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Abstract— Prognostics plays an increasingly important role in 

modern engineering systems for smart maintenance 
decision-making. In the parametric regression-based approach, 
the parametric model is often too rigid to model degradation 
signals in many applications. In this paper, we propose a Bayesian 
multiple change-point modeling framework to better capture the 
degradation path and improve the prognostics. At the offline 
modeling stage, a novel stochastic process is proposed to model the 
joint prior of change-points and positions. All hyperparameters 
are estimated through an empirical two-stage process. At the 
online monitoring and remaining useful life (RUL) prediction 
stage, a recursive updating algorithm is developed to exactly 
calculate the posterior distribution and RUL prediction 
sequentially. To control the computational cost, a 
fixed-support-size strategy in the online model updating and a 
partial Monte Carlo strategy in the RUL prediction are proposed. 
The effectiveness and advantages of the proposed method are 
demonstrated through thorough simulation and real case studies. 

 
Note to Practitioners— Degradation signals have been widely 

used in determining the current health condition and estimate the 
remaining useful life (RUL) of a component or a system. Most of 
the existing prognostics utilize a parametric regression model to 
describe the evolution path of degradation signals for RUL 
prediction. The common functional forms of these models include 
simple linear, quadratic, and exponential functions. However, in 
many applications, the degradations signals show multiple 
segments characteristics and the existing parametric forms are 
inadequate to capture the degradation trend. Motivated by such 
issue, this paper presents a multiple change-point modeling 
approach, where the degradation signal is divided into several 
consecutive segments by change-points, and each segment is 
modeled by a unique parametric model. To capture the 
heterogeneity across different units, all the parameters, including 
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the number and locations of change-points, model parameters of 
each segment, are assumed to be random variables following 
certain distributions. Then we develop a statistical method to 
estimate these distributions using historical data. At the online 
monitoring stage, we develop an innovative updating algorithm to 
exactly calculate the closed forms of the posterior distributions of 
the latest change-point, the current segment, and model 
parameters of the current segment. We also derive a closed form 
for the RUL distribution estimation. Later several efficient 
approximation strategies are proposed to reduce the 
computational burden. Simulation studies and real case studies 
have shown that the proposed methodology has much better 
performance than existing approaches in handling degradation 
signals of multiple-segment characteristics. In future research, we 
will extend the multiple change-point modeling approach to 
stochastic process based prognostics, such as Wiener process. 

 
Index Terms—Multiple change-point model, exact Bayesian 

inference, remaining useful life prediction, prognostics, 
degradation modeling. 

I. INTRODUCTION 
ROGNOSTICS refers to the process of evaluating the current 
health of a system or a subcomponent and then predicting 

the remaining useful life (RUL) based on the current health 
condition [1]. It has played an increasingly important role in 
modern engineering systems and manufacturing processes due 
to its capability of reducing maintenance costs, improving 
operational efficiency and facilitating decision-making [2]. The 
prediction of RUL often requires a prognostic model, which 
can be generally classified into two groups, physical-based and 
data-driven based models [3]. The physical models require a 
complete understanding of the specific degradation 
mechanisms and are often infeasible or ineffective in practical 
applications due to high system complexity or unclear 
degrading mechanism [4]. On the other hand, the data-driven 
approaches often make use of condition monitoring (CM) data 
for prognostics and become more and more popular. CM 
signals, also known as degradation signals, are closely related 
with the underlying system degradation processes. They are 
collected in-situ through sensors during the system operations 
and provide great opportunities to monitor the health condition 
and predict the future failures. A common assumption in the 
CM signal based prognostics is that the system or 
subcomponent is considered failed once the CM signal crosses 
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a predefined failure threshold. With the fast development of 
sensing and condition monitoring technologies, there has been 
a rapid increase in the research of CM signal based prognostics 
over the past few years [2]. The existing data-driven 
prognostics that utilize CM signals can be grouped into two 
categories [3, 5, 6]: artificial intelligence (AI) techniques and 
statistical approaches. The typical AI techniques include the 
neural networks, support vector machines (SVM), decision 
tree, and fuzzy logic system, while the statistical approaches 
include various stochastic processes (e.g., Wiener process, 
Gamma process and inverse Gaussian process), state space 
models, and regression-based models, etc. The statistical 
approaches are more commonly used than AI techniques due to 
their excellent statistical properties in various aspects, e.g., 
interpretation and uncertainty quantification. A comprehensive 
review of the state-of-the-art in statistical methods for 
prognostics is given by Si et al [7] . 

The regression-based approach is one of the most natural 
ways to capture the evolution path of the degradation signals 
[8-10]. In these models, a parametric function, such as linear, 
polynomial and exponential function, is applied to model the 
population trend. The regression coefficients are often assumed 
to be random in order to characterize the individual 
heterogeneity. Unfortunately, these functional forms are often 
too simple or inadequate to model the whole degradation 
signals in many practical applications. Indeed, the real 
degradation signals are often irregular and show multiple 
phases where each phase needs a regression function. For 
example, Son et al. [11] showed that the resistance of vehicle 
batteries have obvious two phases where each phase can be 
well modelled by a quadratic function. Another well-known 
example is the bearing vibrational signal [12, 13], where a 
stable stage and a rapidly increasing stage can easily be 
observed. Bae and Kvam [14] demonstrated that the 
degradation path of vacuum fluorescent displays is not 
monotonic and it contains two or even three phases. Other 
examples include the degradation data for semiconductor laser 
diodes [15], high-performance capacitors [16], and the liquid 
coupling devices [17].  

To deal with this problem, various efforts have been made. 
Some researchers proposed to ignore the observations in the 
first phase, and then build a parametric model only based on the 
remaining data [8, 18, 19]. The RUL prediction is performed 
only at the second stage, based on the assumption that failures 
will not occur at the early stage. However, this strategy has two 
severe drawbacks. Firstly, the truncated data may contain 
valuable information about the future degradation path, and 
thus should be utilized to improve the prognostic accuracy. 
Secondly, the change-points that separate the two phases are 
treated as deterministic in these methods. However, they are 
random and vary across different units in practice. To fully 
utilize the observations in the early stage, some researchers 
proposed a two-phase model with a random change-point [11, 
13, 20, 21]. For instance, Son et al. [11] incorporated a 
change-point to the resistance signal in a joint prognostic model 
(joint modeling of reliability data and CM data) to predict the 
RUL of batteries. In their method, the concordance correlation 

coefficient (CCC) criterion is employed for online detection of 
the change-point. They found that the addition of a 
change-point improved the accuracy of prediction. Chen and 
Tsui [13] developed a two-phase model by extending Gebraeel 
et al.’s work [8], and a two-step empirical method is used for 
online change-point detection. However, although those 
models with one change-point improved the prediction 
accuracy for some specific cases, they may be inadequate or 
inapplicable to more complex degradation signals with three or 
even more degradation phases. Besides, the online detection of 
the change-point is often based on some heuristics, and is not 
fully incorporated into the Bayesian framework. To the best of 
our knowledge, very limited work with multiple phases is 
available in the existing literature, especially in the 
regression-based approaches. Feng et al. [16] proposed a 
multi-phase Wiener process model to predict the storage life of 
high-voltage-pulse capacitors. However, in their work, the 
number of change-points and their locations are deterministic 
and the same for all units, which is not realistic for real 
degradation signals with unit heterogeneity.  

Motivated by the aforementioned issues, this paper proposes 
a novel multiple change-point modelling approach to better 
capture the degradation path for prognostics improvement. To 
characterize the inherent unit-to-unit heterogeneity and make 
the model more flexible, all the model parameters are assumed 
to be random, including the number of change-points, their 
locations, and all model parameters of each segment. In the 
regression-based prognostics, two stages are often required: the 
off-line modeling of historical CM data, and the online 
Bayesian individual model updating and RUL prediction of a 
new unit. The estimated parameters of these random 
distributions in the off-line stage are used as hyperparameters in 
the second stage, where both the information of the historical 
data and the current health condition are combined for 
prognostics. However, due to the greatly increased model 
dimensionality and complexity, there are several critical 
challenges to be addressed. The first challenge is to specify 
appropriate priors for the change-points and how to estimate the 
hyperparameters efficiently. To address this issue, a novel 
stochastic process is proposed to model the occurrence of 
change-points and then a series of approaches are developed to 
estimate the hyperparameters in this paper. The second 
challenge lies in the online stage, where the posterior 
distributions of the total number of change-points on the CM 
signal, the number of change-points occurred, the location of 
the latest change-point, and the model parameters of the current 
segment have to be sequentially calculated for RUL prediction. 
The particle filters (PFs) [22-24] are currently standard ways in 
sequential Bayesian inference of multiple change-point models, 
due to their capability of tracking highly nonlinear state-space 
models. However, the PFs are notorious for their significant 
complexity and computational cost in handling high 
dimensional problems, which may limit their applications in 
online monitoring and prognostics. In this paper, we develop an 
innovative recursive updating algorithm to overcome this 
challenge, where the exact Bayesian inference or the closed 
form of all posterior distributions can be sequentially obtained. 
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The third major challenge is the RUL prediction. Due to the 
unknown number and locations of future change-points, the 
exact calculation of the RUL distribution is very complex and 
time-consuming. We derive a closed form of the RUL 
prediction and then propose a partial Monte Carlo (partial-MC) 
approach to control the computational cost of RUL estimation.  

The remainder of the paper is organized as follows. In 
Section 2, a multiple change-point model for the CM signals is 
presented. The prior specification and parameter estimation for 
the multiple change-point model is given in Section 3. Section 4 
presents the technical details on how to sequentially update the 
posterior distributions of all necessary model parameters and 
how to perform RUL prediction. Section 5 demonstrates the 
effectiveness and accuracy of the proposed method through 
numerical and case studies. The conclusion and discussion are 
given in Section 6. 

II. MULTIPLE CHANGE-POINT MODELING OF DEGRADATION 
SIGNAL 

A degradation model that can adequately describe the 
degradation path is essential for prognostics. In this section, we 
give the details of the multiple change-point model used in this 
paper. Specifically, we model the degradation signals with 
piecewise linear regression models, e.g., each segment is 
modelled as a polynomial of a certain order. With a proper 
number of change-points at certain locations, this model is 
capable of capturing both the non-linear and multiple-phase 
characteristics of various degradation signals. For illustration, 
we use thrust bearing vibration signals [8] with multiple-phase 
characteristic, as shown in Fig. 1. Obviously, the bearing 
operates under a stable condition at first and then degrades 
rapidly with two distinct phases. The degradation signal could 
be appropriately modelled with three line segments. If only one 
change-point is incorporated, the degradation signal after the 
stable stage is poorly fitted (Fig. 1a), which could consequently 
influence the prognostic accuracy (Fig. 1c). 

 

 
Fig. 1. Modeling and prediction of degradation signal with two line segments (a 
and c) and three line segments (b and d). The dark regions are prediction 
confidence intervals.  

 
Suppose there are 𝐼𝐼 historical CM signals. Let 𝒀𝒀𝑖𝑖 denote the 

CM signal of the i-th unit, and 𝒀𝒀𝑖𝑖 =
�𝑦𝑦𝑖𝑖 ,1,𝑦𝑦𝑖𝑖 ,2, … ,𝑦𝑦𝑖𝑖 ,𝑗𝑗 , … ,𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖�, 𝑖𝑖 = 1, … , 𝐼𝐼  where 𝑦𝑦𝑖𝑖 ,𝑗𝑗  is the j-th 
observation of unit 𝑖𝑖 at time 𝑡𝑡𝑖𝑖,𝑗𝑗, and 𝑛𝑛𝑖𝑖 is the total number of 
observations in the lifetime. Let 𝑘𝑘𝑖𝑖 denote the total number of 
change-points of unit 𝑖𝑖 before failure, which is modelled as a 

random variable to account for the unit-to-unit heterogeneity. 
Following a conventional notation of multiple change-point 
models [25], suppose the 𝑘𝑘𝑖𝑖  change-points are the 
integer-valued indices 𝑐𝑐𝑖𝑖1, 𝑐𝑐𝑖𝑖2, … , 𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖 . For notational 
convenience, we define 𝑐𝑐𝑖𝑖0 = 0  and 𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖+1 = 𝑛𝑛𝑖𝑖 . Then  𝑐𝑐𝑖𝑖0 =
0 < 𝑐𝑐𝑖𝑖1 < 𝑐𝑐𝑖𝑖2 < ⋯ < 𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖 < 𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖+1 = 𝑛𝑛𝑖𝑖 . Consequently, the 
sequence of observations �𝑦𝑦𝑖𝑖,1,𝑦𝑦𝑖𝑖,2, … , 𝑦𝑦𝑖𝑖,𝑗𝑗 , … ,𝑦𝑦𝑖𝑖,𝑛𝑛𝑖𝑖�  are 
partitioned into 𝑘𝑘𝑖𝑖 + 1 contiguous 
segments  𝑦𝑦𝑖𝑖,𝑐𝑐𝑖𝑖0+1:𝑐𝑐𝑖𝑖1 ,𝑦𝑦𝑖𝑖,𝑐𝑐𝑖𝑖1+1:𝑐𝑐𝑖𝑖2 , … 𝑦𝑦𝑖𝑖,𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖+1:𝑛𝑛𝑖𝑖 . Mathematically, 
the multiple change-point model can be expressed as 

 

𝑦𝑦𝑖𝑖,𝑗𝑗 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑿𝑿𝑖𝑖,𝑗𝑗,1𝜷𝜷𝑖𝑖

(1) + 𝜎𝜎𝑖𝑖
(1)𝜀𝜀𝑖𝑖𝑖𝑖  ,                  𝑖𝑖𝑖𝑖  0 < 𝑡𝑡𝑖𝑖,𝑗𝑗 ≤ 𝑡𝑡𝑖𝑖,𝑐𝑐𝑖𝑖1

   𝑿𝑿𝑖𝑖,𝑗𝑗,2𝜷𝜷𝑖𝑖
(2) + 𝜎𝜎𝑖𝑖

(2)𝜀𝜀𝑖𝑖𝑖𝑖,             𝑖𝑖𝑖𝑖  𝑡𝑡𝑖𝑖,𝑐𝑐𝑖𝑖1 < 𝑡𝑡𝑖𝑖,𝑗𝑗 ≤ 𝑡𝑡𝑖𝑖,𝑐𝑐𝑖𝑖2     
⋯ 

  𝑿𝑿𝑖𝑖,𝑗𝑗,𝑘𝑘𝑖𝑖𝜷𝜷𝑖𝑖
(𝑘𝑘𝑖𝑖) + 𝜎𝜎𝑖𝑖

(𝑘𝑘𝑖𝑖)𝜀𝜀𝑖𝑖𝑖𝑖 ,          𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖,𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖−1 < 𝑡𝑡𝑖𝑖,𝑗𝑗 ≤ 𝑡𝑡𝑖𝑖,𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖
𝑿𝑿𝑖𝑖,𝑗𝑗,𝑘𝑘𝑖𝑖+1𝜷𝜷𝑖𝑖

(𝑘𝑘𝑖𝑖+1) + 𝜎𝜎𝑖𝑖
(𝑘𝑘𝑖𝑖+1)𝜀𝜀𝑖𝑖𝑖𝑖,   𝑖𝑖𝑖𝑖  𝑡𝑡𝑖𝑖,𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖 < 𝑡𝑡𝑖𝑖,𝑗𝑗 ≤ 𝑡𝑡𝑖𝑖,𝑛𝑛𝑖𝑖

 (1) 

 
where 𝑿𝑿𝑖𝑖 ,𝑗𝑗,𝑠𝑠 is the vector of polynomial basis functions, i.e., 
𝑿𝑿𝑖𝑖,𝑗𝑗,𝑠𝑠 = �1, �𝑡𝑡𝑖𝑖,𝑗𝑗 − 𝑡𝑡𝑖𝑖,𝑐𝑐𝑖𝑖𝑖𝑖−1�,⋯ , �𝑡𝑡𝑖𝑖,𝑗𝑗 − 𝑡𝑡𝑖𝑖,𝑐𝑐𝑖𝑖𝑖𝑖−1�

𝑞𝑞𝑖𝑖𝑖𝑖�  where 𝑞𝑞𝑖𝑖𝑖𝑖  is 
the polynomial order of the s-th segment, 𝜷𝜷𝑖𝑖

(𝑠𝑠) is a vector of 
regression parameter and 𝜎𝜎𝑖𝑖

2(𝑠𝑠)  is noise variance of the s-th 
segment, and 𝜀𝜀𝑖𝑖𝑖𝑖 is a noise term following i.i.d. standard normal 
distribution. Note that the order of polynomial regression could 
vary across different segments. Give the position of a 
change-point, we assume that the observations before that 
change-point is independent of those after the change-point. 
For simplicity and without loss of generality, we assume that 
𝑡𝑡𝑖𝑖,𝑗𝑗 = 𝑗𝑗 in the rest of the paper, i.e., the sampling intervals equal 
to 1 for all units. Besides, given the total number of 
change-points 𝑘𝑘𝑖𝑖, we assume that the polynomial orders of the 
𝑘𝑘𝑖𝑖 + 1 segments are deterministic. 

The prognostics often involves two stages, namely, the 
offline stage for modeling and estimation, and the online stage 
for sequential model updating and RUL prediction. To 
characterize both the population trend and the individual 
heterogeneity, all the model parameters are assumed random in 
the offline modeling of the historical data. Denote a multiple 
change-point model as 𝓜𝓜 = �𝑘𝑘, �𝛿𝛿(𝑠𝑠)�

𝑠𝑠=1
𝑘𝑘+1

, �𝜽𝜽(𝑠𝑠)�
𝑠𝑠=1
𝑘𝑘+1

� where 𝑘𝑘 
is the number of change-points, 𝛿𝛿(𝑠𝑠) = 𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑠𝑠−1  is the 
duration of the 𝑠𝑠 th segment, and 𝜽𝜽(𝑠𝑠) = �𝜷𝜷(𝑠𝑠),𝜎𝜎2(𝑠𝑠)�  is the 
model parameters of the 𝑠𝑠th segment. In the offline modeling, 
all these parameters are modelled with appropriate 
distributions, and the hyperparameters are estimated. The 
estimated distributions are then used as priors in the online 
Bayesian model updating and RUL prediction. At the online 
stage, the posterior distributions of the individual model 
parameters are sequentially updated. The total number of 
change-points, the index of the current segment (or how many 
change-points have occurred), and the latest change-point (or 
the duration since the latest change-point) are three key 
parameters in Bayesian model updating and RUL prediction.  

Let 𝑦𝑦1:𝑡𝑡 denote the observations of a working unit up to the 
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current time 𝑡𝑡, and 𝒙𝒙𝑡𝑡 = (𝜽𝜽𝑡𝑡 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘) be the state vector where 
𝜽𝜽𝑡𝑡 = (𝜷𝜷𝑡𝑡 ,𝜎𝜎𝑡𝑡2) are the model parameters of the current segment, 
𝜏𝜏𝑡𝑡 be the latest change-point that has occurred (𝜏𝜏𝑡𝑡 ≤ 𝑡𝑡 − 1), and 
𝑠𝑠𝑡𝑡 be index of the current segment, e.g., 𝑠𝑠𝑡𝑡 = 1, 2, … , 𝑘𝑘 + 1. At 
the online stage, the posterior distribution 𝑝𝑝(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡) and the 
predictive density 𝑝𝑝(𝑦𝑦𝑡𝑡+𝐿𝐿|𝑦𝑦1:𝑡𝑡)  for integer 𝐿𝐿 > 0  have to be 
calculated. However, these distributions are generally 
intractable. As mentioned earlier, although the particle filtering 
techniques or sequential Monte Carlo techniques are capable of 
handling these nonlinear intractable problems, their efficiency 
is significantly affected by their notorious particle degeneracy 
and impoverishment issues, and the enormous computational 
cost [22]. In this paper, we find that by using conjugate priors, 
the closed form of the posterior distributions and the predictive 
density can be recursively and efficiently calculated. The 
overall prognostic framework with offline and online stages is 
summarized in Fig. 2. The following two sections give the 
technical details about the prior specification and parameter 
estimation at the offline stage, and the posterior distribution 
estimation and RUL prediction at the online stage. 

 
Fig. 2. Illustration of the proposed prognostic framework. 

III. PRIOR SPECIFICATION AND PARAMETER ESTIMATION 

A. Specification of Priors 
Prior distribution plays an important role in Bayesian data 

analysis. Informative priors are often preferred if historical data 
is available, since they reflect the strong belief of a new unit 
and can lead to more accurate posterior inference of the 
degradation path. In this section, the priors for the multiple 
change-point model 𝓜𝓜 = �𝑘𝑘, �𝛿𝛿(𝑠𝑠)�

𝑠𝑠=1
𝑘𝑘+1

, �𝜽𝜽(𝑠𝑠)�
𝑠𝑠=1
𝑘𝑘+1

�  are 
specified and estimated.  

In the existing literature, the change-points in the multiple 
change-point models are often modelled through a Markov 
process where the occurrence of the next change-point only 
depends on the duration since the occurrence of the previous 
one [22, 26-29]. This process indirectly specifies a joint prior 
on the number of change-points and the durations between 
successive change-points for a given time series data. For 
example, when the durations are continuous variables, a 
Poisson process can be applied, where the durations 𝛿𝛿(𝑠𝑠), 𝑠𝑠 =

1, … , 𝑘𝑘 + 1 follow an i.i.d. exponential distribution [28]. The 
joint prior of 𝑘𝑘 and �𝛿𝛿(𝑠𝑠)�

𝑠𝑠=1
𝑘𝑘+1

 for a time series data of duration 
𝑇𝑇 can be easily derived as 

 

𝜋𝜋 �𝑘𝑘, �𝛿𝛿(𝑠𝑠)�
𝑠𝑠=1
𝑘𝑘+1

�   = ��𝜋𝜋�𝛿𝛿(𝑠𝑠)|𝜆𝜆�
𝑘𝑘

𝑠𝑠=1

� 𝑃𝑃(𝛿𝛿(𝑘𝑘+1) ≥ 𝑇𝑇 − 𝑐𝑐𝑘𝑘

= 𝜆𝜆𝑘𝑘 exp(−𝜆𝜆𝜆𝜆) 

(2) 

 
where 𝜆𝜆 is the Poisson rate. If the durations 𝛿𝛿(𝑠𝑠) are positive 
integers or the change-point locations are the observation 
indices, which is most conventional in the existing literature, a 
Bernoulli process is often applied, or equivalently a geometric 
distribution is applied to the durations [22, 26, 27, 29]. The 
joint density is simply 𝜋𝜋 �𝑘𝑘, �𝛿𝛿(𝑠𝑠)�

𝑠𝑠=1
𝑘𝑘+1

� = 𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑛𝑛−1−𝑘𝑘 
where 𝑝𝑝 is the parameter of the Bernoulli distribution and 𝑛𝑛 is 
the total number of observations. However, such homogeneous 
Markov process does not fit the degradation signals well. 
Firstly, it does not consider the segment heterogeneity. To 
make the prior more informative, each segment should has its 
own distribution parameters for the duration. Secondly, the 
support size of the discrete variable 𝑘𝑘 increases with the total 
number of observations, which is unrealistic for degradation 
modeling, where the maximum number of segments should be 
controlled. In this paper, we propose a special 
nonhomogeneous Markov process where discrete distributions 
that are independent of the number of observations are selected 
for the number of change-points 𝑘𝑘, and then the positions of the 
change-points are modelled as a nonhomogeneous Markov 
process with durations between successive change-points 
depending on both 𝑘𝑘 and the segment index 𝑠𝑠. The joint prior 
for both change-points and model parameters could be 
formulated as 

 

𝜋𝜋(𝓜𝓜) = 𝜋𝜋(𝑘𝑘)� 𝜋𝜋(𝛿𝛿(𝑠𝑠)|𝑘𝑘)
𝑘𝑘

𝑠𝑠=1
� 𝜋𝜋(𝜽𝜽(𝑠𝑠)|𝑘𝑘)

𝑘𝑘+1

𝑠𝑠=1
 (3) 

 
In this paper, we select a categorical distribution for 𝑘𝑘 which 

is independent of 𝑛𝑛, i.e., 𝜋𝜋(𝑘𝑘 = 𝑚𝑚) = 𝑝𝑝𝑚𝑚 and ∑ 𝑝𝑝𝑚𝑚𝑚𝑚 = 1. The 
phase durations, which are discrete in this paper, are 
approximately modelled with continuous distributions, as they 
are more flexible in controlling mean and variance than most of 
the existing discrete probability distributions. For the sake of 
simplicity and without loss of generality, we assume that the 
duration of each phase follows a normal distribution, 
𝛿𝛿(𝑠𝑠)|𝑘𝑘~𝑁𝑁(𝛿𝛿0

(𝑘𝑘,𝑠𝑠),𝜎𝜎0
2(𝑘𝑘,𝑠𝑠)) . For the model parameters of each 

phase, the commonly used normal and inverse Gamma (IG) 
conjugate priors are assumed: 

 
 𝜋𝜋�𝜷𝜷(𝒔𝒔),𝜎𝜎2(𝑠𝑠)�𝑘𝑘� = 𝜋𝜋�𝜎𝜎2(𝑠𝑠)�𝑘𝑘�𝜋𝜋�𝜷𝜷(𝒔𝒔)�𝜎𝜎2(𝑠𝑠), 𝑘𝑘�

= 𝐼𝐼𝐼𝐼(𝜎𝜎2(𝑠𝑠)|𝛼𝛼1
(𝑘𝑘,𝑠𝑠),𝛼𝛼2

(𝑘𝑘,𝑠𝑠))𝑁𝑁(𝜷𝜷(𝒔𝒔)|𝝁𝝁0
(𝑘𝑘,𝑠𝑠),𝜎𝜎2(𝑠𝑠)𝚺𝚺0

(𝑘𝑘,𝑠𝑠)) 
(4) 

For notational convenience, in the rest of the paper we use the 
double superscript (𝑘𝑘, 𝑠𝑠) to denote the parameter or variable of 

Offline Stage

Historical dataset
{𝒀𝒀𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝐼𝐼}

Model estimation 
of each unit 
through BIC:

{𝓜𝓜�𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝐼𝐼}

Hyperparameter 
estimation: 𝝍𝝍�

{𝑝̂𝑝𝑚𝑚,𝛼𝛼�1
𝑘𝑘,𝑠𝑠 ,𝛼𝛼�2

(𝑘𝑘,𝑠𝑠)}

{𝛿̂𝛿0
𝑘𝑘,𝑠𝑠 ,𝜎𝜎02�

𝑘𝑘,𝑠𝑠
},

{𝝁𝝁�0
𝑘𝑘,𝑠𝑠 ,𝚺𝚺�0

2(𝑘𝑘,𝑠𝑠)} 

Exact Bayesian 
model updating

𝑝𝑝 𝒙𝒙𝑡𝑡 𝑦𝑦1:𝑡𝑡

RUL prediction

𝑝𝑝 𝑟𝑡𝑡|𝑦𝑦1:𝑡𝑡

Online Stage

t

R
U

L
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𝑠𝑠 th segment conditioning that there are in total 𝑘𝑘 
change-points, e.g., 𝜷𝜷(𝑘𝑘,𝑠𝑠) = 𝜷𝜷(𝒔𝒔)|𝑘𝑘.  

B. Parameter Estimation from Historical Data 
Informative priors can be obtained by estimating all the 

hyperparameters through historical data. Let 𝝍𝝍  denote the 
vector of all hyperparameters, i.e., 
{𝑝𝑝𝑚𝑚}, �𝛼𝛼1

(𝑘𝑘,𝑠𝑠),𝛼𝛼2
(𝑘𝑘,𝑠𝑠)� and  {𝝁𝝁0

(𝑘𝑘,𝑠𝑠),𝚺𝚺0
(𝑘𝑘,𝑠𝑠)} . A natural way to 

estimate 𝝍𝝍  is to maximize the marginal likelihood of 𝐼𝐼 
historical CM signals [13]: 

 

𝝍𝝍� = arg max
𝝍𝝍

��𝑝𝑝(𝒀𝒀𝑖𝑖|𝓜𝓜𝑖𝑖)𝜋𝜋(𝓜𝓜𝑖𝑖|𝝍𝝍)
𝐼𝐼

𝑖𝑖=1

𝑑𝑑𝓜𝓜𝑖𝑖 (5) 

 
However, the marginal likelihood above is very complex and 
generally intractable. There are two approaches to address this 
issue, one being the expectation-maximization (EM) algorithm 
[15], where the missing variables are the change-point locations 
and the changing model parameters of each degradation signal,  
and the other one being the empirical two-stage estimation 
method, which is a simpler alternative to EM algorithm for the 
random effects models or the Bayesian hierarchical models [11, 
13, 30]. Compared with the EM algorithm, the empirical 
two-stage estimation is much easier and more efficient to 
implement. Although some biases may be introduced [31], it is 
often negligible according to the comparison study [32]. 
Therefore, for simplicity, we use the empirical two-stage 
estimation method. Specifically, the model parameters 𝓜𝓜�𝑖𝑖 of 
each historical unit 𝑖𝑖 = 1, … , 𝐼𝐼 are obtained at the first stage, 
and then the estimated parameters {𝓜𝓜�𝑖𝑖 , 𝑖𝑖 = 1, … , 𝐼𝐼} are treated 
as observed values in the estimation of hyperparameters 
through the maximum likelihood estimation (MLE) approach.  

For multiple change-point models with unknown 
change-points, the typical MLE is not applicable for parameter 
estimation, since increasing the number of change-points will 
always increase the likelihood and result in over-fitting issue. 
To address this issue, we use the Bayesian information criterion 
(BIC) [33] for change-point model selection and the 
corresponding segment parameter estimation. For notational 
convenience, we ignore the subscript 𝑖𝑖 for individual unit in the 
following four equations. The parameter estimation for each 
unit can be formulated as 

 

𝓜𝓜� = arg min
𝓜𝓜

(−2𝑙𝑙(𝓜𝓜|𝒀𝒀) + 𝐾𝐾 log𝑛𝑛) (6) 

 
where 𝐾𝐾  is the total number of parameters, including 
change-points, regression parameters, and noise variances, and 
𝑙𝑙(𝓜𝓜|𝒀𝒀) is the log-likelihood function expressed by 

𝑙𝑙(𝓜𝓜|𝒀𝒀) = � �−
1
2

(𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑠𝑠−1) log�2𝜋𝜋𝜎𝜎2(𝑘𝑘,𝑠𝑠)�
𝑘𝑘+1

𝑠𝑠=1

−
�𝑦𝑦𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠

𝑇𝑇 − 𝑿𝑿1,𝑐𝑐𝑠𝑠−𝑐𝑐𝑠𝑠−1𝜷𝜷
(𝑘𝑘,𝑠𝑠)�

2

2𝜎𝜎2(𝑘𝑘,𝑠𝑠) � 
(7) 

where 𝑿𝑿1,𝑐𝑐𝑠𝑠−𝑐𝑐𝑠𝑠−1  is the design matrix, with 𝑿𝑿𝑡𝑡1,𝑡𝑡2  of order 𝑞𝑞 
defined as  

 

𝑿𝑿𝑡𝑡1,𝑡𝑡2 = �

1 1 ⋯ 1
𝑡𝑡1 𝑡𝑡1 + 1 ⋯ 𝑡𝑡2
⋯ ⋯ ⋯ ⋯
𝑡𝑡1
𝑞𝑞 (𝑡𝑡1 + 1)𝑞𝑞 ⋯ 𝑡𝑡2

𝑞𝑞

�

𝑇𝑇

 (8) 

 
Conditioning on the fixed change-points, i.e., �𝑘𝑘, �𝛿𝛿(𝑘𝑘,𝑠𝑠)�

𝑠𝑠=1
𝑘𝑘+1

�, 
the parameters of each segment that minimize Eq. (6) can be 
easily obtained through MLE of classical linear models 

 
𝜷𝜷�(𝑘𝑘,𝑠𝑠)   = �𝑿𝑿1,𝑐𝑐𝑠𝑠−𝑐𝑐𝑠𝑠−1

𝑇𝑇 𝑿𝑿1,𝑐𝑐𝑠𝑠−𝑐𝑐𝑠𝑠−1�
−1𝑿𝑿1,𝑐𝑐𝑠𝑠−𝑐𝑐𝑠𝑠−1

𝑇𝑇 𝑦𝑦𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠
𝑇𝑇 , 

𝜎𝜎2�
(𝑘𝑘,𝑠𝑠)

= �𝑦𝑦𝑐𝑐𝑠𝑠−1+1:𝑐𝑐𝑠𝑠
𝑇𝑇 − 𝑿𝑿1,𝑐𝑐𝑠𝑠−𝑐𝑐𝑠𝑠−1𝜷𝜷�

(𝑘𝑘,𝑠𝑠)�
2

/𝛿𝛿(𝑘𝑘,𝑠𝑠) 
(9) 

 
Therefore, for each possible model defined by change-points, 
the BIC value can be easily evaluated. Suppose the estimated 

parameters are 𝓜𝓜�𝑖𝑖 = �𝑘𝑘�𝑖𝑖, �𝛿̂𝛿𝑖𝑖
(𝑘𝑘� 𝑖𝑖,𝑠𝑠)�

𝑠𝑠=1

𝑘𝑘� 𝑖𝑖
, �𝜷𝜷�𝑖𝑖

(𝑘𝑘� 𝑖𝑖,𝑠𝑠),𝜎𝜎2�𝑖𝑖
(𝑘𝑘� 𝑖𝑖,𝑠𝑠)

�
𝑠𝑠=1

𝑘𝑘� 𝑖𝑖+1
� 

for 𝑖𝑖 = 1, … , 𝐼𝐼 . The second stage is to estimate the 
hyperparameters based on 𝓜𝓜�𝑖𝑖 , 𝑖𝑖 = 1, … , 𝐼𝐼  through MLE 
approach. The MLE of hyperparameters 𝑝𝑝𝑚𝑚  can be easily 
obtained as  

 

𝑝̂𝑝𝑚𝑚 =
1
𝐼𝐼
�𝟏𝟏𝑘𝑘�𝑖𝑖=𝑚𝑚

𝐼𝐼

𝑖𝑖=1

 (10) 

 
For the hyperparameters (𝛼𝛼1

(𝑘𝑘,𝑠𝑠),𝛼𝛼2
(𝑘𝑘,𝑠𝑠))  in the inverse Gamma 

distribution, the MLE using observations 

�𝜎𝜎2�𝑖𝑖
�𝑘𝑘� 𝑖𝑖,𝑠𝑠��𝑘𝑘�𝑖𝑖 = 𝑘𝑘, 𝑖𝑖 = 1, … , 𝐼𝐼�  can be estimated numerically 

through various optimization algorithms. The MLE of the 
hyperparameters (𝛿𝛿0

(𝑘𝑘,𝑠𝑠),𝜎𝜎0
2(𝑘𝑘,𝑠𝑠)) for the segment duration can 

be obtained straightforwardly as  
 

 𝛿̂𝛿0
(𝑘𝑘,𝑠𝑠) =

∑ 𝛿̂𝛿𝑖𝑖
�𝑘𝑘� 𝑖𝑖,𝑠𝑠�𝟏𝟏𝑘𝑘� 𝑖𝑖=𝑘𝑘/∑ 𝟏𝟏𝑘𝑘�𝑖𝑖=𝑘𝑘

𝐼𝐼
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1

∑ 𝟏𝟏𝑘𝑘�𝑖𝑖=𝑘𝑘
𝐼𝐼
𝑖𝑖=1

 

𝜎𝜎02�
(𝑘𝑘,𝑠𝑠)

=
∑ �𝛿̂𝛿𝑖𝑖

�𝑘𝑘� 𝑖𝑖,𝑠𝑠� − 𝛿̂𝛿0
(𝑘𝑘,𝑠𝑠)�

2
𝟏𝟏𝑘𝑘�𝑖𝑖=𝑘𝑘

𝐼𝐼
𝑖𝑖=1

∑ 𝟏𝟏𝑘𝑘�𝑖𝑖=𝑘𝑘
𝐼𝐼
𝑖𝑖=1

 

(11) 

 
For the hyperparameters 𝝁𝝁0

(𝑘𝑘,𝑠𝑠)and 𝚺𝚺0
(𝑘𝑘,𝑠𝑠), closed forms can be 

derived as 
 

𝝁𝝁�0
(𝑘𝑘,𝑠𝑠) = �

𝜷𝜷�𝑖𝑖
�𝑘𝑘� 𝑖𝑖,𝑠𝑠�𝟏𝟏𝑘𝑘� 𝑖𝑖=𝑘𝑘

𝜎𝜎2�𝑖𝑖
�𝑘𝑘� 𝑖𝑖,𝑠𝑠�

/�
𝟏𝟏𝑘𝑘�𝑖𝑖=𝑘𝑘

𝜎𝜎2�𝑖𝑖
�𝑘𝑘� 𝑖𝑖,𝑠𝑠�

𝐼𝐼

𝑖𝑖=1

𝐼𝐼

𝑖𝑖=1

 

𝚺𝚺�0
(𝑘𝑘,𝑠𝑠) =

∑ �𝜷𝜷�𝑖𝑖
�𝑘𝑘� 𝑖𝑖,𝑠𝑠� − 𝝁𝝁�0

(𝑘𝑘,𝑠𝑠)� �𝜷𝜷�𝑖𝑖
�𝑘𝑘� 𝑖𝑖,𝑠𝑠� − 𝝁𝝁�0

(𝑘𝑘,𝑠𝑠)�
𝑇𝑇
𝟏𝟏𝑘𝑘�𝑖𝑖=𝑘𝑘

𝐼𝐼
𝑖𝑖=1

∑ 𝟏𝟏𝑘𝑘�𝑖𝑖=𝑘𝑘
𝐼𝐼
𝑖𝑖=1

 

(12) 

 
The details of the derivation can be found in Appendix A.  
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IV. EXACT BAYESIAN ONLINE MODEL UPDATING AND RUL 
PREDICTION 

Once the prior information from the historical data is 
obtained, the model updating (i.e., posterior inference) and 
RUL prediction can be conducted for a specific in-service unit 
at the online stage. In this section we will discuss how to update 
the model sequentially through exact Bayesian inference and 
how to predict the RUL for a new in-service unit.  

A. Exact Bayesian Online Model Updating 
The model updating of a working unit is an essential step for 

health condition monitoring and RUL prediction. It refers to the 
posterior distribution evaluation of all model parameters that 
could capture the current health condition and future 
degradation evolution. In this paper, the model updating is to 
calculate the posterior distribution 𝑝𝑝(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡) where the state 
vector 𝒙𝒙𝑡𝑡 = (𝜽𝜽𝑡𝑡 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘). Generally, this posterior distribution 
is intractable and sequential Monte Carlo techniques are 
needed. Fortunately, due to the assignment of conjugate priors 
for 𝜽𝜽, the posterior could be recursively calculated, which is 
shown as follows.  

To calculate the joint posterior 𝑝𝑝(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡), we first calculate 
the posterior distribution of the discrete components 
𝑃𝑃(𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘|𝑦𝑦1:𝑡𝑡), and then calculate the posterior distribution of 
the continuous components conditioning on the discrete 
components, i.e., 𝑝𝑝(𝜽𝜽𝑡𝑡|𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡). That is  

 

𝑝𝑝(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡) = 𝑃𝑃(𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘|𝑦𝑦1:𝑡𝑡)𝑝𝑝(𝜽𝜽𝑡𝑡|𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡) (13) 

 
The conditional posterior distribution of the continuous 
components 𝑝𝑝(𝜽𝜽𝑡𝑡|𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡)  can be calculated based on 
Theorem 1 as follows.  

  
Theorem 1 Suppose the conjugate prior in Eq.(4) is assigned to 
𝜷𝜷𝑡𝑡 and 𝜎𝜎𝑡𝑡2. 
𝜋𝜋(𝜷𝜷𝑡𝑡,𝜎𝜎𝑡𝑡2|𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘) = 𝐼𝐼𝐼𝐼 �𝜎𝜎𝑡𝑡2�𝛼𝛼1

(𝑘𝑘,𝑠𝑠),𝛼𝛼2
(𝑘𝑘,𝑠𝑠)�𝑁𝑁 �𝜷𝜷𝑡𝑡�𝝁𝝁0

(𝑘𝑘,𝑠𝑠),𝜎𝜎𝑡𝑡2𝚺𝚺0
(𝑘𝑘,𝑠𝑠)� 

Then  
 

(𝜎𝜎𝑡𝑡2|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘,𝑦𝑦1:𝑡𝑡)~𝐼𝐼𝐼𝐼 �𝛼𝛼1
(𝑘𝑘,𝑠𝑠) +

𝑡𝑡 − 𝑗𝑗
2

,𝛼𝛼2
(𝑘𝑘,𝑠𝑠) +

𝐻𝐻𝑗𝑗+1,𝑡𝑡
(𝑘𝑘,𝑠𝑠)

2
� 

(𝜷𝜷𝑡𝑡|𝜎𝜎𝑡𝑡2, 𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘,𝑦𝑦1:𝑡𝑡)~𝑁𝑁(𝝁𝝁𝑗𝑗+1,𝑡𝑡 ,𝜎𝜎𝑡𝑡2𝚺𝚺𝑗𝑗+1,𝑡𝑡) 
(14) 

 
where  

 

𝚺𝚺𝑗𝑗+1,𝑡𝑡 = �𝑿𝑿1,𝑡𝑡−𝑗𝑗
𝑇𝑇 𝑿𝑿1,𝑡𝑡−𝑗𝑗 + �𝚺𝚺0

(𝑘𝑘,𝑠𝑠)�
−1
�
−1

 

𝑵𝑵𝑗𝑗+1,𝑡𝑡 = ��𝚺𝚺0
(𝑘𝑘,𝑠𝑠)�

−1
𝝁𝝁0

(𝑘𝑘,𝑠𝑠) + 𝑿𝑿1,𝑡𝑡−𝑗𝑗
𝑇𝑇 𝑦𝑦𝑗𝑗+1:𝑡𝑡� 

𝝁𝝁𝑗𝑗+1,𝑡𝑡 = 𝚺𝚺𝑗𝑗+1,𝑡𝑡𝑵𝑵𝑗𝑗+1,𝑡𝑡 

𝐻𝐻𝑗𝑗+1,𝑡𝑡
(𝑘𝑘,𝑠𝑠) = 𝑦𝑦𝑗𝑗+1:𝑡𝑡

𝑇𝑇 𝑦𝑦𝑗𝑗+1:𝑡𝑡 + �𝝁𝝁0
(𝑘𝑘,𝑠𝑠)�

𝑇𝑇
�𝚺𝚺0

(𝑘𝑘,𝑠𝑠)�
−1
𝝁𝝁0

(𝑘𝑘,𝑠𝑠)

− 𝑵𝑵𝑗𝑗+1,𝑡𝑡
𝑇𝑇 𝚺𝚺𝑗𝑗+1,𝑡𝑡𝑵𝑵𝑗𝑗+1,𝑡𝑡 

(15) 

The proof of Theorem 1 can be found in Appendix B. The 
calculation of 𝑃𝑃(𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘|𝑦𝑦1:𝑡𝑡) is the main challenge. It can be 
recursively updated as  

 
𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡) 

∝ 𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡−1)𝑝𝑝(𝑦𝑦𝑡𝑡|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘,𝑦𝑦1:𝑡𝑡−1) (16) 

 
Eq. (16) consists of two parts. The first part is the predictive 
probability mass function (PMF) 𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡−1) 
which can be recursively calculated by 

 
𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡−1) 

= �𝑃𝑃(𝜏𝜏𝑡𝑡−1 = 𝑗𝑗′ , 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠′, 𝑘𝑘|𝑦𝑦1:𝑡𝑡−1)𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡
𝑗𝑗′ ,𝑠𝑠′

= 𝑠𝑠|𝜏𝜏𝑡𝑡−1 = 𝑗𝑗′, 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠′, 𝑘𝑘, 𝑦𝑦1:𝑡𝑡−1) 

(17) 

 
where 𝑃𝑃(𝜏𝜏𝑡𝑡−1 = 𝑗𝑗′, 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠′, 𝑘𝑘|𝑦𝑦1:𝑡𝑡−1)  is the posterior 
distribution obtained at the previous time step, and 𝑃𝑃(𝜏𝜏𝑡𝑡 =
𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠|𝜏𝜏𝑡𝑡−1 = 𝑗𝑗′, 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠′, 𝑘𝑘,𝑦𝑦1:𝑡𝑡−1)  is the predictive 
Markov transition probability. Based on the specified 
nonhomogeneous Markov process for change-points, this 
predictive Markov transition probability can be derived as 
 
𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠|𝜏𝜏𝑡𝑡−1 = 𝑗𝑗′, 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠′, 𝑘𝑘, 𝑦𝑦1:𝑡𝑡−1)

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 1− 𝐺𝐺(𝑘𝑘,𝑠𝑠′)(𝑡𝑡 − 𝑗𝑗′)

1 − 𝐺𝐺(𝑘𝑘,𝑠𝑠′)(𝑡𝑡 − 𝑗𝑗′ − 1)
 ,       if 𝑗𝑗 = 𝑗𝑗′and 𝑠𝑠 = 𝑠𝑠′ < 𝑘𝑘 + 1

1,                                  if 𝑗𝑗 = 𝑗𝑗′ and 𝑠𝑠 = 𝑠𝑠′ = 𝑘𝑘 + 1
𝐺𝐺�𝑘𝑘,𝑠𝑠′�(𝑡𝑡 − 𝑗𝑗′) − 𝐺𝐺�𝑘𝑘,𝑠𝑠′�(𝑡𝑡 − 𝑗𝑗′ − 1)

1 − 𝐺𝐺(𝑘𝑘,𝑠𝑠′)(𝑡𝑡 − 𝑗𝑗′ − 1)
, if 𝑗𝑗 = 𝑡𝑡 − 1  and 𝑠𝑠 = 𝑠𝑠′ + 1

                                                                                                        ≤ 𝑘𝑘 + 1
 

0,                                               otherwise

 (18) 

 
where 𝐺𝐺(𝑘𝑘,𝑠𝑠′)(∙) is the cumulative distribution function of 𝑠𝑠′-th 
segment duration for a CM signal with 𝑘𝑘 change-points.  

The second part of Eq. (16) is 𝑝𝑝(𝑦𝑦𝑡𝑡|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘 =
𝑚𝑚, 𝑦𝑦1:𝑡𝑡−1), namely, the predictive density function of 𝑦𝑦𝑡𝑡 . It is 
the only term that involves the newest observation 𝑦𝑦𝑡𝑡  in the 
posterior updating of the discrete components. Once this 
density function is known, the posterior distribution of the 
discrete components can be recursively updated based on Eq. 
(16), (17) and (18). Therefore this part is critically important. It 
can be calculated based on Theorem 2 as follows.  

 
Theorem 2 Denote 𝑿𝑿𝑡𝑡 = [1, 𝑡𝑡,⋯ , 𝑡𝑡𝑞𝑞]  where 𝑞𝑞  is the 
polynomial order, then if 𝑗𝑗 < 𝑡𝑡 − 1, 
 
�𝑦𝑦𝑡𝑡|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘, 𝑦𝑦𝑗𝑗+1:𝑡𝑡−1�~ 

𝑡𝑡1 �2𝛼𝛼1
(𝑘𝑘,𝑠𝑠) + 𝑡𝑡 − 𝑗𝑗 − 1,𝑿𝑿𝑡𝑡−𝑗𝑗𝝁𝝁𝑗𝑗+1,𝑡𝑡−1,

2𝛼𝛼2
(𝑘𝑘,𝑠𝑠) + 𝐻𝐻𝑗𝑗+1:𝑡𝑡−1

(𝑘𝑘,𝑠𝑠)

2𝛼𝛼1
(𝑘𝑘,𝑠𝑠) + 𝑡𝑡 − 𝑗𝑗 − 1

�1

+ 𝑿𝑿𝑡𝑡−𝑗𝑗𝚺𝚺𝑗𝑗+1,𝑡𝑡−1𝑿𝑿𝑡𝑡−𝑗𝑗𝑇𝑇 �� 

(19) 

And if 𝑗𝑗 = 𝑡𝑡 − 1,  
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(𝑦𝑦𝑡𝑡|𝜏𝜏𝑡𝑡 = 𝑡𝑡 − 1, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘)~𝑡𝑡1 �2𝛼𝛼1
(𝑘𝑘,𝑠𝑠),𝑿𝑿1𝝁𝝁0

(𝑘𝑘,𝑠𝑠),
𝛼𝛼2

(𝑘𝑘,𝑠𝑠)

𝛼𝛼1
(𝑘𝑘,𝑠𝑠) �1

+ 𝑿𝑿1𝚺𝚺0
(𝑘𝑘,𝑠𝑠)𝑿𝑿1𝑇𝑇�� 

(20) 

 
The proof of Theorem 2 is given in Appendix C.  

B. RUL Prediction 
RUL prediction is to determine the time when the signal first 

hit the failure threshold  𝛤𝛤. For an operating unit, denote the 
remaining useful life as 𝑅𝑅𝑡𝑡 at current time 𝑡𝑡. Then 𝑅𝑅𝑡𝑡  can be 
defined as 𝑅𝑅𝑡𝑡 = inf  {𝐿𝐿: 𝑦𝑦𝑡𝑡+𝐿𝐿 ≥ 𝛤𝛤|𝑦𝑦1:𝑡𝑡} . The cumulative 
distribution function (CDF) of 𝑅𝑅𝑡𝑡  conditional on available 
observations 𝑦𝑦1:𝑡𝑡  (also called conditional reliability function) 
can be expressed as 

 

𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝑦𝑦1:𝑡𝑡) = ���𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡
𝑗𝑗𝑠𝑠𝑘𝑘

= 𝑠𝑠, 𝑘𝑘,𝑦𝑦1:𝑡𝑡)𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡) 
(21) 

 
where 𝑃𝑃(𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘|𝑦𝑦1:𝑡𝑡)  is recursively calculated through Eq. 
(16) in the model updating stage, and 𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡) 
can be reformulated as  

 
𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘,𝑦𝑦1:𝑡𝑡) 

= 𝑃𝑃(𝑦𝑦𝑡𝑡+1 < 𝛤𝛤, … , 𝑦𝑦𝑡𝑡+𝐿𝐿 < 𝛤𝛤|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘,𝑦𝑦1:𝑡𝑡) (22) 

 
The calculation of Eq. (22) depends on the segment index 𝑠𝑠𝑡𝑡. If 
𝑠𝑠𝑡𝑡 = 𝑘𝑘 + 1, or the degradation process is at the final segment, it 
can be shown that the vector 𝑦𝑦𝑡𝑡+1:𝑡𝑡+𝐿𝐿 follows a multivariate 𝑡𝑡 
distribution of dimension 𝐿𝐿, as shown in Eq. (23) of Theorem 3.  

 
Theorem 3  If 𝑠𝑠𝑡𝑡 = 𝑘𝑘 + 1,  
 

�𝑦𝑦𝑡𝑡+1:𝑡𝑡+𝐿𝐿|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑘𝑘 + 1,𝑘𝑘, 𝑦𝑦𝑗𝑗+1:𝑡𝑡� 

~𝑡𝑡𝐿𝐿 �2𝛼𝛼1
(𝑘𝑘,𝑘𝑘+1) + 𝑡𝑡 − 𝑗𝑗,𝑿𝑿𝑡𝑡+1−𝑗𝑗,𝑡𝑡+𝐿𝐿−𝑗𝑗𝝁𝝁𝑗𝑗+1,𝑡𝑡,

2𝛼𝛼2
(𝑘𝑘,𝑘𝑘+1) +𝐻𝐻𝑗𝑗+1:𝑡𝑡

(𝑘𝑘,𝑘𝑘+1)

2𝛼𝛼1
(𝑘𝑘,𝑘𝑘+1) + 𝑡𝑡 − 𝑗𝑗

�𝑰𝑰

+ 𝑿𝑿𝑡𝑡+1−𝑗𝑗,𝑡𝑡+𝐿𝐿−𝑗𝑗𝚺𝚺𝑗𝑗+1,𝑡𝑡𝑿𝑿𝑡𝑡+1−𝑗𝑗,𝑡𝑡+𝐿𝐿−𝑗𝑗
𝑇𝑇 ��, 

(23) 

and 
(𝑦𝑦𝑡𝑡+1:𝑡𝑡+𝐿𝐿|𝜏𝜏𝑡𝑡+1 = 𝑗𝑗, 𝑠𝑠𝑡𝑡+1 = 𝑘𝑘 + 1, 𝑘𝑘) 

~𝑡𝑡𝐿𝐿 �2𝛼𝛼1
(𝑘𝑘,𝑘𝑘+1),𝑿𝑿𝑡𝑡+1−𝑗𝑗,𝑡𝑡+𝐿𝐿−𝑗𝑗𝝁𝝁0

(𝑘𝑘,𝑘𝑘+1),
𝛼𝛼2

(𝑘𝑘,𝑘𝑘+1)

𝛼𝛼1
(𝑘𝑘,𝑘𝑘+1) �𝑰𝑰

+ 𝑿𝑿𝑡𝑡+1−𝑗𝑗,𝑡𝑡+𝐿𝐿−𝑗𝑗𝚺𝚺0
(𝑘𝑘,𝑘𝑘+1)𝑿𝑿𝑡𝑡+1−𝑗𝑗,𝑡𝑡+𝐿𝐿−𝑗𝑗

𝑇𝑇 �� 

(24) 

 
The proof of Theorem 3 is similar to Theorem 2 and thus is not 
provided here. Based on Theorem 3, if 𝑠𝑠𝑡𝑡 = 𝑘𝑘 + 1, i.e., the 
degradation is at the final stage, 𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑘𝑘 +
1, 𝑘𝑘,𝑦𝑦1:𝑡𝑡) = MT𝑡𝑡+1,𝑡𝑡+𝐿𝐿(𝛤𝛤) where MT𝑡𝑡+1:𝑡𝑡+𝐿𝐿(𝛤𝛤) is the CDF of 

L-dimensional t distribution given in Eq. (23). If 𝑠𝑠𝑡𝑡 < 𝑘𝑘 + 1, 
however, the future change-points, especially the final 
change-point, need to be predicted for RUL prediction. The 
calculation for the general case is derived as follows. Denote 
the last or final change-point as 𝑐𝑐𝑘𝑘, then  
 

𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘, 𝑦𝑦1:𝑡𝑡) = 

� 𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝑐𝑐𝑘𝑘, 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡)
𝑐𝑐𝑘𝑘

𝑃𝑃(𝑐𝑐𝑘𝑘|𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡) (25) 

 
where 𝑃𝑃(𝑐𝑐𝑘𝑘|𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡) is the predictive PMF of the final 
change-point, which does not depend 𝑦𝑦1:𝑡𝑡  and thus can be 
recursively calculated in the off-line stage based on the defined 
Markov transition process in Eq. (18), and 𝑃𝑃(𝑅𝑅𝑡𝑡 >
𝐿𝐿|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡)  can be calculated based the model 
assumption that the degradation signal will not exceed the 
failure threshold before it reaches the final segment: 

 
𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘, 𝑦𝑦1:𝑡𝑡)

= �
MT𝑡𝑡+1,𝑡𝑡+𝐿𝐿(𝛤𝛤), if 𝑐𝑐𝑘𝑘 = 𝜏𝜏𝑡𝑡 ≤ 𝑡𝑡 − 1 

MT𝑐𝑐𝑘𝑘+1,𝑡𝑡+𝐿𝐿(𝛤𝛤), if 𝑡𝑡 − 1 < 𝑐𝑐𝑘𝑘 < 𝑡𝑡 + 𝐿𝐿
1, if 𝑐𝑐𝑘𝑘 ≥ 𝑡𝑡 + 𝐿𝐿

 
(26) 

 
In Eq. (26), MT𝑡𝑡+1,𝑡𝑡+𝐿𝐿(𝛤𝛤) is the CDF of t distribution given in 
Eq. (23) while MT𝑐𝑐𝑘𝑘+1,𝑡𝑡+𝐿𝐿(𝛤𝛤)  is the CDF of 
�𝑦𝑦𝑐𝑐𝑘𝑘+1:𝑡𝑡+𝐿𝐿|𝜏𝜏𝑐𝑐𝑘𝑘+1 = 𝑐𝑐𝑘𝑘, 𝑠𝑠𝑐𝑐𝑘𝑘+1 = 𝑘𝑘 + 1, 𝑘𝑘� given in Eq. (24). As 
we can see, the closed form of the conditional reliability 
function or the RUL distribution can also be exactly obtained 
based on Eq. (21)-(26).  

C. Computational Issue and Approximation 
Although the model updating and RUL prediction can be 

exactly calculated through recursion, both the computational 
and memory cost of each time step increase with time 𝑡𝑡. From 
Eq. (16)-(18) we can see that the computational and memory 
cost of the filtering recursion at time 𝑡𝑡 is approximately linear 
with time 𝑡𝑡, since we need to calculate and store 𝑡𝑡 ∑ (𝑘𝑘 + 1)𝑘𝑘  
probabilities for the posterior PMF 𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡). In 
the RUL prediction, for each 𝐿𝐿 in Eq. (21), the computational 
cost also increases with 𝑡𝑡 . For large datasets, these 
computational and storage issues may become very prohibitive 
in real time applications and thus need to be solved.  

In practice, the posterior PMF 𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡)  is 
almost zero at most of the support points. Indeed, with more 
observations obtained in the current segment, the posterior 
PMF would concentrate around the starting point 𝑐𝑐s−1 of the 
current segment, and for 𝜏𝜏𝑡𝑡 ≪ 𝑐𝑐𝑠𝑠−1, the posterior PMF is close 
to zero and thus can be negligible. Similar phenomenon can 
also be observed for 𝑠𝑠𝑡𝑡  and 𝑘𝑘. A natural way to control the 
computational cost and memory issue is to approximate the 
posterior densities at each time step with a small set of support 
points of fixed size that have high probabilities, and set the 
posterior PMF to be zero at the remaining support points. 
However, this strategy may result in inaccurate approximation 
if directly applied to the 3-dimensional support points. The 
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PMF can be temporally near zero for certain 𝑠𝑠𝑡𝑡 and 𝑘𝑘, and then 
becomes dominant later as more observations are obtained. If 
the PMF is set zero at these support points, the PMF of these 
support points evaluated at the future time steps will also be 
zero, thus leading to an inaccurate approximation. To address 
this issue, we propose to select 𝑁𝑁 most probable support points 
under each stratum (𝑠𝑠𝑡𝑡 , 𝑘𝑘) to approximate the posterior and set 
others to zero. Consequently, there are in total 𝑁𝑁∑ (𝑘𝑘 + 1)𝑘𝑘  
non-zero support points. The details of the approximation 
algorithm are summarized in Table I.  

 
TABLE I 

SUMMARY OF THE APPROXIMATION UPDATING ALGORITHM 

1. At time step 𝑡𝑡 = 𝑁𝑁 + 1 
• Calculate 𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡)  at all the (𝑁𝑁 + 1)∑ (𝑘𝑘 + 1)𝑘𝑘  

support points. 
• Within each stratum (𝑠𝑠,𝑘𝑘), select 𝑁𝑁 time steps from {1, … , 𝑡𝑡} with 

highest PMF 𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡). Denote the selected time steps as 
𝑻𝑻𝑁𝑁(𝑡𝑡, 𝑠𝑠, 𝑘𝑘). 

• Normalize the probabilities of the selected 𝑁𝑁∑ (𝑘𝑘 + 1)𝑘𝑘  support 
points. 

2. At time step 𝑡𝑡 > 𝑁𝑁 + 1 
• Calculate 𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡)  at (𝑁𝑁 + 1) support points  {𝑻𝑻𝑁𝑁(𝑡𝑡 −

1, 𝑠𝑠, 𝑘𝑘), 𝑡𝑡} for each stratum (𝑠𝑠, 𝑘𝑘). 
• Within each stratum (𝑠𝑠,𝑘𝑘) , select 𝑁𝑁  time steps from {𝑻𝑻𝑁𝑁(𝑡𝑡 −

1, 𝑠𝑠, 𝑘𝑘), 𝑡𝑡} with highest PMF 𝑃𝑃(𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠, 𝑘𝑘|𝑦𝑦1:𝑡𝑡) . Update 
𝑻𝑻𝑁𝑁(𝑡𝑡, 𝑠𝑠, 𝑘𝑘). 

• Normalize the probabilities of the selected 𝑁𝑁∑ (𝑘𝑘 + 1)𝑘𝑘  support 
points. 

 
Another computational issue is the calculation of the 

conditional reliability function through Eq. (21) and (25) at the 
online RUL prediction stage. It involves a large number of 
evaluations of the CDF of multivariate t distribution, e.g., 
MT𝑡𝑡+1,𝑡𝑡+𝐿𝐿(𝛤𝛤), whose computational cost increases enormously 
with the dimension 𝐿𝐿. To control the computational cost, we 
could alternatively use the Monte Carlo (MC) simulation 
approach. One MC approach is to directly generate the samples 
for the current state vector 𝒙𝒙𝑡𝑡 through the posterior distribution 
𝑝𝑝(𝒙𝒙𝑡𝑡|𝑦𝑦1:𝑡𝑡)  and simulate future state vectors 𝒙𝒙𝑡𝑡+𝐿𝐿 , 𝐿𝐿 =
1,2,⋯, through the prior Markov state transition process. 
Specifically, to simulate 𝒙𝒙𝑡𝑡+1  conditioning on the previous 
state 𝒙𝒙𝑡𝑡 , we could first simulate the discrete components of 
𝒙𝒙𝑡𝑡+1  through Eq. (18), and then simulate the continuous 
component 𝜽𝜽𝑡𝑡+1  from the prior distribution if 𝑡𝑡  is a 
change-point or let 𝜽𝜽𝑡𝑡+1 = 𝜽𝜽𝑡𝑡 if 𝑡𝑡 is not a change-point. Based 
on these simulated samples of current state and future states, the 
conditional reliability function can be easily calculated. 
However, due to the high dimensionality of the state vector, this 
MC approach requires a large number of samples to guarantee 
the approximation accuracy. To solve this issue, we propose to 
use partial MC simulation for only the calculation of 𝑃𝑃(𝑅𝑅𝑡𝑡 >
𝐿𝐿|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡) . Note that in Eq. (21) and (25), 
𝑃𝑃(𝑐𝑐𝑘𝑘|𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡) is independent of 𝑦𝑦1:𝑡𝑡 and can be calculated 
at the offline stage. 𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡)  is also 
independent of 𝑦𝑦1:𝑡𝑡  when 𝑐𝑐𝑘𝑘 ≥ 𝑡𝑡 , and thus can also be 
calculated at the offline stage. Therefore we only need to 
estimate 𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡) for 𝑐𝑐𝑘𝑘 = 𝜏𝜏𝑡𝑡 ≤ 𝑡𝑡 − 1 at the 

online RUL prediction stage. To estimate it, we generate 𝑆𝑆 
samples {𝜽𝜽𝑡𝑡1, … ,𝜽𝜽𝑡𝑡𝑡𝑡}  from the posterior distribution 
𝑃𝑃(𝜽𝜽𝑡𝑡|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡)  given in Eq. (14), and then 𝑃𝑃(𝑅𝑅𝑡𝑡 >
𝐿𝐿|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘,𝑦𝑦1:𝑡𝑡) can be estimated by 

 
𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘, 𝑦𝑦1:𝑡𝑡)

=
1
𝑆𝑆
� � 𝛷𝛷(𝛤𝛤|𝑿𝑿𝑡𝑡+𝑙𝑙−𝑐𝑐𝑘𝑘𝜷𝜷𝑡𝑡𝑡𝑡 ,𝜎𝜎𝑡𝑡𝑡𝑡

2)
𝐿𝐿

𝑙𝑙=1

𝑆𝑆

𝑖𝑖=1
 (27) 

 
where 𝛷𝛷(∙ |𝑿𝑿𝑡𝑡+𝑙𝑙−𝑐𝑐𝑘𝑘𝜷𝜷𝑡𝑡𝑡𝑡 ,𝜎𝜎𝑡𝑡𝑡𝑡

2) is the CDF of Gaussian distribution 
with mean 𝑿𝑿𝑡𝑡+𝑙𝑙−𝑐𝑐𝑘𝑘𝜷𝜷𝑡𝑡𝑡𝑡  and variance 𝜎𝜎𝑡𝑡𝑡𝑡2 . This strategy can 
significantly improve the computational efficiency yet without 
influencing the calculation accuracy. Another advantage of this 
strategy is that we can easily adopt truncated distributions for 
the last segment (e.g., only select samples with positive 
degradation rate) to avoid the occurrence of a temporary 
decreasing trend (unit would never fail and RUL prediction is 
infeasible) in the updated signal evolution path for RUL 
prediction, which is common in real degradation signals due to 
measurement noises [34]. Note that in partial MC method, only 
𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘, 𝑦𝑦1:𝑡𝑡)  with 𝑐𝑐𝑘𝑘 = 𝜏𝜏𝑡𝑡 ≤ 𝑡𝑡 − 1  (i.e., 
degradation is at the final phase) is calculated by MC method. 
The approximation accuracy decreases with 𝐿𝐿 for a fixed 
sample size. However, in many practical applications, the final 
phase is often very steep and short in duration, so that 
𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝐿𝐿|𝑐𝑐𝑘𝑘 , 𝜏𝜏𝑡𝑡 , 𝑠𝑠𝑡𝑡 , 𝑘𝑘, 𝑦𝑦1:𝑡𝑡)  converges rapidly to 0 as L 
increases. Therefore, using a small sample size can often 
achieve a very accurate approximation. 

V. CASE STUDIES 
In this section, we first use simulated signals to illustrate the 

effectiveness of the proposed method, and then apply the 
method to vibrational signals of rotational bearings for 
performance evaluation.  

A. Simulation Study 
 

TABLE II 
HYPERPARAMETERS FOR THE BAYESIAN MULTIPLE CHANGE-POINT MODEL 

Variables 𝑘𝑘 = 1 𝑘𝑘 = 2 

𝛿𝛿(𝑘𝑘,𝑠𝑠) 
𝛿𝛿0

(1,1) = 500,𝜎𝜎0
2(1,1) = 302 

𝛿𝛿0
(1,2) = 500,𝜎𝜎0

2(1,2) = 302 

𝛿𝛿0
(2,1) = 500,𝜎𝜎0

2(2,1) = 502 
𝛿𝛿0

(2,2) = 400,𝜎𝜎0
2(2,2) = 302 

𝛿𝛿0
(2,3) = 500,𝜎𝜎0

2(2,3) = 302 

𝜷𝜷(𝑘𝑘,𝑠𝑠) 

𝝁𝝁0
(1,1) = [−10; 0.005] 

𝚺𝚺0
(1,1) = � 0.2 0.0015

0.0015 0.0008� 

𝝁𝝁0
(1,2) = [−40; 0.05] 

𝚺𝚺0
(1,2)

= � 0.5 −0.0008
−0.0008 0.006 � 

𝝁𝝁0
(2,1) = [−10; 0.003] 

𝚺𝚺0
(2,1) = � 0.15 0.0014

0.0014 0.0009� 

𝝁𝝁0
(2,2) = [−20; 0.02] 

𝚺𝚺0
(2,2) = � 0.024 −0.0009

−0.0009 0.000055� 

𝝁𝝁0
(2,3) = [−30; 0.09] 

𝚺𝚺0
(2,3)

= � 0.75 −0.00008
−0.00008 0.00045 � 

𝜎𝜎2(𝑘𝑘,𝑠𝑠) 
𝛼𝛼1

(1,1) = 2,𝛼𝛼2
(1,1) = 4 

𝛼𝛼1
(1,2) = 1,𝛼𝛼2

(1,2) = 4 

 𝛼𝛼1
(2,1) = 3.6,𝛼𝛼2

(2,1) = 3 
   𝛼𝛼1

(2,2) = 3,  𝛼𝛼2
(2,2) = 5 

𝛼𝛼1
(2,3) = 3.6,𝛼𝛼2

(2,3) = 5 
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Fig. 3. Illustration of the online monitoring and model updating for two models. (a) and (b): all segments are simple linear models; (c) and (d): all the last segments 
are quadratic; first row: raw and estimated or filtered CM signals; second row: the expected duration of the current segment; third row: the posterior PMF of the 
index of current segment; and bottom row: the posterior PMF of the total number of segments (or signal type). The vertical dashed lines are true change-points. 
 
To demonstrate the effectiveness of the proposed algorithm, a 
simulation study is conducted. In the simulation model, we 
assume that there are two types of degradation signals in terms 
of the number of change-points, namely, one-change-point 
(one-CP) and two-change-points (two-CP) signals. The 
corresponding probabilities are given by 
 

𝑘𝑘 = �1, with  𝑝𝑝1 = 0.2
2, with  𝑝𝑝2 = 0.8  

 

 
Fig. 4. Predictive PMF of the final change-point with prediction time 𝑡𝑡 = 300 
and 𝑡𝑡 = 800. 

 
All the segments are modelled as simple linear regression or 
line segment for both one-CP and two-CP signals. The other 
hyperparameters of the Bayesian multiple change-point model 
are given in Table II. In total 𝐼𝐼 = 300 signals are simulated as 
the historical dataset. The failure threshold is set as 𝛤𝛤 = 30. 
Based on simulation settings above, 64 signals are generated 
for 𝑘𝑘 = 1  and 236 signals are generated for 𝑘𝑘 = 2 . The 
hyperparameters are then estimated by the empirical two-stage 
estimation approach introduced in Section 3.2. The proposed 

method can detect the change points (the number and positions) 
accurately for each signal. Due to page limitation, the estimated 
hyperparameters are not listed here. For illustration, we also 
consider another model where all the settings are the same with 
the model described above except that all the last segments are 
quadratic. The hyperparameters of this model are not provided 
here due to space limitation.  
 

 
Fig. 5. Computational time per time step for three different support sizes 𝑁𝑁 in 
the model updating process. 
 

Fig. 3 illustrates the online condition monitoring and model 
updating of individual unit for these two degradation models. 
Unless otherwise specified, the support size 𝑁𝑁 = 5 for each 
stratum (𝑠𝑠𝑡𝑡 , 𝑘𝑘)  for posterior approximation in this paper. 
Clearly, the sequentially calculated posterior distribution of the 
discrete components of the state vector could effectively detect 
the occurrence of change-points, track the index of the current 
segment, and infer how many segments the CM signal would 
have. The accurate estimation of the CM signals also indicates 
an effective updating of the posterior distribution of the 
continuous components or model parameters of each segment. 
Fig. 4 shows an example of predicting the position of the final  
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Fig. 6. Prediction intervals for 7 one-CP signals (a, b and c) and 7 two-CP signals (d, e and f) at three different prediction times. (a) and (d): 50% of failure time; (b) 
and (e): 70% of failure time; (c) and (f): 90% of failure time. The ∘ represents the 5%, 50%, 95% quantiles of the predicted RUL distributions, and – denotes the 
actual RUL. 

 

 
Fig. 7. Comparison of the detailed pdf of the RUL. (a), (b) and (c) correspond to the 6th signal (one-CP) of Fig. 6(a), (b) and (c), respectively; (d), (e) and (f) 
correspond to the 4th signal (two-CP) of Fig. 6(d), (e) and (f) respectively. 

 
change-point at two different times using the degradation signal 
shown in Fig. 3(b). At 𝑡𝑡 = 300, the degradation signal is within 
its first segment. Hence, it is high likely that there are two 
future change-points to be predict, which increases the 
prediction uncertainty. At 𝑡𝑡 = 800, the degradation signal has 
already transited to the second segment, and the final 
change-point can be accurately predicted. Clearly, as more data 
are observed, the prediction of the final change-point becomes 
more accurate.  

Fig. 5 shows the computational cost of each time step in the 
posterior model updating process using three different support 
sizes 𝑁𝑁 = 50, 100 and 150. As we can clearly see, when 𝑡𝑡 <
𝑁𝑁, the computational cost linearly increases with 𝑡𝑡, which is 
consistent with what we discussed in Section 4.3. Once the 
approximation strategy with a fixed support size 𝑁𝑁 is applied, 
the computational cost of each step is fully controlled for 𝑡𝑡 ≥ 𝑁𝑁 
with an almost constant computational time.  

To evaluate the performance of RUL prediction, another 100 
CM signals are simulated as testing dataset. The proposed 
method (denote it as EB) is compared with Chen’s method [13], 
which models CM signals with two line segments and thus is an 

ideal method for comparison. For Chen’s method, all 300 
training CM signals (236 signals with three line segments and 
64 with two line segments) are used to estimate the 
hyperparameters of the two line segments. For the EB method, 
the support size 𝑁𝑁 = 5. 

Fig. 6 shows the prediction intervals of EB and Chen’s 
method at three prediction times for 7 one-CP signals and 7 
two-CP signals randomly selected from the testing dataset. Fig. 
7 shows the detailed pdf of the predicted RUL for the 6th signal 
of Fig. 6(a-c) and the 4th signal of Fig. 6 (d-f). Unsurprisingly, 
the prediction for both methods becomes more and more 
accurate as more observations are available. Comparing these 
two methods, the proposed EB method outperforms Chen’s 
method for almost all the 14 signals. For one-CP signals, the 
EB method is slightly better at 70% and 90% of failure time, 
while at the prediction time 50%, the advantage of EB method 
is much more significant. The reason is that at the early 
degradation stage, the priors play a decisive role on the 
prediction accuracy. In Chen’s method, the priors of 
two-line-segment model are estimated using all one-CP and 
two-CP signals, which results in inaccurate priors. At 70% and 
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90% of failure time, all degradation signals evolve into the 
second segment, and the posterior distribution of each model is 
dominated by the observations. Therefore, Chen’s method can 
also accurately predict the RUL with inaccurate priors. For 
two-CP signals, the EB method is much better than Chen’s 
method, which fulfills the purpose of the proposed method for 
degradation signals with two or even more segments. 

To better quantify the prediction performance, the 𝛼𝛼 − 𝜆𝜆 
performance metric [35] is calculated, where 𝛼𝛼 specifies the 
error bound on the estimated RUL, i.e.,  [(1 − 𝛼𝛼)]𝑅𝑅𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≤
𝑅𝑅�𝑖𝑖 ≤ [1 + 𝛼𝛼]𝑅𝑅𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,and 𝜆𝜆  specifies the relative distance, in 
time, of a given prediction point from the actual failure time, 
i.e., λ = 0 and λ = 1 correspond to the starting prediction time 
and the actual failure time, respectively. Fig. 8 shows the 𝛼𝛼 − 𝜆𝜆 
performance metric for the 6th one-CP signal and 4th two-CP 
signal using the proposed EB method and Chen’s method. The 
error bound α is set as 20%. It can be observed that, almost all 
the estimated RULs lie within the error bound for 
one-change-point case using both methods. However, for 
two-change-points case, Chen’s method is much worse than the 
proposed EB method.  

 

 
Fig. 8. 𝛼𝛼 − 𝜆𝜆 performance metric for (a) the 6th signal for one-CP case, and (b) 
the 4th signal for two-CP case. 

 
TABLE III 

COMPARISON OF THE RMSD AT SIX PREDICTION TIMES 

Method 
RMSD 

40% 50% 60% 70% 80% 90% 

Chen 319.5 271.6 218.3 240.6 211.0 102.0 

EB 313.8 188.8 153.8 114.4 35.1 23.0 

EB-partial MC 318.0 203.7 149.6 103.8 37.7 31.3 

 
To evaluate the overall performance of RUL prediction, we 

use the root-mean-square-deviation (RMSD) for these 100 
testing signals defined as  

RMSD = �
1

100
�𝐸𝐸�𝑅𝑅�𝑖𝑖 − 𝑅𝑅𝑖𝑖,true�

2
100

𝑖𝑖=1

 

where 𝑅𝑅�𝑖𝑖  and 𝑅𝑅𝑖𝑖,true  are the predicted true RUL of unit 𝑖𝑖 , 
respectively. Table III shows the RMSD of the proposed EB 
method and Chen’s method at six prediction times. We also add 
the EB method with partial Monte Carlo approximation 
(denoted as EB-partial MC) to see how partial MC influence 
the prediction accuracy. For EB-partial MC, a sampling size of 
1000 is used. As we can see, the proposed EB method is much 
more accurate than Chen’s method. At the early stage, e.g., 
40% of the failure time, the advantage of the EB method is not 
significant, due to large uncertainty of model parameters and 
future change-points. As the prediction time approaches to the 

true failure time, the RMSD of the proposed method decreases 
significantly, and the performance is much better than Chen’s 
method. This is highly desirable since it becomes more and 
more important to get an accurate prediction when the RUL 
approaches zero. Comparing EB with EB-partial MC we can 
see that the prediction accuracy is not influenced much by 
partial MC sampling strategy. 

Table IV shows the computational costs of the EB method 
and EB-partial MC using MATLAB running on an i5-4690 
CPU 3.50 GHz Intel processor at the prediction stage. In the 
RUL prediction, the computational times are calculated under 
different prediction steps. For example, if the prediction step is 
𝐿𝐿, the conditional survival function 𝑃𝑃(𝑅𝑅𝑡𝑡 > 𝑙𝑙|𝑦𝑦1:𝑡𝑡) is evaluated 
for 𝑙𝑙 = 1,2,⋯ , 𝐿𝐿, with in total 𝐿𝐿 calculations. As we can see, 
the cost of EB method exponentially increases with the 
prediction step, due to the CDF computation of multivariate t 
distributions with increasing dimensions. For the EB-partial 
MC method, the computational cost of the prediction linearly 
increases with the prediction step. Therefore, using the partial 
MC strategy for the EB method could significantly reduce the 
computational cost, yet without influencing the prediction 
accuracy much.  

 
TABLE IV 

THE COMPUTATIONAL COST OF RUL PREDICTION WITH AND WITHOUT PARTIAL 
MONTE CARLO SIMULATION (UNIT: SECONDS) 

Method 
Prediction Steps 

10 20 30 40 50 60 

EB 0.8 4.0 8.8 14.6 21.8 30.4 
EB-partial 

MC 4.7 5.2 5.7 6.3 6.8 7.4 

B. Application to Rotational Bearings 
 

 
Fig. 9. 𝛼𝛼 − 𝜆𝜆 performance metric for the 24th bearing signal 

 
In this section, we apply the proposed EB method to the real 

degradation signals of rolling thrust bearings [8, 12, 13]. To 
generate these signals, a set of identical thrust bearings was run 
at a constant rotational speed (2000 r/min) and a load of 200 lbs 
in an oil bath to provide continuous lubrication. Then the 
vibrations frequencies were acquired from an accelerometer, 
which was attached to the setup and connected to a vibration 
meter that measured the rms vibration level [36]. The amplitude 
of these frequencies increases as the bearing degrades. The 
degradation signal used in this paper consists of the average 
amplitude of the defective frequency and its first six harmonics 
frequencies. The degradation amplitudes are log-transformed. 
As the bearing degrades, the vibration becomes more and more 
severe and thus the degradation signal tends to increase. When 
the vibration magnitude reaches a threshold, the bearing is
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TABLE V 
ESTIMATED HYPERPARAMETERS OF THE PRIOR DISTRIBUTIONS 

 𝑠𝑠 = 1 𝑠𝑠 = 2 𝑠𝑠 = 3 

𝛿𝛿(𝑠𝑠) 𝛿𝛿0
(1) = 246,  𝜎𝜎0

2(1) = 1632 𝛿𝛿0
(2) = 199, 𝜎𝜎0

2(2) = 1232 𝛿𝛿0
(3) = 232,𝜎𝜎0

2(3) = 1232 

𝜷𝜷(𝒔𝒔) 
𝝁𝝁0

(1) = [−7.28,5.6 × 10−6] 

𝚺𝚺0
(1) = � 20.77 −0.072

−0.072 0.0020� 

𝝁𝝁0
(2) = [−6.97,0.0015] 

𝚺𝚺0
(2) = � 54.79 −0.075

−0.075 0.076 � 

𝝁𝝁0
(3) = [−4.76,0.004] 

𝚺𝚺0
(3) = � 3.74 −0.0004

−0.0004 0.0002 � 

σ2(s) 𝛼𝛼1
(1) = 5.17,𝛼𝛼2

(1) = 0.03 𝛼𝛼1
(2) = 1.06,𝛼𝛼2

(2) = 0.008 𝛼𝛼1
(3) = 8.7,𝛼𝛼2

(3) = 0.38 

 

 
Fig. 10. Prediction intervals for 25 bearing signals at three different prediction times. (a): 50%; (b): 70%; and (c): 90% of the failure time. The ∘ represents the 5%, 
50%, 95% quantiles of the predicted RUL distributions, and – denotes the actual failure time. 

 

 
Fig. 11. RMSD of 25 bearing signals 

 
considered to have failed. Based on the published industrial 
standards, the failure threshold is set 𝛤𝛤 = log 0.03 [8]. In total 
there are 25 historical signals. The sampling interval for all 
signals is 2 minutes.  

In the offline modeling, we set the maximum number of 
change-points to be 2 to control the model complexity. We 
assume that all segments are line segments. Based on the BIC 
model selection, two-CP model is the best for all signals. The 
estimated hyperparameters are summarized in Table V. The 
estimated means of three slopes show that degradation rate is 

almost zero at the first stage, indicating a stable operation, and 
then increases successively at the following two stages.  

Fig. 9 shows the α-λ performance metric for the 24th bearing 
signal. It can be observed that, although some estimated values 
are outside of the accuracy bound at early stage, the proposed 
method makes quite accurate prediction at later prediction 
stage. Apparently, the proposed method has a better 
performance. Fig. 10 shows the prediction intervals at 50%, 
70% and 90% of failure time for the 25 degradation signals. 
The prediction results of Chen’s method is also provided for 
comparison. Some intervals by Chen’s method are not shown 
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since they are out of the y-axis range, e.g., the 9th and 14th 
signal on Fig. 10 (a), the 20th signal on Fig. 10 (b) and the 24th 
signal on Fig. 10 (c). Fig. 11 shows the RMSD of the 25 bearing 
signals for both EB and Chen’s method. Clearly, as the 
prediction time is closer to the failure time, the intervals 
become narrower. The more observed data, the more accurate 
the prediction. The prediction of the EB method is very stable 
and accurate across all units, while Chen’s method is not stable 
and performs badly for some units. Table VI shows the 
comparison of the proposed EB method with Chen’s method, 
the GLLR method [8], the GBPNN method [37] and EB 
method using three change-points (EB-CP3) in terms of the 
overall RMSD at the three time steps. In the GLLR method, the 
remaining data was fitted using Bayesian simple linear 
regression. In the GBPNN method, a back-propagation neural 
network-based model was developed for RUL prediction. It is 
noted that, in the GLLR and GBPNN methods, the first 
segment with normal working condition is manually truncated. 
Therefore, we just show the prediction at 70% and 90% 
prediction time for GLLR and GBPNN methods. Clearly, the 
proposed method outperforms all of other methods at all three 
prediction times. It should be mentioned that EB-CP3 is even 
worse. The reason is that most of bearings just have 1 or 2 
obvious change-points, adding excessive change points will 
also introduce unnecessary uncertainty in RUL prediction, i.e., 
uncertainty of future change-point locations. Therefore, the 
number of change-points is critical for the prognostic model to 
generate an accurate prediction. 

 
TABLE VI 

RMSD OF THE PROPOSED METHOD IN COMPARISON WITH OTHER METHODS 

Method 
RMSD 

50% 70% 90% 
GLLR - 234.2 227.8 

GBPNN - 193.2 174.1 
Chen 318.4 156.9 169.4 
EB 236.8 106.0 41.8 

EB-CP3 493.9 297.1 179.2 

VI. CONCLUSION AND DISCUSSION 
In this paper we proposed a Bayesian multiple change-point 

modeling framework for degradation signals based condition 
monitoring and remaining useful life prediction. To capture the 
unit-to-unit heterogeneity and also to facilitate integration of 
historical data with in-situ observations of in-service unit for 
online prognostics, all model parameters are assumed to be 
random, including the number of change-points and their 
positions, and the model parameters of each linear segments. A 
novel stochastic process was proposed to model the joint prior 
of change-points and positions. A two-stage process was 
proposed to estimate all hyperparameters of priors. To facilitate 
online Bayesian model updating, a recursive updating 
algorithm was developed by which the posterior distribution of 
all state parameters can be exactly calculated. A closed-form of 
the RUL prediction is also derived. To control the 
computational cost in both model updating and RUL prediction 
process, a fixed-support-size strategy and a partial Monte Carlo 
strategy were proposed respectively, which significantly 

reduced the computational cost without influencing the 
prediction accuracy. The advantages of the proposed method 
have been demonstrated through thorough simulation studies 
and real case studies. 

There are still open questions worthy of investigation. First 
of all, the current multiple change-point model assumes that all 
segments are independent. However, the degradation signals 
are often continuous in practice, indicating that all segments are 
connected and dependent. Incorporating such dependence 
could make the prior more informative and thus improve the 
prognostic accuracy. Secondly, adding more change-points 
may improve the model fitting and improve the prediction 
accuracy at the late degradation stage. However, it may reduce 
the prediction accuracy at the early degradation stage due to 
extra uncertainty by the added change-points. The strategy of 
using different models at different prediction stage may be 
beneficial. Lastly, the segments of the multiple change-point 
model are modeled by parametric regression. It would be of 
interest to integrate the multiple change-point model to 
stochastic processes, e.g., Wiener process, for degradation 
modeling. 

APPENDIX A DERIVATION OF EQUATION (12) 
For notational convenience, we ignore the superscript 𝑘𝑘 and 

𝑠𝑠  here. Suppose {𝜷𝜷𝑖𝑖 ,𝜎𝜎𝑖𝑖2}𝑖𝑖=1𝑖𝑖=𝑛𝑛  are the observed samples from 
distribution  

𝜋𝜋(𝜷𝜷,𝜎𝜎2) = 𝐼𝐼𝐼𝐼(𝜎𝜎2|𝛼𝛼1,𝛼𝛼2)𝑁𝑁(𝝁𝝁𝟎𝟎,𝜎𝜎2𝚺𝚺𝟎𝟎) 
The likelihood function can be written as  
𝐿𝐿�𝛼𝛼1,𝛼𝛼2,𝝁𝝁𝟎𝟎,𝚺𝚺𝟎𝟎�{𝜷𝜷𝑖𝑖 ,𝜎𝜎𝑖𝑖2}𝑖𝑖=1𝑖𝑖=𝑛𝑛�

∝��
𝛼𝛼2
𝛼𝛼1

Γ(𝛼𝛼1)
(𝜎𝜎𝑖𝑖2)−𝛼𝛼1−1 exp�−

𝛼𝛼2
𝜎𝜎𝑖𝑖2
��

𝑛𝑛

𝑖𝑖=1

|𝜎𝜎𝑖𝑖2𝚺𝚺𝟎𝟎|−
1
2 exp �−

(𝜷𝜷𝑖𝑖 − 𝝁𝝁𝟎𝟎)′𝚺𝚺𝟎𝟎−1(𝜷𝜷𝑖𝑖 − 𝝁𝝁𝟎𝟎)
2𝜎𝜎𝑖𝑖2

� 

The log-likelihood function 𝑙𝑙 is  
𝑙𝑙 �𝛼𝛼1,𝛼𝛼2,𝝁𝝁𝟎𝟎,𝚺𝚺𝟎𝟎��𝜷𝜷𝑖𝑖 ,𝜎𝜎𝑖𝑖2�𝑖𝑖=1

𝑖𝑖=𝑛𝑛�

= � log �
𝛼𝛼2
𝛼𝛼1

Γ(𝛼𝛼1) �𝜎𝜎𝑖𝑖
2�−𝛼𝛼1−1 exp�−

𝛼𝛼2
𝜎𝜎𝑖𝑖2
��

𝑛𝑛

𝑖𝑖=1

−
𝑛𝑛
2 log|𝚺𝚺𝟎𝟎| −�

(𝜷𝜷𝑖𝑖 − 𝝁𝝁𝟎𝟎)′𝚺𝚺𝟎𝟎−1(𝜷𝜷𝑖𝑖 − 𝝁𝝁𝟎𝟎)
2𝜎𝜎𝑖𝑖2

𝑛𝑛

𝑖𝑖=1
+ 𝐶𝐶 

Therefore the MLE of 𝛼𝛼1,𝛼𝛼2 can be obtained by maximizing 
the log-likelihood function 𝑙𝑙(𝛼𝛼1,𝛼𝛼2|{𝜎𝜎𝑖𝑖2}𝑖𝑖=1𝑖𝑖=𝑛𝑛). For 𝝁𝝁𝟎𝟎,𝚺𝚺𝟎𝟎 , the 
log-likelihood function is  

𝑙𝑙�𝝁𝝁𝟎𝟎,𝚺𝚺𝟎𝟎�{𝜷𝜷𝑖𝑖 ,𝜎𝜎𝑖𝑖2}𝑖𝑖=1𝑖𝑖=𝑛𝑛� = −
𝑛𝑛
2

log|𝚺𝚺𝟎𝟎|−�
(𝜷𝜷𝑖𝑖 − 𝝁𝝁𝟎𝟎)′𝚺𝚺𝟎𝟎−1(𝜷𝜷𝑖𝑖 − 𝝁𝝁𝟎𝟎)

2𝜎𝜎𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
+ 𝐶𝐶 

𝜕𝜕𝜕𝜕
𝜕𝜕𝝁𝝁𝟎𝟎

= −�
𝚺𝚺0−1(𝝁𝝁0 − 𝜷𝜷𝑖𝑖)

𝜎𝜎𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
= 0 

Therefore  

𝝁𝝁�0 = �
𝜷𝜷𝑖𝑖
𝜎𝜎𝑖𝑖2

𝑛𝑛

𝑖𝑖=1
/�

1
𝜎𝜎𝑖𝑖2

𝑛𝑛

𝑖𝑖=1
 

Plug in 𝝁𝝁�0 we can get  
𝑙𝑙�𝝁𝝁�0,𝚺𝚺𝟎𝟎�{𝜷𝜷𝑖𝑖 ,𝜎𝜎𝑖𝑖2}𝑖𝑖=1𝑖𝑖=𝑛𝑛� 

= −
𝑛𝑛
2

log|𝚺𝚺𝟎𝟎| −�
(𝜷𝜷𝑖𝑖 − 𝝁𝝁�0)′𝚺𝚺𝟎𝟎−1(𝜷𝜷𝑖𝑖 − 𝝁𝝁�0)

2𝜎𝜎𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
+ 𝐶𝐶 

= −
𝑛𝑛
2

log|𝚺𝚺𝟎𝟎| −
1
2

tr ��
𝚺𝚺𝟎𝟎−1(𝜷𝜷𝑖𝑖 − 𝝁𝝁�0)(𝜷𝜷𝑖𝑖 − 𝝁𝝁�0)′

𝜎𝜎𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
� 
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= −
𝑛𝑛
2

log|𝚺𝚺𝟎𝟎| −
𝑛𝑛
2

tr�𝚺𝚺𝟎𝟎−1𝑆𝑆� 
where  

𝑆𝑆 =
1
𝑛𝑛
�

(𝜷𝜷𝑖𝑖 − 𝝁𝝁�0)(𝜷𝜷𝑖𝑖 − 𝝁𝝁�0)′

𝜎𝜎𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
 

It can be shown that 𝚺𝚺�0 = 𝑆𝑆.  
Let 𝑆𝑆 = 𝐸𝐸𝐸𝐸𝑇𝑇 ,Ψ = 𝐸𝐸𝑇𝑇𝚺𝚺0−1𝐸𝐸 , then |𝚺𝚺𝟎𝟎| = |𝑆𝑆|

|Ψ|
, tr(𝚺𝚺0−1𝑆𝑆) =

tr(𝚺𝚺0−1𝐸𝐸𝐸𝐸𝑇𝑇) = tr(𝐸𝐸𝑇𝑇𝚺𝚺0−1𝐸𝐸) = tr(Ψ).  
So 𝑙𝑙�𝚺𝚺0,𝝁𝝁�0�{𝜷𝜷𝑖𝑖 ,𝜎𝜎𝑖𝑖2}𝑖𝑖=1𝑖𝑖=𝑛𝑛� = −𝑛𝑛

2
�log|𝑆𝑆| − log|Ψ| + tr(Ψ)� 

Let Ψ = 𝐿𝐿𝐿𝐿𝑇𝑇  where 𝐿𝐿 is a lower triangular matrix 
𝑙𝑙�𝚺𝚺0,𝝁𝝁�0�{𝜷𝜷𝑖𝑖 ,𝜎𝜎𝑖𝑖2}𝑖𝑖=1𝑖𝑖=𝑛𝑛� 

= −
𝑛𝑛
2
�log|𝑆𝑆| −� log 𝑙𝑙𝑖𝑖𝑖𝑖2

2

𝑖𝑖=1
+ � 𝑙𝑙𝑖𝑖𝑖𝑖2  

2

𝑖𝑖=1
+ � 𝑙𝑙𝑖𝑖𝑖𝑖2  

𝑖𝑖>𝑗𝑗
� 

It is easy to show that when 𝑙𝑙𝑖𝑖𝑖𝑖 = 0 for  𝑖𝑖 ≠ 𝑗𝑗  and 𝑙𝑙𝑖𝑖𝑖𝑖2 = 1 , 
𝑙𝑙�𝚺𝚺0,𝝁𝝁�0�{𝜷𝜷𝑖𝑖 ,𝜎𝜎𝑖𝑖2}𝑖𝑖=1𝑖𝑖=𝑛𝑛� reaches the maximum  

Therefore Ψ� = 𝐼𝐼, Σ�0 = 𝑆𝑆 

APPENDIX B PROOF OF THEOREM 1 
For notational convenience, we ignore the superscripts 𝑘𝑘 and 

𝑠𝑠 here. We also ignore the subscript 𝑡𝑡 for 𝜷𝜷𝒕𝒕 and 𝜎𝜎𝑡𝑡2. Suppose 
𝜋𝜋(𝜷𝜷,𝜎𝜎2) = 𝐼𝐼𝐼𝐼(𝜎𝜎2|𝛼𝛼1,𝛼𝛼2)𝑁𝑁(𝝁𝝁𝟎𝟎,𝜎𝜎2𝚺𝚺𝟎𝟎) and 𝜷𝜷 is of dimension 
𝑞𝑞.  
𝑝𝑝�𝜷𝜷,𝜎𝜎2�𝑦𝑦𝑗𝑗+1:𝑡𝑡� ∝ 𝑝𝑝(𝜷𝜷,𝜎𝜎2)𝑝𝑝�𝑦𝑦𝑗𝑗+1:𝑡𝑡�𝜷𝜷,𝜎𝜎2�

∝ �
1

2𝜋𝜋|𝜎𝜎2𝚺𝚺𝟎𝟎|
1
2
𝑒𝑒−

(𝜷𝜷−𝝁𝝁𝟎𝟎)𝑇𝑇𝚺𝚺𝟎𝟎
−𝟏𝟏(𝜷𝜷−𝝁𝝁𝟎𝟎)

2𝜎𝜎2 � �
𝛼𝛼2𝛼𝛼1

Γ(𝛼𝛼1)
(𝜎𝜎2)−𝛼𝛼1−1𝑒𝑒−

𝛼𝛼2
𝜎𝜎2� 

�(2𝜋𝜋)− 𝑡𝑡−𝑗𝑗2 (𝜎𝜎2)−  𝑡𝑡−𝑗𝑗2 𝑒𝑒
−�𝑦𝑦𝑗𝑗+1:𝑡𝑡−𝑿𝑿1,𝑡𝑡−𝑗𝑗𝜷𝜷�

2

2𝜎𝜎2 � 

∝ (σ2)−𝛼𝛼1−1−
𝑡𝑡−𝑗𝑗
2

1

2𝜋𝜋(σ2)
𝑞𝑞
2

 

exp �−
(𝜷𝜷 − 𝝁𝝁0)𝑇𝑇𝚺𝚺0−𝟏𝟏(𝜷𝜷− 𝝁𝝁0) + 2𝛼𝛼2 + �𝑦𝑦𝑗𝑗+1:𝑡𝑡 − 𝑿𝑿1:𝑡𝑡−𝑗𝑗𝜷𝜷�

2

2𝜎𝜎2
� 

∝ (𝜎𝜎2)−𝛼𝛼1−
(𝑡𝑡−𝑗𝑗)
2 −1 

exp �−
𝑦𝑦𝑗𝑗+1:𝑡𝑡
𝑇𝑇 𝑦𝑦𝑗𝑗+1:𝑡𝑡 + 2𝛼𝛼2 + 𝝁𝝁0𝑻𝑻𝚺𝚺0−𝟏𝟏𝝁𝝁0 − 𝝁𝝁𝑗𝑗+1:𝑡𝑡

𝑇𝑇 �𝑿𝑿1:𝑡𝑡−𝑗𝑗
𝑇𝑇 𝑿𝑿1:𝑡𝑡−𝑗𝑗 + 𝚺𝚺0−𝟏𝟏�𝝁𝝁𝑗𝑗+1:𝑡𝑡

2𝜎𝜎2 �

×
1

(σ2)𝑞𝑞/2 exp �−
�𝜷𝜷 − 𝝁𝝁𝑗𝑗+1:𝑡𝑡�

𝑇𝑇
�𝑿𝑿1:𝑡𝑡−𝑗𝑗

𝑇𝑇 𝑿𝑿1:𝑡𝑡−𝑗𝑗 + 𝚺𝚺0−𝟏𝟏��𝜷𝜷 − 𝝁𝝁𝑗𝑗+1:𝑡𝑡�
2𝜎𝜎2

� 

∝  𝐼𝐼𝐼𝐼 �𝛼𝛼1 +
𝑡𝑡 − 𝑗𝑗

2 ,𝛼𝛼2 +
𝐻𝐻𝑗𝑗+1,𝑡𝑡

2 � ∙ 𝑁𝑁�𝝁𝝁𝑗𝑗+1,𝑡𝑡,𝜎𝜎2𝚺𝚺𝑗𝑗+1,𝑡𝑡� 
where 

𝚺𝚺𝑗𝑗+1,𝑡𝑡 = �𝑿𝑿1,𝑡𝑡−𝑗𝑗
𝑇𝑇 𝑿𝑿1,𝑡𝑡−𝑗𝑗 + 𝚺𝚺0−𝟏𝟏�

−1
 

𝑵𝑵𝑗𝑗+1,𝑡𝑡 = �𝚺𝚺0−𝟏𝟏𝝁𝝁0
(𝑘𝑘,𝑠𝑠) + 𝑿𝑿1,𝑡𝑡−𝑗𝑗

𝑇𝑇 𝑦𝑦𝑗𝑗+1:𝑡𝑡� 

𝝁𝝁𝑗𝑗+1,𝑡𝑡 = 𝚺𝚺𝑗𝑗+1,𝑡𝑡𝑵𝑵𝑗𝑗+1,𝑡𝑡 

𝐻𝐻𝑗𝑗+1,𝑡𝑡 = 𝑦𝑦𝑗𝑗+1:𝑡𝑡
𝑇𝑇 𝑦𝑦𝑗𝑗+1:𝑡𝑡 + 𝝁𝝁0𝑻𝑻𝚺𝚺0−𝟏𝟏𝝁𝝁0 − 𝑵𝑵𝑗𝑗+1,𝑡𝑡

𝑇𝑇 𝚺𝚺𝑗𝑗+1,𝑡𝑡𝑵𝑵𝑗𝑗+1,𝑡𝑡 

APPENDIX C PROOF OF THEOREM 2 

If 𝜏𝜏𝑡𝑡 = 𝑗𝑗 < 𝑡𝑡 − 1, based on Theorem 1 we can get  

�𝜷𝜷𝑡𝑡−1�𝜎𝜎𝑡𝑡−12 , 𝜏𝜏𝑡𝑡−1 = 𝑗𝑗, 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠, 𝑘𝑘,𝑦𝑦𝑗𝑗+1:𝑡𝑡−1�~𝑁𝑁(𝝁𝝁𝑗𝑗+1,𝑡𝑡−1,𝜎𝜎𝑡𝑡−12 𝚺𝚺𝑗𝑗+1,𝑡𝑡−1) 

�𝑿𝑿𝑡𝑡−𝑗𝑗𝜷𝜷𝑡𝑡−1�𝜎𝜎𝑡𝑡−12 , 𝜏𝜏𝑡𝑡−1 = 𝑗𝑗, 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠, 𝑘𝑘,𝑦𝑦𝑗𝑗+1:𝑡𝑡−1�~ 

𝑁𝑁(𝑿𝑿𝑡𝑡−𝑗𝑗𝝁𝝁𝑗𝑗+1,𝑡𝑡−1,𝜎𝜎𝑡𝑡−12 𝑿𝑿𝑡𝑡−𝑗𝑗𝚺𝚺𝑗𝑗+1,𝑡𝑡−1𝑿𝑿𝑡𝑡−𝑗𝑗𝑇𝑇 ) 

�𝜎𝜎𝑡𝑡−12 �𝜏𝜏𝑡𝑡−1 = 𝑗𝑗, 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠, 𝑘𝑘,𝑦𝑦𝑗𝑗+1:𝑡𝑡−1�~𝐼𝐼𝐼𝐼 �𝛼𝛼1
(𝑘𝑘,𝑠𝑠) +

𝑡𝑡 − 1− 𝑗𝑗
2 ,𝛼𝛼2

(𝑘𝑘,𝑠𝑠)

+
𝐻𝐻𝑗𝑗+1,𝑡𝑡−1

2
� 

Since 𝑦𝑦𝑡𝑡 = 𝑿𝑿𝑡𝑡−𝑗𝑗𝜷𝜷𝑡𝑡−1 + 𝜎𝜎𝑡𝑡−1𝜀𝜀𝑡𝑡  for 𝜏𝜏𝑡𝑡 = 𝜏𝜏𝑡𝑡−1 = 𝑗𝑗 < 𝑡𝑡 − 1 , 

then  

�𝑦𝑦𝑡𝑡�𝜎𝜎𝑡𝑡−12 , 𝜏𝜏𝑡𝑡−1 = 𝑗𝑗, 𝑠𝑠𝑡𝑡−1 = 𝑘𝑘,𝑦𝑦𝑗𝑗+1:𝑡𝑡−1�~𝑁𝑁(𝑿𝑿𝑡𝑡−𝑗𝑗𝝁𝝁𝑗𝑗+1,𝑡𝑡−1,𝜎𝜎𝑡𝑡−12 (1 +

𝑿𝑿𝑡𝑡−𝑗𝑗𝚺𝚺𝑗𝑗+1,𝑡𝑡−1𝑿𝑿𝑡𝑡−𝑗𝑗𝑇𝑇 )), 

Let 𝜇𝜇∗ = 𝑿𝑿𝑡𝑡−𝑗𝑗𝝁𝝁𝑗𝑗+1,𝑡𝑡−1, 𝜎𝜎∗2 = 1 + 𝑿𝑿𝑡𝑡−𝑗𝑗𝚺𝚺𝑗𝑗+1,𝑡𝑡−1𝑿𝑿𝑡𝑡−𝑗𝑗T  
𝑝𝑝(𝑦𝑦𝑡𝑡|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡 = 𝑠𝑠,𝑘𝑘, 𝑦𝑦1:𝑡𝑡−1)

= ∫ 𝑝𝑝(𝑦𝑦𝑡𝑡|𝜎𝜎𝑡𝑡−12 , 𝜏𝜏𝑡𝑡−1 = 𝑗𝑗, 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠,𝑘𝑘,𝑦𝑦1:𝑡𝑡−1) 
𝑝𝑝(𝜎𝜎𝑡𝑡−12 |𝜏𝜏𝑡𝑡−1 = 𝑗𝑗, 𝑠𝑠𝑡𝑡−1 = 𝑠𝑠, 𝑘𝑘,𝑦𝑦1:𝑡𝑡−1)𝑑𝑑𝜎𝜎𝑡𝑡−12  

∝ �(𝜎𝜎𝑡𝑡−12 𝜎𝜎∗2)−
1
2 exp �−

(𝑦𝑦𝑡𝑡 − 𝜇𝜇∗)2

2𝜎𝜎𝑡𝑡−12 𝜎𝜎∗2
� (𝜎𝜎𝑡𝑡−12 )−𝛼𝛼1

(𝑘𝑘,𝑠𝑠)−(𝑡𝑡−𝑗𝑗−1)
2 −1 

exp �−
2𝛼𝛼2

(𝑘𝑘,𝑠𝑠) + 𝐻𝐻𝑗𝑗+1:𝑡𝑡−1

2𝜎𝜎𝑡𝑡−12 � 𝑑𝑑𝜎𝜎𝑡𝑡−12  

∝ �(𝜎𝜎𝑡𝑡−12 )−𝛼𝛼1
(𝑘𝑘,𝑠𝑠)−(𝑡𝑡−𝑗𝑗)

2 −1 exp�−
(𝑦𝑦𝑡𝑡 − 𝜇𝜇∗)2 + (2𝛼𝛼2

(𝑘𝑘,𝑠𝑠) + 𝐻𝐻𝑗𝑗+1:𝑡𝑡−1)𝜎𝜎∗2

2𝜎𝜎𝑡𝑡−12 𝜎𝜎∗2
�𝑑𝑑𝜎𝜎𝑡𝑡−12  

∝
Γ �𝛼𝛼1

(𝑘𝑘,𝑠𝑠) + (𝑡𝑡 − 𝑗𝑗)
2 �

�
(𝑦𝑦𝑡𝑡 − 𝜇𝜇∗)2 + (2𝛼𝛼2

(𝑘𝑘,𝑠𝑠) + 𝐻𝐻𝑗𝑗+1:𝑡𝑡−1)𝜎𝜎∗2
2𝜎𝜎∗2

�
𝛼𝛼1

(𝑘𝑘,𝑠𝑠)+(𝑡𝑡−𝑗𝑗)
2

 

∝ �1 +
1
𝑣𝑣

(𝑦𝑦𝑡𝑡 − 𝜇𝜇∗)2𝑣𝑣

𝜎𝜎∗2(2𝛼𝛼2
(𝑘𝑘,𝑠𝑠) + 𝐻𝐻𝑗𝑗+1:𝑡𝑡−1)

�
−1+𝑣𝑣2

 

 

where 𝑣𝑣 = 2𝛼𝛼1
(𝑘𝑘,𝑠𝑠) + 𝑡𝑡 − 𝑗𝑗 − 1. Therefore 

�𝑦𝑦𝑡𝑡|𝜏𝜏𝑡𝑡 = 𝑗𝑗, 𝑠𝑠𝑡𝑡

= 𝑠𝑠, 𝑘𝑘,𝑦𝑦𝑗𝑗+1:𝑡𝑡−1�~𝑡𝑡1 �2𝛼𝛼1
(𝑘𝑘,𝑠𝑠) + 𝑡𝑡 − 𝑗𝑗

− 1,𝑿𝑿𝑡𝑡−𝑗𝑗𝝁𝝁𝑗𝑗+1,𝑡𝑡−1,
(2𝛼𝛼2

(𝑘𝑘,𝑠𝑠) + 𝐻𝐻𝑗𝑗+1:𝑡𝑡−1)(1 + 𝑿𝑿𝑡𝑡−𝑗𝑗𝚺𝚺𝑗𝑗+1,𝑡𝑡−1𝑿𝑿𝑡𝑡−𝑗𝑗T )

2𝛼𝛼1
(𝑘𝑘,𝑠𝑠) + 𝑡𝑡 − 𝑗𝑗 − 1

� 

The proof for 𝑗𝑗 = 𝑡𝑡 − 1  is similar to the above derivation 
process and is neglected here.  
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