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Abstract

Morphological instabilities play a key role in the evolution of form and function in growing biomaterials. Spatially varying
ifferential growth, in particular, leads to residual stresses that for soft materials or slender geometries are favourably relieved
y out-of-plane buckling or wrinkling. While the onset of instability in growing biomaterials has been studied extensively, the
ost-critical regime remains poorly understood. To this end, this paper presents a robust computational modelling framework
or morphoelastic instabilities and associated post-critical pattern formation. The seven-parameter shell element—commonly
sed for elasto-plastic analysis of engineering materials—is implemented alongside the multiplicative decomposition of the
eformation gradient tensor into a growth and an elastic part. The governing nonlinear equations are solved using a generalised
ath-following/numerical continuation solver that facilitates comprehensive exploration of the stability landscape through
inpointing of critical points and branch switching at bifurcations. The utility and power of the computational framework is
emonstrated by unveiling complex pattern formation phenomena that arise as a result of sequentially occurring morphological
nstabilities. In particular, we highlight the central role that exponential edge growth plays in fractal wrinkling patterns, the
looming of doubly-curved flower petals, and wavy daffodil trumpets. In addition, the ability of the solver to track critical
oints through parameter space enables efficient sensitivity studies into the role of material parameters on pattern formation.
he presented computational framework is thus a versatile tool for modelling the evolution of form and function in growing
iological systems and the design of biotechnology applications.
2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Morphogenesis; Generalised path-following; Instability phenomena; Finite elements

1. Introduction

In morphoelasticity—or the mechanics of elastic growth [1]—instabilities play an important role in the evolution
f form and function. Typical examples of morphoelastic instabilities in biological materials include the wrinkling
f human skin [2], the rippling of leaves [3,4] and flower petals [5,6], cortical folding in mammalian brains [7,8] and
sthmatic airways [9,10], and the formation of channels for liquid transport through biofilms [11,12]. In examples
uch as cortical folding, malformed instabilities are indicators of disease, and conversely, the sequential pattern
ormation of a healthy folding pattern is critical for cognitive function [13]. Modelling and controlled experiments of
orphoelastic instabilities have therefore attracted increasing research interest, both in understanding the evolution
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of form and function in biomaterials and in developing new design paradigms for biomimetic technology. An
excellent example of biomimetic inspiration is the wrinkling of a stiff, thin film on a compliant substrate [14,15],
which has several applications in the development of electronic skins, stretchable electronics [16], and photo-voltaic
devices [17].

At the level of the mathematical continuum, growth is often modelled kinematically via the multiplicative
ecomposition of the deformation gradient tensor into a growth and an elastic part [18,19]. Akin to the modelling
f finite-strain thermoelasticity and plasticity, a fictitious intermediate configuration is introduced that represents
stress-free and kinematically incompatible mapping from the initial configuration by means of the growth

art of the deformation gradient tensor. The elastic part of the deformation gradient then maps the fictitious
ntermediate configuration into the deformed and kinematically compatible state, generally leading to internal
tresses and stored strain energy. The spatial distribution and temporal evolution of the growth tensor can
ither be based on phenomenological observations or derived from micromechanical models, and can addi-
ionally be coupled to the evolving strains and/or stresses within the material [20]. To describe the elastic
ehaviour of soft biomaterials, a hyperelastic material model is commonly used (e.g., a Neo-Hookean, Ogden, or

Mooney–Rivlin material law, see [21]). As the elastic response of soft materials in the large strain regime is generally
volumetrically incompressible, an incompressibility condition is either enforced weakly—resulting in a ‘nearly’
incompressible approach [22]—or enforced explicitly in a mixed displacement–pressure formulation leading to full
incompressibility [23].

The presence of compressive stresses due to differential growth, i.e. spatial differences in the freely grown lengths
of individual material fibres, can trigger instabilities [24,25] similar to the effect of thermal residual stresses in
manufacturing of composite materials [26]. This principle can be exploited for technological applications, where
control of an internal growth-like parameter within engineered sheets creates opportunities for embedding target
metric tensors [27,28], thereby enabling complex topologies through ‘shape programming’ [29]. Analytical studies
on growth-induced instability phenomena are based on linear eigenvalue analyses that determine the critical growth
factor, while asymptotic perturbation approaches are commonly used to model the initial post-bifurcation behaviour,
see e.g. [7,14,15,24]. Closed-form analytical solutions are invaluable for gaining physical insight, but are usually
restricted to simple geometries and boundary conditions. Furthermore, detailed post-bifurcation analyses deep into
the post-critical regime, including pattern formation through a sequence of successive instabilities, are usually only
possible via dedicated numerical schemes [15].

Due to its geometric versatility, the finite element (FE) method has been a natural candidate to develop
omputational models of remodelling [30] and growth/atrophy [31,32]. Despite significant progress in developing
ifferent FE formulations, the focus has undoubtedly been on two-dimensional planar or three-dimensional solid
lements. Since slender and thin-walled geometries in biology, such as plant leaves, flower petals, insect wings,
rticular cartilages, etc., are particularly prone to instabilities by relieving compressive stresses through out-
f-plane deformations [33], computational modelling also requires suitable morphoelastic shell elements. Many
nalytical morphoelastic models have been based on the well-known Föppl–von Kármán (FvK) plate equations [34]
ith the caveat that the FvK theory is only applicable for moderate deflections/rotations and small strains, i.e.
linear constitutive law, although under certain assumptions the model can also be extended to finite-strain

yperelasticity [35]. In the computational domain, Rausch and Kuhl [36] developed a growth model for thin
embranes in the commercial FE software ABAQUS CAE through user subroutines. While this model improves

omputational efficiency by using a two-dimensional reference plane, the model assumes zero through-thickness
hear and normal stresses that require a plane-stress reduction of the constitutive tensor, which, in a finite-strain
yperelastic setting, leads to complicated constitutive terms. An advantage of this approach, on the other hand, is
hat the plane-stress condition can be used to solve for the hydrostatic pressure term that enforces incompressibility.

ore recently, Zheng et al. [37] developed a morphoelastic solid-shell element that discretises the top and bottom
urfaces of the shell rather than using a reference surface. In addition, the solid-shell element by Zheng et al.
37] departs from the framework originally introduced by Himpel et al. [31]. While in Himpel et al. [31] growth
s incorporated as an internal variable at integration point level and affects the tangent constitutive tensor, in the
pproach by Zheng et al. [37] an equivalent growth body force is derived from the objective Truesdell rate.

As an alternative to solid-shell elements, so-called degenerated shell elements—introduced by Ahmad et al.
38]—map a two-dimensional flat master element into a curved three-dimensional surface that represents the

¨
id-plane of the element, see e.g. Bischoff et al. [39] for an overview and Buchter and Ramm [40] for a

2
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comparison of degeneration and classical shell theory. Degenerated shell elements approximate the shell mid-
surface by interpolating the spatial coordinates of element nodes using shape functions, and describe the shell
thickness by a unit vector at each node (the shell director) that is initially perpendicular to the shell mid-surface
and rotates alongside the deforming mid-surface. The degenerated shell formulation is then completed by postulating
appropriate kinematic assumptions on the displacement field. For example, five-parameter shell elements use three
Cartesian displacements per node and parametrise the rotation of the shell director using two rotation variables. In
these five-parameter models, thickness stretch is neglected (first-order shear deformation theory [41]) such that the
plane-stress assumption must be imposed on the constitutive tensor. Furthermore, the inextensibility of the shell
director needs to be enforced exactly throughout the finite deformation process, and this is conveniently achieved
using a rotation tensor, for example, through the exponential map [42]. In contrast, six-parameter formulations
allow for thickness stretch and therefore use the full three-dimensional constitutive equations with an additive
update of the shell director using a difference vector [43]. However, the six-parameter shell suffers from so-called
‘Poisson thickness locking’ [44]. In bending-dominated problems the linear distribution of the transverse normal
stress through the thickness of the shell—caused by Poisson’s action of the linear through-thickness variation of
the in-plane strains—is not balanced by the kinematically assumed state of constant transverse normal strain.

To overcome Poisson’s locking in the six-parameter formulation, the transverse displacement is enhanced by an
dditional seventh parameter that results in a quadratic through-thickness displacement field and an ensuing linear
istribution of the transverse normal strain. Since the initial work by Büchter and Ramm [45], the seven-parameter

shell formulation has been shown to be the transverse shear and transverse normal deformable shell model with the
fewest degrees of freedom that works robustly with full three-dimensional constitutive laws [46]. Beyond Poisson’s
locking, it is well known that low p-refinement shell elements (e.g. linear and quadratic elements) suffer from locking

henomena (e.g. transverse shear and membrane locking) when formulated entirely in a displacement-based manner.
o overcome the artificial stiffening in low-order finite elements, mixed variational principles can be employed

o develop locking-free formulations with effective examples being the assumed natural strain [47] and enhanced
ssumed strain [48] concepts. Alternatively, higher-order shell elements with sufficient p-refinement have also been
hown to provide reliable and efficient locking-free solutions using a purely displacement-based formulation, both
or classical Lagrangian [49] and NURBS-based [50] shape functions.

In this paper, a seven-parameter quadrilateral shell element is developed for the analysis of growth-induced
nstability phenomena in slender biomaterials and structures. Growth is modelled via the multiplicative decom-
osition of the deformation gradient tensor into a growth and an elastic part with the growth factor imposed
t integration point level. A ‘nearly’ incompressible Neo-Hookean material model is implemented leading to an
ntirely displacement-based formulation. Shear and membrane locking are practically eliminated through higher-
rder spectral/hp-refinement following Payette and Reddy [49] with full numerical integration of all quantities. An
dditional advantage of high p-refinement is that it overcomes the poor performance of low-order elements in a
orphoelastic setting [23,51].
The main novelty of the paper is the robust post-critical analysis of morphoelastic instability phenomena

hrough extended solver functionality, e.g. pinpointing of critical points, branch switching at bifurcations, and multi-
arametric explorations of the stability landscape. Previous work has employed small manually-prescribed force or
isplacement perturbations [52] to bias the solver towards one branch of a bifurcation, but this method is sensitive
o the perturbation size, requires preliminary insight into the problem, and precludes a comprehensive exploration
f the equilibrium manifold. More recently, eigenvalue tracking has been used on non-perturbed models to pinpoint
ritical growth factors more accurately using bisection [51]. A more efficient and robust method is to pinpoint
nstability points directly using an extended system that enforces the criticality condition [53].

The present paper departs from the current literature in that the combination of an efficient shell element with
obust numerical continuation algorithms enables the comprehensive exploration of sequential bifurcation events as
ell as growth-mediated pattern formation in the post-critical regime. This valuable capability is illustrated through
number of pertinent examples on growing biomaterials that feature exponential edge growth and is also used to

xplore the effect of different material models on the observed post-critical pattern formation. Indeed, an efficient
xploration of the parametric variation of critical growth rates and their associated buckling patterns can be traced
y path-following the locus of the critical point through parameter space. This capability is especially useful in
biological setting, where material properties and/or geometrical dimensions are often uncertain, as well as in
iomimetic technology development, where critical point tracking enables rapid design iteration.

3
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Fig. 1. Modelling the geometry of a 3D shell patch in the undeformed, reference configuration using (i) an isoparametric map from a master
element defined on the unit square to an FE approximation of the shell mid-surface, followed by (ii) an additional linear mapping that
constructs the shell volume by extending the shell thickness in the direction of the normal vector.

In summary, this paper couples a morphoelastic seven-parameter shell element to a generalised path-following/
numerical continuation solver to develop a robust framework for modelling growth-induced instability phenomena.
Section 2 covers the theory of the developed shell element, while Section 3 introduces the generalised path-following
solver. In Section 4, the stability framework is validated using literature benchmarks and applied to exponential
edge growth in leaves (including fractal wrinkling patterns), the folding of a daffodil’s corona, and the blooming of
doubly-curved flower petals. Section 5 then studies the effect of different material models on the observed results.
Finally, conclusions are drawn in Section 6.

2. Morphoelastic seven-parameter shell element

This section first outlines the general formulation of the seven-parameter shell element, and then develops this
model in the framework of morphoelastic kinematics based on the multiplicative decomposition of the deformation
gradient and a ‘nearly’ incompressible hyperelastic material law. The weak form of the equilibrium equation is then
discretised using higher-order polynomial (p-refined) shape functions based on a Chebychev–Gauss–Lobatto grid.

.1. Definition of the undeformed shell mid-surface

A shell structure is generally defined as a 3D body with one dimension (the thickness) significantly smaller than
he other two (in-plane) dimensions. In contrast to membranes, shells resist external loads by both membrane and
ending stresses. In classical shell theory, the 3D solid body is decomposed into a 2D reference surface Ω ⊂ R3,

oftentimes the undeformed mid-surface of the shell, and a normal vector n with an associated shell thickness h.
ere, Ω is approximated by an interpolated surface Ω̄ comprising a set of Ne higher-order quadrilateral finite

lements, i.e. Ω̄ = ∪
Ne
e=1Ω̄

e, with each node of Ω̄ e lying on the reference surface Ω . Each finite element surface
¯ e is defined via the master element Ω̂ e

= [−1, 1]2 with ξ 1
∈ [−1, 1] and ξ 2

∈ [−1, 1] acting as the two local
oordinates of Ω̂ e. Hence, we have an injective mapping φe(ξ1, ξ2) : Ω̂ e

→ Ω̄ e
⊂ R3 (see Fig. 1).

The reference surface Ω̄ e of each seven-parameter shell element is chosen to lie on the undeformed shell mid-
urface and is interpolated using 2D isoparametric shape functions ψ from the nodal coordinates X̄k

, with k
k

4
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indicating the node index number:

X̄ = φe(ξ 1, ξ 2) =

Nn∑
k=1

ψk(ξ 1, ξ 2)X̄k
where (ξ 1, ξ 2) ∈ Ω̂ e. (1)

ence, the coordinates X̄ of any point on the mid-surface of the shell falling within the eth element are interpolated
rom the element nodal coordinates X̄k

= X̄ k
i Ei ,1 where {E1, E2, E3} are the basis vectors of a fixed global

artesian coordinate system. Indeed, all further nodal quantities, such as the displacement and difference vector
ntroduced later, are described in relation to this global Cartesian coordinate frame.

To complete the geometric description of the mid-surface we define the covariant basis vectors

ḡα(ξ 1, ξ 2) =
∂ X̄
∂ξα

=

Nn∑
k=1

∂ψk(ξ 1, ξ 2)
∂ξα

X̄k
(2)

t each point of the discretised mid-surface Ω̄ e. The two pointwise vectors ḡα are tangent to the mid-surface plane
nd are therefore used to define a unit normal vector at each point of the mid-surface:

n̄(ξ 1, ξ 2) =
ḡ1 × ḡ2

∥ ḡ1 × ḡ2∥2
. (3)

ence, for each coordinate (ξ 1, ξ 2) ∈ Ω̂ e, the vectors { ḡ1, ḡ2, n̄} define a basis for R3.
The undeformed volume of an elemental portion of the shell Be

0 is now constructed by extending the mid-surface
n the direction of the mid-surface normal n̄ using the coordinate ξ 3

∈ [−1, 1]. For a shell element with local
hickness h, nodal thickness value hk , and nodal normal vector n̄k we have:

X = Φe(ξ 1, ξ 2, ξ 3) = φe(ξ 1, ξ 2) + ξ 3 h
2

n̄(ξ 1, ξ 2) =

Nn∑
k=1

ψk(ξ 1, ξ 2)
(

X̄k
+ ξ 3 hk

2
n̄k
)
. (4)

he sequence of steps mapping the master element Ω̂ e into the shell volume Be
0 is shown in Fig. 1.

For each point in the shell volume Be
0, not necessarily on the mid-surface Ω̄ e, we can now define covariant basis

ectors

gi (ξ
1, ξ 2, ξ 3) =

∂X
∂ξ i

=

Nn∑
k=1

∂

∂ξ i

[
ψk(ξ 1, ξ 2)

(
X̄k

+ ξ 3 hk

2
n̄k
)]
. (5)

sing the covariant basis vectors of the mid-surface in Eq. (2) we can write

gα = ḡα + ξ 3 h
2

n̄,α =

Nn∑
k=1

∂ψk(ξ 1, ξ 2)
∂ξα

(
X̄k

+ ξ 3 hk

2
n̄k
)
, (6a)

g3 =
h
2

n̄ =

Nn∑
k=1

ψk(ξ 1, ξ 2)
hk

2
n̄k . (6b)

The dual or contravariant basis vectors gi are defined by the relation gi
· g j = δi

j , where δi
j is the Kronecker delta.

The covariant and contravariant basis vectors are conveniently used in the element formulation for all tensorial
quantities, and the volume integrals that appear in the weak form of the equilibrium equation are computed over
the curvilinear coordinates (ξ 1, ξ 2, ξ 3).

To complete the geometrical description we consider a differential line element

dX = g1dξ 1
+ g2dξ 2

+ g3dξ 3 (7)

1 Throughout the paper, Einstein summation is implied over repeated indices. Furthermore, Greek indices range over 1 and 2 and Latin
indices range over 1, 2, and 3.
5
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in the undeformed body Be
0.2 In matrix–vector notation⎛⎝dX1

dX2
dX3

⎞⎠ =

⎡⎢⎢⎣
∂X1
∂ξ1

∂X1
∂ξ2

∂X1
∂ξ3

∂X2
∂ξ1

∂X2
∂ξ2

∂X2
∂ξ3

∂X3
∂ξ1

∂X3
∂ξ2

∂X3
∂ξ3

⎤⎥⎥⎦
⎛⎝dξ 1

dξ 2

dξ 3

⎞⎠ = [J ]{dξ}, (8)

here [J ] is the Jacobian matrix and the determinant of [J ] is J . Using the determinant J , the differential volume
lement is dV0 = Jdξ 1dξ 2dξ 3. Similarly, the length squared of the differential line element is

dX · dX =
(
gi · g j

)
dξ i dξ j

= G i j dξ i dξ j , (9)

here G i j = gi · g j are the covariant components of the metric tensor G, i.e. G = G i j gi
⊗ g j . The contravariant

omponents G i j of the metric tensor are given by [G i j ] = [G i j ]−1, and this allows the contravariant basis vectors
gi to be computed as follows

gi
= G i j g j . (10)

.2. Axiomatic displacement field

The original, undeformed configuration of each shell element Be
0 is now mapped into a new configuration Be

t at
ime t via the conformal map χ (X, t). Thus, each material point with position vector X in the original configuration

oves to a new position vector x = χ (X, t). The displacement of each material point at time t is

u(X, t) = χ (X, t) − X = x − X .

ollowing the assumptions of the seven-parameter shell model [46,49], the displacement vector is expanded as
quadratic function in the shell thickness direction (coordinate ξ 3). This assumption guarantees that the resulting

hell model is asymptotically consistent with 3D elasticity and therefore facilitates the use of the full 3D constitutive
ensor without plane strain or plane stress assumptions in the thickness direction. The seven-parameter expansion
f the displacement vector reads

u(ξ 1, ξ 2, ξ 3) = v(ξ 1, ξ 2) + ξ 3 h
2
w(ξ 1, ξ 2) +

(
ξ 3)2 h

2
Ψ (ξ 1, ξ 2), (11)

here the time variable t is henceforth omitted for brevity. The vector v(ξ 1, ξ 2) = vi (ξ 1, ξ 2)Ei represents the mid-
urface displacement vector and the vector w(ξ 1, ξ 2) = wi (ξ 1, ξ 2)Ei is the so-called difference vector that describes
he vectorial change of the original mid-surface normal vector n̄. The vector Ψ (ξ 1, ξ 2) = Ψ (ξ 1, ξ 2)n̄(ξ 1, ξ 2) is a
unction of the scalar parameter Ψ (ξ 1, ξ 2) also defined on the shell mid-surface, and this seventh parameter prevents
he spurious phenomenon of Poisson’s locking present in the six-parameter formulation (see Section 1).

The position vector of each material point in the current configuration is thus

x(ξ 1, ξ 2, ξ 3) = X + u = x̄(ξ 1, ξ 2) + ξ 3 h
2

d̄(ξ 1, ξ 2) +
(
ξ 3)2 h

2
Ψ (ξ 1, ξ 2)n̄(ξ 1, ξ 2) (12)

ith x̄ = X̄ + v being the position vector of the deformed shell mid-surface, and d̄ = n̄ + w being the deformed
hell director vector (not necessarily normal to the deformed shell mid-surface, nor necessarily of unit length).

The finite element interpolation of the displacement field in Eq. (11) is given by

u(ξ 1, ξ 2, ξ 3) =

Nn∑
k=1

ψk(ξ 1, ξ 2)

[
vk

+ ξ 3 hk

2
wk

+
(
ξ 3)2

Ψ k
Nn∑

l=1

ψl(ξ 1, ξ 2)
hl

2
n̄l

]
. (13)

ote that in the final term the two components of Ψ (ξ 1, ξ 2) = Ψ (ξ 1, ξ 2)n̄(ξ 1, ξ 2) are interpolated separately and
ot as a single item. This means the derivatives of the displacement field with respect to the curvilinear coordinates,
ξ 1, ξ 2, ξ 3), are

u,α =

Nn∑
k=1

∂ψk(ξ 1, ξ 2)
∂ξα

[
vk

+ ξ 3 hk

2
wk

+
(
ξ 3)2

(
Ψ k

Nn∑
l=1

ψl(ξ 1, ξ 2)
hl

2
n̄l

+
hk

2
n̄k

Nn∑
l=1

ψl(ξ 1, ξ 2)Ψ l

)]
(14a)

2 A total Lagrangian formulation with integrals computer over the undeformed configuration is used herein.
6
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w
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T
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T
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2

f

u,3 =

Nn∑
k=1

ψk(ξ 1, ξ 2)

(
hk

2
wk

+ ξ 3Ψ k
Nn∑

l=1

ψl(ξ 1, ξ 2)hl n̄l

)
. (14b)

For each point in the deformed shell volume Be
t , we now have a new set of covariant basis vectors

hi (ξ 1, ξ 2, ξ 3) =
∂x
∂ξ i

=
∂X
∂ξ i

+
∂u
∂ξ i

= gi + u,i , (15)

hich are used to compute the deformation gradient tensor

F =
∂x
∂X

=
∂x
∂ξ i

⊗
∂ξ i

∂X
= hi ⊗ gi . (16)

In combination with the identity tensor I , the Green–Lagrange strain tensor is then given by

E =
1
2

(
F⊤ F − I

)
=

1
2

[(
gi

⊗ hi
) (

h j ⊗ g j)
− gi ⊗ gi]

=
1
2

[
hi · h j − gi · g j

]
gi

⊗ g j , (17)

ith covariant components Ei j =
1
2

(
Hi j − G i j

)
and Hi j = hi · h j and G i j = gi · g j . The covariant coefficients Ei j

re now expanded in terms of the through-thickness coordinate ξ 3:

Ei j (ξ 1, ξ 2, ξ 3) = ϵi j (ξ 1, ξ 2) + ξ 3κi j (ξ 1, ξ 2) +
(
ξ 3)2

γi j (ξ 1, ξ 2) +
(
ξ 3)3

ηi j (ξ 1, ξ 2) +
(
ξ 3)4

ρi j (ξ 1, ξ 2). (18)

o make the shell formulation consistent with a first-order shear and normal deformable theory, we only retain the
nderlined parts of Eq. (18). These are given by:

ϵαβ =
1
2

(
v,α · ḡβ + ḡα · v,β + v,α · v,β

)
(19a)

καβ =
h
4

[
v,α ·

(
n̄,β + w,β

)
+
(
n̄,α + w,α

)
· v,β + w,α · ḡβ + ḡα · w,β

]
(19b)

ϵα3 =
h
4

[
v,α · (n̄ + w)+ ḡα · w

]
(19c)

κα3 =
h2

8

[
w,α · n̄ +

(
n̄,α + w,α

)
· w
]
+

h
2

(
ḡα + v,α

)
· Ψ (19d)

ϵ33 =
h2

8
(2n̄ + w) · w (19e)

κ33 =
h2

2
(n̄ + w) · Ψ . (19f)

he inconsistency of the six-parameter shell formulation becomes apparent when we enforce Ψ = 0, in which case
he term accounting for the linear variation of the through-thickness strain vanishes, i.e. κ33 = 0.

.3. Growth kinematics

To introduce the kinematics of growth, the deformation gradient tensor at time t is decomposed in a multiplicative
ashion [18] as follows

F = Fe Fg, (20)

where Fe is the elastic deformation tensor defined in a fictitious and intermediate, stress-free configuration Bg .
Hence, Fe maps a differential line element dX̂ from the intermediate, stress-free configuration Bg into the
differential line element dx in the stressed configuration Bt . In addition, the growth tensor Fg maps a differential
line element dX from the original, undeformed configuration B0 into the intermediate configuration Bg . As shown
in Fig. 2, the multiplicative decomposition accounts for stress-free and kinematically incompatible growth of a
body into an intermediate, fictitious state followed by additional elastic and stress-inducing deformations that
ensure geometric compatibility. In this process it is assumed that the density of the growing body remains constant
(ρ0 = ρg = ρt ) such that any change in mass leads to a change in volume. By assuming that all elastic deformations

from Bg to Bt are incompressible, we have Je = det Fe = 1 and J = det F = det Fg = Jg.

7
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Fig. 2. Growth kinematics represented by a multiplicative decomposition of the deformation gradient tensor F = Fe Fg into a growth tensor
Fg and an elastic deformation Fe. The symbols (λ, η, J ) represent scaled line, area, and volumetric dimensions.

With the multiplicative decomposition of the deformation gradient tensor in Eq. (20), the Green–Lagrange strain
ensor of Eq. (17) can be decomposed into

E =
1
2

(
F⊤ F − I

)
= Eg + F⊤

g Ee Fg, (21)

with the elastic and growth strain tensors defined as

Eg =
1
2

(
F⊤

g Fg − I
)

and Ee =
1
2

(
F⊤

e Fe − I
)
. (22)

q. (22) shows that Eg is the Green–Lagrange strain with respect to the original, undeformed configuration as a
esult of free and unconstrained growth. The term Ee is an incremental Green–Lagrange strain due to the elastic
eformations with the intermediate, stress-free state as the reference configuration. Eq. (21) then pulls Ee back to

the original, undeformed configuration via Fg and adds it to Eg to give the total Green–Lagrange strain E with
respect to the undeformed configuration.

In an analysis, the growth tensor Fg is generally specified via an assumed growth law for which the associated
equilibrium state is then computed. For example, we might specify Fg = Fg,ij(λg)Ei ⊗ E j , where λg is a scalar
parameter that controls growth in the Cartesian coordinate system {E1, E2, E3}. For each iteration of an incremental-
iterative solution process, the terms F and E can be computed from the current displacement field, and Fe and Ee
can then be back-calculated using Eqs (21) and (22).

2.4. Hyperelastic constitutive law accounting for growth

Following Lubarda and Hoger [54] and Ben Amar and Goriely [24], the strain energy density of a growing body
is given by

Ŵ = JgW, (23)

where W is the strain energy density function for elastic deformations from Bg to Bt and multiplication by
Jg accounts for the increase in volume due to growth from B0 to Bg . In this paper, a ‘nearly’ incompressible
yperelastic Neo-Hookean material law is used, but other nonlinear constitutive models can equally be applied with
he morphoelastic seven-parameter shell element (see Section 5). Using the ‘nearly’ incompressible Neo-Hookean
aw defined in Wriggers [22], modified for material growth following Zheng et al. [37], we write

Ŵ =
µ

Jg

(
J

−
2
3

e trCe − 3
)

+
K
(Je − 1)2 , (24)
2 2
8
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where Ce = F⊤

e Fe = 2Ee + I is the elastic right Cauchy–Green deformation tensor, µ is the shear modulus, and
K is the bulk modulus of the material. Thus, only elastic deformations from Bg to Bt , represented by Ce, store
train energy and the incompressibility condition is enforced weakly by K ≫ µ.

The elastic second Piola–Kirchhoff stress is computed via the usual differentiation of the strain energy density
ith respect to the Green–Lagrange strain E (or alternatively the right Cauchy–Green deformation tensor C =

F⊤ F = 2E + I):

S =
∂Ŵ
∂E

≡ 2
∂Ŵ
∂C

= 2
∂Ŵ
∂Ce

:
∂Ce

∂C
= Se :

∂Ce

∂C
. (25)

s the growth strain tensor Eg does not lead to stored strain energy, the derivative ∂Ŵ
∂Ee

= 2 ∂Ŵ
∂Ce

is the elastic
second Piola–Kirchhoff stress tensor Se defined with respect to the intermediate configuration. From the definition
of C = F⊤ F and the multiplicative decomposition F = Fe Fg, we obtain C = F⊤

g Ce Fg such that in global
Cartesian coordinates ∂Ce

∂C = F−⊤

g,ik F−1
g,l j Ei ⊗ E j ⊗ Ek ⊗ El . By substituting this derivative into Eq. (25), the second

Piola–Kirchhoff stress defined with respect to the original, undeformed configuration is given by

S = F−1
g Se F−⊤

g . (26)

For the material law in Eq. (24), the elastic second Piola–Kirchhoff stress tensor is

Se = µJg

⎡⎣∂ J
−

2
3

e

∂Ce
(trCe) + J

−
2
3

e
∂(trCe)
∂Ce

⎤⎦+ 2K (Je − 1)
∂ Je

∂Ce

= µJg J
−

2
3

e

[
I −

1
3
(trCe)C−1

e

]
+ K Je (Je − 1)C−1

e , (27)

rom which S can be computed via Eq. (26) for the defined growth tensor Fg. In the variational form of the
quilibrium statement (see Section 2.5), the contravariant components of the second Piola–Kirchhoff stress Si j in

the covariant shell basis {g1, g2, g3} are used in combination with the covariant components of the Green–Lagrange
strain Ei j in the contravariant shell basis {g1, g2, g3

}. In this case, the indicial form of Eq. (26) reads

Si j
= F−1,ik

g Se,kl F−1, jl
g (28)

here F−1,i j
g are the contravariant components (with respect to basis vectors gi ) of the inverted growth tensor, and

Se,i j the covariant components (with respect to basis vectors gi ) of the elastic second Piola–Kirchhoff stress tensor.
The constitutive tensor with respect to the undeformed configuration is now derived by differentiating the second

Piola–Kirchhoff stress tensor with respect to the Green–Lagrange strain and using Eq. (26):

D =
∂S
∂E

≡ 2
∂S
∂C

= 2
∂S
∂Ce

:
∂Ce

∂C
= 2

∂(F−1
g Se F−⊤

g )

∂Ce
:
∂Ce

∂C
. (29)

efining the elastic constitutive tensor with respect to the intermediate configuration as De = 2 ∂Se
∂Ce

, the contravariant
omponents (with respect to gi ) of the constitutive tensor are:

Di jkl
= F−1,i p

g F−1, jq
g F−1,kr

g F−1,ls
g De,pqrs, (30)

ith F−1,i j
g the contravariant components (with respect to gi ) of the inverted growth tensor and De,i jkl the covariant

components (with respect to gi ) of the elastic constitutive tensor. For the material law in Eq. (24), the elastic
constitutive tensor is

De =2µJg
∂ J

−
2
3

e

∂Ce
⊗

[
I −

1
3

(trCe)C−1
e

]
+ 2µJg J

−
2
3

e

[
−

1
3
∂(trCe)
∂Ce

⊗ C−1
e −

1
3

(trCe)
∂C−1

e

∂Ce

]
+

4K Je
∂ Je

∂Ce
⊗ C−1

e − 2K
∂ Je

∂Ce
⊗ C−1

e + 2K Je (Je − 1)
∂C−1

e

∂Ce

= −
2
µJg J

−
2
3

e
(
C−1

⊗ I
)
−

2
µJg J

−
2
3

e
(
I ⊗ C−1)

+

3 e 3 e

9
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[
2
9
µJg J

−
2
3

e (trCe) + K Je(Je − 1) + K J 2
e

] (
C−1

e ⊗ C−1
e

)
+

[
−

2
3
µJg J

−
2
3

e (trCe) + 2K Je(Je − 1)
]
Ie,

(31)

here the covariant components (with respect to gi ) of the tensor Ie in Eq. (31) are given by

Ie,ijkl = −
1
2

[
C−1

e,ikC−1
e, jl + C−1

e,ilC
−1
e, jk

]
, (32)

nd C−1
e,i j are the covariant components (with respect to gi ) of the inverted elastic right Cauchy–Green tensor.

.5. Variational formulation

The finite element model is derived from the principle of virtual displacements with the displacement field as the
nly functional unknown. As higher-order spectral interpolation functions are introduced in Section 2.6, no mixed
ariational methods, as used in the assumed natural strain [47] or enhanced assumed strain [48] techniques, are
mployed to eliminate shear or membrane locking. The functional variables in the weak formulation are therefore
he displacement field ϕ = (v,w,Ψ ) and its variation δϕ = (δv, δw, δΨ ).

Due to the slow growth rates observed in most biological tissues [55], the present formulation is restricted to
quasi-static analysis with inertial terms omitted. Hence, the weak form of the equilibrium statement formulated
ith respect to the undeformed domain B0 (total Lagrangian formulation) reads

G(ϕ, δϕ) =

∫
B0

S : δEdV −

∫
B0

δϕ · b0dV −

∫
∂B0

δϕ · t0dA = 0, (33)

here b0 is the body force density in B0, and t0 is the externally prescribed traction vector acting on the boundary
f the domain ∂B0 with unit normal vector n.

As the equilibrium statement in Eq. (33) is nonlinear in ϕ, it is linearised and solved using Newton’s root finding
lgorithm. Thus,

G(ϕ + ∆ϕ, δϕ) ≈ G(ϕ, δϕ) + DG(ϕ, δϕ)[∆ϕ] = 0, (34)

hich, in combination with Eq. (33), gives∫
B0

∆S : δEdV +

∫
B0

S : ∆(δE)dV = −G(ϕ, δϕ). (35)

ue to the hyperelastic material law, i.e. D =
∂S
∂E , the second Piola–Kirchhoff stress increment ∆S is linearly

related to the Green–Lagrange strain increment ∆E, such that ∆S = D : ∆E. In indicial notation, the linearised
quilibrium equation (35) therefore reads∫

B0

∆Si jδEi j Jdξ 1dξ 2dξ 3
+

∫
B0

Si j∆(δE)i j Jdξ 1dξ 2dξ 3
= −G

∴
∫
B0

Di jkl∆EklδEi j Jdξ 1dξ 2dξ 3
+

∫
B0

Si j∆(δE)i j Jdξ 1dξ 2dξ 3
= −G, (36)

ith all quantities conveniently evaluated with respect to the covariant (gi ) and contravariant (gi ) basis vectors
ssociated with the shell geometry. The indicial components δEi j = δϵi j +ξ

3δκi j and ∆(δE)i j = ∆(δϵ)i j +ξ
3∆(δκ)i j

re expanded in Appendix A based on the expressions for ϵi j and κi j in Eq. (19).

.6. Higher-order spectral interpolation functions

For this morphoelastic shell element we define a set of quadrilateral elements based on higher-order polynomial
asis functions. The accuracy of the model can therefore be improved through h-refinement (smaller element sizes),

p-refinement (increasing the polynomial order and nodes per element), or hp-refinement (a combination of both).
n advantage of high p-refinement is that it overcomes the poor performance of low-order morphoelastic finite

lements [23,51]. Furthermore, shear and membrane locking are practically non-existent even for full integration of

ll quantities in the direct displacement-based formulation.

10
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The two-dimensional basis functions ψk(ξ 1, ξ 2) in the natural coordinates (ξ 1, ξ 2) of the master element Ω̂ e are
onstructed from the product of the one-dimensional spectral nodal interpolation functions [49]

ζi (ξ ) =
(ξ − 1)(ξ + 1)L p,ξ (ξ )
p(p + 1)L p(ξi )(ξ − ξi )

, (37)

here L p(ξ ) is the Legendre polynomial of order p and L p,ξ =
dL p
dξ . The coordinates ξi refer to the nodes of the

1D interpolants and are located by solving for the roots of

(ξ − 1)(ξ + 1)L p,ξ (ξ ) = 0 for ξ ∈ [−1, 1]. (38)

ence, the nodal coordinates lie on a Chebychev–Gauss–Lobatto grid with nodal position bias towards the edges
f the domain. These spectral one-dimensional interpolation functions are then extended onto the bi-unit master
quare by multiplication of two interpolation functions, i.e. ζi (ξ 1) and ζ j (ξ 2)

ψk(ξ 1, ξ 2) = ζi (ξ 1)ζ j (ξ 2) for (ξ 1, ξ 2) ∈ [−1, 1]2, (39)

here k = i + ( j − 1)(p + 1) and i, j = 1, . . . , p + 1. Each quadrilateral finite element thus has (p + 1)2 nodes
nd the order of the element can be refined by increasing the value of p. In the present work, 25-noded elements
ith p = 4 are used as they represent a good trade-off between the benefits of higher-order interpolation and the

omputational efficiency of lower matrix bandwidth.

. Morphoelastic instability analysis using generalised path-following

This section discusses a morphoelastic computational stability framework based on generalised path-following
56]. In particular, nonlinear instability analysis based on extended systems for direct pinpointing of critical points
nd branch switching facilitates a comprehensive exploration of growth-mediated morphogenesis. The general
etting is presented in Section 3.1 with an application to morphoelastic equilibrium curves in Section 3.2. Pinpointing
f critical points while path-following morphoelastic equilibrium curves is discussed in Section 3.3 and branch
witching onto bifurcated paths at branching points is discussed in Section 3.5. For further details on the concept
f generalised path-following, the interested reader is directed to Eriksson [56] and Groh et al. [57].

.1. General setting

When discretised using a finite element interpolation, the weak form of the equilibrium equation (36) is expressed
s a balance between internal nodal forces f , and externally applied nodal forces p,

R(u,Λ) = f (u,Λi) − p(Λe) = 0. (40)

ere, the vector u represents n displacement degrees-of-freedom (dofs) and the vector Λ = [Λ⊤

i ,Λ
⊤

e ]⊤ =

λ1, . . . , λp]⊤ contains p control parameters with Λi representing internal parameters (e.g. growth parameter,
aterial properties, geometric dimensions, temperature fields) and Λe external loading parameters (e.g. forces,
oments, tractions). For morphoelastic problems we isolate the growth parameter λg ∈ Λi that is used to parametrise

he growth tensor, Fg = Fg(λg). The external (non-follower) loading vector p is defined by p(Λe) = P̂Λe, where
P̂ is a matrix with each column an externally applied load vector p̂i scaled through the associated i th component
f Λe, λi

e ∈ Λe.
As the n number of equilibrium equations R of Eq. (40) are functions of n displacement dofs and p system

arameters, a p-dimensional solution manifold exists in R(n+p). By extending the equilibrium equations R through
≤ p − 1 constraining equations g, specific solution subsets on the p-dimensional solution manifold are defined

G(u,Λ) ≡

(
R(u,Λ)
g(u,Λ)

)
= 0. (41)

hen r auxiliary equations are defined, the solution to Eq. (41) is (p − r )-dimensional. Hence, r = p − 1 auxiliary
quations are required to define a one-dimensional solution curve in R(n+p).

In this manner different equilibrium paths can be determined by varying any parameter in the set Λ. This means
he computationally expensive parametric approach of running multiple equilibrium curves with varying growth

arameter λg, each with different geometric and/or material properties, is precluded. Instead, an equilibrium curve

11
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u = u(λg) for a single baseline model can be determined, and specific points of interest then traced through
parameter space. This treatment naturally leads to the notion of tracing critical points. As the onset of instability
or the exchange of stability are often linked directly to pattern formation in morphoelastic problems, e.g. through
wrinkling, the ability to trace critical curves directly through parameter space is invaluable for quickly ascertaining
the sensitivity of different pattern formation phenomena to changing model parameters.

For example, to constrain the system of n equilibrium equations R to a locus of critical points, we enforce
a singularity condition such as K Tφ = 0, i.e. at least one eigenvector φ of the tangential stiffness matrix
K T = R,u = f ,u spans the nullspace. In the most general form, not limited to but including the previous singularity
condition, a vector of q auxiliary variables v is added to the auxiliary equations g,

G(u,Λ, v) ≡

(
R(u,Λ)

g(u,Λ, v)

)
= 0. (42)

Eq. (42) defines n + r equations in (n + p + q) unknowns leading to a (p + q − r )-dimensional solution manifold.
The system of equations for a one-dimensional equilibrium curve defined by a single parameter, i.e. u = u(λ)

for λ ∈ Λ, is recovered by setting p = 1 and q = r = 0. Alternatively, a one-dimensional curve of critical points
defined by two simultaneously varying parameters p = 2, e.g. a growth parameter and a material/geometric property,
would define the n-dimensional null vector at the critical state as an auxiliary variable, i.e. v = φ with q = n, and
the criticality condition with an additional norming constraint as the auxiliary equations, i.e. g = {K Tv; ∥v∥2 −1}

with r = n + 1.

3.2. Path-following morphoelastic equilibrium curves

An important assumption in evaluating morphoelastic equilibrium curves is that growth and atrophy are reversible
processes. This is an important difference to the case of plasticity where plastic deformations cannot be undone
and are accumulated throughout a loading history. Hence, we assume that the scalar growth parameter λg can both
increase and decrease throughout a morphoelastic evolution to represent addition/growth and subtraction/atrophy
of mass, respectively. An interchange between these two phenomena can occur at a maximum or minimum
turning/limit point on the morphoelastic equilibrium curve, and under monotonically increasing or decreasing
growth factor, the biomaterial would dynamically snap to an alternative morphology at such a point. It is useful
to trace out the full morphoelastic equilibrium curve comprised of statically stable and unstable segments—even
if growth monotonically increases throughout a biological process—as this allows alternative morphologies to be
computationally determined by exploring the entire equilibrium manifold. As shown in Section 4, different stable
morphologies can exist for the same system and level of growth, i.e. the morphoelastic equilibrium manifold shows
areas of multi-stability.

Returning to the system of Eqs. (42), when evaluating one-dimensional curves, i.e. r = p +q −1, one additional
constraining equation is needed to uniquely solve for a solution point y = (u,Λ, v). Hence,

Gσ ( y) ≡

⎛⎝ R(u,Λ)
g(u,Λ, v)
σ (u,Λ)

⎞⎠ = 0, (43)

where σ is a scalar equation that plays the role of a multi-dimensional arc-length constraint along a specific direction
of the one-dimensional curve. A solution to Eq. (43) is determined by a consistent linearisation coupled with
Newton’s root-finding algorithm,

y j+1
k = y j

k −

{
Gσ
, y( y j

k )
}−1

· Gσ ( y j
k ) = y j

k + δ y j
k , (44)

where the superscript denotes the j th equilibrium iteration and the subscript the kth solution increment. For most
problems, the inversion of the iteration matrix

Gσ
, y =

⎡⎣K T R,Λ 0n×q

g,u g,Λ g,v
σ⊤
,u σ⊤

,Λ 01×q

⎤⎦ , (45)

is significantly simplified by partitioning the system into blocks such that only the symmetric tangential stiffness

matrix K T = R,u = f ,u needs to be factorised in the solution process (see, e.g., [53] for details).
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For path following a morphoelastic equilibrium curve u = u(λg), the equations are restricted to one varying
arameter λg ∈ Λi with all other parameters Λc

= (Λc
i ,Λ

c
e) ⊂ Λ, λg ̸∈ Λc held constant. We therefore have the

equilibrium equations

R(u, λg,Λ
c) = f (u, λg,Λ

c
i ) − P̂Λc

e = 0 (46)

constrained by: (i) the auxiliary equations g = Λc
− Σ = 0, which prescribe the values Σ to all non-varying

arameters Λc, and (ii) the arc-length constraint σ (u, λg) = n⊤
u u + nλgλg − σc = 0, to give

Gσ (u, λg,Λ
c) ≡

⎛⎝R(u, λg,Λ
c)

Λc
− Σ

σ (u, λg)

⎞⎠ = 0. (47)

inearisation of the above equation leads to⎡⎣ K T R,λg R,Λc

0(p−1)×n 0(p−1)×1 1(p−1)×(p−1)
n⊤

u nλg 01×(p−1)

⎤⎦⎧⎨⎩ δu
δλg
δΛc

⎫⎬⎭ = −

⎧⎨⎩R(u, λg,Λ
c)

Λc − Σ
σ (u, λg)

⎫⎬⎭ , (48)

here 1 is the identity matrix. The 2nd row and 3rd column of the iteration matrix can generally be omitted as
Λc

= 0 by definition. The term R,λg is computed via a forward finite difference scheme

R,λg = f ,λg ≈
f (u, λg + ε|λg|,Λ

c
i ) − f (u, λg,Λ

c
i )

ε|λg|
, (49)

here ε is a small perturbation parameter in the range of 10−5–10−8. R,λg represents the “forcing” vector that
eads to a change in the displacement field u as the growth parameter λg is changed. Put differently, as λg is

incremented away from a known equilibrium solution, the vector K−1
T R,λg corresponds to the tangential change in

the displacement field.

3.3. Pinpointing critical points

Pinpointing critical points allows the exact value of morphoelastic instability points, i.e. points where the
deformation mode of the growing body changes qualitatively, to be determined. Furthermore, if the critical point is
of the bifurcation/branching type, then branch switching can uncover new morphological evolution trajectories that
branch-off the critical point.

To pinpoint critical points, an augmented system of the form described by Eq. (42) is formulated. The advantage
of this method is that the singularity condition forces Newton’s method to converge to the critical point directly
in a single solution increment. Here, the nullvector approach described by Moore and Spence [58] and applied to
the finite element method by Wriggers and Simo [53] is used. The nullvector method is based on the fact that
the tangential stiffness matrix K T has at least one zero eigenvalue µ = φ⊤ K Tφ at a critical point. Therefore, the
associated eigenvector φ is in the nullspace of K T. For the morphoelastic system we have

G(u, λg,Λ
c,φ) ≡

⎛⎝ R(u, λg,Λ
c)

K T(u, λg,Λ
c
i )φ

∥φ∥2 − 1

⎞⎠ = 0, (50)

where the norm of the nullvector is required to eliminate the trivial solution φ = 0. Eq. (50) features (2n + 1)
equations in (2n + p) variables, and the (p − 1) extra equations required to solve the system are implicit in the
definition that the added control parameters in Λc are held constant, i.e. Λc j

= Σ j for j = 2 . . . p (see Eq. (48)).
The resulting system of equations can therefore be solved via Newton’s root-finding algorithm for the critical point
(u∗, λ∗

g,Λ
c) as well as the associated nullvector φ. The solution process follows the typical predictor–corrector

scheme with the iteration matrix derived from the linearisation of Eq. (50),⎡⎢⎣ K T R,λg 0
(K Tφ),u (K Tφ),λg K T

0 0 φ⊤

⎤⎥⎦
⎧⎨⎩ δu
δλg
δφ

⎫⎬⎭ = −

⎧⎨⎩ R(u, λg,Λ
c)

K T(u, λg,Λ
c
i )φ

∥φ∥2 − 1

⎫⎬⎭ . (51)

1×n ∥φ∥2
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Following Wriggers and Simo [53], approximate directional derivatives of the tangential stiffness matrix can be
computed by

(K Tφ),u ≈
K T(u + ε∥u∥2φ, λg,Λ

c
i ) − K T(u, λg,Λ

c
i )

ε∥u∥2
, (52a)

(K Tφ),λg ≈
K T(u, λg + ε|λg|,Λ

c
i ) − K T(u, λg,Λ

c
i )

ε|λg|
φ, (52b)

with ε in the range of 10−5–10−8. Once a critical point has been pinpointed, we distinguish the type of critical point
on the equilibrium curve using the following criteria:

• if φ · R,λg = 0, the critical point is a bifurcation/branching point;
• if φ · R,λg ̸= 0, the critical point is a limit/turning point.

If a bifurcation/branching point has been determined, branch switching onto a bifurcated path can be initiated by
inserting the critical eigenvector φ into the predictor of the next loading increment (see Section 3.5). When solving
the system of Eqs. (51), the iteration matrix is not inverted in its entirety, but split into individual blocks and Eq. (51)
solved by a partitioning procedure in such a manner that only the symmetric tangential stiffness matrix is factorised
(see Wriggers and Simo [53]).

The implemented pinpointing procedure proceeds as follows. While path-following along a morphoelastic
equilibrium path, the pivots of the tangent stiffness matrix are monitored efficiently using an LDL-decomposition
(K T is Hermitian). When the number of negative pivots in the D-matrix between two consecutive converged
equilibrium solutions changes, a critical point must exist between the two solution points and the pinpointing
procedure is started. The eigenvector φs associated with the smallest-magnitude eigenvalue at the last converged
equilibrium state (ul, λl

g,Λ
c) is then extracted (e.g using the EIGS function in MATLAB) and seeded alongside

(ul, λl
g,Λ

c) as the starting point for the iterative critical point pinpointing procedure. If the solver does not converge,
then an additional equilibrium point between the two previously determined equilibria is determined and the process
is repeated.

3.4. Multi-parametric loci of critical points

If Eq. (50) is extended by an arc-length equation and one additional system parameter λa, initially in the set of
constant parameters Λc, is also allowed to vary, then we can trace the locus of a critical point through parameter
space. Hence, we path-follow along a critical cutset of the equilibrium manifold with two varying parameters
u∗

= u(λ∗
g, λa), with the critical growth parameter a function of the second parameter λ∗

g = λ∗
g(λa). Owing to

the singularity of the tangent stiffness matrix K T, tracking the locus of critical points requires careful consideration
f the tangent space at each critical point. These considerations are outlined in detail, for example, in Eriksson [56]
nd Groh et al. [57]. In Section 5, the ability to track critical points through parameter space is used to quantify
he effect of material parameters on critical growth factors.

.5. Branch switching at bifurcation/branching points

In the case of a simple degeneracy of the tangential stiffness matrix, the simplest method of branch switching
etween two intersecting equilibrium paths is to insert the critical eigenvector into the displacement field at the
ifurcation point [59]. The critical eigenvector φ at the bifurcation point is thus used as a perturbation to the known
ritical solution u∗:

up
= u∗

+ ι
φ

∥φ∥2
, (53)

ith the perturbed configuration up acting as a predictor for the first step on a new path starting from the bifurcation
oint. The magnitude of the scaling factor ι is determined from

ι = ±
∥u∗

∥2

τ
, (54)

here the sign of ι controls the direction of path-following along the bifurcated path, and τ is a problem-specific
onstant in the range of 10−3–103. If τ is too small, then the algorithm may continue on the known primary path,
nd if τ is too large, then the solver may not converge.
14
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Fig. 3. Geometry used for (a) free growth of a flat plate and (b) constrained growth of an annulus.

. Numerical applications to planar growth

The seven-parameter morphoelastic shell element is applied to a number of planar growth problems, and the
nsuing quasi-static nonlinear equations are solved using the computational stability framework introduced in
ection 3. In each example, the growth tensor is defined as a model input and takes the form

Fg(X, λg) =

⎡⎣g1(X, λg) 0 0
0 g2(X, λg) 0
0 0 1

⎤⎦ . (55)

The growth tensor is specified at the Gauss integration points of each shell element, and the components of Fg are
defined in a local Cartesian coordinate system {e1, e2, e3} lying in the plane of the shell at each Gauss point.3 such
that there is no growth in the thickness e3 direction. Note, due to the total Lagrangian formulation, the functional
dependence of Fg is always with respect to the undeformed material coordinates X and a coordinate system defined
in the original, undeformed configuration.

We restrict ourselves to stress- and strain-independent definitions of the two growth functions gα(X, λg), noting
that stress- or strain-dependent growth could readily be incorporated in the computer implementation. The focus
herein is particularly on spatially varying growth with the ensuing differential growth conducive to instability
phenomena and pattern formation. Following commonly observed spatial distributions of growth laws in biological
tissues (e.g. leaves [3] and petals [6]), exponential and/or power law distributions of growth towards edges are
predominantly assumed.

In Section 4.1 the seven-parameter element is first validated against the solid-shell element of Zheng et al.
37] for a freely growing flat plate and a constrained growing annulus. The importance of monitoring the stability
f the computed equilibria is especially highlighted as this was not considered by Zheng et al. [37]. Section 4.2
ntroduces the general capabilities of the morphoelastic stability framework using the example of a growing annulus.
n Section 4.3 the stability framework is used to highlight the governing role of exponential edge growth in driving
ractal rippling patterns in a long sheet. Sections 4.4–4.6 then demonstrate the mechanics of this pattern formation in
arious biological examples, such as in the fronds of hart’s-tongue fern (Section 4.4), daffodil coronas (Section 4.5),
nd the blooming of lily petals (Section 4.6).

.1. Model validation: a growing plate and annulus

Free growth of a square plate and constrained growth of an annulus are first considered to validate the
orphoelastic seven-parameter model against a solid-shell element in the literature [37]. The geometries of these

wo problems are schematically shown in Fig. 3.

3 In the computer implementation, the defined local Cartesian components of Fg are transposed into covariant and contravariant components
orresponding to the convected bases gi and g to facilitate their implementation as outlined in Section 2.4.
i
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Fig. 4. Variation of x- and y-displacement along edge D P of the flat plate (see Fig. 3a) with the four growth laws (i)–(iv) described in the
ext. The present model matches the results by Zheng et al. [37]. The inset contours show the final (flat) deformation mode after growth.
n figures (c) and (d) these fundamental flat states are statically unstable and would not be observed in reality.

Following Zheng et al. [37], the flat plate has a square geometry with a side length of l = 10 and a thickness of
h = 0.01. The plate is discretised using a regular mesh of 21 × 21 nodes that are arranged into 25 higher-order shell
lements (25 nodes per element). The centroid O of the plate is constrained in all three Cartesian directions; the line

AB is constrained from moving in the y-direction and the shell normals on line AB cannot rotate around the x-axis;
he line C D is constrained from moving in the x-direction and shell normals on line C D cannot rotate around the
y-axis; and all four points A, B, C , and D are constrained from moving in the out-of-plane z-direction. The shear

odulus of the plate is taken as µ = 4×103 and the bulk modulus as K = 4×105 to give an effective Poisson’s ratio
f ν = 0.495. The plate grows to a final growth deformation tensor of Fg = diag(gx , gy, 1), where the components
efer to the xyz-coordinate system in Fig. 3a, with four different scenarios considered: (i) gx = gy = 1.4; (ii)

gx = 1 + (x/5)2 and gy = 1 + (y/5)2; (iii) gx = gy = 1 + (x/5)2(y/5)2; and (iv) gx = gy = 1.5 for −3 ≤ x ≤ 3,
3 ≤ y ≤ 3 and gx = gy = 1 elsewhere. For all position-dependent growth laws, the coordinates (x, y) refer to the

riginal, undeformed locations of all material points. For every model, the nonlinear solver converged to the target
rowth state within a single load increment.

Fig. 4a–d show the variation of the x- and y-displacements (ux and u y) along line D P for cases (i)–(iv),
espectively, with contour plots of the corresponding displacement magnitudes shown as insets. In all four cases, the

even-parameter shell element matches the results by Zheng et al. [37] with small differences attributable to the finer
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mesh used in the present paper (11 × 11 nodes per plate quarter compared to 6 × 6 nodes per plate quarter in [37]).
The uniform and spatially varying growth laws in cases (i) and (ii), respectively, correspond to compatible growth
fields, such that the ensuing deformations are stress free, and as noted in Fig. 4a–b, the corresponding equilibrium
states are statically stable. The displacement variations and deformation contour plots for cases (iii) and (iv) are
more complicated due to the non-compatible growth fields that lead to self-restraining deformations. Indeed, the
deformed equilibria for cases (iii) and (iv) are highly unstable, as noted in Fig. 4c–d, with a total of 133 and
135 negative eigenvalues in the tangent stiffness matrix, respectively. The applied growth fields (iii) and (iv) thus
lead to bifurcations away from the fundamental flat state well before reaching the growth values specified, thereby
highlighting the importance of tracking stability properties throughout morphoelastic analyses of thin biological
materials. Indeed, if a dynamic or experimental instantiation of growth cases (iii) and (iv) were to be considered,
the flat deformation fields corresponding to the contours in Fig. 4c–d would not be realised.

The importance of stability tracking throughout a nonlinear morphoelastic solution procedure is highlighted
further with the second verification model proposed by Zheng et al. [37]. A thin annulus with inside radius Ri = 1
and outside radius Ro = 2 (see Fig. 3b) of thickness h = 0.001 is discretised using 17 radial and 80 circumferential
nodes that are assembled into a uniform mesh of 80 25-noded shell elements. The shear modulus is again taken
to be µ = 4 × 103 and the bulk modulus K = 4 × 105. The planar growth law is Fg = diag(gr , gθ , 1) where the
subscripts (r, θ) refer to the radial and azimuthal coordinates of a cylindrical coordinate system, respectively. Two
different growth laws are assumed: (1) gr = gθ = 1.35; and (2) gr = gθ = (r − 1.5)2

+ 1.1, where r is the radial
position of material points in the undeformed configuration. In addition, either (A) the inside radius r = Ri = 1; or
(B) the outside radius r = Ro = 2 is restrained from displacing in all three Cartesian directions, giving a total of
four cases (1A), (1B), (2A), and (2B). For cases (1A) and (2A) the nonlinear solver converged to the target growth
state in a single load increment, and for (1B) and (2B) the solver took two increments of equal arc-length.

The radial displacement distribution along the deformed radial coordinate for these four cases is shown in Fig. 5
with the deformation magnitude contour at the target grown state shown as an inset. In all four cases there is
excellent agreement between the present seven-parameter shell model and the solid-shell model by Zheng et al.
[37]. Due to the radially varying metric tensor of the annulus, G = 1gr ⊗ gr + r2 gθ ⊗ gθ + 1gz ⊗ gz , even
a spatially constant growth law, as in (1) with gr = gθ = 1.35, leads to material fibres with varying free lengths
along the radial direction (incompatible growth). In regions where the ensuing internal compressive stresses exceed a
critical threshold, the annulus buckles out-of-plane to release membrane energy into bending energy. Put differently,
the change in free material lengths due to growth changes the free metric tensor of the surface, which no longer
corresponds to the metric of a flat annulus but a curved monkey saddle. Due to the finite thickness of the annulus,
this difference in metric tensor is first accommodated by membrane stretching, but beyond a critical value of growth
is accommodated at lower energetic cost through out-of-plane bending into a saddle shape. As a result, the four
target growth magnitudes (1A), (1B), (2A), and (2B) specified by Zheng et al. [37] all lead to statically unstable
flat equilibria as noted in Fig. 5a–d. The number of negative eigenvalues in the tangent stiffness matrix for these
four flat equilibria exceeds 300 in all cases, demonstrating the high degree of instability of these flat deformations
at the target growth magnitude. The next section will study the bifurcation behaviour of the growing annulus in
more detail.

4.2. Out-of-plane buckling of a growing annulus

The loss of stability of the flat deformation shape of the growing annulus can be studied efficiently and robustly
using the stability framework outlined in Section 3. A validation of the framework in predicting instabilities of a
growing bilayer annulus is presented in Appendix B, showing excellent agreement with the results by Jin et al. [60].

The stability analysis of the growing annulus previously introduced in Section 4.1 is now shown in detail in
Fig. 6 for two different scenarios. The first model, illustrated in Fig. 6a, corresponds to case (1A) above but with
a parametrised growth law Fg(λg) = diag(1 + λg, 1 + λg, 1) and a higher fidelity mesh (29 radial nodes and 280
circumferential nodes arranged into 490 25-noded shell elements). The equilibrium diagram in Fig. 6a is plotted as
the growth factor λg vs. the thickness-normalised out-of-plane displacement w/h at point (x, y) = (−Ro, 0), where
the maximum or minimum hump of the monkey saddle is defined to occur. The plot shows how the originally flat
(w/h = 0) fundamental state loses stability via a supercritical pitchfork bifurcation for a critical growth factor
λ∗

= 0.137×10−5 and bifurcates into a three-lobed monkey saddle (max(w/h) or min(w/h) at (x, y) = (−R , 0)).
g o
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Fig. 5. Variation of the radial displacement along the deformed radial coordinate of the thin annulus for the four different growth laws
described in the text. Plot (a) corresponds to case (1A); plot (b) to case (1B); plot (c) to case (2A); and plot (d) to case (2B). The present
model closely matches the results by Zheng et al. [37]. The inset contours show the final (flat) deformation mode after growth with the
colour contour representing the deformation magnitude. For all cases, these flat states are statically unstable.

Hence, the critical growth factor is five orders of magnitude smaller than the target growth factor λg = 0.35
prescribed by Zheng et al. [37], which explains the large number of negative eigenvalues in the tangent stiffness
matrix for the flat state at λg = 0.35. Indeed, even the bifurcated three-lobed monkey saddle loses stability at a
bifurcation point with λg < 2 × 10−5.

The second model, shown in Fig. 6b–d, maintains the geometry and material properties of the previous model
ut clamps the inner edge of the annulus (all seven parameters of the shell element are constrained). The annulus
s now discretised with 33 radial nodes and 320 circumferential nodes that are assembled into 640 25-noded shell
lements. To reflect a typical edge growth scenario, the growth law varies exponentially in the radial direction, i.e.

Fg(r, λg) = diag(1 + λge10(r−2), 1 + λge10(r−2), 1) where Ri < r < Ro is the radial position of the undeformed
material points. Fig. 6b shows the equilibrium manifold of w/h vs. λg with w/h taken as the maximum out-of-
plane displacement of the annulus. In addition, Fig. 6c–d show deformation mode shapes corresponding to the
points A–C and a–c highlighted in Fig. 6b. Once more, the flat fundamental state loses stability at a supercritical
pitchfork bifurcation and transitions into a four-lobed monkey saddle (see Fig. 6c-1). This lower stable branch in
Fig. 6b then loses stability at a secondary bifurcation (point B) and the corresponding eigenvector in Fig. 6c-2
reveals this to be a period doubling bifurcation (eight upwards/downwards lobes in the critical eigenvector). The
18
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Fig. 6. Supercritical pitchfork bifurcation of a growing annulus from a flat state into a monkey saddle. (a) Annulus with pinned inner edge
nd spatially uniform growth law. (b) Annulus with clamped inner edge and spatially varying exponential growth law. (c,d) Mesh deformation
lots of key points A–C and a–c highlighted in (b). In all deformation plots the grid lines correspond to nodal lines of the discretisation
esh.

econdary undulations from the period doubling bifurcation are visible in Fig. 6c-3 before this deformation mode
oo loses stability.

Interestingly, the equilibrium branch bifurcating from the third critical point on the flat fundamental path is
nitially unstable but stabilises at a compound (double) bifurcation point to form an alternative stable equilibrium
ath (see inset in Fig. 6b). This additional equilibrium path corresponds to a five-lobed monkey saddle (see Fig. 6d-
) and always maintains a higher growth factor λg for the same out-of-plane displacement w/h. This upper stable
ranch in Fig. 6b also loses stability at a period doubling bifurcation (point b) with ten upwards/downwards lobes
n the critical eigenvector of Fig. 6d-2. The equilibrium branch that bifurcates from point b in Fig. 6b is then stable
ver an extended period of growth factor with the deformation shape shown in Fig. 6d-3.

These relatively rudimentary examples highlight the importance of tracking stability properties throughout a
uasi-static morphoelastic analysis. It may seem tempting to disregard quasi-static analyses entirely because mode
hanges at instabilities would naturally occur when using a dynamic analysis. However, especially the second
xample based on the exponential growth law shows that even for relatively simple problems, incompatible growth
eadily leads to multi-stable morphologies that would be difficult to untangle and isolate if the shell were allowed
o dynamically snap when stability is first lost. Indeed, the first and third bifurcation points on the fundamental path

f the second example (see inset in Fig. 6b) are very closely spaced suggesting that small deviations in the initial
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Fig. 7. A thin plastic sheet that is torn along an initial notch as shown in (a) develops a fractal wrinkling pattern along the torn edge due
to the strongly increasing plastic stretch towards the edge as depicted in (b,c). The same fractal pattern is also observed in many growing
biological tissues such as the leaves of common kale (Brassica oleracea var. sabellica) shown in (d).

conditions could lead to one mode (four- or five-lobed monkey saddle) being preferred over the other. As shown in
the following sections, this scenario of multi-stability triggered by consecutive and closely spaced bifurcations from
a fundamental state occurs for various geometries and growth laws, and may therefore be a general mechanism by
which different morphologies evolve from nearly identical starting conditions.

4.3. Fractal wrinkling at a growing edge

Fractal wrinkling patterns at free edges have been observed in diverse scenarios ranging from growing leaves to
torn plastic sheets [5] (see, e.g., Fig. 7). The underlying mechanics of this pattern formation is driven by spatially
varying changes to the original surface metric as a result of plastic deformation or internal growth [3,61,62].

In the case of a plastic sheet torn along an initial notch (shown in Fig. 7a–c) the induced plastic stretch is
maximum at the torn edge and decreases rapidly to zero in the direction perpendicular to the edge (denoted as the
y-axis in Fig. 7b). The length of a differential line element on the torn surface is given by dl2

= f (y)2dx2
+ dy2,

where f (y) describes the ratio of plastically strained differential length at position y to the initial length prior to
tearing. The metric tensor induced by tearing the sheet is thus given by G = f (y)2ex ⊗ ex + 1ey ⊗ ey with f (y)
tending to unity far from the edge (no plastic deformation) and increasing convexly towards the torn edge [3]. In
general, different tearing velocities, material properties, and sheet dimensions lead to different metric functions f (y),
and thus different wrinkling patterns. For any surface with the above metric tensor, the associated Gaussian curvature
is K (y) = −1/ f · (d2 f/dy2) [62], which in the present case is always negative as f (y) > 1 ( f (y) is a ratio of
engths) and d2 f/dy2 > 1 ( f (y) is convex). The hyperbolic metric of the torn sheet therefore describes saddle-like
onfigurations, and for sufficiently high plastic stretching or sufficiently low bending rigidity, the originally flat
heet buckles out-of-plane to conform to this saddle curvature. If the metric f (y) leads to increasingly negative
aussian curvature towards the free edge, a cascade of saddles upon saddles may form [62].
In Section 2.3 we mentioned the similarities in modelling plasticity and growth based on the multiplicative

ecomposition of the deformation gradient tensor. Hence, it is no surprise that the fractal wrinkles in a plastically
eformed sheet are similar to those observed in certain growing biological tissues (compare Fig. 7c to d). To model
ractal wrinkling at the free edge of a growing tissue, we consider an initially flat, rectangular sheet of length

L = 12 cm in the x-direction, W = 3 cm in the y-direction, and a thickness of h = 0.02 cm with one edge at
y = 3 cm clamped (all dofs constrained). The sheet is discretised into 249 × 61 nodes in the x- and y-directions,
espectively, which are then assembled into 930 25-noded spectral elements. The element distribution in the

y-direction is logarithmic with a bias of finer density towards the free edge. The shear modulus of the sheet is
aken as µ = 4×103 N/cm2 and the bulk modulus as K = 4×105 N/cm2. A one-dimensional and spatially varying
rowth law is defined in the global Cartesian coordinate system F (y, λ ) = diag(g (y, λ ), 1, 1), where g (y, λ )
g g x g x g
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Fig. 8. Different exponential and power law functions used to model longitudinal edge growth in an initially flat sheet. Only the sharp
power law represented by the solid line leads to a fractal wrinkling pattern at the free edge.

describes longitudinal growth in the x-direction with greatest magnitude (parametrised through growth factor λg)
at the free edge, y = 0 cm, and smallest magnitude gx (y, λg) → 1 at the clamped edge, y = 3 cm.

In the following, two different types of growth law are assumed for gx (y, λg), where the x-direction metric always
ncreases convexly towards the free edge. The first case is inspired by Marder et al. [3] and assumes exponential
rowth towards the free edge with gx (y, λg) = 1 + λge−5y . For clarity, the exponential function is visualised in
ig. 8 by the dashed line. Qualitatively identical results can also be produced by using power law growth of the
orm gx (y, λg) = 1 + λg(1 + y/ l)−a with a = 2 and a characteristic length-scale parameter of l = W/10 cm
W = 3 cm is the width of the sheet in the y-direction). The power law function is visualised in Fig. 8 by the
otted curve and is almost coincident to the previous exponential law towards the free edge (y = 0 cm). The second
ase modelled herein shortens the characteristic length-scale parameter of the power law to l = W/100 cm to
roduce a sharper increase in longitudinal growth towards the free edge of the sheet (see the solid curve in Fig. 8).
his second growth law leads to (i) a significantly greater mismatch between the free lengths of grown material
bres over a specific length scale close to the free edge; and (ii) a more rapidly scaling negative Gaussian curvature
f the associated free surface metric towards the edge.

These two scenarios of more benign exponential growth (or equivalent power law growth with l = W/10 cm)
and the steeper power law growth (l = W/100 cm) are now studied in turn. Fig. 9a shows an equilibrium manifold
for the exponential growth law in terms of the thickness-normalised out-of-plane displacement w/h at one free
corner of the sheet vs. the growth factor λg. As shown in the inset of Fig. 9a the growing sheet initially remains flat
(w/h = 0) but this flat equilibrium state loses stability at a supercritical pitchfork bifurcation. In fact, there are two
closely spaced bifurcation points on the fundamental path. The eigenvector of the first critical point corresponds to
one full wave forming at the free edge (see Fig. 9b-A), while the eigenvector of the second critical point corresponds
to 1.5 waves (see Fig. 9b-a). Branch switching from these two bifurcation points leads to the two intertwined post-
critical equilibrium branches shown in Fig. 9a. Both of these paths are seen to weave backwards and forwards with
alternating negative and positive values of w/h. The deformation modes in Fig. 9b show that the two post-critical
equilibrium paths describe pattern formation sequences into increasing number of edge waves and increasingly
smaller wavelength. The post-critical equilibrium path branching from the first critical point corresponds to mode
shapes that are left–right symmetric (crests or valleys at both free corners, see points A–D in Fig. 9b), whereas
the post-critical equilibrium path branching from the second critical point corresponds to mode shapes that are
left–right antisymmetric (crest at one free corner and valley at the other, see points a–d in Fig. 9b). The first post-
critical path is initially stable (see inset in Fig. 9a) such that the flat sheet buckles onto this path to begin with. As
the growth factor λg increases further both equilibrium paths exchange stability by undergoing a series of re- and
destabilisations at additional bifurcation points. As shown in Fig. 9a, the two post-critical paths are connected by
unstable segments between bifurcation points. Hence, as the growth factor λ increases the sheet successively snaps
g
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Fig. 9. Wrinkling at a free edge of a flat sheet due to exponential edge growth. Two pitchfork bifurcations (critical points λ∗

g1 and λ∗

g2)
that branch from the flat fundamental state are intertwined and correspond to left–right symmetric and antisymmetric wrinkling modes. (a)
The equilibrium paths of growth factor λg vs. the thickness-normalised out-of-plane displacement w/h at one free corner of the sheet; (b)
Deformation plots of different points marked on the equilibrium curves in (a).

between the left–right symmetric and left–right antisymmetric undulation modes, all the while increasing the wave
number and decreasing the wavelength at the free edge.

The two intertwined equilibrium paths that describe mode changes into greater and greater wave numbers are
at first sight reminiscent of homoclinic snaking [63] that governs the pattern formation in axially compressed
cylinders [64,65]. However, homoclinic snaking describes a process whereby an initially localised post-critical
solution multiplies through a series of limit point instabilities into a periodic waveform. Crucially, the wavelength of
the original localised cell remains constant and does not modulate as the pattern multiplies. Furthermore, in snaking
the forcing parameter oscillates within a bounded pinning region around the so-called Maxwell load [66] where the
pre-critical and periodic post-critical modes have equal energy. As none of these characteristics are observed in the
present case, the pattern formation must be governed by different mechanics. Here, a useful analogy can be made
to an initially straight beam resting on an elastic stiffening foundation. If we model the infinitesimal longitudinal
line of the sheet at y = 0 cm as a 1D beam, then the rest of sheet acts as an equivalent restraining foundation
because the edge is defined to grow the most. With increasing growth factor λg, the effective restraint, and hence
the stiffness of the equivalent foundation, increases as the spatial mismatch in growth is proportional to λg. As is
well known from buckling of a beam on an elastic foundation, the buckling wavelength scales inversely with the
foundation stiffness, and we should therefore expect a shortening of the wavelength for increasing λg. This is indeed
what we observe in Fig. 9.

Another trend in the equilibrium manifold of Fig. 9a is that the two post-critical paths spread out both on
the horizontal (w/h) and vertical (λg) axes. Hence, the incremental change in growth factor (∆λg) between two
successive wave numbers increases, and the out-of-plane deformation magnitude of each wave (|w/h|) also increases
significantly with increasing λg. Therefore, as growth proceeds the sheet increasingly accommodates the extra
length at the free edge through out-of-plane deformation rather than favouring further shortening of the buckling
wavelength. Indeed, this trend of accommodating differential edge growth predominantly through out-of-plane
deflection continues well beyond the ordinate range λg < 0.1 shown in Fig. 9a. An extension of the present
nalysis up to λg = 2 leads to large out-of-plane deflections of |w/h| > 35 with little increase in the wave number,
nd ultimately to self-contact of individual wrinkles at the free edge. Hence, these findings corroborate previous
bservations by Marder et al. [3] that a benign exponential or power law growth function towards a free edge does

ot lead to fractal wrinkling patterns.
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Fig. 10. Wrinkling at a free edge of a flat sheet due to steeper power law edge growth. Two pitchfork bifurcations (critical points
λ∗

g1 = 1.97 × 10−3 and λ∗

g2 = 1.99 × 10−3) that branch from the flat fundamental state are intertwined and correspond to left–right
ymmetric and antisymmetric wrinkling modes. (a) and (b) show the equilibrium paths of growth factor λg vs. the thickness-normalised
ut-of-plane displacement w/h at one free corner of the sheet. (a) Shows the region of growth factor λg < 0.1 where wrinkling occurs
ver one length scale, whereas (b) shows an extended equilibrium manifold λg < 0.35 with wrinkling occurring over two length scales for
g ⪆ 0.2. (c) Deformation plots of different points marked on the equilibrium curves in (a) and (b) with all out-of-plane displacements
mplified by a factor of 3.

Fig. 10a shows the equilibrium manifold for steeper power law growth (l = W/100 cm) in terms of the thickness-
ormalised out-of-plane displacement w/h at one free corner of the sheet vs. the growth factor λg. As discussed
or the exponential growth law, we observe two post-critical equilibrium paths that branch from closely spaced
ifurcation points on the fundamental equilibrium path of the flat sheet (w/h = 0). The two post-critical paths are
gain intertwined, connected by unstable segments, and describe left–right symmetric and left–right antisymmetric
rinkling patterns of increasingly shorter wavelength as the growth factor λg increases. Contrary to the exponential
rowth law in Fig. 9a, the out-of-plane deformation w/h grows much slower with increasing λg; for example, when
g ≈ 0.1 we have max(w/h) ≈ 3.5 in Fig. 10a compared to max(w/h) ≈ 12 in Fig. 9a. Furthermore, a greater
umber of back-and-forth oscillations occur in the two equilibrium paths for the steeper power law, indicating more
ransitions to shorter wavelengths over the same range of growth factor. Indeed, the deformation modes shown for
oints A and B in Fig. 10c visually highlight the greater number of undulations at the edge of the sheet compared
o the same level of growth in Fig. 9.

Above a critical threshold of steep power law growth the wrinkling behaviour of the sheet changes qualitatively.
ig. 10b extends the equilibrium path of the left–right symmetric wrinkling pattern to the range λg < 0.35.
or λg ⪆ 0.2 the equilibrium path breaks the previous regular pattern of weaving backwards and forwards and
ignificantly increases the out-of-plane displacement w/h by initiating a second wave at a longer length scale. As
hown in the deformation modes for points C and D in Fig. 10c, the transition in behaviour above λg ≈ 0.2 freezes
he wavelength of the existing wrinkling pattern and an additional longer wavelength undulation forms.

For the steeper power law growth we therefore have a scenario where the sheet initially accommodates the
rowing length of the free edge by forming undulations of shorter and shorter wavelength. At a certain threshold of
rowth, a further reduction of the wavelength becomes energetically more expensive than forming a secondary longer

avelength undulation. Returning to the analogy of the beam on an elastic foundation, energy minimisation of the
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Fig. 11. (a) Edge wrinkling of Asplenium scolopendrium or hart’s-tongue fern is modelled using a long strip with a stiffer and thicker central
section to account for the stem. Exponentially increasing planar growth towards the long edges is applied, producing the morphoelastic
equilibrium manifold in (b) with a bifurcation at λ∗

g . The out-of-plane deflection w/h at a free corner of the strip weaves backwards and
forwards with increasing growth factor λg. As growth proceeds, both the number of waves along the edge and their out-of-plane deflection
magnitude increases; depicted in (c).

foundation initially drives the mechanics by reducing the wavelength and keeping overall out-of-plane deformations
small. The reduction in wavelength comes at the expense of having a highly curved free edge with increasing levels
of bending energy. The longitudinal wavelength at the free edge thus continues to shorten with increasing growth
factor until the longitudinal curvature is sufficiently large and energetically expensive that a transition in behaviour
occurs. It is now more favourable to freeze the existing wavelength of the smaller length scale and to accommodate
additional differential growth of the edge through global out-of-plane deflections at a greater length scale.

4.4. Exponential edge growth in leaves

To put exponential edge growth into context we consider the leaves, or so-called fronds, of Asplenium
scolopendrium, also known as hart’s-tongue fern (see Fig. 11a). The edges of the undivided fronds of Asplenium
scolopendrium are generally wrinkled and display a variety of different morphologies—from shallow sinusoidal
waves to pronounced crinkles that are close to self-contact. A single frond of Asplenium scolopendrium is here
modelled by a long strip of length L = 10 cm in the x-direction and width W = 2 cm in the y-direction with
a stiffer central section of width Wstem = 0.1 cm to account for the stem (see Fig. 11a). The central stem has a
thickness of hstem = 0.1 cm and the leafy part of the frond outside of the stem has a thickness of h = 0.05 cm.
Based on typical values of plant materials [67], the woody stem has a stiffer shear modulus of µ = 1 × 105 N/cm2

with a bulk modulus of K = 1 × 107 N/cm2, and the leafy part of the frond has a more compliant shear modulus
of µ = 1 × 104 N/cm2 with a bulk modulus of K = 1 × 106 N/cm2.
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The rectangular frond is discretised into 201 × 53 nodes in the x- and y-directions, respectively, and the nodes
re then assembled into 650 25-noded spectral elements (a one-element wide strip of 25-noded elements is used
or the stem). The lateral edge at x = 0 cm is clamped (all dofs constrained) with all other portions of the frond
nconstrained. A planar growth tensor of the form Fg(y, λg) = diag(g(y, λg), g(y, λg), 1) is defined in a local
artesian coordinate system {e1, e2, e3}, where e1 and e2 lie in the plane of the undeformed frond parallel to the
lobal x- and y-direction, respectively, and e3 is normal to the frond’s undeformed surface. The growth law thus
auses length- and width-wise growth with the growth magnitude varying in the width direction parametrised by the
rowth factor λg. The growth function is defined as g(y, λg) = 1 + λg

(
0.9e10(|y|−1)

+ 0.1
)
, where the exponential

erm takes a value of 1 at either long edge of the frond (y = ±1 cm) and a smaller value of 0.100 at the stem
y = 0 cm). The exponential function is shown for reference in Fig. 11b and mimics, in a more continuous manner,
he discrete differential edge growth assumed by Zheng et al. [37] and Eskandari and Kuhl [68] for Rumex crispus
eaves.

The equilibrium manifold in Fig. 11b shows the now familiar behaviour of differential edge growth discussed
n the previous section. The figure plots the thickness-normalised out-of-plane displacement at a free corner of the
trip (w/h) against the growth factor (λg). As the frond begins to grow it initially remains flat (w/h = 0) but this
undamental state loses stability at a supercritical pitchfork bifurcation (see inset A in Fig. 11b) where the two edges
f the strip begin to wrinkle. The wrinkling waves at the two edges are antisymmetric about the stem (see point

in Fig. 11c) where a crest at the left edge is mirrored by a valley at the right edge, and vice versa. A left–right
ymmetric bifurcation mode also exists—branching from the third critical point on the fundamental path—but this
ode is unstable throughout for the geometry and material properties considered here.
The left–right antisymmetric wrinkling mode provides an important counterexample to the claim by Zheng et al.

37]—studying growth-induced edge wrinkling of a similarly sized and shaped Rumex crispus leaf—that: “Because
f the symmetry of the geometry and growth, the deformation caused by the mass growth is symmetrical, too”.
his statement is not true in general because bifurcations inherently break symmetry groups of the system, be

hey symmetry planes about the mid-plane (buckling phenomena in general) or, in this particular case, an in-plane
ymmetry group.

The post-critical equilibrium path in Fig. 11b weaves backwards and forwards with each turn increasing the
umber of waves on the edge and shortening the wavelength (see the progression from point A to point D in
ig. 11c). In addition, the out-of-plane deflection magnitude (|w/h|) also increases markedly as growth proceeds.
he four deformation shapes in Fig. 11c show the evolution of the antisymmetric edge wrinkling modes from
hallow sinusoidal and long wavelength (point A) to highly undulated and short wavelength (point D). Hence, the
ifferent wave shapes and wavelengths observed at the edges of Asplenium scolopendrium can be attributed to the
evel of edge growth, which may vary from leaf to leaf or even spatially within a single leaf. The greater the growth
actor for a given edge growth law, or alternatively, the steeper the gradient of differential growth towards an edge,
he more pronounced the wrinkles/crinkles that occur at the edge.

.5. Trumpeting of a daffodil corona

Plants of the genus Narcissus feature recognisable flowers with petal-like tepals arranged around a trumpet-shaped
orona (see Fig. 12a). While the blooming of flower petals is modelled in Section 4.6, here we consider growth
f the trumpet-shaped corona of a generic Narcissus plant. We show that exponentially increasing planar growth
owards one end of a cylindrical tube first causes the growing end to “trumpet” outwards before buckling instabilities
nduce transitions to a wavy edge that closely resembles the shape of a Narcissus corona.

The corona is modelled as an initially ungrown cylindrical tube of length L = 2 cm, radius R = 1 cm
nd thickness h = 0.02 cm with one end fully clamped (all dofs constrained) and the other end unconstrained
see Fig. 12b). The assumed material properties are shear modulus µ = 4 × 103 N/cm2 and bulk modulus

K = 4 × 105 N/cm2 based on typical values of plant materials [67]. The cylindrical tube is discretised into 73 axial
nd 248 circumferential nodes that are assembled into 1116 25-noded spectral elements. The element distribution
s logarithmic in the axial direction, leading to a finer axial mesh density towards the free end (see Fig. 12b).

A planar growth deformation tensor of the form Fg(x, λg) = diag(g(x, λg), g(x, λg), 1) is defined in a local
artesian coordinate system {e1, e2, e3}, where e1 and e2 lie in the plane of the tube parallel to the axial and
ircumferential directions, respectively, and e stands normal to the tube’s surface. The growth law thus causes
3
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Fig. 12. (a) Images of a generic plant of the genus Narcissus with petal-like tepals arranged around a trumpet-shaped corona. The profile
views of the corona show a rapidly increasing radius towards the free end. (b) Growth of the corona is modelled by taking an ungrown
cylindrical tube that is clamped at one end that undergoes exponentially increasing planar growth (axial & circumferential) towards the other
end.

axial elongation and radial dilation of the tube that are both defined to vary along the tube’s length, with an overall
magnitude parametrised by the growth factor λg. As is evident from observing a typical daffodil (see, e.g., Fig. 12a)
the diameter of the corona increases gradually near the base and more rapidly towards the free end. This spatially
varying growth leads to residual stresses that at some point cause buckling of the free end into a wavy pattern.

Based on the above observations, the planar growth law is defined as

g(x, λg) = 1 + λg
(
aebx

+ c
)
, (56)

here we assume a = 1.0001020408, b = −4.5951198501 and c = −1.0204081632 × 10−4 based on the criteria
hat the exponential term f (x) = aebx

+ c satisfies f (0) = 1, f (1) = 0.01 and f (2) = 0 (see the growth law curve
n Fig. 12b). When implemented in the defined growth deformation tensor, the growth law causes increasing radial
ilation towards the free end, which is here dubbed as “trumpeting”.

Fig. 13a,b show two equilibrium manifolds of the growing cylindrical tube plotted in terms of the maximum
adial displacement at the free end of the tube (v/h) vs. the growth factor (λg). The equilibrium path running
iagonally in blue (stable) in Fig. 13a, corresponds to the tube growing axisymmetrically into a trumpet-like shape
see Fig. 13c). This axisymmetric shape loses stability at a supercritical pitchfork bifurcation (see λ∗

g = 0.246
n inset A of Fig. 13a) and the eigenvector of this critical point features 9 circumferential waves at the free end
see point i in Fig. 13d). The addition of the signed eigenvector into the displacement field leads to two possible
eformation patterns (see points ii and iv in Fig. 13d), and the corresponding equilibrium paths are denoted by
he first and second branch of the pitchfork in Fig. 13a. Along both of these pitchfork paths, the magnitude of the
xisymmetric trumpet mode increases alongside the wavy pattern seeded by the critical eigenvector.

Interestingly, both branches of the pitchfork reach a limit point for λ∗∗
g = 1.16 and then continue for decreasing

rowth factor until the two unstable segments meet close to the original bifurcation point (see inset A in Fig. 13a).
ence, the two branches of the pitchfork are connected in a closed loop, which is unlike the more common scenario
f the Euler strut or the growing annulus in Fig. 6a. Also highlighted in inset A of Fig. 13a is point iii, which
enotes the critical point where the two unstable segments of the pitchfork meet to form a closed loop. At point
ii (λ∗∗∗

g = 0.248) the edge of the tube now features 8 circumferential waves (see point iii in Fig. 13d) forming a
ransition between the two radially inverted nine-waved modes of the two branches of the pitchfork. Point iii thus
orms an additional bifurcation point with a connected equilibrium path that preserves an extra symmetry group;
.e. left–right symmetry in addition to the previous up-down symmetry of the nine-waved modes. The additional
quilibrium path connected to point iii is highlighted in Fig. 13b with the connection shown clearly in inset B.
his equilibrium path of the doubly-symmetric eight-waved mode is stable over a significant range of growth factor
shown here up to λg = 2) and leads to a wavy tube that closely resembles the shape of a Narcissus corona.
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Fig. 13. (a) Equilibrium manifold in terms of maximum radial displacement v/h vs. growth factor λg of the growing tube showing a
itchfork bifurcation at λ∗

g that demarcates a trumpet-like tube from an edge-wrinkled trumpet-like tube. Apart from the wrinkled edge with
waves, another edge-wrinkled state with 8 waves exists with the associated equilibrium manifold depicted in (b). Subplot (c) shows the

volution of growth from cylindrical tube to trumpet and further to edge-wrinkled trumpet, while subplot (d) shows the frontal view of five
ifferent deformation states highlighted in (a) and (b).

Growth of a daffodil’s corona, modelled by means of an exponentially growing tube, thus proceeds as follows
see Fig. 13c). The exponential growth law initially leads to a greater increase of the radius at the free end of the
ube with an associated axisymmetric trumpet-shaped deformation. If unconstrained, each material fibre towards the
ree end would radially dilate more than its adjacent inwards neighbour. Compatibility of displacement (no tears or
aterial overlap), however, means that material fibres towards the free end are increasingly placed in compression

ntil, at a critical value of growth factor, the axisymmetric mode loses stability and a buckled wavy pattern forms.
his first wavy pattern loses stability at a greater level of growth and the tube snaps via a limit point instability into
n alternative pattern with fewer waves and a longer wavelength. Therefore, bending energy in the circumferential
irection appears to be driving the evolution of the pattern with a reduction in circumferential bending curvature
uring the transition from nine waves to eight. Given the observations of the previous section on fractal patterns, it
s conceivable that more pronounced exponential growth with steeper gradients towards the free end would reverse
his trend, whereby membrane stretching energy due to differential growth of material fibres becomes the driving

actor and the tube evolves into higher wave numbers instead.
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Fig. 14. (a) A closed flower bud of a yellow day lily (Hemerocallis lilioasphodelus) that is comprised of six petals arranged across two
layers. (b) The flower bud opens up (blooms) as a result of spatially varying planar growth of each petal. Cutting a grown petal to release
internal stress shows that the edges of the petal grow more than the central regions close to the midrib. (c) The blooming of a single petal
is modelled by an elliptical doubly-curved shell that is clamped at one end with exponentially increasing planar growth towards the two
longitudinal edges. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

4.6. Blooming of lily buds

The blooming of lily buds has been identified to occur as a result of differential edge growth [6]. As shown for
the yellow day lily (Hemerocallis lilioasphodelus) in Fig. 14, the unopened lily bud starts with six doubly-curved
petals arranged side-by-side in 120◦ intervals and across two overlapping layers with each petal blooming outwards
nto an opened saddle shape. As can be confirmed by cutting a grown and opened petal lengthways (see Fig. 14b),
he edges of a petal grow more than the central regions and this differential growth leads to a reversal of the
ongitudinal curvature and the opening of the lily bud. Experimental and numerical work by Liang and Mahadevan
6] shows that this phenomenon is independent of the woody midrib. When the midrib is removed from the petal,
looming occurs as before, but to a slightly different curvature as for the pristine petal.

The important role of differential edge growth in blooming of lily buds is studied here by modelling a single
etal as an elliptical doubly-curved shell. Based on measurements of a single petal in the unopened bud (see
ig. 14a) the ungrown and stress-free original petal is defined to have length L y = 4 cm and width of L x = 1.5 cm.
he out-of-plane and stress-free height L z of the petal (influencing the initial curvature) was varied in the range
f L z = 0.1–0.5 cm, each time leading to similar qualitative results. The model results shown here assume

L z = 0.25 cm.
The geometry of the petal is based on the equation of an ellipsoid,

x = a cos(θ ) cos(φ)
y = b sin(θ )
z = c cos(θ ) sin(φ)

⎫⎪⎬⎪⎭ for θ ∈

[
−
π

2
+ θc,

π

2
− θc

]
,

and φ ∈ [0 + φc, π − φc] .
(57)

n the model we assume θc = π/15 to truncate the ellipsoid in the y-direction (see Fig. 14c). This allows clamping

f an edge of nodes at one end (all dofs constrained) to mimic a rigid connection of the petal to the pedicel. The
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Fig. 15. (a) Equilibrium curves of thickness-normalised z-axis displacement at the free tip of the petal (w/h) vs. growth factor (λg) for three
ifferent exponential edge growth scenarios. The smaller the value of fm, the more pronounced the degree of edge growth. (b) Deformation
odes of the petal at three different points that clearly illustrate the blooming process from the originally flat configuration. Blooming leads

o a reversal of the concave longitudinal curvature into a saddle shape.

ariable φc = π/6 truncates the petal in the x-direction such that the total angle enclosed by the petal is 2π/3 rad,
.e. three petals connect side-by-side around the circumference of the bud. To match the defined length L y = 4 cm
nd width L x = 1.5 cm, we specify a = 0.5L x/ cos(φc) and b = 0.5L y/ sin(π/2 − θc) in Eq. (57). The variable
is defined equal to L z . Finally, the thickness of the petal is taken as h = 0.02 cm with a shear modulus of
= 5 × 102 N/cm2 [6] and a bulk modulus of K = 5 × 104 N/cm2.
The petal geometry is discretised into 85 × 153 nodes in the domain of the θ−φ coordinates specified in Eq. (57)

hat are then assembled into 798 25-noded spectral shell elements. These elements are equally distributed in the θ−φ
omain and therefore lead to finer spatial mesh densities towards the two ends of the petal. The growth deformation
ensor Fg is defined with respect to a local Cartesian reference system that features two base vectors {e1, e2} that lie
n the plane of the petal with the third base vector e3 normal to the petal. The growth deformation tensor is isotropic
n the plane and assumes no growth in the thickness direction. Hence, Fg(x, λg) = diag(g(x, λg), g(x, λg), 1), where

g(x, λg) is the planar growth function with greatest magnitude (parametrised through growth factor λg) at the edges
f the petal (x = ±L x/2 cm) and smallest magnitude at the midrib (x = 0 cm). The growth function, inspired by
easurements taken by Liang and Mahadevan [6], is assumed as

g(x, λg) = 1 + λg
(
α + eγ (|x |−β)

)
, (58)

here the exponential constant γ = 4, and the constants α = fm − e−γβ and β = −
1
γ

log
(

fe− fm
eγ xe −1

)
are chosen to

specify predefined values of the exponential term f (x) = α+eγ (|x |−β) at the edges of the petal, i.e. f (±L x/2) = fe,
nd at the midrib of the petal, i.e. f (0) = fm. The value at the edge of the petal is always defined as fe = 1. To
xplore the effect of edge growth, we modulate the value at the midrib across the set fm ∈ {0, 0.375, 0.75}. As
fm → 1, the effect of differential edge grows diminishes such that we recover spatially uniform growth across the
etal. Finally, the term xe =

√
0.25L2

x |1 − y2/b2| used in the expression for β defines the x-location of the petal’s
edge, where b is the ellipsoid constant of Eq. (57). Hence, the growth function in Eq. (58) defines exponentially
increasing growth magnitude in the width direction, with the greatest value of growth occurring along the curved
petal edges and the smallest value of growth along the longitudinal midrib.

The equilibrium curves for the three cases fm ∈ {0, 0.375, 0.75}, describing blooming of a single petal under
edge growth, are shown in Fig. 15a. The equilibrium curves depict the evolution of the thickness-normalised z-axis
displacement at the free tip of the petal (w/h) with increasing growth factor (λg). For all three cases, edge growth
causes the tip of the petal to bend upwards, thereby reversing the original longitudinal curvature of the petal from
29
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Fig. 16. Comparison of equilibrium manifold produced by the ‘nearly’ incompressible material model of Eq. (24) (grey curves) and the
ompressible Neo-Hookean material model of Eq. (59) (blue/red curves). (a) Exponential edge growth in Asplenium scolopendrium, originally

modelled in Section 4.4. (b) Trumpeting and wrinkling of a daffodil corona, originally modelled in Section 4.5. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

concave to convex. As shown for the intermediate value of fm = 0.375 in Fig. 15b, the petal bends upwards from
its original straight orientation to form a saddle shape that mimics the picture of the grown petal in Fig. 14b.

Beyond a certain threshold of growth, the z-axis displacement decreases again and this represents the tip of the
petal rolling inwards onto itself (see point c in Fig. 15b). It is evident from Fig. 15a that the smaller the value of fm,
the smaller the value of λg for which this reversal of the tip z-displacement occurs. Hence, the more pronounced
the degree of edge growth, i.e. the greater the difference between growth at the edges ( fe) and growth at the midrib

fm), the less the absolute magnitude of growth required to induce blooming of the petal. For the case where fm ≈ 1
not shown here), i.e. where growth is uniform across the petal, blooming does not occur at all; rather, the petal
ends in the opposite direction (negative w/h), thereby increasing the original longitudinal concave curvature.

Spatially varying growth rates therefore play a key role in the blooming process of doubly-curved flower petals
ith greater levels of edge growth leading to more blooming action for the same level of added material. The

oncept of edge growth therefore provides an interesting mechanism for actuating morphing devices in engineering,
hich are often based on doubly-curved shells such as morphing chevrons for jet engine exhausts [69]. To
ate, these devices have relied on differential expansion through the thickness—as in a bi-metallic strip under
hermal loading—but the insight into edge growth suggests that in-plane variations of chemical swelling or thermal
xpansion/contraction can also be used to facilitate morphing action.

. Effect of material model and material parameters on pattern formation

In the literature, a variety of different material models are implemented to study thin biomaterials. In Section 2.4,
ne type of ‘nearly’ incompressible Neo-Hookean model was defined; see Eq. (24). We now assess the sensitivity
f the post-critical results shown in Sections 4.4 and 4.5—i.e., wrinkling of the fronds of hart’s-tongue fern and
rumpeting of a daffodil corona, respectively—to changes in the material model. All mesh characteristics, geometric
imensions, material parameters, and growth laws are kept unchanged.

As such, we modify the chosen material model to the compressible Neo-Hookean strain energy density:

Ŵ = JgW with W =
µ

2
(trCe − 3)− µ ln Je +

λ

2
(ln Je)

2 , (59)

here µ is the shear modulus and λ is Lamé’s first parameter, which is related to µ and the bulk modulus K through
λ = K −

2µ. This leads to the usual second Piola–Kirchhoff stress and constitutive tensors covered in reference
3
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Table 1
Comparison of the magnitude of specific critical points marked in Fig. 16 (to four sig. figs).

Critical point ‘Nearly’ incompressible Compressible ∥1 − λ
comp
g /λ

incomp
g ∥

Fern λ∗
g 0.01093 0.01093 0%

Fern λ∗∗
g 0.5170 0.5596 8.24%

Daffodil λ∗
g 0.2457 0.2453 0.163%

Daffodil λ∗∗
g 1.164 1.045 10.2%

texts (e.g. [22]), with a scaling by Jg to account for changes in volume due to growth. Hence, the elastic second
Piola–Kirchhoff stress tensor Se and elastic constitutive tensor De are given by

Se = µJg
(
I − C−1

e

)
+ λJg ln JeC−1

e , (60)

De = λJgC−1
e ⊗ C−1

e + 2Jg (λ ln Je − µ) Ie, (61)

ith Ie defined in Eq. (32). These tensors are defined in the intermediate, stress-free configuration and therefore
ave to be pulled back to the original configuration via Eqs. (28) and (30), respectively.

The equilibrium manifolds of exponential edge growth in a frond of hart’s-tongue fern (originally studied in
ection 4.4) and the trumpeting and wrinkling of a daffodil corona (originally studied in Section 4.5) are compared

n Fig. 16a and b, respectively. In each case, the equilibrium curve using the ‘nearly’ incompressible material model
s shown as a grey trace, and the equilibrium curve using the compressible Neo-Hookean model is plotted as blue
nd red segments to denote stable and unstable equilibria, respectively.

For both examples considered, there are no qualitative changes in the post-critical pattern formation but visible
uantitative differences in the equilibrium curves for increasing values of the growth factor λg. The two chosen
aterial models both predict increasing number of wrinkles at the edges of the fronds of hart’s-tongue fern as the

rowth factor λg increases (see deformation modes in Fig. 11c) with a back and forth winding equilibrium path.
imilarly, both models predict the destabilisation of the trumpeting daffodil corona into nine full wrinkling waves
see deformation modes in Fig. 13d) at a supercritical pitchfork bifurcation. The increasing visible differences in
he equilibrium curves for increasing growth parameter λg are supported by quantitative comparisons in Table 1
f specific critical points marked in Fig. 16a and b. In both plots, the critical point of the first bifurcation (λ∗

g) is
lmost identical between the ‘nearly’ incompressible and the compressible material models with negligible relative
ifferences in magnitude (<0.2%). However, the relative differences increase to around 10% for critical points
t greater magnitudes of growth (λ∗∗

g ). Hence, there is a nonlinear quantitative effect to changing the material
aw from ‘nearly’ incompressible to compressible, and differences become more pronounced for increasing levels
f growth. While these quantitative differences are important when comparing FE predictions to experiments or
omparing results across different model formulations, it is important to note that the present examples suggest that
he qualitative nature of the pattern formation in the post-critical regime is not strongly affected by the change in

aterial model.
To further assess the effect of compressibility on post-critical pattern formation, we vary the bulk-to-shear moduli

atio K/µ in the compressible Neo-Hookean material model of Eq. (59) and study changes to the equilibrium
anifold for exponential edge growth in hart’s-tongue fern. The overall geometry, mesh properties, growth law and

hear modulus are kept constant (same values as reported in Section 4.4) and only the bulk modulus is varied in the
nalyses. With decreasing K/µ, the relative compressibility of the material increases and Poisson’s ratio decreases.
s Fig. 16a showed that the equilibrium manifold is most affected in the high-magnitude growth range, i.e. in the
eep post-critical regime, we focus on portions of the equilibrium manifold with 0.475 < λg < 1.

Fig. 17a compares the equilibrium manifold for the ‘nearly’ incompressible material model with bulk-to-shear
oduli ratio K/µ = 100, and the compressible material model with K/µ = 100 and K/µ = 10. Interestingly, the

equilibrium curves do not change monotonically with compressibility. Focusing on the unstable segment in Fig. 17a,
the compressible material results for K/µ = 100 and K/µ = 10 straddle the result of the ‘nearly’ incompressible
material model. To investigate this phenomenon further, the bifurcation point λ∗∗

g marked in Fig. 17a is traced with
respect to changes in the bulk-to-shear moduli ratio K/µ (compressible Neo-Hookean material model) using the

critical point tracking capability (see Section 3.4). In this manner, expensive parametric studies that trace the entire
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Fig. 17. (a) Comparison of the equilibrium manifold for exponential edge growth in Asplenium scolopendrium (originally modelled in
Section 4.4) in the range 0.475 < λg < 1. Results are shown for a ‘nearly’ incompressible material model with bulk-to-shear moduli ratio
K/µ = 100, and a compressible material model with K/µ = 100 and K/µ = 10. (b) Locus of the critical point λ∗∗

g marked in (a) with
respect to changing bulk-to-shear moduli ratio K/µ for the compressible material model.

equilibrium manifold are precluded, and only one specific point is traced through parameter space by path-following
a critical curve. Fig. 17b shows the evolution of λ∗∗

g with K/µ and confirms the non-monotonic relationship between
the two quantities. For low compressibility (see K/µ = 100), decreasing K/µ first leads to a reduction in λ∗∗

g , but
for K/µ < 18.7 the value of λ∗∗

g increases again. While Fig. 17b shows that the magnitude of λ∗∗
g can be affected

by more than 10% for the specific problem and bulk-to-shear moduli ratios considered, the qualitative nature of the
pattern formation is not altered. The post-critical wrinkling mode shapes at λ∗∗

g for three bulk-to-shear moduli ratios
K/µ ∈ {3, 10, 100} all show six waves on both edges of the modelled leaf, arranged in an asymmetric left–right
pattern (see Fig. 17b). This analysis illustrates the value of tracking critical curves through parameter space (e.g.
uncertain material properties), both in terms quantifying changes to critical parameters as well as exploring any
qualitative differences in pattern formation.

6. Conclusions

The aim of this paper is to present a robust modelling framework for growth-induced instabilities and associated
geometrical pattern formation in growing systems. This is achieved by coupling a seven-parameter shell element to
a hyperelastic material model and the decomposition of the deformation gradient tensor into a growth and an elastic
part. The paper departs from previous work on computational analysis of morphoelastic instabilities by removing
the need for seeding geometric, material or forcing perturbations into the model to bias the behaviour of a growing
system onto a specific post-critical path. Instead, the stability characteristics of the growing biomaterial are tracked
throughout the solution procedure, and when the number of eigenvalues of the tangent stiffness matrix changes,
a critical pinpointing procedure is initiated to isolate the critical point. In the case of a branching bifurcation,
branch switching to a connected equilibrium path can be initiated. In this manner, the post-critical stability and
equilibrium landscape beyond the first (and any subsequent) instability can be robustly explored and pattern
formation phenomena uncovered. This capability is especially useful for growing systems as multi-stability, i.e.
the co-existence of multiple stable grown morphologies for the same level of growth, is the norm rather than the
exception once a trivial fundamental state has lost stability.

The developed morphoelastic stability framework was applied to a diverse set of biologically inspired problems.
In each of these cases, the central role of exponential edge growth—i.e., spatially varying differential growth of
exponentially increasing magnitude towards an edge—was highlighted. Depending on the precise parameters and
characteristics of the growth law, exponential edge growth governs undulations at the edges of leaves (including

fractal patterns over multiple length scales), the trumpeting and folding of a daffodil’s corona, and the blooming
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of doubly-curved flower petals. In addition, the morphoelastic stability framework allows a robust analysis of
closely spaced as well as sequentially occurring bifurcations, which demonstrated the co-existence of multiple stable
morphologies for the same level of growth magnitude and growth law. In these scenarios, small deviations in the
initial conditions can mean that one stable morphology naturally evolves over a competing one. This mechanism of
multi-stability could be an important factor governing the evolution of different morphologies in the same growing
biomaterial for nearly identical starting conditions. It is precisely in this manner that the computational stability
framework introduced here can help in advancing our understanding of the evolution of form and function in living
systems, as well as aid in the development of bio-inspired engineering applications ranging from 4D printing and
manufacturing of artificial tissues to morphing structures and active materials.
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ppendix A. First and second variations of the Green–Lagrange strain

From Eq. (19) the covariant components of the first variation of the Green–Lagrange strain are

δϵαβ =
1
2

[
δv,α ·

(
ḡβ + v,β

)
+
(
ḡα + v,α

)
· δv,β

]
(A.1a)

δκαβ =
h
4

[
δv,α ·

(
n̄,β + w,β

)
+
(
n̄,α + w,α

)
· δv,β + δw,α ·

(
ḡβ + v,β

)
+
(
ḡα + v,α

)
· δw,β

]
(A.1b)

δϵα3 =
h
4

[
δv,α · (n̄ + w)+

(
ḡα + v,α

)
· δw

]
(A.1c)

δκα3 =
h2

8

[
δw,α · (n̄ + w)+

(
n̄,α + w,α

)
· δw

]
+

h
2

[(
ḡα + v,α

)
· δΨ + δv,α · Ψ

]
(A.1d)

δϵ33 =
h2

4
(n̄ + w) · δw (A.1e)

δκ33 =
h2

2
[(n̄ + w) · δΨ + δw · Ψ ] , (A.1f)

here δΨ = (δΨ )n̄. Further, the second variation is given by

∆(δϵ)αβ =
1
2

[
δv,α · ∆v,β + ∆v,α · δv,β

]
(A.2a)

∆(δκ)αβ =
h
4

[
δv,α · ∆w,β + ∆w,α · δv,β + δw,α · ∆v,β + ∆v,α · δw,β

]
(A.2b)

∆(δϵ)α3 =
h
4

[
δv,α · ∆w + ∆v,α · δw

]
(A.2c)

∆(δκ)α3 =
h2

8

[
δw,α · ∆w + ∆w,α · δw

]
+

h
2

[
∆v,α · δΨ + δv,α · ∆Ψ

]
(A.2d)

∆(δϵ)33 =
h2

4
∆w · δw (A.2e)

∆(δκ)33 =
h2

[∆w · δΨ + δw · ∆Ψ ] . (A.2f)

2
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Fig. B.1. (a) A bilayer annulus with a growing inner layer and a non-growing outer layer that is clamped at the outer radius Ro. (b)–(e)
Depending on the shear moduli ratio µ̂

µ
, the inner layer wrinkles into different number of waves. Following Jin et al. [60], only half of the

domain is modelled herein.

Table B.1
Comparison of the critical growth factor (λ∗

g) and number of full waves (Nw) in the
critical wrinkling eigenvector of the present stability framework and the results reported
by Jin et al. [60].
µ̂
µ

λ∗
g from [60] λ∗

g Nw from [60] Nw

5 0.183 0.183 16 16
10 0.113 0.113 14 14
20 0.0699 0.0703 12 12
80 0.0272 0.0277 8 8

Appendix B. Validation of bifurcation analysis

Following the example of Jin et al. [60], we study planar buckling of an incompressible bilayer annulus subjected
o isotropic planar growth of the inner layer only. As shown in Fig. B.1a, an annulus of outer radius Ro = 1,

inner radius Ri = 0.48 and central interface radius Rc = 0.5 is considered with various ratios of shear moduli
between the inner layer (µ̂) and the outer layer (µ). The inner layer is subjected to isotropic planar growth of
G(λg) = (1+λg)gr ⊗ gr + (1+λg)gθ ⊗ gθ +1gz ⊗ gz expressed in a radial-azimuthal-transverse coordinate system,
while the outer layer does not grow. Due to differential growth and the curvature of the domain, the inner layer
wrinkles at a specific threshold value λ∗

g of the growth parameter.
The inner and outer layers of the annulus are both discretised into 6 × 50 radial-azimuthal 25-noded seven-

parameter shell elements. Following Jin et al. [60], only half of the domain is modelled with symmetry conditions
applied (see Fig. B.1b–e) and the outer radius of the annulus is rigidly clamped. To apply a plane strain condition in
the transverse z-direction, all nodes are constrained in their out-of-plane displacement and thickness-stretch variables
(vz and Ψ , respectively). The thickness of the shell is defined to take an arbitrary value of h = 1. Four different
shear moduli ratios µ̂

µ
∈ [5, 10, 20, 80] are modelled with the bulk moduli of the inner and outer layers equal to

1000× their respective shear moduli.
The path-following solver is started from λg = 0 by increasing the value of the growth parameter until the number

f negative eigenvalues in the tangent stiffness matrix changes to a non-zero value. At this point, the quadratically
onvergent bifurcation solver of Section 3.3 is initiated and the critical point determined. The four critical growth
arameters λ∗

g for µ̂

µ
∈ [5, 10, 20, 80] are compared against the reported values of Jin et al. [60] in Table B.1 and all

show excellent agreement. In addition, the number of waves Nw present in the corresponding critical eigenvector
match those reported by Jin et al. [60]. The deformation modes of the critical eigenvectors are also shown on the
modelled half-domain in Fig. B.1b–e.
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