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Abstract—Remaining useful life prediction plays an important 

role in ensuring the safety, availability and efficiency of various 
engineering systems. In this paper, we propose a flexible Bayesian 
multiple phase modeling approach to characterize degradation 
signals for prognosis. The priors are specified with a novel 
stochastic process and the multiple phase model is formulated to a 
novel state-space model to facilitate online monitoring and 
prediction. A particle filtering algorithm with stratified sampling 
and partial Gibbs resample-move strategy is developed for online 
model updating and residual life prediction. The advantages of 
the proposed method are demonstrated through extensive 
numerical studies and real case studies.  

 
Index Terms—Condition monitoring, remaining useful life 

prediction, multiple change-point model, particle filters, 
prognostics and health management 
 
 

ABBREVIATIONS AND ACRONYMS 
 

RUL Remaining useful life 
CM Condition monitoring 
BIC Bayesian information criterion 
i.i.d. Independent and identically distributed 
MLE Maximum likelihood estimate 
PF Particle filtering 
SIS Sequential importance sampling 
SPF Stratified particle filtering 
RMSD Root mean square deviation 

 
NOTATION 

 
𝑘𝑘𝑖𝑖 Number of change-points for unit 𝑖𝑖 
𝒀𝒀𝒊𝒊 Vector of observations for unit 𝑖𝑖 
𝑇𝑇𝑖𝑖 Number of observations for unit 𝑖𝑖 
𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖 Location of the 𝑘𝑘𝑖𝑖-th change-point for unit 𝑖𝑖 
𝑎𝑎𝑖𝑖𝑘𝑘 Intercept of the k-th line segment for unit 𝑖𝑖 
𝑏𝑏𝑖𝑖𝑘𝑘 Slope of the k-th line segment for unit 𝑖𝑖 
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𝜎𝜎𝑖𝑖𝑘𝑘 Standard deviation of the k-th line segment for unit i 
𝑦𝑦1:𝑡𝑡 Observations of a working unit by the current time 

index 𝑡𝑡 
𝒙𝒙𝑡𝑡 State vector at the current time 𝑡𝑡 
𝑠𝑠𝑡𝑡 Phase or stage index at time 𝑡𝑡 
𝜋𝜋(∙) Prior distribution 
𝜏𝜏𝑡𝑡 Latest change-point at time 𝑡𝑡 
𝛿𝛿(𝑠𝑠) Duration of the s-th segment 
𝝍𝝍 Hyper-parameters of all priors 
𝜽𝜽(𝑠𝑠) Model parameters of the 𝑠𝑠-th segment 
𝑝𝑝𝑡𝑡+1(𝒙𝒙𝑡𝑡) Prior transition probability of state vector 𝒙𝒙𝑡𝑡 at time 

 𝑡𝑡 + 1 
𝜷𝜷(𝒔𝒔) Vector of coefficients including slope and intercept 
𝜷𝜷�(𝑠𝑠) Estimated coefficients including slope and intercept 
𝜎𝜎�2(𝑠𝑠) Estimated measurement noise 
𝝁𝝁𝑡𝑡

(𝑘𝑘,𝑠𝑠) Mean of normal distribution of the 𝑠𝑠-th segment 

𝚺𝚺𝑡𝑡
(𝑘𝑘,𝑠𝑠) Covariance of normal distribution of the 𝑠𝑠-th segment 

𝛼𝛼1
(𝑘𝑘,𝑠𝑠) Shape parameter of inverse Gamma distribution of the 

𝑠𝑠-th segment 
𝛼𝛼2

(𝑘𝑘,𝑠𝑠) Scale parameter of inverse Gamma distribution of the 
𝑠𝑠-th segment 

𝑙𝑙𝑘𝑘 Positive lower bound of the slope of the last phase for 
k-change-point case 

𝑓𝑓(∙ | ∙) Prior transition probability density function of 
state-space model 

𝑔𝑔(∙ | ∙) Density function of the observation model 
N Number of particles 
𝑊𝑊𝑡𝑡

(𝑖𝑖) Normalized weight for each particle 𝑖𝑖 

𝑊𝑊𝑡𝑡
(𝑔𝑔) Group weight coefficient for each group 𝑔𝑔 

𝑅𝑅𝑡𝑡 Remaining useful life at the current time 𝑡𝑡 
𝛤𝛤 Failure threshold 
Φ(∙) Cumulative distribution function of Gaussian 

distribution 

I. INTRODUCTION 
HE remaining useful life (RUL) refers to the time 
remaining before a failure occurs at a particular time of 

operation [1]. RUL prediction plays a critical role in support of 
executing preventive actions [2], replacement strategies [3] and 
health management [4], as well as maximizing manufactured 
products availability [5]. Condition monitoring (CM) signals, 
also referred as degradation signals, are often in situ collected 
during system operations. They are directly related to the health 
condition of the system and have been widely used for 
condition monitoring and RUL prediction in the past few 
decades [6]. According to Zio et al.[7] and Dragomir et al.[8], 
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the existing scientific literature on data-driven modeling and 
prediction can be classified into two categories, the statistical 
and artificial intelligence approaches. The statistical 
approaches include regression-based, Wiener process, and 
Markovian based models, while the artificial intelligence 
approaches include neural networks, decision tree, support 
vector machines, fuzzy system, etc. Due to the excellent 
statistical properties and interpretation characteristics, 
statistical-based methods have become more and more popular. 
A comprehensive review of statistical approaches can be found 
in Si et al. [9]. 

The commonly applied statistical approach is to fit CM 
signals using parametric regression models to describe and 
predict how the currently available CM signal evolves [7]. In 
these methods, the functional forms of the models are often 
linear, polynomial, exponential, or combination of them [10]. 
However, these parametric models are often too rigid and not 
adequate or flexible enough to model the real CM signals in the 
whole time period. For example, Son et al.[11] showed that the 
internal resistance degradation signal of vehicle batteries 
changes its functional form and evolves more rapidly after the 
system has degraded down to a certain level before failure 
occurs. Bae and Kvam [12] also demonstrated that the 
degradation path of vacuum fluorescent displays is not 
monotonic, showing obviously two phases or even three 
phases. This phenomenon has also been observed in many other 
CM signals, such as fatigue-crack-growth data [13], the 
thrust-force data of drill-bits [14], and vibrational signals of 
rotational bearings [15]. Some researchers chose to delete early 
degradation measurements at the first stage, under the 
assumption that the failure will not occur at the early stage, and 
then apply the parametric models to the second phase data for 
better model fitting and prediction [16, 17]. However, the 
truncated measurements may contain valuable information 
about the degradation process or the prediction may need to be 
made at the early stage.  

To avoid measurement truncation, some researchers 
proposed to add a change-point to divide CM signals into two 
phases and fit each phase with different models. Bae et al. [18] 
found that the prediction accuracy can be improved 
substantially by the addition of a change-point for modeling 
incomplete burn-in data of light displays. Li and Nilkitsaranont 
[19] employed a combination of a linear model in the first phase 
and a quadratic model in the second phase to estimate the 
remaining useful life of gas turbine engines, and used 
“compatibility check” to determine the transition point from 
one model to another. Gebraeel et al. [6] developed an 
exponential (i.e., log-linear) degradation model with a pre-set 
location of a change-point to illustrate the updating process of 
rolling element bearings. Later Chen and Tsui [15] revisited 
Gebraeel’s work [6], and applied a two-phase regression model 
with one change-point at unknown location to characterize both 
phases of the bearing degradation signals.  

All these aforementioned methods assume a two-phase 
pattern on CM signals. In many situations, however, the 
degradation path may have three or even more phases during 
the whole life cycle. It would be difficult to select proper 

functional forms to characterize the degradation behavior with 
no change-point or only one change-point. To fill such gap, this 
paper endeavors to develop a multiple-phase modeling 
approach for condition monitoring and RUL prediction. Here it 
is necessary to discuss more about the term “phase”. In the 
existing literature, the definition of “phase” can be classified 
into two categories: (1) it is commonly referred to as different 
operational conditions or states, such as the working state and 
storage state for missiles [20], multiple consecutive phases of 
operations required to finish the service for phased-mission 
systems (PMS) [21]; (2) it is also frequently used to denote 
health conditions with different characteristics (e.g., normal 
working stage and irreversible degradation stage with defects 
occurred for bearings [6, 22]), or different patterns shown on 
CM signals, which may not have specific physical meanings 
[11, 15]. In our approach, “multiple-phase” is more related to 
the second category, though it can be easily applied to the first 
case as long as the degradation signals exist multiple patterns. 
The main difference between our work and the existing 
multiple-phase approaches by Si et al. [20, 21] lies in the 
motivation and methodologies. In Si et al.’s work, as 
mentioned earlier, the multiple phases are used to model 
different operational states or stages, e.g., take-off, ascent, 
cruise, approach and landing phases of the on-board systems 
for the aided-guide of aircraft. Therefore, in these methods, the 
number of phases are fixed, the phase index and the starting 
point of each phase before the current time can be exactly 
observed. However, in our work, the purpose is to provide a 
flexible multiple change-point based approach to model highly 
nonlinear degradation signals where the existing functional 
forms are inadequate or not applicable. Therefore, each phase 
may not have any physical meanings, the number of phases 
may not be fixed, and both the phase index and its starting time 
are random variables across all the life cycle and need to be 
estimated. 

To characterize the population-level trend as well as the 
individual heterogeneity, mixed-effects or random-effects 
models are most commonly selected in off-line modeling of 
historic CM signals. When predicting the RUL of a new unit, 
the Bayesian approach is naturally selected for online model 
updating, prediction and uncertainty quantification, where the 
fitted parameters in the offline stage are used as priors [15] . 
However, there are several challenges on how to effectively 
apply the multiple change-point model for condition 
monitoring and RUL prediction under the Bayesian framework. 
Due to significantly increased dimensionality and complexity, 
it is difficult to specify reasonable priors (e.g., phase durations 
or number of change-points, model parameters of each phase) 
in the offline modeling of historical CM signals. In addition, in 
the online model updating stage, the posterior distributions of 
model parameters need to be updated sequentially. However, 
the multiple change-point model is highly nonlinear and the 
conventional Kalman filtering techniques [23], which are 
commonly used for linear models, are not applicable. Besides, 
the RUL prediction given the posterior of the current model 
parameters is still very challenging due to the uncertainty of 
future change-points and model parameters. To address these 
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challenges, we propose a series of approaches in both off-line 
modeling and online model updating and RUL prediction. In 
the off-line modeling, a novel stochastic process is proposed to 
specify and estimate priors in the off-line modeling. In the 
online stage, the multiple change-point model is formulated as 
a non-standard state-space model and a novel stratified particle 
filtering algorithm is developed for online model updating and 
RUL prediction. The contribution of this paper lies in the 
following three-fold: (1) we innovatively apply the multiple 
change-point model to degradation signals to improve 
modeling and prognostics, which is fundamentally different 
from the existing multiple-phase modeling approaches in terms 
of motivation, methodology and applications; (2) a full 
Bayesian framework is proposed for the multiple change-point 
model through a novel stochastic process; and (3) an efficient 
stratified particle filtering algorithm with partial Gibbs 
sampling strategy is developed for model updating and RUL 
prediction.  

The rest of the paper is organized as follows. In Section 2, a 
multiple change-point model for the CM signals is presented. 
The prior parameters specification and state-space 
representation for the multiple change-point model are given in 
Section 3. Section 4 presents the technical details on how to 
sequentially update the posterior distributions of the phase 
index, latest change-point, and model parameters of the current 
phase, and how to predict the RUL using the particle filtering 
algorithm. Section 5 demonstrates the effectiveness and 
accuracy of the proposed method through numerical and case 
studies. The conclusion and discussion are given in Section 6. 

II. MULTIPLE CHANGE-POINT MODEL FOR DEGRADATION 
SIGNAL 

In this paper, a piece-wise linear functional form is proposed 
to model CM signals. The piecewise linear model with a proper 
number of change-points at proper locations is flexible enough 
to capture the non-linear and multiple-phase characteristics of 
various kinds of degradation signals in application. It could 
avoid the nontrivial selection of appropriate functional forms to 
model the CM signals. Besides, it makes more sense physically 
to define it as a phase when CM signal is degrading with a 
constant rate.  

 

 
Figure 1. Piecewise linear model for bearing signal: (a) one change-point; (b) 
two change-points. 

 
Here we use the bearing vibration signals [6, 15] to 

demonstrate the superiority of the proposed method. As shown 
in Figure 1 (a), the second phase of the bearing data is poorly 
fitted if only one change-point is introduced. It can be seen that 

there are two abrupt changes on this bearing CM signal before it 
hits the pre-specified failure threshold. From Figure 1 (b) we 
can clearly see that a three-phase model is much more accurate. 
Note that the model accuracy may significantly influence the 
accuracy of the RUL prediction. For example, if only one 
change-point is adopted, then at a certain time between 400 and 
500, the fitted line of the second phase would be very flat, 
which will cause the predicted RUL to be significantly larger 
than the actual value.  

In some applications, all units may have the same degrading 
behavior, i.e., they will experience the same number of 
degrading phases before failure. However, it is also common in 
practice that the units are heterogeneous, and the number of 
change-points required across all units could be different. 
Therefore, we assume the number of phases is random to make 
our model more flexible. Denote 𝑘𝑘𝑖𝑖  as the number of 
change-points for unit 𝑖𝑖  with 𝑇𝑇𝑖𝑖  observations  𝒀𝒀𝒊𝒊 =
{𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑇𝑇𝑖𝑖} . The change-points are denoted as 
𝑐𝑐𝑖𝑖1, 𝑐𝑐𝑖𝑖2,⋯ , 𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖  which satisfy  𝑐𝑐𝑖𝑖0 = 0 < 𝑐𝑐𝑖𝑖1 < 𝑐𝑐𝑖𝑖2 < ⋯ <
𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖 < 𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖+1 = 𝑇𝑇𝑖𝑖. As there are  𝑘𝑘𝑖𝑖 change-points, there are in 
total 𝑘𝑘𝑖𝑖 + 1  line segments. Mathematically, the piece-wise 
linear model can be expressed as 

 

𝑦𝑦𝑖𝑖𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

 𝑎𝑎𝑖𝑖1 + 𝑏𝑏𝑖𝑖1𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑖𝑖1𝜀𝜀𝑖𝑖𝑖𝑖 ,            0 < 𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖1
    𝑎𝑎𝑖𝑖2 + 𝑏𝑏𝑖𝑖2𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑖𝑖2𝜀𝜀𝑖𝑖𝑖𝑖 ,          𝑐𝑐𝑖𝑖1 < 𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖2    

⋯ 
    𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑘𝑘𝑖𝑖𝜀𝜀𝑖𝑖𝑖𝑖 ,        𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖−1 < 𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖
𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖+1 + 𝑏𝑏𝑖𝑖𝑘𝑘𝑖𝑖+1𝑡𝑡𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑘𝑘𝑖𝑖+1𝜀𝜀𝑖𝑖𝑖𝑖 ,    𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖 < 𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖

 (1) 

 
where 𝜀𝜀𝑖𝑖𝑖𝑖  follows i.i.d. standard normal distribution,  𝑎𝑎𝑖𝑖𝑘𝑘 , 𝑏𝑏𝑖𝑖𝑘𝑘 
and 𝜎𝜎𝑖𝑖𝑘𝑘  are the intercept, slope and standard deviation of the 
k-th line segment, respectively. Without loss of generality, we 
assume that all the sampling intervals equal to 1 for all units, 
i.e., 𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑗𝑗 for the sake of simplicity.  

Bayesian approach is commonly employed to integrate 
historical data with newly observed CM signal of a working 
unit for sequential model updating and RUL prediction. The 
historical data provide prior information on the number of 
change-points, locations of change-points, and possible values 
of model parameters of each line segment. Based on the prior 
information and observed CM signal of a working unit up to the 
current time, the posterior distribution of the model parameters 
of the current line segment and future observations can be 
updated. Denote 𝑦𝑦1:𝑡𝑡 as the observations of a working unit by 
the current time index 𝑡𝑡, and denote 𝒙𝒙𝑡𝑡 = (𝑎𝑎𝑡𝑡 , 𝑏𝑏𝑡𝑡 ,𝜎𝜎𝑡𝑡2, 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘) 
where 𝑎𝑎𝑡𝑡 , 𝑏𝑏𝑡𝑡 ,𝜎𝜎𝑡𝑡2 are the parameters of the current line segment, 
𝜏𝜏𝑡𝑡 is the latest change-point, i.e., the starting time of the current 
line segment, 𝑠𝑠𝑡𝑡 is the phase or stage index, and 𝑘𝑘 is the total 
number of phases in the whole life cycle. In the model updating, 
the posterior of the current line segment can be expressed as 

 
𝑃𝑃(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡) ∝ 𝜋𝜋(𝒙𝒙𝑡𝑡)𝑃𝑃(𝑦𝑦1:𝑡𝑡|𝒙𝒙𝑡𝑡) (2) 
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where 𝜋𝜋(∙)  is the prior distribution obtained in the offline 
modeling of historical data. To predict the RUL, the posterior 
distribution of the future degradations 𝑦𝑦𝑡𝑡∗,∀𝑡𝑡∗ > 𝑡𝑡 needs to be 
calculated based on the updated model 

 

𝑃𝑃(𝑦𝑦𝑡𝑡∗|𝑦𝑦1:𝑡𝑡) = � �𝑃𝑃(𝑦𝑦𝑡𝑡∗|𝒙𝒙𝑡𝑡)𝑃𝑃(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡)𝑑𝑑(𝑎𝑎𝑡𝑡 , 𝑏𝑏𝑡𝑡 ,𝜎𝜎𝑡𝑡2)
𝑘𝑘,𝑠𝑠𝑡𝑡,𝜏𝜏𝑡𝑡

 (3) 

where  

𝑃𝑃(𝑦𝑦𝑡𝑡∗|𝒙𝒙𝑡𝑡) = � �𝑃𝑃(𝑦𝑦𝑡𝑡∗|𝒙𝒙𝑡𝑡∗)𝜋𝜋(𝒙𝒙𝑡𝑡∗|𝒙𝒙𝑡𝑡)𝑑𝑑(𝑎𝑎𝑡𝑡∗, 𝑏𝑏𝑡𝑡∗ ,𝜎𝜎𝑡𝑡∗
2 )

𝑠𝑠𝑡𝑡∗ ,𝜏𝜏𝑡𝑡∗

 (4) 

 
Although the above three equations have simple formulation, 

they are generally intractable due to high dimensionality and 
high nonlinearity caused by the unknown change-points. To 
address this challenge, we reformulate the multiple 
change-point model to a nonstandard state-space model and use 
particle filtering techniques to approximate these posteriors. 
Section 3 will introduce the specification and calculation of 
priors based on the historical data, and the state-space 
representation of the multiple change-point model. Section 4 
will give the technical details of the developed particle filtering 
algorithm. 

III. PRIOR SPECIFICATION AND STATE-SPACE 
REPRESENTATION 

Denote a multiple change-point model as ℳ =
�𝑘𝑘, �𝛿𝛿(𝑠𝑠)�

𝑠𝑠=1
𝑘𝑘+1

, �𝜽𝜽(𝑠𝑠)�
𝑠𝑠=1
𝑘𝑘+1

�  where 𝑘𝑘  is the number of 
change-points, 𝛿𝛿(𝑠𝑠)  is the duration of the s-th segment, 
i.e.,𝛿𝛿(𝑠𝑠) = 𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑠𝑠−1, and 𝜽𝜽(𝑠𝑠) is the model parameters of the 
𝑠𝑠-th segment, e.g., 𝜽𝜽(𝑠𝑠) = �𝑎𝑎(𝑠𝑠), 𝑏𝑏(𝑠𝑠),𝜎𝜎2(𝑠𝑠)� in this paper. In the 
Bayesian formulation of multiple change-point models with a 
fixed number of observations, the priors for the number of 
change-point 𝑘𝑘, the segment durations {𝛿𝛿(𝑠𝑠), 𝑠𝑠 = 1, … , 𝑘𝑘 + 1} 
and the segment parameters {𝜽𝜽(𝑠𝑠), 𝑠𝑠 = 1, … , 𝑘𝑘 + 1}  can be 
specified easily. For the change-points, a joint prior could be 
placed, i.e., 𝜋𝜋 �𝑘𝑘, �𝛿𝛿(𝑠𝑠)�

𝑠𝑠=1
𝑘𝑘+1

� = 𝜋𝜋(𝑘𝑘)𝜋𝜋 ��𝛿𝛿(𝑠𝑠)�
𝑠𝑠=1
𝑘𝑘+1

�𝑘𝑘� . More 
commonly, a marked renewal process could be assumed to 
simultaneously model the priors for the number of 
change-points and their occurrence intervals or equivalently 
their locations [24]. For example, a Poisson process could be 
used to model the occurrence of change-points, where the 
successive intervals 𝛿𝛿(𝑠𝑠)  follow an i.i.d. exponential 
distribution, and the last interval satisfies 𝛿𝛿(𝑘𝑘+1) ≥ 𝑇𝑇 − 𝑐𝑐𝑘𝑘. In 
such case, the prior density can be derived as 

 

𝜋𝜋 �𝑘𝑘, �𝛿𝛿(𝑠𝑠)�
𝑠𝑠=1
𝑘𝑘+1

� = ��𝑓𝑓�𝛿𝛿(𝑠𝑠)|𝜆𝜆�
𝑘𝑘

𝑠𝑠=1

� 𝑃𝑃(𝛿𝛿(𝑘𝑘+1) ≥ 𝑇𝑇 − 𝑐𝑐𝑘𝑘)

= 𝜆𝜆𝑘𝑘 exp(−𝜆𝜆𝑇𝑇) 
 
where 𝑓𝑓(∙ |𝜆𝜆)  is the probability density function of an 
exponential distribution, 𝜆𝜆 is the Poisson rate and 𝑇𝑇 is the total 
number of observations. In a Bernoulli process, each time step 
has the probability 𝑝𝑝 to be a change-point and the interval times 

follow an i.i.d. geometric distribution [25-27]. The joint density 
is simply  
 

𝜋𝜋 �𝑘𝑘, �𝛿𝛿(𝑠𝑠)�
𝑠𝑠=1
𝑘𝑘+1

� = 𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑇𝑇−1−𝑘𝑘 
 

where 𝑝𝑝 is the parameter for the Bernoulli distribution. For the 
changing parameters  (𝜽𝜽(𝑠𝑠), 𝑠𝑠 = 1, … , 𝑘𝑘) , i.i.d. Gaussian 
distribution is often assigned. 

The aforementioned renewal process is often applied in the 
segmentation of time series data of a known and fixed length 
and the priors specified are often non-informative, i.e., the 
phase duration follows the same distribution. However, 
considering the phase heterogeneity of the CM signals, the 
prior distributions for the phase durations should be different to 
make the prior more informative for RUL prediction. Also, for 
a working unit, the number of observations to be collected 
before it fails is unknown. If a renewal process is applied to 
model the priors, an unlimited number of change-points beyond 
the current time has to be considered, which is unrealistic for 
informative prior specifications and RUL prediction. To solve 
this problem, we first place a prior distribution on the number 
of change-point 𝑘𝑘. Conditioning on 𝑘𝑘, the distribution of the 
phase interval lengths are modelled by a stochastic process 
where the first 𝑘𝑘 interval lengths �𝛿𝛿(𝑠𝑠)�

𝑠𝑠=1
𝑘𝑘

 follow independent 
and non-identical distributions and the 𝑘𝑘 + 1 model parameters 
�𝜽𝜽(𝑠𝑠)�

𝑠𝑠=1
𝑘𝑘+1

 follow independent and non-identical distributions. 
Then the prior could be factorized as 

 

𝜋𝜋(ℳ) = 𝜋𝜋(𝑘𝑘)� 𝜋𝜋(𝛿𝛿(𝑠𝑠)|𝑘𝑘)
𝑘𝑘

𝑠𝑠=1
� 𝜋𝜋(𝜽𝜽(𝑠𝑠)|𝑘𝑘)

𝑘𝑘+1

𝑠𝑠=1
 (5) 

 
More specifically, we put a categorical distribution or 
generalized Bernoulli distribution on 𝑘𝑘, with 𝜋𝜋(𝑘𝑘 = 𝑘𝑘𝑖𝑖) = 𝑝𝑝𝑖𝑖 
and ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 1. For simplicity, we assume the phase durations 
follow normal distributions, 𝛿𝛿(𝑠𝑠)|𝑘𝑘~𝑁𝑁(𝛿𝛿0

(𝑘𝑘,𝑠𝑠),𝜎𝜎0
2(𝑘𝑘,𝑠𝑠)). For the 

changing parameters, the commonly used normal and inverse 
Gamma are specified, i.e., 𝜷𝜷(𝒔𝒔)|𝑘𝑘 =
�𝑎𝑎(𝑠𝑠), 𝑏𝑏(𝑠𝑠)|𝑘𝑘�

′
~𝑁𝑁(𝝁𝝁0

(𝑘𝑘,𝑠𝑠),𝚺𝚺0
(𝑘𝑘,𝑠𝑠)) and 𝜎𝜎2(𝑠𝑠)|𝑘𝑘~𝐼𝐼𝐼𝐼�𝛼𝛼1

(𝑘𝑘,𝑠𝑠),𝛼𝛼2
(𝑘𝑘,𝑠𝑠)�. 

Since the CM signal often increases rapidly when it is 
approaching the failure threshold in the last phase, we assume a 
truncated normal prior for the last segment to make the prior 
more informative: 𝜷𝜷(𝑘𝑘+1)|𝑘𝑘~𝑇𝑇𝑁𝑁�𝝁𝝁0

(𝑘𝑘,𝑘𝑘+1),𝚺𝚺0
(𝑘𝑘,𝑘𝑘+1)|𝑏𝑏(𝑘𝑘+1) >

𝑙𝑙𝑘𝑘�  where 𝑙𝑙𝑘𝑘  is a positive lower bound of the slope for 
k-change-point case. Note that here we assume the model 
parameters are independent across different phases to reduce 
both the computational complexity and the required number of 
historical CM signals. 

To specify informative priors, the hyper-parameters of all 
these priors, denoted as 𝝍𝝍, need to be estimated based on the 
historical data. One common way is to estimate 𝝍𝝍  by 
maximizing the marginal likelihood [15] of 𝐼𝐼  historical CM 
signals 
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𝝍𝝍� = arg max
𝝍𝝍

��𝑃𝑃(𝒀𝒀𝑖𝑖|ℳ𝑖𝑖)𝜋𝜋(ℳ𝑖𝑖|𝝍𝝍)
𝐼𝐼

𝑖𝑖=1

𝑑𝑑ℳ𝑖𝑖 

 
Unfortunately, the marginal likelihood is very complex and 

not tractable. An alternative approach is a two-stage process 
where the model parameters ℳ�𝑖𝑖of each unit 𝑖𝑖 are first obtained 
through the maximum likelihood estimates (MLE) and then the 
hyper-parameters are estimated through the MLE by treating 
these estimated models �ℳ�𝑖𝑖 , 𝑖𝑖 = 1, … , 𝐼𝐼�  as observations. In 
our case, however, MLE cannot be directly applied to each CM 
signal since increasing 𝑘𝑘 will also increase the fitting accuracy, 
and thus result in over-fitting. To address this issue, we propose 
to use Bayesian information criterion (BIC) [28] for model 
selection and parameter estimation of each CM signal 

 
ℳ� = arg min

ℳ
(−2𝑙𝑙(ℳ|𝒀𝒀) + 𝑛𝑛 log𝑇𝑇) (6) 

 
where 𝑛𝑛 = 4𝑘𝑘 + 3  is the number of model parameters to 
estimate, 𝑙𝑙(ℳ|𝒀𝒀) is the log-likelihood given as  
 

𝑙𝑙(ℳ|𝒀𝒀) = � �−
1
2
𝛿𝛿(𝑠𝑠) log�2𝜋𝜋𝜎𝜎2(𝑠𝑠)�

𝑘𝑘+1

𝑠𝑠=1

−
�𝑦𝑦𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠

𝑇𝑇 − 𝑿𝑿𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠𝜷𝜷
(𝑠𝑠)�

2

2𝜎𝜎2(𝑠𝑠) � 

 
 

(7) 

where  

𝑿𝑿𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠 = � 1 1 ⋯ 1
𝜏𝜏𝑐𝑐−1 + 1 𝜏𝜏𝑐𝑐−1 + 2 ⋯ 𝑐𝑐𝑠𝑠

�
𝑇𝑇

 (8) 

 
Given the number of change-points and their locations 
{𝑘𝑘, 𝑐𝑐1, … , 𝑐𝑐𝑘𝑘}, the parameters �𝜷𝜷(𝑠𝑠),𝜎𝜎2(𝑠𝑠), 𝑠𝑠 = 1, … , 𝑘𝑘 + 1� that 
minimize the BIC are just the MLE of the Gaussian linear 
models of each phase 
 

𝜷𝜷�(𝑠𝑠) = �𝑿𝑿𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠
𝑇𝑇 𝑿𝑿𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠�

−1𝑿𝑿𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠
𝑇𝑇 𝑦𝑦𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠

𝑇𝑇 , 

      𝜎𝜎�2(𝑠𝑠) = �𝑦𝑦𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠
𝑇𝑇 − 𝑿𝑿𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠𝜷𝜷�

(𝑠𝑠)�
2

/𝛿𝛿(𝑠𝑠)  
(9) 

 
If 𝑘𝑘  and 𝑇𝑇  are small, it is possible to try all combinations 
{𝑘𝑘, 𝑐𝑐1, … , 𝑐𝑐𝑘𝑘} to determine the optimal model. However, this 
method is not realistic for large 𝑘𝑘  and 𝑇𝑇  due to the 
exponentially increased computational cost. Instead we could 
use the PELT method [29], which is computationally efficient 
with a computational cost that is linear with 𝑇𝑇.  

Based on the above prior specification, the multiple 
change-point model could be formulated to a non-standard 
state-space model with state vector 𝒙𝒙𝑡𝑡 = (𝜽𝜽(𝑠𝑠𝑡𝑡), 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘) and 
prior state transition process 

 
𝒙𝒙𝑡𝑡+1

= �
𝒙𝒙𝑡𝑡 ,  p = 1 − 𝑝𝑝𝑡𝑡+1(𝒙𝒙𝑡𝑡) if 𝑠𝑠𝑡𝑡 < 𝑘𝑘 + 1
𝒙𝒙𝑡𝑡  ,  p = 1                if 𝑠𝑠𝑡𝑡 = 𝑘𝑘 + 1 

�𝜽𝜽(𝑠𝑠𝑡𝑡+1), 𝑡𝑡, 𝑠𝑠𝑡𝑡 + 1, 𝑘𝑘�  p = 𝑝𝑝𝑡𝑡+1(𝒙𝒙𝑡𝑡)  if 𝑠𝑠𝑡𝑡 < 𝑘𝑘 + 1
 
(10) 

 

Here 𝑝𝑝𝑡𝑡+1(𝒙𝒙𝑡𝑡)  is the transition probability of the stochastic 
process expressed by 
 

𝑝𝑝𝑡𝑡+1(𝒙𝒙𝑡𝑡) = 𝑝𝑝�𝛿𝛿(𝑠𝑠𝑡𝑡) ≤ 𝐿𝐿 + 1�𝛿𝛿(𝑠𝑠𝑡𝑡) ≥ 𝐿𝐿�

=
Φ�𝐿𝐿 + 1|𝛿𝛿0

(𝑘𝑘,𝑠𝑠𝑡𝑡),𝜎𝜎0
2(𝑘𝑘,𝑠𝑠𝑡𝑡)� − Φ�𝐿𝐿|𝛿𝛿0

(𝑘𝑘,𝑠𝑠𝑡𝑡),𝜎𝜎0
2(𝑘𝑘,𝑠𝑠𝑡𝑡)�

1 −Φ(𝐿𝐿|𝛿𝛿0
(𝑘𝑘,𝑠𝑠𝑡𝑡),𝜎𝜎0

2(𝑘𝑘,𝑠𝑠𝑡𝑡))
 

(11) 

 
where 𝐿𝐿 = 𝑡𝑡 − 𝜏𝜏𝑡𝑡  and Φ(∙)  is the Gaussian cumulative 
distribution function. Note that when a hidden state is 
continuous-valued, the term state-space model is often used 
instead of hidden Markov model. Here we refer to our model as 
a non-standard state-space model in that its state vector 
contains both discrete and continuous-valued components, and 
the state 𝑥𝑥𝑡𝑡+1  is not linearly correlated with 𝑥𝑥𝑡𝑡 , which is 
different from standard state-space model.  
 

 
Figure 2.  Illustration of the formulated state-space model. 

 
The formulated state-space model is illustrated in Figure 2, 
where the transition probability from 𝒙𝒙𝑡𝑡  to 𝒙𝒙𝑡𝑡+1  can be 
expressed as 
 

𝑝𝑝𝑡𝑡+1|𝑡𝑡 = [1 − 𝑝𝑝𝑡𝑡+1(𝑥𝑥𝑡𝑡)]𝟏𝟏(𝑠𝑠𝑡𝑡<𝑘𝑘+1) (12) 
 
If there are no change-points, the formulated state-space model 
is a special linear state-space model with a constant state, which 
can be easily inferred using Kalman filters. However, due to the 
existence of unknown change-points, the formulated 
state-space is highly nonlinear, which makes the inference very 
challenging. The particle filtering techniques are particularly 
effective for nonlinear state-space models and have been 
widely applied in the prognosis area. Generally, the 
applications in the prognosis area can be classified into three 
categories based on the underlying state-space model: (1) 
nonlinear state transition model, linear observation model [30]; 
(2) linear state transition model, nonlinear observation model 
[31, 32] and (3) nonlinear state transition model and nonlinear 
observation model [33, 34]. The formulated state-space model 
in this paper falls into the third category. However, it is 
fundamentally different from the existing ones due to its special 
characteristics, i.e., high dimensionality, containing both 
discrete and continuous states, some states being constant 
(linear transition) across all life cycle while some states being 
constant between two successive change-points but changing 
once a new change-point occurs (nonlinear transition). To our 
best knowledge, none of the existing algorithms work well on 

1ty −

1tx −

ty

tx

1ty +

1tx +

𝑝𝑝𝑡𝑡−1|𝑡𝑡−2

1 − 𝑝𝑝𝑡𝑡−1|𝑡𝑡−2

𝑝𝑝𝑡𝑡|𝑡𝑡−1 𝑝𝑝𝑡𝑡+1|𝑡𝑡

1 − 𝑝𝑝𝑡𝑡|𝑡𝑡−1 1 − 𝑝𝑝𝑡𝑡+1|𝑡𝑡

𝑠𝑠𝑡𝑡−1 = 𝑠𝑠𝑡𝑡−2 + 1
𝜏𝜏𝑡𝑡−1 = 𝑡𝑡 − 2

𝜽𝜽𝑡𝑡−1~𝜋𝜋(𝜽𝜽 𝑠𝑠𝑡𝑡−2+1 |𝑘𝑘)

𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡−1 + 1
𝜏𝜏𝑡𝑡 = 𝑡𝑡 − 1

𝜽𝜽𝑡𝑡~𝜋𝜋(𝜽𝜽 𝑠𝑠𝑡𝑡−1+1 |𝑘𝑘)

𝑠𝑠𝑡𝑡+1 = 𝑠𝑠𝑡𝑡 + 1
𝜏𝜏𝑡𝑡+1 = 𝑡𝑡

𝜽𝜽𝑡𝑡+1~𝜋𝜋(𝜽𝜽 𝑠𝑠𝑡𝑡+1 |𝑘𝑘)
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our model. In the following section, a novel stratified particle 
filtering algorithm with partial Gibbs sampling strategy will be 
developed for sequential model updating and RUL prediction. 

IV. PARTICLE FILTERING ALGORITHM FOR ONLINE MODEL 
UPDATING AND RUL PREDICTION 

Particle filters (PF) are effective sequential Monte Carlo 
(SMC) methods to solve the filtering problems. It is particularly 
useful for sequential Bayesian inference of linear/nonlinear 
Gaussian/non-Gaussian state-space models [35]. In this section, 
a customized particle filtering algorithm is developed for 
sequential model estimation and RUL prediction of a working 
unit. For the sake of completeness, the basic theory of PF 
algorithm is first presented.  

A. Review of Particle Filtering Algorithm 
The basic idea of the PF technique is the sequential 

importance sampling (SIS). Consider a state-space model 
described as 

 
𝒙𝒙1~𝑓𝑓(𝒙𝒙),𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1~𝑓𝑓(𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1), 𝑦𝑦𝑡𝑡|𝒙𝒙𝑡𝑡~𝑔𝑔(𝑦𝑦𝑡𝑡|𝒙𝒙𝑡𝑡) (13) 

 
where 𝑓𝑓(∙) is the prior for the first state and 𝑓𝑓(∙ | ∙) is the prior 
state transition probability density associated with state 
changing from 𝒙𝒙𝑡𝑡−1 to 𝒙𝒙𝑡𝑡, and 𝑔𝑔(∙ | ∙) is the density function of 
𝑦𝑦𝑡𝑡  conditioning on 𝒙𝒙𝑡𝑡. The observations 𝑦𝑦1:𝑇𝑇 are assumed to be 
conditionally independent given  𝑥𝑥1:𝑇𝑇 . According to Bayes’ 
theorem, the posterior density satisfies the following recursion 
 

𝑝𝑝(𝒙𝒙1:𝑡𝑡|𝑦𝑦1:𝑡𝑡) = 𝑝𝑝(𝒙𝒙1:𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1)
𝑓𝑓(𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1)𝑔𝑔(𝑦𝑦𝑡𝑡|𝒙𝒙𝑡𝑡)

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1)
 (14) 

where 
𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1)

= �𝑝𝑝(𝒙𝒙𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1)𝑓𝑓(𝒙𝒙𝑡𝑡|𝑥𝑥𝑡𝑡−1)𝑔𝑔(𝑦𝑦𝑡𝑡|𝒙𝒙𝑡𝑡)𝑑𝑑𝒙𝒙𝑡𝑡−1:𝑡𝑡 
(15) 

 
In the filtering problem, 𝑝𝑝(𝒙𝒙𝑡𝑡|𝑦𝑦1:t) is of interest and can be 
obtained by integrating out 𝒙𝒙1:𝑡𝑡−1 or directly based on Bayes’ 
theorem  
 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡) =
𝑝𝑝(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡−1)𝑔𝑔(𝑦𝑦𝑡𝑡|𝒙𝒙𝑡𝑡)

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦1:𝑡𝑡−1)
 (16) 

where  

𝑝𝑝(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡−1) = �𝑝𝑝(𝒙𝒙𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1) 𝑓𝑓(𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1)𝑑𝑑𝒙𝒙𝑡𝑡−1 (17) 

 
Equation (17) is known as the prediction step and (16) is called 
as the updating step. However, Equation (15) and (17) are often 
intractable analytically, and SIS is often used for posterior 
approximation. If we select an important distribution that can 
be sequentially sampled with the following structure 
 

𝑞𝑞𝑡𝑡(𝒙𝒙1:𝑡𝑡) = 𝑞𝑞1(𝒙𝒙1)� 𝑞𝑞𝑖𝑖(𝒙𝒙𝑖𝑖|𝒙𝒙1:𝑖𝑖−1)
𝑡𝑡

𝑖𝑖=2
 (18) 

then the unnormalized weight function can be expressed by 
 

𝜔𝜔𝑡𝑡(𝒙𝒙1:𝑡𝑡) =
𝑝𝑝(𝒙𝒙1:𝑡𝑡 , 𝑦𝑦1:𝑡𝑡)
𝑞𝑞𝑡𝑡(𝒙𝒙1:𝑡𝑡)

=
𝑓𝑓(𝑥𝑥1)∏ 𝑓𝑓(𝒙𝒙𝑖𝑖|𝒙𝒙𝑖𝑖−1)𝑡𝑡

𝑖𝑖=2 ∏ 𝑔𝑔(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖)𝑡𝑡
𝑖𝑖=1

𝑞𝑞1(𝒙𝒙1)∏ 𝑞𝑞𝑖𝑖(𝒙𝒙𝑖𝑖|𝒙𝒙1:𝑖𝑖−1)𝑡𝑡
𝑖𝑖=2

= 𝜔𝜔1(𝒙𝒙1)� 𝑤𝑤𝑖𝑖
𝑡𝑡

𝑖𝑖=2
 

(19) 

where  
𝜔𝜔1(𝒙𝒙1) = 𝑓𝑓(𝒙𝒙1)𝑔𝑔(𝑦𝑦1|𝒙𝒙1)/𝑞𝑞1(𝒙𝒙1) 

𝑤𝑤𝑖𝑖 = 𝑔𝑔(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖)𝑓𝑓(𝒙𝒙𝑖𝑖|𝒙𝒙𝑖𝑖−1)/𝑞𝑞𝑖𝑖(𝒙𝒙𝑖𝑖|𝒙𝒙1:𝑖𝑖−1) 
(20) 

 
Equation (19) shows that the weight function can be calculated 
recursively, so that the posterior could be sequentially updated 
once a new observation is measured. The expectation of any 
function 𝜑𝜑(𝒙𝒙1:𝑡𝑡) with respect to the posterior 𝑝𝑝(𝒙𝒙1:𝑡𝑡|𝑦𝑦1:t) can 
be estimated by  
 

𝐸𝐸(𝜑𝜑(𝒙𝒙1:𝑡𝑡)|𝑦𝑦1:𝑡𝑡) ≈� 𝑊𝑊𝑡𝑡
(𝑖𝑖)𝜑𝜑�𝒙𝒙1:𝑡𝑡

(𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1
 (21) 

 
where 𝑊𝑊𝑡𝑡

(𝑖𝑖) is the normalized weight. In the PF algorithm, a 
resampling step based their updated weights is often added to 
obtain equally weighted particles which are approximately 
distributed as 𝑝𝑝(𝒙𝒙1:𝑡𝑡|𝑦𝑦1:𝑡𝑡). It is a “Darwinian” procedure that 
can remove particles with low weights and carry on particles 
with high weights. The generic particle filtering algorithm with 
a resampling step is given in Algorithm 1 as follows.  
 
Algorithm 1. Generic Particle Filtering Algorithm  

At time 𝑡𝑡 = 1, 
1. Sample 𝒙𝒙1

(𝑖𝑖)~𝑞𝑞1(𝒙𝒙1) for 𝑖𝑖 = 1, … ,𝑁𝑁 
2. Compute weights 𝜔𝜔1(𝒙𝒙1

(𝑖𝑖))  and normalized weights 
𝑊𝑊1

(𝑖𝑖) = 𝜔𝜔1(𝒙𝒙1
(𝑖𝑖))/∑ 𝜔𝜔1�𝒙𝒙1

(𝑖𝑖)�𝑁𝑁
𝑖𝑖=1 . 

3. Resample {𝑊𝑊1
(𝑖𝑖),𝒙𝒙1

(𝑖𝑖)}  according to their weights to 
obtain 𝑁𝑁 equally weighted particles {1

𝑁𝑁
,𝒙𝒙�1

(𝑖𝑖)} and set 

�𝑊𝑊1
(𝑖𝑖),𝒙𝒙1

(𝑖𝑖)� ← �1
𝑁𝑁

,𝒙𝒙�1
(𝑖𝑖)�.  

At time 𝑡𝑡 ≥ 2: 
1. Sample 𝒙𝒙𝑡𝑡

(𝑖𝑖)~𝑞𝑞𝑡𝑡�𝒙𝒙𝑡𝑡�𝒙𝒙1:𝑡𝑡−1
(𝑖𝑖) � , set 𝒙𝒙1:𝑡𝑡

(𝑖𝑖) ← (𝒙𝒙1:𝑡𝑡−1
(𝑖𝑖) ,𝒙𝒙𝑡𝑡

(𝑖𝑖)) 
for 𝑖𝑖 = 1, … ,𝑁𝑁 

2. Compute 𝑤𝑤𝑡𝑡�𝒙𝒙1:𝑡𝑡
(𝑖𝑖)� and normalized weights 𝑊𝑊𝑡𝑡

(𝑖𝑖) 
3. Resample {𝑊𝑊𝑡𝑡

(𝑖𝑖),𝒙𝒙1:𝑡𝑡
(𝑖𝑖) }  to obtain 𝑁𝑁  equally weighted 

particles {1
𝑁𝑁

,𝒙𝒙�1:𝑡𝑡
(𝑖𝑖) } and set �𝑊𝑊𝑡𝑡

(𝑖𝑖),𝒙𝒙1:𝑡𝑡
(𝑖𝑖)� ← �1

𝑁𝑁
,𝒙𝒙�1:𝑡𝑡

(𝑖𝑖)� 
 

B. Stratified Particle Filtering Algorithm for Model Updating 
In the development of PF algorithm, the importance function 

needs to be specified. The optimal importance function should 
be the one that minimizes the variances of the importance 
weight of sampled particles [35]. It can reduce the particle 
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degeneracy issue, i.e., the weights concentrate on only a few 
particles and most particles have negligible weights. However, 
the optimal importance function is often not obtainable in 
practice. Instead, we propose to use the prior transition density 
as the importance density function 

 
𝑞𝑞𝑡𝑡(𝒙𝒙𝑡𝑡|𝒙𝒙1:𝑡𝑡−1) = 𝑓𝑓(𝒙𝒙𝑡𝑡|𝒙𝒙𝑡𝑡−1) (22) 

 
Selecting the prior transition density is the most common and 
convenient way in practical applications. According to 
Equation (20), with the resampling step implemented, the 
weight is simply 
 

𝜔𝜔𝑡𝑡(𝒙𝒙1:𝑡𝑡) = 𝑔𝑔(𝑦𝑦𝑡𝑡|𝒙𝒙𝑡𝑡) (23) 

 
at each step, which greatly simplifies the computation.  

Another important issue commonly faced in PF techniques is 
the particle impoverishment problem [25], where the number of 
unique particles or unique components of particles becomes 
less and less along iterations due to the resampling step. In our 
state-space model, each line segment between successive 
change-points is a special linear state-space model with a 
constant state, which makes the particle impoverishment 
problem even worse. Besides, the dimension of the state vector 
is relatively high, which may require a significantly large 
number of particles to guarantee the approximation accuracy, 
and thus result in high computational cost. However, for online 
model updating and RUL prediction, a low computational cost 
is often critically important. In this paper, we propose a Gibbs 
resample-move step to address both these issues. The 
resample-move strategy was first proposed by Gilks [36], 
where a “move” step is added after the resampling step to 
generate new particles through MCMC kernels with the 
posterior distribution as the invariant distributions. It can not 
only diversify the particles to reduce the particle 
impoverishment issue, but can also generate more particles 
with significant weights, thus reducing the particle degeneracy 
issue and reducing the required number of particles. In our 
algorithm, we propose a one-step partial Gibbs sampler to 
“move” the three continuous components (𝜷𝜷𝑡𝑡 ,𝜎𝜎𝑡𝑡2)  through 
their conditional posterior distributions. The conditional 
posterior distributions are obtained based Lemma 1 as follows 
(the proof is included in the Appendix). 

 
Lemma 1. Suppose 𝜷𝜷(𝒔𝒔)|𝑘𝑘 = �𝑎𝑎(𝑠𝑠), 𝑏𝑏(𝑠𝑠)|𝑘𝑘�

′
~𝑁𝑁(𝝁𝝁0

(𝑘𝑘,𝑠𝑠),𝚺𝚺0
(𝑘𝑘,𝑠𝑠)) 

for 𝑠𝑠 = 1, … , 𝑘𝑘 , 𝜷𝜷(𝑘𝑘+1)|𝑘𝑘~𝑇𝑇𝑁𝑁�𝝁𝝁0
(𝑘𝑘,𝑘𝑘+1),𝚺𝚺0

(𝑘𝑘,𝑘𝑘+1)|𝑏𝑏(𝑘𝑘+1) > 𝑙𝑙𝑘𝑘� 

and  𝜎𝜎2(𝑠𝑠)|𝑘𝑘~𝐼𝐼𝐼𝐼�𝛼𝛼1
(𝑘𝑘,𝑠𝑠),𝛼𝛼2

(𝑘𝑘,𝑠𝑠)� for 𝑠𝑠 = 1, … , 𝑘𝑘 + 1, then  

(𝜷𝜷𝑡𝑡|𝑦𝑦1:𝑡𝑡 ,𝜎𝜎𝑡𝑡2, 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘)~ 

�
𝑁𝑁(𝝁𝝁𝑡𝑡

(𝑘𝑘,𝑠𝑠),𝚺𝚺𝑡𝑡
(𝑘𝑘,𝑠𝑠)), if 𝑠𝑠 ≤ 𝑘𝑘

𝑇𝑇𝑁𝑁(𝝁𝝁𝑡𝑡
(𝑘𝑘,𝑘𝑘+1),𝚺𝚺𝑡𝑡

(𝑘𝑘,𝑘𝑘+1)|𝑏𝑏𝑡𝑡
(𝑘𝑘+1) > 𝑙𝑙𝑘𝑘), if 𝑠𝑠 = 𝑘𝑘 + 1

 
(24) 

(𝜎𝜎𝑡𝑡2|𝑦𝑦1:𝑡𝑡 ,𝜷𝜷𝑡𝑡 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 = 𝑠𝑠,𝑘𝑘)~ 

𝐼𝐼𝐼𝐼 �𝛼𝛼1
(𝑘𝑘,𝑠𝑠) +

𝑡𝑡 − 𝜏𝜏𝑡𝑡
2

,𝛼𝛼2
(𝑘𝑘,𝑠𝑠) +

�𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡
𝑇𝑇 − 𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡𝜷𝜷𝑡𝑡�

2

2
� 

(25) 

where  

𝝁𝝁𝑡𝑡
(𝑘𝑘,𝑠𝑠) = �

𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡
𝑇𝑇 𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝜎𝜎𝑡𝑡2
+ 𝚺𝚺0

−1(𝑘𝑘,𝑠𝑠)�
−1

�
𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡
𝑇𝑇 𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝑇𝑇

𝜎𝜎𝑡𝑡2

+ 𝚺𝚺0
−1(𝑘𝑘,𝑠𝑠)𝝁𝝁0

(𝑘𝑘,𝑠𝑠)� , 𝑠𝑠 = 1, … , 𝑘𝑘 + 1 
(26) 

and  

𝚺𝚺𝑡𝑡
(𝑘𝑘,𝑠𝑠) = �

𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡
𝑇𝑇 𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝜎𝜎𝑡𝑡2
+ 𝚺𝚺0

−1(𝑘𝑘,𝑠𝑠)�
−1

, 𝑠𝑠 = 1, … , 𝑘𝑘 + 1 (27) 

 
The Gibbs “move” step could effectively diversify particles 

and generate more particles with significant weights. However, 
the introduction could result in extra computational cost as well 
as break the balance of the computational load at each time 
step. Based on Lemma 1, all the observations from the latest 
change-point to the current time are used for Gibbs move. It is 
intuitive that the longer the phase duration, the higher the 
computational cost the Gibbs move will take. To control the 
computational cost, we adopt the “partial move” strategy [37], 
where randomly drawn particles among the resampled particles 
are moved until the sum of their durations 𝑡𝑡 − 𝜏𝜏𝑡𝑡

(𝑖𝑖) is larger than 
a controlling constant 𝐶𝐶.  

Although the Gibbs move step has solved the particle 
impoverishment issue for the continuous components (𝜷𝜷𝑡𝑡 ,𝜎𝜎𝑡𝑡2), 
it could not handle the same problem with the discrete 
component 𝑘𝑘 of the state vector 𝒙𝒙𝑡𝑡 = (𝜽𝜽(𝑠𝑠𝑡𝑡), 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘). Indeed, 
the discrete component 𝑘𝑘 of each particle is generated at the 
first time step and kept constant across all the following time 
steps. That means the impoverishment issue is much worse than 
the other components of the state vector. As we observed, after 
only several iterations, there may be only one unique 𝑘𝑘 among 
all particles, which will in a totally failed PF algorithm. To 
solve this problem, we propose to use a stratified approach. 
Specifically, for each 𝑘𝑘𝑖𝑖  or category 𝑖𝑖  in the categorical 
distribution, the developed particle filtering algorithm with the 
same number of particles 𝑁𝑁  is applied individually. In the 
posterior approximation, the extra group weight coefficient 
𝑊𝑊𝑡𝑡

(𝑔𝑔)is applied to each category 𝑔𝑔 or all particles of each group. 
The group weight coefficient 𝑊𝑊𝑡𝑡

(𝑔𝑔) can be calculated as 
 

𝑊𝑊𝑡𝑡
(𝑔𝑔) =

∑ 𝜔𝜔𝑡𝑡 �𝒙𝒙1:𝑡𝑡
(𝑔𝑔,𝑖𝑖)�𝑁𝑁

𝑖𝑖=1

∑ ∑ 𝜔𝜔𝑡𝑡 �𝒙𝒙1:𝑡𝑡
(𝑔𝑔,𝑖𝑖)�𝑁𝑁

𝑖𝑖=1
dim(𝑘𝑘)
𝑔𝑔=1

 (28) 

 
This strategy can effectively avoid the disappearing of certain 𝑘𝑘 
in the resampling process. We call this approach the stratified 
particle filtering (SPF).  

In summary, the developed SPF algorithm for sequential 
model updating is given in Algorithm 2. 
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Algorithm 2. Stratified Particle Filtering Algorithm for 
Sequential Model Updating 

At time 𝑡𝑡 = 1:  
For 𝑔𝑔 = 1: dim{𝑘𝑘} 

1. Set 𝑘𝑘(𝑔𝑔,𝑖𝑖) = 𝑘𝑘𝑔𝑔, Sample 𝜷𝜷1
(𝑔𝑔,𝑖𝑖)~𝑁𝑁 �𝝁𝝁0

�𝑘𝑘(𝑔𝑔,𝑖𝑖),1�,𝚺𝚺0
�𝑘𝑘(𝑔𝑔,𝑖𝑖),1��, 

𝜎𝜎1
2(𝑔𝑔,𝑖𝑖)~𝐼𝐼𝐼𝐼 �𝛼𝛼1

�𝑘𝑘(𝑔𝑔,𝑖𝑖),1�,𝛼𝛼2
�𝑘𝑘(𝑔𝑔,𝑖𝑖),1��. Set 𝜏𝜏1

(𝑔𝑔,𝑖𝑖) = 0, 𝑠𝑠1
(𝑔𝑔,𝑖𝑖) = 1, 

and set 𝒙𝒙1
(𝑔𝑔,𝑖𝑖) = (𝜷𝜷1

(𝑔𝑔,𝑖𝑖),𝜎𝜎1
2(𝑔𝑔,𝑖𝑖), 𝜏𝜏1

(𝑔𝑔,𝑖𝑖), 𝑠𝑠1
(𝑔𝑔,𝑖𝑖),𝑘𝑘(𝑔𝑔,𝑖𝑖)) for 𝑖𝑖 =

1:𝑁𝑁 
2. Compute weights 𝜔𝜔1(𝒙𝒙1

(𝑔𝑔,𝑖𝑖)) and normalized weights 
𝑊𝑊1

(𝑔𝑔,𝑖𝑖) = 𝜔𝜔1(𝒙𝒙1
(𝑔𝑔,𝑖𝑖))/∑ 𝜔𝜔1 �𝒙𝒙1

(𝑔𝑔,𝑖𝑖)�𝑁𝑁
𝑖𝑖=1  based on Eq. (23) for 

𝑖𝑖 = 1:𝑁𝑁 
3. Resample {𝑊𝑊1

(𝑔𝑔,𝑖𝑖),𝒙𝒙1
(𝑔𝑔,𝑖𝑖)|𝑖𝑖 = 1, … ,𝑁𝑁} according to their 

weights 𝑊𝑊1
(𝑔𝑔,𝑖𝑖) to obtain 𝑁𝑁 equally weighted 

particles �1
𝑁𝑁

,𝒙𝒙�1
(𝑔𝑔,𝑖𝑖)� and set �𝑊𝑊1

(𝑔𝑔,𝑖𝑖),𝒙𝒙1
(𝑔𝑔,𝑖𝑖)� ← �1

𝑁𝑁
,𝒙𝒙�1

(𝑔𝑔,𝑖𝑖)� 
End  

4. Calculate the group weight 𝑊𝑊1
(𝑔𝑔) based on Eq. (28) 

5. Set 𝑊𝑊1
(𝑔𝑔,𝑖𝑖) = 𝑊𝑊1

(𝑔𝑔)

𝑁𝑁
 for 𝑔𝑔 = 1: dim{𝑘𝑘} and 𝑖𝑖 = 1:𝑁𝑁 

At time 𝑡𝑡 ≥ 2:  
For 𝑔𝑔 = 1: dim{𝑘𝑘} 

1. Calculate the probability 𝑝𝑝𝑡𝑡|𝑡𝑡−1
(𝑔𝑔,𝑖𝑖)  based on Eq. (12) 

2. Sample 𝑢𝑢(𝑔𝑔,𝑖𝑖)~𝑈𝑈(0,1)  
• If 𝑢𝑢(𝑔𝑔,𝑖𝑖) ≤ 𝑝𝑝𝑡𝑡|𝑡𝑡−1

(𝑔𝑔,𝑖𝑖) ,  

i. Set 𝜏𝜏𝑡𝑡
(𝑔𝑔,𝑖𝑖) = 𝑡𝑡 − 1, 𝑠𝑠𝑡𝑡

(𝑔𝑔,𝑖𝑖) = 𝑠𝑠𝑡𝑡−1
(𝑔𝑔,𝑖𝑖) + 1,  

ii. Sample 𝜷𝜷𝑡𝑡
(𝑔𝑔,𝑖𝑖)~𝑁𝑁�𝝁𝝁0

�𝑘𝑘(𝑔𝑔,𝑖𝑖),𝑠𝑠𝑡𝑡
(𝑔𝑔,𝑖𝑖)�

,𝚺𝚺0
�𝑘𝑘(𝑔𝑔,𝑖𝑖),𝑠𝑠𝑡𝑡

(𝑔𝑔,𝑖𝑖)�
�  if 

𝑠𝑠𝑡𝑡
(𝑔𝑔,𝑖𝑖) ≤ 𝑘𝑘(𝑔𝑔,𝑖𝑖), otherwise, sample  

𝜷𝜷𝑡𝑡
(𝑔𝑔,𝑖𝑖)~𝑇𝑇𝑁𝑁 �𝝁𝝁0

�𝑘𝑘(𝑔𝑔,𝑖𝑖),𝑠𝑠𝑡𝑡
(𝑔𝑔,𝑖𝑖)�

,𝚺𝚺0
�𝑘𝑘(𝑔𝑔,𝑖𝑖),𝑠𝑠𝑡𝑡

(𝑔𝑔,𝑖𝑖)�
|𝑏𝑏𝑡𝑡

(𝑔𝑔,𝑖𝑖) > 𝑙𝑙𝑔𝑔� 

iii. Sample 𝜎𝜎𝑡𝑡
2(𝑔𝑔,𝑖𝑖)~𝐼𝐼𝐼𝐼 �𝛼𝛼1

�𝑘𝑘(𝑔𝑔,𝑖𝑖),𝑠𝑠𝑡𝑡
(𝑔𝑔,𝑖𝑖)�

,𝛼𝛼2
�𝑘𝑘(𝑔𝑔,𝑖𝑖),𝑠𝑠𝑡𝑡

(𝑔𝑔,𝑖𝑖)�
� 

iv. Set 𝒙𝒙𝑡𝑡
(𝑔𝑔,𝑖𝑖) ← (𝜷𝜷𝑡𝑡

(𝑔𝑔,𝑖𝑖),𝜎𝜎𝑡𝑡
2(𝑔𝑔,𝑖𝑖), 𝜏𝜏𝑡𝑡

(𝑔𝑔,𝑖𝑖), 𝑠𝑠𝑡𝑡
(𝑔𝑔,𝑖𝑖), 𝑘𝑘(𝑔𝑔,𝑖𝑖)) 

• Otherwise, set 𝒙𝒙𝑡𝑡
(𝑔𝑔,𝑖𝑖) ← 𝒙𝒙𝑡𝑡−1

(𝑔𝑔,𝑖𝑖) 
3. Compute 𝜔𝜔𝑡𝑡 �𝒙𝒙𝑡𝑡

(𝑔𝑔,𝑖𝑖)� and normalized weights 𝑊𝑊𝑡𝑡
(𝑔𝑔,𝑖𝑖)  based 

on Eq. (23). 
4. Resample {𝑊𝑊𝑡𝑡

(𝑔𝑔,𝑖𝑖),𝒙𝒙1:𝑡𝑡
(𝑔𝑔,𝑖𝑖)}  to obtain 𝑁𝑁  equally weighted 

particles �1
𝑁𝑁

,𝒙𝒙�𝑡𝑡
(𝑔𝑔,𝑖𝑖)� and set �𝑊𝑊𝑡𝑡

(𝑔𝑔,𝑖𝑖),𝒙𝒙𝑡𝑡
(𝑔𝑔,𝑖𝑖)� ← �1

𝑁𝑁
,𝒙𝒙�𝑡𝑡

(𝑔𝑔,𝑖𝑖)� 
5. Gibbs move: select a subset 𝑆𝑆 of {𝒙𝒙(𝑔𝑔,𝑖𝑖)|𝑖𝑖 = 1:𝑁𝑁} such that 

∑ (𝑡𝑡 − 𝜏𝜏(𝑔𝑔,𝑖𝑖))𝑖𝑖∈𝑆𝑆 ≤ 𝐶𝐶 
• Sample 𝜷𝜷𝑡𝑡

(𝑔𝑔,𝑖𝑖)based on Eq. (24) 
• Sample 𝜎𝜎𝑡𝑡

2(𝑔𝑔,𝑖𝑖) based on Eq. (25) 
End 

6. Calculate the group weight 𝑊𝑊𝑡𝑡
(𝑔𝑔) based on Eq. (28) 

7. Set 𝑊𝑊𝑡𝑡
(𝑔𝑔,𝑖𝑖) = 𝑊𝑊𝑡𝑡

(𝑔𝑔)

𝑁𝑁
 for 𝑔𝑔 = 1: dim{𝑘𝑘} and 𝑖𝑖 = 1:𝑁𝑁 

 

C. RUL Prediction 
After the degradation model of the working unit is updated 

using the observations up to the current time, the next step is to 
predict the future degradation magnitude and RUL for 
preventive maintenance. Due to the multiple change-point that 
may occur in future, the exact Bayesian inference is intractable, 

even if the current model is known. However, through the PF 
algorithm, the RUL prediction is proven to be very convenient.  

Denote 𝑅𝑅𝑡𝑡  as the RUL at the current time 𝑡𝑡 . Then the 
distribution of 𝑅𝑅𝑡𝑡 can be expresses by 

 
𝑃𝑃(𝑅𝑅 > 𝐿𝐿|𝑦𝑦1:𝑡𝑡) = 𝑃𝑃(𝑦𝑦𝑡𝑡+1 < 𝛤𝛤, 𝑦𝑦𝑡𝑡+2 < 𝛤𝛤,⋯ , 𝑦𝑦𝑡𝑡+𝐿𝐿 < 𝛤𝛤|𝑦𝑦1:𝑡𝑡) 

= �𝑃𝑃(𝑦𝑦𝑡𝑡+1 < 𝛤𝛤,⋯ ,𝑦𝑦𝑡𝑡+𝐿𝐿 < 𝛤𝛤|𝒙𝒙𝑡𝑡+1:𝑡𝑡+𝐿𝐿)𝑓𝑓(𝒙𝒙𝑡𝑡:𝑡𝑡+𝐿𝐿|𝑦𝑦1:𝑡𝑡)𝑑𝑑𝒙𝒙𝑡𝑡:𝑡𝑡+𝐿𝐿 

= ���𝑃𝑃�𝑦𝑦𝑡𝑡+𝑖𝑖 < 𝛤𝛤�𝒙𝒙𝑡𝑡+𝑖𝑖�𝑓𝑓(𝒙𝒙𝑡𝑡+𝑖𝑖|𝒙𝒙𝑡𝑡+𝑖𝑖−1)
𝐿𝐿

𝑖𝑖=1

� 𝑓𝑓(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡)𝑑𝑑𝒙𝒙𝑡𝑡:𝑡𝑡+𝐿𝐿 

 
(29) 

 
where 𝛤𝛤  is the failure threshold. The above equation is not 
tractable analytically. However, we can conveniently generate 
samples from the distribution 𝑓𝑓(𝒙𝒙𝑡𝑡:𝑡𝑡+𝐿𝐿|𝑦𝑦1:𝑡𝑡)  based on the 
particles at the current time and the prior state transition 
process. Given the particles and their weights at the current 
time �𝑊𝑊𝑡𝑡

(𝑔𝑔,𝑖𝑖),𝒙𝒙𝑡𝑡
(𝑔𝑔,𝑖𝑖),𝑔𝑔 = 1: dim(𝑘𝑘) , 𝑖𝑖 = 1:𝑁𝑁�  which 

approximately follow 𝑓𝑓(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡) , the samples of the future 
states �𝒙𝒙𝑡𝑡+1:𝑡𝑡+𝐿𝐿

(𝑖𝑖) , 𝑖𝑖 = 1, … ,𝑁𝑁�  can be generated through the 
prior state transition function 𝑓𝑓(𝒙𝒙𝑡𝑡+𝑖𝑖|𝒙𝒙𝑡𝑡+𝑖𝑖−1)  given in 
Equation (10). Based on the generated samples, the RUL 
distribution can be approximated by 
 

𝑃𝑃(𝑅𝑅 > 𝐿𝐿|𝑦𝑦1:𝑡𝑡) = 𝑃𝑃(𝑦𝑦𝑡𝑡+1 < 𝛤𝛤,⋯ , 𝑦𝑦𝑡𝑡+𝐿𝐿 < 𝛤𝛤|𝑦𝑦1:𝑡𝑡) 

≈ �
𝑊𝑊𝑡𝑡

(𝑔𝑔)

𝑁𝑁
�� 𝑃𝑃�𝑦𝑦𝑡𝑡+𝑖𝑖 < 𝛤𝛤|𝒙𝒙𝑡𝑡+𝑖𝑖

(𝑔𝑔,𝑖𝑖)�
𝐿𝐿

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

dim(𝑘𝑘)

𝑔𝑔=1

 

 

 

(30) 

 
Conditioning that there are 𝑘𝑘  line segments or phases for a 
working unit, the failure will not occur before the 𝑘𝑘-th phase. 
Therefore, the probability 𝑃𝑃 �𝑦𝑦𝑡𝑡+𝑖𝑖 < 𝛤𝛤|𝒙𝒙𝑡𝑡+𝑖𝑖

(𝑔𝑔,𝑖𝑖)�  can be 
calculated by 
 
𝑃𝑃 �𝑦𝑦𝑡𝑡+𝑖𝑖 < 𝛤𝛤|𝒙𝒙𝑡𝑡+𝑖𝑖

(𝑔𝑔,𝑖𝑖)�

= �
Φ(𝛤𝛤|𝑎𝑎𝑡𝑡+𝑖𝑖

(𝑔𝑔,𝑖𝑖) + 𝑏𝑏𝑡𝑡+𝑖𝑖
(𝑔𝑔,𝑖𝑖)(𝑡𝑡 + 𝑗𝑗),𝜎𝜎𝑡𝑡

2(𝑔𝑔,𝑖𝑖)), 𝑠𝑠𝑡𝑡
(𝑔𝑔,𝑖𝑖) = 𝑘𝑘(𝑔𝑔,𝑖𝑖) + 1

1, 𝑠𝑠𝑡𝑡
(𝑔𝑔,𝑖𝑖) ≤ 𝑘𝑘(𝑔𝑔,𝑖𝑖)

 
(31) 

where Φ(∙) is the CDF of Gaussian distribution.  

V. CASE STUDIES 
In this section, the proposed method is evaluated through 

numerical simulations and real vibration data of rotational 
bearings. For all of case studies, we choose 50%, 70% and 90% 
of actual failure time as our starting points of RUL prediction. 

A. Simulation Study 
In this subsection, we evaluate the performance of the 

proposed method through simulated piecewise linear signals. 
For simplicity we assume that there are only two categories of 
degradation signals: two-phase and three-phase cases. The 
categorical distribution is given by 
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TABLE I 
HYPER-PARAMETER SPECIFICATION FOR NUMERICAL SIMULATION 

Variables Two-phase Model Three-phase Model 

𝛿𝛿(𝑠𝑠) 
𝛿𝛿0

(1,1) = 400,𝜎𝜎0
2(1,1) = 225 

𝛿𝛿0
(1,2) = 500,𝜎𝜎0

2(1,2) = 100 

𝛿𝛿0
(2,1) = 200,𝜎𝜎0

2(2,1) = 100 
𝛿𝛿0

(2,2) = 400,𝜎𝜎0
2(2,2) = 100 

𝛿𝛿0
(2,3) = 500,𝜎𝜎0

2(2,3) = 100 

𝜷𝜷(𝒔𝒔) 

𝝁𝝁0
(1,1) = [−15; 0.008] 

𝜮𝜮0
(1,1) = � 0.015 0.0014

0.0014 0.00046� 

𝝁𝝁0
(1,2) = [−30; 0.3] 

𝜮𝜮0
(1,2) = � 0.024 −0.0007

−0.0007 0.0057 � 

𝝁𝝁0
(2,1) = [−10; 0.0005] 

𝜮𝜮0
(2,1) = � 0.15 0.00014

0.00014 0.0009 � 

𝝁𝝁0
(2,2) = [−18; 0.02] 

𝜮𝜮0
(2,2) = � 0.024 −0.0007

−0.0007 0.000048� 

𝝁𝝁0
(2,3) = [−50; 0.08] 

𝜮𝜮0
(2,3) = � 0.075 −0.00008

−0.00008 0.00025 � 

σ2(s) 
𝛼𝛼1

(1,1) = 1.4,𝛼𝛼2
(1,1) = 2.5 

𝛼𝛼1
(1,2) = 2,𝛼𝛼2

(1,2) = 4 

 𝛼𝛼1
(2,1) = 3.64,𝛼𝛼2

(2,1) = 2 
   𝛼𝛼1

(2,2) = 0.6,  𝛼𝛼2
(2,2) = 0.5 

𝛼𝛼1
(2,3) = 3.6,𝛼𝛼2

(2,3) = 5 

 

 
Figure 3. Illustration of the SPF based online monitoring of degradation signals with two phases (left panel) and three phases (right panel). (a) and (e): degradation 
signals and estimated signals; (b) and (f): the estimated duration of the current linear phase; (c) and (g): the probability mass function of the current phase; (d) and 
(h): the probability mass function of category. The vertical dashed lines are the true change-points. 

 

𝑘𝑘 = � 1, with probability 𝑝𝑝 = 0.3
2, with probability  𝑝𝑝 = 0.7  

 

 
We assume the unit will fail once the observation reaches the 
threshold 𝛤𝛤 = 20 . The slope lower bound of last phase is set to 
be 𝑙𝑙1 = 𝑙𝑙2 = 0.003, The hyper-parameters of 𝛿𝛿(𝑘𝑘,𝑠𝑠),𝜷𝜷(𝑘𝑘,𝒔𝒔) and 
𝜎𝜎2(𝑘𝑘,𝑠𝑠) are specified in TABLE I. 

In total 200 CM signals are simulated, among which 69 are 
two-phase signals and 131 are three-phase signals. The BIC 
based model selection method can accurately obtain the right 
number of change-points and their locations for each simulated 
signal. Due to page limitation, the estimated hyper-parameters 
are not listed here. In the stratified particle filtering algorithm, 

the number of particles for each category is set to be 𝑁𝑁 =
5000. Figure 3 shows the online monitoring of degradation 
signals with one and two change-points. From the top two 
panels we can see that the estimated signals (mean value) are 
very close to the true values. The second row of these panels 
shows the mean value of the current phase length. As we can 
see, the algorithm can rapidly detect the phase change. The 
bottom four panels show the probability mass function of the 
discrete components (𝑠𝑠𝑡𝑡 , 𝑘𝑘) of the state vector. As we can see, 
the algorithm can accurately detect the number of phases the 
degradation signal will have and the current phase the 
degradation signal is at. 
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Figure 4. Comparison of the proposed SPF algorithm to other PF algorithms without either partial Gibbs move or stratified strategy: (a) no stratification, Gibbs 
move; (b) stratification, no Gibbs move; (c) no stratification, no Gibbs move and (d) proposed SPF with both particle Gibbs move and stratified approach. 

 

 
Figure 5. Prediction intervals of 7 simulated CM signals. The ∘ represents the 5%,50%,95% quantitles of the RUL distributions, ∗ is the actual RUL.(a)-(c) 
Prediction intervals for two-phase signals; (d)-(f) Prediction intervals for three-phase signals. 

 
Figure 4 shows the comparison of the SPF algorithm to three 

other PF algorithms without either partial Gibbs move or 
stratified strategy. The number of particles here is set to be 500. 
Clearly, without the stratified strategy (a and c), all the particles 
with discrete component 𝑘𝑘 = 2  gradually diminish along 
iterations, which results in an inaccurate model with only two 
phases (𝑘𝑘 = 1). Without the partial Gibbs move (b and c), the 
degeneracy of the continuous components occurs, which 
significantly influence the model accuracy. The proposed SPF 
algorithm has effectively overcome the particle degeneracy and 

impoverishment issues and works quite well with only 500 
samples. 

To evaluate the prediction performance, 200 new 
degradation signals are randomly generated as a testing dataset 
using the specified priors. We compare the SPF algorithm with 
Chen’s two-phase model [15], where only one change-point is 
considered. For Chen’s method, all the 200 training dataset 
with both two-phase and three-phase signals are used to 
estimate the priors of the two-phase model. Figure 5 shows the 
comparison of the prediction intervals of 7 simulated two-phase 
signals and 7 three-phase signals predicted at 50%,
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Figure 6. Comparison of the pdf of the RUL. (a)-(c) two-phase signal (d)-(f) three-phase signal. 

 
70% and 90% of actual failure time. Figure 6 shows the detailed 
RUL prediction of the 5th and the 2nd unit of the seven signals of 
each category in Figure 5. From Figure 5 we can see that our 
prediction accuracy is much better than Chen’s method in 
almost all the 14 cases. For two-phase signals, both methods 
work well. However, our method is slightly better at 70% and 
90% of the failure time while much better at 50% of the failure 
time than Chen’s method, which can also be seen from Figure 6 
(a-c). The main reason is that in Chen’s method, the priors are 
estimated using all two-phase and three-phase signals, which 
will result in less accurate priors. At the 50% failure time, the 
prediction accuracy is mainly determined by the prior 
knowledge, while at the 70% and 90% of the failure time, the 
observations dominate the posterior distributions. Therefore at 
the early stage, our method with more accurate priors is much 
better than Chen’s method while at the late stage, the 
performances of both methods are comparable. For three-phase 
signals, our method is much better than Chen’s method at all 
the three prediction times, as shown in Figure 5 (d-f) and Figure 
6 (d-f). It is expected since the two-phase model is inadequate 
to model signals with three phases.  

To evaluate the overall performance, we use the 
root-mean-square-deviation (RMSD), which is defined as 
RMSD = �𝐸𝐸(𝑅𝑅 − 𝑅𝑅true)2, where 𝑅𝑅 and 𝑅𝑅true are the predicted 
and true RUL respectively. Since the proposed method is a 
Monte Carlo based method, there exists inevitable randomness 
(though very small). So for each signal the SPF algorithm is 
repeated 10 times. TABLE II shows the RMSD of the proposed 
method and Chen’s method using the 200 testing signals. As we 
can see, the proposed method is much more accurate than 
Chen’s method, with the RMSD reduced by more than 70% at 
almost all six prediction times. As the prediction time 
approaches to the true failure time, the RMSD of the proposed 
method monotonically decreases. This is highly desirable since 
it becomes more and more important to get an accurate 
prediction when the RUL approaches zero. However, for 
Chen’s method, RMSD first increases and then decreases. That 
means the prediction error at the second phase is even worse 
than making prediction at the first phase. The reason is that for 

three-phase signals, the second phase with a relative small 
degradation rate is detected as the final phase in Chen’s 
method. The more observations in the second-phase, the flatter 
the final phase of the updated model and thus the worse the 
prediction.  

 
TABLE II 

COMPARISON OF THE RMSD AT SIX PREDICTION TIMES 

Method 
RMSD 

40% 50% 60% 70% 80% 90% 

Chen 593.4 649.4 696.7 548.7 188.6 58.6 
SPF 222.1 194.6 133.8 74.4 23.4 21.9 

 
The computational costs of the SPF and Chen’s method using 
MATLAB running on an i7-6560U 2.21 GHz Intel processor 
are shown in TABLE III. For the SPF method, the total number 
of particles is set 5000. In the model updating stage, we 
compare the computational costs of these two methods running 
300 time steps. For the prediction stage, the costs of running 
different time steps are evaluated, since the cost of prediction in 
Chen’s method nonlinearly increases with time steps. As we 
can see, the SPF method is much more expensive in the model 
updating stage than Chen’s method. However, in the prediction 
stage, the cost of Chen’s method exponentially increases with 
the time steps, due to the CDF computation of a multivariate t 
distribution with an increasing dimension. For the SPF method, 
the computational cost of the prediction linearly increases with 
the time steps. Note that the selection of 5000 particles is quite 
conservative. From Figure 4 we can see that the model updating 
is quite accurate with only 500 particles.  
 

TABLE III 
COMPARISON OF THE COMPUTATIONAL COST (UNIT: SECONDS)  

Method 
Updating Prediction 

300 25 50 75 100 125 

Chen 0.024 2.1 7.4 16.1 28.8 45.7 
SPF 179.4 6.2 11.7 16.9 22.0 27.0 
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Figure 7. Prediction intervals of the 25 bearing signals 

 

 
Figure 8. RMSD of the 25 bearing signals 

 

B. Degradation Monitoring of the Rotational Bearings 
In this section, the proposed method is applied to the real 

degradation signals of rotational bearings [6, 10, 15]. They are 
vibrational signals (log-transformed) of a set of identical thrust 
ball bearings captured by an accelerometer in the accelerated 
aging testing. There are in total 25 complete bearing signals 

available. The data sampling interval is 2 minutes for each 
signal. When the vibration magnitude exceeds the threshold 
 𝛤𝛤 = log (0.03) , which was computed from published 
industrial standards, the bearing is considered failed [6]. 

In the offline modeling and prior estimation process, we set 
the maximum number of phases for all 25 signals to be 3 to 
control the model complexity. It is found that all bearing signals 
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TABLE IV 
ESTIMATED HYPER-PARAMETERS OF THE PRIOR DISTRIBUTIONS 

 𝑠𝑠 = 1 𝑠𝑠 = 2 𝑠𝑠 = 3 

𝛿𝛿(𝑠𝑠) 𝛿𝛿0
(1) = 246,  𝜎𝜎0

2(1) = 1632 𝛿𝛿0
(2) = 199, 𝜎𝜎0

2(2) = 1232 𝛿𝛿0
(3) = 232,𝜎𝜎0

2(3) = 1232 

𝜷𝜷(𝒔𝒔) 
𝝁𝝁0

(1) = [−7.14,0.00027] 
𝚺𝚺0

(1) = � 0.15 −0.0003
−0.0003 1.30 × 10−5� 

𝝁𝝁0
(2) = [−6.42,0.0028] 

𝚺𝚺0
(2) = � 2.05 −0.009

−0.009 7.36 × 10−5� 

𝝁𝝁0
(3) = [−6.8,0.005] 

𝚺𝚺0
(3) = � 3.89 −0.008

−0.008 2.52 × 10−5� 
𝑙𝑙 = 0.005 

σ2(s) 𝛼𝛼1
(1) = 2.65,𝛼𝛼2

(1) = 0.01 𝛼𝛼1
(2) = 0.54,𝛼𝛼2

(2) = 0.004 𝛼𝛼1
(3) = 1.28,𝛼𝛼2

(3) = 0.03 

 
with three phases have the minimum BIC. The estimated 
hyper-parameters of the prior distributions are shown in 
TABLE IV. It is observable that the slope is quite small at the 
first phase, indicating a stable operation process. The slopes of 
the following phases are larger than the former ones. It 
indicates that when a new change-point occurs, the degradation 
rate of bearings increases.  

Figure 7 shows the prediction intervals at 50%, 70% and 
90% of failure time against the actual failure time. We can see 
that the prediction intervals at 90% failure time are much 
narrower than that of 70% failure time and 50% failure time. As 
the prediction time is closer to actual failure time, the intervals 
become smaller. It is obvious that the more observed data, the 
more accurate the prediction. Figure 8 shows the RMSD of the 
25 bearing signals. Compared with Chen’s method, the 
predictive accuracy of the proposed method is significantly 
improved. TABLE V shows the comparison of the SPF method 
with Chen’s method and the GLLR method [6] in terms of 
RMSD at the three time steps. In the GLLR method, the first 
phase with normal working condition is manually truncated 
first, and the remaining data are fitted using Bayesian simple 
linear regression. Clearly, our method outperforms these two 
methods at all three prediction times. The GLLR method has 
the largest prediction error on this dataset. 

 
TABLE V 

COMPARISON OF THE SPF METHOD WITH GLLR AND CHEN’S METHOD 

Method 
RMSD 

50% 70% 90% 
GLLR 356.5 234.2 227.8 
Chen 318.4 156.9 169.4 
SPF 210.0 131.7 56.9 

 

VI. CONCLUSION AND DISCUSSION 
In this paper we propose a multiple-phase modeling of 

degradation signals for health condition monitoring and 
remaining useful life prediction. To integrate the historical data 
with in-situ observations of each new unit in the RUL 
prediction, the multiple change-point model is formulated 
under the Bayesian framework and a novel stochastic process is 
proposed as priors of the formulated model. To facilitate the 
online monitoring and RUL prediction, the multiple 
change-point model is first represented by a novel nonstandard 
state-space model and then a new particle filtering algorithm is 
developed for online model updating and RUL prediction. A 
stratified sampling approach and a partial Gibbs 
resample-move strategy are developed to overcome the particle 

impoverishment problem and reduce the computational burden. 
The advantages of the proposed method have been 
demonstrated through extensive numerical studies and real case 
studies.  

Nevertheless, there still exist several open issues that need to 
be investigated. First, in the proposed method, all phases are 
assumed independent in the prior specification. However, in 
practice all phases are often connected and highly correlated. 
Incorporating the phase correlation may improve the prior 
informativeness and thus improve the prediction accuracy. 
Second, the computational cost of SPF algorithm may be higher 
than most of other existing methods, which may prohibit its 
applications where rapid prediction is required. These issues 
will be left to our future work. 

APPENDIX 
Proof of Lemma 1 
For the sake of simplicity, we ignore all the superscripts (𝑘𝑘 and 
𝑠𝑠) in the proof.  
(1) If 𝜷𝜷𝑡𝑡~𝑁𝑁(𝝁𝝁0,𝜮𝜮0), then  
𝑝𝑝(𝜷𝜷𝑡𝑡|𝑦𝑦1:𝑡𝑡 ,𝜎𝜎𝑡𝑡2, 𝜏𝜏𝑡𝑡) ∝ 𝑝𝑝(𝜷𝜷𝑡𝑡)𝑝𝑝(𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡|𝜏𝜏𝑡𝑡 ,𝜎𝜎𝑡𝑡2,𝜷𝜷𝑡𝑡)   

∝ exp �−
(𝜷𝜷𝑡𝑡 − 𝝁𝝁0)𝑇𝑇𝜮𝜮0−1(𝜷𝜷𝑡𝑡 − 𝝁𝝁0)

2 � ∙ exp�−
�𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝑇𝑇 − 𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡𝜷𝜷𝑡𝑡�
2

2𝜎𝜎𝑡𝑡2
� 

∝ exp �−
1
2 �
𝜷𝜷𝑡𝑡𝑇𝑇 �

𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡
𝑇𝑇 𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝜎𝜎𝑡𝑡2
+ 𝜮𝜮0−1�𝜷𝜷𝑡𝑡

− 2�𝝁𝝁0𝑇𝑇𝜮𝜮0−1 +
𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝜎𝜎𝑡𝑡2
�𝜷𝜷𝑡𝑡�� 

∝ exp �−
1
2

(𝜷𝜷𝑡𝑡 − 𝝁𝝁𝑡𝑡)𝑇𝑇𝜮𝜮𝑡𝑡−1(𝜷𝜷𝑡𝑡 − 𝝁𝝁𝑡𝑡)� 

where  

𝝁𝝁𝑡𝑡 = �
𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡
𝑇𝑇 𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝜎𝜎𝑡𝑡2
+ 𝚺𝚺0−1�

−1

�
𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡
𝑇𝑇 𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝑇𝑇

𝜎𝜎𝑡𝑡2
+ 𝚺𝚺0−1𝝁𝝁0� 

𝜮𝜮𝑡𝑡 = �
𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡
𝑇𝑇 𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝜎𝜎𝑡𝑡2
+ 𝜮𝜮0−1�

−1

 

Therefore 

 (𝜷𝜷𝑡𝑡|𝑦𝑦1:𝑡𝑡 ,𝜎𝜎𝑡𝑡2, 𝜏𝜏𝑡𝑡)~𝑁𝑁(𝝁𝝁𝑡𝑡 ,𝜮𝜮𝑡𝑡) 
 
If 𝜷𝜷𝑡𝑡~𝑻𝑻𝑁𝑁(𝝁𝝁0,𝜮𝜮0|𝑏𝑏𝑡𝑡 > 𝑙𝑙), then similarly,   
𝑝𝑝(𝜷𝜷𝑡𝑡|𝑦𝑦1:𝑡𝑡 ,𝜎𝜎𝑡𝑡2, 𝜏𝜏𝑡𝑡) ∝ 𝑝𝑝(𝜷𝜷𝑡𝑡)𝑝𝑝(𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡|𝜏𝜏𝑡𝑡 ,𝜎𝜎𝑡𝑡2,𝜷𝜷𝑡𝑡)   

∝ exp �−
(𝜷𝜷𝑡𝑡 − 𝝁𝝁0)𝑇𝑇𝜮𝜮0−1(𝜷𝜷𝑡𝑡 − 𝝁𝝁0)

2 � ∙ 𝐼𝐼(𝑙𝑙,+∞)(𝑏𝑏𝑡𝑡)

∙ exp�−
�𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝑇𝑇 − 𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡𝜷𝜷𝑡𝑡�
2

2𝜎𝜎𝑡𝑡2
� 
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∝ exp �−
(𝜷𝜷𝑡𝑡 − 𝝁𝝁0)𝑇𝑇𝜮𝜮0−1(𝜷𝜷𝑡𝑡 − 𝝁𝝁0)

2 � ∙ 𝐼𝐼(𝑙𝑙,+∞)(𝑏𝑏𝑡𝑡)

∙ exp�−
�𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝑇𝑇 − 𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡𝜷𝜷𝑡𝑡�
2

2𝜎𝜎𝑡𝑡2
� 

∝ exp �−
1
2

(𝜷𝜷𝑡𝑡 − 𝝁𝝁𝑡𝑡)𝑇𝑇𝜮𝜮𝑡𝑡−1(𝜷𝜷𝑡𝑡 − 𝝁𝝁𝑡𝑡)� ∙ 𝐼𝐼(𝑙𝑙,+∞)(𝑏𝑏𝑡𝑡) 

where 𝐼𝐼(𝑙𝑙,+∞)(∙) is an indicator function, i.e., 𝐼𝐼(𝑙𝑙,+∞)(𝑥𝑥) = 0 if 
𝑥𝑥 ≤ 𝑙𝑙 and 𝐼𝐼(𝑙𝑙,+∞)(𝑥𝑥) = 1 if 𝑥𝑥 > 𝑙𝑙 
Therefore 
 (𝜷𝜷𝑡𝑡|𝑦𝑦1:𝑡𝑡 ,𝜎𝜎𝑡𝑡2, 𝜏𝜏𝑡𝑡)~𝑇𝑇𝑁𝑁(𝝁𝝁𝑡𝑡 ,𝜮𝜮𝑡𝑡|𝑏𝑏𝑡𝑡 > 𝑙𝑙) 
 
(2) 𝑝𝑝(𝜎𝜎𝑡𝑡2|𝜷𝜷𝑡𝑡 ,𝑦𝑦1:𝑡𝑡 , 𝜏𝜏𝑡𝑡) ∝ 𝑝𝑝(𝜎𝜎𝑡𝑡2)𝑝𝑝�𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡�𝜷𝜷𝑡𝑡 , 𝜏𝜏𝑡𝑡 ,𝜎𝜎𝑡𝑡2� 

∝ (𝜎𝜎𝑡𝑡2)−(𝛼𝛼1+1) exp �−
𝛼𝛼2
𝜎𝜎𝑡𝑡2
� (𝜎𝜎𝑡𝑡2)−

𝑡𝑡−𝜏𝜏𝑡𝑡
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exp�−
�𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡
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2

2𝜎𝜎𝑡𝑡2
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Therefore 

 (𝜎𝜎𝑡𝑡2|𝜷𝜷𝑡𝑡 ,𝑦𝑦1:𝑡𝑡 , 𝜏𝜏𝑡𝑡)~𝐼𝐼𝐼𝐼 �𝛼𝛼1 + 𝑡𝑡−𝜏𝜏𝑡𝑡
2

,𝛼𝛼2 +
�𝑦𝑦𝜏𝜏𝑡𝑡+1:𝑡𝑡

𝑇𝑇 −𝑿𝑿𝜏𝜏𝑡𝑡+1:𝑡𝑡𝜷𝜷𝑡𝑡�
2

2
� 

REFERENCES 
[1] A. K. Jardine, D. Lin, and D. Banjevic, "A review on machinery 

diagnostics and prognostics implementing condition-based maintenance," 
Mechanical systems and signal processing, vol. 20, pp. 1483-1510, 2006. 

[2] R. Kothamasu, S. H. Huang, and W. H. VerDuin, "System health 
monitoring and prognostics–a review of current paradigms and 
practices," in Handbook of Maintenance Management and Engineering, 
ed: Springer, 2009, pp. 337-362. 

[3] A. H. Elwany and N. Z. Gebraeel, "Sensor-driven prognostic models for 
equipment replacement and spare parts inventory," IIE Transactions, vol. 
40, pp. 629-639, 2008. 

[4] M. Pecht and R. Jaai, "A prognostics and health management roadmap for 
information and electronics-rich systems," Microelectronics Reliability, 
vol. 50, pp. 317-323, 2010. 

[5] C. Okoh, R. Roy, J. Mehnen, and L. Redding, "Overview of remaining 
useful life prediction techniques in through-life engineering services," 
Procedia CIRP, vol. 16, pp. 158-163, 2014. 

[6] N. Z. Gebraeel, M. A. Lawley, R. Li, and J. K. Ryan, "Residual-life 
distributions from component degradation signals: A Bayesian 
approach," IIE Transactions, vol. 37, pp. 543-557, 2005. 

[7] E. Zio and F. Di Maio, "A data-driven fuzzy approach for predicting the 
remaining useful life in dynamic failure scenarios of a nuclear system," 
Reliability Engineering & System Safety, vol. 95, pp. 49-57, 2010. 

[8] O. E. Dragomir, R. GOURTVEAU, N. Zerhouni, and F. Dragomir, 
"Framework for a distributed and hybrid prognostic system," IFAC 
Proceedings Volumes, vol. 40, pp. 431-436, 2007. 

[9] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, "Remaining useful life 
estimation–A review on the statistical data driven approaches," European 
Journal of Operational Research, vol. 213, pp. 1-14, 2011. 

[10] N. Gebraeel, "Sensory-updated residual life distributions for components 
with exponential degradation patterns," IEEE Transactions on 
Automation Science and Engineering, vol. 3, pp. 382-393, 2006. 

[11] J. Son, Y. Zhang, C. Sankavaram, and S. Zhou, "RUL prediction for 
individual units based on condition monitoring signals with a change 
point," IEEE Transactions on Reliability, vol. 64, pp. 182-196, 2015. 

[12] S. J. Bae and P. H. Kvam, "A nonlinear random-coefficients model for 
degradation testing," Technometrics, vol. 46, pp. 460-469, 2004. 

[13] C. J. Lu and W. O. Meeker, "Using degradation measures to estimate a 
time-to-failure distribution," Technometrics, vol. 35, pp. 161-174, 1993. 

[14] R. B. Chinnam, "On‐line reliability estimation for individual components 
using statistical degradation signal models," Quality and Reliability 
Engineering International, vol. 18, pp. 53-73, 2002. 

[15] N. Chen and K. L. Tsui, "Condition monitoring and remaining useful life 
prediction using degradation signals: Revisited," IIE Transactions, vol. 
45, pp. 939-952, 2013. 

[16] S.-T. Tseng, M. Hamada, and C.-H. Chiao, "Using degradation data to 
improve fluorescent lamp reliability," Journal of Quality Technology, 
vol. 27, pp. 363-369, 1995. 

[17] C. Chiao and M. Hamada, "Using degradation data from an experiment to 
achieve robust reliability for light emitting diodes," Quality and 
Reliability Engineering International, vol. 12, pp. 89-94, 1996. 

[18] S. J. Bae and P. H. Kvam, "A change-point analysis for modeling 
incomplete burn-in for light displays," IIE Transactions, vol. 38, pp. 
489-498, 2006. 

[19] Y. Li and P. Nilkitsaranont, "Gas turbine performance prognostic for 
condition-based maintenance," Applied energy, vol. 86, pp. 2152-2161, 
2009. 

[20] X.-S. Si, C.-H. Hu, X. Kong, and D.-H. Zhou, "A residual storage life 
prediction approach for systems with operation state switches," IEEE 
Transactions on Industrial Electronics, vol. 61, pp. 6304-6315, 2014. 

[21] X.-S. Si, C.-H. Hu, Q. Zhang, and T. Li, "An Integrated Reliability 
Estimation Approach With Stochastic Filtering and Degradation 
Modeling for Phased-Mission Systems," IEEE transactions on 
cybernetics, vol. 47, pp. 67-80, 2017. 

[22] Y. Wang, Y. Peng, Y. Zi, X. Jin, and K.-L. Tsui, "A Two-Stage 
Data-Driven-Based Prognostic Approach for Bearing Degradation 
Problem," IEEE Transactions on Industrial Informatics, vol. 12, pp. 
924-932, 2016. 

[23] R. J. Meinhold and N. D. Singpurwalla, "Understanding the Kalman 
filter," The American Statistician, vol. 37, pp. 123-127, 1983. 

[24] A. Hannart and P. Naveau, "An improved Bayesian information criterion 
for multiple change-point models," Technometrics, vol. 54, pp. 256-268, 
2012. 

[25] J. Wu, Y. Chen, S. Zhou, and X. Li, "Online steady-state detection for 
process control using multiple change-point models and particle filters," 
IEEE Transactions on Automation Science and Engineering, vol. 13, pp. 
688-700, 2016. 

[26] Y. Hou, J. Wu, and Y. Chen, "Online Steady State Detection Based on 
Rao‐Blackwellized Sequential Monte Carlo," Quality and Reliability 
Engineering International, 2016. 

[27] J. Wu, Y. Chen, and S. Zhou, "Online detection of steady-state operation 
using a multiple-change-point model and exact Bayesian inference," IIE 
Transactions, pp. 1-15, 2016. 

[28] G. Schwarz, "Estimating the dimension of a model," The annals of 
statistics, vol. 6, pp. 461-464, 1978. 

[29] R. Killick, P. Fearnhead, and I. Eckley, "Optimal detection of 
changepoints with a linear computational cost," Journal of the American 
Statistical Association, vol. 107, pp. 1590-1598, 2012. 

[30] B. E. Olivares, M. A. C. Munoz, M. E. Orchard, and J. F. Silva, 
"Particle-filtering-based prognosis framework for energy storage devices 
with a statistical characterization of state-of-health regeneration 
phenomena," IEEE Transactions on Instrumentation and Measurement, 
vol. 62, pp. 364-376, 2013. 

[31] E. Zio and G. Peloni, "Particle filtering prognostic estimation of the 
remaining useful life of nonlinear components," Reliability Engineering 
& System Safety, vol. 96, pp. 403-409, 2011. 

[32] Q. Miao, L. Xie, H. Cui, W. Liang, and M. Pecht, "Remaining useful life 
prediction of lithium-ion battery with unscented particle filter technique," 
Microelectronics Reliability, vol. 53, pp. 805-810, 2013. 

[33] N. Li, Y. Lei, J. Lin, and S. X. Ding, "An improved exponential model for 
predicting remaining useful life of rolling element bearings," IEEE 
Transactions on Industrial Electronics, vol. 62, pp. 7762-7773, 2015. 

[34] Y. Hu, P. Baraldi, F. Di Maio, and E. Zio, "A particle filtering and kernel 
smoothing-based approach for new design component prognostics," 
Reliability Engineering & System Safety, vol. 134, pp. 19-31, 2015. 

[35] A. Doucet, S. Godsill, and C. Andrieu, "On sequential Monte Carlo 
sampling methods for Bayesian filtering," Statistics and computing, vol. 
10, pp. 197-208, 2000. 

[36] W. R. Gilks and C. Berzuini, "Following a moving target—Monte Carlo 
inference for dynamic Bayesian models," Journal of the Royal Statistical 
Society: Series B (Statistical Methodology), vol. 63, pp. 127-146, 2001. 

[37] N. Chopin, "Dynamic detection of change points in long time series," 
Annals of the Institute of Statistical Mathematics, vol. 59, pp. 349-366, 
2007. 

 
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

15 

Yuxin Wen received the B.S. degree in 
Medical Informatics Engineering from 
Sichuan University, Sichuan, China in 
2011, the M.S. degree in Biomedical 
Engineering from Zhejiang University, 
Zhejiang, China in 2014. Currently, she is 
pursuing the Ph.D. degree in Electrical and 
Computer Engineering at the University of 
Texas at El Paso, USA.  

Her research interests are focused on statistical modeling, 
prognostics and reliability analysis. 

 
Jianguo Wu is an Assistant Professor in 
the Department of Industrial, 
Manufacturing and Systems Engineering 
at University of Texas-El Paso, TX, USA. 
He received the B.S. degree in Mechanical 
Engineering from Tsinghua University, 
Beijing, China in 2009, the M.S. degree in 
Mechanical Engineering from Purdue 

University, West Lafayette, IN, USA in 2011, and M.S. degree 
in Statistics in 2014 and Ph.D. degree in Industrial and Systems 
Engineering in 2015, both from University of 
Wisconsin-Madison, Madison, WI, USA. His research interests 
are focused on statistical modeling, monitoring and analysis of 
complex processes/systems for quality control and productivity 
improvement through integrated application of metrology, 
engineering domain knowledge and data analytics. He is a 
member of the Institute for Operations Research and the 
Management Sciences (INFORNS), the Institute of Industrial 
and Systems Engineers (IISE), the Society of Manufacturing 
Engineers (SME). 

 
Yuan Yuan is a Research Scientist at the 
IBM Research-- Singapore. She received 
her B.E. degree (2006) from Tsinghua 
University, Beijing, China, M.S. degrees in 
Industrial and Systems Engineering (2010) 
and Statistics (2011), and Ph.D. degree in 
Industrial and Systems Engineering (2014) 

from University of Wisconsin-Madison, WI, USA. Her 
research mainly focuses on data analytics, in particular 
developing innovative and generic data-driven modelling and 
analysis methodologies for complex systems with massive 
data.  She has received a number of awards including the QSR 
Best Student Paper Award from the Institute for Operations 
Research and the Management Sciences (INFORMS) (2014), 
the featured article award of IE magazine (2010). 


	Multiple-Phase Modeling of Degradation Signal for Condition Monitoring and Remaining Useful Life Prediction
	Multiple-Phase Modeling of Degradation Signal for Condition Monitoring and Remaining Useful Life Prediction
	Comments
	Copyright


	I. INTRODUCTION
	II. Multiple Change-point model for degradation signal
	III. Prior Specification and State-space Representation
	IV. Particle Filtering Algorithm for Online Model Updating and RUL Prediction
	A. Review of Particle Filtering Algorithm
	B. Stratified Particle Filtering Algorithm for Model Updating
	C. RUL Prediction

	V. Case Studies
	A. Simulation Study
	B. Degradation Monitoring of the Rotational Bearings

	VI. Conclusion and Discussion
	Appendix
	References

