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Abstract
Starting from a Lagrangian action functional for two scalar fields we construct, by
variationalmethods, the LaplacianGreen function for a bounded domain and an appro-
priate stress tensor. By a further variation, imposed by a given vector field, we arrive
at an interior version of the Hadamard variational formula, previously considered by
P. Garabedian. It gives the variation of theGreen function in terms of a pairing between
the stress tensor and a strain tensor in the interior of the domain, this contrasting the
classical Hadamard formula which is expressed as a pure boundary variation.

Keywords Green function · Hadamard formula · Stress tensor · Strain tensor ·
Energy momentum tensor · Lie derivative

Mathematics Subject Classification 53A45 · 53B10 · 70S05

1 Introduction

The Hadamard variational formula expresses how the Green function for a domain
changes under an infinitesimal variation of the boundary of the domain. It is usually
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Fig. 1 Harold S. Shapiro with some friends (colleagues and visitors) at the mathematical department of
KTH, probably in April 2012. From left: Ahmed Sebbar, Björn Gustafsson, Håkan Hedenmalm, Jan-Erik
Björk, Harold S. Shapiro. Photo taken by Henrik Shahgholian (in his office)

formulated in terms of a boundary integral, like in (2.2) below. However, in his book
[2], Paul Garabedian formulated the principle instead in terms of an area integral (in
two dimensions) containing a generalization of the (Maxwell) stress tensor, a kind of
energy-momentum tensor for the electromagnetic field (see [3]). The present paper,
written as a tribute to Harold S. Shapiro (Fig. 1), grew out from attempts to understand
Garabedian’s point of view from a more general perspective.

We elaborate the subject in a setting of subdomains of a Riemannian manifold
of arbitrary dimension using tools of differential geometry and tensor analysis. The
main result of the paper, Theorem 6.1, expresses the Hadamard principle in terms of
a bulk integral containing a stress tensor and a strain tensor. The Green function takes
the role of being a physical scalar field (or potential), and it is the main ingredient
in a Lagrangian action functional representing a polarized energy. In addition, the
Green function turns out to coincide (except for a sign) with the value of the action
at extremum. The stress tensor is obtained by varying the action with respect to the
underlying Riemannian metric, while the strain tensor represents the information of
how an imposed vector field deforms the domain.

2 Hadamard formula in Euclidean setting

The (Laplacian) Green function Ga for a (bounded) domain � ⊂ R
n is defined by the

properties

−�Ga = δa in �,

Ga = 0 on ∂�.
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Writing G(x, a) = Ga(x), G(x, a) is symmetric with respect to x and a. This is most
clearly seen by using standard Green’s formulas to express the Green function as a
mutual energy:

G(a, b) =
∫

�

(∇Ga · ∇Gb) dx . (2.1)

The Green function certainly depends on the domain, G = G�, and Hadamard’s
classical formula [2] expresses how G�(x, a) changes under small variations of the
boundary of this domain. In traditional notations it reads

δG(a, b) =
∫

∂�

∂G(·, a)

∂n

∂G(·, b)
∂n

δn dσ, (2.2)

where δn represents an infinitesimal deformation of ∂� in the outward normal direc-
tion. To express this more accurately one may divide by an infinitesimal time interval
δt so that vn = δn/δt represents the velocity of the boundary in normal direction
under an evolution �(t) with respect to t . Then the formula becomes

d

dt
G�(t)(a, b) =

∫
∂�

∂G(·, a)

∂n

∂G(·, b)
∂n

vn dσ. (2.3)

For the derivation of (2.3) it is useful to think of vn as the normal component of a
vector field v which is defined everywhere, and then let all of �∪ ∂� move with v. In
particular the boundary points move, and since we shall not keep track of individual
points on the boundary the effective meaning simply becomes that the speed of the
boundary ∂� in the normal direction equals the normal component vn = v · n of v on
∂�.

Thus the tangential component of v on ∂� is insignificant for (2.3). The same is
true for the interior points of�: the restriction of v to� never enters the formula. This
is exactly what marks the difference between the formula (2.3) and the formula given
in [2]. The latter formula is based on the strain on the points in � caused by v. This
strain makes up a strain tensor Di j , and together with a certain stress tensor T i j the
variational formula becomes

d

dt
G�(t)(a, b) =

∫
�

T i j Di j dx + source terms.

See more precisely Theorem 6.1 below. Garabedian’s formula appears as equation
(15.20) in [2], and the stress tensor there is also given in our Example 3.1.

3 Several variations of an action functional

We shall put the variational formula (2.2) in a context of field theory, where we vary
a Lagrangian action functional with respect to all fields involved. The action is

S =
∫

�

∇ψa · ∇ψb − ψa(b) − ψb(a), (3.1)
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a polarized energy for two real-valued scalar fields and provided with source terms
(point sources at a and b). The fields are to vanish on the boundary:

ψa = ψb = 0 on ∂�.

Variation of S with respect to ψa , ψb and requiring it to be stationary to the first
order (i.e. setting δS = 0 in traditional notation) gives

− �ψa = δa, −�ψb = δb, (3.2)

hence that ψa , ψb are actually the Green functions at a and b:

ψa = Ga = G(·, a), ψb = Gb = G(·, b). (3.3)

From this, together with (2.1), we see that “on-shell” (i.e. with (3.3) inserted) the
action equals the Green function itself, modulo a sign:

S = G(a, b) − G(b, a) − G(a, b) = −G(a, b). (3.4)

This is a negative number, which is natural since setting δS = 0 should mean that the
action is minimized. Notice that ψa = ψb = 0 are allowed test functions.

In relativistic field theory one often introduces energy-momentum tensors by vary-
ing an action with respect to the underlying Minkowskian metric. In our case there
is no time variable present, and it is more appropriate to speak of just a stress tensor
(or possibly stress-energy tensor), and this can then be introduced on an abstract basis
by varying the underlying Riemannian metric. So far we have not seen any metric,
but the Euclidean metric ds2 = dx21 + · · · + dx2n actually is there, implicit in the
scalar product and the nabla operator. When varying this Euclidean metric we get
more general Riemannian metrics. Therefore it is natural that we, from outset, let �

be a subdomain of a Riemannian manifold M .
We shall need notations from differential geometry, in particular those of tensor

analysis and differential forms. We shall then write coordinates with upper indices,
like x1, . . . , xn , and we write the metric as

ds2 = gi j (x)dx
i ⊗ dx j ,

with (gi j ) symmetric and positive definite at each point. Summation over repeated
indices (when one is up, the other down) is implied.

In this setting the action functional (3.1) becomes

S =
∫

�

∂ψa

∂xi
∂ψb

∂x j
gi j

√
g dx − ψa(b) − ψb(a). (3.5)
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In (3.5) we have also used the metric tensor with upper indices. By definition, (gi j )
represents the inverse of (gi j ) when these tensors are viewed as a matrices:

gi j g
jk = gki =

{
1 (i = k),

0 (i �= k).
(3.6)

Moreover, g = det(gi j ) denotes the determinant of (gi j ), and

dx = dx1 ∧ · · · ∧ dxn .

This n-form depends on the choice of coordinates, while there is an invariant version,
namely the volume form given by

voln = √
g dx .

The manifold is assumed to be oriented, and of course we choose
√
g > 0.

If we want to spell out all dependencies for S we may write

S = S[ψa, ψb; (gi j );�]. (3.7)

We have already varied S with respect to ψa and ψb, this was elementary in the
Euclidean setting and it extends directly to the Riemannian case. See (4.2) and there-
after for some details and coordinate expressions.

The variation with respect to (gi j ) is also standard, but for the sake of completeness
we shall give the details. In fact, this is what makes the stress tensor pop up. When
varying S with respect to (gi j ) it is convenient to think of (gi j ) as depending on a real
parameter, say t , and write gi j = gi j (t). We shall only make variations which keep
(gi j ) symmetric. Thus, on denoting t-derivatives by a dot whenever convenient we
have ġi j = ġ j i .

Now d
dt (gi j g

jk) = 0, hence ġi j g jk + gi j ġ jk = 0. Therefore,

ġk� = −gki ġi j g
j�, ġi j = −gik ġ

k�g� j . (3.8)

In general, if A is an n × n matrix, assumed here to be symmetric with positive
eigenvalues (just for simplicity), then

d

dt
(det A) = d

dt
(elog det A) = elog det A · d

dt
(log det A)

= det A · d

dt
(tr log A) = det A · tr d

dt
(log A) = det A · tr(A−1 Ȧ).

With A = (gi j ), g = det(gi j ) this gives

ġ = ggi j ġi j .
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It also follows that
d

dt

√
g = ġ

2
√
g

= 1

2
√
ggi j ġi j . (3.9)

Starting from (3.5) and using (3.8), (3.9) we now have

d

dt
S[ψa, ψb; (gi j (t));�] = d

dt

∫
�

∂ψa

∂xk
∂ψb

∂x�
gk�

√
g dx

=
∫

�

( − ∂ψa

∂xk
∂ψb

∂x�
gki ġi j g

j�)√g dx + 1

2

∫
�

∂ψa

∂xk
∂ψb

∂x�
gk�

√
ggi j ġi j dx

= 1

2

∫
�

(
− ∂ψa

∂xk
∂ψb

∂x�
gki g j� − ∂ψa

∂xk
∂ψb

∂x�
gkj gi� + ∂ψa

∂xk
∂ψb

∂x�
gk�gi j

)
ġi j

√
g dx

= −1

2

∫
�

T i j ġi j
√
g dx .

Here we have defined the stress tensor in contravariant form (upper indices) as that
tensor T i j ∂

∂xi
⊗ ∂

∂x j which has components

T i j = ∂ψa

∂xk
∂ψb

∂x�
gki g j� + ∂ψa

∂xk
∂ψb

∂x�
gkj gi� − ∂ψa

∂xk
∂ψb

∂x�
gk�gi j . (3.10)

In covariant form (lowered indices) it is the tensor Ti j dxi ⊗ dx j with

Ti j = ∂ψa

∂xi
∂ψb

∂x j
+ ∂ψa

∂x j

∂ψb

∂xi
− ∂ψa

∂xk
∂ψb

∂x�
gk�gi j . (3.11)

Example 3.1 When n = 2 and gi j = δi j we get, on setting ψa = Ga , ψb = Gb,
x = x1, y = x2,

(
T11 T12
T21 T22

)
=

⎛
⎜⎜⎜⎝

∂Ga

∂x

∂Gb

∂x
− ∂Ga

∂ y

∂Gb

∂ y

∂Ga

∂x

∂Gb

∂ y
+ ∂Ga

∂ y

∂Gb

∂x

∂Ga

∂x

∂Gb

∂ y
+ ∂Ga

∂ y

∂Gb

∂x

∂Ga

∂ y

∂Gb

∂ y
− ∂Ga

∂x

∂Gb

∂x

⎞
⎟⎟⎟⎠ .

This is exactly the expression given in Garabedian [2].

4 Classical Hadamard by Lie derivatives

The final step now is to vary the action (3.5), (3.7) with respect to the domain �, and
so obtain the Hadamard formula. This step becomes more elegant when expressed in
the language of differential forms.

We let the smoothly bounded domain � = �(t) ⊂ M move in the flow of a vector
field v = ∑n

j=1 v j ∂
∂x j , and denote by Lv the Lie derivative, and by i(v) interior

derivation (“contraction”), with respect to v. See in general Frankel [1] for differential
geometric concepts and notations.
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In terms of differential forms the representation (2.1) of theGreen function becomes

G(a, b) =
∫

�

dG(·, a) ∧ ∗dG(·, b), (4.1)

the star being the Hodge star operator. When acting on a one-form ν = v j dx j ,
the Hodge star is related to interior derivation with the corresponding vector field
v = vk ∂

∂xk
by ∗ν = i(v)voln . This makes the n-form

d ∗ ν = (
√
g vk),k dx = vk;k

√
g dx = (div v)voln (4.2)

have the role of being the “divergence” of ν. Above we have used some standard tensor
analysis notations, like

vk, j = ∂vk

∂x j
, vk; j = vk, j + 
k

j�v
�

for ordinary and covariant derivatives (respectively), with


k
j� = 1

2
gki (g�i, j + gi j,� − g j�,i )

denoting the “Christoffel symbols” (connection coefficients). Implicit in (4.2) is the
crucial identity (vk

√
g),k = vk;k

√
g. For the Laplacian of a function φ we have,

similarly,

d ∗ dφ = ∂

∂xk

(√
g gkj

∂φ

∂x j

)
dx = φ;k j gk j

√
g dx = �φ voln .

We remark also that voln = ∗1.
Now the action functional becomes

S =
∫

�

dψa ∧ ∗dψb − ψa(b) − ψb(a). (4.3)

Here the Riemannian metric is not visible, but it is built into the Hodge operator.
Varying S in (4.3) with respect to ψa (for example) gives, by partial integration, that

−d ∗ dψb = εb,

where εb denotes the Dirac measure at b regarded as a n-form current. The relation to
δb as a Dirac “function” (or distribution) is

εb = δb vol
n = δb

√
g dx .

In view of (3.4) it is a matter of taste whether one performs the variation with
respect to � in the equation (4.1) for G(a, b) or in the expression (4.3) for S, but it
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is slightly more elegant and general to work directly with (4.3) as far as possible. To
simplify notation we set

α = α j dx
j = dψa, β = β j dx

j = dψb, � = αkβ
k . (4.4)

Thus α j = ∂ψa/∂x j , β j = ∂ψb/∂x j . Clearly dα = dβ = 0 in �, and ψa , ψb being
constant (zero) on the boundary give that α = β = 0 along ∂�.

Let

dσ = voln−1 = i(n)voln

denote the surface area element on ∂� when this is regarded as a manifold in itself,
and where n denotes the outward unit normal vector on ∂�. We then interprete

i(v)α = ∂ψa

∂n
vn on ∂�,

∗β = ∂ψb

∂n
dσ along ∂�.

Two basic properties of the Lie derivative are the “homotopy” formula

Lv = d ◦ i(v) + i(v) ◦ d

(when acting on differential forms) and the fact that for a domain �(t) (or chain of
integration of any sort) moving in the flow of v,

d

dt

∫
�(t)

(. . . ) =
∫

�(t)
Lv(. . . ).

In the notations (4.4) the action S takes the form

S =
∫

�

α ∧ ∗β − ψa(b) − ψb(a) =
∫

�

� voln − ψa(b) − ψb(a).

From this it follows that

dS

dt
=

∫
�

Lv(α ∧ ∗β) =
∫

�

(d ◦ i(v) + i(v) ◦ d)(α ∧ ∗β)

=
∫

�

d(i(v)(α ∧ ∗β)) + 0 =
∫

∂�

i(v)(α ∧ ∗β)

=
∫

∂�

(i(v)α) ∧ ∗β −
∫

∂�

α ∧ i(v)(β) =
∫

∂�

∂ψa

∂n

∂ψb

∂n
vndσ − 0.

This result can be rewritten as

d

dt

∫
�(t)

dψa ∧ ∗dψb =
∫

∂�

∂ψa

∂n

∂ψb

∂n
vndσ.
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We never used that ψa , ψb eventually are to be the Green functions of �, but inserting
finally (3.3) and using (4.1) gives the Hadamard formula in its classical form (2.3).

5 Divergence of stress tensor

In terms of α, β, � in (4.4) the covariant version (3.11) of the stress tensor can be
written

Ti j = αiβ j + α jβi − gi jαkβ
k = αiβ j + α jβi − � gi j . (5.1)

The trace of T is
tr T = Ti j g

i j = (2 − n)�, (5.2)

and the Green function becomes, with (3.3) in force,

G(a, b) =
∫

�

α ∧ ∗β =
∫

�

� voln . (5.3)

The contravariant version (3.10) of the stress tensor has components

T i j = Trs g
ri gs j = αiβ j + α jβ i − � gi j . (5.4)

The divergence of this tensor is obtained by contracting the second index with the
covariant derivative:

div T = T i j
; j

∂

∂xi
.

Using the fact that all covariant derivatives of the metric tensor vanish and that, by
(4.4), αi; j = α j;i , βi; j = β j;i we have

T i j
; j = αi

; jβ
j + αiβ

j
; j + α

j
; jβ

i + α jβ i
; j − �; j gi j = αiβ

j
; j + β iα

j
; j . (5.5)

When ψa = Ga , ψb = Gb, so that α
j
; j = �ψa = −δa , β

j
; j = �ψb = −δb,

equation (5.5) becomes
T i j

; j = −αiδb − β iδa . (5.6)

The right member in (5.6) can be interpreted as a source concentrated at the points
a and b. More precisely, it is a vector field with distributional coefficients (a vector
current) composed by the isolated vector −∇Ga sitting (like a point charge) at the
point b and the vector −∇Gb sitting at a. In summary we have

Lemma 5.1 When ψa = Ga, ψb = Gb the divergence of the stress tensor vanishes
except for the two point source field given in (5.6). Expressed in vector notation:

div T = −(∇Ga) δb − (∇Gb) δa . (5.7)
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6 Hadamard in terms of stress and strain tensors

In the final computation in Sect. 4 we had an integral over� involving a Lie derivative,
and this integral was pushed to the boundary. But there is also the possibility not to
go to the boundary. Then also the vector field v becomes differentiated, and one may
arrange matters so that the derivatives of v appear only in a certain strain tensor D.
This is to be paired with the stress tensor T discussed in Sects. 3 and 5.

The stress and strain tensors are the main actors in linear elasticity theory, where
the basic result, Hooke’s law (first formulated in 1678), expresses that the stress and
strain tensors are proportional (more exactly, linearly related) to each other for an
elastic material (see in general [4]).

Given a vector field v, thought of as representing an infinitesimal deformation of
some material, the corresponding strain tensor D is the symmetric covariant tensor
defined by

2D = 2Di j (x) dx
i ⊗ dx j = Lv(gi j dx

i ⊗ dx j ). (6.1)

The components of D are given by

2Di j = gikv
k
; j + gkjv

k
;i = vi; j + v j;i .

Using this we can now formulate the following generalization of equation (15.20) in
[2].

Theorem 6.1 The variation of the Green function G�(a, b) due to a deformation of
� ⊂ M driven by a smooth vector field v is, in terms of the stress tensor T = T (a, b)
and the strain tensor D = D(v), given by

d

dt
G�(t)(a, b) =

∫
�

T i j Di j vol
n − v(Ga)(b) − v(Gb)(a). (6.2)

In the right member v = v j ∂
∂x j is regarded as a derivation (directional derivative).

Proof Using (5.3) and (4.2) (essentially) we first have

d

dt
G�(t)(a, b) =

∫
�

Lv(α ∧ ∗β) =
∫

�

Lv(� voln)

=
∫

�

d(i(v)� voln) =
∫

�

d(i(�v) voln) =
∫

�

(�v j ); j voln .(6.3)

The next step is to show that

∫
�

(�v j ); j voln =
∫

�

(T i jvi ); j voln . (6.4)

This will be achieved by pushing the difference between the two members to the
boundary, after which cancellations will make it disappear.
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Let n denote the outward unit normal vector on ∂� and let n jdx j be the corre-
sponding one-form. It may be realized as n jdx j = du for a function u which is
defined near ∂�, vanishes on ∂�, and increases away from � with |∇u| = 1 on ∂�.
(One may take u = −Ga/|∇Ga |, for example.) Then inserting (4.4), (5.4) and using
Stokes’ formula we have∫

�

(T i j vi ); j voln −
∫

�

(�v j ); j voln

=
∫

�

(
(αiβ j + α jβ i − αkβ

kgi j − αkβkg
i j ) vi

)
; j vol

n

=
∫

�

(
(αiβ j − αkβ

kgi j )vi + (α jβ i − αkβkg
i j ) vi

)
; j vol

n

=
∫

∂�

(
(αiβ j − αkβ

kgi j )vi + (α jβ i − αkβkg
i j ) vi

)
n jdσ

=
∫

∂�

β j (αi n j − α j ni ) vi dσ +
∫

∂�

α j (βi n j − β j ni ) vi dσ = 0.

In the last step we used that, along the boundary ∂�,

αi dx
i = βi dx

i = nidx
i = 0,

hence that the covectors with components αi , βi , ni are proportional at each point of
∂�. From this it follows that

αi n j = α j ni , βi n j = β j ni for all i, j .

Thus (6.4) is now established.
Finally, using the symmetries of T and D together with (5.6), (5.7) we can continue

the right member of (6.4) by∫
�

(T i jvi ); j voln =
∫

�

(T i j
; j vi + T i jvi; j ) voln

=
∫

�

(−αiδb − β iδa)vi vol
n +

∫
�

T i j Di j vol
n

= −v(Ga)(b) − v(Gb)(a) +
∫

�

T i j Di j vol
n .

Combing this with (6.3), (6.4) completes the proof. ��
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