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Stochastic Jumping Robots for Large-Scale Environmental
Sensing

Julian Hird, Andrew T. Conn,* and Sabine Hauert*

1. Introduction

Robots operating in large numbers have been proposed as a
solution to perform large-scale environmental monitoring.[1]

Such robots can be scaled in number to fit area coverage needs,
and redundancy in these systems favors robust deployment.[2]

However, very few large multirobot systems have been used
in reality outside laboratories due to the challenges navigating
uneven terrain or producing sufficient robot numbers for mean-
ingful area coverage in a cost-effective way. We propose to over-
come both barriers by making single-use stochastic jumpers that
are easy to mass produce, cheap, and effective. Our jumpers
operate using embodied randomness, encoding stochastic

jumping behavior in the design of the body
of the jumper (see Figure 1). Jumps are ini-
tiated upon releasing preloaded elastic
energy using mechanical components
(latches) that are activated by an environ-
mental stimulus. These latches control
the sequence and timings of the jumps.
Sensing capability is directly painted on
the robot, and the lack of electronics makes
it possible that in the future the robot can
be made fully biodegradable. Large num-
bers of jumpers could provide in situ sen-
sory information of an area for common
tasks within agriculture or environmental
remediation industries. As a first step
toward real-world applications, this work
focuses on a deployment and sensing sce-

nario over a target area.
Robots operating in large numbers are often individually sim-

pler than those used in systems consisting of a few robots or a
single robot. The simplicity of the robots in these systems is often
compensated by their numbers and the design of strategies gov-
erning their deployment. Algorithms using artificial forces,[3]

minimal or noisy sensors,[4–6] and random walks[7–9] have all
been proposed as methods of dispersing robots over an area.
Large-scale indoor deployments up to 3000 ft2 have been reported
in the study by McLurkin et al.[10] using the iSwarm
system. Outdoor robot deployments have been demonstrated
at a large scale using drones[11] or surface water vehicles.[12]

However, large outdoor land-based robotic deployments have
not yet been realized.

Jumping robots have been explored in the past as a way to nav-
igate challenging outdoor terrain, especially for small robots.[13]

Examples include miniature robots weighing under 10 g that
exploit flea-inspired elastic release mechanisms driven by shape
memory alloys[14] and DC motors,[15] although many of these
platforms have not been designed for use in large numbers.
This changes design priorities toward low individual robot cost,
simplicity, and potential for mass fabrication. Previous jumping
robots for environmental monitoring[16–18] all use electrical
power and control components in their designs limiting their
potential biodegradability.[19,20] The dynamic simulations shown
in the study by Dubowsky et al.[17] demonstrated how jump
height and robot size had a strong influence on their robot's abil-
ity to traverse an obstructed tunnel without becoming entrapped.
Meanwhile, Mintchev et al.[18] performed physical trials of their
robot, demonstrating the robot's ability to overcome obstacles
7 cm high and rapidly explore a flat 10m by 10m area by exploit-
ing dynamic instabilities in its locomotion mechanism to per-
form a random walk. While Mintchev[18] does explore the total
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area covered by the system based on their robot's trajectories,
neither work examines the coverage capabilities of a large num-
ber of jumping robots operating simultaneously.

The principles of morphological computation represent
an emerging view of intelligence in robotics, where mecha-
nically preprogrammed control schemes and responses to envi-
ronmental stimuli can be encoded in the robot's body.[21,22]

These principles are extended in this work to embody random-
ness within a robot's structure, so that the control of locomotion
is encoded without predefined or deterministic path planning.
Embodied intelligence can also include sensing modalities, such
as using observations of body dynamics to sense environmental
characteristics[23] and reactive pigmentation for thermally[24] or
chemically[25] responsive robots.

Overall, the work presented here provides the first steps toward
mass production and deployment of large numbers of stochastic
robots, with embodied randomness, for outdoor applications. The
potential for jumping robots to perform area coverage in simula-
tion is demonstrated, and these simulations are used to inform
the design of proof-of-concept single-use jumpers. These proto-
types can be stored in a compact way, assembled quickly with
minimal manipulation, and are then capable of sensing their local
environment via direct contact. The prototype designs also oper-
ate at a low price point (�US $1.39 bulk cost of materials per
robot). While the current design is not biodegradable, the limited
number of materials used in its construction alongside the lack of
toxic electronic elements makes the design well suited to be made
fully biodegradable in the future.

2. Simulation-Based Design

Simulations, programmed in Python, were carried out to evalu-
ate the performance of the system in covering a 10m by 10m
area of interest after being released at the center. In the future,
we imagine that a separate system might be able to produce and
release the stochastic jumpers directly into the environment.

Alternatively, the stochastic jumpers could be released at ground
level or from the air by a human or robotic carrier.

2.1. Stochastic Robot

The ability of the system to cover the area of interest for environ-
mental sensing is encoded in the design of the robot's
body. Control of each robot is therefore determined not by a
programmed microcontroller, as would typically be the case,
but by mechanically programming the robots to execute a specific
number of jumps. By changing the body of the robot, these
jumps could be triggered after a certain time has elapsed or
by environmental factors. These jumps have a noisy distribution
of jump distances and directions due to the robot's interaction
with the environment and open-loop operation.

In the simulation, the robots have nj preloaded elastic jumping
mechanisms which in total store a strain energy of Etot joules.
Each jumping mechanism is assumed identical as previous sim-
ulations showed no difference in the system's performance by
having different energy release strategies when noise is present.
Furthermore, having identical jumping mechanisms lends itself
to mass production.

Figure 1. a) A stochastic jumping robot covered in cantilever beam jumpingmechanisms. b) The system spreading over an area and changing color in the
presence of environmental stimuli. The proposed system releases robots in the center of the area of interest, from which they perform a series of jumps to
spread themselves out.

Figure 2. Finite-state machine used to model each robot's jumping behav-
ior in simulation.
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The robots are modeled as spheres (r¼ 5 cm) in continuous
space. Their velocity is dictated by the finite-state machine shown
in Figure 2. Robots are introduced into the world after the previ-
ous robot has left the starting area, which is located at the origin.
Robots start with a random z rotation (θ) and in theNot Deployed
state. This can be imagined as a person or a robotic system man-
ually placing the robots into the environment.

2.2. Simulation Environment

The robots wait one second in the Waiting state, to model the
delay caused by the release latch reacting to the environment.
After this, robots jump and transition into the Airborne state.
When the robots jump, ballistic physics with air resistance
neglected is used to determine their jumping velocity (Figure 3).

This velocity is calculated from jumping energy and take-off
angle after noise has been applied. As each mechanism is
identical, the ideal jumping energy used in a single jump E is
an even fraction of Etot.

E ¼ Etot

nj
(1)

Noisy jumping energy En is calculated by multiplying E by a
number sampled from the Gaussian distribution N ð1.0, 1=9Þ.
Meanwhile, the noisy take-off angle αn is obtained by sampling
the distribution N ðπ=4, π2=144Þ. The robot's jumping velocity u
during the airborne state can then be calculated using the
following equation.

u ¼

2
64
cosðθÞ cosðαnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2En=m

p
sinðθÞ cosðαnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2En=m

p
sinðαnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2En=m

p � gta

3
75 (2)

where ta is the time the robot has been in the air. In these sim-
ulations, m¼ 50 g and g¼ 9.81m s�2. When the robot lands, its
velocity is set to zero and it enters the Landed state. When land-
ing, the robot's orientation is unpredictable, so in this work the
robot's θ after landing is chosen at random between �π and π. If
the number of jumps the robot has done does is less than nj, then
the robot will return to the Waiting state.

During these movements, robots can collide if the distance
between them is less than the sum of their radii and they are

either both in the air or both on the ground. If collisions are
being considered in the particular simulation, then both robots
involved in the collision are moved into the Immobilized state. In
this state, the robot will not move any further, but is considered
to be laying on the ground, where it can still perform sensing.
This can be considered the worst result of a collision. In reality,
it is likely that one or both of the robots involved in the collision
would continue moving, if they had jumps left to perform.

2.3. Performance Evaluation

To calculate the area covered by the robots, their positions are
recorded over time during the simulation. A 10 by 10 grid of
squares is then used to divide the area of interest into coverable
sections. If any of the robots’ centers lie within a grid square,
then it is classified as being covered for sensing purposes; oth-
erwise, the square is classified as uncovered. Coverage is
then given as the percentage of all grid squares that are covered
(see Figure 4).

2.4. Simulation Results

Here we present the insight from simulations in the design of
area coverage strategies using stochastic jumpers.

Figure 5 shows how releasing up to N robots with Etot ¼ 4.0 J
and nj ¼ 7 covers the 10m by 10m area of interest. As N is

Figure 3. A robot jumping from the origin. Jumping is modeled using pro-
jectile motion. The direction of the jumping velocity u is determined by a
noisy take-off angle αn and the robot's z rotation θ, which can be consid-
ered to be the orientation of the next jumping mechanism. The z compo-
nent of u is a function of jumping time ta which is zero at take-off.

Figure 4. The deployment area modeled as an infinite plane with no
obstacles (apart from other robots). A grid with a 1 m resolution is used
to measure the coverage of the robots over a 10m by 10m area of interest.
Here, 2 out of 100 squares are covered (shown in yellow). The purple lines
show the robots’ trajectories through space from the deployment point at
the origin. Along these lines, the circular markers indicate where the robot
has landed. The starting area at the origin is shown as the orange dotted
circle. This circle has a radius of 5.25 cm.
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increased, the system's total coverage also increases in a
nonlinear fashion.

To design the correct robot for the area of interest, Figure 6
shows how varying the values of nj and Etot affects the system's
final coverage performance for N¼ 500 robots. From
Equation (1), it can be seen that straight lines that pass through
the origin represent different ideal jump lengths. The large red
area demonstrates the large design space that exists in choosing
nj and Etot to achieve a high performance in both total coverage
and coverage time. For example, a deployment of 500 robots
which jump seven times (nj ¼ 7) and have an ideal jump length
of 2.33m (Etot ¼ 4 J) covers 91% the area of interest in 540 s

(shown bottom left in Figure 6). Meanwhile, a deployment of
robots which jump 23 times (nj ¼ 23) but with a smaller ideal
jump length of 1.24m (Etot ¼ 7 J) is also able to cover over
90% of the area in a similar time of 574 s (shown top right in
Figure 6). Across all of these simulations, the average deploy-
ment time was 556 s. The size of the robot will scale with the
number of jumping mechanisms nj and the size of these mech-
anisms. As larger mechanisms are able to store more strain
energy, the size of the robot is also proportional to Etot

nj
. It is there-

fore noteworthy that low values (nj < 5 and Etot< 4.0 J) are able to
cover the area well, leading to the possibility of using very small
robots for the area coverage task.

Introducing collisions between robots, as shown in Figure 7,
demonstrates that inter-robot interference, while damaging at
high values of Etot and nj, still leaves a large design space
(shown in red) where the robot is able to cover more than 75%
of the area. The main cause of this deterioration is due to robots
landing on top of each other, causing clusters of immobilized
robots to form. If these clusters also occur in close proximity to
the deployment zone, robots are prevented from reaching the
outer regions of the area, lowering total coverage. For short jump
lengths, these clusters are more likely to form as robots are less
able to jump over one another. Robots with lower values of nj per-
form better when considering collisions. We hypothesize that this
is due to the lower number of jumps leading to less situations
(mainly landings) where the robot can enter into a collision. A
mild improvement to the system's coverage performance was
found by waiting 60 s between each robot being deployed.
However, this led to a longer average deployment time of 8.49 h.

Insight from these simulations shows that there exists a large
number of combinations of jump numbers and jump lengths that
allow 500 robots to covermore than 80% of the 10m by 10m area,

Figure 5. Coverage against time for different numbers of robots for
Etot ¼ 4.0 J and nj ¼ 7. The solid lines show the mean coverage value over
ten trials, while the whiskers showminimum/maximum values over all trials.

Figure 6. Heatmap of the final grid-based area coverage for different deployments of robots that have different combinations of Etot and nj. The sur-
rounding images show the final robot distribution for particular values of Etot and nj . In these images, the area of interest is outlined in blue, and the yellow
squares show the covered sections of the grid where at least one robot lies. In these simulations, collisions between robots have no effect.
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with a resolution of 1m. The amount of time taken varies
between 556 s and 8.49 h depending on the time between robot
releases. This time would also depend on the period between
robot jumps, which were fixed at 1 s in these simulations.

3. Stochastic Robot Design

As a first step towardmaking large deployments of stochastic jump-
ers a reality, we present a series of prototypes capable of between 2
and 5 jumps. These prototypes fulfill the design requirements of
area coverage, mass production, sensing, and potential for biode-
gradability. Each prototype design consists of cantilever beams
arranged around a central circular area (Figure 8). The number
of cantilever beams determines the number of jumps the robot will
perform. When these beams are bent, they are capable of storing
the required energy for a jump. This removes the need to use sep-
arate spring components, simplifying robot assembly (Figure 9).
Before being placed in the environment, the robots are preloaded
with strain energy. This is achieved by inserting the tips of the
beams into slots inside the central area (see Figures 9 and 10),
which are then secured in place using 3D-printed water-soluble
latches (polyvinyl alcohol, PVA). The water-soluble latches facilitate
sequential jumps to be triggered by moisture in the environment
(e.g., rain). The simplicity of the design opens up the possibility that
it could be rapidly assembled by a robotic or human production
line. Manual assembly of the current design for example takes less
than a minute (as shown in Figure 10). The use of laser-cut scaf-
folds for the robot makes it easy to store the material, allowing for
the production of large numbers of robots in a compact form.
Currently the beams are constructed from acetal copolymer, which

is not a biodegradable plastic. However, this sheet material could be
replaced with a different compostable polymer[26] and enable the
robot to be fully degradable. CAD designs can be found online.[27]

Figure 7. Heatmap of the final grid-based area coverage for different deployments of robots that have different Etot and nj. In these simulations, collisions
between robots render both robots immobilized.

Figure 8. Top-down view of the different types of prototypes produced.
Each prototype a–d) is capable of a different number of jumps (nj) depend-
ing on how many cantilever beams are featured in the design. Each
prototype was laser cut from a sheet of acetal copolymer.
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3.1. Jumping Mechanism

The cantilever beams allow the robot to jump by releasing their
stored strain energy and colliding with the ground. This converts
some of the stored energy into kinetic energy of the robot body
(see Figure 11).

As shown by the earlier simulations, designing the robot with
a certain ideal jump length is important to ensure good system
performance. The jumping energy in the robot prototypes is
controlled through the dimensions of the beam. The strain
energy (W ) in an axially loaded beam can be approximated using
Equation (3), derived from work in ref. [28]

W ¼ Eacbt3π2d
3lð4l� dÞ (3)

where Eac is the Young's modulus of the beam material, d is the
tip displacement, l is the beam length, b is the beam width, and t
is the beam thickness. The beammaterial was chosen to be acetal
copolymer (Eac ¼ 2800MPa) due its low density and high yield
strength. In the prototype, the distance between the beam ends
when they are primed for jumping is essentially zero, making the
displacement in the direction of loading equal to the beam length
(d ¼ l), leading to Equation (3) becoming:

W ¼ Eacbt3π2

9l
(4)

The thickness t and length l of the beam were chosen based on
the available material sizes, the dimensions of the laser cutting
bed, and to minimize the stress in the material to avoid
plastic deformation. The final values used were t¼ 1.5 mm
and l¼ 165mm. This leaves the beam width b as a free parame-
ter which determines the energy stored in the beam. This was
chosen to be b¼ 22mm, resulting in an energy per jump of
1.38 J according to Equation (4). This single mechanism (shown

Figure 9. The robot is primed for jumping by bending the beams and
securing them with PVA latches.

Figure 10. a–d) Stills from the video of the robot being assembled in under a minute. First the beam is bent (a), then inserted in the body (b), and secured
in place with a latch (c). This is repeated for each jumping mechanism on the robot (d). Full video available at https://youtu.be/2RLQSvjq33M.

Figure 11. The jumping mechanism propels the robot into the air through
the latch dissolving when in contact with water, releasing the compressed
beam. As the beam unfurls, it collides with the ground, propelling the
robot into the air.

Figure 12. Detailed top view of the cantilever beam that forms part of the
jumping mechanism used in the prototypes. The solid red lines indicate
where the design would be repeated, with the angle depending on the
number of beams in the prototype.
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in Figure 12) is repeated around a central circular area to give the
desired total number of jumps. Figure 8 shows the resulting
designs for total jump numbers of 2�5 jumps.

3.2. Environmentally Triggered Latches

When the robot comes into contact with water (e.g., from rain),
the latches dissolve (see Figure 13), eventually releasing the
loaded beam and triggering the jump. The different thicknesses
of latches cause the beams to release sequentially, allowing for
consecutive jumps. The latches were 3D printed using a
WANHAO i3 Mini and PVA filament.

To characterize the time it would take for each latch to yield
under load, a series of latch specimens of varying thickness were
put in an experimental rig, as shown in Figure 14. The rig mim-
icked the loading conditions on the latch when loaded by the bent
beam using a replica of the beam end and slot on the robot's
body. The applied load (6.38 N) was chosen based on measure-
ments made using a digital force meter (Fk-50 Sauter) and a
beam from one of the robot prototypes. The latches were then
submerged underwater and the time taken until the latch failed
was measured.

The results of these experiments (shown in Figure 15) dem-
onstrate that varying the thickness of the latches can be used to
precisely control their yield time, hence ensuring that jumps are
released sequentially. In reality, the latches experience additional
loading forces beyond just those from the bent beam including
forces involved in robot assembly and during landing. Hence, to
ensure sequential release, the thicknesses of the latches in the
prototypes were increased in 1mm increments with the thinnest
being 1mm thick.

3.3. Sensory Coating

The sensory coating of the robot allows it to communicate the
presence of stimuli in the environment through the use of color
change. To demonstrate this concept, the prototype robot was

coated in thermochromic paint. Figure 16 demonstrates how
the robot changes color in the presence of heat; this color change
approximately happens at 31 �C.

These readings could then be recorded with an aerial photo-
graph. Figure 17 demonstrates how an overhead image of
deployed jumpers over an area can be used to locate a heat source
by observing the robots’ colors. In the future, larger areas could
be imaged by combining many photos together that have been
captured using a drone.[29] The sensory coating could also offer
sensory information to other agents on the ground. In addition,
various stimuli could be detected using colorimetric[30] or
paper-based sensors.[31] These could be laminated on top of
the sheet material used to construct the robot.

3.4. Jumping Performance

The jumping performance of four different prototypes, each
capable of a different number of jumps, was evaluated by carry-
ing out a series of jumping trials within a flat experimental arena.
Two cameras were used to track the robot's movement and also
measure jumping characteristics such as jump height and
distance (see Figure 18). The side camera (FLIR Blackfly S
BFS-U3-16S2M) had a framerate of 200 frames per second to
capture the robot's motion during a jump. Meanwhile a separate
top-down camera (Mermaid MM-USB8MP02G-MFV) was used
to accurately measure the robots position before and after jumps.
Image capture and processing was done using Python with the
Spinview SDK[32] and OpenCV library.[33]

At the start of each experiment, the robot prototype under test
was assembled and placed in the center of the arena. To avoid the
effect of any material fatigue, freshly manufactured robots were
used during each trial and three trials were performed for each of
the designs shown in Figure 8. Once the robot was in place, the
recording software was activated and 50mL of water was then
added to the robot. Water was added to the robot periodically
throughout the experiment to mimic how water would reach
the robot outdoors (e.g., rain). During the experiment, the latches

Figure 13. The working principle behind the PVA latches. a) A 500 g load is placed on a 1mm-thick PVA part. The applied load represents the applied
force from the bent beam. In b–d) 50mL of water was applied to the part every 20 min, leading to the PVA dissolving and the part failing after 85 min.
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within the robot would yield once exposed to the water, causing
the robot to perform a sequence of jumps. Top-down images
were captured every minute to track the robot's movement.
Meanwhile, side images were continually captured into a circular
buffer that had a capacity to store 2.5 s of footage. When motion
was detected in the side-view image, an additional 2 s of images
were captured and then the entire buffer would be written to
disk. This method was used due to the long timescale of the
experiments and the limited speeds at which images could be
written to a hard drive. Typical footage of the robot jumping
is shown in Figure 19.

3.5. Experiment Calibration and Measurement

Once the robot performed all its jumps, the images from both
cameras were processed and labeled to obtain the measurements
of interest. Processing images from both cameras consisted of
discarding irrelevant images that did not show robot motion
and then removing distortion from the remaining images using

Figure 15. Time it took for different latch specimens to fail when placed in
the latch testing rig. The experiment was repeated six times for each latch
and the mean time to yield with one standard deviation is shown.

Figure 14. The experimental rig used to characterize the yielding times of the latches (left) with a close-up view of the latch holding area (top right).
a) Slotted masses are used to load latches via a b) pulley system. Latches are placed in the c) latch-holding area and submerged in a d) water
container. The time till yield is measured e) using timing circuitry and a f ) light gate. A g) dummy robot body and h) beam end replicate the loading
conditions the latch experiences when used in the prototype. Latches are loaded into the rig in a similar manner to how they are loaded on the robot
(bottom right).
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each camera's distortion coefficients. These were established by
capturing a series of images of a chessboard before the experi-
ment. The top-down images underwent an additional processing
step where they were reprojected onto the coordinate space
shown in Figure 20 to align the grid axes and image axes.

Pixel positions in the resulting images ðxt, ytÞ were then
converted to real-world positions ðxa, yaÞ using the following
equations, which are derived from the known size of the
processed image and the grid on the arena floor.

xa ¼
xt � 500 px
2000 px

820mm (5)

ya ¼ 1� yt � 500 px
2000 px

� �
820mm (6)

The labeling process involved selecting the pixel position of
the center of the robot within top-down or side images. These
positions were then used to calculate jump height and distance
measurements.

For each jump, the robot's central position in the top-down
image was manually labeled both before and after the jump
(P1 and P2 in Figure 21). These pixel positions were then con-
verted into the arena coordinate system to find the robot's planar
trajectory and jump length.

Measuring jump height required finding the distance between
the position of the robot at the peak of its jump and the ground
underneath the robot at this time. These positions were obtained
using both the top-down and side-view images, as shown in
Figure 21. The peak position of the robot was found in the side
image and labeled manually in the frame where the robot was at
the peak of its jump. The ground position in the side view was
difficult to determine accurately by eye. Hence, the ground posi-
tion was calculated by assuming the robot followed a ballistic tra-
jectory and would be at its peak height when it had travelled
halfway from its starting position to its ending position, which
had previously been labeled in the top-down images. In reality,
the robot often bounced a small distance away from its initial land-
ing spot. However, this distance was found to be negligible com-
pared with the distance of the jump. To convert the midpoint
position in the top-down image into a ground position in the side
image, a homography between the two images was used. It was
assumed that the arena grid was planar. Hence, the homography
H between the top down and side images could be found by select-
ing corresponding points in the arena grid within both images.

Once the ground and peak positions had been found, the pixel
distance in the y axis (Δys) needed to then converted to height (za)
using a conversion factor (m).

za ¼ mΔys (7)

As the robot changes its distance from the camera during the
experiment, the conversion factor m depends on the position of
the robot in the arena. The side camera was carefully aligned
using a spirit level so that the image plane was parallel to the
xaza plane. This allowed the conversion from pixels to milli-
meters to be represented as a linear function of the robot's y
position in the top image (yt).

m ¼ c1yt þ c2 (8)

To find the two calibration constants c1 and c2, a vertical jig
marked with two targets was moved around the grid while

Figure 16. The coating of the robot prototype reacts to the temperature of its surroundings. The robot at a) room temperature and b) after heating.

Figure 17. A collection of robots manually distributed over an indoor area
containing a heated metal plate (outlined in red), which was placed under
the white backdrop. The heat emitted by the plate changes the color of the
nearby robot from dark green to light green.
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images from both cameras were captured. The targets on the jig
were manually labeled and the physical distance between them
was known. This gave m for various positions in the grid. Then,
c1 and c2 could be found by fitting a linear regression model to
the data with a high accuracy (R2¼ 0.99), as shown in Figure 22.

The error that this calibration produces against the known
height of the top target (416.5mm) and bottom target
(116.5mm) as the tool was moved around the grid is shown
in Figure 23. The mean of the error for both targets is close

to zero (μ ¼ 0.610mm). Meanwhile, the measurements made
by the system can be said to be within �4mm based on three
standard deviations (3� 1.3 � 4mm).

3.6. Experimental Results

The results from the jumping trials are detailed below. First,
Figure 24 shows the trajectories of the robots throughout the
arena across all trials. Each robot executed its jumping sequence

Figure 19. Stills from footage of the prototypes performing their first jump. Full video available at https://youtu.be/FTCM2WkV7�4.

Figure 18. The experimental setup used to measure the prototype's performance inside an arena. The setup consists of two cameras that are used to
track the robots’ movement and a computer used to store the captured images. A grid taped to the arena floor is used to calibrate the system so
measurements can be made by converting between pixels and millimeters. The coordinate system ðxa, ya, zaÞ used for measurements is also shown.
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Figure 21. Jump height was measured by establishing the midpoint (M) between the robot's start position (P1) and end position (P2) from the top-down
images. This midpoint was then reprojected into the side image (M’) using the homographyH. The robot's peak position in the side image (P3) was then
manually labeled and the difference in y pixels between the two points was converted to mm. M’ is not directly below P3 in the side image as the robot
bounced upon landing before coming to rest at P2.

Figure 20. The images from the top camera had distortions removed and then were reprojected onto a square image of 3000� 3000 px to take
measurements of the robots’ position within the arena. Pixel positions are then converted into the arena coordinate system.

Figure 22. The relationship between the number of y pixels in the side
image per mm (m) and y pixel position of the object in the top image (yt).

Figure 23. Error in height measurements of the targets on the calibration
tool once the system was calibrated. Whiskers indicate the upper and
lower quartiles. The mean of the error for both targets was 0.61 mm, while
the standard deviation was 1.31mm for the top target and 1.32mm for the
bottom target.
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successfully and was able to move away from the starting area. All
the robots were able to jump regardless of the orientation they
landed in. This included the nj ¼ 2 design which was prone to
falling on its side. In one particular trial, this design landed on its
side after its first jump and then was able to move a further
122mm during its second jump. This design also left the arena
in two trials and had to be placed back into the center of the
arena, so its second jump could be measured. The first jump
of these trials could not be measured accurately; however, they
do show that this design is capable of jumping distances larger
than half the size of the arena (>560mm).

The jump heights and jump distances achieved by the proto-
types are shown in Figures 25 and 26 respectively, with the great-
est height (567mm) and distance (>560mm) achieved by the
nj ¼ 2 design. The largest measured distance (475mm) was
achieved by the nj ¼ 3 design. Both jumping distance and height
decreased as the number of jumps the design could perform
increased. This can be explained by the fact that the energy
per jumping mechanism is constant. However, the mass of
the robot increases by around 8.5 g with each jumping mecha-
nism added.

It also appears that when comparing earlier jumps to later
jumps, the earlier jumps achieve greater heights (see
Figure 27) and travel further on average (see Figure 28). This
could be due to a number of factors. First, the shape of the robot's
body changes as beams are unfurled, altering its mass distribu-
tion. In addition, when observing the footage of the later jumps,
there is a noticeable increase in oscillations in the robot body.
This could be due to the fact that the stiffness of the robot struc-
ture is lower in these later jumps and so energy from the jump

Figure 24. The planar trajectories of the robot prototypes. Crosses indi-
cate where the robot landed after completing jumps. Filled circles indicate
the final positions of the robots. Two of the nj ¼ 2 robots jumped out of
the arena on their first jump and so are not shown.

Figure 25. Jump height of the robots against the number of jumps it per-
formed. The two jumps for the nj ¼ 2 design have been omitted as the
robot landed outside the arena, so the jump height could not be
measured.

Figure 26. Jump distance of the robot against the number of jumps it
performed. Two jumps for the nj ¼ 2 design left the arena and could
not be measured accurately. These jump distances have been estimated
as the minimum distance they must have travelled (560mm).

Figure 27. Mean jump height across all trials against the index of the jump
in the jumping sequence (with zero being the first jump).
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goes into deforming the robot body and not into the jumping
motion. Furthermore, during later jumps, the robot has a larger
surface area in contact with the ground, leading to increased
adhesive forces between the robot body and water on the arena
floor.

The time taken for the each latch to release the jump is shown
in Figure 29. The first latch (with a thickness of 1 mm) released
the beam at around 0.938 h on average, while the thickest latch
(5mm) had an average release time of 5.87 h.

3.7. Outdoor Demonstration

To demonstrate the potential of the system to operate outdoors,
we performed a jumping trial of one of the prototypes in rugged
terrain, as shown in Figure 30. The prototype is able to execute its
jump sequence successfully and traverse various obstacles. This
demonstration is a first step toward deploying stochastic jumpers
outdoors.

4. Discussion

We have taken the concept of stochastic jumpers from simula-
tion through to a first prototype design. The prototype achieves
many features of the simulated jumpers, including jumping
motion, the sequential jump release of a finite number of jumps,
and random reorientation. However, they do differ from the sim-
ulated robots in a number of ways. First, the simulated robot's
jumping distance was independent of the number of jumps and
the jump index. However, in the prototype designs, this is not the
case. Furthermore, the jumping distances achieved by the pro-
totypes were smaller than the simulated robots that were able
to cover a 10m by 10m area. The length of time it takes the robot
prototype to complete each jump is also longer than in the simu-
lation. However, this could be acceptable in scenarios where the
speed of the deployment is not important. Deployment times
could also be reduced by releasing the robots in parallel.
Releasing robots from multiple points in parallel would also
allow the system to cover larger areas, as shown in Figure 31.
This preliminary work shows how over 80% of a 100m by
100m area can be covered using as few as 25 deployment points.
Future work will examine how best to choose these deployment
points.

To improve on the limitations of the current prototypes, there
are a number of avenues for future work. The jumping perform-
ances could be improved by investigating various beam cross sec-
tions to improve the efficiency of strain energy stored per gram.
A hammer-like element attached to the end of the beammay also
help in energy transfer by ensuring beam contact with the
ground. The latch structure and material could also be investi-
gated further. Including keystone elements into the latch struc-
ture could decrease the period between jumps dramatically.
These latches would remain strong while the keystone element
is in place, but their strength would rapidly decrease once the

Figure 29. The mean time it took for each jump to trigger across all
designs and trials. Jump index refers to the index of the jump in the jump-
ing sequence, with zero being the first jump of each robot. Error bars show
one standard deviation.

Figure 30. Composite image of a prototype jumping outdoors. The pro-
totype performs three jumps starting at position 1. The robot then jumps
to position 2, then from position 2 to position 3, and finally from position 3
to 4. Red arrows show each jump's trajectory. Warm water was poured on
the robot to accelerate the triggering of the jumps. Full video available at
https://youtu.be/VZJJFzGvZFk.

Figure 28. Mean jump distance across all trials against the index of the
jump in the jumping sequence (with zero being the first jump).
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keystone element dissolved. Alternatively, the material of the
latches could be triggered by the presence or absence of a com-
pound of interest in the environment. Responsive hydrogel[34,35]

could be used to make latches respond to various stimuli such as
pH and temperature. This could allow the robots to sense their
environment and physically move based on whether a triggering
material is present. In addition, latches are not limited to control-
ling jumping but could also release a payload when triggered.
Combining these two behaviors could create a system of robots
which would accumulate in certain areas and then selectively
release fertilizers or a remedial agent into its vicinity over a long
timescale. Robots could also release a payload that interacts with
other robots for the purposes of communication. This could lead
to swarm-like behaviors and improve the system's performance.
For example, a payload released by one robot could cause nearby
robots to jump. This could move robots away from each other,
distributing robots more evenly over the area. Another possible
application of stochastic robots could involve the system
spreading out over an area to act as localization beacons for more
sophisticated robots in noisy hazardous environments.

5. Conclusion

This work presents the first steps toward using large numbers of
randomly jumping robots to cover an area of interest.
Simulations demonstrate the flexible design space which would
allow many robot configurations, with different numbers of
jumps and total stored elastic energy, to achieve good coverage.
For example, 500 robots can achieve over 90% area coverage with
the robot design biased toward either reduced number of jumps
(7 total jumps) or reduced jump length (1.24m). The demon-
strated robot prototypes contain all the core functionalities of
the simulated system, including preloaded sequential jumps,
environmental triggering and sensing, ease of production, low
cost, and potential for biodegradability. Future work will focus
on scaling up the system toward outdoor demonstrations.
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