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1. Introduction
Central to the coupling between terrestrial carbon, water, and energy exchanges is the physiology of stomatal 
behavior (Hetherington & Woodward, 2003; Jones, 1998; Sellers et  al., 1997). During photosynthesis, plants 

Abstract Stomatal conductance schemes that optimize with respect to photosynthetic and hydraulic 
functions have been proposed to address biases in land-surface model (LSM) simulations during drought. 
However, systematic evaluations of both optimality-based and alternative empirical formulations for coupling 
carbon and water fluxes are lacking. Here, we embed 12 empirical and optimization approaches within a 
LSM framework. We use theoretical model experiments to explore parameter identifiability and understand 
how model behaviors differ in response to abiotic changes. We also evaluate the models against leaf-level 
observations of gas-exchange and hydraulic variables, from xeric to wet forest/woody species spanning a mean 
annual precipitation range of 361–3,286 mm yr −1. We find that models differ in how easily parameterized 
they are, due to: (a) poorly constrained optimality criteria (i.e., resulting in multiple solutions), (b) low 
influence parameters, (c) sensitivities to environmental drivers. In both the idealized experiments and 
compared to observations, sensitivities to variability in environmental drivers do not agree among models. 
Marked differences arise in sensitivities to soil moisture (soil water potential) and vapor pressure deficit. 
For example, stomatal closure rates at high vapor pressure deficit range between −45% and +70% of those 
observed. Although over half the new generation of stomatal schemes perform to a similar standard compared 
to observations of leaf-gas exchange, two models do so through large biases in simulated leaf water potential 
(up to 11 MPa). Our results provide guidance for LSM development, by highlighting key areas in need for 
additional experimentation and theory, and by constraining currently viable stomatal hypotheses.

Plain Language Summary Water availability is critical for plants to maintain normal function, so 
droughts have considerable impact on natural ecosystems. However, predicting the impact of future drought 
on ecosystems is hard because current global models make systematic errors in their predictions of plant 
responses when water is scarce. In turn, uncertainty in the modeled terrestrial water and carbon cycles remains 
high. Here, we evaluate a range of new modeling approaches that have the capacity to mechanistically capture 
plant responses to water stress. Both in theoretical experiments and comparisons to observations, we find large 
differences among these new modeling approaches in response to water availability and atmospheric dryness. 
Importantly, some approaches achieve what seems like “good” performance through compensatory mechanisms 
that are not supported by observations and/or through incorrect representation of plant processes. Our results 
provide important guidance for future model development, by highlighting areas in need of continued research, 
and by constraining the range of approaches presently able to reduce uncertainty in modeled plant responses 
and suitable for inclusion in global models.
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open their stomates to allow atmospheric carbon dioxide (CO2) to diffuse to the sites of carboxylation and, 
in doing so, transpire water vapor, thus cooling the leaf surface and exerting a feedback on the atmosphere. 
There is widespread evidence that stomatal conductance (gs) varies with species and climate (Lin et al., 2015; 
Oren et al., 1999) and that species differ in their rate and timing of stomatal closure to prevent excessive water 
losses via transpiration (Martínez-Vilalta & Garcia-Forner, 2017; Tardieu & Simonneau, 1998; Vialet-Chabrand 
et al., 2017).

Despite the importance of gs in regulating terrestrial carbon and water fluxes, our understanding of stoma-
tal behavior and capacity to translate it into models remain incomplete (Buckley, 2019; Lawson et  al., 2010; 
Woodward, 1987). Stomatal schemes embedded in global models (Ball et al., 1987; Jarvis, 1976; Leuning, 1995) 
often ignore widely observed species-level variations in water use and/or rely on empirical formulations that 
predetermine stomatal sensitivities to a variety of environmental drivers, including atmospheric dryness (i.e., 
vapor pressure deficit) and [CO2]. Highlighting the shortcomings associated with the use of empirical gs schemes, 
climate models attribute anywhere between 22% and 58% of the annual global terrestrial evapotranspiration (ET) 
to plant transpiration (Stoy et al., 2019; Wei et al., 2017). By contrast, observations suggest that transpiration is 
responsible for >60% of the annual ET over land (Good et al., 2015; Li et al., 2019; Schlesinger  &  Jasechko, 2
014).

If climate models under-estimate transpiration, they also likely misrepresent: (a) inter-annual variability in 
the terrestrial carbon cycle—which is primarily driven by water availability of the vegetation (Ahlstrom 
et al., 2015; Humphrey et al., 2018; Jung et al., 2017); (b) land-surface feedbacks to the boundary layer (Donat 
et al., 2018; Miralles et al., 2014) and the amplification of some climate extremes (Miralles et al., 2018; Yunusa 
et al., 2015); and (c) vegetation changes in water use under future atmospheric [CO2] (De Kauwe et al., 2013; 
Mankin et al., 2019; Swann et al., 2016) and associated impacts on, for example, surface water storage (Trancoso 
et al., 2017; Ukkola, Prentice, et al., 2016). Resolving the knowledge gap around plant contributions to the carbon 
and water cycles and to local energy budgets is critical to resolving both long term (terrestrial carbon sink) and 
short term (amplification of extreme events) model uncertainties.

To address model shortcomings, development of stomatal theory, aided by field and experimental synthesis stud-
ies (Choat et al., 2012; Lin et al., 2015; Martin-StPaul et al., 2017a; Mencuccini et al., 2019; Miner et al., 2017), 
has recently become a major focus of global change ecophysiology. First, gs behavior under well-watered condi-
tions has been shown to vary predictably by species (Lin et al., 2015), which can be used to parameterize stomatal 
conductance schemes on a plant functional type basis (De Kauwe et al., 2015). Second, gs can be accurately 
simulated to decline with decreasing soil moisture empirically (Mäkelä, 1996; Sala & Tenhunen, 1996; Tuzet 
et al., 2003), or using measured vulnerability curves that represent the progressive impairment of water transport 
as plant hydraulic conductance is lost (Sperry et al., 2017; Wolf et al., 2016). Third, optimality principles positing 
that stomatal behavior should balance carbon uptake and water loss (Cowan & Farquhar, 1977) can be used to 
avoid prescribing the sensitivity of gs to moisture stress and/or atmospheric drivers like vapor pressure deficit 
(Prentice et al., 2014; Sperry et al., 2017; Wolf et al., 2016).

Akin to the proliferation of empirical gs models—see Damour et al.  (2010) for a review of >30 empirical gs 
formulations—at least 10 new stomatal optimization schemes have been proposed in the past 5 years (Anderegg 
et al., 2018; Dewar et al., 2017; Eller et al., 2018; Huang et al., 2018; Lu et al., 2020; Mrad et al., 2019; Novick 
et al., 2016; Sperry et al., 2017; Wolf et al., 2016). Some gs optimization models have been compared (Anderegg 
et al., 2018; Bassiouni & Vico, 2021; Dewar et al., 2017; Mrad et al., 2019; Novick et al., 2016; Wang et al., 2020) 
or evaluated against empirical analogs (Eller et al., 2018, 2020; Sabot et al., 2020; Venturas et al., 2018; Wang 
et al., 2019). Yet, comparisons rarely control for both univariate model sensitivity (e.g., isolating soil moisture 
impacts from vapor pressure deficit impacts) and agreement with observations (but see Novick et  al., 2016). 
Importantly, only one gs optimization model (Sperry et al., 2017) has been evaluated against carbon and water 
fluxes across leaf, plant, and ecosystem scales (Sabot et al., 2020; Venturas et al., 2018; Wang et al., 2019).

This lack of systematic multi-model evaluation could be due to difficulties ranging from accessing existing code, 
to coding new schemes into more sophisticated land surface models (LSMs) that account for energy balance 
and water-carbon feedbacks. In the first extensive comparison of gs optimization models, Wang et  al.  (2020) 
proposed a unified mathematical framework relying on seven theoretical criteria to probe the merits of different 
optimization models. However, the authors did not assess whether, and to what extent, new optimality-based 
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developments are advances on existing empirical approaches, nor did they account for leaf-atmosphere feedbacks 
when assessing model performance.

Here, we compare and evaluate 12 gs models within a single framework. We ask:

1.  How well constrained are gs scheme parameterizations?
2.  Do model behaviors differ in response to abiotic variations?
3.  How well do the gs schemes capture observed leaf-level fluxes and hydraulic status across a large environmen-

tal gradient in moisture stress and atmospheric dryness?

We aim to identify the gs schemes that improve predictability for use in LSMs (e.g., during periods of water stress, 
at high vapor pressure deficit) but, also, any aspects of those schemes that might limit current application.

2. Methods
We addressed our first two questions theoretically, by harmonizing 11 gs models to a single reference model, the 
Medlyn et al. (2011) model. The Medlyn model was chosen as a baseline expectation of model behavior because 
it is widely used in climate models (ACCESS-ESM1.3, Kala et al., 2015; CESM2, Lawrence et al., 2019), and 
it is well understood (i.e., extensively evaluated in the literature), so we can readily diagnose assumption-driven 
model-to-reference behavioral departures (De Kauwe et al., 2013; Medlyn et al., 2015). Our experimental setup 
parallels the “perfect model” framework used in climate predictability studies (Hawkins et al., 2011), except our 
reference model is not intended as a truth. We address our third question by applying all 12 models to observa-
tional records of leaf-level gas exchange from 15 tree species spanning a mean annual precipitation (MAP) range 
of 363–3,286 mm yr −1. A visual summary of the model experiments (Sections 2.2 and 2.3) is presented in Figure 
S1 of Supporting Information S1.

To distinguish between the empirical and optimization approaches, we refer to the former by author name and the 
latter by optimality criterion. In this study, the approaches are labeled “empirical” if they explicate a functional 
form for gs (i.e., the sensitivity of gs to both independent and dependent variables is assumed), whereas they are 
labeled “optimization approaches” if they maximize/minimize function such that the sensitivity of gs emerges 
from the optimization criteria. Table 1 provides a summary of the gs schemes.

Approach gs form or optimization objective a
Model 
name

Conductance 
parameter(s)

Reduction/
cost 

parameter(s) a Specific equation(s) Main reference(s)

Empirical gs 𝐴𝐴 𝐴∝ RF Medlyn g1,Med sMed Equations 4 and 5 De Kauwe et al. (2015) and 
Medlyn et al. (2011)

Tuzet kmax, g1,Tuz Ψref, sTuz
 b Equations 6 and 7 Duursma and Medlyn (2012) 

and Tuzet et al. (2003)

Eller kmax – Equations 8 and 9 Eller et al. (2020)

Optimization Avoiding primary impairment to water 
flow: max(An − CT)

WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙
kmax λ Equation 11 Wolf et al. (2016)

CMax kmax a, b Equation 13 Anderegg et al. (2018) and 
Wolf et al. (2016)

ProfitMax kmax – Equation 14 Sperry et al. (2017)

CGain kmax ϖ Equation 15 Lu et al. (2020)

Avoiding primary impairment to carbon 
assimilation: max(An × RF)

SOXopt kmax – Equation 16 Eller et al. (2018)

ProfitMax2 kmax – Equation 17 Wang et al. (2020)

LeastCost kmax η Equation 18 Prentice et al. (2014)

Non-stomatal optimization: max(An), with 
internal RF on Vcmax or Ci

CAP kmax Ψφ,lim Equations 19–21 Dewar et al. (2017)

MES kmax Ψφ,lim Equations 19, 20, and 22

 aRF stands for reduction factor and CT for cost term.  bParameter commonly set to an arbitrary value, that is, sTuz is often set to 2 for the Tuzet model.

Table 1 
Summary of the Stomatal Conductance (gs) Schemes
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2.1. Modeling Framework

We implemented the gs schemes within a simplified LSM (Sabot et al., 2020) that broadly emulates the Commu-
nity Atmosphere–Biosphere Land Exchange LSM (CABLEv2.0; De Kauwe et  al.,  2015). This framework 
embeds canopy micrometeorology and coupling between energy balance, transpiration, and photosynthesis. We 
standardized model responses by prescribing soil moisture, thereby removing the feedback between transpiration 
and root-zone soil moisture. We also opted to ignore leaf-to-canopy scaling, which allows a direct comparison to 
leaf-level observations, whilst avoiding LSM-specific scaling assumptions (Rogers et al., 2017).

2.1.1. Leaf Level Fluxes and Energy Balance

The net rate of carbon assimilation, An (μmol m −2 s −1), is simulated using the Farquhar et al. (1980) photosynthe-
sis model (Text S1 in Supporting Information S1).

Leaf transpiration (E; mmol m −2 s −1) is assumed to meet the atmospheric demand for water vapor on an instan-
taneous basis:

𝐸𝐸 = 10
3 𝑔𝑔𝑠𝑠𝑔𝑔𝑏𝑏𝐷𝐷𝑙𝑙

(𝑔𝑔𝑠𝑠 + 𝑔𝑔𝑏𝑏)𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎

 (1)

where gs is expressed on a H2O basis in mol m −2 s −1, gb (mol m −2 s −1) is the leaf boundary layer conductance to 
water vapor, Dl (kPa) is the leaf-to-air vapor pressure deficit, Patm (kPa) is atmospheric pressure, and 10 3 converts 
to mmol.

For the empirical schemes (3 models), leaf-level variables (e.g., leaf temperature) are obtained iteratively until 
the leaf energy balance converges. The optimization schemes (nine models) avoid iteration (except SOXopt; see 
below) by using two-dimensional (water transport vs. photosynthetic) systems of energy-balanced equations to 
simultaneously optimize gs, [CO2] in the leaf intercellular air spaces (Ci), and leaf water potential (Ψl). Note, 
this implementation difference does not impact the simulations. For more information, refer to the main text and 
methods S2 of Sabot et al. (2020).

2.1.2. Leaf Water Potential

Ψl (MPa) is computed by substitution of Equation 1 and the steady-state supply of water from the roots to the 
leaves (Sperry & Love, 2015):

� = ∫

Ψ�

Ψ�

�Ψ�Ψ (2)

where Ψ is the varying water potential between the root-zone soil water potential Ψs (MPa) and Ψl, and kΨ (mmol 
m −2 s −1 MPa −1) is the associated hydraulic conductance. Ψ cannot drop below Ψcrit, a threshold indicative of crit-
ical xylem failure at kcrit, and set to match a 95% loss of hydraulic conductivity (i.e., P95).

kΨ is downregulated by a cumulative Weibull distribution representing plant vulnerability to cavitation (Neufeld 
et al., 1992; Sperry et al., 2017):

�Ψ = �max �
−
(

|Ψ|
�1

)�2
 (3)

where kmax (mmol m −2 s −1 MPa −1) is the maximum root-zone-to-leaf hydraulic conductance, and s1 (MPa) and s2 
(unitless) are the sensitivity and shape of the vulnerability curve derived from measured percentage conductivity 
loss (Text S2 in Supporting Information S1).

In segmented representations of plant hydraulics, kmax (and s1 and s2) may vary between the rhizosphere, roots, 
stem, etc. Parameterizing this segmentation presents a challenge for global models, as it requires additional inputs 
that are not readily available, so we combine all elements into a single hydraulic conductor connecting the root-
zone to the leaves.
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2.1.3. Empirical Schemes (Three Models)

The Medlyn Model

The Medlyn gs model (Medlyn et al., 2011), reworked to account for water stress (De Kauwe et al., 2015), is an 
analytical approximation of the water use efficiency hypothesis (cf., WUEH; Cowan & Farquhar, 1977):

𝑔𝑔𝑠𝑠 ≈ 𝑔𝑔0 + 1.57

(

1 +

𝑔𝑔1,𝑀𝑀𝑀𝑀𝑀𝑀𝛽𝛽
√

𝐷𝐷𝑙𝑙

)

𝐴𝐴𝑛𝑛

𝐶𝐶𝑠𝑠

 (4)

where Cs (μmol mol −1) is [CO2] at the leaf surface, 1.57 converts from conductance to CO2 to conductance to 
water vapor, g0 (mol m −2 s −1) is the residual conductance to water vapor (assumed negligible), g1,Med (kPa 0.5) is 
the slope of the sensitivity of gs to An, and β (unitless) is an empirical moisture stress factor represented by an 
exponential dependency on Ψl at predawn (i.e., Ψl,pd; Cowan, 1982; Yang et al., 2019; Zhou et al., 2013):

� =

⎧

⎪

⎨

⎪

⎩

1 if Ψ� ≥ Ψ��

�����Ψ�,�� if Ψ� < Ψ��

 (5)

where sMed (MPa −1) sets the sensitivity of the stomates to Ψl,pd, Ψfc is the root-zone water potential at field capac-
ity, and with Ψl,pd ∼ Ψs assuming no night-time transpiration.

The choice to attenuate either the ratio of An: gs (i.e., the “intrinsic” water use efficiency) or E during peri-
ods of water stress follows several LSMs, but we acknowledge that alternative approaches exist (cf., Kennedy 
et al., 2019).

The Tuzet Model

Tuzet et al. (2003) empirically linked gs and Ψl, which Duursma and Medlyn (2012) later simplified to:

𝑔𝑔𝑠𝑠 ≈ 𝑔𝑔0 + 1.57𝑔𝑔1,𝑇𝑇 𝑇𝑇𝑇𝑇𝜁𝜁
𝐴𝐴𝑛𝑛

𝐶𝐶𝑠𝑠

 (6)

where g1,Tuz (unitless) is an empirical slope parameter and ζ (unitless) characterizes stomatal responses to Ψl:

� = 1 + �����Ψ���

1 + �����(Ψ���Ψ�) (7)

where Ψref (MPa) is a reference water potential and sTuz (MPa −1) is the sensitivity of the stomates to variations in 
Ψl.

The Eller Model

Eller et al. (2020) proposed an analytical approximation to the stomatal optimization based on xylem hydraulics 
(cf., the SOXopt model below), establishing an empirical link between gs and plant hydraulic vulnerability:

𝑔𝑔𝑠𝑠 ≈ 1.57
𝐴𝐴𝑛𝑛 (𝐶𝐶𝑠𝑠) − 𝐴𝐴𝑛𝑛 (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

𝐶𝐶𝑠𝑠 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

⎛

⎜

⎜

⎝

√

0.25 +
(𝐶𝐶𝑠𝑠 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉)

1.57 (𝐴𝐴𝑛𝑛 (𝐶𝐶𝑠𝑠) − 𝐴𝐴𝑛𝑛 (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖))

− 0.5

⎞

⎟

⎟

⎠

 (8)

where Ci,col (μmol mol −1) is the co-limitation Ci—for which biochemical rates of assimilation are equal—and ξ 
(mol m −2 s −1) is a reduction factor arising from xylem conductance loss:

�=
�2
Ψ�,��

(Ψ�,�� − �50)����

103
(

�Ψ�,�� − ��50

)

��
 (9)

where kΨ is given by Equation 3, P50 (MPa) is the water potential drop at 50% loss of xylem hydraulic conductiv-
ity, 10 3 converts to mmol, and Ψx,pd is leaf xylem water pressure at predawn, with Ψx,pd ∼ Ψs−10 −6ρgh following 
Archimede's principle, where ρ (kg m −2) is the density of water, g (m s −2) is gravitational acceleration, h (m) is 
canopy height, and 10 −6 converts to MPa.
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2.1.4. Optimization Schemes (Nine Models)

The optimization models hypothesize that leaf gas exchange downregulation originates from instantaneous gs 
controls to avoid primary impairments to water flow (Sperry et  al.,  2017; Wolf et  al.,  2016) or assimilation 
(Eller et al., 2018; Prentice et al., 2014), or that it originates from non-stomatal limitations on photosynthetic 
function induced by water stress (Dewar et al., 2017). Critically, whether impairment is defined as a function of 
a dynamic variable or not (e.g., Ψl vs. kΨ) and whether it is expressed as a reduction factor (multiplied) or a cost 
term (subtracted) may affect model responses to changes in the environment.

In the optimization schemes, Ci is obtained by solving a system comprising An from the biochemical photosyn-
thetic model (Text S1 in Supporting Information S1) and the diffusive supply of CO2:

𝐴𝐴𝑛𝑛 =

𝑔𝑔𝑠𝑠𝑔𝑔𝑏𝑏

1.57

(

1.35

1.57
𝑔𝑔𝑠𝑠 + 𝑔𝑔𝑏𝑏

) (𝐶𝐶𝑎𝑎 − 𝐶𝐶𝑖𝑖) (10)

where Ca (μmol mol −1) is ambient [CO2], and 1.35 converts from boundary layer conductance to CO2 to boundary 
layer conductance to water vapor.

Note, our operational implementation uses the optimization criteria forms (as below) instead of the derivative 
forms (Figure S2 and Text S8 in Supporting Information S1), except for the CMax model (see below).

2.1.5. Stomatal Optimizations Avoiding Primary Impairment to Water Flow (Four Models)

The WUE-fΨl Model

The long-standing water use efficiency hypothesis (WUEH; Cowan & Farquhar, 1977) posits that plants adjust 
their carbon uptake given a “carbon cost of water loss” (λ; μmol CO2 mmol −1 H2O), by regulation of their 
stomates to maximize:

max (𝐴𝐴𝑛𝑛 − 𝜆𝜆𝜆𝜆) (11)

However, the WUEH assumes λ is constant over time and fails to describe how Equation 11 changes on the times-
cale over which soil water changes (Manzoni et al., 2011; Wong et al., 1985).

To address this issue, Wolf et al. (2016) linked the WUEH (Equation 11) with hydraulic function through Ψl, 
by equating Equations 1 and 2 and Equation 10 with the biochemical photosynthetic assimilation rates (Text 
S1 in Supporting Information S1), so leaf gas exchange is downregulated as E declines through falling Ψs and 
Ψl (Equation 2). This proposition keeps λ constant but a priori unspecified, and we henceforth refer to it as the 
WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 model.

The CMax Model

Wolf et al. (2016) also cast the carbon maximization hypothesis (CMax) as an alternative to the WUEH, replacing 
λE with a concave-up parabola that increases as Ψl drops (Anderegg et al., 2018):

max

(

𝐴𝐴𝑛𝑛 −

(

𝑎𝑎

2

|Ψ𝑙𝑙|
2

+ 𝑏𝑏|Ψ𝑙𝑙| + 𝑐𝑐

))

 (12)

where a (μmol m −2 s −1 MPa −2) and b (μmol m −2 s −1 MPa −1) and c (μmol m −2 s −1) are a priori unknown coeffi-
cients of a parabola but knowing c is unnecessary, as the maximization criterion can be satisfied by minimizing 
the derivative of Equation 12 with respect to Ψl:

𝜕𝜕𝜕𝜕𝑛𝑛

𝜕𝜕Ψ𝑙𝑙

−

(

𝑎𝑎Ψ𝑙𝑙 + 𝑏𝑏
Ψ𝑙𝑙

|Ψ𝑙𝑙|

)

= 0 (13)

a can be interpreted as the carbon cost of a falling Ψl, whilst |b| sets the minimum cost.

The ProfitMax Model

To avoid the need for unspecified parameters, Sperry et al. (2017) maximized profit (ProfitMax), that is, the net 
difference between relative carbon gain and relative hydraulic cost:
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max

(

𝐴𝐴𝑛𝑛

𝐴𝐴𝑛𝑛𝑛max

−

𝑘𝑘Ψ𝑠𝑠
− 𝑘𝑘Ψ𝑙𝑙

𝑘𝑘Ψ𝑠𝑠
− 𝑘𝑘crit

)

 (14)

where An,max (μmol m −2 s −1) is the instantaneous maximum An from Equation 10 over the range of possible Ψl, 
gs, and Ci.

The CGain Model

Lu et  al.  (2020) maximized plant net carbon gain (CGain) given a “carbon cost per recovered unit of xylem 
conductance” (ϖ; μmol m −2 s −1). The CGain hypothesis can account for lagged xylem recovery from embolism 
but we assume that refilling cavitated conduits comes at no extra cost (Text S4 in Supporting Information S1), to 
remain consistent across models:

max

(

𝐴𝐴𝑛𝑛 −𝜛𝜛
𝑘𝑘max − 𝑘𝑘Ψ𝑙𝑙

𝑘𝑘max

)

 (15)

Here, ϖ is constant in time and a priori unspecified, akin to λ in the WUEH.

2.1.6. Stomatal Optimizations Avoiding Primary Impairment to Carbon Assimilation (Three Models)

The SOXopt Model

Inspired by the ProfitMax model, the stomatal optimization based on xylem hydraulics (SOXopt; Eller et al., 2018) 
maximizes carbon uptake whilst An is directly impaired by a hydraulic reduction factor. This scheme does not 
rescale hydraulic cost as Ψs drops (i.e., kmax is not evaluated at Ψs, unlike 𝐴𝐴 𝐴𝐴Ψ𝑠𝑠

 in ProfitMax), which removes the 
need for normalization of An:

max

(

𝐴𝐴𝑛𝑛

𝑘𝑘Ψ𝑙𝑙
− 𝑘𝑘crit

𝑘𝑘max − 𝑘𝑘crit

)

 (16)

Eller et al. (2018) made SOXopt's system of equations one-dimensional (instead of two-dimensional as in other 
optimization schemes), by setting the leaf temperature, directly linking Ψl to An, Ci, gs, and gb through Equations 1, 
2, and 10. In this implementation, SOXopt thus iterates leaf temperature until the leaf energy balance converges.

The ProfitMax2 Model

Instead of a conductance reduction factor, Wang et al. (2020) used a transpiration-based factor to increasingly 
impair A as E increases. The optimization criterion weights carbon uptake by proximity to hydraulic failure, 
maximizing carbon profits (ProfitMax2):

max

(

𝐴𝐴𝑛𝑛

𝐸𝐸crit − 𝐸𝐸

𝐸𝐸crit

)

 (17)

where Ecrit (mmol m −2 s −1) is calculated from Equation 2 and Ψcrit triggers a 95% loss of hydraulic conductivity, 
with Ψcrit < Ψ < Ψs.

The LeastCost Model

The least cost hypothesis (LeastCost; Prentice et al., 2014) posits that plants minimize the costs of maintaining 
both transpiration and carboxylation capacity, which is equivalent to maximizing An reduced by a factor of the 
maintenance costs:

min

(

𝜂𝜂𝜂𝜂 + 𝑉𝑉cmax

𝐴𝐴𝑛𝑛

)

≡ max

(

𝐴𝐴𝑛𝑛

1

𝜂𝜂𝜂𝜂 + 𝑉𝑉cmax

)

 (18)

where η (μmol CO2 mmol −1 H2O) is the carbon cost of photosynthetic proteins maintenance through transpira-
tion, and Vcmax (μmol m −2 s −1) is the maximum rate of carboxylation.

As in the WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙
 model, leaf gas exchange is downregulated as E declines through falling Ψs and Ψl (Equa-

tion 2) and we assume η (a priori unspecified) constant over time.
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2.1.7. Non-Stomatal Optimizations (The CAP and MES Models)

Non-stomatal limitations assume that gas exchange downregulation arise outside of the stomates, from biochemi-
cal limitations to photosynthesis or diffusion limitations into the mesophyll cells. Dewar et al. (2017) proposed an 
optimality framework where hydraulic stress curtails either carboxylation capacity (CAP) or mesophyll conduct-
ance (MES), so carbon uptake is maximized at an optimal Ψl.

max (𝐴𝐴𝑛𝑛) (19)

Hydraulic stress is represented through a unitless linear factor:

� = max
(

0,1 − Ψ�

Ψ�,lim

)

 (20)

where Ψφ,lim (MPa) is an a priori unknown leaf water potential under which no photosynthesis can occur.

In CAP, hydraulic stress directly reduces Vcmax and Jmax (μmol m −2 s −1), the maximum rate of electron-trans-
port, affecting the biochemical photosynthetic assimilation rates (Equations S1.2 and S1.4 in Supporting 
Information S1):

�cmax ↦��cmax & �max ↦��max (21)

Instead, MES assumes that downregulation of mesophyll conductance from hydraulic stress yields inequity 
between [CO2] in the chloroplast and Ci, so the assimilation rates (Equations S1.2 and S1.4 in Supporting Infor-
mation S1) account for:

�� ↦� (�� − � ∗) + � ∗ (22)

where Γ ∗ (μmol mol −1) is the photorespiration compensation point.

2.2. Theoretical Model Comparisons

To perform controlled model comparisons and experiments, we used a weather generator and created 4 weeks 
of synthetic half-hourly atmospheric forcing during the northern hemisphere's growing season (Figures S3a–S3c 
in Supporting Information S1; see code). Two synthetic soil moisture profiles were also created (Figure S3d in 
Supporting Information S1) to contrast well-watered conditions with moderately stressed conditions. Timeseries 
of gs associated to the synthetic atmospheric forcing were simulated using the Medlyn model (Figure S4 in 
Supporting Information S1), depending on soil moisture, and with gb set to infinity (i.e., assuming perfect leaf-at-
mosphere coupling).

The other gs models were calibrated to this idealized reference gs timeseries only (“Idealized calibrations”) before 
we perturbed the environmental variables to compare model-specific sensitivities (“Sensitivity analysis”). Cali-
brating to gs only (here and in the “Evaluation against observations”), follows standard LSM practice as these 
models then internally scale fluxes from the leaf to the canopy (De Kauwe et al., 2015; Fisher & Koven, 2020; 
Franks et al., 2017). Importantly, this approach does not preclude evaluating how representations of gs impact the 
prediction of other fluxes, like An and E.

The model experiments aim to isolate model differences, so driving variables do not always co-vary realistically, 
for example, air temperature (Ta) and atmospheric vapor pressure deficit (Da) are coupled, but photosynthetic 
photon flux density (PPFD) and soil moisture are not.

Table 2 summarizes the ranges of environmental conditions used. We assumed a canopy height of 20 m (this infor-
mation is only used by the Eller model) and set the hydraulic vulnerability (P50 = −3.1 MPa, P88 = −4.9 MPa; 
Maherali et al., 2006) and photosynthetic (Vcmax,25 = 35 μmol m −2 s −1, Jmax,25 = 58.5 μmol m −2 s −1; Ellsworth, 2000) 
traits and g1,Med (2.5 kPa 0.5; Lin et al., 2015) to those of Pinus taeda. sMed was set to 2 MPa −1. Tables S1 and S2 in 
Supporting Information S1 list all other model parameters.
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2.2.1. Idealized Calibrations

2.2.2. Calibrated Parameters

Within the LSM framework, we calibrated a maximum of two parameters per scheme (Table 1; see Table S3 in 
Supporting Information S1 for the sampled parameter spaces) to the reference gs, which avoids overfitting and 
limits autocorrelation. Apart from the reference gs model (Medlyn), all the other gs schemes considered make 
use of a kmax parameter (Equation 3). Although kmax should be directly measurable (Mencuccini et  al.,  2019; 
see De Kauwe et al.  [2020] for an application within a LSM), we chose to calibrate it because models might 
assume additional/different contributions to kmax related to different sensitivities to environmental drivers (cf., 
Wang  et al., 2020).

We assumed that the optimization schemes that avoid primary impairment to water flow (WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙
 , CMax, 

ProfitMax, and CGain) would all share similar kmax, owing to their optimality criteria of the form max(An−CT) 
that implies cost terms (CT; proportional to kmax) comparable to An in magnitude. Thus, upon calibrating the 
WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 , CMax, and CGain models, we set kmax to the value obtained for the ProfitMax model (Equation 14). 
Note, also, that these three models' additional cost parameters (e.g., λ in WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 ) buffer behavioral departure 
from the ProfitMax's kmax. The Tuzet model adopted the ProfitMax kmax here too (but not in the “Evaluation 
against observations”, see below), as the three-parameter combination of kmax − g1,Tuz − Ψref is equifinal.

2.2.3. Calibration Method

To answer “how well constrained are gs scheme parameterizations?,” we calibrated each scheme via seven 
non-linear least-square minimizers from the LMFIT python package (Newville et al., 2019), ranging from local 
solvers to global stochastic minimizers capable of handling complex multimodal objective functions (Table S4 
in Supporting Information S1). Using a suite of solvers, instead of a single calibration method, avoids favoring 
specific model objective functions.

We compared calibrations under well-watered conditions (“wet” soil moisture profile) with moderately stressed 
conditions (“stressed” soil moisture profile); this allows us to test whether parameter predictability and model 
agreement differ with soil moisture availability. To further characterize solver skill and parameter predictability, 
we performed “wet” versus “stressed” calibrations on three randomly selected 7-day-long subsets within the 
weather-generated forcing.

Within data subsets, solver skill was quantified through the Bayesian information criterion (BIC) and given the 
proximity between the parameter value(s) estimated by each solver and the median parameter value(s) across 

Variable Symbol Unit Calibrations Sensitivity analysis a

Atmospheric forcing

Photosynthetic photon flux density PPFD μmol photon m −2 s −1 50.2–1,594 50–2,500

Air temperature Ta °C 3.1–30 2–40

Atmospheric vapor pressure deficit Da kPa 0.5–3 0.1–10

Ambient [CO2] Ca ppm 410 250–900

Soil moisture conditions

Volumetric soil moisture θ m 3 m −3 Wet 0.28–0.41 0.10–0.41

Stressed 0.12–0.37

Soil water potential Ψs -MPa Wet 0.006–0.0008 1.5–0.0008

Stressed 0.46–0.0014

 aThe ranges selected are chosen to yield realistic model estimates.

Table 2 
Environmental Variable Ranges Used for the Idealized Model Calibrations and Sensitivity Analysis
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solutions. The best parameterizations (see Figure 1), determined by the most skilled solvers for the complete 
forcing timeseries, were then used to run idealized simulations (Appendix A and “Sensitivity analysis”).

2.2.4. Sensitivity Analysis

To understand the physiological responses produced by the models—that is, to answer: “do model behaviors 
differ in response to abiotic variations?”—we carried out a variance-based global sensitivity analysis. We used 
Sobol's method (Sobol', 2001; see below), which relies on a probabilistic framework to quantify the sensitivity 
of a model's outputs over the full domain of variation of its inputs and is particularly robust when dealing with 
non-linear model responses (Marzban, 2013). Here, the method probes to what degree variability in key environ-
mental variables (PPFD, Ta, Da, Ca, and Ψs) affects modeled gs, Ψl, and Ci.

The models were parameterized using the best parameterizations from the “wet” calibrations and forced with 
1,008,000 combination sets of PPFD, Ta, Da, Ca, and Ψs. The Saltelli cross-sampling method (Saltelli et al., 2007) 
implemented in the SALib python package (Herman & Usher, 2017) was used to generate forcing samples as 
uniformly distributed as possible (Table 2). Sobol' sensitivity indices (Saltelli et al., 2010; Sobol', 2001) were 
calculated for gs, Ψl, and Ci. Variance in modeled variables is estimated via the quasi-Monte Carlo method 
before being apportioned to each individual driver (first-order index, S1), to synergies between pairs of drivers 
(second-order index, S2), or to each driver plus all their synergic terms with other drivers (total-order index, ST).

For example, if gs' S1 by Ta is 30%, its S1 by Da 40%, and its S2 by Ta-Da 20%, then 90% of gs variability is caused 
by variability in Ta and Da and their direct interactions. Inaccuracy in these two drivers will be responsible for 
most of the uncertainty in simulated gs. By contrast, the ST is a summary measure of the overall contributions 
of one driver to the variation in a modeled variable. For instance, if Ta interacts with other drivers than Da (if 
gs' S2 by Ta-Ψs is 5%), then besides the first- and second-order contributions, the ST by Ta will also account for 
third-order contributions of Ta (Ta-Da-Ψs synergies) to the total variability in gs.

2.3. Evaluation Against Observations

To answer our third question, we evaluated the models against leaf-level observations originating from Australia, 
France, Panama, and the USA. The original data sets include field observations for 26 sites × species combina-
tions (Choat et al., 2006; Limousin et al., 2013; Martin-StPaul et al., 2012; Mitchell et al., 2009; Wu et al., 2020), 
as well as measurements for four species grown in a common garden experiment (Héroult et al., 2013). After 
processing the observations (Text S5 in Supporting Information S1), measured gs, E, and An were available for 16 
sites × species, Ψl for 15 sites × species, and Ci for 12 sites × species. Observed PPFD, Ta, Da, Ca, gb, and Ψl,pd 
(used as a proxy for Ψs) were also included as inputs to drive the gs schemes. All sites × species specifics are listed 
in Table 3 and Table S5 in Supporting Information S1.

We used the four most skilled solvers from our theoretical “Idealized calibrations” (Figure S5 in Supporting 
Information S1) to calibrate the 12 schemes to the observations of gs, for each individual site × species. These 
calibrations were performed within the LSM framework, using measured leaf temperature instead of Ta to avoid 
energy-balance assumptions at the calibration stage.

Calibrating the Tuzet model, however, required a different approach than that used for the idealized calibrations, 
as not only was there no unique link between gs and Ψl over all environmental conditions, but the observations 
were also inconsistently distributed in time, with variable tree age and size classes sampled. The Ψref and sTUZ 
parameters (Equation 7) were directly fitted from the observed gs and Ψl (Text S6, Figures S6a–S6o in Supporting 
Information S1), and Ψref and sTUZ were then pre-set upon calibration of both g1,TUZ and kmax within the model 
framework. Unlike in the “Idealized calibrations,” calibration of a kmax specific to the Tuzet model is needed 
because Ψref and sTUZ were not calibrated within the model framework.

Predictive performance was appraised using four metrics (Text S7 in Supporting Information  S1). Pearson's 
correlation coefficient (r) evaluates the temporal relationship between modeled and observed variables. The 
Nash-Sutcliffe Efficiency index (NSE) measures a model's ability to outperform the average observation. The 
Mean Absolute Scaled Error (MASE) gauges the accuracy of a model's dynamics, by assessing whether its 
predictions are more skillful than preceding observations. Finally, the ranked Bayesian Information Criterion 
(rBIC) provides information on parsimonious accuracy within each site × species.
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3. Results
We first evaluate our idealized model calibrations, then explore theoretical 
model sensitivities, and finally examine whether and/or which theoretical 
findings are supported by observations.

3.1. How Well Constrained Are gs Scheme Parameterizations?

Figure 1 shows the spread in parameter values calibrated under “wet” and 
“stressed” soil moisture conditions, normalized by the median parameter 
value within each calibration subset. Where the numerical solvers converge, 
the parameters are well defined and the plots display a single mode (e.g., 
ProfitMax, SOXopt), typically within ±10% of the median parameter 
value, and with standard errors <10%. Where the solvers do not converge, 
there  can  be large spreads in the distributions: these reveal multimodal prob-
lems (CAP, MES), low influence parameters (b in CMax), and/or recurring 
failure from a solver (e.g., LeastCost, WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 ) or a class of solvers (e.g., 
stuck in local minimums).

Regardless of soil moisture conditions, parameters that set the magnitude of 
gs and E (e.g., kmax in ProfitMax, SOXopt, ProfitMax2, Eller; g1,Tuz in Tuzet) 
are identifiable across solvers, with few outliers to none. In CAP and MES, 
though, kmax is not readily constrained, perhaps because of empirical depend-
encies (see below) and because reductions in gs and E are not directly driven 
by stomatal responses.

The Tuzet model exemplifies a set of well-constrained empirical parame-
ters. Contingent upon a careful solver selection (cf., yellow hatched over-
lay), the optimization schemes' carbon costs (ϖ in CGain, η in LeastCost, 
λ in WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 , a in CMax) are also among empirical parameters that can 
be constrained adequately. By contrast, parameters that empirically link to 
Ψl in optimization schemes—Ψφ,lim in CAP and MES, and b (but not a) in 
CMax—are difficult to calibrate, and range between >0.05–20 times the 
median parameter values.

To address this issue, CMax's b could be fixed or omitted, given its little 
influence (Zenes et al., 2020). However, this cannot be advocated for CAP 
and MES whose parameter pairs often show equifinality and high correlation 
(from covariance matrices: c. 0.8 in >¾ of CAP's parameter estimates and 
c. 0.7 in ½ of MES”), thus representing trade-offs in optimization strategies 
(Appendix A; cf., Figure A1 vs. A2).

We gain two important insights from these results. First, combining optimal-
ity principles with empirically defined functions risks reducing predictable 
behavior by adding degrees of freedom. Second, numerical solver choice 
matters to the calibration of multi-parameter optimization models. Adopt-
ing global or Bayesian solvers (as opposed to commonly used local solvers) 
would be preferable in those cases.

3.2. Do Model Behaviors Differ in Response to Abiotic Variations?

Figure 2 shows the (mostly out-of-sample) influence of atmospheric drivers 
and soil moisture (Ψs) on gs, Ψl, and Ci given by total-order Sobol’ sensitivity 
indices. The total-order Sobol' sensitivity indices align with the first-order 
indices (Figure S7 in Supporting Information S1) and give a fuller picture of 
model variance.

Figure 1. Spread in calibrated model parameters under well-watered 
conditions (i.e., “Wet”) and mild soil moisture stress (i.e., “Stressed”). 
Parameter names appear to the right of the half violin plots and corresponding 
model names to their left; the models appear from the least (bottom) to 
the most (top) uncertain in their parameter estimates. Each half violin plot 
comprises 28 parameter estimates, obtained by calibration to four synthetic 
data sets (one 4-week data set plus three 7-day data sets) using seven 
calibration methods. Parameter values are normalized to the median of each 
calibration data set. Hatched overlays highlight the parameters from the three 
most skilled calibration methods for each model, when those successfully 
constrain estimates. The best parameter estimates among those calibrated on 
the 4-week data set are represented by a star. Note, the scale is non-linear.
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In Figure 2 and Figure S7 in Supporting Information S1, where the polynomials have a limited coverage over a 
given axis, variance is low because model responses are highly deterministic. For example, model behaviors are 
largely unaffected by variability in PPFD (S1 < 0.04, ST < 0.08), which only yields variability in Ci, gs, and Ψl 
when photosynthesis is limited by ribulose-1,5-bisphosphate regeneration (c. 23% of occurrences, on average 
across models; see Text S1 in Supporting Information S1 for the biochemical limitation rates of assimilation). 
Even under these conditions, model responses to PPFD are monotonic (Equations S1.4 and S1.5 in Support-
ing Information S1) and generate little feedback, except immediately near the CO2 compensation point and the 
co-limitation point where biochemical rates of An are equal.

Inclusion of plant hydraulics (i.e., excluding the Medlyn model) confers the models the following features: (a) 
variability in gs is primarily driven by variability in Da, with smaller contributions from Ta, Ψs, and Ca that vary 
by model; and (b) variability in Ca, and to a lesser extent in Da and Ta, induces variability in Ci. By contrast, using 
a β downregulation factor in Medlyn leads to Ψs having a major impact on both gs and Ci.

The picture is more contrasted when looking at the Ψl responses (cf., Appendix A). Eller, CMax, and LeastCost 
are mostly unaffected by variability in Ψs but quite sensitive to variability in Da and Ta, and CMax and LeastCost 
are even affected by variability in Ca. Other models are sensitive to Ψs in three ways: (a) responses to variability in 
Ψs are smaller than to variability in Da and/or Ta (Tuzet, WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 ); (b) sensitivity to Ψs either slightly dominates 

Figure 2. Total-order Sobol’ sensitivity indices of the stomatal conductance (gs), leaf water potential (Ψl), and CO2 
concentration in the leaf intercellular air spaces (Ci) to variability in environmental drivers for the 12 models parameterized 
under well-watered conditions. The environmental drivers are: atmospheric vapor pressure deficit (Da); soil water potential 
(Ψs); ambient CO2 concentration (Ca); photosynthetic photon flux density; and air temperature (Ta). The concentric circles 
mark 0.25 increments on a scale of 0–0.75, with 0 signifying no influence and 0.75 high influence; the axes extend up to 1.
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or is on par with sensitivity to other drivers (ProfitMax, CGain, SOXopt); and (c) variability is primarily driven 
by Ψs (ProfitMax2, CAP, MES). We expect that the latter scenario would become prevalent if Ψs were dropping 
further than the range tested here, and it should happen sooner for scenario (b) than scenario (a).

Sensitivity to Ψs appears as the root-cause for inter-model differences in exerted hydraulic controls (i.e., high 
sensitivity to Ψs signals tight hydraulic controls, and vice versa; see Appendix A). We also note that contrasting 
early morning/evening versus afternoon gs (Appendix A) most likely arises from high sensitivity to Da (and Ta), 
with little contribution from PPFD.

3.3. How Well Do the gs Schemes Capture Observed Leaf-Level Fluxes and Hydraulic Status?

3.3.1. Predictive Performance

We used four metrics to assess the modeled variables against observations. Pooling all sites × species, the Profit-
Max model reproduces observed behaviors better than observational averages (highest overall NSE, Figure 3a), 
possesses accurate dynamics (lowest overall MASE, Figure 3b), and is highly parsimonious (lowest overall rBIC, 
Figure 3d), whilst the MES model shows high correlation with the observations (highest overall r, Figure 3c). It 
is worth noting that the demanding MASE benchmark of 1—that marks one-step forecasts of the observations—
is met by four models (MES, LeastCost, SOXopt, ProfitMax) for gs across sites × species. Additionally, half the 
new  models (Eller, ProfitMax, SOXopt, ProfitMax2, LeastCost, MES) outperform the well-established Medlyn 
model (average NSE >0.02 and >0.32, r > 0.42 and >0.53, MASE <1.25 and <1.06, and rBIC < 0.46 and 
<0.43, over the gas exchange variables and for gs, respectively), whilst an additional model displays equivalent 
performance (CGain).

Given the models were calibrated to observations of gs only, evaluating them for their ability to predict other vari-
ables degrades performance, even though some individual site × species are highly predictable (e.g., Figure S8 in 
Supporting Information S1; cf., Figure S9 in Supporting Information S1). Performance degradation can be stark 
in the tropics, where the models are less skilled at matching the gs behavior than in the extra-tropics (Figure 4). 
Finally, among variables, Ψl is responsible for the largest performance degradation, particularly for the Eller and 
LeastCost models, which we examine below.

3.3.2. Functional Relationships

Across forest types, Ψl estimates are mostly within observational ranges (Figure 5), but not for the Eller and 
LeastCost models (and WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 , to a degree) which simulate unrealistically low Ψl as ecosystems get drier, 
confirming our theoretical expectation of weak hydraulic controls in these models. Other models are either prone 
to overestimation of Ψl at the wetter sites (Tuzet, ProfitMax2, CAP, MES) or to underestimation at the xeric sites 
(CMax, CGain, ProfitMax, SOXopt). Ψl bias directly follows from bias in the parameterization of kmax (Figure S6p 
in Supporting Information S1), so WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 , CMax, and CGain share ProfitMax's bias direction (i.e., they use 
its kmax and are also biased low at the xeric sites), with WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 and CMax also displaying more variable errors 
(Figures 5d and 5e).

Predictions of E and An by sites × species generally fall within observational ranges (Figure 6 and Figure S10 in 
Supporting Information S1), but the models fail to vary sufficiently, or accurately enough, throughout the whole 
range of E and An. Indeed, each model occupies its own intrinsic WUE space, depending on its ability to regulate 
gas exchange with Da for example (Medlyn, Tuzet, WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 , CMax and CGain do not capture the behavior at 
high Da in Figure 6d). Therefore, individual models can be biased with regards to E, An, or both, and may keep 
one of the two variables within a narrow range whilst mostly varying the other. Although a proportion of the 
biases can be attributed to the forcing (at the Many Peaks Range, the forcing originates from the nearest weather 
station), to heterogeneity in the data sets, or to uncertain parameterization (not allowing seasonal variations in 
Vcmax,25 may cause An estimates to be concentrated around the median observation in Figure 6a [Wu et al., 2019]; 
leaf morphology and flow rate could affect E), discerning the causes of model-specific biases requires examining 
the co-variation of gs, Ci and Ψl.

The models generally agree on the magnitude of Ci per site × species (Figure 7 and Figure S11 in Supporting 
Information S1), noting that the models that simulate relatively lower Ci simulate marginally lower An (Eller 
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compared to ProfitMax2 in Figures 6a and 7a), and vice versa. Similarly, relatively lower E is associated with 
relatively lower gs (LeastCost compared to Tuzet in Figures 6a and 7a), or vice versa. Whereas other models tend 
toward similar magnitude overestimation of gs and Ci, or higher gs than Ci, CAP and MES overestimate Ci more 
than they do gs, in fact largely so given their estimates of An (Figures 6 and 7; Figures S10 and S11 in Supporting 
Information S1; see also Appendix A).

Figure 3. Average model performance across sites × species for: gs, Ci, E, An, and Ψl (in red); all variables excluding Ψl (in 
dark blue), and gs only (in turquoise). Dots show performance averages and horizontal bars show standard errors (cropped 
for readability in panels [a and b]). The performance metrics are: (a) the Nash-Sutcliffe Efficiency index (NSE); (b) the 
Mean Absolute Scaled Error (MASE); (c) Pearson's correlation coefficient (r); (d) the ranked Bayesian Information Criterion 
(rBIC). For the NSE, positive values characterize models more skilled than the observed mean, and one perfect forecasts. For 
the MASE, values <1 identify models more skilled than a one-step forecast of the previous observation, and 0 the minimum 
forecast error. Yellow dashed lines show the NSE benchmark of 0 and the MASE benchmark of 1. For the rBIC, proximity 
to 0 indicates the best trade-off between model accuracy and model complexity. The arrows point toward better performance, 
with higher values meaning higher performance for the NSE and r, versus lower values for the MASE and rBIC. The models 
appear in order of least to most skilled relative to the Medlyn model (for turquoise and dark blue groups of variables), and 
then relative to each other on each side of the Medlyn model (for all groups of variables).
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There are four sets of characteristics that describe gs to Ψl relationships: (a) sensitivities and ranges are consistent 
with the observations (CAP, MES in Figure 7d and Figures S12l–S12o in Supporting Information S1); (b) sensi-
tivities are consistent with the observations but Ψl are offset (ProfitMax, SOXopt in Figure 7d; Figures S12l, S12m, 
S12o, and S12p in Supporting Information S1); (c) models have the wrong sensitivity (ProfitMax2 in Figure 7d; 
Figures S12l, S12m, S12o, S12p in Supporting Information S1); (d) models have the wrong sensitivity and are 
offset (LeastCost in Figures 7c and 7d and Figure S12 in Supporting Information S1). Moreover, for WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 
and particularly CMax, gs(Ψl) can split into “branches” at low gs (below c. 0.5 × gs,norm in Figure 7d; Figures S12e, 
S12o, and S12p in Supporting Information S1), which suggests diverging gs closure at low Ψs versus high Da.

Average gs sensitivities to Da are within observational ranges across models and sites × species (Figure 8a). At 
low Da, there is a relatively large spread in model behaviors, as per our idealized findings (Appendix A). At high 
Da, schemes start to diverge from the average observations between 4 and 5 kPa (but CMax diverges from the 
observations over the whole range of Da). Patterns of stomatal closure (Figure 8b) reveal that the modeled rates 
of gs closure are between thrice faster and six times slower than observed. Three models agree with the observed 
patterns of stomatal closure (CGain, SOXopt, ProfitMax), whilst one closes prematurely at high Da (CMax, with 
gs closure c. 45% too high), and the remaining (majority) are prone to largely delayed closure (the stomates 
are c. 25%—75% too open). Consistency in simulation of gs(Ψl) compared to the observations (i.e., accurate 

Figure 4. Nash-Sutcliffe Efficiency index for the stomatal conductance estimates of 12 models across sites × species. 
Positive values characterize models more skilled than the observed mean and one perfect forecasts. From left to right, the 
models appear in order of least (WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 ) to most (LeastCost) skilled.
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functional shape and variability, regardless of bias) appears key to representing stomatal closure as atmospheric 
aridity increases. For example, CGain, SOXopt, and ProfitMax are characterized by greater Ψl biases than the 
Tuzet and ProfitMax2 models in Figures 5d and 5e, yet their functional forms better match the observed gs(Ψl) 
(Figure S12 in Supporting Information S1). This implies that Tuzet and ProfitMax2 might be compensating for 
an overestimated sensitivity to soil moisture by underestimation of the sensitivity to Da. By contrast, CAP and 

Figure 5. Box and whisker plots (line, median; box, interquartile range; whiskers, quartiles ±1.5 times the interquartile 
ranges; dots, outliers) of the difference between modeled and observed leaf water potential (Ψl) for 11 models, where positive 
values indicate overestimation by the models. Site × species are grouped by forest type, from the wettest ecosystem (panel 
[a]) to the driest one (panel [e]), in the following order: (a) Carapa guianensis, Tachigali versicolor, Tocoyena pittieri, 
Calycophyllum candidissimum; (b) Alphitonia excelsa, Austromyrtus bidwillii, Brachychiton australis, Cochlospermum 
gillivraei; (c) Eucalyptus dunnii, Eucalyptus saligna, Eucalyptus cladocalyx; (d) Quercus ilex (Puéchabon), Quercus ilex (Vic 
la Gardiole); (e) Juniperus monosperma, Pinus edulis. Light gray shadings span ± the maximum range of observations from 
among individual species within a forest type, and darker gray shadings span ±10% of that range. The scale is symmetrically 
logarithmic.
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MES's gs(Ψl) are consistent with the observations, so it is likely they keep gs high at high Da to prevent declines 
in An in the absence of water stress.

Our “Evaluation against observations” highlights differences in internal trade-offs. For the non-stomatal models, 
compensation between overestimated Ci and underestimated An can result in high predictive performance. More 
generally, misrepresentation of the relationship between gs and Ψl does not always degrade the simulation of gas 
exchange (LeastCost, Eller); however, it may lead to discrepant responses at high Da.

4. Discussion
Climate models routinely simulate responses to a climate space without a historical analog (Reu et al., 2014), 
yet the LSMs included in climate models markedly diverge from observations as soil water availability becomes 
limiting (Martínez-de la Torre et al., 2019; Ukkola, De Kauwe, et al., 2016). This divergence is, in part, associated 
with uncertainties in soil hydraulic processes (Van Looy et al., 2017) and processes governing vegetation water 
stress (Medlyn et al., 2016). Stomatal optimization approaches that account for plant hydraulic functions hold 
promise for LSMs (Eller et al., 2020; Sabot et al., 2020) because they incorporate more predictive capacity than 
empirical model parameterizations based on historical behaviors and are simpler to parameterize than detailed 
representations of plant hydraulics (De Kauwe et al., 2020; Kennedy et al., 2019). In this study, we reviewed the 

Figure 6. Leaf-level estimates of carbon assimilation (An) and transpiration (E) from 12 models at a subset of wet (panel 
[a]) to xeric (panel [d]) site × species, compared to observations (light gray crosses). The box and whisker plots aligned with 
each panel show the observed distributions of An and E (line, median; box, interquartile range; whiskers, quartiles ±1.5 times 
the interquartile ranges). Dashed black lines represent observed behaviors fitted via a generalized additive model and split in 
three groups: (i) the overall average behavior (unlabeled); (ii) the average behavior when atmospheric vapor pressure deficit 
(Da) is low; and (iii) the average behavior when Da is high. Both high and low Da thresholds were determined relative to the 
site. For the model estimates, point size is proportional to the number of observations per site × species, and transparency to 
density. Outliers were excluded by capping the modeled values to 2.5 times the observed maximum at each site.
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assumptions and mechanisms underpinning empirical and (non-)stomatal optimization hypotheses, with a view 
to guiding model development. Our theoretical results were determined using the Medlyn gs model as reference, 
but we expect them to be robust to alternative empirical reference choices (e.g., Ball et al., 1987; Leuning, 1995), 
with subtle differences in the sensitivity to Da (Medlyn et al., 2011).

4.1. Limits to Empirical Approaches

An argument can be made in favor of calibrating soil moisture stress functions in state-of-the-art LSMs, as opposed 
to changing their complex structure (Leplastrier, 2002; Raupach & Finnigan, 1988). Here, using an exponential 
dependency on Ψl,pd (or Ψs) to down-regulate gs yielded reasonable skill when the Medlyn et al. (2011) model 
was evaluated against observations. Nonetheless, empirical moisture stress functions can hamper gs model perfor-
mance (see notes S2 and Figure S6 of Sabot et al., 2020) or be implausible when applied outside their calibration 
sample (Verhoef & Egea, 2014). Finally, as the Medlyn gs model estimates are not contingent upon estimating Ψl, 
its prognostic use beyond the simulation of gas exchange is limited.

An alternative approach to using moisture stress factors is to make gs an empirical function of leaf water potential, 
where Ψl is obtained by accounting for plant hydraulics (Tuzet et al., 2003). The problem with this approach is 

Figure 7. Functional relationships between stomatal conductance (gs), CO2 concentration in the leaf intercellular air 
spaces (Ci), and leaf water potential (Ψl) predicted by 12 models at a wet (panels [a and c]) and a dry (panels [b and d]) 
site × species. Panels (a and b) show the encircled interquartile ranges of simulated to observed gs ratios against simulated 
to observed Ci ratios, such that a “perfect” model would be concentrated at the intersection of the 1:1 lines. Panels (c and 
d) show the modeled decline in gs with decreasing Ψl, fitted via a generalized additive model, compared to the observations 
(light gray crosses). The functional forms were made comparable by normalizing gs by its model-specific maximum per site 
× species, and Ψl by the critical leaf water potential indicative of total xylem failure (P95 in this study). Curves were not fitted 
if they did not monotonically decrease (e.g., WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 and CMax in panel [d]), or where the models operate at, or beyond, the 
P95 (e.g., the Eller model in panel [d]).
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that there is not always a unique link between gs and Ψl over all environmental conditions (Figures S6a–S6o in 
Supporting Information S1), so the Tuzet model risks: (a) simulating erroneous gs (and E) responses to Ψl with 
increasing vapor pressure deficit (this study; Yang et al., 2019); and (b) introducing numerical instability through 
unrealistic feedbacks between leaf temperature, Dl, Ψl, and gs.

Recently, Eller et al. (2020) proposed an empirical gs model based on xylem hydraulics which approximates an 
optimality criterion (i.e., SOXopt; Eller et al., 2018). Here, the Eller model showed high skill in the simulation of 
gs and other leaf gas-exchange variables (Figure 3) but produced unrealistically low Ψl (Figure 5). To approxi-
mate an analytical solution to SOXopt, Eller et al. (2020) replaced SOXopt‘s dependency on Ψl with a numerically 
simpler dependency on 0.5(Ψl,pd + Ψl), incidentally weakening its hydraulic reduction factor and impacting its 
analytical solution. Therefore, to achieve similar Ψl as predicted by SOXopt, all of the Eller model's plant hydrau-
lic parameters (not only kmax, but also the vulnerability curve traits) need to be refitted (see Figure S3 of Eller 
et al. [2020]). At Puéchabon (a site also considered in this study), parameterizing the Eller model within the Joint 
UK LSM (Clark et al., 2011) resulted in a P50 of −1.8 MPa (“BET-Te” in Table 2 of Eller et al. [2020]), whereas 
measured P50 is between −7 and −4.5 MPa for Quercus ilex (Martin-StPaul et al., 2014, 2017b). Besides, the 
Eller model was derived from SOXopt assuming a different representation of plant vulnerability to cavitation than 
that given by Equation 3 (cf., Manzoni et al., 2013), which could have aggravated its tendency to underestimate 
Ψl in our modeling framework.

4.2. Added Value and Potential Drawbacks of Optimal Schemes

Optimization approaches avoid reliance on empirical corrections to gas-exchange as water supply becomes 
limited, instead relying on measurable hydraulic traits (ProfitMax, SOXopt, ProfitMax2), or traits plus parameters 
specific to the optimization hypothesis (WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 , CMax, CGain, LeastCost, CAP, and MES). We found three 
models (CMax, CAP, and MES) to be difficult to constrain (Figure 1), and one model (CMax) to contain a low 

Figure 8. A comparison of the sensitivity of 12 stomatal conductance (gs) models to vapor deficit (Da) across site × species. 
The driest two thirds of soil moisture were excluded within each site × species to isolate Da effects from soil moisture effects. 
Panel (a) shows the binned average effect of Da on gs (normalized by the observed maximum gs per site × species) over the 
range of observed Da (0.4–7 kPa), with each bin spanning (c) 0.4 kPa. The colored lines represent the different models as per 
(b). The darker gray shading shows the average observed gs, with lighted shading spanning ±1 S.D. around it. The boxed area 
defines the selection of gs data shown in (b) and includes a minimum Da of 2 kPa to account for models that predict relatively 
early gs closure. Panel (b) shows ridge plots of the differences between rates of simulated gs decline (i.e., simulated gs 
normalized by its model-specific maximum per site × species and scaled to the maximum observation) and rates of observed 
gs decline, relative to observed gs decline from within the boxed area from (a). Negative spread and peaks signify early 
stomatal closure compared to the observations, and vice versa.
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influence parameter that could be fixed or omitted (cf., Zenes et al., 2020). At the ecosystem scale, Bassiouni and 
Vico (2021) confirmed that the less physiologically meaningful parameters of CMax were the most uncertain 
among those of three gs optimization models. From an operational perspective, constraining multi-parameter 
models can require over three times as many function evaluations than for one-parameter models. This makes 
“easy to calibrate” models attractive because global parameterizations would come at a considerable computa-
tional cost for multimodal optimization schemes and/or schemes sensitive to the calibration conditions (Figure 1).

Optimization was an improvement over the well-established Medlyn model for five optimization models evalu-
ated against leaf-level observations (ProfitMax, SOXopt, ProfitMax2, LeastCost, and MES), and the CGain model 
was largely on par with the Medlyn model (Figure 3). Contrary to previous findings by Anderegg et al. (2018), 
CMax was not a large improvement over WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 in our modeling framework. CMax was not among the 
top performing optimization schemes either, whereas the LeastCost model was, at odds with the findings of 
Wang et al. (2020). Possible explanations for apparent discrepancies between past findings and ours include the 
following:

1.  The calibration methods are different. For instance, Wang et al. (2020) calibrated their models to studentized 
distributions of An, E, and Ψl. Instead, we calibrated our selected models to observed gs only, which avoids 
spreading errors across variables and could be critical for models less skilled at capturing Ψl.

2.  Whenever possible, we implemented the optimization criteria forms instead of their derivative forms (Figure 
S2 and Text S8 in Supporting Information S1).

3.  Our model simulations include energy-balance feedbacks between the atmosphere and the leaves, whereas 
previous studies used leaf-level forcing variables.

4.  We evaluated the models' ability to match the observed leaf-level fluxes and water potentials independently, 
using four metrics that outline various aspects of model performance, as opposed to a single metric averaged 
across variables.

5.  The evaluations use different model selections and data sets, for example, ours includes more Eucalyptus 
species.

Discrepancies aside, our results agree with Wang et al. (2020) in that WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙
 and (mostly) CMax may behave 

unrealistically at high Da. We also concur that ProfitMax and SOXopt perform to a similar standard, but we find 
that a slightly more conservative mode of stomatal regulation (i.e., marginally lower gas exchange under well-wa-
tered conditions) and less sensitivity to water stress (e.g., higher Ψl in Figures 5d and 5e) give ProfitMax the edge 
over SOXopt.

4.3. Non-Stomatal Photosynthetic Limitations

The non-stomatal optimization approaches evaluated here (the CAP and MES models) resulted in lower photo-
synthetic estimates than observed (Figure 6 and Figure S10 in Supporting Information S1), through mechanisms 
challenged by the observations of co-occurring gs and Ci (Figure S11 in Supporting Information S1). At the 
same time, both models proved highly skilled at representing the dynamics of gs, particularly for the Quer-
cus ilex sites × species (Figure S9c in Supporting Information S1) for which seasonally varying non-stomatal 
limitations have been demonstrated (Martin-StPaul et al., 2012). One possible explanation is that, despite clear 
evidence of apparent Vcmax,25 downregulation with drought (Keenan et al., 2010; Zhou et al., 2013), the evidence 
does not unequivocally support instantaneous linear downregulation of photosynthetic capacity with Ψl (Wang 
et al., 2020). Additionally, robust inclusion of non-stomatal limitations in LSMs would require novel fitting of 
biochemical photosynthetic traits (i.e., in situ rather than apparent Vcmax,25; Bahar et al., 2018; Crous et al., 2013; 
Sun et al., 2014) as well as their temperature dependencies (Knauer et al., 2019). We argue that inclusion of 
non-stomatal limitations in LSMs through optimality principles would be premature, as our understanding of the 
timescales at which non-stomatal processes interact with plant hydraulic function, let alone how they arise (Yang 
et al., 2019), remains limited.
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4.4. Estimating kmax

kmax is a key parameter of hydraulics-enabled models that is measurable yet rarely documented in the plant 
hydraulics literature. In the absence of measured kmax, we calibrated model-specific kmax parameters from gs 
data. These calibrated kmax were not always plausible (i.e., outside ranges inferred from observed E and Ψl, as 
well as vulnerability curves; Figure S6p in Supporting Information S1) for Tuzet, Eller, LeastCost, CAP, and 
MES. Furthermore, kmax appeared: (a) low at the xeric sites but adequate elsewhere (ProfitMax, SOXopt); (b) or 
reasonable at the xeric sites but high at the mesic sites (ProfitMax2, MES); (c) or mostly biased (Tuzet, Eller, 
LeastCost, CAP).

We opted to use the ProfitMax's kmax when parameterizing the WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙
 , CMax, and CGain models (see “Ideal-

ized calibrations” for the rationale). An alternative (but more computationally costly) method would have been 
to calibrate each of these models' kmax. Testing (not shown) revealed that calibrated parameter spreads for the 
WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 and CGain models would remain analogous to the LeastCost model's in Figure 1, whereas constraining 
CMax's parameters would be harder still. The predictive performance (Figures 3 and 4) and functional relation-
ships (Figures 5–8) of CGain and CMax would see no substantial change in terms of the gas exchange variables. 
However, their Ψl would risk further departure from the observations through less realistic kmax (compared to the 
ranges shown in Figure S6p of Supporting Information S1). Finally, had we calibrated its kmax, WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 would 
resemble LeastCost in all aspects. That is, WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 ’s ability to capture the observations of gas exchange would 
increase at the expense of Ψl and kmax.

The inclusion of reduction/cost parameters in optimality criteria (e.g., λ in WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙
 , η in LeastCost, Ψφ,lim in 

CAP or MES) should be considered carefully, as these additional parameters did not confer a consistent advantage 
for the simulation of gas exchange and/or degraded the simulation of Ψl compared to one-parameter models which 
required calibrating kmax only.

4.5. Future Challenges

Realistic estimates of water potential and embolism are needed for models to represent drought-related mortality 
(but see De Kauwe et al.  (2020) and Venturas et al.  (2020) for the associated challenges) and drought legacy 
effects. Ideally, models should link Ψl to gs through hydraulic reduction factors/cost terms that rely on realistic 
kmax. Newly available sap flow measurements from the SAPFLUXNET database (Poyatos et al., 2021), together 
with existing hydraulic trait databases and aligned with leaf-level observations, offer an opportunity to infer rele-
vant parameterizations of kmax and xylem failure thresholds (i.e., Ψcrit, kcrit) that could reduce model bias in Ψl esti-
mates. Explicit rhizosphere (Venturas et al., 2018; Wang et al., 2019) and/or symplastic limitations (De Cáceres 
et al., 2021) under dry conditions could also be explored, noting associated parameterization uncertainties (Xu 
& Trugman, 2021).

Adding complexity might not suffice where the relationship between gs and Ψl is mischaracterized (e.g., unrealis-
tically shaped) and/or where magnitude biases are very large (Eller, LeastCost, and WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 to a lesser extent), 
so reformulation of optimality criteria cost terms/regulation factors might be necessary. Critically, uncertainty in 
the formulation of plant vulnerability to cavitation (Ogle et al., 2009), in hydraulic vulnerability measurements 
for long vessel species (Cochard et  al.,  2013), and in Ψl measurements (which can be significantly decorre-
lated in time from gas-exchange measurements, especially when made in the field) should be accounted for: 
(a) when selecting parameterizations from the literature (and parameterizations could be constrained using less 
artifact-prone turgor loss data); (b) when resolving optimality criteria formulations; and (c) in model predictions 
of Ψl and plant water status.

5. Conclusion
Over half the models compared performed well against leaf-level observations of gas exchange. However, care 
should be taken when analyzing performance metrics, as seemingly good performance can result from problem-
atic internal compensation effects, and/or mischaracterization of model sensitivities to soil moisture and vapor 
pressure deficit. Only one of the better performing models required calibration of a parameter explicating stoma-
tal sensitivity to the soil moisture conditions (Medlyn), confirming the viability of hydraulics-based stomatal 
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models for predicting vegetation responses in novel climate spaces. Notably, the better constrained optimization 
approaches (e.g., ProfitMax, SOXopt), both in terms of parameterization and functional representations, embed 
the potential for acclimation and plasticity in the plant hydraulic and photosynthetic responses (Sabot et al., 2020; 
Sperry et al., 2019), with a link to plant carbon allocation patterns (Potkay et al., 2021; Trugman et al., 2019) of 
major significance for the future of global coupled climate-vegetation modeling.

Appendix A: Harmonized Model Behaviors
Figure A1 shows the average diurnal behavior for a suite of fluxes calibrated under “wet” conditions, highlighting 
how calibration does not ensure agreement throughout the day, despite producing comparable average estimates. 
Figure A2 shows the same thing under “stressed” conditions. Average daily gs (Figures A1a and A2a) are within 
±10% of Medlyn across calibration conditions, but single day average differences can exceed 20% under “wet” 
conditions and reach up to c. 85% under “stressed” conditions.

Figure A1. Average diurnal behavior of leaf-level water (panels a, c, and e) and carbon (panels b and d) fluxes predicted by 
the 12 models under well-watered conditions for 26 simulated data points per day. The Medlyn model's simulation of stomatal 
conductance (gs, panel a) was used as a reference to calibrate the other models. Other simulated fluxes shown are: (b) the CO2 
concentration in the leaf intercellular air spaces (Ci) as a proportion of the ambient CO2 concentration (Ca); (c) the leaf water 
potential (Ψl); (d) the net rate of carbon assimilation (An); and (e) the transpiration (E).
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Figure A2. Average diurnal behavior of leaf-level water (panels a, c, and e) and carbon (panels b and d) fluxes predicted 
by the 12 models under mild soil moisture stress for 26 simulated data points per day. The Medlyn model's simulation of 
stomatal conductance (gs, panel a) was used as a reference to calibrate the other models. Other simulated fluxes shown are: 
(b) the CO2 concentration in the leaf intercellular air spaces (Ci) as a proportion of the ambient CO2 concentration (Ca); (c) 
the leaf water potential (Ψl); (d) the net rate of carbon assimilation (An); and (e) the transpiration (E).

Compared to Medlyn in Figure A1a, five optimal models (CMax, ProfitMax, CGain, SOXopt, and MES) are 
characterized by higher and earlier gs peaks in the morning when Ta, Da, and PPFD are low (see Figure S3 in 
Supporting Information S1), resulting in asymmetric biases between a few simulated points in the early morning/
evening and the rest of the day (>15% greater gs in SOXopt than in Medlyn before 10 a.m. and after 5 p.m. vs. 
<10% smaller gs otherwise; >5% greater gs in CMax before 10 a.m. and after 5 p.m. vs. >14% smaller gs other-
wise). For WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 and LeastCost, gs peaks occur later in the morning than for Medlyn. Throughout the day, the 
Eller model is the steadiest, possibly because it assumes biochemical co-limitation (Equation 8), which smooths 
photosynthetic transition effects (see below), and because its downregulation factor depends on Ψx,pd and P50 
rather than Ψl (Equation 9), which limits Da effects.

CAP and MES excepted (see below), well-watered estimates of diurnal Ci (Figure A1b) vary together with gs, so 
higher gs relative to Medlyn also means higher Ci. Under “stressed” conditions, marginal adjustments in water use 
may result in higher Ci versus lower gs than Medlyn, at various points of the day (Eller, ProfitMax2 in Figures A2a 
and A2b). Marked transitions in Ci:Ca result from transitions between RuBP-regeneration limited photosynthesis 
(morning and evening) and Rubisco-limited photosynthesis (afternoon; see Method S1). Schemes that simulate 



Journal of Advances in Modeling Earth Systems

SABOT ET AL.

10.1029/2021MS002761

25 of 30

higher morning and evening Ci:Ca often transition half an hour later than Medlyn—particularly in the morning—
and those that simulate lower Ci:Ca transition about half an hour earlier—particularly in the evening.

In the early morning and evening, relative differences in gs and Ci make most optimization schemes more prof-
ligate water spenders than Medlyn (up to >20% increase in E; Figure A1e) for negligible carbon gains (<3% 
increase in An; Figure A1d), and vice versa in the afternoon. Having a somewhat riskier strategy, WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 (both 
under “wet” and “stressed” conditions) and LeastCost (under “stressed” conditions) can transpire more in the 
afternoon (up to c. 10%) for modest carbon gains (up to <4%) that risk being offset by photorespiration when 
investments in E are insufficient. Note, neither WUE-𝐴𝐴 𝐴𝐴Ψ𝑙𝑙

 nor LeastCost explicitly account for hydraulics in their 
optimization criteria formulation. CAP and MES stand out, always simulating lower An than Medlyn, because 
their hydraulic controls directly downregulate Vcmax and Jmax (Equation 21) or mesophyll conductance (Equa-
tion 22). Consequently, both models must maintain high Ci (Figure A1b) to prevent stark reductions in An.

Simulation of Ψl (Figure A1c) is where schemes most diverge. LeastCost and Eller simulate lower Ψl than all 
other schemes, even beyond the P88. These models' calibrated kmax is smaller than the ProfitMax's (Table S6 in 
Supporting Information S1), so LeastCost and Eller have lower Ψl at the same magnitude gs than other models, 
pointing to almost no hydraulic controls. Conversely, ProfitMax2, CAP, and MES exert tight hydraulic controls, 
relying on higher calibrated kmax than ProfitMax, and so, yielding higher Ψl. Both CGain and SOXopt behave simi-
larly to ProfitMax, with ever so marginally lower Ψl. Under “stressed” conditions, CAP and MES (Figure A2c) 
operate in a contrasting mode of optimization compared to the other models, where kmax is over three times that 
of the “wet” calibrations, so Ψl barely drops throughout the day. Finally, CMax simulates stomatal closure in the 
afternoon, accompanied by a reversal of the diurnal leaf water potential drop (most visible in Figure A2c), when 
Ta and Da rise.

Data Availability Statement
All model, analysis code, and data are freely available from https://github.com/ManonSabot/One_gs_model_to_
rule_them_all and https://doi.org/10.5281/zenodo.5932661 (Sabot, 2022).
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