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Summary

Canopy gaps and the processes that generate them play an integral role in shaping the structure

anddynamics of forests.However, it is onlywith recent advances in remote sensing technologies

such as airborne laser scanning that studying canopy gaps at scale has become a reality.

Consequently,we still lack anunderstandingofhow the size distribution and spatial organization

of canopy gaps varies among forests ecosystems, nor have we determined whether these

emergent properties can be reconciledwith existing theories of forest dynamics. Here, I outline a

roadmap for integrating remote sensing with field data and individual-based models to build a

comprehensive picture of how environmental constraints and disturbance regimes shape the

three-dimensional structure of the world’s forests.

I. Introduction

When a tree dies in a forest, a gap in the canopy is left in its place – a
fingerprint of disturbance. Ecologists have long been fascinated by
canopy gaps and the processes that create them, as these disturbance
events are the engine that drives forest dynamics. By letting light
flood the forest floor, they kick-start a vertical race for space among
trees in the understorey (Wright et al., 2003). This process
ultimately drives the successional dynamics of forests and shapes the
three-dimensional (3D) structure of their canopies, the primary
interface between the biosphere and the atmosphere in terms of
energy, carbon and water fluxes (Nakamura et al., 2017).

Moreover, gaps provide key insights into how trees partition and
fill canopy space (Purves et al., 2008; Jucker et al., 2015; Taubert
et al., 2015), which in turn influences how much carbon forests
store above ground (Jucker et al., 2018a; Meyer et al., 2018).
Consequently, by taking a snapshot of the number, size and spatial
arrangement of canopy gaps in forests, we can learn a lot about how
environmental constraints and disturbance regimes shape their
structure, composition and function.

Traditionally, ecologists have studied the distribution and
dynamics of canopy gaps by painstakingly mapping them in the
field (Brokaw, 1982).However, because the disturbance events that
lead to gap formation are rare and haphazard, locating and
accurately measuring gaps from the ground is immensely chal-
lenging. Unsurprisingly, in recent years researchers have therefore
turned to remote sensing as a way of identifying canopy gaps from
above. In particular, airborne laser scanning (ALS, or LiDAR) has
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revolutionized our ability to measure canopy gaps at scale (Fig. 1a,
b). By using ALS to generate detailed 3D canopy height models of
entire landscapes (Jucker et al., 2018b), today we can map the
location, size and shape of hundreds of thousands of gaps at any
desired height threshold above ground with just a few lines of code
(Silva et al., 2019). However, despite growing access to ALS data
and numerous studies illustrating its power for studying canopy
gaps (Kellner & Asner, 2009; Asner et al., 2013; Goodbody et al.,
2020), we continue tomiss a global picture of how andwhy gap size
and spatial structure vary across different forest ecosystems and
disturbance regimes. Moreover, we have no theoretical framework
linking canopy gaps to the types of structural parameters that are
routinely measured in the field, such as tree size distributions and
above-ground carbon stocks.

To tackle this challenge, here I begin by synthesizing what we
have learned from over a decade of using ALS to study canopy gaps,
highlighting major milestones and key questions that remain
unanswered. I then discuss how individual-based models could
provide the key to unlocking how canopy gaps emerge from basic
properties of forest communities, such as the size, number and
demography of individual trees. In doing so, I outline a framework
for reconciling canopy gaps with existing theories of forest
dynamics and generating testable hypotheses about why gap size
structure and spatial arrangement vary globally.

II. Gap size frequency distributions: emergent pattern
or white noise?

Even before ALS became widely available, one feature which had
received particular attention is the relationship between the

number and size of gaps in a forest (Fisher et al., 2008). Early
efforts to characterize gap size frequency distributions (GSFDs)
using ALS led to two key findings. First, like many other emergent
patterns in biology, GSFDs tend to follow a power-law distribu-
tion, where the frequency of gaps of size x is proportional to: f ðxÞx
(Kellner & Asner, 2009). The scaling exponent of the power-law
function (λ) reflects the ratio of large : small gaps, and as a rule of
thumb λ < 2 has been suggested as an indicator of large, frequent
disturbances (Asner et al., 2013).

The second – and more surprising – conclusion to emerge from
these early studies was that despite strong differences in forest
structure, climate and disturbance history, λ appears to converge on
a narrow range of values across different sites in the tropics. In one
of the first studies of its kind,Kellner&Asner (2009) usedALSdata
from both Costa Rica and Hawaii to show that λ follows the same
U-shaped pattern with canopy height and converges on relatively
similar minimum values at multiple sites (λmin = 1.59–1.72,
although note that even small changes in λ can correspond to large
differences in gap fraction). If similar patterns were found to hold
for other sites across the tropics and beyond, it would suggest that
disturbance is only of secondary importance in shaping the size
structure of forest canopies (Kellner & Asner, 2009). From a
practical perspective, it would also mean that GSFDs are of limited
use for inferring the processes that shape the structure and function
of forests.

However, the idea that GSFDs should be highly conserved is in
many ways counterintuitive. Ultimately, canopy gaps are deter-
minedby the size distribution, allometry anddemography of trees –
all of which instead vary substantially among forest types and in
relation to climate (Muller-Landau et al., 2006, 2021; Jucker et al.,

Fig.1 Makingsenseof forest canopygapsusingairborne laser scanning (ALS)and individual-based forest simulators. (a)A1-m-resolutioncanopyheightmodel
(CHM)derived fromALSdata acquired over the 50 ha forest dynamics plot at BarroColorado Island (BCI) in Panama. (b) TheCHMwas used tomap all canopy
gaps≥ 25 m2 that extend to≤ 10 m from the forest floor. A total of 236 gaps were identified, corresponding to a gap fraction of 5.3%. Gap sizes at BCI were
observed to follow a power-law distribution with a scaling exponent (λ) of 1.90 � 0.09. (c) Observed canopy gaps are compared to those simulated using
CanopyConstructor,which combinesfield inventory andALSdata from the50 haplot to generatea virtualCHMof the study site basedona series of allometric
andcrownpacking rules (Fischeret al., 2020). (d)This approach is able to faithfully re-create thenumber, size and spatial arrangementof canopygapsobserved
across BCI. ALS data from BCI are archived on the STRI GIS data portal (https://stridata-si.opendata.arcgis.com), while census data from the 50 ha plot are
available through Condit et al. (2019).
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2017). It is perhaps unsurprising, therefore, that as ALS data have
become increasingly mainstream, a more nuanced and complex
picture of GSFDs has begun to emerge. First, it appears that at least
in certain forest types GSFDs are not well captured by a power-law,
which tends to overestimate the frequency of large gaps (Wedeux&
Coomes, 2015). Even when a power-law is a good fit to the data, λ
has been shown to vary considerably among different forest types
(Goodbody et al., 2020), as well as within the same landscape due
to differences in disturbance (Cushman et al., 2021; Reis et al.,
2021), topography and soil fertility (Lobo & Dalling, 2013;
Goulamoussene et al., 2017). For example, using ALS data from
650 sites across the Brazilian Amazon, Reis et al. (2021) showed
that λ ranges between 1.66 and 2.50 across the basin, primarily
reflecting underlying gradients in treemortality, canopy height and
human disturbance.

Despite these recent advances, we still lack a complete picture of
how GSFDs vary across the world’s forests, nor do we understand
whether they reflect a coherent fingerprint of climate and
disturbance. This knowledge gap is not due solely to incomplete
geographical coverage, but also reflects the fact that existing studies
that have quantified GSFDs from ALS are hard to compare due to
differences in methodology. For instance, the sampling resolution
and spatial coverage of the ALS data can influence the ability to

accurately retrieve gaps (Lobo&Dalling, 2014).More problematic
still is the fact thatwe lack an accepted definition ofwhat constitutes
a gap. Both minimum and maximum gap size thresholds vary
considerably among studies, as does the height above ground at
which gaps are measured (Reis et al., 2021). Finally, there is the
enduring issue of howbest to estimate power-law exponents (White
et al., 2008), a statistical choice which can have a substantial impact
on estimates of λ and therefore our understanding of how GSFDs
vary among forests. Overcoming these challenges will require us to
bring together the growing archive of ALS data from forested
landscapes worldwide and analyse them within a common
methodological framework (Fig. 2).

III. Beyond size structure: spatiotemporal patterns of
gap formation and dynamics

Although GSFDs dominate the literature when it comes to
characterizing forest canopy gaps, they are far from the only tool at
our disposal. For instance, one obvious feature that GSFDs
completely overlook is the spatial arrangement of canopy gaps
within a forest – something which is easily retrieved using ALS.
Conveniently, this means we can utilize a whole suite of methods
developed to analyse spatial point patterns to explore how canopy

Fig. 2 Global coverageof airborne laser scanning (ALS) surveys of forest andwoodland ecosystems. Locations include siteswhereALSdata have beenacquired
over forested landscapes (small beige circles), typically covering one ormore permanent forest plots. This includes 31ALS surveys of large forest dynamics plots
(5–50 ha; large green circles), most of which are part of the ForestGEO network (https://forestgeo.si.edu). Mapped locations were obtained from a
combination of published articles and open-access databases, includingALS datasetsmade available to the public via national research networks such as TERN
(https://portal.tern.org.au), NEON (https://data.neonscience.org) and Brazil’s Sustainable Landscapes project (https://www.paisagenslidar.cnptia.embra
pa.br), through NASA’s G-LiHT (https://gliht.gsfc.nasa.gov) and CMS programs (https://carbon.nasa.gov), and by initiatives such as OpenTopography
(https://opentopography.org).
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gaps are arranged in space, how this varies with spatial scale and
what might be driving the spatial patters we observe (Law et al.,
2009). Surprisingly, however, few studies have looked at the spatial
distribution of gaps in forests. The handful that have done so
suggest that generally gaps tend to be more spatially clustered than
one would expect by chance (Silva et al., 2019), particularly those
that extend deep into the canopy. Whether spatial clustering is a
ubiquitous feature of canopy gaps remains to be tested, but it seems
reasonable to expect that the degree of clustering would be
influenced by the frequency andmode of disturbance, as well as the
subsequent rate of recovery. For example, highly dynamic forests
growing on nutrient-rich alluvial soils in the tropics –where a large
number of gaps are continuously created and filled – may be
characterized by gaps that are less spatially clustered than those on
nutrient-depleted soils –where gaps formmuch less frequently and
take longer to close (Jucker et al., 2018b). Similarly, disturbances
such as logging may blur underlying spatial patterns as a result of
the selective removal of canopy trees.

Another feature of canopy gaps which is not captured byGSFDs
is their geometry (Halley et al., 2004). Again, while efforts have
beenmade to developmethods to accuratelymeasure the shape and
complexity of gaps from remote sensing (Seidel et al., 2015), we
know little about if and how gap geometry varies along environ-
mental gradients or in relation to disturbance. In one of the few
studies of its kind, Malhi & Román-Cuesta (2008) used very high-
resolution satellite imagery to show that lacunarity – a measure of
the ‘gappiness’ of a geometric pattern – differs among canopies of
Amazonian terra firme and swamp forests. More recently, Staver
et al. (2019) used ALS data to explore spatial patterning of tree
clusters in African savannas. They found that the fractal dimension
of vegetation clusters increased progressively along a rainfall
gradient, whereas other patterns of vegetation structure such as
cluster size frequency distributions remained unchanged. A similar
approach could be applied to canopy gaps, providing a way to
determine what factors constrain the complexity of their shape (e.g.
mode of tree death, such as drought, blowdown, lightning or
logging) and test whether these attributes can act as early warning
signals of regime shifts (Kéfi et al., 2007; Staver et al., 2019).

Finally, growing access to repeat ALS surveys of the same
location through time provide an opportunity to study gap
dynamics in action, mapping when and where new gaps form, and
how quickly they close (Silva et al., 2019; Silvério et al., 2019;
Cushman et al., 2021). Using repeat ALS from five sites in the
Amazon, Dalagnol et al. (2021) showed that gap dynamics are
closely correlated to rates of tree mortality derived from plot census
data, reflecting broadscale gradients in forest dynamics across the
region. Beyond ALS, high-resolution imagery from other remote
sensing platforms such as drones and satellites can also be used to
track gaps through time, resulting in much richer time-series of
canopy dynamics (Dalagnol et al., 2019; Cushman et al., 2021).
For instance, Araujo et al. (2021) collectedmonthly drone imagery
over 5 years at Barro Colorado Island in Panama and found that
treefall events mostly occurred during periods of extreme rainfall
accompanied by high winds and lightning – resulting in gap
dynamics that are highly spatially and temporally clustered (Fisher
et al., 2008; Negrón-Juárez et al., 2010). As our remote sensing

toolbox continues to expand, so too will our ability to detect the
fingerprint of different disturbance agents on the structure of forests
(Milodowski et al., 2021; Nunes et al., 2021). Just as importantly,
these tools will also allow us to monitor how forests recover from
disturbance and benchmark the effectiveness of different restora-
tion interventions, such as tree planting (Philipson et al., 2020).

IV. Understanding canopy gaps from first principles
using individual-based models

Up to this point I have focused on how ALS and other remote
sensing data allow us – for the first time – to fully capture the size
structure and spatial organization of forest canopy gaps. However,
despite the central role that these technologies have to play in
advancing canopy science, they can only take us so far when it
comes to linking observed patterns to the processes that generate
them. One way to overcome this limitation is using process-based
models to simulate what canopy gapsmight look like under a range
of different scenarios about how individual trees grow, die and
compete for space. This is precisely the approach used in early
efforts to explore whether tropical forests behave like multifractals,
a common feature in nature. For example, using a cellular
automaton model known as ‘Forest Game’, which simulates the
birth, growth and death of trees in a 2D lattice, Solé & Manrubia
(1995) were able to successfully replicate observed GSFDs in a
Panamanian rainforest.

Since then, substantial progress has been made in developing
individual-based models that faithfully replicate key attributes of
forest size structure, such as stem diameter distributions and crown
packing (Purves et al., 2008; Taubert et al., 2015; Maréchaux &
Chave, 2017). One of the main features of these models is that they
simulate how individual trees occupy space in three dimensions.
This means they can be used to generate virtual canopy height
models that can be directly compared to those derived from real-
world ALS data (Knapp et al., 2018; Fischer et al., 2019). For
instance, Fischer et al. (2020) recently developed ‘Canopy Con-
structor’, a forest simulator which generates ALS-like canopy
height models by iteratively placing tree crowns in 3D space
following a set of flexible allometric and crown packing rules. Using
this approach, Canopy Constructor can accurately replicate the
number, size and spatial arrangement of canopy gaps observed from
ALS in structurally complex tropical rainforests (Fig. 1c,d).

This makes tools like this ideal for identifying which processes
are most important for determining the number, size and spatial
arrangement of gaps in a forest. For example, they could be used to
simulate how altering the size distribution, demography, allometry,
crown plasticity and geometry of individual trees influences
emergent properties of the canopy like GSFDs. By then comparing
simulatedGSFDs to those observed fromALS, we could determine
which combination of processes are key to replicating real-world
patterns. Similarly, we could use this approach to simulate how
GSFDs would be affected by different modes and frequencies of
disturbance (e.g. logging, windthrows, fire), as well as generate
testable hypotheses about how GSFDs might vary along environ-
mental gradients. Finally, this framework would allow us to test
whether GSFDs can be reconciled with existing theories of forest
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size structure and dynamics.Metabolic scaling theory, for instance,
makes explicit predictions about tree allometry, tree size distribu-
tions and crown spacing (Enquist et al., 2009). However, whether
this is consistent with observed GSFDs remains to be tested.

V. Conclusions

Despite decades of research on gap dynamics and recent advances in
our ability to study these processes at scale, we are still no closer to
deciphering the fingerprint they leave on the 3D structure of forests.
As I have discussed here, solving this challenge will require us to
borrow ideas, data and methods from a diverse range of fields,
including forest ecology, plant demography, remote sensing and
computational biology. Specifically, I envisage a two-pronged
approach. First, we need to compile ALS data from representative
forested landscapes worldwide to determine once and for all how
canopy gap size and spatial structure are shaped by environmental
constraints and disturbance regimes. Second, in order to link
pattern to process, we need to utilize data from global forest plot
networks and individual-based models to reveal how emergent
properties of forest canopies such asGSFDs emerge frombasic rules
about how trees grow, die and compete for space. In doing so we
have an opportunity to not only solve a long-standing riddle in
ecology, but also shed new light on the processes that shape the
structure and function of the world’s forests.
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Maréchaux I, Chave J. 2017. An individual-based forest model to jointly simulate

carbon and tree diversity in Amazonia: description and applications. Ecological
Monographs 87: 632–664.

New Phytologist (2022) 233: 612–617
www.newphytologist.com

� 2021 The Author

New Phytologist� 2021 New Phytologist Foundation

Review Tansley insight
New
Phytologist616

https://orcid.org/0000-0002-0751-6312
https://orcid.org/0000-0002-0751-6312
https://orcid.org/0000-0002-0751-6312
https://doi.org/10.5194/bg-2021-102
https://doi.org/10.15146/5xcp-0d46
https://doi.org/10.15146/5xcp-0d46


Meyer V, Saatchi S, Clark DB, Keller M, Vincent G, Ferraz A, Espı́rito-Santo F,

d’Oliveira MVN, Kaki D, Chave J. 2018. Canopy area of large trees explains

aboveground biomass variations across neotropical forest landscapes.

Biogeosciences 15: 3377–3390.
MilodowskiDT,CoomesDA,SwinfieldT, JuckerT,RiuttaT,MalhiY, SvátekM,
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