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A B S T R A C T

The propagation of plane incident waves over a long submerged uniform rectangular structured ridge
protruding from the sea bed is considered. The ridge is comprised of a uniform closely-spaced array of vertical
barriers between which the fluid is allowed to flow. In addition to the height and width of the ridge, the
orientation and thickness of the barriers are adjustable design parameters. Particular interest centres negative
refraction of obliquely-incident waves, shown to be possible provided the barriers extend sufficiently close to
the surface. A key result is that the modulus of reflection and transmission coefficients are symmetric functions
of the incident wave heading and the barrier orientation. This implies perfect transmission of wave energy for
thin barrier elements at incident angles that are the reverse of the barrier orientation, extending the result of
Porter (2021) to structured plate arrays of any submergence. The paper details two mathematical approaches
to the solution of the problem, one for general barrier orientations and the other for a specific orientation
where special treatment of the resulting problem is required. Numerical computations compare favourably
with a variety of established results and good agreement with an existing shallow water approximation is
confirmed for sufficiently long wavelengths.
1. Introduction

The bespoke manipulation of water waves by rigid bathymetric
structures immersed in a fluid with a free surface has been the main
subject of interest in a number of recent papers: see, for e.g., Farhat
et al. (2008), Chen et al. (2009), Farhat et al. (2010), Berraquero et al.
(2013), Maurel et al. (2017, 2019), Marangos and Porter (2021) and
Porter et al. (2021).

These studies have been principally motivated by the application
of so-called metamaterials to problems relating to electromagnetic,
acoustic and elastic wave propagation in which devices are created
to manipulate waves in ways that are inaccessible using conventional
materials (an extensive modern catalogue of examples is described
in collection of volumes edited by Maier (2018)). A metamaterial is
typically defined by elements forming a microstructure possessing a
lengthscale that is significantly smaller than the underlying wavelength
and designed to produce unusual macroscopic effects on the wavefield.
In water waves this includes, for example, negative gravity (e.g. Hu
et al. (2013)) and negative refraction (e.g. Farhat et al. (2010) and
Marangos and Porter (2021)).

The earliest application of metamaterials in a water waves setting
was described by Farhat et al. (2008) who considered an annular ring
device comprised of closely-spaced vertical posts extending uniformly

∗ Corresponding author.
E-mail address: richard.porter@bristol.ac.uk (R. Porter).
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through the fluid as an invisibility cloak, designed to bend incom-
ing waves entering the device around the centre of the ring without
distorting the wavefield outside the ring. Berraquero et al. (2013)
used a closely-spaced array of submerged rectangular ridges protruding
upwards from the bottom as a device for perfectly transmitting waves
through a sharp bend in a channel of uniform width. In both these
contributions the exact governing equations are reduced to approxi-
mate two-dimensional equations, independent of the depth, involving
a rank-2 tensor whose elements encode the macroscale influence of
the microstructure through homogenisation. This independent spatial
control of two perpendicular components of the wave speed is now
influenced by the design of elements of the microstructure. In certain
applications such as cloaking (e.g. Farhat et al. (2008) and Zareei
and Alam (2015)), a coordinate transformation method prescribes this
design.

The analysis for Berraquero et al. (2013) was performed under
so-called shallow water theory which, as the name suggests, is an
approximation which applies when the depth of the fluid is small
compared to both the wavelength and horizontal lengthscales over
which significant changes depth occur. Their homogenisation, which
did not to take into account this latter restriction, was later improved
upon by Maurel et al. (2017) whilst effective matching conditions
on boundaries of the water wave metamaterial were established in
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Maurel et al. (2019) allowing them to consider the topic of the present
study: plane wave scattering by a long structured ridge of finite width.
All three contributions mentioned above were performed under the
restriction of shallow water theory. Marangos and Porter (2021) also
developed a shallow water model which complements those earlier
models by assuming the gaps between the rectangular protrusions in
the bed are small relative to their height. Whilst the model of Maurel
et al. (2017) relied upon (albeit simple) computations of the effective
depths, in the method of Marangos and Porter (2021) these expressions
were explicit.

The same close-spacing assumption has recently been used in Porter
et al. (2021) to consider scattering of wave by a vertical plate array
structure confined within a truncated cylinder protruding from the
bottom of the fluid. In that work, the results from the shallow wa-
ter theory of Marangos and Porter (2021) was compared with a full
depth-dependent treatment of the problem. As expected, the agree-
ment between exact and approximate theories was shown to be good
provided the depth to wavelength ratio was sufficiently small.

Significantly, the work of Porter et al. (2021) was the first to
consider a bathymetric water wave microstructure under full depth-
dependent theory and the solution posed mathematical challenges. In
particular, in seeking separation solutions in the domain including the
structured bed, it becomes necessary to determine the eigenvalues of
a non-trivial dispersion relation. The present paper is closely related
to Porter et al. (2021) but here we consider plane wave scattering by
a long submerged uniform rectangular ridge formed by a plate array.
This is geometrically simpler than the truncated cylinder of Porter et al.
(2021). In particular, the factorisation of the longshore wavenumber
dependence from the problem results in a two-dimensional problem
in a vertical cross section perpendicular to the longshore direction.
In seeking eigensolutions over the structured bed a non-trivial disper-
sion relation results. However, apart from special cases, it is found
that eigenvalues lie in the complex plane and this brings an added
complication to the mathematical and numerical solutions not en-
countered in Porter et al. (2021). A closely-related problem involving
long waves through a microstructure consisting of a doubly-periodic
array of slender surface-piercing cylinders has been considered recently
by Hu et al. (2021). The formulation, which involves replacing the
effect of the microstructure by an effective medium, and its solution
has many similarities to the present work. This includes developing
eigensolutions through the depth including the microstructure which
leads to a complicated dispersion relation with roots in the complex
plane. The numerical scheme used by Hu et al. (2021) is also similar
to the approach used here.

In addition to the developing solutions to the general problem we
will be interested in comparing solutions to the shallow water approxi-
mation of Marangos and Porter (2021) and to other special cases. These
include the case where the barriers forming the structured ridge are
aligned with the longshore direction, a consequence of which matching
conditions along the lateral edges of the ridge change character. We
take advantage of this to develop a new approach (this appears in
Section 3) which is based on the formulation and solution of integral
equations, similar to Porter and Evans (1995). This approach makes it
simpler to consider a fluid depth within the structured array which is
different to the fluid depth either side of the ridge. This contrasts with
the eigenfunction matching method used for the general orientation of
the barriers developed in Section 2 which is most easily applied in the
case where the total fluid depths inside and outside the ridge are the
same. In Section 4, we discuss numerical methods and convergence to
existing results. Of particular interest will be the influence of the depth
of submergence of the top of the ridge below the surface and the effect
2

this has on its refractive properties. b
Fig. 1. The most general configuration of the structured ridge of width 2𝑏.

2. Formulation and solution

Cartesian coordinates (𝑥, 𝑦, 𝑧) are used with 𝑧 directed vertically
upwards from an origin lying in the mean free surface of the fluid.
In the semi-infinite regions 𝑥 < −𝑏 and 𝑥 > 𝑏 the fluid is of uniform
constant depth ℎ. In the strip −𝑏 < 𝑥 < 𝑏 a closely-spaced array
(periodicity 𝑙) of vertical barriers each of width 𝑙𝛩 (0 < 𝛩 < 1) protrude
upwards from a constant depth 𝐷 to a depth 𝑑 below the surface. The
narrow gaps between the barriers are of width (1−𝛩)𝑙 and the barriers
are rotated through an anticlockwise angle 𝛿 with respect to the (𝑥, 𝑧)
plane. See Fig. 1. The geometry is therefore specified in exactly the
same way as, and with almost identical notation to, Marangos and
Porter (2021).

A plane wave is incident from 𝑥 = −∞ and propagates at an
anticlockwise angle 𝜃0 ∈ (−𝜋∕2, 𝜋∕2) with respect to the positive 𝑥-
direction. The wave is partially reflected and partially transmitted with
amplitudes described by reflection and transmission coefficients 𝑅 and
𝑇 , being the principal unknowns in the problem.

Working within the assumptions of classical linearised theory,
namely that the fluid is inviscid and incompressible and its motion as-
sumed to be irrotational and of small amplitude, there exists a velocity
potential 𝜙(𝑥, 𝑦, 𝑧) relating to motion of a single radian frequency 𝜔 that
satisfies

∇2𝜙 = 0, in the fluid (1)

and

𝜙𝑧 −𝐾𝜙 = 0, on 𝑧 = 0 (2)

where 𝐾 = 𝜔2∕𝑔 with

�̂� ⋅ ∇𝜙 = 0 (3)

on all rigid submerged boundaries having unit outward normal, �̂�. In
𝑥 < −𝑏 and 𝑥 > 𝑏 (3) reduces to 𝜙𝑧 = 0 on 𝑧 = −ℎ and we have

𝜙(𝑥, 𝑦, 𝑧) ∼

{

(ei𝛼0𝑥 + 𝑅e−i𝛼0𝑥)ei𝛽0𝑦𝜓0(𝑧), 𝑥→ −∞

𝑇 ei𝛼0𝑥ei𝛽0𝑦𝜓0(𝑧), 𝑥→ ∞
(4)

here 𝛼0 = 𝑘 cos 𝜃0, 𝛽0 = 𝑘 sin 𝜃0. Here

0(𝑧) = 𝑁−1∕2
0 cosh 𝑘(𝑧 + ℎ), 𝑁0 =

1
2

(

1 + sinh 2𝑘ℎ
2𝑘ℎ

)

(5)

and 𝑘 is the real positive root of 𝐾 = 𝑘 tanh 𝑘ℎ.
Within |𝑥| < 𝑏 and −𝑑 < 𝑧 < 0, above the structured plate

array, (1) continues to hold. For |𝑥| < 𝑏 and −𝐷 < 𝑧 < −𝑑 we can
pproximate the effect of the interaction of the fluid and the vertical
arriers by introducing an effective medium equation (as in Porter
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(2021), Marangos and Porter (2021) and Zheng et al. (2020)) given
by

𝛷𝑌 𝑌 +𝛷𝑧𝑧 = 0 (6)

or 𝜙(𝑥, 𝑦, 𝑧) ≡ 𝛷(𝑋, 𝑌 , 𝑧) where (𝑋, 𝑌 ) are coordinates rotated through
n angle 𝛿 from (𝑥, 𝑦) via the transformation

𝑋
𝑌

)

= 
(

𝑥
𝑦

)

, where  =
(

cos 𝛿 sin 𝛿
− sin 𝛿 cos 𝛿

)

. (7)

he governing equation (6) is derived by exploiting a contrast in
engthscales between the narrow gaps between the barriers and other
engthscales in the problem. That is, we require 𝑙 to be significantly
maller than 𝐷 − 𝑑, 𝑏, 1∕𝑘, all of which are regarded as being of
imilar orders magnitude. Then the ratio of 𝑙∕(𝐷 − 𝑑), say, forms a

small parameter, 𝜖, say, which is used to develop the approximation
(6) through a standard multiple-scales approach — see Porter (2021)
for details. In addition

𝛷𝑧 = 0, on 𝑧 = −𝐷 (8)

holds and, at boundaries between the structured plate array and the
surrounding fluid, effective conditions can be derived at leading order
in 𝜖 which require the local matching of pressures and fluxes across
those boundaries. For |𝑥| < 𝑏, −∞ < 𝑦 <∞ this is expressed as

𝛷|𝑧=−𝑑− = 𝜙|𝑧=−𝑑+ and (1 − 𝛩)𝛷𝑧|𝑧=−𝑑− = 𝜙𝑧|𝑧=−𝑑+ . (9)

We will specify conditions that hold on the lateral boundaries, 𝑥 = ±𝑏,
later.

For now, we remark that replacing the detailed flow within and
into the microstructure by a flow governed by effective equations and
boundary conditions implies a geometric invariance in the 𝑦 coordinate
and this implies that the solution everywhere inherits the 𝑦-variation of
the incident wave. In other words we can write

𝜙(𝑥, 𝑦, 𝑧) = 𝜑(𝑥, 𝑧)ei𝛽0𝑦 (10)

everywhere, including within the region |𝑥| < 𝑏, −𝐷 < 𝑧 < −𝑑 governed
by (6) in transformed coordinates. Now we can write the full solution
in 𝑥 < −𝑏 as

𝜑(𝑥, 𝑧) = (ei𝛼0𝑥 + 𝑅e−i𝛼0𝑥)𝜓0(𝑧) +
∞
∑

𝑛=1
𝑎𝑛e𝛼𝑛(𝑥+𝑏)𝜓𝑛(𝑧) (11)

and in 𝑥 > 𝑏 as

𝜑(𝑥, 𝑧) = 𝑇 ei𝛼0𝑥𝜓0(𝑧) +
∞
∑

𝑛=1
𝑏𝑛e−𝛼𝑛(𝑥−𝑏)𝜓𝑛(𝑧) (12)

n which 𝑎𝑛, 𝑏𝑛 are expansion coefficients, 𝛼𝑛 = (𝛽20 + 𝑘2𝑛)
1∕2 and

𝑛(𝑧) = 𝑁−1∕2
𝑛 cos 𝑘𝑛(𝑧 + ℎ), 𝑁𝑛 =

1
2

(

1 +
sin 2𝑘𝑛ℎ
2𝑘𝑛ℎ

)

. (13)

ere, 𝑘𝑛 are the increasing sequence of positive roots of 𝐾 = −𝑘𝑛 tan 𝑘𝑛ℎ
or 𝑛 ≥ 1. Writing 𝑘0 = −i𝑘 extends this definition to include the prop-
gating wavenumber. Then it is known that the depth eigenfunctions
re orthogonal, satisfying
0

−ℎ
𝜓𝑛(𝑧)𝜓𝑚(𝑧) 𝑑𝑧 = ℎ𝛿𝑚,𝑛, for 𝑚, 𝑛 ≥ 0. (14)

ithin |𝑥| < 𝑏 we use (7) to write (6)

𝑧𝑧 +
(

− sin 𝛿 𝜕
𝜕𝑥

+ cos 𝛿 𝜕
𝜕𝑦

)2
𝜙 = 0 (15)

and then, using (10), reduce this equation, which holds over −𝐷 < 𝑧 <
−𝑑, to

𝜑𝑧𝑧 +
(

− sin 𝛿 𝜕
𝜕𝑥

+ i𝛽0 cos 𝛿
)2
𝜑 = 0. (16)

Likewise, the governing equation (1) in −𝑑 < 𝑧 < 0 is reduced using
(10) to

2

3

𝜑𝑧𝑧 + 𝜑𝑥𝑥 − 𝛽0𝜑 = 0 (17)
and these two equations govern in contiguous domains upon whose
horizontal boundaries the conditions 𝜑𝑧 − 𝐾𝜑 = 0 on 𝑧 = 0, 𝜑𝑧 = 0
n 𝑧 = −𝐷 apply in addition to matching conditions: 𝜑 is continuous
cross 𝑧 = −𝑑 and 𝜑𝑧(𝑥,−𝑑+) = (1 − 𝛩)𝜑𝑧(𝑥,−𝑑−).

In seeking solutions of the form 𝜑(𝑥, 𝑧) = ei𝜇𝑥𝑍(𝑧) we find that

(𝑧) =

{

cosh 𝜆𝑧 + (𝐾∕𝜆) sinh 𝜆𝑧, −𝑑 < 𝑧 < 0

𝐴(𝜇) cosh 𝜅(𝑧 +𝐷), −𝐷 < 𝑧 < −𝑑
(18)

defined such that 𝑍(0) = 1) where

(𝜇) =
cosh 𝜆𝑑 − (𝐾∕𝜆) sinh 𝜆𝑑

cosh 𝜅(𝐷 − 𝑑)
(19)

and

𝜆2 = 𝜇2 + 𝛽20 , 𝜅 = 𝜇 sin 𝛿 − 𝛽0 cos 𝛿 (20)

satisfy the dispersion relation

(1 − 𝛩)𝜅 tanh(𝜅(𝐷 − 𝑑)) = 𝜆𝐾 − 𝜆 tanh 𝜆𝑑
𝜆 −𝐾 tanh 𝜆𝑑

. (21)

For general parameters the roots of this dispersion relation are complex
and the task of locating roots is typically not easy. We note that if 𝜇 is
a root then so is �̄�, its complex conjugate, but −𝜇 is not a root unless
either 𝛩 = 1, 𝐷 = 𝑑, 𝛽0 = 0 or 𝛿 = 0, 𝜋∕2. If any of these parameters are
n place all roots can be shown to lie either on the real or imaginary
-axes and we can use any of these cases as the basis for a numerical
cheme which track roots as the parameters change. In particular when
0 = 0, corresponding to normal wave incidence, 𝜃0 = 0, (21) reduces
o

1 − 𝛩) sin 𝛿 tanh(𝜇(𝐷 − 𝑑) sin 𝛿) =
𝐾 − 𝜇 tanh𝜇𝑑
𝜇 −𝐾 tanh𝜇𝑑

(22)

and it is shown in Porter et al. (2021) (this can be mapped to their
relation using (1−𝛩) sin 𝛿 = cos 𝑡 and (𝐷−𝑑) sin 𝛿 = (ℎ−𝑑) cos 𝑡 to define
n equivalent 𝑡 and ℎ) that this equation has two real roots 𝜇 = ±𝜇0 and
n infinite sequence of roots 𝜇 = ±𝜇𝑛, 𝑛 = 1, 2,… lying on the imaginary
xis. In Porter et al. (2021) it was shown how to locate all these roots
nd, crucially, it was proved that no roots lie away from the real or
maginary axes in the complex plane.

Assuming that roots of (22) have been determined and that roots
ary continuously as a function of 𝛽0 we can increase 𝛽0 in small
teps to the value required allowing us to numerically track the new
ocation of roots in the complex plane as each step is made. Practically,
his is done using Newton iteration. The numerical method is similar
o that described in Hu et al. (2021). In most cases with steps of 1
egrees and 20 iterations at each step are sufficient to reach solutions
f (21) accurate to 12 decimal places. However, there are some cases
here computations require increased refinement, especially when 𝛩

s not small or when 𝑘ℎ is large and when we seek roots further
way from real axis. In these cases, without sufficient refinement,
he roots can ‘hop away’ from their intended branch, landing on and
ollowing the branch of another root. In such instances it is typical
hat conservation of energy is violated and this is a useful signature
hat increased refinement of the root tracking scheme is needed. Two
ontrasting examples of the variation of the roots in the complex plane
re illustrated in Fig. 2, the first example requiring few steps and the
atter many more.

For 𝛽0 ≠ 0, the roots no longer occur in plus/minus pairs and we
abel the roots 𝜇±𝑛 for 𝑛 = 0, 1, 2,… to coincide with ±𝜇𝑛 when 𝛽0 = 0.
ypically 𝜇±0 remain on the real axis and any root off the real axis will
e paired with a complex conjugate.

We have to be careful to monitor any cases where roots coalesce to
orm double roots. In fact this will only happen when 𝐷 > ℎ (a case
e will not actually consider in this part of the paper) and the two real

oots can coalesce before moving off the real axes as 𝛽0 increases past
critical value. This loss of real roots is associated with total internal

eflection for oblique wave incidence into deeper water.
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Fig. 2. Location of 18 roots 𝜇±
𝑛 of the dispersion relation (21) closest to the real axis as 𝛽0 increases from 0◦ (red circles): (a) in steps of 10◦ to 90◦ for 𝑘ℎ = 1, 𝑑∕ℎ = 0.5, 𝛩 = 0.5

nd 𝛿 = 45◦; (b) in steps of 0.1◦ to −60◦ for 𝑘ℎ = 2, 𝑑∕ℎ = 0.25, 𝛩 = 0.9, 𝛿 = 30◦.
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We assume hereafter that 𝜇±𝑛 , 𝑛 = 0, 1, 2,… are known for a
rescribed value of 𝛽0 and continue with the solution method. Thus,
n |𝑥| < 𝑏 we now write

(𝑥, 𝑧) =
∞
∑

𝑛=0
𝑐𝑛ei𝜇

+
𝑛 (𝑥+𝑏)𝑍+

𝑛 (𝑧) + 𝑑𝑛e
i𝜇−𝑛 (𝑥−𝑏)𝑍−

𝑛 (𝑧) (23)

where 𝑍±
𝑛 (𝑧) are defined by (18) with 𝜇 = 𝜇±𝑛 . The spatial offset in the

exponentials in (23) anticipates the sign of the imaginary part of 𝜇±𝑛
in such a way that the exponential functions do not exceed a value of
unity in magnitude.

We now consider the conditions which apply across the two inter-
faces 𝑥 = ±𝑏 which will be used to determine the coefficients 𝑎𝑛, 𝑏𝑛 in
(11) and (12) and 𝑐𝑛 and 𝑑𝑛 in (23). The methodology applied depends
upon the relative size of 𝐷 and ℎ and the angle of rotation of the plates
on the structured bed, 𝛿. We continue by developing a solution method
specific to the case 𝐷 = ℎ and for 𝛿 ≠ 0. Then

𝜑(±𝑏−, 𝑧) = 𝜑(±𝑏+, 𝑧), for −ℎ < 𝑧 < 0 (24)

equates pressures through the fluid and matching fluxes gives, after use
of the mapping (7) and transformation (10)

𝜑𝑥(−𝑏−, 𝑧) =

{

𝜑𝑥(−𝑏+, 𝑧), −𝑑 < 𝑧 < 0

−(1 − 𝛩) sin 𝛿𝛷𝑌 |𝑥=−𝑏+ , −𝐷 < 𝑧 < −𝑑
(25)

where we note that

− (1 − 𝛩) sin 𝛿𝛷𝑌 |𝑥=−𝑏+ = (1 − 𝛩)
(

sin2 𝛿𝜑𝑥(𝑥,−𝑏+)

−i𝛽0 sin 𝛿 cos 𝛿𝜑(𝑥,−𝑏+)
)

. (26)

The relation (25) also applies at 𝑥 = 𝑏 after replacing −𝑏+ by 𝑏− and
−𝑏− by 𝑏+. Applying (24) to (11) and (23) and using the orthogonality
relation (14) gives

e−i𝛼0𝑏 + 𝑅ei𝛼0𝑏 =
∞
∑

𝑛=0
𝑐𝑛(𝑈+

𝑛0 + 𝐿
+
𝑛0) + 𝑑𝑛e

−2i𝜇−𝑛 𝑏(𝑈−
𝑛0 + 𝐿

−
𝑛0) (27)

and

𝑎𝑚 =
∞
∑

𝑛=0
𝑐𝑛(𝑈+

𝑛𝑚 + 𝐿+
𝑛𝑚) + 𝑑𝑛e

−2i𝜇−𝑛 𝑏(𝑈−
𝑛𝑚 + 𝐿−

𝑛𝑚) (28)

for 𝑚 = 1, 2,…. Here we have written

𝑈±
𝑛𝑚 = 1

ℎ ∫

0

−𝑑
𝑍±
𝑛 (𝑧)𝜓𝑚(𝑧) 𝑑𝑧 and 𝐿±

𝑛𝑚 = 1
ℎ ∫

−𝑑

−ℎ
𝑍±
𝑛 (𝑧)𝜓𝑚(𝑧) 𝑑𝑧

(29)
4

a

which can be calculated explicitly from the definitions of 𝑍±
𝑛 (𝑧) and

𝜓𝑚(𝑧) – see Appendix B. Applying (24) to (12) and (23) at 𝑥 = 𝑏 gives

𝑇 ei𝛼0𝑏 =
∞
∑

𝑛=0
𝑐𝑛e2i𝜇

+
𝑛 𝑏(𝑈+

𝑛0 + 𝐿
+
𝑛0) + 𝑑𝑛(𝑈

−
𝑛0 + 𝐿

−
𝑛0) (30)

𝑏𝑚 =
∞
∑

𝑛=0
𝑐𝑛(𝑈+

𝑛𝑚 + 𝐿+
𝑛𝑚)e

2i𝜇+𝑛 𝑏 + 𝑑𝑛(𝑈−
𝑛𝑚 + 𝐿−

𝑛𝑚). (31)

pplication of the condition (25) similarly result in

0(e−i𝛼0𝑏−𝑅ei𝛼0𝑏) =
∞
∑

𝑛=0
𝜇+𝑛 𝑐𝑛(𝑈

+
𝑛0+𝑝

+
𝑛𝐿

+
𝑛0)+𝜇

−
𝑛 𝑑𝑛e

−2i𝜇−𝑛 𝑏(𝑈−
𝑛0+𝑝

−
𝑛𝐿

−
𝑛0) (32)

nd

𝑚𝑎𝑚 = i
∞
∑

𝑛=0
𝜇+𝑛 𝑐𝑛(𝑈

+
𝑛𝑚 + 𝑝+𝑛𝐿

+
𝑛𝑚) + 𝜇

−
𝑛 𝑑𝑛e

−2i𝜇−𝑛 𝑏(𝑈−
𝑛𝑚 + 𝑝−𝑛𝐿

−
𝑛𝑚) (33)

here we have written
±
𝑛 = (1 − 𝛩)[sin2 𝛿 − (𝛽0∕𝜇±𝑛 ) sin 𝛿 cos 𝛿]. (34)

inally from applying (25) at 𝑥 = 𝑏 we have

0𝑇 ei𝛼0𝑏 =
∞
∑

𝑛=0
𝜇+𝑛 𝑐𝑛e

2i𝜇+𝑛 𝑏(𝑈+
𝑛0 + 𝑝

+
𝑛𝐿

+
𝑛0) + 𝜇

−
𝑛 𝑑𝑛(𝑈

−
𝑛0 + 𝑝

−
𝑛𝐿

−
𝑛0) (35)

nd

𝛼𝑚𝑏𝑚 = i
∞
∑

𝑛=0
𝜇+𝑛 𝑐𝑛e

2i𝜇+𝑛 𝑏(𝑈+
𝑛𝑚 + 𝑝+𝑛𝐿

+
𝑛𝑚) + 𝜇

−
𝑛 𝑑𝑛(𝑈

−
𝑛𝑚 + 𝑝−𝑛𝐿

−
𝑛𝑚). (36)

t is clear we can eliminate 𝑅, 𝑇 , 𝑎𝑚 and 𝑏𝑚 from between Eqs. (27)–
36). If the infinite series are truncated at 𝑛 = 𝑁 , and we retain
quations from 𝑚 = 1, 2,… , 𝑁 then we will have 2𝑁 + 2 equations for
he 2𝑁 + 2 unknown constants 𝑐𝑛, 𝑑𝑛, 𝑛 = 0, 1, 2,… , 𝑁 . After inverting
hese equations we can recover 𝑅, 𝑇 and 𝑎𝑚, 𝑏𝑚 for 𝑚 = 1, 2,… , 𝑁 from
he equations above.

It is notable that we have not considered the case 𝐷 ≠ ℎ here.
t is possible to apply the mode matching method described above
o 𝐷 < ℎ, although it complicates the algebra and does not provide
uch additional insight. The difficulty of solving problems in the more

nteresting case of 𝐷 > ℎ is that standard approaches (for equivalent
roblems involving non-porous steps and trenches see, for example,
vans and McIver (1984), Mei and Black (1969) or Kirby and Dalrymple
1983)) rely upon orthogonal eigenfunctions existing in both |𝑥| > 𝑏
nd |𝑥| < 𝑏. In our case this presents two problems. The first is that,

part from special cases of 𝛽0 = 0, or 𝛿 = 0, 𝜋∕2, the eigenfunctions
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𝑍±
𝑛 (𝑧) are not orthogonal. It is possible to define a set of eigenfunctions

from an adjoint problem in which 𝛽0 is replaced by −𝛽0 which satisfy
a generalised orthogonality condition when used in conjunction with
𝑍±
𝑛 (𝑧). However this fails to address a second issue which is that the

solution is complicated by the definition of (26). For the reasons above
we have postponed consideration of the case 𝐷 ≠ ℎ for general 𝛿, but
will consider 𝐷 ≠ ℎ in the special case 𝛿 = 0 below.

. The case 𝜹 = 𝟎

When 𝛿 = 0, the barriers within |𝑥| < 𝑏 are aligned with the 𝑦-
direction and consequently there is no flux across the boundaries 𝑥 = ±𝑏
or −ℎ < 𝑧 < −𝑑. Thus, while (25) still holds, (24) now only holds for
𝑑 < 𝑧 < 0 across the top of the ridge, and the solution outlined in the
revious section cannot be applied directly to this special case.

Using 𝛿 = 0 (21) is reduced to

1 − 𝛩)𝛽0 tanh[𝛽0(𝐷 − 𝑑)] = 𝜆𝐾 − 𝜆 tanh 𝜆𝑑
𝜆 −𝐾 tanh 𝜆𝑑

. (37)

In this case, it can be shown (see Appendix A) in a similar manner to
Porter et al. (2021) that the only values of 𝜆 satisfying (37) lie on the
eal and imaginary axes. Specifically the values of 𝜆 satisfying (37) are
𝜆0 on the real axis and ±𝜆𝑛, 𝑛 = 1, 2,… lying on the imaginary axis. On
ccount of the relationship (20), the corresponding values of 𝜇 = ±𝜇𝑛
re defined by 𝜇𝑛 =

√

𝜆2𝑛 − 𝛽
2
0 . Consequently 𝜇𝑛 lie on the positive

imaginary axis whilst 𝜇0 lies on the positive real axis for 𝜆0 > 𝛽0 and
0 lies on the positive imaginary axis if 𝜆0 < 𝛽0. Such a case will only
ccur when 𝐷 > ℎ and is associated with total internal reflection as
blique waves pass from shallower water into deeper water.

It is important to note that the depth eigenfunctions 𝑍𝑛(𝑧) corre-
ponding to the values of 𝜇𝑛 are orthogonal over the interval −𝑑 < 𝑧 < 0

and (strangely, perhaps) not the whole range of values of 𝑧 over which
hey are defined. To show this we start with the fact that 𝜇𝑛 are distinct

and 𝑍𝑛(𝑧) are real. Then

𝜇2𝑛 − 𝜇
2
𝑚)∫

0

−𝑑
𝑍𝑛(𝑧)𝑍𝑚(𝑧) 𝑑𝑧 = ∫

0

−𝑑
𝑍′′
𝑛 (𝑧)𝑍𝑚(𝑧) −𝑍𝑛(𝑧)𝑍

′′
𝑚 (𝑧) 𝑑𝑧

=
[

𝑍′
𝑛(𝑧)𝑍𝑚(𝑧) −𝑍𝑛(𝑧)𝑍

′
𝑚(𝑧)

]0
−𝑑 = 0 (38)

after using the governing equation 𝑍′′(𝑧) − (𝜇2 + 𝛽20 )𝑍(𝑧) = 0 for
𝑍(𝑧) in −𝑑 < 𝑧 < 0, the boundary condition 𝑍′(0) − 𝐾𝑍(0) and the
conditions matching 𝑍𝑛(𝑧), 𝑍′

𝑛(𝑧) at 𝑧 = −𝑑 to the definition of 𝑍𝑛(𝑧)
in −𝐷 < 𝑧 < −𝑑 which involves hyperbolic functions whose argument
is independent of 𝑛. Thus, it must be that

1
𝑑 ∫

0

−𝑑
𝑍𝑛(𝑧)𝑍𝑚(𝑧) 𝑑𝑧 = 𝐶𝑛𝛿𝑛𝑚 (39)

here 𝐶𝑛 can easily be calculated from the definition of 𝑍𝑛(𝑧) in −𝑑 <
< 0 given by (18) with 𝜇 = 𝜇𝑛; it is defined in Appendix B.

Unlike the general problem with plates rotated through a non-zero
ngle, once 𝛿 = 0 the geometry is symmetric about the vertical plane
= 0. The solution is made simpler by decomposing the potential into

he sum of even and odd parts via

(𝑥, 𝑦, 𝑧) = 1
2
(𝜙𝑠(𝑥, 𝑦, 𝑧) + 𝜙𝑎(𝑥, 𝑦, 𝑧)) (40)

uch that
𝑠(𝑥, 𝑦, 𝑧) = 𝜙𝑠(−𝑥, 𝑦, 𝑧), 𝜙𝑎(𝑥, 𝑦, 𝑧) = −𝜙𝑎(−𝑥, 𝑦, 𝑧). (41)

onsequently the problems for 𝜙𝑠,𝑎 need only be solved in 𝑥 < 0 when
upplemented with the conditions
𝜕𝜙𝑠

𝜕𝑥
= 𝜙𝑎 = 0, on 𝑥 = 0. (42)

dditionally, if we write
𝑠,𝑎(𝑥, 𝑦, 𝑧) ∼ (ei𝛼0𝑥 + 𝑅𝑠,𝑎e−i𝛼0𝑥)ei𝛽0𝑦𝜓 (𝑧), as 𝑥→ −∞ (43)
5

0 𝑈
hen it follows from (4) and (40) with (41) that

= 1
2
(𝑅𝑠 + 𝑅𝑎), 𝑇 = 1

2
(𝑅𝑠 − 𝑅𝑎). (44)

e are now in a position to write down general expansions for the
otentials in 𝑥 < −𝑏 and −𝑏 < 𝑥 < 0. We first factorise the 𝑦 dependence
nherited from the incident wave with
𝑠,𝑎(𝑥, 𝑦, 𝑧) = 𝜑𝑠,𝑎(𝑥, 𝑧)ei𝛽0𝑦 (45)

nd then

𝑠,𝑎(𝑥, 𝑧) = (ei𝛼0𝑥 + 𝑅𝑠,𝑎e−i𝛼0𝑥)𝜓0(𝑧) +
∞
∑

𝑛=1
𝑎𝑠,𝑎𝑛 e𝛼𝑛(𝑥+𝑏)𝜓𝑛(𝑧) (46)

n 𝑥 < −𝑏 where 𝛼𝑛 have been defined after (12). In −𝑏 < 𝑥 < 0 we have

𝑠(𝑥, 𝑧) =
∞
∑

𝑛=0
𝑐𝑠𝑛

cos𝜇𝑛𝑥
cos𝜇𝑛𝑏

𝑍𝑛(𝑧) and 𝜑𝑠(𝑥, 𝑧) =
∞
∑

𝑛=0
𝑐𝑎𝑛

sin𝜇𝑛𝑥
sin𝜇𝑛𝑏

𝑍𝑛(𝑧)

(47)

atisfying (42) where 𝑐𝑠,𝑎𝑛 are coefficients to be determined and the
actors in the denominator normalise the functions of 𝑥.

The matching conditions at the common interface are that 𝜑𝑠,𝑎(𝑥, 𝑧)
s continuous across 𝑥 = −𝑏 and that

𝑠,𝑎
𝑥 (−𝑏−, 𝑧) =

{

𝜑𝑠,𝑎𝑥 (−𝑏+, 𝑧) − 𝑑 < 𝑧 < 0
0, −ℎ < 𝑧 < −𝑑.

(48)

ote that we have no information relating to 𝜑𝑠,𝑎(−𝑏+, 𝑧) or 𝜑𝑠,𝑎𝑥 (−𝑏+, 𝑧)
or −𝐷 < 𝑧 < −𝑑 as the boundary 𝑥 = −𝑏+ is absorbed by the
omogenisation within the microstructure. We could follow the pre-
ious method and use the orthogonality of eigenfunctions in 𝑥 < −𝑏
o determine systems for equations for coefficients from the matching
onditions, following the approach of Evans and McIver (1984) for
xample. Instead, we follow the methods advocated by Mei and Black
1969), Porter and Evans (1995) and formulate integral equations for
unctions relating to the unknown horizontal velocity above the edge
f the ridge at 𝑥 = −𝑏 for which the establishment of the orthogonality
ondition (39) is vital.

We let 𝑈 𝑠,𝑎(𝑧) = 𝜑𝑠,𝑎𝑥 (−𝑏−, 𝑧) = 𝜑𝑠,𝑎𝑥 (−𝑏+, 𝑧) over −𝑑 < 𝑧 < 0.
ombining this definition with (46) we get

𝛼0ℎ(e−i𝛼0𝑏 − 𝑅𝑠,𝑎ei𝛼0𝑏) = ∫

0

−𝑑
𝑈 𝑠,𝑎(𝑧)𝜓0(𝑧) 𝑑𝑧 (49)

nd

𝑛ℎ𝑎
𝑠,𝑎
𝑛 = ∫

0

−𝑑
𝑈 𝑠,𝑎(𝑧)𝜓𝑛(𝑧) 𝑑𝑧 (50)

sing (14). Using the expansions (47) and the orthogonality condi-
ion (39) we find that

𝑛𝑑𝑐
𝑠
𝑛 tan𝜇𝑛𝑏 =

1
𝐶𝑛 ∫

0

−𝑑
𝑈 𝑠(𝑧)𝑍𝑛(𝑧) 𝑑𝑧,

𝑛𝑑𝑐
𝑎
𝑛 cot 𝜇𝑛𝑏 =

1
𝐶𝑛 ∫

0

−𝑑
𝑈𝑎(𝑧)𝑍𝑛(𝑧) 𝑑𝑧,

(51)

or 𝑛 = 0, 1, 2,…. Matching (46) to (47) over 𝑥 = −𝑏, −𝑑 < 𝑧 < 0 and
sing the relations (50) and (51) to eliminate all unknowns (apart from
𝑠,𝑎) we arrive at
0

−𝑑
𝑈 𝑠,𝑎(𝑧′)𝐾𝑠,𝑎(𝑧, 𝑧′) 𝑑𝑧′ = −(e−i𝛼0𝑏 + 𝑅𝑠,𝑎ei𝛼0𝑏)𝜓0(𝑧), −𝑑 < 𝑧 < 0

(52)

here

𝑠(𝑧, 𝑧′) =
∞
∑

𝑛=1

𝜓𝑛(𝑧)𝜓𝑛(𝑧′)
𝛼𝑛ℎ

−
∞
∑

𝑛=0

𝑍𝑛(𝑧)𝑍𝑛(𝑧′)
𝐶𝑛𝜇𝑛𝑑 tan𝜇𝑛𝑏

(53)

nd 𝐾𝑎(𝑧, 𝑧′) is defined as above but with tan𝜇𝑛𝑏 replaced by −cot 𝜇𝑛𝑏.
e proceed by letting
𝑠,𝑎(𝑧) = −(e−i𝛼0𝑏 + 𝑅𝑠,𝑎ei𝛼0𝑏)𝑢𝑠,𝑎(𝑧) (54)
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such that 𝑢𝑠,𝑎(𝑧) is the only unknown satisfying the integral equation
0

−𝑑
𝑢𝑠,𝑎(𝑧′)𝐾𝑠,𝑎(𝑧, 𝑧′) 𝑑𝑧′ = 𝜓0(𝑧), −𝑑 < 𝑧 < 0. (55)

Introducing the definition (54) into (49) gives

i𝛼0ℎ(e−i𝛼0𝑏 − 𝑅𝑠,𝑎ei𝛼0𝑏) = −(e−i𝛼0𝑏 + 𝑅𝑠,𝑎ei𝛼0𝑏)∫

0

−𝑑
𝑢𝑠,𝑎(𝑧)𝜓0(𝑧) 𝑑𝑧 (56)

and so it follows that

𝑅𝑠,𝑎 = e−2i𝛼0𝑏
(

𝛼0ℎ − i𝐴𝑠,𝑎

𝛼0ℎ + i𝐴𝑠,𝑎

)

(57)

where

𝐴𝑠,𝑎 = ∫

0

−𝑑
𝑢𝑠,𝑎(𝑧)𝜓0(𝑧) 𝑑𝑧. (58)

Once 𝑅𝑠,𝑎 is determined, all other coefficients in the problem can also
be determined from 𝑢𝑠,𝑎(𝑧). Thus we are just left requiring to solve
(55) for 𝑢𝑠,𝑎(𝑧) which is performed by introducing an approximation
in which the unknowns are expanded in a finite series of 𝑃 + 1 terms

𝑢𝑠,𝑎(𝑧) ≈
𝑃
∑

𝑝=0
𝑤𝑠,𝑎𝑝 𝑢𝑝(𝑧) (59)

and 𝑤𝑠,𝑎𝑝 are coefficients weighting the expansion functions 𝑢𝑝(𝑧), 𝑝 =
,… , 𝑃 . We are not able to determine the local behaviour of the
olution in the vicinity of the corner of the ridge, but have imagined
hat the flow around the edge at (𝑥, 𝑧) = (−𝑏,−𝑑) is similar to that

around an isolated thin barrier protruding upwards to this point. This
allows us to follow the approximation of Porter and Evans (1995) used
exactly for such barrier configurations. In this approach, we first relate
̂𝑝(𝑧) to 𝑢𝑝(𝑧) by

̂𝑝(𝑧) = 𝑢𝑝(𝑧) −𝐾 ∫

𝑧

−𝑑
𝑢𝑝(𝜁 ) 𝑑𝜁 (60)

uch that �̂�𝑝(𝑧) has zero derivative at 𝑧 = 0 since the functions 𝑢𝑝(𝑧) are
elated to 𝜙𝑥 which itself satisfies (2). Also, 𝑢𝑝(𝑧) should incorporate
he anticipated inverse square root behaviour of 𝜙𝑥 at as 𝑧 approaches
𝑑. Thus we make the choice

̂𝑝(𝑧) =
2(−1)𝑝𝑇2𝑝(𝑧∕𝑑)

𝜋
√

𝑑2 − 𝑧2
(61)

where 𝑇2𝑝(𝑧) is a Chebyshev polynomial, even across 𝑧 = 0. The
outcome of the implementation of the Galerkin approximation, in
which (59) is substituted into (55) before being multiplied by 𝑢𝑞(𝑧) and
ntegrated over −𝑑 < 𝑧 < 0, is
𝑃

𝑝=0
𝑤𝑠,𝑎𝑝 𝐾𝑠,𝑎

𝑝𝑞 = 𝐺𝑞0, 𝑞 = 0, 1,… , 𝑃 (62)

here

𝑠
𝑝,𝑞 =

∞
∑

𝑛=1

𝐺𝑞𝑛𝐺𝑝𝑛
𝛼𝑛ℎ

−
∞
∑

𝑛=0

𝐻𝑞𝑛𝐻𝑝𝑛

𝐶𝑛𝜇𝑛𝑑 tan𝜇𝑛𝑏
(63)

and 𝐾𝑎 differs with tan replaced by −cot whilst

𝐺𝑝𝑛 = 𝑁−1∕2
𝑛 cos 𝑘𝑛ℎ𝐽2𝑝(𝑘𝑛𝑑), for 𝑛 ≥ 1 with

𝐺𝑝0 = (−1)𝑝𝑁−1∕2
0 cosh 𝑘ℎ𝐼2𝑝(𝑘𝑑),

(64)

expressed in terms of Bessel and modified Bessel functions. Also, we
find

𝐻𝑝𝑛 = (−1)𝑝𝐼2𝑝(𝜇𝑛𝑑) ≡ 𝐽2𝑝(−i𝜇𝑛𝑑) (65)

recalling that 𝜇𝑛 are imaginary for 𝑛 ≥ 1 and possibly imaginary for
𝑛 = 0 also. Once 𝑤𝑠,𝑎𝑝 are determined from (62) we have from using
(59) in (58) and working through the details from Porter and Evans
(1995) that

𝐴𝑠,𝑎 ≈
𝑃
∑

𝑤𝑠,𝑎𝑝 𝐺𝑝0. (66)
6

𝑝=0 s
Table 1
Convergence of |𝑅| and |𝐸| = |1 − |𝑅|2 − |𝑇 |2| with truncation parameter, 𝑁 , for
𝛩 = 0.1, 𝛿 = 30◦, 𝑏∕ℎ = 1.
𝑁 𝑘ℎ = 0.25, 𝜃0 = 0◦ 𝑘ℎ = 2.5, 𝜃0 = 60◦

|𝑅| |𝐸| |𝑅| |𝐸|

4 0.162670 10−16 0.139759 8.1 × 10−6

8 0.162727 10−16 0.139991 1.7 × 10−6

16 0.162743 10−16 0.140059 3.5 × 10−8

32 0.162746 10−15 0.140077 2.5 × 10−8

64 0.162747 10−16 0.140082 2.8 × 10−9

One of the advantages of using this method is that it is known
from Porter and Evans (1995) to be rapidly convergent and here
we will confirm that 𝑃 = 5 is normally sufficient for six decimal
place accuracy computations of 𝑅𝑠,𝑎 (indeed often smaller values of
𝑃 will suffice). Separately, and not shown here, we have also used
expansion functions with an inverse cube root singularity at the edge
(𝑥, 𝑧) = (−𝑏,−𝑑) (e.g. Evans and Fernyhough (1995)) and confirmed
hese results converge quickly to the same results as those computed
ith the choice (61). We can also easily confirm that the system of
quations in (62) is real and hence 𝐴𝑠,𝑎 is real from (66) which then
mplies from (57) that |𝑅𝑠,𝑎| = 1 which is required by conservation of
nergy.

. Results

Before discussing the quantitative behaviour of the results, we state
he key finding of this work.

When either 𝜃0 is replaced by −𝜃0, or 𝛿 is replaced by −𝛿, we find
hat the computed values of |𝑅| and |𝑇 | at the same frequency are
nchanged, irrespective of other geometric parameters in the problem.
his symmetry of the reflection and transmission coefficients in wave
eading and the array orientation was the principle highlight of the
ork of Porter (2021) who considered thin barriers (𝛩 = 0) extending

hroughout the depth. It was subsequently also shown to hold under
shallow water approximation to scattering by rectangular structured

idges by Marangos and Porter (2021). In the context of these estab-
ished results it is perhaps not surprising that the same result holds
or the full depth-dependent model of wave scattering. Nevertheless,
aken on its own, it is a remarkable result. For instance, since waves
re perfectly transmitted for all frequencies by thin barriers (𝛩 = 0) of
any non-zero rotation 𝛿 and any submergence depth 𝑑∕ℎ provided the
wave heading is aligned with the barriers (𝜃0 = 𝛿 − 𝜋∕2) it follows that
waves are also perfectly transmitted for all wave frequencies by the
same structure when the wave heading is reversed to 𝜃0 = 𝜋∕2 − 𝛿.

The invariance of |𝑅|, |𝑇 | to changes in sign of either 𝜃0 or 𝛿
an be established from the formulation of the solution presented in
ection 2. It is based on (21) and the observation that if 𝜇±𝑛 are
abelled as the eigenvalues corresponding to the parameters (𝜃0, 𝛿) then
he eigenvalues corresponding to either (−𝜃0, 𝛿) or (𝜃0,−𝛿) are −𝜇∓𝑛 . It
eadily follows that if 𝑍±

𝑛 (𝑧) are the eigenfunctions for (𝜃0, 𝛿) then 𝑍∓
𝑛 (𝑧)

re eigenfunctions for the cases (−𝜃0, 𝛿) or (𝜃0,−𝛿). Next, from (23),
f 𝜑(𝑥, 𝑦) is the general solution corresponding to (𝜃0, 𝛿) then 𝜑(−𝑥, 𝑦)
ecomes the general solution for (−𝜃0, 𝛿) or (𝜃0,−𝛿). This is equivalent
o flipping the plate array about 𝑥 = 0, or, equivalently, to sending in
ncident waves from plus infinity rather than minus infinity. Either way
his reduces the problem to one in which either the sign of 𝜃0 or 𝛿 has
een reversed.

The main purpose of Figs. 3(a,b) and 4 is to show how results con-
ergence to various established cases. We continue by illustrating the
onvergence of the numerical scheme based on the approach adopted
n Section 2 based on eigenfunction matching through the fluid depth.
n addition to the numerical methods required to locate the complex
oots of (21), already discussed in Section 2, we must determine how
any roots are required. This is a set by the truncation of the infinite

ystem of equations in Section 2 to 𝑚, 𝑛 = 0, 1,… , 𝑁 .
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Fig. 3. Variation of |𝑅| against 𝑘ℎ for 𝜃0 = 0◦, 𝑏∕ℎ = 1 and thin barriers (𝛩 = 0). In (a) 𝛿 = 45◦ and curves for 𝑑∕ℎ = 0.1, 0.02, 0.004 are shown converging to results for full
epth barriers (solid/purple). In (b) 𝑑∕ℎ = 0.1 and 𝛿 = 25◦, 5◦, 1◦ are shown converging to results for equivalent rigid step (solid/purple).
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Fig. 4. Variation of |𝑅| against 𝑘ℎ for 𝑏∕ℎ = 1, 𝑑∕ℎ = 0.25 and 𝜃0 = 30◦, 𝛿 = −60◦.
In (a) 𝛩 = 0.1, 0.5, 0.9 are shown converging to results for equivalent rigid step
(solid/purple).

Table 1 provides two contrasting cases of low frequency and high
frequency for a ridge occupying a 75% of the water depth. At lower
frequencies, fluid velocities decrease less rapidly with the depth than
at higher frequencies. It is therefore typical that more depth functions
are required to resolve the interaction with the submerged ridge for
lower frequencies although this expected feature is not especially clear
from the results presented, which illustrate that only a few modes are
required for two to three decimal place accuracy. Also shown in Table 1
are values of |𝐸| where 𝐸 = 1 − |𝑅|2 + |𝑇 |2 and conservation of energy
demands that 𝐸 = 0. It seems from Table 1, and other computations
erformed in the preparation of this work, that energy conservation
s automatically satisfied for normal incidence and is only used as an
ndicator of convergence for values of 𝜃0 ≠ 0. Numerical convergence

can be much slower for more extreme parameter values including 𝛩 →

1, 𝑑∕ℎ → 0, 𝛿 → 0. For example, for 𝛿 = 1◦, 𝑘ℎ = 2.5, 𝑑∕ℎ = 0.1, 𝛩 = 0.9,
∕ℎ = 1 we find |𝐸| = 3.8 × 10−3 (𝑁 = 64), |𝐸| = 2.2 × 10−3 (𝑁 = 128).

In Fig. 3(a) we have examined the effect of reducing 𝑑∕ℎ in the
ase 𝛩 = 0 and comparing with the Porter’s (2021) explicit results for
𝑅| for thin barriers extending through the depth. In Fig. 3(b) we the
7

ffect that rotating the barriers towards being aligned perpendicular
o the normally-incident waves has on an arrangement of thin barriers
xtending to 𝑑∕ℎ = 0.1. In this case, we confirm that |𝑅| tends to
esults for a rigid impermeable step, computed using methods devised
or Evans et al. (2015), applying the integral equation method of Porter
nd Evans (1995) to the general approach described in Mei and Black
1969). This is expected, since for normal incidence on closely-spaced
rrays of plates, there will be no fluid motion in the narrow gaps
etween the plates.

In Fig. 5 we compare again with results from a rigid step, but choose
o increase 𝛩 from 0 (thin barriers) towards 1 where the gaps close up
ompletely. Numerically it is hard to go further than 𝛩 = 0.9, but the
rend is clear. In this arrangement, the barriers are aligned with the
ave heading and in the case 𝛩 = 0 it follows (confirmed numerically)

hat |𝑅| = 0 for all 𝑘ℎ. On account of the symmetry in |𝑅| to reversal
n the signs of 𝜃0 or 𝛿 the same curves shown in Fig. 4 are produced
hen 𝜃0 = −30◦, 𝛿 = −60◦ or when 𝜃0 = 30◦, 𝛿 = 60◦.

We make comparisons with the shallow water (long wavelength)
pproximation of Marangos and Porter (2021) in Fig. 4 which confirms
hat results are in good agreement for 𝑘ℎ ≪ 1. It also shows the effect
f varying the width of the ridge whose main influence is determining
ultiple interference effects due to reflection of waves propagating

cross the ridge at their edges, 𝑥 = ±𝑏.
Next, we illustrate the refractive characteristics of the structured

ed. In Fig. 6 three plots are shown of the instantaneous free surface for
n incident Gaussian beam from 𝑥 = −∞ centred around 𝜃0 = 𝜃𝑐 = 45◦

n the case of 𝛿 = 45◦, 𝛩 = 0 so that the thin barriers forming the plate
rray are perpendicular to the central wave heading. At the central
eading, 𝜃0 = 45◦, there is perfect transmission on account of the
ymmetry of the reflection coefficient in 𝜃0. However, we expect small
mounts of wave reflection from the contributions to from wave angles
round 𝜃𝑐 which have been subject to a Gaussian weighting. That is, in
ig. 6 we have plotted

𝑏𝑒𝑎𝑚(𝑥, 𝑦; 𝜃𝑐 ) = 2
√

𝜋 ∫

𝜃𝑐+𝛥𝜃

𝜃𝑐−𝛥𝜃
cos(𝜃0 − 𝜃𝑐 )e−4𝜋

2(𝜃0−𝜃𝑐 )2𝜙(𝑥, 𝑦; 𝜃0) 𝑑𝜃0 (67)

where, for numerical purposes, 𝛥𝜃 truncates the range of values over
which the integration is performed (we used 𝛥𝜃 = 30◦). The three
subplots in Fig. 6 show the influence of the depth of submergence of
the barriers in the array for a fixed width, 𝑏∕ℎ = 2, and wavenumber,
𝑘ℎ = 2. When the barriers extend through 90% of the depth (𝑑∕ℎ = 0.1)
the waves are negatively refracted by the ridge and resemble figures
shown in Porter (2021) for barriers extending fully through the depth.
White lines are overlaid on the plots to indicate the path of the centre
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Fig. 5. Variation of |𝑅| against 𝑘ℎ for 𝑑∕ℎ = 0.25 and 𝜃0 = 0◦, 𝛿 = 45◦, 𝛩 = 0.5 and (a) 𝑏∕ℎ = 1, (b) 𝑏∕ℎ = 4: full depth-dependent theory (solid/purple), shallow water approximation
(green/dashed).

Fig. 6. The instantaneous surface when a Gaussian beam centred on 𝜃0 = 45◦ is incident on a structured ridge of width 𝑏∕ℎ = 2, 𝛿 = 45◦, 𝛩 = 0 with: (a) 𝑑∕ℎ = 0.1; (b) 𝑑∕ℎ = 0.2;
(c) 𝑑∕ℎ = 0.4.

Fig. 7. Variation of |𝑅| against 𝑘ℎ for 𝑑∕ℎ = 0.1, 𝛿 = 0◦, 𝛩 = 0, 𝑏∕ℎ = 1 with (a) 𝐷∕ℎ = 2 and (b) 𝐷∕ℎ = 0.2: 𝜃0 = 0◦ (purple/solid), 𝜃0 = 45◦ (green/dashed), 𝜃0 = 60◦ (light
blue/long dashed).



Ocean Engineering 256 (2022) 111451R. Porter and C. Marangos
Fig. 8. The instantaneous surface when a Gaussian beam centred on 𝜃0 = 45◦ is incident on a structured ridge of width 𝑏∕ℎ = 1, 𝛿 = 0◦, 𝑑∕ℎ = 0.1, 𝛩 = 0 with: (a) 𝑘ℎ = 0.5,
𝐷∕ℎ = 2; (b) 𝑘ℎ = 2, 𝐷∕ℎ = 0.2.
Fig. 9. A graphical illustration of variation of functions relating to the real and imaginary roots of the dispersion relation: purple (solid) curve, 𝐾𝑑 = 2; green (dashed) curve,
𝐾𝑑 = 1

2
.

of the Gaussian beam. As the ridge height decreases the refractive effect
of the ridge weakens and when 𝑑∕ℎ = 0.4 (Fig. 6(c)) we observe that
the refraction is conventional (positive).

4.1. The case 𝛿 = 0

The special case of 𝛿 = 0 is computed using values of 𝑃 = 5 in
(62) and truncation of the infinite summation in (63) to 500 terms. This
determines |𝑅| and |𝑇 | to six decimal place accuracy in all cases under
investigation. The roots 𝜆𝑛 of (37) are found numerically following
the description given in Appendix A, all lying on either the real or
imaginary axes.

When 𝜃0 = 0, the fluid in the narrow gaps between the plates
does not move and values of |𝑅| coincide with those for a rigid step
submerged to a depth 𝑑, irrespective of the depth of the fluid in the
gaps, 𝐷. This can be seen in Fig. 7(a,b) in which the curves for 𝜃0 =
0◦ are identical to the solid curve in Fig. 2(b). In Fig. 7 we have
concentrated on the effect the internal fluid depth, 𝐷, a new parameter
which we can only adjust in this special, 𝛿 = 0, case. Thus, we have
plotted the variation of |𝑅| for 𝐷∕ℎ = 2 and 𝐷∕ℎ = 0.2 in Fig. 7(a)
and (b) in the case that 𝑑∕ℎ = 0.1 for two oblique incident wave
9

headings of 45◦ and 60◦. Whilst, for reasons already described, there is
no difference for 𝜃0 = 0◦, we can see that the internal fluid depth has a
significant effect on reflection for oblique wave angles. When 𝐷∕ℎ > 1
the reflection increases for longer wavelengths whilst reduced internal
depths, (𝐷∕ℎ < 1) results in a decrease reflected energy as 𝜃0 increases.

We have used Gaussian beams centred around 𝜃0 = 45◦ to showcase
the reflective qualities of the ridge with the large internal fluid depth
𝐷∕ℎ = 2 at 𝑘ℎ = 0.5 in Fig. 8(a). There is much higher reflected energy
from this structured device at these oblique incident angles over a wide
range of frequencies than for the equivalent rigid step or thin barrier.
In contrast, Fig. 8(b) relates to 𝐷∕ℎ = 0.2 and 𝑘ℎ = 2 where there is
much more typical transmission over the step with normal (positive)
refraction into the shallower fluid depths.

5. Conclusions

In this paper, we have shown how full depth-dependent linear
theory has been applied to solve a scattering problem involving a
long submerged horizontal ridge of closely-spaced plate arrays. The
effect of the local structure of a discrete plate array has been modelled
using a approximate effective medium equation which has previously
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been confirmed as a good approximation to a discrete array. Two
mathematical solution approaches have been developed depending on
the parameters in the problem. When the plates are not aligned with
the direction of the ridge we have used an eigenfunction matching
method to determine the reflection and transmission of oblique incident
waves. The mathematical challenge here has been in determining the
complex eigenvalues of the dispersion relation. On account of the
solution method employed for general plate array orientations only the
case when the fluid depth within the array matches that outside the
array has been considered. When the plates are aligned with the ridge,
the boundary conditions at the ends of the ridge change character and
a special solution is required which provides new scope to consider an
internal fluid depth from differs from that outside the array. This case
has been approached by developing integral equations for functions
relating to the horizontal velocity across the top corner of the ridge
and solving via a Galerkin method.

The range of configurations described by the theory in the paper
allow us to demonstrate a number of cases in which numerical results
which can be validated against existing results. One of the purposes
of this paper has been to confirm that the simpler shallow water
model of wave propagation of Marangos and Porter (2021) is a good
approximation to the full depth-dependent models for sufficiently small
values of 𝑘ℎ (roughly 𝑘ℎ ≲ 1

2 ). A key result is to show that the
erfect transmission predicted by Porter (2021) for plate arrays with
hin barrier elements extending at incident wave angles opposite to the
rray orientation angle is also a feature of barriers extending partially
hrough the depth. In doing so, we have demonstrated that submerged
late arrays are capable to producing negative refraction the effect
eing stronger for longer waves and for barriers closer to the surface.

For plate arrays aligned with the ridge, we have shown that the
eflection of sufficiently long obliquely incident waves over a structured
idge with an internal fluid depth exceeding the fluid depth away from
he ridge is enhanced when compared with an equivalent impermeable
idge or a vertical barrier submerged to the same depth. This may be
f interest to the design of offshore breakwater systems.
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ppendix A. Roots of the dispersion relation for 𝜹 = 𝟎

In this Appendix we discuss the roots of the dispersion relation given
y (37), in relation to the special case 𝛿 = 0 which we write in the form

= 𝑅(𝜆) ≡ 𝜆𝐾 − 𝜆 tanh 𝜆𝑑
𝜆 −𝐾 tanh 𝜆𝑑

(68)

and

 = (1 − 𝛩)𝛽0 tanh[𝛽0(𝐷 − 𝑑)] (69)

is a real and non-negative constant. The following arguments are very
similar to Porter et al. (2021).
10

a

The case of 𝛽0 = 0 is trivial, since (68) is reduced to finding roots of
= 𝜆 tanh 𝜆𝑑 which coincides with the water wave dispersion relation

or a fluid depth 𝑑. This (e.g. Linton and McIver (2001)) is known to
esult in a pair of real roots and an infinite sequence of roots lying
ymmetrically on the imaginary axis.

When 𝜆 is assumed real and positive different cases arise, depending
n the sign of 1 − 𝐾𝑑 the value of 𝑅(0) ≡ 𝑅0 = 𝐾∕(1 − 𝐾𝑑). If 𝐾𝑑 > 1
hen 𝑅0 < 0, and there is an asymptote of 𝑅(𝜆) at 𝜆 = 𝜆∗ where
∗ = 𝐾 tanh 𝜆∗𝑑. Away from this asymptote 𝑅(𝜆) is a monotonically
ecreasing function which crosses the axis at a value of 𝜆† > 𝜆∗

corresponding to the positive real root of 𝐾 = 𝜆† tanh 𝜆†𝑑 and continues
as 𝑅(𝜆) ∼ −𝜆 as 𝜆 → ∞. Therefore there is a single root 𝜆0 of (68)
satisfying 𝜆∗ < 𝜆0 < 𝜆†. Since 𝑅(𝜆) is an even function, there is a
corresponding negative root, −𝜆0.

If 𝐾𝑑 < 1 there are no zeros of the denominator of 𝑅(𝜆) which is
monotonic decreasing function from a positive value of 𝑅0 at 𝜆 = 0,
crossing the axis at 𝜆† and with 𝑅(𝜆) ∼ −𝜆 as 𝜆 → ∞. Thus there are
real roots ±𝜆0 only if  < 𝑅0. These two scenarios are illustrated in
Fig. 9

Now consider 𝜆 = i�̃� where �̃� is assumed real and positive whereby
(68) is transformed into

 = �̃�(�̃�) ≡ 𝐹1(�̃�)∕𝐹2(�̃�) (70)

where

𝐹1(�̃�) = �̃� sin �̃�𝑑 +𝐾 cos �̃�𝑑, 𝐹2(�̃�) = cos �̃�𝑑 − (𝐾∕�̃�) sin �̃�𝑑. (71)

We again have two consider different cases depending on the sign of
𝐾𝑑−1. When 𝐾𝑑 > 1 the asymptotes of the right-hand side of (70) lie at
zeros of 𝐹2(�̃�) located in intervals 𝑛𝜋 < �̃�𝑑 < (𝑛+ 1

2 )𝜋 for 𝑛 = 1, 2,…. In
etween asymptotes �̃�(�̃�) is monotonic increasing and passes through
eros of 𝐹1(�̃�) at roots of the water wave dispersion relation for a fluid
f depth 𝑑, located between (𝑛 − 1

2 )𝜋 < �̃�𝑑 < 𝑛𝜋. Thus we can infer
here is an infinite sequence of roots, ±𝜆𝑛 (𝑛 = 1, 2,…) of (68), lying
n the imaginary axes between each of these zeros and the asymptote
hat follows each zero.

When 𝐾𝑑 < 1 the first asymptote at �̃� = �̃�∗ of 𝐹2(�̃�) lies between zero
nd 𝜋∕2. For values of �̃� > �̃�∗ beyond this asymptote, �̃�(�̃�) increases
onotonically and all the arguments of the previous paragraph apply.

or 0 < �̃� < �̃�∗, �̃� remains monotonic increasing from �̃�(0) = 𝑅0. In
ther words, there is an additional root in 0 < �̃� < �̃�∗ if 𝐾𝑑 < 1 and
> 𝑅0 which we label 𝜆0 since it only exists when the real root ceases

o exist. That is to say, 𝜆0 is the same root and either lives on the real or
maginary axis depending on certain conditions being met. A graphical
llustration of this information is provided in Fig. 9.

Finally, we can use Rouché’s theorem (e.g. Ablowitz and Fokas
1997, p.263)) to show that there are no roots lying in the complex
lane off the real or imaginary axes. Again the arguments follow quite
losely the details described in Porter et al. (2021). We write (68) as

(𝜆) = 𝐹1(𝜆) + 𝐹2(𝜆) = 0

here

1(𝜆) = 𝐾 cosh 𝜆𝑑 − 𝜆 sinh 𝜆𝑑, 𝐹2(𝜆) = ((𝐾∕𝜆) sinh 𝜆𝑑 − cosh 𝜆𝑑).

hen 𝐹1 and 𝐹2 are meromorphic functions and Rouché’s theorem states
hat the number of zeros of 𝐹 = 𝐹1+𝐹2 inside a closed contour 𝐶 in the
omplex plane is equal to the number of zeros of 𝐹1 provided |𝐹1| > |𝐹2|
or all points on 𝐶.

We consider the rectangular contour 𝐶 = 𝐶𝑚(𝜌) comprised of four
traight-line segments. Two are defined by ℑ{𝜆} = ±𝑝𝑚, −𝜌 < ℜ{𝜆} < 𝜌
here 𝑝𝑚 is the 𝑚th positive zero of (𝐾∕𝑝𝑚) sin 𝑝𝑚𝑑 − cos 𝑝𝑚𝑑 = 0. The
ther two segments complete the rectangle by setting ℜ{𝜆} = ±𝜌 and
etting −𝑝𝑚 < ℑ{𝜆} < 𝑝𝑚. Then it can be shown that |𝐹1| > |𝐹2| on
ach 𝐶𝑚(𝜌) with 𝜌 → ∞. The zeros of 𝐹1 are just those for the water
ave dispersion relation which are known to be located on the real

nd imaginary axes at locations previously described. When we count
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the number of zeros of 𝐹 that we have identified as being located on the
real and imaginary axes inside the contour 𝐶𝑚(𝜌) with 𝜌 → ∞, we find
they are the same as the number of zeros of 𝐹1. Therefore, by Rouché’s
theorem, and taking the limit 𝑚 → ∞, we conclude that there are no
zeros of 𝐹 other than those on the real and imaginary axes.

Appendix B. Definition of depth integrals

From the definition of (29) we find, after extensive algebra in which
the dispersion relation for 𝑘 and (21) are both used, that

𝑈±
𝑛𝑚 =

−𝑁−1∕2
𝑚 𝐴(𝜇)

(𝜆2 + 𝑘2𝑚)ℎ
(

𝑘𝑚 sin 𝑘𝑚(ℎ − 𝑑) cosh 𝜅(ℎ − 𝑑)

+𝜅(1 − 𝛩) cos 𝑘𝑚(ℎ − 𝑑) sinh 𝜅(ℎ − 𝑑)
)

(72)

where 𝜆2 = 𝜇2 + 𝛽20 , 𝜅 = 𝜇 sin 𝛿 − 𝛽0 cos 𝛿, 𝐴(𝜇) is defined by (19) and
𝜇 = 𝜇±𝑛 . For 𝑚 = 0 when 𝑘0 = −i𝑘,

𝑈±
𝑛0 =

𝑁−1∕2
0 𝐴(𝜇)

(𝜆2 − 𝑘2)ℎ
(𝑘 sinh 𝑘(ℎ − 𝑑) cosh 𝜅(ℎ − 𝑑)

−𝜅(1 − 𝛩) cosh 𝑘(ℎ − 𝑑) sinh 𝜅(ℎ − 𝑑)) . (73)

It is slightly less complicated to determine that

𝐿±
𝑛𝑚 =

𝑁−1∕2
𝑚 𝐴(𝜇)

(𝑘2𝑚 + 𝜅2)ℎ
(

𝑘𝑚 sin 𝑘𝑚(ℎ − 𝑑) cosh 𝜅(ℎ − 𝑑)

+𝜅 cos 𝑘𝑚(ℎ − 𝑑) sinh 𝜅(ℎ − 𝑑)
)

(74)

such that

𝐿±
𝑛0 =

𝑁−1∕2
0 𝐴(𝜇)

(𝑘2 − 𝜅2)ℎ
(𝑘 sinh 𝑘(ℎ − 𝑑) cosh 𝜅(ℎ − 𝑑)

−𝜅 cosh 𝑘(ℎ − 𝑑) sinh 𝜅(ℎ − 𝑑)) . (75)

When 𝜆 = 𝑘 and/or 𝜅 = 𝑘, (73) and/or (75) need revising either
by recalculating integrals from the start or by taking limits of the
expressions given.

The value of 𝐶𝑛 defined by (39) is evaluated as

𝐶𝑛 =
1
2
(1 − (𝐾∕𝜆𝑛)2) + (1 + (𝐾∕𝜆𝑛)2)

sinh 2𝜆𝑛𝑑
4𝜆𝑛𝑑

−
𝐾 sinh2 𝜆𝑛𝑑

𝜆2𝑛𝑑
(76)

ith 𝜆2𝑛 = 𝜇2𝑛 + 𝛽
2
0 determined by (37).
11
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