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Quantifying intra- and interlimb use 
during unimanual and bimanual tasks 
in persons with hemiparesis post-stroke
Susan V. Duff1*  , Aaron Miller2, Lori Quinn3, Gregory Youdan Jr.3, Lauri Bishop3, Heather Ruthrauff4 and 
Eric Wade2 

Abstract 

Background: Individuals with hemiparesis post-stroke often have difficulty with tasks requiring upper extremity (UE) 
intra- and interlimb use, yet methods to quantify both are limited.

Objective: To develop a quantitative yet sensitive method to identify distinct features of UE intra- and interlimb use 
during task performance.

Methods: Twenty adults post-stroke and 20 controls wore five inertial sensors (wrists, upper arms, sternum) during 
12 seated UE tasks. Three sensor modalities (acceleration, angular rate of change, orientation) were examined for three 
metrics (peak to peak amplitude, time, and frequency). To allow for comparison between sensor data, the resultant 
values were combined into one motion parameter, per sensor pair, using a novel algorithm. This motion parameter 
was compared in a group-by-task analysis of variance as a similarity score (0–1) between key sensor pairs: sternum 
to wrist, wrist to wrist, and wrist to upper arm. A use ratio (paretic/non-paretic arm) was calculated in persons post-
stroke from wrist sensor data for each modality and compared to scores from the Adult Assisting Hand Assessment 
(Ad-AHA Stroke) and UE Fugl-Meyer (UEFM).

Results: A significant group × task interaction in the similarity score was found for all key sensor pairs. Post-hoc tests 
between task type revealed significant differences in similarity for sensor pairs in 8/9 comparisons for controls and 3/9 
comparisons for persons post stroke. The use ratio was significantly predictive of the Ad-AHA Stroke and UEFM scores 
for each modality.

Conclusions: Our algorithm and sensor data analyses distinguished task type within and between groups and were 
predictive of clinical scores. Future work will assess reliability and validity of this novel metric to allow development of 
an easy-to-use app for clinicians.

Keywords: Coupling, Interlimb use, Hemiparesis, Stroke, Wearable sensors
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Introduction
Finely tuned upper extremity (UE) intra- and interlimb 
use is controlled through intact neural coupling [1], 
which requires timing of movements and sequential, 
rhythmic use of limb segments on one or both sides of 
the body [2]. This upper limb coupling enables interac-
tion with the environment and the performance of goal-
oriented tasks such as activities of daily living (ADLs). 
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The type of tasks performed range from unimanual 
(single limb use), to bimanual symmetric (mirrored), to 
bimanual asymmetric with different motion exhibited 
in each limb. For persons with hemiparesis post-stroke, 
tasks requiring UE coupling can be difficult to execute 
due to limited strength, mobility, and motor control 
resulting in the execution of compensatory, yet func-
tional, movement patterns [3–5]. Compensatory strat-
egies may include increased trunk involvement during 
arm motion, limb disuse or asymmetry during mir-
rored bimanual tasks, and inefficient motion or atypi-
cal synergistic movements during task performance 
[6–8]. Although compensation promotes independence 
in everyday tasks, it can also impede recovery of intra- 
and interlimb use inherent in unimanual and bimanual 
performance [5, 9]. Determining the extent of coupling 
within and between the arms and how it changes with 
recovery and rehabilitation requires assessment meas-
ures sensitive to subtle changes in motion and task 
performance.

Most UE clinical assessments evaluate function of 
the paretic limb during unimanual tasks with limited 
emphasis on bimanual function [10–12]. An exception 
to this is the Assisting Hand Assessment (AHA) [13, 14], 
a tool originally designed to assess how effectively the 
more affected limb is used during bimanual tasks in chil-
dren with unilateral UE dysfunction. The AHA has been 
recently adapted for use in adults post-stroke, i.e. the 
Adult AHA Stroke (Ad-AHA Stroke) [15]. However, as 
with other observation-based tools, the Ad-AHA Stroke 
may not be sensitive enough to detect small yet signifi-
cant changes in motor behavior occurring with natural 
recovery or rehabilitation. A highly sensitive, objective 
measure requiring minimal equipment is needed to 
quantify intra- and interlimb use across a range of tasks 
and settings.

Inertial measurement units (IMU), are body-worn 
sensors that monitor and transmit changes in move-
ment during the execution of everyday tasks [16]. IMU 
sensors have been used with individuals post-stroke and 
other neurological conditions, to capture the quality and 
quantity of motion during typical and atypical motor 
behaviors [16, 17]. These sensors can detect quantitative 
changes in movement patterns that differentiate between 
typical and atypical motor behavior. A challenge in using 
IMU sensors is that they produce derived, differential 
motion measures, such as linear acceleration and angu-
lar rate of change. Therefore, unlike traditional marker-
based motion capture systems, raw data cannot be easily 
used to directly reconstruct changes in limb position. 
Instead, IMU data requires custom signal and data pro-
cessing techniques to produce clinically relevant metrics 
[18].

Development of an accurate yet sensitive system using 
IMU data to identify distinct features of UE intra- and 
interlimb use is a sequential process. For our purposes, 
we operationalize intra- and interlimb use in regard to 
amplitude, time domain and frequency domain. Results 
of our pilot work suggest that development of a single 
motion parameter per sensor, using a novel algorithm, 
would allow comparison by task type between groups 
and allow for initial validation against widely used clini-
cal measures [19]. The objectives of this current study 
were to: (1) evaluate the ability of sensor-derived motion 
parameters to distinguish between UE task type (uni-
manual, bimanual symmetric, and bimanual asymmet-
ric tasks) in healthy controls; (2) evaluate the ability of 
motion parameters to differentiate between UE intra- 
and interlimb use in healthy controls and individuals 
post stroke; and (3) validate findings from sensor-derived 
motion parameters against clinical measures commonly 
used to assess performance in persons post-stroke, 
including the UE Fugl-Meyer (UEFM) and the Ad-AHA 
Stroke Assessments.

Methods
Participants
We recruited individuals post stroke and healthy-age 
matched controls from two clinical sites: Columbia 
University Irving Medical Center/Teachers College, 
Columbia University and Chapman University. Inclusion 
criteria for participants post stroke were: (1) > 1 year, post 
stroke; (2) ability to isolate elbow and shoulder motion in 
one arm; and (3) ability to perform a gross grasp or pinch, 
i.e. 3-jaw chuck or lateral pinch with both hands. Exclu-
sion criteria included: (1) joint contractures > 20° at either 
elbow or > 45° in either shoulder; and (2) known allergies 
to tape or other skin sensitivities. Potential participants 
were recruited using flyers and referrals from existing 
databases. This study was approved by the Institutional 
Review Boards at Columbia University Irving Medi-
cal Center, Teachers College, Columbia University and 
Chapman University. All participants provided written 
informed consent.

Clinical characteristics and demographics
All participants were assessed with the Edinburgh Inven-
tory to determine handedness [20], the Manual Ability 
Measure-36 (MAM-36) to assess hand function [21], and 
the Jamar® Dynamometer and B&L Engineering Pinch 
Gauge to assess grip and pinch strength [22]. The MAM-
36 rates 36 everyday tasks based on self-reported manual 
ability with the total score ranging from 0 to 144; higher 
scores indicate better-perceived manual ability. Grip, 
lateral pinch, and palmar pinch strength are reported as 
the mean of three trials. Persons post-stroke were also 



Page 3 of 10Duff et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:44  

assessed using the UEFM to establish motor impairment 
based on a maximum score of 66 with a higher score 
indicating better motor function [10, 23, 24].

Experimental procedure
Participants completed six UE tasks and the Ad-AHA 
Stroke [15] while seated and wearing five APDM Opal 
wearable sensors (Portland, OR). Performance was vide-
otaped to obtain accurate start and stop times for all 
tasks. The sensors were secured with adjustable straps on 
each wrist, each upper arm, and the sternum (Fig.  1A). 
Each sensor recorded tri-axial acceleration, angular rate 
of change, and magnetic field strength at 128 Hz. Prior to 
collecting data during the UE tasks and Ad-AHA Stroke, 
one sensor was shaken in a rhythmic pattern to facilitate 
post–hoc synchronization of inertial and video data. The 
six UE tasks (see sample Fig.  1B) were counterbalanced 
for order and completed twice by each participant. Tasks 
included two unimanual (Uni) tasks (reaching for a bottle 
and reaching across midline for a spoon); two bimanual 
symmetric (BS) tasks (folding a towel and donning a hat); 
and two bimanual asymmetric (BA) tasks (unscrewing 
a bottle lid and stirring marbles in a bowl). In principle, 
there should be no kinematic coupling between limbs for 
unimanual tasks, a high level of coupling for bimanual 
symmetric tasks, and moderate coupling for bimanual 
asymmetric tasks.

Paretic limb performance in persons post-stroke was 
further assessed using the Ad-AHA Stroke [15], which 
required participants to unwrap and wrap a present 
(Fig.  1C). Specifically, participants were informed that 
the aim of the task was to use both hands in the way that 
felt most natural. This would allow assessment of func-
tional performance when both hands were used together. 
Scoring of the Ad-AHA Stroke from videotape was done 
on 19 components within five categories: general usage, 
arm use, grasp-release, fine-motor adjustment, and 

coordination. Sample components included items such 
as initiates use, stabilizes by grip and flow in bimanual 
task performance. A 1–4 category rating scale was used 
to score the more affected limb on all 19 components: (1) 
does not do; (2) ineffective; (3) somewhat effective; and 
(4) effective. The Ad-AHA Stroke has established validity 
and reliability in individuals post stroke [25]. All ratings 
were completed by an experienced and certified rater.

Data processing
Use of IMU data requires custom signal and data pro-
cessing techniques to produce clinically relevant met-
rics [18]. Raw sensor data were filtered using a 3rd order 
Butterworth bandpass filter with 0.1 Hz and 2 Hz cutoff 
frequencies and then digitally de-trended to remove drift 
[18]. We developed a novel algorithm to allow this sen-
sor data to be used to detect similar task types [19]. This 
algorithm is fully described in our prior work; here, we 
provide a brief description for context.

For the full algorithm, we combined three axes of data 
(x, y, z), from three sensor modalities (acceleration, angu-
lar rate of change, and orientation), for five sensors, using 
a ‘ranked similarity’ approach. Initially, data from each 
sensor were compared to every other sensor resulting 
in ten pairs. Specifically, we determined which was the 
leading limb for bimanual tasks and which was the mov-
ing limb for unimanual tasks based on performance of 
controls. The wrist 1 and upper arm 1 sensors were clas-
sified as more active and the wrist 2 and upper arm 2 sen-
sors as less active during each task. The ten sensor pairs 
were: a) sternum to wrist 1 (S-W1); b) sternum to wrist 
2 (S-W2); c) sternum to upper arm 1 (S-U1); d) sternum 
to upper arm 2 (S-U2); e) wrist 1 to wrist 2 (W1-W2); f ) 
wrist 1 to upper arm 1 (W1-U1); g) wrist 1 to upper arm 
2 (W1-U2); h) wrist 2 to upper arm 1 (W2-U1); i) wrist 
2 to upper arm 2 (W2-U2); and j) upper arm 1 to upper 
arm 2 (U1-U2).

Fig. 1 Subjects wore 5 sensors on the sternum, L/R wrist, and L/R upper arm (A) during performance of 6 different tasks performed twice (B), 
including reaching for a water bottle as shown here; and performance of the Adult Assisting Hand Assessment Stroke (AdAHA-Stroke), which 
involved unwrapping and wrapping a present (C)
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The dynamic 3D motor behaviors required further 
analyses of the sensor-derived data. To determine the 
similarity between the motion of any two segments (e.g., 
S to W1), data from each modality (e.g., acceleration) 
were compared between sensor pairs for three metrics: 
peak to peak amplitude, the time domain (correlation), 
and the frequency domain (spectral coherence). As 
shown in Fig. 2, for each modality (i.e., acceleration) data 
from the x-, y-, and z- axes of one sensor were compared 
to the data from the x-, y-, and z- axes of another sen-
sor. Data from each modality was normalized separately 
for each participant. This resulted in comparable data for 
the metrics of relative amplitude, time domain similarity 
(correlation), and frequency domain similarity (spectral 
coherence) [19]. Data for the three metrics were then 
averaged to create a single value for comparison between 
each pair, for each task, titled the motion parameter.

The sequence for execution of our algorithm following 
calculation of the motion parameter(s) is shown in Fig. 3. 

To assess intra and interlimb coupling the motion param-
eters for the ten sensor pairs were ranked from highest to 
lowest based on the similarity value (with 1 being most 
similar, and 0 being least similar). Then the most simi-
lar sensor pairs by rank order, were grouped by task type 
(e.g., unimanual). To normalize the data for task type, we 
divided the number of times each sensor pair had a high 
similarity value by the number of actions performed. Our 
algorithm was based on task type and performance by 
controls. For example, each participant performed four 
unimanual tasks. We would expect a control to have a 
high similarity value between the sternum and inactive 
upper arm (S-U2) for all four iterations of unimanual 
tasks since both body parts are apt to move very little 
during task performance. This sensor comparison would 
result in a similarity score of 4/4 or 1. Conversely, since 
data from the wrist and upper arm sensors of the active 
limb (W1-U1) of a control may have same motion but 
active at different amplitudes, that sensor pair might only 
demonstrate similarity for two of the four task iterations 
resulting in a similarity score of 2/4 or 0.5. Thus, the top 
ranked sensor pairs per task type with the highest fre-
quency often received scores closer to "one," while sensor 
pairs that were low ranking often received scores closer 
to "zero." The ranking was performed for each task type 
and metric, and the similarity values for each participant 
post-stroke were compared to an age-matched control. 
Further details of this approach may be obtained from 
prior work [19].

In persons post-stroke, we extracted a use ratio dur-
ing performance of the Ad-AHA Stroke (present wrap-
ping task), by comparing the wrist sensor data from the 
paretic arm against the non-paretic arm (paretic/non-
paretic arm). This use ratio was also compared to scores 
obtained for the UEFM. For each sensor modality (accel-
eration, angular rate of change, and orientation), the total 
area under the raw data curve (integral) for the paretic 
arm was normalized by the total area under the curve 
(integral) for the non-paretic arm. Thus, the use ratio 
for each modality was compared against the AdAHA 
Stroke logit score and the UEFM score for each person 
post-stroke.

Data analyses
Algorithm outputs for the similarity value were exam-
ined using a two-way analysis of variance (ANOVA) to 
assess performance in persons post-stroke vs. controls 
across the three task types (Uni, BS, BA). Specifically, a 
2 (group) × 3 (task) ANOVA was run separately for each 
of the 10 sensor-to-sensor comparisons based on sensor 
location. We present results from three (of ten) primary 
sensor-to-sensor comparisons that represent the most 

Fig. 2 The motion parameter for each sensor pair (i.e., S-W1) 
was created by averaging the metrics of time, frequency and 
peak-to-peak amplitude of the normalized modalities (acceleration, 
gyroscope, magnetometer) of each axis for the two sensors

Fig. 3 A Sequence of algorithm construction; and B two examples
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frequently observed compensatory movement patterns 
for persons post-stroke during upper limb tasks [6–8]. 
These key sensor comparisons shown in Fig. 4, were: ster-
num to wrist 1 (S-W1), wrist 1 to wrist 2 (W1-W2), and 
wrist 1 to upper arm 1 (W1-U1) for all three task types 
for each group. Thus, potential compensatory patterns 
assessed based on sensor comparison included trunk 
involvement during arm motion (S-W1); limb disuse or 
asymmetry during bimanual tasks (W1-W2), and move-
ment efficiency or atypical synergistic motion during any 
task type (W1-U1). A comparison of similarity values 
between task type for the three key sensor pairs among 
each group were further examined using a Tukey–
Kramer post-hoc analysis.

The arm use ratio was compared to scores from the Ad-
AHA Stroke and the UEFM in persons post-stroke, using 
a predictive linear regression analysis to determine the 
extent to which the use ratio of raw wrist sensor data for 
each modality extracted during task performance could 
predict scores on each clinical assessment.

Results
Forty participants were recruited; 20 individuals post 
stroke (53.5 ± 11.5 years) and 20 age-matched controls 
who had not had a stroke (52.3 ± 12.5 years). Individual 
demographics and clinical features of participants with 
hemiparesis post-stroke are shown in Table 1 with means 
(SDs) listed for controls. All participants were included 
in the analyses, except for the comparison of the arm use 
ratio against the UEFM and Ad-AHA Stroke which only 
included findings from participants’ post-stroke.

Differences in similarity value between groups (con-
trols and persons post-stroke) across task type (Uni, BS, 
and BA) were found. Figure 5 depicts the similarity val-
ues for one representative participant post-stroke and 
one control for the three key sensor comparisons: S-W1, 
W1-W2, and W1-U1 across the three types of tasks. The 
similarity value between sensor pairs are represented 
by the colormap (dark red = high sensor similarity and 
limb coupling; dark blue = low sensor similarity and 
limb coupling). The relationships for group across three 
task types based on the similarity score for three sensor 
comparisons are shown in Fig. 6. As expected, we found 
group and task inter- and intralimb differences. Main 
effects for group were found for two sensor comparisons: 
S-W1, (F = 55.33, p < 0.0001); and W1-W2 (F = 143.28, 
p < 0.0001). Main effects were also found for task type 
for two sensor comparisons: S-W1 (F = 20.17, p < 0.0001) 
and W1-W2 (F = 183.23, p < 0.0001). A significant group 
by task interaction was found for all three sensor com-
parisons: S-W1 (F = 9.73, p < 0.0001); W1-W2 (F = 90.54, 
p < 0.0001); and W1-U1 (F = 6.22, p < 0.0001).

To further understand the significant differences 
noted in Fig.  6, we did post-hoc analyses of the simi-
larity values. Among controls, the three key sensor 
pairs for the three task comparisons revealed signifi-
cant differences for 8 out of 9 instances (Table  2). For 
the Uni-BS and BS-BA task comparisons: S-W1 and 
W1-W2 significantly differed (p < 0.0001 each); and 
W1-U1 significantly differed (p < 0.0004 each). For the 
Uni-BA tasks, the similarity values among two sen-
sor pairs differed significantly: S-W1 (p < 0.0001) and 
W1-W2 (p < 0.01). For persons post-stroke, only 3 out 
of 9 instances were significantly different (Table 2). For 
Uni-BS and Uni-BA tasks, only S-W1 differed signifi-
cantly (p < 0.0002 and p < 0.01 respectively), whereas, 
for BS-BA tasks, only W1-W2 significantly differed 
(p < 0.02).

We separately examined the relationship between the 
use ratio (paretic/non-paretic arm) for all three modali-
ties and scores on the UEFM and AdAHA Stroke. As 
shown in Fig.  7A the use ratio was significantly pre-
dictive of scores on the UEFM based on the integral 
for acceleration  (R2 = 0.67, p < 0.0001), angular rate of 
change  (R2 = 0.67, p < 0.0001), and orientation  (R2 = 0.46, 
p < 0.0003). The use ratio was also predictive of scores 
on the Ad-AHA Stroke (Fig.  7B) based on the integral 
for acceleration  (R2 = 0.60, p < 0.0001); angular rate of 
change  (R2 = 0.55, p < 0.0002) and orientation  (R2 = 0.52, 
p < 0.0003).

Discussion
This study sought to quantify intra- and interlimb use 
during performance of unimanual and bimanual tasks 
via a novel algorithm comparing performance between 
individuals post-stroke and controls. The findings sug-
gest that our sensor-based algorithm accurately discrimi-
nated between groups. While it strongly differentiated 
between Uni, BS, and BA tasks in controls, this was less 
clear for persons post-stroke. The key sensor-to-sensor 

Fig. 4 Three key sensor to sensor comparisons: S-W1 (green line), 
W1–W2 (blue line), and W1–U1 (red line)
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comparisons for task type revealed strong co-operative 
motion of the more affected arm and trunk even dur-
ing BS tasks. Lastly, the use ratio for each modality was 
found to be predictive of scores on the UEFM and Ad-
AHA Stroke.

Temporal coupling between the limbs is essential for 
bimanual task performance. During symmetric tasks, 
one limb typically mimics the other regarding speed and 
movement pattern causing a mirror-like effect. Simi-
lar interlimb performance for symmetric tasks has been 
reported in healthy adults during bilateral pointing and 
lifting tasks [26]. In children and adults with hemipare-
sis, slower movement of the paretic limb typically slows 
performance of the less affected limb resulting in similar 
movement duration with compensatory kinematics [27, 
28]. Here, we were able to detect typical performance as 
well as compensatory strategies by examining the simi-
larity score between sensor pairs. During symmetric 
tasks, such as folding a towel or donning a hat, there were 
much higher similarity scores for the two wrist sensors 
among controls than for persons post-stroke. In persons 
with hemiparesis there were higher similarity scores 
between the more active wrist and the sternum than for 

controls during tasks classified as bimanual symmetric. 
One explanation for this result is the linking of move-
ment between the more affected arm and trunk during 
task performance, a visible, kinematic strategy often used 
in individuals post stroke to compensate for incomplete 
or weak shoulder flexion or elbow extension [7, 29–31]. 
Further examination of findings from the three sensor 
modalities and metrics combined with surface electro-
myography (EMG) or neuroimaging may provide greater 
insight as to the neural underpinnings of these relation-
ships during task performance [32]. For example, sur-
face EMG could reveal that the amplitude and timing of 
muscle activation in the more affected limb is limiting 
interlimb coupling during bimanual symmetric task per-
formance in persons post-stroke.

During asymmetric tasks, the role of each limb is typi-
cally differentiated yet performance of one limb may 
be affected by the constraints faced by the contralateral 
limb [33]. Many studies have used the drawer-opening 
task [34, 35] to examine asymmetric task performance. 
In healthy children and adults, the act of opening the 
drawer with one hand and reaching to pick up a peg with 
the other occurs almost simultaneously regardless of the 

Table 1 Participant characteristics

ID identification; HC healthy controls;  F female; M male; EI Edinburgh Inventory; Hand handedness; R right; L Left; Am Ambidextrous; UE upper extremity; FM Fugl-Meyer 
Assessment; MAM Manual Ability Measure; kg kilograms; LA less affected; MA more affected; D dominant; ND non-dominant

ID Age (years) Post-
stroke 
(years)

Gender More 
affected 
side

EI Hand UE-FMA MAM Grip (kg) 
LA/MA, D/
ND

Lateral Pinch 
(kg) LA/MA, D/
ND

Palmar Pinch 
(kg) LA/MA, 
D/ND

1 67 4 F L 80 R 29 107 28/4 7.6/2.5 7.3/0.0

2 60 11 M L 100 R 9 112 32/5 4.0/0.0 6.0/1.0

3 52 10 F L 100 R 35 122 29/12 4.0/2.0 5.3/2.5

4 64 13 F R − 90 L 29 130 30/2 4.0/0.5 4.0/0.8

5 67 11 M R − 60 L 25 110 25/8 4.0/0.0 3.0/0.0

6 25 11 M L 70 R 30 134 48/18 6.0/0.0 4.0/1.0

7 64 8 F R − 100 L 32 112 25/4 6.0/0.0 4.0/0.5

8 41 4 F R − 70 L 27 123 25/8 4.0/4.0 5.0/0.0

9 50 3 M R − 80 L 26 121 45/15 7.5/2.0 7.0/2.5

10 43 10 M R − 100 L 31 114 35/8 8.0/2.0 5.0/1.0

11 52 2 M L 100 L 21 33 43/2 11.5/1.5 10.0/0.0

12 56 3 M R 27 Am 64 121 37/26 9.6/7.6 6.0/6.3

13 66 8 M R − 62 L 31 130 33/8 7.9/2.7 5.8/1.3

14 67 5 M L 90 R 35 107 32/4 9.5/2.8 5.0/0.5

15 59 2 M R 80 R 45 123 30/18 9.0/5.8 6.8/6.0

16 40 6 M L 78 R 44 103 40/8 8.0/6.0 6.1/1.1

17 50 16 M R 100 R 64 130 40/35 8.4/9.1 7.0/5.8

18 42 8 F L 100 R 42 105 23/1 6.7/2.0 4.2/0.3

19 46 11 M L 68 R 28 99 36/6 8.5/2.3 7.0/1.3

20 58 8 F L 100 R 35 114 36/6 5.9/1.3 4.0/1.2

HC
n = 20

52.3
(12.5)

NA 5 M/15F NA 75
(37)

18R/2Am NA 143
(1.5)

32.3 (7.4)/
29.3 (7.4)

6.9 (2.4)/
6.5 (2.5)

5.6 (2.2)/
5.2 (1.7)
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role of each hand [27, 36]. Yet, in children and adults with 
hemiparesis, the actions between limbs for this task are 
typically more sequential [27, 33] and performance dif-
fers depending on the role of each limb. In this study, the 
asymmetrical tasks involved object stabilization with one 
hand and movement of an object with the other hand. 
Interestingly, for these BA tasks, the similarity scores for 
the three key sensor comparisons did not significantly 
differ between groups. Thus, the combined metrics gath-
ered from the motor behaviors of reaching, holding, and 
moving for the bimanual asymmetric tasks were gener-
ally similar between limbs among both groups.

Studies examining arm use have often used wrist-
based sensors to record kinematics during unimanual 
and bimanual tasks [27, 28, 34, 37]. The use of two sen-
sors allows for the calculation of an arm use ratio thus the 
examination of changes in arm function during recov-
ery or over the rehabilitation process. The relationship 
between the use ratio (based on the integral of sensor 
modalities) and the UEFM found in this study is consist-
ent with existing literature [27, 38, 39], suggesting that 
the tasks we used are representative of functional tasks 
known to be sensitive to post-stroke impairment and 
function. Unique to this study is the finding that the arm 
use ratio was also predictive of Ad-AHA Stroke logit 
scores during the present wrapping task. Given the sen-
sitivity of the UEFM motor domain and Ad-AHA Stroke 
to limb coordination, the relationship with these clinical 
measures provides preliminary support for the validity of 
this sensor-based metric as a method to examine intra- 
and interlimb use.

Limitations
The features examined in this study were chosen to 
extract quantitative information relevant to arm use dur-
ing unimanual and bimanual task performance. Yet, the 
specificity of the extracted features and the complexity 
of the algorithm may limit its widespread application 
without further refinement. Also, movements in moni-
tored (e.g., lab and clinical) settings may differ from those 
performed in ambient settings as shown for a variety of 
behaviors in clinical and non-clinical populations [29]. 
Participants in this study engaged in data collection in 
a simulated setting, thus, the function of the algorithm 
may decrease when participants perform activities in 
ambient settings such as the home or community. Finally, 
the amount and type of arm use in persons with hemipa-
resis can vary even for similar bimanual tasks. While we 
found high similarity values within group for task type, 
our study only had participants perform two repetitions 
each for six different tasks. Studies with a larger sample 
size and more diverse tasks may reveal greater variability 
for individuals post-stroke.

Fig. 5 Similarity metrics set at a range of 0 (least similar) to 1 
(most similar) for representative participants (Post-stroke—#19, 
46 years old, UE-FMA-30; and Control #5, 49 years old) for the 
3 key sensor-to-sensor comparisons by task type: Unimanual 
(Uni), Bimanual Asymmetric (A), and Bimanual Symmetric (S). The 
comparisons were: a sternum to wrist 1 (S–W1), b wrist 1 to wrist 2 
(W1–W2); and c wrist 1 to upper arm 1 (W1–U1). Blocks in dark red 
indicate similarity was closer to 1.0; black blocks indicate similarity 
was closer to 0

Fig. 6 Mean with standard error of the mean (SEM) similarity metrics 
by group for each task type (unimanual, bimanual symmetric, and 
bimanual asymmetric) and the three sensor-to-sensor comparisons: 
Wrist to sternum (S–W1), wrist 1 to wrist 2 (W1–W1), and wrist 1 to 
upper arm 1 (W1–U1).  
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Future work
For this line of analysis to be useful in clinical research, 
the reliability of these sensor-based measures over mul-
tiple days must be investigated and this metric of intra- 
and interlimb use validated against motion capture 
systems. Eventual integration of such tools into clinical 
and community use will require a minimization of cost, 
either through the selection of more consumer-available 
devices, or through subsidization by insurance companies 

by demonstrating clinical efficacy. The analysis and algo-
rithm for this study were based on engineering principles 
and mathematics. Upon further refinement, this program 
will be streamlined and packaged as an application or 
software program, to allow ease of use by clinicians to 
track the development or recovery of intra- and interlimb 
UE use in persons with clinical conditions.

Conclusions
The use of five sensors during task performance allowed 
us to analyze intra- and interlimb use or coupling. The 
analyses conducted from this sensor-based assessment 
allowed us to differentiate within and between task type 
for our two groups. Our wrist-based analyses were also 
predictive of clinical scores on the UEFM and AdAHA-
Stroke. This level of analysis can be advantageous when 
quantifying change in use of the more affected limb dur-
ing unimanual and bimanual tasks. Our quantitative 
assessment did reveal the use of compensatory mecha-
nisms during unimanual and bimanual task performance, 
such as incorporation of the trunk during reaching and a 
reduction in acceleration and movement amplitude. With 
additional reliability studies and validation, our algo-
rithm-based program could quantitatively assess intra- 
and interlimb arm use in persons with hemiparesis which 
may be of value when evaluating recovery or outcomes 
from training studies or rehabilitation.
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Table 2 Findings from post-doc analyses between the three sensor pairs and three task comparisons per group

S sternum; W1 wrist 1; W2 wrist 2; U upper arm; Uni unimanual; BS bimanual symmetric; BA bimanual asymmetric

Controls Persons post-stroke
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Uni-BS  < 0.0001  < 0.0001  < 0.0004  < 0.0002 NS NS

Uni-BA  < 0.0001  < 0.01 NS  < 0.01 NS NS

BS-BA  < 0.0001  < 0.0001  < 0.0004 NS  < 0.02 NS

Fig. 7 Arm Use Ratio based on the integral from wrist sensor data 
(paretic/non-paretic arm) for acceleration, angular rate of change, and 
orientation associated with A UE Fugl Meyer Score; and B Ad-AHA 
Stroke logit score



Page 9 of 10Duff et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:44  

Funding
This research was supported by NSF #1844459, NIH ID#EB022336, American 
Society of Neurorehabilitation, and the Academy of Hand & Upper Extremity 
Physical Therapy, APTA, Inc.

Availability of data and materials
The datasets used and /or analyzed during this study are available from the 
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study was conducted with the approval of the Institutional Review Boards 
of Columbia University Irving Medical Center/Teachers College, Columbia 
University and Chapman University.

Consent for publication
The signed consents from two participants are available.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Physical Therapy, Crean College of Health and Behavioral 
Sciences, Chapman University, 9401 Jeronimo Rd, Irvine, CA 92618, USA. 
2 Department of Mechanical, Aerospace, and Biomedical Engineering, Univer-
sity of Tennessee, Knoxville, TN, USA. 3 Department of Biobehavioral Sciences, 
Teachers College, Columbia University, New York, NY, USA. 4 Department 
of Occupational Therapy, Children’s Hospital of Philadelphia, Philadelphia, PA, 
USA. 

Received: 23 August 2021   Accepted: 13 April 2022

References
 1. Arya KN, Pandian S. Interlimb neural coupling: implications for poststroke 

hemiparesis. Ann Phys Med Rehabil Med. 2014;57:696–713.
 2. Swinnen SP, Carson RG. The control and learning of patterns of interlimb 

coordination: past and present issues in normal and disordered control. 
Acta Psychol (Amst). 2002;110(2–3):129–37. https:// doi. org/ 10. 1016/ 
s0001- 6918(02) 00030-6.

 3. Rose DK, Winstein CJ. Temporal coupling is more robust than spatial 
coupling: an investigation of interlimb coordination after stroke. J Mot 
Behav. 2013;45(4):313–24.

 4. Sukal-Moulton T, Krosschell KJ, Gaebler-Spira DJ, Dewald JP. Motor impair-
ment factors related to brain injury timing in early hemiparesis. Part I: 
expression of upper extremity weakness. Neurorehabil Neural Repair. 
2014;28(1):13–23.

 5. Kitago T, Liang J, Huang VS, Hayes S, Simon P, Tenteromano L, Lazar RM, 
Marshall RS, Massoni P, Lennihan L, Krakauer JW. Improvement after 
constraint-induced movement therapy: recovery of normal motor 
control or task-specific compensation? Neurorehabil Neural Repair. 
2013;27(2):99–109.

 6. Levin MF, Liebermann DG, Parmet Y, Berman S. Compensatory versus 
noncompensatory shoulder movements used for reaching in stroke. 
Neurorehabil Neural Repair. 2016;30(7):635–46.

 7. Thielman G. Insights into upper limb kinematics and trunk control one 
year after task related training in chronic post-stroke individuals. J Hand 
Ther. 2013;26(2):156–60.

 8. Yang CL, Creath RA, Magder L, Rogers MW, McCombe WS. Impaired 
posture, movement preparation, and execution during both 
paretic and non-paretic reaching following stroke. J Neurophysiol. 
2019;121(4):1465–77.

 9. Levin MR, Kleim JA, Wolf SL. What do motor “recovery” and “compensa-
tion” mean in patients following stroke? Neurorehabil Neural Repair. 
2009;23:313–9.

 10. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The poststroke 
hemiplegic patient. 1. A method for evaluation of physical performance. 
Scand J Rehabil Med. 1975;7:13–31.

 11. Wolf SL, Catlin PA, Ellis MD, Archer AL, Morgan B, Piacentino A. Assessing 
the wolf motor function test as an outcome measure for research in 
patients after stroke. Stroke. 2001;32:1–8.

 12. Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to 
performing the action research arm test. Neurorehabil Neural Repair. 
2008;22(1):78–90.

 13. Holmefur MM, Krumlinde-Sundholm L. Psychometric properties of a 
revised version of the Assisting Hand Assessment (Kids-AHA 5.0). Dev 
Med Child Neurol. 2016;58(6):618–24.

 14. Krumlinde-Sundholm L, Holmefur M, Kottorp A, Eliasson AC. The Assisting 
Hand Assessment: current evidence of validity, reliability, and responsive-
ness to change. Dev Med Child Neurol. 2007;49(4):259–64.

 15. Krumlinde-Sundholm L, Lindkvist B, Plantin J. Hoare B Development of 
the assisting hand assessment for adults following stroke: a Rasch-built 
bimanual performance measure. Disab Rehabil. 2017;41:1–9.

 16. Held JPO, Klaassen B, Eenhoorn A, van Beijnum BF, Buurke JH, Veltink 
PH, Luft AR. Inertial sensor measurements of upper-limb kinematics in 
stroke patients in clinic and home environment. Front Bioeng Biotechnol. 
2018;6:1–8.

 17. Trojaniello D, Ravaschio A, Hausdorff JM, Cereatti A. Comparative assess-
ment of different methods for the estimation of gait temporal param-
eters using a single inertial sensor: application to elderly, post-stroke, 
Parkinson’s disease and Huntington’s disease subjects. Gait Posture. 
2015;42(3):310–6.

 18. Wade E, Chen CJ, Winstein CJ. Spectral analyses of wrist motion in 
individuals poststroke: the development of a performance measure 
with promise for unsupervised settings. Neurorehabil Neural Repair. 
2015;28:169–78.

 19. Miller A, Duff SV, Quinn L, Bishop L, Youdan G, Ruthrauff H, Wade E. 
Development of sensor-based measures of upper extremity interlimb 
coordination. Conf Proc IEEE Eng Med Biol Soc. 2018;2160:64.

 20. Oldfield RC. The assessment and analysis of handedness: the Edinburgh 
inventory. Neuropsychologia. 1971;9:97–113.

 21. Chen CC, Bode RK. Psychometric validation of the Manual Ability Measure 
(MAM-36) in patients with neurologic and musculoskeletal disorders. 
Arch Phys Med Rehabil. 2010;91(3):414–20.

 22. Shechtman O, Sindhu B. Grip strength dynamometry. In: MacDermid 
J, Solomon G, Valdes K, editors. American Society of Hand Therapists 
Clinical Assessment Recommendations. 3rd ed. Mount Laurel: American 
Society of Hand Therapists; 2015.

 23. Lin JH, Hsu MJ, Sheu CF, Wu TS, Lin RT, Chen CH, Hsieh CL. Psychometric 
comparisons of 4 measures for assessing upper-extremity function in 
people with stroke. Phys Ther. 2009;89:840–50.

 24. Page SJ, Levine P, Hade E. Psychometric properties and administration 
of the wrist/hand subscales of the Fugl–Meyer Assessment in mini-
mally impaired upper extremity hemiparesis. Arch Phys Med Rehabil. 
2012;93(12):2373–6.

 25. Van Gils A, Meyer S, Van Dijk M, Thijs L, Michielsen M, Lafosse C, Truyens 
V, Oostra K, Peeters A, Thijs V, Feys H, Krumlinde-Sundholm L, Kos D, 
Verheyden G. The adult assisting hand assessment stroke: psychometric 
properties of an observation-based bimanual upper limb performance 
measurement. Arch Phys Med Rehabil. 2018;99(12):2513–22.

 26. Kelso JA, Southard DL, Goodman D. On the coordination of two-handed 
movements. J Exp Psychol Hum Percept Perform. 1979;5(2):229–38.

 27. Doman CA, Waddell KJ, Bailey RR, Moore JL, Lang CE. Changes in upper-
extremity functional capacity and daily performance during outpa-
tient occupational therapy for people with stroke. Am J Occup Ther. 
2016;70(3):7003290040p1–7003290040p11.

 28. Utley A, Steenbergen B. Discrete bimanual co-ordination in children 
and young adolescents with hemiparetic cerebral palsy: Recent 
findings, implications and future research directions. Ped Rehabil. 
2006;9(2):127–36.

 29. Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. 
Brain. 2000;123(Pt 5):940–53.

 30. Kang N, Cauraugh JH. Force control improvements in chronic stroke: 
bimanual coordination and motor synergy evidence after coupled 
bimanual movement training. Exp Brain Res. 2014;232(2):503–13. https:// 
doi. org/ 10. 1007/ s00221- 013- 3758-z.

https://doi.org/10.1016/s0001-6918(02)00030-6
https://doi.org/10.1016/s0001-6918(02)00030-6
https://doi.org/10.1007/s00221-013-3758-z
https://doi.org/10.1007/s00221-013-3758-z


Page 10 of 10Duff et al. Journal of NeuroEngineering and Rehabilitation           (2022) 19:44 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 31. McMorland AJ, Runnalls KD, Byblow WD. A neuroanatomical framework 
for upper limb synergies after stroke. Front Hum Neurosci. 2015;9:82. 
https:// doi. org/ 10. 3389/ fnhum. 2015. 00082.

 32. Totty MS, Wade E. Muscle activation and inertial motion data for non-
invasive classification of activities of daily living. IEEE Trans Biomed Eng. 
2018;65(5):1069–76. https:// doi. org/ 10. 1109/ TBME. 2017. 27384 40.

 33. Marteniuk RG, MacKenzie CL, Baba DM. Bimanual movement con-
trol: information processing and interaction effects. Q J Exp Psych. 
1984;36A:335–65.

 34. Kantak SS, Zahedi N, McGrath RL. Task-dependent bimanual coordination 
after stroke: relationship with sensorimotor impairments. Arch Phys Med 
Rehabil. 2016;97:798–806.

 35. Wiesendanger M, Kaluzny P, Kazennikov O, Palmeri A, Perrig S. Tem-
poral coordination in bimanual actions. Can J Physiol Pharmacol. 
1994;72:591–4.

 36. Hung YC, Gordon AM. Bimanual coordination during a goal-directed task 
in children with hemiparesis. Dev Med Child Neurol. 2004;46(11):746–53.

 37. Sidiropoulos AN, Chen S, Kaminski TRM, Gordon AM. Modulation of 
gait inter-limb coordination in children with unilateral spastic cer-
ebral palsy after intensive upper extremity intervention. Exp Brain Res. 
2019;237(6):1409–19. https:// doi. org/ 10. 1007/ s00221- 019- 05501-6.

 38. Uswatte G, Hobbs QL. A behavioral observation system for quantifying 
arm activity in daily life after stroke. Rehabil Psychol. 2009;54(4):398–403.

 39. Del Din S, Patel S, Cibekku C, Bonato P. Estimating Fugl-Meyer clinical 
scores in stroke survivors using wearable sensors. Conf Proc IEEE Eng Med 
Biol Soc. 2011;11:5839–42.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fnhum.2015.00082
https://doi.org/10.1109/TBME.2017.2738440
https://doi.org/10.1007/s00221-019-05501-6

	Quantifying Intra- and Interlimb Use During Unimanual and Bimanual Tasks in Persons with Hemiparesis Post-Stroke
	Quantifying Intra- and Interlimb Use During Unimanual and Bimanual Tasks in Persons with Hemiparesis Post-Stroke
	Comments
	Creative Commons License
	Copyright

	Authors

	Quantifying intra- and interlimb use during unimanual and bimanual tasks in persons with hemiparesis post-stroke
	Abstract 
	Background: 
	Objective: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Participants
	Clinical characteristics and demographics
	Experimental procedure
	Data processing
	Data analyses

	Results
	Discussion
	Limitations

	Future work
	Conclusions
	Acknowledgements
	References


