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ABSTRACT
A catastrophic rockslide occurred on 7 February 2021 in Chamoli
area in the high Himalaya. In the absence of field data, multiple sat-
ellites data of decade span have been used to investigate and
understand the progressive destabilization of rockslide body. A 3D
geometric model was developed using geospatial information about
geology, terrain, and ice cover to understand the triggering mech-
anism. Several causes are uncovered as: the pronounced long-term
change of land surface temperature facilitated local permafrost deg-
radation and led to ice cover shrinking since 2010; the occurrence
of ice avalanche nearby in 2016 accompanying with sidewall-to-bed-
rock fracturing enhanced the ice segregation beneath the rockslide
body; and the development of side cracks in early February 2021
led to dropping of side support and percolating of surface water.
Heavy precipitation several days before favoured the destabilization,
top-corner cracks developing and top-side bergschrund breaking
abruptly two days before, and ice strength reduction owing air tem-
perature rising few hours before the event triggered finally the rock-
slide. The frequent disasters such as cloudburst, extreme
precipitation, landslides, and snow avalanches responding to global
warming and climate change in the Himalayan region needs imme-
diate attention to the chain-like geohazards and collaborative obser-
vation with satellites and other platforms.
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1. Introduction

In the high mountain areas worldwide, the depleting of snow/glaciers and permafrost
freezing-thawing process, being considered as an important mechanism to induce slope
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failures, such as landslides/rockslides, rockfall, ice and rock avalanches (Haeberli 1997;
Davies et al. 2001; Gruber and Haeberli 2007; McColl 2012; Krautblatter et al. 2013), are
evidence of global warming and climate change. The effects of liquefied water, low-fric-
tion surfaces and steep topography were identified as critical driving factors enhance the
mobility of large rock-ice avalanche volume (Schneider et al. 2011). However, identifying
potential rock/slope failure and predicting the event, which could be related to a group
of driving factors, are still very difficult, in the absence of field data and geophysical
information especially in the high mountain areas.

In recent years, the utility of satellite-based remote sensing data offers valuable
tools for better understanding and qualifying the natural hazards process in high
mountain areas (Ambrosi et al. 2018; Kirschbaum et al. 2019). For instance, due to
lack of sufficient eyewitness and monitoring system, Champati et al. (2016) have
investigated the causes and consequences of Kedarnath 2013 disaster utilizing the
multiple satellite data, including precipitation, snow cover and digital elevation mod-
els, and have revealed that the series of landslides and lake outburst are the main
causes in the Himalayan region. On the basis of satellite remote sensing, numerical
modelling and field investigations, K€a€ab et al. (2018) have reported two adjacent gla-
ciers in the western Tibet in the months of July and September 2016 and found the
collapse was caused by climate- and weather-driven external forcing, which massively
reduced the basal friction connected to subglacial water and fine-grained bed lith-
ology. Leinss et al. (2021) identified several Glacier detachments and rock-ice ava-
lanches occurred between 1973 and 2019 in the Petra Pervogo range, Tajikistan using
Landsat archive, Sentinel-2 images and the ASTER imaginaries.

On 7 February 2021, at 4:51 UTC (10:21am Indian Standard Time [IST]), a huge
block of mountain rock covered with ice got detached from the north slope of Ronti
Peak and fell down in the valley from 1800m height (Figure 1). The detached rock and
ice rapidly transformed into debris flow and generated a cascade of events, which conse-
quently swept away the unfinished Tapovan-Vishnugad Hydropower project and caused
more than 200 deaths or missing (Shugar et al. 2021; Rao et al. 2021; Pandey et al. 2021;
Renoj et al. 2021). Due to high-altitude and steep topography, it was difficult to get
ground information from the top of the mountain above 5000m asl. Pandey et al. (2021)
carried out helicopter survey on 12 February 2021 and took few photographs which pro-
vided valuable information around the rockslide areas. The extremely steep slope, long-
term air temperature rise, regional climate change and related disturbance in cryosphere
as well as heavy precipitation several days before the event were thought to be the causes
of the rockslide (Shugar et al. 2021; Pandey et al. 2021; Renoj et al. 2021). We have used
multiple satellites observations (optical and microwave) and a three-dimensional geomet-
ric model based on geospatial information to investigate the development process and to
understand the causes of the triggering mechanism of this deadly rockslide in the
absence of detailed ground observations.

2. Topography

The Chamoli area, as a part of the the high Himalaya, mainly consists of high-grade
metamorphic rocks (Valdiya 1980) and the area around the Tapovan-Vishnugad
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hydropower station about 20 km downstream is dominated by amphibolite facies,
psammitic schist and gneisses (Heim and Gansser 1939; Valdiya and Goel 1983), of
which the non-tectonic joints are usually much developed (Nichols 1980) and their
stratified structure are easy to be affected by glaciation, deglaciation and neotectonic
process (Sahoo et al. 2000; McColl 2012). The elevation range of the rockslide body is
about 5,600 masl (Figure 2a), which is of high potential energy for mass movement
and landslide. The actual bergschrund was close to the mountain ridge (with distance
of about 273m), which illustrates the sheard nature of the source rocks to likely con-
dition of the faliure (Shugar et al. 2021). There were many glacier spurs existing on
the slope (Figure 2b), where the permafrost degrades usually faster and deeper com-
pared to a straight slope (Noetzli et al. 2007). Longterm changes of air temperature
had impacted significantly the permafrost layer along the slope.

The rock mass at the northern slope of the ridge appears to be stratified, and the
west adjacent surface of the slope appears to be relatively lower (Figure 2b). It seems
that bedrock instabilities have developed progressively from lower altitudes upwards
(Fischer et al. 2013), and some rockslides or ice avalanches might have occurred
nearby in the recent past, but no records are available. Before this event (7 Feb.
2021), slope angle of the sliding body surface was about 40

�
(Figure 2c), which is a

little higher than the sliding threshold of 37
�
. The sliding body can be considered as

a “steep” slope (Gruber and Haeberli 2007), on which most of seasonal snow over-
burden are likely to fall down and thin snow cover will be easily melted during
warm summer.

Figure 1. The location map of Chamoli rockslide on 7 February 2021. In the right panel, three
fusion images from Landsat-8 show the regional steep topography and location of the rockslide on
15 April 2017, 4 March 2019 and 9 March 2021, respectively.
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3. What changed gradually in a decade

3.1. General LST rising in 2013–2021

In the last few decades, the Himalayan region was experiencing a significant rise in
land surface temperature (LST) (Sabin et al. 2020), especially during pre-monsoon
and winter season (Gautam et al. 2009; Negi et al. 2018). The changes in LST in
Chamoli and its surrounding areas is observed using AMSR-2 microwave brightness
temperature (MBT) data (89GHz horizontal polarization) 2013–2021. Physically, the
observed MBT of an object is related to its physical temperature and surface emissiv-
ity (Ulaby and Long 2014). If surface composition and moisture are considered no
change in the same month, for example in the months of January and February of
each year, the MBT varies only with LST. The MBT data from satellite AMSR2 with

Figure 2. The topographical conditions around the rockslide place. a. Digital elevation model from
ALOS (Advanced Land Observing Satellite) shows the rockslide place, and white dashed polygon
illustrates rockslide area; b Google earth image of 2017, shows stratified rock mass; c. Rockslide
profile (‘AB’) is shown with red colour (a).
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a spatial resolution of 5 km was superimposed with a true colour image from satellite
Sentinel-2 with a spatial resolution of 10m, compared with the two typical homoge-
neous pixels, being representative rock surface (R) and vegetation (V) of different
land coverages, were considered (Figure 3a). In particular, the homogeneous pixels
are presented to meet the following two criteria: (1) the pixels are basically of the
same type of land cover from their texture in the true colour image; and (2) the loca-
tions of the pixels are close to the location of the rockslide. Besides, the pixel contain-
ing partially the rockslide was also selected and labelled as key pixel (K) (Figure 3a).
We computed the monthly average MBT of all the typical pixels for the months of
January, February and October of each year 2013–2021 using approach of Qi
et al. (2021).

As shown in Figure 3b, c, e and g, all the three types of pixels show similar MBT
variations in the months of January and February 2013–2021, with pronounced
changes in 2018–2020 and an increment in 2021. Considering the surface compos-
ition remains same and moisture no change during this period, the microwave emis-
sivity of these pixels can be assumed to be unchanged accordingly, thus the observed
MBT variations are caused mainly by the change of LST. The MBT over the study
area (K-pixel in Figure 3a) shows significant high-and-low variations during 2013
to 2021 (Figure 3g). Such dramatic MBT changes of K-pixel implies unusual
thawing–freezing–thawing behaviour during 2018–2021, that could be a potential
active factor of the rockslide. In addition, variations of the average monthly MBT of
K-pixel during 2 years before rockslide suggests that the LST in the month of
February 2021 was a little higher compared to the month of February 2020 (Figure
3d), which might be a potential cause of the triggering of 2021 rockslide event.

However, sometimes the change in surface composition could also cause the varia-
tions in observed MBT. To further evaluate the impact of changes of surface compos-
ition in different years, the land cover of each pixel is classified using remote sensing
data of Lansat-8 and Sentinel-2 from 2013 to 2021. The surface composition over
pixel R1 in the month of January, was filled with 80� 85% rock, showing 15� 20%
of pixel was filled with snow coverage (Figure 4). The rock percentage kept relatively
stable during the periods 2013–2021. Similarly, the rock percentage in the month of
February was less compared to the month of January showing approximately no
change during the periods 2018–2021. Therefore, the observed variations of MBT
(Figure 3c) during the periods 2013–2021 was mainly caused by LST. In general, the
rock percentage of pixel R2 is less than those of pixel R1 due to higher snow coverage
at higher altitude during winter season. The pronounced changes in rock percentage
were observed during January and February 2013–2021. The correlation between the
variations of rock percentage and the change in MBT (Figure 3e) is found to be poor,
which reflects that the observed MBT changes over pixel R2 was not caused mainly
by surface composition. The selected vegetation pixels V1 and V2 show about 50% of
the area were covered by vegetations, slight variations in vegetation cover shows the
areas were relatively stable as well, which is not consistent with the changes in MBT
(Figure 3b).

Very a few vegetation was observed during summer in K-pixel, and the changes of
area percentage of rock or dry snow/ice in K-pixel is sensitive to the MBT of K-pixel.
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Comparing Figures 3g and 4, variations of observed monthly average MBT during
January and February show a good correlation to the variations of rock percentages
in the months of January and February, respectively, which suggests an increase in
rock percentage, or the decrease in dry snow/ice percentage, to the increase in MBT.

Figure 3. Schematic diagram of typical pixels and its monthly average MBT. a, selected typical pix-
els are marked with black boxes: Rock surface (R), Vegetation (V), and Key pixel (K) covering the
rockslide; b, Monthly average MBT of the two V-pixels in January and February 2013–2021; c,
Monthly average MBT of the R-pixel-1 during January 2013 to February 2021; d, Monthly average
MBT of the K-pixel during January 2019 to February 2021; e, Monthly average MBT of the R-pixel-2
during January 2013 to February 2021; f, Monthly average MBT of the K-pixel in October
2013–2021; g, Monthly average MBT of the K-pixel in January and February 2013–2021.
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However, physically the microwave dielectric constant of rocks from 4 to 10, while
the dielectric constant of dry snow/ice is <3.2 in microwave frequency range (Ulaby
and Long 2014). With the physics of remote sensing and the constant physical tem-
perature, the higher values of dielectric constant in microwave frequencies corre-
sponds to the lower MBT. Thus, theoretically the increase of rock percentage or the
decrease of dry snow/ice percentage decrease the MBT, showing an inverse relation
to the observations (Figures 3g and 4). Thus, we can conclude that the variations of
MBT of K-pixel is mainly caused by the changes in LST. With the increase of LST,
the area percentage of dry snow/ice is decreased and correspondingly area percentage
of rock increased.

In addition, the skin temperature (SKT) derived from ECMWF ERA5 climate
reanalysis datasets are used to study temperature variations before and after the event.
By selecting a pixel with a size of 0.1� by 0.1� within the location of rockslide, the
regional mean of SKT over time is calculated. The change of SKT 70 days before the
rockslide event shows dramatic fluctuations with average amplitudes of 10K, while
the background values show a relatively weak fluctuations with average amplitudes of
5 K only (Figure 5). Such variations show intensive freezing–thawing cycles were
expected decades of days before the event and consequently facilitate the destabiliza-
tion of rockslide. In addition, the SKT during 5 days before the rockslide shows a dra-
matic decrease–increase fluctuation. With the dramatic decrease of SKT from 3 to 4
February 2021, the water infiltrated into fractures prior to the event was frozen fur-
ther and ice segregation effect was increased significantly. The continuously increase
of SKT from 4 to 7 February 2021 reduced the shear resistance that provided favour-
able mechanical conditions for the final destabilization of the rockslide body.

3.2. Ice cover shrinking since 2010

To investigate the ice or glacier shrinking with LST rising, cloud free satellite images
for the month of October (being less snow fall) of each year for the periods

Figure 4. Changes in surface composition of selected pixels in the same month of different years.
a, the variations in January of each year; b, the variations in February of each year. Black and grey
lines represent the rock percentage in pixels R1 and R2 respectively, the olive and dark green lines
represent the vegetation percentage in pixels V1 and V2 respectively, the red line represents the
rock percentage in Key pixel.
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2002–2020 were considered, the mean LST were above 0 �C in the month of October
(Renoj et al. 2021). The ice cover in whole study area started to shrink in 2010 and
declined from 81.5% to 13.9% in 2017 (Figure 6), increased again in 2018 and
reached to 33.7% in 2019, but declined with the minimum to 6.7% in 2020 associated
with the changes in MBT during 2009–2020 (Figure 3f). The ice cover inside the blue
dashed rectangular began to decrease in 2012, which is a little later compared to the
whole study area due to difference in elevation. This shows that the rock slope grad-
ually exposed to the warming air. Inside the orange dashed triangle, the reduced ice
cover from 2012 to 2016 located mainly at the lower part, provided support to upper
rock mass. For the rockslide body itself, most surface was covered by ice and kept
relatively stable before 2020, but dramatically decreased to 31.7% in 2020. About
13.6% of the surface of rockslide body exposed in 2017, which implies that some of
the melting water from ice cover might have percolated into the bedrock of rockslide
body, and consequently weakened the mechanical property of shallow bedrock with
increasing pore-water quantity and joints-water level on the bottom of bedrock.
Followed with two years of low temperature in 2018 and 2019 (Figure 3f), the per-
colated water was frozen again and activated the ice segregation effect (Taber 1930)
in the rockslide body. In the meantime, the frost heave (Hallet 1983; Walder and
Hallet 1985) might have also enhanced fracture density in bedrock. In October
2020, with a higher temperature, almost 70% of the rockslide surface got exposed,
which indicates large amounts of available water further percolated into the bed-
rock, and the followed freezing behaviour and ice segregation from November 2020
to January 2021 was enhanced unprecedentedly. Therefore, it is convincible that
the climate changes during the past years had facilitated the ice melting and
permafrost degradation, and consequently led to glacial debuttressing, which is
defined as the removal of side support from adjacent glacier ice (Ballantyne 2002;
McColl 2012). Consequently, the weakening and slow withdrawal of side support
since 2020 reduced the slope stability.

Figure 5. Skin temperature before and after the Chamoli rockslide event. The red line exhibits the
most recent observation of SKT before and after the event, while the blue line shows the back-
ground SKT from 2013 to 2021.
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3.3. Adjacent ice avalanche in 2016

In contrasting to the Sential-2 images of 19 September and 9 October 2016, an ice
avalanche (yellow dotted area) had occurred (Figure 7), as a result of the climate
change. The west part of the bedrock of the rockslide body exposed after the closely
adjacent ice avalanche, and the solar radiation on the exposed bedrock could be
increased, which enhanced the water seepage and freezing–thawing cycle. In 2017,
13.6% (i.e., 86.4% ice cover) of the surface of rockslide body (Figure 6) exposed that
accelerated the melting of ice cover, that must have percolated into the bedrock and
consequently enhanced the volume of pore-water and joints-water level in bedrock.
Thus, it could be expected that the percolating water through the joints enhanced a
lot in the bedrock after the 2016 ice avalanche and ice melting in 2017.

3.4. Bedrock fracturing since early 2017

The local stress field was disturbed by the ice avalanche in 2006, which was located
in the west of closely potential rockslide body, through glacial buttressing and stress-
release fracturing that weakened the side support. This led to enhancement of the

Figure 6. Changing ratio of ice cover in the core areas of rockslide in 2009–2020. (Planet’s image
of October 2011 is not taken due to intense cloud cover). The total area of the study area is about
36 km2, and the blue dotted rectangle with area 1.5 km2 represents the envelope of sliding zone,
shown with orange dashed polygon; the rockslide place is shown with red doted polygon. The val-
ues with black, blue, orange and red colour represent the area percentage of snow-ice cover in the
entire zone, blue rectangle, orange polygon and red polygon, respectively. Due to the incomplete-
ness of a certain band in Planet sensor, local anomalies did exist in some images.
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instability of the rockslide body, and facilitated the appearance of cracks on its top-
side in 2017 (Figure 8). For the enhanced ice melting and permafrost degradation
during the periods 2013–2017, the bedrock of the rockslide body lost its strength
gradually and fractures were developed as pathways of subsequent water percolation.
In that frost heave could enhanced the density of micro fractures and its growth in
bedrock (Hallet 1983; Walder and Hallet 1985), the low LST in 2018 and 2019
(Figure 3) could have enhanced the ice cover on the rockslide body significantly
(Figure 6), and the ice segregation was activated and enhanced due to available pre-
percolated water with the deep-ward movement of freezing front. Consequently, the
buttering of ice above the rockslide body was relatively increased in 2018 and 2019,
the topside crack produced in early 2017 was developed quickly and a horizontal
crack of width 50m about with sharp edges, even with snow cover, appeared clearly
on 24 October 2018 (Figure 8).

In the month of October 2020, with a higher LST (Figure 3f), 68.3% (i.e., 31.7%
ice cover) of surface of the rockslide body got exposed (Figure 6), which indicates
large amount of available water might have further seeped into the bedrock through
topside cracks, west side fractures and the widening bergschrund. Hence, the rock
joints or potential failure surfaces might have satrured. In the following winter
months with low temperature from November 2020 to February 2021 (Figure 3d),
the frost heaving by ice segregation in bedrock joints together with the volume-
expansion pressure at deep part of bergschrund, where the shallow space was sealed
due to freezing of water and a closed system was produced, were enhanced unprece-
dentedly. Two days prior to the rockslide, the size of the bergschrund expanded
quickly (Figure 8), and two top-corner cracks produced abruptly at the west and east
corners of the rockslide body, respectively, get connected to the bergschrund at the
topside crack. The pattern of potential rockslide body appeared clearly in Sentinel-2
image on 5 February 2021. It is obvious that the rockslide body had reached to a crit-
ical stage, and any other favourable factors were able to trigger the rockslide. The
continuous snowfall on 2–6 February 2021 (Pandey et al. 2021) could have led to the
decrease of shear strength of rockslide body.

Figure 7. The ice avalanche (yellow doted polygon) occurred in study area in 2016. a, 19 Sept
2016 image before the avalanche; b, 9 Oct 2016 image before the avalanche.

44 W. MAO ET AL.



4. Progressive destabilization and final triggering

4.1. 3D Geometric model of rockslide body

From Sentinel-2 optical images we estimated the bounding of the rockslide body.
Aspect map produced from digital elevation model (ALOS-30m DEM) and optical
images downloaded from Planet Labs17 are used to characterize the spatial relation-
ship of the faces of rockslide body (Figure 9a). The west side face (face C) of the
rockslide body is assumed to be approximately parallel to the adjacent faces (i.e., face
L3-2 and face L4), so that we can use terrain factors of the adjacent faces to approxi-
mate face C. The slope of face C is about 35.1� with northeast aspect (30�). The east
side face is assumed to be consistent with face S1 with northwest aspect (50�). The
slope of the top face (face L2-1) is about 40� with north aspect. According to the spa-
tial relationship between these side faces (shown in Figure 9c,d) we presumed the
rockslide body as an irregular hexahedron object, whose thickness is referred to ear-
lier study obtained from aerial observations (Pandey et al. 2021).

We noticed also a strip-shaped ice block (red dotted polygon in Figure 9a) remain
staying on the slope after the rockslide event, which indicates that the upper sliding
body might have experienced a lifted flying over the lower ice block. The scar of the
rockslide, stratified rock surfaces and stepped faces between the stratified layers
(Figure 9d), which is also observed from close looking by helicopter (Renoj et al.
2021), an irregular shape of rockslide body is outlined, and a 3D geometric model of
the rockslide body was constructed as an irregular hexahedron object with volume
about 18.797 million cubic meters. By simplifying the boundary conditions of the
rockslide body, a conceptual mechanical model is further developed (Figure 9b).

4.2. Progressive destabilization

Considering the geometric characteristics of the rockslide body (Figure 9) and the shrink-
ing process of ice cover (Figure 6), the progressive destabilization of rockslide body is
shown in Figure 10. When the snow line reached up to the lower part (ice block) of the
rockslide body in 2017, surface melting water was likely to percolate into the bedrock
and the opened ice-filled joints. The percolating water may have frozen again, and the
process of ice segregation could have produced the frost heave (Hallet 1983; Walder and
Hallet 1985, 1986) accompanying with the upward displacement of overburden bedrock
and the developing of a crack at the top-side of the rock volume. Later, with the freez-
ing-and-thawing cyclic process during 2017–2021, more ice could have filled primarily in
the bottom that may have produced rock fractures and joints, giving rise to large fractur-
ing in rock mass. Large amount of snow might have filled in the bergschrund that could
enhance the freezing and thawing effect. During thaw cycles, snow melts during summer
season, freezes again during winter that change the stress because of volume expansion,
which may enhance stress to the frozen rock mass and assist the destabilization of rock-
slide body. Consequently, the crack got expanded and developed completely and got
detached. With the connection of the bottom joints and the bergschrund, the ice segrega-
tion effect got enhanced and favoured the lifting of bedrock, which eventually lead to the
destabilization of the rock slope.
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4.3. Final triggering

The ultimate balance theory was applied to analyse the destabilization of the rock-
slide. The boundary conditions of the rockslide body are simplified, and a three-
dimension mechanical model is presented (Figure 11a). The mechanical forces related

Figure 8. Sentinel-2 images of the rockslide place during March 2017 to February 2021. These
images are picked out from all available images in each March and October or September
2017–2020, and all those from January 11 to February 10, 2021, inconsideration of less cloud and
nice quality. The topside crack or bergschrund was visible on 28 Mar. 2017 (pointed by blue
arrow). With the time going, the length and width of topside bergschrund developed gradually.
On February 5, 2021, 2 days before the rockslide, the top-side bergschrund was broken abruptly,
and a triangular rockslide body was clearly outlined by three opening cracks at the top, left and
right side, respectively.

46 W. MAO ET AL.



to a layered rock mass on a slope are divided as shear force (Fs) and shear resistance
force (Fr), which try to pull or hold the rock mass on the slope. Thus, the stability of
the rock slope can be obtained theoretically as:

f ¼ Fr
Fs

¼ F3e þ F3w þ F4 þ F5
F1 þ F2ð Þsinhþ F6

> 1:0 (1)

where f is the stability coefficient. The shear resistance forces in joints, including
F3e, F3w and F4, is mainly determined by the creeps and fractures of ice (Paterson
1994), the failure of rock–ice contacts (Krautblatter et al. 2013), the friction along
rock–rock contact (Barton and Choubey 1977) and the fracture of intact rock bridges
(Kemeny 2003); while the force on bergschrund, F5, is mainly influenced by ice–rock
adhesion (Ryzhkin and Petrenko 1997); and F6 is determined by the closure features

Figure 9. 3D geometric model and characteristics visualization of the rockslide body. a, Optical
images before (6 Feb 2021) and after (9 Feb 2021) the rockslide event, data from Planet’s Labs; b,
Eastside view of the three-dimensional (3D) model of rockslide body; c, Inclination map of terrain
surface corresponding to the area in a; d, Spatial relationship between the rockslide body and its
adjacent surfaces in the aspect direction. Surface A, B, C, D and L2-1 enclose together the sliding
body; L2-1 and L3-1 are the glacial surfaces of the 2021 sliding body and the 2006 ice avalanche
body, respectively; L1, L2-2, L3-2 and L4 are stratified rock surfaces; S1, S3 and S4 are stepped
faces between stratified layers; S2 is the fracturing face of the 2006 ice avalanche, the pink dotted
polygon show a remained strip-shaped ice body.
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of local rock–ice system (Taber 1930). Experimentally, the shear resistance in joints
shows a reduction trend with the rise of temperature (Krautblatter et al. 2013).

The general stability evolution of the rockslide body in 2013–2021 is shown in
Figure 11b–d. Since the ice avalanche in 2016 (Figure 7) and bedrock fracturing in
2017 (Figure 8) could have reduced the shear resistance forces significantly, the shear
resistance curve shows two significant falls accordingly. While during one year before
the rockslide, the stability depended largely on LST variations and probable volume
expansion pressure. During several days before the rockslide, precipitation (Jiang
et al. 2021) lead to the rising of F2 and decreasing of f : In addition, two top-corner
cracks produced along the east and west sides of the sliding body and connected with
the topside bergschrund on 5 February 2021, which might have decreased the shear
resistance significantly. Besides, the higher the temperature, the lower the ice-bonding
force (Kemeny 2003) and ice shear strength (Fish and Zaretsky 1997). The hourly air
temperature at rockslide location (30.38�N 79.73�E) from 1 to 7 February 2021 is
shown in Figure 11d (Jiang et al. 2021). In 24 h before the event (10:21 am, IST), the
air temperature declined from �10 to �22 �C in the first 12 h, with which the effect
of frost heave was expected to be enhanced correspondingly. Afterwards, the air tem-
perature rose monotonously from �22 to �2.5 �C in the latest 12 h, thus the signifi-
cant reduction of the ice strength, including the ice-bonding force at bergschrund
and the ice shear strength in potential failure surfaces, would have promoted the final
triggering of the rockslide. Thus, during several days to a few hours before the rock-
slide, approximately all forces applied on the rockslide body were favour for the
destabilization, especially at the last moment in the 7 February morning. Therefore,
the increasing shear force coupling with the decreasing shear resistance facilitated
dynamically the progressive destabilization of the rockslide body as:

f ¼ F3e # þF3w # þF4 # þF5 #
F1 þ F2 "ð Þsinhþ F6 " ! 1:0 (2)

Figure 10. A schematic diagram of the progressive destabilization of the rockslide body owing to
percolating, heaving, and detaching actions.

48 W. MAO ET AL.



Figure 11. Mechanical equilibrium system and progressive destabilization of the rockslide body. a,
Schematic diagram of applied forces on the rockslide body; b, Conceptual evolution of shear force
and shear resistance in 2013–2021, the red dots represent the earthquakes (USGS) of potential dis-
turbance to shear resistance, the black dotted line shows approximately the distance between the
epicentre and rockslide; c, Conceptual evolution of shear force and shear resistance from March
2020 to February 2021; d, Conceptual evolution of shear force and shear resistance in the last
week from 1 to 7 February 2020.
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Although the long-term trends of increasing high-mountain slope failures could be
attributed to climate change (Bessette-Kirton and Jeffrey 2020), the general attribution
of single event remains largely elusive (Shugar et al. 2021). Some researchers grouped
the factors that result in the paraglacial rock-slope failures into three types: precondi-
tioning, preparatory and triggering factors (Glade and Crozier 2005; McColl 2012).
Climate changes, glacial erosion, glacial debuttressing, rock stress redistributions and
jointing as well as seismicity, are recognized as factors that could reduce the stability,
and change the slope from a ‘marginally stable’ to ‘actively unstable’ state. Thus, to
evaluate the stability of rock-slope in high-mountain areas, the perception and recog-
nition upon the factors mentioned above is always necessary.

In general, the Chamoli rockslide could be attributed to three specific factors: (1)
the snow/ice cover on the slope, shown with orange and red polygons (Figure 6), had
experienced a ‘cyclic’ evolution due to global warming, i.e., shrinking gradually from
2012 to 2017, increasing again from 2017 to 2019 and dramatically declining in 2020,
of which the process of thawing–freezing–thawing effect was magnified and the ice-
water condition inside the slope bedrock is changed significantly. (2) An adjacent ice
avalanche has occurred in 2016 (Figure 7), which disturbed the local stress and the
thermal conditions in the area of detachment zone. (3) The huge top-side crack act-
ing as the head scarp of the rockslide produced since early 2017 (Figure 8), subse-
quently reduced the shear resistance of rockslide body and provided a great pathways
of water percolation.

5. Conclusions

Supported with multiple satellites data since 2009, we investigated the progressive
development of 7 February 2021 Chamoli rockslide and developed a 3D geometric
model of the rockslide body based on geospatial information to understand the rock-
slide triggering. Local LST change for decade, shrinking ice cover since 2010, yearly
permafrost freezing-thawing, closely adjacent ice avalanche in 2016, bedrock fractur-
ing since early 2017, and side-support weakening since 2020 are proved to be driving
factors, which had all impacted on the development process of Chamoli rockslide and
facilitated the rockslide destabilization progressively. Especially, snow fall several days
prior to, top-corner cracks developing as well as bergschrund breaking abruptly two
days before, and significant rise of air temperature a few hours preceding the rock-
slide should have provided favourable mechanical conditions for the final triggering
of the rockslide.

In addition to understand the progressive destabilization and triggering factors of
Chamoli rockslide, the corresponding downstream chain reactions, including the
source and process of debris flood, surface deformation, changes in flood plains and
water quality as well as the detection and early warning method, could also be inves-
tigated and revealed by using satellite images and regional seismic networks (Pandey
et al. 2021; Kothyari et al. 2021; Shugar et al. 2021; Jiang et al. 2021; Meena et al.
2021a, b, c; Cook et al. 2021; Rao et al. 2021; Renoj et al. 2021). However, the spatio-
temporal data resolution limitations have been a major limitation in the application
of remote sensing to high mountain hazards even though several new developments
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have been made in Earth remote sensing in recent years (Kirschbaum et al. 2019).
Besides, the other factors involved in paraglacial rock-slope stability, such as lithology,
intact rock strength, rock mass quality and joint characteristics, cannot be evaluated
or investigated from satellite images. Therefore, the detecting, early warning and
understanding the catastrophic geo-disasters in high-mountain region is still full
of challenges.

Referring to speeding-up global change and regional warming in the high
Himalaya, great risk of glacial geohazards accompanied by glacier shrinking (Guo
et al. 2020) may be enhanced in the future. This situation might even be strengthened
somewhat if earthquake activities enhanced, which is expected being one of the seis-
mically active regions of the world, and engineering activity overlays inappropriately.
Immediate attention to possible chain-like disasters in the high Himalaya, and collab-
orative satellite observations on geohazards-prone zones at multiple spatio-temporal
scales, all are very necessary. Multi satellite observations together with automatic wea-
ther stations and dense seismological observations will be very helpful to investigate
the geohazard risk and to understand the development process and final triggering.
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