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Abstract 
Genome-wide association studies (GWAS) studies have successfully identified thousands of 
genetic variants reliably associated with human traits. Albeit restricted to certain variant 
frequencies, this has led to an improvement in our understanding of the genetic architecture 
of complex traits and diseases. The availability of large genomic biobanks such as the UK 
Biobank (UKBB) study have brought substantial analytical power to association studies.  
The dramatic expansion of GWAS sample sizes improves power of estimation of effect 
sizes, genomic prediction and the potential for applied analyses such as those relating to 
causal inference. However, in the same moment, the availability of substantial analytical 
power and enabling analytical capacity can increase the complications and inferential 
complexity associated with GWAS and other applied analyses. In this review, we discuss the 
revolutionary impact that UKBB has had in the GWAS era and some of the opportunities and 
challenges of using data from this world-leading study. 
 
Introduction 
Genetic architecture is defined by the genetic variants influencing a trait or disease outcome 
and is dependent characterised by the number of genetic variants, their effect size, their 
allele frequency and the possible interactions with each other and environmental factors1. 
Uncovering the genetic architecture of a complex traits or disease is central to understanding 
what underpins observed trait variation and potentially helps further work aimed at dissecting 
this. Various techniques are useful in the task of assessing genetic architecture and in the 
last decade, technological advances have enabled measurement of genetic variation at 
hundreds of thousands of markers across the human genome. Genome-wide association 
studies (GWAS) studies have exploited these developments and successfully identified 
thousands of genetic variants reliably associated with human traits. Albeit restricted to 
certain variant frequencies, this has led to an improvement in our understanding of the 
genetic architecture of complex traits and diseases2. Early successful applications of GWAS 
have primed the rapid growth and increasing availability of large genomic biobanks such as 
the UK Biobank (UKBB) study3,4, which have brought substantial analytical power to 
association studies. Here we discuss the revolutionary impact that UKBB has had in the 
GWAS era and some of the opportunities and challenges of using data from this world-
leading study.  
 
The revolutionary impact of UKBB in the GWAS world 
UKBB is a prospective cohort study that recruited half a million individuals (40 to 69 years of 
age) across the United Kingdom between 2006 and 20103. The study is a large-scale 
biomedical resource integrating genome-wide genetic data with deep phenotype data- 
including data from lifestyle questionnaires, physical measures, biomarkers in blood and 
urine, accelerometry and multimodal imaging. The unprecedented size of the UKBB cohort, 
together with the extensive phenotyping and genome-wide genotype data (supplemented 
with high-density imputation) has enhanced power for genetic discovery and enabled well-
powered GWAS of hundreds of quantitative traits, including anthropometric traits5, blood 
traits6, cognitive traits7 and numerous blood and urine biomarkers8 to be conducted. Further 
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to this enormous collection of data, the access infrastructure provided with the UKBB study 
has led to UKBB being one of the most enabling human genetics bioresources ever 
generated. To-date, 514 peer-reviewed GWAS publications have been published from this 
one resource and it is often the cases that UKBB is the primary data provider in analyses 
undertaken. 
 
In the context of the capacity and coverage of GWAS arrays (and imputation), sample size is 
one of a series of key determinants in the deployment of GWAS for the discovery of genetic 
loci associated with complex traits2. This has been evident since the first application of a-
hypothetical approaches to gene variant analysis9–11 and – dependent on the composition of 
heritable contributions – the discovery of new loci tends has increased in an almost linear 
fashion with increasing sample size12. The availability of genome-wide genotype data 
collected from all participants, together with the vast amount of phenotype data available in 
UKBB has generated a singular resource of considerable size that provides opportunities for 
the discovery of new genetic associations and the genetic basis of complex traits and 
diseases4. The gain in power in the UKBB has been exemplified in the most recent height 
and BMI GWAS meta-analysis5 which combined results from a single large GWAS 
conducted using data from UKBB, with previously published GWAS of height and BMI 
conducted by the GIANT study. With the increased sample size, the number of genomic loci 
associated with height and BMI was increased compared to the previously published height 
and BMI GWAS with improved accuracy of genetic predictors from SNPs at these loci5. The 
near independent SNPs explained approximately 24.6% and 6% of the variance in height 
and BMI, respectively, representing approximately a 1.9 and a 3.2-fold improvement in 
comparison with previous BMI GWAS meta-analysis without including UKBB5. 
 
The combination of large scale and extensive phenotypic and genotypic data from UKBB 
enables the rigorous investigation of the genetic basis of diseases, not just through sample 
size alone, but also through phenotypic precision13. Although expanding collections of 
genotype and phenotype data from non-UKBB studies have provided a boost in statistical 
power, research has been hindered by measurement differences, inaccurate phenotypic 
measurements and genuine disease heterogeneity. A challenge to GWAS studies is the 
ability to combine genetic data with phenotypic precision and hence to both enhance 
analytical power technically and to tighten the focus of downstream interpretation of findings 
around pertinent association signals14,15. In UKBB, the presence of a combination of deep 
phenotypic data collection and scale has generated both biological insight and extensive 
records of genotype/phenotype association. A good example of this can be found in the use 
of detailed brain imaging data to examine the genetic architecture of brain structure and wich 
undertook GWAS of >3000 functional and structural brain imaging phenotypes in >8000 
UKBB participants. This work was not only able to show that many of these phenotypes are 
likely to be heritable, but that they lie in phenotypic clusters showing reliable genetic 
associations16. This has been further exemplified by Aragam et al17 which used data from 
UKBB to perform a GWAS for heart failure and found that phenotypic refinement of all-cause 
heart failure facilitates the discovery of novel genetic signals that reflect distinct etiologic 
heart failure subtypes. 
 
Overlapping phenotypes and harnessing the phenome 
Most GWAS studies only analyse a single trait; however, these do not exploit information of 
summary statistics from GWAS of other correlated traits. Joint association analysis of 
multiple traits in GWAS studies offers several advantages compared to single trait analyses 
and have been a well-used approach in the undertaking of GWAS in UKBB given the nature 
of the resource. Firstly, multivariate analysis can boost statistical power as it takes into 
account cross-trait covariance of genetically correlated traits which is often ignored in 
univariate analyses18,19. Secondly, as multivariate methods tests associations with a set of 
traits using a single test, the multiple testing burden is reduced due to the reduced number of 
tests performed18,20. Lastly, where a single genetic variant is highly pleiotropic and 



associated with multiple traits, multivariate GWAS analysis is more consistent with the 
biology of the traits compared to univariate analyses21. Several multi-trait techniques have 
been developed22–27 to conduct joint analysis of multiple traits. For example, Multi-trait 
analysis of GWAS (MTAG) has been developed which allows the joint analysis of multiple 
traits in population-based GWAS, therefore increasing statistical power to detect genetic 
associations for each analysed trait. AS good example of this type of analysis, using MTAG, 
a recent study conducted a joint GWAS analysis of four hearing related traits from UKBB 
and identified 31 new risk loci for hearing difficulty28.   
 
Applied analyses enabled by a GWAS backbone 
 
One of the most intuitive applied analyses built on the success of well undertaken and 
powered GWAS studies is the examination of polygenic risk score (PRS) analysis. A 
genomewide PRS integrates all available common variants associated with the trait from the 
largest or most informative GWAS into a single quantitative measure of inherited 
susceptibility. Several studies have limited success in obtaining meaningful predictive 
power29,30. However, previous effects to create an effective polygenic score were limited by 
three challenges31: 1) small sample size of GWAS study, which affected the precision of the 
estimated impact of individual variants on trait; 2) limited computational methods for creating 
the PRSs; and 3) lack of large datasets to validate and test PRS. To overcome some of 
these challenges, a recent study by Khera et al32 used data from UKBB as a validation 
dataset to test the ability of the BMI PRS to predict measured BMI. The study demonstrated 
the ability to use PRS to identify individuals at greatest risk of obesity with over 40% of 
individuals achieving a PRS score in the top decile found to be obese compared to 10% of 
individual in the bottom decile32.  
 
 
Mendelian randomization (MR) is an analytic technique that uses genetic variants as 
instruments to estimate the causal effect of an exposure on an outcome of interest33. By 
exploiting the properties of genetic data, MR analyses provide an alternative source of 
evidence when estimating causal effects and attempting to minimise limitations through 
confounding, bias and reverse causation. MR analyses can be undertaken using individual 
studies with exposures, outcomes and genetic data, but also using the results from existing 
GWAS studies34,35. MR-base36 is an established and freely accessible, online platform, which 
combines a database of genome-wide association study results. This together with an 
interface for performing MR and sensitivity analyses, has simplified the implementation of 
MR studies and enabled users to explore millions of potentially causal associations. The 
expansion of large-scale GWAS using data from UKBB rapidly expanded the collection of 
genetic variants reliably associated with human characteristics and health conditions.  For 
example, since the release of genome-wide association data, GWAS has been conducted 
for thousands of phenotypes by the Neale lab37. These data has been incorporated in the 
IEU OpenGWAS database38, an open source, open access, scalable and high-performance 
cloud-based data infrastructure that imports and publishes complete GWAS summary 
datasets and meta-data for the scientific community. Taken together, this open GWAS data 
resource and the development of results based MR application and newly available 
analytical tools has enabled causal inference analysis38. For example, a recent MR study 
found evidence that fat mass exerted detrimental effects on most cardiometabolic traits by 
using the IEU OpenGWAS database38 to obtain genetic instruments for body composition 
measures from GWAS conducted in UK Biobank39.  
 
A different, but similarly applied approach using GWAS analysis and results, is that of the 
examination of shared genetic architecture or genetic correlation. Genetic correlation is a 
quantitative parameter which quantifies the shared heritable contribution to two traits. 
Identifying genetic correlations between complex traits and diseases can provide useful 
insights into disease etiology, can help identify potential causal relationships40 and increase 



understanding as to shared biological contributions to apparently independent traits. 
Methodological approaches that estimate SNP-based heritability and genetic correlations 
from genome-wide association studies, such as LD score regression40 (LDSR) have proven 
to be powerful tools to provide a robust estimate of the genetic correlations between different 
traits and diseases and for helping to dissect the genetic architecture of common traits and 
diseases. LDSR relies on GWAS summary statistics and is not biased by sample overlap 
and thus is invaluable in increasing our knowledge of the genetic contribution to complex 
traits. A major challenge preventing accurate estimation of genetic correlation is that GWAS 
with small effective sample sizes have insufficient power for LSDR to detect polygenic 
effects, leading to near-zero estimates of heritability. Recently, data from UKBB has been 
used to accurately estimate the SNP-heritability of 22 complex traits and disease traits41 and 
the genetic correlation between various traits and diseases42. The LDSR analysis of more 
than 2000 phenotypes in UKBB found substantial variance explained by common SNPs for a 
broad range of human traits and diseases.  
 
Linkage – the availability of EHR data and records 
Given the prospective nature of the UKBB study, a key strength of the cohort is the collection 
of data, biosamples and exposures at baseline which can be linked to electronic health 
records (EHR) for prospective followup. These resources include death and cancer 
registries, primary and secondary care records, and there is potential to follow-up the health 
of all participants over-time in the absence of attrition. This linkage to health outcome data 
provides opportunities to conduct research on common diseases such as ischemic heart 
disease and various cancers and to further expand the portfolio of GWAS studies embedded 
in the UKBB resource. This powerful design also enables conditions that are difficult to study 
retrospectively including dementia and rapidly fatal conditions such as pancreatic or lung 
cancer. For example, a recent pan-cancer GWAS provided insights into complex genetic 
architecture of cross-cancer susceptibility by using linked cancer registry data in UKBB and 
the Kaiser Permanente Genetic Epidemiology Research on Adult Health and Aging cohort43. 
 
Research practice, sharing and the “democratisation of data” 
UKBB is an open-access resource that encourages researchers from around the world- 
including those from the academia and industry- to access the data and biological samples 
for any health-related research that is in the public interest (www.ukbiobank.ac.uk). The 
open-access nature of the UKBB study promotes innovative science by enabling 
international scientists to apply for the data quickly and easily through an application process 
to benefit from this vast resource44. Recently, to accommodate the vast scale of the UKBB 
resource, the UKBB has launched a unique and innovative Research Analysis Platform 
(RAP), a cloud-based system that allows streamlined access to approved researchers from 
anywhere in the world and to enable data to be analysed easily and cost-effectively as the 
resource grows in complexity and scale. The open access nature of the data has also 
encouraged collaborations with large international consortia, resulting in the rapid 
advancements in dissecting the genetic architecture of complex traits which would not have 
been possible with under-powered studies.  
 
The reality of GWAS – power, polygenicity, sampling frame and interpretation 
UKBB is an outstanding example of the value that can be achieved from large sample size 
combined with genetics, extensive and deep phenotyping and linkage to health records. The 
gain in power in the UKBB cohort is clear and has led to an increase in loci discovery in 
GWAS studies, in particular for loci that are less common and/or with smaller effects2. For 
example, the first BMI GWAS (n~5000) identified only genetic variants in the FTO locus with 
relatively large effects on BMI (0.35 kg/m2 per allele)45,46. In contrast, the most recent GWAS 
for BMI which used data from UKBB and the GIANT consortium (n~800,000) identified more 
than 750 loci, with much smaller effects on BMI (0.04kg/m2 per allele)5. Notably, UKBB 
represented 64.3% of this overall sample size. In this type of work, it is clear that the 
unprecedented size of the UKBB have provided immense opportunities; however, also can 



generate analytical challenges. To focus on two of these, we will examine the potential for 
population stratification/sub-structure to be important in the presence of specific GWAS 
studies undertaken at scale and on the potential for detectable phenotypic overlap to 
complicate downstream interpretation and analysis.  
 
Along with the potential to underrepresent specific groups and reduce generalisability47, self-
selection of participants contributing to the UKBB cohort creates structure within genetic data 
which has the potential to bias associations and complicate their interpretation. Although 
UKBB was designed to be representative of the general population of the United Kingdom, 
the sampling population is volunteer-based and is not representative of the UK population48 
by demographic characteristics. Ultimately, UKBB is a highly-selected sample of the UK 
population (having a response rate of 5.5%)49. This has been illustrated in work by Haworth 
et al50 which showed that single genetic variants and genetic scores composed of multiple 
variants are associated with birth location within UKBB and that geographic structure in 
genotype data cannot be accounted for using routine adjustment for study centre and 
genetic principal components. The study also demonstrated that major health outcomes 
appear geographically structured and that coincident structure in health outcome and 
genotype data can yield biased associations.  
 
As described above, MR is an analytic technique that has been performed to estimate 
causal relationship between risk factors and exposures and here serves as a good 
illustration of the possible complications of analytical power and structure. Population 
stratification can essentially be thought of as the reintroduction of confounding of the genetic 
instrument (used to proxy the exposure) and disease outcome; therefore violating the MR 
assumption that there is no confounding between the genetic instrument and the outcome. 
Therefore, a GWAS that do not fully account for any ancestral population structure can lead 
to population stratification51 and estimates from MR analyses based on the results of that 
GWAS could potentially be biased by the coincidence of association between genotype, 
population sub-structure and health. The key question, therefore, is how pervasive this type 
of structure in data is present and whether it can be demonstrated (as in Haworth et al50)? 
The recent GWAS of Coronavirus Disease 2019 (COVID-19) outcomes – substantively 
aided by UKBB data – is a real-time exemplar of just such potential complication. COVID-19 
is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 
(SARS-CoV-2) which has had a profound impact on the health and lives of people 
worldwide52. UKBB has been uniquely positioned to contribute to research into the COVID-
19 pandemic. For example, the entire UKBB cohort (around 500,000 participants) had been 
invited to receive a self-test kit to find out if they have presence of the SARS-CoV-2 
antibodies due to past infection (rather than vaccination). UKBB is one of the largest 
contributors to an international consortium, The Covid-19 Host Genetics Initiative53 (HGI; 
http://www.covid19hg.org), that has brought together investigators from around the world to 
investigate the genetic determinants of COVID-19 susceptibility, as well as severity and 
outcome. A GWAS study conducted by the HGI initiative have identified at least 15 genome-
wide significant loci associated with increased susceptibility and severity of COVID-19, 
including variants in/near several immune genes and the ABO locus determining ABO blood 
groups. Many of these loci overlap with previously reported associations with lung-related 
phenotypes or autoimmune/inflammatory diseases; although some loci have no obvious 
candidate gene54. Such discoveries not only contribute to global knowledge of the biology of 
SARS-CoV-2 infection but provide the genetic evidence for drug targets and drug 
repurposing and help in the development of genetically informed risk assessment of COVID-
19 susceptibility. The publicly available GWAS results for COVID-19 susceptibility and 
severity has also enabled Mendelian randomization (MR) studies to be conducted to 
evaluate the causal effect of various exposures on COVID-19 outcomes. Indeed, as of 
December 2021, there were 60 Mendelian randomization studies that have been conducted 
(Table 1).  
 



In an effort to shed light on potential complexities involved in the application of new GWAS 
results in this way, we evaluated the implications of population structure for GWAS of COVID 
-19 susceptibility and severity in UKBB. We did this by considering the association between 
the polygenic scores for COVID-19 susceptibility and severity with birth location 
(Supplementary Methods). For COVID-19 susceptibility, a polygenic risk score representing 
the aggregate estimated common genetic contributions to these outcomes was associated 
with birth location in the model that adjusting for genotyping array and study centre (Figure 
1). These associations were attenuated in models incorporating adjustment for 40 genetic 
principal components which were able to capture structure in the genetic data available, 
however this was not always the case for all COVID-19 outcomes. In contrast, for COVID-19 
severity (case-only analysis), associations between polygenic risk and location were actually 
more pronounced in models incorporating adjustment for 40 genetic principal components, 
potentially reflecting the potentially biasing effects of association analysis within stratified 
samples; in this case COVID-19 only participants. 
 
Outside of the new challenge presented by SARS-CoV-2 and COVID-19, a second exemplar 
lies in the notion that one cannot assume an increased ability to deconstruct networks of 
complex biological association with the availability of big omics and big GWAS; indeed, 
whilst there will be an ability to discover genetic association signals with good analytical 
power, redundancy and complexity can interrupt direct interpretation. A good example of this 
can be found in the analysis of high throughput metabolomic data. Metabolomic profiles are 
the result of genetic and non-genetic factors and provide a read-out of biological processes 
and can functionally link genetic loci to disease risk factors and disease outcomes55–57. 
Metabolomics technologies based on mass spectrometry (MS) and nuclear magnetic 
resonance (NMR) have enabled the systematic quantification of hundreds of metabolites 
(the ‘metabolome’) from a single biological sample. The analysis of metabolites has enabled 
a more thorough exploration of an individual’s metabolic status, offering new opportunities to 
improve our understanding of the molecular mechanisms underlying human traits and 
diseases58. Over the last decade, several metabolite GWASs have been performed59–68 to 
characterise the genetic architecture of blood metabolite variation and provided an 
estimation of the heritability of multiple metabolites and provided insights into the biological 
and clinical relevance of these genetic associations64,69. Recently, metabolic biomarker data 
quantified using NMR in approximately 121,000 participants have been made available from 
UKBB70,71. The availability of this large-scale omics measurement combined with genome-
wide data has maximised the power to discover genetic loci for a given metabolite and to 
provide a better understanding of the genetic architecture of blood metabolites.  
 
However, the genetic architecture of blood metabolites is complicated by the high correlation 
structure and shared biology of the metabolites which causes complexities when analysing 
the causal association between individual metabolites and disease outcomes using MR 
analyses. This was exemplified in a recent study which demonstrated that genetic 
instruments associated with metabolites were likely to be highly pleiotropic, with few SNPs 
found to be associated with specific metabolites72. Furthermore, there was high degree of 
pleiotropy for metabolite-associated SNPs with modifiable risk factors and other disease 
endpoints. As most metabolites have only a small number of instruments, statistical methods 
aiming to correct for these biases (e.g MR-Egger73 and MR-PRESSO74) is not possible, nor 
is the use of techniques designed to evaluate the effect of multiple correlated exposures (e.g 
multivariable MR75,76).  
 
To explore this type of complexity further, we undertook a simple analysis here seeking to 
demonstrate the number of metabolomic features associated with genetic variants at a 
predefined and stringent threshold in UKBB (supplementary methods). Using recently 
available NMR data within UKBB and by undertaking a basic GWAS for circulating 
metabolites, we found that few of the plentiful collection of potential genetic associations 
which would satisfy conditions to be used as “instruments” within MR analyses (i.e, i) genetic 



variant is associated with the exposure; ii) no association between genetic variant and 
outcome; and iii) genetic variant is independent of any measured or unmeasured 
confounding factors), few were associated with a specific metabolite. In contrast, we 
observed that numerous loci showed high level of multi-metabolite association with a median 
of 34 metabolites associated with each loci (Figure 2). The profound overlapping of 
association signals across metabolites is clearly a complicating factor and one which would 
potentially violate assumptions made in analyses such as MR. That is not to say that these 
associations are neither uninformative nor are these issues insurmountable, rather that they 
are clear markers of the potential issues that need to be considered when power and 
precision are able to generate strong association profiles. For studies investigating whether 
metabolites could be biological pathways relevant to disease onset, a potential way to solve 
this problem is to conduct profile comparison analysis to examine the overlap between the 
metabolomic profile of prospective disease risk with that of the risk factor of the disease (e.g 
BMI) to identify biological pathways relevant to disease onset72.  
 
Discussion 
UKBB is a shining example of the impact of large, open-access population biobanks in 
increasing the power to understand the genetic architecture of common traits and diseases.  
Amongst a wider set of potential benefits not all considered here, the dramatic expansion of 
GWAS sample sizes improves power of estimation of effect sizes, genomic prediction and 
the potential for applied analyses such as those relating to causal inference. However, in the 
same moment, the availability of substantial analytical power and enabling analytical 
capacity can increase the complications and inferential complexity associated with any one 
specific analysis. For example – as described here and previous studies50,77 – population 
structure exists within the UKBB and may have the potential to bias association results or 
their interpretation. The presence of population structure is challenging, requiring methods 
that are specific to the analytical context and trait. If not properly corrected for, the sampling 
structure can generate properties in data that can lead to biased inference. Caution is 
therefore needed in the interpretation of GWAS results using data from UKBB, particularly 
for loci which demonstrates strong residual associations with birth location, even after 
adjustment for population stratification77.  
 
Despite this, and other limitations mentioned here or elsewhere, UKBB remains an 
extraordinary resource. Measured by data, output, enabling capacity or likely future 
contribution, the resource has undeniably shaped the modern era of GWAS. Most of the 
problems noted in the analysis of results from UKBB are, and likely will be, the result of mis-
interpretation of results generated from the UKBB sampling frame – not from the sampling 
frame itself. Used for appropriate analyses and with results interpreted in the context of the 
specific nature of the sample that is UKBB, there is no doubt that UKBB will continue to be a 
shining light in the field of human GWAS.  
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Supplementary methods 
 
Implications of population structure for GWAS of Covid-19 susceptibility and severity in the 
UK Biobank 
The UK Biobank study assessment centre sites targeted densely populated areas of 
England, Scotland and Wales, where a large eligible population could attend in-person 
assessment with a journey of less than 10 miles3. Participants gave informed consent, and 
the UK Biobank was approved by the North West Multi-centre Research Ethics Committee. 
This research was conducted using the UK Biobank Resource application 15825, and 
complied with all relevant ethical regulations.  
 
The assessment centre at which a participant consented was assigned a numerical code 
(field 54 in the UK Biobank data). In analyses adjusted for assessment centre, these codes 
were treated as factor variables. Participants who were born in the UK were asked to name 
their place of birth during a verbal interview at study assessment centres. These answers 
were used to derive approximate North and East co-ordinates (rounded values, recorded on 
a metre grid scale from an origin South-West of the UK, fields 129 and 130 in the UK 
Biobank data). Values less than zero were coded as missing for both variables.  
 
We used the UK Biobank 500K (July 2017) genotype release, for which pre-imputation 
quality control, phasing and imputation are described elsewhere4. Following imputation, we 
removed variants that were not present within the haplotype reference consortium (HRC) 
imputation panel and applied a graded filtering on imputation quality. Rarer variants were 
required to have a higher imputation INFO score (Info>0.3 for minor allele frequency 
(MAF) >3%; Info>0.6 for MAF 1-3%; Info>0.8 for MAF 0.5-1% and Info>0.9 for MAF 0.1-
0.5%). 378 individuals were removed as a result of mismatches between genetic sex and 
reported sex and 352 individuals with a putative sex chromosome aneuploidy. We performed 
analysis within individuals who self-reported as “British” and had similar ancestral 
background from genetic Principal components (PCs) (409,703). We applied an exclusion 
list containing 79,448 individuals, whilst preferentially removing individuals related to the 
greatest number of other individuals so that no related pairs remained in the final sample 
used for analysis. A comprehensive description of quality control methods has been 
published online78.  
 
Genetic PCs were supplied by UK Biobank (field 22009). These were calculated using a set 
of 407,219 unrelated, high-quality samples and 147,604 high confidence markers after 
pruning for linkage disequilibrium. Participants with missing PCs were excluded from 
analysis.   
 



Independent genetic variants (p<5e-08) associated with COVID-19 susceptibility and severity 
were taken from the latest Covid-19 GWAS54 (release 6). Effect allele dosage were extracted 
from these variants from the filtered UK Biobank genotype data. Effect allele dosage was 
weighted by reported genetic effect (beta) and then summarised across all the contributing 
variants to create per-individual PRS. 
 
The relationship between Covid-19 PRS and geographical parameters were modelled using 
the ‘mgcv’ package79 (version 1.8) in R (version 4.0.4)80.  Traits were modelled against a 
spline function for either birth northings or birth eastings with minimum adjustment for 
genotyping array, in the form PRS ~ s(location) + array. Fully adjusted models included 
factors variables for study centre and 40 genetic PCs. Approximate statistical significance for 
non-linear terms were taken from the model summary, which estimates a suitable number of 
degrees of freedom from cross validation.  
 
Pleiotropy of metabolite instruments 
We obtained the GWAS summary data for NMR metabolite GWAS (under the batch name 
‘met-d’ conducted using data from UK Biobank via the OpenGWAS database38. Briefly, 
metabolites were measured in a random subset of non-fasting baseline plasma samples 
(aliquot 3) from 118,466 UK Biobank participants and 1298 repeat-visit samples using high-
throughput MR spectroscopy (Nightingale Health Plc; biomarker quantification version 2020). 
This platform provides simultaneous quantification of 249 metabolic measures including 
routine lipids, lipoprotein subclass profiling with lipid concentrations within 14 subclasses, 
fatty acid composition, and various low-molecular weight metabolites such as amino acids, 
ketone bodies, and glycolysis-related metabolites. More information: 
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=220. Technical details and 
epidemiological applications of Nightingale platform have been previously reviewed69,81.  
Metabolites were transformed using rank-based inverse normal transformation (INT) prior to 
analyses. As the GWAS analysis was performed on pre-released dataset, there were 
addition QC filters that were applied that are automatically performed for all general release 
datasets. In particular, observations where biomarkers were tagged “Technical_error” were 
removed. Further details on the phenotype preparation can be found on the UK Biobank 
showcase website (http://biobank/ndph.ox.ac.uk/showcase/label.cgi?id=220).  
 
Genotype data were restricted to 464,708 individuals who clustered genetically within a 
European population group. After filtering for imputation quality and allele frequency, a total 
of 11,511,739 variants were retained. NMR metabolite GWAS was performed using Bolt-
LMM in which variants were included in the random effects component. Association 
analyses were adjusted by sex, array and fasting time. Genetic instruments associated with 
each metabolite (p<5e-08) were identified and clumped (r2<0.001) using the TwoSample MR 
package36. Pleiotropy was assessed by looking up the association between the genetic 
instruments for each candidate metabolite (i.e. the potential ‘instruments’) with all 
metabolites.  
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