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Degradation Modeling and RUL Prediction using Wiener Process 

subject to Multiple Change Points and Unit Heterogeneity 

Yuxin Wen1, Jianguo Wu*2, Devashish Das3, Tzu-Liang (Bill) Tseng4 

Abstract 

Degradation modeling is critical for health condition monitoring and remaining useful life 

prediction (RUL). The prognostic accuracy highly depends on the capability of modeling the 

evolution of degradation signals. In many practical applications, however, the degradation signals 

show multiple phases, where the conventional degradation models are often inadequate. To better 

characterize the degradation signals of multiple-phase characteristics, we propose a multiple 

change-point Wiener process as a degradation model. To take into account the between-unit 

heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed 

random. At the offline stage, an empirical two-stage process is proposed for model estimation, and 

a cross-validation approach is adopted for model selection. At the online stage, an exact recursive 

model updating algorithm is developed for online individual model estimation, and an effective 

Monte Carlo simulation approach is proposed for RUL prediction. The effectiveness of the 

proposed method is demonstrated through thorough simulation studies and real case study.  

 

Keywords: Wiener process; multiple change-point model; degradation modeling; remaining 

useful life prediction 

1 Introduction 

The fast development of information and sensing technologies offer great opportunities for real-

time health condition monitoring and prediction in various modern systems. The condition 

monitoring signals, also called degradation signals, are commonly used for system reliability 

assessment due to their direct relation with underlying physical degradation processes [1, 2]. 
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Typical degradation signals include vibrational signal of rotating machinery [3], crack propagation 

signal of metallic structures [4], the luminosity of light emitting diode (LED) lamps [5], and the 

temperature changes and oil debris of engine lubrication [6]. Degradation modeling offers an 

efficient approach to characterizing the evolution of degradation signals for prognostics, e.g., 

predicting the remaining useful life (RUL) for an in-service unit based on the available degradation 

data [7, 8].  

In the past few decades, degradation modeling and RUL prediction have been intensively studied. 

The existing prognostic models can be roughly classified into physics-based and data-driven 

models [9-11]. The physics-based models requires a thorough understanding of the underlying 

physical processes that lead to system failure, which is often difficult or infeasible due to large 

system complexity or unclear degradation mechanisms [12]. In contrast, the data-driven models, 

which are developed purely on degradation data, are becoming more and more appealing due to 

unprecedented data availability. In the existing literature, two types of most popular data-driven 

models are general path models and stochastic process models [13, 14]. The basic idea of the 

general path models is to use parametric regression to capture how the degradation signal evolves 

over time. Due to its simplicity and well-established theories, many types of general path models 

have been built, such as linear or nonlinear regression models with constant or random coefficients 

[3, 15, 16]. In these models, however, the inherent degradation path is deterministic once the 

regression parameters are known. It is often oversimplified and is not capable of capturing the 

temporal uncertainties that are inherent in the degradation process [17, 18]. Therefore, the general 

path models are applicable only when the temporal uncertainties caused by unobserved internal or 

external factors are sufficiently small. The stochastic process models, on the other hand, are 

particularly effective in dealing with such unexplained randomness. The most popular stochastic 

process models include Gamma process [19], inverse Gaussian process [20], and Wiener process 

[21]. Due to nice mathematical properties and physical interpretations, Wiener processes have 

attracted widespread attention. Comprehensive reviews of Wiener process as degradation models 

can be found in Si et al. [16] and Ye et al. [17]. 

Most Wiener process based degradation models assume a linear mean degradation path or can be 

linearized by time-scale transformations [22]. The key advantage of using a linear drift is that the 

distribution of the first hitting time (FHT) can be obtained analytically as an inverse Gaussian 

distribution [23, 24]. From a practical point of view, however, not all degradation signals can be 
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well modelled by a single mean degradation path function. Some degradation processes show two 

or even more distinct phases of different drift rates or volatility during the whole life period. Son 

et al. [25] showed that vehicle battery first degrades slowly and then evolves rapidly after the 

system has degraded down to a certain level before failure occurs. Another representative example 

is the bearing vibrational signal, where two distinct phases can be easily observed [26]. This 

phenomenon has also been found in many other systems, such as plasma display panels [27], high-

performance capacitors [28], and the liquid coupling devices (LCD) [29]. In all these cases, single-

phase models are often not adequate to capture the degradation path evolution.  

Motivated by this practical issue, several change-point based general path models have been 

proposed in recent years. Gebraeel et al. [3] chose to truncate observations in the early stage and 

then fitted an exponential degradation model for the remaining data. Chen and Tsui [26] developed 

a two-phase regression model with a random change point for the bearing degradation signals. Bae 

et al. [27] proposed a hierarchical Bayesian change-point regression model with one change point 

for the plasma display panels degradation signals. Different from [26], Bae’s model assumes that 

the two phases are connected, i.e., the degradation path is continuous at the change point. Later, 

Wen et al. [30] proposed a general multiple-phase regression modeling framework for RUL 

estimation. In their research, a particle filtering algorithm with stratified sampling and partial 

Gibbs resample-move strategy is developed for online model updating and residual life prediction. 

As mentioned earlier, the general path models are incapable of capturing the temporal uncertainty 

of the degradation process. Therefore, incorporating change points to stochastic process for 

prognostic improvement is desirable. 

Wiener process subject to change points has also been studied by several researchers. Ng [31] 

proposed a Wiener process model with one change point and developed an expectation–

maximization (EM) algorithm for model estimation. Kong et al. [32] developed a two-phase 

Wiener processes model considering an abrupt jump at the change point. An EM algorithm was 

also developed for model parameters. However, both Ng and Kong’s methods are not applicable 

for online condition monitoring and reliability analysis. Feng [28] proposed a two and three-phase 

Wiener process degradation model to predict the storage lifetime of high-voltage-pulse capacitors 

for real time reliability analysis. In their work, the locations of change points are assumed to be 

deterministic for all units. However, this is often not true in many applications. Indeed, the change-

point locations often vary from unit to unit, showing significant heterogeneity. Besides, due to 
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external or internal differences among unites, the degradation rate and volatility may also be 

heterogeneous, which is not considered in [28]. Recently, Yan et al. [33] proposed a two-phase 

Wiener process degradation model considering the unit heterogeneity for real-time reliability 

evaluation. However, in their work, how to sequentially estimate the location of the change-point, 

which is critical for online RUL prediction, is not given.  

To overcome these limitations, this paper aims to develop a multiple change-point Wiener process 

for degradation modeling and RUL prediction. Compared with the existing work, the major 

contribution of this paper lies in the following aspects: (1) a fully Bayesian approach is formulated 

to characterize the between-unit heterogeneity in terms of all model parameters, including the 

change-point locations, drift rate and diffusion; (2) a simple yet effective two-stage empirical 

approach is proposed for offline model estimation; (3) an efficient recursive model updating 

algorithm is developed to get the closed-form of the posterior distributions for all model 

parameters; and (4) an effective Monte Carlo approach is proposed for RUL prediction.  

The remainder of this paper is organized as follows. In Section 2, a Wiener process degradation 

model with multiple change points is presented. The prior parameters specification and estimation 

are given in Section 3. Section 4 presents the technical details on how to sequentially update the 

posterior distributions of the current phase, latest change point, and Wiener process parameters of 

the current phase, and how to predict the RUL. Section 5 demonstrates the effectiveness and 

accuracy of the proposed method through comprehensive simulation and real case study. The 

conclusion and discussion are given in Section 6. 

2 Wiener Process Degradation Modelling with Multiple Change Points 

The general Wiener process can be represented as [34] 

𝑋𝑋(𝑡𝑡) = 𝛽𝛽Λ(𝑡𝑡) + 𝜎𝜎𝜎𝜎(Λ(𝑡𝑡)) (1) 

where 𝛽𝛽 is the drift parameter reflecting the rate of degradation, 𝜎𝜎 > 0 is called the volatility 

parameter or diffusion coefficient, 𝜎𝜎(∙)  is the standard Brownian motion that captures the 

stochastic dynamics of the degradation process, and 𝛬𝛬(∙)  is a monotone increasing function 

representing a general time scale. When Λ(𝑡𝑡) = 𝑡𝑡, this formula is simplified to the conventional 

linear Wiener process. Let 𝛥𝛥𝑋𝑋(𝑡𝑡) = 𝑋𝑋(𝑡𝑡 + Δ𝑡𝑡) − 𝑋𝑋(𝑡𝑡)  denote the degradation increments from 
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time 𝑡𝑡 to 𝑡𝑡 + 𝛥𝛥𝑡𝑡. According to the property of Wiener process, the increments are independent and 

normally distributed as 𝛥𝛥𝑋𝑋(𝑡𝑡)~𝑁𝑁(𝛽𝛽[Λ(𝑡𝑡 + Δ𝑡𝑡) − Λ(𝑡𝑡)],σ2[Λ(𝑡𝑡 + Δ𝑡𝑡) − Λ(𝑡𝑡)]).  

In this paper, a multiple change-point Wiener process degradation model is proposed to 

characterize the degradation path of condition monitoring signals with multiple phases. 

Specifically, the change points segment the signal into several consecutive phases, where each 

phase is modelled as a Wiener process. For simplicity, we use simple linear model in each phase 

for the mean degradation path, i.e., Λ(𝑡𝑡) = 𝑡𝑡. Suppose the system is inspected at times 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 

with degradation observations 𝑋𝑋0 = 𝑋𝑋(𝑡𝑡0),𝑋𝑋1 = 𝑋𝑋(𝑡𝑡1), … ,𝑋𝑋𝑛𝑛 = 𝑋𝑋(𝑡𝑡𝑛𝑛), and assume there are 𝐾𝐾 

change points, with index locations 𝑐𝑐1, 𝑐𝑐2,⋯ , 𝑐𝑐𝐾𝐾. For notational convenience, we define 𝑐𝑐0 = 0 

and𝑐𝑐𝐾𝐾+1 = 𝑛𝑛 . Then  𝑐𝑐0 = 0 < 𝑐𝑐1 < 𝑐𝑐2 < ⋯ < 𝑐𝑐𝐾𝐾 < 𝑐𝑐𝐾𝐾+1 = 𝑛𝑛 . Therefore, the observations are 

partitioned into 𝐾𝐾 + 1 consecutive phases. Mathematically, the multiple change-point Wiener 

process can be expressed piecewisely as 

𝑋𝑋(𝑡𝑡𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧ 𝛽𝛽(1)�𝑡𝑡𝑗𝑗 − 𝑡𝑡0� + 𝑋𝑋(𝑡𝑡0) + 𝜎𝜎(1)ℬ�𝑡𝑡𝑗𝑗 − 𝑡𝑡0�, if  𝑡𝑡0 ≤ 𝑡𝑡𝑗𝑗 ≤ 𝑡𝑡𝑐𝑐1

𝛽𝛽(2)�𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑐𝑐1� + 𝑋𝑋�𝑡𝑡𝑐𝑐1� + 𝜎𝜎(2)ℬ�𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑐𝑐1�, if  𝑡𝑡𝑐𝑐1 < 𝑡𝑡𝑗𝑗 ≤ 𝑡𝑡𝑐𝑐2
⋯

𝛽𝛽(𝐾𝐾+1)�𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑐𝑐𝐾𝐾� + 𝑋𝑋�𝑡𝑡𝑐𝑐𝐾𝐾� + 𝜎𝜎(𝐾𝐾+1)ℬ�𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑐𝑐𝐾𝐾�, if  𝑡𝑡𝑐𝑐𝐾𝐾 < 𝑡𝑡𝑗𝑗 ≤ 𝑡𝑡𝑛𝑛

 (2) 

where 𝛽𝛽(𝑘𝑘) and 𝜎𝜎(𝑘𝑘),𝑘𝑘 = 1, … ,𝐾𝐾 + 1 are the drift parameter and diffusion parameter respectively 

for the kth phase. It is worth noting that in the above model, the mean degradation path is 

continuous at all change points, which is conventional in the existing literature. It can be easily 

extended to a general case by adding an extra intercept term for each phase if necessary. Besides, 

for the sake of simplicity, the starting time of each Wiener process or each phase is assumed to be 

exactly on the discrete inspection epochs.  

To account for the inherent unit-to-unit heterogeneity, the model parameters, including change-

point locations, drift rate and diffusion parameter of each phase, are assumed to be random. For 

the sake of simplicity, the number of change points 𝐾𝐾 is assumed to be deterministic for all units, 

which is often sufficient for almost all multi-phase degradation signals in the existing literature. If 

necessary, however, it can be easily extended to a more general case with a random 𝐾𝐾, as is the 

case in Wen et al. [30].  

Bayesian approach is a natural choice to integrate the current available data with historical data 

for RUL prediction. Under Bayesian framework, the prognostics involves two stages, namely, the 

offline stage for prior specification and estimation using historical data, and the online stage for 
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sequential model updating and RUL prediction when new observations are available. There are 

several remaining challenging issues to address under the multiple change-point framework. First 

of all, the number of change points 𝐾𝐾 needs to be selected appropriately, which plays a decisive 

role on the modeling and prediction accuracy. Secondly, the prior distributions for the random 

model parameters need to be specified, and the corresponding hyperparameters need to be 

estimated through the historical data. Thirdly, at the online monitoring stage, the posterior 

distributions of the phase index, the location of the latest change point occurred, and the Wiener 

process parameters (drift rate and diffusion parameter) have to be sequentially updated once a new 

observation is available, which is often very challenging. Denote the parameters that need to be 

updated at the current time index 𝑚𝑚 as a state vector 𝜽𝜽𝑚𝑚 = (𝛽𝛽𝑚𝑚,𝜎𝜎𝑚𝑚2 , 𝜏𝜏𝑚𝑚, 𝑠𝑠𝑚𝑚), where 𝛽𝛽𝑚𝑚 and 𝜎𝜎𝑚𝑚2  

are the drift and diffusion parameters of the current phase, 𝜏𝜏𝑚𝑚 is the latest change point that has 

occurred (𝜏𝜏𝑚𝑚 ≤ 𝑚𝑚 − 1), and 𝑠𝑠𝑚𝑚  is the index of the current phase, e.g.,  𝑠𝑠𝑚𝑚 = 1, 2, … ,𝐾𝐾 + 1 . 

Mathematically, the online model updating is to compute the posterior 𝑝𝑝(𝜽𝜽𝑚𝑚|𝑋𝑋0:𝑚𝑚), which is 

highly nonlinear and thus generally intractable. Lastly, based on the updated posterior distributions, 

we need to predict the residual life. Due to the potential occurrence of future change points, the 

RUL prediction is very complex. The overall prognostic framework is illustrated in Figure 1. In 

the following sections, the technical details regarding the aforementioned challenges will be 

provided. 

  
Figure 1. Illustration of the proposed prognostic framework. 
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Model updating:  𝑝𝑝 𝜽𝜽𝑚𝑚 𝑋𝑋0:𝑚𝑚

Predict the RUL

(a) Offline Model Fitting (b) Online Model Updating 
and RUL Prediction
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3 Offline Prior Specification and Model Estimation 

Denote the multiple change-point model as 𝓜𝓜 = ��𝑑𝑑(𝑠𝑠)�𝑠𝑠=1
𝐾𝐾

, �𝛽𝛽(𝑠𝑠)�𝑠𝑠=1
𝐾𝐾+1

, �𝜎𝜎2(𝑠𝑠)�𝑠𝑠=1
𝐾𝐾+1

� where 𝐾𝐾 is 

the number of change points, 𝑑𝑑(𝑠𝑠) is the duration of the sth phase, i.e., 𝑑𝑑(𝑠𝑠) = 𝑡𝑡𝑐𝑐𝑠𝑠 − 𝑡𝑡𝑐𝑐𝑠𝑠−1 . In the 

Bayesian scheme, appropriate priors for 𝓜𝓜  need to be specified. Prior information, which 

describes the population-based degradation characteristics, plays a critical role in the posterior 

inference of a new unit, especially when there are not sufficient observations at the early stage. 

Instead of directly specifying priors for the change-point locations, we focus on the duration of 

each phase 𝑑𝑑(𝑠𝑠), 𝑠𝑠 = 1, … ,𝐾𝐾. Note that although there are 𝐾𝐾 + 1 phases, only the first 𝐾𝐾 phase 

durations are needed to identify the change-point locations. For simplicity, we assume that the 

Wiener process parameters are independent of phase durations, and all phases are independent, 

except that all phases are piecewise connected. Therefore, the joint prior for phase durations and 

Wiener process parameters can be formulated as  

𝜋𝜋(𝓜𝓜) = � 𝜋𝜋�𝑑𝑑(𝑠𝑠)�
𝐾𝐾

𝑠𝑠=1
� 𝜋𝜋�𝛽𝛽(𝑠𝑠),𝜎𝜎2(𝑠𝑠)�

𝐾𝐾+1

𝑠𝑠=1
 (3) 

 

Specifically, we assume that 𝜋𝜋�𝑑𝑑(𝑠𝑠)� follows a normal distribution, i.e., 𝑑𝑑(𝑠𝑠)~𝑁𝑁(𝜇𝜇𝑑𝑑
(𝑠𝑠),𝜎𝜎𝑑𝑑

2(𝑠𝑠)). For 

𝛽𝛽(𝑠𝑠),𝜎𝜎2(𝑠𝑠), a commonly used normal and inverse Gamma (IG) conjugate priors are specified [35],  

 

𝜋𝜋(𝛽𝛽(𝑠𝑠),𝜎𝜎2(𝑠𝑠)) = 𝜋𝜋(𝜎𝜎2(𝑠𝑠))𝜋𝜋�𝛽𝛽(𝑠𝑠)�𝜎𝜎2(𝑠𝑠)� = 𝐼𝐼𝐼𝐼�𝜈𝜈0
(𝑠𝑠), 𝛾𝛾0

(𝑠𝑠)�𝑁𝑁�𝜇𝜇0
(𝑠𝑠),𝜎𝜎2(𝑠𝑠)𝜅𝜅0

2(𝑠𝑠)� (4) 

 

Luckily, with the above conjugate priors, the joint posterior distribution of 𝜽𝜽𝑚𝑚  can be exactly 

calculated sequentially through a recursive modeling updating method, which will be shown later. 

Let 𝝍𝝍 be the vector of all unknown hyperparameters, i.e., 𝝍𝝍 = {𝑣𝑣0
(𝑠𝑠), 𝛾𝛾0

(𝑠𝑠),𝜇𝜇0
(𝑠𝑠), 𝜅𝜅02

(𝑠𝑠), 𝜇𝜇𝑑𝑑
(𝑠𝑠),𝜎𝜎𝑑𝑑

2(𝑠𝑠)}. 

In the offline model fitting, all the hyperparameters have to be estimated. Suppose there are 𝐼𝐼 units 

in the historical dataset. Naturally, the hyperparameters can be obtained from historical dataset by 

maximizing the following marginal likelihood [26]  

 

𝝍𝝍� = arg max
𝝍𝝍

��𝑝𝑝(𝑿𝑿𝑖𝑖|𝓜𝓜𝑖𝑖)𝜋𝜋(𝓜𝓜𝑖𝑖|𝝍𝝍)𝑑𝑑𝓜𝓜𝑖𝑖

𝐼𝐼

𝑖𝑖=1

 (5) 
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where 𝑿𝑿𝑖𝑖 = {𝑋𝑋𝑖𝑖,1, … ,𝑋𝑋𝑖𝑖,𝑛𝑛𝑖𝑖} is the degradation signal for unit 𝑖𝑖 , and 𝑛𝑛𝑖𝑖  is the total number of 

observations. Unfortunately, the formula is too complex and very difficult to maximize directly. 

In this paper, we adopt a commonly used empirical two-stage estimation method [25, 26], where 

the model parameter 𝓜𝓜�𝑖𝑖 for each unit 𝑖𝑖 is estimated at the first stage, and then the hyperparameters 

are estimated through the maximum likelihood estimation (MLE) by treating {𝓜𝓜�𝑖𝑖, 𝑖𝑖 = 1, … , 𝐼𝐼} as 

observations at the second stage.  

To take advantage of the independent increment property of  𝑋𝑋(𝑡𝑡) , define the increments of 

observations for unit 𝑖𝑖 as 𝛿𝛿𝑖𝑖,1 = 𝑋𝑋𝑖𝑖,1 − 𝑋𝑋𝑖𝑖,0 , 𝛿𝛿𝑖𝑖,2 = 𝑋𝑋𝑖𝑖,2 − 𝑋𝑋𝑖𝑖,1,...,𝛿𝛿𝑖𝑖,𝑛𝑛𝑖𝑖 = 𝑋𝑋𝑖𝑖,𝑛𝑛𝑖𝑖 − 𝑋𝑋𝑖𝑖,𝑛𝑛𝑖𝑖−1, and time 

increments as  𝜆𝜆𝑖𝑖,1 = 𝑡𝑡𝑖𝑖,1 − 𝑡𝑡𝑖𝑖,0, 𝜆𝜆𝑖𝑖,2 = 𝑡𝑡𝑖𝑖,2 − 𝑡𝑡𝑖𝑖,1, … , 𝜆𝜆𝑖𝑖,𝑛𝑛𝑖𝑖 = 𝑡𝑡𝑖𝑖,𝑛𝑛𝑖𝑖 − 𝑡𝑡𝑖𝑖,𝑛𝑛𝑖𝑖−1 . Then conditioning on 

𝓜𝓜𝑖𝑖, the increments 𝜹𝜹𝑖𝑖 = �𝛿𝛿𝑖𝑖,1,  𝛿𝛿𝑖𝑖,2, … , 𝛿𝛿𝑖𝑖,𝑛𝑛𝑖𝑖�
′
 follow independent normal distributions given by 

 

𝑓𝑓(𝜹𝜹𝒊𝒊|𝓜𝓜𝑖𝑖) = � � �2𝜋𝜋𝜎𝜎𝑖𝑖
2(𝑠𝑠)𝜆𝜆𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗�

−12
𝑛𝑛𝑖𝑖

(𝑠𝑠)

𝑗𝑗=1

𝐾𝐾+1

𝑠𝑠=1
exp�−

�𝛿𝛿𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗 − 𝛽𝛽𝑖𝑖
(𝑠𝑠)𝜆𝜆𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗�

2

2𝜎𝜎𝑖𝑖
2(𝑠𝑠)𝜆𝜆𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗

� (6) 

 

where 𝑛𝑛𝑖𝑖
(𝑠𝑠) is the number of observations in the sth phase for unit 𝑖𝑖. The log-likelihood function 

can thus be expressed by 

 

𝑙𝑙(𝓜𝓜𝑖𝑖|𝜹𝜹𝑖𝑖) = � �−
𝑛𝑛𝑖𝑖

(𝑠𝑠)

2
log�2𝜋𝜋𝜎𝜎𝑖𝑖

2(𝑠𝑠)� −
1
2
� log 𝜆𝜆𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗

𝑛𝑛𝑖𝑖
(𝑠𝑠)

𝑗𝑗=1
−

1

2𝜎𝜎𝑖𝑖
2(𝑠𝑠) �

�𝛿𝛿𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗 − 𝛽𝛽𝑖𝑖
(𝑠𝑠)𝜆𝜆𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗�

2

𝜆𝜆𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗

𝑛𝑛𝑖𝑖
(𝑠𝑠)

𝑗𝑗=1
�

𝐾𝐾+1

𝑠𝑠=1
 (7) 

 

Given the change-point locations, the optimal drift and diffusion parameters that maximize Eq. (7) 

can be obtained as  

𝛽𝛽 � 𝑖𝑖
(𝑠𝑠)  =

∑ 𝛿𝛿𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗
𝑛𝑛𝑖𝑖

(𝑠𝑠)

𝑗𝑗=1

∑ 𝜆𝜆𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗
𝑛𝑛𝑖𝑖

(𝑠𝑠)

𝑗𝑗=1

, 𝜎𝜎2�𝑖𝑖
(𝑠𝑠)

=
1

𝑛𝑛𝑖𝑖
(𝑠𝑠) �

�𝛿𝛿𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗 − 𝛽𝛽 � 𝑖𝑖
(𝑠𝑠)𝜆𝜆𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗�

2

𝜆𝜆𝑖𝑖,𝑐𝑐𝑠𝑠−1+𝑗𝑗

𝑛𝑛𝑖𝑖
(𝑠𝑠)

𝑗𝑗=1
 (8) 

 

Plug in Eq. (8) into (7) we can get a likelihood function with {𝑐𝑐𝑖𝑖,𝑠𝑠, 𝑠𝑠 = 1, … ,𝐾𝐾} being the only 

input variables. Denote 𝒄𝒄𝑖𝑖 = �𝑐𝑐𝑖𝑖,1, 𝑐𝑐𝑖𝑖,2 … , 𝑐𝑐𝑖𝑖,𝐾𝐾�, 𝜷𝜷𝑖𝑖 = �𝛽𝛽𝑖𝑖
(1), … ,𝛽𝛽𝑖𝑖

(𝐾𝐾+1)�  and 𝝈𝝈𝑖𝑖2 =
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�𝜎𝜎𝑖𝑖
2(1), … ,𝜎𝜎𝑖𝑖

2(𝐾𝐾+1)�. The optimal change-point locations can be easily obtained by enumerating all 

possible values 

𝒄𝒄�𝑖𝑖 = arg max
𝒄𝒄𝒊𝒊

𝑙𝑙�𝒄𝒄𝒊𝒊,𝜷𝜷�𝑖𝑖(𝒄𝒄𝒊𝒊),𝝈𝝈2�𝑖𝑖(𝒄𝒄𝒊𝒊)�𝜹𝜹𝑖𝑖� (9) 
 

At the second stage, the hyperparameters are estimated through MLE by treating the estimated 

{𝓜𝓜�𝑖𝑖, 𝑖𝑖 = 1, … , 𝐼𝐼} at the first stage as observations. The duration hyperparameters (𝜇𝜇𝑑𝑑
(𝑠𝑠),𝜎𝜎𝑑𝑑

2(𝑠𝑠), 𝑠𝑠 =

1, … ,𝐾𝐾) and drift rate hyperparameters �𝜇𝜇0
(𝑠𝑠),𝜅𝜅02

(𝑠𝑠), 𝑠𝑠 = 1, … ,𝐾𝐾 + 1� can be obtained analytically 

as 

 

�̂�𝜇𝑑𝑑
(𝑠𝑠) =

∑ �̂�𝑑𝑖𝑖
(𝑠𝑠)𝐼𝐼

𝑖𝑖=1

𝐼𝐼
, 𝜎𝜎𝑑𝑑2�

(𝑠𝑠)
=
∑ ��̂�𝑑𝑖𝑖

(𝑠𝑠) − �̂�𝜇𝑑𝑑
(𝑠𝑠)�

2
𝐼𝐼
𝑖𝑖=1

𝐼𝐼
 (10) 

 

and 

�̂�𝜇0
(𝑠𝑠) =

∑ �̂�𝛽𝑖𝑖
(𝑠𝑠)

σ2�i
(s)

𝐼𝐼
𝑖𝑖=1

∑ 1
σ2�i

(s)
𝐼𝐼
𝑖𝑖=1

, 𝜅𝜅02�
(𝑠𝑠)

=
1
𝐼𝐼
�

��̂�𝛽𝑖𝑖
(𝑠𝑠) − �̂�𝜇0

(𝑠𝑠)�
2

σ2�i
(s)

𝐼𝐼

𝑖𝑖=1
 (11) 

 

For the hyperparameters 𝑣𝑣0,𝛾𝛾0 in the inverse Gamma distribution, the closed form is not tractable 

and instead can be estimated through nonlinear optimization techniques.  

In the above model specification and estimation, the critical parameter 𝐾𝐾 needs to be selected first. 

AIC [36] or BIC [37] is typically used for model selection in regression. However, the 

conventional AIC or BIC is not very effective for multiple change-point models [38]. Besides, 

although increasing the number of change points may improve the model fitting accuracy, it may 

not necessarily result in better prognostic accuracy. In fact, increasing the number of change points 

will introduce extra uncertainties in RUL prediction (uncertainty of future change-point locations). 

Even if there is no over-fitting issue, it may still significantly reduce the prediction accuracy. 

Therefore there is tradeoff between model fitting accuracy and RUL predictability. To address this 

issue, we propose to use the cross validation technique for change-point model selection. 

Specifically, we apply leave-one-out-cross-validation approach. For each value 𝐾𝐾 , the offline 
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model estimation and online RUL prediction are performed, and the average prediction error is 

calculated. Then the optimal 𝐾𝐾 is the one with minimal average prediction error. Note that for 

linear regression models without any change points, the cross validation approach is 

asymptotically equivalent to BIC based model selection [20]. However, for change-point models 

or other general models, cross-validation would be better since it is directly based on the model 

predictability.  

4 Online Model Updating and RUL Prediction 

Once the prior information is calculated based on historical data at the offline stage, as described 

in the previous section, it can be utilized for the RUL prediction of a new in-service unit at the 

online stage. To do this accurately requires a sequential updating the posterior distributions of 

certain key parameters, such as the location of the latest change point, the number of change-point 

occurred, and the drift and diffusion parameter of the current phase, which is the main challenge. 

In this section, we will first show the details of how to update the model recursively, and then 

present the RUL prediction method based on the updated model. 

4.1 Exact Bayesian Model Updating 

Assume that we have observed the degradation signal up to the current time step 𝑚𝑚 for an in-

service unit, denoted as 𝑋𝑋0:𝑚𝑚 = (𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑚𝑚). The objective of Bayesian model updating is to 

incorporate the new observations to the estimated model by computing the posterior distribution 

of model parameters. The target distribution that needs to be updated is 𝑝𝑝(𝜽𝜽𝑚𝑚|𝑋𝑋0:𝑚𝑚) where state 

vector 𝜽𝜽𝑚𝑚 = (𝛽𝛽𝑚𝑚,𝜎𝜎𝑚𝑚2 , 𝜏𝜏𝑚𝑚, 𝑠𝑠𝑚𝑚) . In general, the analytic expression for this joint posterior 

distribution is intractable. A natural way is to use sequential Monte Carlo method to get an 

approximation. Wen et al. [30] developed a stratified particle filtering algorithm for online model 

updating of a general path model. This method can effectively handle intractable posteriors. 

However, due to high dimensionality, at each time step a large number of particles have to be 

generated to guarantee the approximation accuracy. Therefore it is computationally expensive and 

may not be applicable for online monitoring. Fortunately, due to the assignment of conjugate priors 

for  𝛽𝛽  and  𝜎𝜎2 , the posterior could be exactly calculated through a novel recursive updating 

approach. Given the observed data, the joint posterior distribution of all parameters can be derived 

as 
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𝑝𝑝(𝜽𝜽𝑚𝑚|𝑋𝑋0:𝑚𝑚) = 𝑝𝑝(𝛽𝛽𝑚𝑚,𝜎𝜎𝑚𝑚2 , 𝜏𝜏𝑚𝑚, 𝑠𝑠𝑚𝑚|𝑋𝑋0:𝑚𝑚) = 𝑃𝑃(𝜏𝜏𝑚𝑚, 𝑠𝑠𝑚𝑚|𝑋𝑋0:𝑚𝑚)𝑝𝑝(𝛽𝛽𝑚𝑚,𝜎𝜎𝑚𝑚2 |𝜏𝜏𝑚𝑚, 𝑠𝑠𝑚𝑚,𝑋𝑋0:𝑚𝑚) (12) 
 

As we can see, the joint distribution can be factorized as the product of a posterior of the discrete 

components (𝜏𝜏𝑚𝑚and 𝑠𝑠𝑚𝑚), and the continuous components (𝛽𝛽𝑚𝑚 and 𝜎𝜎𝑚𝑚2 ). The discrete components 

are essential for phase tracking and future change-point prediction, while the continuous 

components are required to predict the degradation level at the end of the current phase. The details 

of how to calculate these two parts are given in the following paragraphs. 

The conditional posterior distribution of the continuous components 𝑝𝑝(𝛽𝛽𝑚𝑚,𝜎𝜎𝑚𝑚2 |𝜏𝜏𝑚𝑚, 𝑠𝑠𝑚𝑚,𝑋𝑋0:𝑚𝑚) can 

be calculated based on Theorem 1 as follows.  

Theorem 1. Given the conjugate priors shown in Eq. (4) for 𝛽𝛽 and 𝜎𝜎2, the conditional posterior 

pdf 𝑝𝑝(𝛽𝛽𝑚𝑚,𝜎𝜎𝑚𝑚2 |𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚), can be calculated as 

𝑝𝑝(𝛽𝛽𝑚𝑚,𝜎𝜎𝑚𝑚2 |𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚) = 𝑝𝑝(𝛽𝛽𝑚𝑚|𝜎𝜎𝑚𝑚2 , 𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚)𝑝𝑝(𝜎𝜎𝑚𝑚2 |𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚) (13) 

where 

(𝜎𝜎𝑚𝑚2 |𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚)~𝐼𝐼𝐼𝐼 �𝜈𝜈0
(𝑠𝑠) +

𝑚𝑚 − 𝑗𝑗
2

, 𝛾𝛾0
(𝑠𝑠) +

𝐻𝐻𝑗𝑗+1,𝑚𝑚
(𝑠𝑠)

2
� 

(𝛽𝛽𝑚𝑚|𝜎𝜎𝑚𝑚2 , 𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚)~𝑁𝑁(𝜇𝜇𝑗𝑗+1,𝑚𝑚
(𝑠𝑠) ,𝜎𝜎𝑚𝑚2 𝜅𝜅𝑗𝑗+1,𝑚𝑚

2(𝑠𝑠) ) 
(14) 

and 

 

𝐻𝐻𝑗𝑗+1,𝑚𝑚
(𝑠𝑠) = �

𝜇𝜇0
2(𝑠𝑠)

𝜅𝜅0
2(𝑠𝑠) + �

𝛿𝛿𝑖𝑖2

𝜆𝜆𝑖𝑖

𝑚𝑚

𝑖𝑖=𝑗𝑗+1
− �

𝜇𝜇0
(𝑠𝑠)

𝜅𝜅0
2(𝑠𝑠) + � 𝛿𝛿𝑖𝑖

𝑚𝑚

𝑖𝑖=𝑗𝑗+1
�
2

�� 𝜆𝜆𝑖𝑖
𝑚𝑚

𝑖𝑖=𝑗𝑗+1
+

1

𝜅𝜅0
2(𝑠𝑠)�

−1

� 

𝜅𝜅𝑗𝑗+1,𝑚𝑚
2(𝑠𝑠) = �� 𝜆𝜆𝑖𝑖

𝑚𝑚

𝑖𝑖=𝑗𝑗+1
+

1

𝜅𝜅0
2(𝑠𝑠)�

−1

 

𝜇𝜇𝑗𝑗+1,𝑚𝑚
(𝑠𝑠) = �

𝜇𝜇0
(𝑠𝑠)

𝜅𝜅0
2(𝑠𝑠) + � 𝛿𝛿𝑖𝑖

𝑚𝑚

𝑖𝑖=𝑗𝑗+1
� 𝜅𝜅𝑗𝑗+1,𝑚𝑚

2(𝑠𝑠)  

(15) 

 

The proof is given in Appendix A. For the discrete components, based on the Bayes’ rule, the 

posterior can be derived as 

𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚) ∝ 𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚−1)𝑝𝑝(𝑋𝑋𝑚𝑚|𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1) (16) 
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In the above equation, 𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚−1)  is the predictive probability mass function 

(PMF), which can be recursively calculated by conditioning on the states of the previous time step:  

𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚−1) 

= �𝑃𝑃(𝜏𝜏𝑚𝑚−1 = 𝑗𝑗′, 𝑠𝑠𝑚𝑚−1 = 𝑠𝑠′|𝑋𝑋0:𝑚𝑚−1)𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝜏𝜏𝑚𝑚−1 = 𝑗𝑗′, 𝑠𝑠𝑚𝑚−1 = 𝑠𝑠′,𝑋𝑋0:𝑚𝑚−1)
𝑗𝑗′,𝑠𝑠′

 (17) 

In Eq. (17), 𝑃𝑃(𝜏𝜏𝑚𝑚−1 = 𝑗𝑗′, 𝑠𝑠𝑚𝑚−1 = 𝑠𝑠′|𝑋𝑋0:𝑚𝑚−1)  is the posterior distribution of the discrete 

component obtained at the previous time step. 𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝜏𝜏𝑚𝑚−1 = 𝑗𝑗′, 𝑠𝑠𝑚𝑚−1 = 𝑠𝑠′,𝑋𝑋0:𝑚𝑚−1) 

is the prior state transition probability, which can be derived based on the Markov properties of 

the occurrence of the change points, i.e., the probability of the occurrence of a new change point 

or a new phase at the current time only depends on the duration and phase index at the previous 

time step. Based on the prior knowledge of the phase duration and total number of phases, the state 

transition probability can be obtained as 

𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝜏𝜏𝑚𝑚−1 = 𝑗𝑗′, 𝑠𝑠𝑚𝑚−1 = 𝑠𝑠′,𝑋𝑋0:𝑚𝑚−1)

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 1 − 𝐼𝐼(𝑠𝑠′)�𝑡𝑡𝑚𝑚 − 𝑡𝑡𝑗𝑗′�

1 − 𝐼𝐼(𝑠𝑠′)�𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑗𝑗′  �
,       if 𝑗𝑗 = 𝑗𝑗′and 𝑠𝑠 = 𝑠𝑠′ < 𝐾𝐾 + 1

1,                                              if 𝑗𝑗 = 𝑗𝑗′ and 𝑠𝑠 = 𝑠𝑠′ = 𝐾𝐾 + 1
𝐼𝐼�𝑠𝑠′��𝑡𝑡𝑚𝑚 − 𝑡𝑡𝑗𝑗′� − 𝐼𝐼�𝑠𝑠′��𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑗𝑗′�

1 − 𝐼𝐼(𝑠𝑠′)�𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑗𝑗′�
, if 𝑗𝑗 = 𝑚𝑚 − 1  and 𝑠𝑠 = 𝑠𝑠′ + 1 ≤ 𝐾𝐾 + 1
 

0,                                               otherwise

 (18) 

 

where 𝐼𝐼(𝑠𝑠′)(∙)  is the cumulative distribution function of the 𝑠𝑠′ th phase duration. The top 

probability refers to there not being a change-point between 𝑡𝑡𝑚𝑚 and 𝑡𝑡𝑚𝑚−1 and the current phase is 

not the last phase. The second probability refers to the current phase is already at the last phase. 

The third probability refers to the event that there is a change point occurring. 

The predictive density 𝑝𝑝(𝑋𝑋𝑚𝑚|𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1) in Eq. (16) can be calculated based on 

Theorem 2 as follows. 

Theorem 2. Suppose the conjugate priors shown in Eq. (4) are assumed for 𝛽𝛽 and 𝜎𝜎2. 

if 𝑗𝑗 < 𝑚𝑚 − 1, (𝑋𝑋𝑚𝑚|𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1) follows a univariate 𝑡𝑡 distribution given as 
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(𝑋𝑋𝑚𝑚|𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1)~𝑡𝑡1 �2𝑣𝑣0
(𝑠𝑠) + 𝑚𝑚− 𝑗𝑗 − 1, 𝜇𝜇𝑚𝑚|𝑗𝑗+1:𝑚𝑚−1

(𝑠𝑠) ,
2𝛾𝛾𝑗𝑗+1,𝑚𝑚−1

(𝑠𝑠) 𝜂𝜂𝑚𝑚|𝑗𝑗+1:𝑚𝑚−1
(𝑠𝑠)

2𝑣𝑣0
(𝑠𝑠) + 𝑚𝑚 − 𝑗𝑗 − 1

� (19) 

where  

𝜇𝜇𝑚𝑚|𝑗𝑗+1:𝑚𝑚−1
(𝑠𝑠) = 𝜇𝜇𝑗𝑗+1,𝑚𝑚−1

(𝑠𝑠) 𝜆𝜆𝑚𝑚 + 𝑋𝑋𝑚𝑚−1,  

𝛾𝛾𝑗𝑗+1,𝑚𝑚−1
(𝑠𝑠) = 𝛾𝛾0

(𝑠𝑠) +
𝐻𝐻𝑗𝑗+1,𝑚𝑚−1

(𝑠𝑠)

2
 

𝜂𝜂𝑚𝑚|𝑗𝑗+1:𝑚𝑚−1
(𝑠𝑠) = 𝜆𝜆𝑚𝑚 + 𝜅𝜅𝑗𝑗+1,𝑚𝑚−1

2(𝑠𝑠) 𝜆𝜆𝑚𝑚
2  

(20) 

 
if 𝑗𝑗 = 𝑚𝑚 − 1, (𝑋𝑋𝑚𝑚|𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1) follows a univariate 𝑡𝑡 distribution given as 

(𝑋𝑋𝑚𝑚|𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1)~𝑡𝑡1 �2𝑣𝑣0
(𝑠𝑠),𝜇𝜇𝑚𝑚

(𝑠𝑠),
𝛾𝛾0

(𝑠𝑠)𝜂𝜂𝑚𝑚
(𝑠𝑠)

𝑣𝑣0
(𝑠𝑠) � (21) 

where  

𝜇𝜇𝑚𝑚
(𝑠𝑠) = 𝜇𝜇0

(𝑠𝑠)𝜆𝜆𝑚𝑚 + 𝑋𝑋𝑚𝑚−1  
𝜂𝜂𝑚𝑚

(𝑠𝑠) = 𝜆𝜆𝑚𝑚 + 𝜅𝜅0
2(𝑠𝑠)𝜆𝜆𝑚𝑚

2  
(22) 

The proof is included in Appendix B. As we can see, based on Eq. (12)-(22), the posterior 

distributions of all parameters of interest can be exactly calculated through a recursive updating 

approach.  

 

4.2 Controlling the Computational Cost 

Compared with sequential Monte Carlo methods, the exact inference for sequential model updating 

runs much faster when 𝑚𝑚 is not large. However, as 𝑚𝑚 becomes very large, the algorithm may be 

very time-consuming. The reason is that it needs to calculate all the probabilities of 

𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚) for 𝑗𝑗 = 0,1, … ,𝑚𝑚 − 1 and 𝑠𝑠 = 1,2, … ,𝐾𝐾 + 1 at each time step 𝑚𝑚, which 

increases almost linearly with 𝑚𝑚 . Therefore, the algorithm needs to be improved in a 

computationally efficient manner for real-time estimation. It is observed that as the number of 

observations increases, the PMF of the latest change point becomes more and more concentrated 

around the true change point, whereas the probabilities at other locations are close to zero. To 

reduce the computational load and balance the computational cost for all time steps, an 

approximation strategy with a set of support point of fixed size can be applied [21]. The basic idea 

is to approximate the posterior distribution of the discrete components by a small set of support 

points of a fixed size with significant probabilities. In other words, we set the posterior PMF to be 
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zero at those with negligible values and keep others with high probabilities. However, this strategy 

may result in zero PMFs for certain phases, i.e., 𝑃𝑃(𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚) = 0  or 

𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚) = 0 for all 𝑗𝑗 = 0,1, … ,𝑚𝑚 − 1, whose true values may be just temporally 

small and will become significant as more observations are obtained. To avoid this situation, we 

propose to use a stratified sampling method, where for each s, 𝑁𝑁 locations with highest PMF are 

selected for the latest change points. The algorithm is summarized in Algorithm 1. With this 

strategy, the maximum computational cost for each time step 𝑚𝑚 can be controlled effectively. 

 

Algorithm 1 The Fixed Support Size Strategy for Model Updating 

For each time step 𝑚𝑚: 
If 𝑚𝑚 ≤ 𝑁𝑁 − 1: 

• Calculate 𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚) for 𝑗𝑗 = 0,1,𝑚𝑚 − 1, 𝑠𝑠 = 1, … ,𝐾𝐾 + 1. 

If 𝑚𝑚 > 𝑁𝑁: 

• For each 𝑠𝑠 , select 𝑁𝑁 − 1  support points with highest probabilities 
𝑃𝑃(𝜏𝜏𝑚𝑚−1 = 𝑗𝑗, 𝑠𝑠𝑚𝑚−1 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚−1) 

• Calculate 𝑃𝑃(𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠|𝑋𝑋0:𝑚𝑚) at all these selected (𝑁𝑁 − 1) support points 
and at the current time step 𝑚𝑚 for 𝑠𝑠 = 1, … ,𝐾𝐾 + 1, set others to be zero. 

• Normalize the probabilities. 
 

4.3 RUL prediction 

Once the parameters in the model have been updated, the RUL of the in-service unit can be 

predicted. A failure is typically defined as the event that the degradation signal first hits the failure 

threshold 𝛤𝛤. Denote the RUL at the current time 𝑡𝑡𝑚𝑚 as 𝑅𝑅𝑚𝑚. Based on the concept of first passage 

time (FPT), the RUL can be formulated as 𝑅𝑅𝑚𝑚 = inf{𝑙𝑙:𝑋𝑋(𝑡𝑡𝑚𝑚 + 𝑙𝑙) ≥ 𝛤𝛤|𝑋𝑋0:𝑚𝑚}. For the conventional 

Wiener process degradation model, RUL has been proven to follow an inverse Gaussian 

distribution. For an in-service unit with observations 𝑋𝑋0:m, if 𝛽𝛽 and 𝜎𝜎2 are fixed, the pdf of the 

residual life can be derived as [39]  

 

𝑓𝑓𝑅𝑅𝑚𝑚(𝑙𝑙|𝑋𝑋𝑚𝑚,𝛽𝛽,𝜎𝜎2) =
𝛤𝛤 − 𝑋𝑋𝑚𝑚
√2𝜋𝜋𝜎𝜎2𝑙𝑙3

exp�−
(𝛤𝛤 − 𝑋𝑋𝑚𝑚 − 𝛽𝛽𝑙𝑙)2

2𝜎𝜎2𝑙𝑙
� (23) 

 

However, in our model, due to the unknown change points and randomness of 𝛽𝛽,𝜎𝜎2 at each phase, 

the RUL is very complicated and intractable analytically. For model consistency, we assume that 
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the degradation amplitude will not exceed the failure threshold before the last change point. In 

RUL prediction, we need to first predict the location of the final change point 𝑡𝑡fc  and the 

degradation amplitude 𝑋𝑋(𝑡𝑡fc), and then conditioning on them to predict when the last phase will 

hit the failure threshold. Mathematically, the pdf of RUL can be represented as  

𝑓𝑓𝑅𝑅𝑚𝑚(𝑙𝑙|𝑋𝑋0:𝑚𝑚) = �𝑝𝑝(𝑡𝑡fc,𝑋𝑋(𝑡𝑡fc)|𝑋𝑋0:𝑚𝑚)𝑓𝑓𝑅𝑅𝑚𝑚(𝑙𝑙|𝑡𝑡fc,𝑋𝑋(𝑡𝑡fc),𝑋𝑋0:𝑚𝑚)𝑑𝑑 𝑋𝑋(𝑡𝑡fc)𝑑𝑑𝑡𝑡fc (24) 

where  

𝑝𝑝(𝑡𝑡fc,𝑋𝑋(𝑡𝑡fc)|𝑋𝑋0:𝑚𝑚) = � 𝑃𝑃(𝑠𝑠𝑚𝑚, 𝜏𝜏𝑚𝑚|𝑋𝑋0:𝑚𝑚)𝑝𝑝(𝑡𝑡fc,𝑋𝑋(𝑡𝑡fc)|𝑠𝑠𝑚𝑚, 𝜏𝜏𝑚𝑚,𝑋𝑋0:𝑚𝑚)
𝑠𝑠𝑚𝑚,𝜏𝜏𝑚𝑚

 

= � 𝑃𝑃(𝑠𝑠𝑚𝑚, 𝜏𝜏𝑚𝑚|𝑋𝑋0:𝑚𝑚)�𝑝𝑝(𝑡𝑡fc,𝑋𝑋(𝑡𝑡fc)|𝜽𝜽𝑚𝑚)𝑝𝑝(𝛽𝛽𝑚𝑚,𝜎𝜎𝑚𝑚2 |𝑠𝑠𝑚𝑚, 𝜏𝜏𝑚𝑚,𝑋𝑋0:𝑚𝑚)𝑑𝑑𝛽𝛽𝑚𝑚𝑑𝑑𝜎𝜎𝑚𝑚2
𝑠𝑠𝑚𝑚,𝜏𝜏𝑚𝑚

 
(25) 

and  

𝑓𝑓𝑅𝑅𝑚𝑚(𝑙𝑙|𝑡𝑡fc,𝑋𝑋(𝑡𝑡fc),𝑋𝑋0:𝑚𝑚)

= �𝑓𝑓𝑅𝑅𝑚𝑚�𝑙𝑙�𝑡𝑡fc,𝑋𝑋(𝑡𝑡fc),𝑋𝑋0:𝑚𝑚,𝛽𝛽(𝐾𝐾+1),𝜎𝜎2(𝐾𝐾+1)�𝑝𝑝�𝛽𝛽(𝐾𝐾+1),𝜎𝜎2(𝐾𝐾+1)�𝑡𝑡fc,𝑋𝑋(𝑡𝑡fc),𝑋𝑋0:𝑚𝑚�𝑑𝑑𝛽𝛽(𝐾𝐾+1)𝑑𝑑𝜎𝜎2(𝐾𝐾+1) (26) 

 

It is worth noting that here 𝑡𝑡fc may be less than 𝑡𝑡𝑚𝑚, therefore 𝑓𝑓𝑅𝑅𝑚𝑚(𝑙𝑙|𝑡𝑡fc,𝑋𝑋(𝑡𝑡fc),𝑋𝑋0:𝑚𝑚) may depend 

on 𝑋𝑋0:𝑚𝑚 or may be independent of 𝑋𝑋0:𝑚𝑚. Clearly, the RUL is intractable due to multiple complex 

integrations. A natural way to address this issue is to use Monte Carlo simulation approach. 

Specifically, we can first generate 𝑀𝑀 samples for the current state vector 𝜽𝜽𝑚𝑚 through the updated 

posterior distribution 𝑝𝑝(𝜽𝜽𝑚𝑚|𝑋𝑋0:𝑚𝑚), and then conditioning on each sample, simulate the remaining 

change points, 𝛽𝛽 and 𝜎𝜎2 of each phase, and degradation levels at remaining change points. The 

duration of the last phase can be directly sampled from inverse Gaussian distribution based on Eq. 

(23). The details of the Monte Carlo approach for RUL sampling (𝑇𝑇𝑖𝑖, 𝑖𝑖 = 1, … ,𝑀𝑀) is illustrated in 

Algorithm 2. It should be mentioned that for multiple change-point based model, the probability 

of being at the last phase at early prediction stage is inevitably nonzero, i.e., 

𝑃𝑃(𝑠𝑠𝑚𝑚 = 𝐾𝐾 + 1|𝑋𝑋0:𝑚𝑚, 𝜏𝜏𝑚𝑚 = 𝑗𝑗) > 0 while the actual phase 𝑠𝑠𝑚𝑚 < 𝐾𝐾 + 1. This probability may even 

be significant for certain signals due to inherent randomness of Wiener process. If the actual 

degradation rate is very small at the current time, the sampled failure time may be significantly 

larger than the actual value. Besides, for phases before the last phase, negative drift parameters 

may be sampled, which may also significantly increase the residual life. To make it more accurate, 

we apply lower bounds 𝑙𝑙(𝑠𝑠) for all the drift parameters as constraints in the sampling process, 
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which can be obtained by selecting the minimal drift parameter of each phase of all historical 

signals.  

Algorithm 2 Monte Carlo Simulation for RUL Prediction 
Generate samples from 𝑝𝑝(𝜽𝜽𝑚𝑚|𝑋𝑋0:𝑚𝑚): 

For 𝑖𝑖 = 1:𝑀𝑀 
Sample �𝜏𝜏𝑚𝑚,𝑖𝑖, 𝑠𝑠𝑚𝑚,𝑖𝑖�~𝑃𝑃(𝜏𝜏𝑚𝑚, 𝑠𝑠𝑚𝑚|𝑋𝑋0:𝑚𝑚) based on Eq. (16) 
Sample �𝛽𝛽𝑚𝑚,𝑖𝑖,𝜎𝜎𝑚𝑚,𝑖𝑖

2 �~𝑝𝑝(𝛽𝛽𝑚𝑚,𝜎𝜎𝑚𝑚2 |𝜏𝜏𝑚𝑚,𝑖𝑖 , 𝑠𝑠𝑚𝑚,𝑖𝑖,𝑋𝑋0:𝑚𝑚) based on Eq. (14) 
End 

Simulate RUL 
For 𝑖𝑖 = 1:𝑀𝑀 

If 𝑠𝑠𝑚𝑚,𝑖𝑖 = 𝐾𝐾 + 1, then 
Sample 𝑇𝑇𝑖𝑖~𝑓𝑓𝑅𝑅𝑚𝑚�𝑙𝑙�𝑋𝑋𝑚𝑚,𝛽𝛽𝑚𝑚,𝑖𝑖,𝜎𝜎𝑚𝑚,𝑖𝑖

2 � based on Eq. (23) 
else 

For 𝑠𝑠 = 𝑠𝑠𝑚𝑚,𝑖𝑖:𝐾𝐾 
If 𝑠𝑠 = 𝑠𝑠𝑚𝑚,𝑖𝑖 

Sample 𝑡𝑡𝑐𝑐𝑠𝑠,𝑖𝑖~𝑡𝑡𝑐𝑐𝑠𝑠−1,𝑖𝑖 + 𝑁𝑁 �𝑑𝑑�𝜇𝜇𝑑𝑑
(𝑠𝑠),𝜎𝜎𝑑𝑑

2(𝑠𝑠),𝑑𝑑 ≥ 𝑡𝑡𝑚𝑚 − 𝑡𝑡𝜏𝜏𝑚𝑚,𝑖𝑖� 
Sample 𝑋𝑋�𝑡𝑡𝑐𝑐𝑠𝑠,𝑖𝑖�~𝑋𝑋(𝑡𝑡𝑚𝑚) + 𝑁𝑁�𝑋𝑋�𝛽𝛽𝑚𝑚,𝑖𝑖�𝑡𝑡𝑐𝑐𝑠𝑠,𝑖𝑖 − 𝑡𝑡𝑚𝑚�, �𝑡𝑡𝑐𝑐𝑠𝑠,𝑖𝑖 − 𝑡𝑡𝑚𝑚�𝜎𝜎𝑚𝑚,𝑖𝑖

2 � 
else 

Sample 𝑡𝑡𝑐𝑐𝑠𝑠,𝑖𝑖~𝑡𝑡𝑐𝑐𝑠𝑠−1,𝑖𝑖 + 𝑁𝑁 �𝑑𝑑�𝜇𝜇𝑑𝑑
(𝑠𝑠),𝜎𝜎𝑑𝑑

2(𝑠𝑠)� 
Sample (𝛽𝛽𝑖𝑖

(𝑠𝑠),𝜎𝜎𝑖𝑖
2(𝑠𝑠))~𝐼𝐼𝐼𝐼 �𝜈𝜈0

(𝑠𝑠), 𝛾𝛾0
(𝑠𝑠)�𝑁𝑁 �𝜇𝜇0

(𝑠𝑠),𝜎𝜎0
2(𝑠𝑠)𝜅𝜅0

2(𝑠𝑠)� 
Sample 𝑋𝑋�𝑡𝑡𝑐𝑐𝑠𝑠,𝑖𝑖�~𝑋𝑋�𝑡𝑡𝑐𝑐𝑠𝑠−1,𝑖𝑖� + 𝑁𝑁�𝑋𝑋�𝛽𝛽𝑖𝑖

(𝑠𝑠)�𝑡𝑡𝑐𝑐𝑠𝑠,𝑖𝑖 − 𝑡𝑡𝑐𝑐𝑠𝑠−1,𝑖𝑖�, �𝑡𝑡𝑐𝑐𝑠𝑠,𝑖𝑖 − 𝑡𝑡𝑐𝑐𝑠𝑠−1,𝑖𝑖�𝜎𝜎𝑖𝑖
2(𝑠𝑠)� 

End 
End 
Sample �𝛽𝛽𝑖𝑖

(𝐾𝐾+1),𝜎𝜎𝑖𝑖
2(𝐾𝐾+1)�~𝐼𝐼𝐼𝐼 �𝜈𝜈0

(𝐾𝐾+1),𝛾𝛾0
(𝐾𝐾+1)�𝑁𝑁 �𝜇𝜇0

(𝐾𝐾+1),𝜎𝜎2(𝐾𝐾+1)𝜅𝜅0
2(𝐾𝐾+1)� 

Sample 𝐿𝐿𝑖𝑖~𝑓𝑓𝑅𝑅𝑐𝑐𝐾𝐾�𝑙𝑙�𝑋𝑋�𝑡𝑡𝑐𝑐𝐾𝐾,𝑖𝑖�,𝛽𝛽𝑖𝑖
(𝐾𝐾+1),𝜎𝜎𝑖𝑖

2(𝐾𝐾+1)� based on Eq. (23) 
  𝑇𝑇𝑖𝑖 = �𝑡𝑡𝑐𝑐𝐾𝐾,𝑖𝑖 − 𝑡𝑡𝑚𝑚� + 𝐿𝐿𝑖𝑖 

End 
End 

 

5 Case Studies 

In this section, we first use simulation study to demonstrate the robustness and effectiveness of our 

model. Then, the proposed model is applied to real case study of rotational bearings. 

5.1 Simulation Study 

In this subsection, the prediction is illustrated and the performance is evaluated through numerical 

simulations. For simplicity, we only consider one-change-point and two-change-point scenarios in 

the simulation model. The hyperparameters for each scenario are specified in Table 1. The failure 
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threshold is set to be 𝛤𝛤 = 20. The inspection interval is set to be 𝛥𝛥𝑡𝑡 = 2. For each scenario, 200 

degradation signals are generated. The support size for the PMF approximation at the updating 

stage is specified as 𝑁𝑁 = 20. The number of samples for RUL prediction is set as 𝑀𝑀 = 3000. Due 

to the randomness of Monte Carlo method, the prediction procedure is repeated 10 times for each 

signal. 

Table 1. Hyperparameters for simulation 
Variables 𝐾𝐾true = 1 𝐾𝐾true = 2 

𝑑𝑑(𝑠𝑠) 
𝜇𝜇𝑑𝑑

(1) = 300,𝜎𝜎𝑑𝑑
2(1) = 102 

𝜇𝜇𝑑𝑑
(2) = 400,𝜎𝜎𝑑𝑑

2(2) = 102 

𝜇𝜇𝑑𝑑
(1) = 200,𝜎𝜎𝑑𝑑

2(1) = 102 
𝜇𝜇𝑑𝑑

(2) = 300,𝜎𝜎𝑑𝑑
2(2) = 102 

𝜇𝜇𝑑𝑑
(3) = 500,𝜎𝜎𝑑𝑑

2(3) = 102 

𝛽𝛽(𝑠𝑠) 
𝜇𝜇0

(1) = 0.01,𝜅𝜅0
2(1) = 0.008 

𝜇𝜇0
(2) = 0.06,𝜅𝜅02

(2) = 0.006 

𝜇𝜇0
(1) = 1 × 10−5,𝜅𝜅0

2(1) = 9 × 10−4 
𝜇𝜇0

(2) = 0.02,𝜅𝜅0
2(2) = 0.002 

𝜇𝜇0
(3) = 0.09,𝜅𝜅0

2(3) = 0.002 

𝜎𝜎2(𝑠𝑠) 
𝑣𝑣0

(1) = 2, 𝛾𝛾0
(1) = 0.05 

𝑣𝑣0
(2) = 2,𝛾𝛾0

(2) = 0.1 

𝑣𝑣0
(1) = 2, 𝛾𝛾0

(1) = 0.06 
𝑣𝑣0

(2) = 2, 𝛾𝛾0
(2) = 0.08 

𝑣𝑣0
(3) = 2, 𝛾𝛾0

(3) = 0.1 

 

 
Figure 2. Illustration of the online model updating process. (a) 𝐾𝐾true = 1,𝐾𝐾 = 1; (b) 𝐾𝐾true =
1,𝐾𝐾 = 2 (c) 𝐾𝐾true = 2,𝐾𝐾 = 1 and (d) 𝐾𝐾true = 2,𝐾𝐾 = 2; top panel: observed and filtered signals; 
middle panel: the expected duration of the current phase; bottom panel: the posterior PMF of the 
index of current phase. The vertical dashed lines are true change-point locations. 
 

Due to space limitation, the estimated hyperparameters are not provided here. Using the leave-one-

out-cross-validation approach, we find that the identified optimal change-point number for each 
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dataset is equivalent to the true value, which demonstrates the effectiveness of the proposed 

approach for model selection (see Figure 5). Figure 2 shows the online model updating process for 

two degradation signals, each of which is randomly selected from each dataset. The first and the 

second column shows the results by assuming 𝐾𝐾 = 1 and 𝐾𝐾 = 2, respectively, while the true value 

𝐾𝐾true = 1. Similarly, the third and fourth column assume 𝐾𝐾 = 1 and 𝐾𝐾 = 2, respectively, while 

𝐾𝐾true = 2. Here we select two 𝐾𝐾’𝑠𝑠 for each signal to study the consequence if 𝐾𝐾  is specified 

inappropriately. Clearly, if an appropriate 𝐾𝐾  is specified (Figure 2 (a) and (d)), the recursive 

updating algorithm can accurately detect the occurrence of change points and track the phase index. 

However, if 𝐾𝐾 is larger (or less) than the actual value, more phases will occur (or some change 

points may not be detected), which will thus affect the model fitting and RUL prediction.  

 

 
Figure 3. Prediction intervals of RUL for 14 simulated signals predicting at 50%, 70%, 90% of 
failure time. (a-c): 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1; (d-f): 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2. The "°" denotes the 5%, 50% and 95% quantile of 
RUL prediction; " − " represent the actual failure time. 

Figure 3 shows the prediction intervals of 7 randomly selected signals from each dataset at three 

different prediction times, i.e., 50%, 70%, 90% of actual failure time. Figure 4 illustrates the pdf 

of RUL of the third and the second unit of the seven signals in each category. To compare the 

prediction performance of different models, we select 𝐾𝐾 = 1 and 𝐾𝐾 = 2 for both two types of 

signals. As expected, for both model specifications, the prediction becomes more and more 

accurate for all signals as more and more observations are collected. This characteristic is highly 

desirable since it becomes more important to get an accurate RUL prediction as the unit approaches 
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failure. Comparing the two model selections, we can see that if the true 𝐾𝐾 is selected, the prediction 

performance is much better than if 𝐾𝐾 is selected inappropriately. Note that in the simulation, the 

right model was effectively selected through the cross-validation approach.  

 

 
Figure 4. Comparison of the RUL prediction between 𝐾𝐾 = 1 and 𝐾𝐾 = 2. Top panel (a-c): 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
1; bottom panel (d-f): 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2. 
 

To further evaluate and analyze the overall prediction accuracy, 200 signals in each category are 

used for testing. We use the root-mean-square deviation (RMSD) as a performance metric, which 

is defined as 

RMSD = �
1
𝐼𝐼
�𝐸𝐸�𝑅𝑅�𝑖𝑖 − 𝑅𝑅𝑖𝑖,true�

2
𝐼𝐼

𝑖𝑖=1

 (27) 

where 𝐼𝐼  is the total number of units, 𝑅𝑅�𝑖𝑖  and 𝑅𝑅𝑖𝑖,true  are the predicted and true RUL of unit 𝑖𝑖 , 

respectively. Figure 5 shows the RMSD at six prediction times for both two types of signals. For 

comparison purpose, three models 𝐾𝐾 = 0, 1, 2 are provided here. Clearly, the model with 

appropriate 𝐾𝐾 outperforms all other models at all prediction times. From Figure 5(a) we can see 

that, the RMSD goes down gradually for both 𝐾𝐾 = 1 and 𝐾𝐾 = 2 models, indicating that with more 

observations collected, the prediction becomes more accurate. However, the model with 𝐾𝐾 = 1 is 

more accurate in prediction than 𝐾𝐾 = 2. The reason is that adding excessive change points will 

introduce unnecessary uncertainty in RUL prediction, e.g., uncertainty regarding future change 

points, and Wiener process parameters of the last phase. 
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For 𝐾𝐾 = 0, the RMSD first increases and then decreases. Similarly phenomenon can also be 

observed in Figure 5(b). If the number of change points is selected insufficiently, the RMSD first 

increases and then decreases as we increase the prediction times. The reason is that the early phases 

often have smaller degradation rates than the later phases, as shown in Figure 2. If insufficient 

change points are assumed, the early phases may be mistakenly detected as the last phase. The 

more observations are collected, the less influence the prior will have on the posterior updating 

and thus the lower the updated degradation rate will be. Consequently it will make the predicted 

RUL much higher than the actual value. When the unit approaches to its failure, the prediction 

accuracy for all of these models increases. Therefore, the parameter 𝐾𝐾 is critical for the prognostic 

model to produce an accurate prediction. 

 

 
Figure 5. Comparison of the RMSD at six prediction times: (a) 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1; (b) 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2.  

 

5.2 Application to Bearing Signals 

In this subsection, the proposed approach is applied to the degradation signal of rotational bearings. 

These degradation signals are log-transformed vibrational signals obtained through an accelerated 

testing on a set of identical thrust ball bearings [3, 26]. In total, there are 25 degradation signals. 

The time interval for inspection is 2 minutes, i.e., 𝛥𝛥𝑡𝑡 = 2 for all units. Figure 6 shows three 

degradation paths for illustration. The failure threshold is specified as 𝛤𝛤 = ln (0.03), which is 

based on the published industrial standards [3]. There are obviously two phases for all signals. 

Moreover, the locations of change points vary from unit to unit.  
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Figure 6. Degradation paths of three representative bearings. 

 

Table 2. Estimated hyperparameters for three models 
Variables 𝐾𝐾 = 0 𝐾𝐾 = 1 𝐾𝐾 = 2 

𝑑𝑑(𝑠𝑠) 
𝜇𝜇𝑑𝑑

(1) = 676 
𝜎𝜎𝑑𝑑
2(1) = 2552 

𝜇𝜇𝑑𝑑
(1) = 360,𝜎𝜎𝑑𝑑

2(1) = 2412 
𝜇𝜇𝑑𝑑

(2) = 317,𝜎𝜎𝑑𝑑
2(2) = 1342 

𝜇𝜇𝑑𝑑
(1) = 310,𝜎𝜎𝑑𝑑

2(1) = 1902 
𝜇𝜇𝑑𝑑

(2) = 62,𝜎𝜎𝑑𝑑
2(2) = 1192 

𝜇𝜇𝑑𝑑
(3) = 306,𝜎𝜎𝑑𝑑

2(3) = 1422 

𝛽𝛽(𝑠𝑠) 
𝜇𝜇0

(1) = 0.0056 
𝜅𝜅0
2(1) = 8.23 × 10−4 

𝜇𝜇0
(1) = 8.317 × 10−4 
𝜅𝜅0
2(1) = 0.0038 
𝜇𝜇0

(2) = 0.0083 
𝜅𝜅0
2(2) = 0.0012 

𝜇𝜇0
(1) = −3.12 × 10−4, 𝜅𝜅0

2(1) = 0.006 
𝜇𝜇0

(2) = 0.0215,𝜅𝜅0
2(2) = 0.4425 

𝜇𝜇0
(3) = 0.0049,𝜅𝜅0

2(3) = 0.0024 

𝜎𝜎2(𝑠𝑠) 
𝑣𝑣0

(1) = 10.07 
𝛾𝛾0

(1) = 0.067 
𝑣𝑣0

(1) = 1.39,𝛾𝛾0
(1) = 0.003 

𝑣𝑣0
(2) = 2.29,𝛾𝛾0

(2) = 0.017 

𝑣𝑣0
(1) = 2.1,𝛾𝛾0

(1) = 0.004 
𝑣𝑣0

(2) = 0.42,𝛾𝛾0
(2) = 0.004 

𝑣𝑣0
(3) = 5.1,𝛾𝛾0

(3) = 0.03 
 

For model selection and comparison, we mainly consider three cases, 𝐾𝐾 = 0,1, and 2. Table 2 

summarizes the estimated hyperparameters for each case. From Table 2 we can see that, if 𝐾𝐾=1 is 

specified, the second phase has a larger drift rate than the first one, which indicates a faster 

degradation. If 𝐾𝐾 = 2 is specified, the degradation rate of the second phase is much larger than the 

third phase. Not surprisingly, almost all bearings have a sudden jump after the first phase. Although 

extremely short in duration, the sudden jump is so significant that it was identified as a single 

phase at the offline model fitting for all signals. Even for online model updating, as shown in 

Figure 7(b), the sudden jump is detected as a single phase.  
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Figure 7. Illustration of online model updating process. (a): 𝐾𝐾 = 1; (b):𝐾𝐾 = 2; top panel: observed 
and filtered signals; middle panel: the expected duration of the current phase; bottom panel: the 
posterior PMF of the index of current segment. The vertical dashed lines are change-point locations 
identified at the offline stage. 

Figure 8 shows the RMSD of the 25 bearing signals at three prediction times for three models. 

Figure 9 shows the overall prediction accuracy at six prediction times. Clearly, at all the six 

prediction times, the model with only one change point performs best in terms of the overall RMSD. 

As observed in our study, specifying two change points only improves the prediction within the 

sudden-jump phase. It often reduce the prediction accuracy at the early stage and even at the late 

stage. Besides, assuming no change points is surprisingly better than using two and three change 

points. The reason is that for some signals, there is a sharp increase right before failure, as can be 

seen from the red curve in Figure 6. For those signals, specifying two more change points may 

improve individual model fitting. However, the large uncertainty of change-point locations and 

degradation rate dominates the prediction accuracy and thus the performance is reduced. 
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Figure 8. Comparison of RMSD for three models.  

 

 
Figure 9. Prediction accuracy at different times for 𝐾𝐾 = 0,1 and 2 

6 Conclusion and Discussion 

In this paper, a Bayesian multiple change-point Wiener process is proposed for degradation 

modeling and online RUL prediction. To take into account the unit heterogeneity, all the model 

parameters except the number of change points are modeled with random distributions. At the 

offline stage, an empirical two-stage process is proposed for model estimation. Besides, a cross-

validation approach is proposed for optimal change-point number selection. At the online 

monitoring stage, an exact recursive updating method is developed to sequentially calculate the 

joint posterior distribution of key parameters, including the latest change point, phase index, and 

model parameters of the current phase, which is essential for RUL prediction. To control the 
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computational cost, a fixed-support-size strategy is proposed, which can effectively control and 

balance the computational load of each time step yet without influencing the estimation accuracy. 

In RUL prediction, an effective Monte Carlo simulation algorithm is proposed. Simulation and 

real case studies demonstrate that the proposed prognostic framework can effectively improve the 

prediction accuracy.  

There are still some issues that are worthy of further investigation. First, in the proposed method, 

the change points are assumed to be exactly on the inspection epochs in the offline model 

estimation and online model updating. In practice, the change points can be at any location between 

inspection epochs. Releasing this constraint may improve the model accuracy. In addition, in the 

current method, a linear drift function is assumed for all phases. In practice, however, nonlinear 

drift functions or a mixture of linear and nonlinear drift functions may be more preferable. It may 

significantly reduce the model complexity and consequently the model uncertainty. Furthermore, 

other stochastic processes, such as inverse Gaussian process, and Gamma process, may model the 

degradation signal better. How to incorporate change points into these stochastic processes needs 

to be investigated. 

 

Appendix A: Proof of Theorem 1 

For notational convenience, we ignore the subscript 𝑚𝑚 for 𝛽𝛽𝑚𝑚 and 𝜎𝜎𝑚𝑚2 , and ignore the subscript 𝑠𝑠 

for phase index. Suppose 𝜋𝜋(𝛽𝛽,𝜎𝜎2) = 𝐼𝐼𝐼𝐼(𝑣𝑣0, 𝛾𝛾0)𝑁𝑁(𝜇𝜇0,𝜎𝜎2𝜅𝜅02)  

𝑝𝑝�𝛽𝛽,𝜎𝜎2�𝜹𝜹𝑗𝑗+1:𝑚𝑚, 𝜏𝜏𝑚𝑚 = 𝑗𝑗� ∝ 𝑝𝑝(𝛽𝛽,𝜎𝜎2)𝑝𝑝�𝜹𝜹𝑗𝑗+1:𝑚𝑚�𝛽𝛽,𝜎𝜎2�
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(𝛽𝛽 − 𝜇𝜇𝑚𝑚)2

2𝜎𝜎2 �∑ 𝜆𝜆𝑗𝑗+𝑖𝑖𝑚𝑚
𝑖𝑖=1 + 1

𝜅𝜅02
�
−1

⎠

⎟
⎞

 



25 
 

exp

⎝

⎜
⎛
−

𝜇𝜇02
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𝜆𝜆𝑖𝑖

𝑚𝑚
𝑖𝑖=𝑗𝑗+1 − �𝜇𝜇0𝜅𝜅02

+ ∑ 𝛿𝛿𝑖𝑖𝑚𝑚
𝑖𝑖=𝑗𝑗+1 �

2
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𝜅𝜅02
�
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⎠

⎟
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∝ 𝐼𝐼𝐼𝐼�𝑣𝑣𝑗𝑗+1,𝑚𝑚,𝛾𝛾𝑗𝑗+1,𝑚𝑚 �𝑁𝑁�𝜇𝜇𝑗𝑗+1,𝑚𝑚,𝜎𝜎2𝜅𝜅𝑗𝑗+1,𝑚𝑚
2 � 

where 

𝑣𝑣𝑗𝑗+1,𝑚𝑚 = 𝑣𝑣0 +
𝑚𝑚 − 𝑗𝑗

2
 

𝛾𝛾𝑗𝑗+1,𝑚𝑚 = 𝛾𝛾0 +
�𝜇𝜇0

2

𝜅𝜅02
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𝑚𝑚
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𝑚𝑚
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Appendix B: Proof of Theorem 2 

For notational convenience, we ignore the subscript 𝑠𝑠 for phase index. Based on Wiener process 

increment property  

𝑋𝑋𝑚𝑚 = 𝑋𝑋𝑚𝑚−1 + 𝛽𝛽𝑚𝑚𝜆𝜆𝑚𝑚 + 𝜎𝜎𝑚𝑚𝜎𝜎(𝜆𝜆𝑚𝑚) 

Note that here 𝛽𝛽𝑚𝑚 and 𝜎𝜎𝑚𝑚 are the drift and diffusion parameters from 𝑡𝑡𝜏𝜏𝑚𝑚  to 𝑡𝑡𝑚𝑚.  

If 𝜏𝜏𝑚𝑚 = 𝑗𝑗 < 𝑚𝑚 − 1, then 𝜏𝜏𝑚𝑚−1 = 𝑗𝑗,𝛽𝛽𝑚𝑚 = 𝛽𝛽𝑚𝑚−1,𝜎𝜎𝑚𝑚 = 𝜎𝜎𝑚𝑚−1. Based on Theorem 1 we can get  

(𝛽𝛽𝑚𝑚−1�𝜎𝜎𝑚𝑚−12 , 𝜏𝜏𝑚𝑚−1 = 𝑗𝑗, 𝑠𝑠𝑚𝑚−1 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1)~𝑁𝑁�𝜇𝜇𝑗𝑗+1,𝑚𝑚−1,𝜎𝜎𝑚𝑚−1
2 𝜅𝜅𝑗𝑗+1,𝑚𝑚−1

2 � 

(𝜎𝜎𝑚𝑚−1
2 �𝜏𝜏𝑚𝑚−1 = 𝑗𝑗, 𝑠𝑠𝑚𝑚−1 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1)~𝐼𝐼𝐼𝐼(𝑣𝑣𝑗𝑗+1,𝑚𝑚−1,𝛾𝛾𝑗𝑗+1,𝑚𝑚−1) 

Then 

(𝑋𝑋𝑚𝑚�𝜎𝜎𝑚𝑚−1
2 , 𝜏𝜏𝑚𝑚 = 𝜏𝜏𝑚𝑚−1 = 𝑗𝑗, 𝑠𝑠𝑚𝑚−1 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1)~𝑁𝑁�𝜇𝜇𝑗𝑗+1,𝑚𝑚−1𝜆𝜆𝑚𝑚 + 𝑋𝑋𝑚𝑚−1,𝜎𝜎𝑚𝑚−1

2 �𝜆𝜆𝑚𝑚 + 𝜅𝜅𝑗𝑗+1,𝑚𝑚−1
2 𝜆𝜆𝑚𝑚2 �� 

Let 𝜇𝜇′ = 𝜇𝜇𝑗𝑗+1,𝑚𝑚−1𝜆𝜆𝑚𝑚 + 𝑋𝑋𝑚𝑚−1, 𝜂𝜂′ = 𝜆𝜆𝑚𝑚 + 𝜅𝜅𝑗𝑗+1,𝑚𝑚−1
2 𝜆𝜆𝑚𝑚2 , then 

𝑝𝑝(𝑋𝑋𝑚𝑚|𝜏𝜏𝑚𝑚 = 𝑗𝑗, 𝑠𝑠𝑚𝑚 = 𝑠𝑠,𝑋𝑋0:𝑚𝑚−1) 

∝ �(𝜎𝜎𝑚𝑚−12 𝜂𝜂′)−
1
2𝑒𝑒

�
−�𝑋𝑋𝑚𝑚−𝜇𝜇′�
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𝑚𝑚−1−𝑗𝑗
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−
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𝑚𝑚−𝑗𝑗
2 −1𝑒𝑒

�−
�𝑋𝑋𝑚𝑚−𝜇𝜇′�
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2𝜎𝜎𝑚𝑚−1
2 𝜂𝜂′
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2𝛾𝛾𝑗𝑗+1,𝑚𝑚−1𝜂𝜂′
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If 𝑗𝑗 = 𝑚𝑚− 1, similarly, we can get  

(𝑋𝑋𝑚𝑚|𝑋𝑋0:𝑚𝑚−1, 𝜏𝜏𝑚𝑚 = 𝑚𝑚 − 1)~𝑡𝑡1 �2𝑣𝑣0,𝜇𝜇′,
𝛾𝛾0𝜂𝜂′

𝑣𝑣0
� 

where 𝜇𝜇′ = 𝜇𝜇0𝜆𝜆𝑚𝑚 + 𝑋𝑋𝑚𝑚−1, 𝜂𝜂′ = 𝜆𝜆𝑚𝑚 + 𝜅𝜅02𝜆𝜆𝑚𝑚2  
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