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Abstract
LiquidDiffract is an open source, Python-based graphical application for X-ray total scattering analysis of liquids and disor-
dered solids. The software implements procedures to obtain information on macroscopic bulk properties and local atomic-
scale structure of monatomic or polyatomic samples from X-ray total scattering data. LiquidDiffract provides an easy to use 
interface with tools to perform background subtraction; calculation, normalisation, and refinement of the reciprocal-space 
structure factor and real-space correlation functions; and the extraction of structural information such as bond lengths, 
coordination number, and bulk density. The software is well suited to investigations of amorphous materials at extreme con-
ditions, such as studies of high-pressure melt structure, polyamorphic phase transitions, and liquid equations of state. The 
open-source distribution and graphical interface will be of particular benefit to researchers who are new to the field. In this 
article we describe the distribution, system requirements, and installation of LiquidDiffract, and detail the data processing 
workflow and underlying numerical methods.

Keywords Computer programs · Liquid structure · Total scattering analysis

Introduction

Despite a lack of long-range order, the structure of liquids 
and glasses exhibit a high-degree of ordering on short- to 
medium-range length scales, originating from chemical 
interactions that lead to arrangements of local structural 
motifs (Kitaigorodskiy and Chomet 1967). The study of 
liquid and glass structure provides insight into the behav-
iour and physical properties of amorphous materials that is 
important in many fields of research. At extreme conditions 
of high temperature (T) and pressure (p) an understanding of 
liquid structure and polyamorphic (liquid–liquid) phase tran-
sitions has important industrial applications, including novel 
phase discovery, and modelling of industrial melt processes 

(Drewitt 2021). Fluids and melts are also key to our under-
standing of the dynamic Earth, occurring from the crust to 
the core and controlling mass transfer in the deep interior, 
and geothermal, volcanic, and ore-forming processes at the 
near surface.

For liquids and disordered solids, X-ray diffraction pro-
vides direct information on the average atomistic structure. 
The total intensity of scattered radiation arises from coher-
ent, incoherent (Compton), and self-scattering effects. These 
components can be separated out, and the structure factor, 
S(Q), extracted following a normalisation procedure. The 
structure factor is a measure of the coherent scattering by 
atoms found at different positions in the sample, and hence 
contains the useful structural information about the material. 
S(Q) is a reciprocal-space function, where Q is the scatter-
ing vector, usually measured in Å−1 , which is related to the 
wavelength of the incident radiation, � , and the scattering 
angle, 2� , by:

It is generally more useful to interpret the structure of dis-
ordered materials by considering correlation functions in 
real-space, the primary example being the pair distribution 
function, g(r), which describes variations in the microscopic 

(1)Q =
4� sin �

�
.
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pair density of a sample with distance, �(r) , proportional to 
the average (bulk) number density ( �0):

These variations arise when correlations between pairs of 
atoms are more likely to occur at a specific separation dis-
tance r. Peaks in the g(r) are therefore centered around the 
average bond lengths of coordination shells, and the g(r) 
approaches 1 at high r as variations from the bulk density 
become negligible. The pair distribution function is related 
to the structure factor via a sine Fourier transform:

where the interference function, i(Q), is a simple transforma-
tion of the structure factor such that limQ→∞ i(Q) = 0 (Eq. 8).

LiquidDiffract is a data analysis application that computes 
these functions from x-ray diffraction data, and provides a 
range of tools to extract structural information in an easy to 
use, graphical interface. It can be used to obtain informa-
tion on macroscopic bulk properties and local atomic-scale 
structure of monatomic or polyatomic samples from x-ray 
total scattering data.

While there is a wealth of tools available to analyse liq-
uid structures obtained from simulations (e.g., ISAACS, 
Le Roux and Petkov 2010; MDAnalysis, Michaud-Agrawal 
et al. 2011; STRFACT, Bernardes 2021; Correlation, Rod-
ríguez et al. 2021; POLYANA, Dimitroulis et al. 2015; 
GROMACS, Van Der Spoel et al. 2005), there is not a wide 
range of software available for total x-ray scattering analy-
sis. Some of the tools available as part of XPDFSuite (e.g., 
PDFXgetX3; Juhás et al. 2013) may provide similar func-
tionality to LiquidDiffract, however this is non-free soft-
ware. XPDFSuite is also optimised for disordered crystalline 
materials, and does not implement correct normalisation of 
the S(Q)/g(r) for liquids or amorphous solids. The software 
RAD and RAD-2 (Petkov 1989) may similarly provide some 
overlapping functionality, but is also non-free and appears 
obsolete, with binaries only available for the Windows 7 
operating system. The software GudrunX (Soper 2017) 
provides routines for data reduction from 2D diffraction 
images, complex background refinement, and calculation 
of PDF functions, but is also distributed under a non-free 
license. It does not implement methods for extracting density 
or methods of optimising the S(Q) normalisation that are 
suitable for high-pressure experimental data. GudrunX is 
also not particularly accessible, as binaries are only available 
for Windows operating systems, and the code is difficult to 
install on other platforms. Briggs et al. (2019) and Yu et al. 
(2019) cite the use of the program Glassure in their data 
analysis. Glassure (Prescher 2017) is libre, fairly simple to 

(2)g(r) =
�(r)

�0
.

(3)g(r) = 1 +
1

2�2r�0 ∫
∞

0

Q[i(Q)] sin(Qr)dQ,

install (it is also python-based) and can be used to calculate 
and properly normalise the S(Q) and g(r) from diffraction 
data. However, some features, such as density refinement, 
are not fully functional in the latest available version. Unlike 
LiquidDiffract, Glassure also does not implement methods 
to investigate the radial distribution function, RDF(r), or 
extract estimates of coordination number and bond-length.

There is a clear need for software such as LiquidDiffract, 
which provides an open-source and libre tool for x-ray 
total scattering analysis of liquids and disordered solids. 
The procedures implemented to extract bulk liquid number 
density will be of particular benefit to researchers perform-
ing experiments at extreme conditions, as the equations 
of state of many liquids and glasses at high-p are poorly 
known (Drewitt 2021). The efficacy of LiquidDiffract to 
produce accurate structure factors and equation of state 
data of liquids under extreme conditions has been success-
fully demonstrated in published studies of liquid gallium 
to 25 GPa (Drewitt et al. 2020), and liquid tantalum shock-
released from several hundred GPa (Katagiri et al. 2021). 
We hope that the accessible distribution and simple graphi-
cal interface of LiquidDiffract will be of particular benefit 
to researchers who are new to the field.

Distribution, licence, installation, 
and dependencies

LiquidDiffract is a pure-Python application, ensuring that 
installation requires no compiling by the user, and that the 
software is platform-independent. A Python version ≥3.5 is 
required. LiquidDiffract makes use of the open source sci-
entific Python ecosystem for data processing and numerical 
operations, including the SciPy (Virtanen et al. 2020) and 
NumPy (Harris et al. 2020) libraries. ‘lmfit’, an extension 
package to the curve-fitting functionality in SciPy, is used for 
curve-fitting procedures as it provides a higher-level inter-
face to minimisation routines that promotes easier exten-
sibility, either in future versions of LiquidDiffract, or user 
defined code that makes use of LiquidDiffract’s core func-
tionality (Newville et al. 2014). The graphical user interface 
(GUI) is written using the PyQt5 library (https:// www. river 
bankc omput ing. com/ softw are/ pyqt/), which provides Python 
bindings for version 5 of the Qt C++ cross-platform applica-
tion framework. The PyQtGraph library (http:// www. pyqtg 
raph. org/) is used to display and plot data. PyQtGraph is a 
pure-python graphics library built on PyQt that is intended 
for scientific use cases, and achieves fast updating of dis-
plays due to its heavy leverage of NumPy arrays and Qt’s 
GraphicsView framework. PyQtGraph was chosen for this 
speed performance, as well as for the in-built collection of 
tools to provide intuitive interaction controls to the user. In 
addition, the importlib_resources package (a backport of the 

https://www.riverbankcomputing.com/software/pyqt/
https://www.riverbankcomputing.com/software/pyqt/
http://www.pyqtgraph.org/
http://www.pyqtgraph.org/
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Python 3.9 standard library module importlib.resources) is 
required for Python versions <3.7.

LiquidDiffract is freely available and distributed under 
the GNU General Public License v3.0 (GPLv3). The source-
code is hosted on a public GitHub repository located at 
https:// github. com/ bjhei nen/ Liqui dDiff ract, and the package 
is primarily distributed via The Python Package Index, PyPI 
(https:// pypi. org/ proje ct/ Liqui dDiff ract/). Python’s standard 
package installer, pip, automatically tracks the PyPI so this 
allows users to install LiquidDiffract from any computer 
with a Python installation and an internet connection with 
the command: $ pip install LiquidDiffract. 
Alternatively, pip can also be used to install LiquidDiffract 
from the source code downloaded to a local directory. All 
of the dependencies are automatically handled and installed 
by pip when installing LiquidDiffract.

Application description and workflow

The user interface of LiquidDiffract is designed around the 
normal steps and procedures in an experimental data pro-
cessing pipeline to enable an efficient workflow. The inter-
face is organised into four main tabs which each provide 
a selection of toolboxes for data operations at sequential 
stages of the workflow. These are: (1) Background subtrac-
tion, (2) Data operations and structure factor refinement, (3) 

Calculation and output of PDF functions, and (4) Extraction 
of coordination numbers. The data are automatically visual-
ised graphically and the tabs updated as operations are made 
through the workflow (Fig. 1).

Background scaling and subtraction

The first tab allows data and optional background files to 
be loaded in to the software and inspected. LiquidDiffract 
expects Q-space diffraction data but a toolbox is provided to 
convert experimental files saved with 2� values to Q-space. 
The measured or background intensity profile, IMeasured(Q) 
or IBackground(Q) , is uniformly sampled from a cubic spline 
interpolation of the raw data, which is also used to extrapo-
late low-Q values to Q = 0 . The sampling rate (Q-step) can 
be set by the user and the background profile scaled and 
subtracted if present. A background auto-scale feature (that 
roughly scales the background to match the data profile) is 
provided to speed up workflow but is not recommended for 
a close fit. Subtracting a scaled background pattern from 
the measured intensity gives the scattering intensity of the 
sample, ISample(Q):

More complex Q-dependent background corrections that 
are sometimes required for high-pressure experiments and 

(4)ISample(Q) = IMeasured(Q) − bIBackground(Q).

Fig. 1  The user interface of LiquidDiffract showing data operations being made on sample data in the refinement tab

https://github.com/bjheinen/LiquidDiffract
https://pypi.org/project/LiquidDiffract/
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other complex sample environments are not currently imple-
mented. In these cases pre-processed, background corrected 
data can be loaded in.

Data operations and S(Q) refinement

The second tab is where most of the data processing is 
performed. The sample composition and data processing 
options can be set to calculate the structure factor S(Q) 
and corresponding real-space g(r) function. This tab also 
offers an option for numerical refinement of both the S(Q) 
normalisation and average sample density. Functionality 
is provided by several toolboxes which group operations 
for different stages of the workflow.

The Composition Toolbox allows the user to set the 
atomic species present in the sample, and set the atomic 
number density, �0 . If the user later chooses to refine the 
sample density then this value of �0 is also passed to the 
solver as an initial estimate.

The Data Options Toolbox then allows the user to set 
the majority of important options for data pre-processing 
and calculation of the normalised total structure factor, 
S(Q). An option is provided to smooth noise in the data, 
which applies a Savitzky-Golay filter. The length of the fil-
ter window and order of the polynomial used to fit samples 
can be set in an Additional Preferences dialog, accessible 
from the Tools menu.

The Qmin cut-off setting allows the user to mask spuri-
ous peaks or oscillations in the low-Q region of the data 
which can arise from the experimental set-up (e.g. from a 
slightly mislocated beam stop). Toggling this option sets 
I(Q < Qmin) = I(Qmin).

The Qmax cut-off setting allows the user to truncate the 
data at high-Q. At high Q-values experimental data often 
becomes increasingly noisy because the relative contri-
bution of coherent scattering to the experimental signal 
is inversely related to the scattering vector. The increas-
ingly noisy signal can lead to dramatic and anomalous 
oscillations near the first peak in the real space correlation 
functions. It can therefore be beneficial to truncate experi-
mental data at high-Q.

Irrespective of the Qmax value chosen by the user, experi-
mental data is always effectively truncated due to the finite 
Q-range available to experimental measurements. This trun-
cation is essentially an ideal low-pass brick-wall filter, and so 
results in spurious oscillations in the real-space correlation 
function via the Gibbs phenomenon. The effect corresponds 
to the time-domain ‘ringing’ artifacts seen in signal process-
ing, and is equivalent to convolution of the real-space cor-
relation function with the impulse response of the filter - the 
real space peak function P(r). For a simple truncation the 
P(r) is a normalised sinc function, i.e.:

The interference function, i(Q), tends to zero at Q = ∞ , so 
the effect of truncating at very high-Q ( ≳ 30Å−1 ) is often 
negligible. However, the effect is much more significant for 
high-pressure studies due to the limited accessible scattering 
angle when working with high-pressure instruments (Drewitt 
2021). Furthermore, truncating at a lower Qmax corresponds 
to a broadening of the sinc function, and these broader oscil-
lations are often difficult to distinguish from real structural 
information (Lorch 1969; Shen et al. 2004).

A filter with a smoother roll-off can be used to suppress 
FT artifacts in the real-space functions. This is done by 
applying a window function to the low-pass filter, equivalent 
to multiplying the Q-space data by a modification function, 
M(Q), which damps the data cut-off at Qmax (i.e., reduces 
the amplitude of the discontinuity). Two window functions 
are available in LiquidDiffract: the Lanczos (1966) window 
proposed by Lorch (1969, commonly called the Lorch func-
tion in total scattering literature):

and a cosine window function (i.e., a Hann window; Black-
man and Tukey 1958; Drewitt et al. 2013):

where N is width of the window function and x is an integer 
with values from 0 to (N − 1) across the window.

After setting these options, the ‘Calculate S(Q)’ button 
will calculate the total structure factor, S(Q), and display 
the interference function, i(Q), and the differential corre-
lation function, D(r), to the user. LiquidDiffract provides 
the option to use either the Faber–Ziman (FZ; Faber and 
Ziman 1965) or Ashcroft–Langreth (AL; Ashcroft and Lan-
greth 1967) formalism of the total structure factor ( SFZ(Q) 
and SAL(Q) respectively; see also: Keen 2001). These are 
detailed fully in Appendix A (Eqs. 32, 37, and associated). 
In both cases, the total structure factor is converted to atomic 
(normalised) units using the method of Krogh-Moe (1956) 
and Norman (1957). The interference function, i(Q), is sim-
ply related to S(Q):

(5)P(r;Qmax) = 2Qmax

sin
(
2�rQmax

)
2�rQmax

.

(6)M(Q) =

⎧⎪⎨⎪⎩

sin
�

𝜋Q

Qmax

�
�

𝜋Q

Qmax

� if Q < Qmax

0 if Q > Qmax

(7)

M(Q) =

⎧⎪⎨⎪⎩

1 if Q < QWindow

0.5
�
1 + cos

�
x𝜋

N−1

��
if QWindow < Q < Qmax

0 if Q > Qmax

(8)i(Q) = S(Q) − S∞,
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with S∞ = 1 for all samples in the FZ formalism and for 
monatomic samples in the AL formalism (Eq. 42). The dif-
ferential correlation function, D(r), describes the difference 
between the (local) microscopic pair density and the average 
density:

It is related to g(r), the pair-distribution function (Eq. 2), by:

or, following from Eq. 3:

In LiquidDiffract, D(r) is computed from the sine Fourier 
transform of Qi(Q) using a standard FFT algorithm. As the 
transform is sine-only, the Q-space function, Qi(Q), is mir-
rored with its odd image and the imaginary components of 
the Fourier transform used. Qi(Q) is also zero-padded for 
computational efficiency and interpolation in real-space. 
The length of the transformed array, 2N , can be set by the 
user via the Additional Preferences dialog. Increasing N 
increases the density of points in the real-space array, which 
may be necessary when using a large Q-range, which, for the 
same value of N, would otherwise give a lower real-space 
resolution.

An option is then provided to optimise the calculated i(Q) 
and g(r) through the numerical iterative procedure devel-
oped by Eggert et al. (2002), that follows from the work of 
Kaplow et al. (1965). The procedure is based on the assump-
tion that, in real-space, a minimum distance, rmin , can be 
defined, which represents the largest distance ( r = 0 to 
r = rmin ) where no atoms can be found. In a liquid, this cor-
responds to the region below the first interatomic distance 
in the  1st coordination shell. Correspondingly, no oscilla-
tions or peaks should be observed in the real-space correla-
tion functions within this region. As a result, the function 
D(r) = −4�r�0 for r < rmin . However, oscillations are com-
monly observed in this region, due to the effects of Fourier 
transforming finite Q-space data described above, along with 
systematic errors in the scattering factors and the normalisa-
tion factor, � . These errors can be minimised by taking the 
difference between the observed and modelled behaviour 
of D(r) below rmin , Fourier transforming this difference to 
reciprocal space, and subtracting from the i(Q) (with a scal-
ing factor applied based on the definition of S(Q) used) to 
compute a refined i(Q). This refined i(Q) can then be fed 
back into Eq. 12, and the final refined i(Q) computed after a 
set number of iterations, niter . A minimum of 3 iterations is 
normally required for convergence. The value of rmin used 
in the refinement should be set carefully, as it exerts a strong 

(9)D(r) = 4�r
[
�(r) − �0

]
.

(10)D(r) = 4�r�0
[
g(r) − 1

]

(11)D(r) =
2

� ∫
Qmax

0

Qi(Q) sin (Qr)dQ.

influence (Shen et al. 2004). This value should correspond 
to the minimum preceding the first physical peak in D(r), 
which is generally obvious in the preliminary D(r) (prior 
to optimisation), particularly when using a modification 
function to suppress FT artifacts (i.e., unphysical peaks). In 
some cases the user may need additional knowledge of their 
sample or its structure to set the rmin correctly. The iterative 
procedure is as follows:

where for the Ashcroft-Langreth formalism:

and for the Faber–Ziman formalism:

J(Q) and S∞ are defined in Eqs. 41 and 42 respectively.
LiquidDiffract also provides the option to use this refine-

ment procedure to extract the average number density of the 
sample, �0 . As �0 is an independent variable in the refine-
ment procedure its optimum value can be found by minimis-
ing a �2 figure of merit, defined as a function of �0:

LiquidDiffract supports several solvers implemented in the 
SciPy libraries to do this minimisation. The solver to be 
used, along with specific options like convergence criteria 
and number of function iterations can be set from the Addi-
tional Preferences dialog. The solvers currently supported 
by LiquidDiffract are L-BFGS-B (Byrd et al. 1995; Zhu 
et al. 1997), SLSQP (Kraft 1988) and COBYLA (Powell 
1994, 1998, 2007), which are fast, robust, and represent a 
good cross-section of the different derivative-free and gra-
dient-based approaches available in the SciPy library. All 
solvers require upper and lower bounds on the density to be 
set. The optimisation is typically very fast ( ∼0.05 s on a mid-
range laptop), although the accuracy of the result depends on 
the initial estimate of �0 and the range of the limits used. A 
useful recipe to use if a good initial estimate of �0 cannot be 
made is to first run the optimisation with only 1 iteration in 
the refinement procedure to extract a better initial estimate 

(12)(1) D(n)(r) =
2

� ∫
Qmax

0

Qi(n)(Q) sin (Qr)dQ

(13)(2) ΔD(n)(r) =D(n)(r) − S∞
(
−4𝜋𝜌0r

)
, for r < rmin

(14)
(3) i(n+1)(Q) = i(n)(Q) −

1

Q

[
i(n)(Q)

z(Q)
+ 1

]

× ∫
rmin

0

ΔD(n)(r) sin(Qr)dr

(15)zAL(Q) = S∞ + J0(Q)

(16)zFZ(Q) = 1.

(17)�2
(n)(�0) = ∫

rmin

0

[
ΔD(n)(r)

]2
dr.
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of �0 . The optimisation can then be run again using a higher 
number of iterations that provides full convergence. The 
bounds on �0 can also be progressively narrowed to encour-
age true convergence. Alternatively, a global minimisation 
option is provided. This is a basin-hopping algorithm which 
runs the optimisation several times, randomly perturbing the 
initial estimate of �0 between each run, and accepting or 
rejecting each minimisation based on the standard Metropo-
lis criterion (Li and Scheraga 1987; Wales and Doye 1997). 
This option can be useful in some cases of otherwise poor 
convergence, but is much slower.

The density, �0 , is the only optimisation parameter in the 
refinement procedure implemented in LiquidDiffract, how-
ever the �2 figure of merit can be used to simultaneously 
refine the background scaling factor, b, alongside �0 (Eggert 
et al. 2002). In high-pressure experiments additional care in 
the background scaling (such as Q-dependent scaling func-
tions) is often required, and in these cases naive optimisation 
of both �0 and b can lead to unphysical results. As Liquid-
Diffract was primarily designed for data collected at extreme 
conditions, simultaneous refinement of �0 and b is not cur-
rently implemented, but this is a planned feature for future 
releases of the software. Nevertheless, as b and �0 are not 
strongly correlated (Eggert et al. 2002), the background can 
be independently scaled by other methods prior to refine-
ment of �0 , which is equivalent to a step-wise optimisation 
across the full b-�0 parameter space.

It is also important to note that a well defined minimum 
in �2

(n)
(�0) relating to the sample density only exists for 

n < Ξ , where Ξ is typically ∼ 10 . This is a result of the way 
the iterative procedure works, and the definition of �2

(n)
(�0) . 

After a large number of iterations the refinement procedure 
can always force the data to closely fit the modelled slope 
through unreasonable manipulation (e.g., by massively 
inflating low-Q values). This results in a drastically reduced 
�2 at large values of n. Furthermore, at values of n > Ξ , 
�2
(n)
(�0) will decrease with decreasing �0 because the abso-

lute values used to calculate �2
(n)
(�0) are smaller as the mag-

nitude of the model slope decreases. However, a minimum 
generally exists at 𝜌0 > 0 because the iterative procedure 
struggles to force the D(r) to the horizontal. Computing the 
function �2(�0;n) illustrates that above Ξ iterations a well 
defined minimum in �2(�0) no longer exists, and the density 
region in which the iterative procedure can fit the data rap-
idly increases (Fig. 2).

The value of Ξ will depend on the data and the value of 
rmin . The change in behaviour of �2(�0;n) above and below Ξ 
can be illustrated by plotting a map of the function (Fig. 2c). 
The rapid asymptotic convergence in just a few iterations 
to the true minimum in �2 can be seen, as can the sharp 
shelf in the function at n = Ξ . Above n = Ξ the true density 
minimum is briefly preserved as a local minimum in the 

function, with the global minimum at lower �0 physically 
meaningless (Fig. 2b, d). Care must be taken in the density 
refinement to ensure that n < Ξ , as any solver would naively 
find the physically meaningless minimum at n > Ξ . Prior 
to the n = Ξ limit, the density minimum already begins to 
be shifted away from the true value of �0 by the widening 
plateau at low �0 (Fig. 2d). At high enough �0 resolution 
the number of iterations itself can be optimised, as this is 
seen as a maximum in the value of �0 along the minimum in 
�2(�0;n) (Fig. 2d). This is a result of the trade-off between 
the minimum asymptotically approaching the true value of 
�0 with increasing number of iterations, and the shift of the 
minimum towards lower �0 as n approaches Ξ . An example 
script to compute maps of the �2(�0;n) function is provided 
with the LiquidDiffract source code. Greater values of n 
can be used to optimise the S(Q) and real-space correlation 
functions at a set density, but the value of �2 used to extract 
density becomes meaningless.

The next workflow tabs are automatically updated with 
the resulting PDF functions after the refinement of i(Q) 
has run, or after the initial calculation of i(Q) if the S(Q) 
pass-through option is selected. If a modification function 
is selected the default behaviour is to only apply this to dis-
play the initial i(Q) and to calculate the final g(r) after the 
refinement procedure has completed. An option is provided 
to use the modification function within the refinement proce-
dure, although this is not recommended for most use cases. 
Figure 3 shows an example of using the iterative refinement 
procedure in LiquidDiffract to obtain a properly normalised 
S(Q) and g(r).

PDF output

This tab displays the optimised structure factor, S(Q), pair 
distribution function, g(r), and radial distribution function, 
RDF(r), following operations made in the refinement tab. 
The functions can be inspected within the software, or out-
put to text files for further analysis or graphing by the user. If 
a modification function has been used in the data treatment 
then information on this is saved along with the raw S(Q). 
Information on the sample composition and density is also 
saved automatically. The S(Q) is defined as in Eqs. 32 and 
37, and the g(r) as the finite integral version of equation 2:

The RDF(r) describes the average number of particles that 
can be found within a sphere of radius r. It is defined as:

or, by combining with Eq. 18:

(18)g(r) − 1 =
1

2�2r�0 ∫
Qmax

0

Qi(Q) sin(Qr)dQ.

(19)RDF(r) = 4�r2�(r) = 4�r2�0g(r)
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Structural information: integration and curve fitting

The final tab provides several methods of extracting aver-
age coordination numbers of atomic pairs from the cal-
culated radial distribution functions. Two toolboxes are 

(20)RDF(r) =

[
2r

� ∫
Qmax

0

Qi(Q) sin(Qr)dQ

]
+ 4�r2�0.

provided: an Integration Toolbox (which is generally used 
for monatomic samples), and a Curve-fitting Toolbox 
(which is generally used for polyatomic samples).

An average coordination number, N̄𝛼𝛽 , can be defined as 
the average number of atoms � around an atom � . This can 
be calculated by integrating the pair-distribution function, 
g(r), over a spherical shell defined by an inner and outer 
radius, r1 and r2 , and multiplying by the bulk density:

Fig. 2  a Function �2(�0;n) computed for sample data at increas-
ing values of n. The lack of a well-defined minimum at high values 
of n can be seen, as can the increasing density region in which the 
iterative procedure can fit the data, but the sharp change in behaviour 
at n ≥ Ξ is not obvious. The minimum within the widening plateau 
region at �0 ∼ 0.027 that exists at high values of n is also not obvi-
ous. b Close up of the function �2(�0;n) across the limit Ξ = 11 . At 
n = 11 the local minimum towards �0 = 0 becomes the global mini-
mum. Immediately beyond the n = Ξ limit the local minimum is still 
well-defined enough to find with a solver, given a bound-constrained 
minimisation that excludes the new global minimum from the search 
space. c Map of the function �2(�0;n) computed for the same sample 
data. The colour scaling shows the log-scale value of the �2 function, 

so that the minima above and below n = Ξ are obvious, despite the 
difference in scale. For this data, more than 3 iterations are required 
for convergence and above 10 iterations a density refinement proce-
dure would fail. More iterations can be used to optimise the S(Q)/g(r) 
but the value of �2 used to extract density becomes meaningless. d 
Close-up of the function �2(�0;n) computed with increased resolution 
in �0 . The colour scaling shows the log-scale value of the �2 func-
tion, so that the minima at low and high n are obvious, despite the 
difference in scale. The density minimum persists as a local mini-
mum beyond n = Ξ until n = 14 , although the minimum begins to be 
shifted to lower values of �0 . The optimum number of iterations can 
be seen as a local maximum in the value of �0 along the minimum in 
�2(�0;n)
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where c� is the atomic concentration of species � in the sam-
ple and g��(r) is the partial pair distribution function for 
the �−� pair. For a monatomic sample this is equivalent 
to simply integrating over the RDF(r). LiquidDiffract pro-
vides a toolbox to extract the first coordination number, N1 , 
by computing this integral across the first peak in RDF(r). 
Three alternative methods are implemented based on com-
monly used methods in the literature (Waseda 1980).

The first method is based on the assumption that the 
quantity rg(r) is symmetrical for a coordination shell about 
its average position. This is computed by integrating over 
RDF(r) from the leading edge of the first peak in rg(r) 
(equivalently, T(r), Eq. 27), r′

0
 , to its maximum r�max , and 

doubling the result:

(21)N̄𝛼𝛽 = ∫
r2

r1

4𝜋𝜌0c𝛽g𝛼𝛽(r)r
2dr,

The second method is based on the assumption that the coor-
dination shell is instead symmetrical about a radius which 
defines the maximum in the r2g(r) curve. This is computed 
in a similar way, integrating over RDF(r) from the leading 
edge of the first peak in r2g(r) (equivalently, the RDF(r)), r0 , 
to its maximum rmax and doubling:

Since the first peak is not truly symmetrical, N̄A and N̄B can 
be considered estimates of the lower bound on the aver-
age coordination number. Typically, it also the case that 
N̄A < N̄B . This consideration of asymmetry leads to the third 

(22)N̄A = 2∫
r�max

r�
0

4𝜋𝜌0r
[
rg(r)

]
sym

dr.

(23)N̄B = 2∫
rmax

r0

4𝜋𝜌0
[
r2g(r)

]
sym

dr.

Fig. 3  Reciprocal-space structure factor and real-space correla-
tion functions of liquid gallium as processed through LiquidDif-
fract from synchrotron x-ray diffraction data measured at 0.1  GPa 
in a diamond anvil cell (Drewitt et al. 2020). a Initial S(Q) and opti-
mised S(Q) after refinement of the normalisation using the itera-
tive procedure ( Qmin = 0.54 , Qmax = 11 , rmin = 2.2 , niter = 50 ) at 
�0 = 0.05256 atoms∕Å3 ( 6.085 g∕cm3 ). The dashed orange line 
shows the optimised S(Q) modified with a Lorch function. b Initial 
differential correlation function, D(r) (blue line). Applying a Lorch 
function prior to the Fourier transform suppresses some of the FT 
artifacts (red dashed line). The green line shows the optimised D(r). 
c Initial g(r) (blue line) and resulting optimised g(r) (green line) at 

�0 = 6.085 g∕cm3 with a Lorch function applied prior to the Fourier 
transform. (d) Integration across the first peak in the resulting RDF(r) 
to rmin = 3.57 (automatically located by the Integration Toolbox) 
gives an average coordination number, N̄Ga−Ga , of 10.46, with the 
position of the T(r) peak maximum, rGa−Ga , at 2.83 Å , which is con-
sistent with previously reported values of coordination number and 
bond-length in liquid gallium (Waseda and Suzuki 1972; Yagafarov 
et  al. 2012; Drewitt et  al. 2020). The first peak is asymmetric, and 
can also be fitted with a skewed gaussian using the Curve-fitting Tool-
box, yielding N̄Ga−Ga = 10.53 ± 0.04 and rGa−Ga = 2.615 ± 0.002 with 
� = 0.509 ± 0.004 and � = 1.91 ± 0.03
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method, which involves integrating RDF(r) from the leading 
edge of the first peak r0 to first minimum following it, rmin:

An auto-refine button is provided to quickly find the posi-
tions of r0 , r�max , rmax and rmin using a root-finding and mini-
misation procedure. The user can also set the limits manu-
ally via a spinbox or by dragging the limits on the data plot. 
In particular, careful setting of rmin may be required as its 
apparent value can fluctuate due to errors in RDF(r), and 
with changes in p-T conditions (e.g., Yagafarov et al. 2012). 
An example of coordination number extraction for a mona-
tomic sample using the Integration Toolbox is illustrated in 
Fig. 3d.

For polyatomic samples it is more useful to fit the RDF(r) 
with a number of peaks so that the individual contributions 
from different �-� pairs can be investigated. LiquidDiffract 
provides a curve-fitting toolbox to do this. For each individ-
ual peak attributed to an �-� pair the coordination number 
can be calculated by (Petkov 2012):

where c� is the atomic proportion of � in the composition, 
and W

′x-ray

��
 is the x-ray weighting factor for the �-� pair, 

given by (Faber and Ziman 1965):

where cp is the atomic fraction of species p, � is the Kro-
necker delta ( ��� = 0 if � ≠ � and ��� = 1 if � = � ), and Kp 
is the effective atomic number of species p given by the 
Warren–Krutter–Morningstar approximation specifically at 
Q = 0 (an option is provided in the Additional Preferences 
dialog to use the data Q-range instead; Eq. 43; Warren et al. 
1936).

It is generally preferable to fit the T(r) instead of RDF(r) 
as the peaks are symmetrically broadened and gaussian in 
shape (Waseda 1980), with:

The gaussian peak function is defined as:

with � the peak centre, � describing the width of the 
peak, and A the area under the curve. In many cases prior 

(24)N̄C = ∫
rmin

r0

4𝜋𝜌0r
2g(r)dr.

(25)N̄𝛼𝛽 =
c𝛽

W
�x-ray
𝛼𝛽

× Respective RDF Peak Area,

(26)W
�x-ray
��

=
c�c�K�K�

�
2 − ���

�
�∑

� c�K�

�2 ,

(27)T(r) =
RDF(r)

r
.

(28)Gauss(r) =
A

�
√
2�

exp

�
−(r − �)2

2�2

�

knowledge of the coordination number or average bond 
length for an �-� pair may be available so it is more useful 
to redefine the peak function with N̄𝛼𝛽 as a fitting parameter. 
Combining Eq. 28 with Eq. 25 and the definition of T(r) 
from Eq. 27 we can find:

with the peak centre, � , equivalent to the average �−� bond 
length, r�� , and ��� a measure of the distribution of intera-
tomic distances arising from thermal and static structural 
disorder.

In LiquidDiffract the user can add an arbitrary number of 
peaks and fix or refine any combination of the parameters 
( N̄𝛼𝛽 , r�� and ��� ) for each peak individually or simultane-
ously. The data range to fit can also be selected by the user, 
and residuals are plotted alongside the fits.

In some cases the peaks in the radial distribution function 
may have significant asymmetry. Sukhomlinov and Müser 
(2017, 2020) noted that for some samples and conditions 
the interatomic distances may form a skewed distribution, 
and that a skew-normal distribution provides a closer fit to 
the RDF(r) than a pure gaussian. The skew-normal distribu-
tion is a pure gaussian multiplied by a skewness coefficient 
defined as:

where � is an additional fitting parameter describing the 
skew. By analogy with Eq. 29 we can then instead fit:

When ��� = 0 Eq. 31 is identical to Eq. 29. LiquidDiffract 
provides the option to individually toggle this additional 
skewness parameter for any of the peaks in the fit.

It is important to note that naively fitting multiple Gauss-
ians to the RDF(r) or T(r) can sometimes lead to unphysi-
cal results (Cristiglio et al. 2009; Petkov 2012). Peaks must 
be correctly assigned to specific pair correlations, which 
requires additional structural information. Strongly overlap-
ping peaks may also result in non-unique solutions to the 
fit, and additional structural constraints from theory, mod-
elling, or complementary experimental data (such as neu-
tron diffraction with isotope substitution or extended x-ray 
absorption fine structure spectroscopy) may be required to 

(29)T(r) =
�
𝛼𝛽

⎡
⎢⎢⎣
N̄𝛼𝛽W

�x-ray
𝛼𝛽

c𝛽𝜎𝛼𝛽r
√
2𝜋

exp

�
−
�
r − r𝛼𝛽

�2
2𝜎2

𝛼𝛽

�⎤
⎥⎥⎦

(30)1 + erf

�
�
x − �

�
√
2

�

(31)

T(r) =
�
𝛼𝛽

� N̄𝛼𝛽W
�x-ray
𝛼𝛽

c𝛽𝜎𝛼𝛽r
√
2𝜋

exp

�
−
�
r − r𝛼𝛽

�2
2𝜎2

𝛼𝛽

�

×

�
1 + erf

�
𝜉𝛼𝛽

r − r𝛼𝛽

𝜎𝛼𝛽

√
2

���
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fix one or more values in the fit and obtain sensible estimates 
of the remaining structural parameters (Fig. 4b; Cristiglio 
et al. 2009). As N̄𝛼𝛽 and r�� are both fitting parameters in the 
Curve-fitting Toolbox, and any combination of parameters 
can be fixed or refined, this process is simple in LiquidDif-
fract. Nevertheless, structural parameters of multiple cor-
relations can still often be extracted directly from partially 
overlapping peaks without prior knowledge of any param-
eters (Fig. 4a; Petkov 2012). An example of using the Curve-
fitting Toolbox to extract structural parameters from the T(r) 
functions of polyatomic samples is shown in Fig. 4.

Further development

The features and capabilities of LiquidDiffract described 
here relate to version 1.1.8 of the software. Planned fea-
tures include the option to use neutron scattering data, 
improvements to the Curve-fitting Toolbox such as con-
volution with modification functions to account for FT 

artifacts in the RDF(r), support for saving data options set 
in the GUI to a configuration file, and better support for 
working with multiple data sets simultaneously. LiquidDif-
fract also assumes there is no intramolecular contribution 
to the D(r), but this is only strictly true for some composi-
tions (e.g. monatomic metallic liquids; Eggert et al. 2002). 
Support for including intramolecular forces may be added 
in future releases however. The current version of Liquid-
Diffract does not implement simultaneous refinement of 
the background scaling factor, b along with density, which 
is a method commonly employed in the literature (Eggert 
et al. 2002). LiquidDiffract was primarily designed for 
analysis of data collected in high-pressure experiments. 
In these cases additional care in the background scaling 
is often required, and naive optimisation of b along with 
density can lead to unphysical results. Nevertheless, this 
is a planned feature for future releases of LiquidDiffract, 
as is support for more complex background scaling such 
as Q-dependent background corrections. We also welcome 
feature requests or bug reports via the github issue tracker 

Fig. 4  Example usage of the Curve-fitting Toolbox to extract struc-
tural information in LiquidDiffract. Gaussian fits (red dashed lines) 
to the refined T(r) (grey lines) of two samples are shown: a  CaSiO3 
glass and b  MgSiO3 liquid. The blue and green lines show the indi-
vidual gaussians that contribute to the summed models. Data was 
obtained from in situ synchrotron X-ray diffraction with aerodynamic 
levitation and  CO2 laser-heating at beamline ID11 of the European 
Synchrotron Radiation Facility (ESRF), Grenoble, France. a The 
T(r) of  CaSiO3 glass at ambient conditions was calculated by Liquid-
Diffract with �0 = 0.0749 atoms∕Å3 ( 2.89 g∕cm3 ). The correlation 
function was refined using the iterative procedure (with Qmin = 1.25 , 
Qmax = 26 , rmin = 1.25 and niter = 1000 ) and a Lorch function was 
applied prior to the final Fourier transform. The first two peaks in 
the T(r) can be attributed to the nearest-neighbour Si–O and Ca–O 
correlations respectively, with a high-r contribution from O–O cor-
relations overlapping the second peak (Waseda and Toguri 1977; 
Taniguchi et al. 1997; Benmore et al. 2010). As the Si–O and Ca–O 
correlations do not overlap significantly, both peaks could be fitted 
simultaneously and all parameters allowed to vary in the fit. This 
yielded parameters for the Si-O correlation of N̄Si−O = 4.00 ± 0.01 , 
rSi−O = 1.624 ± 0.001 and �Si−O = 0.110 ± 0.001 ( �Si−O = 0 ), 
and parameters for the Ca-O correlation of N̄Ca−O = 6.06 ± 0.04 , 
rCa−O = 2.367 ± 0.001 and �Ca−O = 0.157 ± 0.001 ( �Ca−O = 0 ). The 

obtained structural parameters are consistent with previously reported 
values derived from both simulations (Mead and Mountjoy 2006; 
Lan et al. 2017b) and experimental studies (Yin et al. 1986; Eckers-
ley et al. 1988; Gaskell et al. 1991; Taniguchi et al. 1997; Benmore 
et  al. 2010; Skinner et  al. 2012; Salmon et  al. 2019). b The T(r) of 
 MgSiO3 liquid at ambient pressure was calculated by LiquidDif-
fract at �0 = 0.07816 atoms∕Å3 ( 2.606 g∕cm3 ), with �0 extracted 
using the density refinement feature. The refined density is consist-
ent with previously reported estimates (Nomura et  al. 2017; Kim 
et al. 2019). The correlation function was refined using the iterative 
procedure (with Qmin = 0.3 , Qmax = 24 , rmin = 1.34 and niter = 1000 ) 
and a Lorch function was applied prior to the final Fourier transform. 
The first two peaks in the T(r) are attributed to the nearest-neigh-
bour Si–O and Mg–O correlations respectively (Waseda and Toguri 
1977; Wilding et al. 2008). The Si-O coordination number was fixed 
to 4.0 in the fit (Wilding et  al. 2008) due to the overlapping nature 
of the two peaks. A simultaneous fit of the remaining structural 
parameters yielded rSi−O = 1.651 ± 0.001 , �Si−O = 0.132 ± 0.001 
( �Si−O = 0 ), N̄Mg−O = 5.08 ± 0.06 , rMg−O = 2.114 ± 0.003 and 
�Mg−O = 0.232 ± 0.003 ( �Mg−O = 0 ). These structural parameters are 
also consistent with previously reported values derived from both 
simulations (Lan et  al. 2017a; Kim et  al. 2019) and experimental 
studies (Funamori et al. 2004; Wilding et al. 2008)
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(https:// github. com/ bjhei nen/ Liqui dDiff ract/ issues), or 
directed to the corresponding author.

Appendix A: Total structure factor 
calculations

LiquidDiffract implements both the Faber-Ziman (Faber and 
Ziman 1965) and Ashcroft-Langreth (Ashcroft and Langreth 
1967) formalisms of the total molecular structure factor, S(Q). 
In both cases the S(Q) is converted to normalised (atomic) 
units following the method of Krogh-Moe (1956) and Nor-
man (1957). In both formalisms the scattering intensity from 
the sample, ISample(Q) , is first extracted from the measured 
intensity by subtracting a background pattern with a scaling 
factor applied as in Eq. 4.

Faber‑Ziman formalism

The Faber-Ziman total structure factor is defined as:

In the above equation ICoh(Q) is the coherent scattering from 
the sample, defined as:

where �FZ is the Krogh-Moe-Norman normalisation factor 
that converts the signal into atomic units, N is the total num-
ber of atoms in the compositional unit, and 

∑
p I

Incoh
p

(Q) is 
the sum of the Q-dependent incoherent (Compton) scatter-
ing signals from each atom p in the compositional unit. In 
LiquidDiffract IIncoh(Q) is interpolated from the analytical 
tabulations of Hubbell et al. (1975). The normalisation fac-
tor �FZ is defined as:

where Qmax is the maximum scattering momentum and �0 
is the average atomic number density of the sample. The 
Q-dependent functions ⟨f 2⟩ and ⟨f ⟩2 are the average scatter-
ing functions:

(32)SFZ(Q) =
ICoh(Q) −

�⟨f 2⟩ − ⟨f ⟩2�
⟨f ⟩2 .

(33)ICoh(Q) = �FZISample(Q) −
1

N

∑
p

IIncoh
p

(Q),

(34)�FZ =

−2�2�0 + ∫
Qmax

0

∑
p I

Incoh
p

(Q) + ⟨f 2⟩
⟨f ⟩2 Q2dQ

∫
Qmax

0

Q2ISamp(Q)

⟨f ⟩2 dQ

,

(35)⟨f 2⟩ = 1

N

�
p

�
fp(Q)

�2

where fp(Q) are the atomic form factors for each atom p in 
the compositional unit. The atomic form factors are taken 
from the analytic tabulation published in the International 
Tables of Crystallography (Brown et al. 2006). For a mona-
tomic sample ⟨f 2⟩ = ⟨f ⟩2.

Ashcroft‑Langreth formalism

The Ashcroft-Langreth total structure factor is defined as:

where N is the number of atoms in the compositional unit, 
Ztot is the total atomic number of the compositional unit (i.e. ∑

p Zp ), and fe(Q) is an effective electronic form factor. The 
coherent scattering from the sample ICoh(Q) is here defined 
as:

The incoherent scattering signals are calculated in the same 
way as Eq. 33, but here the normalisation factor �AL is 
defined as:

The effective electronic form factor for the sample, fe(Q) , 
is defined as:

The function J(Q) is then defined by:

and the value S∞ by:

where Kp is the Warren–Krutter–Morningstar approximation 
for the effective atomic number of each atom (Warren et al. 
1936). This is calculated by:

(36)⟨f ⟩2 = 1

N2

�
p

�
q

fp(Q)fq(Q),

(37)SFZ(Q) =
ICoh(Q)

NZ2
tot f

2
e
(Q)

,

(38)ICoh(Q) = N

[
�ALISamp(Q) −

∑
p

IIncoh
p

(Q)

]
.

(39)�AL = Z2
tot

−2�2�0 + ∫
Qmax

0

[
J(Q) + S∞

]
Q2dQ

∫
Qmax

0

ISamp(Q)

f 2
e
(Q)

Q2dQ

.

(40)fe(Q) =

∑
p fp(Q)

Ztot
.

(41)J(Q) =

∑
p I

Incoh
p

(Q)

Z2
tot f

2
e
(Q)

(42)S∞ =

∑
p K

2
p

Z2
tot

,

https://github.com/bjheinen/LiquidDiffract/issues
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where the angled brackets denote an average over the 
Q-range of the data.

Re‑scaling of functions in the Ashcroft‑Langreth 
formalism

The Faber-Ziman S(Q) is normalised to unity at infinite Q 
(i.e., limQ→∞ SFZ(Q) = 1 ), but for the Ashcroft-Langreth for-
malism limQ→∞ SAL(Q) = S∞ . For monatomic samples the 
value S∞ = 1 , but for multi-component (polyatomic) sam-
ples 0 < S∞ < 1 . This means that the g(r) approaches 1 − S∞ 
rather than 0 at r = 0 , and the D(r) and RDF(r) are similarly 
scaled. An option is provided in the Additional Preferences 
dialog to either plot the Ashcroft-Langreth S(Q) and g(r) as 
calculated, or re-scaled to match the conventional scaling 
of the Faber-Ziman functions. The re-scaling of the RDF(r) 
is always performed to allow the same fitting routines to be 
used in the structural information tab.

The re-scaled functions are calculated by:
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(43)Kp =

⟨
fp(Q)

fe(Q)

⟩

Q
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(44)S�(Q) =
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S∞
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S∞
+ 1
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RDFAL(r) − 4��0r

2

S∞
+ 4��0r
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