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Abstract 
 

Science Fascination: Investigating change over time in middle school 
students’ fascination in science using a Learning Activation framework 

 

Ryan R. Auster, Author 

Michael Russell, Ph.D., Dissertation Chair 
 

 This paper describes the construct of fascination in science, a non-cognitive 

trait combining interest, curiosity, and mastery skills, and the particular relevance of 

fascination in science for students during middle school. Grounded in the theory of 

Science Learning Activation and employing data from the longitudinal Activated 

Learning Enables Success study of 2014 (ALES:14), cohorts of sixth and eighth 

graders were measured on fascination five times over two school years, allowing for 

an investigation of change over time. Multilevel models were constructed for each 

grade-level cohort in an effort to determine patterns of change, while also testing for 

relationships with several student-level characteristics and class-level instructional 

variables. Results suggest discontinuous patterns of change in fascination, with 

declining fascination scores in grade 6 boosted over the summer break and 

declining fascination scores in grade 8 rising the following school year. While the 

impact of instructional variables was negligible, relationships with several 

individual covariates were observed, primarily indicating the importance of family 

support for science. Future research should focus on context-specific elements of in-

school activities, along with additional out-of-school factors that may influence 

fascination.
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Chapter 1: Purpose of the Dissertation Research 

Scientific literacy—the ability to use scientific skills, concepts, and reasoning 

to assist in everyday decision-making—is essential for everyone in the 21st century 

due to the increased presence of science and technology in our world. However, 

data suggest that most students in the United States are neither learning critical 

components of science at a level considered acceptable (e.g., U.S. Department of 

Education, 2018) nor pursuing science beyond what is required in high school (e.g., 

National Science Board, 2018). This may seem surprising given the naturally 

inquisitive nature many children have at a young age as they seek to explore and 

understand the scientific world around them (Driver, 1985), as science is 

fundamentally about asking questions to better understand how and why things 

work. Over time, the impact becomes pronounced and two-fold: adults with less 

scientific knowledge at their disposal fail to integrate science into everyday 

decision-making related to both personal and public policy-related matters (von 

Winterfeldt, 2013), and subsequently are prevented from working in many science-

related jobs later in life (e.g., Lacey & Wright, 2009). 

 Unfortunately, most school-based science experiences do more to repress 

rather than foster students’ opportunities for pursuing self-expression of the 

curious world around them (Engel, 2011). A primary cause of this is an educational 

failure to promote a fascination in science, particularly in middle school. A 

psychological construct closely related to interest, fascination can influence an 

individual’s ability to think about or pay attention to something or motivate them to 
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reengage in the future. As noted in the National Research Council’s A Framework for 

K-12 Science Education (2012), “The actual doing of science or engineering can also 

pique students’ curiosity, capture their interest, and motivate their continued study” 

(p. 42). 

 While enhancing interest or fascination in science may lead to increased 

learning and is certainly theorized to cause increased scientific literacy, it also is the 

spark that ignites into wonder, obsession, and imagination. These words are more 

than variables in the equation of education; they are at the very heart of what it 

means for a child to discover the world around him or her. Those with these traits 

are most often the passionate individuals who make societal advancements. As 

Albert Einstein said, “Imagination is more important than knowledge. For 

knowledge is limited, whereas imagination embraces the entire world, stimulating 

progress giving birth to evolution. It is, strictly speaking, a real factor in scientific 

research” (as cited in Hadzigeorgiou, 2016, p. 1). Fascination is not just crucial in 

helping children learn, it is crucial to helping them imagine. 

This dissertation will use data from the Activated Learning Enables Success 

study of 2014 (ALES:14) to examine the patterns of change and factors associated 

with change in middle school student fascination in science. Although similar to 

interest and often used interchangeably, fascination adds depth to the desire to 

learn more, and refers to an individual’s emotional and cognitive attachment with 

topics and tasks. Following two cohorts of middle-school students—one from grade 

6 to 7 and another from grade 8 to 9—longitudinal analyses will test for changes in 
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levels of fascination in science and student- and classroom-level factors relating to 

those changes. Specifically, three-level growth models will be constructed to 

investigate the relationship between changes in science fascination over time and 

student-level factors, including gender, racial minority status, resources available at 

home, and family support for school, as well as classroom-level characteristics 

including the amount of hands-on activities provided, the balance between student-

centric and textbook-based teaching, and technology use in the classroom. The 

results of this study will allow researchers and teachers to better understand how to 

support increased fascination in science and minimize declining science fascination 

in students over time. 

Description of the Problem 

Science is an inescapable aspect of life in the 21st century. Advanced 

communication devices keep individuals around the globe in contact at all hours of 

the day; new vaccines are developed to combat disease more rapidly than ever 

before; technologies are invented to help grow food and provide clean water for the 

expanding global population; biologists continue to discover thousands of new 

species of plants and animals every year. Despite science’s apparent relevance, 

students in the U.S. are choosing not to pursue scientific courses of study in their 

educational pathways (Osborne, Simon, & Collins, 2003). 

 One seemingly positive impact of the ubiquity of science is the labor market 

expansion in areas related to science, technology, engineering, and mathematics 
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(STEM1). The U.S. Bureau of Labor Statistics reports that STEM occupations have 

experienced above average growth in recent years, with employment increasing by 

10.5% from 2009 to 2015, compared to 5.2% growth in non-STEM occupations, a 

trend that is projected to continue into the next decade (Fayer, Lacey, & Watson, 

2017). These same data show that 93% of STEM jobs have wages above the national 

average, as STEM workers earn a median annual salary of almost $76,000 – more 

than twice the median wage ($35,080) for all workers (Vilorio, 2014). Having skilled 

individuals capable of filling these many jobs who will earn more is essential to our 

economic stability. 

 It may seem unsurprising that these lucrative STEM occupations often have 

high educational requirements. In fact, over 99% of these jobs typically require 

some type of postsecondary education for entry compared to 36% of overall 

employment; more than 75% require a bachelor’s degree or higher (Fayer, Lacey, & 

Watson, 2017). Unfortunately, American students are not obtaining degrees in 

science and engineering at the same rate as students in other countries. According 

to the National Center for Science and Engineering Studies, the United States 

accounted for only 10% of the global output of bachelor’s degrees awarded in 2014 

in the areas of science and engineering, compared with 10% from the top eight 

producing nations in the European Union, 22% from China, and 25% from India 

                                                         
1  While science, technology, engineering, and mathematics were lumped together in educational 

policy initiatives as early as the mid-1980s, the term “STEM” wasn’t popularized until the mid-
2000s (Loewus, 2015). Science is to STEM as a square is to a rectangle: science is always contained 
in STEM, but not all STEM-related discussions should be assumed to pertain to science. For this 
reason, I mention STEM as it has become increasingly relevant in discussions of science-related 
research, but will focus exclusively on fascination in science as the topic of this dissertation. 
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(National Science Board, 2018). Though the U.S. awarded the highest number of 

doctorate degrees for any individual country in science and engineering in 2014, 

more than one-third (37%) of these were conferred to temporary visa holders (i.e., 

international students studying abroad). Currently, the United States is not 

providing the skilled workforce necessary to fill the increasing number of STEM-

related positions available (Linn, Lewis, Tsuchida, & Songer, 2000). 

 Science education is not strictly for those seeking jobs in STEM careers. 

Another impact of the ubiquity of science is the critical importance of scientific 

literacy to all citizens. The success of a democratic society depends on participation 

by the people who are prepared to deal intelligently with social issues relating to 

science, such as sustainable energy alternatives, genetically modified foods, and 

vaccinations (DeBoer, 2000; Kahan, 2013). As the presence of science and 

technology in our lives persists, there is a need to support citizens in their decision-

making about these issues (National Academy of Engineering Committee on 

Technological Literacy, 2002), and in particular, how they integrate evidence into 

their reasoning of socio-scientific issues (Kelly, 2007; Zeidler, Sadler, Simmons, & 

Howes, 2005). Accordingly, the National Research Council (NRC) has listed 

increasing STEM literacy for all students, including those who will not pursue STEM-

related careers, as one of its three critical goals, specifically because of the need to 

understand science to make personal decisions and engage in civic discourse (NRC, 

2011). 
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Developing a scientifically literate citizenry and burgeoning workforce in 

STEM-related fields means preparing today’s students with certain skills and a 

scientific mindset. As defined by the Organisation for Economic Co-operation and 

Development (OECD), literacy has several components, including a general 

understanding of important scientific concepts, frameworks, and methods, as well 

as the strengths and limitations of science. Furthermore, they emphasize the ability 

to apply this understanding in situations in which decisions need to be made. 

“Scientific literacy is the capacity to use scientific knowledge, to identify questions 

and to draw evidence-based conclusions in order to understand and help make 

decisions about the natural world and the changes made to it through human 

activity” (National Science Board, 2012, pp. 132-33).  

Although developing these skills and mindsets is extremely important for 

school-aged youth, considering scientific literacy a life-skill is practical because no 

one can know in advance all that they need to know to make decisions about new 

complex issues that continue to arise. As Jon Miller (2010) notes: 

How many adults can claim that they studied stem cells or nanotechnology 

when they were students? In the decades ahead, the number and nature of new 

scientific issues reaching the public policy agenda will not be limited to subjects 

that might have been studied in school but will reflect the dynamic of modern 

science and technology. (n.p.) 

Resultantly, the ability to learn about new scientific issues and develop informed 

opinions about their applicability to one’s life is (or must become) a critical outcome 
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of science education. Whether considering the task of producing the next generation 

of the science and engineering workforce or creating a science-literate and engaged 

citizenry, supporting science education at the national level continues to be a 

priority for school systems and policymakers alike (U.S Department of Education, 

2016). 

Unfortunately, recent studies suggest that science achievement among 

school-aged youth in the United States is low relative to students of similar ages in 

other countries, and low relative to national proficiency standards. Results from the 

Trends in International Mathematics and Science Study (TIMSS) 2019 show a gap in 

science achievement between U.S. students and those in other countries. At the 

fourth grade, seven education systems outperformed the U.S., while in the eighth 

grade, this number increases to ten. Perhaps more strikingly, only 15% of American 

4th and 8th graders performed at or above the Advanced international science 

benchmarks at their respective grade levels; more than 20% of 4th-grade students 

fail to perform at even the Intermediate benchmark, and this percentage increases to 

30% by the 8th grade (Mullis, Martin, Foy, Kelly, & Fishbein, 2020). National 

Assessment of Educational Progress (NAEP) results in the United States also suggest 

mediocre achievement in science. While the percentage of students in the eighth-

grade at or above the Proficient level increased from 32% in 2011 to 34% in 2015, 

only 25% of 12th-grade students met or exceeded the Proficient benchmark in 2015 

(U.S. Department of Education, 2018). The pattern seen in both studies suggests that 

not only are U.S. students not performing well relative to their peers in other 
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countries and national proficiency standards, but also that performance declines as 

students progress through required schooling. 

While analyzing patterns of student achievement is important, it does not 

capture the complete picture of science learning experiences for elementary-aged 

children, including their inspiration and preparation to study science. Indeed, 

attitudes toward science have consistently been shown to be relevant to advancing 

achievement in science, whether considering feelings toward science (e.g., Mullis et 

al., 2020), self-efficacy (e.g., Bandura, 1977; Zimmerman, 2000), or interest (e.g., 

Harackiewicz, Barron, Tauer, & Elliot 2002). Frequently, such motivational 

constructs are lumped together into one and referred to as the affective side of 

learning science (Potvin & Hasni, 2014). 

Complicating the issue of sub-par academic achievement in science has been 

a demonstrated decline in learners’ desire and ambition to pursue science when 

they have the opportunity to choose their course of study (Osborne, Simon, & 

Collins, 2003). It is widely acknowledged that most students hold positive views 

toward science in the early grades (Mantizcopoulos, Patrick, & Samarapungavan, 

2008; Mantizcopoulos, Samarapungavan, & Patrick, 2009), but as they progress 

through elementary and middle school, many students become disenfranchised and 

lose interest over time (Gottfried, Fleming, & Gottfried, 2001; Osborne, Simon, & 

Collins, 2003; Simpson & Oliver, 1990). “As a result, too many American students 

conclude early in their education that STEM subjects are boring, too difficult, or 

unwelcoming, leaving them ill-prepared to meet the challenges that will face their 
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generation, their country, and the world” (President’s Council of Advisors on Science 

and Technology (PCAST), 2010, p. viii). In fact, what seems to be occurring is that 

these declining attitudes correspond with a decrease in science fascination, 

preventing students from choosing future science experiences and thereby 

negatively influencing science learning. This is particularly troublesome, as STEM 

experiences during early adolescence between the ages of 10 and 14 have been 

shown to be key in predicting involvement in additional science education and 

science career choice (Bonnette, Crowley, & Schunn, 2019; Maltese & Tai, 2011; Tai 

& Maltese, 2009). 

Learning Activation 

This work is grounded in prior research using the theory of Science Learning 

Activation: “a state composed of dispositions, skills, and knowledge that enables 

success in proximal science learning experiences” (Dorph, Shields, Tiffany-Morales, 

Hartry, & McCaffrey, 2011). Science activation comprises four critical dimensions: 

• Competency beliefs – the extent to which a person believes that they are good 

at science; 

• Fascination with natural and physical phenomena – a person’s emotional and 

cognitive attachment with science topics and task; 

• Scientific sensemaking – the degree to which a person engages with science 

learning as a sensemaking activity; sub-dimensions include: questions, 

experiment, evidence, explanation, and nature of science; and 
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• Values science – the degree to which a person values science, including the 

knowledge learned in science, the ways of reasoning used in science, and the 

role that science plays in families and communities. 

Activating a student in terms of his or her science learning will position the 

individual to be successful by encouraging that person to choose to participate in 

science learning opportunities (choice); be positively engaged, both affectively and 

cognitively, in such opportunities (engagement); believe himself or herself to be 

successful throughout the experience (perceived success); and meet the intended 

learning goals (learning). The four dimensions of activation then enable success, 

which leads to additional opportunities for science activation and further success in 

an iterative fashion. Figure 1.1 below shows the theorized cyclical relationship 

between Science Learning Activation and the outcomes of success (Dorph, 2016). 
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Figure 1.1. Science Learning Activation 

 

While these successes pertain to proximal outcomes, the theory posits that 

they in turn can lead to distal successes in the form of STEM-related career choices 

such as becoming a scientist or engineer, along with enhanced lifetime science 

literacy. Figure 1.2 below emphasizes the intended long-term outcomes of Science 

Learning Activation: as repeated science activation leads to success over time, 

aspects of science literacy are developed, and pathways to STEM careers are 

illuminated (Dorph, 2016). 

Success Activation 
Choice 

Perceived Success 
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Figure 1.2. Distal outcomes of Science Learning Activation 

 

Purpose of the Study 

Visible in Figure 1.1 above, fascination is the focal dimension in the proposed 

dissertation. According to the Oxford Dictionary, fascination (n.d.) takes on an 

autological definition: 

1. The power to fascinate someone; the quality of being fascinating. 

2. The state of being fascinated. 

The suggested section on usage then goes on to link the definition of fascination 

with interest directly: “A person has a fascination with something they are very 

interested in, whereas something interesting holds fascination for a person.” While 

interest is an educational construct with considerable research behind it, fascination 

is not, likely due to its multidimensional nature: 

Scientist / Engineer or 
 other STEM career; 

other career 

Science Literacy: 
critical thinking, 
evidence-based 

decision-makers, 
engaged citizens Success Activation 
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This dimension includes aspects of what many researchers have referred to as 

curiosity, interest in science both in and out of school, and mastery goals for 

science content. It also includes affective elements such as emotions related to 

science, scientific inquiry, and knowledge. Cited research to date in each of 

these areas suggests that each of these constructs may be compelling 

motivators to choice towards, engagement during, and attainment in science 

learning. Therefore, Fascination should be an important driver towards these 

aspects of success. 

(Chung, Cannady, Schunn, Dorph, & Bathgate, 2016b, p. 1) 

Fascination includes aspects of curiosity and wonderment, positive affect, 

and obsession. While it is closely related to interest, this dissertation will use 

fascination in science as a unidimensional trait (the technical details of which will be 

discussed in Chapter 3) while acknowledging significant overlap with the 

psychological construct of interest. Both terms (interest and fascination) will be 

discussed in more detail in Chapter 2. 

Despite increased focus in recent years on motivational pillars in education 

and the acknowledgement that advancing student interest matters for persistence 

in science, research has yet to identify longitudinal patterns of change in science 

fascination and the factors that influence these patterns for middle school students. 

The proposed dissertation seeks to identify both patterns of change in student 

science fascination and factors associated with this change. Using the Activated 

Learning Enables Success study of 2014 (ALES:14), fascination scale scores were 
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measured five times over two academic years from more than 3,700 middle school 

students, along with other science activation measures, background characteristics 

of the students, and relevant instructional characteristics of the classrooms. The 

resultant longitudinal data set enables several multilevel models to be constructed: 

one for the cohort of 6th/7th graders, and one for the cohort of 8th/9th graders. 

Changes in science fascination over time will be modeled to examine three topics: 

• age cohort differences in change over time, 

• non-linear patterns in change over time, and 

• factors associated with change in science fascination over time. 

Research Questions 

This dissertation seeks to extend previous research done as part of the 

Activated Learning Enables Success study of 2014 by explicitly investigating 

changes in student fascination in science over time. Specifically, the current study 

will address the following research questions: 

RQ1: What is the average change in science fascination of middle school 

students over time? And how much does this change vary, on average? 

RQ2: To what extent is predicted student science fascination associated with 

the instructional characteristics of the classroom, including student-

centric teaching, hands-on methods, and classroom technology use? And 

are these effects sustained over time? 
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RQ3: To what extent are middle schools equally successful in sustaining 

science fascination for students whose gender, race, family support for 

science, or economic backgrounds differ? 

Each of the above questions will be investigated separately for students progressing 

from grade 6 to 7 and grade 8 to 9 to determine if there are age-related differences. 

Importance of the Study 

The first research question investigating average change in science 

fascination of middle school students over time is particularly important as a 

growing body of work—admittedly focused on science interest, rather than 

fascination—demonstrates that students lose interest in school-based science, right 

around the time they enter high school (Barmby, Kind, & Jones, 2008; Christidou, 

2011; Krapp & Prenzel, 2011). However, it is not universally true that all students 

become disinterested, nor have these studies produced consistent findings in terms 

of the corollaries of disinterest (Potvin & Hasni, 2014). Moreover, the majority of 

these studies looking at changes in science interest utilize only two time points. The 

ALES:14 data set, on the other hand, offers five measures of science fascination over 

two years, enabling statistical methods to test not only for change over time, but 

non-linear patterns of growth as well. 

The second research question investigating classroom instructional aspects 

is also critical in the larger discussion of changing student fascination in science, 

particularly from a practical aspect. “Focusing on the potential for situational 
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interest inherent in the material and mode of presentation may help teachers 

promote learning for all students regardless of their idiosyncratic interests” (Hidi & 

Harackiewicz, 2000, p. 157). Again, recognizing that interest is closely related to 

fascination, and acknowledging that the ALES:14 study lacks data on the science 

material taught, this quote illustrates the influence instructional activities have on 

changing student interest. An understanding of exactly how these modes of 

classroom presentation relate to patterns of change may help teachers support 

growth in science fascination with their students. 

The third research question investigating student-level covariates 

influencing growth in science fascination is relevant and necessary to further 

identify the personal characteristics and demographic influences on science 

fascination. Research continues to show that gender (e.g., Baram-Tsabari & Yarden, 

2011) and racial/ethnic background (e.g., Catsambis, 1995) are related to science 

attitudes, achievement, and career interests. Parental involvement has also been 

shown to indirectly affect science attitudes, as parents typically have control over 

out-of-school science activities such as museum visits and science camps (e.g., 

George & Kaplan, 1998). Therefore, in order to adequately model changes in student 

science fascination, these variables must be included so that the relationships can be 

taken into account and better understood. 

Successful completion of this work will allow researchers, educators, and 

policymakers to better understand how changes in student science fascination occur 

over the middle school years, if this change differs between early middle schoolers 
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and beginning high schoolers, and when, if at all, opportunities exist to capitalize on 

existing fascination to help students expand this fascination in science even further. 

This research design allows us to track changes in fascination within individuals 

over the course of multiple school years and model the observed changes using 

relevant predictive variables. Further, this analysis can explore the variation in 

changes of fascination scores with non-time varying variables that are traditionally 

associated with science achievement, like gender, socio-economic status-as 

measured by resources availability, and racial/ethnic identity. Overall, these models 

will provide an estimate of the mean growth for fascination and variation around 

that growth, an assessment of the reliability of the variables in the model used to 

predict changes in fascination, and an estimate of the correlation between the initial 

value on fascination and the growth observed over time (Raudenbush & Bryk, 

2002). 
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Chapter 2: Review of the Literature 

The focus on the importance of science education in the United States is more 

than a century old. Beginning with the mechanization of farming at the turn of the 

20th century, the nation was compelled to learn a new set of skills in an effort to 

embrace the technological revolution, and scientific literacy became an important 

issue for all citizens (Gatewood & Obourn, 1963). However, the launching of the 

Russian space satellite Sputnik in 1957 likely did more to spark science education 

reform in the U.S. than any other event in history, leading to the creation of the 

National Defense Education Act of 1958 (Harris & Miller, 2005). Described as an 

“educational emergency bill” by Congress, it led directly to the formation of the 

National Aeronautics and Space Administration (NASA) that same year, an 

organization that continues to play a role in pushing science and technology in 

America today. A quarter of a century later, The National Commission on Excellence 

in Education released the infamous report, “A Nation at Risk: The Imperative for 

Educational Reform.” Specifically calling out science and technology, it cautioned 

that the failure to support education in the transition from the industrial age to the 

information age was akin to an act of war, the results of which could be disastrous 

for national security and the U.S. economy (Gardner, 1983; Harris & Miller, 2005). 

What followed was a series of policies by various White House administrations, each 

attempting to establish education (and science in particular) as a national priority, 

and each with extremely high expectations of students, teachers, and schools. These 

policies shifted their focus away from educational inputs, such as per-pupil 
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spending on materials, to educational outcomes, such as proficiency scores on 

standardized assessments (U.S. Department of Education, 2003). 

 Most recently, science education reform in the United States has focused on 

improving and aligning standards-based curricula across states, leading to the 

development and implementation of the Next Generation Science Standards (NGSS), 

following the adoption of common core standards by many states in other curricular 

areas such as mathematics and English & language arts. As summarized by the 

National Research Council’s (2012) A Framework for K-12 Science Education: 

The overarching goal of our framework for K-12 science education is to ensure 

that by the end of 12th grade, all students have some appreciation of the beauty 

and wonder of science; possess sufficient knowledge of science and engineering 

to engage in public discussions on related issues; are careful consumers of 

scientific and technological information related to their everyday lives; are able 

to continue to learn about science outside school; and have the skills to enter 

careers of their choice, including (but not limited to) careers in science, 

engineering, and technology. (p. 1) 

At face value, the objectives laid out in the design of the NGSS framework are 

complimentary to the idea of scientific literacy articulated in the previous chapter, 

with several poetic and well-intended goals noted above. However, the NGSS has 

come under criticism by some who argue that, contrary to claims made within the 

standards document, there is still too much emphasis on passive learning (i.e., 

receiving scientific facts) rather than knowledge construction (i.e., doing/exploring 
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science); in other words, there is a noticeable lack of “epistemic agency” (Miller, 

Manz, Russ, Stroupe, & Berland, 2018). One content analysis found that 

participatory practices accounted for less than 7% of the NGSS standards, although 

participatory knowledge (non-participatory practice) made up an additional 35%, 

leaving close to 60% of these new standards categorized as non-participatory in 

both knowledge and practice (Hoeg & Bencze, 2016). 

 The NGSS have been commended for emphasizing issues of equity and 

diversity, including the visibility placed on such issues by devoting an entire chapter 

of the NRC Framework, titled “Equity and Diversity in Science and Engineering 

Education” (NRC, 2012). Despite this, an essential question has been raised with 

regard to standards and their impact on student achievement: what good have they 

done? If, in fact, standards-based reform was working, not only would science 

achievement be on the rise, but achievement gaps between ethnic groups would 

theoretically be shrinking—neither of which has been easily observed. Complicating 

this matter tremendously is the continued emphasis placed on high-stakes 

assessment and the recommendation to implement a new testing system to measure 

student performance within the NGSS, despite the recognition that such 

assessments are burdensome for both teachers and students, detract from valuable 

instructional time, and perpetuate achievement gaps (Rodriguez, 2015). 

 Research on science achievement is abundant, and many studies show 

persistent gaps between students associated with demographic factors such as race, 

English language proficiency, and socioeconomic levels (Morgan, Farkas, Hillemeier, 
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& Maczuga, 2016). Low levels of science achievement among school-age children 

leads to an adult populace less able to understand critical public policy issues 

requiring greater scientific literacy and reasoning (e.g., climate change), as well as 

lower employment opportunities and prosperity (National Academy of Sciences, 

National Academy of Engineering, & Institute of Medicine [NASNAEIM], 2010; 

2011). However, why these science achievement gaps occur in the first place is 

poorly understood, and most studies have analyzed achievement at a particular time 

point rather than longitudinally (e.g., Liu & Whitford, 2011). Byrnes and Miller 

(2007) identified only 12 longitudinal studies of science achievement published 

since 1992, and of these, the maximum number of predictors used was eight, with 

an average of five. Thus, “there is no way to tell the difference between important, 

authentic predictors and relatively minor or even spurious predictors” of science 

achievement among students in the United States (p. 600). 

 Though academic achievement in science is certainly important to the 

discussion of science education, the relationship between the affective side of 

learning science (e.g., fascination) and academic achievement is messy. In their 2014 

review, Potvin and Hasni summarize a number of studies finding a negative 

relationship between interest, motivations, and attitudes towards science and 

technology and school-based science performance. Among them, Osborne & Dillon 

note that the “higher the average student achievement, the less positive is their 

attitude towards science” (as cited in Potvin & Hasni, 2014, p. 86). Complexly, the 

most recent TIMSS data support the opposite, a positive relationship between 

feelings toward science and average science achievement. Specifically, students 
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reporting they “like [science] very much” had higher average science scores than 

their grade-level peers reporting they “like somewhat” or “do not like” science, a 

pattern consistent at both grades 4 and 8. Consistent with other studies, positive 

feelings toward science was found to decrease with age, with 52% of 4th grade 

students reporting they “like [science] very much” dwindling to 35% by 8th grade 

(Mullis et al., 2020). 

 In line with the theory of Science Learning Activation—that success in 

science (through choice, engagement, and perceived success) is enabled by 

activating a student’s science learning (through fascination, values, competency 

beliefs, and sensemaking)—the literature review that follows focuses on the 

affective side of student science learning, rather than academic achievement. 

Moreover, this work seeks to isolate the dimension of fascination as a construct of 

particular importance. The Science Learning Activation Lab describes fascination as 

being composed of “curiosity, interest in science both in and out of school, and 

master goals for science content” (Chung et al., 2016b, p. 1). Thus, in an effort to 

make sense of the breadth of prior work in these areas, three prominent sections 

are presented: mastery goals, curiosity, and interest. There is more literature to 

review in the area of interest, notably various theories of interest development; 

therefore, I spend considerably more time in that section relative to others. As will 

be discussed in Chapter 3 when alluding to the specifications of the fascination scale, 

however, all three of these subdimensions are given relatively equal weight when 

measuring students’ fascination in science. (See Appendix A1.) 
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Mastery Goals 

Sometimes referred to as task-involvement goals or learning goals, the 

construct of mastery goals places attention on the intrinsic value of learning. 

Students who are mastery goal-oriented focus on understanding content as the 

motivation to learn, with a sense of self-efficacy driven by the notion that continued 

effort will lead to success or content mastery (Ames & Archer, 1988). This stands in 

contrast with the construct of performance goals (also referred to as ego-

involvement goals) which places attention extrinsically on achievement or 

recognition that others can see, such as the favorable judgement of individual 

competence based on academic performance. Distinguishing mastery and 

performance goal behavior further is self-conceptualization: individuals who pursue 

mastery goals tend to conceive of intelligence as malleable and work to develop that 

quality, whereas those who pursue performance goals often conceive of intelligence 

as fixed and work to document their successes (Dweck & Leggett, 1988). Research 

linking mastery and performance goal behavior suggests that a mastery goal 

approach is likely to elicit a motivational pattern that will maintain achievement 

behavior, whereas a performance goal approach is likely to elicit a motivational 

pattern that will seek to avoid failure (Ames, 1992). 

 Mastery goals foster orientation toward the development of new skills, an 

intense understanding of content, the improvement of competence, and as the name 

implies, achieving a sense of mastery. All of this is reinforced in a demonstration of 

the willingness to engage in the process of learning: mastery goals have been shown 
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to increase the amount of time spent on learning tasks (e.g., Butler, 1987), 

encourage persistence when challenged (e.g., Elliott & Dweck, 1988), and enhance 

the quality of engagement in the learning process (Ames, 1992). Pursuit of mastery 

goals, then, can be seen as a sincere rather than superficial approach to learning, 

with students better able to bridge gaps in knowledge over time as they are less 

consumed with the possibility of failure (Bonnette, Crowley & Schunn, 2019). 

Curiosity 

As a basic human instinct, curiosity has been discussed and debated for 

centuries, beginning with the ancient Greeks who treated it as a virtue to be 

nurtured, and later during the Middle Ages when curiosity was indicted as a vice 

(Lowenstein, 1994). As early as the mid-18th century, philosophers like Edmund 

Burke (1757) were noting the captive nature curiosity has over us: 

We see children perpetually running from place to place, to hunt out something 

new: they catch with great eagerness, and with very little choice, at whatever 

comes before them; their attention is engaged by everything, because 

everything has, in that stage of life, the charm or novelty to recommend it. But 

as those things, which engage us merely by their novelty, cannot attach us for 

any length of time, curiosity is the most superficial of all affections; it changes 

its object perpetually. (n.p.) 
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In the discussion of education, these sentiments still linger over 100 years later. 

“Obviously, a student who is curious about something is interested in it, but 

curiosity is more than just interest.” (Gardner, 1987). 

 Broadly defined as a desire for acquiring new knowledge and new sensory 

experience, curiosity can be separated into two categories, labeled perceptual and 

epistemic. Whereas perceptual curiosity leads to an increased perception of stimuli, 

epistemic curiosity is characterized as a “drive to know” (Berlyne, 1954, as cited in 

Litman & Spielberger, 2003, p. 75). Both perceptual and epistemic curiosity can be 

seen in a child’s inquisitive nature about the scientific world around them, seeking 

at first new sights, sounds, and smells, and returning to these natural wonders 

repeatedly until a firm understanding is established. Curiosity, and its satisfaction, 

may help transition students from early exposure in science to sustained, well-

developed interest (Bonnette, Crowley & Schunn, 2019). 

Interest 

In the early 20th century, John Dewey addressed the American Association for 

the Advancement of Science and noted “students have not flocked to the study of 

science in the numbers predicted” (1910, p. 122), citing that teaching as an 

accumulation of knowledge rather than a method of thinking or attitude of mind 

was to blame. Several years later, Dewey would assert that interest is the driving 

factor behind most learning behaviors (1913). Although he was not the first to 

suggest this, as Johan Friedrich Herbart theorized interest to be both a desirable 

condition of learning as well as an important educational outcome, Dewey certainly 
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popularized the notion of interest as a critical condition of learning (Krapp & 

Prenzel, 2011; Ryan & Deci, 2000; Wigfield & Cambria, 2010). Functioning through a 

“catch and hold” mechanism, Dewey (2013) believed interest would first seize an 

individual’s attention through cognitive stimulation (the catch) and then be 

maintained through finding deeper meaning (the hold). He described interest as 

active, objective, personal, emotional, and dynamic, because together these 

components create an individual’s form of self-expression. Importantly, interest 

could not be imposed on an individual but must be fostered through genuine 

learning activities and then capitalized on, resulting in the pursuit of a valuable, 

worthwhile activity (Covington, 2000a, 2000b). 

 In this sense, interest may be viewed as a driving force in successful learning 

and achievement, but that may depend on the definition of interest that is applied. 

As defined by the Oxford English Dictionary, interest (n.d.) can mean any of the 

following: 

1. The feeling of wanting to know or learn about something or someone. 

2. The quality of exciting curiosity or holding attention. 

3. An activity or subject which one enjoys doing or studying. 

In looking at these definitions, the cognitive and affective components are readily 

identifiable, but determining the role of each in stimulating learning or prolonged 

engagement with an activity, task, or object can pose a complex problem. As well, 

the neurological component, denoted “seeking” by Panksepp (2005), has been 

introduced as another important factor in determining how interest develops and is 
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maintained (Hidi, 2006). Neuroscientific evidence suggests that this seeking system 

is designed to actively engage the world and help integrate associated information 

about the environment through the emergence of cognitive maps, expectancies, and 

habit structures in order to increase the efficiency of behaviors (Vartuli, 2017). 

Theories of Interest 

“Genuine interest is the accompaniment of the identification, through action, 

of the self with some object or idea, because of the necessity of that object or idea for 

the maintenance of a self-initiated activity” (Dewey, 1913, p. 14). Since the turn of 

the 20th century, various theories of interest in explaining attentional phenomena 

have been suggested by William James (1890), James Baldwin (1911), and Edward 

Thorndike (1935), in addition to John Dewey. However, it was only in the late 1970s 

when psychologists began to reiterate the central role interest has in relationship to 

an individual’s acquisition of values and knowledge (e.g., Eckblad, 1981; Izard, 1979; 

Langsdorf, Izard, Rayias, & Hembree, 1983). An understanding of various theories 

and how they developed will help focus the work proposed in this dissertation, with 

specific attention given to the person-object-interest theory (POI) and the Four-

Phase model of interest development. 

Proposed by Ryan and Deci (2000), self-determination theory posits that two 

different types of motivation, intrinsic and extrinsic, compel individuals to act. 

Extrinsic motivation refers to taking action because of the intended outcome or 

results, whereas intrinsic motivation is the action caused by an individual’s interest 

or enjoyment. This notion of intrinsic motivation is closely aligned with drive theory 
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(Hull, 1943), acknowledging that individuals are “driven” by a primary motivation, 

itself a composite of physiological or neurological needs and the associated 

behaviors which seeks to satisfy them. 

Schraw & Lehman (2001) conducted a review of prior research, focusing on 

situational interest and distinguishing it from personal interest. While 

acknowledging the historical context that led to more current conceptualizations of 

interest, they breakdown situational interest into three main categories: text-based, 

task-based, and knowledge-based (see Figure 2.1). They also further distinguish 

between latent and actualized personal interest, in which latent interest refers to 

long-term orientation toward a particular topic and is assumed to be intrinsic, 

whereas actualized interest is a topic-specific motivational state and dictates how 

an individual engages in an activity (Schraw & Lehman, 2001). 

Figure 2.1. Personal and situational interest 

Interest 

Personal Situational 

Latent Actualized Text-based Task-based Knowledge-based 

Feeling 
related 

Value 
related 

Seductiveness Vividness Coherence Encoding 
task 

Change-of-text 

Eccles and Wigfield (2002) also conducted a review of research on 

motivation, beliefs, values, and goals focusing on developmental and educational 

psychology. Theories were arranged into four main categories—those focused on 

expectancy, those focused on the reasons for engagement, those integrating 
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expectancy and value constructs, and those integrating motivation and cognition. It 

was noted that similarities and differences between categories stemming from the 

various intellectual traditions from which the theories originated created difficulty 

in placement. Despite this, POI, Hidi and Renninger’s Four-Phase Model, and self-

determination theory, were categorized as theories focused on reasons for 

engagement. 

This all leads to the two dominant models of interest development: person-

object-interest theory (POI) and Hidi and Renninger’s Four-Phase interest model. 

Both models acknowledge interest as a unique motivational variable that is 

cognitive and affective in nature (e.g., Hidi & Renninger, 2006; Schiefele, Krapp, 

Prenzel, Heiland, & Kasten, 1983), and both believe that interest, unlike motivation, 

is content-specific and exists as a relationship between a person and something else 

such as facts, things, or domains—science, for example. Both also assert that interest 

operates through a dual process of situational and individual interest, as discussed 

earlier, and focus on learning and the role of interest in education. 

Person-Object-Interest Theory (POI). According to Schiefele et al. (1983), 

prior to the early 1980s, little work had been done studying individuals’ objective 

engagement with objects, despite earlier recognition that these relationships had 

considerable influence on personality development. The goal was to develop a 

useful theory of interest within a pedagogical framework so that it could be applied 

to studies of education. Originally called the educational theory of interest (Schiefele 

et al., 1983), it was developed using an action-theory framework rather than 
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behavioral one. This stemmed from the fact while behavioral theories focus on 

conditional responses to stimuli, action theories rely upon comprehension of the 

situation and a choice between alternatives; they value the decision to become 

involved with the particular object based upon a given value structure; and they 

affect the emotional quality of the experience (Schiefele et al., 1983). An individual 

moves from a state of “minimal interest” (i.e., situational interest) to “ideal interest” 

(i.e., individual/personal interest) as he or she reengages with the object over time, 

developing a higher level of cognitive complexity that works in conjunction with the 

emotional attachment that has been created and the value orientation that has been 

placed on the relationship (Vartuli, 2017). 

Figure 2.2 below depicts the three-phase model of POI. This model begins 

with an individual who has an initial experience and develops preliminary 

situational interest (the catch), through repeated interactions progresses to a more 

stabilized situational interest (the hold), followed by relatively enduring individual 

interest (Krapp, 2002). 

Figure 2.2. Phases of development, person-object theory of interest 
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Four-Phase Model of Interest Development. Proposed by Suzanne Hidi 

and Ann K. Renninger, the Four-Phase model builds directly off the three-phase 

model described in POI (see Figure 2.3). Here, early situational interest is triggered 

(the catch) by instructional conditions or learning environments, which progresses 

to maintained situational interest, characterized by persistence, focused attention, 

and reoccurrence to engage (Hidi & Renninger, 2006).  Over time, emerging 

individual interest is fostered through positive feelings and stored knowledge and 

value, followed by maintained individual interest (the hold). For Hidi and 

Renninger, there are more distinct phases of development between the catch and 

the hold, as the last phase enables a person to sustain long-term endeavors, 

generates more and deeper levels of strategies for work, and persists despite 

frustration (Renninger & Hidi, 2002). 

 The Four-Phase model suggests that situational interest is largely temporary 

and affected almost exclusively by extrinsic factors, whereas individual interest is 

considered enduring and more intrinsic in nature. The authors believe that the 

progression of phases is sequential, although if unsupported, interest in any phase 

can go dormant or regress (2006). 
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Figure 2.3. Phases of development, Four-Phase model 
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Nieswandt, & Hidi, 2015). Indeed, student interest in science has primarily been 

assessed this way, through Likert-style scale questions and open-ended responses. 

Teacher interviews and classroom observations are occasionally included for the 

triangulation of data. Other factors that have been theorized to characterize interest 

such as attitude, engagement, and persistence are also included in measurement 

(Hidi et al., 2004). 

In their review of 12 years of research on interest and motivation in 

education and attitudes toward science and technology, Potvin and Hasni (2014) 

found that interest was most often operationally defined as an association with an 

“object of interest” associated with a specific domain preference. Following their 

review of the literature, Hasni and Potvin then created and validated a 

questionnaire that takes into account 18 components, including general interest in 

school science and technology (“school-S&T”), the utility of school-S&T, teaching 

methods preference, and perceived importance and preference for school-S&T with 

respect to other subjects (2015). Following administration of their newly validated 

instrument with more than 1,800 students in grades 5 through 11, they found that 

while general interest in school-S&T is high, few perceive utility in school-S&T for 

everyday life or intend to pursue S&T-related studies or careers. They did note 

significant grade level differences but not gender-related differences. Based on these 

findings, they recommend that schools intervene to promote S&T interest 

development, particularly at early grade levels to mitigate perpetuating gaps 

following elementary school, as well as promoting cultural activities relating to S&T 

(Hasni & Potvin, 2015). 
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One of the largest studies of student interest in science, the Programme for 

International Student Assessment (PISA) administered a domain-specific test 

focusing on science in 2006. With data from more than 400,000 students across 57 

countries, the student achievement test also featured embedded interest items, 

defined by PISA as a willingness to engage in science-related issues and to reflect on 

scientific issues (OECD, 2007). This was significant, as Likert-response scale 

questions assessed students’ levels of interest in subjects tied to specific contexts, 

enabling researchers to investigate students’ specialized areas of scientific interest 

(Dreschel, Carstensen, & Prenzel, 2011). The data from this study have been used in 

follow-up studies to investigate new models for understanding variables affecting 

student performance and interest, as well as examine and compare country-level 

performance (Ainley & Ainley, 2011; Dreschel, Carstensen, & Prenzel, 2011; Lin, 

Lawrenz, Lin, & Hong, 2012; Olsen & Lie, 2011). 

Summary 

Fascination is a construct that draws on the three components of mastery 

goals, curiosity, and interest. Similar to the articulation of learning activation 

outlined in Chapter 1, in which activation enables success which further strengthens 

activation, so too do the subdimensions of mastery goals, curiosity, and interest 

reinforce one another through fascination. Conceptually, students who are 

fascinated with science are drawn to certain science topics or science as a process 

(curiosity), and through reinforcement, seek more opportunities related to learning 

science (interest), and become aware of what they don’t know as they work to close 
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knowledge gaps, continuing to build competence and skills (mastery goals). Chapter 

3 focuses directly on the measurement of student fascination in science as part of 

the larger ALES:14 study, which is also discussed in detail. 
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Chapter 3: Methodology 

This dissertation seeks to extend previous research done as part of the 

Activated Learning Enables Success study of 2014 (ALES:14) by explicitly 

investigating changes in student fascination in science over time. Specifically, the 

current study will address the following research questions: 

RQ1: What is the average change in science fascination of middle school 

students over time? And how much does this change vary, on average? 

RQ2: To what extent is predicted student science fascination associated with 

the instructional characteristics of the classroom, including student-

centric teaching, hands-on methods, and classroom technology use? And 

are these effects sustained over time? 

RQ3: To what extent are middle schools equally successful in sustaining 

science fascination for students whose gender, race, family support for 

science, or economic backgrounds differ? 

In this chapter, I discuss the ALES:14 study and the sample of students, and go on to 

describe the technical aspects of the measures of activation used in this research. 

Because the dimension of fascination is of primary interest in this dissertation as 

well as the outcome variable in the three research questions above, I provide more 

detail on this dimension than I do on the others. I then provide a brief overview of 

hierarchical modeling and argue that this analytical approach is the most 
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appropriate to answer the research questions presented above. Finally, I conclude 

with the development of the specific models that will be used to address each 

question while including the rationale for the variables that will be used and the 

functional forms that will be tested. 

Description of ALES:14 & Sample Characteristics 

The Activated Learning Enables Success study of 2014 (ALES:14) was 

conducted by the Research Group at the Lawrence Hall of Science at the University 

of California, Berkeley and the Learning Research and Development Center at the 

University of Pittsburgh, collectively called the Science Learning Activation Lab 

(www.activationlab.org). The intent of the study was to test the theory of science 

learning activation; specifically, that the four dimensions of activation—competency 

beliefs, fascination, scientific sensemaking, and values—are related to outcomes of 

success: choice, engagement, perceived success, and content learning (Dorph, 

Cannady, & Schunn, 2016). 

ALES:14 followed two grade-level cohorts of students across two school 

years in two U.S. cities. More than 3,700 students in grades 6 and 8 were tracked 

into their 7th and 9th grade years, respectively, in schools in the San Francisco Bay 

Area and Western Pennsylvania, including five urban middle schools recruited from 

Berkeley, CA and six urban middle schools from Pittsburgh, PA. Schools were 

recruited by contacting middle school science teachers at in-service events, and 

teachers were offered compensation that varied according to the number of 

participating classes (Bathgate & Schunn, 2017). From teachers who agreed to 

http://www.activationlab.org/
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participate, schools were chosen to span a range of socioeconomic backgrounds, as 

well as diverse types of science learning experiences. Selected schools had as few as 

two and as many as eight teachers; each teacher had as few as one and as many as 

five classes of participating students. Table 3.1 below summarizes the student 

demographics and teacher, class, and student samples by school site for the initial 

cohort. 

Table 3.1. Sample student characteristics by school, Year 1 

School % Non-
White 

% Missing 
race* % Female % Missing 

gender** # Teachers # Classes # Students 

1 48.3% 7.3% 63.2% 11.1% 1 6th 
1 8th 

5 6th 
4 8th 

141 6th 
120 8th  

2 58.2% 39.8% 32.3% 38.2% 4 6th 
1 8th 

6 6th 
6 8th 

280 6th 
280 8th 

3 73.7% 21.3% 39.2% 23.5% 1 6th 
2 8th 

2 6th 
5 8th 

128 6th 
229 8th 

4 49.8% 21.6% 38.1% 24.5% 2 6th 
2 8th 

5 6th 
10 8th 

166 6th 
372 8th 

5 73.4% 15.5% 43.0% 20.6% 1 6th 
1 8th 

6 6th 
3 8th 

186 6th 
130 8th 

6 63.0% 2.2% 32.6% 4.4% 1 6th/8th 1 6th 
2 8th 

54 6th 
81 8th 

7 38.7% 19.8% 39.8% 19.5% 3 6th 
2 8th 

5 6th 
9 8th 

296 6th 
355 8th 

8 29.9% 17.9% 37.7% 19.8% 1 6th/8th 3 6th 
2 8th 

162 6th 
156 8th 

9 58.0% 27.5% 30.5% 26.9% 1 6th 
1 8th 

5 6th 
5 8th 

183 6th 
174 8th 

10 76.5% 23.5% 28.0% 28.8% 1 6th 
1 8th 

2 6th 
3 8th 

52 6th 
80 8th 

11 64.5% 20.0% 45.5% 18.2% 1 6th 2 6th 110 6th 

TOTAL 54.2% 22.0% 38.7% 23.4% 28 42 6th 
49 8th 

1,758 6th 
1,977 8th 

*   Includes students who selected “I don’t know” for racial/ethnic background. 
** Includes students who selected “Prefer not to answer” for gender. 

Visible above, many students chose not to report either their racial/ethnic 

background or their gender identity; students frequently omitted both. In fact, while 
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22.0% had missing data for race/ethnicity, and 23.4% had missing data for gender, 

only 26.3% unique students had missing data across the two variables, implying a 

great degree of overlap between missingness on the two variables. 

 A number of instruments were used to collect data across two school years 

and five testing occasions. To gather the demographic information used to describe 

students above, a personal background questionnaire was administered at the 

outset of the study (T1), in the fall of Year 1 (Y1). In addition to gender and 

racial/ethnic background, this instrument also asked about the student’s mother’s 

and father’s education and occupation, as well as questions pertaining to resources 

available at home and family support for school. This background questionnaire was 

offered a second time in the fall of Year 2 (T4) for students who either missed the 

previous administration or were new to the classes involved in the study. 

Students were measured on all four dimensions of science activation five 

times over the course of the two school years: three times during Year 1 (fall (T1), 

winter (T2), and spring (T3) of the school year) and twice more in Year 2 (fall (T4) 

and spring (T5) of the school year). These assessments of fascination, values, 

competency beliefs, and scientific sensemaking were administered as self-report 

surveys, and will be described in additional detail in the next section of this chapter. 

Finally, classroom observations paired with teachers’ self-reports about 

patterns of instruction were collected in Year 1 only. Researcher observers visited 

each classroom anywhere from one to three times over the course of the year, 

conducting two 5-minute “sweeps” of classroom activities to assess the amount of 
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student-centric (as opposed to textbook) teaching and the amount of hands-on 

activities provided. Teachers also completed instructional logs (as few as 1, as many 

as 83) detailing classroom activities pertaining to technology-use. As part of the 

original study, each of these measures—student-centric teaching, hands-on 

teaching, and classroom technology use—were distilled into a proportion of time 

spent employing the instructional strategies for each class. 

Figure 3.1 shows the pattern of data collection for Years 1 and 2 including 

those measures relevant to the discussion of model development that follow. 

Figure 3.1. ALES:14 measures over time 

 2014-2015 2015-2016 
 6th & 8th grades 7th & 9th grades 
 Fall Spring Fall Spring 

Background Questionnaire  T1 - - - -  T4 - - 

Fascination  T1  T2  T3  T4  T5 

Classroom Observations x 1-3 - - - - 

Note: “- -” in the figure above indicates the instrument/tool was not used in that time period and is 
therefore unavailable for inclusion. 
 

The ALES:14 data set was chosen to address the stated research questions in 

this dissertation due to its longitudinal nature, the inclusion of a robust set of 

variables from which to select, and of course, the unique Activation framework 

measuring fascination in science. Over the last five years, the Activation Lab has 

produced a number of published works thanks to the quality of the research and 

resulting data (e.g., Bathgate & Schunn, 2016, 2017; Bonnette, Crowley, & Schunn, 
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2019), but to date, none have investigated changes in fascination or addressed the 

underlying relationships possibly present in the data as this work seeks to do. 

Technical Aspects of the Activation Instruments 

The activation measures used in the ALES:14 study were developed by 

researchers at the Activation Lab, having been tested and revised in a study two 

years prior. Each dimension—fascination, values, competency beliefs, and scientific 

sensemaking—was subjected to the same rigorous psychometric development 

procedures: first, a sequence of iterative exploratory factor analyses (EFA), followed 

by confirmatory factor analyses (CFA), and then item response theory (IRT) item-fit 

analyses. The final scale for each measure was then subjected to a differential item 

functioning (DIF) analysis and tested for measurement invariance (Moore, Bathgate, 

Chung, & Cannady, 2011). Importantly, each activation construct was conceived as 

semi-malleable, and therefore scores on each dimension are “amenable to 

intervention” and subject to change over time. 

Fascination was defined as having “aspects of what many researchers have 

referred to as curiosity, interest in science both in and out of school, and mastery 

goals for science content” (Chung et al., 2016b, p.1). It was measured using an eight-

item scale, presenting students with statements such as “I need to know how objects 

work” and “In general, I find science…” (see Appendix A for full instrumentation), 

each item with four response options. Activation Lab researchers reassessed the 

scale for internal reliability, unidimensionality, and Rasch model fit using a sample 

of more the 2,900 student responses. The fascination scale produced strong 
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Cronbach’s and polychoric alpha coefficients (.88 and .90, respectively, with values 

0.80 and above desirable), implying that individuals responded similarly across 

items and the scale has sufficient ordinal properties. Exploratory Factor Analysis 

revealed a single latent factor, and partial credit Rasch model fitting showed 

satisfactory infit and outfit statistics, with the exception of one item: “I wonder 

about how nature works…” Still, the overall person-separation reliability statistic 

was found to be satisfactory (EAP/PV = 0.868, again with reliability coefficients 

desirable at 0.80 and higher), establishing further evidence of internal validity 

(Chung et al., 2016b). The activation dimensions of values, competency beliefs, and 

scientific sensemaking were all subjected to the same rigorous reliability, 

unidimensionality, and Rasch model testing, and produced similarly acceptable 

results (Chung et al., 2016a; Chung et al., 2016c; Chung et al., 2017). 

Table 3.2 presents the psychometric properties of all four activation 

dimensions, including scale length, reliability coefficient (Cronbach’s alpha), root 

mean square error of approximation (RMSEA), comparative fit index (CFI), Tucker 

Lewis index (TLI), and model chi-square for measurement invariance. Reliability 

coefficients of 0.8 and above are usually deemed sufficient while those below but 

near 0.8 are considered marginal (Andrich, 1982). Desirable RMSEA values fall 

below 0.08, while CFI and TLI values should be greater than or equal to 0.90 and 

0.95, respectively. The measurement invariance analysis tests occasions of the 

administration of the scale against one another to establish equality of the factor 

loadings, with the null hypothesis that the models fit perfectly. As shown below, the 

fascination scale is the only dimension with satisfactory reliability and CFA fit 
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statistics; however, it is also the only scale shown to have a statistically significant 

mean difference between test occasions. When this is the case, it is often not 

possible to determine if observed changes are due to changes in perception, changes 

in the instrument, or a combination of both. Despite this, researchers deemed the 

scale “reasonably measurement invariant,” and further stated, “Removal of (item 4) 

resulted in a scale that was measurement invariant and had higher reliability, but 

poorer model fit. It was retained in the final item set” (Moore et al., 2011, p. 28). Full 

instrumentation can be found in Appendix A. 

Table 3.2. Fit statistics for all activation dimensions 

Dimension # Items Reliability RMSEA CFI TLI Measurement Invariance 

Fascination 8 0.88 0.065 0.983 0.977 χ2 = 16.45, p = 0.02, 
mean diff = 0.121 

Values 4 0.70 0.089 0.987 0.962 χ2 = 2.56, p = 0.46 

Competency Beliefs 9 0.90 0.105 0.971 0.961 χ2 = 13.14, p = 0.11 

Scientific Sensemaking 12 0.75 0.037 0.976 0.970 χ2 = 19.72, p = 0.07 

 

Variable Selection 

In order to address the proposed research questions meaningfully, it is 

essential to identify key variables present in the data that are supported by previous 

research for studying fascination in science. Equally important, appropriate analysis 

of longitudinal data hinges on the outcome as a “continuous, psychometrically 

robust variable whose values change systematically over time” (Singer & Willett, 

2003, p. 13). As detailed in the description of the ALES:14 data structure and the 

technical specifications of the measurement scales in Table 3.2 above, the 
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fascination in science outcome variable has good psychometric properties including 

strong reliability (α=0.88) and small error of measurement (RMSEA=0.065), and 

was defined as semi-malleable and subject to change over time. Beyond the 

repeated measure of fascination, additional time-invariant student- and classroom-

level variables are specifically listed in Research Questions 2 and 3 that warrant 

discussion. 

At the student level in RQ3, gender and minority status are included to better 

understand potential mean differences in science fascination scores between groups 

as well as differences in growth rates over time between groups. Research continues 

to show that science attitudes, achievement, and career interests vary across gender 

identities (e.g., Baram-Tsabari & Yarden, 2011; Christidou, 2011; Jacobs-Priebe & 

Crowley, 2013) and racial/ethnic identities (e.g., Catsambis, 1995). The proposed 

analyses, however, do not seek to treat either variable (gender, minority status) as 

statistical controls, nor will they be given causal interpretations. Although 

Raudenbush and Bryk (2002) emphasize the importance of including statistical 

adjustments for individuals’ demography to avoid biasing growth modeling, Spector 

and Brannick (2011) caution against the use of these control variables, noting that 

their inclusion is rarely theory-driven and may lead to erroneous inferences. 

Furthermore, Holland (2003) reminds us that race and gender variables are not 

causal even when included in causal modeling, as other underlying factors often are 

omitted in such models, and observed correlational patterns merely identify 

associations rather than causation. Race is not a cause, gender is not a cause; the 

effects of identifying as or being perceived as, for example, Black, or Female, 
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however, may impact lived experiences in ways that are not equally distributed to 

others who are do not identify/are not perceived similarly. Here, gender is included 

as a variable of interest so that this research can describe changes in fascination 

scores over time for both boys and girls2 included in the sample, and examine 

whether instructional practices have similar effects on fascination across gender 

groups; race is included similarly. 

Given the potential role fascination in science may play in developing career 

interest in science, it is especially important to investigate changes in fascination 

scores over time separately for girls and those who identify as students of color, as 

historically both groups have been underrepresented in science professions 

(Archer, DeWitt, Osborne, Dillon, Willis, & Wong, 2012). Data from the National 

Science Foundation (NSF) show that while women comprised 50% of the college-

educated workforce and 40% earned their highest degree in a science or 

engineering field, only 28% of science and engineering occupations were held by 

women in 2015. Hispanics, Blacks, and American Indians or Alaska Natives 

comprise 27% of the U.S. population age 21 and older, and yet represent only 11% 

of workers in science and engineering professions (National Science Board, 2018). 

As evidence of the importance of understanding and addressing these inequities, 

NSF recently released a new funding stream dedicated explicitly to combatting 

                                                         
2  Although I do not conceive of gender as a binary construct, the dataset only includes information 

on boys and girls, lacking non-binary or other gender designations beyond “Prefer not to answer.” 
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systemic racism in STEM, called Racial Equity in STEM Education (National Science 

Foundation, 2021a). 

Additional student variables include home resources for science and family 

support for science. Findings from TIMSS 2019 reinforce the powerful relationship 

between students’ socioeconomic environment—measured through resources for 

learning in the home—and their educational achievement (Mullis et al., 2020). 

Further exploration of TIMSS data from prior cycles has shown that these home 

resources and attitudes toward science are also positively related (Geesa, Izci, Song, 

& Chen, 2019). Perhaps intuitively, empirical research has demonstrated there are 

both direct and indirect effects on students’ attitudes about science and science 

learning associated with parental involvement, as measured by students’ perception 

of parental support for class and school activities (George & Kaplan, 1998). 

Modeling ALES:14 scores for home resources for science and family support for 

science will help determine the extent to which student fascination in science is 

associated with these home-related variables. 

Finally, at the classroom level in RQ2, instructional characteristics of the 

classroom, including student-centric teaching, hands-on methods, and classroom 

technology use are also included. While most educational research, including this 

dissertation, focuses on student-level outcomes, it is important to understand how 

teachers create conditions of involvement since so much educational time takes 

place in the classroom. Prior research has demonstrated that students in classrooms 

with instructional strategies that foster high involvement have significantly more 
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positive affect toward learning (Turner, Meyer, Cox, Logan, DiCintio, & Thomas, 

1998). Specifically, student-centered approaches (Kang & Keinonen, 2018), hands-

on activities (Ornstein, 2006), and technology use in the classroom (OECD, 2015) 

have all been shown to influence student attitudes and classroom behaviors, and 

will be included in the development of the models. 

Overview of Hierarchical Modeling 

The longitudinal nature and nested data structure of ALES:14 affords the 

relatively unique opportunity of looking at changes in student fascination in science 

over time. Single-timepoint measurements of educational or psychological 

constructs, while capable of assessing students’ states of being or abilities at the 

time of testing, suffer from the misinterpretation that scores relate to student 

potential (Dumas & McNeish, 2017). In fact, this critique of psychometric testing in 

education was first noted over 90 years ago by W.E.B. DuBois, who lamented the fact 

that many people conflated current ability and future capacity, which resulted in a 

self-fulfilling prophecy as low-scoring students were often denied the instruction to 

achieve a higher potential (1920/2013). In addition to the proliferation of reliable 

longitudinal educational achievement data in the U.S., recent advances in nonlinear 

growth modeling and statistical computing should help to address this major issue 

in educational measurement (Lohman, 2006). 

One approach that has been utilized in this effort is dynamic assessment (DA) 

(Feuerstein, 1979). DA features multiple testing occasions integrated with 

instruction by a clinician; unfortunately, because of the substantial time investment 



48 
 
 

required and disruption to the educational setting, this method has not been widely 

applied in U.S. states or school districts. Another approach is Dynamic Measurement 

Modeling (DMM), which was developed to estimate student capacity using large-

scale longitudinal data and without the need for intensive clinical work like DA 

(McNeish & Dumas, 2017). Although capable of being flexibly applied to a number of 

research questions allowing for a diversity of growth curve shapes, DMMs 

incorporate individualized growth trajectories for every student in the data set in an 

effort to model an upper capacity asymptote as a prediction of potential (Dumas & 

McNeish, 2017). The additional parameterization necessary to model growth in this 

fashion adds a layer of complexity that is not necessary to address the stated 

research questions in this dissertation. 

Another approach that is widely popular for appropriately analyzing nested 

data is multilevel (MLM) or hierarchical linear modeling (HLM). Although the 

“unnecessary ubiquity” of HLMs has been called out by some methodologists citing 

reasonable alternatives (e.g., Generalized Estimating Equations (GEEs), cluster 

robust-standard errors (CR-SEs)), there is a reason for their popularity: they 

provide fully modeled within-cluster correlations and cluster-specific 

interpretations of fixed and random effects (McNeish, Stapleton, & Silverman, 2017). 

Worth noting, there are multiple ways data structures can be nested and therefore 

appropriate for HLM analysis. Time-series data—repeated observations of the same 

variable(s) for an individual—have measures nested within persons, and as such, 

longitudinal data can be considered nested. Individuals may also be nested within 

groups, such as classrooms or schools or organizations. Higher-order groupings can 
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also occur, such as individuals nested within schools and schools nested within 

states, for example (Huta, 2014). MLMs have distinct advantages: 

Multilevel regression modeling does not correct bias in the regression 

coefficient estimates compared with an [Ordinary Least Squares] model; 

however, it produces unbiased estimates of the standard errors associated with 

the regression coefficients when the data are nested and easily allows group 

characteristics to be included in models of individual outcomes. (O’Dwyer & 

Parker, 2014) 

ALES:14 contains measures of fascination repeated within individuals, 

unique but unchanging individual attributes, and these individuals nested within 

classrooms/schools3, so a three-level hierarchical model will be required to deal 

with similarities in unit-level observations. If unaccounted for by using a traditional 

Ordinary Least Squares (OLS) approach, the nature of these data could lead to 

correlated errors, an unaccounted for heterogeneity of regression slopes, and 

aggregation bias. A hierarchical (multilevel) approach, on the other hand, provides a 

better estimate of individual effects as it models effects across different levels, and 

partitions the model variance between the different levels (Raudenbush & Bryk, 

2002). More importantly, HLMs are quite flexible and assume little about the 

                                                         
3  In this analytical approach, classroom and school variability are confounded. As classroom-level 

observational data are entered into level 3, the uppermost nested structure represents students 
within classrooms. These classrooms are also nested within schools, which remain unmodeled as 
there are no school-level covariates to include (although fixed effects for schools could be added 
through the inclusion of dummy variables), meaning that school-to-school variability is 
confounded at the classroom level. For brevity and clarity, I will continue to refer to level 3 as the 
classroom level – rather than the classroom/school level – due to the inclusion of classroom 
instructional covariates at L3. 
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structure of the data, allowing for differences in the number of time point measures 

and the spacing of these observations, unlike Repeated-Measures ANOVA (Bickel, 

2007). 

Allowing for differences in the number of time point measures is especially 

advantageous in this longitudinal analysis spanning two school years and five 

administrations of the activation instruments. By employing a multilevel model with 

repeated measures at Level 1, all students, even those with missing activation 

scores, are included in analysis. Under an assumption of data missing at random 

(MAR), HLM is able to accommodate missing data by utilizing multiple model-based 

imputations to extract full information for analysis (Shin & Raudenbush, 2011). In 

considering the ALES:14 data, between 21.3% and 28.7% of students are missing 

fascination scores for each time point in Year 1 alone, and only 55.7% of students 

recorded fascination scores on all three measurement occasions. Rather than 

throwing out a 44.3% of the student sample, the hierarchical structure and multiple 

model-based imputation allow us to consider the full sample of fascination scores, 

even those that were never recorded, by imputing values based on existing 

information. However, this imputation method does not apply to student-level 

covariates at Level 2. The prediction of discrete variables such as demographic 

characteristics (e.g., gender, race/ethnicity, etc.) is difficult and controversial, and 

therefore students with these data missing will be excluded from analysis. 
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Developing the Models 

When building HLMs, the null or “unconditional” model is specified first. This 

random coefficients model does not attempt to model variability at any level and the 

intercepts and growth rates are allowed to vary randomly across students (L2) and 

classes (L3). Furthermore, it assumes a linear function. 

Level 1: 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡𝑡𝑡 + 𝜋𝜋1𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡      (3.1) 

Level 2:  𝜋𝜋0𝑡𝑡𝑡𝑡 = 𝛽𝛽00𝑡𝑡 + 𝑟𝑟0𝑡𝑡𝑡𝑡       (3.2a) 

  𝜋𝜋1𝑡𝑡𝑡𝑡 = 𝛽𝛽10𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡       (3.2b) 

Level 3:  𝛽𝛽00𝑡𝑡 = 𝛾𝛾000 + 𝜇𝜇00𝑡𝑡       (3.3a) 

  𝛽𝛽10𝑡𝑡 = 𝛾𝛾100 + 𝜇𝜇10𝑡𝑡       (3.3b) 

Mixed Model: 

 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾100𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇10𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡  (3.4) 

In equation 3.1 above, the outcome variable (𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡) is fascination score at time t for 

individual i in class j. This L1 unconditional growth model includes one “within-

person” variable (𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡) to represent time between measurement occasions, a linear 

function. For all models, the time variable will be “rough-centered” to eliminate 

multicollinearity between terms when introducing quadratic and cubic terms to test 

non-linear models. By placing the Year 1 winter testing occasion (T2) as the 

intercept, this allows the instructional effects modeled at L3 to be observed over all 

five time-points (such that T1=-1, T2=0, T3=1, T4=2, and T5=3), since it is unlikely 

that instructional effects of Y1 are observable at the start of the academic year 

anyway. 
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This null model serves as a baseline to which subsequent models will be 

compared. From this initial modeling, the intraclass correlation coefficient (ICC) can 

be calculated, which captures the degree to which variance depends upon the 

nested structure of the data: 

L2 ICC:  𝜌𝜌 = 𝜏𝜏00
𝜎𝜎2+𝜏𝜏00+𝜏𝜏000

 (3.5)   L3 ICC:  𝜌𝜌 = 𝜏𝜏000
𝜎𝜎2+𝜏𝜏00+𝜏𝜏000

 (3.6) 

Equation 3.5 above shows the proportion of variance that can be attributed to 

individual differences, while equation 3.6 models the proportion of variance 

accounted for by classroom nesting. In developing the null model, I will test the ICCs 

to see if they are significantly different from 0, which would indicate that important 

variance is indeed being taken into account by the multilevel modeling approach. 

From here, the model could be built-up using one of several procedures: 

forward selection, backward elimination, stepwise selection, or simultaneous block-

entry approach. Regardless of the method of entering predictors, adding covariates 

at either L2 or L3 requires centering variables around the grand-mean or around 

group (L3) means in order to provide a true zero point for that variable (thus, 

centering is not necessary for dummy variables accounting for certain demographic 

categories, for example). While theory should always guide model development in 

terms of predictors added, parsimony is preferred to a more complex model. 

Model development in this dissertation will employ a backward elimination 

process to ensure the necessary functional forms are tested using higher-order (i.e., 

quadratic, cubic) terms. In this process, the highest order polynomials are entered at 
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the same time and avoid being excluded early due to other variable selection 

decisions. Determining the final functional form is performed by testing both the 

quadratic and cubic terms for statistical significance and removing the term 

associated with the highest p-value greater than 𝛼𝛼𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 (possibly both, retaining the 

linear model); remaining predictor variables are then assessed using the same 

method. In this case, 𝛼𝛼𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 may be set at .05 but is not required to be so by any 

convention as higher thresholds may work well. This is especially true when 

considering additional model-fit criterion: the deviance statistic, Akaike Information 

Criterion (AIC) and Bayes Information Criterion (BIC) are commonly evaluated 

across models, with larger models employing more parameters generally having a 

better fit (Anderson, 2012). As a measure of fit, the deviance statistic does not take 

into account complexity, while both AIC and BIC are penalized measures that add to 

the deviance based on the number of predictors entered; BIC is further contingent 

on sample size. Because sample sizes differ at different levels of a nested model, AIC 

often is recommended for its straightforward calculation and comparability 

(Boedeker, 2017). Thus, the best choice of model will balance size (parsimony) with 

model fit.  

 Once variables have been entered into the model, estimates of the additional 

variance explained by the predictor variables at each level are computed, comparing 

against the unconditional model. Because there is no direct measure of variance 

accounted for by HLMs, equations 3.7, 3.8, and 3.9 below are called “pseudo R2” 

statistics: 
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L1 pseudo R2:  𝜎𝜎𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
2 −𝜎𝜎𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

2

𝜎𝜎𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
2     (3.7) 

L2 pseudo R2:  𝜏𝜏𝜋𝜋(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)−𝜏𝜏𝜋𝜋(𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)
𝜏𝜏𝜋𝜋(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)

   (3.8) 

L3 pseudo R2:  
𝜏𝜏𝛽𝛽(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)−𝜏𝜏𝛽𝛽(𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)

𝜏𝜏𝛽𝛽(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)
   (3.9) 

Finally, model fit is estimated by comparing deviance statistics between 

models, with larger values indicating poorer fit. Typically, researchers build up 

levels sequentially rather than simultaneously, so that these deviance statistics take 

on meaning—another benefit of beginning with the null model—requiring that the 

same number of levels be used throughout. Thus, L1 would be developed, with 

deviance statistics compared to the null model, and “finalized” before beginning the 

development of L2; the same process would then be repeated for L2 and L3. As the 

difference between two deviance statistics follows a chi-square distribution (where 

df=difference in the number of parameters estimated), determining if a statistically 

significantly “better” model has been achieved simply entails evaluating the 

resulting chi-square statistic given the degrees of freedom. 

Several assumptions regarding hierarchical growth models will also be 

investigated during the model development process – three concerning error 

structure and two concerning the predictors themselves: 

1. L1 residuals are independent, and normally distributed (0, 𝜎𝜎2). 

2. L2 & L3 random effect residuals are independent, and multivariate normal 

(0, 𝜏𝜏2). 
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L2: 

L3: 

3. Residuals between levels are independent (i.e., no covariance). 

4. L1 predictors & residuals are independent; L2 predictors & residuals are 

independent; L3 predictors & residuals are independent. 

5. Predictors at each level are independent of the random effects at other levels. 

HLM software allows the residuals from multilevel analyses to be saved which then 

makes testing of the assumptions of residuals possible. 

Developing the conditional model involves selecting relevant L1, L2, and L3 

predictors using the backward elimination criteria described above. The addition of 

the L2 measured person characteristics specify the variation in the L1 intercepts 

and slopes (i.e., between individuals), while the addition of the L3 instructional 

characteristics further specify the variation in the L2 intercepts and slopes (i.e., 

between classes). The model will subsequently assume the form: 

L1:   𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡𝑡𝑡 + 𝜋𝜋1𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡     (3.10)  

𝜋𝜋0𝑡𝑡𝑡𝑡 = 𝛽𝛽00𝑡𝑡 + �𝛽𝛽𝑢𝑢𝑛𝑛𝑡𝑡𝑋𝑋𝑛𝑛𝑡𝑡𝑡𝑡

𝑄𝑄𝑢𝑢

𝑛𝑛=1

+ 𝑟𝑟0𝑡𝑡𝑡𝑡 

𝜋𝜋1𝑡𝑡𝑡𝑡 = 𝛽𝛽10𝑡𝑡 + �𝛽𝛽𝑢𝑢𝑛𝑛𝑡𝑡𝑋𝑋𝑛𝑛𝑡𝑡𝑡𝑡

𝑄𝑄𝑢𝑢

𝑛𝑛=1

+ 𝑟𝑟1𝑡𝑡𝑡𝑡 

𝛽𝛽00𝑡𝑡 = 𝛾𝛾000 + �𝛾𝛾𝑢𝑢𝑛𝑛𝑛𝑛𝑊𝑊𝑛𝑛𝑡𝑡

𝑆𝑆𝑢𝑢𝑛𝑛

𝑛𝑛=1

+ 𝜇𝜇00𝑡𝑡 

𝛽𝛽10𝑡𝑡 = 𝛾𝛾100 + �𝛾𝛾𝑢𝑢𝑛𝑛𝑛𝑛𝑊𝑊𝑛𝑛𝑡𝑡

𝑆𝑆𝑢𝑢𝑛𝑛

𝑛𝑛=1

+ 𝜇𝜇10𝑡𝑡 

(3.11a) 

 
(3.11b) 

 

 

(3.12a) 

 
(3.12b) 
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Visible above, L2 student-level covariates are represented by vector 𝑋𝑋𝑛𝑛𝑡𝑡𝑡𝑡 in 

equations 3.11a and 3.11b, while L3 classroom-level instructional characteristics 

are represented by vector 𝑊𝑊𝑛𝑛𝑡𝑡 in equations 3.12a and 3.12b. 

 This research does not assume a linear model; rather, one of the research 

questions of interest is to determine which functional form models the data best. 

Examples of higher-order polynomials include quadratic (decelerating or 

accelerating) and cubic, as depicted in Figure 3.2 below (Anderson, 2012). 

Figure 3.2. Common non-linear functional forms 

 

Generally, linear functions are assumed for growth models with three or 

fewer measurements over time, whereas a fourth data point enables quadratic 

testing, and a fifth, cubic (Anderson, 2012). As adherence to the proper functional 
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form is one of the foremost validity concerns when drawing inferences from growth 

model results, and because the ALES:14 data contains five measures of fascination, 

testing each of these polynomial forms will be necessary. As described earlier, the 

backward elimination approach will be employed in which all higher-order 

polynomials are included and entered into the model at the same time, and then one 

by one, the highest order non-significant terms are eliminated if possible. 

 Lastly, because of the nature of longitudinal data in which students were 

tested three times during the first school year and twice in the second school year – 

with an obvious break in between either 6th and 7th or 8th and 9th grades for summer 

vacation – the discontinuous functional form will also be tested. This discontinuity 

can be evaluated for changes in level, but not slope (as in Figure 3.3), changes in 

slope, but not level (as in Figure 3.4), or changes in both slope and level (as in Figure 

3.5) (Anderson, 2012). 

Figure 3.3. Discontinuous growth: change in level 
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Figure 3.4. Discontinuous growth: change in slope 

 

Figure 3.5. Discontinuous growth: change in level and slope 
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Addressing the Research Questions 

Building a three-level growth model with fascination measures repeated 

within students and students nested within classrooms allows for the estimation of 

individual growth trajectories and thus an examination of patterns of change in 

science fascination over time. Incorporating additional student-level covariates at 

level 2 provides more information regarding whether and to what degree 

demographic variables and person-level characteristics contribute to variability in 

initial status and in their change in science fascination over time. 

Moving beyond the null model and returning to the development of the 

conditional model presented in equations 3.10-12b above allows us to address RQ1: 

What is the average change in science fascination of middle school students over time? 

And how much does this change vary, on average? We begin building at L1 to 

establish the random coefficients growth model by including quadratic and cubic 

time terms to account for non-linear growth patterns in fascination over time: 

𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡𝑡𝑡 + 𝜋𝜋1𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜋𝜋2𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡2 + 𝜋𝜋3𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡3 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡    (3.10’) 

For equation 3.10’: 

• 𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 represents the outcome: fascination score at time t for student i in class j; 

• 𝜋𝜋0𝑡𝑡𝑡𝑡 represents the intercept: fascination score of student i in class j at time 0; 

• 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 represents the measurement occasion (time point t) for student i in class 

j; as noted earlier, these time points will be “rough-centered” at the second 

measurement occasion such that: 
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o at T1, 𝑎𝑎𝑡𝑡=-1, 𝑎𝑎𝑡𝑡2=1, and 𝑎𝑎𝑡𝑡3=-1 

o at T2, 𝑎𝑎𝑡𝑡=0, 𝑎𝑎𝑡𝑡2=0, and 𝑎𝑎𝑡𝑡3=0 

o at T3, 𝑎𝑎𝑡𝑡=1, 𝑎𝑎𝑡𝑡2=1, and 𝑎𝑎𝑡𝑡3=1 

o at T4, 𝑎𝑎𝑡𝑡=2, 𝑎𝑎𝑡𝑡2=4, and 𝑎𝑎𝑡𝑡3=8 

o at T5, 𝑎𝑎𝑡𝑡=3, 𝑎𝑎𝑡𝑡2=9, and 𝑎𝑎𝑡𝑡3=27 

• 𝜋𝜋1𝑡𝑡𝑡𝑡 represents the linear component (𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 , or time point to the first power), 

which is the instantaneous growth rate of student i in class j at time 0;  

• 𝜋𝜋2𝑡𝑡𝑡𝑡 represents the quadratic component (𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡2 , or time point squared), which 

is the acceleration (rate of change) in the growth trajectory of student i in 

class j at time 0;  

• 𝜋𝜋3𝑡𝑡𝑡𝑡 represents the cubic component (𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡3 , or time point to the third power), 

which is the change in the acceleration of growth of student i in class j at time 

0; and 

• 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 represents random error (in the simplest case, we assume the errors are 

normally distributed, independent, with constant variance). 

While there are now four level 2 equations, the L2 model is still unconditional, with 

no student-level covariates included, as seen in equations 3.11a’-d’: 

𝜋𝜋0𝑡𝑡𝑡𝑡 = 𝛽𝛽00𝑡𝑡 + 𝑟𝑟0𝑡𝑡𝑡𝑡        (3.11a’) 

𝜋𝜋1𝑡𝑡𝑡𝑡 = 𝛽𝛽10𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡        (3.11b’) 

𝜋𝜋2𝑡𝑡𝑡𝑡 = 𝛽𝛽20𝑡𝑡 + 𝑟𝑟2𝑡𝑡𝑡𝑡        (3.11c’) 

𝜋𝜋3𝑡𝑡𝑡𝑡 = 𝛽𝛽30𝑡𝑡 + 𝑟𝑟3𝑡𝑡𝑡𝑡        (3.11d’) 
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• 𝛽𝛽00𝑡𝑡 represents the mean fascination score at time 0 (intercept) within class 

j; 𝑟𝑟0𝑡𝑡𝑡𝑡 represents the random student-level effect around mean fascination 

score within class j; 

• 𝛽𝛽10𝑡𝑡 represents the mean growth rate in fascination within class j; 𝑟𝑟1𝑡𝑡𝑡𝑡 

represents the random student-level effect around mean growth rate within 

class j; 

• 𝛽𝛽20𝑡𝑡 represents the mean acceleration in the growth trajectory within class j; 

𝑟𝑟2𝑡𝑡𝑡𝑡 represents the random student-level effect around mean acceleration in 

the growth rate within class j; and 

• 𝛽𝛽30𝑡𝑡 represents the mean change in acceleration of the growth trajectory 

within class j; 𝑟𝑟3𝑡𝑡𝑡𝑡 represents the random student-level effect around mean 

change in acceleration of the growth rate within class j. 

Similarly, the L3 model with four equations is also unconditional, as seen in 

equations 3.12a’-d’: 

𝛽𝛽00𝑡𝑡 = 𝛾𝛾000 + 𝜇𝜇00𝑡𝑡        (3.12a’) 

𝛽𝛽10𝑡𝑡 = 𝛾𝛾100 + 𝜇𝜇10𝑡𝑡        (3.12b’) 

𝛽𝛽20𝑡𝑡 = 𝛾𝛾200 + 𝜇𝜇20𝑡𝑡        (3.12c’) 

𝛽𝛽30𝑡𝑡 = 𝛾𝛾300 + 𝜇𝜇30𝑡𝑡        (3.12d’) 

• 𝛾𝛾000 represents the overall mean fascination score at time 0 (intercept) for all 

classes; 𝜇𝜇00𝑡𝑡 represents the random class-level effect around overall mean 

fascination score; 
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• 𝛾𝛾100 represents the overall mean growth rate in fascination for all classes; 

𝜇𝜇10𝑡𝑡 represents the random class-level effect around overall mean growth 

rate; 

• 𝛾𝛾200 represents the overall acceleration in growth trajectory for all classes; 

𝜇𝜇20𝑡𝑡 represents the random class-level effect around overall mean 

acceleration in the growth rate; and  

• 𝛾𝛾300 represents the overall change in acceleration of the growth trajectory for 

all classes; 𝜇𝜇30𝑡𝑡 represents the random class-level effect around overall mean 

change in acceleration of the growth rate. 

The reduced form expression for this random coefficients growth model, in which I 

allow the intercept (𝜋𝜋0𝑡𝑡𝑡𝑡), growth (𝜋𝜋1𝑡𝑡𝑡𝑡), acceleration (𝜋𝜋2𝑡𝑡𝑡𝑡), and cubic term (𝜋𝜋3𝑡𝑡𝑡𝑡) to 

vary randomly, is presented in equation 3.13: 

𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾100𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾200𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡2 + 𝛾𝛾300𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡3 + 𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑟𝑟2𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡2 + 𝑟𝑟3𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡3 +

𝜇𝜇00𝑡𝑡 + 𝜇𝜇10𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇20𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡2 + 𝜇𝜇30𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡3 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡     (3.13) 

 Running this initial random intercepts and slopes model will test whether the 

addition of the nonlinear components (time2 and time3) appropriately model the 

pattern of student fascination scores over time and significantly account for 

variance in fascination scores. These time components are the only fixed effects in 

the model, and we will test the following hypotheses: 

1. Is the linear term significantly different from zero? 

𝐻𝐻0:𝜋𝜋1𝑡𝑡𝑡𝑡 = 0  𝐻𝐻1:𝜋𝜋1𝑡𝑡𝑡𝑡 ≠ 0 
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2. Is the quadratic term significantly different from zero? 

𝐻𝐻0:𝜋𝜋2𝑡𝑡𝑡𝑡 = 0  𝐻𝐻1:𝜋𝜋2𝑡𝑡𝑡𝑡 ≠ 0 

3. Is the cubic term significantly different from zero? 

𝐻𝐻0:𝜋𝜋3𝑡𝑡𝑡𝑡 = 0  𝐻𝐻1:𝜋𝜋3𝑡𝑡𝑡𝑡 ≠ 0 

Decisions on these three hypotheses will allow us to specify L1 appropriately in 

subsequent models. 

Importantly, estimating random effects at levels two and three allow for an 

investigation of the covariance structures of these random components. To 

determine if there is residual variation between students, we analyze the L2 

variance-covariance matrix: 

𝑇𝑇𝜋𝜋 = �
𝜏𝜏𝜋𝜋00   
𝜏𝜏𝜋𝜋01 𝜏𝜏𝜋𝜋11  
𝜏𝜏𝜋𝜋02 𝜏𝜏𝜋𝜋12 𝜏𝜏𝜋𝜋22

� 

This allows us to test if the variability in the intercepts is statistically different from 

zero: 

𝐻𝐻0: 𝜏𝜏𝜋𝜋00 = 0    𝐻𝐻1: 𝜏𝜏𝜋𝜋00 ≠ 0 

Finally, to determine if there is residual variation between classes, we analyze the 

L3 variance-covariance matrix: 

𝑇𝑇𝛽𝛽 = �
𝜏𝜏𝛽𝛽00   
𝜏𝜏𝛽𝛽01 𝜏𝜏𝛽𝛽11  
𝜏𝜏𝛽𝛽02 𝜏𝜏𝛽𝛽12 𝜏𝜏𝛽𝛽22

� 
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This allows us to test if the variability in the intercepts is statistically different from 

zero: 

𝐻𝐻0: 𝜏𝜏𝛽𝛽00 = 0    𝐻𝐻1: 𝜏𝜏𝛽𝛽00 ≠ 0 

Once the average change in science fascination has been modeled by 

establishing the functional form at L1 (i.e., linear, quadratic, or cubic), we can 

address RQ3: To what extent are middle schools equally successful in sustaining 

science fascination for students whose gender, race, family support for science, or 

economic backgrounds differ? To do this, we build up the vector 𝑋𝑋𝑛𝑛𝑡𝑡𝑡𝑡 of student-level 

covariates specified equations 3.11a and 3.11b that are hypothesized to be 

associated with fascination “on top” of the correctly specified L1. These individual 

background variables include student gender (e.g., Baram-Tsabari & Yarden, 2011), 

racial/ethnic minority status (e.g., Catsambis, 1995), availability of resources at 

home, and family value of education (e.g., George & Kaplan, 1998). 

To address RQ2: To what extent is predicted student science fascination 

associated with the instructional characteristics of the classroom, including student-

centric teaching, hands-on methods, and classroom technology use? And are these 

effects sustained over time? we build up the vector 𝑊𝑊𝑛𝑛𝑡𝑡 of classroom-level variables 

from equations 3.12a and 3.12b “on top” of the L2 covariates, such that L3 variables 

now include the average proportion of time spent providing hands-on instruction, 

the average proportion of time spent doing student-centric activities, and the 

average proportion of time spent using technology in the classroom. 
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Several HLMs will be tested for both sixth and eighth graders, evaluating 

non-linear terms while building levels 2 and 3 and comparing against discontinuous 

models, with the intention to create parsimony whenever possible. Because the 

nature of the data remains consistent across models (i.e., same number of levels), it 

will be possible to compare the accuracy afforded by each as measured by variance 

explained, the precision of the estimates as measured by the standard errors of the 

regression coefficients, and of course, the overall significance of the models and 

relative impact of each predictor in influencing science fascination. 
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Chapter 4: Results 

The previous chapter described the analysis plan for the current study, the 

results of which are presented here. This chapter begins with a discussion of the 

data, including missing data analysis followed by descriptive statistics for the final 

sample, as well as a description of each of the variables beyond the theoretical 

justifications presented in Chapter 3. The subsequent sections describe in detail the 

model development process for the 6th and 8th grade cohorts, respectively: 

beginning with an exploration of potential functional forms at level 1, followed by 

the construction of the models at levels 2 and 3, and finally model checking using 

residual analyses to test the assumptions of HLM laid out in the previous chapter. 

The chapter concludes by offering an interpretation of findings from the final 

models before leading into the final chapter, which will explicitly address each of the 

proposed research questions: 

RQ1: What is the average change in science fascination of middle school 

students over time? And how much does this change vary, on average? 

RQ2: To what extent is predicted student science fascination associated with 

the instructional characteristics of the classroom, including student-

centric teaching, hands-on methods, and classroom technology use? And 

are these effects sustained over time? 
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RQ3: To what extent are middle schools equally successful in sustaining 

science fascination for students whose gender, race, family support for 

science, or economic backgrounds differ? 

Discussion of Data 

While sample student characteristics are presented in Table 3.1 of Chapter 3, 

that preliminary presentation offers only a glimpse into the data prior to analysis. In 

fact, of the 3,735 students in the data file, only 2,309 cases (62% of the initial Year 1 

sample) were retained for final analyses due to missing data. HLM remains flexible 

for missing data among level 1 observations—in this dissertation, any of the 5 

instances of fascination measurement—however, the software excludes cases with 

missing data at levels-2 and -3 (Raudenbush, Bryk, Cheong, Congdon Jr., & du Toit, 

2019, p. 77). At the class level (L3), six teachers had missing observational data for 

the percentage of student-centric teaching (one of whom was also missing self-

report data for hands-on teaching/classroom technology use), affecting 16 classes 

and 488 students. Missingness at the student level (L2) impacted another 826 

students: 176 either neglected to self-identify in terms of gender or race or selected 

“Prefer not to answer” for one or both questionnaire items, while the remaining 650 

students were missing more than one of the race, gender, family support for science, 

or home resources variables. Sixty (60) students selected “I don’t know” as their 

only racial identity category, and were therefore uncategorizable. Finally, 52 

students had no recorded fascination scores (L1) and were therefore omitted from 

analyses. 
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Although imputation of data is possible for cases with missing variables, it 

was decided to include only cases with “full” data in model building—those with at 

least one recorded fascination score at L1 and all variables observed at L2 and L3—

using complete case analysis. One of the primary reasons to keep cases with missing 

data is to avoid the loss of statistical power, which in turn affects the efficiency of 

the estimates. Even with substantial data loss (38% of the person-level 

observations), the remaining sample sizes provide more than adequate power for 

two unique grade level models. Power analyses conducted using Optimal Design 

software for repeated measures analyses show that roughly 575 individuals over 5 

time points are required to obtain a power of 0.80, assuming a Type I error rate of 

0.05, a small minimum detectable effect size (𝛿𝛿 ≥ 0.24), and variability estimates 

obtained from the preliminary unconditional models (detailed in the next section, 

𝜎𝜎2 = 0.13 and 𝜏𝜏 = 0.12). Given that the retained grade 6 sample is 999 students and 

the grade 8 sample is over 1,300, sufficient data are clearly present to conduct the 

proposed analyses. Still, if the data are not missing randomly as theorized, the 

estimates obtained will be biased. 

Table 4.1 below presents descriptive statistics for all relevant variables 

employed in model development for the 2,309 students with complete data. At 

grade 6, 999 students are nested within 41 classrooms, for an average of just over 

24 students per class. At grade 8, 1,310 students are nested within 52 classrooms, 

for an average of just over 25 students per class. Studies suggesting rules of thumb 

for minimum sample sizes in multilevel modeling include at least 30 observations 

per group and at least 30 groups (Hox, 2002, as cited in Bickel, 2007), and, more 
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recently, at least 50 groups (Maas & Hox, 2005, as cited in Bickel, 2007). Given these 

guidelines, the average number of students per class may be some cause for concern 

in terms of unbiased standard error estimates as neither grade 6 nor grade 8 

classrooms average more than 30 students. Both grades exceed the minimum class 

number threshold of 30, while grade 8 alone exceeds the threshold of 50. 

Table 4.1. Descriptive statistics, final sample 

L1 Variables N Mean SD Min Max 
fascination 6,883 2.51 0.52 1.00 4.00 

grade 6 3,043 2.58 0.54 1.00 4.00 
grade 8 3,840 2.46 0.49 1.00 4.00 

L2 Variables  
HR 2,309 3.33 0.55 1.00 4.00 

grade 6 999 3.28 0.56 1.14 4.00 
grade 8 1,310 3.37 0.53 1.00 4.00 

FS 2,309 3.44 0.54 1.00 4.00 
grade 6 999 3.51 0.49 1.00 4.00 
grade 8 1,310 3.38 0.56 1.00 4.00 

URM 2,309 0.41 0.49 0.00 1.00 
grade 6 999 0.44 0.50 0.00 1.00 
grade 8 1,310 0.39 0.49 0.00 1.00 

female 2,309 0.50 0.50 0.00 1.00 
grade 6 999 0.51 0.50 0.00 1.00 
grade 8 1,310 0.49 0.50 0.00 1.00 

L3 Variables  
student-centric 93 0.55 0.17 0.18 0.93 

grade 6 41 0.50 0.15 0.22 0.89 
grade 8 52 0.59 0.18 0.18 0.93 

hands-on 93 0.35 0.20 0.00 0.66 
grade 6 41 0.29 0.16 0.00 0.56 
grade 8 52 0.40 0.21 0.00 0.66 

class-tech 93 0.05 0.09 0.00 0.32 
grade 6 41 0.09 0.11 0.00 0.32 
grade 8 52 0.03 0.06 0.00 0.24 
 

The sole time-varying measure at level 1 is fascination, with technical details 

provided earlier in Chapter 3. Fascination scores were calculated as the mean of 

eight items as displayed in full in Appendix A1, with statements concerning interest, 
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curiosity, and mastery goals pertaining to science and response options ranging 

from 1 to 4 measured five times over the course of the two-year study (see Figure 

3.1). Visible above, sixth graders had a slightly higher mean fascination mean scores 

(i.e., the average across all testing occasions) (2.58) compared to their eighth grade 

counterparts (2.46). While all 2,309 students had at least one observed fascination 

score, only 336 (15% of the overall sample) had all five fascination scores; sixth 

graders had on average 3.05 observed scores, while eighth graders had on average 

2.93. The means for each measurement occasion are presented in Table 4.2, and 

plotted in Figure 4.1. Notably, the graphical display of these means clearly depicts a 

pattern of change inconsistent with strictly linear growth, with the lowest scores 

observed at T3 nearly indistinguishable between grade levels. 

Table 4.2. Fascination means at each measurement occasion 

Fascination N Mean SD Min Max 
T1 2161 2.66 0.58 1.00 4.00 

grade 6 934 2.83 0.56 1.00 4.00 
grade 8 1227 2.53 0.55 1.00 4.00 

T2 1901 2.57 0.57 1.00 4.00 
grade 6 797 2.63 0.60 1.00 4.00 
grade 8 1104 2.52 0.54 1.00 4.00 

T3 1861 2.30 0.32 1.38 3.75 
grade 6 771 2.31 0.33 1.38 3.29 
grade 8 1090 2.30 0.31 1.50 3.75 

T4 489 2.47 0.43 1.38 4.00 
grade 6 280 2.47 0.43 1.38 4.00 
grade 8 209 2.47 0.43 1.50 3.88 

T5 471 2.48 0.45 1.00 4.00 
grade 6 261 2.43 0.42 1.00 4.00 
grade 8 210 2.55 0.49 1.38 4.00 
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Figure 4.1. Fascination change over time, grades 6 & 8 

 

Table 4.2 above shows a distinct pattern of attrition: far more fascination 

scores are observed in Year 1 (T1/T2/T3) than in Year 2 (T4/T5) for both grade 

levels. Due to the nature of recruiting teachers for study participation and including 

full classes of students in Year 1, complexity in data collection arose in Year 2 as 

these full classes of students dispersed into multiple classes the following year. 

(This is also why the observed instructional variables are also present for year 1 

only.) Students were asked to come during lunch or after school in Year 2 of the 

study to take the various Activation measures, a far more complicated request of 

middle and high school students than taking class time for participation. Exactly 

50% of students across both grade levels had fully observed fascination scores in 

Year 1 and no observed scores in Year 2, while only 24% of the sample had any 
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recorded Year 2 fascination score. Of the 550 students who recorded fascination 

scores in Year 2, 410 (75%) contributed scores at both T4 and T5. Appendix D1 

offers a comparison of average fascination for Y1-only students compared to Y1&2 

students. 

Table 4.3 presents the coding of the time variable used in modeling. Noted in 

the previous chapter, the time variable was “rough-centered” at the second 

measurement occasion such that T2=0, effectively allowing the instructional effects 

modeled at level 3 to be observed over all five time-points, since it is unlikely that 

such effects are observable at the start of start of the academic year (T1). As non-

linear models were theorized and capable of being tested given the five time-points, 

quadratic and cubic terms are also shown. The remaining two variables, grade and 

post, are included for testing discontinuous functional forms, with the dashed line 

indicating the break between school years and the hypothesized point of 

discontinuity (between T3 and T4, the spring of Y1 and the fall of Y2). Grade is a 

dummy variable, included in a linear model, to represent the magnitude of 

discontinuity between Years 1 and 2—a change in level—as represented in Figure 

3.3 in the previous chapter. Post is another time-varying time variable that posits a 

meaningful change in slope following the point of discontinuity, represented in 

Figure 3.4 in the previous chapter. Including both variables in a linear model would 

test the functional form represented in Figure 3.5 in the previous chapter: a change 

in both level and slope at the point of discontinuity. 
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Table 4.3. Time-point coding for model development 

Measurement 
occasion 

School 
year 

time time2 time3 grade post 

1 Y1 (fall) -1 1 -1 0 0 
2 Y1 

(winter) 
 0 0  0 0 0 

3 Y1 (spring)  1 1  1 0 0 
4 Y2 (fall)  2 4  8 1 1 
5 Y2 (spring)  3 9  27 1 2 
 

Four level 2 variables were included in modeling: home resources (HR), 

family support for science (FS), race, coded as under-represented minority (URM), 

and gender, included as a dummy variable for girls (female), each of which was 

asked on the Background Questionnaire administered at the start of Years 1 and 2 

(T1 and T4). The measure for home resources was obtained by asking the extent to 

which various supports for learning were available at home using seven items and 

response options from 1 (“Never”) to 4 (“Always”), with higher values indicating 

more availability; the mean across the seven responses was included as the student 

measure of home resources. As shown in Table 4.1, both grade 6 and grade 8 

students had relatively high mean scores for HR, 3.28 and 3.37, respectively, 

indicating that home resources for learning were available somewhere between 

“most of the time” and “always,” on average. The full set of items used for measuring 

home resources is presented in Appendix A2. 

Similarly, family support for science was measured using five items on the 

Background Questionnaire asking students’ perceptions of the extent to which 

someone in their family supported science learning, with response options also 

ranging from 1 (“NO!”) to 4 (“YES!”). The mean across the five items was used as the 
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measure for family support for science, and once again, students in both grades had 

relatively high scores for FS, with grade 6 students reporting slightly higher home 

support on average (3.51 compared to 3.38 at grade 8). The full set of items used for 

measuring family support for science is presented in Appendix A3. 

 Race was measured on the Background Questionnaire by asking, “Which of 

the following describes your racial/ethnic background? You may choose more than 

one.” Response categories included White, Black or African American, Asian, 

Indian/Middle Eastern, Native American/Pacific Islander, Hispanic/Latino/Mexican, 

I don’t know, and Other (please specify). Students who omitted a response to this 

question or selected “I don’t know” to the Background Questionnaire were 

considered to have missing racial identity data and were not included in analyses, as 

previously discussed with regard to missing data. Following the justification 

provided in Chapter 3 regarding the underrepresentation of people who identify as 

Hispanic, Black, Native American or Pacific Islander in science and STEM 

professions, the race data were coded into the binary variable of underrepresented 

minority (URM) using the definition provided by the National Science Foundation. 

“This category comprises three racial or ethnic minority groups ([people 

membered] blacks, Hispanics, and American Indians or Alaska Natives) whose 

representation in S&E [science & engineering] education or employment is smaller 

than their representation in the U.S. population.” (National Science Foundation, 

2021b). As seen in Table 4.1, across both 6th and 8th graders, 41% identified with a 

race/ethnicity that membered them as URM, with slightly more 6th (44%) than 8th 

graders (39%) falling into this category.  
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 Gender was measured on the Background Questionnaire by asking, “Are you 

a girl or a boy?” with three possible response options: girl, boy, or prefer not to 

answer. Once again acknowledging possible non-binary gender identities, the 

Background Questionnaire lacked such response categories and therefore gender 

was treated as binary, with those students selecting “Prefer not to answer” as having 

missing gender data. For model development, the gender variable was recoded into 

female, a dummy variable with those who selected boy as the base case (0) and 

those who selected girl as equal to 1. As seen in Table 4.1, half of all students 

included in analyses identified as girls. 

 Lastly, three level 3 variables were included in model development: student-

centric teaching (student-centric), hands-on methods (hands-on), and classroom 

technology use (class-tech). As discussed in the previous chapter, these measures 

were obtained from self-reported instructional logs over the course of Year 1 only. 

Each measure represents the average proportion of time a teacher spent employing 

one of three strategies—student-centric teaching, hands-on methods, and classroom 

technology—within a given class. Worth noting, student-centric teaching and hands-

on methods were two of three instructional categories, the third being textbook 

teaching (omitted from modeling), and as such are mutually exclusive; these three 

measures sum to 100% within classes. Table 4.1 shows that, on average, student-

centric teaching occurred 55% of the time (slightly more often in grade 8 than grade 

6), while hands-on teaching occurred 35% of the time on average (again, slightly 

more often in grade 8 than grade 6), implying that textbook teaching occurred 

roughly 10% of the time, on average. Classroom technology use was independent of 
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both student-centric and hands-on teaching methods. Table 4.1 illustrates that 

classroom technology was employed relatively infrequently, only 5% of 

instructional time on average, although was more prevalent in 6th grade (9%) than 

in 8th grade (3%). Appendix A4 displays the Teacher Log used to measure these 

instructional techniques. 

Model Building 

The next sections present each stage of the model building process as 

outlined in the “Developing the Models” section of Chapter 3, referencing previous 

equations as those for grades 6 and 8 are developed. Specifically, the null model is 

first developed, in which unconditional linear growth serves as the starting model to 

which all subsequent models are compared. This enables a determination about the 

extent of nesting and an evaluation of the variance components at each of the three 

levels. Non-linear terms are then added and evaluated at level 1, while keeping 

levels 2 and 3 unconditional. Next, discontinuous models are tested and compared 

to prior models in order to determine the functional form at L1 from which to 

proceed. After determining the final growth model specifications—linear, non-

linear, or discontinuous—level 2 is specified, followed by level 3. 

In each phase of model building, backward elimination variable selection is 

employed, in which all relevant predictors for a given level are entered 

simultaneously and evaluated for significance, with non-significant terms removed. 

This is particularly important for the specification of functional form at level 1, as 

each higher order polynomial depends on the term below it (e.g., a quadratic 
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function must include both quadratic and linear terms to be appropriately 

specified). 

Although the time-varying terms at L1 are rough-centered with a meaningful 

value of 0 as displayed in Table 4.3, all L2 and L3 variables have been grand-mean 

centered to reflect dispersion around the level 3 mean. This decision was made with 

the recognition that L3 terms can only be grand-mean centered, and two of the four 

L2 variables are dichotomous and therefore need not be centered at all. Therefore, 

the only two variables for which this decision has any impact are home resources 

(HR) and family support for science (FS). In the interest of keeping results 

straightforward with respect to interpretation of terms, grand-mean centering holds 

the most appeal. In equation writing, grand-mean centering is most commonly 

denoted as (𝑋𝑋𝑡𝑡𝑡𝑡 − 𝑋𝑋�); an individual’s observed value minus the grand-mean. To 

simplify notation moving forward, grand-mean centered variables will be bolded to 

denote the centering. 

Level 1: Functional Form 

Referencing the mixed model in equation 3.4 and inserting time as the lone 

L1 term specifying linear growth produces the null model, shown in equation 4.1: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾100𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 

𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇10𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡  (4.1) 

This unconditional model sets up the baseline from which model comparisons are 

drawn. Building upon this to include non-linear growth as shown for L1 in equation 
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3.10’ and the mixed model in 3.13, we obtain equation 4.2 including the quadratic 

and cubic terms: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾100𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾200𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡2 + 𝛾𝛾300𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡3 + 

𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑟𝑟2𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡2 + 𝑟𝑟3𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡3 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇10𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 +

𝜇𝜇20𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡2 + 𝜇𝜇30𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡3 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡     (4.2) 

From here, we can begin to refine the model to find the one that is best fitting/most 

parsimonious by removing all non-significant fixed and random effects. 

 Finally, we re-envision the functional form, not as a polynomial equation 

with quadratic and cubic terms, but instead with discontinuity terms specifying 

potential changes in level and slope, as coded in Table 4.3. Still, the resulting mixed 

model strongly resembles the non-linear equation of 4.2, as there are once again 

three terms at L1—time, grade, and post—each of which are subsequently modeled 

with no predictors and an error term at L2 and L3. Equation 4.3 shows the 

beginning discontinuous model, testing change in both level and slope after the 

point of discontinuity: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾100𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾200𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾300𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 +  

𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑟𝑟2𝑡𝑡𝑡𝑡𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑟𝑟3𝑡𝑡𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇10𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 +

𝜇𝜇20𝑡𝑡𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇30𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡     (4.3) 

Similarly, from here the model can be refined by removing non-significant effects, 

possibly reducing the discontinuity from a change in both slope and level to a 

change in either slope or level, or removing non-significant random effects. 
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 Table 4.4 displays the results of the models displayed in equations 4.1, 4.2, 

and 4.3 for grade 6, and in the case of models 4.2’ and 4.3’, the final non-linear and 

discontinuous model after iterative refinement (while noting that one to two models 

were run before finalizing that are not displayed in the table). Table 4.5 displays the 

results of the same models for grade 8 and will be discussed separately. 

Grade 6 Functional Form 

Beginning with the null model 4.1 in Table 4.4, there are several things to 

note as the model develops, the first of which are the calculations of the intraclass 

correlation coefficients for levels 2 and 3. Using equations 3.5 and 3.6 and 

substituting the estimated variance components for their respective parameters: 

L2 ICC:  𝜌𝜌� = 𝜏𝜏�00
𝜎𝜎�2+𝜏𝜏�00+𝜏𝜏�000

= .122
.134+.122+.004

= 0.468 

L3 ICC:  𝜌𝜌� = 𝜏𝜏�000
𝜎𝜎�2+𝜏𝜏�00+𝜏𝜏�000

= .004
.134+.122+.004

= 0.015 

These results indicate that about 47% of the variance in fascination scores is 

between sixth-grade students at L2, while less than 2% of the variance is between 

sixth-grade classrooms. Furthermore, the remaining variance (1-.468-.015) leaves 

about 52% of the variance in fascination within students. In other words, more than 

half of the variance in observed fascination scores can be attributed to within-

person time varying factors influencing fascination that have not been accounted 

for. 
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Looking at preliminary model fit statistics to which subsequent models will 

be compared, we see that the deviance statistic is 4019.5 with nine estimated 

parameters, the Akaike Information Criterion (AIC) (equal to the deviance statistic 

plus twice the number of parameters as “penalization”) is 4037.5, and the model 

took 17 iterations to converge. Raudenbush and Bryk acknowledge that the number 

of iterations required for model estimates to converge can often be used as a 

diagnostic reference: “When the number of iterations required is large…this 

indicates that the estimation is moving toward a boundary condition” (i.e., the 

variance estimate for 𝜏𝜏 is approaching zero) (Raudenbush et al., 2019, p. 200). 

Lastly, all fixed and random effect estimates were found to be statistically 

significant. This indicates that intercept, representing the expected fascination score 

of a sixth grade student at time 0, is significantly different from zero, that the linear 

time component significantly contributes to the explanation of change in student 

fascination scores, and that these two components (intercept and linear change over 

time) significantly vary between students and classrooms, all else constant. 

 Model 4.2 of Table 4.4 presents the results after including the non-linear 

time2 and time3 terms at level 1, while allowing the intercepts and slopes for both 

terms to vary randomly across L2 and L3 units. Initial model fit has improved—the 

AIC has been reduced considerably to 3743.8, and the deviance statistic is 

statistically significantly different from model 4.1 (𝜒𝜒2=325.7, df=16, p<.001)—

although the number of iterations required for convergence was quite large, 3,896. 

Of course, “if the added complexity better models the observed data, it is likely 
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worth the increased computational demands, as we will obtain a better 

representation of the relations among the data” (Anderson, 2012, p. 54). 

 Model 4.2’ represents the refinement of model 4.2 after removing the level 2 

random effects (𝑟𝑟2 and 𝑟𝑟3) associated with the non-linear terms, which were 

observed to be non-significant, while retaining the non-significant fixed effect 

associated with the quadratic term time2 in order to ensure the cubic effect was fully 

specified by including all lower level polynomial terms in the model. The removal of 

these non-significant terms created a more parsimonious model with reduced 

complexity, as only 18 parameters were estimated compared to the prior 25, and 

the number of iterations required for convergence dropped to 965—still a large 

number, but far fewer than the 3,896 for model 4.2. Though both the deviance 

statistic and AIC (3803.7 and 3839.7, respectively) reflect a significant improvement 

from model 4.1, comparisons show that the fit statistics are higher for model 4.2, 

indicating that model 4.2’ may be a poorer fit for the data than 4.2. 

 Removing the non-linear terms introduced in model 4.2 to evaluate a 

potential discontinuity between school years, model 4.3 retains the initial linear 

time component and adds the variables grade and post at L1 to see if there is a 

change in level or slope as 6th grade students enter 7th grade. Levels 2 and 3 once 

again are unconditional, with random effects entered at both levels for all level 1 

terms. As displayed in Table 4.4, preliminary results for model 4.3 indicate a better 

fit than the unconditional model 4.1, with a significant decrease in the deviance 

statistic (𝜒𝜒2=340.6, df=16, p<.001) and lower AIC (3728.9). The number of iterations 
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required for convergence was quite high (3,421) and several of the random effects 

were determined to be non-significant, indicating room for improvement in model 

specification. 

 Model 4.3’ shows the final discontinuous model, having removed the random 

effects associated with both discontinuous terms at L2 (𝑟𝑟2 and 𝑟𝑟3) and the random 

effect associated with post at L3 (𝑢𝑢30). Similar to the pattern of model refinement 

that occurred moving from model 4.2 to 4.2’, the fit statistics have once again 

slightly increased from the prior model 4.3. However, model 4.3’ remains a 

significant improvement from the null model when comparing the deviance statistic 

of 3738.4 (𝜒𝜒2=281.1, df=5, p<.001) and has a lower AIC of 3766.4. Furthermore, 

these same statistics can be used to compare the fit between the final non-linear and 

discontinuous models. Compared to model 4.2’, model 4.3’ has a significantly lower 

deviance statistic (𝜒𝜒2=65.3, df=4, p<.001), a lower AIC (3766.4 compared to 3839.7), 

and took fewer iterations to converge. The discontinuous model also doesn’t retain 

any statistically non-significant fixed effects for proper specification as is the case in 

the non-linear model, and all remaining random effects were found to be significant. 
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Table 4.4. Grade 6 level 1 model development - functional form 
Fixed effects Model 4.1 Model 4.2 Model 4.2’ Model 4.3 Model 4.3’ 

Coeff. SE Coeff. SE Coeff. SE Coeff. SE Coeff. SE 
Intercept 𝛾𝛾000 2.62 0.017 2.60 0.026 2.60 0.026 2.60 0.017 2.60 0.017 
time 𝛾𝛾100 -0.17 0.015 -0.25 0.015 -0.25 0.015 -0.26 0.013 -0.26 0.013 
time2 𝛾𝛾200 -- --  0.02* 0.022  0.02* 0.022 -- -- -- -- 
time3 𝛾𝛾300 -- -- 0.02 0.007 0.02 0.007 -- -- -- -- 
grade 𝛾𝛾200 -- -- -- -- -- -- 0.21 0.056 0.20 0.058 
post 𝛾𝛾300 -- -- -- -- -- -- 0.21 0.026 0.22 0.028 

Random effect estimates 
L1, w/in-student 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡  0.134 0.097 0.119 0.114 0.117 
L2 intercept 𝑟𝑟0𝑡𝑡𝑡𝑡  0.122 0.207 0.126 0.117 0.126 
L2 slope – time 𝑟𝑟1𝑡𝑡𝑡𝑡 0.015 0.039 0.016 0.025 0.016 
L2 slope – time2 𝑟𝑟2𝑡𝑡𝑡𝑡  -- 0.036 removed -- -- 
L2 slope – time3 𝑟𝑟3𝑡𝑡𝑡𝑡  -- 0.004 * removed -- -- 
L2 slope – grade 𝑟𝑟2𝑡𝑡𝑡𝑡  -- -- -- 0.021 * removed 
L2 slope – post 𝑟𝑟3𝑡𝑡𝑡𝑡  -- -- -- 0.018 * removed 
L3 intercept 𝑢𝑢00𝑡𝑡 0.004 0.015 0.016 0.005 0.005 
L3 slope – time 𝑢𝑢10𝑡𝑡 0.006 0.005 0.005 0.003 0.002 
L3 slope – time2 𝑢𝑢20𝑡𝑡 -- 0.013 0.012 -- -- 
L3 slope – time3 𝑢𝑢30𝑡𝑡 -- 0.001 0.001 -- -- 
L3 slope – grade 𝑢𝑢20𝑡𝑡 -- -- -- 0.007 0.046 
L3 slope – post 𝑢𝑢30𝑡𝑡 -- -- -- 0.052 removed 

Deviance (parameters) 4019.5  (9) 3693.8  (25) 3803.7  (18) 3678.9  (25) 3738.4  (14) 
Chi-square (df) -- 325.7  (16) 215.8  (9) 340.6  (16) 281.1  (5) 
AIC 4037.5 3743.8 3839.7 3728.9 3766.4 
Iterations 17 3,896 965 3,421 868 
Reliability estimates  

L1 intercept 𝜋𝜋0 0.70 0.71 0.73 0.73 0.73 
L1 – time 𝜋𝜋1 0.27 0.45 0.30 0.29 0.31 
L1 – time2 𝜋𝜋2 -- 0.31 removed -- -- 
L1 – time3 𝜋𝜋3 -- 0.31 removed -- -- 
L1 – grade 𝜋𝜋2 -- -- -- 0.03 removed 
L1 – post 𝜋𝜋3 -- -- -- 0.06 removed 
L2 intercept 𝛽𝛽00 0.35 0.54 0.61 0.45 0.41 
L2 – time 𝛽𝛽10 0.71 0.56 0.58 0.42 0.39 
L2 – time2 𝛽𝛽20 -- 0.68 0.71 -- -- 
L2 – time3 𝛽𝛽30 -- 0.64 0.65 -- -- 
L2 – grade 𝛽𝛽20 -- -- -- 0.45 0.63 
L2 – post 𝛽𝛽30 -- -- -- 0.22 removed 

Pseudo R2 calculations  
L1  --  0.281  0.111  0.152  0.126 
L2  -- -0.706 -0.036  0.034 -0.036 
L3  -- -2.768 -3.202 -0.356 -0.253 

* Coefficient is not significant, p>.05; all other values significant. 
“--” indicates fixed/random effect was not entered into the model. 
NOTE: Chi-square statistics compare models to the unconditional model 4.1. 
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Finally, referencing equations 3.7, 3.8, and 3.9, we can compare the pseudo R2 

statistics for each model in relation to the unconditional model specified in 4.1. As 

presented at the bottom of Table 4.4, the pseudo R2 statistics for levels 2 and 3 are 

mostly negative, perhaps unsurprising given that variables have not yet been added 

at those levels to explain variance; negative values are largely uninterpretable and 

therefore should not be used (Holden, Kelley, & Agarwal, 2008). Comparing the 

pseudo R2 statistics for level 1, however, we see that model 4.2’ results in a 

reduction of 11% in the unexplained L1 variance, 𝑒𝑒𝑡𝑡𝑡𝑡𝑖𝑖, while model 4.3’ reduces this 

variance by 13%. Although a relatively small difference of less than 2%, this implies 

that model 4.3’ accounts for more of the previously unexplained variance in 

fascination scores at level 1 through the incorporation of discontinuous terms when 

compared to the non-linear model. 

 For those reasons—lower deviance and AIC fit statistics, more parsimony 

(14 parameters estimated), all remaining terms significant, and a higher level 1 

pseudo R2 statistic—the final functional form that will be used to continue model 

development for grade 6 is the discontinuous model presented in equation 4.3’: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾100𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾200𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾300𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 

𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇10𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇20𝑡𝑡𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 (4.3’) 

Fully interpreting the results of this model are contingent upon building up levels 2 

and 3. It is worth highlighting, however, that in Table 4.4 all of the random effects 

were estimated with sufficient reliability (>0.10), indicating that the precision of the 

estimates for the randomly varying slopes and intercepts (𝜋𝜋0, 𝜋𝜋1, 𝛽𝛽00, 𝛽𝛽10, and 𝛽𝛽20) is 
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not a cause for concern. Preliminary estimates of the fixed effects at the top of the 

table suggest that, on average, the initial fascination score for all students is 2.60 

midway through 6th grade (time=0), down from 2.86 at the start of the school year. 

By the end of the school year, average fascination scores decrease further to 2.34 

(out of 4.00). Holding all else constant, fascination scores “bounce back” by the 

beginning of 7th grade, as the magnitude of discontinuity (grade) predicts a starting 

point of 2.50 to begin the following school year; the change in slope (post) indicates 

that fascination scores decrease once again by the end of the year to 2.46. 

Grade 8 Functional Form 

Following the same procedure that was used to decide upon the L1 

functional form for grade 6, Table 4.5 presents the results of the unconditional 

linear model, two versions of the non-linear model, and two versions of the 

discontinuous model for grade 8. To simplify the discussion, this section will only 

focus on the null model briefly, followed by a comparison of the final two models, 

4.2’’ and 4.3’’, to evaluate model fit and decide on the grade 8 functional form. 

Calculating the intraclass correlation coefficients for levels 2 and 3 using the 

estimated variance components of the unconditional model 4.1 for grade 8 produces 

the following: 

L2 ICC:  𝜌𝜌� = 𝜏𝜏�00
𝜎𝜎�2+𝜏𝜏�00+𝜏𝜏�000

= .105
.111+.105+.005

= 0.477 

L3 ICC:  𝜌𝜌� = 𝜏𝜏�000
𝜎𝜎�2+𝜏𝜏�00+𝜏𝜏�000

= .005
.111+.105+.005

= 0.021 
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These results are extremely similar to the null model run for grade 6, and indicate 

that about 48% of the variance in fascination scores is between eighth graders at L2, 

while only 2% of the variance is between eighth-grade classrooms. This leaves 

roughly 50% of the variance in fascination within-students; that is, unexplained 

within-person time varying factors influencing fascination scores that are not 

modeled. 

Both models 4.2’’ and 4.3’’ have fit statistics that indicate significant 

improvement over the unconditional model 4.1, and following their refinement from 

the starting non-linear and discontinuous models, have fixed and random effects 

terms that are all statistically significant. In comparing the two models to one 

another, it initially appears that the non-linear model is a better fit for the data. The 

deviance statistic for model 4.2’’ is significantly smaller than that for model 4.3’’ 

(𝜒𝜒2=158.7, df=8, p<.001) and the AIC is also smaller in comparison (4296.1 vs. 

4438.8). The pseudo R2 statistics also support the non-linear model over the 

discontinuous model, as the L1 variance reduction in model 4.2’’ was calculated to 

be 17%, whereas that of model 4.3’’ was only 4%. (Once again, the L2 and L3 pseudo 

R2 statistics were found to be negative and are ignored pending further model 

development.) Despite this, model 4.3’’ reached convergence with far fewer 

iterations of the estimates—1,812 fewer!—and is more parsimonious, with only 10 

parameters estimated compared to the 18 in model 4.2’’. 
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Table 4.5. Grade 8 level 1 model development - functional form 
Fixed effects Model 4.1 Model 4.2 Model 4.2’’ Model 4.3 Model 4.3’’ 

Coeff. SE Coeff. SE Coeff. SE Coeff. SE Coeff. SE 
Intercept 𝛾𝛾000 2.46 0.014 2.49 0.017 2.49 0.017 2.44 0.014 2.44 0.014 
time 𝛾𝛾100 -0.06 0.011 -0.14 0.014 -0.13 0.013 -0.11 0.013 -0.12 0.013 
time2 𝛾𝛾200 -- -- -0.05 0.011 -0.05 0.011 -- -- -- -- 
time3 𝛾𝛾300 -- -- 0.04 0.005 0.03 0.004 -- -- -- -- 
grade 𝛾𝛾200 -- -- -- -- -- -- 0.16 0.052 removed 
post 𝛾𝛾300 -- -- -- -- -- -- 0.17 0.026 0.26 0.034 

Random effect estimates 
L1, w/in-student 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡  0.111 0.089 0.092 0.102 0.106 
L2 intercept 𝑟𝑟0𝑡𝑡𝑡𝑡  0.105 0.170 0.168 0.099 0.107 
L2 slope – time 𝑟𝑟1𝑡𝑡𝑡𝑡 0.024 0.049 0.048 0.030 0.021 
L2 slope – time2 𝑟𝑟2𝑡𝑡𝑡𝑡  -- 0.027 0.025 -- -- 
L2 slope – time3 𝑟𝑟3𝑡𝑡𝑡𝑡  -- 0.004 0.004 -- -- 
L2 slope – grade 𝑟𝑟2𝑡𝑡𝑡𝑡  -- -- -- 0.003 * removed 
L2 slope – post 𝑟𝑟3𝑡𝑡𝑡𝑡  -- -- -- 0.031 * removed 
L3 intercept 𝑢𝑢00𝑡𝑡 0.005 0.005 0.005 0.005 0.005 
L3 slope – time 𝑢𝑢10𝑡𝑡 0.003 0.005 0.004 0.005 0.004 
L3 slope – time2 𝑢𝑢20𝑡𝑡 --    0.001 * removed -- -- 
L3 slope – time3 𝑢𝑢30𝑡𝑡 -- < 0.001 * removed -- -- 
L3 slope – grade 𝑢𝑢20𝑡𝑡 -- -- -- 0.045 * removed 
L3 slope – post 𝑢𝑢30𝑡𝑡 -- -- -- 0.005 * removed 

Deviance (parameters) 4606.9  (9) 4237.9  (25) 4260.1  (18) 4250.2  (25) 4418.8  (10) 
Chi-square (df) -- 369.03  (16) 346.77  (9) 356.68  (16) 188.18  (1) 
AIC 4624.9 4287.9 4296.1 4300.2 4438.8 
Iterations 23 5046 1836 6199 24 
Reliability estimates 

L1 intercept 𝜋𝜋0 0.71 0.67 0.66 0.72 0.72 
L1 – time 𝜋𝜋1 0.35 0.49 0.48 0.36 0.33 
L1 – time2 𝜋𝜋2 -- 0.25 0.23 -- -- 
L1 – time3 𝜋𝜋3 -- 0.30 0.28 -- -- 
L1 – grade 𝜋𝜋2 -- -- -- 0.01 removed 
L1 – post 𝜋𝜋3 -- -- -- 0.11 removed 
L2 intercept 𝛽𝛽00 0.43 0.31 0.48 0.45 0.45 
L2 – time 𝛽𝛽10 0.55 0.49 0.62 0.56 0.63 
L2 – time2 𝛽𝛽20 -- 0.11 removed -- -- 
L2 – time3 𝛽𝛽30 -- 0.23 removed -- -- 
L2 – grade 𝛽𝛽20 -- -- -- 0.26 removed 
L2 – post 𝛽𝛽30 -- -- -- 0.10 removed 

Pseudo R2 calculations  
L1  --  0.194  0.170 0.078  0.041 
L2  -- -0.612 -0.597 0.062 -0.014 
L3  -- -0.088 -0.056 0.004 -0.047 

* Coefficient is not significant, p>.05; all other values significant. 
“--” indicates fixed/random effect was not entered into the model. 
NOTE: Chi-square statistics compare models to the unconditional model 4.1. 
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Figure 4.2 below plots the suggested fascination means for each 

measurement occasion at grade 8 based on non-linear model 4.2’’, discontinuous 

model 4.3’’, and the observed fascination scores as displayed in Table 4.2. Though 

the non-linear model does appear to match the pattern of change in fascination 

scores particularly well in Year 1 (time points 1-3), there is a serious departure from 

the observed pattern in Year 2 at time points 4 and 5. Meanwhile, the discontinuous 

model displays a decreasing linear pattern in Year 1 that is less aligned with the 

observed data particularly at time point 2 mid-way through grade 8, but the Year 2 

pattern appears to be more similar to the observed change in Year 2 than the non-

linear prediction. 

Figure 4.2. Grade 8 models 4.2'' and 4.3'' compared to observed mean 
fascination 
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Admittedly, the model comparison seems to suggest the non-linear model is 

a better fit for the grade 8 data. Parsimony is preferred when the model statistics 

suggest a good fit, so it is worth highlighting that model 4.3’’ does fit the data 

significantly better than the null model (deviance comparison, 𝜒𝜒2=188.2, df=1, 

p<.001, AIC 186.1 lower). Because there is no single statistic or rule that determines 

the decision when it comes to model development and some amount of subjectivity 

is involved, the discontinuous model will serve as the final functional form for grade 

8, for several reasons. First, the significant random effects found in the non-linear 

model at L2 (𝑟𝑟2 and 𝑟𝑟3) suggest that, for each student, the rate of deceleration (time2) 

and change in this rate of change (time3) varies for each student. Statistically, this 

seems to be compatible with model 4.2’’ based on significance, but practically, 

modeling this randomness adds complexity that does not seem worthwhile. Second, 

theory does not suggest that a continuous (in this case, non-linear) growth model 

should be expected for change in fascination, and a discontinuous model does make 

sense given the gap between grades 8 and 9. Finally, keeping the grade 6 and grade 

8 models similar in their functional form (discontinuous) assists the forthcoming 

analysis in the interpretation of terms and estimates. Resultantly, the final 

functional form that will be used to continue model development for grade 8 is the 

discontinuous model presented in equation 4.3’’: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾100𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾200𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 

𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇10𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡  (4.3’’) 
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Compared to the grade 6 functional form identified in equation 4.3’, the grade 

8 functional form importantly differs in that the change in level variable (grade) was 

not found to have  significant fixed or random effects and therefore is not modeled 

(such that the discontinuity present is only in the change in slope, represented with 

the variable post). 

Level 2: Student-level Covariates 

Now that the discontinuous functional forms at level 1 have been decided 

upon, simultaneous entry of the student-level variables HR, FS, URM, and female for 

each level 2 equation allows us to build up the models, dramatically increasing the 

number of level 3 equations and thus the complexity. Similar to the preceding 

discussion of grade 8 models, the next sections detailing level 2 development, first 

for grade 6 and then for grade 8, will focus on the starting models employing 

backwards elimination of relevant predictor variables and then a comparison of the 

final level 2 model selected. 

Grade 6 Level 2 Model Development 

Equations 4.4a-y show the level 1, 2, and 3 models for grade 6. Building from 

model 4.3’, we see that level 2 equations 4.4d and 4.4e lack their respective error 

terms (𝑟𝑟2 and 𝑟𝑟3), as the level 1 model development process informed us that there 

was no random variation in the Year 2 effects (grade, post) between students. 

Similarly, equation 4.4u lacks an error term (𝜇𝜇30), as we earlier saw there was no 

significant variation in the change in slope between 6th and 7th grades between 6th 
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grade classrooms at level 3. However, all other L3 models have a random error 

component, testing to see if there is significant variation between classrooms for 

each of the L2 predictors entered and their effect on the growth parameters time, 

grade, and post.  

Level 1: 
𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡𝑡𝑡 + 𝜋𝜋1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜋𝜋2𝑡𝑡𝑡𝑡𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜋𝜋3𝑡𝑡𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡   (4.4a) 

Level 2: 
𝜋𝜋0𝑡𝑡𝑡𝑡 = 𝛽𝛽00𝑡𝑡 + 𝛽𝛽01𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛽𝛽02𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛽𝛽03𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡 + 𝛽𝛽04𝑡𝑡𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝑟𝑟0𝑡𝑡𝑡𝑡 (4.4b) 

𝜋𝜋1𝑡𝑡𝑡𝑡 = 𝛽𝛽10𝑡𝑡 + 𝛽𝛽11𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛽𝛽12𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛽𝛽13𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡 + 𝛽𝛽14𝑡𝑡𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡 (4.4c) 

𝜋𝜋2𝑡𝑡𝑡𝑡 = 𝛽𝛽20𝑡𝑡 + 𝛽𝛽21𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛽𝛽22𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛽𝛽23𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡 + 𝛽𝛽24𝑡𝑡𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡  (4.4d) 

𝜋𝜋3𝑡𝑡𝑡𝑡 = 𝛽𝛽30𝑡𝑡 + 𝛽𝛽31𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛽𝛽32𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛽𝛽33𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡 + 𝛽𝛽34𝑡𝑡𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡  (4.4e) 

Level 3: 
𝛽𝛽00𝑡𝑡 = 𝛾𝛾000 + 𝜇𝜇00𝑡𝑡        (4.4f) 

𝛽𝛽01𝑡𝑡 = 𝛾𝛾010 + 𝜇𝜇01𝑡𝑡        (4.4g) 

𝛽𝛽02𝑡𝑡 = 𝛾𝛾020 + 𝜇𝜇02𝑡𝑡        (4.4h) 

𝛽𝛽03𝑡𝑡 = 𝛾𝛾030 + 𝜇𝜇03𝑡𝑡        (4.4i) 

𝛽𝛽04𝑡𝑡 = 𝛾𝛾040 + 𝜇𝜇04𝑡𝑡        (4.4j) 

𝛽𝛽10𝑡𝑡 = 𝛾𝛾100 + 𝜇𝜇10𝑡𝑡        (4.4k) 

𝛽𝛽11𝑡𝑡 = 𝛾𝛾110 + 𝜇𝜇11𝑡𝑡        (4.4l) 

𝛽𝛽12𝑡𝑡 = 𝛾𝛾120 + 𝜇𝜇12𝑡𝑡        (4.4m) 

𝛽𝛽13𝑡𝑡 = 𝛾𝛾130 + 𝜇𝜇13𝑡𝑡        (4.4n) 

𝛽𝛽14𝑡𝑡 = 𝛾𝛾140 + 𝜇𝜇14𝑡𝑡        (4.4o) 

𝛽𝛽20𝑡𝑡 = 𝛾𝛾200 + 𝜇𝜇20𝑡𝑡        (4.4p) 

𝛽𝛽21𝑡𝑡 = 𝛾𝛾210 + 𝜇𝜇21𝑡𝑡        (4.4q) 

𝛽𝛽22𝑡𝑡 = 𝛾𝛾220 + 𝜇𝜇22𝑡𝑡        (4.4r) 
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𝛽𝛽23𝑡𝑡 = 𝛾𝛾230 + 𝜇𝜇23𝑡𝑡        (4.4s) 

𝛽𝛽24𝑡𝑡 = 𝛾𝛾240 + 𝜇𝜇24𝑡𝑡        (4.4t) 

𝛽𝛽30𝑡𝑡 = 𝛾𝛾300         (4.4u) 

𝛽𝛽31𝑡𝑡 = 𝛾𝛾310 + 𝜇𝜇31𝑡𝑡        (4.4v) 

𝛽𝛽32𝑡𝑡 = 𝛾𝛾320 + 𝜇𝜇32𝑡𝑡        (4.4w) 

𝛽𝛽33𝑡𝑡 = 𝛾𝛾330 + 𝜇𝜇33𝑡𝑡        (4.4x) 

𝛽𝛽34𝑡𝑡 = 𝛾𝛾340 + 𝜇𝜇34𝑡𝑡        (4.4y) 

 Tables 4.6 and 4.7 below show the results of the grade 6 level 2 model 

development process for fixed and random effect estimates, respectively. Beginning 

with the model summary and fit statistics at the bottom of Table 4.6 for the initial 

model (4.4), convergence required 3,682 iterations due to the increased 

parameterization. Compared to the null model (4.1), the addition of level 2 

predictors has improved overall model fit (𝜒𝜒2=438.7 df=205 p<.001). A cursory 

glance at the fixed effects estimated in Table 4.6 show a number of non-significant 

terms; specifically, neither home resources (HR) nor under-represented minority 

status (URM) meaningfully explained fascinations scores in relation to any of the L1 

components.  Likewise, the dummy variable female was found to be non-significant 

for all L1 time-varying components but was significant in its relationship to the L1 

intercept. The family support for science variable (FS), on the other hand, was found 

to be significant in its relationship to three of four L1 components, including the 

intercept, Year 1 slope variable (time, linear), and Year 2 slope variable (post). 

Looking at the estimates for model 4.4 in Table 4.7, we see that none of the random 

effects for any of these newly entered student-level variables was found to be 
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significant; as well, the addition of these newly entered terms into the model caused 

the random effect associated with the L2 intercept for the time variable to also lose 

significance. 

Table 4.6. Grade 6 level 2 model development - fixed effects 

Fixed effects Model 4.4 Model 4.4’ 
Coeff. SE Coeff. SE 

Intercept 𝛽𝛽00     
intercept 𝛾𝛾000  2.64 0.026 2.65 0.019 
HR 𝛾𝛾010   0.05 * 0.031 -- -- 
FS 𝛾𝛾020  0.14 0.034 0.16 0.029 
URM 𝛾𝛾030   0.04 * 0.025 -- -- 
female 𝛾𝛾040 -0.14 0.027 -0.11 0.02 

time 𝛽𝛽10     
intercept 𝛾𝛾100 -0.28 0.017 -0.26 0.013 
HR 𝛾𝛾110 -0.01 * 0.019 -- -- 
FS 𝛾𝛾120 -0.09 0.023 -0.09 0.018 
URM 𝛾𝛾130  0.02 * 0.021 -- -- 
female 𝛾𝛾140  0.02 * 0.020 -- -- 

grade 𝛽𝛽20     
intercept 𝛾𝛾200 0.19 0.077 0.20 0.056 
HR 𝛾𝛾210 -0.05 * 0.071 -- -- 
FS 𝛾𝛾220 <0.01 * 0.094 -- -- 
URM 𝛾𝛾230 -0.09 * 0.080 -- -- 
female 𝛾𝛾240  0.09 * 0.072 -- -- 

post 𝛽𝛽30     
intercept 𝛾𝛾300 0.25 0.035  0.22 0.026 
HR 𝛾𝛾310  0.02 * 0.051 -- -- 
FS 𝛾𝛾320 0.18 0.053 0.13 0.040 
URM 𝛾𝛾330  0.07 * 0.048 -- -- 
female 𝛾𝛾340 -0.08 * 0.047 -- -- 

Deviance (parameters) 3580.8  (214) 3670.3  (15) 
Chi-square (df) – null 438.7  (205) 349.2  (6) 
Chi-square (df) – 4.4 -- -89.5  (209) 
AIC 4008.8 3700.3 
Iterations 3682 610 

* Coefficient is not significant, p>.05; all other values significant. 
“—” indicates fixed effect was not entered into the model. 
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Table 4.7. Grade 6 level 2 model development - random effects 

 
Random effects 
estimates 

 Model 4.4 Model 4.4’ 
L1, w/in-student 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 0.113 0.118 
L2 intercept 𝑟𝑟0𝑡𝑡𝑡𝑡 0.106 0.116 
L2 time 𝑟𝑟1𝑡𝑡𝑡𝑡 0.012 0.016 
L3 intercept – int. 𝑢𝑢00𝑡𝑡 0.013 0.004 
L3 intercept – HR 𝑢𝑢01𝑡𝑡 0.015  * -- 
L3 intercept – FS 𝑢𝑢02𝑡𝑡 0.017  * -- 
L3 intercept – URM 𝑢𝑢03𝑡𝑡 0.007  * -- 
L3 intercept – female 𝑢𝑢04𝑡𝑡 0.010  * -- 
L3 time – int. 𝑢𝑢10𝑡𝑡 0.002  * -- 
L3 time – HR 𝑢𝑢11𝑡𝑡 0.003  * -- 
L3 time – FS 𝑢𝑢12𝑡𝑡 0.006  * -- 
L3 time – URM 𝑢𝑢13𝑡𝑡 0.006  * -- 
L3 time – female 𝑢𝑢14𝑡𝑡 0.003  * -- 
L3 grade – int. 𝑢𝑢20𝑡𝑡 0.081 0.038 
L3 grade – HR 𝑢𝑢21𝑡𝑡 0.022  * -- 
L3 grade – FS 𝑢𝑢22𝑡𝑡 0.089  * -- 
L3 grade – URM 𝑢𝑢23𝑡𝑡 0.056  * -- 
L3 grade – female 𝑢𝑢24𝑡𝑡 0.026  * -- 
L3 post – HR 𝑢𝑢31𝑡𝑡 0.014  * -- 
L3 post – FS 𝑢𝑢32𝑡𝑡 0.020  * -- 
L3 post – URM 𝑢𝑢33𝑡𝑡 0.023  * -- 
L3 post – female 𝑢𝑢34𝑡𝑡 0.014  * -- 

Reliability 
Estimates 

L1 intercept 𝜋𝜋0 0.71 0.71 
L1 – time 𝜋𝜋1 0.27 0.31 
L2 intercept – int. 𝛽𝛽00 0.41 0.40 
L2 intercept – HR 𝛽𝛽01 0.29 -- 
L2 intercept – FS 𝛽𝛽02 0.26 -- 
L2 intercept – URM 𝛽𝛽03 0.15 -- 
L2 intercept – female 𝛽𝛽04 0.24 -- 
L2 time – int. 𝛽𝛽10 0.20 -- 
L2 time – HR 𝛽𝛽11 0.14 -- 
L2 time – FS 𝛽𝛽12 0.20 -- 
L2 time – URM 𝛽𝛽13 0.24 -- 
L2 time – female 𝛽𝛽14 0.17 -- 
L2 grade – int. 𝛽𝛽20 0.49 0.73 
L2 grade – HR 𝛽𝛽21 0.06 -- 
L2 grade – FS 𝛽𝛽22 0.15 -- 
L2 grade – URM 𝛽𝛽23 0.15 -- 
L2 grade – female 𝛽𝛽24 0.11 -- 
L2 post – HR 𝛽𝛽31 0.09 -- 
L2 post – FS 𝛽𝛽32 0.09 -- 
L2 post – URM 𝛽𝛽33 0.17 -- 
L2 post – female 𝛽𝛽34 0.17 -- 

* Coefficient is not significant, p>.05; all other values significant. 
“—” indicates random effect was not entered into the model. 
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Removing the non-significant fixed and random effects resulted in model 4.4’ 

(no additional refinements were necessary to finalize the level 2 model). Requiring 

far fewer iterations than the starting L2 model (610 compared to 3,682), the 

deviance statistic was observed to actually be larger than the previous model; 

however, due to the reduction of 199 parameters, the AIC reflects the parsimony 

preferred in this reduced model and is considerably lower (3700.3 compared to 

4008.8). Once again, the model was observed to be a significant improvement from 

model 4.1 when no predictors had yet been entered (𝜒𝜒2=349.2, df=6, p<.001). 

Calculating the pseudo R2 statistics, we obtain the following: 

L1 pseudo R2:  0.134−0.118
0.134

= 0.121 

L2 pseudo R2:  0.122−0.116
0.122

= 0.045 

L3 pseudo R2:  0.0040−0.0041
0.0040

= −0.037 

The addition of the level 2 variables in model 4.4’ have slightly reduced the 

additional level 1 variance contribution from model 4.3’ lacking L2 variables 

(previously, a 12.6% reduction down to 12.1%), but still reflects an improvement 

over the initial null model in 4.1. However, adding student-level variables has 

contributed to a 4.5% reduction in the level 2 variance (while we once again ignore 

the negative L3 pseudo R2). The final model for grade 6 after the refinement of level 

2 variables is presented in equation 4.4’: 
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𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾010𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛾𝛾020𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝛾𝛾100𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾110𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 

𝛾𝛾200𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾300𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾310𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 

𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇20𝑡𝑡𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡   (4.4’) 

Final interpretation of the grade 6 model will hinge on the addition of level 3 

predictors. 

Grade 8 Level 2 Model Development 

As seen in equation 4.3’’, the functional form for grade 8 purposefully reflects 

the discontinuous model selected for grade 6, with the key difference that the 

change in level (represented by the grade variable at L1) was not found to be 

significant and therefore was not retained. Equations 4.4a’ through 4.4s’ below 

show the L1, L2, and L3 models for grade 8, noting the missing random error terms 

for the post variable (𝑟𝑟2 and 𝜇𝜇20) based on the level 1 model development process: 

Level 1: 
𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡𝑡𝑡 + 𝜋𝜋1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜋𝜋2𝑡𝑡𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡     (4.4a’) 

Level 2: 
𝜋𝜋0𝑡𝑡𝑡𝑡 = 𝛽𝛽00𝑡𝑡 + 𝛽𝛽01𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛽𝛽02𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛽𝛽03𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡 + 𝛽𝛽04𝑡𝑡𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝑟𝑟0𝑡𝑡𝑡𝑡 (4.4b’) 

𝜋𝜋1𝑡𝑡𝑡𝑡 = 𝛽𝛽10𝑡𝑡 + 𝛽𝛽11𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛽𝛽12𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛽𝛽13𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡 + 𝛽𝛽14𝑡𝑡𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡 (4.4c’) 

𝜋𝜋2𝑡𝑡𝑡𝑡 = 𝛽𝛽20𝑡𝑡 + 𝛽𝛽21𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛽𝛽22𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛽𝛽23𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡𝑡𝑡 + 𝛽𝛽24𝑡𝑡𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡  (4.4d’) 

Level 3: 
𝛽𝛽00𝑡𝑡 = 𝛾𝛾000 + 𝜇𝜇00𝑡𝑡        (4.4e’) 

𝛽𝛽01𝑡𝑡 = 𝛾𝛾010 + 𝜇𝜇01𝑡𝑡        (4.4f’) 

𝛽𝛽02𝑡𝑡 = 𝛾𝛾020 + 𝜇𝜇02𝑡𝑡        (4.4g’) 

𝛽𝛽03𝑡𝑡 = 𝛾𝛾030 + 𝜇𝜇03𝑡𝑡        (4.4h’) 
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𝛽𝛽04𝑡𝑡 = 𝛾𝛾040 + 𝜇𝜇04𝑡𝑡        (4.4i’) 

𝛽𝛽10𝑡𝑡 = 𝛾𝛾100 + 𝜇𝜇10𝑡𝑡        (4.4j’) 

𝛽𝛽11𝑡𝑡 = 𝛾𝛾110 + 𝜇𝜇11𝑡𝑡        (4.4k’) 

𝛽𝛽12𝑡𝑡 = 𝛾𝛾120 + 𝜇𝜇12𝑡𝑡        (4.4l’) 

𝛽𝛽13𝑡𝑡 = 𝛾𝛾130 + 𝜇𝜇13𝑡𝑡                  (4.4m’) 

𝛽𝛽14𝑡𝑡 = 𝛾𝛾140 + 𝜇𝜇14𝑡𝑡        (4.4n’) 

𝛽𝛽20𝑡𝑡 = 𝛾𝛾200         (4.4o’) 

𝛽𝛽21𝑡𝑡 = 𝛾𝛾210 + 𝜇𝜇21𝑡𝑡        (4.4p’) 

𝛽𝛽22𝑡𝑡 = 𝛾𝛾220 + 𝜇𝜇22𝑡𝑡        (4.4q’) 

𝛽𝛽23𝑡𝑡 = 𝛾𝛾230 + 𝜇𝜇23𝑡𝑡        (4.4r’) 

𝛽𝛽24𝑡𝑡 = 𝛾𝛾240 + 𝜇𝜇24𝑡𝑡        (4.4s’) 

Tables 4.8 and 4.9 show the results of the grade 8 level 2 models for fixed and 

random effect estimates, respectively. Although the model estimates far fewer 

parameters than the grade 6 level 2 starting model due to the removal of grade at 

L1, convergence for the grade 8 level 2 starting model still required a large number 

of iterations (2,538) due to increased parameterization (124). Compared to the null 

model, the addition of level 2 predictors has unsurprisingly improved overall model 

fit (𝜒𝜒2=416.9 df=115 p<.001). Visible in Table 4.9, the race variable URM was found 

to be non-significant for all L1 terms (intercept, time, and post); the random effects, 

however, display a very similar pattern to grade 6 as only one of the newly added 

predictors (family support for science) was found to be significant. 

Iterative refinements involving the removal of non-significant fixed and 

random effects resulted in model 4.4’’, a more parsimonious model requiring 91 
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iterations to converge. Once again, we observe a slight increase in the deviance 

statistic compared to the starting L2 model, but with far fewer parameters 

estimated, the AIC reflects an improvement compared to the model 4.4 starting 

point (4303.9 vs. 4438.0). Compared to model 4.1, the result is a significantly 

improved model overall (𝜒𝜒2=341.0 df=10 p<.001).  

Table 4.8. Grade 8 level 2 model development - fixed effects 

Fixed effects Model 4.4 Model 4.4’’ 
Coeff. SE Coeff. SE 

Intercept 𝛽𝛽00     
intercept 𝛾𝛾000 2.50 0.018 2.50 0.016 
HR 𝛾𝛾010 0.06 0.021 0.07 0.023 
FS 𝛾𝛾020 0.11 0.021 0.11 0.023 
URM 𝛾𝛾030 -0.01 * 0.023 -- -- 
female 𝛾𝛾040 -0.10 0.023 -0.11 0.021 

time 𝛽𝛽10     
intercept 𝛾𝛾100 -0.12 0.018 -0.12 0.012 
HR 𝛾𝛾110 -0.06 0.019 -0.07 0.018 
FS 𝛾𝛾120 -0.07 0.016 -0.05 0.014 
URM 𝛾𝛾130 0.01 * 0.020 -- -- 
female 𝛾𝛾140 0.01 * 0.017 -- -- 

post 𝛽𝛽20     
intercept 𝛾𝛾200 0.27 0.044 0.23 0.028 
HR 𝛾𝛾210 0.18 0.041 0.24 0.043 
FS 𝛾𝛾220 0.10 0.043 -- -- 
URM 𝛾𝛾230 < -0.01 * 0.038 -- -- 
female 𝛾𝛾240 -0.09 0.037 -- -- 

Deviance (parameters) 4190.0  (124) 4265.9  (19) 
Chi-square (df) – null 416.9  (115) 341.0 (10) 
Chi-square (df) – 4.4 -- -75.9  (105) 
AIC 4438.0 4303.9 
Iterations 2538 91 

* Coefficient is not significant, p>.05; all other values significant. 
“—” indicates fixed effect was not entered into the model. 
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Table 4.9. Grade 8 level 2 model development - random effects 

 
Random effects 
estimates 

 Model 4.4 Model 4.4’’ 
L1, w/in-student 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡  0.105 0.106 
L2 intercept 𝑟𝑟0𝑡𝑡𝑡𝑡  0.090 0.098 
L2 time 𝑟𝑟1𝑡𝑡𝑡𝑡 0.015 0.019 
L3 intercept – int. 𝑢𝑢00𝑡𝑡 0.007 0.004 
L3 intercept – HR 𝑢𝑢01𝑡𝑡 0.006 * -- 
L3 intercept – FS 𝑢𝑢02𝑡𝑡 0.006 * -- 
L3 intercept – URM 𝑢𝑢03𝑡𝑡 0.006 * -- 
L3 intercept – female 𝑢𝑢04𝑡𝑡 0.010 * -- 
L3 time – int. 𝑢𝑢10𝑡𝑡 0.007 0.003 
L3 time – HR 𝑢𝑢11𝑡𝑡 0.006 * -- 
L3 time – FS 𝑢𝑢12𝑡𝑡 0.003 * -- 
L3 time – URM 𝑢𝑢13𝑡𝑡 0.005 * -- 
L3 time – female 𝑢𝑢14𝑡𝑡 0.005 * -- 
L3 post – HR 𝑢𝑢21𝑡𝑡 0.036 0.020 
L3 post – FS 𝑢𝑢22𝑡𝑡 0.024 -- 
L3 post – URM 𝑢𝑢23𝑡𝑡 0.015 * -- 
L3 post – female 𝑢𝑢24𝑡𝑡 0.008 * -- 

Reliability 
Estimates 

L1 intercept 𝜋𝜋0 0.69 0.70 
L1 – time 𝜋𝜋1 0.28 0.31 
L2 intercept – int. 𝛽𝛽00 0.28 0.39 
L2 intercept – HR 𝛽𝛽01 0.16 -- 
L2 intercept – FS 𝛽𝛽02 0.17 -- 
L2 intercept – URM 𝛽𝛽03 0.16 -- 
L2 intercept – female 𝛽𝛽04 0.28 -- 
L2 time – int. 𝛽𝛽10 0.48 0.59 
L2 time – HR 𝛽𝛽11 0.25 -- 
L2 time – FS 𝛽𝛽12 0.15 -- 
L2 time – URM 𝛽𝛽13 0.23 -- 
L2 time – female 𝛽𝛽14 0.28 -- 
L2 post – HR 𝛽𝛽21 0.27 0.32 
L2 post – FS 𝛽𝛽22 0.20 -- 
L2 post – URM 𝛽𝛽23 0.20 -- 
L2 post – female 𝛽𝛽24 0.14 -- 

* Estimate is not significant, p>.05; all other values significant. 
 “—” indicates random effect was not entered into the model. 
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The pseudo R2 statistics are calculated as follows: 

L1 pseudo R2:  0.111−0.106
0.111

= 0.046 

L2 pseudo R2:  0.105−0.098
0.105

= 0.069 

L3 pseudo R2:  0.005−0.003
0.005

= 0.237 

The addition of the level 2 variables in model 4.4’’ have slightly increased the 

additional level 1 variance contribution from model 4.3’’ lacking L2 variables (a 

reduction of 4.6%, up from 4.1%). Furthermore, we now see that the student-level 

predictors have contributed an additional 3.3% to the variance explained at level 2 

(6.9% of the initial 47.7% L2 ICC calculated from the null model). Although the 

pseudo R2 calculated for L3 is encouraging, this will be re-evaluated after the 

addition of level 3 predictors. 

The final model for grade 8 after the refinement of level 2 variables is 

presented in equation 4.4’’: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾010𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛾𝛾020𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛾𝛾030𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝛾𝛾100𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 

𝛾𝛾110𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛾𝛾120𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛾𝛾200𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾210𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 

𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇10𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇21𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 (4.4’’) 

Prior to making substantive interpretations of the results presented in model 4.4’’ 

above, classroom-level covariates will be added to level 3. 
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Level 3: Class-level Covariates 

The model building process concludes with the addition of classroom-level 

covariates at level 3. Similar to the process at level 2, simultaneous entry of the 

instructional variables student-centric teaching (student), hands-on instruction 

(hands-on), and classroom technology use (classtech) allows a determination of the 

significance for each term for all level 3 equations. Once again, the sections that 

follow will focus on the starting models employing backwards elimination of 

relevant predictor variables and then a comparison of the final level 3 model 

selected, first for grade 6 and then for grade 8. 

Grade 6 Level 3 Model Development 

Equations 4.5a through 4.5m show the grade 6 models, now with level 3 

predictors added. While 4.5a through 4.5e remain unchanged based on the results 

presented in Tables 4.6 and 4.7, the remaining equations (4.5f-4.5m) now show 

bolded terms for the grand-mean centered instructional variables, testing to see if 

these explain meaningful variance in fascination scores based on the discontinuous 

growth model that has been developed thus far: 

Level 1: 
𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡𝑡𝑡 + 𝜋𝜋1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜋𝜋2𝑡𝑡𝑡𝑡𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜋𝜋3𝑡𝑡𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡   (4.5a) 
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Level 2: 
𝜋𝜋0𝑡𝑡𝑡𝑡 = 𝛽𝛽00𝑡𝑡 + 𝛽𝛽01𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛽𝛽02𝑡𝑡𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝑟𝑟0𝑡𝑡𝑡𝑡     (4.5b) 

𝜋𝜋1𝑡𝑡𝑡𝑡 = 𝛽𝛽10𝑡𝑡 + 𝛽𝛽11𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡       (4.5c) 

𝜋𝜋2𝑡𝑡𝑡𝑡 = 𝛽𝛽20𝑡𝑡         (4.5d) 

𝜋𝜋3𝑡𝑡𝑡𝑡 = 𝛽𝛽30𝑡𝑡 + 𝛽𝛽31𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡        (4.5e) 

Level 3: 
𝛽𝛽00𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾001𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾002𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾003𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉 + 𝜇𝜇00𝑡𝑡 (4.4f) 

𝛽𝛽01𝑡𝑡 = 𝛾𝛾010 + 𝛾𝛾011𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾012𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾013𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.4g) 

𝛽𝛽02𝑡𝑡 = 𝛾𝛾020 + 𝛾𝛾021𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾022𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾023𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.4h) 

𝛽𝛽10𝑡𝑡 = 𝛾𝛾100 + 𝛾𝛾101𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾102𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾103𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.4i) 

𝛽𝛽11𝑡𝑡 = 𝛾𝛾110 + 𝛾𝛾111𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾112𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾113𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.4j) 

𝛽𝛽20𝑡𝑡 = 𝛾𝛾200 + 𝛾𝛾201𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾202𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾203𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉 + 𝜇𝜇20𝑡𝑡 (4.4k) 

𝛽𝛽30𝑡𝑡 = 𝛾𝛾300 + 𝛾𝛾301𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾302𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾303𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.4l) 

𝛽𝛽31𝑡𝑡 = 𝛾𝛾310 + 𝛾𝛾311𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾312𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾313𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.4m) 

Tables 4.10 and 4.11 below show the results for the starting level 3 model 

(4.5) based on the equations above and, following iterative refinements, the final 

model that was selected (4.5’) to explain change in fascination over time for the 

grade 6 cohort. Similar to the pattern seen in the level 2 development for both 

grades, model 4.5’ took fewer iterations to converge than model 4.5, is more 

parsimonious with only 18 parameters estimated (compared to 39), and though the 

deviance statistic is slightly larger, the AIC is lower, reflecting the tradeoff of 

predictors and parsimony. We also see that model 4.5’ is a significant improvement 

compared to the null model (𝜒𝜒2=360.1 df=9 p<.001). Table 4.10 shows that the 

majority of level 3 predictors were found to be non-significant, with only 3 of the 24 
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newly added terms retained in model 4.5’. Equation 4.5’ presents the final mixed 

model for grade 6: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾010𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛾𝛾020𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝛾𝛾021𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 ∗ 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑡𝑡 + 

𝛾𝛾100𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾110𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾200𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾300𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾310𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 

𝛾𝛾311𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔𝑡𝑡 ∗ 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾312𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉𝑡𝑡 ∗ 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 

𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇20𝑡𝑡𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡     (4.5’) 

Using the variance estimates provided in Table 4.11, the pseudo R2 statistics 

are calculated as follows: 

L1 pseudo R2:  0.134−0.118
0.134

= 0.122 

L2 pseudo R2:  0.122−0.116
0.122

= 0.048 

L3 pseudo R2:  0.0040−0.0041
0.0040

= −0.030 

Comparable to the pseudo R2 statistics obtained after finalizing level 2, the 

addition of the level 3 variables has resulted in a final model in which level 1 

variance has been reduced by over 12%, as well as almost 5% of the level 2 variance 

compared to the starting null model. While the contribution to level 3 variance 

explained is negligible and somewhat disappointing, this is not altogether 

surprising, given that less than 2% of the overall variance was found to reside at 

level 3 between classrooms, and the majority of the variables initially entered at the 

class-level were found to be non-significant. 
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Table 4.10. Grade 6 level 3 model development - fixed effects 

Fixed effects Model 4.5 Model 4.5’ 
Coeff. SE Coeff. SE 

Intercept 𝛽𝛽00     
intercept 𝛾𝛾000 2.65 0.019 2.65 0.020 

student 𝛾𝛾001  0.17 * 0.117 -- -- 
hands-on 𝛾𝛾002 -0.04 * 0.111 -- -- 
class-tech 𝛾𝛾003   0.25 * 0.163 -- -- 

FS int. 𝛾𝛾010  0.16 0.029 0.16 0.029 
student 𝛾𝛾011 -0.02 * 0.189 -- -- 
hands-on 𝛾𝛾012 -0.01 * 0.175 -- -- 
class-tech 𝛾𝛾013  0.30 * 0.227 -- -- 

female int. 𝛾𝛾020  -0.11 0.020 -0.11 0.020 
student 𝛾𝛾021 -0.33 0.116 -0.20 0.088 
hands-on 𝛾𝛾022 0.17 * 0.120 -- -- 
class-tech 𝛾𝛾023 0.12 * 0.215 -- -- 

time 𝛽𝛽10     
intercept 𝛾𝛾100 -0.26 0.012 -0.26 0.013 

student 𝛾𝛾101 0.05 * 0.085 -- -- 
hands-on 𝛾𝛾102 0.02 * 0.088 -- -- 
class-tech 𝛾𝛾103 -0.18 * .0106 -- -- 

FS int. 𝛾𝛾110 -0.09 0.018 -0.09 0.018 
student 𝛾𝛾111 <0.01 * 0.126 -- -- 
hands-on 𝛾𝛾112 0.02 * 0.100 -- -- 
class-tech 𝛾𝛾113 0.01 * 0.196 -- -- 

grade 𝛽𝛽20     
intercept 𝛾𝛾200 0.33 0.054 0.21 0.057 

student 𝛾𝛾201 -0.01 * 0.391 -- -- 
hands-on 𝛾𝛾202 -1.35 0.333 -- -- 
class-tech 𝛾𝛾203 -1.73 0.428 -- -- 

post 𝛽𝛽30     
intercept 𝛾𝛾300  0.17 0.031 0.22 0.027 

student 𝛾𝛾302 -0.03 * 0.265 -- -- 
hands-on 𝛾𝛾303  0.45 * 0.241 -- -- 
class-tech 𝛾𝛾304  0.84 0.259 -- -- 

FS int. 𝛾𝛾310 0.20 0.042 0.20 0.037 
student 𝛾𝛾311 0.28 * 0.400 -- -- 
hands-on 𝛾𝛾312 -0.78 0.332 -0.54 0.122 
class-tech 𝛾𝛾313 -0.95 0.474 -0.75 0.261 

Deviance (parameters) 3637.5  (39) 3659.4  (18) 
Chi-square (df) – null 382.0  (30) 360.1  (9) 
Chi-square (df) – 4.5 -- -21.9  (21) 
AIC 3715.5 3695.4 
Iterations 486 37 

* Coefficient is not significant, p>.05; all other values significant. 
“—” indicates fixed effect was not entered into the model. 
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Table 4.11. Grade 6 level 3 model development - random effects 

 
Random effects 
estimates 

 Model 4.5 Model 4.5’ 
L1, w/in-student 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡  0.117 0.118 
L2 intercept 𝑟𝑟0𝑡𝑡𝑡𝑡  0.116 0.116 
L2 time 𝑟𝑟1𝑡𝑡𝑡𝑡 0.015 0.015 
L3 intercept – int. 𝑢𝑢00𝑡𝑡 0.003 0.004 
L3 grade – int. 𝑢𝑢20𝑡𝑡 0.028 0.041 

Reliability 
Estimates 

L1 intercept 𝜋𝜋0 0.71 0.71 
L1 – time 𝜋𝜋1 0.30 0.30 
L2 intercept – int. 𝛽𝛽00 0.35 0.40 
L2 grade – int. 𝛽𝛽20 0.66 0.74 

 

Grade 8 Level 3 Model Development 

Equations 4.5a’ through 4.5m’ show the grade 8 models with grand-mean 

centered level 3 predictors added. As with grade 6, the equations for levels 1 and 2 

remain unchanged following model 4.4’’, while the level 3 equations have added the 

three class-level covariates as grand-mean centered terms: 

Level 1: 
𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜋𝜋0𝑡𝑡𝑡𝑡 + 𝜋𝜋1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜋𝜋2𝑡𝑡𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡     (4.5a’) 

Level 2: 
𝜋𝜋0𝑡𝑡𝑡𝑡 = 𝛽𝛽00𝑡𝑡 + 𝛽𝛽01𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛽𝛽02𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛽𝛽03𝑡𝑡𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝑟𝑟0𝑡𝑡𝑡𝑡   (4.5b’) 

𝜋𝜋1𝑡𝑡𝑡𝑡 = 𝛽𝛽10𝑡𝑡 + 𝛽𝛽11𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛽𝛽12𝑡𝑡𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡     (4.5c’) 

𝜋𝜋2𝑡𝑡𝑡𝑡 = 𝛽𝛽20𝑡𝑡 + 𝛽𝛽21𝑡𝑡𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡        (4.5d’) 

Level 3: 
𝛽𝛽00𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾001𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾002𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾003𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉 + 𝜇𝜇00𝑡𝑡 (4.5e’) 

𝛽𝛽01𝑡𝑡 = 𝛾𝛾010 + 𝛾𝛾011𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾012𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾013𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.5f’) 

𝛽𝛽02𝑡𝑡 = 𝛾𝛾020 + 𝛾𝛾021𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾022𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾023𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.5g’) 

𝛽𝛽03𝑡𝑡 = 𝛾𝛾030 + 𝛾𝛾031𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾032𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾033𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.5h’) 

𝛽𝛽10𝑡𝑡 = 𝛾𝛾100 + 𝛾𝛾101𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾102𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾103𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉 + 𝜇𝜇10𝑡𝑡 (4.5i’) 
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𝛽𝛽11𝑡𝑡 = 𝛾𝛾110 + 𝛾𝛾111𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾112𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾113𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.5j’) 

𝛽𝛽12𝑡𝑡 = 𝛾𝛾120 + 𝛾𝛾121𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾122𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾123𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.5k’) 

𝛽𝛽20𝑡𝑡 = 𝛾𝛾200 + 𝛾𝛾201𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾202𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾203𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉  (4.5l’) 

𝛽𝛽21𝑡𝑡 = 𝛾𝛾210 + 𝛾𝛾211𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 + 𝛾𝛾212𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔+ 𝛾𝛾213𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉 + 𝜇𝜇21𝑡𝑡        (4.5m’) 
 

Tables 4.12 and 4.13 present the results for the starting level 3 model (4.5) 

based on the equations above and, following iterative refinements, the final model 

that was selected (4.5’’) to explain change in fascination over time for the grade 8 

cohort. Once again, we observe a pattern in which model 4.5’’ took fewer iterations 

to converge than the starting level 3 model (23 compared to 155), has fewer 

parameters (16 compared to 46), but a larger deviance statistic (4306.9 compared 

to 4212.9). In this instance, unlike the final model at grade 6, model 4.5’’ was found 

to have a slightly larger AIC value (4338.9 compared to 4304.9), suggesting that the 

parsimony provided by the final model is not discounting the model misfit as much 

as the starting model. However, unlike model 4.5, all of the fixed and random effects 

that have been retained are statistically significant, and compared to the 

unconditional model presented in 4.1, the model is a significantly better fit 

(𝜒𝜒2=360.1 df=9 p<.001). 

Table 4.12 below shows that almost all of the level 3 variables entered into 

the grade 8 model were found to be non-significant, with only 1 of the 27 newly 

added terms retained in model 4.5’’. Interestingly, once level 3 was modeled with 

predictors, this resulted in a non-significant fixed parameter estimated for level 2 

(𝛽𝛽21) which had previously been retained in level 2 modeling. In other words, once 
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the data were modeled with level 3 predictors, home resources no longer 

significantly influenced the Year 2 slope trajectory, post. 

Using the variance estimates provided in Table 4.13, the pseudo R2 statistics 

are calculated as follows: 

L1 pseudo R2:  0.111−0.106
0.111

= 0.040 

L2 pseudo R2:  0.105−0.097
0.105

= 0.080 

L3 pseudo R2:  0.005−0.004
0.005

= 0.224 

While the pseudo R2 statistic for level 1 is slightly lower than that which was 

obtained after finalizing level 2, we still observe a final model in which the 

unexplained variance in the random parameter, e, has been reduced by 4%, and 

unexplained variance in the level 2 intercept, 𝑟𝑟0, has been reduced by 8%. 

Importantly, modeling at level 3 has led to a reduction in the level 3 unexplained 

variance, 𝑢𝑢00, by 22%. In contrast to model 4.5’ for grade 6, this finding is indeed 

surprising, as only one predictor was retained at level 3. Given that the variance 

accounted for at level 3 was only found to be 2.1% based on the initial unconditional 

model, however, this additional variance explained still accounts for less than 0.5% 

of the total variation in fascination scores. 
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Table 4.12. Grade 8 level 3 model development - fixed effects 

Fixed effects Model 4.5 Model 4.5’’ 
Coeff. SE Coeff. SE 

Intercept 𝛽𝛽00     
intercept 𝛾𝛾000 2.50 0.015 2.50 0.015 

student 𝛾𝛾001 0.12 * 0.101 -- -- 
hands-on 𝛾𝛾002 -0.06 * 0.081 -- -- 
class-tech 𝛾𝛾003 0.12 * 0.127 -- -- 

HR int. 𝛾𝛾010 0.07 0.021 0.08 0.023 
student 𝛾𝛾011 -0.08 * 0.130 -- -- 
hands-on 𝛾𝛾012 0.11 * 0.102 -- -- 
class-tech 𝛾𝛾013 0.42 * 0.363 -- -- 

FS int. 𝛾𝛾020 0.11 0.022 0.11 0.022 
student 𝛾𝛾021 0.12 * 0.116 -- -- 
hands-on 𝛾𝛾022 -0.18 0.089 -- -- 
class-tech 𝛾𝛾023 0.67 0.309 0.61 0.216 

female int. 𝛾𝛾030 -0.11 0.021 -0.12 0.021 
student 𝛾𝛾031 -0.07 * 0.129 -- -- 
hands-on 𝛾𝛾032 -0.11 * 0.121 -- -- 
class-tech 𝛾𝛾033 -0.12 * 0.224 -- -- 

time 𝛽𝛽10     
intercept 𝛾𝛾100 -0.12 0.011 -0.12 0.012 

student 𝛾𝛾101 -0.10 * 0.073 -- -- 
hands-on 𝛾𝛾102 0.06 * 0.073 -- -- 
class-tech 𝛾𝛾103 -0.06 * 0.115 -- -- 

HR int. 𝛾𝛾110 -0.07 0.018 -0.02 0.012 
student 𝛾𝛾111 0.04 * 0.109 -- -- 
hands-on 𝛾𝛾112 -0.03 * 0.091 -- -- 
class-tech 𝛾𝛾113 -0.02 * 0.303 -- -- 

FS int. 𝛾𝛾120 -0.05 0.013 -0.05 0.014 
student 𝛾𝛾121 -0.06 * 0.081 -- -- 
hands-on 𝛾𝛾122 0.02 * 0.074 -- -- 
class-tech 𝛾𝛾123 -0.16 * 0.149 -- -- 

post 𝛽𝛽20     
intercept 𝛾𝛾200 0.25 0.046 0.26 0.033 

student 𝛾𝛾201 0.26 * 0.359 -- -- 
hands-on 𝛾𝛾202 0.15 * 0.314 -- -- 
class-tech 𝛾𝛾203 -0.81 * 0.425 -- -- 

HR int. 𝛾𝛾210 0.11 * 0.079 -- -- 
student 𝛾𝛾211 -0.87 * 0.777 -- -- 
hands-on 𝛾𝛾212 1.35 * 0.781 -- -- 
class-tech 𝛾𝛾213 0.65 * 0.945 -- -- 

Deviance (parameters) 4212.9  (46) 4306.9  (16) 
Chi-square (df) – null 394.0  (37) 300.1  (7) 
Chi-square (df) – 4.5 -- -94.0  (30) 
AIC 4304.9 4338.9 
Iterations 155 23 

* Coefficient is not significant, p>.05; all other values significant. 
“—” indicates fixed effect was not entered into the model. 
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Table 4.13. Grade 8 level 3 model development - random effects 

 
Random effects 
estimates 

 Model 4.5 Model 4.5’’ 
L1, w/in-student 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡  0.105 0.106 
L2 intercept 𝑟𝑟0𝑡𝑡𝑡𝑡  0.097 0.097 
L2 time 𝑟𝑟1𝑡𝑡𝑡𝑡 0.019 0.020 
L3 intercept – int. 𝑢𝑢00𝑡𝑡 0.002 0.004 
L3 time – int. 𝑢𝑢10𝑡𝑡 0.002 0.004 
L3 grade – HR 𝑢𝑢21𝑡𝑡 0.008 -- 

Reliability 
Estimates 

L1 intercept 𝜋𝜋0 0.70 0.90 
L1 – time 𝜋𝜋1 0.31 0.32 
L2 intercept – int. 𝛽𝛽00 0.30 0.39 
L2 time – int. 𝛽𝛽10 0.46 0.63 
L2 post – HR 𝛽𝛽21 0.18 -- 

 

Equation 4.5’’ presents the final mixed model for grade 8: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛾𝛾000 + 𝛾𝛾010𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 𝛾𝛾020𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 𝛾𝛾021𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉𝑡𝑡 + 

𝛾𝛾030𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 + 𝛾𝛾100𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾110𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 ∗ 𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾120𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾200𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 

𝑟𝑟0𝑡𝑡𝑡𝑡 + 𝑟𝑟1𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜇𝜇00𝑡𝑡 + 𝜇𝜇10𝑡𝑡𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡     (4.5’’) 

Residual Analyses 

Diagnostic checks were performed regarding the specifications of the 

hierarchical models, based on the assumptions laid out in Chapter 3 concerning the 

error structures and predictor variables. Using residuals from final models 4.5’ and 

4.5’’ for grades 6 and 8, respectively, Appendices B and C present a graphical 

analysis for the error terms at each level, while tables examining the correlations 

between the residuals and predictors are also included. 

Specific to grade 6 model 4.5’, Appendix B first presents a series of 

histograms to test for normally distributed residuals with a mean of zero at all three 

levels. The figures displayed in B1-B5 confirm that the mean for each residual term 
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(e, r0, r1, 𝜇𝜇00, and 𝜇𝜇20) approximates zero, and for the most part, the histograms 

follow the normal curve. This supports the error structure assumptions regarding 

normality. The figures in B6-B12 plot the error terms against categorical predictors 

at each level to determine if significant differences exist in the residuals, all of which 

follow similar normal distribution patterns. The table displayed in B13 shows the 

correlations between the predictors and residuals, with no statistically significant 

relationships present. This supports the predictor variable assumptions regarding 

independence. 

Appendix C presents the same set of histograms specific to grade 8 model 

4.5’’ in the same order. We first see the standard normal curve with mean 0 overlaid 

against the residual terms (e, r0, r1, 𝜇𝜇00, and 𝜇𝜇10), although there are slight 

irregularities in the distributional pattern of the level 3 residuals associated with the 

time variable, 𝜇𝜇10. Despite this, the remaining histograms (C6-C11) show relatively 

uniform distributions across categorical variables at levels 1 and 2. The table of 

correlations in C12 shows only one significant level 3 relationship between the 

classroom-technology predictor and the residuals associated with the time variable, 

𝜇𝜇10. Correlated predictors and residuals within level signal potential model 

misspecification, however, the variable classtech is only modeled in one interaction 

term without constituting a large share of explained variance. 

Conclusion 

In order to clarify the technical findings presented in this chapter, an overall 

interpretation of each final model in the context of change in fascination scores is 
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warranted prior to answering the research questions posed in this dissertation in 

the next chapter. Beginning at grade 6 and substituting the observed fixed 

parameter estimates from model 4.5’ into equation 4.5’ allows us to better interpret 

each of the terms. Equation 4.6 below presents the final grade 6 predictive model for 

student fascination in science: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝚤𝚤𝑓𝑓𝑎𝑎𝑓𝑓𝚤𝚤𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡� = 2.65 + 0.16𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 − 0.11𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 − 0.20𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 ∗ 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑡𝑡 − 

0.26𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 − 0.09𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 0.21𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 0.22𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 + 0.20𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 − 

0.54𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝒉𝒉𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔𝑡𝑡 ∗ 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 − 0.75𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉𝑡𝑡 ∗ 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡     (4.6) 

Because this equation now models predicted fascination scores, the error terms 

(𝑟𝑟0𝑡𝑡𝑡𝑡, 𝑟𝑟1𝑡𝑡𝑡𝑡,𝜇𝜇00𝑡𝑡,𝜇𝜇20𝑡𝑡, 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡) are notably missing; however, it is assumed that each 

student’s individual observed fascination score would have some amount of 

deviance from the prediction above that is captured in the model through the 

residuals. 

The initial term representing the intercept indicates that the expected 

fascination score for boys in the middle of their 6th grade school year (time=0, 

measurement point 2) is 2.65, on average (i.e., those who have family support equal 

to the grand-mean). Girls, however, have an expected fascination score that is 0.11 

points (or roughly two-tenths of a standard deviation) lower across all time points. 

For both boys and girls, fascination decreases linearly from the start of the school 

year (average fascination scores at time=-1: 2.91 and 2.80, respectively) until the 

end of the school year (average fascination scores at time=1: 2.39 and 2.28, 

respectively). Due to the discontinuous nature of the model—including both a 
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change in level (new intercept at the start of grade 7) and change in slope (new 

growth trajectory across the grade 7 measurement occasions)—scores at the start 

of Year 2 come back up slightly, on average (2.56, 2.45) but are once again 

depressed by the end of the year (2.52, 2.41). In other words, the change in level 

between grades 6 and 7 was observed to be 0.17 fascination scale score points, 

while the change in slope was found to be -0.04 fascination scale score points 

(implying a slight increase compared to the prior year, given the negative slope 

initially observed). 

The 𝛾𝛾010, 𝛾𝛾110, and 𝛾𝛾310 estimates related to the grand-mean centered FS 

suggests that students with above average family support have higher fascination 

scores, on average, and that this effect fluctuates over time based on the interactions 

with time and post. Holding all else constant, those who score 1 point higher than 

the grand mean on the FS scale are expected to be 0.25 points higher on the 

fascination score scale at the start of grade 6 (time=-1); this influence is reduced by 

0.09 scale points at each remaining time point in Year 1 (0.16 points higher at 

time=0, 0.07 points higher at time=1). In Year 2 (grade 7), the trend reverses such 

that each incremental scale point higher in family support translates to an 

additional 0.11 fascination scale score points above the 0.07 observed at the end of 

Year 1 (0.18 points higher at time=2, 0.29 points higher at time=3). Given that the 

family support mean for grade 6 students was observed to be 3.51 (see Table 4.1) 

with a standard deviation of 0.49 and a restricted range (1.00-4.00), a more likely 

scenario involves students scoring one-tenth of a point above or below the grand-

mean, and predicted changes one-tenth the magnitude of those described above. 
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The remaining coefficient estimates all pertain to covariates at level 3 and 

involve interactions with lower level terms. Specifically, 𝛾𝛾021, the coefficient related 

to the female *student term in equation 4.6, demonstrates the additional reduction in 

expected fascination scores for girls for cases in which student-centric teaching 

occurs above average. In the case of 𝛾𝛾311 and 𝛾𝛾312, the coefficients for 

FS*handson*post and FS*classtech*post, students in Year 2 (grade 7, when post ≠ 0) 

with above grand-mean scores for family support and above average classroom 

hands-on instruction or classroom technology use are expected to see decreases in 

fascination scores.  

Transitioning to the final grade 8 model, we now substitute the observed 

fixed parameter estimates from model 4.5’’ into equation 4.5’’, allowing us to 

replicate this interpretive process for eighth graders. Equation 4.7 presents the final 

predictive model for student fascination in science at grade 8 (while again, residuals 

are not included in the predictive notation): 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝚤𝚤𝑓𝑓𝑎𝑎𝑓𝑓𝚤𝚤𝑓𝑓𝑓𝑓� 𝑡𝑡𝑡𝑡𝑡𝑡 = 2.50 + 0.08𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 + 0.11𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 + 0.61𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝒄𝒄𝒄𝒄𝒉𝒉𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒉𝒉𝑡𝑡 − 

0.12𝑓𝑓𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓𝑒𝑒𝑡𝑡𝑡𝑡 − 0.12𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 − 0.02𝑯𝑯𝑯𝑯𝑡𝑡𝑡𝑡 ∗ 𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 − 

0.05𝑭𝑭𝑭𝑭𝑡𝑡𝑡𝑡 ∗ 𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 0.26𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡    (4.7) 

Here, we observe similarities to the sixth grade model; namely, the negative 

slope coefficients associated with the variables time and female. The intercept, 2.50, 

represents the expected fascination score for boys in the middle of their 8th grade 

school year with grand-mean equivalents for home resources and family support for 

science, while girls have an expected fascination score that is 0.12 points lower 
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(roughly 0.25 s.d.) at all time points. Fascination again decreases linearly from the 

start of the school year (average fascination scores at time=-1: 2.62 and 2.50, 

respectively) until the end of the school year (average fascination scores at time=1: 

2.38 and 2.26, respectively). Although the nature of the discontinuity for the grade 8 

model differs in that there is no change in level at summer break (i.e., the grade 

variable is not present in the final model), we still observe a change in slope in 

which fascination scores are expected to rise in Year 2. By the end of ninth grade, 

average fascination scores for both boys and girls are slightly higher than the 

beginning of eighth grade (2.66 and 2.54, respectively). In other words, the 𝛾𝛾200 

coefficient estimate for post of 0.26, in concert with the original 𝛾𝛾100 coefficient for 

time of -0.12 results in a change in slope of +0.14. 

The remaining terms suggest an increase in fascination scores for all 

students with above average home resources (𝛾𝛾010, 𝛾𝛾110) or family support for 

science (𝛾𝛾020, 𝛾𝛾120), the influence of each of which decreases as time goes on due to 

their observed negative interaction coefficients with the time variable. Lastly, 

students with above average family support scores who receive more than the 

grand-mean of instructional classroom technology use (𝛾𝛾021=0.61) correspond with 

increased fascination scores. 

The next chapter extends these interpretations by linking them directly to 

the research questions. More specifically, the next chapter offers reflections on the 

data and analyses herein, while discussing the implications of findings toward 

improving student fascination in science more broadly.  



115 
 
 

Chapter 5: Discussion 

This dissertation sought to answer three research questions, each of which focused 

on different aspects of students’ fascination in science and potential influences: 

RQ1: What is the average change in science fascination of middle school 

students over time? And how much does this change vary, on average? 

RQ2: To what extent is predicted student science fascination associated with 

the instructional characteristics of the classroom, including student-

centric teaching, hands-on methods, and classroom technology use? And 

are these effects sustained over time? 

RQ3: To what extent are middle schools equally successful in sustaining 

science fascination for students whose gender, race, family support for 

science, or economic backgrounds differ? 

 These questions were explored for two cohorts of students, one composed of 

students who began the study in grade 6 and the second composed of students who 

began the study in grade 8. For both cohorts of students, hierarchical models were 

iteratively constructed to address these questions. This chapter discusses model 

results in relation to each research question, making connections to prior research 

as applicable. After a description of the limitations of the current work, implications 

for researchers and practitioners are offered as concluding remarks. 
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Change in Middle School Students’ Science Fascination 

The first research question asked specifically about the amount of change—

and implicitly, about the nature of this change—in student fascination scores: 

What is the average change in science fascination of middle school students 

over time? And how much does this change vary, on average? 

Detailed in the previous chapter, multilevel equations were constructed to 

model student science fascination scores for both grade-level cohorts. In a linear 

growth model, the answer to this question would involve a discussion of the 

estimated L1 growth parameter (coefficient 𝜋𝜋1𝑡𝑡𝑡𝑡 for the linear slope variable, time) 

along with the error term associated with the unspecified L2 equation for the slope 

variable, 𝑟𝑟1𝑡𝑡𝑡𝑡, prior to the addition of student- and class-level covariates at levels 2 

and 3. However, with five measurement occasions and the discontinuous patterns of 

change identified at both grade levels, a simple linear equation does not adequately 

model change in fascination. Instead, the interpretation of change over time hinges 

on simultaneously analyzing the linear time component and the discontinuous 

terms for change in level (grade) and change in slope (post). Likewise, we must take 

into account the combination of growth parameters in the discussion of variance by 

analyzing the L2 error terms associated with all three variables: 𝑟𝑟1𝑡𝑡𝑡𝑡 for the linear 

time component, 𝑟𝑟2𝑡𝑡𝑡𝑡 for the grade change-in-level discontinuous component, and 
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𝑟𝑟3𝑡𝑡𝑡𝑡 for the post change-in-slope discontinuous component.4 Both discontinuous 

grade-level models were found to be statistically significantly better fits for the data 

compared to their respective null models, which included only the linear time 

variable (for grade 6, 𝜒𝜒2=281.1, df=5, p<.001; for grade 8, 𝜒𝜒2=188.2, df=1, p<.001). 

Returning to equations 4.3’ and 4.3’’ for grades 6 and 8, respectively, 

removing terms associated with stochastic error to evaluate predicted fascination 

scores after the level 1 modeling phase, and inserting coefficient estimates from 

Tables 4.4 and 4.5 for each, we observe equation 5.1 for grade 6 and equation 5.2 for 

grade 8 which are necessary to address this first research question: 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝚤𝚤𝑓𝑓𝑎𝑎𝑓𝑓𝚤𝚤𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡� = 2.60 − 0.26 ∗ 𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 0.20 ∗ 𝑔𝑔𝑟𝑟𝑎𝑎𝑔𝑔𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 0.22 ∗ 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 (5.1) 

𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝚤𝚤𝑓𝑓𝑎𝑎𝑓𝑓𝚤𝚤𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡� = 2.44 − 0.12 ∗ 𝑓𝑓𝑓𝑓𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡 + 0.21 ∗ 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡    (5.2) 

Using the formulas above, Figures 5.1 and 5.2 below detail the predicted average 

change in fascination over time for grade 6 students and grade 8 students, 

respectively. 

 Visible in Figure 5.1, grade 6 predicted average fascination scores are at their 

peak of 2.86 (out of 4.00) at the start of Year 1, which is the first measurement 

occasion (orig_time=1, time=-1). Compared to their lower scoring peers, sixth grade 

students with mean fascination scores near 2.86 are considerably more likely to 

                                                         
4   Additional variance at level 3 could also be discussed, pertaining to differences between classes 

(𝑢𝑢10𝑡𝑡 , 𝑢𝑢20𝑡𝑡 , and 𝑢𝑢30𝑡𝑡). However, for the purposes of addressing RQ1 and the variance in change in 
fascination between students, this section solely includes the level 2 variance components to focus 
on differences between students. 
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endorse items such as “After a really a really interesting science activity is over, I 

look for more information about it,” and “I want to know everything about science.” 

(See Appendix A1 for full Fascination in Science scale.)  Throughout the school year, 

scores then decrease, bottoming out at 2.34 by the end of grade 6 (orig_time=3, 

time=1). At the start of grade 7 (orig_time=4, time=2), scores rebound slightly to 

2.50 but continue to fall to 2.46 by the end of the school year (orig_time=5, time=3). 

As the discontinuous terms (grade and post) were both found to be significant in the 

grade 6 model, the dashed vertical red line in the graph represents the change in 

level (grade) between grades 6 and 7 representing 0.16 fascination scale score 

points. Meanwhile the change in slope (post) is evident by the slightly less steep line 

connecting average predicted fascination between measurement occasions 4 and 5, 

having been reduced from -0.26 in Year 1 to -0.04 in Year 2. For the average student, 

the change in fascination from the start of grade 6 to the end of grade 7 is -0.40 scale 

score points, observed in Figure 5.1 as the dashed black line representing the 

difference between predicted average fascination at the first measurement occasion 

(2.86) and the fifth measurement occasion (2.46). 
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Figure 5.1. Grade 6 predicted average fascination change 

 

Next, we examine the estimates for the variances of the growth parameters 

for time, grade, and post at level 2. Model 4.3’ in Table 4.4 reveals that, of these three 

random effects, two (𝑟𝑟2𝑡𝑡𝑡𝑡 and 𝑟𝑟3𝑡𝑡𝑡𝑡) were not retained in the final modeling of 

functional form at L1. This indicates that the resulting 𝜒𝜒2 statistic for each 

homogeneity of variance test for these terms was sufficiently low, that the null 

hypotheses specified in Chapter 3 pertaining to the L2 variance-covariance matrices 

were retained (e.g., 𝐻𝐻0: 𝜏𝜏𝜋𝜋20 = 0), and that there is no true variation in those growth 

parameters. Table 4.4 also reveals that the remaining variance estimate (𝑟𝑟1𝑡𝑡𝑡𝑡) was 

retained in modeling of the final functional form, and that the opposite is true: the 

𝜒𝜒2 test of homogeneity was found to be statistically significant (p<.05), and the null 

hypothesis that the variation in the growth parameter is zero is rejected. The 

conclusion is that there is significant student-to-student variation in the linear 
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component of fascination growth in Year 1, but not in the discontinuous nature of 

change in level or change in slope. Table 4.4 shows the variance estimate for the 

time linear growth parameter, �̂�𝜏𝜋𝜋10, to be 0.016, the square root of which produces 

an estimated standard deviation of 0.126. Thus, a sixth grade student whose change 

in fascination is one standard deviation above average is expected to have a flatter, 

but still negative slope of -0.13 between measurement occasions in Year 1 (-0.259 + 

0.126 = -0.133). With no significant variation in observed change in level or change 

in slope, this produces a total change in fascination from the start of grade 6 to the 

end of grade 7 of -0.15 scale score points. Meanwhile, a sixth grade student whose 

change in fascination is one standard deviation below average would be expected to 

have a corresponding drop in fascination in Year 1 of 0.25 scale score points, 

resulting in a total change in fascination across the two years of -0.65 scale score 

points. 

Given this variance in estimated average change in fascination in science 

scores (s.d.=0.126), the observed difference of -0.40 scale points over the two year 

study represents quite a loss in fascination—a drop of more than three standard 

deviations in growth. In fact, at the beginning of Year 1, fewer than 24% of grade 6 

students had mean fascination scores of 2.46 or lower. 

Focusing now on eighth graders, Figure 5.2 shows the graphical results of 

equation 5.2 and predicted change in fascination scores from the start of grade 8 to 

the end of grade 9. We see that predicted average fascination scores begin at 2.56 

(out of 4.00) at the start of Year 1 (orig_time=1, time=-1). Compared to their lower 
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scoring peers, eighth grade students with mean fascination scores near 2.56 are 

considerably more likely to endorse the two items on the fascination scale 

pertaining to the subdimension of interest: “In general, when I work on science I…” 

and “In general, I find science…” (See Appendix A1 for full Fascination in Science 

scale). Similar to the pattern observed at grade 6, scores decrease to their lowest 

observed point at the end of the first school year, 2.32 (orig_time=3, time=1). 

Although there is no change-in-level term (grade) representing a discontinuous 

intercept at the start of Year 2, the change-in-slope term (post) reverses the pattern 

of decreasing fascination scores in an upward linear fashion throughout grade 9. 

The positive Year 2 slope does not completely restore fascination scores to their 

Year 1 starting point by the end of the year but comes close, with an expected 

average of 2.50. This reflects a Year 2 slope of 0.09, a stark contrast to the Year 1 

observed slope of -0.12. For the average student, the change in fascination from the 

start of grade 8 to the end of grade 9 is -0.06 scale score points, observed in Figure 

5.2 as the dashed black line representing the difference between predicted average 

fascination at the first measurement occasion (2.56) and the fifth measurement 

occasion (2.50). 
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Figure 5.2. Grade 8 predicted average fascination change 

 

Finally, we examine the grade 8 estimates for the variances of the growth 

parameters for time and post at level 2 (grade was not retained in the final 

functional form model). Model 4.3’’ in Table 4.5 shows that the random effect for the 

discontinuous term post (𝑟𝑟2𝑡𝑡𝑡𝑡) was not statistically significant, indicating there is no 

true variation in Year 2 slope between students. As the random effect estimate 

associated with the Year 1 slope variable time, 𝑟𝑟1𝑡𝑡𝑡𝑡, was retained in final modeling, 

we once again conclude that there is significant individual variation in fascination 

growth in Year 1, but not in the discontinuous nature of change in slope. Table 4.5 

shows the variance estimate for the time growth parameter, �̂�𝜏𝜋𝜋10, to be 0.021, the 

square root of which produces an estimated standard deviation of 0.145. Thus, an 

eighth grade student whose change in fascination is one standard deviation above 

average is actually expected to have a positive slope between measurement 
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occasions in Year 1 (-0.116 + 0.145 = 0.029), ending middle school with a predicted 

average fascination score of 2.61. With no significant variation in observed change 

in slope in Year 2, this produces a total change in fascination from the start of grade 

8 to the end of grade 9 of 0.23 scale score points (0.29 higher than the average 

student). Meanwhile, a sixth grade student whose change in fascination is one 

standard deviation below average would be expected to have a corresponding drop 

in fascination in Year 1 of 0.29 scale score points, resulting in a total change in 

fascination across the two years of  

-0.35 scale score points. 

Although disappointing to observe another downward trend in fascination in 

science, the predicted drop of 0.06 scale score points on average for eighth graders 

is far less severe than the predicted loss for the average sixth grader. This change in 

fascination represents less than half a standard deviation in growth, and 49% of 

grade 8 students had mean fascination scores of 2.50 or lower at the beginning of 

Year 1.  

To summarize and more succinctly answer the first research question, the 

average change in science fascination from the beginning of sixth to the end of 

seventh grade is predicted to be -0.40 scale score points, with a standard deviation 

of 0.126. The average change in science fascination from the beginning of eighth 

grade to the end of ninth grade is predicted to be -0.06 scale score points, with a 

standard deviation of 0.145. While not particularly promising at either grade level, 

the pattern of change in fascination for the grade 8 cohort is considerably more 
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optimistic than that for the grade 6 cohort, particularly when considering the 

increase in fascination scores observed in Year 2. 

Influence of Classroom Instruction on Students’ Science 

Fascination 

The second research question asked how classroom-level variables influence 

student fascination scores: 

To what extent is predicted student science fascination associated with the 

instructional characteristics of the classroom, including student-centric 

teaching, hands-on methods, and classroom technology use? And are these 

effects sustained over time? 

Before looking at model results to determine the relationship of the level 3 

classroom predictors with student fascination in science, it is worth revisiting the 

calculations of the intraclass correlation coefficients based on the variance 

estimates produced by the initial null models. Specifically, the L3 ICC for grade 6 

was found to be 0.015, and for grade 8 was found to be 0.021. In both cases, the 

proportion of variance attributable to the classroom nesting structure was minimal, 

roughly 2%. Thus, any instructional characteristics that play a role in influencing 

student fascination would only be able to account for a very small proportion of 

variance explained in fascination scores. Keeping this in mind, it is therefore not 

surprising to see that Tables 4.10 and 4.12 show very few significant relationships 
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between the level 3 predictors—student-centric teaching, hands-on methods, and 

classroom technology use—and student fascination in science. 

For 6th graders, each variable was found to have only one significant 

relationship. Specifically, student-centric teaching (student) was found to have a 

significant relationship with the variable female and its effect on the intercept term 

(𝛾𝛾021 = -0.20, se = 0.09, t(953) = -2.33, p = 0.02), indicating that, while above average 

student-centric teaching time was not found to correlate with higher fascination 

scores, increases in student-centric teaching above the grand mean lead to 

additional decreases in expected fascination for girls, on average. Hands-on methods 

and classroom technology use were each found to have a significant relationship 

with the level 2 family support variable and its effect on the Year 2 post variable 

(handson: 𝛾𝛾311 = -0.54, se = 0.12, t(959) = -4.40, p < 0.01; classtech: 𝛾𝛾312 = -0.75,        

se = 0.26, t(959) = -2.87, p < 0.01). These results indicate that, following the summer 

discontinuity, 7th graders with above grand-mean scores for family support and 

above average classroom hands-on instruction or classroom technology use are 

expected to see decreases in fascination scores. Although statistically significant, the 

standard errors for each of these terms were high relative to the other se estimates 

in the final model, and given the magnitude of the estimated coefficient parameters, 

the implication is that each of these terms is estimated with less precision than the 

other terms retained in the final model. 

For 8th graders, only one level 3 predictor was retained in the final model, 

classtech. The single statistically significant relationship detected was an interaction 
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with the level 2 family support variable and its effect on the intercept term         

(𝛾𝛾021 = 0.61, 𝑓𝑓𝑒𝑒 = 0.22, 𝑓𝑓(1200) = 2.83,𝑝𝑝 = 0.005). These results indicate that students 

with above average family support who receive more than the grand-mean of 

instructional classroom technology use have a corresponding increase in predicted 

fascination scores mid-way through Year 1 (time=0). 

Overall, these results suggest that classroom instructional characteristics are 

not meaningfully associated with predicted science fascination. Despite a few 

significant relationships found in the final models at both grade levels, the influence 

on changes in student fascination scores are minimal given the low proportions of 

variance attributable to classroom-level nesting. This is most noticeable when 

reviewing the L3 pseudo R2 statistics for each of the final models and their 

contributions toward reducing previously unexplained variance in predicted 

fascination scores. The negative L3 pseudo R2 calculated for the final grade 6 model 

is uninterpretable, while the pseudo R2 calculated for the final grade 8 model of 0.22 

translates to a reduction of only 2% in previously unexplained variance. 

To the extent that significant relationships were observed at either grade 

level, the effects were not sustained over time. For both grade levels, there were 

associations with initial predicted fascination scores (i.e., the intercepts) and 

diminishing effects over time based on interactions with the discontinuous Year 2 

terms. This suggests that, however minimal the observed impacts of instructional 

characteristics on fascination scores are in Year 1, they quickly fade as students 

enter new classrooms and new grades in Year 2. 
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Student Characteristics and their Relationship to Students’ Science 

Fascination 

The third and final research question posed in this dissertation asked how 

student-level variables influence student fascination scores: 

To what extent are middle schools equally successful in sustaining science 

fascination for students whose gender, race, family support for science, or 

economic backgrounds differ? 

If schools were in fact equally successful in sustaining science fascination for 

students whose individual characteristics differed (in terms of gender, race, family 

support for science, or economic backgrounds), we would find no significant 

relationships between the modeled L2 predictors and predicted fascination scores. 

Unlike the nesting structure of classrooms at level 3, close to 50% of the variation in 

fascination scores at both grade levels was found to be related to person-to-person 

differences modeled at level 2, providing more opportunity for modeled student-

level variables to find patterns of association. 

At grade 6, several significant relationships were found, exclusively with 

variables related to family support for science (FS) and gender (female). Specifically, 

both covariates were found to have an effect on initial predicted fasciation values 

(FS: 𝛾𝛾010 = 0.16, se = 0.03, t(953) = 5.33, p < 0.01; girl: 𝛾𝛾020 = -0.11, se = 0.02, 

t(953) = -5.63, p < 0.01), while family support alone was found to have a continuing 

impact over time on the Y1 growth term time (𝛾𝛾110 = -0.09, se = 0.02, t(953) = -5.86, 
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p < 0.01) and the Y2 change-in-slope term post (𝛾𝛾310 = 0.20, se = 0.04, t(959) = 5.25,        

p < 0.01). As noted earlier, the association between female and fascination indicates 

that, on average, sixth grade girls have an expected initial fascination score that is 

0.11 points (or 2 10�  s.d.) lower, and compared to boys, this reduction holds 

throughout the two-year period. And though the influence of FS fluctuates across 

measurement occasions due to the discontinuous model, students who have above 

grand-mean family support have higher fascinations scores, on average, at each 

observed time point. 

At grade 8, similar relationships were found between predicted fascination 

scores and student-level variables. Family support for science and gender once 

again had an effect on the intercept term (FS: 𝛾𝛾020 = 0.11, se = 0.02, t(1200) = 4.93,   

p < 0.01; girl: 𝛾𝛾030 = -0.12, se = 0.02, t(1200) = -5.55, p < 0.01), as did home 

resources (𝛾𝛾010 = 0.08, se = 0.02, t(1200) = 3.38, p < 0.01). Home resources and 

family support for science were also found to have a relationship with the Year 1 

slope variable, time (HR: 𝛾𝛾110 = -0.02, se = 0.01, t(1200) = -2.08, p = 0.04;  

FS: 𝛾𝛾120 = -0.05, se = 0.01, t(1200) = -3.55, p < 0.01). In all instances, students with 

scores above the grand mean for family support for science and home resources are 

predicted to have higher fascination scores than their peers, on average, although 

the influence of HR and FS wanes over time, as noted in Chapter 4. 

These results highlight some important trends across grade levels. First, as 

the variable female was found to be significantly and negatively related to initial 

fascination scores in both final models, it is evident that prior experiences lead 
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females to begin each year with lower levels of fascination in science. In addition, 

differences in the level of fascination in science stay the same over the two-year 

period of study, all other things being equal. While the present analyses do not 

support claims about the impact prior schooling has had on students’ levels of 

fascination in science, these results do suggest that schools are not effective at 

narrowing or eliminating these differences in the level of fascination in science for 

middle school students entering high school. Girls have consistently lower 

fascination scores at all time points in both grade level models, allowing us to 

conclude that schools are not equally successful in supporting fascination for 

students whose gender differs. 

Secondly, home background variables were also found to be significantly 

related to fascination scores, most notably family support for science. For both sixth 

and eighth graders, fascination scores were higher for students with above average 

family support for science, a pattern that persists into grades 7 and 9 to a certain 

degree. While not necessarily surprising, this suggests that schools also are not 

equally successful in supporting for students with less familial support, and that 

students who experience lower levels of support at home could be better supported 

at school to mitigate these differences. 

Finally, the race variable URM was not found to have a significant 

relationship with any of the modeled characteristics of change in fascination over 

time. At face value, this indicates that students of all racial backgrounds are equally 

supported by schools in terms of science fascination, and that the impact schooling 
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has on students’ fascination in science seems to vary more for other characteristics 

previously mentioned—gender, family support for science, and home resources. 

Summary of Findings 

In addressing the first research question regarding the average change in 

science fascination of middle school students, the observed average change for the 

sixth grade cohort was found to be -0.40 scale score points, representing a drop of 

more than three standard deviations in the growth parameter (0.126). In contrast, 

the average change in fascination scores for the eighth grade cohort was found to be 

-0.06 scale score points, a minimal drop in comparison to the observed standard 

deviation in growth of 0.145. In addressing the second research question regarding 

the relationship between instructional characteristics and predicted student science 

fascination, meaningful associations were not observed due to the low proportion of 

variance in fascination scores at the classroom level. In addressing the third and 

final research question regarding student-level covariates and their relationships to 

changes in science fascination, a significant negative association was found with the 

gender variable female in both grade-level models, indicating that females begin 

with lower levels of fascination in science than boys at each grade; these observed 

differences remained throughout the two-year study. Family support for science 

was also found to be significantly related to fascination, and students with above 

average family support in both grades were observed to have higher average 

fascination scores than their peers with lower family support. No significant 
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relationship was observed between the race variable, underrepresented minority 

(URM), and changes in fascination over time. 

Limitations 

This dissertation attempted to provide a rigorous approach to addressing the 

stated research questions, including the use of high-quality data and the 

employment of an appropriate methodology, although there are several caveats to 

the inferences that can be drawn from this work. Among them are subjective 

decisions made about variable coding that could have influenced results and 

measurement issues stemming from secondary analyses, each of which will be 

discussed in more detail. 

The decision to recode racial/ethnic data into a singular underrepresented 

minority (URM) variable was made to both simplify the level 2 model development 

process by reducing the number of prospective variables, while also strongly 

aligning with theory helping to guide this work. The NSF definition provided in the 

previous chapter—“…groups whose representation in S&E education or 

employment is smaller than their representation in the U.S. population” (NSF, 

2021b)—is precisely the consideration this variable and its coding intended to 

provide in the modeling of fascination in science. Given the complexity of true 

racial/ethnic backgrounds and the multitude of combinations that exist from an 

identity standpoint, the possibility of variable coding was quite vast, despite the 

search for parsimony in model development. Still, it is striking that the results 

presented in both grade-level models suggest no statistical relationship between 
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(dummy-coded) race and fascination scores in science, contrary to previous work 

(e.g., Archer et al., 2012; Catsambis, 1995). It stands to reason that the URM variable 

could be misspecified, while alternate coding schemes would have highlighted 

significant relationships that went undetected with the binary coding scheme 

utilized in the developed models. 

Limitations imposed by the initial research design raise questions and offer 

guidance for future work. Specifically, end-of-year fascination scores in Year 1 for 

both grade levels are low enough to raise suspicions about the timing of 

measurements in relation to state-imposed standardized testing in the two states 

from which schools participated, California and Pennsylvania. There are well-

documented negative impacts of high-stakes tests which impact the affective side of 

learning (e.g., Madaus & Russell, 2009/2010), and measurement occasions even 

prior to, but in anticipation of, standardized tests could artificially deflate 

fascination scores, potentially differentially for subgroups of students. However, 

because there was no definitive indication that this was universally the case, there 

was no reason to exclude this measurement occasion and drastically reduce the 

usable sample; future studies should ensure end-of-year measures are not 

influenced by assessment schedules. 

Relatedly, the magnitude of attrition entering Year 2 of the study, although 

potentially unavoidable, raises additional questions about patterns of missingness 

(recall that 76% of the final sample had no Year 2 fascination scores). As detailed in 

Chapter 3, HLM remains a robust solution for repeated-measures studies, requiring 
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only one observation at L1 for cases to be retained in the sample. Appendix D1 

presents a comparison of students who participated only in Year 1 of the study 

against those who participated in both years. Importantly, the pattern of change 

depicted in Year 1 looks similar: both groups start with their highest observed 

fascination scores at the outset and decrease to almost identical scale points by the 

end of the first school year. However, the gap between the two lines suggests the 

possibility that students who opted out of participation in Year 2 may have been 

those with lower fascination in science. While some amount of attrition should be 

expected, future studies should work to mitigate the loss of individual participation 

as much as possible. 

Of course, secondary analyses also remain limited in that there remains the 

possibility of unmodeled yet significant relationships relating to changes in 

fascination scores due to variables unavailable in the data. ALES:14 was an 

ambitious endeavor based on the triangulation of instruments (student measures, 

teacher logs, researcher observations), the length of study (two school years, five 

measurement occasions), and the rigor and length of instrumentation (three 

Activation constructs in addition to fascination along with measures of success; see 

Figure 1.1). And while this dissertation intently focused on fascination and variables 

related based on prior research, extending analyses to include a wider range of 

potential influences on fascination beyond what was included in the dataset remains 

a critical next step. 
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While the discontinuous models selected as “final” in equations 4.5’ and 4.5’’ 

were both significant improvements from the unspecified starting growth model 

(grade 6, 𝜒𝜒2=281.1, df=5, p<.001; grade 8, 𝜒𝜒2=188.2, df=1, p<.001), they objectively 

fail to capture the majority of variance in fascination scores. To analyze the total 

variance in fascination scores explained by the final models, we subtract the 

summed variance components of the conditional models (4.5’ and 4.5’’) from the 

summed variance components of the unconditional models (4.1) and compute a 

ratio to the total unconditional variance, as shown in equation 5.3: 

Prop. variance explained: 
(𝜎𝜎�2(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢.)+𝜏𝜏�𝜋𝜋(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢.)+𝜏𝜏�𝛽𝛽(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢.))−(𝜎𝜎�2(𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢.)+𝜏𝜏�𝜋𝜋(𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢.)+𝜏𝜏�𝛽𝛽(𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢.))

(𝜎𝜎�2(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢.)+𝜏𝜏�𝜋𝜋(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢.)+𝜏𝜏�𝛽𝛽(𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑢𝑢.))
    

(5.3) 

For grade 6:  (.13424+.12157+.00396)−(.11780+.11572+.00408)
(.13424+.12157+.00396)

= 0.0853 

For grade 8:  (.11084+.10536+.00464)−(.10644+.09704+.00360)
(.11084+.10536+.00464)

= 0.0623 

Here, we observe that the inclusion of discontinuous growth terms and statistically 

significant individual- and class-level covariates only explain 8.5% of the total 

variance in fascination scores at grade 6, and even less (6.2%) at grade 8. It is 

evident that additional explanatory variables are necessary to more adequately 

model change in fascination over time. 

 Finally, it should be noted that, despite the appropriateness of HLM in 

investigating change in fascination scores over time, the method itself does not 

identify causal relationships, and this work has not identified any “effects” leading to 



135 
 
 

higher fascination scores, per se. As a descriptive study, the findings reported are 

suggestive and not definitive, in the hopes that future research can build on this 

dissertation work and continue to identify relationships that positively influence 

science fascination. 

Implications 

Despite the limitations noted above, this dissertation provides important 

insight into changes in middle school students’ fascination in science. The purpose 

of this research was to investigate potential patterns and magnitudes of change in 

fascination scores, while identifying student and classroom covariates that may be 

related to change over time. The study sought to address three research questions 

using a large, longitudinal sample collected through the Activated Learning Enables 

Success study (ALES:14), while making connections to earlier research done on the 

primary subdimension of fascination, interest. Results indicate that discontinuous 

growth models fit the data significantly better than linear growth models, 

highlighted by changes in level and slope in Year 2 for sixth graders entering 

seventh grade, and change in slope alone for eighth graders entering high school. 

These same results suggest that, on average, student fascination in science 

decreases over time, regardless of grade level. 

Were this study limited to two measurement occasions in its analysis of 

change over time—say, the beginning of Year 1 and end of Year 1, or even the 

beginning of Year 1 and end of Year 2—a natural conclusion might be limited to 

repeat what has been said before. School-based experiences repress students’ 
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opportunities for pursuing curiosity (e.g., Engel, 2011); students lose interest in 

school-based science right around the time they enter high school (Barmby, Kind, & 

Jones, 2008; Christidou, 2011; Krapp & Prenzel, 2011); students become 

disenfranchised and lose interest over time (Gottfried, Fleming, & Gottfried, 2001; 

Osborne, Simon, & Collins, 2003; Simpson & Oliver, 1990). However, with five 

measurement occasions and discontinuous growth, it is apparent that changes in 

fascination in science are more complex for middle schoolers. 

Most notably, the observed patterns of change at both grade levels suggest 

that science fascination scores “rebound” in some way after Year 1. Newly initiated 

7th graders display an increase in fascination in science following their summer 

vacation compared to their end-of-year 6th grade selves (even if that “new shine” 

wears off over the course of the year), while 9th graders begin to see increases in 

fascination scores contrary to their final year of middle school. While these findings 

do not contradict prior findings such as “students lose interest in school-based 

science right around the time they enter high school” since fascination scores 

continuously declines throughout grade 8, it actually appears as though entering 

high school students have increasing fascination in science. Additionally, while early 

middle school students show declining fascination scores throughout grade 6 and 

again in grade 7, these declines are somewhat mitigated by their summer 

experiences. Therefore, future research should focus on out-of-school experiences 

that bolster fascination in science, particularly over summer break, while studying 

the elements of ninth grade (e.g., factors related to a new school building, new 
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students, choice in classes, etc.) that contribute to increased fascination in high 

school. 

Still, these results may be somewhat disheartening from an educational 

policy perspective: in grades 6 and 8, fascination scores, on average, decline in a 

linear fashion from the start of the academic year to its end. The instructional 

characteristics modeled in this study were not found to augment these losses in a 

substantial way, and even prior to building the level 3 model including classroom 

covariates, the proportion of variance in fascination scores available to be 

“explained” through teaching or classroom nesting was minimal (~2%). Future 

research should place emphasis on the context of instruction and academic content 

relative to individuals’ situational interest (e.g., Hidi & Harackiewicz, 2000), rather 

than simply focusing on gross instructional categories. 

This work also supports earlier findings related to the role parents and 

caregivers play in stimulating fascination in science (e.g., George & Kaplan, 1998), as 

family support for science was consistently found to have an association with 

increased fascination scores, and at grade 8, home resources was as well. These 

observed relationships, although intuitive, are critical in helping to steer action on 

the part of parents and even science educators who are able to provide guidance to 

caregivers of middle-schoolers: support your child’s science learning at home. Not 

only were above average family support for science scores found to be associated 

with higher fascination scores, but prior research has shown additional 

relationships between attitudinal aspects like feelings toward science and interest 



138 
 
 

and advanced science achievement (e.g., Mullis et al., 2020; Harackiewicz, Barron, 

Tauer, & Elliot 2002). 

Another problematic finding supported by this work, as suggested in prior 

research (e.g., Archer et al., 2012; Baram-Tsabari & Yarden, 2011), is the 

disadvantage faced by middle school girls in terms of science fascination. Models for 

both sixth and eighth grade students demonstrate the negative relationship 

between gender and initial fascination status, with no observed closure in this 

science fascination gap over time. The implication here is that more must be done, in 

and out of school, to ensure that girls don’t prematurely decide that science isn’t for 

them based on lower interest, curiosity, or mastery goals. 

Given the important role that these student characteristics play in observed 

changes in science fascination, future research should also explore potential within-

level interactions. While the models developed in this dissertation explicitly account 

for cross-level interactions (e.g., the influence of the level 3 student-centric teaching 

variable on the level 2 gender variable’s effect on the level 1 intercept), they do not 

account for effects specific to combinations of within-level terms. In particular, the 

intersection of racialized identity and family support for science should be explored 

to determine if differing levels of at-home support influence the science fascination 

of students of all backgrounds equally. 

Inevitably, increasing fascination in science alone is not enough to improve 

levels of scientific literacy across the populace vastly. The theory of Science 

Learning Activation appropriately implicates additional interrelated dispositions 
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and skills as necessary in driving success through choice, engagement, perceived 

success, and science learning (see Figure 1.1). Future research using methodologies 

capable of testing relationships among multiple outcomes, such as Structural 

Equation Modeling, may prove fruitful in building on this dissertation work by 

incorporating other Activation constructs. 

Particularly when considering the current state of the world and broad 

outcomes many see as desirable (such as fighting the impacts of climate change), it 

is helpful to revisit the OECD’s definition of scientific literacy: “the capacity…to draw 

evidence-based conclusions in order to understand and help make decisions about 

the natural world and the changes made to it through human activity” (National 

Science Board, 2012, pp. 132-33). Students with increased levels of fascination in 

science are more likely to continue choosing participation in science activities when 

given the chance, and in turn, should be more prone to making evidence-based 

claims when presented with socio-scientific decisions in the future. Understanding 

when fascination is likely to change as children develop is critical to our efforts to 

improve science-related outcomes. 
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Appendix A: Instrumentation 

Activation instruments & Technical Reports available online at: 
http://activationlab.org/tools/. 

A1—Fascination in Science scale 

Item ID Subdimension Prompt Response Options / Coding 

F01 Curiosity I wonder about how nature works: 

4=Every day 
3=Once a week 
2=Once a month 
1=Never 

F02 Interest In general, when I work on science I: 

4=Love it 
3=Like it 
2=Don’t like it 
1=Hate it 

F04 Interest In general, I find science: 

4=Very interesting 
3=Interesting 
2=Boring 
1=Very boring 

F05 Curiosity 
After a really interesting science 
activity is over, I look for more 
information about it 

4=YES! 
3=yes 
2=no 
1=NO! 

F06 Curiosity I need to know how objects work. 

4=YES! 
3=yes 
2=no 
1=NO! 

F07 Mastery I want to read everything I can find 
about science. 

4=YES! 
3=yes 
2=no 
1=NO! 

F08 Mastery I want to know everything about 
science. 

4=YES! 
3=yes 
2=no 
1=NO! 

F09 Mastery I want to know how to do everything 
that scientists do. 

4=YES! 
3=yes 
2=no 
1=NO! 

  

http://activationlab.org/tools/
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A2—Home Resources scale 

Item ID Are these things available for you to use in your home? Response Options / Coding 

HR01 Calculator 

4=Always 
3=Most of the time 
2=Rarely 
1=Never 

HR02 Computer (do not count video game systems) 

4=Always 
3=Most of the time 
2=Rarely 
1=Never 

HR03 Internet connection 

4=Always 
3=Most of the time 
2=Rarely 
1=Never 

HR04 Dictionary 

4=Always 
3=Most of the time 
2=Rarely 
1=Never 

HR05 Study or homework area 

4=Always 
3=Most of the time 
2=Rarely 
1=Never 

HR06 E-reader (iPad, Kindle, Nexus, etc.) 

4=Always 
3=Most of the time 
2=Rarely 
1=Never 

HR07 Books about science 

4=Always 
3=Most of the time 
2=Rarely 
1=Never 
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A3—Family Support for Science scale 

Item ID Prompt Response Options / Coding 

FS01 My learning in school is important to someone in my 
family. 

4=YES! 
3=yes 
2=no 
1=NO! 

FS02 When I work on homework at home, I have someone 
who can help me with it if I need help. 

4=YES! 
3=yes 
2=no 
1=NO! 

FS03 Someone in my family is interested in teaching me 
things. 

4=YES! 
3=yes 
2=no 
1=NO! 

FS04 Someone in my family takes me to places where I can 
learn new things. 

4=YES! 
3=yes 
2=no 
1=NO! 

FS05 Someone in my family makes sure I finish my homework 
every day. 

4=YES! 
3=yes 
2=no 
1=NO! 
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A4—Teacher log 

Instruction type 
Please indicate the percentage of time students spent doing each of the 
following in your science class over the last week. (Given that some of these 
items might happen at the same time, percentages do NOT need to add to 100.) 

Hands-on Students watched a live or video-based demonstration. 

Hands-on Students did a hands-on activity. 

Hands-on Students used tools that scientists use (microscope, beakers, pipettes, etc.). 

Student-centric Students listened to a lecture or presentation. 

Student-centric Students and teacher reviewed answers to homework or classwork 
questions. 

Student-centric Students participated in a whole class discussion. 

Student-centric Students worked in pairs or groups. 

Textbook Students read (alone or aloud) from a book or other informational text. 

Textbook Students completed worksheets or answered questions in writing. 

Textbook Students copied notes from a book or the board. 

Classroom-
technology Students used an interactive or simulation on the computer. 

Classroom-
technology Students used a laptop/tablet/handheld device. 
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Appendix B: Residual Analyses & Model Diagnostics—Grade 6 

B1—Distribution of level 1 residuals (e) 

 

B2—Distribution of level 2 residuals – intercept (𝒓𝒓𝟎𝟎) 
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B3—Distribution of level 2 residuals – time (𝒓𝒓𝟏𝟏) 

 

B4—Distribution of level 3 residuals – intercept (𝒔𝒔𝟎𝟎𝟎𝟎) 
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B5—Distribution of level 3 residuals – grade (𝒔𝒔𝟐𝟐𝟎𝟎) 

 

B6—Distribution of level 1 residuals by level 1 predictor, time 
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B7—Distribution of level 1 residuals by level 1 predictor, grade 

 

B8—Distribution of level 1 residuals by level 1 predictor, post 

 



158 
 
 

B9—Distribution of level 2 residuals (intercept, 𝒓𝒓𝟎𝟎) by level 2 predictor, URM 

 

B10—Distribution of level 2 residuals (intercept, 𝒓𝒓𝟎𝟎) by level 2 predictor, female 
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B11—Distribution of level 2 residuals (time, 𝒓𝒓𝟏𝟏) by level 2 predictor, URM 

 

B12—Distribution of level 2 residuals (time, 𝒓𝒓𝟏𝟏) by level 2 predictor, female 
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B13—Correlations of residuals and predictors 

L1 pred. 
L1 resid 
𝑒𝑒𝑡𝑡𝑡𝑡𝑖𝑖 sig. L2 resid 

𝑟𝑟0 sig. L2 resid 
𝑟𝑟1 sig. L3 resid 

𝑢𝑢00 sig. L3 resid 
𝑢𝑢20 sig. 

time .00 1.00 -- -- -- -- -- -- -- -- 
grade .00 1.00 -- -- -- -- -- -- -- -- 
post .00 1.00 -- -- -- -- -- -- -- -- 
L2 pred.           
HR .01 0.65 .03 0.30 -.03 .028 -- -- -- -- 
FS .00 1.00 .00 1.00 .00 1.00 -- -- -- -- 
URM .02 0.29 .03 0.34 -.01 0.67 -- -- -- -- 
female .00 1.00 -.02 0.58 .03 0.42 -- -- -- -- 
L3 pred.           
student .01 0.72 -.01 0.94 .01 0.67 .11 0.49 -.11 0.49 
hands-on  -.01 0.90 -.02 0.57 .02 0.48 .14 0.40 -.14 0.40 
class-tech .01 0.76 .05 0.13 -.06 0.06 .19 0.23 -.19 0.23 
L2 resid. (𝑟𝑟0)     -.95 ** <0.001     
L3 resid. (𝑢𝑢00)         -1.00 ** <0.001 
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Appendix C: Residual Analyses & Model Diagnostics—Grade 8 

C1—Distribution of level 1 residuals (e) 
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C2—Distribution of level 2 residuals – intercept (𝒓𝒓𝟎𝟎) 

 

C3—Distribution of level 2 residuals – time (𝒓𝒓𝟏𝟏) 
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C4—Distribution of level 3 residuals – intercept (𝒔𝒔𝟎𝟎𝟎𝟎) 

 

C5—Distribution of level 3 residuals – time (𝒔𝒔𝟏𝟏𝟎𝟎) 
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C6—Distribution of level 1 residuals by level 1 predictor, time 

 

C7—Distribution of level 1 residuals by level 1 predictor, post 
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C8—Distribution of level 2 residuals (intercept, 𝒓𝒓𝟎𝟎) by level 2 predictor, URM 

 

C9—Distribution of level 2 residuals (intercept, 𝒓𝒓𝟎𝟎) by level 2 predictor, female 
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C10—Distribution of level 2 residuals (time, 𝒓𝒓𝟏𝟏) by level 2 predictor, URM 

 

C11—Distribution of level 2 residuals (time, 𝒓𝒓𝟏𝟏) by level 2 predictor, female 
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C12—Correlations of residuals and predictors 

L1 pred. 
L1 resid 
𝑒𝑒𝑡𝑡𝑡𝑡𝑖𝑖 sig. L2 resid 

𝑟𝑟0 sig. L2 resid 
𝑟𝑟1 sig. L3 resid 

𝑢𝑢00 sig. L3 resid 
𝑢𝑢10 sig. 

time .00 1.00 -- -- -- -- -- -- -- -- 
grade .00 1.00 -- -- -- -- -- -- -- -- 
post .01 0.54 -- -- -- -- -- -- -- -- 
L2 pred.           
HR .00 1.00 .00 1.00 .00 1.00 -- -- -- -- 
FS .00 1.00 .00 1.00 .00 1.00 -- -- -- -- 
URM -.01 0.52 -.03 0.32 .02 0.38 -- -- -- -- 
female .00 1.00 .02 0.54 -.02 0.38 -- -- -- -- 
L3 pred.           
student .01 0.53 .02 0.45 -.02 0.57 .09 0.52 .02 0.89 
hands-on .01 0.92 -.01 0.66 .02 0.49 -.15 0.28 .23 0.10 
class-tech -.01 0.68 .00 0.99 -.01 0.68 .12 0.41 -.27 * 0.05 
L2 resid. (𝑟𝑟0)     -.95 ** <0.001     
L3 resid. (𝑢𝑢00)         -.72 ** <0.001 
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Appendix D: Missing Data Analysis 

D1—Comparison of fascination scores for Year 1-only students with Year 1 & 2 
students 

 

Visible above, the pattern of change in fascination scores for students who 

participated only in Year 1 (red line) is similar to that for students who contributed scores 

in both years of study. This suggests that, despite the sample attrition noted in Chapter 4, 

the functional form and other modeled relationships are unlikely to be affected by the shift 

in sample, particularly as all other included covariates at levels 2 and 3 were observed in 

Year 1. 
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