian can be written as

HDR
I =

h̄Ω
2

X ⊗ Bx +
h̄Ω
2

Y ⊗ By. (4.48)

Following the derivation outlined in section (2.1.4.2) the system operators are moved to the
interaction picture by using a Fourier decomposition, which gives X(−τ) = ∑ξ eiξτX(ξ)

and Y(−τ) = ∑ξ eiξτY(ξ). A unitary cannot be used in this case to time evolve the system
operator as the free-system Hamiltonian doesn’t commute with it. Finding the environment
operators in the interaction picture gives B̃x(−τ) = e−iHEτ/h̄BxeiHEτ/h̄ and similarly for B̃y(−τ).
Substituting in the environment operators into the correlation function defined in Eq. (2.22)
and using section (2.2.2.2) gives

Cxx(τ) =
⟨B⟩2

2
(eϕ(τ) + e−ϕ(τ) − 2), (4.49)

Cyy(τ) =
⟨B⟩2

2
(eϕ(τ) − e−ϕ(τ)), (4.50)

and Cxy(τ) = Cyx(τ) = 0. Substituting the system operators along with the response functions
Kxx(ξ) and Kyy(ξ) as found from Eq. (2.26) into the Eq. (2.17) gives the driving dissipator

DDR[ρS(t)] = −1
2

(Ω
2

)2
∑
ξ

γxx(ξ)[X, X(ξ)ρS(t)− ρS(t)X†(ξ)]

− 1
2

(Ω
2

)2
∑
ξ

γyy(ξ)[Y, Y(ξ)ρS(t)− ρS(t)Y†(ξ)],
(4.51)

where γxx(ξ) and γyy(ξ) are the real component of the response function and (ξ) is the
eigenvalue difference. The Lamb shift terms originating from the imaginary component of the
response function have been taken into the system Hamiltonian.
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For all other dissipators besides the pure dephasing term moving into the interaction picture
for the interaction Hamiltonian needs to be reconsidered due to commutation issues that arise
from the additional driving term in the system. Firstly for the spontaneous emission dissipator
the EM-TLS interaction term in the interaction picture is H̃EM−TLS

I,P,D (−τ) = U†
0 (−τ)HEM

P,I U0(−τ),
which can be expressed as

H̃EM−TLS
I,P (−τ) = h̄σα(−τ)e−iωdtB−(−τ)C†(−τ) + h.c.. (4.52)

Using the approximation

σα(−τ)e−iωdt = exp
[
− i
(Ω ⟨B⟩

2
X + ∑

i
∆iα

†
i αi
)
τ
]
σα exp

[
i
(Ω ⟨B⟩

2
X + ∑

i
∆iα

†
i αi
)
τ
]
e−iωdt,

≈ σ exp
[
− ∑

i

ηi

∆i

(
α†

i e−i∆iτ − αiei∆iτ
)]

e−iωPt,

(4.53)

where the last step uses the large difference in energy scales ωP ∼ ωd ∼ 1.6 eV compared to
Ω ⟨B⟩ ≈ 10 meV. With this approximation this expression is now equivalent to the non-driven
electromagnetic dissipator shown in Eq. (4.20).

When evaluating the local vibrational mode dissipator the following approximation can
be made ei(Ω⟨B⟩

2 X+∑i ∆iα
†
i αi)tαje−i( iΩ⟨B⟩

2 X+∑i ∆iα
†
i αi)t ≈ αje−i∆it, which is valid as Ω ⟨B⟩ (∼ 1µeV) ≪

∆i(20 − 40 meV) where these values are for a typical single molecule emitter and assuming
that local vibrational mode fluctuations are uncorrelated. Similar to the spontaneous emission
case with this approximation the local vibrational mode dissipator for the non-driven case
is equivalent to that shown in Eq. (4.34). Putting these elements together the driven master
equation is given by

∂tρS(t) = DDR[ρS(t)] +DEM[ρS(t)] +DPH[ρS(t)]

+ ∑
i

(
− i[∆iα

†
i αi +

Ω
2
⟨B⟩ X, ρ(t)] + Γi,+Lα† [ρ(t)] + Γi,−Lα[ρ(t)]

)
. (4.54)

4.4.2 Second–order intensity correlation function

The steady state normalised second–order intensity correlation function from a Hanbury
Brown and Twiss set up is

g(2)(τ) =

〈
E†E†(τ)E(τ)E

〉
ss

⟨E†E⟩2
ss

(4.55)

where τ is the time delay between detection events [45] and a derivation for this equation can
be found in section (3.3.1). Substituting the definition of the electric field operators shown in
Eq. (4.36) into equation (4.55) and simplifying gives

(4.56)
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Figure 4.9: Measured g(2)(τ) taken from a Hanbury Brown–Twiss experiment (grey solid line)
for the DBT molecule at (a) 4.7 K and (b) 31 K. Purple solid lines show the theoretical model
convolved with a Gaussian function to account for the detector timing jitter and blue dashed
lines shows the model without convolution.

where influence of the bath displacement operators cancel out. Utilising the quantum regression
theorem, see section (3.1.2.1), the second order correlation function can be readily evaluated to
give

g(2)(τ) =
TrS(σ

†
α σαeLτσαρS(t → ∞)σ†

α )

⟨σ†
α σ2

α⟩ss
. (4.57)

To calculate the normalisation factor shown in the denominator the inclusion of the upper
half diagonal elements (all vibronic and electronic excited levels) of the ’steady state’ density
matrix are required.

The theoretically calculated g(2)(τ) and experimental data from a Hanbury Brown–Twiss
(HBT) set up are shown in Fig. 4.9, for temperatures of 4.7 K and 31 K. This HBT measurement
probes the excited state population of the DBT molecule and is used to verify that the source is
emitting single photons. For an ideal single photon emitter there should be no coincidence
events between the two output detectors such that g̃(2)(0) → 0. The sharp dip observed at
τ = 0 in the data reflects the strong suppression of multi-photon emission events. At T = 4.7 K
Rabi oscillations which represent the coherent exchange of excitations from the driving laser to
the system, can be seen.

The parameters used to calculate g(2)(τ) are taken from the fits of the DBT emission
spectra, where the Rabi frequency Ω, is the only additional free parameter. Interestingly,
to reproduce the experimentally observed Rabi frequency of the oscillations, when fitted
phenomenologically, is the re-normalised Rabi frequency Ωr = Ω ⟨B⟩∏i ⟨Ai⟩ instead of the
bare Rabi frequency Ω, which arises from both the local vibrational mode and thermal bath
phonon coupling [79]. As temperatures increase thermal phonon interactions begin to suppress
these Rabi oscillations, demonstrated in Fig. 4.9b.
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4.5 Chapter summary

In this chapter firstly, single molecules of dibenzoterrylene have been motivated as promising
single photon sources. Characteristic properties of DBT are presented and a suitable host for
DBT molecules, a nano–crystal of anthracene (Ac) has been motivated and described. The
growth of the DBT–Ac nano–crystal used to provide the results presented in this chapter has
been detailed.

A theoretical model in the formalism of open quantum systems theory has been developed
which comprehensively describes the optical properties of a single dibenzoterrylene molecule
doped in an anthracene nano–crystal. The model successfully reproduces temperature de-
pendent emission spectra measurements, where all spectral features are well captured. These
features include, a zero phonon line (ZPL) at 782.3 nm, sharp peaks which arise from the
excitation of four separate local vibrational modes (LVM) and a broad continuous longitudinal
acoustic sideband associated with both the ZPL and LVMs. Additionally, the model captures
the temperature dependent homogeneous ZPL broadening which arises from anharmonic
effects of the thermal phonon bath by taking the electron–phonon interaction to second order
with respect to lattice displacements. In the model an extension to polaron theory is developed
which displaces both the thermal phonon bath and the localised vibrational modes. To model
the dynamics a second–order Born–Markov master equation in the polaron frame is derived.
Working in the polaron frame allows for the non–Markovian feedback between the system
and the thermal bath which captures the observed broad sidebands. This model also holds
versatility to alternative host environments, as its influence is captured by including a thermal
phonon bath which is characterised by two free parameters, the exciton–phonon coupling
strength and a high–frequency cut off (to capture a different host these parameters can be
adapted). Moreover, this work could be extended in to capture other promising solid-state
quantum emitters for which phonon coupling effects are important, such as two-dimensional
materials [3].
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5
HONG–OU–MANDEL EXCITATION REGIMES

This chapter presents calculations of second order correlation function measurements g(2)(τ)
from a Hong–Ou–Mandel (HOM) interferometer set up under different driving regimes.

For these calculations interference between successive single photons from a single quantum
emitter separated with some time delay are considered. The main motivator of conducting
a HOM experiment is the ability to observe and quantify two–photon interference effects,
where this interference resides in the suppression of detected coincidence events, measured by
g(2)(τ).

The full–photon wavepacket indistinguishability I = ⟨ψ1|ψ2⟩ of a quantum emitter under
pulsed excitation can be determined from a HOM measurement, as shown in section (3.3.2).

𝐸𝑖𝑛,1(𝑡)

Detector

𝐸2(𝑡)

𝐸1(𝑡)

50:50 

BS

𝐸𝑖𝑛,2(𝑡)

50:50

Cryostat

Emitter
Delay

𝜏 = 𝑡1 − 𝑡2

𝑡1

𝑡2

Figure 5.1: HOM set up with a single photon emitter as the source input split on a 50:50
beamsplitter (BS) followed by some delay, before interfering on another 50:50 beam splitter.
The time difference between detector measurements is τ = t1 − t2.
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This indistinguishability indicates to what degree photons with the wavefunctions |ψ1⟩ and
|ψ2⟩ are quantum mechanically identical and gives the amplitude of two–photon interference.
Indistinguishability is a key requirement for many quantum information applications which
rely on photonics such as linear optical quantum computing [60] or quantum networks which
use spin–photon entanglement [11]. Other idealistic requirements for a single photon source
with the above quantum applications include high efficiency and on-demand emission.

The first driving regime considered in this chapter is non–resonant pulsed excitation.
From which full photon wave packet indistinguishability can be found from the normalised
time-integrated difference between second order correlation measurements for input photons
with perpendicular and parallel polarization alignment. This work extends upon the example
shown in section (3.3.2) (which considers solely a two–level system), to include non-temporal
decoherence effects such as a longitudinal acoustic phonon sideband and localised vibrational
modes. Other regimes covered in this chapter are non–resonant and resonant continuous wave
(cw) excitation. Measurements from cw excitation typically involve looking at the height of
the HOM dip at g(2)(0), which depends highly on the temporal resolution of the detector. For
the case of an ideal detectors the value of g(2)(0) tends to zero regardless of the incoming
photon distinguishability [55, 94], as the measurement acts as a frequency filter. As photons
get more distinguishable, the temporal detector resolution needs to increase to capture this
suppression to zero. For the case of near–indistinguishable photons with realistic detectors,
the g(2)(0) suppression should be resolved close to zero indicating two–photon interference
effects, which is why this value is still quoted in literature [69, 88, 98, 113]. However, as the
coincidence rate at zero time delay is highly sensitive on the detector resolution it is insufficient
to quantitatively determine the true coherence properties of the incident photons. In this
chapter a novel method is proposed from which the full wavepacket indistinguishability can
be extracted from a non–resonant cw HOM experiment. Finally, the regime of resonant driving
is considered which is of fundamental interest as it directly probes the exciton state. Within the
resonant driving regime, Rabi oscillations are observed and the effect of a continuous phonon
sideband is discussed.

The systems explored in this work are transferable across any deterministic solid state
emitter, however, to support these calculations a single molecule DBT emitter is considered. The
work presented in this chapter is based on this publication in [104]. All experimental aspects
detailed in this chapter were completed at Imperial College London and lead by collaborator
Alex S. Clark’s group with Ross C. Schofield, Kyle D. Major and Rowan A. Hoggarth.

5.1 Pulsed excitation

The calculation of a non–resonantly pulsed ideal two–level system (TLS) emitter can be found
in section (3.3.2). To model this regime the system is initially populated in the excited state,
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Figure 5.2: Calculation of the measurement taken from a pulsed HOM experiment accounting
for the ZPL emission from a DBT molecule at Γ1 = 2π × 40 MHz and γ = 2π × 15 MHz,
the time delay between pulses is simulated to T = 12.5/Γ1 ≈ 50 ns. Yellow peaks represent
the uncorrelated counts which can also be found from perpendicular polarisation between
interferometer input arms, whereas the purple feature is the ensemble average of coincidence
events, G(2)

PUL(t, τ) found with parallel alignment.

such that ρ(0) = |e⟩ ⟨e|; it is assumed that the population has already inverted from the
fast laser pulse. Taking the parameters for the DBT molecule described in chapter 4, the
coincidence detection rate of a pulsed single molecule has been found in Fig. 5.2. In this
figure the ensemble average of unnormalised coincidence events G(2)

PUL(τ) is shown in pink,
along side the uncorrelated coincidence probability G(2)

⊥PUL
(τ) with a pulse time delay of

T = 12.5/Γ1 ≈ 50 ns, chosen to avoid any peak overlap, in yellow.

It is already apparent from the work shown in chapter 4 that emission from a single
molecule of DBT has a rich emission structure consisting of more than just a zero phonon line,
including a longitudinal acoustic phonon sideband and sharp peaks originating from local
vibrational modes. When considering key parameters such as the indistinguishability of an
emitter, it is particularly important to characterise the effect of non-temporal decoherence from
both the continuous phonon sideband and the localised vibrational modes. Noting that it is
arguably more important to capture the effect of a continuous sideband as it directly overlaps
with the ZPL, in comparison to the local modes which are well separated in frequency. To
remove the vast majority of both of these decoherence effects a filter can be used. In this work
the influence of both non-temporal decoherence effects are included in the modelling as it is of
fundamental interest to investigate the arising physics.

5.1.1 Inclusion of a phonon sideband

We first consider the model of a two–level system with a phonon sideband by following the
methodology set out in section (3.2.2). The positive component of the electric field operator,
for this open quantum system is found to be E(t) =

√
Γ1/2π σ(t)B−(t), negating the vacuum

term. Substituting the field operator into Eq. (3.57) we find the unnormalised ensemble average
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of coincidence events from a TLS with continuous phonon sideband as

G(2)
PULSB

(τ) =
Γ1

4π

∫ ∞

0
dt
( 〈

σ†(t)σ(t)
〉 〈

σ†(t + τ)σ(t + τ)
〉
−
∣∣∣G(τ) 〈σ†(t + τ)σ(t)

〉∣∣∣2), (5.1)

with the phonon bath correlation function G(τ) = ⟨B−(t + τ)B+(t)⟩ detailed in Eq. (2.47). For
the purpose of these calculations the parameters to capture the sideband are those found from
the molecule characterised in chapter 4 which are ξ = (8.6 ± 0.6)ps−1 for the frequency cut off
and α = (0.009 ± 0.001)ps2 for the phonon coupling strength. See figure 5.3a for simulations
of G(2)

PULSB
(τ) comparing the cases for the inclusion/exclusion of a phonon sideband with the

pure dephasing fixed to γ = 2π × 15 MHz in dashed–yellow and solid–pink lines respectively
and for the case of a sideband present but with γ = 0. It can be seen that the inclusion of the
sideband introduces a significant bump around (0.1 − 1) ps which then plateaus out before
tapering off (on a log scale), where this feature directly reflects the presence of the phonon
correlation function |G(τ)|2 in Eq. (5.1), shown in the inset of Fig. 5.3a. The inclusion of the side-
band significantly increases the area of the peak, where this reflects the increased decoherence
of the emission, and as will be seen leads to a reduction in indistinguishability. For the case of
an ideal two–level system with no pure dephasing (γ = 0) and some spontaneous decay, there
is no chance of coincidence events due to purely coherent emission giving,

∫ ∞
0 dτG(2)

PUL(τ) = 0.
Noting that for any single photon emitter under non–resonantly pulsed excitation G(2)

PUL(0) = 0
holds as the terms in Eq. (5.1) cancel. The height of the dip at G(2)

PUL(0) depends on the de-
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Figure 5.3: (a) Simulation of GPUL(τ) from a DBT molecule on a log scale capturing the
ZPL and continuous LA phonon sideband ξ = (8.6 ± 0.6)ps−1 and α = (0.009 ± 0.001)ps2

taken from the analysis of the molecule in chapter 4. The ZPL has a pure dephasing rate of
γ = 2π × 15 MHz (blue) and γ = 0 (dashed yellow), the omission of the sideband with pure
dephasing rate fixed to γ = 2π × 15 MHz is shown in pink. (b) and (c) show the functions in
(a) with linear scaling including a convolution with a Gaussian kernel to simulate detection
jitter is shown in dashed black. Inset highlights the HOM dip.
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tector timing resolution and can be captured in the model by a convolution with a Gaussian
kernel Gauss(σR) =

1√
2πσ2

R
exp

[
−x2

2σ2
R

]
, with σR the standard deviation. To show this effect see

Fig. 5.3b, for which the case of a TLS with pure dephasing has been convolved with a kernel of
σR = 0.3 ns. Finally, a direct comparison of the model with a phonon sideband for the case of
γ = 2π × 15 MHz and γ = 0 is shown on a linear plot, where it is clear that the bump feature
around (0.1 − 1) ps is unlikely to be resolvable upon measurement due to detector jitter, unless
the resolution is on the order of ∼ 0.1 ps.

To find the indistinguishability of the molecule omitting the effects of the localised vibra-
tional modes requires solving Eq. (3.59) which gives

IZPL+SB =

∫
dt
∫

dτ|G(τ)|2
∣∣〈σ†(t + τ)σ(t)

〉∣∣2∫
dt
∫

dτ ⟨σ†(t)σ(t)⟩ ⟨σ†(t + τ)σ(t + τ)⟩
. (5.2)

To simplify this expression we assume that emission into the phonon sideband is completely
incoherent [55], which leads to

IZPL+SB ≈ ⟨B⟩4 Γ1

2Γ2(T)
. (5.3)

To explore the validity of this assumption both Eq. (5.2) and (5.3) have been found for varying
temperatures, where the temperature dependent pure dephasing rate from Eq. (4.27) modifies
the ZPL broadening and can be found in figure 5.4a. It can be seen that under 30 K the
approximation of a purely incoherent sideband holds, however as the temperature increases
above this, a small deviation in the two models can be seen (only with logarithmic scaling).

T(K)

2 10 20 30               40 

0.5

10-1

10-2

10-3

10-4In
d

is
ti
n

g
u

is
h

a
b

ili
ty

0.50

0.25

0.00
2 20 40

T(K)

Linear scale

In
d

is
ti
n
g
u
is

h
a
b

ili
ty

𝐵 4
Γ1
2Γ2

Numerical 

model

a

-20            -10              0

𝑆
(𝜔

)

ℏ𝜔(meV)

-20                 0                  20
ℏ𝜔(meV)

b T = 2K

T = 40K

1010

100

10-10

100

10-4

10-8

Figure 5.4: (a) Indistinguishability for a DBT molecule accounting for its ZPL and phonon
sideband as a function of temperature. Comparing the case for assuming the sideband is fully
incoherent (solid blue) and numerically finding the indistinguishability from Eq. (5.3) (dashed
red). (b) Emission spectra for the molecule with a phonon sideband (SB) for 2 K (top) and
40 K (bottom) showing individual contribution to the zero phonon line and sideband and the
combined spectra.
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See Fig. 5.4b for the emission spectra for the lifetime limited case of T = 2 K and for T = 40 K.
The fraction of the sideband that is coherent is on the time scale of the ZPL lifetime which for
DBT molecules is ∼ 4 ns. For the lifetime limited case a very small fraction of the sideband
directly overlaps with the ZPL which leads to the reasonable assumption of a purely incoherent
sideband. However as the temperature increases it appears as though the sideband shifts,
causing a higher fraction of the sideband to directly overlap with the ZPL peak leading to a
relatively higher yet small coherent fraction.

5.1.2 Inclusion of local vibrational modes

Now considering the full model of a single DBT molecule with all its spectral features including
the ZPL, phonon sideband and localised vibrational modes detailed in section (4.2) with the
polaron frame master equation shown in Eq. (4.34). Substituting the electric field operator in
Eq. (4.36) into Eq. (3.57) to find the unnormalised ensemble average of coincidence events from
the full emission from a single DBT molecule as

G(2)
PULSB+LV

(τ) =
Γ1

4π

∫ ∞

0
dt
( 〈

σ†
α (t)σα(t)

〉 〈
σ†

α (t + τ)σα(t + τ)
〉

−
∣∣∣G(τ) 〈σ†

α (t + τ)σα(t)
〉∣∣∣2). (5.4)

For these calculations only one localised vibrational mode at 21.5 meV is included to demon-
strate its influence on the function. Figure 5.5a shows simulations of G(2)

PULSB+LV
(τ) for the

emission from a DBT emitter, comparing the cases for the inclusion/exclusion of a phonon side-
band, with one localised vibrational mode and some pure dephasing set to γ = 2π × 15 MHz

700

350

0

𝜏(ps)
10-2 10-1 100 101 102 103 104

𝐺
||
𝑃
𝑈
𝐿

(2
)
(𝜏
)

1LV + SB 

1LV no SB

ba

-20              0               20

𝐺
||
𝑃
𝑈
𝐿

(2
)
(𝜏
)

𝜏(ns)

-50           0          50

𝐺
𝑃
𝑈
𝐿

(2
)
(𝜏
)

𝜏(ns)

𝐺|| 𝜏

𝐺⊥ 𝜏
c

Figure 5.5: (a) Simulation of G||PUL
(τ) from a DBT molecule capturing the ZPL and one local

vibrational mode (pink) shows the inclusion of the continuous LA phonon sideband and (blue)
shows without (blue). (b) Shows the G||PUL

(τ) on a linear scale to visualise the parallel detection
events. (c) shows the full GPUL(τ) profile with the inclusion of the sideband.

68



5.2. CONTINUOUS WAVE EXCITATION

shown in the pink and blue lines, respectively. It can be seen that the inclusion of the local
mode introduces an oscillation which has a period of ∼ (0.19 ± 0.04) ps. The overall shape
of the peak is also affected for these two scenarios which can be seen in figure. 5.5b, where a
simulation of the full coincidence detection rate for a DBT emitter with the inclusion of the
phonon sideband and the first localised vibrational mode is shown in 5.5c. Now assuming
the emission into the localised vibrational modes is purely incoherent, justified as they are
spectrally separated in frequency from the ZPL, the indistinguishability can be found from

ISB+LV ≈ [∏
i
⟨Ai⟩4] ⟨B⟩4 Γ1

2Γ2(T)
. (5.5)

5.2 Continuous wave excitation

For the case of non–resonant cw driving the experimentally determined second-order corre-
lation function takes on a different form; instead of measuring the ensemble average over
coincidence events, we require the steady–state function found by taking t → ∞, giving

G(2)
CW(τ) = lim

t→∞

1
2

(
4G(2)

HBT(t, τ)−
∣∣∣〈E†(t + τ)E(t)

〉∣∣∣2
+
〈

E†(t)E(t)
〉 〈

E†(t + τ)E(t + τ)
〉 )

. (5.6)

In the following sections both non–resonant and resonant driving is considered.

5.2.1 Coherent non–resonant driving

To evaluate G(2)
CW(τ) a three-level non–resonant coherent driving model shown in Fig. 5.6a

is considered. This system captures the non–resonant driving to a higher vibrational level

a b

Figure 5.6: (a) Schematic diagram of non–resonant driving from the ground |g⟩ to a higher
vibrational level |v⟩, modelled by coherent driving with the Rabi frequency Ω. The fast non-
radiative decay rate from |v⟩ → |e⟩ is given by β. Spontaneous emission from the excited state
|e⟩ is given by Γ1 and pure dephasing is given by γ. (b) Effective two level system by adiabatic
elimination of the pump level, giving a driving rate SΓ1 with the saturation parameter S.
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with state |v⟩ = (1, 0, 0) which then undergoes rapid non-radiative decay to the excited state
|e⟩ = (0, 1, 0) followed by radiative decay to the ground state |g⟩ = (0, 0, 1). The transition
operators are defined by σ = |g⟩ ⟨e|, σvg = |v⟩ ⟨g| and σev = |e⟩ ⟨v|. The subsequent Born-
Markov second-order master equation for this system is given by

∂tρ(t) = −i[HS, ρ] + Γ1Lσ[ρ(t)] + βLσev [ρ(t)] + 2γLσ†σ[ρ(t)], (5.7)

with system term HS = Ω
2 (σvg + σ†

vg) which represents the coherent driving with Rabi
frequency Ω. Simplifying Eq. (5.6) by substituting in the positive electric field operator
E(t) ∝ σ for this system and normalising with the excited steady state population

〈
σ†σ

〉
ss =

limt→∞
〈
σ†(t)σ(t)

〉
, we find

g(2)CW(τ) =
1

2⟨σ†σ⟩2
ss

( 〈
σ†σ

〉2

ss
+ lim

t→∞

( 〈
σ†(t)σ†(t + τ)σ(t + τ)σ(t)

〉
−
∣∣∣〈σ†(t + τ)σ(t)

〉∣∣∣2)), (5.8)

which corresponds experimentally to parallel polarisation alignment to the interferometer
input arms. To calculate the scenario of uncorrelated input fields, which corresponds to setting
perpendicular polarisation alignment to the interferometer input arms, the interference term
vanishes giving

g(2)⊥CW
(τ) =

1

2 ⟨σ†σ⟩2
ss

(
lim
t→∞

〈
σ†(t)σ†(t + τ)σ(t + τ)σ(t)

〉
+
〈

σ†σ
〉2

ss

)
. (5.9)

To visualise these second order correlation function under continuous wave excitation see
Fig. 5.7. In this figure g(2)(τ) functions for both parallel and perpendicular alignment of the
interferometer arms are shown, where at τ = 0 anti–bunching is observed which takes the dip
to 0.5 for both beam alignments. For the parallel case two–photon interference is observed and
the dip goes to zero.

5.2.2 Indistinguishability from continuous excitation

It is evident that the methodology used to find the indistinguishability as shown in Eq. (3.60)
cannot be used here as this gives a divergent result when integrating over τ. However, if
the steady-state population squared (the normalisation factor) is subtracted, this results in
convergent integrals and therefore it is postulated that the indistinguishability can be found
from

Ĩ(S) =

∫
dτ(1 − g(2)∥CW

(τ))−
∫

dτ(1 − g(2)⊥CW
(τ))∫

dτ(1 − g(2)⊥CW
(τ))

. (5.10)

Substituting in the g(2)CW(τ) and g(2)⊥CW
(τ) into Eq. (5.10) we find

Ĩ(S) =

∫
dτ limt→∞

∣∣∣〈σ†(t + τ)σ(t)
〉∣∣∣2/

〈
σ†σ

〉2
ss∫

dτ 1 − limt→∞ ⟨σ†(t)σ†(t + τ)σ(t + τ)σ(t)⟩ /⟨σ†σ⟩2
ss

. (5.11)
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Figure 5.7: Simulation of a continuous wave second order correlation function measurement
for the case of parallel (yellow) and perpendicular (blue) interferometer arm alignment. Model
captures DBT molecule zero phonon line emission with parameters Γ1 = 2π × 40 ± 2 MHz
and the dephasing rate Γ2 = 2π × 35 ± 4 MHz.

This three level system Eq. (5.11) can only be evaluated numerically by invoking the quantum
regression theorem. For a single DBT molecule the decay rate from the first localised vibrational
mode is approximately β ≈ 2500 × Γ1 [23]. The excited steady state population for this system

is ρee(∞) = ⟨e|ρ(∞)|e⟩ =
Ω2
βΓ1

1+ Ω2
βΓ1

+ 2Ω2

β2

. Setting driving strength saturation to S = Ω2

βΓ1
, as β ≫ Γ1,

we find

ρee(∞) =
S

1 + S(1 + 2Γ1
β )

≈ S
1 + S

, (5.12)

which is valid as long as 2Γ1
β ≪ 1, for typical DBT system parameters this relation is indeed

valid as 2Γ1
β ≈ 10−3.

5.2.2.1 Adiabatic elimination of the pump level

It is advantageous to have an analytical form for Ĩ(S) as this allows for the extraction of
indistinguishability from experiment. To do so an effective two-level system is now derived by
adiabatically eliminating the higher order energy state, see Fig. 5.6. Starting with the optical
Bloch equations for the three level non–resonantly driven system derived from Eq. (5.7), we
find

ρ̇vv(t) =
iΩ
2
(ρvg(t)− ρgv(t))− βρvv(t), (5.13)

ρ̇ee(t) = −Γ1ρee(t) + βρvv(t), (5.14)

ρ̇gg(t) = − iΩ
2
(ρvg(t)− ρgv(t)) + Γ1ρee(t), (5.15)

ρ̇gv(t) =
iΩ
2
(ρgg(t)− ρvv(t))−

β

2
ρgv(t), (5.16)

ρ̇ge(t) = − iΩ
2

ρve(t)−
Γ1

2
ρge(t)− γρge(t), (5.17)
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ρ̇ve(t) = − iΩ
2

ρge(t)−
Γ1

2
ρve(t)−

β

2
ρve(t)− γρve(t), (5.18)

where ρXY(t) = ⟨X|ρ(t)|Y⟩ [25]. Solving firstly Eq. (5.16) with an integrating factor we find

ρgv(t) =
iΩ
2

∫ t

0
dt′e−

β
2 (t−t′)(ρgg(t′)− ρvv(t′)), (5.19)

which can be solved for the case of β ≫ Ω to give ρgv(t) ≈ iΩ
β (ρgg(t) − ρvv(t)), and by

similar methodology ρvg(t) ≈ − iΩ
β (ρgg(t)− ρvv(t)). Using the forms for ρgv(t) and ρvg(t) and

substituting into Eq. (5.13) gives

ρ̇vv(t) = −Ω2 + β2

β
ρvv(t) +

Ω2

β
ρgg(t). (5.20)

Solving Eq. (5.20) using an integrating factor again we find

ρvv(t) =
Ω2

β

∫ t

0
e−

Ω2+β2
β (t−t′)

ρgg(t′)dt′,

≈ Ω2

Ω2 + β2 ρgg(t).
(5.21)

Finally, solving Eq. (5.18) using the same methodology as above we find

ρve(t) = − iΩ
2

∫ t

0
e−(

Γ1+β
2 +γ)(t−t′)ρge(t′)dt′,

≈ −i
Ω

β + Γ1 + 2γ
ρge(t).

(5.22)

Making a change of variables to the saturation parameter S = Ω2/βΓ1 defined in the section on
coherent non–resonant driving, to recover the ground and excited state optical Bloch equations
for the effective two–level system, finding

ρ̇ee(t) = −Γ1ρee(t) + β
Ω2

Ω2 + β2 ρgg(t),

≈ −Γ1ρee(t) + SΓ1ρgg(t),
(5.23)

ρ̇gg(t) ≈ Γ1ρee(t)− SΓ1ρgg(t), (5.24)

which holds as long as β ≫ Ω. Manipulating this equality further as Ω =
√

SΓ1β , leading to
the constraint β ≫ SΓ1. The final optical Bloch equation to consider is the ρ̇ge(t) contribution.
This leads to an interesting pre–factor upon substitution of Eq. (5.22) into Eq. (5.17), finding

ρ̇ge(t) = − SΓ1β

2(β + 2Γ2)
ρge(t)−

Γ1

2
ρge(t)− γρge(t), (5.25)

which for β ≫ Γ2 can be simplified to recover the two–level system optical Bloch equation

ρ̇ge(t) = −SΓ1

2
ρge(t)−

Γ1

2
ρge(t)− γρge(t). (5.26)
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5.2.3 Indistinguishability extraction results

Modelling the effective two–level system found from the adiabatic elimination above, using a
second–order Born–Markov master equation, we find

∂tρ(t) = Γ1Lσ[ρ(t)] + Γ1SLσ† [ρ(t)] + 2γLσ†σ[ρ(t)]. (5.27)

The driving in this model is captured by the incoherent dissipator with rate SΓ1, see Fig. 5.6.
Using the quantum regression theorem the second-order perpendicular and parallel cw cor-
relation functions in Eq. (5.8) and (5.9) can be analytically solved [48]. To evaluate these
equations the constituent parts are independently found, firstly finding the excited steady
state population

〈
σ†σ

〉
ss = limt→∞ TrS[σ

†σ(eLtρS(0))] = S
1+S , where initially the system is

populated is in the ground state. The first order correlation function present in g(2)∥CW
(τ) is

found to be limt→∞
〈
σ†(t + τ)σ(t)

〉
= limt→∞ TrS[σ

†eLτσ(eLtρS(0))] = S
1+S e−

1
2 (Γ1(1+S)+2γ)|τ|.

Finding lastly, limt→∞
〈
σ†(t)σ†(t + τ)σ(t + τ)σ(t)

〉
= limt→∞ TrS[σ

†σeLτσ(eLtρS(0))σ†] =
S2

(1+S)2 (1 − e−(1+S)Γ1|τ|). Putting these evaluated correlation functions together the parallel
polarisation alignment second order correlation function is

g(2)CW(τ) =
(
1 − 1

2
e−(1+S)Γ1|τ| − 1

2
e−(Γ1(1+S)+2γ)|τ|), (5.28)

and the perpendicular measurement, corresponding to fully distinguishable photon inputs is

g(2)⊥CW
(τ) =

(
1 − 1

2
e−(1+S)Γ1|τ|

)
. (5.29)

Using these resultant correlation functions the numerator in Eq. (5.11) becomes∫ ∞

0
dτ lim

t→∞

∣∣∣〈σ†(t + τ)σ(t)
〉∣∣∣2/

〈
σ†σ

〉2

ss
=

1
Γ1(1 + S) + 2Γ1

. (5.30)

Similarly, for the denominator of Eq. (5.11), we find∫ ∞

0
dτ 1 − lim

t→∞

〈
σ†(t)σ†(t + τ)σ(t + τ)σ(t)

〉
/
〈

σ†σ
〉2

ss
=

1
Γ1(1 + S)

. (5.31)

Substituting these into Eq. (5.11) we find for a two–level system

Ĩ2LS(S) =
Γ1(1 + S)

Γ1(1 + S) + 2γ
. (5.32)

In the limit of S → 0 the full photon wavepacket indistinguishability found from the pulsed
case Ĩ2LS(S → 0) = Γ1

Γ1+2γ = I is recovered. Considering the case of differing driving strengths
for measurements with the parallel (S1) and perpendicular (S2) alignment we find

Ĩ2LS(S1, S2) =
Γ1(1 + S2)

Γ1(1 + S1) + 2γ
+

S2 − S1

1 + S1
. (5.33)
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Figure 5.8: g(2)⊥/∥CW
(τ) calculations from the three–level system and effective two–level system

models for varying driving strengths with saturation parameters, (a) S = 0.01, (b) S = 1,
(c) S = 100, (d) S = 500. DBT dephasing parameters used to calculate these plots are Γ1 =
2π × 40 MHz and Γ2 = 2π × 35 MHz.

3LS

Γ1 1+𝑆

Γ1 1+𝑆 +2𝛾

Γ1

Γ1+2𝛾

a

Saturation S
10-3       10-2 10-1 100 101 102 103

1

0.9

0.8

0.7

0.6 Solid - 2LS

Dashed – 3LS

𝛾 = 0b

Saturation S
10-2 10-1 100 101 102 103

1

0.8

0.6

0.4

𝛾 =
Γ1

2

𝛾 =
Γ1

6

Figure 5.9: (a) Indistinguishability calculated from the three–level system coherent model (solid
yellow line). The analytic form of Ĩ(S) from an effective non–resonantly driven two-level
system dashed blue. Red line shows full photon wave packet indistinguishability using the
parameters of the experimentally measured molecule giving I = 57%. (b) Calculation of
Ĩ(S) for the coherently driven non–resonant three–level system and the effective incoherently
driven two–level system for different pure dephasing parameters γ. Inset highlights the range
where divergence between the two models occur.
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Numerical calculations of g(2)⊥CW
(τ) and g(2)CW(τ) for both the two– and three–level system

models are shown in Fig. 5.8, where the driving strength is varied from weak S = 0.01 to strong
S = 500. The parameters for these calculations are the same as presented for the pulsed case
above with, Γ1 = 2π × 40 MHz and the dephasing rate Γ2 = 2π × 35 MHz. It can be seen that
the models diverge for strong driving, which for our system parameters is around S = 100.

To compare calculations of I(S) for the two– and three–level system models to the indis-
tinguishability of the TLS, see Fig. 5.9a. It can be seen that for strong driving the effective
two–level system model breaks down by diverging from the three–level system and the ana-
lytical form for Ĩ2LS(S) is no longer valid. To investigate for what S this break down occurs
Ĩ(S) is plotted for varying IZPL, see Fig 5.9b. For the case of maximum indistinguishability
IZPL = 1 the function Ĩ(S) deviates between the two level and three level system models by
0.5 % at S = 23.3 ± 0.1, for the DBT system parameters. For decreasing I , corresponding to an
increase in pure dephasing, the break down value of S increases, where for I = 0.5, a deviation
of 0.5 % occurs at S = 40.03 ± 0.1. The observed shift in the breakdown of the two-level system
model can be explained by looking at Eq. (5.25), as when the excess pure dephasing becomes
non-negligible this acts to suppress the saturation parameter present in this equation.

The origin for this deviation stems from including the pump level in the system. By driving
to the pump level coherently the possibility for coherent exchange between the ground and
pump level is captured in the model, which in turn acts to suppress Ĩ(S). To see how the states

a b

c d
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Figure 5.10: Evolution of the states given by ρXX(t) = ⟨X|ρ(t)|X⟩ for both the coherently
driven three level system and the effective two level system model for various driving strengths,
modified by the saturation parameter S. The initial offset for t < 50 ps between the two models
for the excited state is due to some proportion of the population residing in the vibrational
level for the three level system model.
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Figure 5.11: (a) Continuously driven g(2)CW(τ) with an emitter capturing a phonon sideband at
4.4 K and one local vibrational mode at detuning energy 21.5 meV with an indistinguishability
of I = 0.27. Inset shows log scale of feature around τ = 0. (b) Convolution of g(2)CW(τ) with
Gaussian kernel with standard deviation of 0.3 ns to model detector jitter in dashed blue,
purple solid line shows unconvolved g(2)CW(τ).

evolve in the three– and two– levels systems models see Fig. 5.10, where this coherent exchange
can been seen for strong driving with S = 1000. From this analysis it has been concluded that
to extract the indistinguishability from a cw measurement using Ĩ2LS(S) in Eq. (5.32) one must
not pump too hard S ≲ 23 for DBT parameters to ensure coherence effects between the ground
and pump level can be neglected.

5.2.3.1 Inclusion of decoherence effects in cw

Until now we have neglected any effect from phonon sidebands or localised vibrational modes
for a cw measurement. This methodology to find indistinguishability can be readily extended
to capture the influence of both decoherence effects, similar to what was found for the pulsed
case by substituting in either E(t) ∝ σ(t)B−(t) or E(t) ∝ σα(t)B−(t). Taking the assumption
that both the sideband and localised vibrational modes are purely decoherent gives

ĨSB(S) ≈ ⟨B⟩4

∫
dτ limt→∞

∣∣∣〈σ†(t + τ)σ(t)
〉∣∣∣2/

〈
σ†σ

〉2
ss∫

dτ(1 − limt→∞ ⟨σ†(t)σ†(t + τ)σ(t + τ)σ(t)⟩ /⟨σ†σ⟩2
ss)

, (5.34)

and

ĨSB+LV(S) ≈ ⟨B⟩4
[
∏

i
⟨Ai⟩4

]

×

∫
dτ limt→∞

∣∣∣〈σ†(t + τ)σ(t)
〉∣∣∣2/

〈
σ†σ

〉2
ss∫

dτ(1 − limt→∞ ⟨σ†(t)σ†(t + τ)σ(t + τ)σ(t)⟩ /⟨σ†σ⟩2
ss)

, (5.35)

respectively. See Fig. 5.11 for calculation of Eq. (5.35) with one vibrational mode and a con-
tinuous phonon sideband, where the parameters are taken from the characterisation of the
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molecule analysed in chapter 4 and shown in Appendix (A.2). The addition of the local vi-
brational mode creates an oscillation that can be seen in the inset of Fig. 5.11a similar to the
pulsed case. Note that with a realistic detector the temporal resolution is unlikely to resolve this
feature and therefore instead would raise the dip, to model this see Fig. 5.11b where the g(2)CW(τ)

function is convolved with a Gaussian kernel of standard deviation 0.3 ns. The experimentally
observed rising of the dip at g(2)CW(0) does indeed reflect a drop in two–phonon interference,
however it is important to note that the height of measured dip does not allow one to quantify
indistinguishability.

5.2.4 Experimental details

Experimental characterisation of the DBT molecule examined in this work is taken out by
Alex S. Clark’s group at Imperial college London with Ross C. Schofield, Kyle D. Major and
Rowan A. Hoggarth. The emission wavelength of this DBT molecule zero phonon line (ZPL)
was found to be 784.45 nm from emission spectra measurements. In the experimental set up
the emission from the DBT molecule is filtered with a 0.15 nm notch reflection filter, which
at 4.7 K the proportion of emission into the ZPL is η = 99.7% removing the vast majority of
the phonon sideband influence and all local vibrational modes. Power line scans were taken
of across the ZPL, following the same methodology to the results presented in Fig. 4.8, gave
the dephasing rate Γ2 = 2π × 35 ± 4 MHz. The spontaneous decay rate was found from a
Hanbury Brown and Twiss g(2)HBT(τ) measurement and to be Γ1 = 2π × 40 ± 2 MHz, further
details of the experimental characterisation of this molecule are shown in [104]. Negating
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Figure 5.12: (a) Second order correlation measurement of a DBT molecule under non–resonant
continuous wave (cw) excitation with parallel alignment between input arms. Raw data (grey)
is shown overlaid with fitted model (dashed red line), and this convolved with the detector
response function (solid red line). The features at τ = ±25 ns are due to antibunching. (b)
Second order correlation measurement with perpendicular alignment between input arms.
Fitted model (dashed blue line) and convolved function (solid blue line). (c) Shows Eq. (5.10)
as a function of saturation measurements (solid line), with the shaded region coming from
uncertainties in the fit for Γ1 and Γ2 of the DBT molecule. Data points are from using mea-
surements of g(2)CW(τ)/g(2)CW⊥

(τ) to calculate Eq. (5.10) where, integration of the data is given
by (black points) and fitted functions (orange points). The data point at S = 0 is from pulsed
measurements shown in [104] and is I = 0.53 ± 0.01.
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sideband decoherence effects the ZPL indistinguishability can be predicted from these decay
rates from Eq. (3.62) to give IZPL = Γ1/2Γ2 = 0.57. For the following calculations the both the
spontaneous decay and pure dephasing rate, γ, are fixed to model this DBT molecule, where γ

is extracted from γ = Γ2 − Γ1
2 = 2π × 15 MHz.

To experimentally verify this method to extract indistinguishability, measurements of non–
resonant cw second order correlation function for parallel and perpendicular alignment have
be taken, see figure. 5.12. The g(2)CW(τ) parallel measurement shows both anti–bunching and
two–photon interference from the HOM dip at τ = 0. For the perpendicular measurements
only anti–bunching is observed as there is negligible interference. Fitting the cw parallel and
perpendicular measurements by taking into account for the relative reflection/transmission
(r/t) coefficients of two fibre 50:50 beam splitters that make up the interferometer in Fig. 5.1
with the equation

g(2)||/⊥CW
(τ) = 1 − V

(r2
1t2

0 + r2
0t2

1)(r
2
0r2

1 + t2
0t2

1)

(
r2

1t2
1(r

4
0 + t4

0)e
(−Γ1(1+S)|τ|)

+M||/⊥2r2
0r2

1t2
0t2

1e(−(Γ1(1+S)+2γ)|τ|)

+r2
0r4

1t2
0e(−Γ1(1+S)(|τ−dτ|))

+r2
0t4

1t2
0e(−Γ1(1+S)(|τ+dτ|))

)
, (5.36)

which is similar to that found in [98], however is adapted to include driving. The term for
visibility V has been phenomenologically introduced, which takes account of the background
and light from other emitters; in the prior formalism this is intrinsically 1 as only one emitter
is considered. The term M is also introduced which is defined as the auxiliary modal over-
lap and accounts for non-temporal decoherence effects, such as an incoherent sideband and
polarization drift. The subscripts 0 and 1 represent the first and second beam splitters, respec-
tively, where an independent characterisation of the interferometer found, t0 =

√
0.501(1) ,

t0 =
√

0.499(1) , r1 =
√

0.482(1) and t1 =
√

0.518(1) . The time difference between interfer-
ometer arms is dτ and can be found from the time difference in the side features giving 24.75 ns.
Now looking at the the terms in Eq. (5.36), the first two terms correspond to the central dip
around τ = 0 contributing to the anti-bunching and indistinguishability, respectively, The final
two terms corresponds to the anti-bunching features which arise from the time delay in one
of the interferometer path around τ = ±25 ns, noting for a HOM experiment with with two
separate emitters the satellite dips would not present due to the lack of any time delay in the
system.

Fig. 5.12c shows both calculation of Ĩ from integrating both the raw data (black points) and
the fitted functions (orange points). For a known saturation S the indistinguishability from a
non–resonant cw experiment can be found directly using Eq. (5.33). For the case of unknown S
but known relative pump powers one can take multiple measurements of g(2)CW(τ) and g(2)⊥CW

(τ)
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and calculate Ĩ(S) from the the integrals of
∫ ∞

0 dτ(1 − g(2)CW(τ)) and
∫ ∞

0 dτ(1 − g(2)⊥CW
(τ)) in

present in Eq. (5.10) and extrapolate back to (S = 0) leaving the true indistinguishability.

When undertaking a single source HOM experiment using either pulsed or non–resonant
cw excitation, the indistinguishability measured is typically expected to decrease with an
increasing optical delay line. This drop off in I is due to spectral wandering which is more
commonly present in quantum dots and NV centers. For longer optical delay lines, the higher
the optical depth leading to more time for spectral wandering to occur and decohere the inter-
fering photons. This motivates keeping the optical delay line to a minimum. A direct advantage
for cw measurement over pulsed excitation here, is that there is no longer a requirement for the
interferometer delay to be set to match the laser repetition period. Finally, noting that for two
separate interfering single photon emitters any spectral wandering is completely uncorrelated
and no optical delay line is required for the experimental set up.

In contrast to pulsed excitation, determining indistinguishability from a non–resonant
continuous driving regime requires multiple measurements at unknown pump powers, or a
single measurement at a known S, due to the dependence of the correlation functions on the
driving of the system. A benefit of having a method to extract I from a cw measurement is that
it can be found from raw data - independent of the ratio of source lifetime to laser repetition
rate. Moreover, cw excitation leads to higher count rates and greater spectral selectivity.

5.3 Resonant driving

Turning attention to finally the regime of resonant driving, which directly probes the exciton
and results in fundamentally different physics compared to the non–resonant case. For weak
resonant excitation one can achieve coherent scattering, whereas for strong driving a Mollow
triplet can be seen in the emission spectra [35, 61]. Moreover, it has been found that driving on
resonance can increase the coherence time of an emitter which can aid in reaching the radiative
lifetime limit [49, 76].

Γ1Ω

ۧ|𝑒

ۧ|𝑔

Figure 5.13: Schematic diagram of Resonant driving from the ground |g⟩ to the first excited
state |e⟩, modelled by coherent driving with the Rabi frequency Ω. Spontaneous emission from
the excited state |e⟩ is given by Γ1 and pure dephasing is given by γ.
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To capture the regime of resonant driving we consider the second–order Born–Markov
master equation for a resonantly driven two–level system given by

∂tρ(t) = −i[HS, ρ] + Γ1Lσ[ρ(t)] + 2γLσ†σ[ρ(t)], (5.37)

with HS = Ω
2 (σ

† + σ) the system driving term with Rabi frequency Ω. See Fig. 5.13 for visual
representation of this system. Note that Eq. (5.37) is just a simplified version of the driven
second–order master equation shown in Eq. (4.54) which accounts for both a longitudinal
acoustic phonon sideband and N local vibrational modes.

Considering first the generalised case of a TLS with electric field operator E(t) ∝ σ(t),
substituting this into Eq. (3.55) and taking t → ∞ gives

G(2)
CWRES

(τ) =
1
2

lim
t→∞

( 〈
σ†(t)σ†(t + τ)σ(t + τ)σ(t)

〉
−
∣∣∣〈σ†(t)σ(t + τ)

〉∣∣∣2
+ 2 Re

[
⟨σ⟩ss

( 〈
σ†(t)σ†(t + τ)σ(t + τ)

〉
−
〈

σ†(t)σ†(t + τ)σ(t)
〉 )]

−
∣∣∣〈σ†(t)σ†(t + τ)

〉∣∣∣2 + 〈σ†σ
〉2

ss

)
. (5.38)

It can be seen that for this driving regime there are more terms that must be considered when
comparing to the case of continuous wave non–resonant excitation. Normalising this function
with

〈
E†(t)E(t)

〉 〈
E†(t + τ)E(t + τ)

〉
which for a driven HOM experiment gives

g(2)CWRES
(τ) =

G(2)
CWRES

(t, τ)

⟨σ†σ⟩2
ss − |⟨σss⟩|4

. (5.39)

In an attempt to follow the same methodology to extract the indistinguishability as is been
done from a continuous wave non–resonant excitation measurement we require the correlation
function resulting from perpendicular alignment of the interferometer arms i.e. when input
fields are orthogonal, which is

G(2)
CWRES,⊥

(τ) =
1
2

lim
t→∞

( 〈
σ†(t)σ†(t + τ)σ(t + τ)σ(t)

〉
+
〈

σ†σ
〉2

ss

)
. (5.40)

Normalising this function with orthogonal input fields by evaluating Eq. (3.54) gives

g(2)CWRES,⊥
(τ) =

G(2)
CWRES,⊥

(t, τ)

⟨σ†σ⟩2
ss

. (5.41)

Due to the presence of coherent driving in the system, even under very weak driving Ω =

5 × 10−6 ps evaluating Eq. (5.10) gives Ĩ = 0.557 which doesn’t quite tend to I = 0.571.
For increasing driving strength the value of Ĩ increases and well surpasses 1, unlike the
non–resonant case, where this increase is due to the coherent exchange present in the driven
system. From this analysis it can be concluded that to extract the full photon wave packet
indistinguishability from cw measurement, it is best to work under non–resonant excitation.
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Figure 5.14: Resonant driving HOM calculation with (blue solid) and without (purple dashed)
the LA continuous sideband, (a) strong driving with Ω = 0.5 ns−1 and (b) weak driving with
Ω = 0.05 ns−1. Parameters for both simulations are Γ1 = 2π × 40 MHz and γ = 2π × 15 MHz,
with sideband parameters taken from the analysis of the molecule in chapter 4, which are
ξ = (8.6 ± 0.6)ps−1 and α = (0.009 ± 0.001)ps2.

Including now the effects of coupling to a continuous thermal phonon bath, by firstly using
the master equation model shown in Eq. (4.54) and removing any influence of the localised
vibrational modes, as these can be filtered out. Substituting in E(t) ∝ σ(t)B−(t) into Eq. (3.55),
factorising the photonic and phonon correlation functions due to largely differing time scales
and finding the steady state we find

G(2)
CWRES

(τ) =
1
2

lim
t→∞

( 〈
σ†(t)σ†(t + τ)σ(t + τ)σ(t)

〉
− |G(τ)|2

∣∣∣〈σ†(t)σ(t + τ)
〉∣∣∣2

+ 2 Re
[
⟨σ⟩ss ⟨B⟩2 ( 〈σ†(t)σ†(t + τ)σ(t + τ)

〉
− e2 Im[ϕ(τ)]

〈
σ†(t)σ†(t + τ)σ(t)

〉 )]
−
∣∣∣⟨B⟩2 e−ϕ∗(τ)

∣∣∣2∣∣∣〈σ†(t)σ†(t + τ)
〉∣∣∣2 + 〈σ†σ

〉2

ss

)
. (5.42)

where the phonon correlation functions, ⟨B+B+(τ)⟩ = ⟨B⟩2 e−ϕ∗(τ), ⟨B+B+(τ)B−(τ)⟩ = ⟨B⟩
and ⟨B⟩−1 ⟨B+B+(τ)B−⟩ = e2 Im[ϕ(τ)] which have been found using section (2.2.2.2), where the
equation for ϕ(τ) is found in Eq. (2.47). Normalising Eq. (5.42) in the usual way we find

g(2)CWRESSB
(τ) =

G(2)
CWRESSB

(t, τ)

⟨σ†σ⟩2
ss − |⟨σss⟩|4

. (5.43)

A comparison of the TLS model with the inclusion/exclusion of the phonon sideband
is shown in Fig. 5.14a and b, where both strong Ω = 0.5 ns−1 and weak Ω = 0.05 ns−1

driving strengths are simulated, respectively. For the strong driving case in Fig. 5.14a Rabi
oscillations can be observed, similar to the results found for driven Hanbury Brown and
Twiss intensity correlation functions in section (4.4), the inclusion of the sideband using the
polaron frame approach renormalises the observed oscillation period by ΩR = ⟨B⟩Ω, where
this can be directly seen in the overlap of the two models. As previously discussed the HOM
dip at zero time delay is dependent on the temporal detector resolution, where for a perfect
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detector g(2)(0) = 0 irrespective on the photon properties. For a realistic detector the HOM
dip with indistinguishable photons should resolve the suppression close to zero however the
resolution should be taken into consideration before making conclusions regarding photon
properties. When considering the finite detector resolution, phonon relaxation processes such
as the inclusion of continuous sideband or localised vibrational modes also act to increase the
appearance of the dip at τ = 0 as these occur on very short time scales (picoseconds). See the
inset of Fig. 5.14a for a log–scale of the effect of the phonon sideband.

5.4 Chapter Summary

In this chapter calculations of second order correlation functions from a Hong–Ou–Mandel set
up are found for differing driving regimes. The first regime considered is pulsed excitation,
where calculations of full photon wavepacket indistinguishability are derived with the inclu-
sion of non–temporal decoherence effects such as a continuous longitudinal acoustic sideband
and localised vibrational modes.

In the theory presented, calculations of second order correlation functions of a single
molecule emitter under continuous non–resonant coherent driving to a higher lying vibrational
state is found using an open quantum systems model, where this is captured using a three–level
system model. This higher energy state is then adiabatically eliminated to form an effective
two–level system which allows for a novel derivation of an analytical expression to readily
extract the photon indistinguishability; where a suitable parameter range for disregarding
the coherent effects has been determined. The extraction method detailed in this chapter has
been verified experimentally, using a single DBT emitter under cryogenic temperatures. This
approach provides a tool for finding two–photon interference properties which is independent
on the detector resolution, unlike the well referred HOM dip g(2)(0) value, or without the need
for post-selecting on a given time window [49].

In the latter part of this chapter the regime of resonant cw driving has been explored
which directly probes the exciton and holds interesting physics such as the observation of
Rabi oscillations. It has been concluded that in order to extract indistinguishability only a
non–resonant cw measurement is suitable. Moreover, the effect of including a continuous
longitudinal sideband on the second order correlation measurement has been simulated.

Future work expanding on this research includes looking into interference effects from
two separate quantum emitters, which has been experimentally demonstrated with diamond
quantum dots [34, 89], defect centres [7, 107], and molecules [66]. The theory presented in this
chapter could be straightforwardly modified to account for multiple sources and in doing so
would include further parameters such as different central frequencies and differing dephasing
rates of the two emitters. Moreover, this theoretical treatment could be readily expanded to
considering the effects of optical cavities on photon emission as the derivations use a master
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equation approach [55]. This model could be readily expanded to account for the affects of
driving on these systems, and could include further parameters such as different central
frequencies and dephasing rates of the two emitters used.
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6
SINGLE MOLECULES IN PHOTONIC STRUCTURES

Coherent single photon emission from solid–state platforms are predominately limited
by temperature dependent phonon dephasing. For single molecules of dibenzoterrylene

(DBT) doped in an anthracene (Ac) environment, this dephasing originates from both thermal
bath phonons from the crystal environment and local vibrational modes from the DBT molecule.
To enhance the indistinguishability of single photon emission from solid–state deterministic
sources a few options are possible. The most straightforward measure is to cool down the
source, as this suppresses the number of possible phonons modes that are excited. However, it
has been found that by cooling alone, even taking the limit of 0 K, does not completely eliminate
the possibility of phonon mode excitation leading to a phonon sideband, as it directly overlaps
the zero phonon line [55]. Other approaches include, coupling the emission to a waveguide
filter or directly filtering the emission, which can remove a fraction of the phonon sideband
effects increasing the total coherent fraction [46, 70, 114]. Alternatively, the emitter can be
coupled to a cavity, which can enhance the coherent fraction of emission and suppress emission
outside cavity resonance [97, 116, 117]. In this chapter the latter two effects are explored,
where two different filters are investigated and the corresponding indistinguishability and
collection/detection efficiency are calculated. The filter transmission profiles presented in this
chapter have been measured by collaborator Ross C. Schofield at Imperial College London. A
derivation of a single DBT molecule coupled to a generic one–sided single moded cavity is
detailed, where optimal cavity parameters are predicted which reflect an optical mirco–cavity
and provide the maximum indistinguishability. In this work a novel numerical technique to
efficiently calculate an emitters optical properties using matrix diagonalisation is developed,
where this methodology has been adapted from Jake Iles–Smith’s work.
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6.1 Filtering molecule emission
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Figure 6.1: (a) The filter transmission of a 785 ± 3nm bandpass filter and a Fabry-Perot filter
with free spectral range (FSR) of 10GHz and width of 67MHz, which gives a finesse (F ) of 150.
(b) Filter transmission profile of both the bandpass filter and Fabry–Perot filter.

In this section the effect on filtering molecule emission is explored. Two filters are modelled,
the first is a 785 ± 3 nm bandpass filter (BP) with the measured transmission profile fBP(ω, ω0)

and central frequency ω0. The second is looking at the effect of combining this bandpass filter
with a Fabry–Perot filter (FP) with a free spectral range (FSR) of 10 GHz, a width of ∼ 67 MHz,
giving a finesse (F ) of 150. The spectral profile of the Fabry-Perot filter is given by

fFP(ω) = exp
[
− ω2

2σ2

]
1

1 + (4F 2/π2) sin[2πω/(2FSR)]2
, (6.1)

where the ‘teeth’ profile is tapered by a 3 nm Gaussian filter width given by the exponential
function. Both filter profiles are shown in Fig. 6.1.

6.1.1 Filtering theory

All of the results presented in this section build upon the model presented in chapter 4, which
includes a zero phonon line, pure dephasing and broad sideband, where the vibrational
peaks are omitted as these are filtered out by the bandpass filter. To find the maximum
indistinguishability achieved from these filters, first an investigation into the optimal alignment
of the bandpass filter is completed as the measured transmission profile does not follow a
Gaussian distribution. When considering the indistinguishability from a filtered quantum
emitter it is advantageous to write it in terms of the emission spectra by taking the Fourier
transform of Eq. (3.60) we find

I =

∫ ∞
−∞ dω

∫ ∞
−∞ dν|SD(ω, ν)|2( ∫ ∞

−∞ dωSD(ω, ω)
)2 , (6.2)
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where the subscript D represents the detected emission which for the bandpass filtered emission
is SD(ω, ν) = fBP(ω, ω0) f ∗BP(ν, ω0)S(ω, ν). This resultant filtered emission spectra has been
found using the convolution theorem as it is in the frequency domain, using

F [x ∗ y] = F [x]F [y], (6.3)

where F [·] represents a Fourier transform. Noting that if this function were to be evaluated in
the time domain the integrals would be much more involved due to the filtering functions [31].
The two–color unfiltered emission spectrum introduced here is given by S(ω, ν) = s(ω, ν) +

s∗(ν, ω) with

s(ω, ν) =
∫ ∞

0
dt
∫ ∞

0
dτ
〈

E†(t + τ)E(t)
〉

eiω(t+τ)e−iνt. (6.4)

For the model in consideration the electric field operator is E(t) =
√

Γ1
2π σ(t)B−(t); which has

been derived in section (3.2.2). To calculate indistinguishability from Eq. (6.2) the quantum
regression theorem is used to find the correlation functions and the integrals are found nu-
merically. Varying the position of this bandpass filter and calculating I , it has been found that
a detuning of h̄ω0 = −1.58 meV gives the maximum indistinguishability, see Fig. 6.2a. The
payoff for this maximum comes at the drop in collection efficiency. To compare this for the case
where the BP filter transmission is close to its maximum, calculations for the filter centered on
zero detuning are also found, see Fig. 6.1. By setting the bandpass filter detuning to zero, the
drop in indistinguishability at 4.5 K is minimal at ∆I = 0.02, whereas a vast improvement in
collection efficiency is found from (η f = 0.347 → η f = 0.703), using the relation

η f =
PD

P
, (6.5)

where P =
∫ ∞
−∞ dωS(ω, ω) is the power into the unfiltered emission spectra. To find the

indistinguishability of the filtered emission with both the BP and FP filter, the required detected
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Figure 6.2: (a) Indistinguishability of emission at 4.5 K filtered by the bandpass filter as a
function of its detuning position (blue solid line). The maximum indistinguishability is shown
in dashed red. (b) Efficiency of the filtered emission with the bandpass filter (orange solid)
and both bandpass and Fabry–Perot filter (red solid). The blue dashed line highlights the
efficiency when choosing the detuning position which provides maximum indistinguishability.
(c) Emission spectra for the unfiltered case and filtered case with the bandpass filter and both
band pass filter and Fabry–Perot filter at 4.5 K.
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emission is SD(ω, ν) = fFP(ω) f ∗FP(ν) fBP(ω, ω0) f ∗BP(ν, ω0)S(ω, ν). See Fig. 6.2b for efficiency
of the filters as a function of the BP detuning offset. For simulations of the filtered emission
spectra using the bandpass offset of h̄ω0 = −1.58 meV see Fig. 6.2c.

6.1.2 Filtering results

The indistinguishability for the case of filtering the DBT emission with both the bandpass
filter and the Fabry-Perot filter centered on the ZPL is shown in comparison to no filtering
for various temperatures in Fig. 6.3a with different BP offsets. For calculations of collection
efficiency for both filtering setups see Fig. 6.3b. For both results the dashed lines show a
detuning of h̄ω0 = −1.58 meV, whereas the solid lines show the offset h̄ω0 = 0 meV. At 2.5 K
an indistinguishability of I = 0.988 is found with an filtering efficiency of η f = 0.435, using
the bandpass filter at zero offset. For the case of unfiltered emission with no local vibrational
modes this is a significant improvement from I = 0.503, where this dephasing predominately
stems from the phonon sideband. Optimising the bandpass filter offset to achieve maximum
indistinguishability using h̄ω0 = −1.58 meV, shows negligible improvement to I with the
presented precision with the addition of the Fabry–Perot filter. At 2.5 K all offsetting the
bandpass filter achieves is a drop in the filtering efficiency to η f = 0.220. This confirmed
when using a bandpass filter in conjunction with a fine tooth filter it is beneficial to maximise
efficiency over indistinguishability.

When considering the unfiltered ZPL emission only the indistingusihability at 2.5 K is pre-
dicted to be IZPL = Γ1

2Γ2
= 0.977 where the temperature dependent pure dephasing relationship

found in section (4.2.2.2) has been used. For the case of zero detuned bandpass filter at 4.5 K,
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Figure 6.3: (a) Indistinguishability vs temperature for a DBT molecule unfiltered (solid dark
blue), filtered with a bandpass filter (BP) (yellow and dashed red) centered with different
offsets and finally, filtered with both the bandpass filter and a Fabry–Perot (FP) filter (turquoise
and dashed purple). (b) Collection efficiency vs temperature with either the bandpass filter
only (yellow and dashed red lines) or a combination with the Fabry–Perot filter (turquoise and
dashed purple). For both plots solid lines show results for h̄ω0 = −0 meV BP filter offset and
dashed lines show h̄ω0 = −1.58 meV BP offset.
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the FP and BP filtered value drop to I = 0.745, with an filtering efficiency of η f = 0.329; where
the decrease in efficiency is due to a larger fraction of emission going into the continuous
sideband.

From this work it has been found that filtering a DBT emitter in the cryogenic limit alone can
produce photons with close to unity indistinguishability. To capture the effects of a waveguide
filter the calculations presented in this section can be directly used to model such structures.
Modifications to this model involve changing the filter profile to match the waveguide in
question, similar to what was done in reference [55]. In the next section a DBT molecule
coupled to an optical cavity will be considered. The motivation for this work is to explore how
a cavity can enhance and manipulate the molecules emitted electromagnetic field.

6.2 Cavity quantum electrodynamics

Now turning attention to a more involved approach to modify the emission from a quantum
emitter, the optical cavity. In this section, calculations of indistinguishability and efficiency
of a single molecule coupled to a single moded one–sided cavity with linewidth κc and
frequency ωc are detailed. This general description of a cavity can be used to capture various
infrastructures, as different parameters model different architectures. The architecture that
will be the focus of this work is an optical micro–cavity, which is an ideal candidate for DBT
operating at low cryogenic temperatures in the lifetime limit, as it functions within the weak
coupling limit yet hosts a sharp cavity linewidth which can suppresses the vast majority of the
phonon sideband.

In the model presented for this work, the molecule is described as in chapter 4, which has a
zero phonon line with temperature dependent pure dephasing, a broad phonon sideband and
N local vibrational modes. This system is then coupled to a single sided single moded cavity
and a master equation in the polaron picture is derived. Initially, calculations including one
local vibrational mode are considered and the effect of setting the cavity resonance over this
mode is qualitatively explored.

To predict values such as indistinguishability and efficiency of the cavity emission, all
local modes are omitted from this model due the associated peaks sitting far from cavity
resonance leading to their strong suppression. Finally, optimal values of the cavity are found
for considering solely the DBT zero phonon line, due to a novel computational method which
leads to high computational efficiencies.

6.2.1 Cavity model

To describe the interaction between a single emitter and a single mode cavity the following
minimal coupling Hamiltonian under the dipole approximation [110], is required

HCAV−TLS = −d · ECAV , (6.6)
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Figure 6.4: Schematic energy diagram of a single molecule with spontaneous decay rate Γ1,
localised vibrational modes (given in blue) and some pure dephasing defined by rate γ coupled
to a single sided single moded cavity with coupling strength g and cavity linewidth κc. The
energy difference between the cavity resonance and two–level system is given by δ.

where as in section (3.1) d is the dipole dot operator which in terms of the single emitter basis
is d = dgeσ + degσ† with the dipole moment dge = ⟨g|d|e⟩, deg = d†

ge and dipole operator
σ = |g⟩ ⟨e|. The single mode cavity field in this equation is given by

ECAV = −e
( h̄ωc

ϵ0VM

)1/2
(a† + a), (6.7)

where e is a polarisation vector, VM is the cavity mode volume and ϵ0 is the permittivity of free
space [39]. The cavity frequency is ωc and the (creation) annihilation operators for the bosonic
cavity mode are (a†)a. Finding this interaction Hamiltonian from these vectors gives

HCAV−TLS = h̄g(σ† + σ)(a + a†), (6.8)

where the term g describes a coupling strength given by

g =
1
h̄

√
h̄ωc

2ϵ0VM
dge, (6.9)

noting that g ∼
√

1
VM

, indicating that the smaller the cavity mode volume the stronger the

coupling strength. Upon expansion of Eq. (6.8) the terms σa and σ†a† are far off–resonance
as they represent TLS relaxation with photon annihilation and TLS excitation with photon
production, respectively. Neglecting these terms leads to

HCAV−TLS = h̄g(σ†a + σa†). (6.10)

This expression is valid below ultra–strong coupling: a regime in which the non–resonant
terms cannot be neglected and where the coupling strength is comparable to either the TLS
or cavity resonance frequencies [52]. In this thesis the ultra–strong regime is not of interest
leading to the safe application of Eq. (6.10).

The emitter modelled in this section is a single molecule captured by a zero phonon line,
continuous sideband and N local vibrational modes (LVM). Now defining the full Hamiltonian
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to describe this single molecule emitter coupled to a single moded one sided cavity as [55],

H = HS + HEM
I + HPH−TLS

I + HPH−LV
I + HE, (6.11)

where the schematic state diagram corresponding to this system is shown in Fig. 6.4. The
complete free–system term is given by

HS = EXσ†σ + h̄ωca†a + h̄g(σ†a + σa†) + h̄
N

∑
i=1

[∆iα
†
i αi + ηiσ

†σ(α†
i + αi)], (6.12)

where this term describes the TLS with energy splitting EX coupled to the single cavity mode.
The LVMs are described by the (creation) annihilation operators (α†

i ) αi with energy splitting ∆i

and coupling strength ηi. The phonon–TLS and phonon–LVM interaction terms are equivalent
to that in section (4.2) with HPH−TLS

I = HPH
L + HPH

Q containing both linear and quadratic
interaction terms and HPH−LV

I = h̄ ∑N
i,q(hi,qαid†

q + h.c.) which couples the localised vibrational
modes to the thermal phonon bath with coupling strength hi,q. The electromagnetic interaction
terms are given by

HEM
I = HEM−TLS

I + HEM−CAV
I

= h̄ ∑
l
(pl,Lσc†

l,L + p∗l,Lσ†cl,L) + h̄ ∑
l
(pl,Da†cl,D + p∗l,Dac†

l,D),
(6.13)

which couples the EM field to both the cavity mode and the TLS which is described by the
detected (D) and lost (L) modes. The final term is the environment Hamiltonian given by
HE = h̄ ∑k ωkb†

k bk + h̄ ∑l,µ νl,µc†
l,µcl,µ.

6.2.1.1 Polaron transformation

In the following section two successive polaron transformations, as detailed in section (4.2.1),
are performed on this cavity QED master equation model. The first transformation is between
the TLS and thermal phonon bath, which requires finding HP1 = UP1HU†

P1 with UP1 =

σσ† + σ†σB+ and B± = e±∑k
gk
ωk

(b†
k−bk). The second polaron transformation between the TLS

and local vibrational modes requires HP = UP2HP1U†
P2 where UP2 = |g⟩ ⟨g|+ |e⟩ ⟨e|∏i Ai with

Ai = exp[ ηi
∆i
(α†

i − αi)]. Performing both transformations leads to the complete polaron frame
Hamiltonian given by

HP = EPσ†σ + h̄ωca†a + h̄g(σ†aB+ + σa†B−) + h̄
N

∑
i=1

∆iα
†
i αi

+ HEM−TLS
I,P + HCAV−EM

I + HPH
Q + HE, (6.14)

where EP = EX − h̄(∑N
i η2

i /∆i + ∑k g2
k/ωk). We find the polaron frame EM–TLS term in the

form
HEM−TLS

I,P = h̄ ∑
l
(pl,Lσαc†

l,LB− + p∗l,Lσ†cl,LB+), (6.15)

91



CHAPTER 6. SINGLE MOLECULES IN PHOTONIC STRUCTURES

where the linear electron–phonon interaction HPH
L has been rotated out. The final three terms

in Eq. (6.14) are unchanged. The second polaron transformation between the TLS and LVMs
dresses the dipole operators to give σα = σ ∏i Ai with Ai = exp[ ηi

∆i
(α†

i − αi)].
Similar to the case of driving the emitter in section (4.4.1), the CAV–TLS interaction term

from the system Hamiltonian reflects a system–environment interaction as it has a non–
zero expectation value with respect to the thermal state ρE such that, TrE[σa†B− + σ†aB+] =

⟨B⟩ (σa† + σ†a) [83]. To resolve this, the following change of variables is used X = (σa† + σ†a),
Y = i(σa† − σ†a) and the terms Bx = 1

2 (B+ + B− − 2 ⟨B⟩) and By = i
2 (B+ − B−) are defined.

Making these change of variables this gives the resultant system term to be

HS,P = EPσ†σ + h̄g ⟨B⟩ X + h̄ωca†a + h̄
N

∑
i=1

∆iα
†
i αi, (6.16)

with an additional phonon–system interaction term in the form

HPH−SYS
I = g(X Bx + YBy). (6.17)

6.2.1.2 Cavity master equation

To investigate the dynamics from this model a second order Born–Markov master equation is
derived following on from section (2.1.4); re-expressed here for clarity as

∂tρS(t) = − i
h̄
[HS, ρS(t)]− Φ[ρS(t)]. (6.18)

with the integral

Φ[ρS(t)] = − 1
h̄2

∫ t

0
dτTrE

(
[HI , [H̃I(−τ), ρS(t)ρE]]

)
. (6.19)

Now solving the dissipators for each Hamiltonian interaction terms.

6.2.1.3 Spontaneous emission dissipator

Firstly solving for the EM–TLS dissipator by moving HEM−TLS
I,P found in Eq. (6.13) into the

interaction picture by

H̃EM−TLS
I,P (−τ) = exp

[
− iH0τ/h̄

]
σα exp

[
iH0τ/h̄

]
C†

L(−τ)B†(−τ) + h.c.,

≈ σα(−τ)C†
L(−τ)B†(−τ) + h.c.,

(6.20)

where H0 = HS,P + HE. The time evolved dressed dipole operator in this equation is σα(−τ) =

σe−iωPτA(−τ), where ωP = EP/h̄ is the polaron shifted energy splitting and A(−τ) =

exp
[
−∑i

ηi
∆i
(α†e−i∆iτ − αei∆iτ)

]
. This approximation to find the last line in Eq. (6.20) holds as

long as g ⟨B⟩ < EP ∼ 1.5 eV. The time evolved environment terms B(−τ) = e∑k
gk
ωk

(b†
k e−iωkτ−bkeiωkτ)
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and CL(−τ) = ∑l pl,Lcl,Leiνlτ have been introduced for clarity. Solving for Eq. (6.18), the result
is equivalent to the to the dissipator solved in section (4.2.2.1), leading to

DEM[ρS(t)] = Γ1Lσα [ρS(t)], (6.21)

with Γ1, the spontaneous emission rate of the lost emission from the TLS, found from assuming
a flat EM–TLS spectral density such that, JEM,L(EP) ≈ Γ1/(2π) where TrE(CLC†

L(−τ)ρE) =∫ ∞
0 dω JEM,L(ω)eiωτ.

6.2.1.4 Cavity emission dissipator

Finding the EM–CAV dissipator by moving HEM−CAV
I found in Eq. (6.13) into the interaction

picture gives

H̃EM−CAV
I (−τ) = exp

[
− iH0τ

]
a exp

[
iH0τ

]
CD(−τ) + h.c.,

≈ aeiωcτCD(−τ) + h.c.,
(6.22)

with CD(−τ) = ∑l pl,Dc†
l,Deiνlτ and this approximation assumes renormalised cavity coupling

strength is less than the cavity resonance such that g ⟨B⟩ < ωc. Following the usual procedure
by inserting the expressions for HEM−CAV

I and H̃EM−CAV
I (−τ) into the master equation integral

in Eq. (6.19), and applying the commutation relation from Eq. (4.16) we find

Re
[
ΦCAV [ρS(t)]

]
= Re

[ ∫ t

0
dτTrE

(
[HEM−CAV

I , [H̃EM−CAV
I (−τ), ρS(t)ρE]]

)]
,

=
∫ t

0
dτχD(τ)(a†aρS(t)− a†ρS(t)a) + h.c.,

(6.23)

where χD(τ) = TrE(CDC†
D(−τ)ρE) =

∫ ∞
0 JEM,D(ω)e−iωτ is the photon correlation function for

the detected cavity modes. Noting that only the real part of the integral has been explicitly
evaluated as the imaginary part of this integral renormalises the system Hamiltonian and
therefore resides in the commutator of Eq. (6.18). Similarly to the EM-TLS case we assume
a flat EM-CAV spectral density such that, JEM,D(ωc) ≈ κc/(2π), where κc is the cavity decay
rate. As the real part of ΦCAV [ρS(t)] is equal to the dissipator, we can write

DCAV [ρS(t)] = κcLa[ρS(t)]. (6.24)

6.2.1.5 System–phonon dissipator

To solve the system–phonon dissipator the Hamiltonian decomposition method presented
in section (2.1.4.2) is used, as the interaction Hamiltonian HPH−SYS

I cannot be moved into the
interaction picture by unitary transformation. This method first involves first expressing the
interaction Hamiltonian in the form

HPH−SYS
I = g(X ⊗ Bx + Y ⊗ By). (6.25)
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Moving into the interaction picture, the system operators transform using a Fourier decompo-
sition giving X (−τ) = ∑ξ eiξτX (ξ) and Y(−τ) = ∑ξ eiξτY(ξ). In the interaction picture the
environment operators transform to B̃x\y(−τ) = e−iHEτ/h̄Bx\yeiHEτ/h̄. Finding the environment
correlation functions from Eq. (2.22) by substituting in the phonon operators to find

Cxx(τ) =
⟨B⟩2

2
(eϕ(τ) + e−ϕ(τ) − 2), (6.26)

and

Cyy(τ) =
⟨B⟩2

2
(eϕ(τ) − e−ϕ(τ)), (6.27)

with Cxy(τ) = Cyx(τ) = 0 as presented in section (4.4.1.1). Next evaluating the dissipator
by forming the response functions from Eq. (2.25) giving, Kxx(ξ) and Kyy(ξ) using Cxx(τ)

and Cyy(τ) and substituting these into Eq. (6.19) and taking the real part to give the driving
dissipator

Re
[
ΦPH[ρS(t)]

]
= DPH[ρS(t)],

= −1
2

g2
(

∑
ξ

γxx(ξ)[X ,X (ξ)ρS(t)− ρS(t)X †(ξ)]

− ∑
ξ

γyy(ξ)[Y ,Y(ξ)ρS(t)− ρS(t)Y†(ξ)]
)

,

(6.28)

where the imaginary part of this integral is a Lamb shift term which further renormalises the
system Hamiltonian.

The final two dissipators originate from the interaction terms HPH−LV
I and HPH

Q , where the
derivation of these dissipators can be found in sections (4.2.2.3) and (4.2.2.2). Putting together
all of the dissipators the final cavity QED master equation is

∂tρS(t) = −i[δa†a + g ⟨B⟩ X , ρS(t)] + ΓLσ[ρS(t)] + κcLa[ρS(t)] +DPH[ρ̃(t)]

+ 2γ(T)Lσ†σ[ρS(t)] + ∑
i

(
− i∆i[α

†
i αi, ρ(t)] + Γi,+Lα† [ρ(t)] + Γi,−La[ρ(t)]

)
,

(6.29)

where this form is in a rotating frame which removes the term −i[EPσ†σ + HLS, ρS(t)] and
represents the system energy as a function of δ, the cavity detuning energy. The term HLS

is the final contribution from the Lamb shift energy which for atomic–like system can be
neglected [15].

6.2.2 Cavity enhanced emission spectra

To find the emission spectrum from an emitter coupled to a cavity, it is important to consider
both the emission into the detected cavity mode and the lost modes. In order to capture the
continuous sideband this involves finding the solution to the Heisenberg equations of motion
for both the lost and detected electric field operators as well as the cavity mode operator itself.
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The electric field operator for the lost and detected modes are Eλ(t) = ∑l cl,λ(t), where cl,λ(t) is
the electric field annihilation operator in the Heisenberg picture with, λ = {L, D}. Expanding
the Heisenberg equations of motion ċl,λ(t) = i

h̄ [HP(t), cl,λ(t)], where HP(t) is the time evolved
full polaron transformed Hamiltonian. For the case of lost or detected electromagnetic modes
we find

ċl,L(t) = −iνlcl,L(t)− ipl,Lσα(t)B−(t), (6.30)

ċl,D(t) = −iνlcl,D(t)− ip∗l,Da(t). (6.31)

For the case of the cavity modes this requires finding ȧ(t) = −i[HP(t), a(t)] which gives

ȧ(t) = −i ∑
l

pl,Dcl,D(t)− iωca(t)− igσα(t)B−(t). (6.32)

First solving the equation of motion for the lost modes in Eq. (6.30) by using the product
rule and the Fourier variable c̃l,L(ν) =

∫ ∞
−∞ dtcl,L(t)eiωt, as was done in section (3.1), we find

c̃l,L(ν) =
pl,LΞ(ν)
(ν − νl)

, (6.33)

where Ξ(ν) =
∫ ∞
−∞ dtσα(t)B−(t)eiνt. Summing over the lost modes to find the electric field

operator giving ẼL(ν) = ∑l c̃l,L(ν) = ∑l
pl,L

(ν−νl)
Ξ(ν). Next taking the continuum limit and

invoking a relation from the Kramers-Kronig derivation → P
∫ ∞
−∞ dω

pL(ω)
(ν−ω)

= −iπpL(ν) ≈

−i
√

Γ1
2π , where we have assumed the photonic spectral density to be flat such that JEM,L(ν) =

∑l |pl,L|2δ(ν − νl) ≈ Γ1/(2π) and JEM,L(ν) = π2|pL(ν)|2. Now Fourier transforming back to
the time domain to give EL(t) =

√
Γ1/(2π) σα(t)B−(t), where the vacuum contribution has

been set to zero.
For the detected EM field using the Fourier variable methodology we find

c̃l,D(ν) =
p∗l,D ã(ν)
(ν − νl)

, (6.34)

where ã(ν) =
∫ ∞
−∞ dta(t)eiνt. To find the cavity mode operator by first putting Eq. (6.34)

into Eq. (6.32) and therefore requiring ∑l
|pl,D|2
ν−νl,D

to be evaluated, such that P
∫ ∞
−∞ dω

JEM,D(ν)
ω−ν =

−iπ JEM,D(ω) ≈ −iκc/2 as JEM,D(ν) ≈ κc/(2π), putting this back into Eq. (6.32) to find

ã(ν) =
igΞ(ν)

i(ν − ωc)− κc/2
. (6.35)

Finally, we find the detected electric field operator by substituting in a(t) giving ẼD(ν) =

∑l c̃l,D(ν) = ∑l
p∗l,D

(ν−νl)
igΞ(ν)

i(ν−ωc)−κc/2 . Taking the continuum limit and evaluating such that
∫ ∞
−∞ dω

p∗l,D(ω)

(ν−ω)
=

−iπpD(ν) ≈ −i
√

κc
2π as JEM,D(ν) = π2|pD(ν)|2. Putting this together to get the detected elec-

tric field operator in the frequency domain we find

ẼD(ν) =

√
4g2

κcΓ1
hc(ν)EL(ν), (6.36)
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where hc(ν) =
κc/2

(i(ν−ωc)−κc/2) which resembles a Lorentizan filter function with detuning ωc.
In order to calculate the detected cavity emission whilst capturing the phonon sideband

it is not possible to directly use the cavity mode operator ã(ν) when finding the first order
correlation function. Instead the detected electric field operator ẼD(ν) can be used, which for
the case of no phonon sideband effects and a single moded cavity the following correlation
functions are equivalent as they can be exactly solved using quantum regression theorem
giving the exact relationship

κc

2π

〈
ã†(ν)ã(ω)

〉
=

4g2

κcΓ1
h∗c (ω)hc(ν)

Γ1

2π

〈
σ̃†

α (ν)σ̃α(ω)
〉

. (6.37)

Here the pre–factor FP = 4g2

κcΓ1
can be defined as a Purcell factor, which the regime of weak

coupling this represents a measure of enhancement to the systems spontaneous decay rate,
and in turn quantifies the enhancement/suppression of coherent emission. When considering
the inclusion of the thermal phonon environment this relation becomes an approximation due
to the phonon–system interaction dissipator in the master equation and therefore modelling
the detected cavity emission in terms of the detected EM field ẼD(ν) is valid as long as the
coupling to the phonon environment is weak [55].

6.2.2.1 Two–color emission

To calculate the indistinguishability and efficiency of the cavity enhanced emission, the
emission spectrum for both the lost and detected modes is first required. To find these
functions either ẼL(t) or ẼD(t) need to be substituted into Eq. (6.4) to find SL/D(ω, ν) =

sL/D(ω, ν) + s∗L/D(ν, ω) the full two–color lost/detected emission spectra. For the lost modes
this gives

sL(ω, ν) =
Γ1

2π

∫ ∞

0
dt
∫ ∞

0
dτg(1)(τ, t)G(τ)eiω(t+τ)e−iνt, (6.38)

where g(1)(τ, t) =
〈
σ†

α (t + τ)σα(t)
〉

is the first order correlation function of the dressed dipole
system operators and G(τ) = ⟨B+(t + τ)B−(t)⟩ is the phonon correlation function. The fac-
torisation of these correlation functions is valid due to the varying time scales of the phonon
relaxation (∼ 1ps) and photon emission (∼ 1ns). For the detected cavity emission it has been
found

sD(ω, ν) =
ΓD

2π
hc(ω)∗hc(ν)

∫ ∞

0
dt
∫ ∞

0
dτg(1)(τ, t)G(τ)eiω(t+τ)e−iνt, (6.39)

where ΓD = 4g2

κc
has been defined.

To find the indistinguishability of the detected cavity emission Eq. (6.2) can be evaluated
using Eq. (6.39), where the correlation function g(1)(τ, t) can be numerically solved using
quantum regression theorem as shown in section (3.1.2.1). For the cavity efficiency the fraction
of power into the detected cavity mode over the total emission is required from

ηc =
PD

PD + PL
, (6.40)
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where PL/D =
∫ ∞

∞ dωSL/D(ω, ω).

6.2.2.2 Zero phonon line–cavity system

Simplifying the above theoretical model to consider a zero phonon line with some phenomeno-
logical pure dephasing coupled to the single moded one sided cavity the master equation in
Eq. (6.29) becomes

∂tρS(t) = −ig[X , ρS(t)] + ΓLσ[ρS(t)] + κcLa[ρS(t)] + 2γ(T)Lσ†σ[ρS(t)]. (6.41)

The other main difference in this simplified model is the derivation of the electric field operator
for the lost and detected cavity emission; as all sideband effects are excluded from the system,
the detected cavity emission can be directly found from the cavity annihilation/creation
operators such that

sD(ω, ν) =
κc

2π

∫ ∞

0
dt
∫ ∞

0
dτ
〈

a†(t + τ)a(t)
〉

eiω(t+τ)e−iνt. (6.42)

The lost modes for the cavity–ZPL system are found from

sL(ω, ν) =
Γ1

2π

∫ ∞

0
dt
∫ ∞

0
dτg(1)(τ, t)eiω(t+τ)e−iνt. (6.43)

To find indistinguishability of this ZPL–cavity system it is no longer advantageous to
calculate this value in the frequency domain as there are no effective filter functions present.
Instead a matrix diagonalisation approach can be used which has been adapted from work
originally developed by Jake Iles–Smith detailed below.

6.2.3 Correlation functions – diagonal method

In this section a method to solve a general first order correlation function using matrix diagonal-
isation is outlined. The development of this method is motivated by the increase computational
complexity when dealing with large Hilbert space systems, such as, a cavity coupled emitter
met with in this work. To begin, we define a general first order correlation function and its
representation using the quantum regression theorem as

g(1)(t, τ) =
〈

O†(t + τ)O(t)
〉

,

= Tr
[
O†eLτOeLtρ(0)

]
,

(6.44)

with arbitrary Hilbert space system operator O with dimensions d × d and L is the Liouvillian
master equation super operator with dimensions d2 × d2. Moving now to Liouville space,
with |·⟩⟩ L-ket and L-bra ⟨⟨·| notation defined as ⟨⟨A|B⟩⟩ = Tr

[
A†B

]
[82], where ⟨⟨A| is a

vectorised form of the operator A with dimension d2. Re-writing Eq. (6.44) in Liouville space
gives

g(1)(t, τ) = ⟨⟨O|eLτÕeLt|ρ(0)⟩⟩, (6.45)
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where Õ = O ⊗ 1d. To diagonalise this function the diagonal form of the Liouvillian operator
is first required from

L = PDP−1, (6.46)

where P is a matrix of L’s eigenvectors and D is a diagonal matrix of the corresponding
eigenvalues. Substituting this equation into Eq. (6.45) we find

g(1)(t, τ) = ⟨⟨O|PeDτP−1ÕPeDtP−1|ρ(0)⟩⟩,

= ∑
i,j

e(λiτ+λjt)Ai,j,
(6.47)

with Ai,j = ⟨⟨O|PPiP−1ÕPPjP−1|ρ(0)⟩⟩. To find the last line the relation D = ∑i λi |i⟩ ⟨i| =
∑i λiPi has been used where Pi = |i⟩ ⟨i| is the projector of the eigenvectors and λi are the
Liouvillian eigenvalues.

6.2.3.1 Emission properties

From this diagonal form of the first order correlation function the two–color emission spectra
can be found from S(ω, ν) = S(ω, ν) + S∗(ν, ω) where

S(ω, ν) =
∫ ∞

0
dt
∫ ∞

0
dτg(1)(t, τ)eiωτei(ω−ν)t,

= ∑
i,j

Ai,j

(λi + iω)(λj + i(ω − ν))
.

(6.48)

To simplify this further we can put this into matrix form, giving

S(ω, ν) = A.M(ω, ν) + A∗.M∗(ν, ω), (6.49)

with Mi,j(ω, ν) = 1
(λi+iω)(λj+i(ω−ν))

.

To find the full–photon wavepacket indistinguishability in the time domain we require

I =

∫ ∞
0 dt

∫ ∞
0 dτ|

〈
O†(t + τ)O(t)

〉
|2∫ ∞

0 dt
∫ ∞

0 dτ ⟨O†(t + τ)O(t + τ)⟩ ⟨O†(t)O(t)⟩
. (6.50)

Considering first the numerator and substituting in Eq. (6.47) we find

∫ ∞

0
dt
∫ ∞

0
dτ|
〈

O†(t + τ)O(t)
〉
|2 = ∑

ijkl
Aij A∗

kl

∫ ∞

0
dte(λj+λ∗

l )t
∫ ∞

0
dτe(λi+λ∗

k )τ,

= ∑
ijkl

Aij A∗
kl

1
(λj + λ∗

l )

1
(λi + λ∗

k )
.

(6.51)
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Simplifying this further by first, defining Lij = − 1
(λj+λ∗

i )
, then using the following relations

C = AB → cij = ∑k aikbkj, and Tr[AB] = ∑ij ajibij, we find

∫ ∞

0
dt
∫ ∞

0
dτ|
〈

O†(t + τ)O(t)
〉
|2 = ∑

ijkl
A∗

kl Lki AijLl j

= ∑
il
[∑

k
A∗

kl Lki][∑
j

AijLl j],

= ∑
il
[A†L]li[AL⊤]il

= Tr[A†LAL⊤].

(6.52)

For the denominator following a similar methodology gives∫ ∞

0
dt
∫ ∞

0
dτ
〈

O†(t + τ)O(t + τ)
〉 〈

O†(t)O(t)
〉
= ∑

ij
aiaj

∫ ∞

0
dte(λi+λj)t

∫ ∞

0
dτeλiτ,

= ∑
ij

aiaj
1

λi(λi + λj)
,

= ∑
ij

UijΛij,

= Tr[U⊤Λ].

(6.53)

where ai = ⟨⟨O†O|PPiP−1|ρ(0)⟩⟩, Uij = aiaj and Λij = (λi(λi + λj))
−1 have been introduced.

Putting the numerator and denominator together to find a matrix representation of the indis-
tinguishability we find

I =
Tr
[
A†LAL⊤]

Tr[U⊤Λ]
. (6.54)

This model can be further modified to directly include the influence of a phonon sideband
when the system is in a polaron transformed basis such that O(t) ≈ σ(t)B−(t), where B± =

exp
[
±∑k

gk
ωk

(b†
k − bk)

]
, see Appendix (A.3) for details of this. When choosing to adopt this

diagonal method to solve for a systems optical properties with the inclusion of a phonon
sideband, it is important to note that this still requires solving the numerical integrals with the
phonon correlation function G(τ), which reduces the efficiency of this method. Moreover, this
method is not a beneficial approach when filtering is involved due the requirement of working
in the time domain, as the extra integrals required mix up the diagonalisation [31].

6.2.4 Cavity–molecule results

To calculate the results for this molecule–cavity system the parameters κc = 2 × 2π GHz and
g = 98 × 2π MHz = 0.41 µeV were chosen to model a optical fibre mirco–cavity proposed by
Kyle D. Major in Ref [72]; where the cavity linewidth κc has been decreased from 6.6 × π GHz
to reflect advancements in cavity design. For this choice in parameters the Purcell factor is
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FP = 0.52, indicating that there is no enhancement to the spontaneous decay rate for this mirco–
cavity, only suppression from the sharp cavity linewidth. The parameters which describe the
broad sideband and the local mode included in the model are taken from the analysis shown
in appendix (A.2).

For simulations of the full DBT–cavity emission see Fig. 6.5a. For this simulation only one
local vibrational mode was included in the model due to the large computational time for the
simulations. To investigate the case for when the cavity is on resonance with either the ZPL or
a local vibrational mode the cavity frequency detuning is set to to 0 meV or ∆1 = 21 meV in
the system Hamiltonian, where there is a clear suppression around either feature the cavity is
coupled to. This work lays the foundations to investigate into how coupling to a LVM modifies
the lifetime of the vibrational state, which could in turn lead to an experimental measurement
of the oscillations predicted due to local vibrational modes in second order correlation function
measurements shown throughout chapter 5.

To highlight how the detected emission spectrum can be found from both the cavity modes
and the cavity filtered dipole modes for the case of no phonon sideband effects, see Fig. 6.5b. To
omit the phonon sideband influence from the calculations the interaction term HPH

L is excluded
and therefore the polaron transformation between the TLS and thermal phonon bath is not
performed. Two separate localised vibrational modes were included in this calculation to give
Fig. 6.5b. The peak appearing at 50.1 meV corresponds to a higher order mutli-phonon process
whereby both localised modes are involved as this peak energy equals a summation of the
local modes energy splitting. Higher order processes between the local modes are captured in
this model due to their explicit treatment in the system degrees of freedom.
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Figure 6.5: Detected cavity emission of a DBT molecule at 4.5 K using the cavity parameters
κc = 2 × 2π GHz and g = 98 × 2π MHz. (a) Calculation for the cavity coupled to either the
ZPL (blue) or one local vibrational mode (pink) with a continuous phonon sideband. Inset
shows the ZPL over a shorter energy range, highlighting cavity suppression. (b) Calculations
for a ZPL with two local vibrational modes coupled to a cavity without phonon sideband,
emission spectra found with cavity modes a†/a (solid blue) and filtered dipole operators σ†

α /σα

(dashed orange).
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6.2. CAVITY QUANTUM ELECTRODYNAMICS

6.2.4.1 Cavity indistinguishability and efficiency

When considering indistingusihability calculations for this cavity system, to obtain the maxi-
mum possible value the cavity frequency should be on resonance with the zero phonon line.
Considering this, for the following results all local modes are omitted from this model setting
N = 0, due to them sitting far from cavity resonance leading to their strong suppression. To
compare the emission spectra from the bare DBT molecule and the cavity see Fig. 6.6a. Here
the choice in cavity parameters reflect an optical mirco–cavity with κc < g and g ∼ 3Γ1, which
captures the weak coupling regime whereby the enhancement to the spontaneous emission rate
is minimal however the small cavity linewidth acts to suppress all sideband features. Finding
the indistinguishability and efficiency for the cavity model considering solely a zero phonon
line with and without a continuous phonon sideband is shown in Fig. 6.7. From Fig. 6.7 it is
evident that the cavity linewidth sharpness at κc = 2π GHz is sufficient to effectively eliminate
the SB contribution over the considered temperature range. At 2.5 K an indistinguishability
of I = 0.984 is found with a respective cavity efficiency ηc = 0.258. Noting that these results
indicate that filtering alone with a combination of the bandpass and Fabry–Perot filter leads to
higher values of both I and efficiencies.

For the case of modelling the DBT zero phonon line coupled to the cavity, the diagonal
method outlined in this chapter can be used to calculate indistinguishability in a highly
efficient way. This allows for a full parameter sweep across both κc and g which enables for
the optimisation of these parameters. See Fig. 6.8 for contour plots of indistinguishability for
three different temperatures between 2.5 K and 10 K, with varying κc and g. On these plots
the parameters g = 98 × 2π MHz with either κc = 2 × 2π GHz or κc = 6.6 × 2π GHz are
highlighted with a pink and black cross, respectively, which represent the proposed parameters
for the optical micro–cavity. From these points it is clear to see how the slight reduction in the
cavity linewidth leads to an increase in indistinguishability due to the increase in suppression
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Figure 6.6: (a) Detected cavity emission compared to the bare emission of a DBT molecule at
4.5K using the cavity parameters κc = 2× 2π GHz and g = 98× 2π MHz. Inset shows the ZPL
over a shorter energy range. (b) Cavity emission spectrum using optimised cavity parameters
κc = 0.52 × 2π GHz and g = 239 × 2π MHz.
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of the incoherent part of the emission including the sideband and a fraction of the ZPL that
is homogeneously broadened. The highest region of indistinguishability on these plots is
along the bottom right which hosts small linewidth and higher cavity coupling strengths.
The optimal parameters values for the maximum indistinguishability are g = 239 × 2π MHz
and κc = 0.52 × 2π GHz, and can be found along with the values of IZPL in the table in
Fig. 6.8. For these optimised parameters the resultant Purcell factor is FP = 11.99, from which
it is expected that the spontaneous decay rate will experience enhancement, increasing the
coherent fraction of emission. To visualise how these optimised values modify the cavity
emission see Fig. 6.6b. The choice of a larger cavity coupling g leads to a visible Rabi vacuum
splitting of the zero phonon line reflecting the dressed eigenstates of the cavity system, where
the ZPL splits into two peaks separated by 2g = 196 × 2π MHz= 0.8 µeV. The predicted
values of the indistinguishability and cavity efficiency for molecule emission with both the
ZPL and phonon sideband are I = 0.998 and ηc(2.5 K) = 0.829 at 2.5 K and I = 0.929 with
ηc(4.5 K) = 0.824 at 4.5 K; where there is no significant change in the values for I when
accounting for the sideband over this temperature range. Moreover, it can be seen that having
a stronger cavity coupling strength significantly increases the cavity efficiency along with the
increased value of indistinguishability. To achieve a higher cavity coupling strength proposed
in these optimisation calculations, a reduction in cavity mode volume is required.

6.3 Chapter summary

To summarise, in this chapter different enhancement techniques of two–photon interference
from a single molecule of dibenzoterryene encased in a nano–crystal environment are investi-
gated. The different techniques included filtering the photon emission where the effects of both
a 3 nm bandpass filter and a Fabry–Perot filter are considered. Calculations of indistinguisha-
bility and collection efficiency for different combinations of these filters have been found for
a range of cryogenic temperatures. The indistinguishability for a combination of both filters
at 2.5 K is I = 0.988 with a collection efficiency η f = 0.435 where vast majority of the lost
emission is from the sideband. Increasing the temperature to 4.5 K these values degrade to
I = 0.745 with a collection efficiency η f = 0.329.

In the latter part of this chapter calculations of a DBT molecule coupled to a cavity are
developed. For these cavity QED calculations a novel open quantum systems model using a
master equation approach is detailed. This model captures the full molecule emission with a
zero phonon line, localised vibrational modes and a continuous phonon sideband. Initially,
cavity parameters selected are chosen to reflect an optical micro–cavity from which it is
found that at 2.5 K the indistinguishability is I = 0.984 with a cavity efficiency of ηc = 0.258.
Simulations of cavity detected emission are found for this model considering the case of the
cavity resonance set to match either the zero phonon line or a local vibrational mode. Finally,
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the cavity parameters are optimised for the case of just considering the molecule’s zero phonon
line emission, as this is possible due to novel approach that decreases computational run
time using matrix diagonalisation. It has been found that with an increased cavity coupling
strength, mediated by a decrease in cavity volume and a decrease in the cavity leakage rate, the
predicted indistinguishability of emission is I = 0.998 and the cavity efficiency is ηc = 0.829
at 2.5 K. For these optimised parameters, high indistinguishability is better maintained for
an increased temperature of 4.5 K giving I = 0.918 with the cavity efficiency is ηc = 0.824.
The significant improvement in efficiency compared to initial parameters is mediated by the
increase in Purcell factor. These results demonstrate the applicability for single molecule in
quantum information applications; whereby cooling to cryogenic temperatures and applying
either a filter or coupling to a cavity near unity indistinguishability and high efficiencies can
be achieved.

Further work could include exploring the quantitative effect on what happens to the system
when coupling to one of the localised vibrational modes. It would be on fundamental interest
to investigate the viability of measuring the exchange in population between one of the modes
and the electronic system predicted in chapter 5, for the case of an enhanced local mode
lifetime.
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NITROGEN-VACANCY CENTER

In this chapter the cavity QED formalism developed in chapter 6 will be used on a new
system, a Nitrogen–Vacancy (NV) center in diamond. These sources are a popular candidate

for quantum emitters due to their long–lived spin quantum state at room temperature and well-
defined optical transitions [21]. Similar to other solid state emitters such as single molecules
and quantum dots, limitations of NV centers arise from the strongly temperature dependent
dephasing effects caused by phonon interactions. This phonon dephasing acts to suppress the
indistinguishability of photon emission essential for quantum interference [122]. As well as
phonon based dephasing, NV centers are susceptible to spectral wandering due to local charge
fluctuations, where this effect is heightened when the emitters are close to the surface [99, 119].

This work investigates the viability of a deterministic single photon emitter operating
at readily accessible temperatures without the need for cryogenics. The motivation for this
works stems from the scalability issues that arise when using cryogenics, particularly outside
a laboratory environment [8]. The temperatures considered for this work are 300 K and 200 K;
where this temperature can be achievable using a Peltier cooling system [106]. To reduce the
dephasing present in NV centers this work considers coupling such an emitter to an ultrasmall–
mode–volume photonic crystal cavity in a silicon waveguide [51]. The work presented in this
chapter was completed in collaboration with Joe A. Smith and other co–authors based at the
University of Bristol in the published works found in reference [109].

To model this type of system, a cavity–QED master equation approach which is valid be-
yond weak coupling is used, where the resultant full–photon wavepacket indistinguishability
and cavity efficiency are found. In previous cavity-QED studies the NV center is modelled as a
two–level system with some excess dephasing to capture the homogeneous broadening of the
zero phonon line [4, 118]. However, in this work, the possibility of a strain field is considered,
where this effect is well documented in literature and originates from defects in the diamond
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lattice [37]. To capture this strain the excited state of an NV center is treated as two orthogonally
non-degenerate polarised dipoles.

Contrasting to the work developed for a DBT molecule in this thesis, the phonon based
dephasing processes, including a broad phonon sideband which dominates the NV center
emission spectra and zero phonon line pure dephasing are both treated phenomenologically
here. The motivation for this phenomenological approach stems from the ability to explore
more extreme cavity coupling strengths in a highly efficient frame work. Moreover, the focus
of this work is to predominately to elucidate the role of an ultrasmall–mode–volume cavity
rather then underpin dephasing mechanisms.

7.1 NV center emission properties
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Figure 7.1: (a) Schematic energy diagram of a NV center in diamond with and without a strain
field from defects in the crystal lattice. (b) Molecular diagram of the nitrogen vacancy center
(c) Typical emission spectra from a NV center at 300 K.

NV centers have a rich electronic structure [91], however when considering the states
involved in single photon emission only the electronic ground and excited state need to be
considered [2]. The electronic energy diagram of an NV center along with a diagram of the
molecular structure is shown in Fig. 7.1a and b. Emission from an NV center consists of two
orthogonally polarised dipoles which are non-degenerate in the presence of linear strain fields
caused by crystal defects [37, 74]. Under this linear strain the excited state splits from |e⟩ to
|eX⟩ and |eY⟩ with splitting which is set to ∆ = 0.1 ps−1 (which captures the upper bound
to calculate the theoretical maximum degradation in I) [37]. To capture the effect of a strain
field the NV center is modelled as a three–level system shown in Fig. 7.1a. The polarisation
relaxation rate from |eY⟩ to |eX⟩ is given by ΓXY which is ΓXY = 1/(2π) ps−1 at 200 K and
increases to ΓXY = 15.3/(2π) ps−1 for 300 K [37].

NV centers are known to host vast phonon sidebands which have a large branching ratio
∼ 96 − 98% [4, 6, 13]. A typical 300 K emission spectra of a NV center is shown in Fig. 7.1c,
where the zero phonon line emission is modelled at 637 nm and the parameters used to model
this emission are taken from [4]. The phonon sideband emission from a NV center can be
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attributed to vibrational modes, local to deformations around the defect center [54], where
these peaks which dominate the phonon sideband, can be well captured by seven separate
Lorentizans [4]. Highlighting here, that the NV center phonon sideband originates from a
different mechanism compared to quantum dots which host a continuous sideband from
environmental lattice phonons. When considering the effect of linear strain on this phonon
sideband, a re-normalisation of the peak energies is feasible due to the effect of the local defect
which causes the strain on the crystal structure. Further work is needed to explore the scale of
this re-normalisation effect, if any, on the sideband.

7.2 Ultrasmall–mode–volume cavity theory

Recent advancement in cavity fabrication has allowed for the possibility of ultrasmall–mode–
volume photonic crystal cavity in silicon waveguides [51]. These cavities are also known
as ‘bow–tie’ cavities due to their in–plane profile, where the bow–tie design allows for the
ultrasmall–mode–volume due to confinement of the mode in the apex of the structure, see
Fig 7.2a. The benefit of having an ultrasmall–mode–volume is high cavity coupling strengths
g, due to the relationship g ∼ 1/

√
VM . Recent work from Hu et al. demonstrated such a

photonic crystal cavity with a mode volume of VM ∼ 0.001(λc/n)3, where λc is the reso-
nance wavelength of the cavity and n is the cavity refractive index. For this work a planar
nanodiamond–silicon nitride cavity is considered where the cavity wavelength is set to be on
resonance with NV center emission at 637 nm and n = 2.4 [108]. This mode volume can be
found from the normalised integral over the electrical energy density given by [51]

VM =
1

max(εE2)

∫
εE2dV, (7.1)

where E is the electric field and ε is the permittivity. To visualise this mode volume for the
bowtie cavity, see Fig. 7.2b and c, where two–dimensional planes of this structure are shown
by plotting the electrical energy density. This cavity design is a vast improvement from the
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standard cylinder/rectangle cavity design which gives wavelength–scale mode volumes
VM ∼ (λc/n)3 [63, 95]. The increase in achievable cavity coupling strength motivates this
work to simulate the possibility of extracting indistinguishable photons at non–cryogenic
temperatures due to large Purcell enhancement. This work is focused on describing NV centers
in nano–diamond encapsulated in silicon nitride films [108], however the theory in this chapter
is readily extendable to other solid state single photon sources.

7.2.1 NV center pure dephasing model with zero strain

To begin the NV center is considered for the ideal case without linear strain, where this involves
treating the emitter as an ideal two–level electronic system, see Fig. 7.3. The bow–tie cavity is
modelled using a one sided single–moded cavity with annihilation (creation) operator a(a†),
following the same methodology presented in section (6.2.1). The cavity is parameterised by
the linewidth κc and coupling strength g, where the choice of these parameters can be chosen
to reflect the ultrasmall–mode properties of the bow–tie cavity. Firstly, describing the zero
phonon line emission this of system with the second order Born–Markov master equation as
shown in Eq. (6.41), re–displaying here for clarity as

∂tρS(t) = −ig[X , ρS(t)] + Γ1Lσ[ρS(t)] + κcLa[ρS(t)] + 2γLσ†σ[ρS(t)], (7.2)

where the Lindblad operator is LA[ρ(t)] = Aρ(t)A† − 1
2

{
A† A, ρ(t)

}
. The operator X =

σ†a + σa† describes the interaction between the cavity and two–level system. The spontaneous
decay of the two-level system is Γ1 = 1/T1 where T1 = 20 ns is the lifetime of a typical NV
excited state [4]. The final dissipator of Eq. (7.2) contains the excess dephasing rate γ which
captures the zero phonon line broadening and varies with temperature. The two color detected
emission spectrum of the cavity enhanced NV center zero phonon line can be expressed using
the cavity mode operators as SZPL(ω, ν) = sZPL(ω, ν) + sZPL(ω, ν)∗, with

sZPL(ω, ν) =
κc

2π

∫ ∞

0
dt
∫ ∞

0
dτeiω(t+τ)e−iνt

〈
a†(t + τ)a(t))

〉
. (7.3)
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Figure 7.3: NV center with no linear strain field, modelled as a two–level system coupled to one
sided single moded cavity with coupling strength g and decay rate κc, with cavity detuning
from the TLS of δ.
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The lost modes not detected from the cavity can be found from the dipole operators with

sLOST
ZPL (ω, ν) =

Γ1

2π

∫ ∞

0
dt
∫ ∞

0
dτeiω(t+τ)e−iνt

〈
σ†(t + τ)σ(t))

〉
. (7.4)

To find the efficiency of this cavity Eq. (6.40) can be used substituting in both the lost Eq. (7.4)
and detected Eq. (7.3) emission spectra.

7.2.1.1 NV center sideband model

To capture emission into the broad phonon sideband SSB(ω), a summation of seven Lorentzian
functions are used [4]. To model how this sideband emission is modified by the cavity, the
convolution theorem can be used which allows for this function to be multiplied in the
frequency domain by the cavity filter profile given by hc(ω) = i κc

2 /(i(ω − ω0)− κc
2 ), which

gives

SSB(ω) = N|hc(ω)|2 ∑
i

Ai

π

(Γi/2)
(ω − ω0,i)2 + (Γi/2)2 , (7.5)

where Ai is the relative amplitude of the sideband peaks, ω0,i are their relative peak positions
and Γi are the full–width half–maxima. The normalisation factor N is chosen such that the
Debye-Waller fraction (fraction into the ZPL) is DW = 2.06% for the bare emission (without
cavity effects) of the NV center, where this is taken from [4]. To find and fix N in the calcula-
tions, the two color ZPL emission spectrum of the bare NV center is first required, given by
S(0)

ZPL(ω, ν) = s(0)ZPL(ω, ν) + s(0)ZPL(ω, ν)∗, with

s(0)ZPL(ω, ν) =
Γ1

2π

∫ ∞

0
dt
∫ ∞

0
dτeiω(t+τ)e−iνt

〈
σ†(t + τ)σ(t))

〉
, (7.6)

where to evaluate the correlation function in this equation the appropriate master equation
required is ∂tρ(t) = Γ1Lσ[ρ(t)] + 2γLσ†σ[ρ(t)], which describes a two–level system with spon-
taneous decay and some pure dephasing. The bare sideband spectrum follows the form of
Eq. (7.5) without filtering (i.e. setting hc(ω) = 1). Finding N to scale the sideband emis-
sion, such that F (0)

ZPL/(F (0)
ZPL + F (0)

SB ) = DW = 2.06% where F (0)
ZPL/SB =

∫
dωS(0)

ZPL/SB(ω, ω).
The value found for N from the bare spectrum calculations is kept constant for the cavity
calculations.

7.2.1.2 Indistinguishability calculations

The indistinguishability of NV–cavity system with sideband emission coupled to a cavity can
be approximated by

I =

∫ ∞
−∞ dω

∫ ∞
−∞ dν|SZPL(ω, ν)|2(

FZPL +FSB)2
, (7.7)

where FZPL =
∫ ∞
−∞ dωSZPL(ω, ω) and FSB =

∫ ∞
−∞ dω|hc(ω)|2SSB(ω) are the power into the

ZPL and SB respectively. This equation is an approximation as the sideband contribution has
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Figure 7.4: Indistinguishability calculations for a NV center coupled to a cavity with zero
phonon line emission only (top) and the inclusion of SB (bottom) for the NV center modelled
as an ideal two-level system. Cavity parameters found to optimise indistinguishability are
g = 0.38 ps−1 and κc = 0.48 ps−1 for 200 K and g = 0.71 ps−1 and κc = 0.68 ps−1 for 300 K.

been neglected from from the numerator. This approximation assumes that the sideband is
purely incoherent which is a reasonable assumption due to the resonance peaks that form the
NV sideband being spectrally resolved from the ZPL emission. Factoring out the sideband
contribution Eq. (7.7) can be rearranged to give

I = IZPL

(
FZPL

FZPL +FSB

)2

, (7.8)

where

IZPL =
∫ ∞

−∞
dω

∫ ∞

−∞
dν

|SZPL(ω, ν)|2
F 2

ZPL
, (7.9)

is the indistinguishability of the ZPL only, which can be verified using the analytical model
in [118] under weak coupling regimes.

7.2.2 NV center pure dephasing model results

To find the optimal cavity parameters for this NV center cavity system, calculations of both
IZPL, considering just the ZPL emission and I , considering the sideband contribution as well
are found. Performing a full parameter sweep over both κc and g for 200 K and 300 K, see
Fig. 7.4 for the plots. It can be seen that for calculations without a sideband emission the
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maximum indistinguishability increases for both increasing coupling strength and linewidth
for the parameter range considered. This increased indistinguishability is due to the enhanced
spontaneous emission rate which causes a larger fraction of the emission to be coherent.
For high coupling strength but decreased cavity linewidths (or increased quality factors as
κc = ωc/Q), IZPL decreases as the ZPL is split by g, leading to detected cavity emission
resulting in the tails of the peaks which are mostly incoherent. Now looking at the results
for both the ZPL and sideband emission in the bottom two plots of Fig. 7.4. It can be seen
that including a sideband leads to a bounded region of high indistinguishability within the
parameter range explored. This reduction in I for higher cavity line widths or lower quality
factors is due to an increase sideband fraction included into the detected cavity emission.
Moreover, the region of high I is bounded along a positive diagonal correlation, where this
correlation is stronger for 300 K. This correlation arises from competition between the Rabi
vacuum splitting of the ZPL, which increases for increasing g and the cavity linewidth which is
inversely proportional to the cavity quality factor (Q). For a strongly split ZPL, a sharp cavity
linewidth (high-Q) degrades the indistinguishability, as its the ZPL suppressed dip at zero
detuning which is coupled into the detected cavity mode. For the region of low g and high κc

(or low-Q) the Purcell enhancement of the spontaneous emission is not sufficient enough to
achieve high I . The optimal parameters found from these calculations are g = 0.38 ps−1 and
κc = 0.48 ps−1 for 200 K from which an indistinguishability of I = 0.56 is calculated. For 300 K
the optimal values found are g = 0.71 ps−1 and κc = 0.68 ps−1 giving I = 0.20. The Purcell
factors (FP = 4g2

Γ1κc
) for these parameters sets are FP(200 K) = 24000 and FP(300 K) = 60000. To

visualise the emission spectra from both bare and cavity enhanced NV center see Fig. 7.5. For
both temperatures it can be seen that the vast majority of the sideband is suppressed, where for
the case of 200 K the ZPL emission is split where the difference in peak width is 2g, indicating
the system is in the critical/strong coupling regime.

Considering now the efficiency of this cavity system. For the case of the zero phonon line
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Figure 7.5: Emission from a bare NV center (blue) and cavity enhanced emission (pink) for
200 K (a) and 300 K (b) with parameters selected to optimise I found in Fig. 7.4. Insets show
the zero phonon line over reduced wavelength range.
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emission from a NV center only using Eq. (6.40), the cavity efficiency is ηc(200 K) = 0.99984
and ηc(300 K) = 0.99996, which both are close to unity. Noting that these fraction are very high
due to the large Purcell factors that result from these cavity parameters. Furthermore, when
considering the the fraction of sideband emission that couples into the detected cavity mode
the total efficiency will decrease, where for these cavity parameters this coupled fraction is
0.30% for 200 K and 0.47% for 300 K.

7.2.2.1 Filtering NV–cavity emission

In this chapter calculations are simulated for temperatures T ≥ 200 K which is considered
high when accounting for phonon effects; if indistinguishability is the main goal for a source
the cavity enhanced emission can be post filtered to see extra enhancement in two–photon
interference. In this section the cavity model formalism is extended to include the effects of a
Lorentzian Fabry-Perot filter to the NV-cavity detected emission. The filter is assumed to be
described by the frequency space Green’s function in the form h f (ω) =

κ f
2 /(i(ω − ω0)−

κ f
2 ),

which multiplies the positive frequency component of the detected electric field operator [55].
The expression for indistinguishability for this filtered cavity emission becomes

I f ilt =

∫ ∞
−∞ dω

∫ ∞
−∞ dν|h f (ω)|2|h f (ν)|2|SZPL(ω, ν)|2( ∫ ∞

−∞ dω|h f (ω)|2SZPL(ω, ω) + |h f (ω)|2|hc(ω)|2SSB(ω)
)2 . (7.10)

Re–arranging to factor out the SB fraction again we find

I f ilt = I f ilt
ZPL

( F f ilt
ZPL

F f ilt
ZPL +F f ilt

SB

)2

, (7.11)

where F f ilt
ZPL =

∫ ∞
−∞ dω|h f (ω)|2SZPL(ω, ω) and F f ilt

SB =
∫ ∞
−∞ dω|h f (ω)|2|hc(ω)|2SSB(ω) are the

power after filtering in the ZPL and SB respectively. The indistinguishability of the filtered
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Figure 7.6: Indistinguishability and efficiency of a NV center with no linear strain for both
200 K (solid lines) and 300 K (dashed lines) as a function of post filtering cavity emission using
the optimal parameters found from Fig. 7.4.
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ZPL is

I f ilt
ZPL =

∫ ∞
−∞ dω

∫ ∞
−∞ dν|h f (ω)|2|h f (ν)|2|SZPL(ω, ν)|2(

F f ilt
ZPL)

2
. (7.12)

For calculations of indistinguishability and efficiency for the post filtered, detected cavity
emission spectra see Fig. 7.6. The parameters used to simulate these results took the optimised
cavity values found from Fig. 7.4. From these simulations it has been found that for a filter
with width κ f = 0.3 ps−1 photon indistinguishability from an ultrasmall–mode–volume cavity
is I(200 K) = 0.72 and I(300 K) = 0.45, with the filter efficiencies η f (200 K) = 0.30 and
η f (300 K) = 0.13. In these predictions the sideband is assumed to be fully incoherent, it can
be noted that under tight filter regimes these values may be a slight underestimation due the
expectation of the sideband retaining some coherence [26].

7.2.3 NV center with linear strain

Considering now the presence of a strain field across the diamond emitter, which is common
in diamond and therefore it is important to explore its impact [74]. It is known that the
presence of a strain field splits the excited state into two non–degenerate orthogonally polarised
levels [37, 74]. This effect is especially important when considering polarised cavities and will
now be explored.

To model the NV center under a linear strain field the system is modelled as a three–level
system with the excited state to split into the aforementioned non-degenerate orthogonally
polarised orbitals |ex⟩ and

∣∣ey
〉

split by energy ∆, see Fig. 7.7 [74]. Coupling this three–level
system to a single moded one sided cavity with coupling strength g, the following second
order Born-Markov master equation is used to model the cavity enhanced zero phonon line
(ZPL) emission [109]

∂tρ(t) = −ig[χ(θ), ρ(t)] + Γ1Lσx [ρ(t)] + Γ1Lσy [ρ(t)] + ΓxyLσxy [ρ(t)]

+ e−∆βΓxyLσyx [ρ(t)] + κcLa[ρ(t)],
(7.13)

𝜅𝑐𝑔
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Figure 7.7: NV center with linear strain field, modelled as a three-level system coupled to
one sided single moded cavity with coupling strength g and leakage rate or linewidth κc.
Spontaneous decay from the excited state manifolds has the rate Γ1 = 0.05 ns−1. The two
orthogonally polarised excited state manifolds split by ∆ = 0.1 ps−1.
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where σx and σy describe the decay from the corresponding excited state to the ground state
and σxy/σyx describe the respective transitions between the two excited states. The first term
contains the system Hamiltonian in a rotated frame which couples the three–level system to
the cavity mode a, as

χ(θ) = g(σm(θ)
†a + σm(θ)a†), (7.14)

with σm(θ) = sin(θ)σx + cos(θ)σy, where this term describes the alignment of the cavity
mode with the excited state dipoles. The next four terms are Lindblad dissipators with
LA[ρ(t)] = Aρ(t)A† − 1

2

{
A† A, ρ(t)

}
. The second and third term in Eq. (7.13) describe spon-

taneous emission from each of the excited states |ex⟩ and
∣∣ey
〉

respectively with decay rate
Γ1. The fourth and fifth terms represent the decay/excitation between the two excited states
with polarisation decay rates Γxy/e∆βΓxy, respectively with β = 1/kBT. The last term describes
spontaneous emission from the cavity with leakage rate (linewidth) κc. For these calculations
∆ = 100 GHz which is an approximate upper bound on how large the energy splitting could
be [37].

The two color ZPL detected emission from the NV–cavity system can be found from
Eq. (7.3). The lost modes emitted from states ex/ey on the other hand are given by

sLOST
x\y (ω, ν) =

Γ
2π

∫ ∞

0
dt
∫ ∞

0
dτeiω(t+τ)e−iνt

〈
σ†

x\y(t + τ)σx\y(t))
〉

. (7.15)

Similar to the case of no linear strain the phonon sideband emission is treated phenomenologi-
cally and is only introduced when final values of indistinguishability are calculated.

To find the efficiency of this cavity as a function of θ and different initial populations,
Eq. (6.40) can be used where the power into the lost modes needs to be found as a sum of the
excited state dipoles using PL =

∫
dωSLOST

x (ω, ω) + SLOST
y (ω, ω).

The indistinguishability of detected cavity emission with/without a sideband can be found
from Eq. (7.8)/Eq. (7.9), which for this three–level system will depend upon the initial popula-
tion and the cavity orientation angle θ. This initial state population could be experimentally
controlled by varying the polarization of the pump laser to align to either the |ex⟩ or

∣∣ey
〉

state.
To explore how both the indistinguishability and cavity efficiency varies as a function of both
the initial population distribution and the coupling angle θ see Fig. 7.8.

7.2.4 NV center with strain results

It can be seen from Fig. 7.8 that both the cavity efficiency and indistinguishability exhibit
an oscillatory profile as a function of cavity orientation with respect to the excited state
dipoles. Here the maximum values correspond to the cavity aligning with the initial populated
state. Moreover, it can be seen that there is drop in maximum indistinguishability and cavity
efficiency compared to the two–level system (no strain); where the drop in efficiency is marginal
(0.01%). To explain this non-negligible drop in indistinguishability it is advantageous to analyse
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Figure 7.8: Calculations of NV center under linear strain with excited states split by ∆ =
100 GHz, coupled to a bow–tie cavity with no sideband, showing the cavity efficiency and
indistinguishability as a function of cavity orientation for 200 K (a)-(b) and 300 K (c)-(d),
respectively. The (dashed) line shows the no strain (two–level system) case. The (solid) lines
model different initial populations in solely |ex⟩,

∣∣ey
〉

and a 50 : 50 mixed state.

the evolution of the state population, see Fig. 7.9. For the case where the state population
is initialised in |ex⟩ and the cavity is fully aligned to it (shown in 7.9a and c) the majority of
photons rapidly exit the cavity, however as this is not instant, a fraction of the population
can decay into

∣∣ey
〉
, where this leads to dephasing of these photons and explains the drop

in indistinguishability compared to the two–level system calculations. This dephasing also
occurs for the state prepared and coupled to

∣∣ey
〉
; however the origin of this dephasing

differs, as it stems from a fraction of the population being excited to |ex⟩. As it is slight less
probable that the population excites compared to decaying, between

∣∣ey
〉

and |ex⟩ the resultant
indistinguishability for the case of coupling and initialising in the

∣∣ey
〉

state is slightly higher
at I = 0.508 compared to I = 0.506 for |ex⟩. For the case where |ex⟩ is initially populated
and

∣∣ey
〉

is enhanced by the cavity (see Fig. 7.9b and d) the photons rapidly exit the cavity
before the populations are even fully mixed. This allows for photons to ‘linger’ in the state
not enhanced by the cavity which leads to a much larger reduction in indistinguishability; for
200 K this goes from I = 0.51 to I = 0.20 for the system coupled and initialised in |ex⟩.

Finally, considering the effect on post filtering a NV center coupled to a bow–tie cavity
under a linear strain field from crystal defects, see Fig. 7.8. For these calculations the initial pop-
ulation resides in

∣∣ey
〉

and the cavity is aligned into this state to the simulate optimal conditions.
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ground state. Plots show the cases for 200 K and 300 K with the initial population in |ex⟩ and
the cavity oriented to couple to both dipole X (left) and Y (right).

It has been found that for a Lorentizan filter with κ f = 0.3 ps−1 the indistinguishability for the
NV–cavity system under a linear strain goes up to I(200 K) = 0.53 with η f (200 K) = 0.30 and
I(300 K) = 0.32 with η f (300 K) = 0.13.
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Figure 7.10: Post filtering of cavity enhanced emission for the optimal parameters g = 0.38 ps−1

and κc = 0.48 ps−1 for 200 K and g = 0.71 ps−1 and κc = 0.68 ps−1 for 300 K, using the three
level system model to capture linear strain.

116



7.3. CHAPTER SUMMARY

7.3 Chapter summary

In this chapter calculations of a NV center at non–cryogenic temperatures coupled to an
ultrasmall–mode–volume cavity are performed. It has been found that by combining Peltier
cooling down to 200 K with these ultrasmall ’bow–tie’ cavities indistinguishability can be
enhanced by nine orders of magnitude to I = 0.56. It has been shown that further enhancement
can be achieved by post filtering with a Lorentzian filter profile of width κ f = 0.3 ps−1 to find
I = 0.72, where this it at the payoff of collection efficiency η f = 0.30. Higher values of I can
be achieved with sharper filtering or reducing the temperature of the system by relaxing the
Peltier cooling limit. The work presented in this chapter could be equally applied to other solid
state single photon sources which exhibit lower phonon sideband branching ratios, where
it would be interesting to investigate if this too would lead to indistinguishable emission at
elevated temperatures.

In this work the inclusion of linear strain from crystal defects is accounted for by modeling
the NV center as a three–level system. In this model the excited state is treated as two non–
degenerate orthogonally polarised levels. It has been found that in the presence of a linear
strain field the indistinguishability drops. This reduction in I is concluded to be mediated
by dephasing between the two orthogonally polarised excited states. To ensure two–photon
interference for a NV center with a strain field is at a maximum, it has been shown that the
cavity orientation is very important and that it should be aligned to the emitter dipole.

Future work could include a non–phenomenological treatment of the phonon sideband,
where in doing so the computational efficiency of these calculations would drop. However,
by explicitly accounting for the sideband from the point of the Hamiltonian, it would be
interesting see if this causes any changes to the predictions presented. From the method
presented in this chapter, it is feasible that the value of I could very slightly increase, as this
would capture the small fraction of the coherent sideband, neglected in this work.
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CONCLUSIONS AND OUTLOOK

The work presented in this thesis uses theoretical methods from open quantum systems
theory to characterise the optical properties of solid state single photon sources, a promising
component for quantum information applications. These quantum emitters are also a highly
interesting platform to explore the quantum optics of isolated few–level systems. The main
focus of this work looks at the single molecule dibenzoterrylene (DBT), a bright photostable
single photon emitter. A secondary focus of this thesis looks at a nitrogen vacancy (NV) center
in diamond, a well established single photon emitter.

To summarise, in chapter 3 an overview of different optical properties are explored in-
cluding, the emission spectra of an ideal two–level system (TLS) and the result of coupling a
TLS to a bath of thermal phonons, where the polaron transform is detailed as a key method
used throughout this thesis. An additional optical property introduced in this chapter is sec-
ond order correlation functions, specifically those from a Hanbury Brown and Twiss and
Hong–Ou–Mandel interferometer setup. Finally, the effect of spectral wandering of an emitter
is explored, where a novel method for the calculation of photon indistinguishability for an
emitter undergoing both spectral wandering and pure dephasing is presented. A non–trivial
result has been found from these calculations, which shows that the choice of the distribution
function which describes the spectral walk results in a change in predicted indistinguishability.

Chapter 4 presents a novel open quantum systems model which captures all of the observ-
able emission features of the promising single molecule, single photon source DBT hosted
in a nano–crystal of anthracene (Ac). The model captures the zero phonon line (ZPL), four
peaks associated with transitions to DBT’s local vibrational modes and a broad temperature
dependent phonon sideband associated with the Ac nano–crystal. This work reveals a temper-
ature dependent homogeneously broadened ZPL which arises when anharmonic effects of
the electron–phonon coupling are taken into account. This work constitutes as an important
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starting point to study the effect of coupling these molecules to optical waveguides and cavities
which is explored in chapter 6. Future work includes using the theoretical methods devel-
oped in this model to explore other promising solid state quantum emitters where phonon
dephasing is prevalent such as two–dimensional defect material like hexagonal boron nitride.

Moving on to chapter 5, second order correlation function g(2)(τ) calculations and mea-
surements from a Hong–Ou–Mandel experimental setup are presented. Different laser driving
regimes are explored and a novel approach to extract a measurement of indistinguishability
from a continuous wave non–resonant laser is presented; which provides an alternative to
the typical approach with a pulsed laser. Moreover, the calculations of g(2)(τ) in this chapter
are modified to include the effects of considering a DBT molecules phonon sideband and
its local vibrational modes, which both lead to interesting results and hold consequences for
indistinguishability measurements.

To capture the effect of the manipulation on the electromagnetic emission from a DBT
quantum emitter, the effect of filtering emission and coupling the emitter to a cavity is explored
in chapter 6. In this chapter it has been found that using a combination of a 3 nm bandpass
and Fabry–Perot filter can lead to near–perfect indistinguishable extraction of photons from
a DBT emitter in its lifetime limit below ≲ 3 K. A novel cavity QED model which includes
all observable features of DBT emission such as its phonon sideband and local vibrational
modes is derived. The emission spectra of this DBT–cavity system is presented and coupling to
either the ZPL or a local vibrational mode is compared to the bare spectrum. Parameters which
reflect an optical mirco–cavity is first explored which again predicates near–indistinguishable
detected photon emission for cryogenic temperatures, under the safe neglection of the local
modes when coupling the cavity to the TLS resonance. By reducing the cavity mode volume a
corresponding increase in detection cavity efficiency is predicted which reflects the increase
in Purcell factor. Future work could look to explore further the effect of coupling to a local
vibrational mode and incorporate these cavity calculations with the second order correlation
function calculations presented in chapter 5.

Finally, chapter 7 considers a different emitter, the nitrogen vacancy center in diamond.
In this work an ultrasmall–mode–volume cavity is coupled to a NV center at non–cryogenic
temperatures. Using a ‘bowtie’ design developed by Hu et al. [51], the ultrasmall cavity mode
volumes lead to high cavity coupling strength, which it has been found allows for the extraction
of indistinguishable photons with I = 0.56, for a Peltier cooled system at 200 K. It has been
shown that further enhancement of I can be achieved by post filtering emission at the pay
off of efficiency. Finally, in this chapter the effect of linear strain from crystal defects, known
to occur in defect crystal centers, are accounted for by modelling the NV center as a three–
level emitter with two orthogonally polarised non–degenerate excited state levels. From these
calculations it has been found that it is essential both initially populate only one of the excited
states and to align the cavity and emitter dipole for maximum I extraction as this can lead to
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extra decoherence effects.
The work presented in the thesis emphasises the exciting promise that solid state emitters

hold for both quantum information applications and fundamental research on isolated systems.
It is known that solid state emitters host different drawbacks, a common attribute including, the
phonon based dephasing explored in great detail in this thesis. However, with advancements
in photonic infrastructures including cavity design, and the strong drive in development for
a variety of platforms mentioned throughout this thesis, the outlook for these platforms is
positive when considering different applications.
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A.1 Electron–phonon spectral density

In this appendix different functional forms of the exciton–phonon spectral density are
derived using various forms for the electronic ground and excited state wavefunction. To

begin the definition of the exciton–phonon spectral is given by

JPH(ω) = ∑
k

g2
kδ(ω − ωk), (A.1)

where gk is the product of the linear phonon matrix element and the charge density operator
in reciprocal space given by

gk = − |k|√
2NMωk

∑
j

Dj

∫
d3r|ψj(r)|2eik·r, (A.2)

where k = |k| =
√

k2
x + k2

y + k2
z , Dj is the constant deformation potential for the ground and

excited state j = {g, e} and the derivation for this can be found in section (2.2.3.1) [16, 83]. To
find the phonon spectral density one can take the continuum limit using

∑
k

g2
k → V

(2π)3

∫
dkg2

k,

=
V

(2π)3

∫ π

0
dθ sin θ

∫ 2π

0
dϕ
∫ ∞

−∞
dk|k|2g2

k,

=
V

2π2c3

∫ ∞

−∞
dωkω2

kg(ωk)
2,

(A.3)

where the integral is taken over reciprocal space in spherical polar coordinates and linear
dispersion has been assumed such that, |k| = ωk/c and d|k| = dωk/c, where c is the speed of
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sound. Substituting this into the definition of the phonon spectral density shown in equation
(A.1), the delta function causes only terms with ω = ωk to be non-zero such that

JPH(ω) =
V

2π2c3 ω2g(ω)2. (A.4)

Solving this function by first looking at Eq. (A.2) and writing ∑j Dj
∫

d3r|ψj(r)|2eik·r =

(Deρe(k)− Dgρg(k)) where ρj(k) =
∫

d3reik·rρj(r) and r2 = |r|2 = x2 + y2 + z2. Expressing
the linear coupling in terms of ω by assuming linear dispersion and setting ω = ωk it has been
found

g(ω) = −
√

ω

2NMc2 (Deρe(k)− Dgρg(k)). (A.5)

Inserting this expression into eqn (A.1) to find the phonon spectral density as

JPH(ω) = αω3(Deρe(k)− Dgρg(k))2 (A.6)

with the constant α = V
4NMπ2c5 .

A.1.1 Gaussian wavefunction

To find a functional form for Eq. (A.6) the electronic wavefunction of the ground and excited
state can be assumed. Where a common choice for a 3D harmonic oscillator bath is a isotropic
Gaussian function [83], where this is typically chosen to accurately model quantum dots, for
either the ground or excited state j = {g, e} this is

ψj(r) =
( 1

dj
√

π

)3/2
e−r2/2d2

j , (A.7)

where dj is the confinement potential for the ground or excited states which is assumed the
same in a symmetric potential approximation (allowing for the dropping of j as de = dg = d
leading to ρj(k) → ρ(k)). Substituting this wavefunction into the expression for ρ(k) to find

ρ(k) =
∫

d3r|ψ(r)|eik·r,

=
( 1

d
√

π

)3 ∫ ∞

−∞
d3reik·re−r2/d2

,

=
( 1

d
√

π

)3 ∫ ∞

−∞
dxeiqxxe−x2/d2

∫ ∞

−∞
dyeiqyye−y2/d2

∫ ∞

−∞
dzeiqzze−z2/d2

.

(A.8)

Solving this using the relation
∫ ∞
−∞ dxe−a2x2

eibx =
√

π
a e−b2/4a2

to find

JPH(ω) = αω3e−ω2/ω2
c (A.9)

where ωc =
√

2 c/d is the cut off frequency.
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A.1.2 1s hydrogen wavefunction

The exciton–phonon spectral density can be found using a multitude of different electronic
wavefunctions; where this is particularly useful when considering bath environments which
aren’t 3D in nature such as novel 2D materials like hexagonal Boron Nitride. To show an
example using a different form, one can assume the electron wavefunction follows a 1s
hydrogen orbital such that

ψj(r
)
=
( 1

πd3

)1/2
e−r/dj . (A.10)

where again it is assumed that the confinement potential d for the ground and excited states
are the same taking a symmetric potential approximation. Substituting this wavefunction into
the expression for the electron-phonon coupling strength again and evaluating the following
integral

ρ(k) =
1

πd3

∫ ∞

−∞
d3rei(k)·re−2r/d,

=
1

πd3

∫ 2π

0
dϕ
∫ π

0
dθsinθ

∫ ∞

0
drr2eiqr cos θe−2r/d,

=
1

(1 + d2q2/4)2 .

(A.11)

Substituting this back into Eq. (A.6) to find

JPH(ω) = αω3 1
(1 + ω2/ω2

c )
2 . (A.12)

A.2 DBT fitting parameters

For the open quantum systems model in chapter 4 fits for the local vibrational mode energies
∆i and coupling constants ηi for each temperature are found from the emission spectra data
and the resultant values are averaged. The vibrational mode energies are found to be h̄∆1 =

(21.55 ± 0.01) meV, h̄∆2 = (28.60 ± 0.01) meV, h̄∆3 = (31.10 ± 0.02) meV and h̄∆4 = (36.31 ±
0.01) meV. These are in good agreement with values from the literature that are both calculated
through Density Functional Theory, and measured in previous experiments [27]. The coupling
constants found are h̄η1 = (6.98 ± 0.22) meV, h̄η2 = (6.45 ± 0.16) meV, h̄η3 = (5.73 ±
0.09) meV, and h̄η4 = (9.30 ± 0.14) meV.

To model the continuous phonon sideband the following parameters are required; an
overall coupling strength between the TLS–phonon bath which is α = V ∑α D2

α/(4π2NMc5),
and a high-frequency cut-off ξ =

√
2 c/d to reflect the suppression of coupling to phonons

whose wavelengths are much smaller than the size of the DBT molecule given by d, where c is
the speed of sound in the anthracene nano-crystal. From fitting the temperature dependent
emission spectra and taking the average to find ξ = (8.6± 0.6)ps−1 and α = (0.009± 0.001)ps2.
Knowing that the electronic wavefunction of the DBT molecule has a spatial extent of ∼
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1.3 nm allows one to estimate the speed of sound in anthracene at cryogenic temperature
to be c ≈ 1.3 nm ∗ 8.6 ps−1/

√
2 ≈ 7095 m s−1. This value is within a factor of two of the

measured maximum value for the speed of sound in anthracene at room temperature (∼
3730 m s−1) [30, 53]. The discrepancy can be attributed to the crystal being stiffer at low
temperature.

Finally, a function for the pure dephasing rate is required which relies upon the fitting
parameter for the overall coupling strength µ = αV/(32π(NM)c3). From fitting the line-width
data it has been found µ = 4.7 × 10−7 ps5.

A.3 Diagonal method with a phonon sideband

Upon the inclusion of a phonon sideband the system operator under the polaron trans-
form is O(t) → O(t)B−(t), where O represents some general system operator and B± =

exp
[
±∑k

gk
ωk

(b†
k − bk)

]
with gk the electron phonon coupling constant. This leads to the first

order correlation function g(1)(t + τ, t) ≈
〈
O†(t + τ)O(t)

〉
G(τ), where G(τ) = ⟨B+(τ)B−(0)⟩

is the phonon correlation function and the factorisation is justified due to differing time scales
of phonon relaxation ∼ 1ps and photon emission ∼ 1ns. Evaluating the phonon correlation
function one finds

G(τ) = exp[−Λ(τ)] exp[−iχ(τ)], (A.13)

where Λ(τ) =
∫ ∞

0 dω JPH
ω2 (1 − cos(ωτ)) coth(βω/2) and χ(τ) =

∫ ∞
0 dω JPH

ω2 sin(ωτ) where
JPH(ω) is electron-phonon spectral density. Finding the indistinguishability of this system
from

I =

∫ ∞
0 dt

∫ ∞
0 dτ|

〈
O†(t + τ)O(t)

〉
|2∫ ∞

0 dt
∫ ∞

0 dτ ⟨O†(t + τ)O(t + τ)⟩ ⟨O†(t)O(t)⟩
. (A.14)

by first finding the numerator by substituting in Eq. (6.47) giving

∫ ∞

0
dt
∫ ∞

0
dτ|
〈

O†(t + τ)O(t)
〉
G(τ)|2 = ∑

ijkl
Aij A∗

kl

∫ ∞

0
dte(λj+λ∗

l )t
∫ ∞

0
dτe(λi+λ∗

k )τ|G(τ)|2,

= ∑
ijkl

Aij A∗
kl

−1
(λj + λ∗

l )

∫ ∞

0
dτe(λi+λ∗

k )τ|G(τ)|2.

(A.15)

Putting this in in terms of matrices and newly defining Gki =
∫ ∞

0 dτe(λi+λ∗
k )τ|G(τ)|2 it has been

found ∫ ∞

0
dt
∫ ∞

0
dτ|
〈

O†(t + τ)O(t)
〉
G(τ)|2 = ∑

ijkl
A∗

klGki AijLl j

= Tr[A†GAL⊤].

(A.16)
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A.3. DIAGONAL METHOD WITH A PHONON SIDEBAND

Noting that the denominator is the same as in Eq. (6.53) in the main text as influence from the
phonon correlation function cancels, this gives the final form

I =
Tr
[
A†GAL⊤]

Tr[U⊤Λ]
, (A.17)

where ai = ⟨⟨O†O|PPiP−1|ρ(0)⟩⟩, Uij = aiaj and Λij = (λi(λi + λj))
−1 are as introduce in the

main text.
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