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We study the generalized theta lifting between the double covers of split special

orthogonal groups, which uses the non-minimal theta representations constructed

by Bump, Friedberg and Ginzburg. We focus on the theta liftings of non-generic

representations and make a conjecture that gives an upper bound of the first non-

zero occurrence of the liftings, depending only on the unipotent orbit. We prove both

global and local results that support the conjecture.
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1 Introduction

The classical Jacobi theta function has been understood through the theory of

the Weil representation defined on the metaplectic double cover of the symplectic

group. See [26], [25] and [28]. Motivated by these works, the theory of automorphic

representations on metaplectic covers of reductive groups has been much developed

over the past half centry (for example, [18], [11] and [5]).

One of the most important applications of the Weil representation is the construc-

tion of the classical theta correspondence. The construction ultilizes the fact that the

Weil representation is a minimal representation. Globally, this means that its Fourier

coefficients associated to all non-trivial unipotent orbits except for the minimal one

are zero. However, there may not exist any such minimal representations for certain

groups (for example, see [27]). In those cases, one may seek representations that are

small enough to enable an analogous theta correspondence.

Let F be a number field containing the group of fourth roots of unity, with the

ring of adeles A. In [5], Bump-Friedberg-Ginzburg constructed the global theta repre-

sentation Θm on the double cover S̃Om(A) of the split odd orthogonal group SOm(A)

as the residues of certain metaplectic Eisenstein series. In contrast to the Weil rep-

resentation, such a theta representation is only small in the sense that its Fourier

coefficients attached to most unipotent orbits vanish. Nonetheless, the same authors

show in [6] that one can still construct a non-minimal theta correspondence by using

such a small automorphic representation.

Suppose (π,V) is an irreducible cuspidal genuine automorphic representation of

S̃O2k+1(A). Let SO2k′ be a split even special orthogonal group. The natural em-

bedding SO2k′(A) × SO2k+1(A) ↪→ SO2k+2k′+1(A) is covered by an embedding of

S̃O2k′(A)×S̃O2k+1(A) into S̃O2k+2k′+1(A). Consider the theta representation Θ2k+2k′+1
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on the metaplectic double cover S̃O2k+2k′+1(A). For any φ ∈ V and θ2k+2k′+1 a func-

tion in the representation space of Θ2k+2k′+1, Bump-Friedberg-Ginzburg defined a

function on S̃O2k′(A) (see equation (2) of [6]) via the integral

f(h) =

∫
SO2k+1(F )\SO2k+1(A)

φ(g)θ̄2k+2k′+1(h, g)dg. (1.1)

Functions of the form f(h) generate a genuine automorphic representation Θ2k+2k′+1(π)

on the cover S̃O2k′(A).

By fixing the representation π and using the theta representations S̃O2k+2k′+1(A)

with varying k′, one obtains a tower of liftings of the representation π to the groups

S̃O2k′(A). According to [6], for a fixed genuine cuspidal automorphic representation

π on S̃O2k+1(A), one has the following:

1. As an automorphic representation of S̃O8k(A), Θ10k+1(π) ̸= 0.

2. If Θ2k+2k′+1(π) = 0, then Θ2k+2k′−1(π) = 0.

In view of these, it is natural to ask when the first non-zero lifting occurs along

the tower. In [6], Bump-Friedberg-Ginzburg show that if Θ4k+5(π) is generic as an

automorphic representation of S̃O2k+4(A), then the representation π of S̃O2k+1(A)

must be generic as well. They also make a conjecture that a generic representation π

of S̃O2k+1(A) should lift to a generic representation of S̃O2k+4(A).

However, little is known if the representations are not generic, i.e. not supported

on the maximal unipotent orbit. In this thesis, we make a general conjecture on when

the lift of a given automorphic representation of S̃O2k+1(A) is nonzero, depending only

on the unipotent orbit that the representation is supported on. Recall that unipotent

orbits are parametrized by partition of integers. We require that the representation

is supported on a unipotent orbit whose corresponding partition consists of only odd
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integers. This condition implies that the attached unipotent subgroup V2,O defined

in Section 3 below is the unipotent radical of a parabolic subgroup.

Conjecture 1.1. Let (π,V) be an irreducible cuspidal genuine automorphic repre-

sentation of S̃O2k+1(A). Suppose π is supported on the unipotent orbit

O = ((2n1 + 1)r1(2n2 + 1)r2 · · · (2np + 1)rp)

with n1 > n2 > · · · > np ⩾ 0 and ri > 0 for all i. Let l = r1 + r2 + · · · + rp be the

length of the partition corresponding to O. Then π lifts nontrivially to an automorphic

representation Θ4k+2l+3(π) of S̃O2k+2l+2(A) which is supported on the unipotent orbit

O′ = ((2n1 + 3)r1(2n2 + 3)r2 · · · (2np + 3)rp(1)) .

Conjecture 1.1 gives an upper bound of the first non-zero occurrence of the theta

lifting. In the generic case where O = (2k + 1), Conjecture 1.1 agrees with the

conjecture made in [6] that is mentioned above. In Proposition 4.10, we show that

this conjecture is consistent with the “dimension equation” described in [12], [13]

and [10], which proposes dimension constraints on when the first non-zero lifting may

occur. We remark that not every orbit of SO2k+1 has all odd parts, but we do not

know what to expect when there are even parts in the partition.

In this thesis, we prove the following theorem which gives evidence towards the

above conjecture.

Theorem 1.2. Let (π,V) be an irreducible cuspidal genuine automorphic represen-

tation of S̃O2k+1(A). Suppose the theta lifting Θ4k+2l+3(π), as a representation of
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S̃O2k+2l+2(A), has a non-zero Fourier coefficient associated with the unipotent orbit

O′ = ((2n1 + 3)r1(2n2 + 3)r2 · · · (2np + 3)rp(1)) .

Then the representation π has a non-zero Fourier coefficient associated with the unipo-

tent orbit

O = ((2n1 + 1)r1(2n2 + 1)r2 · · · (2np + 1)rp) .

In the generic case, Theorem 1.2 agrees with the result proved in [6] and mentioned

above.

Moveover, we establish a local counterpart of Theorem 1.2 (which is new even

in the generic case). In the local setting, we turn our attention to the category of

genuine admissible representations of the double covers of the split special orthogonal

groups over a non-archimedean local field F . In [5], the local theta representation

of the double cover of a split odd orthogonal group S̃O2k+1(F ) is constructed as the

image of an intertwining operator. Fourier coefficients as the global analytic tool are

replaced by the twisted Jacquet modules. We prove the following result:

Theorem 1.3. Let (π,V) be an irreducible genuine admissible representation of

S̃O2k+1(F ). Suppose there exists an irreducible admissible representation Θ(π) of

S̃O2k+2l+2(F ) such that, as representations of the group S̃O2k+1(F )× S̃O2k+2l+2(F ),

HomS̃O2k+1×S̃O2k+2l+2
(Θ4k+2l+3, π ⊗Θ(π)) ̸= 0. (1.2)

Furthermore, suppose there exists a non-trivial character ψO′ (explicitly defined in

Section 6) associated with the unipotent orbit O′ such that the corresponding twisted

Jacquet module of Θ(π) is non-zero. Then there exists a non-trivial character asso-

ciated with the unipotent orbit O such that the corresponding twisted Jacquet module
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of π is also non-zero.

In the case of the classical symplectic-orthogonal theta liftings based on the Weil

representation, Ginzburg-Gurevich [14] give both upper and lower bounds for the first

non-zero occurrence in the theta tower. These bounds can be parametrized by the

partition corresponding to the unipotent orbit that supports the cuspidal automorphic

representation of Sp2k(A).

The liftings considered here are related to the extension of Langlands functoriality

to covering groups as follows. According to [23], [29] and [24], one can define the dual

group of a metaplectic group. In the case of the metaplectic double cover of SOm, we

have that

LS̃O
0

m
∼= SOm(C).

This suggests that there should be a lifting of genuine automorphic representations

from S̃O2k+1 to S̃O2k′ corresponding to the inclusion of SO2k+1(C) into SO2k′(C) with

k′ > k.

The study of non-generic cuspidal automorphic representations is an important

part of understanding the automorphic discrete spectrum. Jiang [15] proposed a con-

jecture that relates Arthur parameters to the maximal unipotent orbit that supports

an automorphic representation. In Section 13 of [20], Leslie conjectured an extension

of Arthur parameters to the metapletic groups. In view of these works, the results of

this thesis are conjecturally related to the question of how Arthur parameters behave

under the non-minimal theta liftings introduced in [6].

This thseis is organized as follows: After setting up the basic notations, we briefly

recall the construction of the metaplectic double cover of the split orthogonal groups

in Section 2. In Section 3, we review the definition of the unipotent orbits and recall

the construction of the Fourier coefficients and the twisted Jacquet modules associ-
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ated with a unipotent orbit and a generic character. These are the global and local

tools for proving the respective main theorems. In Section 4, we briefly recall the

construction of both the local and global theta representations of the metaplectic

double cover of SO2k+1. We then prove an invariance property of the theta repre-

sentations which is crucial for the proof of the main theorem. We also establish the

compatibility of Conjecture 1.1 with the dimension equation. In Section 5, we prove

the global main theorem Theorem 1.2. Lastly, the local theory is treated in Section

6.
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2 Preliminaries

In this thesis, we let F be either a number field with ring of adeles A or a non-

archimedean local field with the ring of integers OF . For the latter, we require that

the characteristic of its residue field is not 2. Fix an algebraic closure F̄ of F , and

denote by

µ4 = {x ∈ F̄ : x4 = 1}

the group of all forth roots of unity in F̄ . Throughout this thesis, we assume that F

contains µ4. We fix a choice of non-trivial additive character ψ : F \A → C× when F

is a number field, or ψ : F → C× which is unramified when F is a non-archimedean

local field.

2.1 Split orthogonal groups

For any positive integer m, let SOm(F ) denote the split special orthogonal group

consisting of g ∈ SLm such that gJmg
T = Jm, where g

T is the transpose of g and

Jm =



1

1

. .
.

1

1


∈ Matm×m(F ).

The matrix Jm corresponds to a non-degenerate bilinear form on Fm, where

SOm(F ) is the group of isometries upon fixing a basis. In this way, we have the

maximal split torus Tm ⊂ SOm consisting of diagonal elements

diag(t1, · · · , tn, 1, t−1
n , · · · , t−1

1 ), ti ∈ F× (2.1)
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if m = 2n+ 1, or

diag(t1, · · · , tn, t−1
n , · · · , t−1

1 ), ti ∈ F× (2.2)

if m = 2n. We can take the ordering of the roots so that the positive roots correspond

to upper triangular matrices. If we denote by αi (1 ⩽ i ⩽ n) the positive simple roots

with respect to the usual order in the standard Borel subgroup Bm of upper triangular

matrices, and ei,j be the m×m matrix with value one on the (i, j)-th entry and zero

elsewhere, then we let the corresponding one-parameter root subgroup be r → xαi(r),

where

xαi(r) = exp (r(ei,i+1 − en−i,n−i+1))

if m is odd, and

xαi(r) =


exp (r(ei,i+1 − en−i,n−i+1)) 1 ⩽ i < n

exp (r(en−1,n+1 − en,n+2)) i = n

if m is even.

We fix an embedding of any two orthogonal groups SO2k+1 and SO2k′ into SO2k+2k′+1

by

ι(h, g) =


a 0 b

0 g 0

c 0 d

 ∈ SO2k+2k′+1, g ∈ SO2k+1, h =

a b

c d

 ∈ SO2k′ . (2.3)

2.2 Central extensions

Let G be a group and A be an abelian group. A group G̃ is called a central
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extension of G by A if it satisfies the short exact sequence

1 → A
i−→ G̃

p−→ G→ 1 (2.4)

and i(A) ⊂ Z(G̃) where Z(G̃) is the center of G̃.

Two central extensions G̃1 and G̃2 of G by A are equivalent if there exists a

homomorphism ϕ : G̃1 → G̃2 that induces the identity maps on G and A and the

following diagram commutes:

1 A G̃1 G 1

1 A G̃2 G 1.

i1

id

p1

ϕ id

i2 p2

(2.5)

The equivalence classes of central extensions CExt(G,A) of G by A are completely

determined by H2(G,A) where A is considered as a trivial G-module. Given a 2-

cocycle σ : G×G→ A, there is a central extension G̃ with elements in the set G×A

and its group operation defined by

(g, a) · (g′, a′) = (gg′, aa′σ(g, g′)).

In this case, we have that i(a) = (1, a) and p ((g, a)) = g. It is easy to verify that

two 2-cocycles σ1 amd σ2 give equivalent central extensions G̃1 and G̃2 if and only if

they are different by a 2-coboundary. This gives an injective map

Φ : H2(G,A) → CExt(G,A). (2.6)

To see this is surjective, let G̃ be a central extension of G by A that satisfies (2.4).
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Suppose s : G→ p−1(G) is a section of p. Then

σ : G×G→ A : σ(g, g′) = s(g)s(g′)s(gg′)−1 (2.7)

defines a 2-cocycle in H2(G,A). The two covers Φ(σ) and G̃ are isomorphic via the

map (g, a) 7→ s(g)i(a).

For any subgroup H ⊂ G, we say that H is split in G̃ by the central extension

(2.4) if there exists a section s : H → p−1(H) that is also a homomorphism.

2.3 The local double cover S̃Om(F )

Suppose F is a non-archimedean local field. Let ( , )4 : F× × F× → µ4 be the

4-th order Hilbert symbol. Let S̃Lm(F ) be the metaplectic 4-fold cover defined by

Matsumoto in [21] using the Steinberg symbol corresponding to ( , )−1
4 . This covering

group is a central extension of SLm(F ) by µ4 that satisfies the short exact sequence

1 → µ4
i−→ S̃Lm(F )

p−→ SLm(F ) → 1. (2.8)

In [1], Banks-Levy-Sepanski gave an explicit choice of section s of SLm(F ) and the

corresponding 2-cocycle which we denote by σm. This 2-cocycle has the advantage

that it has the “block compatibility property” (See Section 2 of [1]), which implies

that the restriction of σm on diagonal elements is given by

σm(diag(t1, t2, · · · , tm), diag(t′1, t′2, · · · , t′m)) =
∏

1⩽i<j⩽m

(ti, t
′
j)4. (2.9)

Pulling back the image of SOm(F ) in SLm(F ), we obtain a central extension

S̃Om(F ) of SOm(F ), with the corresponding 2-cocycle as the restriction of σm to

SOm(F ). For any t, t
′ ∈ Tm of the form (2.1) or (2.2) depending on the parity of m,
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we have

σm(t, t
′) =

n∏
i=1

(ti, t
′
i)
−1
4 . (2.10)

Let SN : SOm(F ) → F×/(F×)2 be the spinor norm homomorphism, with the

kernel denoted by SO(2)
m (F ). From [4] and [5], one has that

σ2
m(g, g

′) = (SN(g), SN(g′))2 , (2.11)

where ( , )2 is the quadratic Hilbert symbol and the equality is up to a cobound-

ary. This shows that σ2
m is trivial on the large subgroup SO(2)

m (F ). As a result, the

cover S̃Om(F ) performs almost like a double cover. We call this cover S̃Om(F ) the

metaplectic double cover of SOm(F ). We have the following short exact sequence.

1 → µ4
i−→ S̃Om(F )

p−→ SOm(F ) → 1. (2.12)

Fix an embedding µ4 ↪→ C× and identify µ4 with its image in C×. We say that

a representation ρ of any subgroup of S̃Om(F ) is genuine if ρ(i(ε)g) = ερ(g) for any

ε ∈ µ4.

By Section 4 of [23], any upper triangular unipotent subgroup of SOm(F ) is split in

S̃Om(F ) via the trivial section. For any non-archimedean F with residue characteristic

not equal to 2, the hyperspecial maximal compact subgroup Km = SOm(OF ) is split

in S̃Om(F ) via certain section κ. The choice of κ may not be unique. We fix a choice

of such κ by following [18]

2.4 The global double cover S̃Om(A)

Let F be a number field with its ring of adeles A. For each ν of F , we have the local

metaplectic double cover S̃O2k+1(Fν) defined in the previous subsection satisfying the
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short exact sequence

1 → µ4
iν−→ S̃Om(Fν)

pν−→ SOm(Fν) → 1. (2.13)

Note that when ν is archimedean, Fν = C since F contains µ4. In this case, the

metaplectic cover is split.

Let Kν be a maximal compact subgroup of SOm(Fν) which is split in the local

metaplectic cover S̃Om(Fν). By the previous subsection, for almost all the places ν,

we may pick Kν = SOm(Oν) where Oν is the ring of integer of the local field Fν .

We identify the embedded image of µ4 ↪→ C× over different places ν. Let S0 be the

finite set of places which contains the archimedean place and those places with residue

characteristic equal to 2. For any S ⊃ S0, define

ŜOm(A)S =
∏
ν∈S

S̃Om(Fν)
∏
ν ̸∈S

κν(Kν), (2.14)

where κν is the local section fixed in the previous subsection. Let µ̂4 be the subgroup

of ŜOm(A) generated by elements of the form iν1(ξ)i
−1
ν2
(ξ) with ν1, ν2 ∈ S and ξ ∈ µ4.

Then we define the global metaplectic double cover via the direct limit

S̃Om(A) = lim
−→

µ̂4 \ ŜOm(A)S. (2.15)

We have the short exact sequence

1 → µ4
i−→ S̃Om(A)

p−→ SOm(A) → 1. (2.16)

Note that if we let
∏′

ν S̃Om(Fν) be the restricted product with respect to κν(Kν),

and µ∗
4 = {(iν(ξν))ν ∈

∏′
ν S̃Om(Fν) :

∏
ν ξν = 1}, then S̃Om(A) = µ∗

4 \
∏′

ν S̃Om(Fν).
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Similar to the local setting, any upper triangular unipotent subgroup of SOm(A) is

split canonically over S̃Om(A). Recall that for each place ν, there is the local section

sν given by [1]. The product s =
∏

ν sν is a section when restricted to SOm(F ). It

follows that SOm(F ) is split in S̃Om(A) via this section (see [17] for example).
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3 Fourier coefficients associated to a unipotent or-

bit

In this section, we explain how to associate Fourier coefficients with a unipotent

orbit. In the global case, these Fourier coefficients are integrations over certain unipo-

tent subgroups, while the local counterparts are the twisted Jacquet modules with

respect to certain unipotent subgroups. In either case, the argument proceeds regard-

less of whether the group is linear or metaplectic. Therefore, we only illustrate this

association in the non-metaplectic setup so as to simplify the notations.

3.1 Unipotent orbits

The standard reference for unipotent orbits is [22]. Let F be any field (not neces-

sarily containing all 4th roots of unity), with a fixed algebraic closure F̄ . Unipotent

orbits of the group SO2k+1 are parametrized by partitions of the integer 2k + 1 with

the restriction that each even number occurs with even multiplicity. For an orbit O

corresponding to the partition (pr11 p
r2
2 · · · prss ) where pi > pi+1 and ri > 0 for all i, we

write

O = (pr11 p
r2
2 · · · prss ).

Define the length of the partition to be l = r1 + r2 + · · ·+ rs.

Suppose O1 = (p1p2 · · · pr) and O2 = (q1q2 · · · qs). We impose a partial order by

O1 ⩾ O2 if p1 + · · ·+ pi ⩾ q1 + · · ·+ qi for all 1 ⩽ i ⩽ s.

Let O = (pr11 p
r2
2 · · · prss ). For each pi, we associate ri copies of the diagonal matrix

hpi(t) = diag(tpi−1, tpi−3, · · · , t3−pi , t1−pi), t ∈ F×.

We obtain a one parameter torus element hO(t) with non-increasing powers of t

14



along the diagonal after combining and rearranging all the hpi(t)’s. For example, if

O = (321), then

hO(t) = diag(t2, t2, 1, 1, 1, t−2, t−2).

The conjugation action of hO(t) on the unipotent radical U of the upper triangular

Borel subgroup B of SO2k+1 induces a filtration on U :

I2k+1 ⊂ · · · ⊂ V2,O ⊂ V1,O ⊂ V0,O = U,

where each Vi,O is the subgroup of U generated by

{xα(r) ∈ U : hO(t)xα(r)hO(t)
−1 = xα(t

jr) for some j ⩾ i}.

Let

M(O) := T · {x±α(r) : hO(t)xα(r)hO(t)−1 = xα(r)}.

Then P (O) =M(O)V1,O is a standard maximal parabolic subgroup of SO2k+1.

In general, V2,O is not the unipotent radical of a parabolic subgroup. However, if

O is odd, then V2,O is the unipotent radical of the parabolic subgroup P (O). We say

that a unipotent orbit O = (pr11 p
r2
2 · · · prss ) is odd if all the integers pi are odd. In this

case, we have V1,O = V2,O.

Let V
(1)
2,O be the commutator subgroup of V2,O. The Levi subgroup M(O) acts by

conjugation on the maximal abelian quotient V2,O/V
(1)
2,O. Over the algebraic closure

F̄ , there is a dense open orbit under this action. Pick a representative u0 of this

orbit, and set Mu0(O)(F̄ ) to be its stabilizer. It follows from the general theory (for

example, see [8]) that the connected component of Mu0(O) is a reductive group.
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3.2 Generic characters

Suppose F is a number field with ring of adeles A. Let L2,O = V2,O/V
(1)
2,O be the

maximal abelian quotient of V2,O. The action of M(O) on L2,O induces an action of

M(O)(F ) on the character group

̂L2,O(F ) \ L2,O(A) ∼= L2,O(F ).

We say that a character ψO : L2,O(F ) \ L2,O(A) → C× is a generic character if

the connected component of its stabilizer in M(O)(F ) is the group of rational points

of a reductive group of type Mu0(O). We extend any such character trivially to

V2,O(F ) \ V2,O(A). There may exist infinitely many M(O)-conjugacy classes of such

generic characters for a specific unipotent orbit O.

Example 3.1. Let O be the unipotent orbit corresponding to the partition (321) in

SO7. We have

V2,O =




I2 X Y

I3 X∗

I2

 ∈ SO7 : X
∗ := −J3XTJ2, Y

TJ2 + J2Y = 0

 .

A choice of generic character is ψO : V2,O(F ) \ V2,O(A) → C× given by

ψO(v) = ψ(v1,3 + v2,5).

By Pontryagin dualilty, we may identify each character with an element in L2,O(F ) ∼=

16



Mat2×3(F ). The above generic character ψO corresponds to the matrix

1 0 0

0 0 1

 .

The rank of the matrix and the fact that its row space is not totally isotropic are

invariant under the action of M(O)(F ) ∼= GL2(F ) × SO3(F ) on Mat2×3(F ). Any

matrix in Mat2×3(F ) with full rank and non-totally-isotropic row space corresponds

to a generic character.

3.3 Global Fourier coefficients

Let (π,V) be an automorphic representation of SO2k+1(A). We define the Fourier

coefficients of π associated with a unipotent orbit O and a generic character by the

following:

Definition 3.2. Let ψO : V2,O(F ) \ V2,O(A) → C× be a generic character associated

with a unipotent orbit O in SO2k+1. For an automorphic function φ ∈ (π,V), the

Fourier coefficient of φ with respect to ψO is

FψO(φ)(g) =

∫
[V2,O]

φ(ug)ψO(u) du. (3.1)

Henceforth, we use [K] to denote K(F ) \ K(A) for any group K. We say that

the orbit O supports π if there exists some φ ∈ V and generic character ψO such

that the above integral is non-zero. Otherwise, we say that O does not support the

representation (π,V).

Example 3.3. This is the motivating example. Suppose the unipotent orbit is O =

(2k + 1) in SO2k+1. Then V2,O = U is the maximal unipotent subgroup of upper
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triangular matrices. The Gelfand-Graev character ψU,a : U(F ) \ U(A) → C× defined

by

ψU,a(v) = ψ(v1,2 + v2,3 + · · ·+ vk,k+1 + avk,k+2), a ∈ F× (3.2)

is a generic character. For a generic automorphic representation π of SO2k+1(A), its

Fourier coefficients associated with O are the Whittaker coefficients.

Remark 3.4. For a fixed generic character ψO, suppose the Fourier coefficients of π

associated to O and ψO is identically zero, i.e. FψO(φ)(g) = 0 for all φ ∈ π and

g ∈ SO2k+1(A). For any ψ′
O that lies in the same conjugacy class as ψO, there exists

some m ∈ M(O)(F ) such that ψ′
O(u) = ψO(mum

−1) for any u ∈ SO2k+1(A). By the

automorphicity of φ, this implies that

Fψ′
O
(φπ)(g) = FψO(φπ)(mg) = 0.

This result can be generalized to any conjugacy class of characters (not necessarily

generic) under the action of a discrete subgroup.

3.4 Twisted Jacquet modules

Suppose now F is a non-archimedean local field. Let N be a unipotent subgroup

of SO2k+1(F ), with ψN : N → C× a character on N . Let (π,V) be a smooth rep-

resentaion of SO2k+1(F ). Suppose there exists a subgroup M ⊂ SO2k+1(F ) which

normalizes N and stablizes the character ψN . Consider the subspace V(N,ψN) of

V generated by vectors of the form {π(u)v − ψN(u)v | v ∈ V , u ∈ N}. The twisted

Jacquet module of π with respect to ψN is defined by JN,ψN (π) = V/V(N,ψN). The

subgroup M acts smoothly on JN,ψN (π). If ψN is trivial, we denote it by JN(π) and

call it the Jacquet module of π with respect to N . This defines an exact functor
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between the categories of smooth representations of the two groups

JN,ψN : Rep(SO2k+1(F )) → Rep(M).

Recall that for a unipotent orbit O in SO2k+1, the Levi subgroup M(O)(F ) acts

on L2,O(F ), and hence on the character group

L̂2,O(F ) ∼= L2,O(F ).

Again, we only look at those generic characters whose connected component of the

stablizer under this action is of the same Cartan type as Mµ0(O)(F̄ ).

Definition 3.5. Let (π,V) be an admissible representation of SO2k+1(F ). The

twisted Jacquet module of π associated to a unipotent orbit O and a generic character

ψO : V2,O(F ) → C× is given by

JV2,O,ψO(π). (3.3)

We say that the unipotent orbit O supports π if there exists some generic character

ψO such that (3.3) is non-zero.

3.5 Wavefront sets

We have the following definition that applies to both global and local situations.

Definition 3.6. Let (π,V) be either an automorphic representation of SO2k+1(A)

(where A is the ring of adeles of a number field F ) or an admissible representation of

SO2k+1(F ) (where F is a non-archimedean local field). The wavefront set O(π) of π

is the set of unipotent orbits of SO2k+1 such that O ∈ O(π) if and only if O supports

π and O′ does not support π for any O′ > O.
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Remark 3.7. In all the known cases, the set O(π) is singleton for any irreducible

automorphic representation π of a split reductive group G(A). We do not assume

that this is necessarily true, though we may write O(π) = O0 when we mean that the

wavefront set of π consists of one single unipotent orbit O0.
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4 Theta representations and the tower of theta

liftings

In this section, we review the construction of the theta representations in both

local and global settings. Locally, the theta representation is defined as the irreducible

Langlands quotient of the principle series representation attached to an exceptional

character. Globally, it is realized as the residue of certain Eisenstein series.

The key property of the theta representations is that their wavefront sets contain

only relatively small unipotent orbits. This allows one to generalize the idea of theta

liftings by using theta representations as the integral kernel. In particular, we will talk

about tower of theta liftings and end our discussion by stating a conjecture giving an

upper bound of the first non-zero lifting along one particular tower of theta liftings.

4.1 Principal series representations

Suppose F is a non-archimedean local field. Let B(F ) = T (F )U(F ) be the stan-

dard Borel Subgroup with T (F ) the maximal split torus and U(F ) the maximal

unipotent subgroup of upper triangular matrices.

Note that T̃ (F ) = p−1(T (F )), the inverse image of T (F ) in S̃O2k+1(F ), is a

Heisenberg group instead of an abelian group. By the Stone-von Neumann theorem,

the genuine irreducible representations of T̃ (F ) are parameterized by genuine char-

acters on its center Z(T̃ (F )) in the following way: For any genuine central character

χ, we may extend it to a character χ′ on any maximal abelian subgroup A ⊂ T̃ (F )

containing Z(T̃ (F )). The induced representation i(χ) := ind
T̃ (F )
A χ′ is irreducible, and

independent of the choices of A and χ′. Moreover, the map χ 7→ i(χ) is a bijection

between genuine representations of Z(T̃ (F )) and T̃ (F ). See Section 5 of [23] for more

details.
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Extend i(χ) to a representation of B̃(F ) = T̃ (F )U(F ) by allowing the trivial

action of U(F ). Let δB be the modular character of B(F ). We have the principal

series representation of S̃O2k+1(F ) defined by Ind(χ) := Ind
S̃O2k+1(F )

B̃(F )

(
δ
1/2
B i(χ)

)
.

Following the notations of [5], we have Z(T̃ (F )) ∼= TZ(F ) × µ4, where TZ(F ) ⊂

T (F ) is the subgroup of diagonal matrices with each entry a fourth power. Let

s = (s1, · · · , sk) ∈ Ck and consider the character

χs : T (F ) → C× (4.1)

diag(t1, · · · , tk, 1, t−1
k , · · · , t−1

1 ) 7→
k∏
i=1

|ti|si . (4.2)

Regarding χs as a character on TZ(F ) by restriction, and hence a character on

Z(T̃ (F )), the resulting parabolically induced representation Ind(χs) is irreducible

when s is in the general position. These are the unramified principal series represen-

tations.

4.2 Local theta representations

We continue to assume that F is a non-archimedean local field. For every positive

root α of SO2k+1, there is a standard embedding τα : SL2 → SO2k+1 which restricts

to x±α on the upper and lower triangular matrices in SL2. We say that a root α is

metaplectic if the pullback via τα in S̃O2k+1(F ) is non-trivial. In SO2k+1, the long

roots are the metaplectic ones. Set

n(α) =


1 α is non-metaplectic

2 α is metaplectic.
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For any character χ, we define

χα(t) = χ

τα
t 0

0 t−1


n(α)
 . (4.3)

Following [5] or [18], Ind(χ) is irreducible if χα ̸= | · |±1 for any positive root α.

On the other hand, if χα = | · | for all positive simple roots, then Ind(χ) is reducible.

In this case, we call χ an exceptional character.

Any ω in the Weyl groupW of SO2k+1 acts on T (F ) by conjugation, and therefore

it acts on any character χ of T (F ). Thus, one can define the intertwining operator

Mω : Ind(χ) → Ind(ωχ) by

Mω(f)(g) =

∫
(U(F )∩ωU(F )ω−1)\U(F )

f(ω−1ug)du (4.4)

whenever the integral is convergent. Following [9], this integral has meromorphic

continuation for general χ.

Let sθ = (k/2, (k − 1)/2, · · · , 1/2) ∈ Ck. A direct computation shows that χθ :=

χsθ is exceptional, and therefore Ind(χθ) is reducible. Let ω0 be the longest Weyl

group element in SO2k+1, where
ω0χθ = χ−1

θ . Then we have the following result:

Theorem 4.1. The intertwinning operator Mω0 : Ind(χθ) → Ind(χ−1
θ ) has an irre-

ducible and self-contragredient image, which is isomorphic to the unique irreducible

quotient of Ind(χθ).

We call the representation of S̃O2k+1(F ) on this irreducible Langlands quotient

the local theta representation, denoted by Θ2k+1.

Proof. This is Theorem 2.2 of [5].
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The theta representation Θ2k+1 of the double cover S̃O2k+1(F ) is a small represen-

tation in the terminology of [5]. It agrees with the minimal representation when k = 2

or 3. When k = 4 or 5, O(Θ2k+1) is the singleton set containing the next smallest

unipotent orbit. In [5], Bump-Friedberg-Ginzburg gave the exact description of the

wavefront set of Θ2k+1 as follows:

Proposition 4.2. Let Θ2k+1 be the theta representation of the double cover S̃O2k+1(F ).

Let n be a positive integer such that n = ⌊k/2⌋. Then

O(Θ2k+1) =


(22n1) if k = 2n,

(22n13) if k = 2n+ 1.

(4.5)

Proof. See either [5] or Section 2 of [17].

Let r be an integer such that 1 ⩽ r ⩽ k. Suppose Pr = MrUr is a maximal

standard parabolic subgroup of SO2k+1 with the indicated Levi decomposition, where

Mr = GLr× SO2k−2r+1 and Ur is the unipotent radical. By the block compatibility

of the 2-cocycle σ2k+1 ∈ H2(SO2k+1(F ), µ4) we adapt from [1] (See Section 2.3), for

any (g, h), (g′, h′) ∈ GLr(F )× SO2k−2r+1(F ), we have

σ2k+1 ((g, h), (g
′, h′)) = σGLr(g, g

′)2 (det g, det g′)4 σ2k−2r+1(h, h
′), (4.6)

where σGLr is the 2-cocycle in H
2(GLr(F ), µ4) defined in [1]. Following [18], the twist

of the square of the cocycle σGLr by the 4-th order Hilbert symbol pre-composed with

the determinant corresponds to a metaplectic double cover of GLr(F ). Thus, the

pullback of the Levi subgroupMr(F ) in S̃O2k+1(F ) is the direct product amalgamated

at µ4 given by

M̃r(F ) = G̃Lr(F )×µ4 S̃O2k−2r+1(F ),
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where G̃Lr(F ) is the metaplectic double cover of GLr(F ).

Let χGLr be the character on the diagonal torus of GLr(F ) given by

diag(t1, · · · , tr) 7→
r∏
i=1

|ti|
r−i
2 . (4.7)

This is an exceptional character in the sense of [18] and [7]. Therefore, we can

form the exceptional representation ΘGLr of the double cover G̃Lr(F ) following their

construction. In this way, we have the following:

Proposition 4.3. Let Θ2k+1 be the local theta representation of S̃O2k+1(F ). Consid-

ered as a representation of G̃Lr × S̃O2k−2r+1(F ), the Jacquet module of Θ2k+1 with

respect to Ur is ismorphic to ΘGLr ⊗ Θ2k−2r+1. In the case when r = k, Θ2k−2r+1 is

the trivial representation.

Proof. This is Theorem 2.3 of [5], or Proposition 1 of [6].

4.3 Global theta representations

Suppose now F is a number field, with its ring of adeles A. The global theta

representation of S̃O2k+1(A) is given by the residues of an Eisenstein series associated

to an exceptional character. We follow [5] for the construction.

Let χs : T (F ) \ T (A) → C× given by

diag(t1, · · · , tk, 1, t−1
k , · · · , t−1

1 ) 7→
k∏
i=1

|ti|si (4.8)

be the character attached to the complex parameter s = (s1, s2, · · · , sk) ∈ Ck. Similar

to the local setting in Section 4.1, we can form the induced representation Ind(χs) :=

Ind
S̃O2k+1(A)
B̃(A)

δ
1/2
B i(χs) by first inducing χs from TZ(A) to T̃ (A).

25



Let K =
∏

ν Kν be a maximal compact subgroup where Kν = SOm(OFν ) for

any non-archimedian Fν with odd residue characteristic. Denote its inverse image in

S̃O2k+1(A) by K̃. There is a section s 7→ fs ∈ Ind(χs) such that the restriction of fs

to K̃ is independent of s.

For any fs ∈ Ind(χs), let the Eisenstein series associated to fs be

E(g, fs) =
∑

γ∈B(F )\SO2k+1(F )

fs(γg), g ∈ S̃O2k+1(A). (4.9)

This sum is absolutely convergent in a suitable cone and has meromorphic continua-

tion to all s ∈ Ck.

Recall that sθ = (k/2, (k−1)/2, · · · , 1/2) corresponds to an exceptional character

χθ in the previous section. In the global setting, the Eisenstein series (4.9) has a pole

at sθ. We let

θf = ress=sθ E(g, fs). (4.10)

This is an automorphic form on S̃O2k+1(A) that is square integrable. We call the

irreducible representation on the subspace of L2(SO2k+1 \S̃O2k+1(A)) spanned by such

θf the global metaplectic theta representation Θ2k+1 of S̃O2k+1(A).

Let Pr = MrUr be the maximal parabolic subgroup of SO2k+1 with Levi sub-

group Mr = GLr× SO2k−2r+1. Similar to the local context, the pullback of Mr(A) in

S̃O2k+1(A) is given by

M̃r(A) = G̃Lr(A)×µ4 S̃O2k−2r+1(A),

where G̃Lr(A) is the global metaplectic double cover of GLr(A).
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Define the global exceptional character on the torus of GLr(A) by

diag(t1, · · · , tr) 7→
r∏
i=1

|ti|
r−i
2 ,

with the corresponding global exceptional representation ΘGLr of G̃Lr(A) (See [7] and

[18]).

Proposition 4.4. Let θ be a function in the theta representation Θ2k+1 of S̃O2k+1(A).

Considered as a function of (g, h) ∈ G̃Lr(A)× S̃O2k−2r+1(A), the integral

∫
Ur(F )\Ur(A)

θ(u(g, h)) du

is in the space of the automorphic representation ΘGLr ⊗Θ2k−2r+1.

Proof. This is the global version of Proposition 4.3. The case r = 1 is proved in [5].

The general case is proved in Theorem 1.2 of [16].

The global theta representation Θ2k+1 has the same smallness property given by

4.11. We have the following description of its wavefront set.

Proposition 4.5. Let Θ2k+1 be the global theta representation of the metaplectic

double cover S̃O2k+1(A). Then

O(Θ2k+1) =


(22n1) if k = 2n,

(22n13) if k = 2n+ 1.

(4.11)

Proof. See Theorem 4.2(i) of [5], or Proposition 2 of [6].

For the following discussion, we need new notations for the unipotent subgroups.

If r < k/4 is a positive integer, we denoteHr,2k+1 the unipotent radical of the maximal
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parabolic subgroup of SO2k+1 whose Levi part is GLr× SO2k−2r+1. In other words,

Hr,2k+1 consists of upper triangular matrices of the form




Ir x ∗

I2k−2r+1 x∗

Ir

 ∈ SO2k+1 : x∗ = −J2k−2r+1x
TJr

 ,

where ∗ denotes the entries in the correponding positions determined by the condi-

tion that the matrix is orthogonal. Similarly, let Hr,2k−2r+1 be the unipotent rad-

ical of the standard maximal parabolic subgroup of SO2k−2r+1 with Levi subgroup

GLr× SO2k−4r+1. Via the embedding (2.3), we identify Hr,2k−2r+1 with its image in

SO2k+1. Hence, Hr,2k−2r+1 consists of matrices of the form





Ir

Ir y ∗

I2k−4r+1 y∗

Ir

Ir


∈ SO2k+1 : y∗ = −J2k−4r+1y

TJr


.

For any u = (ui,j) ∈ Hr,2k+1(A), we define the character ψ1 : Hr,2k+1(F ) \

Hr,2k+1(A) → C× by

ψ1(u) = ψ(
r∑
j=1

uj,j+r).

Proposition 4.6. Fix a function θ ∈ Θ2k+1. The integral

f(g) =

∫
Hr,2k+1(F )\Hr,2k+1(A)

θ(ug)ψ1(u) du (4.12)

is left invariant by Hr,2k−2r+1(A). That is, f(g) = f(vg) for any v ∈ Hr,2k−2r+1(A).
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Proof. Via the embedding (2.3), the center Z(Hr,2k−2r+1) consists of matrices of the

form





Ir

Ir z

I2k−4r+1

Ir

Ir


: z ∈ Matr×r, zTJr + Jrz = 0


.

We first expand (4.12) against Z(Rr,2k−2r+1)(F )\Z(Rr,2k−2r+1)(A). Embed the group

GLr(F ) into SO2k+1(F ) via

h ↪→ diag(Ir, h, I2k−4r+1, h
∗, Ir), ∀h ∈ GLr(F ).

The GLr(F )-action on Z(Hr,2k−2r+1)(F ) \ Z(Hr,2k−2r+1)(A) induces an action on its

character group, which may be identified with Z(Hr,2k−2r+1)(F ). This action preserves

the rank of the matrices in Z(Hr,2k−2r+1)(F ) ∼=
{
z ∈ Matr×r, z

TJr + Jrz = 0
}
.

The rank of any z ∈ Z(Hr,2k−2r+1)(F ) must be even. Suppose Rank(z) = 2q,

where 0 < 2q ⩽ r. We may choose a representative of this z-orbit by

0 zq

0 0

 ∈ Matr×r(F ), (4.13)

where

zq = diag(λ1, λ2, · · · , λq,−λq, · · · ,−λ2,−λ1) ∈ Mat2q×2q(F ), λi ∈ F× ∀i = 1, 2, · · · , q.
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This gives the corresponding character on [Z(Hr,2k−2r+1)] by:

ψZ,q(v) = ψ(λ1v1,r−2q+1 + λ2v2,r−2q+2 + · · ·+ λqvq,r−q),

where

v ∈ Z(Hs,2k−2s+1)(A) ∼= Matr×r(A).

The contribution of ψZ,q in the expansion is given by the integral

∫
[Hr,2k+1]

∫
[Z(Hr,2k−2r+1)]

θ(uvg)ψ1(u)ψZ,q(v) dv du. (4.14)

Notice that the character ψ1ψZ,q coincides with a generic character associated to the

unipotent orbit Oq = (42q3r−2q12k−2q−3r+1) (or (4r12k−4r+1) in the case r = 2q). More-

over, we have V2,Oq ⊆ Hr,2k+1Z(Hr,2k−2r+1). As a result, the integral (4.14) contains

an inner integral that is a Fourier coefficient of θ with respect to the unipotent orbit

Oq. The integral (4.14) is then identically zero because any such Fourier coefficient

of θ is zero by Proposition 4.5. By Remark 3.4, every character that lies in the same

orbit as ψZ,q has zero contribution. Thus, only the integral corresponding to the

trivial character contributes, and (4.12) is equal to

f(g) =

∫
[Hr,2k+1Z(Hr,2k−2r+1)]

θ(ug)ψ1(u) du. (4.15)

As the center Z(Hr,2k−2r+1) is now contained in the domain of integration, we can

further expand (4.15) against

[Hr,2k−2r+1/Z(Hr,2k−2r+1)] ∼= Matr×(2k−4r+1)(F ) \Matr×(2k−4r+1)(A). (4.16)
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Embed the group GLr(F )× SO2k−4r+1(F ) into SO2k+1(F ) via

(h1, h2) ↪→ diag(Ir, h1, h2, h
∗
1, Ir), (h1, h2) ∈ GLr(F )× SO2k−4r+1(F ).

It acts by conjugation on the quotient [Hr,2k−2r+1/Z(Hr,2k−2r+1)], which induces an

action on the character group of the latter. We identify this character group with

Matr×(2k−4r+1)(F ). For any ξ ∈ Matr×(2k−4r+1)(F ) with Rank(ξ) = q, 1 ⩽ q ⩽ r, if

any of its row vectors is non-isotropic, then the corresponding contribution is given

by the integral ∫
[Hr,2k+1]

∫
[Hr,2k−2r+1]

θ(uvg)ψ1(u)ψξ(v) dv du. (4.17)

The product of the characters ψ1 and ψξ is a generic character associated to the unipo-

tent orbit (5q3r−q12k−3r−2q+1). Thus, the integral (4.17) contains a Fourier coefficient

of Θ2k+1 associated to the unipotent orbit (5q3r−q12k−3r−2q+1), which is identically

zero by Proposition 4.5. Under the conjugation action by GLr(F ) × SO2k−4r+1(F ),

any ξ ∈ Matr×(2k−4r+1)(F ) whose row space is not totally isotropic lies in the same

orbit as some non-isotropic ones with the same rank. The same argument shows that

the corresponding contribution is zero. Therefore, the only possible non-zero contri-

butions are from those ξ ∈ Matr×(2k−4r+1)(F ) whose row space is totally isotropic.

We may pick the representatives of these orbits to be

zq =

Iq 0

0 0

 ∈ Matr×(2k−4r+1)(F ), q = 0, 1, · · · , r.

For any zq ∈ Matr×(2k−4r+1)(F ), the correponding contribution in the expansion
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is ∫
[Hr,2k+1]

∫
[Hr,2k−2r+1]

θ(uvzg)ψ1(u)ψ2,q(v) dv du, (4.18)

where the character ψ2,q corresponding to zq is the trivial character when q = 0 and

is given by

ψ2,q(u) = ψ(u1,1 + u2,2 + · · ·+ uq,q), ∀u ∈ Matr×(2k−4r+1)(A)

when q > 0 via the identification (4.16). We claim that the only non-zero contribu-

tion is when q = 0. Suppose on the contrary that q > 0. We further expand (4.18)

against [Z(Hr,2k−4r+1)] and follow by another expansion against the abelian quotient

[Hr,2k−4r+1/Z(Hr,2k−4r+1)]. Here, Hr,2k−4r+1 is similarly defined as the unipotent sub-

group of SO2k+1 consisting of matrices of the form





I2r

Ir y ∗

I2k−6r+1 y∗

Ir

I2r


, y ∈ Matr×(2k−6r+1)


.

For any character ψ∗ on [Hr,2k−4r+1/Z(Hr,2k−4r+1)], the corresponding contribution

is ∫
[Hr,2k+1]

∫
[Hr,2k−2r+1]

∫
[Hr,2k−4r+1]

θ(uvwg)ψ1(u)ψ2,q(v)ψ
∗(w) dw dv du. (4.19)

Any character ψ∗ corresponding to a matrix in Matr×(2k−6r+1)(F ) that contains non-

isotropic row vectors in F 2k−6r+1 again contributes zero.
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We claim that the constant term is also zero. If we denote

Hr = Hr,2k+1Hr,2k−2r+1Hr,2k−4r+1,

then the constant term is of the form

∫
[Hr]

θ(ug)ψ1,q(u) du. (4.20)

Here, if u = u1u2u3 with u1 ∈ Hr,2k+1(A), u2 ∈ Hr,2k−2r+1(A) and u3 ∈ Hr,2k−4r+1(A),

then

ψ1,q(u) = ψ1(u1)ψ2,q(u2).

The integral (4.20) is some Fourier coefficients of the constant term of Θ2k+1 with

respect to the maximal parabolic subgroup whose Levi part is GL3r× SO2k−6r+1. By

Proposition 4.4, we may regard this integral as a function in the representation ΘGL3r⊗

Θ2k−6r+1 of G̃L3r(A) × S̃O2k−6r+1(A). According to [7], the corresponding Fourier

coefficient of ΘGL3r is the semi-Whittaker coefficient associated with the partition

Λ = (3q2r−q1r−q). Following [7], let PΛ =MΛUΛ be the standard parabolic subgroup

of GL3r with the Levi subgroup MΛ
∼= GLq3×GLr−q2 ×GLr−q1 and UΛ the unipotent

radical. Let U be the unipotent radical of the standard Borel subgroup of GL3r

and ψΛ : U(F ) \ U(A) → C× be the Gelfand-Graev character such that it acts non-

trivially as ψ on each one-parameter subgroup corresponding to a simple positive root

contained in MΛ and acts trivially otherwise. Then the Λ-semi-Whittaker coefficient

of any function θGL3r in ΘGL3r is given by

∫
U(F )\U(A)

θGL3r(ug)ψΛ(u) du. (4.21)
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By Proposition 4.1 of [7], any such semi-Whittaker coefficient is identically zero.

Therefore, we only need to consider those terms corresponding to characters on

[Hr,2k−4r+1] represented by

ψ3,q′(u) = ψ(y1,1 + y2,2 + · · ·+ yq′,q′), (4.22)

with 1 < q′ ⩽ r and

u =



I2r

Ir y ∗

I2k−6r+1 y∗

Ir

I2r


∈ Hr,2k−4r+1(A), y = (yi,j) ∈ Matr×(2k−6r+1)(A).

(4.23)

We repeat this argument by further expanding the integral (4.22) against smaller

unipotent subgroups Hr,2k−2m+1 with m = 3, 4, · · · . For each time, the only non-zero

contribution is coming from those characters correponding to some totally isotropic

matrices. In the end, we either obtain a Fourier coefficient of Θ2k+1 associated to

unipotent orbit that is either larger than or incomparable to O(Θ2k+1), or we obtain

some semi-Whittaker coefficient on the double cover G̃Lnr corresponding to a partition

of the integer nr (with n > 3) that contains an integer greater than 2. The former

is identically zero by Proposition 4.5, while the latter is also zero by Proposition

4.1 of [7]. This shows that the only contribution of the expansion of (4.15) against

[Hr,2k−2r+1/Z(Hr,2k−2r+1)] is the constant term, which completes the proof.

For intergers r1 ⩽ r2 ⩽ · · · ⩽ rn, we further denote H(r1, r2, · · · , rn−1; rn) the
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unipotent radical of the parabolic subgroup of SO2k+1 with Levi subgroup

L(r1, r2, · · · , rn−1; rn) = GL2
r1
×GL2

r2
× · · ·×GL2

rn−1
×GLrn × SO2k−4(r1+···+rn−1)−2rn+1 .

We also let

L = GL2r1 ×GL2r2 × · · · ×GL2rn−1 × SO2k−4(r1+···+rn−1)+1 .

Denote the diagonal embedding by ι∗ : L(r1, r2, · · · , rn−1; rn) ⊂ L ↪→ SO2k+1.

For each i = 1, 2, · · · , n − 1, let Hri be the unipotent radical of the standard

Siegel parabolic subgroup of GL2ri whose Levi part is GLri ×GLri . Also, let Hrn be

the unipotent radical of the maximal parabolic subgroup of SO2k−4(r1+···+rn−1)+1 with

Levi subgroup GLrn × SO2k−4(r1+···+rn−1)−2rn+1. Then we define

H0 := Hr1 ×Hr2 × · · · ×Hrn−1 ×Hrn ⊆ H(r1, r2, · · · , rn−1; rn).

We now define a character on [H0] and extend it trivially to [H(r1, r2, · · · , rn−1; rn)].

For any ui ∈ Hri(A) with i = 1, 2, · · · , n− 1, we may write

ui =

Iri xi

Iri

 , xi ∈ Matri×ri(A).

Define ψri : Hri(F ) \Hri(A) → C× by

ψri(ui) = ψ(Tr(xi)).
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For the factor Hrn , define the character by

ψrn(u) = ψ(
rn∑
j=1

uj,j+rn), u ∈ Hrn(A).

Pulling back each ψri via the projection of H0 onto the corresponding factor and

taking the product afterwards, we obtain ψn :=
∏n

i=1 ψri : [H
0] → C×. Extend ψn

trivially to [H(r1, r2, · · · , rn−1; rn)]. Furthermore, let Hn be the unipotent radical

of the standard maximal parabolic subgroup of SO2k−4(r1+···+rn−1)−2rn+1 with Levi

subgroup given by

GLrn × SO2k−4(r1+···+rn−1)−2rn+1 .

Embed Hn into SO2k+1 via (2.3) and still denote its image by Hn. Proposition 4.6

admits a straightforward corollary.

Corollary 4.7. The function

f(g) =

∫
[H(r1,r2,··· ,rn−1;rn)]

θ(ug)ψn(u) du (4.24)

is left invariant under Hn(A).

Proof. Apply Proposition 4.4 with r = 2(r1+r2+ · · ·+rn−1). Then apply Proposition

4.6 to the theta representation of the smaller orthogonal group.

4.4 Tower of the theta liftings

Let (π,V) be an irreducible cuspidal genuine automorphic representation of S̃O2k+1(A).

Suppose SO2k′ is a split even orthogonal group. By identifying SO2k′ × SO2k+1 with

its embedded image in SO2k+2k′+1 via (2.3), we consider functions on S̃O2k′(A) of the
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form

f(h) =

∫
[SO2k+1]

φ(g)θ̄2k+2k′+1(h, g) dg, (4.25)

where φ is any function in V and θ2k+2k′+1 is any function in the representation

space of Θ2k+2k′+1. This integral defines a map from the irreducible cuspidal genuine

automorphic representation π of S̃O2k+1(A) to a genuine automorphic representation

Θ2k+2k′+1(π) of S̃O2k′(A).

By fixing the representation π of S̃O2k+1(A) and varying the theta representa-

tions Θ2k+2k′+1 of S̃O2k+2k′+1(A) with increasing k′, we obtain a tower of liftings of

representations of S̃O2k′(A):

Θ2k+2k′+3(π)

Θ2k+2k′+1(π)

...

π Θ2k+3(π).
...

In [6], Bump-Friedberg-Ginzburg show that if Θ2k+2k′+1(π) = 0, then Θ2k+2k′−1(π) =

0. It is also proved in [6] that any genuine cuspidal automorphic representation π

of S̃O2k+1(A) lifts nontrivially to an automorphic representation of S̃O8k(A). This

raises the question of when the first non-zero theta lifting occurs along the tower for

a fixed π. In the case when π is generic, a conjecture in [6] states that π should lift

non-trivially to an automorphic representation of S̃O2k+4(A). The same authors also

proved the following result:

Theorem 4.8. Let π be an irreducible cuspidal genuine automorphic representation

of S̃O2k+1(A). If the representation Θ4k+5(π) of S̃O2k+4(A) is generic, then the rep-

resentation π is also generic.
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On the other hand, there is not much known yet for the theta liftings when π

is non-generic. Motivated by the generic case, we make the following more general

conjecture:

Conjecture 4.9. Let (π,V) be an irreducible cuspidal genuine automorphic repre-

sentation of S̃O2k+1(A). Suppose

O = ((2n1 + 1)r1(2n2 + 1)r2 · · · (2np + 1)rp) ∈ O(π)

with n1 > n2 > · · · > np ⩾ 0 and ri > 0 for all i. Then π lifts nontrivially to an

automorphic representation Θ(π) of S̃O2k+2l+2(A) such that

O′ = ((2n1 + 3)r1(2n2 + 3)r2 · · · (2np + 3)rp(1)) ∈ O (Θ(π)) .

Recall that l = r1+ r2+ · · ·+ rp is the length of the partition corresponding to O.

If π is an irreducible cuspidal generic automorphic representation of S̃O2k+1(A), then

O(π) = (2k+1). Conjecture 4.9 predicts that it lifts to an automorphic representation

Θ(π) of S̃O2k+4(A) with O(Θ(π)) = ((2k + 3)(1)), which agrees with the conjecture

proposed in [6].

Recall that the Gelfand-Kirillov dimension of a representation ρ (see [10]) is given

by

dim(ρ) =
1

2
dim(O(ρ)) = dim(V2,O(ρ)) +

1

2
dim(V1,O(ρ)/V2,O(ρ)).

Proposition 4.10. Suppose (π,V) is an irreducible cuspidal genuine automorphic

representation of S̃O2k+1(A) with O(π) = O such that its theta lifting Θ(π) on

S̃O2k+2l+2(A) has O (Θ(π)) = O′. Then

dim(SO2k+1) + dim(Θ(π)) = dim(π) + dim(Θ4k+2l+3). (4.26)
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Before we verify (4.26), we need to fix some notations. Suppose, as in Conjecture

4.9,

O = ((2n1 + 1)r1(2n2 + 1)r2 · · · (2np + 1)rp) , n1 > n2 > · · · > np ⩾ 0.

Denote

si :=
i∑

j=1

rj, i = 1, 2, · · · , p. (4.27)

In particular, l = sp is the length of the partition corresponding to O. The fact that

O is odd implies that V1,O = V2,O, and both of these are the unipotent radical of the

parabolic subgroup PO whose Levi part is

M(O) = GLn1−n2
s1

×GLn2−n3
s2

× · · · ×GLnp−1−np
sp−1

×GL
np
l × SOl .

For simplicity, we denote UO = V1,O = V2,O.

Likewise, we denote by VO′ the unipotent subgroup V1,O′ = V2,O′ associated to the

unipotent orbit

O′ = ((2n1 + 3)r1(2n2 + 3)r2 · · · (2np + 3)rp(1))

in SO2k+2l+2. It is the unipotent radical of some maximal parabolic subgroup whose

corresponding Levi subgroup is

M(O′) = GLn1−n2
s1

×GLn2−n3
s2

× · · · ×GLnp−1−np
sp−1

×GL
np+1
l × SOl+1 .

Proof. Observe that O(Θ4k+2l+3) = (22k+l+11) since l is odd, and dim(Θ4k+2l+3) =

(2k+l+1)2

2
. Also, dim(SO2k+1) = 2k2+k. Although the dimension of the representations

Θ4k+2l+3(π) and π may vary, it suffices to check that the difference between the
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dimensions agrees with that between dim(Θ4k+2l+3) and dim(SO2k+1).

Notice that the difference between dim(π) and the dimension of the unipotent

radical of the Borel subgroup of SO2k+1 is related to that between dim(Θ4k+2l+3(π))

and the dimension of the unipotent radical of the Borel subgroup of SO2k+2l+2. The

former is precisely the dimension of the unipotent radical of the Borel subgroup of

M(O). We denote this dimension by t+ (l−1)2

4
, where (l−1)2

4
and t are the dimensions

of the maximal unipotent subgroup of the factor SOl and the remaining Levi factors

respectively. Hence, we obtain that dim(π) = k2 − t − (l−1)2

4
. Similarly, we have

dim(Θ4k+2l+3(π)) = (k + l+ 1)(k + l)− t− l2−1
4

− (l−1)(l)
2

. Therefore, the difference is

exactly

l2 + 1

2
+2kl+k+l =

(2k + l + 1)2

2
−(2k2+k) = dim(Θ4k+2l+3)−dim(SO2k+1). (4.28)

Proposition 4.10 shows that Conjecture 4.9 agrees with the dimension equation

proposed in [12]. The general philosophy of the dimension equation is that the sum

of the dimensions of the representations is equal to the sum of the dimensions of the

groups in the domain of integration in a global unipotent integral. In our case, this

is given by equation (4.26). Refer to [12], [13] and [10] for more details on dimension

equations.
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5 Global theory

In this section, we will state and prove our main result in the global setting.

5.1 Choice of generic characters

We follow the notations in and after Conjecture 4.9. Suppose (π,V) is an irre-

ducible genuine cuspidal automorphic representation of S̃O2k+1(A). Let O be the

unipotent orbit of SO2k+1 such that

O = ((2n1 + 1)r1(2n2 + 1)r2 · · · (2np + 1)rp) .

Let l = r1 + r2 + · · ·+ rp be the length of the partition corresponding to O. Suppose

Θ4k+2l+3(π) is the automorphic representation of S̃O2k+2l+2(A) obtained by the theta

lifting from π via integrating functions in V against the theta integral kernel Θ4k+2l+3

in the form of (4.25). As we are only concerned about a fixed theta lifting in this

section, we suppress the subscript and simply let Θ(π) = Θ4k+2l+3(π). We denote by

O′ the unipotent orbit of the group SO2k+2l+2 associated to the partition

O′ = ((2n1 + 3)r1(2n2 + 3)r2 · · · (2np + 3)rp(1)) .

Recall that VO′ = V1,O′ = V2,O′ is the unipotent radical of the parabolic subgroup of

SO2k+2l+2 whose Levi subgroup is

M(O′) = GLn1−n2
s1

×GLn2−n3
s2

× · · · ×GLnp−1−np
sp−1

×GL
np+1
l × SOl+1 .
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Notice that

VO′/V
(1)
O′

∼=

(
p−1⊕
j=1

Matsj×sj+1

)
⊕

(
p−1⊕
j=1

Mat
nj−nj+1−1
sj×sj

)
⊕Mat

np
l×l⊕Matl×(l+1) . (5.1)

We first define a character on [VO′/V
(1)
O′ ] by specifying it on each of the components,

and then extend it trivially to a character on [VO′ ]. For any abelian group Mati×j,

we may identify the character group of [Mati×j] with Mati×j(F ). Recall

si :=
i∑

j=1

rj, i = 1, 2, · · · , p. (5.2)

Let

Isj ,sj+1
=

(
Isj 0

)
∈ Matsj×sj+1

(F ), j = 1, 2, · · · , p− 1,

and

Il,a =


I l−1

2

1
2

−a

−I l−1
2

 ∈ Matl×(l+1)(F ), a ∈ F×.

Consider the following characters each defined on the respective component in (5.1):


ψsj×sj(v) = ψ(Tr v) if v ∈ Matsj×sj(A), j = 1, 2, · · · , p,

ψsj×sj+1
(v) = ψ(Tr(Isj ,sj+1

vT )) if v ∈ Matsj×sj+1
(A), j = 1, 2, · · · , p− 1,

ψl×(l+1)(v) = ψ(Tr(Il,av
T )) if v ∈ Matl×(l+1)(A).

(5.3)

Pulling back each of these characters via the projection map onto the respective

component and taking the product afterwards, we obtain a character on [VO′/V
(1)
O′ ].

Extend it to a character on [VO′ ] and denote the resulting character by ψa,VO′ . This

is a generic character attached to the unipotent orbit O′.
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For any automorphic function in Θ(π) of the form

f(h) =

∫
SO2k+1(F )\SO2k+1(A)

φ(g)θ4k+2l+3(h, g) dg,

we let

Fψa,VO′
(f)(h) =

∫
[SO2k+1]

∫
[VO′ ]

φ(g)θ4k+2l+3(vh, g)ψa,VO′ (v) dv dg. (5.4)

The maximal split torus of SO4k+2l+3(F ) normalizes VO′ . Conjugating the variable

v in the inner integration of (5.4) by τ = diag(t, · · · , t, 1, t−1, · · · , t−1)), t ∈ F× leaves

the integral unchanged. The automorphicity of θ4k+2l+3 implies that it is left invariant

by τ . After a change of variables by v 7→ vτ−1, we see that the Fourier coefficient

depends only on the square class of a in F×. When a is a square, the connected

component of the stabilizer of ψa,VO′ in M(O′)(F ) is split. In this case, we call ψa,VO′

a split generic character, and denote it by ψO′ .

On the other hand, recall UO = V1,O = V2,O is the unipotent radical of the maximal

parabolic subgroup PO of SO2k+1 with the corresponding Levi part

M(O) = GLn1−n2
s1

×GLn2−n3
s2

× · · · ×GLnp−1−np
sp−1

×GL
np
l × SOl .

In order to define a generic character on [UO], it suffices to specify the respective

character on each of the components of the maximal abelian quotient

UO/U
(1)
O

∼=

(
p−1⊕
j=1

Matsj×sj+1

)
⊕

(
p−1⊕
j=1

Mat
nj−nj+1−1
sj×sj

)
⊕Mat

np−1
l×l . (5.5)
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We define these characters by


ψsj×sj(v) = ψ(Tr v) if v ∈ Matsj×sj(A), j = 1, 2, · · · , p,

ψsj×sj+1
(v) = ψ(Tr(Isj ,sj+1

vT )) if v ∈ Matsj×sj+1
(A), j = 1, 2, · · · , p− 1.

(5.6)

This gives a generic character ψO : [UO] → C× .

5.2 The global main theorem

Theorem 5.1. Let (π,V) be an irreducible cuspidal genuine automorphic representa-

tion of S̃O2k+1(A). Suppose the theta lifting Θ(π), as a representation of S̃O2k+2l+2(A),

has a non-zero Fourier coefficient with respect to a split generic character associated

with the unipotent orbit

O′ = ((2n1 + 3)r1(2n2 + 3)r2 · · · (2np + 3)rp(1)) .

Then the representation π has a non-zero Fourier coefficient with respect to some

generic character associated with the unipotent orbit

O = ((2n1 + 1)r1(2n2 + 1)r2 · · · (2np + 1)rp) .

Proof. Throughout the proof, we identify any subgroup of SO2k+1 or SO2k+2l+2 with

its embedded image in SO4k+2l+3 via 2.3. The Fourier coefficient of Θ(π) with respect

to a generic character ψa,VO′ depends only on the square class of a. Therefore, we

may assume there exists data such that the following integral is non-vanishing:

FψO′ (f)(1) =

∫
[SO2k+1]

∫
[VO′ ]

φ(g)θ4k+2l+3(v, g)ψO′(v) dv dg, (5.7)
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where ψO′ = ψ1,VO′ .

Denote by Rs1 = Rs1,4k+2l+3 the unipotent radical of the maximal parabolic sub-

group of SO4k+2l+3 with Levi subgroup GLs1 × SO4k+2l−2s1+3. Notice that Vs1 =

VO′ ∩ Rs1 is non-trivial. The quotient Vs1 \ Rs1 may be identified with the subgroup

of matrices of the form

Hs1 :=





Is1 x ∗

Ik+l−s1+1

I2k+1 x∗

Ik+l−s1+1

Is1


∈ SO4k+2l+3 : x ∈ Mats1×(2k+1)


.

Although Hs1 is not abelian, it is a Heisenberg group with Z(Hs1) corresponding to

matrices of the form


Is1 0 z

I4k+2l−2s1+3 0

Is1

 : zTJs1 + Js1z = 0

 .

Notice that the center Z(Hs1)(A) ⊂ VO′(A) is included in the domain of integra-

tion in (5.7). As a result, we expand the integral (5.7) against the abelian quotient

[(Hs1/Z(Hs1))]
∼= [Mats1×(2k+1)].

We may identify the character group of [(Hs1/Z(Hs1))] with Mats1×(2k+1)(F ). The

action of the diagonally embedded subgroup GLs1(F )× SO2k+1(F ) on the character

group can be realized as its conjugation action on Mats1×(2k+1)(F ). This action pre-

serves the rank and the fact whether the row space is totally isotropic. For any

ξ ∈ Mats1×(2k+1)(F ) whose row space is not totally isotropic, it must lie on the same

orbit as some ξ′ that contains some non-isotropic row vectors in F 2k+1. Thus, we may
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classify the orbits by their representatives ξ given as follows:

(i) ξ is the zero matrix.

(ii) Rank(ξ) = q with 1 ⩽ q ⩽ s1 and ξ contains some non-isotropic vector in F 2k+1.

(iii) Rank(ξ) = q with 1 ⩽ q ⩽ s1 and the row space of ξ is totally isotropic.

For any character ψξ identified with some ξ ∈ Mats1×(2k+1)(F ), its contribution in the

Fourier expansion is given by the integral

∫
[SO2k+1]

∫
[VO′ ]

∫
[Hs1/Z(Hs1 )]

φ(g)θ4k+2l+3 (u(v, g))ψO′(v)ψξ(u) du dv dg. (5.8)

By Remark 3.4, the contribution of every character in the same orbit is zero as long

as the integral contribution of one representative is identically zero.

We will show that the only non-zero contribution in the Fourier expansion is from

the orbit represented by some ξ ∈ Mats1×(2k+1)(F ) with maximal rank and totally-

isotropic row space.

First, we look at the contribution from the orbit corresponding to the zero matrix.

This is the constant term of the Fourier expansion given by

∫
[SO2k+1]

∫
[VO′ ]

∫
[Hs1/Z(Hs1 )]

φ(g)θ4k+2l+3 (u(v, g))ψO′(v) du dv dg. (5.9)

Write v = vs1v
1 where vs1 ∈ Vs1(A) and v1 ∈ V 1

O′(A) := VO′(A) ∩ SO2k+2l−2s1+2(A).

Combining the two variables u and vs1 , we obtain

∫
[SO2k+1]

∫
[V 1

O′ ]

∫
[Rs1 ]

φ(g)θ4k+2l+3 (u(v1, g))ψ1(u)ψO′(v1) du dv1 dg, (5.10)
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where ψ1 is the character on [Rs1 ] given by

ψ1(u) = ψ(u1,s+1 + u2,s+2 + · · ·+ us+2s). (5.11)

Applying Proposition 4.6, we see that (5.10) is equal to the integral

∫
[SO2k+1]

∫
[V 1

O′ ]

∫
[R
s21

]

φ(g)θ4k+2l+3

(
u(v1, g)

)
ψ1(u)ψO′(v1) du dv1 dg, (5.12)

where we extend ψ1 trivially to [Rs21
] and Rs21

= Rs1,4k+2l+3Rs1,4k+2l−2s1+3 is the unipo-

tent radical of the maximal parabolic subgroup of SO4k+2l+3 with Levi subgroup

GLs1 ×GLs1 × SO4k+2l−4s1+3 .

Notice that Rs21
∩ V 1

O′ is non-trivial. Let β be the root inside SO2k+2l+2 such that

β =


∑s2

j=1 αs1+j if n1 − n2 = 1∑s1
j=1 αs1+j if n1 − n2 > 1,

(5.13)

where we recall that αi’s are the positive simple roots of SO2k+2l+2. By construction,

the one parameter subgroup {xβ(r) : r ∈ A} associated to β is in the intersection

Rs21
(A) ∩ V 1

O′(A), and ψO′ is non-trivial on xβ(r). We may write (5.12) as

∫
[SO2k+1]

∫
V 1
O′ (F )xβ(A)\V 1

O′ (A)

∫
[R
s21

]

∫
A/F

φ(g)θ4k+2l+3

(
uxβ(r)(v

1, g)
)
ψ1(u)ψ(r)ψO′(v1) dr du dv1 dg

=

∫
A/F

ψ(r) dr

 ∫
[SO2k+1]

∫
V 1
O′ (F )xβ(A)\V 1

O′ (A)

∫
[R
s21

]

φ(g)θ4k+2l+3

(
u(v1, g)

)
ψ1(u)ψO′(v1) du dv1 dg.
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This is zero since ∫
A/F

ψ(r) dr = 0

for the non-trivial character ψ.

Second, we look at the contributions from the second type of orbits. For any of

such orbits, it suffices to check on the contribution of a representative ξ that contains

some non-isotropic row vector in F 2k+1, which is given by

∫
[SO2k+1]

∫
[V 1

O′ ]

∫
[Rs1 ]

φ(g)θ4k+2l+3

(
u(v1, g)

)
ψ1,ξ(u)ψO′(v1) du dv1 dg. (5.14)

Here, for any u = u1u2 ∈ Rs1(A) with u1 ∈ Vs1(A), u2 ∈ Hs1(A), ψ1,ξ(u) = ψ1(u1)ψξ(u2)

is a generic character associated with the unipotent orbit corresponding to the par-

tition (3s114k+2l+3−3s1). Hence, (5.14) contains a Fourier coefficient of θ4k+2l+3 asso-

ciated to the unipotent orbit Oξ = (3s114k+2l+3−3s1), which is zero by Proposition

4.5.

Thus, the only possible non-zero contributions are from orbits that belong to the

last type. We may classify these orbits by the representatives given by

ξq =

Iq 0

0 0

 ∈ Mats1×(2k+1)(F ), q = 1, 2, · · · , s1. (5.15)

For a given ξq, the contribution of the corresponding character ψξq : [(Hs1/Z(Hs1))] →

C× is

∫
[SO2k+1]

∫
[V 1

O′ ]

∫
[Rs1 ]

φ(g)θ4k+2l+3

(
u(v1, g)

)
ψ1,ξq(u)ψO′(v1) du dv1 dg, (5.16)
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where ψ1,ξq = ψ1ψξq is the character on [Rs1/Z(Rs1)] that corresponds to the matrix

(
Is1 0s1×(k+l+1−2s1) ξ 0s1×(k+l−s1+1)

)
∈ Mats1×(4k+2l−2s1+3)(F ).

Let zq ∈ SO4k+2l+3(F ) be the unipotent element

zq =



Is1

µq

I2k+1−2q

µ∗
q

Is1


, µq =


Iq −Iq

Ik+l+1−s1−q

Iq

 .

Performing a change of variables by u 7→ uzq, (5.16) is equal to

∫
[SO2k+1]

∫
[V 1

O′ ]

∫
[Rs1 ]

φ(g)θ4k+2l+3

(
uzq(v

1, g)
)
ψ′
1,ξq(u)ψO′(v1) du dv1 dg, (5.17)

where ψ′
1,ξq

is the character on [(Hs1/Z(Hs1))] that corresponds to the matrix

(
I∗s1−q 0s1×(k+l+1−2s1) ξ 0s1×(k+l−s+1)

)
∈ Mats1×(4k+2l−2s1+3)(F ),

I∗s1−q =

0 0

0 Is1−q

 ∈ Mats1×s1(F ).
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Let ωq be the Weyl group element given by

ωq =



Is1

νq

I2k+1−2q

ν−1
q

Is1


∈ SO4k+2l+3(F ),

with

νq =



Iq

Is1−q

Iq

Ik+l+q+1−3s1

Is1−q


.

The conjugation action of ωq stabilizes [Rs1 ]. Therefore, we change the variable

u 7→ ω−1
q uωq and use the automorphicity of θ4k+2l+3 to obtain

∫
[SO2k+1]

∫
[V 1

O′ ]

∫
[Rs1 ]

φ(g)θ4k+2l+3

(
uωqzq(v

1, g)
)
ψ1(u)ψO′(v1) du dv1 dg. (5.18)

Apply Proposition 4.6 to the integral (5.18) to replace the integration on [Rs1 ] by

[Rs21
]. We obtain

∫
[SO2k+1]

∫
[V 1

O′ ]

∫
[R
s21

]

φ(g)θ4k+2l+3

(
uωqzq(v

1, g)
)
ψ1(u)ψO′(v1) du dv1 dg. (5.19)

This integral is similar to (5.12) except for the presence of the Weyl group element

ωq. However, the same argument implies that the contribution is zero as long as

Rs21
∩ ωqV

1
O′ω−1

q is non-trivial. This happens only when Rank(ξq) < s1. Hence,
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we conclude that the only non-zero contributions of the Fourier expansion are from

characters ψξ on [(Hs1/Z(Hs1))] corresponding to some ξ ∈ Mats1×(2k+1)(F ) with rank

s1 and totally isotropic row space. Notice that SO2k+1(F ) acts transitively from the

right on such matrices. If we take

ξs1 =

(
Is1 0

)
∈ Mats1×(2k+1)(F )

as a representative, then we conclude that the Fourier coefficient (5.7) is equal to

∫
[SO2k+1]

∫
[V 1

O′ ]

∫
[R
s21

]

∑
γ∈P 0

s1
(F )\SO2k+1(F )

φ(g)θ4k+2l+3

(
uωs1zs1γ(v

1, g)
)
ψ1(u)ψO(v

1) du dv1 dg.

(5.20)

Here, Ps1 = Ps1,2k+1 is the standard maximal parabolic subgroup of SO2k+1 with

Levi part GLs1 × SO2k−2s1+1. The upper zero indicates that we omit the GLs1 factor.

In fact, P 0
s1
(F ) is the stabilizer of ψξs1 under the SO2k+1(F ) action. As any γ ∈

P 0
s1
(F ) \ SO2k+1(F ) commutes with any v1 ∈ V 1

O′(A), we can combine the summation

with the integration in (5.20) to rewrite it as

∫
P 0
s1

(F )\SO2k+1(A)

∫
[V 1

O′ ]

∫
[R
s21

]

φ(g)θ4k+2l+3

(
uωs1zs1(v

1, g)
)
ψ1(u)ψO′(v1) du dv1 dg. (5.21)

The next step of the proof is to apply the same argument in the previous step re-

peatedly to smaller unipotent subgroups. To proceed, we assume that n1−n2 = 1 only

for notational simplicity. The argument works in great generalities that it does not

depend on the assumption. Consider the unipotent subgroup Rs2 = Rs2,4k+2l−4s1+3 ⊂

SO4k+2l+3, which is the unipotent radical of the standard maximal parabolic sub-

group whose Levi part is GL2
s1
×GLs2 × SO4k+2l−4s1−2s2+3. The group Rs2 consists of
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matrices of the form





I2s1

Is2 x ∗

I4k+2l−4s1−2s2+3 x∗

Is2

I2s1


∈ SO4k+2l+3 : x ∈ Mats2×(4k+2l−4s1−2s2+3)


.

(5.22)

We set Vs2 = Rs2 ∩ (ωs1zs1V
1
O′(ωs1zs1)

−1), and the quotient Hs2 = Vs2 \ Rs2 . As the

center [Z(Hs2)] ⊂ [Vs2 ] is included in the domain of integration in (5.21), we continue

to expand (5.21) against [Hs2/Z(Hs2)]. We check on the contributions from each type

of the characters on [Hs2/Z(Hs2)] under the action of GLs2(F )×SO4k+2l−4s1−2s2+3(F ).

By the same argument, it follows that the only contribution is from the orbit of

characters represented by ψξs2 corresponding to the matrix

ξs2 =

(
Is2 0

)
∈ Mats2×(4k+2l−4s1−2s2+3)(F ).

We continue the same argument repeatedly with the assumption that ni−ni+1 = 1

for all i = 1, 2, · · · , p− 1 and np = 1 for notational simplicity. We deduce that (5.21)

equals to

∫
P 0
O(F )\SO2k+1(A)

∫
[V pO′ ]

∫
[R
s2p

]

φ(g)θ4k+2l+3

(
u

p−1∏
i=0

ωsp−izsp−i(v
p, g)

)
ψp(u)ψO′(vp) du dvp dg.

(5.23)

We explain the notations here. First, PO = M(O)UO is the maximal parabolic

subgroup of SO2k+1 with the corresponding Levi decomposition. The upper zero

indicates that we omit all the GL-factors in the Levi factor M(O). That is P 0
O

∼=

SOl UO. Next, V p
O′ = VO′ ∩ SO3l+1 with V p

O′/(V
p
O′)(1) ∼= Matl×(l+1). Also, Rs2p

is the
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unipotent radical of the standard maximal parabolic subgroup of SO4k+2l+3 with Levi

part given by

GL2(n1−n2)
s1

×GL2(n2−n3)
s2

× · · · ×GL2(np−1−np)
sp−1

×GL
2np
l × SO4l+1 .

The character ψp : [Rs2p
] → C× is the product of ψ1 and the characters corresponding

to the non-zero contribution in each of the repeated steps. It is given by (similar to

ψn in Corollary 4.7)

ψp(u) = ψ

(
s1∑
i=1

uj,s1+j +

s2∑
j=1

u2s1+j,2s1+s2+j + · · ·+
sp∑
j=1

u2(s1+···+sp−1)+j,2(s1+···+sp−1)+sp+j

)
.

The term
∏p−1

i=0 ωsp−izsp−i is the product of ωs1zs1 and the corresponding Weyl group

elements and unipotent elements produced during each of the repeated steps. To be

more precise, for each 1 ⩽ j ⩽ p, we have

ωsj =



I2(s1+···+sj−1)

νsj

I2k−2(s1+···+sj)+1

ν−1
sj

I2(s1+···+sj−1)


,

νsj =


Isj

Isj

Ik+l+1−2(s1+···+sj−1)−sj

 ,
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and

zsj =



I2(s1+···+sj−1)

µsj

I2k−2(s1+···+sj)+1

µ∗
sj

I2(s1+···+sj−1)


,

µsj =



Isj

Isj −Isj

Ik+l+1−2(s1+···+sj)

Isj


.

Notice that we can conjugate all the zj’s to the right of all the ωj’s and rewrite (5.23)

as

∫
P 0
O(F )\SO2k+1(A)

∫
[V pO′ ]

∫
[R
s2p

]

φ(g)θ4k+2l+3 (uωlzl(v
p, g))ψp(u)ψO′(vp) du dvp dg, (5.24)

with ωl = ωsp−1ωsp−2 · · ·ωs1 and

zl =



Is1

µl

Il

µ−1
l

Is1


, µl =


Is1+···+sp−1 −Is1+···+sp−1

Ik+l−2(s1+···+sp−1)+1

Is1+···+sp−1

 .

Now we proceed to the last step. Let Rp ⊂ SO4l+1 be the unipotent radical of

the standard maximal parabolic subgroup of SO4l+1 with Levi part GLl× SO2l+1. In
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terms of matrices,

Rp =





I2(s1+···+sp−1)

Il x ∗

I2l+1 x∗

Il

I2(s1+···+sp−1)


∈ SO4k+2l+3 : x ∈ Matl×(2l+1)


.

The subgroup Rp is again a Heisenberg group with the maximal abelian quotient

Rp/R
(1)
p

∼= Matl×(2l+1). On the other hand, for any y =

(
y1 y2

)
∈ V p

O′/(V
p
O′)(1) ∼=

Matl×(l+1) where y1, y2 ∈ Matl×( l+1
2

), we have

ωlzly(ωlzl)
−1 =

(
y1 0l×l y2

)
∈ Rp/R

(1)
p .

Let Hp = (ωlzlV
p(ωlzl)

−1) \ Rp, which is also a Heisenberg group. As the center

[Z(Hp)] ⊂ [(ωlzlV
p(ωlzl)

−1)] is included in the domain of integration in the integral

(5.24), we further expand (5.24) against [(Hp/Z(Hp))].

We may identify the character group of [(Hp/Z(Hp))] with

(Hp/Z(Hp)) (F ) ∼= Matl×l(F ).

In the expansion, we conjugate elements in [V p
O′ ] to the left inside the function θ4k+2l+3

and combine this domain of integration with [(Hp/Z(Hp))]. Denote the resulting

domain of integration by [Rp]. Let R = Rs2p
Rp, which is the unipotent subgroup that

coincides with V2,O2 where O2 is the unipotent orbit in SO4k+2l+3 corresponding to

the partition (
(4n1 + 3)r1(4n2 + 3)r2 · · · (4np + 3)rp(1)l+1

)
.
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As a result, (5.24) is equal to

∫
P 0
O(F )\SO2k+1(A)

∫
[R]

∑
ξ∈Matl×l(F )

φ(g)θ4k+2l+3 (uωlzl(1, g))ψO′,p,ξ(u) du dg. (5.25)

Here, we combine all the characters involved to get the character ψO′,p,ξ on [R]. For

any x = x1x2x3 ∈ R(A) with x1 ∈ Rs2p
(A), x2 ∈ V p

O′(A) and x3 ∈ Hp(A)/(Z(Hp))(A),

ψO′,p,ξ(x) = ψp(x1)ψO′(x2)ψξ(x3).

By Proposition 4.4, the inner integral of (5.25) factors as the product of an

integral of a theta function in the theta representation ΘGL of the double cover

G̃L2(s1+···+sp−1)(A) with respect to the character ψp and an integral of a theta func-

tion in Θ4l+1 of S̃O4l+1(A) with respect to the character ψO′ψξ. When the character

ψO′ψξ is generic with respect to the unipotent orbit associated with the partition

(3l1l+1), the second integral is a Fourier coefficient of the theta representation Θ4l+1

with respect to the unipotent orbit associated to (3l1l+1). By Proposition 4.5, such

an integral must be zero. Thus, the non-zero contributions in the expansion (5.25)

come from those ψξ corresponding to ξ ∈ Matl×l(F ) such that ψO′ψξ is not generic.

To proceed, let us fix a

ξ =


λ1
...

λl

 ∈ Matl×l(F ),

with row vectors λ1, · · · , λl ∈ F l. By construction, the character ψη := ψO′ψξ corre-
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sponds to the matrix

η =



1 λ1
. . .

...

1 λ l−1
2

1
2

λ l+1
2

−1

λ l+3
2

−1

...
. . .

λl −1



∈ Matl×(2l+1)(F ).

Notice that ψη is generic as long as the row space of η is not totally isotropic with

respect to the non-degenerate bilinear form on F 2l+1 defined by J2l+1. As a result,

the contribution of ψη is non-zero only if the row space of η is totally isotropic and of

rank l. That is, the row space of η is a maximal totally isotropic subspace of F 2l+1.

Consequently, we only need to consider ξ with row vectors λ1, λ2, · · ·λl satisfying the

following conditions:

1. Each λi except λ l+1
2

is non-zero isotropic.

2. Each pair λi and λl+1−i for i = 1, 2, · · · , l−1
2

is a hyperbolic pair, i.e.

(λi, λl+1−i) = 1, i = 1, 2, · · · , l − 1

2
.

All these hyperbolic pairs are mutually orthogonal.

3. The vector λ l+1
2

is non-isotropic with (λ l+1
2
, λ l+1

2
) = 1.

The group SOl(F ) acts transitively from the right on the set of ξ’s and we pick the

identity matrix Il ∈ Matl×l(F ) as a representative. As a result, the integral (5.25) is
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equal to

∫
P 0
O(F )\SO2k+1(A)

∫
[R]

∑
γ∈SO2l+1(F )

φ(g)θ4k+2l+3 (uγωlzl(1, g))ψO′,p,Il(u) du dg. (5.26)

Since γ commutes with the product ωlzl, we can conjugate it to the right and collapse

the summation with the outer integration to obtain

∫
UO(F )\SO2k+1(A)

∫
[R]

φ(g)θ4k+2l+3 (uωlzl(1, g))ψO′,p,Il(u) du dg. (5.27)

We further decompose the domain of integration of the outer integral as

UO(F ) \ SO2k+1(A) = (UO(F ) \ UO(A)) (UO(A) \ SO2k+1(A)) .

We obtain

∫
UO(F )\UO(A)

∫
UO(A)\SO2k+1(A)

∫
[R]

φ(ng)θ4k+2l+3 (uωlzl(1, ng))ψO′,p,Il(u) du dg dn. (5.28)

Observe that n0 := ωlzln(ωlzl)
−1 ∈ R(A) for any n ∈ UO(A), and ψO′,p,Il(n0) = ψO(n).

Hence, we conjugate the variable n inside the function θ4k+2l+3 to the left and perform

a change of variable by u 7→ un−1
0 to finally obtain that (5.28) is equal to

∫
UO(A)\SO2k+1(A)

 ∫
UO(F )\UO(A)

φ(ng)ψO(n)dn

∫
[R]

θ4k+2l+3 (uωlzl(1, g))ψO′,p,Il(u) du dg.

(5.29)

Note that

FψO,UO(φ)(g) =

∫
UO(F )\UO(A)

φ(ng)ψO(n)dn (5.30)
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is a Fourier coefficient of φ associated to the unipotent orbit O and the generic

character ϕO on [UO]. The fact that (5.7) is non-vanishing implies that FψO,UO(φ) is

non-vanishing, which completes the proof.
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6 Local theory

In this section, we establish the local counterpart to Theorem 5.1.

6.1 Local setup

Let F be a non-archimedean local field. We are still concerned with the two

unipotent orbits

O = ((2n1 + 1)r1(2n2 + 1)r2 · · · (2np + 1)rp)

and

O′ = ((2n1 + 3)r1(2n2 + 3)r2 · · · (2np + 3)rp(1))

of the two groups SO2k+1 and SO2k+2l+2 respectively, where l = r1 + r2 + · · · rp.

Recall that we can associate the two orbits O and O′ with the unipotent subgroups

UO = V1,O = V2,O and VO′ = V1,O′ = V2,O′ respectively. Define the generic characters

ψO : UO(F ) → C× and ψO′ : VO′(F ) → C× similarly to the global ones given by (5.3)

and (5.6) respectively.

Suppose π is an irreducible genuine admissible representation of S̃O2k+1(F ). Recall

from Section 4.2 that Θ4k+2l+3 is the local theta representation of S̃O4k+2l+3(F ). Sup-

pose there exists an irreducible genuine admissible representation Θ(π) = Θ4k+2l+3(π)

of S̃O2k+2l+2(F ) such that the Hom-space

HomS̃O2k+1×S̃O2k+2l+2
(Θ4k+2l+3, π ⊗Θ(π)) (6.1)

is non-zero. Here, we restrict Θ4k+2l+3 to a representation of the product sub-

group S̃O2k+1(F )× S̃O2k+2l+2(F ) which is the preimage of the product SO2k+1(F )×

SO2k+2l+2(F ) in S̃O4k+2l+3(F ) via the embedding (2.3).

We extend the definition of twisted Jacquet modules in Section 3.4. If O0 is
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an odd unipotent orbit, then U := V2,O0 is equal to the unipotent radical of some

maximal parabolic subgroup of SO2k+1. If the unipotent radical U(F ) is a Heisenberg

group with its center Z(U)(F ) acting trivially on V and ψ0 is trivial on Z(U)(F ),

then the vector subspace V(U, ψ0) = V(U/Z(U), ψ0). Denote the quotient space

V/V(U/Z(U), ψ0) by JU/Z(U),ψ(π).

The following theorem is the local version of Proposition 4.6. For a positive integer

s < k/4, let Rs,2k+1 be the unipotent radical of the standard maximal parabolic sub-

group of SO2k+1 with Levi factor GLs× SO2k−2s+1. Similarly, let R2s,2k+1 be the

unipotent radical of the maximal parabolic subgroup of SO2k+1 with Levi factor

GL2s× SO2k−4s+1. Define the character ψ1 : Rs,2k+1(F ) → C× by

ψ1(u) = ψ(
s∑
j=1

uj,j+s), u = (ui,j) ∈ Rs,2k+1(F ).

Theorem 6.1. Consider the local theta representation Θ2k+1 of S̃O2k+1(F ). There is

a surjection of G̃L
∆

s × S̃O2k−4s+1 -modules

JR2s,2k+1
(Θ2k+1) ↠ JRs,2k+1,ψ1(Θ2k+1),

where GL∆
s × SO2k−4s+1 is the subgroup of GL2s× SO2k−4s+1 with the GLs-factor em-

bedded in GL2s diagonally.

Proof. By Proposition 4.3, it suffices to show that the unipotent subgroup

Rs,2k−2s+1(F ) ⊂ SO2k−2s+1(F )
ι
↪−→ SO2k+1(F )

acts trivially on the Jacquet module JRs,2k+1,ψ1(Θ2k+1). The proof then proceeds in a

similar fashion to the global case.
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Let Rs,2k−2s+1 be the unipotent radical of the maximal parabolic subgroup of

SO2k−2s+1 with the Levi factor GLs× SO2k−4s+1. We identify Rs,2k−2s+1 with its

embedded image in SO2k+1 via (2.3). Note that Rs,2k−2s+1(F ) is a Heisenberg group.

We claim that its center Z(Rs,2k−2s+1)(F ) acts trivially on JRs,2k+1,ψ1(Θ2k+1).

Under the action of the Levi subgroup, any non-trivial character on Z(Rs,2k−2s+1)(F )

may be represented by ψξt (0 < 2t ⩽ s) associated to a matrix ξt of the form

ξt =

0 zt

0 0

 ∈ Mats×s(F ),

where zt = diag(λ1, · · · , λt, λ−1
t , · · · , λ−1

1 ) ∈ Mat2t×2t(F ) with λi ∈ F×, ∀i = 1, · · · , t.

If the claim is not true, then there must be a non-trivial character ψξt on Z(Rs,2k−2s+1)(F )

such that

JZ(Rs,2k−2s+1),ψξt

(
JRs,2k+1,,ψ1(Θ2k+1)

)
̸= 0. (6.2)

However, the product of ψ1 and ψξt,Z is a generic character attached to the unipotent

orbit Ot = (42t3s−2t12k−2t−3s+1). Hence, the resulting twisted Jacquet module (6.2) is

zero by Proposition 4.2. We get a contradiction.

Therefore, it remains to show that the abelian quotientRs,2k−2s+1/Z(Rs,2k−2s+1)(F )

also acts trivially on JRs,2k+1,ψ1(Θ2k+1). We may identify the character group of

Rs,2k−2s+1/Z(Rs,2k−2s+1)(F ) with Mats×(2k−4s+1)(F ). Under the action of Levi sub-

group GLs(F )× SO2k−4s+1(F ), any character on Rs,2k−2s+1/Z(Rs,2k−2s+1)(F ) may be

represented by ψ2,zt , corresponding to a matrix zt of the form

zt =

It 0

0 0

 ∈ Mats×(2k−4s+1)(F ), t = 1, · · · , s.

If the action of Rs,2k−2s+1/Z(Rs,2k−2s+1)(F ) on JRs,2k+1,ψ1(Θ2k+1) is not trivial, then
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there exists a character ψ2,zt such that

JRs,2k−2s+1/Z(Rs,2k−2s+1),ψ2,zt

(
JZ(Rs,2k−2s+1)

(
JRs,2k+1,,ψ1(Θ2k+1)

)) ∼= JRs2,2k+1,ψ1ψ2,zt
(Θ) ̸= 0,

(6.3)

where Rs2,2k+1 = Rs,2k+1Rs,2k−2s+1.

Proceed with the twisted Jacquet module JRs2,2k+1,ψ1ψ2,zt
(Θ2k+1). Apply the same

argument to see that Z(Rs,2k−4s+1)(F ) acts on it trivially. Hence, it suffices to check

the action of the abelian quotientRs,2k−4s+1/Z(Rs,2k−4s+1)(F ) on JRs2,2k+1,ψ1ψ2,zt
(Θ2k+1).

If the action is trivial, Proposition 4.3 implies that there is a G̃L3s(F )×S̃O2k−6s+1(F )-

module isomorphism

JRs,2k−4s+1

(
JRs2,2k+1,ψ1ψ2,zt

(Θ2k+1)
)
∼= JNs3 ,ψ1ψ2,zt

(
ΘGL3s(F )

)
⊗Θ2k−6s+1. (6.4)

Here ΘGL3s(F ) is the local theta representation of the double cover G̃L3s(F ), and Ns3

is the unipotent radical of the parabolic subgroup of GL3s with Levi subgroup GL3
s.

However, by Corollary 3.34 of [7], the twisted Jacquet module JNs3 ,ψ1ψ2,t

(
ΘGL3s(F )

)
is zero. This is a contradiction to (6.3). Therefore, there is a non-trivial character

on Rs,2k−4s+1(F ) such that the twisted Jacquet module of JRs2,2k+1,ψ1ψ2,t(Θ2k+1) with

respect to Rs,2k−4s+1(F ) and this character is non-zero.

We continue by the same argument repeatedly. For each step, the corresponding

unipotent radical acts trivially due to Corollary 3.34 of [7]. Eventually, we obtain a

non-zero twisted Jacquet module of Θ2k+1 with respect to some unipotent orbit that is

not comparable toO(Θ2k+1). By Proposition 4.2, such a twisted Jacquet module must

be zero, which is a contradiction. Thus, the action of Rs,2k−2s+1/Z(Rs,2k−2s+1)(F ) on

JRs,2k+1,ψ1(Θ2k+1) must be trivial, which completes the proof.
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6.2 The local main theorem

With enough tools at our disposal, we are now ready to state and prove the local

result.

Theorem 6.2. Let π be an irreducible admissible representation of S̃O2k+1(F ). Sup-

pose there exists an irreducible admissible representation Θ(π) of S̃O2k+2l+2(F ) such

that, as representations of the group S̃O2k+1(F )× S̃O2k+2l+2(F ),

HomS̃O2k+1×S̃O2k+2l+2
(Θ4k+2l+3, π ⊗Θ(π)) ̸= 0. (6.5)

Furthermore, suppose the twisted Jacquet module of Θ(π) with respect to the unipotent

orbit O′ and the generic character ψO′ is non-zero, i.e.

JVO′ ,ψO′ (Θ(π)) ̸= 0. (6.6)

Then the twisted Jacquet module of π with respect to the unipotent orbit O and the

generic character ψO is also non-zero, i.e.

JUO,ψO(π) ̸= 0. (6.7)

Throughout the proof, we identify any subgroup of SO2k+1 or SO2k+2l+2 with its

embedded image in SO4k+2l+3 via 2.3. Similar to the proof of Theorem 5.1, we only

discuss the case of ni − ni+1 = 1 for all i = 1, 2, · · · , p− 1 and np = 1 for notational

simplicity.

Proof. Fix a non-zero Ψ1 ∈ Hom (Θ4k+2l+3, π ⊗Θ(π)). It is clear that Ψ1 must be

surjective because both π and Θ(π) are irreducible so that π ⊗ Θ(π) is irreducible

as a representation of the group S̃O2k+1(F ) × S̃O2k+2l+2(F ). As a result, Ψ1 factors
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through the non-zero twisted Jacquet module JVO′ ,ψO′ (Θ(π)). In other words, Ψ1

induces a non-zero S̃O2k+1(F )×MψO′ (O′)(F )VO′(F )-equivariant morphism which we

still denote by Ψ1:

Ψ1 : Θ4k+2l+3 → π ⊗ JVO′ ,ψO′ (Θ(π)). (6.8)

Here, MψO′ (O′)(F ) denotes the stabilizer of ψO′ in M(O′)(F ).

Recall we have Vs1 = VO′ ∩Rs1 where Rs1 = Rs1,4k+2l+3 is the unipotent radical of

the maximal parabolic subgroup of SO4k+2l+3 with Levi subgroup GLs1 × SO4k+2l−2s1+3.

Notice that Vs1(F ) acts on JVO′ ,ψO′ (Θ(π)) by the character ψ1, and Ψ1 is Vs1(F )-

equivariant. As a result, Ψ1 must factor through the non-zero twisted Jacquet mod-

ule of Θ4k+2l+3 with respect to the unipotent subgroup Vs1(F ) and the character ψO′

restricted on Vs1(F ), which we denote ψ1. If we denote the resulting map by Ψ′
1, then

Ψ′
1 : JVs1 ,ψ1(Θ4k+2l+3) → π ⊗ JVO′ ,ψO′ (Θ(π)) (6.9)

is non-zero.

Consider the Heisenberg group Hs1 = Vs1 \Rs1 , which may be identified with the

subgroup of matrices of the form

Hs1 :=





Is1 x ∗

Ik+l−s1+1

I2k+1 x∗

Ik+l−s1+1

Is1


∈ SO4k+2l+3 : x ∈ Mats1×(2k+1)


.

As Z(Hs1)(F ) ⊂ Vs1(F ) acts trivially on JVs1 ,ψ1(Θ4k+2l+3), we consider the action of

the abelian quotient Hs1/Z(Hs1)(F ) on the twisted Jacquet module JVs1 ,ψ1(Θ4k+2l+3).

If there exists a non-zero vector in JVs1 ,ψ1(Θ4k+2l+3) on which Hs1/Z(Hs1)(F ) acts by
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a character ψ′, then Ψ′
1 must factor through the non-trivial twisted Jacquet module

JHs1/Z(Hs1 )(F ),ψ′
(
JZ(Hs1 )(F )(JVs1 ,ψ1(Θ4k+2l+3))

) ∼= JRs1 ,ψ1ψ′(Θ4k+2l+3). (6.10)

We may identify the character group of Hs1/Z(Hs1)(F ) with Mats1×(2k+1)(F ).

Under the action of GLs1(F ) × SO2k+1(F ), suppose ψ
′ corresponds to a matrix in

Mats1×(2k+1)(F ) that lies in the same conjugacy class with a matrix that contains

a non-isotropic row vector. Then the product of ψ1 and ψ′ is a generic character

attached to the unipotent orbit associated with the partition (3s114k+2l+3−3s1). By

Proposition 4.2, the twisted Jacquet module corresponding to this character (6.10) is

zero.

It remains to examine over those characters on Hs1/Z(Hs1)(F ) corresponding to

a matrix in Mats1×(2k+1)(F ) with totally isotropic row space. Any such ψ′ lies in the

same conjugacy class with a character ψξq corresponding to a matrix ξq of the form

ξq =

Iq 0

0 0

 ∈ Mats1×(2k+1)(F ), q = 0, 1, · · · , s1. (6.11)

For a fixed q, we check on Ψ′
1 restricted to the twisted Jacquet module of the form

JHs1/Z(Hs1 )(F ),ψξq

(
JZ(Hs1 )(F )(JVs1 ,ψ1(Θ4k+2l+3))

) ∼= JRs1 ,ψ1,ξq
(Θ4k+2l+3),
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where ψ1,ξq = ψ1ψξq . Consider the elements wq, zq ∈ SO4k+2l+3(F ) of the form

zq =



Is1

µq

I2k+1−2q

µ∗
q

Is1


, µq =


Iq −Iq

Ik+l+1−s1−q

Iq

 ,

and

ωq =



Is1

νq

I2k+1−2q

ν−1
q

Is1


, νq =



Iq

Is1−q

Iq

Ik+l+q+1−3s1

Is1−q


.

Note that z0 and ω0 are both the identity matrix.

Notice that the conjugation action of wqzq on S̃O4k+2l+3(F ) preserves Rs1(F ). As

a result, we have

JRs1 ,ψ1,ξ
(Θ4k+2l+3) ∼= JRs1 ,ψ1(Θ

wqzq
4k+2l+3), (6.12)

where Θ
wqzq
4k+2l+3 is the representation of the group S̃O4k+2l+3(F ) obtained by pulling

back the representation Θ4r+2l+3 via the conjugation by wqzq on S̃O4k+2l+3(F ). For

any g ∈ S̃O4k+2l+3(F ) and any function θ in the representation Θ4k+2l+3, the action

of g on θ is replaced by the action of (wqzq)
−1gwqzq on θ. Moreover, by Theorem 6.1,

Ψ′
1 : JRs1 ,ψ1(Θ

wqzq
4k+2l+3)

∼= JRs1 ,ψ1,ξq
(Θ4k+2l+3) → π ⊗ JVO′ ,ψO′ (Θ(π)) (6.13)
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factors through the Jacquet module JR
s21
,ψ1(Θ

wqzq
4k+2l+3) where we recall that Rs21

=

Rs1Rs1,4k+2l−2s1+3 and Rs1,4k+2l−2s1+3 is the unipotent radical of the maximal parabolic

subgroup of SO4k+2l−2s1+3 with Levi subgroup GLs1 × SO4k+2l−4s1+3. If we denote the

resulting map by Ψ
′′
1 , then

Ψ
′′

1 : JR
s21
,ψ1(Θ

wqzq
4k+2l+3) → π ⊗ JVO′ ,ψO′ (Θ(π)) (6.14)

is non-zero.

Let V 1
O′ = VO′ ∩ SO2k+2l−2s1+2. The intersection Rs1,4k+2l−2s1+3 ∩wqzqV 1

O′(wqzq)
−1

is non-trivial as long as q < s1. It contains the one parameter subgroup {xβ(r) :

r ∈ F} associated to β given by (5.13). The root group xβ(r) acts trivially on

JR
s21
,ψ1(Θ

wqzq
4k+2l+3), but acts by the non-trivial character ψO′ on JVO′ ,ψO′ (Θ(π)). This

implies that Ψ
′′
1 must be zero when q < s1.

It remains only the case of q = s1. Note that ψξ = ψξs1 is generic. Recall that the

center Z(Hs1(F )) acts trivially on Θ4k+2l+3. Hence, JZ(Hs1 )(Θ4k+2l+3) ∼= Θ4k+2l+3. By

Proposition 5.12(d) of [2] or Lemma A.1 of [20], there exists a short exact sequence

of Qs1(F )× S̃O2k+1(F )-modules

0 → ind
Qs1×S̃O2k+1

Qs1×P 0
s1

(
JHs1 ,ψξ(Θ4k+2l+3)

)
→ JZ(Hs1 )(Θ4k+2l+3) → JHs1 (Θ4k+2l+3) → 0,

(6.15)

where Qs1 = (G̃Ls1× S̃O2k+2l−2s1+2)Vs1 is a maximal parabolic subgroup of S̃O2k+2l+2.

The product Qs1(F )× S̃O2k+1(F ) is the normalizer of Hs1(F ) in S̃O4k+2l+3(F ), while

the stablizer of ψξ in Qs1(F )× S̃O2k+1(F ) is

(G̃L
∆

s1
× S̃O2k+2l−2s1+2)Vs1 × P 0

s1
∼= Qs1 × P 0

s1
,

where G̃Ls1 is diagonally embeded into the Levi subgroups of the two parabolic sub-
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groups Qs1 and Ps1 . Here, ind
Qs1×S̃O2k+1

Qs1×P 0
s1

is the induction with compact support as in

[3].

The two functors JVs1 ,ψ1 and ind
Qs1×S̃O2k+1

Qs1×P 0
s1

satisfy the following relation

JVs1 ,ψ1 ◦ ind
Qs1×S̃O2k+1

Qs1×P 0
s1

∼= ind
G̃Ls1×(Q′

s1
)0×S̃O2k+1

G̃Ls1×(Q′
s1

)0×P 0
s1

◦JVs1 ,ψ1 .

Here, G̃L
∆

s1
(F ) × (Q′

s1
)0(F ) is the stablizer of ψ1 in the Levi factor G̃Ls1(F ) ×

S̃O2k+2l−2s1+2(F ), where Q′
s1

is the parabolic subgroup of S̃O2k+2l−2s1+2 with Levi

subgroup G̃Ls1 × S̃O2k+2l−4s1+2. Hence,

JVs1 ,ψ1

(
ind

Qs1×S̃O2k+1

Qs1×P 0
s1

(
JHs1 ,ψξ(Θ4k+2l+3)

))
(6.16)

is isomorphic to

ind
G̃Ls1×(Q′

s1
)0×S̃O2k+1

G̃L
∆

s1
×(Q′

s1
)0×P 0

s1

(
JRs1 ,ψ1,ξ

(Θ4k+2l+3)
)
. (6.17)

Moreover, ws1zs1 acts on Θ4k+2l+3 and preserves Rs1 . By (6.12), we further deduce

that (6.17) is isomorphic to

ind
G̃Ls1×S̃O2k+2l−2s1+2×S̃O2k+1

G̃L
∆

s1
×S̃O2k+2l−2s1+2×P 0

s1

(
JRs1 ,ψ1(Θ

ws1zs1
4k+2l+3)

)
. (6.18)

Hereafter, we denote ind
G̃Ls1×S̃O2k+2l−2s1+2×S̃O2k+1

G̃L
∆

s1
×S̃O2k+2l−2s1+2×P 0

s1

by ind
S̃O2k+1

P 0
s1

for simplicity.

Applying the functor JVs1 ,ψ1 to (6.15), we obtain the short exact sequence

0 → ind
S̃O2k+1

P 0
s1

(
JRs1 ,ψ1(Θ

ws1zs1
4k+2l+3)

)
→ JVs1 ,ψ1(Θ4k+2l+3) → JRs1 ,ψ1(Θ4k+2l+3) → 0.

We have just shown that, corresponding to q = 0,

HomS̃O2k+1×MψO′ (O′)VO′

(
JRs1 ,ψ1(Θ4k+2l+3), π ⊗ JVO′ ,ψO′ (Θ(π))

)
= 0.
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Then, by (6.9), (6.15) and (6.18), we have

HomS̃O2k+1×MψO′ (O′)VO′

(
ind

S̃O2k+1

P 0
s1

(
JRs1 ,ψ1(Θ

ws1zs1
4k+2l+3)

)
, π ⊗ JVO′ ,ψO′ (Θ(π))

)
̸= 0.

(6.19)

By Proposition 6.1, we further deduce that

HomS̃O2k+1×MψO′ (O′)V

(
ind

S̃O2k+1

P 0
s1

(
JR

s21
,ψ1(Θ

ws1zs1
4k+2l+3)

)
, π ⊗ JVO′ ,ψO′ (Θ(π))

)
̸= 0.

(6.20)

Continue the same argument by replacing (6.8) by any non-zero Ψ2 in the Hom-

space (6.20). Recall the unipotent subgroup Rs2 defined by (5.22) and the Heisenberg

quotientHs2 = Vs2\Rs2 . Consider the twisted Jacquet modules with respect toHs2(F )

whose center acts trivially on JR
s21
,ψ1(Θ

ws1zs1
4k+2l+3). We note that the normalizer of Hs2

in S̃O2k+1 is S̃O2k−2s1+1 ⊂ P 0
s1
. By a similar argument, any non-zero homomorphism

Ψ2 : ind
S̃O2k+1

P 0
s1

(
JR

s21
,ψ1(Θ

ws1zs1
4k+2l+3)

)
→ π ⊗ JVO′ ,ψO′ (Θ(π))

must factor through the non-zero twisted Jacquet module with respect to a generic

character on Hs2(F ), which is

ind
S̃O2k+1

P 0
s1

(
ind

S̃O2k−2s1+1

P 0
s2

JRs2 ,ψ◦
2

(
JR

s21
,ψ1(Θ

ws2zs2
4k+2l+3)

))
.

Here, ψ◦
2 is ψO′ restricted to Vs2 , and Ps2 is the standard maximal parabolic subgroup

of S̃O2k−2s1+1 with Levi subgroup G̃Ls2 × S̃O2k−2(s1+s2)+1.

By the transitivity of induction

ind
S̃O2k+1

P 0
s1

ind
S̃O2k−2s1+1

P 0
s2

∼= ind
S̃O2k+1

P 0
s2

.
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By Proposition 6.1, we obtain that

HomS̃O2k+1×MψO′ (O′)VO′

(
ind

S̃O2k+1

P 0
s2

(
JR

s22
,ψ2(Θ

ws2zs2
4k+2l+3)

)
, π ⊗ JVO′ ,ψO′ (Θ(π))

)
(6.21)

is non-zero. Continuing the same argument repeatedly, we obtain that

HomS̃O2k+1×MψO′ (O′)VO′

(
ind

S̃O2k+1

S̃Ol

(
JR

s2p
,ψp(Θ

wlzl
4k+2l+3)

)
, π ⊗ JVO′ ,ψO′ (Θ(π))

)
̸= 0.

(6.22)

Here, Rs2p
is the unipotent radical of the standard maximal parabolic subgroup of

SO4k+2l+3 with Levi part

GL2(n1−n2)
s1

×GL2(n2−n3)
s2

× · · · ×GL2(np−1−np)
sp−1

×GL
2np
l × SO4l+1 .

The character ψp : Rs2p
(F ) → C× is the product of ψ1 and the characters correspond-

ing to the non-zero twisted Jacquet modules in each of the repeated steps.

We now proceed to the last step. Let Rp be the unipotent radical of the maximal

parabolic subgroup of SO4k+1 with Levi part GLl× SO2l+1. Consider the action of

the abelian quotient Hp(F ) = ωlzlV
p
O′(ωlzl)

−1 \Rp on

ind
S̃O2k+1

S̃OlU

(
JR

s2p
,ψp(Θ

wlzl
4k+2l+3)

)
. (6.23)

If there is any non-zero vector in (6.23) on which Hp(F ) act by a character, then any

non-zero Ψp in (6.22) must factor through the non-zero twisted Jacquet module of

(6.23) with respect to Hp(F ) and the corresponding character. Following the same

argument as in the proof of Theorem 5.1, we only need to consider characters ψξ on

Hp/Z(Hp)(F ) such that the product of ψO′ and ψξ restricted to Rp(F ) is non-generic.

That is, the matrix in Matl×(2l+1)(F ) corresponding to ψO′ψξ has totally isotropic row

71



space. We deduce that such a character ψξ must correspond to a matrix given by

ξ =


λ1
...

λl

 ∈ Matl×l(F )

satisfying the following conditions:

1. Each λi except λ l+1
2

is non-zero isotropic.

2. Each pair λi and λl+1−i for i = 1, 2, · · · , l−1
2

is a hyperbolic pair, i.e.

(λi, λl+1−i) = 1, i = 1, 2, · · · , l − 1

2
.

These hyperbolic pairs are mutually orthogonal.

3. λ l+1
2

is non-isotropic with unit length.

The group SOl(F ) acts transitively on the set of these matrices. This allows us to

pick the identity matrix Il as a representative. Denote the corresponding character on

Hp/Z(Hp)(F ) by ψIl . Any non-zero Ψp in (6.22) factors through the non-zero twisted

Jacquet module of (6.23) given by

ind
S̃O2k+1

S̃Ol

(
indS̃Ol×S̃Ol

S̃O
∆

l

(
JRp,ψVO′ ,Il

JR
s2p
,ψp(Θ

wlzl
4k+2l+3)

))
∼= ind

S̃O2k+1

UO

(
JR,ψVO′ ,p,Il

(Θwlzl
4k+2l+3)

)
.

(6.24)

We note that the normalized induction ind
S̃O2k+1

UO
is ind

L(O)×S̃O2k+1

L∆(O)×UO
where

L(O) ∼= G̃L
n1−n2

s1
× G̃L

n2−n3

s2
× · · · × G̃L

np

l × S̃Ol,
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and

L(O)∆ ∼=
(
G̃L

∆

s1

)n1−n2

×
(
G̃L

∆

s2

)n2−n3

× · · · ×
(
G̃L

∆

l

)np
× S̃O

∆

l .

Thus, we conclude that

HomS̃O2k+1×MψO′ (O′)VO′

(
ind

S̃O2k+1

UO

(
JR,ψVO′ ,p,Il

(Θwlzl
4k+2l+3)

)
, π ⊗ JVO′ ,ψO′ (Θ(π))

)
̸= 0.

(6.25)

We now examine the action of UO(F ) on (6.25). The group UO(F ) acts on the left

by the character ψO, since (wlzl)
−1UOwlzl ⊂ R and ψVO′ ,p,Il is defined on R(F ). As a

result, there exists a non-zero vector in π on which UO(F ) acts by the same character

ψO, and

HomMψO (O)×MψO′ (O′)

(
JR,ψVO′ ,p,Il

(Θwlzl
4k+2l+3), JUO,ψO (π)⊗ JVO′ ,ψO′ (Θ(π))

)
̸= 0.

(6.26)

Thus, JUO,ψO (π) is non-zero. This completes the proof.
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