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Abstract
Stochastic Model Predictive Control for Multi-Energy Systems with

High Penetration of Electric Vehicles

Anita Aboshiogwe Aliu, PhD Thesis, October 2021
The growing adoption of electric vehicles presents an opportunity to explore the numerous ben-

efits to network operators. For example, aggregated electric vehicles can replace peaking power

plants traditionally used to satisfy peak energy demands. However, unlike other distributed

energy resources, electric vehicles do not have fixed locations within single- or multi-energy

systems as they can be connected to any charging station. This makes optimally coordinating

their charge/discharge operations challenging, compounded when uncertainties related to elec-

tric vehicles’ characteristics, availability, and charging preferences are considered. Presented is

a generalised mobile storage model representing successive electric vehicles’ charge/discharge

operations that will utilise a charging station. The model is not restricted to a fixed number

of electric vehicles and can be used to analyse the different ways charging stations are utilised

in residential, commercial, and public areas. The mobile storage model extends a generalised

modelling framework primarily developed for predictive control applications. Modifications are

made to the entire framework for application in stochastic predictive control. The effectiveness

of the modified framework is demonstrated with three representative case studies. One illus-

trates how the model is incorporated into the generalised framework and implemented within a

deterministic energy management scheme. Results show significant cost savings when exploit-

ing successive electric vehicles utilising a charging station. The other is used to demonstrate

how uncertainties are incorporated within the generalised framework and implemented within

a stochastic energy management scheme. Results show significant cost savings compared to the

deterministic scheme. Finally, the last case study has a varying number of charging stations.

It is used to analyse the performance of a stochastic scheme whose optimisation problem is

designed to consider charge/discharge power smoothing applications. This is done to prevent

damage when electric vehicles are used for ancillary services such as peak demand management.

Analyses presented show the challenges in implementing the stochastic scheme in different areas.
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l̃n,u baseline energy requirement of the uth segment

ln,u actual energy consumption of the uth segment

∆l+n,u/∆l−n,u exceeding/curtailment slack variables relating to the amount of deviation from

the nominal energy requirement of the uth segment of n

δ+n,u/δ−n,u binary variables associated with ∆l+n,u and ∆l−n,u respectively

λ+
A, λ

−
A Penalty and incentive for exceeding or not meeting the baseline requirement due

to adjustable portion of flexible prosumer

En,u total baseline energy requirement of the uth segment of n

Ln Actual energy consumption of n accounting for the contribution from all its

segments

δpn,u segment processing binary variables

δcn,u segment complete binary variables

δwn,u segment waiting binary variables



Chapter 1

Introduction

1.1 Background

Since the mid-20th century, observed changes from the effects of greenhouse gases have increased

significantly in rate and scale, and have motivated countries to commit to the ever-increasing

adaption of sustainable technologies. The Paris Agreement, signed in 2015, sets out a global

framework to deal with greenhouse gas emissions mitigation and adaptation by limiting global

warming within 1.5◦C to 2◦C pre-industrial levels [3]. Prior to 2015, some countries had already

committed to combatting climate change: for example, UK’s Climate Change Act 2008 targets

a reduction of 80% by 2015 [4], EU leaders adopted in 2014 the climate and energy framework

targeting to cut emissions in the EU by at least 40% below 1990 levels by 2030 [5]. Around the

world, we see efforts been made, mainly by developed countries, through the degree to which

they have integrated distributed renewable energy sources (RES) and other low-carbon tech-

nologies like solar PhotoVoltaic (PV), micro-Combined Heat and Power (CHP), and domestic

Heat Pumps (HP). These changes are prominent especially within the energy sector, specifically

in the production of electricity and heat, which are the largest contributor to greenhouse gas

emissions. According to the International Energy Agency (IEA), about 50% of CO2 is emit-

ted from the production of electricity and heat, with a significant amount being emitted from

residential and commercial buildings, and unallocated fuel combustion of biomass and on-site

heat sources (refer to Figure 1.1). The transportation sector, the second largest contributor

1
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Figure 1.1: World greenhouse gas emissions in 2016 (sector | end use | gas).
Source: Climate watch, based on raw data from International Energy Agency (2018); modified by world resource institute

of greenhouse gases contributing about 20% of CO2, has not been ignored in the efforts made

to cut emissions. This is clearly seen through the adoption of Electric Vehicle (EV)s. While

adopting more sustainable technologies has the potential to significantly reduce dependence on

fossil fuels, it also presents a number of challenges for network operators as power generation

and consumption from these devices are highly volatile and stochastic, making it particularly

difficult to maintain the stability and reliability of energy networks [6].

Traditionally, power generation and consumption patterns have been relatively predictable.

Generation has been done centrally, with power transferred through transmission system and

into the distribution network eventually reaching end-users. The network structure has been

hierarchical with unidirectional power flow. Majority of loads operate in passive-only mode with

easily predictable energy demands and peaking power generators that can be readily ramped

up are used to satisfy peak energy demands during certain periods. However, the integration of

distributed sustainable technologies into energy networks together with end-users owning more

controllable devices has resulted in non-hierarchical energy networks with bi-directional power

flow. Furthermore, end-users are increasingly installing devices such as PVs and/or owning

mobile storage systems, such as EVs, making control of distribution networks more challenging.
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The adoption of these devices by end-users makes them not just net consumers of energy but

also producers, with the term prosumers is used to define them as in [7] and [8]. Power generated

from devices such as PVs and wind turbines can be controlled, to a certain degree, by curtailing

their power output and/or utilising storage systems when energy is generated in excess. Hence,

these devices have the potential to reduce the reliance on peaking power generators. However,

this is more complicated if such devices are located on the end-user side since network operators

do not have direct control of these devices. In addition, end-users’ adoption of EVs introduces

uncertainty regarding their location and energy demands, since EVs do not have fixed presence

and known generation/consumption patterns within energy networks. This uncertainty has

traditionally been addressed by incorporating significant levels of redundancy into the energy

network. However, the current ageing and overstressed infrastructure combined with ever

increasing transition from passive end-users towards more active participants, operating energy

consuming assets such as EVs, means network operators face important challenges of how to

maintain network reliability.

One approach of addressing these issues is straightforward network reinforcement but this

is generally quite expensive and leads to assets operating below economically optimal capac-

ity. Alternatively, the Smart Grid (SG) concept has been extensively researched that employs

digital technology to monitor and manage the transfer of electrical power and coordinate the

needs and capabilities of all assets and stakeholders within a network. However, this concept

primarily focuses on electrical networks. Demand-Side Management (DSM) methodology facil-

itated by the SG concept, provide network operators with the ability to manipulate generation

and demand profiles by controlling prosumers and EVs provided adequate control schemes are

developed. Another alternative to addressing the aforementioned issues of present energy net-

works is the adoption of the Multi-Energy Systems (MES) concept. This concept extends the

SG concept into the multi-energy domain, allowing optimal interaction between different en-

ergy vectors (e.g natural gas, heat, cooling, transport, water, etc) by exploiting the flexibility

they provide. In addition, the incorporation of DSM in the MES concept brings new insights

into Integrated Demand-Side Management (IDSM), a generalised concept that allows switch

between different energy carriers, storage systems, prosumers and EVs.



CHAPTER 1. INTRODUCTION 4

Energy sectors have traditionally been planned and operated independently of each other.

However, the adoption of the MES structure gives a holistic approach to coordinating these

sectors using unified energy infrastructure. MES presents an opportunity to exploit synergies

among various energy forms from Distributed Energy Resources (DERs) such as PVs, Wind

Turbines (WT), CHP units, EVs and HPs. This opportunity is exploited by taking advan-

tage of the flexibility that DERs provide to meet energy demands and assist in integrating

intermittent energy generators. Such configuration of DERs is known as an Energy Hub (EH)

and embracing DERs bring forth the issue of how to control the energy they generate and/or

consume in a coordinated way. Most DER are permanently present within an EH and a major

concern for network operators is to effectively integrate their operation into the energy network

while considering the uncertain nature of some energy sources such as wind speed and solar

radiation. However, EVs introduce added complexities related to accounting for uncertainties

in individual EV characteristics (e.g. battery capacities, charge/discharge power limits, bidi-

rectional energy exchange capabilities), availabilities (arrival and departure times) and owners’

charging preferences (e.g. individual’s choice to utilise EV bidirectional energy exchange capa-

bility, State-Of-Charge (SoC) at departure).

Similar to conventional vehicles, EVs are stationary approximately 90% of the time. Hence,

they can be exploited to provided valuable services to energy network operators [9]. There is

significant research interest on how EVs can interact with intermittent power generators to aid

their integration into energy networks [10] and the role EV aggregators can play in deciding

services, optimisation and control strategies for EVs [11]. Benefits EVs provide include the

following:

• The storage capacity that EVs provide can be exploited to aid the reduction of energy

generation cost within an energy network as well as minimise EVs’ charging cost through

the controlled interaction between EVs and intermittent energy generators.

• EVs with Vehicle-to-X (V2X) capability, where X refers to an infrastructure such as

the grid, a building or another EV, has restructured EVs’ role to include distributed

generators, and potentially allows for EV to participate actively in electricity market by

providing regulatory and spinning reserve services to system operators.
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• Aggregated EVs can be utilised to provide peak demand management service to network

operators, acting as distributed generators and reducing the requirement for expensive

peaking generation plants traditional used to satisfy peak demands.

The expected future increase in EV numbers will be beneficial as a large number of them will

be required to efficiently exploits the services they can provide to energy network operators.

However, large EV numbers will pose a challenge to network operators if proper modifications

and/or control of energy networks are not made to accommodate their charging/discharging

operations [12,13]. Hence, their integration in energy networks has received significant interest

in research communities.

1.2 Motivation

EV integration in the operation of MES has been investigated to capture the benefits EVs

can potentially contribute to achieving a future sustainable energy network through various

proposed control strategies. However, EVs lack of fixed presence, known location and gener-

ation/consumption patterns, which most DERs possess, makes them difficult to control and

coordinate. Attempts in research to handle this difficulty and incorporate EVs in the operation

of energy systems are based on relatively known mobility behaviour (e.g. when and where to

charge, and energy consumed) [14–30] and investigations done within the MES context, un-

certainties are typically overlooked [31]. In addition, individual owners’ charging preferences

are usually ignored, and proposed control schemes are mostly implementable in specific cases

where an approach proposed for a case study cannot be used for another, hence lacking a sys-

tematic approach. These assumptions are reasonable when analysing schemes for EV fleets with

shared schedules, private car parks or homes with individually allocated charging stations. In

these cases, ownership of charging stations is known and near-full information regarding EV’s

mobility and charging behaviour can be obtained. However, the diverse nature of future EV

ownership in addition to their different technology types as well as owners’ individual util-

isation, availabilities and charging preferences, will restrict the applicability of the existing

approaches. Inadequacy of the existing approaches is particularly acute in the cases of public

charging facilities where it is difficult to determine the different types of EVs and their owners’
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charging preferences that will utilise specific charging stations.

To account for diverse EV ownership will require a energy network modelling approach

that is easily adaptable and not restricted to specific case studies. Some aforementioned liter-

ature that incorporate EVs in the operation of energy systems have utilised the SG concept.

However, the SG concept is applicable in electrical-only domain. Other approaches that have

incorporated EVs in energy network operations have used the different approaches to mod-

elling MES such as microgrid and EH concepts. However, these modelling framework are not

capable of representing multi-directional energy flow required to facilitate EVs’ bi-directional

energy exchange with the grid. A novel modelling framework that addresses the short-falls of

the aforementioned approaches to modelling energy systems is the Control-Oriented Modelling

framework for MES (COMMES) in [8]. The COMMES framework is capable of representing

energy converter arrangements of arbitrary complexity containing multiple energy vectors, as

well as multi-directional energy flow, multi-generation and multi-mode devices. However, the

existing formulation of the COMMES framework does not allow for straightforward represen-

tation of EVs charge/discharge operations.

In controlling energy networks, system operators have traditionally focused on the supply

side with regards to grid management and have made control decisions based on optimisation

strategies that allow for the best choice for a set of interacting variables to be determined consid-

ering system constraints. With energy users on the demand-side installing devices such as PVs,

WTs and EVs, and with the inherently multi-variable nature of MES, power system operators

have equally adopted optimisation strategies in making control decisions as it allows the con-

straints of these devices and flexibility of the MES to be accounted for. Promising optimisation

strategies gaining interest in power research communities are those based on Model Predictive

Control (MPC) (a.k.a. receding-horizon control). It is an attractive control approach to utilise

the existing flexibility in MES as its formulation explicitly incorporates system constraints and

its receding horizon strategy introduces a degree of robustness against the stochastic nature of

RES and active energy users. Research has begun to embrace its stochastic formulation, espe-

cially when dealing with real-world problems because its deterministic formulation renders its

robustness property inadequate. Another advantage of the COMMES framework is that is was

primarily developed to be implementable within predictive control schemes and is exemplified
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by its implementation in deterministic MPC schemes in [8,32,33]. However, in addition to the

inability of representing EV charge/discharge operations using the existing formulation of the

COMMES framework, the framework is also not adaptable to consider uncertainties from DER.

Therefore, an opportunity presents itself to modify the existing modelling framework to capture

uncertainties from all energy sources, efficiently account for the complexities of integrating EV

charge/discharge operations and is implementable in stochastic MPC schemes.

1.3 Aim and Objectives

The aim of this thesis is the development of a generalised model to represent the charge/discharge

operation of EVs. The model should be incorporated into the novel control-oriented modelling

framework for multi-energy systems hence should match the framework’s modular structure. In

particular, the EV representation should not be restricted to specific EV characteristics, avail-

abilities and owner’s charging preferences nor should a fixed number of EVs be imposed. The

entire framework should be adaptable to consider uncertainties from generation and demand

sources, including EV related uncertainties. In order to meet this aim, the following objectives

have been identified:

• Develop and identify a suitable model for representing EV charge/discharge operation

i.e. an approach that is not limited to specific EV characteristics (battery capacities,

charge/discharge power limits, bidirectional energy exchange capabilities), EV availabil-

ities (arrival and departure times) and EV owners’ charging preferences (individual’s

choice to utilise EV bidirectional energy exchange capability, State-Of-Charge (SoC) at

departure) as well as not restricted to a fixed number of EVs and can consider multiple

uses of a charging station.

• Modify the novel COMMES framework to incorporate a representation of mobile storage

devices that matches the COMMES modular structure.

• Investigate and identify part of the modified COMMES framework that need to be

adapted to uncertainties from generation and demand energy sources.

• Develop and identify suitable methods to predict future uncertainties related to EV char-
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acteristics, availabilities and owner’s charging preferences in order that stochastic predic-

tive control schemes can be tested using the modified COMMES framework.

1.4 Contribution

To the best of the author’s knowledge, no formalised systematic approach to mobile storage

modelling for control applications has yet been proposed that is not restricted by the number of

mobile storage devices. In order to address this, the model of mobile storage device is developed

based on the utilisation of charging stations. This approach allows driver’s decide to participate

in bidirectional energy exchange once they connect their vehicle to a charging station if the

charging station has bidirectional energy exchange capabilities. The contributions of the thesis

can be summarised as follows:

• Provision of a model representation of successive EVs charge/discharge operations based

on the utilisation of charging stations instead of directly modelling a fixed number of EVs,

which is the approach employed in most literature. The model structure facilitates the

representation of individual EV characteristics and availabilities and allows their owners

to set desired charging preferences before a charge/discharge operation begins.

• Incorporation of the aforementioned representation of successive EV charge/discharge

operation model in a novel generalised COMMES framework. The inclusion of the EV

charge/discharge model extends the COMMES framework to capture mobile storage de-

vices that are not always permanent in MES. While alternative representation of EV

charge/discharge model have been proposed within the MES context, they lack a modu-

lar structure as they are focused on fixed EV numbers and a reasonable understanding of

their utilisation can be obtained.

• Proposal of a modification to the novel COMMES framework to consider the stochastic

nature of EVs by addressing uncertainties related to EV characteristics, availabilities and

owners charging preferences as well as fixed generation and loads. The proposed modifi-

cation facilitates forecasts of EV needs to be generated and is applicable in the analysis

of EV utilisation within residential, commercial, and public areas. While alternative ap-

proaches exist that facilitate the forecast of EV charge/discharge patterns, they are based
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on individual EV utilisation within specific areas and allow only one EV charge/discharge

operation per charging station to be considered.

• A mechanism for updating current and estimate of future EV charging/discharging oper-

ations to facilitate online control applications by continuously monitoring and assessing

EV presence, energy level and associated uncertainties, within the MES. The mechanism

considers the random behaviours and inter-temporal constraints between successive EV

charging/discharging operations.

1.5 Thesis Outline

The remainder of this thesis is organised in the following way:

Chapter 2: Review of the literature relevant to the topics discussed in this thesis is presented.

Chapter 3: Preliminary topics of the COMMES framework, stochastic programming and MPC

are discussed, to support their application in later chapters.

Chapter 4: The generalised representation of mobile storage charge/discharge model proposed

in this thesis is discussed in this Chapter. In addition, a deterministic model predictive control

scheme is designed and a case study is presented to demonstrate how the mobile storage model

is incorporated into the COMMES framework.

Chapter 5: Formal modifications to the COMMES framework is presented in this chapter. In

particular, discussions on how uncertainty sources affect the three components of the COMMES

framework is presented together with how uncertainties related to EV characteristics, availabil-

ities and charging preferences are incorporated into the mobile storage model. In addition,

a stochastic energy management scheme is developed and another case study is provided to

demonstrate the modifications to the COMMES framework.

Chapter 6: Computational considerations of EV utilising charging stations in residential,

commercial and public areas are analysed. A general electrical-only system with a number of

charging stations is used to demonstrate the computational challenges in the different areas.

The stochastic EMS is designed with the added functionality to smoothing the charge/discharge
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power flow of EVs.

Chapter 7: Concluding remarks to the thesis and some promising direction for future work

are presented.



Chapter 2

Literature Review

This chapter presents a review of existing literature that informed the development of the

mobile storage model and control scheme proposed in this thesis. In particular, approaches

in literature on modelling, aggregating and controlling the charge/discharge operations of EVs

within single- and multi-energy networks are explored.

It is highlighted in Chapter 1 that unlike EVs, most DERs are permanently present within

energy networks. To further illustrate this, Figure 2.1 shows a schematic of a MES containing

different DERs. It provides a helpful example of various technologies and energy vectors that

can exist within a MES. Energy sources shown on the left in Figure 2.1 contain different tech-

nologies that provide input energy to the MES. Electrical energy sources come from generation

plants and renewable technologies. Gas is supplied from the natural gas network, and the heat

source is from the district heating system. The right box contains energy prosumers made

of aggregated fixed and/or flexible technologies that individually either consume or produce

energy. Fixed technologies have a constant generation or consumption pattern that can not be

manipulated when the device is in operation. Conversely, the generation or consumption pat-

tern of flexible technologies can be manipulated to achieve specific objectives, such as a specific

demand profile during peak periods. Washing machines, dryers and dishwashers are examples

of flexible consumers, while computers and TVs are examples of fixed consumers. Renewable

technologies are examples of fixed generators while petrol generators are examples of flexible

generators. Conversion technologies such as transformer, CHP, boiler and heat exchanger are

11
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in the central box. These technologies convert input energy vectors from energy sources into

the output vectors supplied to energy prosumers and storage. EVs are better categorised as

storage devices rather than energy prosumers during their charge/discharge operations because

they simultaneously perform the function of both energy consumers and producers. However,

as EVs are not always connected to the energy network, charging stations are shown in Figure

2.1 instead as they are equipment EVs utilise to recharge their batteries.

Figure 2.1: Schematic of a multi-energy system

This chapter is organised as follows: The review begins in Section 2.1 with an overview of

EVs and the role they play in energy networks. This is followed by a review of the different

ways EV battery dynamics have been modelled to facilitate the development of EMS in Section

2.2. Then a review of aggregation concepts relevant to MES modelling in Section 2.3 and works

related to IDSM that incorporate EVs in Section 2.4. Overview of EV Sharing Communities

and EV aggregators are presented in Sections 2.5 and 2.6 respectively. Finally in Section 2.7, a

review of literature addressing coordination of EV utilised in residential, commercial and public

areas are presented.
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2.1 Electric Vehicles in Energy Networks

One contribution in this thesis is the incorporation of a model representing the charge/discharge

operation of mobile storage systems in the novel MES modelling framework in [8] without

exact knowledge of the number and type of EVs that will utilise charging stations in the

network. Unlike conventional vehicles that use internal combustion engines for propulsion, EVs

use electric motors for the same purpose. The fuel sources for conventional vehicles (e.g. petrol

and diesel) are stored in tanks located in fuelling stations. Their operation is independent of the

operation of energy grids. However, EVs require electricity to recharge their onboard battery

to meet their energy needs. Recharging an EV requires it to be plugged into a charging station

that is connected to the energy grid. As such, EVs are added devices in energy networks, and

knowledge on their types, energy requirements and understanding of their energy needs must

be known by network operators. Attempts in literature to coordinate the charge/discharge

operation of EVs assume reasonable understanding of how they are utilised [7,14–16,18–20,31,

34–37]. In addition, EV numbers are assumed fixed and possible multiple utilisation of charging

stations is ignored. As will be proven in Chapter 4, the benefits of accounting for multiple uses

of a charging station within an energy network without exact knowledge of EV numbers will be

highlighted. However, a discussion is first presented on EV types, how their charge/discharge

operations have been modelled in literature and their impact on future energy networks.

The term EV is generally used to refer to vehicles such as an electric car, electric motorcycle,

electric bus, electric train, electric van, and electric truck. EVs have been in existence since

the mid-19th century [38]. Their increased adoption in the turn of the 21st century is due

to an increased focus on renewable energy and the potential reduction of the transportation

sector’s impact on climate change and other environmental issues. With the benefits that

accompany large-scale adoption of EVs, there are concerns on how to optimally coordinate

EVs’ charge/discharge operation without negatively impacting the energy grid.

2.1.1 Role of Electric Vehicles in Energy Networks

Future energy networks are projected to comprise a significant number of devices whose power

generation/consumption are highly stochastic. EVs are one of the most promising to aid the
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integration of intermittent and non-dispatchable energy sources such as wind and solar. How-

ever, significant penetration of EVs into energy grids will result in large charging loads and will

make managing the energy grid difficult for network operators. Highlighted in [10] is that EVs’

role in energy network and the benefits they could provide to network operators are mostly

focused around four core factors: cost, efficiency of supply, emission reduction and user

comfort. Some ways cost considerations have been addressed are:

• Operational cost minimisation where DERs within single- or multi-energy systems are

leveraged in the formation of optimisation problems using generic mathematical method-

ologies such as non-linear programming and mixed-integer linear programming (MILP)

(e.g. [14, 17,18,23,39,40]).

• Reduction of electricity generation cost from conventional non-RES sources by exploiting

the storage capacity EVs provide to aid RES integration in energy networks (e.g. [17,24]).

• Profit maximisation for aggregators that coordinate charging of EVs by leveraging their

storage capacity and availabilities to provide ancillary services to network operators (e.g.

[23,28,36,40,41]).

• EV charging cost minimisation by scheduling EV charging operation either when energy

costs are cheap, RES generation is in excess or non-controllable energy demands are low(

e.g. [15, 16,23,34,42,43]).

• Minimisation of congestion, investment expenses and transmission cost to avoid redundant

capacity been installed in energy network through appropriate charging and discharging

control of EVs (e.g. [9, 40,44]).

Maximising the use of intermittent RES generation, minimising power losses and optimising

energy dispatch are ways EVs have been utilised to ensure the efficiency of supply. These

objectives have also been considered in literature that addresses cost regarding EVs’ role in

energy networks. Literature exploring charging EVs less from conventional non-RES generation

and exploiting their storage flexibility to aid efficient utilisation of RESs address emission

reduction as such approaches aid curtailing carbon footprint derived from purchasing energy
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from non-RES generation sources. Approaches in [14, 24, 34, 39] are examples were emissions

have been considered. EV user comforts are usually considered in research by modelling the

stochastic nature of EV availabilities and energy demands obtained from understanding their

utilisation patterns [9,18,20,24,26,34,43,45]. These models are used to estimate EVs’ charging

demand and when EVs will be available to network operators.

2.1.2 Open Issues

There are numerous benefits EV can possibly contribute to energy networks. However, issues

have yet to be addressed on how EVs can be effectively exploited and integrated into energy

networks. Major issues are:

1. Feasibility of bi-directional power flow

Bi-directional energy flow between EVs and an infrastructure, generally referred to as V2X,

will facilitate EV’s role in providing ancillary (such as regulatory and reserve) and storage

services and help fix power imbalances in energy networks. However, a large number of

EVs have to be aggregated to achieve this. V2X envisions EVs as distributed generators

that can inject power back to another entity such as an EV, a building or the energy grid.

Numerous literature have explored the benefits of exploiting EVs’ V2X capabilities [16, 18,

19,23,24,28,36,40,41]. Presently, only a few EVs have bi-directional power flow capabilities

(e.g. the Nissan Leaf and the Mitsubishi Outlander) and these capabilities are not yet fully

exploited in control strategies implemented by Distribution Network Operators (DNO)s. As

EV adoption continues to increase, and with possible technological advancement for them

to all have bi-directional power flow capabilities, control strategies for coordinating their

charge/discharge operations will be more complicated. In addition, it will be increasingly

challenging to account for the uncertainty in EV owners deciding not to participate in V2X

through their EVs have bi-directional capabilities.

2. EV charge/discharge coordination and information flow

Understanding how EVs are utilised and when they will be available to the energy network

is key to coordinate their charge/discharge operations efficiently. However, such knowledge

is difficult to obtain as EV utilisation is highly stochastic as they are based on drivers’

schedules. Attempts to address this are seen in the EV coordination scheme that assumes
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information flows between EVs and an aggregator/network operator [23, 24]. However, the

challenge with such schemes is that when EVs are widely adopted, it will be challenging to

coordinate information flow between EVs and aggregators that manage charging stations in

different locations EVs will use over time. Predominant alternatives are approaches that

utilise historical EV data to estimate the availabilities and energy levels of EVs within a

network [16, 18, 19, 35, 45, 46]. Critical assumptions made are that EVs that utilise the

charging stations are known, fixed, and charge mainly once over a certain period. However,

with the projected growth in EV number over the coming years, it will be expected that

charging stations in certain areas will be utilised multiple times over certain periods, drawing

parallels to how fuelling stations are utilised today. Hence, these approaches are applicable

in specific cases such as sharing schemes where EVs are used for work-related trips or shared

within a community, as EV utilisation in these cases can be easily estimated.

3. Holistic markets and opportunities

Traditionally, large power plants are compensated for ramping up/down power generation

to help maintain supply-demand balance in classical passive energy networks. With current

power systems adapting more RESs and DGs, the energy network is being transformed to one

with less inertia. This transformation limits the extent large power plants can aid supply-

demand balance. Methods mostly researched on how to compensate new active players

in energy networks that would help the balancing process are DSM strategies employing

incentive or price-based programs [47–49]. These strategies are quite difficult to implement,

requiring two-way communication between prosumers and network operators, and are more

challenging when EVs are incorporated. Compared to other devices owned by prosumers,

EVs lack of fixed presence and known charge/discharge operation profile makes leveraging

the flexibility they provide difficult for network operators. In addition, network operators

have to consider the owner’s charging preference and charge/discharge rate as a function of

incentives provided to EV owners. Most investigation into compensation provided to EV

owners involved in DSM strategies are done considering individual EV ownership [18,19,34,

46], EV sharing schemes [16, 27, 28] or EV aggregators [24, 27, 41, 42, 50]. Compensation to

EVs is facilitated through optimal charging strategies, EV involvement in providing peak

power to electrical networks from their V2X capability and provision of ancillary services to

power systems operators through their interactions with aggregators. However, restrictions
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are placed on EV types, their mobility and numbers considered in most literature. Hence,

limiting their applicability in scenarios where EVs are of diverse nature and their numbers

are not exactly known.

2.2 Electric Vehicle Battery Dynamics and Driving Pattern

Models and control strategies developed in literature that incorporate the charge/discharge

operation of EVs require battery models that accounts for EVs’ SoC and an understanding of

how EVs are utilised to extract information on EV characteristics, availabilities and owner’s

charging preferences. The next subsections explain how these factors have been considered in

research.

2.2.1 Types and Battery Model Representation

EV types generally refer to Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle

(PHEV) and Battery Electric Vehicle (BEV). HEV runs on a combination of conventional

combustion engine and electric propulsion system to achieve better fuel economy or better

performance than a conventional vehicle. The onboard battery of a HEV does not require

an external power source to recharge. Rather, the battery charges using the petrol engine

while the vehicle is in motion. Similarly, PHEV runs on both petrol and electricity. However,

unlike HEV, the on-board battery of a PHEV recharges when the EV i plugged into a charging

station. A BEV runs exclusively on electricity provided by the onboard battery. A BEV’s

battery recharges when the vehicle is plugged into a charging station using the EV charging

cable. In this thesis, EVs are referred to PHEV and BEV only.

Literature that has incorporated coordinating EV charge/discharge operations together

with other DERs within energy networks have generally modelled EV in two ways. One is

the aggregated EV charge/discharge power model with a set limitation on the sum of charg-

ing/discharging powers of connected EVs [51] or aggregated EV charge/discharge powers re-

quired to track a reference power pattern [40]. The second and most used model is the charge

level model, which focuses on modelling the SoC of an EV’s battery during its charge/discharge

operation. There are generally three approaches used to model EV charge/discharge operation
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in literature. However, there is an evolutionary progression pattern when analysing the differ-

ent EV models such that they are mutually inclusive. This thesis describes the three models

as flexible load model, lossy flexible load model and state-space model.

1. Flexible load model

Using the exact knowledge of the amount of energy EVs will require for their trips and their

scheduled charge time, control schemes in [14,20,31,34,43,52] have modelled EVs as flexible

loads. This model does not allow exploitation of EVs that have bi-directional capabilities,

and the model is generally expressed as

hend−1∑
t=hini

P+
EV,i = EEV,i,ded = EEV,i,end − EEV,i,ini (2.1)

0 ≤ P+
EV,i ≤ P

+

EV,i (2.2)

Where P+
EV,i is the charging power which accumulates over the period EV i is connected

to the network. The accumulated power is set equal to the EV’s energy demand EEV,i,ded.

The time when the EV charging process starts is denoted as hini and the time the charging

process ends is denoted as hend. The initial and final SoC of EV i are denoted as EEV,i,ini

and EEV,i,end respectively.

2. Lossy flexible load model

Lossy flexible load model refers to EVs modelled as flexible loads with added consideration

of charging losses. This model has been utilised in [19,36,46] and can be generally expressed

as

EEV,i,min ≤ EEV,i,ini + ηchg,i

hend−1∑
t=hini

δchg,iP
+
EV,i = EEV,i,end ≤ EEV,i,max (2.3)

δchg,i =


1, if EV i is available

0, otherwise
(2.4)

Where EEV,i,min and EEV,i,max in (2.3) are respectively the minimum and maximum limits

that constrain the SoC of EV i during the charging process. Losses during the charging

process of EV i are considered using the efficiency factor ηchg,i. The binary variable δchg,i

monitors the presence of EV i. The multiplication of this variable by the charging power P+
EV,i
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ensures that (2.3) is only implementable when an EV is connected to the energy network.

However, when ηchg,i = 0, (2.3) collapses to the equality constraint EEV,i,ini = EEV,i,end. This

gives the illusion that the EV remains connected to the charging station when the required

SoC is reached.

3. State-space model

The state-space model representation of the charge/discharge operation of an EV is the

most generic as the previous three models can be derived from it. It is mainly used when

a realistic representation of charging stations utilisation is required. No information about

the EV is unknown by the network or charging station operator when the EV departs, or

its charge/discharge process is finished. The model is generally expressed as

Et+1
EV,i = Et

EV,i + ηchgP
+
EV −

P−EV

ηdischg
∀t ∈ (hini : hend]

Et
EV,i = EEV,int at t = hini

Et
EV,i = EEV,end at t = hend

(2.5)

δchg + δdischg ≤ 1

P+
EV − δchgP

+

EV ≤ 0

P−EV − δdischgP
−
EV ≤ 0

(2.6)

Examples where this model has been implementation, are in [9, 15, 16, 18, 23, 24, 35, 39, 41].

Some have implemented (2.5) and (2.6) without exploiting the bi-directional capabilities

of EVs. Energy losses during an EV’s discharging process are represented using the binary

variable δdischg. The discharging power is denoted as P−EV . The charging/discharging process

of an EV begins at hini with a SoC of EEV,ini and ends at hend with a SoC of EEV,end

usually set by the driver or set to charge fully. Constraint (2.6) is implemented to prevent

simultaneous charging and discharging of the connected EV. The state-space model is in

operation only within the period hend−hini, after which the SoC of the EV is unknown and

is of no concern to the network operator.

Literature that has utilised the three models assume that multiple uses of a charging station

or multiple recharging of an EV do not occur. Control schemes are mainly designed consid-

ering fixed EV numbers of specific types. However, as exponential growth in EV adoption is
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projected to increase in the next decade, multiple recharge operations of an EV at a private

charging station or multiple utilisation of a public charging station will become a common occur-

rence. Hence, proposed control schemes that modelled EVs using the three models mentioned

above limit their applicability in real-world scenarios. Therefore, an opportunity presents itself

for further development of a generic EV charge/discharge operation model that captures the

multiple utilisation of charging stations by EVs within energy networks.

2.2.2 Electric Vehicle Driving Patterns

To design an adequate control scheme for energy systems requires an understanding of the

system use case. This approach influenced research in DSM, as an understanding of fixed tech-

nologies through the collection and analyses of generator and demand data and the operation

of flexible technologies through integrating user preference on devices operation, influenced the

performance of proposed control scheme and the incentive structure in DSM strategies. The

energy system use case has also been considered in proposed EMSs that have incorporated

EV charge/discharge operation. The use case considered in designing such EMS is generally

based on whether the EVs are recharged using charging stations in a residential, commercial or

public energy network. Defining the use case requires an understanding of EVs’ characteristics,

availability and owners charging preferences. These factors are highly stochastic and need to

be known by the network operator to adequately exploit the flexibility EVs may provide to the

energy network.

Highlighted in Chapters 1, is that network operators view EVs differently from other devices

that exist within an energy network. Specifically, they are viewed as non-permanent end-user

devices in energy networks. Especially in commercial and public energy networks where it

isn’t easy to know which EV will utilise a specific charging station and if they will choose to

participate in bi-directional energy exchange all the time. This has lead researchers to investi-

gate, analyse and model EVs based on their driving patterns to better plan and operate energy

networks to incorporate better the uncertainties they introduce. EMSs that have incorporated

EVs mostly estimate their utilisation:

1. Assuming a typical EV users driving schedule follow specific probability distribution.
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2. EV utilisation is estimated from information data collected from driving survey or trials.

Where an EV driving schedule follow a specific probability distribution, the EV information

required to design the EMS are mostly extracted from either uniform distributions as in [16,

23,41,42] and/or normal distribution as in [17,24,35,37,41,43,51]. Chi-square distribution has

also been used in [16]. These distributions are mostly arbitrary and do not match realistic EV

utilisation. Information on a group of EVs in the aforementioned literature is mostly extracted

from the same probability distribution. To obtain EV utilisation information under real-world

conditions, some researchers have extracted information from data collected from individual

EV utilisation and used it to validate proposed control schemes. The EMS proposed in [7]

utilised data from a Hunan travel survey conducted in China, and EMS proposed in [18–20]

utilised data collected from EVs utilising charging stations on UCLA campus.

A critical piece of information not included in the EV data utilised in most literature is

the multiple uses of a charging station over certain periods. Highlighted in Section 2.1, is that

accounting for this is essential, especially when charging stations are utilised multiple times in

commercial and public areas like how fuelling stations are utilised today. At the time of writing,

only data from the "My Electric Avenue" project led by EA technology in collaboration with the

UK DNO Scottish and Southern Energy Network [53] includes the number of times charging

stations are utilised. To the best of the author’s knowledge, this data is the only one that

includes multiple utilisation of a charging station together with EVs’ start time and initial and

final SoC. Hence, it is used to validate the stochastic EMS proposed in Chapter 5.

2.3 Multi-Energy Systems Modelling

Similar to research addressing the charge/discharge coordination of EVs, research in MES are

based on the same four core factors: cost, efficiency/security of supply, emission reduc-

tion and social acceptance, which includes user comfort. Research in MES addresses the

issue of affordability, reliability, and sustainability of energy networks using this four factors

termed the energy ’quadrilemma’ in [54]. However, balancing the different dimensions of the

quadrilemma poses a challenge. Part is the lack of a detailed MES modelling framework capable

of representing synergy between different energy sectors and integrating of DERs, which can
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be used to highlight potential benefits and possible drawbacks of energy systems integration.

Modelling MES has generally been approached using the MicroGrid (MG), Virtual Power Plant

(VPP) or Energy Hub (EH) concepts. The CIGRÈ C6.22 Working Group [55] defines MGs as:

Electricity distribution systems containing loads and DERs (such as distributed generators,

storage devices, or controllable loads) that can be operated in a controlled, coordinated way

either while connected to the main power network or while isolated.

In [56], a VPP is described as:

A flexible aggregation of DERs (including MGs) that are coordinated in an optimal way, are

capable to play in the energy market, and offer services in the same way as conventional

large-scale power plants.

Both the MG and VPP concepts constrain application to single-carrier energy system, specifi-

cally in the electricity domain. Compared to both, the EH has been favourable and has drawn

the attention of power and energy systems research communities. The EH focuses beyond the

electrical networks by providing a framework in which synergies among various energy forms

can be optimally exploited. It was initially proposed within the vision of future energy networks

(VOFEN) project [57] with focus set on the long-term evolution of energy networks (around

50 years). The project identified three key features expected of future energy networks: multi-

carrier system, non-hierarchical structure, and hub network, intended to be achieved using the

greenfield approach. This involves neglecting restrictions imposed by existing systems and de-

veloping a new system structure from scratch with the aim of achieving hidden optima that

might exist behind present system structures [58]. First modelled in [59], the EH is described

from a system point of view to represent:

A part or a unit of mixed energy carrier power system providing basic features of input and

output, conversion and storage of different energy carriers.

It has been used extensively to model and analyse MES in numerous studies and has been

applied to address concerns of optimal operation [60,61], planning and investment [62,63] and
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reliability assessment [64, 65]. Figure 2.2 shows an example of an EH. Models developed using

the EH framework have acceptable representations; however they assume unidirectional power

flow. In addition, the framework does not represent all possible combination of energy flow,

assumes that losses only occur in conversion devices and require parameters that describe the

splitting or combination of energy carriers.

Figure 2.2: An energy hub containing a transformer, CHP, boiler, battery and hot water
storage (Redrawn from [1])

Within the EH, a forward conversion matrix is used to connect inputs to outputs. This

limits the extent to which DERs such as EVs, PVs and fixed storage systems on the demand-

side can be exploited as reversed direction of energy flow from outputs to inputs can not be

represented. Although the EH has significantly aided research in MES, to effectively analyse

optimal performance of multi-carrier energy systems, it is necessary to develop a more detailed

modelling framework of a multi-carrier energy system that address the EH short fall. Still

employing a system point of view with the use of graph and network theory, a novel approach

to modelling EH is presented in [66] that addresses the limitation of the original EH framework

by accommodating bi-directional power flow and placing a distinction between input and output

terminals. In addition, a more detailed description of the model of multi-carrier energy system

is presented as:

A representation of energy delivery system by multiple energy carriers which associates power

load or embedded generation, energy transmission/distribution infrastructure as well as

devices suitable for: energy conversion between particular carriers, transformation of energy

parameters and energy storage.
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However, it is argued in [67] that by allowing varying ratios between the output branches of the

multi-terminal converters such as CHPs that outputs more than one energy carrier at varying

ratios, the approach does not represent physical energy converters or embedded generation

as these ratios should be fixed. This augment implies that the EH model presented in [66]

does not fully represent the description of the model of multi-carrier energy system defined

within. The authors in [67] then presents a new MES modelling framework to address the

shortfalls in [1] and [66]. Further development of the framework are presented by the same

authors in [8, 32, 33], extending the original EH framework and presenting a novel COMMES

framework. This new framework eliminates the need for parameters that describe the splitting

or combination of energy carriers and the need for varying ratios of output branches of multi-

terminal converters. The assumption that losses within EH occur only in conversion devices is

relaxed as this approach considers losses through energy distribution and transmission network.

Significantly, the prosumer characteristics introduced enables explicit consideration of DSM,

not considered in [59, 66], by allowing controllable and uncontrollable embedded generation

and/or load devices that may be owned by end-users. The different combinations of the four

flexible prosumer characteristics introduced can be used to model individual controllable devices

linked to user comfort and preferences. Resulting models using the COMMES framework

maintain an accurate representation of physical converter devices and are well suited for software

implementation.

A shortfall of the aforementioned MES modelling frameworks is that they exclude the rep-

resentation of mobile technologies such as EVs that will connect to energy networks. These

MES modelling frameworks, although developed from a system point of view, assume that the

location of aggregated technologies are fixed with their location known and reasonable under-

standing of their generation/demand pattern known by network operators. EVs do not fit these

assumptions as they can connect to any charging station within an energy network at any time,

and their charge/discharge patterns depend on their characteristics, availabilities and owners’

charging preference. Increase adoption of EVs means network operators need to consider new

large loads, and with the concept of V2X, EVs can act as distributed generators or storage sys-

tems that can be exploited by network opertors. Given these reasons, an opportunity presents

itself to provide a MES modelling framework that addresses the short fall of the aforementioned
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studies. Specifically, provide a modelling framework that includes a model representation of

mobile storage systems that is adaptable in any topological order and has a systemic approach

that can be seamlessly integrated in a model of single- and multi-carrier energy system. Al-

though technologies are not modelled in detail using the COMMES framework and power flow

are mainly characterised using real power and conversion efficiency as with the original EH

framework, to the best of the author’s knowledge, COMMES is the only modelling framework

that gives a holistic view of MES that enables DSM strategies to be exploited. Hence, it is the

framework used in this thesis.

2.4 Integrated Demand-Side Management

DSM aims to redefine the approach of balancing power supply and demand by exploiting flexible

generators/loads owned by end-users. Research on DSM implementation has been focused on

electrical power systems; this is justifiable as demand for electrical energy is significantly large

compared to other energy forms as shown in Figure 1.1, and is projected to increase in future.

As discussed in Section 1.1, the move to de-carbonize all energy sectors and exploits synergies

between various energy forms has influenced research thinking to explore MES. The core concept

of MES brings new insights for DSM under a generalised concept called integrated demand-side

management (IDSM) [68]. The ability to switch between different energy carriers or storage

systems and conversion technologies, integrated with different smart technologies, create more

flexibility in IDSM strategies and improves the reliability of MES. In [49], it is highlighted

that research and engineering projects on IDSM have widely been investigated in the past

decade with most of the existing studies focusing on the optimal operation of MES considering

demand response (DR). A key issue discussed in [49] about existing studies is that they do not

provide precise models to represent multi-energy consumption for accurate implementation of

IDSM. The COMMES framework [8], to the extent of its development, addresses this issue.

Specifically, the set of fundamental flexible prosumer model characteristics introduced allows

individual end-user devices to be modelled. This is achieved by combining four flexible model

characteristics to represent a full range of IDSM flexibility considering specific device operation

and user comfort. End-user devices such as washing machines, dryers and dimmable lights can

be modelled using the flexible prosumer models presented in [8]. However, as already mentioned
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in Section 2.2, the current structure of the COMMES framework can not be used to represent

a generalised charge/discharge operation of EVs.

Despite the benefits EVs provide over conventional vehicles and their impact on distribution

grids [10–12], research on a holistic approach on their integration in DSM has been ignored. Lit-

erature that has addressed EV integration in DSM or IDSM are tailored to specific case-studies

with EVs charging schedule defined or estimated from EV driving patterns. An argument

can be made that accounting for uncertainties regarding EV characteristics, availabilities and

charging preferences are contributing factors as to why a systematic approach addressing the

coordination and aggregation of EV charge/discharge operation, weather integrated in DSM

strategies or not, is yet to be developed. One approach used to address EV integration in DSM

take the view of coordinating EVs owned by individuals utilising buildings in residential or

commercial areas [14, 15, 31]. In these cases, understanding of specific EV drivers’ schedules

are obtained assuming EVs are used for specific tasks. This makes estimating their character-

istics, availabilities and charging preferences trivial. Another approach is to exploit concerns

on the operational and maintenance costs associated with individual EV ownership, to pro-

pose EV sharing schemes focused on EV utilised by individuals in a residential and business

setting [16, 27, 69]. Some have gone further to proposed coordination schemes that investigate

how EVs can be integrated into energy networks on a large-scale employing EV aggregator and

exploring the services they can provide to EV owners and network operators [36]. However, the

aforementioned studies exploring EV sharing schemes and EV aggregators, model EVs based

on the case study considered, and for simplicity, the operation of other controllable devices

within the network are excluded.

2.5 Electric Vehicle Sharing Communities

An increasing number of EVs connecting to the energy grid has raised concerns about the ageing

grid infrastructure and how grid limits can be maintained while coordinating EV charge/discharge

operations. In addition, the operational cost involved in owning and maintaining EVs are be-

coming significant concerns [27]. As such, EV sharing schemes have emerged mainly in res-

idential [27, 28] and commercial [16, 18, 69, 70] sectors to give individuals the opportunity to

utilise EVs without bearing the operational and maintenance cost associated with owning it.
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Although government stimulus and subsidies have been driving forces influencing EV adoption,

EVs are still quite expensive for individuals to own. EV sharing schemes employ a system

where a group of people make reservations, and an aggregator is responsible for coordinating

EV charging and reservations. Some proposed in literature are in [16, 18, 27, 28]. However, a

significant amount of sharing schemes has been implemented in countries around the world.

To help reduce operation cost, Autolib’ was an EV sharing company in France that provided

affordable subscription service to specific private EV owners to charge their vehicles at most

twice a day at designated Autolib’ stations [70]. The German company Share Now provides

car-sharing services to subscribers across 16 cities in Europe that completely eliminates the

need for individual EV ownership by providing EV fleet to be rented [69]. Some other com-

panies that provide similar services are BlueSG in Singapore and the pilot program between

Kandi Technologies and Hangzhou, China.

The aforementioned EV sharing schemes cater mostly to residential and commercial areas,

with a focus on providing EVs with sufficient charge levels drivers can use and coordinating

EV charging in specific locations. However, it is still unclear how EV availabilities and user

reservations can be synchronised with times when DNOs will require them to provide ancillary

service or at times when their storage capacities will be required by RES suppliers. There seems

to be more promise with commercial fleets where EV are strictly used for work-related trips or

by individuals in a community. In such approaches, EV availabilities are easily estimated based

on drivers daily activities and the locations where the EVs charge can be determined. As such,

there is increasing interest in addressing how small EV fleet can be coordinated, especially with

local RES [16,18,27,28].

2.6 Electric Vehicle Aggregators

Large-scale integration of EVs either through aggregating individual EVs or EV fleets/sharing

community ultimately means new loads to electric utilities, and undesirable congestions and

voltage problems may exist in distribution network during their charging process [71]. In

addition, coordinating EV charge/discharge operations together with RES in energy networks

compounds the problem. As a result, smart charging solutions, including V2X, are needed to

make EVs not only loads but also assets to network operators. To facilitate this, EV aggregators
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have been widely proposed to act as an intermediary between EV fleets and network operators

as an alternative to small communities bearing the responsibility of coordinating their EV fleets

[11]. Alternative names to EV aggregators used in literature are EV fleet operators, EV VPPs,

EV charging service providers and EV service providers [11]. EV aggregators take advantage of

smart metering infrastructure that enable two-way communication between them and individual

EVs. This enables EV aggregators to develop an understand of EV drivers’ schedule and use

that information to inform network operator when EV are available to provide ancillary services.

EV aggregators usually operate without considering RES generation technologies. Instead they

focus on coordinating EVs and providing services to network operators and RES suppliers [11].

For transmission network operators (TNO), a large poll of EVs can be used to provide frequency

regulatory services. EVs are also attractive alternatives to large generators with high prices as

the large EV pool size compensates for stochastic variations in EV availabilities and guarantees

larger regulation power per vehicle [72]. Aggregators can also help DNO prevent grid congestion

(i.e. reduce peak load and power losses) as employed in [73, 74] and voltage regulation as

in [75,76].

The impact of using large-scale EVs to aid RES generation integration has been investigated

using the Denmark and Dutch power systems [77, 78]. Results in [77] indicate that exploiting

V2G from EVs allows integrating much higher levels of wind and reduces national emissions.

The study in [78] concluded that an increase from 4GW to 10GW is possible if around 1 million

EVs are connected to the Dutch network. Aggregators can facilitate these benefits by taking

advantage of smart metering infrastructure to obtain information about EV driving patterns.

This approach will indirectly handle uncertainties regarding EV availabilities and energy de-

mands. However, both investigations assume that all EVs either participate in V2X or not

and the impact of multiple utilisation of charging stations was not investigated. Nevertheless,

several obstacles are still present, mainly concerning the spatial and temporal stochasticity of

the power demand of EVs and the charging stations they will utilise to recharge their batteries.

The current opinion in scientific literature is that existing energy networks and EV management

systems are not yet ready to support large penetration of EVs [50].
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2.7 Management of Electric Vehicle Charge/Discharge Operations

Developing EMS that coordinate EVs’ charge/discharge operation is significantly influenced

by EVs’ characteristics, availabilities, and charging preferences that utilise charging stations

within an energy network. The predictability of these factors vary and are different when

EV are recharged in residential, commercial and public areas. These factors are easier to

predict in residential areas than others, as EV owners will likely have their individual charging

stations installed on their property. In this case, EVs that utilise particular charging stations

are known, their respective availabilities easily estimated from drivers routine, and EV owners

charging preferences will likely be consistent. EVs utilising charging stations connected to office

buildings are example cases in commercial areas. Here, EVs are usually owned by the building

occupants or are EV fleet owned by a business. Hence, their characteristics and availabilities

can be easily estimated from commuters daily routine or work-related trips in the case of EV

fleets owned by a company. Charging stations in commercial areas are not individually allocated

to or owned by particular drivers. However, their utilisation can be easily estimated, and some

can be utilised multiple times over certain periods. In public places such as off-road parking and

parking lots, it will be challenging to determine a pattern of how charging stations are utilised.

Charging stations can be utilised by EVs from anywhere. In addition, charging stations can be

operated multiple times over a certain period, and there will be inconsistencies in EV owners’

charging preferences. However, it can be assumed that charging station utilisations are based

on EV owners whose daily routine involves visiting places where these charging stations are

located. Hence, although EV characteristics, availabilities and charging preferences will be

highly stochastic, a pattern of charging station utilisation can be obtained.

The following three sections review literature proposed that incorporate EV charge/discharge

operations in EMS and is applicable to residential, commercial, and public areas. To the best

of the authors’ knowledge, this is the best way to present a clear review of attempts to coordi-

nate EV charge/discharge operations. In addition, these literature assume that all EVs either

participate in V2X or not and that multiple utilisation of charging stations by the same or

different EVs over time is not considered.
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2.7.1 Management in Residential Areas

An assumption usually made in EMS that incorporates the charge/discharge operation of EVs

in DSM strategies is that the characteristics of EVs and their respective availabilities are known

precisely. Strategies presented in [14,15,31,79] model EVs based on this assumption. In [14,31]

EVs are modelled as flexible loads in the network. The two EVs considered in [31] demand

the same amount of energy and are scheduled to charge over specific time periods. In [14], the

energy demand of the 8 EVs are estimated from their travel distance and energy consumption.

In addition to EV characteristics and availabilities, the SoC at arrival and departure of the 2

EVs incorporated in the home energy management system (HEMS) in [15] are provided, making

estimating energy demand over the EVs’charge/discharge period easy. In [79], the aggregated

EV charge/discharge profile is required to follow a general V2G/G2V profile, indirectly setting

the specific amount of energy consumed by each EV. However, EVs are not restricted to prede-

fined schedules in reality, and energy consumed by EVs during different charging sessions will

vary.

EVs utilised in residential areas have small uncertainty regarding their characteristics, avail-

abilities and charging preferences. As stated previously, individual EVs will likely be owned

by the resident, and their availabilities will be highly dependent on residents’ daily schedules.

In addition, most will likely participate in V2X, especially if EVs are charged overnight. Some

management schemes have attempted to account for and capture these uncertainties. In [39],

a collaborative evaluation of dynamic-pricing and peak power limiting-based DR strategies is

presented. Results show significant cost reduction when the proposed strategies are combined

with the willingness of EV drivers to charge their EVs with lower prices and the storage capacity

of fixed storage are exploited. However, to address EV related uncertainties, a two-way energy

transaction between end-users and the utility is assumed. In the optimal scheduling model

proposed for a regional multi-energy prosumer in [7], EVs’ charge period and initial SoC are

estimated from data collected from the Hunan household travel survey. However, unrealistic

assumptions are made about EVs considered as they are all the same type and have the same

charge period and initial battery SoC. Some researchers have directly considered EV related

uncertainties in the development of EMS in residential areas. A robust approach is presented
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in [34] to design a DSM strategy for EV charging based on MPC. The approach considers a

worst-case scenario by setting a boundary on the maximum possible charging loads to consider

possible unknown charging requests by EV drivers. As uncertainties are often considered to

have a probabilistic nature in real-world systems [80], an optimal charging/discharging control

strategy that considers uncertainties of EV start charging time and initial SoC is proposed

in [9]. EV-related uncertainties are sampled from the same uniform distribution. Three con-

trol modes are evaluated, and an aggregator is used to coordinate the interaction between

EVs and the DNO considering operational costs and system constraints. A similar approach

is used in designing the optimal bidding strategy for an EV aggregator participating in the

day-ahead energy and regulation markets [41]. However, the strategy is proposed for night

residential charging as EV drivers are more willing to participate in V2X when charging their

EVs overnight, and their respective driving patterns are more easily predictable.

2.7.2 Management in Commercial Areas

Beyond residential areas and as EVs are adopted widely, EVs can be parked and charged in

commercial areas such as office buildings. In addition, EVs could be part of a fleet managed by a

business and used to perform work-related activities. As such, the degree of uncertainty regard-

ing charging station utilisation will be more significant compared to those located in residential

areas. Some researchers have made attempts to incorporate more uncertainty regarding EVs

in their proposed schemes. However, some assumptions made restrict their approaches to be

well suited to coordinate EV charge/discharge operations for specific case studies in commercial

areas.

In [36], the control scheme proposed allows EV owners in the dutch market to provide

regulating and reserve power to the grid. The authors classify EV drivers into three user types:

resident, commuter and resident-commuter. It is assumed that the drivers have consistent travel

patterns, and EVs are only utilised during weekdays. However, because of the restrictions on

travel patterns and the days EVs can be used, the proposed approach is more suited to EV fleets

used specifically for commutes to offices as their availabilities are quite long. Other EMSs well

suited to manage EV fleet are the scheme proposed in [46] that incorporates battery swapping

stations for aggregated EVs, the power source sizing strategy proposed in [37] that considers
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the characteristics of EVs, and the scheduling scheme in [51] that integrates RES were most

EVs are available to the microgrid between 7 am and 5 pm. However, it is quite unclear

how individual EVs impact the control schemes proposed in the aforementioned literature as

results are presented based on aggregated EV charging powers and/or SoC. The scheduling

scheme proposed in [35] for EVs that charge at home and the office captures some EV related

uncertainties. However, only uncertainties in EV availabilities are considered. In addition,

similar to the schemes proposed in [37,46,51], EVs’SoC are aggregated with limits set between

0.3 and 1 units.

EMS proposed by authors in [16,18–20] are based on EV randomly projected driving sched-

ule. The schemes incorporate individual EV characteristics and availabilities, and decides each

EV’s charging/discharging strategy separately. The stochastic DSM proposed for a commer-

cial building in [18] is validated using data collected from the UCLA charging network that

contains EVs’ arrival and departure times (availabilities) and energy demands. The two-stage

stochastic approach is used to optimise day-ahead transactions considering the uncertain nature

of renewable generations, loads and EVs. The same data is used to validate the scalable and

privacy-preserving DSM for a distribution grid proposed in [19] and the predictive scheduling

framework for EVs in [20]. These proposed schemes are well suited to work commuters who

charge their EVs at the office, stay connected over long periods, and all decide to participate in

V2X. In addition to incorporating uncertainties relating to individual EV characteristics and

availabilities, the EMS proposed in [16] to analyse the interaction between PV and EVs allows

EV drivers to opt-in or out from the management scheme. However, EVs considered are of the

same type and are used only for work-related trips.

2.7.3 Management in Public Areas

It can be expected that the utilisation of charging stations in public areas will be similar to the

utilisation of fuelling pumps by conventional vehicles with combustion engines. Coordinating

the charge/discharge operations of EVs that utilise public charging stations is quite challenging.

It is challenging because the degree of uncertainty regarding estimating the characteristics,

availabilities and charging preferences of EVs utilising charging stations in public areas is more

significant than in residential and commercial areas. Some researchers have proposed control
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schemes that seem well suited to coordinating EVs’ charge/discharge operations utilising public

charging stations. However, assumptions made in the development of proposed techniques limit

their applicability to specific cases.

The scheduling scheme in [23] requires EV owners to submit their arrival time, parking

duration and minimum SoC at departure to an intelligent parking lot operator through a

mobile application. This requirement reduces the difficulty of handling uncertainties related

to charging station utilisation in public places. However, the approach fails to consider EVs

not meeting their defined schedule in real-time and limitations in coordinating communication

between individual EV drivers and parking lot operations on a large scale. In [43], an optimal

bidirectional charging control strategy is proposed for a public parking facility. The control

strategy employs a two-stage approach to decide day-ahead energy price and EV charging

profiles. Then in real-time, coordinate individual EV charging so that aggregated charging

profiles follow the optimal profiles determined in the first-stage. A similar approach is used

in [24] to design a two-stage economic operation for a microgrid. Estimate of EV availabilities

and initial SoC are drawn from a probability distribution. It is assumed a set number of

EVs will plug into specific charging stations when they arrive. An MPC-based strategy is

implemented to accommodate uncertainty brought on by the real-time variability of EV parking

behaviours. An MPC-based approach is also adopted in the power dispatch method proposed

in [17] to accommodate EV related uncertainties. However, the number of EVs charging can

vary but are limited. In [42], a local optimal scheduling scheme is designed for groups of EV.

EV arrival times, charging periods, and initial SoC are estimated from uniform distributions

to help estimate each EVs’ charging power. Then in real-time, each EVs’ charging power is

updated using a sliding window.

Naturally, the expectation is that charging stations in public areas will be utilised by EVs

with different characteristics, availabilities and charging preferences as these charging stations

are not owned by or allocated to specific drivers. In addition, multiple utilisation of charging

stations are expected over certain periods. The aforementioned studies do not consider these

factors as the proposed control strategies accommodate specific EV numbers, which are assumed

to charge once over a certain period. In addition, individual EV charging preferences are not

considered as all EVs in each literature either participate in V2X or not.
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2.8 Chapter Summary

The literature reviewed in this chapter has highlighted the opportunity within the field of

EV charging/discharge coordination within single- and multi-energy systems (with a control

oriented emphasis). A summary of this chapter is presented below:

• In Section 2.1, EVs role is energy networks is discussed based on the energy ’quadrilemma’

which are guidelines to aid efficient coordination EV charging/discharge operations within

any energy network. However, it is highlighted that major issues still have to be addressed

as existing approaches do not offer a systematic way to incorporate EV Charge/discharge

operation in energy networks.

• EV types and how EV battery model have been modelled in literature are discussed in

Section 2.2. Also discussed is how estimates of EV characteristics, availabilities have been

extracted from EV utilisation data and used to validate EMSs in literature.

• In Section 2.3, the EH concept together with microgrid and VPP concepts are discussed

as popular approaches to the modelling of MES. However, it is highlighted that these

concepts do not readily offer a generalised approach to modelling MES. In particular,

the EH concept does not allow representation of bi-directional energy flow, while the

microgrid and VPP concepts are constrained to single-carrier energy systems. The novel

COMMES framework readily address the shortfalls in these concepts how it is not readily

suited to represent EV charge/discharge operations.

• Three major concepts utilised in proposed EMS that have incorporated EV charge/discharge

operation are explored in Section 2.4, 2.5 and 2.6. As end-users are major adopters of EVs,

a brief discussion IDSM strategy is presented in Section 2.4. Concerns regarding ageing

grid infrastructure, and the operational and maintenance cost involved in owning EVs

lead researchers to explore the concept of EV sharing communities discussed in Section

2.5. In Section 2.6, the concept of EV aggregator is discussed. EV aggregators are viewed

as attractive intermediary between EVs and network operators that can aid coordinating

large EV fleets to help limit undesirable grid congestions and voltage problems. However,
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it is highlighted that research that have explored these concepts propose EV management

schemes that are applicable in specific cases.

• Review of EMS that have incorporated EV charge/discharge operations in single- and

multi-energy systems is presented in Section 2.7. The review is presented based on pro-

posed EMS applicability in residential, commercial and public areas. A clear distinction

is made between EMS applicability in these areas based on the degree of uncertainties

related to individual EV characteristics, availabilities and charging preferences. Hence,

an opportunity presents itself for the development a systematic approach to incorporate

EV charge/discharge operations in energy network operations that is not applicable to

specific cases.



Chapter 3

Preliminaries

This chapter provides discussion on topics that are prevalent in and influenced the remainder

of this thesis. Section 3.1 presents an overview of the original COMMES framework. The

stochastic programming approach employed to address uncertainties from generation and de-

mand sources in this thesis is introduced in Section 3.2. The MPC methodology used to

demonstrate modifications to the original COMMES framework is discussed in Section 3.3.

Finally, the software tolls and added extensions used are presented in Section 3.4.

3.1 Control-Oriented Modelling Framework for MES

As highlighted in Chapter 1, one of the contribution in this thesis is the extension of the novel

COMMES framework to include a representation of mobile storage systems. The COMMES

framework was originally developed as a unified modelling framework capable of representing

energy converter topologies of arbitrary complexity containing multiple energy vectors [33].

The framework can incorporate the full range of flexible sources within MES and is capable

of representing multi-directional energy flow, multi-generation and multi-mode devices as well

as a wide range of controllable prosumers and energy storage devices. COMMES can be used

to model single- and multi-energy systems, and is not limited by spatial boundaries. The

COMMES framework extends the EH concept initially introduced in [59] and models DERs

of various energy carriers within EH under three components: the Energy Conversion Model

(ECM), the Prosumer Model (PM) and the Storage Model (SM). A schematic of a single EH

36
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Figure 3.1: An illustrative overview of COMMES framework
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is depicted within the overview of COMMES framework shown in Figure 3.1. The next three

subsections explains these three components and has been extracted from [33]. For further

background, the reader is referred to [33], and references therein.

3.1.1 Energy Conversion Model

Assume the topology of the EH within Figure 3.1 is shown in Figure 3.2. Within the EH,

an ECM is used to describe the flow, conversion and splitting of energy carriers. An ECM

representation is based on graph theory, is fully characterised by the set of nodes it contains

and the associated arcs that provide mutual interconnections between the nodes, with each

node associated with an energy carrier [33]. The ECM graph representation of the EH shown

in Figure 3.2 is shown in Figure 3.3.

Figure 3.2: Example energy hub topology

P(ni→nj) ≥ 0 represents power flow from node ni to node nj by means of a connecting

arc. n represents an energy carrier and j, i represent corresponding node indices. Each arc

has an associated efficiency factor η(ni→nj) that affects the amount of power arriving at the

receiving node. Set of sink nodes that nj connects to is denoted as Inj→ and set of source

nodes that connects to nj is denoted as I→nj
. Nodes within the ECM belongs to one of the

following: sum, transmitter, switch and terminal nodes. Sum nodes describe the splinting

and combination of an energy carrier. The power balance at a sum node is given by:

∑
i∈I→nj

P(ni→nj)(k)η(ni→nj) −
∑

k∈Inj→

P(nj→nk)(k) = 0 (3.1)
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Figure 3.3: Example energy conversion model

Co-generation devices such as CHPs are modelled as transmitter nodes by requiring that each

outgoing arc flow values are equal to the sum of incoming arc flows:

P(nj→nk)(k) =
∑

i∈I→nj

P(ni→nj)(k)η(ni→nj) ∀k ∈ Inj→ (3.2)

Devices such as HP are modelled as switch nodes. They are similar to sum nodes with added

mutual exclusivity constraints to ensure only one outgoing arc is enabled during different oper-

ating modes. Added binary decision variables δ(ni→nj) associated with outgoing arcs determine

the active mode:

P(ni→nj)(k) > 0⇐⇒ δ(ni→nj)(k) = 1 ∀k ∈ Inj→∑
i∈Inj→

δ(nj→ni) ≤ 1
(3.3)

Finally, terminal nodes represents interfaces to components outside the ECM. Examples of

these components are energy network (electricity and gas), prosumers (set of fixed and/or
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flexible generators and/or consumers), fixed storage systems. Terminal nodes can be further

sub-divided into three: input, output and input/out nodes. The terminal node type depends on

whether power flows in or out of the ECM. Input nodes have a single outgoing arc and facilitate

energy import to the ECM. Conversely, output node have a single incoming arc and facilitate

energy export from the ECM. The input/output nodes have both a single incoming and single

outgoing arc connected to the same adjacent node. Input/output nodes allow entities within

MES connected to this node to both import and export energy. Pnj
is used to designate power

entering or leaving the ECM at a terminal node nj and the power balance for a terminal node

is given by:

Pnj
(k) = P(ni→nj)(k)η(ni→nj) − P(nj→ni)(k) (3.4)

The condition and mutual exclusive constraints given in (3.5) prevents simultaneous power flow

between bi-directional power flow arcs. Also, condition given in (3.6) prevents feasible solutions

where P(ni→nj) = 0 and δ(ni→nj) = 1.

P(ni→nj) > 0⇐⇒ δ(nj→ni) = 1 ∀j ∈ Ini→

δ(ni→nj) + δ(nj→ni) ≤ 1
(3.5)

P(ni→nj) − δ(ni→nj)P (ni→nj) ≤ 0 ∀j ∈ Ini→ (3.6)

With (3.1) - (3.4) and (3.5) and (3.6) applying to bi-directional power flow arcs, a system of

equations for Figure 3.3 can be written down in a straightforward manner:

terminal node



Pe1 + P(e2→e1)η(e2→e1) = P(e1→e2)

Pe4 + P(e2→e4)η(e2→e4) = P(e4→e2)

Pe5 + P(e2→e5)η(e2→e5) = P(e5→e2)

Pg1 = P(g1→g2)

Pc1 = −P(e3→c1)η(e3→c1)

Ph2 = −P(h1→h2)η(h1→h2)

Ph3 = −P(h1→h3)η(h1→h3)

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.7e)

(3.7f)

(3.7g)
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transmitter node

 P(g2→e2) = P(g1→g2)η(g1→g2)

P(g2→h1) = P(g1→g2)η(g1→g2)

(3.7h)

(3.7i)

switch node { P(e2→e3)η(e2→e3) = P(e3→c1) + P(e3→h1) (3.7j)

sum node



P(e1→e2)η(e1→e2) + P(e4→e2)η(e4→e2) + P(e5→e2)η(e5→e2)

+ P(g2→e2)ηg2→e2) = P(e2→e1)

+ P(e2→e3) + P(e2→e4) + P(e2→e5)

P(g2→h1)η(g2→h1) + P(e3→h1)η(e3→h1) + P(h3→h1)η(h3→h1)

= P(h1→h2) + P(h1→h3) + P(h1→h4)

(3.7k)

(3.7l)

3.1.2 Prosumer Model

Mathematical models to represent end-user’s devices in MES, termed prosumers, were intro-

duced in [33]. Prosumers are active energy users that own a set of fixed and/or flexible devices

that can produce and/or consume energy. Example of electrical, cooling and heat prosumers

shown in Figure 3.3 connected to terminal nodes e4, c1 and h2 respectively. PM describes

the energy consumption and/or generation patterns of these devices. Energy patterns of fixed

devices can not be modified or modulated and must be met exactly. For flexible devices, their

energy patterns can be modified and/or modulated based on specific device operations and user

preferences. As a result, their flexibility can be exploited to achieve specific goals. In [8], four

fundamental flexible characteristics were introduced that can be combined to describe a broad

spectrum of flexible devices. These characteristics are:

• Shiftable (S): The commencement of the device is not fixed, however must run within the

scheduled horizon but no interruptions are allowed.

• Adjustable (A): Baseline energy consumption profiles of such devices can be exceeded or

curtailed.

• Pliable (P): Provided the total energy requirement of the device is meet, it’s energy

demand profile can be manipulated through the scheduling horizon.
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• Interruptible (I): Once a device comes online at a fixed scheduled period, its energy

demand can be paused between particular instant in the scheduling horizon.

Figure 3.1 shows the operation of the four individual flexible SAPI characteristics. These

characteristics can be combined to model the operation of any flexible end-user device. The

PM represents a set of components of a particular energy carrier n of energy demand and/or

generation devices. The connection of the set of components to a terminal node Pnj
(k) is

represented by the equation given in (3.8). Gm represents the mth generating component and

Lw represents the wth load component. Nm,nj
and Nw,nj

respectively represent the total number

of generator and load components connected to nj.

Pnj
(k) =

Nm,nj∑
m=1

Gm(k)−
Nw,nj∑
w=1

Lw(k) (3.8)

As discussed in [8] and stated earlier, both the generator and load components can be divided

into two types: fixed and flexible. The number of generating and load components can be

separated as shown in (3.9) and (3.10)

Nm,nj∑
m=0

Gm(k) =

Ny∑
y=0

Gy,flex,nj
(k) +

Nz∑
z=0

Gz,fix,nj
(k) (3.9)

Nw,nj∑
w=0

Lw(k) =
Nu∑
u=0

Lu,flex,nj
(k) +

Nv∑
v=0

Lv,fix,nj
(k) (3.10)

The number of generating components equals the number of flexible plus fixed generating

components i.e Nm,nj
= Ny+Nz. Similarly, for the number of load components Nw,nj

= Nu+Nv.

It is important to note that prosumers must not always be a combination of generation and load

components. They can be purely loads in which case there are no fixed or flexible generators

(i.e. Nw,nj
= 0) connected to node nj. An example is shown in Figure 3.3 with the cooling

prosumer. This prosumer is a load as it is connected to the output terminal node c1 which has

only one incoming power flow arc. Similarly, generation and load components of a prosumer

must not be a combination of both fixed and flexible device. As an example, if the generating

components of a prosumer are made up of purely flexible devices, then Nz = 0 in (3.9).
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To explain the remaining equations that describe the operation of prosumers, for simplicity,

the remainder of this section will refer only to a load component. This is because flexible

generator components can also be described using the same approach. The energy consumption

profile of a particular flexible load n also called the baseline energy consumption profile can

be split into Nn segments that once started, cannot be interrupted. Symbol n refers to a

combination of the flexible S-A-P-I characteristics used to model the operation of the load.

Energy consumption of the ith segment of each demand during time period h, which is set

equal to the sampling period k, is denoted as ln,i(h) and is given by:

ln,i(h) = l̃n,i(h) + ∆l+n,i(h)−∆l−n,i(h) ∀n, i, h (3.11)

l̃n,i is the energy consumption of the respective ith baseline energy requirement. Variables

∆l+n,i and ∆l−n,i are adjustable flexibility slack variables that represent a degree of freedom to

quantify the amount of energy increase or curtailment for each ith segment from the baseline

energy requirement during time period h. The cumulative sum over the scheduling horizon

of the baseline energy consumption for the ith segment of demand n must remain within the

baseline lower and upper bounds of the segment’s total energy requirement (3.12). If the P

characteristic is not used to model demand n, it’s baseline segment time profile is fixed and is

not a degree of freedom. Hence, (3.12) collapses to the equality constraint (3.13).

En,i ≤
NH−1∑
h=0

l̃n,i(h) ≤ En,i ∀n, i (3.12)

En,i = En,i = En,i ∀n, i (3.13)

The resulting energy consumption of each demand at a given h represented by Ln is related to

the actual energy consumption of the respective segments:

Ln(h) =
Nn∑
i=1

ln,i(h) ∀n (3.14)

The connection of the energy consumption of Ln given in (3.14) within a prosumer that may
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contain other loads components is represented as:

Nu∑
u=0

Lu,flex,nj
= L0 + · · ·+Ln + · · ·+ LNu (3.15)

To control the commencement and halting of individual demand segment, three binary

decision variables are utilised. Segment processing binary variable, δpn,i, determines whether or

not an energy segment ith is processed during each h. If the load is modelled with a combination

of only A, P or I attributes, the scheduled time for this load to come online, hc, is set by the user

i.e. δpn,1(hc) = 1. However, if S attribute is used to model the load, δpn,1(hc) is determined by the

controller. Segment complete binary variable, δcn,i, indicates whether or not a particular segment

has been completed. Finally, segment waiting binary variable, δwn,i, indicates whether or not

demand n is been halted between completed previous segment and yet-to-be processed current

waiting segment. This binary variable applies only if the load is modelled with I attribute. If

I is not used to model the load, δwn,i = 0. With I attribute, δwn,i is determined by the controller,

however limits on how long each segments halts is determined based on user preferences and is

implemented by (3.16).

Nw
n,i ≤

NH−1∑
h=0

δwn,i(h) ≤ N
w

n,i ∀n, i (3.16)

Hard limits on deviations, ∆l+n,i & ∆l−n,i, are imposed by (3.17b)-(3.17c). The multiplication of

δpn,i by the lower and upper bounds of these deviations ensures that the corresponding continuous

decision variable cannot be non-zero unless the particular segment i is currently been processed.

Also, to prevent physically infeasible case where both deviations are greater than zero, the

binary variables δ+n,i(h) and δ−n,i(h) are associated with each deviation and implemented as

shown in (3.17a)-(3.17d).

δ+n,i(h) + δ−n,i(h) ≤ 1 ∀n, i, h (3.17a)

ϵδpn,i(h)δ
−
n,i(h) ≤ ∆l−n,i(h) ≤ ∆l−n,i(h)δ

p
n,i(h)δ

−
n,i(h) ∀n, i, h (3.17b)

ϵδpn,i(h)δ
+
n,i(h) ≤ ∆l+n,i(h) ≤ ∆l+n,i(h)δ

p
n,i(h)δ

+
n,i(h) ∀n, i, h (3.17c)
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ln,i(h)δ
p
n,i(h) ≤ ln,i(h) ≤ ln,i(h)δ

p
n,i(h) ∀n, i, h (3.17d)

If the load is modelled with P attribute, the maximum and minimum amount of energy that

can be scheduled for its demand segment is constrained by implementing (3.18). If P attribute

is not used, (3.19) collapses to an equality constraint (3.18).

Np
n,i ≤

NH−1∑
h=0

δpn,i(h) ≤ N
p

n,i ∀n, i (3.18)

Np
n,i = N

p

n,i = 1 ∀n, i (3.19)

Equations controlling the correct succession of binary variables are provided by (3.20)-(3.24).

Equations (3.20)-(3.22) ensure that once an energy segment has commenced, it must run to

completion and (3.23) ensures correct sequencing of individual segments. To allow halting the

next energy segment after it’s predecessor has been completed, (3.24) is implemented.

δpn,i(h) + δcn,i(h) ≤ 1 ∀n, i, h (3.20)

δpn,i(h− 1)− δpn,i(h) ≤ δcn,i(h) ∀n, i ∀h ∈ {1 : NH − 1} (3.21)

δcn,i(h− 1) ≤ δcn,i(h) ∀n, i ∀h ∈ {1 : NH − 1} (3.22)

δpn,i(h) ≤ δcn,i−1(h) ∀n, h ∀i ∈ {2 : Nn} (3.23)

δwn,i(h) = δcn,i−1(h)− (δpn,i(h) + δcn,i(h)) ∀n, h ∀i ∈ {2 : Nn} (3.24)

3.1.3 Storage Model

The COMMES framework considers storage devices but with the assumption that they are

permanently present within the MES and connected to an ECM’s terminal node nj. Examples

of fixed storage systems are the battery bank and hot water tank shown in Figure 3.3 connected

to nodes e5 and h3 respectively. Fixed storage systems can be represented by a discrete-time

state-space model (3.25)

Enj
(k + 1) = Snj

Enj
(k) +Qnj

(k) (3.25)
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Input to the SM is the charging/discharging power Qnj
. Output, Enj

(k) represents stored

energy at time k and Snj
is the standby efficiency of the storage system that aids modelling

a decay in its SoC over time if Qnj
= 0. Connection of the fixed storage system and a ter-

minal node nj is achieved by setting Qnj
equal to the negated node power of the associated

input/output terminal node as shown in (3.26), in order to maintain the sign convention.

Qnj
(k) = −Pnj

(k) (3.26)

Also, as fixed storage is connected to an input/output terminal node, (3.5) prohibits it from

simultaneously charging and discharging.

3.2 Stochastic Programming

In many decision-making processes, there are several sources of uncertainty that affect the

outcome of decisions. Deterministic programs are formulated assuming all parameters are

known before a decision is made. However, real-world problems invariably include parameters

that are unknown at the time decisions are made. These parameters often lie in some given

set of possible values and can be described with certain probability distributions. Stochastic

programming leverages this probability distribution to formulate problems that adequately

considers these uncertain variables. Often in the formulation of these problems, decisions are

made repeatedly, and the objective is to come up with a decision that will perform well on

average [81].

3.2.1 Two-Stage Stochastic Programming

The most widely applied stochastic programming technique is the two-stage stochastic ap-

proach. The basic idea behind the two-stage stochastic approach is to make an optimal here-

and-now decision such as determine power imports while considering possible real-time oper-

ations such as fixed energy demand and EV related uncertainties. Then correction actions

are taken when these uncertainties are realised [82]. In the two-stage stochastic approach, de-

cision variables are partitioned into two. The first-stage variables have to be decided before

the actual realisation of the uncertain parameters becomes available. Once the random events
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have presented themselves, the values of the second-stage or recourse variables can be decided.

These recourse variables are correction actions used to compensate for any infeasibility from the

first-stage decisions. The objective is to choose the first-stage variables so that the sum of first-

stage costs and the expected value of the random second-stage or recourse costs is minimised.

A standard formulation of the two-stage stochastic program is:

min
x ∈ X

{
J(x) := cTx+ E[Q(x,ws)]

}
(3.27)

subject to

Ax = b

where Q(x,ws) is the optimal value of the second-stage problem

min
y

qTy (3.28)

subject to

Tx+Wy ≤ h

where A ∈ Rr∗n, b ∈ Rr, x ∈ Rn is the first-stage decision vector, X is the first-stage constraints

set, y ∈ Rm is the second-stage decision vector, ws = (q,T ,W ,h) contains the data of the

second-stage problem defined on a corresponding probability space.

In the first-stage, the cost cTx of the first-stage decision plus the expected value cost,

E[Q(x,ws)], of the second-stage decision is optimised. The second-stage problem is simply an

optimisation problem that describes the optimal behaviour when the uncertain data, ws, is

realised. The solution to the second-stage problem is considered as a recourse or correction

action where Wy compensates for any possible inconsistency of the system Tx ≤ h and qTy

is the cost of the recourse action. The formulation of the two-stage problem assumes that the

second-stage data can be modelled as a random vector ws with a known probability distribution.

This is justifiable where problems are solved repeatedly under random conditions which do not

significantly change over the considered period. Problems in the real-world match this, and one

may reliability estimate the required probability distribution and the optimisation on average

could be justified by the Law of Large Numbers (LLN) [81].
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3.2.2 Sample Average Approximation

There are two sources of difficulty in solving (3.27) especially if recourse variables contain

integers [82]:

1. Exact evaluation of the expected recourse costs: For a discrete distribution, exact compu-

tation of the expectation would require solving integer recourse problem for all possible

realisation of the uncertain parameters and maybe computationally prohibitive. For a

continuous distribution of the uncertain parameters, the computational challenges are

worse. Evaluating the expected recourse costs would require multi-dimensional integra-

tion of the value function, which is impossible.

2. Optimising the expected recourse costs: Even if the expected recourse cost function could

be evaluated, the value function of integer programs are highly non-convex and discon-

tinuous. Hence, the optimisation problem will be computationally difficult.

To address this difficulties, the expected cost function in (3.28) is replaced by a sample

average approximation (SAA), making the corresponding optimisation problem easier to solve.

The SAA is an approach to approximate stochastic problems. It allows the expected value

function to be computed by taking into account samples ξ1, · · · , ξN of N generated scenarios.

Problem (3.28) can then be written as the deterministic equivalent:

Q(x,ws) = N−1
N∑
s=1

(q+
s ξ

+
s + q−s ξ

−
s ) (3.29)

subject to

ξ+s ≥Hx−ws

ξ−s ≥ −(Hx−ws)

ξ+s , ξ
−
s ≥ 0

where ξ+s and ξ−s are recourse vectors used to compensate for infeasibility from the first-stage

decisions. q+
s and q−s are penalty coefficient row vectors. In compact form, the random con-

straints are Hx − ws = 0. Problem (3.29) allows for the SAA to be used to address the

difficultly in solving the two-stage stochastic program as the expected value function is com-
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puted by taking into account samples ξ1, · · · , ξN of N generated scenarios. Problem (3.27) can

then be rewritten to obtain a sample average approximation of the stochastic problem:

min
x ∈ X

{
J(x) := cTx+N−1

N∑
s=1

(q+
s ξ

+
s + q−s ξ

−
s )

}
(3.30)

subject to

ξ+s ≥Hx−ws

ξ−s ≥ −(Hx−ws)

Ax = b

ξ+s , ξ
−
s ≥ 0

Problem (3.30) is said to have complete recourse if the feasible set of the second-stage problem

stays non-empty [83] i.e. it is always possible to respond to all possible disturbance realisation.

3.2.3 Solution Validation

Based on the LLN, as the sample size for an experiment becomes larger, the results should be

close to the expected value and will tend to become closer to the expected value as more exper-

iments are performed. This method relies on repeated random sampling to obtain numerical

results. The larger the number of repetitions, the better the approximation tends to be. The

Monte Carlo method can be used to obtain the approximated problem (3.30). However, slightly

different solutions will be obtained each time (3.30) is solved. With x̂N and x∗ denoting the

optimal solution to the SAA (3.30) and true problem (3.27) respectively, it has been shown

in [84] that x̂N converges to x∗ as the sample size N tends to infinity. To aid in handling the

computational complexity in solving (3.30) and help choose an adequate N , confidence in x̂N

needs to be determined.

Let the optimal solution of the SAA (3.30) and true problem (3.27) be denoted as J(x̂N )

and J(x∗) respectively. Based on LLN, it is well known that

E[J(x̂N )] ≤ J(x∗) (3.31)
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A lower bound to J(x∗) can be obtained by estimating J(x̂N ). J(x̂N ) is solved M times. Each

time N independent samples of the uncertain parameters in (3.30) are generated. Optimal

objective values J(x̂N )1, · · · , J(x̂N )M are obtained and the quantity

J̄M
N = M−1

M∑
m=1

J(x̂N )M (3.32)

is an unbiased estimator of E[J(x̂N )], and therefore a statistical lower bound to J(x∗). Estimate

of the variance of the above estimator can be computed as

S2
J̄M
N

=
1

M(M − 1)

M∑
m=1

[
J(x̂N )M − J̄M

N

]2 (3.33)

Estimating an upper bound to J(x∗) helps give confidence to x̂N as the smaller the difference

between the upper and lower bounds proves that the problem is tightly bounded. However,

J(x∗) is difficult to determine as it requires knowledge of the exact scenario size. Hence, an

estimated scenario size N ′ is used to determine an approximate true solution J(x∗
N ′) such that

N ′ >> N . That is

J(x∗
N ′) = cTx∗

N ′ +
1

N ′

N ′∑
n=1

Q(x∗
N ′ ,wn) (3.34)

Hence, J(x∗
N ′) is an unbiased estimator of J(x∗). Consequently x∗

N ′ is a feasible point of the

true problem and J(x∗
N ′) gives a statistical upper bound of the true optimal solution value.

Estimate of the variance of J(x∗
N ′) can be computed as

S2
J(x∗

N′ )
=

1

N ′(N ′ − 1)

N ′∑
n=1

[
cTx∗

N ′ +Q(x∗
N ′ ,wn)− J(x∗

N ′)
]2 (3.35)

The difference between the unbiased estimators of E[J(x̂N )] and J(x∗) is termed the optimality

gap. The optimality gap can be estimated using (3.32)-(3.35)

gap = J̄M
N + S2

J̄M
N
− J(x∗

N ′) + S2
J(x∗

N′ )
(3.36)

However, it has been proven in [82] that as (3.29) is determined a predefined number of times

M with increasing N and N ′, the optimality gap tends to zero and S2
J(x̂N ) and S2

J(x∗
N′ )

tend

to be negligible each time (3.30) is solved. Hence, confidence is established for the optimal
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solution x̂N to the SAA problem such that

gap(x̂N ) ≈ J̄M
N − J(x∗

N ′) (3.37)

3.3 Model Predictive Control

The COMMES framework, while applicable elsewhere, is primarily developed for MPC appli-

cations. MPC provides a systematic method of dealing with constraints on inputs and states of

a system. MPC was initially developed in the chemical industry and is now arguably the most

widely accepted modern control strategy. Its receding horizon implementation offers an explicit

approach using a system’s dynamic model to forecast future system behaviour and compute

the control law. The control law is determined after solving a practical optimisation problem

subject to a system’s constraints, at each sample time using the system’s current state provided

through the feedback mechanism. Only the first input sequence in the control law is applied to

the system before the optimisation problem is resolved at the next sample time. The general

form of the optimisation problem implemented within the MPC formulation is represented as:

min J(x(k),u(k)) (3.38a)

subject to

g(x(k),u(k)) = 0 ∀k (3.38b)

l(x(k),u(k)) ≤ 0 ∀k (3.38c)

where x ∈ Rn represents the system’s state at time k and u ∈ Rm represents input to the

system at time k. J(�) is the optimisation problem, g(�) are equality constraints and l(�)

are inequality constraints. It is worth highlighting that the MPC formulation to any system

provided a dynamic model of the system can be obtained.

Figure 3.4 shows where MPC is typically placed in industrial applications. It is placed

between the real-time optimisation (RTO) and regulatory layers. The RTO is responsible

for defining economical optimal set-points repetitively with a frequency of typically hours/days

based on up-to-date system planning and scheduling decisions made based on multiple operating
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processes in the layer above. The regulatory layer comprises primarily single-input single-output

control loops like proportional-integral-derivative (PID) control that work to satisfy set-points

computed by the MPC. Below the regulatory control layer, actuators and sensors that operate

at a very high frequency implement control actions determined by the upper layer, then measure

and feedback system’s states. MPC exists within the advanced process control layer. It operates

at a frequency higher than the RTO layer. It uses the set-point provided by this layer and a

dynamic model of the system in an optimisation problem to predict the future evolution of a

system over a finite-time horizon with respect to a performance index.

Figure 3.4: The traditional hierarchical paradigm employed in industrial process systems
(adapted from [2])

3.3.1 Conventional Model Predictive Control

Conventional MPC plays the role of a regulator that steers the system to some fixed optimal

set-point provided by the RTO layer in Figure 3.4. The objective function implemented within

the conversational MPC is quadratic. It measures the predicted squared weighted error of the
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systems’ states and inputs from their corresponding steady-state or target reference values.

As such conventional MPC is also known as tracking MPC. The optimisation problem for

conventional MPC is mathematically represented by:

min J(x(k),u(k)) =

NH−1∑
i=0

(
∥ x(k + i|k) ∥2Q + ∥ u(k + i|k) ∥2R

)
(3.39a)

subject to

G(k)x(k) = g(k) ∀k (3.39b)

L(k)[x(k) u(k)]T ≤ l(k) ∀k (3.39c)

where ∥ x ∥= xTQx and Q ∈ Rn∗n, R ∈ Rm∗m are positive definite matrices (Q may be positive

semi-definite). The tuning parameters Q and R are chosen to assign priorities to particular

state and input variables, respectively. If R is relatively large with respect to Q the controller

response will be slower as the size of the control effort will be reduced, resulting in a sluggish

regulator. Conversely, if Q is larger than R, state variables’ deviation from the reference is given

priority and minimised quickly but at the cost of a large control effort. Reference tracking is

provided in (3.39a) by replacing x(k) with r(k) − y(k) where r(k) is a vector of reference or

set-point values corresponding to the vector of output variables y(k). The system dynamics

are contained in the equality constraint (3.39b), which can be described using the discrete-time

state-space representation:

x(k + 1) = Ax(k) +Bu(k) (3.40a)

y(k) = Cx(k) +Du(k) (3.40b)

x(0) = x0 (3.40c)

Limits on the system’s states and control inputs are imposed by the inequality constraints

(3.39c). They represent limits on physical actuators, must always be represented, and are known

as hard constraints. When safety considerations arise, it is common that strictly obeying them

is not always feasible. Such constraints are known as soft constraints, and they can be relaxed

accordingly to improve the controller’s performance [2]. The function J(�) is convex; hence a

unique global minimum can be guaranteed. Also, the choice of J(�) ensures that large deviations

are penalised much more than small ones, which is desirable from a control perspective.
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3.3.2 Economic Model Predictive Control

Based on the experience of implementing MPC in the chemical process industry, the devel-

opment of economic MPC (EMPC) has been proposed to extract more significant economic

benefits where achieving steady-state operation may not be the economically optimal opera-

tion [2, 85]. EMPC integrates the RTO and advanced process control layers shown in Figure

3.4. The cost function implemented within EMPC may be a direct or indirect reflection of the

process/system economics [85]. However, a by-product of this modification is that the system

is not required to operate at a specified steady-state or target reference. As EMPC aligns with

process economics, it will be beneficial in real-time energy management and is used in Chapters

4, 5 and 6 of this thesis. A general linear form of the optimisation problem implemented within

an EMPC formulation is represented as:

min J(x(k),u(k),p(k)) =

NH−1∑
i=0

h(x(k),u(k),p(k)) (3.41a)

subject to

G(k)x(k) = g(k) ∀k (3.41b)

L(k)[x(k) u(k)]T ≤ l(k) ∀k (3.41c)

where h(�) is the cost function, and p(k) reflects the economic part of the function (e.g. cost

of purchasing and selling energy to the grid, and/or generator start-up and short-down cost).

Note that quadratic terms may exist within h(�). However, they are usually for safety concerns.

As an example, to prolong the life-cycle of power conversion devices such as transformers or

battery banks in energy management systems, penalties are imposed in the formulation of

(3.41) on the rate of change of energy imports/exports and/or the rate of charging/discharging

storage systems. Such penalty is included in the optimisation problem formulated in Chapter

6 as penalties a placed on the charge/discharge rate of EVs. Parameters of an economical cost

function may vary with time resulting in the optimal state of a system changing each time the

economic parameters of the cost function change. However, as the response of the controllers in

the layers below the regulatory control in Figure 3.4 may be faster than the sampling interval of

the EMPC, the EMPC problem would be simplified. This is because the optimal economic state

of the system is reached at each sampling instant and is maintained throughout the current
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sampling period. Note that EMPC also allows for a non-linear system model as well as non-

linear constraints. However, to aid comparison with the conventional MPC in section 3.3.1, the

linear formulation of EMPC is provided by (3.41).

3.3.3 Stochastic Model Predictive Control

Mathematical models of a system can be separated into two parts: the actual process model and

the disturbance model, and both parts are needed to formulate an MPC problem. The actual

model represents a system’s dynamics, and the disturbance model represents inputs into the

system. Although no developed model fully represents a physical system, a reasonable model

approximation of an actual model can be obtained using standard methods (e.g. step and

impulse response). However, it is non-trivial for disturbance models as it is highly dependant

on the nature of the system inputs, which are most often uncertain. Typically, uncertainties are

unexpected behaviour resulting from model inaccuracies. Three main trends in MPC theory

have evolved to address these uncertainties. These are Certainty Equivalent MPC (CEMPC),

Deterministic MPC (DMPC), Robust MPC (RMPC) and S tochastic MPC (SMPC).

CEMPC uses a simplistic approach to handling uncertainty by assuming that forecasted fu-

ture values of uncertain variables will be realised according to their predictions and then rejects

unanticipated disturbances by relying on the receding horizon feedback mechanism. CEMPC

is often used as a benchmark when analysing DMPC, RMPC and SMPC methodologies. It

was used in the development of the original COMMES framework in [8,32,33]. Although MPC

offers a certain degree of robustness to system uncertainties due to its receding horizon imple-

mentation, its formulation does not appropriately incorporate uncertainty hence renders the

MPC inadequate for systematically dealing with uncertainties [80]. In real-world problems,

realised uncertainty variables are often different from forecasted variables. DMPC uses the

average of the forecasted uncertain variables in its formulation. However, sub-optimal solu-

tions will be obtained if realised uncertain variables deviate significantly from the mean. In

the presence of bounded uncertainties, RMPC guarantees stability, constraint satisfaction and

convergences the system’s state to a given steady-state condition, for all possible realisations

of uncertainty [86]. However, uncertainties are often probabilistic in real-world scenarios, and

SMPC has been developed to incorporate the probabilistic descriptions of uncertainties into a
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stochastic optimal control problem. SMPC allows for systematically seeking tradeoffs between

fulfilling the control objectives and guaranteeing a probabilistic constraint satisfaction due to

uncertainties [80].

SMPC deals with the cases when uncertainty is random, with a known probability distri-

bution, rather than been assumed known or lie in a given bounded set. It is worth noting that

a unique way to classify the numerous SMPC approaches explored in literature does not exist.

However, an attempt to provide a clear distinction between SMPC approaches based on system

dynamics is provided in [80]. Stochastic programming-based approaches are highly favoured in

formulated and for solving SMPC problems. Specifically, the two-stage stochastic programming

approach is discussed in Section 3.3. The optimisation problem for SMPC developed using the

two-stage stochastic approach can generally be represented as:

min J(x(k),u(k),ws(k)) = Ek

[NH−1∑
i=0

h(x(k),u(k),ws(k))
]

(3.42a)

subject to

G(k)x(k) = g(k) ∀k (3.42b)

L(k)[x(k) u(k) ws(k)]
T ≤ l(k) ∀k (3.42c)

where the notation Ek(�) indicate that the expectation is conditional on information available to

the controller at time k, and is therefore dependent on the distribution of the model uncertainty

ws. It is worth noting that CEMPC, DMPC, RMPC and SMPC can be formulated either as

conversational or economic MPC. The SMPC implemented in Chapter 5 and 6 are economic.

Penalties are placed on the cost of purchasing and selling energy to the grid and also on slack

variables associated with ws that aid power imbalance of the system. These slack variables are

related to uncertainties of energy demands and charging station utilisation by EVs. In Chapter

6, an added penalty on the charge/discharge rate of EVs is included in the optimisation problem.
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3.4 Software Tools and Extensions

The original COMMES framework was developed using both MATLAB and Python. Through-

out this research, the decision was made to continue using MATLAB as the modelling frame-

work is novel. MATLAB is well conversant within the research community, making further

development and application of the COMMES framework relatively easy. MATLAB (an abbre-

viation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and

numeric computing environment developed by MathWorks. MATLAB allows matrix manipula-

tions, plotting of functions and data, implementation of algorithms, creation of user interfaces,

and interfacing with programs written in other languages. MATLAB comes with an additional

package, Simulink, which adds graphical multi-domain simulation and model-based design for

dynamic and embedded systems. However, Simulink was not used throughout this research

because it is not well suited to the modelling framework in [8] and the modifications proposed

in this thesis.

As mentioned in Section 1.2, the COMMES framework was primarily developed to be im-

plementable within predictive control schemes. However, optimisation problems formulated

using the COMMES framework are mixed-integer programming problems. If the mixed-integer

problem is linear, the function intlinprog can be called in MATLAB to solve the problem.

If the mixed-integer problem is quadratic, MATLAB has no in-built functions to solve such

problems. CPLEX for MATLAB Toolbox and Cplex class were added as extensions in MAT-

LAB to resolve this. CPLEX is part of an optimisation software package, CPLEX Optimisation

Studio, developed by IBM. These extensions allow MATLAB to solve not only mixed-integer

quadratic problems but a variety of mathematical programming problems such as constrained

mixed-integer least-squares problems and quadratically constrained mixed-integer least squares

problems. This feature makes CPLEX well suited in this research as it can be used to solve

any mixed-integer problem formulated with the COMMES framework.
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3.5 Chapter Summary

This chapter discussed three topics that are utilised later in this thesis. In particular, the

original COMMES framework was discussed in Section 3.1 highlighting its three components.

However, the COMMES framework does not readily allow for the representation of mobile

storage charge/discharge operations. In designing the stochastic EMS in Chapter 5 and 6, a

stochastic programming approach is used to formulate the optimisation problems. The stochas-

tic programming approach utilised is discussed in Section 3.2. As EMSs developed in Chapters

4, 5 and 6, are based on the MPC methodology, Section 3.3 discusses some formulations of

MPC. The conventional MPC formulation for regulatory control is discussed first before the

EMPC, which allows a system’s economics to be reflected in the objective function is presented.

As uncertainties exist when solving real-world problems, the SMPC is discussed in the conclud-

ing subsection. Finally, the main software tools and extensions used to conduct the research

throughout this thesis is discussed in Section 3.4.



Chapter 4

Mobile Storage Modelling and Analysis

In this chapter, the model representation of mobile storage systems is presented and incorpo-

rated into the COMMES framework. In particular, the EV charge/discharge operation model

presented matches the modular nature of the original COMMES framework by matching its gen-

erality. The model provides a systematic approach for modelling successive EV charge/discharge

operations in MES without exact knowledge of the number or types of EVs in the network.

The remainder of this chapter is organised as follows: The EV charge/discharge operation

model is formally introduced in Section 4.1. This is followed by the development of a general

deterministic EMS in Section 4.2 to show how the EV charge/discharge operation model is

incorporated into the COMMES framework. In Section 4.3, description of a case-study MES is

presented. Simulation Analysis of the general deterministic EMS applied to the case-study MES

are discussed in Section 4.4 together with comparative analysis of operational cost. Finally, a

summary of the chapter is presented in Section 4.5.

59
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4.1 Electric Vehicle Charge/Discharge Model

4.1.1 Accounting for Electric Vehicle Charge Level

As the modular nature of the original COMMES framework allows for the charge level of a fixed

storage system to be represented using a discrete-time state space model, the same state-space

model can be used to represent the charge level of an EV connected to a charging station.

Figure 4.1 shows an EV connected to a charging station. Its SoC is accounted for using the

Figure 4.1: Illustration of a single EV utilising a charging station

discrete-time state-space model shown in (4.1) and the EV’s connection to the charging station

is achieved using (4.2). The power flowing through the charging station is represented as P .

The charging/discharging power of the EV is represented as QEV . If the EV does not have bi-

directional energy exchange capability, QEV represents the EV’s charging power. The standby

efficiency that models the decay of the EV’s battery SoC over time is represented as SEV .

EEV (k + 1) = SEVEEV (k) +QEV (k) (4.1)

QEV (k) = −P (k) (4.2)

In residential areas where an EV utilises a particular charging station most likely installed

on the EV owner’s premises, it is safe to assume that this EV will be the only one to utilise

the charging station. Hence, it is sufficient to use (4.1) and (4.2) to account for the EV’s SoC

when designing an EMS. However, in commercial and public areas where a charging station will

likely be utilised multiple times over a certain period and by different EVs, it is not optimal to

use (4.1) and (4.2) when designing EMSs. In commercial and public areas, the ownership of a

charging station is not assigned to a specific EV driver as it is expected that a charging station

can be utilised multiple times, as illustrated in Figure 4.2. Also, it has been proven in [87] that

although the ownership of charging stations are known in residential areas, EV owners can, on
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occasion, recharge their vehicles more than twice a day.

Figure 4.2: Illustration of multiple EVs utilising a charging station

To match the generality of the original COMMES framework, the representation of EVs’

charge/discharge operation within energy networks should have a modular structure that suits

application in residential, commercial and public areas.

4.1.2 Connecting Successive Electric Vehicle Charge Level Models

To facilitate the incorporation of the EV charge/discharge operation model into the COMMES

framework, the SM is sub-categorised into two: fixed storage model and mobile storage model.

The storage model considered in the original COMMES framework is the fixed storage model,

and it is described in Section 3.1.3. Mobile storage devices most noticeably EVs are modelled

using the mobile storage model. An illustration of the operation of fixed and mobile storage

devices, when connected to an energy network, is shown in Figure 4.3. Compared to the fixed

Figure 4.3: Illustration of the operation of fixed and mobile storage devices

storage model, added considerations are required to allow the dynamics of mobile storage devices

to be represented within the COMMES framework. Some of these considerations are the arrival

and departure time of EVs denoted as ha
EV and hd

EV respectively, and their respective energy

level at both times denoted as Ea
EV and Ed

EV . Also required are the battery capacity of EVs

denoted as CapEV , their respective battery efficiency SEV and charge/discharge power limits

±QEV . An illustration of EVs successively utilising a changing station is also shown in Figure
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4.3. Modification to the COMMES framework to incorporate a representation of mobile storage

devices was preliminarily introduced in [88]. However, the introduced EV charge/discharge

event model is now redefined as the EV charge/discharge operation model to avoid confusion

with event-based control schemes. An illustration of the modified overview of the COMMES

framework that incorporates the mobile storage model is shown in Figure 4.4.

The mobile storage model developed matches the modular nature of the original COMMES

framework by matching its generality. The mobile storage model provides a systematic approach

for modelling successive EV charge/discharge operations in MES without exact knowledge of

the number or type of EVs that will utilise the same charging station in the network. The EV

charge/discharge model is based on the utilisation of charging stations within MES assuming

some charging stations have bidirectional energy exchange capabilities. In Chapter 3, it was

discussed that terminal nodes represent interface to components outside the ECM. Charging

stations are examples of such interface hence they are represented as terminal nodes. Charging

stations represent charging equipment drivers connect their EVs to when they arrive to recharge

their batteries. To obtain an understanding of the charging/discharging pattern of EVs, it is

assumed that historical information on different EVs that have utilised a charging station

has been collected and categorised, and it contains: EV availabilities (arrival and departure

times) (4.3a), SoC at arrival and departure (4.3b), charge/discharge power limits (4.3c), battery

capacities (4.3d), battery efficiencies (4.3e), V2X capabilities (4.3f) and cd, the number of

charging/discharging operations or number of utilisation of a charging station over a certain

period. Superscripts a and d represents arrival and departure respectively.

Tnj
=
[
ha
EV,1, hd

EV,1 . . . ha
EV,cd, hd

EV,cd

]
∈ R(2∗cd)

≥0 (4.3a)

SoCnj
=
[
Ea

EV,1, E
d
EV,1 . . . E

a
EV,cd, E

d
EV,cd

]
∈ R(2∗cd)

≥0 (4.3b)

Qnj
=
[
±QEV,1 · · · ±QEV,cd

]
∈ Rcd

≥0 (4.3c)

Capnj
=
[
CapEV,1 . . . CapEV,cd

]
∈ Rcd

≥0 (4.3d)

Snj
=
[
SEV,1 . . . SEV,cd

]
∈ Rcd

≥0 (4.3e)

δV 2X
nj

=
[
δEV,1 . . . δEV,cd

]
∈ Icd{0:1} (4.3f)
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Figure 4.4: An illustrative overview of modifications to COMMES framework
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The charging/discharging operation of an EV is defined as a bi-directional energy exchange

to/from an EV while it is connected to a charging station. To account for the SoC of an

EV connected to terminal node nj during charging/discharging operation i, a discrete-time

state-space model is utilised as shown in (4.4) and the connection to a charging station is

given in (4.5). Pnj
represents the power flow through the charging station. QEV,i(k) represents

the charging/discharging power of an EV whose minimum value can be set to zero when a

driver decides to opt-out of V2X once they connect to nj. During the ith charge/discharge

operation, SEV,i represents standby efficiency of the EV’s battery and QEV,i represents the EV’s

charging/discharging power. SEV,i facilitates modelling a decay of the EV’s battery SoC over

time if QEV,i = 0. The minimum value of QEV,i can be set to zero when a driver decides not to

participate in V2X once they connect to the charging station. As (4.4) and (4.5) are required

only during a charging/discharging operation, they are active only during the availabilities

contained in Tnj
.

EEV,i(k + 1) = SEV,iEEV,i(k) +QEV,i(k) ∀i ∈ {1 : cd} ∀k ∈ {ha
EV,i : h

d
EV,i − 1} (4.4)

QEV,i(k) = −Pnj
(k) ∀i ∈ {1 : cd} ∀k ∈ {ha

EV,i : h
d
EV,i − 1} (4.5)

To prevent physically infeasible case where Pnj
(k) ≥ 0 and k /∈

{
ha
EV,i : h

d
EV,i − 1

}
, a binary

variable δnj
is employed as shown in (4.6). The multiplication of this binary variable by the

charging and discharging power limits of the charging station ensures that power Pnj
(k) = 0

when an EV is not connected (4.7).

δnj
(k) =


1, if k ∈ {ha

EV,i : h
d
EV,i − 1} ∀i ∈ {1 : cd}

0, if otherwise
(4.6)

Pnj
(k)δnj

(k) ≤ Pnj
(k) ≤ Pnj

(k)δnj
(k) ∀i ∈ {1 : cd} (4.7)

It is worth highlighting that a combination of PM, specifically pliable characteristics, and fixed

storage model can be used to model EV charging/discharging operations, however, the resulting

model would include redundant constraints. In addition, the resulting model would contradict

the definition of PM as a representation of individual devices by giving the illusion of multiple
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utilisation of a charging station by different EVs.

4.2 Deterministic Energy Management Scheme

To exemplify the incorporation of the EV charge/discharge model to the COMMES framework,

a deterministic EMS is designed to minimise the cost of purchasing and/or selling energy

from/to the grid plus cost on the adjustable portion of flexible prosumers that may exist within

a EH.

4.2.1 Problem Formulation

An index set is adopted to facilitate a clear distinction between different nodes and components

within an EH. The index set Su, Tr Sw and T identify all sum, transmitter, switch and

terminal nodes, respectively. Bi-directional arcs are identified as Bi. Prosumers are identified

with the index set GL = {GLn, GLs}, with GLn identifying flexible prosumers modelled using

any combination of S,A, P, I. GLs identifies fixed prosumers. The index set Es = {Esn, Ess}

identifies all energy storage components. Esn and Ess respectively identify fixed and mobile

storage components.

The controller’s objective is to minimise the cost of purchasing electricity and gas and

maximise the profit of selling electricity plus cost on the adjustable portion of flexible prosumers.

The control objective is given by (4.8). It must be met while considering the utilisation of any

charging station by EVs and flexible prosumers that may exist in the MES. At time k, we look

NH steps into the future, with scheduling period h set equal to k, and minimise the cost J(k)

subject to the system’s model and constraints.
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min
P(ni→nj)

,δPM

J(k) =

NH−1∑
k=0

[
Pcost(k + h) + PA(k + h)

]
(4.8)

subject to

ECM equations (3.1)∀Su, (3.2)∀Tr, (3.3)∀Sw,

(3.4)∀T, (3.5)&(3.6)∀Bi

PM equations


(3.8)− (3.10) if GL = GLn

(3.8)− (3.24) if GLs ∈ GL

SM equations (3.25)&(3.26) ∀Esn

(4.4)− (4.7) ∀Ess

where

Pcost(k + h) =

[
πbuy
e (k + h)P(e1→e2)(k + h)− πsell

e (k + h)P(e2→e1)(k + h)ηe2→e1

+πbuy
g (k + h)Pg1(k + h)

]

PA(k + h) =
∑

A∈GLn

[
Nn∑
u=1

[
λ+
A(k + h)∆l+A,u(k + h) + λ−A(k + h)∆l−A,u(k + h)

]]

Pcost is the economic cost with πbuy
e and πsell

e representing the per-unit purchase price and

received revenue for selling electricity respectively, while πbuy
g represents the cost of purchasing

gas. PA relates to the adjustable portion of the flexible prosumers that may exist in the MES.

Nn is the length of each flexible prosumers’ baseline requirement. ∆l+A,u and ∆l−A,u are slack

variables for these prosumers. λ+
A and λ−A respectively represent a penalty and incentive for

exceeding or not meeting the baseline requirement of each prosumer. In the objective function,

P(ni→nj) represents the bi-directional arcs connected to charging stations which are manipulated

by the controller to determine power flow to and from connected EVs. The operation of

flexible prosumers are manipulated using their respective related binary variables denoted as

δPM . These binary variables are binary processing δp, completed δc and waiting δw variables

discussed in Chapter 3. Due to the presence of binary variables, the optimisation problem is

a MILP, which is solved at each k. Problem (4.8) is defined over a future control horizon,
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which without loss of generality is set equal to the scheduling horizon, NH . Following standard

receding horizon implementation, NH remains constant throughout the simulation.

4.2.2 Receding Horizon Constraint Update

The charge/discharge operation model is presented as part of an optimisation problem to be

solved repeatedly over the horizon NH . Hence it is necessary to account for the presence and

effect of controlled charging/discharging of EVs over a prediction horizon NH . The notation

(k+h|k) is adopted to correspond to schedule h steps ahead that are predicted using information

available at time k. If after solving the optimisation problem at k, the controller assigns energy

to the EV when charging/discharging operation i is occurring, the EV’s SoC will be different

at the next sampling instant and needs to be updated accordingly:

if ha
EV,i ≤ k < hd

EV,i → EEV,i(0|k) = EEV,i(1|k − 1) ∀i ∈ {1 : cd} (4.9)

where EEV,i(k + 1|k − 1) denotes an EV’s SoC during the second scheduling period (h = 1)

after assigned QEV,i(k|k − 1) at k − 1. Also, δnj
is updated accordingly:

δnj
(h− 1|k) = δnj

(h|k − 1) ∀h ∈ {1 : NH − 1} (4.10)

Finally, (4.3a) - (4.3f) become functions of time and at the end of the ith charging/discharging

operation, when k = hd
EV,i, affiliated information is removed from these matrices. Note that

the above equations also apply when an EV has not connected to a charging station because

constraints used to estimate the charging/discharging operation in the controller must be up-

dated. In addition, if before solving the optimisation problem again, a new EV is connected,

these constraints are replaced with constraints relating to the newly connected EV.

4.2.3 Deterministic Predictive Control Implementation

Based on the optimisation problem (4.8), an algorithm is formulated for controlling the charge/discharge

power of connected EVs and to determine electricity and gas import/export to meet all energy

demands. Without loss of generality, NH is set to the scheduling horizon and problem (4.8)

is solved repeatedly at every time instant k, with scheduling period h set equal to k. The
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control algorithm is implemented according to Algorithm 1. Following this algorithm, the con-

troller can react preemptively to estimate of future known operations while taking the system

constraints into account.

Algorithm 1 Deterministic EMS
1: For each charging station nj , estimate cd. If cd > 1, ensure operations do not overlap.
2: Initialise EEV (0), SEV if ∃EV
3: Initialise Enj (0) if ∃Esn

4: for k = 1, . . . NH do
5: if k = haEV then
6: haEV,i ← haEV

7: hdEV,i ← hdEV

8: Ea
EV,i ← Ea

EV

9: Ed
EV,i ← Ed

EV

10: ±QEV,i ← ±QEV

11: CapEV,i ← CapEV

12: SEV,i ← SEV

13: δEV,i ← δEV

14: end if
15: Solve (4.8). Denote solution as [x(k), . . . ,x(k +NH − 1)]
16: Apply x(k) to the system
17: EEV (k + 1) = EEV (k)→ (4.9)
18: δEV (k + 1) = δEV (k)→ (4.10)
19: Enj (k + 1) = Enj (k) ∀Esn

20: Gy,flex,nj
(k + 1), Lu,flex,nj

(k + 1)← constraints in [33], ∀GLn

21: if k = hdEV then
22: delete haEV

23: delete hdEV

24: delete Ea
EV

25: delete Ed
EV

26: delete ±QEV

27: delete CapEV

28: delete SEV

29: delete δEV

30: end if
31: end for

The deterministic EMS begins by estimating the number of charge/discharge operations

cd that will occur at each charging station. Estimate the information on successive EV that

will utilise each charging station from historical information (4.3a)-(4.3f). For all fixed stor-

age systems that exists, initialise their SoC, Enj
. If EVs are connected to charging stations,

initialise their SoC EEV . Before starting the iteration, set k = 1. If any EV is connected

to a charging station, obtain their characteristics (Ea
EV , E

d
EV ,±QEV , CapEV , SEV ), availabili-

ties (ha
EV , h

d
EV ) and owners charging preferences (δEV ) and use them to replace the estimates
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(i.e. ha
EV,i, h

d
EV,i, E

a
EV,i, E

d
EV,i,±QEV,i, CapEV,i, SEV,i, δEV,i) during the ith charging/discharging

operation that correspond the charging stations they are connected to. Solve the optimisation

problem (4.8). Apply the solution x(k) to the MES. Update the SoC and the binary variable

monitoring the presence of EVs connected to a charging station or estimates of connected EVs

using constraints (4.9) and (4.10). Also, update the SoC Enj
of all fixed storage systems. If

any flexible prosumers exist with the MES, their constraints is updated according to [33]. As

the iteration continues, when any EV departs (i.e. k = hd
EV ), remove corresponding constraints

in the optimisation problem. The procedure is repeated over the horizon NH where NH is a

predefined number that is usually a multiple of the chosen sampling rate h.

4.3 Multi-Energy System Description

The MES used to demonstrate the incorporation of the EV charge/discharge model in the

COMMES framework discussed in Section 4.1 is shown in Figure 4.5. Electricity and gas are

available for imports from the wider energy infrastructure. It is also possible to export electricity

if EVs that utilise the three charging stations decide to participate in V2X. Imported gas can be

converted to electricity and heat using the CHP device. The MES in Figure 4.5 is represented

Figure 4.5: An multi-energy system schematic

using the EH graph shown in Figure 4.6. The EH graph is connected to the electricity and gas

network via their respective terminal nodes. Within the ECM, the transformer in modelled

using bi-directional arcs between node e1 and e2 and the CHP is modelled using transmitter

node g2. The prosumers are connected to terminal nodes e3 and h1. Nodes e4, e5, e6 are

dedicated terminal nodes that represent each of the three charging stations EVs connect to
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when they arrive to recharge their batteries. The set of equations that represent the ECM of

Figure 4.6 are shown in (4.11a) - (4.11j). For simplicity, dependence of these equations on k is

excluded.

Figure 4.6: An energy hub model graph

Pe1 + P(e2→e1)η(e2→e1) = P(e1→e2) (4.11a)

Pg1 = P(g1→g2) (4.11b)

Pe3 = −P(e2→e3)η(e2→e3) (4.11c)

Pe4 + P(e2→e4)η(e2→e4) = P(e4→e2) (4.11d)

Pe5 + P(e2→e5)η(e2→e5) = P(e5→e2) (4.11e)

Pe6 + P(e2→e6)η(e2→e6) = P(e6→e2) (4.11f)

Ph1 = −P(g2→h1)η(g2→h1) (4.11g)

P(g1→g2)η(g1→g2) = −P(g2→e2) (4.11h)

P(g1→g2)η(g1→g2) = −P(g2→h1) (4.11i)

P(e1→e2)η(e1→e2) + P(e4→e2)η(e4→e2) + P(e5→e2)η(e5→e2) + P(e6→e2)η(e6→e2) + P(g2→e2)η(g2→e2)

= P(e2→e1) + P(e2→e3) + P(e2→e4) + P(e2→e5) + P(e2→e6) (4.11j)

Prosumers included in Figure 4.6 are Adjustable-Pliable-Interruptible (API) and fixed electrical

demands both connected to node e3, and fixed heat demand connected to node h1. Equations
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that represents these prosumers connected to the ECM terminal nodes are shown in (4.12).

Pe3(k) = −LAPIe3(k)− Lfixe3(k)

Ph1(k) = −Lfixh1
(k)

(4.12)

LAPIe3 represents flexible API electrical demand whose operation can be exploited to achieve

specific objectives. Equations that describe the operation of the API demand are (3.10)-(3.12),

(3.14)-(3.17) and (3.19)-(3.24). Fixed demands Lfixe3 and Lfixh1
are uncontrollable, their con-

sumption pattern unknown and must be met at each time instant k. Both LAPIe3 and Lfixe3 are

connected to the same terminal node to help reduce the computational burden when solving

the optimisation problem as the number of equations are reduced. As the operation of flexible

prosumers are controlled by manipulating individual devices directly this is a safe simplification.

4.4 Simulation Setup and Analysis

For the purpose of the MES shown in Figure 4.6, the sampling period is set to 15 minutes over

a 24 hour control horizon i.e. NH = 96. Table 4.1 shows ECM conversion efficiencies across

each power flow arc. Other conversion efficiencies not shown are assumed as unity. Additional

parameter values are shown in Table 4.2.

Table 4.1: Conversion efficiencies related to technologies

ECM arc factor Device Conversion Value

ηe1→e2 , ηe2→e1 Transformer electricity 0.98
ηg2→e2 CHP gas to electricity 0.294
ηg2→h1 CHP gas to heat 0.485
ηe2→e4 Charging Station 1 charging efficiency 0.9
ηe4→e2 discharging efficiency 1/0.9
ηe2→e5 Charging Station 2 charging efficiency 0.9
ηe5→e2 discharging efficiency 1/0.9
ηe2→e6 Charging Station 3 charging efficiency 0.9
ηe6→e2 discharging efficiency 1/0.9

Regarding each charging station, some assumptions are made. All charging stations have

CHAdeMO connectors which are V2X capable, and each has a fixed charging/discharging cable

connected. Presently, EVs that have CHAdeMO sockets always have another charging socket



CHAPTER 4. MOBILE STORAGE MODELLING AND ANALYSIS 72

- either Type 1 or Type 2 for home AC charging [89]. It is estimated that over NH , only

one charging/discharging operation occurs at charging station 1, two at charging station 2 and

three at charging station 3. In addition, EVs that connect during the first charging/discharging

operation at all charging stations usually consent to charge via V2X. For clarification, the

realised number of charge/discharge operations must not equal the estimated number (cd) for

the modelling approach to be implementable as a key contribution of the model is the ability

to adapt to unknown number of EVs that may utilise a charging station over a period.

Table 4.2: Additional simulation parameters

Parameter Description Value

Pe4/Pe4 charge/discharge limits of Charging Station 1 80kW
Pe5/Pe5 charge/discharge limits of Charging Station 2 80kW
Pe6/Pe6 charge/discharge limits of Charging Station 3 80kW

Furthermore, it is assumed that each charging station is equipped with an interactive display,

and when an EV arrives and connects to a charging station, its arrival time, SoC, battery capac-

ity and V2X capability are obtained. If an EV has bi-directional energy exchange capability,

the driver can indicate their consent to participate in V2X when entering desired departure

time and SoC via the display. Following this reasoning, if technology advances to an extent

were all EVs and/or charging stations with Type 1, Type 2 or CCS sockets are made V2X

capable, proposed methodology herein will still be applicable.

Regarding the API demand, it is assumed that its baseline energy consumption profile is

divided into 4 segments, each with a baseline energy requirement of 40kW . Limits on waiting

periods between each segment (Nw
API,u and N

w

API,u) are set to 5 and 15 respectively, ∀u ∈ {2 : 4}.

The API demand is set to come online at 02:30am, processing limits (Np
API,u and N

p

API,u) are set

to 1 and 2 respectively, the maximum deviations from the baseline energy requirement during

each sampling period is ±5kW , and the penalty and incentive (λ+
A and λ−A) for exceeding or

not meeting the baseline requirement for each segment of the API demand are set to 5.
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Figure 4.7: Import/export price of electricity and gas

The price tariffs for electricity and gas are shown in Figure 4.7. Fixed electricity and

heat demands were collected from the University of Manchester (UoM) Estates department

that operates a building management system that logs energy usage data collected from build-

ings relating to a particular energy vector. Information (4.3a)-(4.3f) needed to estimate EV

charging/discharging operations at each charging station were obtained from discrete uniform

distributions with intervals shown in Table 4.3. The MPC optimisation problem is solved with

a commercial solver CPLEX at each k on a PC Intel Core i7-4700MQ CPU @ 2.40GHz with

32 GB RAM.

Table 4.3: Intervals to generate EV data from uniform distribution

Charging Station

1 2 3

Tnj
[2 10], [82 94] [2 10], [24 40] [2 10], [22 30]

[42 60], [62 94] [32 40], [52 60]
[62 70], [82 90]

SoCnj
[40 60], [80 100] [40 60], [80 100] [40 60], [80 100]

[40 60], [80 100] [40 60], [80 100]
[40 60], [80 100]

Qnj
[40 50] [40 50], [40 50] [40 50], [40 50]

[40 50]

Capnj
[90 100] [90 100], [90 100] [90 100], [90 100]

[90 100]

Snj
[0.9 0.98] [0.9 0.98], [0.9 0.98] [0.9 0.98], [0.9 0.98]

[0.9 0.98]
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4.4.1 Index Sets

Index sets introduced in Section 4.2.1 are used to group nodes and components within Figure

4.6. It is to clearly differentiate the constraints used to model Figure 4.6 and classify the

different node types. Table 4.4 lists the index set used to derive the optimisation constraints

for Figure 4.6.

Table 4.4: EH index sets

Bi :=
{
e1 ↔ e2, e2 ↔ e4, e2 ↔ e5, e2 ↔ e6

}
Su :=

{
e2
}

Tr :=
{
g2
}

Sw :=
{
−
}

T :=
{
g1, e1, e3, e4, e5, e6, h1

}
GLn :=

{
LAPIe3

}
GLs :=

{
Lfixe3

, Lfixh1

}
Esn :=

{
−
}

Ess :=
{
EEV,i→e4 , EEV,i→e5 , EEV,i→e6

}

4.4.2 Discussion

The EV charge/discharge operation model is capable of representing any number of EVs that

will utilise charging stations within a network provided there is adequate understanding of EV

types and driving patterns. Table 4.3 contains information about EVs that have utilised the

charging stations shown in Figure 4.6. Figure 4.8 shows the estimated and realised utilisation

of all charging stations after implementing the MPC scheme in Section 4.2.3.

The estimated utilisation of all charging stations is represented as dotted lines in Figure

4.8. The solid blue lines are the realised utilisation of all charging stations after EVs arrive

and connect to recharge their batteries. At charging station 1, it is assumed that the EV that

typically utilises it stays connected over an extended period and chooses to participate in V2X

such that it can be considered a fixed storage system. In Figure 4.8A, we see that the EV arrives

earlier than estimated, sticks to its usual choice to participate in V2X and stays connected

over an extended period. The EV initially discharges, together with the EVs connected at

charging stations 2 and 3 during their respective first charging/discharging operations. The
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Figure 4.8: Estimated and realised utilisation of all charging stations

energy discharged from these EVs is used to meet fixed electricity demand. Around 06:00,

the EVs connected to charging stations 1 and 2 charges to their maximum capacity before

electricity import price increases. They then discharge to help meet the energy demand of the

EV connected to charging station 3 before it departs and electricity demands shown in Figure

4.9B and Figure 4.9C.

It is estimated that two EVs will utilise charging station 2 over the horizon, and both will

participate in V2X. In Figure 4.8B, it can be seen that the first EV arrives later than estimated,

and the driver chooses to charge by V2X. The second EV arrives close to its estimated time,

but the driver decides not to participate in V2X. This results in the gradual decline in SoC seen

during the second charging/discharging operation in Figure 4.8B. This is due to the battery’s

efficiency, which is revealed to be 95%, resulting in a 5% reduction in stored energy over time

as the EV remains ideal. A similar effect is also seen in Figure 4.8C during the second charg-

ing/discharging operation at charging station 3. It is estimated that three charging/discharging

operations will occur at charging station 3 over the horizon. However, in Figure 4.8C, only two
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Figure 4.9: Electricity import/export profile and prosumer demand profiles

charging/discharging operations are realised. This validates a major contribution in this thesis

that the proposed EV charge/discharge model is implementable even when the number of EVs

in a network is not exactly known. The gaps between charging/discharging profiles in Figure

4.8B and Figure 4.8C are periods when charging stations 1 and 2 are not utilised.

The EV utilising charging station 1 does not retain enough charge to help satisfy energy

demands due to its battery efficiency. Hence, sharp rises in its SoC are noticed in Figure 4.8A

at approximately the same time electricity import price is about to increase (refer to Figure 4.7

for energy price profile). Shortly after each electricity import price increase, the EV discharges

to help satisfy increasing electricity demands. This drastic change in SoC is also observed

in Figure 4.8B during the first charging/discharging operation but not in Figure 4.8C. This is

because the EV utilising charging station 3 during the first charging/discharging operation stays

connect for a short period; hence could not be fully exploited to satisfy electricity demands.

Most gas import shown in Figure 4.9A is used to satisfy heat demands shown in Figure 4.9B.

Figure 4.9C shows the operation of the API electricity demand. It can be seen that the API
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demand comes online at the scheduled time and operates based on the specification outlined in

Section 4.4. This verifies that the incorporation of the EV charge/discharge operation model

to the COMMES framework does not affect the operation of prosumers.

4.4.3 Comparative Analysis

Using the MES in Figure 4.6, operational costs are compared by implementing some assump-

tions considered in research used in coordinating EV charging/discharging operations with the

approach in this thesis. In particular, the four scenarios analysed represent the following cases:

1. All EVs participate in V2X. Only one charging/discharging operation occurs at all charg-

ing stations.

2. All EVs participate in V2X. Only one charging/discharging operation occurs at all charg-

ing stations. EV that utilises charging station 1 stays connected over a longer period.

3. Not all EVs participate in V2X. One, two and three charging/discharging operations are

realised at charging stations 1, 2 and 3, respectively. EV that utilises charging station 1

stays connected over a longer period.

4. All EVs participate in V2X. One, two and three charging/discharging operation are re-

alised at charging stations 1, 2 and 3 respectively. EV that utilises charging station 1

stays connected over a longer period.

The operational cost obtained from implementing the four scenarios is shown in Table 4.5. These

costs are the summation of the cost obtained from the controller after solving the optimisation

problem repeatedly over the horizon plus recourse cost when actual EV demand profiles are

realised. The deterministic EMS implemented is the one outlined in Section 4.2.3.

Table 4.5: Operational cost of four scenarios

Scenario 1 2 3 4

Operational Cost (£) 625.46 597.21 583.21 568.93

Scenarios 1 and 2 are common assumptions typically made in research when coordinating EV

charge/discharge operations. Scenarios 3 and 4 are some assumptions considered to prove the

superiority of the proposed modelling approach.
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Figure 4.10: Scenario 1 - Estimated and realised utilisation of all charging stations
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Figure 4.11: Scenario 2 - Estimated and realised utilisation of all charging stations
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Figure 4.12: Scenario 3 - Estimated and realised utilisation of all charging stations
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Figure 4.13: Scenario 4 - Estimated and realised utilisation of all charging stations
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In scenario 1, all EVs have relatively short availabilities hence could not be significantly

exploited to reduce operational cost. The resulting charge/discharge profiles of EVs connected

to each charging station are shown in Figure 4.10. In scenario 2, the availability of the EV that

utilises charging station 1 is set significantly longer than the EVs utilising charging stations 2

and 3. The resulting charge/discharge profiles of EVs in this scenario are shown in Figure 4.11.

The availability of the EV that utilises charging station 1 is set to a similar duration as the

EV utilising charging station 1 in Section 4.4. Hence the EV’s storage capacity is used to help

satisfy energy demands by charging when energy prices are cheap, reducing the operational

cost compared to the cost obtained in scenario 1.

The setup of scenario 3 is similar to the setup in Section 4.4. However, all charging/discharging

operations are realised. The resulting charge/discharge profiles of EVs in this scenario are shown

in Figure 4.12. During the first charging/discharging operations at all charging stations, drivers

consent to participate in V2X. Drivers during the second charging/discharging operations at

charging station 2, and the second and third at charging station 3 choose not to participate in

V2X when they connected their EVs to the charging stations. Although these drivers opted

out of V2X, the operational cost for scenario 3 is less than that of scenarios 1 and 2. This is

as a result of the storage capacity of the EV utilising charging station 1 been exploited by the

controller, to help satisfy the EV demands from charging stations 2 and 3, and energy demands

of the prosumers. From Table 4.5, it can be seen that the operational cost obtained in scenario

4 is the smallest as the controller has permission the utilise all EVs to aid satisfying energy

demands. This is because all drivers gave consent to participate in V2X when they connected

their EVs to each of the charging stations. Figure 4.13 shows the resulting charge/discharge

profiles of EVs in scenario 4.

The results from scenarios 3 and 4 highlights the benefits of the EV modelling approach over

scenarios 1 and 2 by showing that accommodating a diverse nature of EV characteristic as well

as their individual availabilities and charging preferences significantly reduces operational costs.

Specifically compared to scenario 1, the operational cost obtained in scenario 2 outperforms by

approximately 4.52%. Operational cost obtained in scenario 3 and 4 but outperforms scenario

1 by 6.76% and 9.04% respectively.
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4.5 Chapter Summary

In this chapter, details of the incorporation of the mobile storage model into the COMMES

framework is presented. In particular, the EV charging/discharging operation model presented

is able to account for the diverse nature of EV ownership even when the number of EVs that

may utilise a charging station is not known exactly. An example system was analysed to

demonstrate the modification to the COMMES framework.



Chapter 5

Stochastic Control Scheme Application

Consideration of uncertainty sources within the COMMES framework is described in detail

in this chapter. In particular, a stochastic EMS is developed that effectively accounts for

the modular nature of the COMMES framework, especially the ever-changing nature of the

utilisation of charging stations by EVs and uncertainties they introduce into MES.

The remainder of the chapter is organised as follows: Discussion of how uncertainties are

considered within the three components of the COMMES framework is presented in Section 5.1.

This is followed by the development of a general stochastic EMS formulated using two-stage

stochastic programming approach and incorporated into the MPC framework in Section 5.2.

In Section 5.3, description of the case-study MES used to demonstrate how uncertainty sources

are considered in the modified COMMES framework is presented. Simulation analysis of the

general stochastic EMS applied to the MES described in Section 5.3 are discussed in Section

5.4 before a summary of the chapter is presented in Section 5.5.

82
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5.1 Modifications of COMMES Framework

5.1.1 Uncertainty Sources

In single- or multi-energy systems, the operation of variable power generation and end-user

devices are sources of uncertainty as they are difficult to predict. WT and PV are examples of

variable power generation technologies as they have inherent uncertainty due to wind speed and

solar radiation. Televisions, electric kettles, and microwaves are examples of end-user devices

that introduce uncertainty in MES. The end-user determines how these devices operate, and the

energy consumed by these devices must be met immediately. Within the COMMES framework,

models of such devices are connected to the ECM via terminal nodes. Hence, Pnj
in (3.4) will

not only depend on time instant k but also on the uncertainties introduced by these components.

However, these uncertainties will not affect the arc power flows on the right-hand side of (3.4)

because the arcs model part of physical devices within the ECM such as a transformer and HP.

In the COMMES framework, the operation of variable power generation and end-user de-

vices are modelled using PM, specifically fixed prosumer components. This is because the

energy they generate or consume must be considered instantly and needs to be forecasted.

Hence, the values of Gz,fix,nj
in (3.9) and Lv,fix,nj

in (3.10) depends on the operation of devices

they represent. The values of Gy,flex,nj
, and Lu,flex,nj

depend on devices modelled based on

their operation and user preferences; hence they have no inherent uncertainty. However, uncer-

tainty could exist in user preferred operation time, but this is not considered in this thesis. EVs

are also examples of end-user devices that introduce uncertainty in MES due to difficulty in

accounting for individual EV characteristics, availabilities and charging preferences as they are

unknown until an EV arrives and connects to a charging station. Hence, the charge/discharge

operation of EV will be influenced by the uncertainty of these three factors

5.1.2 Mobile Storage Model

A modular approach to modelling the operation of mobile storage systems such as EVs makes

accounting for EV related uncertainties difficult compared to other end-user devices that may

exist within a MES. EVs can be disconnected and reconnected at a later point in time. Hence,
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their lack of fixed presence, uncertain time and location EVs disconnect and reconnect to the

network and their energy levels are sources of uncertainty within MES. When viewed from the

utilisation of charging stations, the type of EVs that will utilise a charging station, especially

if the charging station is located in a public area, will also be a source of uncertainty within

MES.

The aforementioned EV uncertainty sources are encapsulated in the historical information

(4.3a) - (4.3f) as information on an EV charging/discharging its battery remains unknown until

an EV actually arrives and connects to a charging station. However, to account for the nature of

diverse EVs that may exist in residential, commercial and public areas, modifications are made

to (4.3a) - (4.3f) such that information collected on successive EVs that have utilised a charging

station are over longer periods, for example over days. The new matrices that represent such

historical information on the utilisation of a charging station nj are shown in (5.1a) - (5.1f),

and W is the number of successive EV charge/discharge operations.

Tnj
=
[
[ha,1

EV,i · · ·h
a,W
EV,i]

T [hd,1
EV,i · · ·h

d,W
EV,i]

T · · ·

[ha,1
EV,cd · · ·h

a,W
EV,cd]

T [hd,1
EV,cd · · ·h

d,W
EV,cd]

T
]

∈ RW∗(2∗cd)
≥0

(5.1a)

SoCnj
=
[
[Ea,1

EV,i · · ·E
a,W
EV,i]

T [Ed,1
EV,i · · ·E

d,W
EV,i]

T · · ·

[Ea,1
EV,cd · · ·E

a,W
EV,cd]

T [Ed,1
EV,cd · · ·E

d,W
EV,cd]

T
]
∈ RW∗(2∗cd)

≥0

(5.1b)

Qnj
=
[
[±Q1

EV,i · · · ±QW
EV,i]

T · · · [±Q1
EV,cd · · · ±QW

EV,cd]
T
]

∈ RW∗cd
≥0 (5.1c)

Capnj
=
[
[Cap1EV,i · · ·CapWEV,i]

T · · · [Cap1EV,cd · · ·CapWEV,cd]
T
]

∈ RW∗cd
≥0 (5.1d)

Snj
=
[
[S1

EV,i · · ·SW
EV,i]

T · · · [S1
EV,cd · · ·SW

EV,cd]
T
]

∈ RW∗cd
≥0 (5.1e)

δV 2X
nj

=
[
[δ1EV,i · · · δWEV,i]

T · · · [δ1EV,cd · · · δWEV,cd]
T
]

∈ IW∗cd{0:1} (5.1f)

The representation of historical information (5.1a) - (5.1f) allows understanding of EV drivers

routine to be leverage through the way different charging stations are utilised over time. As

such, forecasts of EV needs that matches reality is obtainable. Also, (5.1a) - (5.1f) facilitates

the understanding of how charging stations in residential, commercial and public areas are

utilised. For example, the characteristics, availabilities, and charging preferences of EV drivers
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using charging stations within residential areas will be easier to predict as residents will most

likely own their individual EVs and have their own individual charging stations installed at

home. Compared to the charging stations in public areas, EVs can come from anywhere to

utilised them, and no charging station is own by particular EV drivers. Hence, making it more

difficult to predict EV characteristics, availabilities and charging preferences.

In Section (4.1), equations (4.4) - (4.7) that accounts for the successive charge/discharge

operation of EVs have to be modified to account the uncertainty encapsulated in information

(5.1a) - (5.1f). Equations (4.4) that accounts for an EV’s SoC and (4.5) that represents an

EV’s connection to a charging station are rewritten as:

EEV,i(k + 1) = SEV,iEEV,i(k) +QEV,i(k) (5.2)

QEV,i(k) = −Pnj
(k) (5.3)

∀i ∈ {1 : cd} ∀k ∈
{
[ha,1

EV,i · · ·h
a,W
EV,i]

T : [hd,1
EV,i · · ·h

d,W
EV,i]

T − 1
}

Equations (4.6) and (4.7) employing the binary variable δnj
to monitor the presence of an EV

connected to a charging station are modified to prevent infeasible cases where Pnj
(k) ≥ 0 and

k /∈
{
[ha,1

EV,i · · ·h
a,W
EV,i]

T : [hd,1
EV,i · · ·h

d,W
EV,i]

T − 1
}

.

δnj
(k) =


1, if k ∈

{
[ha,1

EV,i · · ·h
a,W
EV,i]

T : [hd,1
EV,i · · ·h

d,W
EV,i]

T − 1
}

0, if otherwise
(5.4)

Pnj
(k)δnj

(k) ≤ Pnj
(k) ≤ Pnj

(k)δnj
(k) (5.5)

∀k ∈ {1 : NH − 1} ∀i ∈ {1 : cd}

5.2 Stochastic Energy Management Scheme

Similarly to Chapter 4, an EMS is developed to minimise the cost of purchasing and/or selling

energy from/to the grid plus cost on the adjustable portion of flexible prosumers that may

exist within an MES. However, the EMS developed in this chapter varies slightly. In particular,
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it addresses uncertain from generation and demand sources by accounting for them using the

two-stage stochastic programming technique when formulating the optimisation problem solved

within the EMS.

5.2.1 Two-Stage Stochastic Problem Formulation

Following the split decisions made by the implementation of the two-stage stochastic approach

discussed in Section 3.2.1, a stochastic optimisation problem can be formulated for an MES. The

objective of the problem is to make an optimal here and now (first-stage) decision on the amount

of energy to purchase from or sell to the grid plus cost on the adjustable portion of flexible

prosumers that may exist within the MES while considering possible real-time realisations of

generation and/or demand uncertainties. Then correction (second-stage) decisions are made

when actual generation and/or demand are realised. The following subsections describe how

a deterministic equivalent problem is formulated with a similar structure as problem (3.30).

This is done by spiting the problem formulation into first- and second-stage functions before

combining them to present a sample average approximated problem.

Index sets are again adopted to group different nodes and components that exist within an

EH and facilitate the consideration of nodes affected by uncertain sources. The index set Su, Tr

and Sw identify all sum, transmitter, and switch nodes, respectively. T = {T n, T s} is the index

set identifying terminal nodes, with T n identifying those not connected to uncertainty sources

and T s identifying those connected to uncertainty sources. Bi-directional arcs are identified as

Bi. Prosumers are identified with the index set GL = {GLn, GLs}, with GLn identifying flexible

prosumers modelled using any combination of S,A, P, I. GLs identifies fixed prosumers. The

index set Es = {Esn, Ess} identifies all energy storage components. Esn and Ess respectively

identify fixed and mobile storage components.

First-Stage Function

As the first- and second-stage functions are part of an optimisation problem to be solved

within an MPC scheme, the objectives of both functions should consider a prediction horizon

NH . Hence, the aim in the first-stage is to look NH steps into the future, with scheduling period



CHAPTER 5. STOCHASTIC CONTROL SCHEME APPLICATION 87

h and decide at time k the amount of electricity and gas to import/export while considering

the costs on the adjustable portion of the flexible prosumers:

Pfirst(k + h) =

NH−1∑
k=0

[Pcost(k + h) + PA(k + h)] (5.6)

subject to

ECM equations (3.1)∀Su, (3.2)∀Tr, (3.3)∀Sw,

(3.4)∀T = T n, (3.5)&(3.6)∀Bi

PM equations (3.8)− (3.24) if GL = GLn

SM equations (3.25)&(3.26) if Esn ∈ Es

where

Pcost(k + h) =

[
πbuy
e (k + h)P(e1→e2)(k + h)− πsell

e (k + h)P(e2→e1)(k + h)ηe2→e1

+πbuy
g (k + h)Pg1(k + h)

]

PA(k + h) =
∑

A∈GLn

[
Nn∑
u=1

[
λ+
A(k + h)∆l+A,u(k + h) + λ−A(k + h)∆l−A,u(k + h)

]]

Pcost is the economic cost with πbuy
e and πsell

e representing the per-unit purchase price and

received revenue for selling electricity respectively. πbuy
g represents the cost of purchasing gas.

PA relates to the portion of flexible prosumers modelled using adjustable characteristics. λ+
A

and λ−A respectively represent penalty and incentive for exceeding or not meeting the baseline

requirement of these prosumers. ∆l+A,u and ∆l−A,u are slack variables for these prosumers. Nn

is the length of each flexible prosumers’ baseline requirement.

Second-Stage Function

Correction decisions are needed when realised generation and/or demand uncertainties can not

be satisfied by actual energy import/export. This power imbalance is represented through

recourse variables in the stochastic problem. For example, in the case of energy surplus at

time k, recourse variables represent the amount of energy to be exported to keep the power
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balance in the EH. Random or second-stage constraints are those influenced by uncertainty

sources and can be written in the compact form Hx(k) −Gws(k) = 0 described in Section

3.2.2. Second-stage constraints are relaxed to consider s = 1 · · ·N generated scenarios. As

it has already been established that terminal nodes may connect components that introduce

uncertainty within an EH, the vector of uncertain variables (ws) is defined to reflect generated

scenarios and is presented together with the recourse variables (ξ+s , ξ−s ) as:

ws = P s
nj

ξ+s = P+,s
nj

ξ−s = P−,snj
∀nj = {T |T = T s}

Hence, power balance for terminal nodes that connect components with uncertain sources is

written as:

P+,s
nj

(k) ≥ P s
nj
(k) + P(ni→nj)(k)η(ni→nj) − P(nj→ni)(k) ∀s

P−,snj
(k) ≥ −(P s

nj
(k) + P(ni→nj)(k)η(ni→nj) − P(nj→ni)(k)) ∀s

∀nj = {T |T = T s}

(5.7)

Energy generated/consumed by fixed prosumers that may exist within an EH (i.e. if GLs ∈ GL)

needs to be forecasted, hence (3.8)-(3.10) are rewritten to consider every generated scenario s:

P s
nj
(k) =

Nm,nj∑
m=0

Gs
m(k)−

Nw,nj∑
w=0

Ls
w(k) ∀s (5.8)

Nm,nj∑
m=0

Gs
m(k) =

Ny∑
y=0

Gy,flex,nj
(k) +

Nz∑
z=0

Gs
z,fix,nj

(k) ∀s (5.9)

Nw,nj∑
w=0

Ls
w(k) =

Nu∑
u=0

Lu,flex,nj
(k) +

Nv∑
v=0

Ls
v,fix,nj

(k) ∀s (5.10)

∀nj = {T |T = T s}

The utilisation of charging stations that may exists within an EH (i.e if Ess ∈ Es), needs to be

forecasted as they depend on EV characteristics, availabilities and charging preferences. Hence,

(4.4) and (4.5) accounting for EVs’ energy level during series of charging/discharging operations

and their connection to changing stations are also rewritten to consider every generated scenario
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s per charging station.

Es
EV,i(k + 1) = Ss

EV,iE
s
EV,i(k) +Qs

EV,i(k) ∀i, s (5.11)

Qs
EV,i(k) = −P s

nj
(k) ∀i, s (5.12)

∀nj = {T |T = T s} ∀k ∈ {ha,s
EV,i : h

d,s
EV,i − 1} ∀i ∈ {1 : cd}

Also, constraints (4.6) and (4.7) involving the binary variables monitoring the connection of an

EV to a charging station are rewritten as:

δsnj
(k) =


1 if k ∈ {ha,s

EV,i : h
d,s
EV,i − 1} ∀s, i ∈ {1 : cd}

0 if otherwise
(5.13)

P s
nj
(k)δsnj

(k) ≤ P s
nj
(k) ≤ P s

nj
(k)δsnj

(k) ∀s (5.14)

∀nj = {T |T = T s} ∀k ∈ {1 : NH − 1}

The second-stage function can then be written as shown in (5.15) with an aim to look NH

steps into the future, with scheduling period h and decide at time k on correction decisions to

be made due to power imbalances when energy generation and demand are realised. Vectors q+
s

and q−s are penalty costs related to power surplus and shortage respectively, and corresponding

probability related to each recourse variable pair is accounted for with 1
N

.

Psecond(k + h) =

NH−1∑
k=0

N∑
s=1

1

N

[ ∑
∀nj=T s

[
q+
s P

+,s
nj

(k + h)

+q−s P
−,s
nj

(k + h)
]] (5.15)

subject to

ECM equations (3.5)&(3.6)∀Bi, (5.7)∀T = T s

PM equations (5.8)− (5.10), (3.11)− (3.24) if GLs ∈ GL

SM equations (5.11)− (5.14) if Ess ∈ Es
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Sample Average Approximated Problem

In a similar form to (3.30), the deterministic equivalent problem is written by combining the

first- (5.6) and second- (5.15) stage functions:

min
x

{
J(x) := Pfirst(k + h) + Psecond(k + h)

}
(5.16)

subject to

ECM equations (3.1)∀Su, (3.2)∀Tr, (3.3)∀Sw,

(3.4)∀T = T n, (3.5)&(3.6)∀Bi

(5.7)∀T = T s

PM equations


(5.8)− (5.10), (3.11)− (3.24) if GLs ∈ GL

(3.8)− (3.24) if GL = GLn

SM equations (3.25)&(3.26) if Esn ∈ Es

(5.11)− (5.14) if Ess ∈ Es

The solution vector x = [P T
SM ,P T

PM , δT
PM ]T provides a schedule for all manipulated vari-

ables. PSM contains the charge/discharge rate of all connected storage systems. PPM contains

energy schedule of all flexible prosumers and the binary variables that manipulate their opera-

tion are contained in δPM . Due to the presence of binary variables, (5.16) is a MILP.

5.2.2 Evaluating Candidate Solutions

To implement the stochastic EMS later in this chapter, the number of scenarios N has to be

chosen such that there is confidence in the solution to problem (5.16). Adopting the notation

in Section 3.2.3, let x̂N and J(x̂N ) be the optimal solution and optimal value of the SAA

problem (5.16). Confidence in x̂N can be established as explained in Section 3.2.3 and an

adequate N can determined. A summary of Section 3.2.3 used to determine the optimality

gap is presented in Algorithm 2. Adjustments are made to the parameters M , N and N ′ to

trade-off computational effort with a desired confidence level.
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Algorithm 2 Optimality Gap Estimation
1: for m = 1, . . .M do
2: Start timer t(m)
3: Generate N scenarios
4: Solve (5.16)
5: Ĵm ←− J(x̂N )
6: x̂m

N ←− x̂N

7: Generate N ′ scenarios (N ′ >> N)
8: Solve (5.16) with x̂N

9: J∗m ←− J(x∗
N ′)

10: x∗mN ′ ←− x∗
N ′

11: S2
Ĵm ←− S2

J(x̂N )

12: End timer t(m)
13: end for
14: Determine J̄M

N = mean of Ĵm

15: Determine S2
J̄M
N

16: for each x∗mN ′ , m = 1, . . .M do
17: gapm = J̄M

N − J∗m

18: Varm = S2
J̄M
N

+ S2
Ĵ ′(x̂(m))

19: end for
20: Determine t = mean of t(m)

5.2.3 Receding Horizon Constraint Update

As problem (5.16) is to be solved repeatedly over NH , it is necessary to account for the pres-

ence and effect of controlled charging/discharging of EVs as they are part of the optimisation

problem. Receding horizon constraints that account for the effect of control actions on the

operation of other components in the EH are in [33]. The notation (k + h|k) is adopted to

correspond to schedules h steps ahead that are predicted using information available at time k.

If after solving the optimisation problem at k, the SoC of EVs in every N scenario representing

charging/discharging operation i will be different at the next sampling instant and needs to be

updated accordingly:

if ha,s
EV,i ≤ k < hd,s

EV,i Es
EV,i(0|k) = Es

EV,i(1|k − 1) (5.17)

∀s, i ∈ {1 : cd}



CHAPTER 5. STOCHASTIC CONTROL SCHEME APPLICATION 92

where Es
EV,i(k + 1|k − 1) denotes the SoC of EVs considered in all scenarios during the second

scheduling period (h = 1) after assigned Qs
EV,i(k|k−1) at k−1. Also, δsEV is updated accordingly:

δsEV (h− 1|k) = δsEV (h|k − 1) ∀s, h ∈ {1 : NH − 1} (5.18)

Finally, (5.1a)-(5.1f) become functions of time and at the end of the ith charging/discharging

operation, when k = hd,s
EV,i, affiliated information are removed from these matrices.

When an EV connects to a charging station, that is a charge/discharge operation is realised,

the inter-temporal relationship and dependence between the connected EV and scenarios of

future EV charge/discharge operations needs to be accounted for. In the optimisation problem,

this is achieved by setting the negated N charging/discharging powers over the period when

the current EV is connected to the charging station equal to the EV input/output power,

QEV . (5.19) is implemented to enforce this constraint. Also, the dynamic equation accounting

for each N scenarios during the ith charge/discharge operation based on information sampled

from (5.1a)-(5.1f) are each replaced with a dynamic equation representing the EV currently

connected to the charging station (5.20).

QEV (k) = −P s
nj
(k) ∀nj = {T |T = T s} (5.19)

EEV (k + 1) = SEVEEV (k) +QEV (k) (5.20)

∀k ∈ {ha
EV : hd

EV − 1}

5.2.4 Stochastic Predictive Control Implementation

In MPC, a projected view of a system into the future is used to minimise an objective function

subject to a system’s model and constraints. In the stochastic formulation, added considerations

of uncertainties in a system are included. These uncertainties are described using probability

distributions, and forecasts of what they might be are incorporated in the control scheme.

Problem (5.16) is designed to consider uncertainty sources within an EH over a future horizon

NH . Without loss of generality, NH is set to the scheduling horizon and the problem (5.16)

is solved repeatedly at every time instant k, with scheduling period h set equal to k. The
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stochastic control scheme is implemented according to Algorithm 3.

Algorithm 3 Stochastic EMS
1: Determine cd and generate N scenarios.
2: Initialise EEV (0), SEV if ∃EV
3: Initialise Enj

(0) if ∃Esn

4: for k = 1, . . . NH do
5: if k = ha

EV then
6: for s = 1, . . . N do
7: ha,s

EV,i ← ha
EV

8: hd,s
EV,i ← hd

EV

9: Ea,s
EV,i ← Ea

EV

10: Ed,s
EV,i ← Ed

EV

11: ±Qs
EV,i ← ±QEV

12: CapsEV,i ← CapEV

13: Ss
EV,i ← SEV

14: δsEV,i ← δEV

15: end for
16: end if
17: Solve (5.16). Denote solution as [x(k), . . . ,x(k +NH − 1)]
18: Apply x(k) to the system
19: EEV (k + 1) = EEV (k) if ∃EV → (4.9)
20: δEV (k + 1) = δEV (k) if ∃EV → (4.10)
21: if ha,s

EV,i ≤ k < hd,s
EV,i then

22: Es
EV,i(k + 1) = Es

EV,i(k) ∀Esn → (5.17)
23: δsEV (k + 1) = δsEV (k) ∀Esn → (5.18)
24: end if
25: Enj

(k + 1) = Enj
(k) ∀Esn

26: Gy,flex,nj
(k + 1), Lu,flex,nj

(k + 1)← constraints in [33], ∀GLn

27: if k = hd
EV then

28: delete ha
EV

29: delete hd
EV

30: delete Ea
EV

31: delete Ed
EV

32: delete ±QEV

33: delete CapEV

34: delete SEV

35: delete δEV

36: end if
37: end for

Before the stochastic EMS begins, determine N using Algorithm 2. Estimate the num-

ber of charge/discharge operations cd that will occur at each charging station and gener-

ate N scenario estimate of information on successive EV that will utilise each charging sta-

tion from historical information (5.1a)-(5.1f). For all fixed storage systems that exists, ini-
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tialise their SoC, Enj
. If EVs are actually connected to any charging station, initialise their

SoC EEV . Before starting the iteration, set k = 1. For EVs connected to a charging sta-

tion, obtain their characteristics (Ea
EV , E

d
EV ,±QEV , CapEV , SEV ), availabilities (ha

EV , h
d
EV ) and

owners charging preferences (δEV ) and use them to replace each scenario estimate s (i.e.

ha,s
EV,i, h

d,s
EV,i, E

a,s
EV,i, E

d,s
EV,i,±Qs

EV,i, CapsEV,i, S
s
EV,i, δ

s
EV,i) during the ith charging/discharging oper-

ation that correspond the charging stations they are connected to. Solve the optimisation

problem (5.16). Apply the solution x(k) to the MES. Update the SoC and the binary variable

monitoring the presence of EVs connected to a charging station using constraints (4.9) and

(4.10). For charging stations that are not currently been utilised, estimated scenarios of EVs

are updated using constraints (5.17) and (5.18). Also, update the SoC Enj
of all fixed storage

systems and any flexible prosumers that exist with the MES. The prosumer constraints are

updated according to [33]. As the iteration continues, when any EV departs (i.e. k = hd
EV ),

remove corresponding constraints in the optimisation problem. The procedure is repeated over

the horizon NH where NH is a predefined number that is usually a multiple of the chosen

sampling rate h.

5.3 Multi-Energy System Description

The MES used to demonstrate the how uncertainty sources are considered in the modified

COMMES framework discussed is shown in Figure 5.1. Electricity and gas are available for

imports from the wider energy infrastructure. It is also possible to export electricity if EVs that

utilise the two charging stations decide to participate in V2X. The different energy conversion

technologies utilised to transform imported energy carriers are transformer and CHP. Also, heat

energy can be stored by means of the hot water tank shown.
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Figure 5.1: An multi-energy system schematic

5.3.1 Case Study Mathematical Model

The ECM within the EH shown in Figure 5.2 is made up of 7 terminal, 2 sum and 1 transmitter

nodes. The electricity and gas networks are connected to terminal nodes e1 and g1 respectively.

The transformer in modelled using bi-directional arcs between node e1 and e2 and the CHP is

modelled using transmitter node g2. The prosumers are connected to terminal nodes e3 and

h2. Nodes e4 and e5 are dedicated terminal nodes that represent the two charging stations

EVs connect to when they arrive to recharge their batteries. The set of equations describing

the interconnections of nodes and arcs of the ECM that corresponds to the system shown in

Figure 5.2 are shown in (5.21a) - (5.21k). For simplicity, dependence of these equations on k

are excluded.

Figure 5.2: Case study multi-energy system
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Pe3 = −P(e2→e3)η(e2→e3) (5.21a)

Pe4 + P(e2→e4)η(e2→e4) = P(e4→e2) (5.21b)

Pe5 + P(e2→e5)η(e2→e5) = P(e5→e2) (5.21c)

Ph2 = −P(h1→h2)η(h1→h2) (5.21d)

Pe1 + P(e2→e1)η(e2→e1) = P(e1→e2) (5.21e)

Pg1 = P(g1→g2) (5.21f)

Ph3 + P(h1→h3)η(h1→h3) = P(h3→h1) (5.21g)

P(g1→g2)η(g1→g2) = −P(g2→e2) (5.21h)

P(g1→g2)η(g1→g2) = −P(g2→h1) (5.21i)

P(e1→e2)η(e1→e2) + P(e4→e2)η(e4→e2) + P(e5→e2)η(e5→e2) + P(g2→e2)η(g2→e2)

= P(e2→e1) + P(e2→e3) + P(e2→e4) + P(e2→e5) (5.21j)

P(g2→h1)η(g2→h1) + P(h3→h1)η(h3→h1) = P(h1→h2) + P(h1→h3) (5.21k)

Prosumers in Figure 5.2 are SI (LSIe3
) and fixed (Lfixe3

) electrical demands both connected to

node e3, and API (LAPIh2
) and fixed (Lfixh2

) heat demands both connected to node h2. Equa-

tions connecting these prosumers to the ECM terminal nodes are shown in (5.22). Equations

that describe the operation of the SI electrical and API heat demands are (3.11) - (3.24).

Pe3(k) = −LSIe3
(k)− Lfixe3

(k)

Ph2(k) = −LAPIh2
(k)− Lfixh2

(k)
(5.22)

The heat storage shown in Figure 5.2 is represented by a discrete-time state-space model:

Eh3(k + 1) = Sh3Eh3(k) +Qh3(k) (5.23)

Input is the charging/discharging power, Qh3 . Output, Eh3(k) represent stored energy at time

k. The heat storage is connected within the MES via terminal node h3. This connection is

achieved by setting Qh3 equal to the negated node power of the associated terminal node (5.24),

to maintain the sign convention.

Qh3(k) = −Ph3(k) (5.24)
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Also, as no storage system is 100% efficient, Sh3 represents the standby efficiency of the heat

storage and causes a decay in its SoC over time if Qh3 = 0.

5.3.2 Data on Fixed Energy Demands and Utilisation of Charging Stations

To validate the stochastic MPC scheme in Section 5.2.4 requires realistic data on fixed demands

and utilisation of charging stations. Fixed electricity and heat demand data were collected from

a month’s worth of data collected from the UoM Estates department that operates a building

management system that logs energy usage data related to a particular energy vector for every

building on campus.. Regarding data on charging station utilisation, non exist to the best

of the author’s knowledge, that fully represents the information needed for the EV modelling

approach presented in this thesis. Specifically, most data excludes the number of times an EV

is charged or the number of utilisation of a charging station over a period. In addition, most

EV data collected are from individual EV utilisation.

Data collected from the My Electric Avenue (MEA) [87] project was from the utilisation of

individual EVs and it includes the number of times an EV is charged over a period. The MEA

was a project carried out to understand the challenges and opportunities that come with the

wide-spread adoption of EVs. The project was led by EA Technology in collaboration with the

UK DNO Scottish and Southern Energy Network. EVs used for the project were Nissan LEAFs

with SoC ranging from 0 (0%) to 12 (100%) units, with 1 unit = 2kWh. The charging metric

collected during the project were: the number of times an EV is charged per day (charging

event), start charging time, initial/final SoC, and percentage of EVs charging on the same day.

These charging metrics are represented in [53] using Gaussian mixture models (GMM) which

enables the representation of clusters within data set through a convex combination of several

normal distributions through their means and variances.

Data from the MEA is used to implement the optimality gap and determine the number

of scenarios N in Section 5.2.2 and validate the proposed stochastic MPC scheme in Section

5.2.4. However, modifications are made to outlined steps given in [53] to recreate the EV

profiles so that information (5.1a) - (5.1f) can be generated to suit the EV charge/discharge

model presented in this thesis. For instance, the data excludes departure time or stop charge

time. However, as the initial and final SoC depends on the number of charging events and
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start charging time, the stop charge time can be estimated. In [87], V2X is not considered

hence the charging operation of EVs are defined as charging events. As estimate stop charge

time can be obtained, EV charge/discharge profiles can be generated to suit the definition of

a charging/discharging operation in Section 4.1. In addition, the EV charge/discharge profiles

are recreated in this thesis such that they represent diverse EV characteristics. This is done so

that EV profiles can be generated to suit the utilisation of charging stations by different types

of EVs to draw parallels to the utilisation of public charging stations as well as privately owned

charging stations as in the MEA project.

5.3.3 Scenario Generation from Gaussian Mixture Models

It is assumed that an EV’s charge/discharge operation begins once it arrives and connects to

a charging station. From [53], initial and final SoC are redefined as arrival and departure SoC

respectively. Also, start and stop charging times are redefined as arrival and departure times

respectively. Values of an EV’s battery capacity, battery efficiency and charge/discharge power

limits, for this study, are generated artificially. Following [53], the selection of initial and final

SoC depends on considering the GMM of a given arrival time. Steps listed below are followed

to generate N scenarios to represent information (5.1a) - (5.1f). For each charging station:

1. Generate N scenarios containing artificial data on battery capacities and standby loss

factor, and charge/discharge power limits for N EVs.

2. Randomly select N arrival times.

3. Randomly select N initial SoC, considering the GMM that corresponds to each arrival

times.

4. Randomly select N final SoC. To consider time dependency, the GMM for the corre-

sponding arrival times should be used. To consider battery degradation, ensure SoC lies

within a safe range. In this paper, 20% and 90% of battery capacity are used as upper

and lower limits.

5. Multiply each N initial and final SoC by 8.33% and their corresponding battery capacity

obtained in step 1. This is done to get the SoC of each EV that corresponds to 24kWh

capacity used in [53].

6. Estimate each departure time using corresponding arrival time, initial and final SoC, and
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maximum charging limit. However, margin of error is added to each departure time to

ensure that the duration of each charge/discharge operation is of significant length.

7. If two charge/discharge operations occur over the planned horizon, follow steps 1 to 7

and ensure that the charge/discharge operations do not overlap by generating arrival and

departure time scenarios greater than those of the previous operation.

5.4 Simulation Setup and Analysis

For the purpose of the case study, the sampling period is set to 15 minutes over a 24h control

horizon, i.e. NH = 96. The technologies shown in Figure 5.2 were chosen to exemplify mod-

ifications to the COMMES framework. Table 5.1 shows conversion efficiencies of some power

flow arcs of the ECM. Other conversion efficiencies not shown are assumed as unity. Additional

parameter values are shown in Table 5.2. It is assumed that the baseline energy consumption of

Table 5.1: Conversion efficiencies related to technologies

ECM arc factor Device Conversion Value

ηe1→e2 , ηe2→e1 Transformer electricity 0.98
ηg2→e2 CHP gas to electricity 0.294
ηg2→h1 CHP gas to heat 0.485
ηe2→e4 Charging Station 1 charging efficiency 0.9
ηe4→e2 discharging efficiency 1/0.9
ηe2→e5 Charging Station 2 charging efficiency 0.9
ηe5→e2 discharging efficiency 1/0.9
ηh1→h3 Heat Storage charging efficiency 0.8
ηh3→h1 discharging efficiency 1/0.8

both flexible demands in Figure 5.2 over a sampling period is 40kW . The SI electricity demand

has 2 segments and the API heat demand has 4 segments. For simplicity, both demands have

equal limits on waiting periods (Nw
nj ,u

and N
w

nj ,u
) between each segment are set equal to 5 and

15 respectively, ∀u ∈ {2 : 4} and ∀nj ∈ {SI,API}. The API heat demand is set to come

online at 02:30am with processing limits (Np
API,u and N

p

API,u) set to 1 and 2 respectively, and

maximum deviations from the baseline energy requirement during each sampling period is set

to ±5kW .

The following assumptions are made about each charging station. All have CHAdeMO con-

nectors with bidirectional capabilities and a fixed charge/discharge cable connected to each of
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Table 5.2: Additional simulation parameters

Parameter Description Value

Eh3/Eh3 max/min heat storage capacity 180/40kWh
Qh3/Qh3 max heat storage charge/discharge 40kW

Sh3 heat storage standby loss factor 0.95
Pe2→e4 , Pe4→e2 charge/discharge limits of Charging Station 1 100kW
Pe2→e5 , Pe5→e2 charge/discharge limits of Charging Station 2 100kW

them. Presently, EVs that have CHAdeMO sockets always have another charging socket - either

Type 1 or Type 2 for home AC charging [89]. For simplicity, it is assumed that charging sta-

tion 1 is always utilised by a particular EV that stays connected over a long period and usually

consent to charge via V2X. For charging station 2, it is assumed that two charging/discharging

operations usually occur over a 24h period but EVs involved in both operations are usually

different each day and occasionally participate in V2X. Furthermore, all charging stations are

assumed to be equipped with an interactive display, and when an EV arrives and connects to a

charging station, its arrival time, SoC, battery capacity and V2X capability are obtained. If an

EV is V2X capable, a driver can indicate their consent to participate in V2X when entering de-

sired departure time and SoC via the display. Following this reasoning, if technology advances

to the extent that all EVs and/or Type 1, Type 2 or CCS charging stations are made V2X

capable, the proposed methodology herein would still apply. Also, drivers can not interrupt the

charge/discharge process after they enter their desired SoC at the departure, their departure

time, and specified whether to participate in V2X or not. This way, the controller is free to

decide the charging/discharging power while an EV is connected to a charging station.

It is worth highlighting that once the N scenarios are generated for each charging station

following the steps outlined in Section 5.3.2, it will be in the form of a scenario fan. Each branch

of the scenario fan will contain information to recreate two consecutive EV charge/discharge

operations at most.

5.4.1 Index Sets, Variable Types and Forecasts

Index sets introduced in Section 5.2.1 are used to group nodes and components within Figure

5.2. This is to clearly differentiate constraints affected by uncertainty sources and those not
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affected by uncertainty sources. Table 5.3 lists the index set used to derive the optimisation

constraints for Figure 5.2.

Table 5.3: EH index sets

Bi :=
{
e1 ↔ e2, e2 ↔ e4, e2 ↔ e5, h1 ↔ h3

}
Su :=

{
e2, h1

}
Tr :=

{
g2
}

Sw :=
{
−
}

T n :=
{
e1, g1

}
T s :=

{
e3, e4, e5, h2

}
GLn :=

{
LSIe3

, LAPIh2

}
GLs :=

{
Lfixe3

, Lfixh2

}
Esn :=

{
Eh3

}
Ess :=

{
EEV,i→e4 , EEV,i→e5

}

Implementing Algorithm 3 for the MES shown in Figure 5.2 requires decisions to be made

on energy imports/exports, charge/discharge operation of storage systems and the operation of

flexible demands considering uncertain fixed demands and utilisation of charging stations. How-

ever, a clear distinction between decision and uncertain variables in the optimisation problem

and forecasts obtained from scenario generation has to be made. Table 5.4 shows the decision

and uncertain variables. Forecasts required in the formulation of the optimisation problem

for Figure 5.2 are also shown. Adopting the compact form Hx(k)−Gws(k) = 0 described in

Table 5.4: Decision and uncertain variables, and forecasts

x(k) :=
{
P(e1→e2)(k), P(e2→e1)(k), Pg1(k), QEV,i→e4(k), QEV,i→e5(k), Qh3(k),

∆l+n,i(k),∆l−n,i(k), δ
+
n,i(k), δ

−
n,i(k), δ

p
n,i(k), δ

w
n,i(k), δ

c
n,i(k)

}
Forecasts

{
cd, Lfixe3

, Lfixh2
, CapEV,i, SEV,i,±QEV,i, E

a
EV,i, E

d
EV,i, h

a
EV,i, h

d
EV,i

}
ws(k) :=

{
P s
e3
(k), P s

e4
(k), P s

e5
(k), P s

h2
(k)

}
ξ+s (k) :=

{
P+,s
e3

(k), P+,s
e4

(k), P+,s
e5

(k), P+,s
h2

(k)
}

ξ−s (k) :=
{
P−,se3

(k), P−,se4
(k), P−,se5

(k), P−,sh2
(k)

}
Section 3.2.2 to represent the second-stage constraints, denote the vector collecting all decisions

to be made on energy imports/exports, charge/discharge operation of storage systems and the

operation of flexible demands at each k as x(k). P(e1→e2) and P(e2→e1) represent electricity

import and export respectively. Pg1 represents gas import. QEV,i←e4 and QEV,i←e5 represent

the charging/discharging powers of EVs that will utilise charging stations e4 and e5 respec-
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tively over time. Qh3 is the charging/discharging power of the connected heat storage system.

Flexible prosumer variables ∆l+n,i(k),∆l−n,i(k), δ
+
n,i(k), δ

−
n,i(k), δ

p
n,i(k), δ

w
n,i(k) and δcn,i(k) are con-

trolled to determine the operation of the API heat demand, LAPIh2
. Only δwn,i(k) and δcn,i(k)

are controlled to determine the operation of the SI electrical demand, LSIe3
.

Within the prosumers shown in Figure 5.2, fixed demands Lfixe3
and Lfixh2

have to be

forecasted. For EVs that will utilise charging stations 1 and 2 (i.e. e4 and e5 respectively),

the number of EVs that will utilise each charging station over a period, cd, together with

their respective battery capacities CapEV,i, efficiencies SEV,i and charge/discharge power limits

±QEV,i needs to be forecasted. Also, each EV’s arrival and departure time (ha
EV,i & hd

EV,i)

and their respective energy levels at both times (Ea
EV,i & Ed

EV,i) has to be forecasted. These,

forecasts are used to predict the type of EV that will utilise each charging station hence, they

directly influence an EV SoC during the charge/discharge process. The data required to forecast

the utilisation of charging stations are gotten from historical information (5.1a) - (5.1f).

As the forecasts of fixed demands and charging station utilisations are disturbances intro-

duced into the MES via connected terminal nodes as established in Section 5.1, the uncertain

variables are the input/output power at terminal nodes connected to prosumers and EVs. De-

note the vector collecting all uncertain variables as w(k) and their corresponding recourse

variables that represent power imbalances in the optimisation problem are denoted as ξ+s (k)

and ξ−s (k).

5.4.2 Validation of Proposed Energy Management Scheme

Artificial time-of-use tariff for all energy demands is used and assumed fixed. The price tariff is

shown in Fig. 5.3. Information on EVs are generated as outlined in Section 5.3.3. Fixed elec-

tricity and heat demands are sampled from a month’s worth of data collected by the UoM estate

department for a particular building. The stochastic EMS is solved according to Algorithm 3

with a commercial CPLEX solver at each sampling period on a PC Intel Core i7-4700MQ CPU

@ 2.40GHz with 32 GB RAM.
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Figure 5.3: Import/export price of electricity and gas

In solving a SAA problem, the objective value and the solution of the approximated problem

should converge to the optimal objective value and the solution of the true problem as the

scenario size N is increased. Verifying this requires many scenarios, which is a disadvantage as

it directly increases the computational burden required to solve the problem. Literature has

examined the SAA approach to determine bounds that infer how the approximated problem

correlates to the original problem, which in turn relates to the choice of an adequate number of

scenarios needed to be implemented in Algorithm 3. Steps on how to determine these bounds

are outlined in Section 3.2.3, and a summary is presented in Algorithm 2. Adjustments to the

parameters M , N , and N ′ to trade-off computational effort with the desired confidence level.

Table 5.5: Optimality gaps estimation

N/N’ Min Optimality Variance Optimality Gap Computational Time (secs)
Gap (∗103) (∗104) (%) Mean Variance

5/60 1.675 16.155 14.561 19.863 897.309
10/60 0.698 6.752 5.692 29.894 930.968
20/60 0.216 4.464 1.733 32.753 1014.700
30/60 0.194 2.924 1.548 40.154 1273.900

Results shown in Table 5.5 were obtained by setting M = 20, N ′ = 60 and N = {5, 10, 20, 30}.

Each time Algorithm 2 is implemented with the different N , 20 optimality gaps are obtained,

the minimum is chosen and are shown in Table 5.5 along with their corresponding variance.

The percentage optimality gap shown was calculated using the formula
(

J̄M
N −min(J∗m)

J̄M
N

)
∗ 100%.

It can safely be concluded that solutions to the approximated problem (5.16) converges to the

optimal solution because the decrease in optimality gap with increasing N verifies that the

problem is tightly bounded. Also, it can be concluded that N = 20 is an adequate scenario
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number to run Algorithm 3. The mean computational time is calculated using times consumed

when solving problem (5.16) for both N and N ′ within the loop while running Algorithm 2.

5.4.3 Discussions

It is prudent to examine the difference in outcomes between the stochastic EMS and a deter-

ministic one, especially as the COMMES framework is relatively novel. In the deterministic

case, the mean of 20 generated scenarios is used as an estimate of the uncertain parameters

before solving problem (5.16). The optimisation problem consists of 8638 decision variables,

of which 4032 are binaries. In the stochastic case, the optimisation problem consists of 36570

decision variables, of which 7680 are binaries. However, these numbers will be slightly differ-

ent each time the stochastic EMS is implemented because the availability scenarios for EVs

determine the length of the matrices that account for EVs’ energy level. Hence, it significantly

impacts the dimensions of the optimisation problem. When all charge/discharge operations has

occurred at a charging station, the number of variables in the optimisation problem reduce by

N −1+
∑N

s=1(N
s
H +

∑cd
i=1(h

a,s
EV,i−hd,s

EV,i+1)). The part N −1 reduces the number of repetitions

of Pnj
of the corresponding terminal node to 1. In the deterministic case, N = 1. N s

H accounts

for the number of repetitions of the binary variable δnj
that monitors the presence of EVs over

a series of charging/discharging operations per scenario, and the duration ha,s
EV,i − hd,s

EV,i + 1 is

the period over which an EVis connected to a charging station per scenario.

Comparisons of operational cost and computational time are shown in Table 5.6. The results

shown were obtained by running Algorithm 3 ten times and taking the mean and corresponding

standard deviation of operational cost and computational time. For each implementation of

Algorithm 3, the operational cost was computed by summing the estimated costs obtained

from the controller’s decision on the amount of energy to import/export at each instant k

over the horizon plus extra energy imported/exported when uncertainties are realised. The

lower operation cost obtained from the implementing the stochastic EMS demonstrates its

outperformance compared to the deterministic one. However, the outperformance in operational

cost is at the expense of higher computational time and larger deviations from the mean.

The penalties q+
s and q+

s imposed on recourse variables for simplicity, were both set to 400

and used to obtain results shown in Table 5.5 and 5.6. The realised utilisation of the two
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charging stations shown in Figure 5.2 together with 3 random scenarios picked from the 20

EV charging/discharging profiles to show the estimated utilisation of the charging stations are

shown in Figure 5.4 and Figure 5.5. The dotted lines are the estimated utilisations, and the

solid blue lines are the realised utilisations of the charging stations.

Table 5.6: Comparisons of cost and computational time

Operational Cost (£) Computational Time (secs)

Mean Standard Deviation Mean Standard Deviation

Deterministic 132.7 0.44 2.11 1.72
Stochastic 127.5 0.15 13.87 11.83

Figure 5.4 shows the estimate and realised utilisation of charging station 1. In Figure 5.4B,

it is observed that the EV at charging station 1 arrives with an almost empty SoC and chooses

its usual option to participate in V2X. The controller decides to utilise the storage capacity the

EV provides by initially discharging the EV. Then the controller charges and discharges the EV

three more times around the periods when electricity price increases (refer to Fig. 5.3) to help

meet prosumer demands shown in Figure 5.7B and 5.7C. Estimate and realised utilisations of

charging station 2 are shown in Figure 5.5. It can be observed that the EV utilising charging

station 2 during the first realised charge/discharge operation arrives with relatively high SoC.

However, the driver decides not to participate in V2X once the vehicle is plugged into the

charging station. As a result, a gradual decline in the EV’s SoC is observed in Figure 5.5B

because its battery is not 100% efficient hence can not maintain a constant energy level while

ideal. The controller exploits the fact that electricity prices will increase at 05:30 to charge

the EV to its maximum capacity, then allows the EV to discharge until the desired SoC at

departure is reached. The next EV that utilises charging station 2 decided to participate in

V2X once its vehicle is connected to the charging station. The sharp decline in EV’s SoC

observed in Figure 5.5B is the EV discharging to help satisfy energy demands within the EH

as a result of the driver’s decision to participate in V2X. In Figure 5.7B, it can be observed

that electricity demands between 17:30 and 21:00, the same period when the second EV utilises

charging station 2, is not significantly large compared to earlier hours. As electricity prices are

significantly higher than gas prices over this period, more gas is imported to help satisfy the

driver’s specified SoC before the EV departs.
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Figure 5.4: Estimated and realised utilisation of charging station 1

00:00 06:00 12:00 18:00 00:00

Time (hh:mm)

-20

0

20

40

60

k
W

A) EVs Charging/Discharging
Scenario 1

Scenario 2

Scenario 3

Realised

00:00 06:00 12:00 18:00 00:00

Time (hh:mm)

0

50

100

k
W

h

B) EVs State-of-Charge
Scenario 1

Scenario 2

Scenario 3

Realised

Figure 5.5: Estimated and realised utilisation of charging station 2
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Figure 5.6: Operation of heat storage system

Figure 5.6 shows the operation of heat storage over time. As electricity prices are high

between the hours of 05:30 and 21:00, mostly gas is imported between these hours to meet

both electricity and heat demands as shown in Figure 5.7A, with excess gas used to charge

heat storage as shown in Figure 5.6. The utilisation of heat storage is most noticeable during

the period when the second EV is utilising charging station 2, which coincides with the period

when the difference between electricity and gas prices is significantly large. A small portion

of gas imports during this period is utilised to help meet the energy demand of the second

EV before it departs, and excess gas is used to charge heat storage, causing a considerable

increase in its SoC as observed in Figure 5.6 before the controller discharges it to help meet

energy demands. Figure 5.7C shows the flexible prosumer operations. Figure 5.7C shows that

the API demand comes online at the set time of 02:30 am and runs considering the constraints

outlined in Section 5.4. The maximum deviation from the baseline requirement for the API

demand is set to ±5kW per segment. However, observe that in Figure 5.7C some segments of

the API demand consume 30kW . This is because the maximum processing limits due to the

pliable portion of the API demand is set to 2. Hence, some segments are processed twice, each

with a reduction of 5kW due to the adjustable portion of the API demand. The SI demand
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Figure 5.7: Energy import/export and prosumer profile

is not required to come online at a specific time. The controller decides to run it towards the

end of the day when fixed energy demands are low and the storage capacity of the second

EV utilising charging station 2 is available. The operation of both flexible prosumers verifies

that the incorporation of the EV charge/discharge model together with modification to the

COMMES framework to account for uncertainty sources does not affect their operation.

5.4.4 Computational Challenges

Unsurprisingly, the computational time obtained from implementing the deterministic EMS

is shorter compared to implementing the stochastic EMS. Table 5.5 shows the resulting com-

putation time after implementing both EMS. The shorter computational time is a result of
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the deterministic approach requiring far less memory when solving (5.16) as the average of

the generated scenario is used to construct the optimisation problem. Although the proposed

stochastic EMS requires more computational time, it is much less than the 15 minutes (900

seconds) sampling period used. However, for a given MES, the computational burden would be

further compounded by increasing the number of charging stations and the number of utilisation

of charging stations over time. For example, consider different charging stations located within

residential, commercial and public charging areas. Different computational challenges will re-

sult from implementing a stochastic EMS in each region due to how these charging stations are

utilised.

The MES analysed in this chapter is comparably small-scale. The utilisation of the charg-

ing stations is similar to what is expected in a residential or private commercial area. For

large-scale cases such as public parking lots or large commercial buildings, the dimension of

the optimisation problem solved within the stochastic EMS will be large. This is due to the

large scenario numbers required to estimate the accurate operation of prosumers and charging

stations. Hence, there will be a significant increase in the computational burden. In addition,

advances in the modelling approach will also increase the computational burden. A detailed

model of individual technologies within MES will hinder the online implementation of a stochas-

tic EMS. It would be advantageous to investigate other possible control schemes such as those

based on distributed control to lessen the computational burden.

5.5 Chapter Summary

This chapter has presented how uncertainties are considered in the modified COMMES frame-

work. A stochastic EMS is developed. The optimisation problem solved within the stochastic

EMS is defined using a two-stage stochastic programming approach and the SAA approach is

used to formulate a deterministic approximation of the stochastic problem. The stochastic EMS

is then implemented using the MPC framework. A case study MES is used to implement the

stochastic EMS. The stochastic EMS is scaleable however computational burden will mostly

like increase if a similar stochastic EMS is implemented on a MES of large scale with more

diverse EVs utilising the charging stations within.
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To validate the stochastic EMS, data collected from the MEA is used. To the best of

the authors’ knowledge, only data from the MEA includes multiple utilisation of charging

stations. Fixed demand data was obtained from the BMS operated by UoM. Statistical tests are

performed on the approximated problem to help determine optimality gaps that give validity

to solutions of the optimisation problem. This fact helped the decision of the number of

scenarios to consider when implementing the stochastic EMS. In addition, the statistical tests

give confidence to the solution obtained from the controller’s decision on the amount of energy

to import/export to satisfy energy demands within the EH as well as the operation of the

storage systems and flexible prosumers.



Chapter 6

Computational Considerations in

Different Application Areas

The dimension of matrices representing mobile storage devices within the optimisation problem

constantly each time when the problem is solved within an MPC framework. This is due to

accounting for EVs’ characteristics, availabilities, and charging preferences that will utilise

charging stations within the network. This significantly impacts the computational time in

solving the optimisation problem. Since the area where charging stations are located influenced

the development of the mobile storage model in this thesis, their utilisation in residential,

commercial and public areas is investigated in this chapter. In particular, the benefits and

limitations of implementing a stochastic EMS with EV charge/discharge smoothing application

in a residential, commercial and public case study is investigated.

The remainder of this chapter is organised as follows: Discussion on expected utilisation

of charging stations in residential, commercial and public areas is presented in Section 6.1. In

Section 6.2, the general case study to be used to demonstrate the utilisation of charging stations

in the different areas is presented. The stochastic problem solved within the stochastic EMS

is formulated with added penalties on smoothing EVs’ charge/discharge rate in Section 6.3 to

simulate the scenario that EVs are used for peak demand management. Section 6.4 outlines

the simulation setup. Discussion on the benefits and limitations of the stochastic EMS based

on a number of factors is presented in Section 6.5. Section 6.6 presents the chapter summary.

111
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6.1 Coordinating Electric Vehicle Charge/Discharge Operations

In previous chapters, three factors mentioned multiple times in relation to the utilisation of

charging stations are:

1. EV characteristics

2. EV availabilities

3. EV owner’s charging preferences

These factors are vital in designing EMS for coordinating EVs’ charge/discharge operations.

They vary significantly when EVs utilising charging stations in residential, commercial, and pub-

lic areas. EV characteristics refer to its technical specification, i.e. an EV’s battery capacities,

charge/discharge power limits, bidirectional energy exchange capabilities. EV availabilities

refer to the duration between an EV’s arrival and departure times. This thesis assumes that

when an EV arrives, the driver connects their vehicle to a charging station and disconnects the

vehicle from the charging station when the driver wants to depart. An EV owner’s charging

preferences encapsulates the driver’s choice to charge via V2X if their EV has bidirectional

energy exchange capability and the driver’s desired SoC at departure. It is quite challenging

to use these factors to model an EV’s charge/discharge operations based on individual EV

usage, primarily because EVs can utilise any charging station located anywhere to recharge

their batteries. However, developing the model based on the utilisation of charging stations

allows the aforementioned three factors to be efficiently utilised to model EVs’ charge/discharge

operations. An assumption made in this thesis that allows for the chosen EV modelling ap-

proach is that EV drivers have daily schedules, which includes the charging stations they use to

recharge their batteries. This assumption makes it easier to estimate which charging stations

are utilised and collect data on EVs that have utilised them. In addition, the premise allows for

leveraging EV drivers schedules for categorising EV charge/discharge operation patterns based

on charging stations located in residential, commercial and public areas. Hence, making it easy

to predict EV characteristics, availabilities and charging preferences, and design coordination

schemes for EVs that will utilise charging stations in residential, commercial and public areas.
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6.1.1 Assumptions for Residential Area Application

It is safe to assume that EV owners will likely have their individual allocated charging stations

installed on their owners’ premises in residential areas. Hence, it will be easy to estimate the

characteristics of EVs that will utilise each charging stations in the area as they are likely to

be owned by residents. Such a scenario is shown in Figure 6.1 as the same colour is used to

illustrate the same EV utilising their individually allocated charging station. Based on charging

station utilisation or EV driving schedule, EV availabilities can also be easily estimated based

on drivers daily schedules. In addition, EV owners’ charging preferences will often be consistent,

making it easy to predict.

Figure 6.1: Utilisation of charging station in residential areas

The MEA trial done in UK [87] revealed that most EV owners recharge their batteries twice

a day, but on occasion, some recharge their batteries up to five times a day. Regarding EV

owners charging preferences, it was revealed in [41] that they are more consistent as most EV

drivers will likely recharge overnight. This makes predicting EV characteristics, availabilities

and charging preferences in residential areas easy hence it is safe to assume few scenarios are

required to implement a stochastic EMS to coordinate their charge/discharge operations.
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6.1.2 Assumptions for Commercial Area Application

It is safe to assume that frequent visitors to a commercial area will utilise the charging stations

available. This makes estimating EV characteristics easy. However, charging stations are

not allocated to specific EV drivers, so estimating EV characteristics will not be as easy as

residential areas. This is illustrated by the set of different coloured EVs utilising different

charging station shown in Figure 6.2. EV drivers not being allocated to specific charging

stations in commercial areas will also make estimating their availabilities and owners charging

preferences difficult, although these factors might be consistent with individual EV drivers that

frequently utilise charging stations in the area.

Figure 6.2: Utilisation of charging station in commercial areas

Charging stations in commercial areas can also be utilised by EV fleets as well as by indi-

vidual EVs. Hence, it will be expected that charging stations are utilised more times than in

residential areas, especially if they are used for work-related trips. An illustration of how EVs

utilise charging stations in a commercial area is shown in Figure 6.2. EV characteristics will

be quite consistent; however, as EVs are not allocated to specific charging stations, it is diffi-

cult to estimate their availabilities and charging preferences. Hence, compared to residential

areas, more scenarios will be required when implementing a stochastic EMS to coordinate EV

charge/discharge operations in commercial areas.
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6.1.3 Assumptions for Public Area Application

Charging stations in public areas can be utilised by EVs from anywhere and at any time. It is

represented by the different colours used in Figure 6.3 as it is quite impossible to establish a

consistent pattern of how charging stations are utilised. However, it can safely be assumed that

the EVs that will utilise the charging stations are frequent visitors to the area. Furthermore,

charging stations are not allocated to specific EV drivers and charging stations can be utilised

multiple times over certain periods. This makes estimating EVs’ characteristics, availabilities,

and charging preferences difficult due to the diverse nature of EVs utilising charging stations

in public areas.

Figure 6.3: Utilisation of charging station in public areas

The expectation of diverse EVs utilising charging stations in public areas will result in large

scenarios required to implement a stochastic EMS to coordinate all EVs’ charge/discharge oper-

ations adequately. Following the LLN, a significant amount of scenarios has to be considered so

that the resulting charge/discharge operation of EVs is close to what is expected. The LLN also

applies when the stochastic EMS is implemented in residential and commercial areas. However,

more scenarios will be required to implement the EMS in public areas due to the diversity of EV

characteristics, availabilities, and charging preferences. An illustration of how public charging

stations are utilised by different EVs is shown in Figure 6.3.
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6.2 Multi-Energy System Description

A general MES is used to analyse the performance of a stochastic EMS implemented in a

residential, commercial and public area. As the mobile storage model has the most impact on

the dimension of the optimisation problem, to simplify the analyses of the stochastic EMS later

in this chapter, the MES used is an electrical only system with a transformer and a number of

charging stations. The MES examined in this chapter is shown in Figure 6.4.

Figure 6.4: Case study multi-energy system

6.2.1 Data on Utilisation of Charging Stations

To adequately analyse the performance of the stochastic EMS implemented to coordinate charg-

ing stations in residential, commercial and public areas, the number of scenarios generated

related to EV characteristics, availabilities and owners charging preferences is varied based on

the assumptions explained in the previous section. For each scenario number considered, the

number of charging stations together with the number of successive charge/discharge operations

and prediction horizon length is varied to analyse the stochastic EMS’s performance adequately.

At the time of writing, no charging station utilisation data exists, to the best of the author’s

knowledge, that contains information on different EVs that have utilised charging stations in

residential, commercial or public areas that match the requirement of the mobile storage model

proposed in this thesis. Hence, for simplicity, information on the utilisation of the charging

stations shown in Figure 6.4 are sampled from assumed uniform distributions. Table 6.1 and

Table 6.2 contains information about EVs used to run the simulation with NH = 96 (24 hours)
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and NH = 48 (12 hours) respectively. Column Tnj
contains interval of arrival and departure

time. The intervals in the SoCnj
column are percentage intervals and arrival and departure

SoC of EVs. The intervals in the Qnj
and Capnj

columns respectively contains intervals on EV

charge/discharge power limits in kW and battery capabilities in kWh. Intervals containing EV

batteries standby loss factor are in column Snj
.

6.3 Two-Stage Stochastic Problem Formulation

The optimisation problem is designed with the additional service of smoothing EVs’ charge/discharge

rate to avoid large deviation in charge/discharge powers that could damage the EVs. The

stochastic EMS is implemented according to Algorithm 3 later in this chapter. However, the

optimisation problem solved within the EMS is different and is formulated in this section using

the two-stage stochastic programming technique explained in Section 3.2.1. The index set as in

Section 4.2.1 and 5.2.1 are adopted to group different nodes and components that exist within

Figure 6.4 and facilitate consideration of nodes affected by uncertain sources.

First-Stage Function

The objective in the first-stage is to look NH steps into the future, with scheduling period h

and decide at time k the amount of electricity to import/export:

Pfirst(k + h) =

NH−1∑
k=0

Pcost(k + h) (6.1)

subject to

ECM equations (3.1)∀Su, (3.4)∀T = T n, (3.5)&(3.6)∀Bi

where

Pcost(k + h) =

[
πbuy
e (k + h)P(e1→e2)(k + h)− πsell

e (k + h)P(e2→e1)(k + h)ηe2→e1

]

Pcost is the economic cost with πbuy
e and πsell

e representing the per-unit purchase price and

received revenue for selling electricity respectively. P(e1→e2) and P(e2→e1) represent electricity
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import and export respectively.

Second-Stage Function

Correction decisions are needed when an EV connects to a charging station and actual energy

import/export can not satisfy its demand. Random or second-stage constraints are those in-

fluenced by uncertainty sources and can be written in the compact form Hx(k)−Gws(k) = 0

described in Section 3.3.2. The vector of uncertain variables (ws) and the corresponding re-

course variables (ξ+s , ξ−s ) used in Section 5.2.1 is adopted to define the second-stage constraints.

The second-stage function can then be written as shown in (6.2). The aim of (6.2) is to look

NH steps into the future, with scheduling period h and decide at time k on correction decisions

to be made due to power imbalances when a charging station utilisation is realised considering

penalties on the change in charge/discharge powers of EVs.

Psecond(k + h) =

NH−1∑
k=0

[ N∑
s=1

[ ∑
∀nj=T s

1

N

[
q+
s P

+,s
nj

(k + h) + q−s P
−,s
nj

(k + h)
]

+
∑
∀Ess

[
P s

nj
(k + h+ 1)− P s

nj
(k + h)

]2
λs(k + h)

]] (6.2)

subject to

ECM equations (3.5)&(3.6)∀Bi, (5.7)∀T = T s

SM equations (5.11)− (5.14)∀Ess

Vectors q+
s and q−s are penalty costs related to power surplus and shortage respectively, and

corresponding probability related to each recourse variable pair is accounted for with N−1.

The means to prioritise EV charge/discharge smoothing action is provided using the tuning

parameter λs. Specifically, increasing the value of λs places greater emphasis on smoothing an

EV’s charge/discharge rate rather than ensuring the economic optimum is reached.
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Sample Average Approximated Problem

As in Section 5.2.1, the deterministic equivalent can be written in a similar form to (3.30) by

combining the first- (6.1) and second- (6.2) stage functions:

min
x

{
J(x) := Pfirst(k + h) + Psecond(k + h)

}
(6.3)

subject to

ECM equations (3.1)∀Su, (3.5)&(3.6)∀Bi

(3.4)∀T = T n, (5.7)∀T = T s

SM equations (5.11)− (5.14)∀Ess

The solution vector x = PSM provides a schedule for manipulating the charge/discharge rate

of all connected EVs. Due to the presence of binary variables and the quadratic term in the

objective function, (6.3) is a mixed-integer quadratic programming problem (MIQP).

6.4 Simulation Setup

As with the case study presented in Chapter 5, the sampling period is set to half an hour, i.e.

15 minutes. The simulation is set up initially with two charging stations and then with three.

Table 6.3 shows the conversion efficiencies of some power flow arcs of the ECM, and additional

parameter values are shown in Table 6.4. Simulations are run with NH set to 48 and 96 (i.e

Table 6.3: Conversion efficiencies related to technologies

ECM arc factor Device Conversion Value

ηe1→e2 , ηe2→e1 Transformer electricity 0.98
ηe2→e3 Charging Station 1 charging efficiency 0.9
ηe3→e2 discharging efficiency 1/0.9
ηe2→e4 Charging Station 2 charging efficiency 0.9
ηe4→e2 discharging efficiency 1/0.9
ηe2→e5 Charging Station 3 charging efficiency 0.9
ηe5→e2 discharging efficiency 1/0.9

12 and 24 hours respectively), and also with increasing cd. Without loss of generality, NH is

set to the scheduling horizon, and the problem (6.3) is solved repeatedly at every time instant
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k, with scheduling period h set equal to k. The stochastic control scheme is implemented

according to Algorithm 3. However, problem (6.3) is solved instead of problem (5.16). The

Table 6.4: Additional simulation parameters

Parameter Description Value

Pe2→e3 , Pe3→e2 charge/discharge limits of Charging Station 1 50kW
Pe2→e4 , Pe4→e2 charge/discharge limits of Charging Station 2 50kW
Pe2→e5 , Pe5→e2 charge/discharge limits of Charging Station 3 50kW

same assumptions made about each charging station in Section 5.4 applies to the charging

stations shown in Figure 6.4. The price tariffs for electricity are shown in Figure 6.5. The

stochastic EMS is solved according to Algorithm 3 with a commercial CPLEX solver at each

sampling period on a PC Intel Core i7-4700MQ CPU @ 2.40GHz with 32 GB RAM.

00:00 06:00 12:00 18:00 00:00

Time (hh:mm)

0

10

20

30

p
/k
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Electricity Export

Figure 6.5: Import/export price of electricity

The mobile storage model was developed leveraging EV drivers’ schedules to model the

utilisation of charging stations. With the assumptions outlined in section 6.1 that the ease

of predicting uncertainties in EV characteristics, availabilities and owners charge preferences

decreases when going from residential to commercial to public areas, the stochastic EMS is

analysed with assigned scenario numbers to specific areas. The scenario assignment used is

shown in Table 6.5. As in Chapter 5, scenarios generated from Table 6.1 and Table 6.2 are in

the form of a scenario fan with the length of the fan containing information on successive EV

charge/discharge operations.



CHAPTER 6. COMPUTATIONAL CONSIDERATIONS IN DIFFERENT APPLICATION AREAS123

Table 6.5: Assignment of scenario size to residential, commercial and public areas

Areas Residential Commercial Public

N 5 10 20

6.4.1 Index Set, Variables Types and Forecasts

Table 6.6 lists the index set used to derive the optimisation constraints for Figure 6.4. Im-

plementing Algorithm 3 for the MES shown in Figure 6.4 requires decisions to be made on

electricity imports/exports and the charge/discharge operation of EV considering uncertain

utilisation of charging stations and smoothing EV charge/discharge rate. However, a clear dis-

tinction has to be made between decision and uncertain variables in the optimisation problem

and forecasts obtained from scenario generation, especially as demand smoothing has been con-

sidered in formulating the optimisation problem. Table 6.7 shows the decision and uncertain

variables. Forecasts required in the formulation of the optimisation problem for Figure 6.4 are

also shown.

Table 6.6: EH index sets

Bi :=
{
e1 ↔ e2, e2 ↔ e3, e2 ↔ e4, e2 ↔ e5

}
Su :=

{
e2
}

Tr :=
{
−
}

Sw :=
{
−
}

T n :=
{
e1
}

T s :=
{
e3, e4, e5

}
GLn :=

{
−
}

GLs :=
{
−
}

Esn :=
{
−
}

Ess :=
{
EEV,i→e3 , EEV,i→e4 , EEV,i→e5

}

The charging/discharging powers of EVs that will utilise charging stations e3, e4 and e5

over time are represented as QEV,i←e3 , QEV,i←e4 and QEV,i←e5 respectively. For EVs that will

utilise charging stations 1, 2 and 3 (i.e. e3, e4 and e5 respectively), the number of EVs that will

utilise each charging station over a period, cd, together with their respective battery capacities

CapEV,i, efficiencies SEV,i and charge/discharge power limits ±QEV,i needs to be forecasted.

Also, each EV’s arrival and departure time (ha
EV,i & hd

EV,i) and their respective energy levels at
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both times (Ea
EV,i & Ed

EV,i) has to be forecasted. These, forecasts are used to predict the type

of EV that will utilise each charging station hence, they directly influence an EV SoC during

the charge/discharge process. The data required to forecast the utilisation of charging stations

are gotten from historical information (5.1a) - (5.1f) which are sampled from Table 6.1 and

Table 6.2. As the forecasts of charging station utilisations are disturbances introduced into the

MES via connected terminal nodes as established in Section 5.1, the uncertain variables are

the input/output power at terminal nodes connected to EVs. Denote the vector collecting all

uncertain variables as w(k) and their corresponding recourse variables that represent power

imbalances in the optimisation problem are denoted as ξ+s (k) and ξ−s (k).

Table 6.7: Decision and uncertain variables, and forecasts

x(k) :=
{
P(e1→e2)(k), P(e2→e1)(k), QEV,i→e3(k), QEV,i→e4(k), QEV,i→e5(k)

Forecasts
{
cd, CapEV,i, SEV,i,±QEV,i, E

a
EV,i, E

d
EV,i, h

a
EV,i, h

d
EV,i

}
ws(k) :=

{
P s
e3
(k), P s

e4
(k), P s

e5
(k), P s

h2
(k)

}
ξ+s (k) :=

{
P+,s
e3

(k), P+,s
e4

(k), P+,s
e5

(k), P+,s
h2

(k)
}

ξ−s (k) :=
{
P−,se3

(k), P−,se4
(k), P−,se5

(k), P−,sh2
(k)

}

6.5 Benefits and Limitations of Real-World Implementation

The simulation is set up such that the stochastic EMS can be analysed in real-world situations.

Specifically, the performance benefits in terms of computational time and the limits to which

the number of charging stations in residential, commercial and public areas can be increased

when implementing a stochastic EMS is investigated. As the mobile storage model developed in

this thesis is based on the assumption that EVs utilising charging stations are frequent visitors

or live in the area where the charging stations are located, implementation of a stochastic EMS

will require different scenario sizes. It is highlighted in Section 6.1 that fewer scenarios will be

required to implement a stochastic EMS in residential areas compared to a commercial area,

and fewer to implement the stochastic EMS in a commercial area compared to a public area. In

addition to varying scenario size, the performance of the stochastic EMS is analysed considering

varying number of charging stations that may exist in an MES. Analysis of operational cost is

excluded as it has been proven in Chapter 5 that increasing scenario size reduces the operational

cost when implementing stochastic EMS. Table 6.8 and Table 6.9 shows the computational time



CHAPTER 6. COMPUTATIONAL CONSIDERATIONS IN DIFFERENT APPLICATION AREAS125

mean (σ) and standard deviation (µ) with NH set to 24 and 12 hours respectively. Results

where obtained simulating the system with two charging stations and then with three charging

stations.

6.5.1 Impact of Incorporating Multiple Charging/Discharging Operations

In Section 6.1.1, the assumption is that EVs utilising charging stations in residential areas are

likely to be residents of the area. Hence, EV characteristics considered when implementing a

stochastic EMS will be those owned by the residents. The availabilities of their EVs will be

easily estimated as EVs will likely be available and connected to the network around specific

times during the day. This makes it safe to assume that most EVs will charge on average

twice a day. In the MEA trial in [87], it was proven that some EV owners even charge more

than two times, especially during the weekend. It is equally safe to assume that each EV

owner’s charging preferences will be consistent and easy to predict. With these assumptions,

it is assumed that 5 scenarios is adequate enough to account for EV related uncertainties in

residential areas. The computational time mean and standard deviation over a 24 hour horizon

for the stochastic EMS implemented with 5 scenarios are shown in Table 6.8. It can be observed

that, for both simulations using two and three charging stations, the mean computational time

does not increase significantly as more charge/discharge operations are incorporated into the

stochastic EMS.

A noticeable increase in computational time is observed in Table 6.8 as more charge/discharge

operations are incorporated into the EMS with N set to 10 to estimate the utilisation of charg-

ing stations in a commercial area. Further analyses revealed an average increase of 8.85% in

mean computational time as more charge/discharge operations are considered in all three ar-

eas. Specifically, when the stochastic EMS was implemented considering two and then three

charging stations, an average increase in mean computational time of 9.41% is obtained for

simulations run with 5 scenarios, 8.65% for simulations run with 10 scenarios and 8.51% for

simulations run with 20 scenarios. It is worth highlighting that EMS exploiting the flexibil-

ity provided by EVs in residential and commercial areas will likely incorporate this flexibility

within DSM or IDSM strategies. Hence, the percentage increase in computational time will

be different as more DERs are incorporated in the EMS. However, because the mobile storage
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model has the most impact on the optimisation problem’s dimensions, requiring more memory,

it will significantly impact computational time. With charging stations located in public areas,

expect a lot more successive charge/discharge operations, especially when EVs are fully adopted

and charging stations are utilised how fuelling stations are utilised today. Hence, the compu-

tational time will also increase significantly as the number of charging stations and successive

charge/discharge operations increase.

6.5.2 Impact of Incorporating Multiple Charging Stations

Unsurprisingly, incorporating more charging stations significantly increases the mean compu-

tational time along with the corresponding standard deviation, as shown in Table 6.8. The in-

crease is especially noticeable in the columns with 20 scenarios used to represent the stochastic

EMS implementation in public areas. Further analyses of results obtained with other scenarios

revealed an average increase in mean computational time of 110.37% when comparing stochas-

tic EMS implementation with two and then three charging stations. Specifically, comparing the

mean computational time obtained using the two systems with N set to 5 resulted in a mean

computational time of 105.31%. With N set to 10 and 20, the average mean computational time

are 113.22% and 112.56%, respectively. The result suggests that when analysing case studies

with a certain number of charge/discharge operations per charging station in residential, com-

mercial or public areas, expect a significant increase in computational time. Specifically when

more charging stations are aggregated compared to just increasing the utilisation of each charg-

ing station. However, as the computational time is smaller when the EMS is implemented in a

residential area, more charging stations can be aggregated compared to when it is implemented

in commercial or public areas.

6.5.3 Impact of Varying Prediction Horizon Length

Most EV owners in residential areas will likely charge their EVs twice a day, mainly in the

evening and morning, after and before work which is approximately a 12 hour difference. EV

owners will probably connect their vehicles to the energy network in commercial areas between

the typical 9 hour work period. Most EV owners will likely utilise charging stations between

8 am to 6 pm when most people go about their daily activities in public areas. This implies
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there are certain periods when the frequency at which charging stations are utilised is high

and certain periods when the frequency is low. To consider such situations, the stochastic

EMS is implemented over a 12-hour horizon. EV related uncertainties are sampled from the

distribution shown in Table 6.2. The distribution in the table is similar to that of Table 6.5.

However, the number of charging/discharging operations are estimated to occur over a 12-hour

period.

Implementing the stochastic EMS over a shorter prediction horizon resulted in smaller mean

computational times shown in Table 6.9 as compared to results shown in Table 6.8. The mean

computational time across the three different areas as more charge/discharge operations are

considered increases at an average rate of 7.17%. This is smaller than the percentage increase

when the EMS is implemented over a 24 hours prediction horizon. It should also be noted that

the increase in mean computational time in Table 6.9 as N is increased is not as significant as

what is shown in Table 6.8. In addition, increasing the number of charging stations results in

a 23.91% average increase in computational time, much less than the 110.37% average increase

when the stochastic EMS is implemented over a 24-hour horizon. This shows that it will be

computationally beneficial to shorten the period horizon, especially for a stochastic EMS im-

plemented in public areas where a large number of charging stations have to be aggregated.

In addition, as a lot more successive charge/discharge operations occur in public areas than

residential or commercial areas, shortening the prediction horizon allows consideration for more

scenarios related to EV uncertainties without significantly increasing computational time. How-

ever, it is worth highlighting that although results reveal much more charging stations and/or

successive charge/discharge operations can be considered in a stochastic EMS over a shorter

prediction horizon; the sampling interval limits it. Ideally, the mean computational time should

be less than the sampling interval to ensure that the optimisation problem can be solved before

each time interval elapses.

6.6 Chapter Summary

The mobile storage model significantly impacts the dimension of the optimisation problem

solved within the stochastic EMS and hence the computational time. This chapter has focused

on analysing the computational burden associated with implementing a stochastic EMS in res-
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idential, commercial and public areas assigning different scenarios sizes to represent each area.

The decision on the number of scenarios assigned to represent each area is based on assump-

tions made about the ease of predicting uncertainties in EV characteristics, availabilities and

owners charging preferences. A stochastic EMS is implemented on a general electrical only sys-

tem with a varying number of charging stations. The optimisation problem solved within the

stochastic EMS is formulated with the additional service of smoothing EVs’ charge/discharge

power profile to avoid large deviation in charge/discharge powers that could damage the EVs,

especially if the EVs are used to provide ancillary services to network operators. The number of

charging stations, successive charge/discharge operations and prediction horizon are varied to

investigate their impact of the performance of a stochastic EMS when implemented in either a

residential, commercial or public area. It can be concluded that reducing the prediction horizon

has more impact on reducing the computational time. It allows much more charge/discharge

operations and/or charging stations to be considered when implementing the stochastic EMS.

However, this will be limited by the sampling interval considered as ideally the mean computa-

tional time has to be less than the sampling interval ensuring the controller has time to solve

the optimisation problem.



Chapter 7

Conclusion and Future Work

This chapter presents the concluding summary and highlights key contributions in this thesis.

In addition, remarks on promising areas for future work are presented.

The remainder of the chapter is organised as follows: Conclusion of the thesis is provided

with highlights of key contributions in Section 7.1. Some limitations of using the modelling

framework are discussed in Section 7.2 before suggested future research parts are provided in

Section 7.2.

7.1 Conclusion

This thesis has presented a generalised mobile storage model that allows mobile storage devices,

most notably EVs, to be represented within single- and multi-energy systems. The model en-

ables successive EVs charging/discharging operations to be represented based on the utilisation

of charging stations instead of directly modelling a fixed number of EVs, which is the approach

employed in most literature. The model structure facilitates the representation of individual

EV characteristics and availabilities and allows their owners to set desired charging preferences

before a charge/discharge operation begins.

The novel part of the mobile storage model is the ability to incorporate successive EV

charge/discharge operations without knowing the exact number of EVs that will utilise a charg-

ing station. It gives the model a modular structure and allows it to be incorporated into the

130
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novel COMMES framework in [8]. In particular, as EVs with different characteristics, availabil-

ities and owners charging preferences can utilise a charging station, the mobile storage model

facilitates the analysis of how charging stations are utilised in residential, commercial and pub-

lic areas. This is because charging station utilisations vary among these areas. As an example,

it will be expected that EVs utilising charging stations in residential areas will be owned by

residents compared to public areas where EVs are not allocated to specific charging stations.

As with the original COMMES framework, the mobile storage model is well suited to pre-

dictive control applications. In Chapter 4, a mechanism is provided for updating current and

estimate of future EV charging/discharging operations to address inter-temporal constraints

between successive EV charging/discharging operations. In addition, a general deterministic

EMS is designed to exemplify the incorporation of the mobile storage model to the COMMES

framework, and the operational cost comparison is carried out with some assumptions used

in literature and compared to the approach used to develop the mobile storage model in this

thesis.

As the COMMES framework does not readily consider uncertain energy sources, in accor-

dance with the third objective in Section 1.3, parts influenced by uncertain generation and

demand sources are identified. Modifications are made to the mobile storage model because

the approach of leveraging drivers schedules to model the utilisation of charging stations re-

vealed that EV characteristics, availabilities and owners charging preferences are uncertain and

remain unknown until an EV actually arrives and connects to a charging station. To exem-

plify this modification, a general stochastic EMS is designed in Chapter 5 and implemented

for an MES. At the time of writing, only data collected from MEA trials in [87] fits some

requirements needed for the mobile storage model proposed in this thesis. In accordance with

the fourth point in Section 1.3, modifications are made to the steps outlined within [53] to

recreate the EV charging profile to be able to generate the information required for the mobile

storage model. The optimisation problem solved in the stochastic EMS is formulated using

the two-stage stochastic programming approach. The SAA approach is adopted within the

stochastic EMS to categorise uncertain MES dynamics using a finite set of random realisations.

This method of stochastic problem formulation is chosen because numerous proven analyses

in literature allow assessing the trust-wordiness of solutions to the problem formulated with
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the two-stage stochastic approach and helps with choosing an adequate scenario number for

implementing a stochastic scheme for an energy system. The results discussed highlight that in-

creasing the scenario size in the stochastic EMS outperforms the deterministic implementation,

which uses a single scenario.

As it has been established that EVs, unlike other DERs, are not permanently connected to

a single- or multi-energy system, and also the way charging stations are utilised in residential,

commercial and public areas vary. This is primarily due to the ease of predicting uncertainties

related to EV characteristics, availabilities and owners charging preferences. Chapter 6 focuses

on analysing the performance of a stochastic EMS in terms of computational time by varying

the number of charging stations, multiple charge/discharge operation and prediction horizon.

The assumption that the ease of predicting EV related uncertainties decreases going from

residential to commercial to public areas allows assigning a number of generated scenarios to

each area. The same algorithm followed to implement the stochastic EMS in Chapter 5 is

used. However, the optimisation problem solved within is different. It includes a demand

smoothing application to avoid significant deviation in EVs’ charge/discharge powers, which

can occur when EVs are utilised to provide ancillary services to power systems operators.

Stochastic EMS allows consideration of a broad range of uncertainties, but it comes at the

cost of increased computational burden as discussed in Chapter 5. Discussions in Chapter 6

focus not only on the computational burden accompanying the implementation of a stochastic

EMS in residential, commercial or public areas, but also on the limits to which the number

of charging stations, number of successive charging/discharging operations and the prediction

horizon length can be increased.

So far, the model that began with the development of a generalised modelling framework for

MES in [8] with a holistic view that addresses the shortfalls of other modelling and aggregation

methods employed in literature has evolved to incorporate a general representation of mobile

storage devices. In addition, the modelling framework has been adapted to consider uncertain-

ties in energy generation and demand together with EV related uncertainties. The framework

is still primarily for predictive control design with modifications making it well suited for both

deterministic and stochastic control applications. Additionally, the framework now includes

consideration for mobile storage devices, most noticeably EVs, and with the increased interest
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in EV adoption worldwide and the ancillary services they can provide to network operators, it

is hoped that the framework will be of interest to the wider STEM community.

7.2 Critiques and Limitations

The original COMMES framework and the modifications proposed in this thesis allows the

modelling of multi-energy networks, including EV, which are pretty difficult to incorporate

in energy networks due to the difficulty addressing their characteristics, availabilities, owner’s

charging preferences. However, a centralised control scheme will be impractical to implement in

reality, especially if large scenario sizes are required to solve the optimisation problem repeatedly

within a predictive control framework, as the computational burden will be significantly high.

In addition, as the proposed EV charge/discharge model is based on the characteristics,

availabilities, and owner’s charging preferences of EVs, understanding how they are used in

different locations and by various individuals can be quite challenging to obtain. This complex-

ity may impact the trustworthiness of solutions from solving optimisation problems formulated

using the modified COMMES framework in this thesis, especially if the framework is used to

analyse EV utilisation in pubic areas such as the scenario analysed in Chapter 6.

7.3 Future Work

The development this thesis has highlighted some promising directions for future work. These

include (but are not limited to) the following:

1. Data on Utilisation of Charging Stations

To incorporate prosumers into EMS required an understanding of their consumption

and/or generation patterns. This is usually done by obtaining energy demand and/or

generation data on each individual prosumer component. Depending on the case study,

for fixed prosumers, energy demand data is easily obtainable. Data that affects RES gen-

eration can be obtained from their corresponding energy sources, such as wind speed. For

flexible prosumers, an understanding of individually controllable devices such as petrol

generators, washing machines, and dryers can be obtained from user preferences, and the
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amount of energy each device consumes or generates. To incorporate fixed storage systems

only requires an understanding of its characteristics. However, incorporating mobile stor-

age systems, most noticeably EVs, in EMS requires knowledge of EV characteristics and

their availabilities and owners charging preferences. Literature incorporating EVs in EMS

has estimated EVs from data on individual EV drivers utilisation or assumed probability

distributions used to represent drivers’ schedules. The problem with this approach is that

EVs’ resulting estimated charge/discharge operations are unrealistic and do not account

for the number of times and/or possible different charging stations an EV will utilise.

This fact inspired the development of the generalised mobile storage model in this thesis.

To validate the proposed EMS in Chapter 5, data from the MEA is used. Although the

MEA trial was carried-out on specific residential EV drivers, vital information such as

the number of times an EV is charged over certain periods was collected. However, EVs

could have also utilised charging stations in commercial or public areas, and information

on how these charging stations are utilised has to be considered. Hence, it is proposed

that a study similar to the MEA trial could be carried out to collected information on the

characteristics, availabilities and owners charging preferences of EV that utilised charing

stations in residential, commercial and public areas so that a broad understand of EV

demands can be obtained especially as EV become more widely adopted.

2. Detailed Model Development of Individual DER Technologies

The modified MES model in this thesis has enhanced the benefits of the original COMMES

framework by providing a generalised approach to representing successive EV charge/discharge

operations and adopting the entire modelling framework to consider uncertainties from

generation and demand sources still relatively simple. The model primarily consists of

power and conversion efficiencies. It also includes binary variables used to manipulate

the operation of prosumers and mobile storage devices. Developing a detailed model of

individual DERs within an MES will facilitate the model application in safety controls

and protection. This is required when dealing with issues regarding current, frequency

and voltage protection. In addition, further model development of individual DERs will

facilitate analyses of thermal management schemes. This is because there is increasing

adoption of DERs comprising a significant amount of power electronics that generate
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excess heat, thus requiring thermal management to improve reliability and prevent pre-

mature failure.

3. Distributed Optimisation Application

A centralised optimisation framework has been utilised in numerous power system op-

erations. However, there are some challenges in emerging energy systems that limit the

performance of centralised control schemes. One is the growing multi-energy coordina-

tion scheme to improve energy reliability and economic efficiency, which has influenced

the adoption of the MES concept. Also, it will be impractical to implement a centralised

optimisation framework because of technical difficulties regarding solving complex mod-

els. Another challenge is regarding communication among assets in large-scale MES. The

communication infrastructure for interacting with different assets in the MES will be com-

plex and can lead to disruptive events in real-time such as software application failures.

Distributed optimisation is an alternative that is gaining significant interest in power

systems to address these challenges. Using a distributed optimisation framework, large-

scale MES problems can be divided into smaller sub-problems for individual controllers

to solve. Then, solutions can be effectively coordinated to obtain a final optimal solution.

In addition, distributed optimisation framework limits communication complexity as in-

formation exchange only occurs between adjacent assets. Considering the variety of case

studies that can be modelled using the modelling framework in this thesis, especially as

it has been adapted to consider generation and demand sources, simulations could be run

to implement control schemes based on distributed optimisation.
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