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Abstract: We extend exchange-free imaging to polarimetry of a polarising object. This
allows imaging of these samples with far less absorbed energy - a key concern when imag-
ing with high-frequency radiation. © 2022 The Author(s)

Interaction-free detection involves using single-particle interferometry to detect whether or not there is a block
on the arm of an interferometer the particle didn’t travel down. Elitzur and Vaidman initially described this phe-
nomenon in their famous ‘bomb detector thought experiment’, where there is a chance to see whether a potentially
faulty bomb works without detonating it [1]. Kwiat et al then refined this using the Quantum Zeno effect, to reduce
the chance of the particle going down the arm with the blocker (or bomb) to effectively zero [2]. However, while
this phenomena has been developed to great effect for both classical [3–6] and quantum [7–9] communication, so
far interaction-free measurement has only been deployed to image the presence/absence (or opacity/transparency)
of an object [10–18]. In this paper, we extend this powerful tool to the detection of polarising effects in a given
sample. We do this while still maintaining the key benefits of the exchange-free/quantum Zeno coupled approach
- low photon flux/energy absorption by the object being imaged.

To achieve exchange-free polarimetry, we start with an apparatus similar to that used to counterfactually ghost
image objects in [14], but arranged both to allow the probing of an object with different polarisations of light,
and for the intensified charge-coupled device (ICCD) cameras to receive the photon from the counterfactual pro-
tocol directly, with what was the ghost-path in [14] now being used for polarisation-based heralding. We give an
apparatus for this in Fig.1.

In this protocol, we use a polarisation and position-momentum entangled pair of photons, sending one photon
to our chained common-path Michelson interferometer array (the imaging photon), with the object to be imaged in
one path, while sending the other photon goes to our variable polarising beamsplitter (PBS) (the heralding photon),
where we can choose a polarisation basis to image the object in. On exiting the 1:1 beamsplitter, the imaging
photon enters a common-path version of Salih et al’s 2013 protocol [3], designed to maintain pixel coherence. The
two outputs corresponding to the photon being blocked or not blocked by the object (D0 and D1, following the
nomenclature in [4]), then have variable polarisers placed in front of them, to allow a detection polarisation to be
chosen (H, V , D, A, R or L).

The variable-PBS (heralding) arm uses a quarter wave, then half-wave, then another quarter wave plate to rotate
the photon from the imaging basis (either H/V , D/A or R/L) into the H/V basis, then using a normal PBS. We
then record the correlations between either of the two ICCD and either of the two polarisation-basis detectors
(DX and DY ). By building up correlation-based images of the object in each of the three mutually unbiased bases
(MUBs) which exist for polarisation (e.g. H/V , D/A, L/R), we can slowly build up polarisation statistics for the
object - allowing us to derive the Mueller matrices for each of the pixel-regions of the object.

In this paper, we gave an extension of counterfactual imaging to imaging of polarising objects. This allows
far better imaging of these samples than is currently available, with far less absorbed energy - a key concern for
delicate samples being imaged with high-frequency radiation.
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