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Abstract 
Mitigation and adaptation to climate change impacts will be one of the most important 
challenges to societies over the twenty-first century. Global average temperatures are likely 
to increase above the 2°C threshold, probably around 3°C. Therefore, it is vital to prepare 
and develop approaches to adapt to the impacts of climate change and design for climate 
resilience. 

The effect of warming climates in buildings drives additional cooling requirements in them, 
leading HVAC (Heating, Ventilation and Air-Conditioner) systems to their capacity limits and 
then to indoor thermal discomfort. In addition, heatwaves can lead to a sharp increase in 
the daily peak electrical demand, hindering and stressing the power grid operation, while 
the ongoing energy transition is already driving multiple challenges to its operation. 

This thesis set out to explore the potential effects of future climate change impacts on the 
cooling demand of office buildings, and quantified the implications for power network 
operation, in different regions of the world. It examines the impacts of climate change upon 
cooling requirement and total and peak electricity demand for three type of office buildings 
(small, medium and large office reference models) in six different cities (Singapore, Cairo, 
Athens, Beijing, Lisbon and London). Firstly, an assessment was conducted of the sensitivity 
of cooling and electricity demand of  existing office building model to changes in building 
design assumptions. Secondly, the effects of potential weather variability on the total 
electricity demand of office buildings was analysed. Finally, a climate pathway framework 
was developed to capture the uncertainty in the future weather data, and used to quantify 
the impacts of climate change for the cooling demand of office buildings and evaluate the 
reduction effect of potential adaptation strategies. The effectiveness of six adaptation 
measures was analysed: increasing cooling set-point temperature to 27oC, reducing lighting 
and equipment densities, increasing the HVAC system coefficient of performance, reducing 
the ventilation rate and the solar heat gain coefficient of windows. 

The research findings showed that lighting and equipment density, cooling set-point 
temperature, coefficient of performance and ventilation rate, make a significant 
contribution to the total electricity demand in office buildings. In general, the response of 
peak electricity demand (total and for HVAC end-use) is larger than for annual demand for 
all office buildings across most of the locations analysed. In addition, the findings show that 
a uniform 5°C increase (shift) in dry-bulb temperature variable values lead to rise up to 
26.8% and 38%, respectively for peak and annual total electricity. The effects on the 
electricity demand of offices under the climate pathway lead to an increase from baseline in 
total annual electricity demand, can reach up to 38%, and for peak total demand can go up 
to 62%, associated with maximum dry-bulb temperature increase of 12.7°C. For HVAC 
demand, the level of change from the baseline was found that could be much larger (182% 
for annual and 158% for peak). However, using the combination of six adaptation measures, 
the total electricity demand can be maintained below current baseline demand levels, both 
for annual (results are below baseline at least by 8%- large, 16% - medium or 27% - small 
offices) and peak demand (13% - large, 11% medium or 29% - small). In all model simulation 
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runs, the HVAC systems were automatically sized to respective correspondent weather data 
scenarios. 

The research findings provide a better understanding of the overall energy demand 
implications of the modelling uncertainty for offices, both by design assumptions and 
weather variability. These findings also intend to propel building energy modellers and 
building designers to further interrogate the implication of these uncertainties across 
different climates and different types of buildings with different building characteristics. The 
research framework introduces a systematic and openly available procedure to assess the 
effects of climate change in buildings, incorporating uncertainty in the generation of future 
weather data. In addition, the framework enables the systematic assessment of the 
effectiveness of multiple adaptation measures under a span of future weather conditions. 
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1 Introduction 
This PhD research project explores the potential effects of future climate change impacts in 
the cooling demand of office buildings, for different climates, different cities, in different 
regions of the world, and quantify the implications for power network operation. 

In December 2015, the Paris agreement on climate change mitigation, adaptation and 
finance was adopted by 196 parties at the UNFCCC COP 21 (Intergovernmental Panel on 
Climate Change (IPCC), 2018). The Paris agreement is a legally binding international treaty 
on climate change. The goal is to limit global warming to well below 2°C, preferably to 1.5°C, 
compared to pre-industrial levels. Hence urgent political action is necessary to mitigate 
climate change impacts. Mitigation and adaptation to climate change impacts will be one of 
the most important challenges to societies over the twenty-first century. Addressing these 
challenges, the United Nations defined climate action as the 13th goal in the 2030 agenda 
for sustainable development (SDG) (Assembly, 2015). Climate action is defined by reducing 
greenhouse gas emissions and increasing resilience and adaptive capacity to climate-
induced impacts (United Nations Development Programme (UNDP), 2021). In recent years, 
youth movements have propelled strikes against climate change, namely Friday For Future, 
and have propelled large and wide protests for climate action, which have driven significant 
media, societal and political traction for the topic. 

The declaration of climate emergency taken by several local and national governments is a 
response to this call for urgent action (The Climate Emergency Declaration and Mobilisation, 
2021). Several major emitting countries have recently announced net-zero emission pledges 
to be reached by the mid-century (2050-2060) (United Nations, 2020). However, carbon 
emissions have increased on average, 1.3% per year between 2010 and 2019. The 2020 UN 
emission gap report (United Nations, 2020) highlights a significant gap between emissions 
on current global nationally determined contributions by the Paris agreement and the 
carbon budgets to reach the agreed goals. The IPCC special report on the impacts of Global 
warming of 1.5°C (Masson-Delmotte, et al., 2018) shows that the emission pathways to 
restrain climate change below 1.5°C are extremely challenging, as global net anthropogenic 
CO2 emissions decline by about 45% from 2010 levels by 2030. 

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 
(Pachauri, et al., 2014) estimates that mean global surface temperature will increase by 1°C 
from 1990’s baseline with a likely range between 0.3°C and 1.7°C for scenario RC P2.6 by the 
end of the century (2081-2100) (Allen, et al., 2013). The change is estimated to be 1.8°C 
(1.1°C - 2.6°C), 2.2°C (1.4°C - 3.1°C) or 3.7°C (2.6°C - 4.8°C) respectively for emission 
scenarios RCP 4.5, 6.0 and 8.5. Furthermore, it is expected that in Europe and North 
America will occur more frequent and intense periods of heat waves (Meehl, 2004). The 
world might be heading to increases in global average temperatures above the 2 degrees 
Celsius threshold. Therefore, it is not only necessary to mitigate climate change, drastically 
reducing carbon emission, but it is also necessary to prepare and develop approaches to 
adapt to the climate change impacts. Climate resilience studies consider how to reduce 
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disruptions by the acute effects that more frequent and intense extreme events can have on 
the built infrastructure's operation (Nik, Perera, et al., 2020). 

Heatwaves create high deadly heat risks for vulnerable population groups (Mora, et al., 
2017), in buildings that are not adapted for extreme warm climate conditions. Heatwaves 
have become more frequent and intense, and both are expected to increase even more in 
the future (Smith, et al., 2015). Overheating in buildings is ever more frequent in the 
existing building stock, and it has been estimated that this effect will be exacerbated by 
future climate projections (Kolokotroni, et al., 2012). Current building designs may be 
inappropriate in the future, as the expected refurbishment rate of stocks is low, so they 
have high risks to underperform in more severe warmer conditions. Similarly, the rising 
temperatures can lead to a substantial increase in cooling demand and cooling peak loads, 
both due to an increase in air conditioning (AC) penetration and more intense demand from 
existing space cooling systems (Chandramowli, et al., 2014). 

When reviewing the implications of climate change impacts on the electricity system, the 
power demand of buildings has been indicated as one of the most vulnerable sectors to 
warming climates (Chandramowli, et al., 2014; Andrić, et al., 2019). The built environment is 
vulnerable to the impacts of climate change, and the energy demand in the building sector 
is expected to face the highest levels of impacts across all sectors (Andrić, et al., 2019). The 
future shifts in cooling and heating energy demand are predicted to be larger for hot 
climates than cold climates (Li, et al., 2012; Andrić, et al., 2019). However, there are reports 
of differences between studies due to discrepancies in building modelling assumptions, 
weather dataset sources, building modelling tools and the approaches on the generation of 
future climates (de Wilde and Coley, 2012; Andrić, et al., 2019; Yassaghi, et al., 2019). 
Therefore, it is critical to further assess the multiple types of implications of climate change, 
for a variety of buildings, considering multiple modelling assumptions, and across 
representative climate across different world locations. 

The growth of space cooling in buildings is a challenge to the future operation of energy 
systems (International Renewable Energy Agency (IRENA), et al., 2018). The additional 
demand for cooling creates additional stress on power grids, resulting in failures and 
blackouts (Burillo, et al., 2017). Meeting such additional demand may lead to potential 
shortfalls in transmissions and supply on the power network (Vine, 2012). In the USA and 
Europe, the sharp uptake of AC units during the last few decades have brought significant 
additional peak demand during summer peak periods (Auffhammer, et al., 2014). In the 
future, the power grid will operate in significantly different operative requirements and 
loads. The future challenges for the power network are massive due to new generation 
flows and the integration of new demand loads (Henderson, et al., 2017). The balancing of 
new types of supply profiles and new types of demand profiles present a considerable 
challenge for the design and planning of networks. At the same time, future and existing 
technologies in buildings can provide additional power flexibility to the power network 
(International Renewable Energy Agency (IRENA), et al., 2018; International Energy Agency 
(IEA), 2019). For example, buildings can be a source for thermal storage and demand 
response services. These new technologies embedded in buildings may be an asset to 
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balance grids during generation shortages or surpluses. Therefore, it is required more 
detailed assessment of climate change impacts over the electricity peak loads, not only from 
cooling requirements, but for the overall building use. 

The modelling and simulation of buildings are critical to assess the implication of all these 
different future conditions. In the last decades, building simulation has evolved significantly 
with the increasing computational resources availability (Hensen, et al., 2011). However, 
there are concerns with the credibility of the results generated by building performance 
simulation (BPS) tools, as significant performance gaps have been reported between these 
and actual energy measurements (de Wilde, 2014). Thousands of model parameters 
determine the accuracy of building models, and on the other hand, there are limited data 
measurements on the energy performance of buildings (Hong, et al., 2018). Therefore, the 
calibration and accuracy of building models become an under-determined and over 
parametrized system problem. Another major challenge that BPS tools face is integrating 
various parameters and complexity of factors such as non-linearity, discreteness, and 
uncertainty (Hopfe, et al., 2011). Further integration of uncertainty and sensitivity 
techniques are expected to enable BPS tools to provide a means to pursue more robust 
building designs and operation of systems (Clarke, et al., 2015). The field has acknowledged 
the limitation of the processes and approaches used in the community and it is claiming for 
better and more holistic methods to address the inherent complexity of the systems 
modelled (Hensen, et al., 2011). 

The purpose of this PhD project was to better understand the effect of climate change on 
cooling demand of office buildings. This study set out to insightfully analyse the sensitivity of 
building modelling methods, the effects of weather uncertainty in cooling demand, and the 
effects of a future climate pathway. Secondly, cooling requirements and related electricity 
consumptions are estimated, under climate pathway scenarios and possible building design 
adaptation measures. This is made to have an insightful study of climate change overall 
impact upon the overall energy demand and the possible consequences to the power 
network. 

The remainder of this chapter describes the research background and the research rationale 
of the thesis. The aims and objectives of the research are then presented. After that, the 
research methodology is summarised, a short description of the research's scope and 
limitations are analysed, and finally, a summary of the chapter is given. 
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1.1 Research background 
Climate projections estimate significant changes in temperatures and indicate that extreme 
weather events such as heatwaves, will become more frequent and longer-lasting (Jenkins, 
et al., 2009; Lowe, et al., 2018). In urban areas, the effects of temperature increase could be 
even more accentuated by the Urban Heat Island (UHI) effects (Watkins, et al., 2007), a 
phenomenon whereby the urban area temperature is higher than in the surrounding 
countryside areas (Met Office, 2014). Future extreme weather conditions raise many 
concerns for public health (Mora, et al., 2017), as observed during the 2003 heatwave 
period over Europe (Robine, et al., 2008). 

Impacts of climate change are critical for the built environment (Li, et al., 2012; Andrić, et 
al., 2019), and they have been the sector of energy demand where climate change impact 
research has focused the most (Chandramowli, et al., 2014). For buildings, warmer climate 
conditions and more intense and extreme hot periods present multiple challenges for the 
operation of buildings and related services. The effect of warming climates in buildings 
drives additional cooling requirements of buildings, leading HVAC (Heating, Ventilation and 
Air-Conditioner) systems to their capacity limits and then to indoor thermal discomfort. In 
addition, heat waves can lead to a sharp increase in electrical peak demand, due to 
additional cooling requirements to keep acceptable thermal comfort. Therefore, hindering 
and stressing the grid operation, which may potentially cause power outages (Vine, 2012; 
Burillo, et al., 2017). 

Studying the effects of additional cooling demand in buildings for power networks is 
necessary to understand the climate resilience of the power grid and the building stock. A 
systematic assessment of risks is required for revealing vulnerabilities in systems operations 
(Hall, et al., 2019). In the following sub-sections, some aspects of the research backgrounds 
of this PhD research will be further analysed. The impacts of climate change on buildings are 
expected to be significant, as presented before; However, the coverage of the effects is 
challenging to model and quantify and get a broad scope of the problem. At the same time, 
the building sector represents a large share of energy use and carbon emissions, and the 
growth of cooling services is expected to be significant in the future. The growth of cooling 
demand creates additional stress to the power grid, which is already facing significant 
infrastructural challenges. The office building type, the future of building technologies, and 
the progress of the building stock are important to be further analysed as they may drive 
modelling assumptions in the research approach. Finally, climate resilience of the built 
environment is required but challenging to achieve due to the highly uncertain future 
conditions. 

1.1.1 The building sector 

Operational energy by buildings accounts for almost 30% of the total final energy 
consumption (FEC) in the world (International Renewable Energy Agency (IRENA), et al., 
2018). The building sector accounted for 28% of total energy-related CO2 emissions. In the 
UK, the building sector's FEC represents around 50% of the UK total FEC (Department for 
Business Energy & Industrial Strategy, 2016). Therefore, the energy consumption for 
buildings becomes one of the main foci for energy efficiency policies. However, it has been 
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found that there are higher risks of overheating during summer in newer buildings 
constructions and especially in high rise buildings. Recently constructed buildings are better 
insulated and present lower air infiltration, minimizing heat losses, and so buildings with 
higher internal heat gains can act as heat sinks (Beizaee, et al., 2013). On the other hand, 
older buildings respond slowly to variations in the thermal balance and present smoother 
swings in internal temperatures as these buildings have larger thermal masses (Beizaee, et 
al., 2013). Therefore, further improvement in the envelope insulation and airtightness of 
buildings may negatively impact the overall energy performance of buildings due to the 
increasing requirement for cooling. 

In itself, cooling energy services represents around 3.4% of the total FEC, and it is the 
fastest-growing energy consumption end-use in the building sector (International Energy 
Agency (IEA), 2018). For example, the AC electricity demand worldwide more than tripled, 
between 1990 and 2016, increasing from 600 TWh to 2,020 TWh (International Energy 
Agency (IEA), 2018). The IEA estimated that 1.6 billion AC units were in use in 2016, and in 
the period 1990-2016, the total cooling capacity almost tripled, from 4,000 GW to 11,675 
GW. In the next decades, cooling energy services are expected to keep a rapid growth. 
However, the access to cooling services by population is disproportional around the world 
and, to some extent, is linked to affluence. In India, only 7% of the population owns AC 
units, where the same number for the USA is 90% (Campbell, et al., 2018). Therefore, it is 
from developing countries in hot climates that cooling demand growth is expected to be 
more significant. The IEA moderate scenario for space cooling estimates that by 2050, the 
FEC demand for space cooling will reach 6,200 TWh, which more than triples current levels 
(International Energy Agency (IEA), 2018).  

Space cooling services are mainly provided by electricity, and for buildings, it represents a 
large share of the total electricity annual consumption (20%) (International Energy Agency 
(IEA), 2018). However, cooling services may represent an even larger share during peak 
demand periods, representing a constraint for the operation and design of power networks. 
Worldwide, demand for space cooling of buildings represents 14% of the electricity peak 
demand (International Energy Agency (IEA), 2018), but in the USA, this value is 40% and in 
India is only 10%. For hot climates, 50 to 80% of peak demand may be driven by space 
cooling (Ezzedine Khalfallah, Rafik Missaoui, Samira El Khamlichi, 2016). This creates 
significant pressure on additional capacity on the power network. For example, in 2017, 100 
GW of the electric power generation added to the grid were estimated to be related to 
additional cooling service requirements (Campbell, et al., 2018). By 2050, 2,000 GW of 
electricity generation is expected to have been added to the power network due to cooling 
requirements. 

1.1.2 Effects of climate change on building performance 

In the future, overheating risk and cooling demand of buildings may increase substantially in 
future warmer climate conditions, if current designs are maintained. However, the impacts 
of climate change on buildings are seasonal. For example, the annual total buildings’ energy 
demand may remain steady considering the effects of climate change impacts, as reductions 
in heating demand are significantly offset by the increase in cooling demand. Active cooling 
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measures may be necessary to maintain thermal comfort within an acceptable range and to 
avoid the overheating of buildings (Guan, 2012; Gupta, et al., 2012; Kolokotroni, et al., 
2012). In addition, under future climate conditions, the electrical demand for cooling 
requirements in buildings with mechanical cooling systems may rise steeply (Chow, et al., 
2010; de Wilde and Tian, 2012). 

Building energy models are required to estimate the effect of climate change impacts in 
buildings, allowing the simulation of their energy performance under future climate 
projections. However, due to the complexity associated with modelling and simulation, 
these research problems usually are simplified and the number of building designs 
considered tends to be minimized (Hensen, et al., 2011). One previous systematic review of 
the literature on the impacts of climate change on building energy performance using BPS 
(Moazami, et al., 2019), has shown that 66% of the studies are based on only typical future 
weather conditions. This shows that most studies use a few data samples, which exclude the 
assessment of future extreme weather conditions. However, Herrera et al. (2017) 
emphasized that the availability of climate projections data prepared for building simulation 
weather datasets is essential to promote research on the impacts of climate change on 
building energy performance. For example, most of the previous studies that included 
extreme climate conditions are from the UK, where the UKCP09 weather generator 
provided hourly weather data (Jones, et al., 2009), allowing for extensive investigation of 
the implications of climate change on building energy performance (e.g. (Gupta, et al., 2012; 
Short, et al., 2012; Jenkins, et al., 2013)). This shows the importance of having reliable and 
accessible weather datasets at national levels to produce building simulation research 
studies assessing climate change implications. 

1.1.3 Energy consumption in offices 

In the UK, the domestic and service sector represented 44% of FEC and 68% of the total 
electricity consumed in 2019 (Department for Business, 2020). In addition, from 1990 to 
2019, the overall FEC changed little in the UK. However, there was a steep expansion on FEC 
for the services sector (+13%), while the industry sector reported significant reductions (-
42%). In the same period, and the electricity demand in the services sector rose by 26% 
(Department for Business, 2020). In 2015, the office sub-sector represented 8% of the total 
electricity consumed in the UK (Department for Business Energy & Industrial Strategy, 
2016). Furthermore, in 2015, the electricity for cooling and ventilation requirements in the 
office sub-sector was estimated to have been in itself 1.5% of the total electricity consumed 
in the UK. 

Office buildings in the UK generally present a high intensity of internal heat gains per 
floorspace area (over 40 W/m2) (Energy, 2003) and large floor space areas (over 1,000 m2) 
(Abela, et al., 2016), which leads to higher cooling requirements. It is estimated that 65% of 
the UK's total office floor space area is covered with mechanical cooling (Abela, et al., 2016). 
Furthermore, there are risks that cooling demand will increase significantly in offices 
buildings in the UK under future climate projections as indicated in the literature (Chow, et 
al., 2010; Kolokotroni, et al., 2012; Jenkins, et al., 2013). Li et al. (2012) also concluded that 
for non-domestic buildings with significant internal heat gains, the overall energy demand is 
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likely to increase due to the effects of climate change. Similarly, it is estimated that the 
frequency and intensity of overheating inside buildings will increase substantially in current 
office building constructions. Therefore, to understand the extension of the effect on 
cooling demand of buildings due to climate change impacts, it is necessary to evaluate 
building energy performance in a vast set of parameters. 

1.1.4 Future stock scenarios 

In future scenarios, the energy demand in buildings may alter significantly due to the 
integration of new technologies, materials, and design approaches into building systems. 
These will be considered in this research project. The development of HVAC technologies 
and passive cooling technologies integrated into buildings design can significantly minimize 
buildings' energy demand (International Energy Agency (IEA), 2018). Despite all of the 
expected technological progress in cooling systems and building technologies, the increase 
in electricity demand for space cooling requirements may be significant in future warmer 
conditions, as AC technologies may be adopted in a large share of buildings that do not 
currently have mechanical cooling provision. 

Finally, smart building operations will be more responsive to the electric grid condition, 
reducing power demand during peak periods and shift loads when there is excess power 
capacity (Nemtzow, 2017). Demand-side response (DSR) mechanisms as part of a building’s 
operation could enhance the network's reliability and avert system stress, so deferring the 
upgrade of the power network. This type of demand response strategy is estimated to have 
the potential to reduce the peak demand during summer periods (Wilkinson, 2004; Liu, 
2016). One potential demand response mechanism could be to relax the thermal set point 
temperature level in buildings, compromising the occupants' thermal comfort. However, it is 
exceptionally challenging to integrate the uncertainty of such adaptation measures further 
when quantifying the long-term climate resilience of buildings already considering climate 
variation uncertainty (Nik and Perera, 2020). 

1.1.5 Downscaling climate change projections 

Global climate projections estimate that average annual temperatures may increase 
between 1.0°C and 3.7°C by late 21st century relative to the 1986-2005 reference period 
(Allen, et al., 2013). However, changes in climate are expected to be significantly different 
across different parts of the globe. The understanding of climate processes that drive global 
circulation models is well known but cannot be fully represented in the models. When 
applying climate change projections data in research analysis, it is critical to acknowledge 
uncertainty and assumptions. Similarly, it is necessary to understand the different accuracy 
levels for the different components of climate projections. Atmospheric science and global 
climate models can represent large scale processes that inform changes at the regional level 
but are weaker when modelling local scale surface climate phenomena (Hewitson, et al., 
2014). 

The uncertainty of climate patterns and the availability of all-weather variables required to 
run BPS is a significant challenge to produce the required input weather files (Herrera, et al., 
2017). The energy modelling of buildings requires hourly or even more frequent weather 
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data to input the simulation process (Barnaby, et al., 2011). Historically, information was 
collected hourly due to difficulties in the collection process, and weather stations were 
limited to airports and other meteorological sites. Therefore, climate data was sparse, and 
simplifications would be used to avoid a lack of data. Currently, the collection of weather 
data has been deployed to many sites. However, future climate conditions are not possible 
to project based on current weather patterns (Herrera, et al., 2017). In addition, the spatial 
and temporal scale of projections does not match the scales of observed local data. 
Therefore, the generation of future weather data for building simulation presents technical 
challenges and complexities that limit the evaluation of impacts of climate change impacts, 
based on BPS. 

The availability of large sources of climate data and the availability of computational 
capacity also creates the opportunity to explore building models' uncertainty response to 
changes in climate variables. Building modelling is mainly based on temperature correlations 
that were used in more simplified modelling tools. However, in dynamic building simulation, 
the interaction between building models and the external weather conditions is much 
broader than average mean temperatures. For example, solar radiation heats the thermal 
mass of the building envelope and is transmitted through the building glazing into the 
internal space. Wind speed, precipitation, relative humidity, and the daily temperature 
amplitudes lead to different effects in the occupants' indoor thermal comfort and HVAC 
systems' operation. So it is important to incorporate the uncertainty of weather conditions, 
considering a wider range of weather data when evaluating the future heating and cooling 
demand of offices using BPS. 

1.1.6 Power grid challenges 

The power grid will face a sharp increase in electricity demand over the near future (PSERC, 
2016), due to the addition of new customers (especially in developing countries), to 
supplying further energy services (for example, cooling, heating, cooking, and 
entertainment) and the efforts to decarbonise energy services currently provided by fossil 
fuel will also contribute the sharp increase in demand. The technological means and the 
energy vector used to achieve decarbonisation may still be unclear now. However, either 
directly or indirectly, the decarbonisation of these energy services will significantly increase 
electricity consumption as a consequence of displacing fossil fuels from direct building use 
(Henderson, et al., 2017). 

The power network is facing multiple challenges in the upcoming decades. In the past, 
power grids were designed into one-flow systems, where electricity would flow from large 
generation to transmission, into distribution and to the end-user. However, the power 
network operation is rapidly progressing to a much more interactive operation (Henderson, 
et al., 2017). The fast proliferation of distributed generation and the rapid integration of 
storage and flexible loads have driven this transition. Indeed, the power grid is becoming a 
two-flow direction system, where electricity flows from large generators to consumers in 
large periods and from consumers and distribution networks when it is necessary to 
compensate for dips from the unavailability of renewable energy generation (Henderson, et 
al., 2017). Some of these challenges are related to the impacts of climate change, an 
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increase in the share of climate-sensitivity energy sources, and ever-growing societal needs 
for reliable energy supply (European Environment Agency (EEA), 2019). 

Due to all these challenges, the direction of the power network operation will require a 
profound re-engineering of the power grid (PSERC, 2016). The power grid will move into a 
computerised and smarter grid to accommodate the additional demand and the 
requirements brought by new renewable energy sources. Additional grid flexibility will be 
required. Storage capacity, better grid control and management are required to balance the 
generation and demand loads. These transformations are already occurring in energy 
systems, and at a rapid pace. In addition, more reliable, resilient and safer grids are 
expected (Henderson, et al., 2017). The infrastructure is also required to be more climate-
resilient, as it is expected that climate change and extreme weather events are increasingly 
impacting all components of energy systems (European Environment Agency (EEA), 2019). 
For example, these effects will affect the availability of primary energy sources, the 
transformation, transmission, distribution, storage and final energy demand. The potential 
increase in electricity demand from AC end-use, responding to additional cooling 
requirements, especially during peak demand periods, is one of the main factors that should 
be considered when planning the sizing and operation of power networks. 

1.1.7 Climate resilience 

Over the next decades, investments in the infrastructure are expected to be on the level of 
57 to 95 trillion dollars worldwide, to deliver SDG and to limit climate change according to 
the Paris agreement goals (Bank, et al., 2021). In contrast, the global GDP (gross domestic 
product) was almost 85 trillion dollars in 2020 (Bank, 2021). Building up infrastructure 
resilience must be a policy priority, as it is cheaper to act sooner than deferring action to 
future opportunities (Bank, et al., 2021). In addition, opportunities to build resilience decline 
with time. Hall et al. (2019) concluded that to improve the climate resilience of systems, it is 
necessary to invest in climate risk information, collect and make available more data, and 
build up the technical capacity to use climate information to enhance resilience.  

Planning for resilience requires the ability to predict the future and understand the 
infrastructure's governing systems (Nik, Perera, et al., 2020). In the future, the impacts of 
climate change could trigger cascading risks, which have knock-on effects throughout other 
sectors, besides the ones firstly considered (Bank, et al., 2021). It is necessary to analyse 
both short and long-term effects of climate risks to improve infrastructure reliability, namely 
energy systems (Nik and Perera, 2020). In the same way, Hall et al. (2019) identified that it is 
critical to have climate-proofing design infrastructure solutions. It is necessary to develop 
methods that accommodate sophisticated uncertainty to achieve this, including the 
uncertainty from climate variation, namely pathway approaches (Nik and Perera, 2020). It is 
also relevant to consider the uncertainty of adaptation measures in assessing these 
scenarios (Nik and Perera, 2020). However, it is extremely difficult to execute these types of 
assessments, including such uncertainties. 
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In summary, the significant future contribution of cooling in buildings is accompanied by 
multiple challenges. Not only the rapid adoption of AC technologies in developing tropical 
regions drives rapid growth in cooling, but also the effects of global warming do. However, 
the future climate projections are highly uncertain, and there are multiple challenges on the 
generation of future weather datasets to be used in BPS. It is known that all this will create 
additional stress to the power grid, which is ever more required to be reliable. Therefore, it 
is important to develop approaches, and tools that help to provide and guarantee the 
climate resilience of built infrastructure. An overview of the research background was given, 
and in the following section, the motivation of this research work is going to be presented. 
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1.2 Motivation 
The motivation of this work is established around three main ideas/topics: the inherent 
uncertainty of building energy modelling, the uncertainty of future climate conditions and 
the potential effects of climate change for buildings (especially for peak conditions). 

The uncertainty on the effects of climate change impacts in buildings includes not only the 
uncertainty inherent to climate change projections, but also the unpredictable assumptions 
upon future scenarios of the building stock and building technologies. The effects of climate 
change, depending on their magnitude, could have important implications on the energy 
infrastructure, building design and system operation (Wood, et al., 2015), and so further 
research is required to quantify it. The effects of climate change upon the building stock 
may have implications on the overheating of buildings, the increase in cooling capacity 
requirements and the electricity peak loads for cooling demand. The literature highlights the 
implications upon overheating of buildings (Gupta, et al., 2012; Kolokotroni, et al., 2012), 
the cooling and heating demand end-use in buildings (Chow, et al., 2010; Tian, et al., 2011b, 
2011a; de Wilde and Tian, 2012) or annual energy use (Robert, et al., 2012; Short, et al., 
2012; Zheng, et al., 2020). However, there is a lack of research evidence that quantifies the 
possible change in cooling capacity or electricity peak loads. 

The aim to reduce heat losses of buildings has been raising the need for cooling demand in 
buildings during the summer season, as levels of insulation and airtightness also may 
minimise opportunities for free cooling during summer. Therefore, it is necessary to 
evaluate the drawbacks, and counterproductive effects on the set of energy performance 
indicators for the different building design approaches, especially under warmer climate 
conditions. These different building design measures may include increased building 
envelope insulation, increased thermal mass of building fabric, and additional thermal 
storage capabilities in buildings. It is also relevant to consider design measures such as 
renewable driven HVAC systems, or the use of adaptive envelopes, and utilising demand 
response mechanisms. Understanding the implication of these factors in the energy demand 
of buildings considering the climate change impacts is essential for planning future design of 
building stocks and the energy network infrastructure. 

The effects of climate change impacts in the building stock may be unlike for the different 
types of buildings, as they may present specific disparate characteristics. For example, office 
buildings have great potential to trap heat within the building as they generally have smaller 
proportions of heat losses through their envelope and larger intensity of internal heat gains 
(Energy, 2003; Beizaee, et al., 2013). Therefore, the majority of office buildings floor space 
area in the UK is mechanically cooled (Abela, et al., 2016). Thus, during the summer peak 
times, the energy consumption for cooling requirements in offices is estimated to represent 
6-8% of the total power network load (Pout, et al., 2008). Moreover, the office sub-sector 
presents a stable electricity energy demand profile and a sharp distinction between working 
and non-working periods (Kavgic, et al., 2015). The composition of the office building stock 
is relatively homogeneous and facilitates the creation of broad office energy models, which 
can estimate a representative energy profile of buildings in the stock. 
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In order to assess the implications for the power network and the thermal comfort of 
buildings at a whole stock level, it is necessary to have an overall modelling approach that 
can represent the entire building stock. In addition, the outcome of simulations from this 
model approach should be sufficiently detailed to allow an analysis of implications on the 
peak load and HVAC capacity sizing. It is also important that the results capture the physical 
and operational differences among the existing type of buildings, as seen in (Wang, et al., 
2014; Dirks, et al., 2015). The evaluation of effects of climate change impacts upon energy 
demand in buildings should also consider scenarios that incorporate adaptation strategies, 
as they are plausible to be undertaken in response to changing climates to minimise the 
effects on operation of buildings. 

Sensitivity analysis (SA) and uncertainty analysis (UA) allow risks to be better characterised 
and the testing of different scenarios, which are essential to better building design decisions 
(Clarke, et al., 2015). The performance gap that has been diagnosed in the literature 
corrodes the credibility of the simulation, and efforts are necessary to bridge this gap (de 
Wilde, 2014). The development of BPS tools has increased the sophistication of physical 
models, so the uncertainty of results also increased as the number of input model 
parameters grew. Current approaches in building design decision making do not incorporate 
uncertainty in case studies analysis (Hopfe, et al., 2013). A priori assessment of uncertainty 
is critical to understand the relevant parameters in any system and explore the modelling 
methodology's limits (Kim, et al., 2013). These statistical techniques improve the robustness 
of model results (Clarke, et al., 2015). Therefore, it is essential to explore the uncertainty of 
input assumptions in the office building stock and assess the differences between results for 
different archetypes representing distinct shares of the building stock. Identifying the key 
input parameters of the building office models used enables tracking the parameters that 
should be more carefully prepared in further analysis. In addition, it can indicate the type of 
adaptation measures that can be the most effective in reducing cooling demand and total 
demand in the stock. Similarly, this type of analysis allows the study of the interaction 
between different types of demand loads in buildings (peak vs annual, and space 
cooling/HVAC versus total). 

The study of weather data uncertainty in the cooling demand of buildings is critical to 
investigate the effects of climate change on building’s energy demand. The weather is a 
critical factor for the energy use of buildings, and it is one of the single factors with the 
largest implication for the energy consumption of buildings (Yoshino, et al., 2017; Chen, et 
al., 2020). Additionally, future weather data generation is a complex and challenging task 
(Hall, 2014; Trzaska, et al., 2014). A clear understanding of the implications and distinction 
of effects for peak and annual demand of total, HVAC and space cooling requirements are 
necessary to inform and prepare strategies to generate future weather datasets based on 
climate change projections. This information is essential to create approaches to assess the 
building design in future robustly. This will also suggest different suitable types of design 
options according to the differences in climate conditions. 

Climate resilience is an emerging concept to represent the durability and stable 
performance of built infrastructure against extreme climate events (Nik and Perera, 2020; 
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Nik, Perera, et al., 2020). Modern society requires a reliable operation of energy systems 
and building technologies, and for that it is necessary to account for variations and 
uncertainties in planning assumptions, including climate conditions. Planning for resilience 
requires exploring future scenario assumptions and understanding the systems' physic 
fundamentals (Nik and Perera, 2020). It is necessary to assess that designs are robust for 
multiple potential types of future assumptions. Relatively to resilience to climate change 
impacts, it is necessary to consider the deep uncertainty of climate variation (Nik and 
Perera, 2020). Therefore, it is important to develop strategies that evaluate the pathway 
that include a range of scenarios, and the effect of the whole range of conditions is studied. 
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1.3 Aim and research questions 
This research aims to study the implications of climate change upon the space cooling 
requirement for office buildings in different regions of the world, operating in different 
representative future climates over this century (up to 2100). In order to pursue the aim, 
several research questions will be addressed  in the current work as listed below: 

1. How sensitive is  office building energy modelling to different operational and design 
input parameters? 

It is important to assess the contribution of different input parameters to cooling loads and 
electrical demand for office buildings. The sensitivity of the energy model results (total and 
HVAC electricity demand, space cooling both for peak and annual resolution) should be 
analysed in this context, considering a variation on input model parameters that drive 
buildings' energy consumption. 

2. What is the relative impact on peak and annual HVAC and total electricity demand of 
office buildings as cooling requirements differ with changing building design and operational 
conditions? 

When analysing the simulation results from BPS cases, a wide range of metrics can be 
evaluated. In this research,  aimed at understanding the effects upon buildings' space 
cooling requirements, the research analysis looked specifically at space cooling demand as 
measured by  electricity demand for HVAC end-use, and the total electricity demand. In 
addition, two time-resolutions of the performance are critical on the assessment of 
performance, the annual demand as a metric of overall demand and the peak demand that 
quantifies maximum demand, and it is also critical for the sizing of systems. Therefore, to 
have an overall understanding of the effects on the performance of the buildings, it is 
necessary to compare the implications for the different metrics, time resolutions, and types 
of buildings and climates analysed. Different locations and type of buildings are utilised in 
the research analysis to explore the effect of different building cooling requirements.  

3. How does the morphing of weather timeseries influence the peak and annual total 
electricity demand in a case study of archetype office buildings? 

The weather is one of the main factors for the energy use of buildings, and with climate 
change, in the long-term, there exists a large uncertainty on the weather data-sets required 
to evaluate the future performance of buildings. Therefore, it is necessary to assess the 
implication of different main weather parameters in BPS weather datasets for the energy 
use of buildings. It is necessary to evaluate each weather factor's (morphing procedures) 
individual contribution before understanding the implication of the changing climate (all 
factors). 

4. To what extent could the peak and annual electricity load of archetype office buildings be 
affected by changes in cooling demand associated with the impacts of climate change? 

It is necessary to acknowledge the massive uncertainty of the climate change impacts to 
address this question. Therefore, a pathway is developed to evaluate a sequence of 
potential climate states, which collect a broad spectrum of the potential weather that will 
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exist in the future and quantify the extent of this impact. In addition, the quantification of 
the effect must be analysed on a broader spectrum, not only focused on one performance 
metric but on the impacts for at annual and peak level, for total electricity, HVAC end-use 
and space cooling requirements. Similarly, this analysis should support inquiry if the effects 
are similar across different buildings and climates. 

5. To what extent could a potential increase in electricity demand due to cooling provision 
be limited in future scenarios by adaptation measures? 

In order to cope with the effects of climate change impacts, several adaptation measures 
may be undertaken, namely, to mitigate the escalation of the peak load in the power 
network due to the warmer climate. Thus, it is important to quantify the potential 
adaptation measures have in coping with the effects of climate change upon buildings 
energy performance. Rather than an exact quantification of the effects, this wants to 
evaluate the general effectiveness of a range of basic measures on reducing additional 
demand from the impacts of climate change. 
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1.4 Thesis outline 
This thesis is composed of eight chapters and appendixes. This first chapter (1), the research 
background is introduced (Section 1.1), followed by the research motivations (Section 1.2), 
aim and objectives (1.3), and the outline of the thesis (1.4). In Chapter 2, a review of the 
existing research literature is presented, first looking at topics related to the building energy 
modelling (Section 2.1), and then on the research topics related to the implications of 
climate change on cooling demand (Section 2.2). In Chapter 3, the research methodology is 
presented. 

Chapter 4, Chapter 5, and Chapter 6 are the result chapters of this thesis. Chapter 4 
presents and discusses the result findings on the office models' sensitivity analysis. Chapter 
5 reports the results on analysing the impacts of the uncertainties associated with climate 
data on the electricity demand of office buildings. Chapter 6 presents and discusses 
research results on the implications of a future climate pathway on the electricity and space 
cooling demand of office buildings and adaptation measures' effectiveness. Chapter 7 
discusses the overall findings of this research work, limitations, judgments and future 
research pathways. Finally, Chapter 8 summarises research findings, identify contributions 
and potential future work. 

  



39 
 

1.5 Chapter summary 
This chapter, presents the background and motivation for the research work done in this 
thesis. First, an analysis of the research background is presented (Section 1.1), covering the 
background research topics to office buildings' cooling demand due to climate change 
impacts and the effects on the power network. Secondly, the research motivations (Section 
1.2) are explained, and after which the aims and research questions (Section 1.3) are 
presented. Finally, an outline of the thesis chapter is given (Section 1.4). 

The analysis of the research background presented in this chapter identifies the multiple 
challenges involved in analysing climate change impacts on building energy performance, 
namely, on building energy demand modelling, the rapid growth of cooing energy services, 
challenges of the power grid, or climate projections. This analysis emphasises the relevance 
of growing cooling energy services in the building sector and how this trend creates 
additional stress to the future energy infrastructure. In the following decades, the power 
network is expected to face multiple other challenges to comply with decarbonisation goals. 
Simultaneously, to guarantee the built infrastructure's climate resilience, it is necessary to 
assess designs in a more systematic and resilient way and develop new approaches to do it. 

The chapter introduces the reader to the research background of “The impacts of climate 
change on the electricity demand of archetypal office buildings”. This chapter serves as a 
segue to interpret the research motivations, and the research focus/process pursued. The 
takeaways from this chapter help the reader place the different steps of the research in the 
context of the research challenges identified.
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2 Literature review 
The analysis and the quantification of the effects of climate change on a building’s internal 
environment incorporate multiple challenges. First, building energy modelling (BEM) and 
aggregate stock level demand modelling aim to simulate very complex phenomena. There 
are ever more detailed and complex physical BEM, but there is still a gap between real 
building energy measurements and the energy consumptions estimated by virtual models, 
which can only provide approximations of the real system's performance (Hensen, et al., 
2011; Clarke, et al., 2015). On the one hand, the increasing computational capacity available 
to execute simulations has increased the number, complexity and scope of the building 
simulations performed. But on the other hand, there is always a compromise between the 
resources and costs associated with the creation of new models and the new information 
their simulation can provide. 

Second, the impacts of climate change on the building environment are broad, and there is 
a significant amount of literature investigating these. In particular, the focus on cooling 
demand in buildings is essential since, for example, global warming may increase mortality 
due to overheating in buildings. In fact, mechanically cooled buildings may face the frequent 
failure of HVAC systems, and additional electricity demand during peak power network 
loads may lead to power network disruptions. 

Now, an accurate estimate of the impacts of climate change requires accurate weather 
forecasts. In turn, the generation of future weather datasets requires the availability of 
climate change projections at the regional grid point representative of the sites analysed, 
current weather data, and awareness of the limitations and requirements of downscaling 
approaches. Climate projections are inherently uncertain, creating additional challenges for 
impact studies which also rely on inherently uncertain building models. Adaptation 
measures in building design and its operations may minimise the effects of climate change 
in buildings. Hence, it is also relevant to quantify the effectiveness of these measures' 
potential effects. 

In this chapter, a review of the relevant literature is presented on the effects of the impacts 
of climate change upon the cooling demand of buildings. The first section of the chapter 
(2.1) will be looking at different aspects of BEM, covering, in each subsection, different 
types of modelling, scopes, and related techniques. In the second section (2.2), research 
studies looking at the implications of climate change on the cooling demand of buildings are 
reviewed. The sub-sections look at different scopes of study: broadly at energy performance 
(2.2.1) or, more specifically, at cooling demand (2.2.2), analysing the challenges on 
generating future weather data (2.2.3) and possible adaptation measures (2.2.4). Finally, a 
discussion section (2.3) analyses, discusses and summarises the findings of the literature 
review performed. 

2.1 Building energy modelling (BEM) 
2.1.1 Building stock modelling 

There are two main types of approaches to estimate the energy consumption at the large 
whole stock level: top-down and bottom-up, as has been discussed and identified in several 
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reviews of modelling techniques for this purpose (Swan, et al., 2009; Kavgic, et al., 2010; 
Fumo, 2014). The terminology of these two categories is based on the hierarchical position 
of the modelling data inputs relative to the building stock as a whole (Swan, et al., 2009). 
Figure 2.1 presents a diagram showing the two main categories and examples of methods 
within these. Top-down approaches estimate the energy consumption of the entire building 
stock considering the attributes of the whole sample. On the other hand, the bottom-up 
approach accounts for buildings' energy consumption separately, considering each 
building’s particular parameters, which may be extrapolated to the stock's aggregated scale. 

 
Figure 2.1 – Top-Down versus Bottom-up approaches adapted from (Swan, et al., 2009; Fumo, 2014; Brøgger, et al., 2018) 

Bottom-up methods present a more detailed, informed and broader modelling scope and 
are, therefore, more relevant to this research's methodology. The independent modelling 
and simulation of individual buildings enabled by bottom-up approaches allow the 
investigation of the critical parameters for cooling demand in buildings (research objective 
1). The modelling approach also allows assessing the energy performance of different 
representative office building models under different input parameterisation scenarios. 
Statistical methods are a particular category of bottom-up approach techniques. Tools such 
as regression analysis, neural networks or principal component analysis are used to estimate 
buildings’ energy consumption. Similarly, engineering methods rely on the representation of 
the physical and thermal systems in buildings to estimate the energy end-use consumption. 

Archetype modelling technique is an engineering method that scales up representative 
buildings simulation results to an aggregated level, based on the weight of these building 
classes in the stock population (Swan, et al., 2009; Reinhart, et al., 2016). These classes 
group similar buildings, e.g. by use, vintage, size or a combination of these. Many studies in 
the literature have applied weighted archetype modelling approaches to model large 
building stocks, as in (Caputo, et al., 2013; Wang, et al., 2014; Dirks, et al., 2015; J. Huang, et 
al., 2016a; Tarroja, et al., 2018; Burillo, Chester, Pincetl, Fournier, et al., 2019; Zheng, et al., 
2019). In Sub-section 2.1.4, the archetype modelling technique is reviewed in further detail. 
Reinhart et al. (2016) also concluded that this type of approach has been broadly used to 
estimate the aggregated impacts on energy demand, using regional or nationwide bottom-
up stock models. 

Bottom-up engineering methods are well suited to investigate different scales and aspects 
of the energy performance of the building stock. This is in contrast to top-down approaches, 
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which provide a simpler and straightforward characterisation of the building stock, by 
modelling and analysing the building stock’s overall energy demand using broad scenario 
assumptions (Lipson, et al., 2019; Mata, et al., 2019). Bottom-up models are more complex 
to model and simulate, allowing a more flexible set of simulation targets. They can address 
research questions looking at the occupants’ thermal comfort and at the implications for 
peak or annual cooling demand. In particular, archetype modelling efficiently scales up the 
results from the detailed modelling of building representatives to a stock level. Therefore, it 
allows a user to address research questions looking at larger spatial scopes and provides the 
flexibility to look at different variables and incorporate different assumption conditions 
(stock, weather, or technological) as done in (Dirks, et al., 2015; J. Huang, et al., 2016b; 
Burillo, Chester, Pincetl and Fournier, 2019; Zheng, et al., 2019). 

Bottom-up data-driven or statistical type approaches can be used for a group of buildings as 
done in (Miller, et al., 2008; Parkpoom, et al., 2008; Constable, et al., 2013; Davis, et al., 
2015; J. Huang, et al., 2016a; Auffhammer, et al., 2017; Zheng, et al., 2020). Data-driven 
methods allow rapid and simplified modelling of the whole building stock, reducing the 
computational requirements and enabling extensive screening of the implications of input 
parameters to a single output. However, data-driven models of the whole building stock 
demand are set only for estimating single output, due to limited data available to train and 
to validate the models, which undermines the accuracy of the model estimations. Thus, the 
ability to adapt modelling approaches to analyse several output variables and address 
different research questions is limited. Lastly, future conditions may differ substantially 
from the initial training conditions, thus compromising the model's validity. 

The urban building energy model (UBEM) is a nascent field and an emerging simulation 
method for bottom-up stock building energy analysis. UBEM is a type of simulation-based 
method with a building operational-oriented approach, which calculates the hourly energy 
use of a building stock at an urban scale (Abbasabadi, et al., 2019). Reinhart et al. (2016) 
leverages UBEM to predict the operational energy use of a group of buildings, applying a 
physical model base to model the heat and mass flow and estimate indoor and outdoor 
environmental conditions. UBEMs modelling procedures are based on the identification of 
geometric data, shape, and geospatial position of buildings through 3D models of a city that 
are stored and further analysed on geographic information systems (GIS). Additional 
building model assumptions, for HVAC systems, construction systems and materials, 
operational schedules, internal gains are defined according to building typologies, known as 
“archetypes” (Reinhart, et al., 2016; Johari, et al., 2020). Each building included in the city 
model is characterised by one of these typologies.  

UBEM is central to evaluating and managing energy performance at city level scale 
(Abbasabadi, et al., 2019). However, to make BEM viable to an urban realm, it is still 
necessary to automatise much of the required steps for generating building models. It is 
also essential to improve the whole process integration between modelling 
conceptualisation to the highly intensive computation of the models (Hong, et al., 2018). For 
a detailed insight into this research area and its applications, refer to the review papers 
(Reinhart, et al., 2016; Abbasabadi, et al., 2019; Ferrando, et al., 2020; Johari, et al., 2020). 
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In this sub-section, several techniques were identified that quantify the energy consumption 
at the whole building stock level. Sub-section 2.1.2 reviews the modelling methods for 
estimating an individual building's thermal and energy performance, and Sub-section 2.1.3 
specifically reviews dynamic models, as they provide a deeper understanding of energy 
consumption. 

2.1.2 Whole-building energy simulation 

In this sub-section, the different types of building energy modelling categories will be 
analysed. Firstly, to clarify the terminology related to BEM, it is necessary to state a clear 
distinction between building model and simulation. A building model is a description, often 
a mathematical one, of the building system to be simulated, attributing input parameters to 
describe the building system characteristics and interactions (Clarke, et al., 2015). Wetter 
(2011) described modelling as the creation of a mathematical model as a means to present 
knowledge about a physical system. On the other hand, a simulation instantiates the model 
to compute the system response (Wetter, 2011; Clarke, et al., 2015). 

One distinction between building energy model simulations is the time-scale of their 
analysis, steady or dynamic (ASHRAE, 2013b). The steady-state building simulation assumes 
that modelling parameters are constant over time, simplifying the complexity of the 
analysis. On the other hand, the dynamic simulation of buildings considers the transient 
properties of models along the simulation period, often increasing the complexity and the 
computational effort of the simulation, see Figure 2.3. Building energy models, like the stock 
models above, can too be classified based on the description of the building system and 
interaction effects included in the building. Thus, they are often divided into three 
categories (Swan, et al., 2009): physical, data-driven and hybrid. 

Physical models, also referred to as forward-models or white-box models, represent the 
building system using a mathematical description to calculate its energy use (Foucquier, et 
al., 2013). Data-driven models, also denominated as black-box models, are building system 
models trained to replicate the existing relationship in a data-set between building 
characteristics and energy end-use (Swan, et al., 2009). The hybrid or grey box model mixes 
features from both physical and data-driven methods, as seen in (Tian, et al., 2011a; Patidar, 
et al., 2012, 2014; Jenkins, et al., 2013, 2014; Shen, et al., 2019). This uses simulation results 
from complex physical models to train and validate a data-driven model, replacing the more 
complex physical model with less computational effort. 

For energy performance assessment and HVAC capacity design, it is fundamental to 
estimate a building’s thermal load response. Spitler (2011) defined the building thermal load 
as the required amount of heat to be added (heating load) or removed (cooling load) from a 
zone to maintain a constant temperature. To conduct a thermal analysis within a zone, it is 
necessary to evaluate all three heat transfer modes: conduction, convection, and radiation. 
Figure 2.2  is a simplified representation of the main heat transfer mechanisms in a building 
zone considered in typical BEM. 
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Figure 2.2 – Diagram of heat transfer mechanisms in a building zone, adapted from (Underwood, et al., 2004, fig. 1.1) 

The main heat transfer mechanisms within and across the boundaries of a typical zone can 
be grouped as follows (Underwood, et al., 2004): 

1. Convection of air flows at the zone’s external and internal surfaces; 
2. Conduction from all envelope surfaces, including roof, walls, floor and glazing; 
3. Convection from all inflows in the building system, namely the air inlets from 

infiltration; 
4. Sensible and latent loads from HVAC systems; 
5. Sensible and latent heat dissipation load from internal occupancy, including 

equipment, people and lighting; 
6. Thermal energy radiation between building components, and between the building 

and external surroundings (solar, sky, other buildings or ground surface). 

A more detailed analysis of the heat transfer mechanisms at sub-component level of the 
building system is described in Appendix A - Heat transfer mechanisms. Besides the heat 
transfer mechanisms, the heat balances in the different surfaces of the building envelope 
and into the air zone are also presented. 

The majority of physical BEM methods estimate cooling and heating loads in building zones, 
calculating the heat balance in each zone’s surface and the convective zone’s heat balance 
(ASHRAE, 2013a). On the contrary, data-driven building models do not precisely represent 
the heat transfer mechanisms within buildings. These models are trained to calculate 
outputs based on the regression of single or multiple system parameters. However, even 
when data-driven models are trained including multiple details on the building's envelope 
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characteristics, these models still do not represent the existing physical heat transfer 
modes. 

To estimate space cooling/heating loads within an internal building space, it is necessary to 
analyse each heat mechanism's balance in the space simultaneously. There are three 
different classes of physical models: heat balance, thermal network and transfer function 
models. The heat balance (HB) method is a state-of-the-art method that considers the 
whole heat transfer process in the building zone to calculate heating and cooling loads 
(Spitler, 2011; ASHRAE, 2013a). The balances in the method consider all the heat transfer 
among space’s surfaces, including radiation, conduction and convection. To proceed with 
the calculation of loads, the model assumes the uniformity of the air and each surface 
temperatures, uniform irradiation, diffuse radiating surfaces and one-dimensional heat 
conduction (Spitler, 2011; ASHRAE, 2013a). 

The thermal network (TN) method represents buildings as a network of nodes connected by 
heat transfer paths, further increasing the HB method's detail (Spitler, 2011). Advanced TN 
models with refined discretisation use sets of algebraic and differential equations. One way 
to solve these differential heat equations is to apply numerical methods to obtain 
approximate solutions. As presented in Figure 2.3, there are two categories of numerical 
calculation methods: direct and iterative. The direct method yields a solution for a certain 
number of computational steps. On the other hand, iterative methods start with an 
educated guess. An iterative calculation is conducted until the residue is under a threshold 
value, and are often applied to a set of equations that are sparse or converge rapidly. 
Several different techniques can be applied: Gauss-Seidel, Jacobi and Newton Raphson 
(Clarke, 2001). Another option is to use (time or frequency) response factors to quantify the 
system's dynamics characteristics. 

 
Figure 2.3 – Engineering modelling methods based on the type of solution, adapted from (Clarke, 2001) 

It is important to highlight that a drawback of TN methods is a more significant requirement 
for computational effort and further demand for a detailed model characterisation. 
However, the method provides more flexibility to simulate different models and conditions 
(Spitler, 2011; ASHRAE, 2013b). In TN modelling tools, the solvers and building models are 
divided into different parts, to increase simulation flexibility. Therefore, the algorithm that 
calculates the building system model's solution (solver) is separated from the actual building 
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model description so that several different solving techniques can be applied to the same 
model formulation. 

In order to reduce the complexity of dynamic whole building simulation tools, the TN 
method can alternatively use transfer function models, like the RC-methodology which uses 
an electrical network analogy. A differential equation then governs each component of the 
electrical system and the number of capacitors sets the order of the model (Kampf, et al., 
2007). A typical simplified approach for building thermal models is the second-order 
electrical circuit, where the resistance represents the thermal resistance of the envelope 
structure and the capacitance, the thermal storage of the envelope material (ASHRAE, 
2013b). The result is a simpler transfer function model that can be used to execute a large 
number of simulations. 

2.1.3 Dynamic building performance simulation 

Building performance simulation (BPS) programs are computer programs that aim to 
simulate building systems' energy performance (U.S. Department of Energy, 2020). Most of 
the whole/integrated BPS programs use dynamic building simulation, an hourly computer-
based simulation, normally simulating a whole year. Integrated BPS programs present 
modelling approaches that leverage the HB method described previously in Sub-section 
2.1.2. This type of software has an approach capable of simulating the whole building model 
with transient features and evaluating all the main components in the HB within a building 
system. Therefore, these tools incorporate multiple domain models that calculate different 
heat and mass transfer mechanisms. There exist several integrated BPS programs available, 
as reviewed by Crawley et al. (2005). However, few of them model the whole building in 
detail, offering simplified models for some sub-components. 

In the following paragraphs, a short description of BPS programs that offer a detailed model 
for the whole building will be analysed: EnergyPlus, Modelica, IDA-ICE, ESP-r and TRNSYS. 
One of the most popular and complete BPS programs is EnergyPlus (Crawley, et al., 2001), 
developed by the U.S. DOE (Department of Energy). As represented in Figure 2.4, EnergyPlus 
is primarily a building simulation engine with a modular structure with three core 
components, the surface HB, Air HB and the building systems, which are simulated 
iteratively and tight coupled. Several different modules are coupled with the core element 
representing different system components. The surface HB in the program is calculated 
simultaneously by solving the air mass balance through the building envelope. A relevant 
feature is that it offers different solving and modelling approaches for each module. 
Therefore it can improve the detail of analysis for particular components under evaluation. 
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Figure 2.4 – Model components modules of EnergyPlus’ Integrated Simulation Manager, source: (Crawley, et al., 2001) 

Beausoleil-Morrison et al. (2014) stated that ESP-r was considered to be the most rigorous 
whole-building simulation software to represent the building physics of the envelope 
system and that TRNSYS has the best capabilities to simulate the HVAC system components. 
TRNSYS provides a detailed HVAC equipment library, the flexibility to incorporate multiple 
model components, and enables developing new components and applying different control 
strategies rapidly. In ESP-r (Strachan, et al., 2008), for each modelled zone, the air volume, 
each fabric component and each surface, are discretised in finite difference equations. 
Therefore, all energy flow paths are represented by a set of equations in all system nodes in 
an algebraic and discrete form approximating partial differential equations, which are then 
solved simultaneously with only one iteration per time step (Jost, 2012). Therefore, this 
approach could risks of lack of congruency due to a mismatch between modules. 

The state of the art modelling approach in dynamic whole building simulation are the 
differential algebraic equation (DAE) models, like the one used by the IDA-ICE BPS tool or 
Modelica models (Wetter, et al., 2015, 2016). DAE models are intended to bring accurate 
physical phenomena modelling while keeping the flexibility on modelling multi-domain BPS 
(Sahlin, et al., 2004). These models are mathematical representations of the systems, and so 
their physical meaning representation may be superior to other dynamic tools (Trcka, et al., 
2010). One of the most interesting features is that it allows a variable simulation time-step, 
which enables further detail in short transient periods and requires less computation effort 
over quasi-steady periods (Sahlin, et al., 2004). However, as it is in an earlier development 
stage, the number of existing modules and their validation and integration level with other 
programs are inferior to other modelling tools.  

2.1.4 Archetype modelling 

The archetype modelling of the building stock was briefly introduced in Sub-section 2.1.1. 
This type of modelling approach has the capability to deeply analyse the energy 
performance of the building stock. For clarity of archetype modelling definition, it is 
necessary to distinguish between three different terms: archetype building, reference 
building and a buildings’ benchmark data. An archetype (or representative) building is a 
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synthetic representation of a building, which mimics the average performance of a group of 
buildings in the stock (Reinhart, et al., 2016). A reference building is a synthesised model to 
establish a baseline comparison target against the actual buildings’ performance (Moffatt, 
2004; Deru, et al., 2011). These models are developed based on the statistical treatment of 
observations of the building stock or building standards. Benchmarking is the practice of 
comparing the measured energy performance of an actual building, relative to similar or 
reference buildings, based on specific energy codes and standards (Pérez-Lombard, et al., 
2009). 

The most reliable method to create archetype models is to use an empirical database of 
well-classified representative buildings of the stock (Moffatt, 2004). However, the empirical 
database's quality is often insufficient to establish proper modelling of the buildings' energy 
use. Therefore, other sources of input are often combined with these empirical databases to 
define the parameter characteristics of representative models. These include contributions 
from experts, surveys and detailed benchmark records, as was done for commercial building 
benchmark models in the USA (Torcellini, et al., 2008). 

Two specific steps make up the archetype models' generation: the segmentation or 
classification of archetypes and their characterisation (Reinhart, et al., 2016). In the first 
step, segmentation, the building stock is divided into different groups, based on building 
form or shape, use, age, climates and systems. In the second step, archetype models are 
generated and characterised to represent each group defined in the previous step. The 
models' characterisation includes setting the building envelope characteristics, usage 
pattern (schedules, equipment, lighting, occupant loads) and the HVAC systems 
characteristics. According to Reinhart et al. (2016) and Ballarini et al. (2014), 
characterisation can be performed following two different methods: sample and virtual. The 
sampling method is based on real data from this stock group. The virtual building model is 
based on the statistical treatment of data for each parameter within this group of buildings. 
Sokol et al. (2017) refer to a third option, which considers probabilistic attribution of values 
for the generation of virtual archetype models. 

For example, Shahrestani et al. (2014) identified that existing building benchmarks are first 
generally categorised based on the built form, building type occupancy, and the materials' 
thermal properties. Next, each model's representative locations and the weighting factors 
are defined. Finally, the modelled buildings' energy benchmark is defined, namely the floor 
space area, occupancy density or equipment loads intensity. In addition, Moffatt et al. 
(2004) concluded that 30 to 50 archetype form models are necessary to represent any given 
building stock. 

Ye et al. (2019) presented a comprehensive review of US commercial buildings' energy-
related data, analysing the different available data sources, namely surveyed data and 
simulation-based data. The creation and update of different sets of commercial virtual 
building models are also analysed. They concluded the most up to date model sets are: the 
commercial reference buildings by DOE (Deru, et al., 2011; DOE, et al., 2019), the DOE 
prototype building (U.S. Department of Energy, 2019a) and the OpenStudio open-gem 
(National Renewable Energy Laboratory (NREL), 2021). These three sets of models present 
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16 types of commercial buildings with the same form characteristics. However, the climate 
zones and the different energy codes/standards that are used to characterise the building 
models are different. There are three vintages for each type of DOE reference models, and 
input model parameters are collected from several sources: ASHRAE 90.1 (ASHRAE, 
American Society of Heating, 2013), standard 62.1 (American Society of Heating, 
Refrigerating and Air-Conditioning Engineers, 2007) and the Commercial Buildings Energy 
Consumption Survey (CBECS) (U.S. Energy Information Administration (EIA), 2021). The 
prototype DOE models present the same shape/form model configuration as the reference 
models, but they are characterised, so each version meets one of the eight different 
versions of the ASHRAE 90.1 and IECS energy code. Building models updated regarding 
different standard versions enables assessing the effects of upgraded regulations/standards 
and different building operation assumptions in buildings' energy performance. 

The CBECS in the USA included a dataset of 4,820 commercial buildings (Griffith, et al., 
2008), which were used to create 16 building models to represent the US commercial 
building stock. There are three office building types in the set of buildings: small, medium 
and large. Several different research studies have continuously revised these benchmark 
reference models' descriptions as done in (Deru, et al., 2006, 2011; Torcellini, et al., 2008). 
The availability of the different types of building models enables comparing the energy 
performance of these as done by Hong et al. (2013) or Siu et al. (2020). The use of 
archetypes allows direct comparison of simulation results and their reproducibility. It 
substantially reduces the requirement to prepare and exhaustively validate building models, 
steering the focus to simulations addressing research topics such as the impacts of climate 
change in different types or building locations, as done by Huang and Gurney (2016a) and 
Wang and Chen (2014). In the UK, Mata et al. (2014) presented a model for the whole 
national building stock, using nine types of building reference models that were simulated 
considering seven different construction vintages and four different climate locations. 

The built form of building models influences their energy performance (Shahrestani, et al., 
2014), and is therefore essential in their parameterisation. For example, CBECS benchmark 
reference models (Deru, et al., 2006) are defined based on four parameters categories: 
form, fabric, program and equipment. These models' form parameterisation includes the 
number of floors, floor height, aspect ratio, shading, and building orientation. Similarly, 
Shahrestani et al. (2014) also identified that existing building benchmarks are generally 
categorised based on the built form, building type occupancy, fabric materials' thermal 
properties, and locations. 

Office buildings generally present a significant proportion of glazing areas, large thermal 
mass and sharp, distinct operation periods (occupied, non-occupied) (Kavgic, et al., 2015). In 
addition, the office building stock often presents more similarities among its buildings than 
what occurs in other buildings sub-sectors (Kavgic, et al., 2015). Kavgic et al. (2015) also 
identified that the building characteristics with more significant implications on the thermal 
balance of indoor building zones are the thermal mass of buildings, glazing areas, the 
capability to oscillate temperature set-points and adapting ventilation rates. In the UK, 
Shahrestani et al. (2014) proposed a building benchmark structure that considered different 
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glazing ratios, fabric types, HVAC equipment, and internal energy loads, which enhanced 
these parameters' relevance to the implications on the energy performance of buildings. 

Korolija et al. (2013) also created four different office representative building models based 
on the benchmark information available for office buildings in the UK. Hence, they used 
these representative models to understand the sensitivity of different input parameters on 
the buildings' energy performance and estimate the impacts of several adaptation measures 
to reduce energy demand. The TABULA project (Ballarini, et al., 2014; Mata, et al., 2014; 
Loga, et al., 2016) intended to create a harmonized data structure for European building 
typologies and to define an accessible set of representative buildings. This is aimed at 
analysis and comparison of retrofit measures across multiple countries, and it has the 
objective of ensuring transparency in calculations and communication of results. Thus, it 
facilitates data handling and the understanding of methodologies/results among different 
partners. 

Building design regulations: In this thesis, a building simulation case study was prepared, 
which includes six locations in six different countries, which intend to represent different 
weather conditions. In Section 3.5, a more detailed explanation and reasoning behind the 
simulation case choice and modelling conditions is provided. 

In the review of the literature, it was identified that most of building simulation research use 
modelling case studies conditions specific for only one country (e.g. (Asimakopoulos, et al., 
2012; Farrou, et al., 2016; Duarte, et al., 2018; Huang, et al., 2018; Chai, et al., 2019, 2020; 
Mahmoud, et al., 2020)). In such cases, it is often utilised values from national building 
regulations, guidelines, or benchmark data to define building modelling assumptions. For 
example, as done by Huang et al (2018) for the USA, by Li et al. (2014) and Chai et al. (2019, 
2020) for China, Farrou et al. (2016) and Asimakopoulos et al. (2012) for Greece, Mahmoud 
et al. (2020) and Ibraheem et al. (2012) for Egypt, or Ng et al. (2013) and Duarte et al. (2018) 
for Singapore. 

In Table 2.1, a summary of building regulations, standards, and guidelines relative to the 
locations chosen for the simulation case study in this thesis is provided. Some of the values 
in these documents are binding, establishing minimum requirements and thresholds for the 
energy performance of buildings, as done in EU directive on the energy performance of 
buildings (Parliament, 2003; The European Parliament, 2010, 2018). National building 
regulations of EU member states transpose this directive for the national level, as done by 
the RCCTE in Portugal (Ferreira, et al., 2006) or KENAK  in Greece (T.O.T.E.E., 2014). 
However, there are also guidelines and guides that are only booklets that help modelling 
assumptions as for example (EMSD, 2007). By contrast, regulations often focus on different 
areas of building operation, as for example, lighting (Council, 2019), indoor air quality and 
ventilation requirements (Chartered Institution of Building Services Engineers, 2016), 
mechanical ventilation (American Society of Heating, Refrigerating and Air-Conditioning 
Engineers, 2007), thermal comfort (ASHRAE, American Society of Heating, 2003; Race, 2006, 
2012; CIBSE, 2013) or building envelope thermal properties (China Standards, 2016). 
Therefore, research studies consider a mix of regulations/standards and guidelines to 
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compile the modelling conditions of their simulation cases as done in (Duarte, et al., 2018), 
(Du, et al., 2012a) and (Tian, et al., 2011a). 

A minority of the studies analysed in the review have attempted to include in the simulation 
case different countries, as done in (Cellura, et al., 2018; Ciancio, et al., 2019, 2020; Bravo 
Dias, et al., 2020). For example, Cellura et al. (2018) included a simulation case with 15 
Mediterranean cities in five different countries (Turkey, Spain, Italy, France and Greece), 
considering the same form and operation conditions for all cases, only adapting the 
envelope thermal properties based on each local policy. In contrast, Ciancio et al. (2020) 
consider the same residential building in 19 European cities, but the only distinction made 
on the modelling assumptions is the carbon dioxide intensity of the power network, to 
account for the related emissions. In many simulation cases identified, specific existing 
building cases were selected, and modelling assumptions were based on such cases, and 
were then extrapolated to different locations, as done in (Ciancio, et al., 2019). In some 
cases, modelling assumptions are reported, and the reasoning behind the values is omitted, 
as done in (Mahmoud, et al., 2020). 

In building simulation research, it is very challenging to create modelling cases that are 
representative of overall building stock conditions, which becomes even more, when 
considering different building cases in distinct locations/countries. Benchmark values and 
values defined in building standards are entirely indicative values that represent a generic 
building. By contrast, in the building stock, there exist a wide range of buildings, with 
multiple building case conditions, which are outliers from standards/benchmarks. Modelling 
assumption values utilised in research studies are merely indicative, as simulation results 
are not primarily intended to follow/represent existing performances, but on exploring 
differences between different technological/future scenarios, or analyse the contribution of 
different energy policies. 
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Table 2.1 – List of building regulations and guidelines for different countries 

Country Regulation type 

European (EU) 
DIRECTIVE 2002/91/EC on the energy performance of buildings, and following amendments 2010 and 2018 (Parliament, 2003; The 
European Parliament, 2010, 2018) 

European Standards EN 13779:2007 - Ventilation for non-residential buildings - Performance requirements for ventilation and room-conditioning systems 

Singapore 

SS 530 - Code of practice for energy efficiency standard for building services and equipment (Council, 2018) 
SS 531 - Code of practice for lighting of work places – Indoor (Council, 2019) 
SS 553 - Code of practice for air-conditioning and mechanical ventilation in buildings (Council, 2021a) 
SS 554 - Code of practice for indoor air quality for air-conditioned buildings (Council, 2021b) 
BCA Green Mark for New Non-Residential Buildings (BCA Green Mark, 2010) 
Code on Envelope Thermal Performance for Buildings (Building and Construction Authority, 2008) 

Portugal Regulamento das Características de Comportamento Térmico dos Edifícios, 
Greece Regulation on Energy Performance in the Building Sector—KENAK (T.O.T.E.E., 2014) 

China 

GB 50176 - 2016 - Code for thermal design of civil buildings (China Standards, 2016) 
GB 50189 - Design standard for energy efficiency of public buildings (China Standards, 2015)  
GB/T 51161- 2016 - Standard for energy consumption of buildings (Standards, 2016) 
GBT 50378-2014 Green Building Standard in China (Standards, 2012) 
Guidelines on Performance-based Building Energy Code (Guidelines) (EMSD, 2007) 
GB 50736 - 2012 - Design code for heating ventilation and air conditioning of civil buildings (China Standards, 2012) 

UK 

CIBSE Guide F - Energy efficiency in buildings (CIBSE, 2012) 
CIBSE Guide A – Environmental Design (Butcher, et al., 2015) 
National Calculation Methodology (NCM) modelling guide (for buildings other than dwellings in England*) (Communities & Local 
Government, 2008) 
Energy Consumption Guide 019: Energy Use in Office (Energy, 2003) 
The Building Regulation 2010 : 

 Part L : Conservation of fuel and power (HM Government, 2010b) 
 Part F : Ventilation 

USA 

ASHRAE Standard 90.1 - Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE, American Society of Heating, 
2013) 
ASHRAE Standard 62.1 - Standard for ventilation system design and acceptable indoor air quality (IAQ) (American Society of Heating, 
Refrigerating and Air-Conditioning Engineers, 2007) 
DOE/ASHRAE Prototypes (U.S. Department of Energy, 2019a) DOE Reference Models – CBECS info (Deru, et al., 2011; DOE, et al., 
2019; U.S. Energy Information Administration (EIA), 2021) 

Egypt Survey and paper discussing Energy Performance Legislation (Ibraheem, et al., 2012; Attia, et al., 2015; Mahmoud, et al., 2020) 
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2.1.5 Building performance simulation (BPS) validation 

The validation of a simulation model is the process of determining the degree to which the 
model and its associated data are an accurate representation of the real-world behaviour of 
the system being evaluated (de Wilde, 2018). The requirement for BPS model validation 
exists due to significant and frequent reports of performance gaps on building design and 
real building performance (de Wilde, 2014, 2018; Shrubsole, et al., 2018). The performance 
gap is the difference between a building's estimated energy performance during the design 
stage and actual performance achieved once a building is operated (de Wilde, 2018). 
Discrepancies between different building models simulations results are often significant 
(Coakley, et al., 2014; Fabrizio, et al., 2015). This is to be expected since a building model is a 
simplification of a real, multi-layered and interactive system, so each model misrepresents 
to some extent the actual performance of the building systems (Clarke, et al., 2015). Several 
factors have been identified as potentially responsible for the energy performance gap, and 
there is a significant research effort to close this gap, as reviewed by De Wilde (2014). 

The gap between building energy models and buildings' real energy performance is 
attributed to two primary sources of errors: internal and external (Judkoff, et al., 2006). 
Internal sources of errors occur due to discrepancies in modelling the heat transfer 
mechanisms, inaccuracies in modelling the interactions within the simulation thermal 
engine's heat balance, or coding errors in the simulation program. On the other hand, 
external errors occur due to differences between the model's input data parameters and 
the buildings' actual characteristics and operating conditions, including weather data, 
occupant behaviour, or buildings' thermal and physical properties. 

It is a research consensus that it is impossible to validate simulation results but only increase 
confidence in the building modelling (Clarke, et al., 2015). Automated sensitivity analysis 
(SA) may increase the understanding and confidence on building simulation results (Clarke, 
et al., 2015). However, building models inputs are often highly correlated, and so risks of 
large variances in uncertainty analysis (UA) may occur (collinearity), so modellers should 
acknowledge these facts and carefully interpret simulation results with sensitivity indices 
(Tian, 2013). In addition, the validation of building models is confined to a specific 
parameter space and set of conditions, meaning model extrapolation outside those 
conditions may lead to significant errors that were not identified during validation 
procedures (Judkoff, et al., 2006). 

2.1.6 Uncertainty and sensitivity analysis 

Building energy model simulation is a powerful tool for the estimation and assessment of 
building energy performance. In recent years, the need for more detailed building models 
has led to a significant increase in the complexity of whole building simulation models 
(Wetter, 2011). The further complexity of building energy models has increased the detail 
and number of input parameters on building performance analysis and the number of 
output metrics that can be explored. Therefore, input model assumptions should not be 
deterministic, and these input conditions should be represented with probability density 
distributions to execute BPS (Tian, Heo, et al., 2018). In fact, In the field of building 
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performance simulation, it has become essential to identify the most critical parameters 
with the largest implications for simulation outputs. Tian et al. (2018) reviewed UA for 
building energy assessments andconcluded that UA is ready to become a mainstream 
method in this research area. Clarke et al. mapping of the effects of such variance on the 
simulation results would become more common. Thus, Incorporating uncertainty and 
sensitivity analysis in building performance simulation would contribute to close the existing 
building performance energy gap, as discussed in Sub-section 2.1.5. 

In decision theory, uncertainty is defined as the information gap between certainty and the 
available information to the decision-maker (Aughenbaugh, 2006). Therein, uncertainty is a 
confidence range of the information available at the present state. There are two types of 
uncertainties: aleatory and epistemic (Helton, 2009). Aleatory uncertainty is due to inherent 
or natural random variations of the variable analysed. The lack of knowledge about the 
variable determines epistemic uncertainty. Uncertainty analysis studies the propagation of 
uncertainties in an experiment, exploring how the inputs' variation influences the outcomes 
(de Wilde, 2018). There are two types of uncertainty analysis: forward and inverse (Tian, 
Heo, et al., 2018). Forward UA intends to quantify the uncertainty in the system outputs 
propagated from the considered uncertainties in the input parameters propagated through 
the simulation models. Inverse UA, which may be referred to as model calibrations, are 
made to determine the unknown variables through models from measurement data. 

For building model simulation, Tian et al. (2018) has grouped the sources of uncertainty into 
four categories: weather data, envelope, HVAC systems and occupancy. Building simulation 
usually uses TMY files to describe weather conditions in simulations. It is known that typical 
year data is suited to represent long-term annual trends but is not appropriate to represent 
extreme conditions. Indeed, weather data can be a significant source of uncertainty 
(Barnaby, et al., 2011; Huang, et al., 2019). Building envelope uncertainty can be further 
divided into: thermal properties, surface properties and other envelope properties (e.g., 
infiltration rates or the thickness of materials). Occupant behaviour uncertainty has recently 
become a very active research topic, studying the impact of behaviour on buildings' energy 
demand (Tian, Heo, et al., 2018). From all of them, HVAC system parameters uncertainty is 
studied the least for building energy consumption (Tian, Heo, et al., 2018). 

Tian et al. (2018) concluded that more effort is needed to rigorously quantify the 
uncertainty of input parameters for uncertainty analysis in BPA. A priori assessment of the 
critical uncertainties sources on a building model is required in order to acknowledge the 
potential uncertainty in the simulation results analysed (Kim, et al., 2013). Indeed, the 
quantification of uncertainty in the probabilistic distribution of input parameters is the most 
difficult aspect of uncertainty analysis in building simulation (Sun, Gu, et al., 2014; Tian, Heo, 
et al., 2018).Tian et al. (2018) recommended that uncertainty analysis consider assessing 
different building types, weather conditions and building ages. For example, Huang et al. 
(2018) is one of the few studies that analysed the uncertainty for different building 
conditions, analysing peak load uncertainty on five different locations and for five different 
types of buildings. In addition, Huang et al. (2018) concluded that the hourly cooling 
distribution is affected by two main factors, the weather conditions and the building type. 
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However, these UA approaches cannot inform and quantify the sensitivity of changes in 
design (envelope and system) input parameters. 

Sensitivity analysis (SA) is a statistical method used to evaluate and quantify the degree of 
change in output results, given a determined change of input parameters (Saltelli, et al., 
2008; de Wilde, 2018). There are two main categories of sensitivity analysis: local and global 
(Saltelli, et al., 2008). Global sensitivity analysis explores the model's response to changes in 
all input parameters, varied simultaneously, while local sensitivity analysis evaluates the 
response of the model to one local parameter (Saltelli, et al., 2008). Global sensitivity 
analysis demands more significant computational effort than local methods; however, it 
provides more information about the effect of varying model inputs (Saltelli, et al., 2008). 

Variance based sensitivity analysis is one type of global sensitivity method (other: screening, 
regression and meta-models), which decompose the model output deviation based on the 
uncertainty of input parameters (Saltelli, et al., 2008). Variance-based GSA methods for 
complex models, such as dynamic building energy models, require large computational 
capacity, as many sampling iterations are needed to guarantee stable and statistically robust 
results (Tian, 2013). On the other hand, variance-based SA methods become unstable, 
biased and extremely costly with many input parameters (more than 10) (Iooss, et al., 
2015). Sobol and Fourier amplitude sensitivity tests (FAST) are the most widely used 
variance-based GSA methods (Saltelli, et al., 2008). 

Another global method is the screening Morris EE (elementary effect) method that identifies 
the effect of one input parameter at a time and makes the changes from different starting 
points (Saltelli, et al., 2008). It is a very computationally efficient procedure, and it is a 
widely accepted technique used for different computational models. During the initial 
building design, when more/larger design uncertainties exist, screening methods like Morris 
EE are recommended (Iooss, et al., 2015), as they identify the most significant parameters 
out of a larger set, with minimum computation cost. This approach can reduce the number 
of parameters to be analysed during the following more complex analysis.  

Multi-stage sensitivity analysis (with screening methods, followed by variance-based 
methods) on building energy performance have been performed to reduce computational 
requirements of these analyses (Sun and Augenbroe, 2014; Petersen, et al., 2019). In an 
initial stage, a screening method such as the Morris EE (Petersen, et al., 2019) or Lasso (Sun, 
Gu, et al., 2014) is applied, which identifies the most relevant parameters. In the following 
stages, more detailed and complex GSA methods such as Sobol or FAST are applied to 
evaluate a reduced number of parameters. 

In BPA, sensitivity analysis has been applied to investigate different types of modelling 
outputs: total energy demand (Petersen, et al., 2019), peak electricity loads (Eisenhower, et 
al., 2012), cooling and heating demand (Labat, et al., 2018; Petersen, et al., 2019), carbon 
emissions (Tian, de Wilde, et al., 2018) and overheat frequency (de Wilde, et al., 2009). A 
smaller number of studies have looked at the sensitivity in peak cooling loads due to 
uncertainty on building model parameters (Domínguez-Muñoz, et al., 2010; Eisenhower, et 
al., 2012; Sun, Gu, et al., 2014). Dominguez-Muñoz et al. (2010) analysed the results of an 
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office building model in Malaga, Spain, using a resistance-capacitance modelling method. 
Using an SRC for SA, the main contributors for peak sensible space cooling are thermal 
inertia parameters, thermal mass and internal convective coefficient over a group of 20 
parameters. Eisenhower et al. (2012), for a building in Illinois, USA, used sensitivity 
decomposition indices based on analysis of variance (ANOVA) tests, and analyses the total 
sensitivity of total peak demand and annual consumption. Sun et al. (2014) used the ANOVA 
method to calculate sensitivity indices on the chiller’s and boiler’s design peak load capacity. 

The existing literature examining sensitivity analysis of energy demand in building energy 
models have shown the implications on annual demand, either for total energy, heating, 
cooling or carbon emissions. Few studies have focused explicitly on the sensitivity regarding 
peak cooling demand, especially on electricity demand for HVAC end-use periods. However, 
peak demand is critical to defining HVAC systems' design capacities and analysing energy 
systems operation limits. Moreover, current research using SA methods to analyse cooling 
peak demand (Domínguez-Muñoz, et al., 2010; Eisenhower, et al., 2012; Sun, Gu, et al., 
2014) is only executed for a single building and a single climate. Although uncertainty 
related to the weather parameters requires further studies (Huang, et al., 2019), there is 
also evidence from UA studies looking at peak cooling demand that building types and 
climate are significant sources of cooling demand uncertainty (Huang, et al., 2018). For this 
reason, in this research UA and SA are utilised to explore further explore these uncertainties 
for different climates and different types of buildings. 

2.2 Implications of climate change on cooling demand of buildings 
The aim of this research focuses on the effects of climate change impacts upon the space 
cooling demand of office building stock, which, when actively supplied by cooling systems, is 
usually provided by electricity. Therefore, it is also essential to analyse the subsequent 
change in the electricity demand profile on the power network. Peak power network 
demand is highly correlated to cooling requirements during extremely hot conditions (Vine, 
2012; Chandramowli, et al., 2014; Burillo, et al., 2017) where there are hot summers, such 
as in California or Australia. However, the effects of climate change upon buildings energy 
performance cover a much broad range of simulation conditions. Therefore, it is important 
to have a more comprehensive look at the literature covering these effects, to get some 
perspective on the different types of effects found and the different modelling approaches 
utilised, according to the various research objectives defined. 

The main focus of this review is on the additional requirement for cooling in buildings due to 
the impacts of climate change. The additional need for cooling presents a multi-fold 
challenge that affects the design of building envelopes, building HVAC systems and power 
networks. The impacts of climate change will drive space cooling requirements to grow, 
which will lead to a rise in discomfort hours for occupants when space cooling is not 
satisfied due to lack of active cooling systems or ineffective ventilation. Similarly, these 
impacts may lead to frequent failure of active cooling systems that are not sized for future 
climate conditions, leading to increasing overheating. Finally, the additional cooling 
requirements will be followed by additional electricity demand to supply these 
requirements. This may be critical during extremely hot periods, as these may overlap with 
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the periods of power network peak demand, creating substantial additional demand that 
may lead to power shortages. 

Looking at the literature covered in this review, their broad aim is to evaluate the effects of 
climate change upon building performance. However, the set of specific objectives of each 
study may be completely distinct. One typical type of objective is to compare the energy 
demand during future scenarios and current climates, of specific buildings, namely the 
effect upon cooling and heating demand (Tian, et al., 2011a; Jenkins, et al., 2013) or the 
overheat (Jenkins, et al., 2011). For example, in Tian et al. (2011b), the uncertainty and 
sensitivity in buildings' thermal performance are explored, taking into account the 
uncertainties in climate change projections and building envelope characteristics. 

In the UK, research findings show broad agreement on the significant risks of overheating on 
existing buildings, especially in future warmer climates (Beizaee, et al., 2013). In future 
climate scenarios, the overheat in the UK housing stock may be even more noticeable, 
especially in southern regions and more noticeably later in the century, as concluded by 
Gupta et al. (2012). Moreover, passive design measures in buildings may not eliminate the 
overheating in future scenarios considering climate change impacts, and so buildings will 
require to accommodate active cooling systems as concluded in (Gupta, et al., 2012, 2015). 
However, the analysis of the increasing overheating in not actively cooled buildings due to 
the impacts of climate change is not possible to be extrapolated to the effects for buildings 
with active cooling systems. Research has shown that in the future, more buildings will be 
requiring active cooling systems (Bravo Dias, et al., 2020), even in the UK (Mulville, et al., 
2016), with more energy consumption and larger system capacities (Cellura, et al., 2018; 
Ciancio, et al., 2019; Farah, et al., 2019; Bravo Dias, et al., 2020). 

The present section looks into and examines current literature on the implications of 
climate change to building energy performance with the aim to identify, analyse and discuss 
the different types of research questions and approaches that have been employed in 
studying this vast research topic. After a brief overview, this section will analyse the 
research looking at the effects of climate change impacts on building energy performance 
(Sub-section 2.2.1), then more specifically, for the effects for cooling of buildings (Sub-
section 2.2.2). It will also analyse the approaches to generate future weather files and the 
effects of weather variability on the energy demand of buildings (Sub-section 2.2.3). Finally, 
it will review building design adaptation measures that may reduce the effects of additional 
cooling demand due to the impacts of climate change (Sub-section 2.2.4). 

2.2.1 Effects of climate change on building energy performance 

The implications of climate change for space heating and cooling has been the most studied 
of all the impacts in the electricity demand market, as noted by Chandramowli et al. (2014). 
The assessment of the implications of climate change on building energy performance has 
been developing and progressing its detail and complexity. Most of the initial research 
studies applied data-driven model approaches, as discussed in Sub-section 2.1.2, and 
focused on the response to the short-run weather shocks as noted by Auffhammer et al. 
(2014) in his review empirical literature, measuring climatic impacts on energy 
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consumption. Research looking at the implications of climate change in the energy 
performance of buildings has taken place across multiple spatial (single, district, regional or 
national building stock), and temporal resolutions (hourly, monthly, annual), as well as 
different performance outputs being analysed. The model outputs were equally diverse, 
ranging from total final energy demand, total energy demand by energy source (electricity 
or gas), energy by end-use (heating or cooling), or even total carbon emissions. 

Many of the studies have looked at the implications for singular buildings (Chow, et al., 
2010; Huang, et al., 2016, 2016), several different individual buildings (Du, et al., 2012b, 
2012a) or at whole sets of archetype buildings (Hong, et al., 2013; Berardi, et al., 2020). 
With increasing computational capacities available, analysis at a larger aggregated scale, 
based on building simulation approaches have been becoming more common (Wetter, 
2011), at larger spatial scales such as a district area (Jenkins, et al., 2015; Nik, 2016; 
Moazami, et al., 2019) or even national (Dirks, et al., 2015; J. Huang, et al., 2016b). Hong et 
al. (2013) illustrated that office buildings' cooling and heating requirements can be 
substantially different across different types of archetype office buildings. This is caused due 
to differences in envelopes (glazing areas), but primarily due to IHG and occupancy patterns. 
For more detailed reviews on the effects of the impacts of climate change on the built 
environment, refer to (Yau, et al., 2013), (Andrić, et al., 2019), (Yassaghi, et al., 2019), (Li, et 
al., 2012) or (de Wilde and Coley, 2012). 

In Appendix B1, a summary table is given Table A. 1, covering all studies analysed in this 
area and describing methods utilised in each. The summary of the literature information 
about the existing literature provided in this table is aimed to present the scope of the 
simulation and research methodologies identified in the studies analysed. The initial 
columns of the table describe the authors, year of publication and the country or countries 
utilised in the analysis. In the following columns, the type of building modelling technique 
utilised is categorised, and the geographic scale and the buildings typologies used in the 
analysis are described. The simulation output energy metrics analysed in the studies are 
described based on the type of outputs modelled (thermal comfort, space cooling or 
electricity demand) and the time resolution of the analysis is also identified (peak, annual, 
or monthly). Finally, it is identified if the studies analyse the effect of adaptation measures, 
and if they have utilised DOE reference or Prototype models. 

In general, the literature on the effects of climate change impacts upon buildings energy 
performance agrees that the annual need for space heating and cooling will respectively 
decrease and increase in future scenarios due to warming climates (Andrić, et al., 2019). 
Therefore, electricity demand is expected to increase and gas demand to fall 
(Chandramowli, et al., 2014). Moreover, the effect on the net energy balance is gradually 
positive for cooling dominated buildings in warmer climates and negative for heating-
dominated buildings in colder climates. Dirks et al. (2015) also agreed with the above. 
However, the annual demand increase does not necessarily present an additional challenge 
for buildings or power network systems. It is the increase during peak loads that may 
present the most difficult challenges to address for the design of building systems and the 
power network due to the impacts of climate change. Another point of agreement among 
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the literature is that the increase of energy demand and overheating of buildings in the 
future due to climate change impacts, may potentially be offset by the implementation of 
adaptation strategies in the building stock (Chow, et al., 2010; Jenkins, et al., 2011, 2013; 
Gupta, et al., 2012, 2015). Therefore, this type of literature has been intended to quantify to 
what extent adaptation measures can reduce energy consumption in buildings and if this is 
enough to offset the increase caused by climate change impacts. In Sub-section 2.2.4, 
studies using adaptation measures to minimise the effects of climate change are further 
analysed. 

The space cooling requirements and energy performance of buildings are highly correlated 
with weather conditions, and building energy requirements are significantly different across 
different climate zones (Pyrgou, et al., 2017; Yoshino, et al., 2017). However, the majority of 
the studies reviewed looked to implications on a single location (Nik, et al., 2013; Berardi, et 
al., 2020), and others investigated multiple locations across one country (Chow, et al., 2010; 
Jenkins, et al., 2011; Gupta, et al., 2015). A few studies analysed the impacts over multiple 
locations representing different climate zones (Hong, et al., 2013; Bravo Dias, et al., 2020). 
The majority of these studies focused on western developed countries (Europe, USA and 
Australia and Canada), with a substantial majority from the UK, as concluded by Moazami et 
al. (2019), and few have been concentrated in other parts of the world as highlighted in 
(Yau, et al., 2013). Yau et al. (2013) have also identified that few studies have focused on the 
potential impacts for tropical regions. Thus, most of the research has analysed effects on 
cold climates, mild summers, and the findings may be substantially different for another 
type of climates, as concluded by Andric et al. (2019). For example, Berger et al. (2014) used 
different building types, when estimating the effects for building energy consumption of 
climate change impact projections in Wien, Austria. Quantifying the implication of different 
locations and building types is essential to reasonably quantify the effect of climate change 
upon the entire building stock. 

A large number of the studies identified in this review intend to quantify the effects in single 
buildings' energy performance due to climate change impacts, but only explore this at a 
limited number of locations and cannot reasonably analyse the effects at larger spatial 
levels. Therefore, their objective is, for example, to quantify the effect of climate change 
projections in the annual and peak cooling requirement of offices buildings samples 
(Jenkins, et al., 2013), the overheating of dwellings (Jenkins, et al., 2011), or to quantify the 
effect on the annual heating and cooling demand of office buildings (Tian, et al., 2011a). In 
these cases, the main focus is to quantify buildings' individual energy performance, 
considering the effects of different climate change projection scenarios. Nevertheless, the 
set of results in the buildings' energy performance is detailed and extensive, enabling the 
research to investigate multiple parameters and output results. However, this type of 
individual building analysis cannot be extrapolated to quantify the entire building stock's 
implication. 

The building modelling approach used to analyse the effects of climate change can be the 
simplified steady-state model (Hekkenberg, et al., 2009), or a simplified building dynamic 
model applying the RC-method (Frank, 2005; Nik, et al., 2013; Fonseca, et al., 2015). As 
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discussed in Section 2.1, RC-methods enables faster calculations and enables the possibility 
to analyse more modelling assumptions. Using an RC-method, Chow et al. (2010) 
investigated the effects of climate change on heating and cooling demands in office 
buildings in the UK. On the other hand, dynamic BPS requires much more computation 
effort, but the amount of output metrics that can be explored is much larger. EnergyPlus 
(Crawley, et al., 2001; U.S. Department of Energy, 2017), IES-VE (Strachan, et al., 2008) and 
TRNSYS (TESS – Thermal Energy System Specialists. LLC, 2021) are some of the most used 
software for this as discussed in section 2.1.3. The initial application of the dynamic 
simulation-based approach to assessing the effects of climate change used parametric 
simulation studies of single buildings (Guan, 2009; Gupta, et al., 2012). No studies have 
been identified using the UBEM methodology that investigates the effects of the impacts of 
climate change at a building stock level. UBEM methods are already widely used to 
demonstrate compliance with energy codes/standards and evaluate the effect of retrofit 
measures (Reinhart, et al., 2016). However, the modelling approach requires substantial 
detailed building characteristics and consumption measurements to validate and calibrate 
models. 

Top-down approaches, such as in Isaac et al. (2009) and Zhou et al. (2013, 2014), were 
essential to identify and analyse the impact of different technological scenarios and initial 
climate change model projections, and quantify the implication at system levels. Isaac et al. 
(2009) quantified that global energy demand for AC may increase from 300 TWh in 2000, to 
10,000 TWh in 2100, in the considered median technological scenario, mainly driven by 
developing countries uptake. An estimation of the possible electricity demand for space 
cooling of the whole building stock in the UK in 2050 was done in (HM Government, 2010a), 
and annual electricity demand for cooling for the whole building stock may reach up to 150 
TWh. However, these findings are based on top-down technological modelling approaches 
and do not directly investigate the impacts of climate change on building energy 
performance. 

Similarly, overall estimations of the energy demand of a sample of buildings can be achieved 
with data-driven models using the buildings' current data set (Miller, et al., 2008; Constable, 
et al., 2013; Auffhammer, et al., 2017). Data-driven models present advantages in analysing 
stock level trends and quickly assessing climate dataset’s impacts on the aggregated level. 
However, these approaches miss a detailed analysis of buildings' thermal performance, as 
regression models usually only correlate to a single dependent variable. Moreover, 
regression analysis models of the building stock usually only use the outdoor air 
temperature as the predictor, so neglect the analysis of other parameters that may 
significantly impact the building stock's overall energy consumption. For example, the 
building stock composition will change, with changes in the floorspace area, the share of 
type of buildings, different occupancy, or the HVAC technology's progress or changes in 
internal heat gains. 

One other category in the studies looking at the effects of climate change impacts upon 
buildings is looking at district stock spatial scale. For example, Moazami et al. (2019) 
aggregated the simulation results of a residential and commercial building model mix to 
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assess the magnitude of impacts at a neighbourhood scale in Geneva, Switzerland. Similarly, 
Zheng et al. (2019) have used a GIS-based approach to combine individual building level 
model simulation, using DOE archetypes, to evaluate the impacts of climate change on 
different districts at Los Angeles county, in the USA. Three studies have used RC-lumped 
methods to model district building stocks in Sweden, in Stockholm (Nik, et al., 2013, 2021; 
Nik, 2016), and Gothenburg and Lund (Nik, et al., 2016). These assessed the impact on 
heating and cooling demand of a district building stock composed by selecting multiple 
existing residential buildings. In the UK, Jenkins et al. (2015) quantified the climate 
associated risk for a selected virtual district stock in Edinburgh based on weighted 
archetypal simulation of 1,271 dwellings. These studies aimed to investigate the effect of 
climate change at district levels to evaluate the robustness of energy networks in future 
extreme conditions. 

Wang et al. (2014) also systematically assessed the climate change impacts for the different 
DOE archetype buildings across different US climate zones. Using DOE archetype models 
and weighting factors to aggregate to national or regional level this approach, (Xu, et al., 
2012; Wang, et al., 2014; Dirks, et al., 2015; J. Huang, et al., 2016b) explore the effects upon 
the energy consumption of the whole building stock in the USA due to climate change 
impacts. To do this, the results from archetype reference models are weighted based on 
their composition share in the building stock analysed. These studies used several of the 
main representative building form models of the stock. These are simulated in all 
representative national climate zones and with different input building parameters based on 
their construction vintage and operational characteristics. Therefore, the number of 
simulations runs can be large in some cases, reaching almost 180,000, as done in Dirks et al. 
(2015). Using dynamic BPS, the research can quantify the effects upon the whole building 
stock's energy consumption, exploring the contribution of such a variety of parameters. This 
approach permits extensive detail on output parameters investigated (up to final energy 
end-uses) and temporal resolutions spanning from annual to peak conditions (hourly). 
Furthermore, it enables exploring the implications of climate change impacts across both 
different spatial zones and building characteristics clusters. 

2.2.2  Effects on cooling demand 

Many research studies that assessed the implications of climate change for both annual and 
peak space cooling demand in the building stock had used single building modelling 
approaches. For example, Chow et al. (2010) estimated that space cooling demand in an 
office building goes almost from not requiring any cooling, to a total annual requirement of 
230 kWh in an office located in Heathrow, in the UK. Guan et al. (2009), using a sample 
office building model in different cities in Australia, estimated a possible growth in cooling 
consumption of between 36.3% up to 52.9%, under the high future (2070) weather scenario 
option. Guan et al. (2012) further concluded that total energy consumption might increase 
by between 6.4% to 15.1% for the same modelling conditions. The cooling capacities 
required, as shown in (Guan, 2009), will go from the current level of 131 W.m-2 up to 208 
W.m-2 in the high weather scenario conditions by the 2070s, in Sidney. It is an increase of up 
to 59%, which is the largest among all cities considered. For Japan, Shibuya et al. (2016) 
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estimated that annual cooling consumption might increase by 19.8% in Naha, and by up to 
47% in Sapporo, by 2090s from 1990s levels. 

The literature reviewed concerned with potential effects of climate change impacts in the 
UK buildings is primarily focused on the risk of overheating in buildings, with less focus on 
the impact on energy demand for cooling. This may justify Wood et al. (2015) conclusion 
that there is limited literature looking at the effects of climate change impacts on the overall 
energy demand in buildings. However, the majority of the office stock floor space area in 
the UK is actively cooled (Abela, et al., 2016). A great deal of previous research into the 
implications of climate change impacts in the UK for cooling demand of buildings 
investigated office buildings (Chow, et al., 2010; Tian, et al., 2011a; Jenkins, et al., 2013) or 
university buildings (Tian, et al., 2011b). In these cases, the uptake of annual electrical 
consumption for cooling requirements by the end of the century was found to might 
increase between 60% (Jenkins, et al., 2013) , and over 100% (Tian, et al., 2011b, 2011a). 
Hence, these studies showed significant uptake on annual HVAC electricity demand end-use; 
it is impossible to quantify the effect on the buildings’ total annual electricity demand, or for 
peak demand and sizing of the HVAC or the total electricity demand. 

The implications at an aggregated building stock level are more challenging to assess using 
simulation-based approaches, due to requiring much more complex simulation approaches, 
as is discussed in Sub-section 2.1.1. Some research studies have been using data-driven 
models to assess the effects of climate change on building energy consumption as done in 
(Miller, et al., 2008; Auffhammer, et al., 2014; J. Huang, et al., 2016a; Fan, et al., 2019). 
Some of the literature scoping building stock level show that cooling capacities and 
electrical peak loads will rise in future scenarios due to climate change impacts (Miller, et 
al., 2008; Parkpoom, et al., 2008; Dirks, et al., 2015; Auffhammer, et al., 2017). However, 
the extent of the increase at a large spatial scale is not clear. Miller et al. (2008) for 
California and Auffhammer et al. (2017) for the whole USA estimated that the peak demand 
in the electrical system might rise almost by 20% during future extreme weather events 
using regression analysis techniques. 

Whole building stock research studies utilising engineering modelling methods can further 
assess the effects of climate change for the stock; however, they are more complex to 
develop and perform analysis. On a district spatial scale, Nik et al. (2013) concluded that by 
the end of the century, annual cooling demand would double for most of the climate 
scenarios considered, but there is a large discrepancy (up to 500%) between scenarios. 
However, even increasing substantially in the future, the amount of cooling demand is 
rather low. Moazami et al. (2019) estimated that peak cooling demand (space or electricity) 
of a district in Geneva, Switzerland, can increase up to 16.8% by the end of the century.  

At the national spatial scale level, few studies have looked at the implications using 
simplified models, as Gouveira et al. (2012) did for the residential building stock of Portugal. 
Gouveia et al. (2012) used an energy services bottom-up approach with a technological 
model, and estimated the cooling services in the residential sector would increase more 
than 200%, which leads to an increase in electricity demand for cooling larger than 100% by 
2050. Dirks et al. (2015) found that annual cooling demand might increase 15% for the 
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whole US, leading to an increase of 17% in electricity demand and an increase in peak 
electricity load of 42%, considering scenario A2 in the CASCaDE dataset. Zhou et al. (2014) 
found that among the US states, the change in annual electricity demand can vary from a 
reduction of 10% to an increase of 20% by the end of the century considering IPCC scenario 
A2. Similarly, Xu et al. (2012) found that total electricity demand in the US might increase by 
2%, 5% or 8%, respectively for IPCC emission scenario B1, A2 or A1F1, while the electricity 
demand for cooling increase 25% or 50% respectively for A2 and A1F1 scenarios. However, 
it is found that the implications for cooling demand are significantly different for different 
buildings, as large office buildings can have an increase up to 70% and only 20% for 
warehouse buildings, for the A1F1 scenario, on cooling demand (Xu, et al., 2012). Similarly, 
Huang et al. (2016b) also found that there is a significant difference across the relative 
changes in energy consumption across different US climate zones, where the electricity for 
Minnesota could increase 136%. 

The effects of climate change impacts on cooling demand have associated an extensive 
range of uncertainty and often report to different variables. However, it is clear that for 
cooling demand, implications are substantial, both annually and for peak demand. Some 
report results relative to annual demand (Guan, 2012; Nik, et al., 2013; Zhou, et al., 2013; 
Huang, et al., 2016), and another report to peak demand (Auffhammer, et al., 2017; Burillo, 
Chester, Pincetl, Fournier, et al., 2019; Zhai, et al., 2019). Similarly, some present the 
implications at a global scale (Zhou, et al., 2013; Dirks, et al., 2015; Auffhammer, et al., 
2017), others only compare the results between different regions (Guan, 2012) or different 
types of buildings (Wang, et al., 2014). The majority have reported that the stock or 
buildings' technological assumptions are kept the same as the current status. However, this 
is extremely unlikely due to changes in the building stock, progress in technologies, and the 
likelihood of buildings adapting to climate change, as discussed in Sub-section 2.2.4. In 
addition, results are often presented to a limited number of scenarios, which may not 
match, or comparisons are made from different base levels. Probabilistic projections have 
enabled uncertainty in the weather projections and to explore the impacts for a more 
extensive range of climate conditions. However, to include this uncertainty on top of 
exploring different building types, climate zones, and building vintages, the computational 
costs often become prohibitive. 

2.2.3  Generation of future weather data 

In this section, the use of weather datasets for building thermal simulations is going to be 
discussed. First, the fabrication of current weather files will be discussed, and second, the 
generation of future weather datasets that include future climate projections will be 
reviewed. Weather files are used in building simulation to assess built environment designs' 
performance, especially during planning stages (Herrera, et al., 2017). Future weather 
datasets are required to assess the impacts of climate change on buildings, using simulation 
to assess the performance of building design solutions in these conditions (CIBSE, 2009). 
This type of analysis also allows for creating adaptation measures to enable buildings to 
operate in such conditions. 
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To start, it is essential to distinguish the definition of both weather and climate that are 
often used in the alternative. Weather is the description of the short-term phenomenon of 
climate variables. Climate is the long term description of the weather in a particular 
location, generally over 30 years (Shamash, et al., 2014). In the building energy simulation 
field, EPW files invented by the U.S. DOE, are the most common type of weather file used, 
which can be read by TAS, IES, ESP-r and EnergyPlus. In these type of files, the values of 35 
variables are kept for a sequence of 8,760 hours (EnergyPlus, 2010, 2015). However, only 14 
variables are used internally in the thermal engine. In typical weather files, the main 
weather variables covered are air temperature, dew point, global horizontal radiation, 
diffuse solar radiation, wind speed and wind direction (Herrera, et al., 2017). 

Weather files for building simulation programs are divided into two main categories, 
regarding the construction method used, typical and extreme conditions. It is first necessary 
to understand the features that these files must have to perform building simulations to 
understand the pursuit for such distinction. Herrera et al. (2017) identified that seven 
features are essential in these files to perform accurate building energy simulation: detailed 
time resolution (hourly), geographically meaningful, included urban-micro climate patterns, 
typical and extreme weather conditions, future possible conditions and finally, being 
credible in the community. Typical weather files are constructed weather files that intend to 
represent a typical weather data year for a specific location. Some examples of these 
fabricated files are CIBSE test reference year (TRY), typical meteorological year (TMY), 
weather year for energy calculations (WYEC) or international weather for energy 
calculations (IWEC-ASHRAE). Extreme weather files are constructed weather files that select 
extreme weather records, which are primarily intended to test the resilience of HVAC 
systems. Some examples are the CIBSE design summer year (DSY), hot summer year (HSY) or 
extreme meteorological year (XMY). Weather files are typically constructed based on a 
composite selection of different years of weather records. For example, TMY files select 
composite months based on Finkelstein – Schafer statistics (Finkelstein, et al., 1971). 

In BEM, it is standard practice to simulate buildings energy performance using single 
weather year data (CIBSE, 2009). For example, simulations using TMY are a good indication 
of long-term annual energy consumption (CIBSE, 2009; Barnaby, et al., 2011; Herrera, et al., 
2017). However, weather datasets present a significant limitation (Herrera, et al., 2017), as 
they may represent large spatial areas, and so its applicability may be less appropriate in 
some positions, significantly further away from the collection point (weather station). Also, 
as weather datasets are created based on composite construction, these files create an 
improbable time series. Similarly, extreme weather files are based on observed weather 
data, which is not long enough to enable these files to replicate weather conditions' 
potential natural variability. In addition, these weather sets do not include information on 
climate change. Some research has been studying the effects of using TMY files on the 
energy performance gap's existence (Drury B. Crawley, 2008; Bhandari, et al., 2012; Hong, et 
al., 2013; Grudzińska, et al., 2015). These studies use long timeseries of actual 
meteorological year (AMY) weather data, which are actual measurements of multiple years. 
Even considering a long time series, it is impossible to estimate future extreme conditions 
and future years' sequences accurately. 
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A climate projection is the climate system's simulated response, derived based on climate 
models (Intergovernmental Panel on Climate Change (IPCC), 2018). A climate model aims to 
simulate the physical, biological and chemical processes that governate the climate system 
(Intergovernmental Panel on Climate Change (IPCC), 2018). These models are complex and 
intend to understand climate change's potential trajectories and understand climate 
changes in past events (CIBSE, 2009). These models simulate all the land-sea processes at 
high resolutions, including all earth-system components (CIBSE, 2009; Moazami, et al., 
2019). Climate projections consider a baseline period, which is the representative base 
climate for a location for 30 years. Climate projections are related to emission scenarios and 
timelines (Herrera, et al., 2017). An emission scenario is a hypothetical trajectory of 
anthropogenic factors (due to greenhouse and other radiative factors) affecting the climate. 
A timeline is usually a period of 30 years, in which the respective results in the projections 
are averaged for the central point of this horizon period. Climate projection scenarios in 
IPCC assessment reports were first defined as emission scenarios and have now evolved for 
representative concentration pathways (RCP) (Herrera, et al., 2017).  

Climate projections found a generic likelihood for average temperatures to increase in the 
future (Pachauri, et al., 2014). In the future, It is expected that the frequency and intensity 
of extreme events will increase (Herrera, et al., 2017). It is also expected that the duration 
of these events will be longer. Herrera et al. (2017) concluded a growing need to simulate 
buildings in extreme conditions. This is especially important to evaluate the risks when 
morbidity and the failure of HVAC systems may occur. It is also expected that changes are 
more considerable during summer than in winter (CIBSE, 2009). Maximum temperatures are 
expected to rise more in summer than winter; however, this is not followed by similar 
patterns in minimum temperatures. Thus, it is expected a substantial increase in the daily 
amplitude of temperatures. 

The IPCC has set up the coupled model intercomparison project (CMIP) to create a 
procedure for systematic comparison between climate model outputs (Intergovernmental 
Panel on Climate Change (IPCC), 2018). The output results of these models are used to 
inform the IPCC assessment reports. For example, the CMIP6 (Eyring, et al., 2016; IPCC, 
2020a) compares and analyses 23 global climate models' outcomes to understand climate 
change phenomena better. These climate model results will be informing the sixth 
assessment report (AR6) due to release in 2022 (IPCC, 2020b). CMIP5 provides a multi-
model context for the climate change assessment in the IPCC AR5 (Taylor, et al., 2012; IPCC, 
2021). For the UK, the Met Office Hadley Centre climate programme has been producing the 
most up-to-date assessment of changes in the UK climate over the 21st century, the United 
Kingdom Climate Projections (UKCP). The HadCM3 is the coupled atmosphere-ocean GCM 
developed at the Hadley Centre, that has been used to produce  UKCIP02 (Hulme, et al., 
2002), UKCP09 (Jenkins, et al., 2009) and then for UKCP18 (Lowe, et al., 2018). 

The UKCP18 (Lowe, et al., 2018) includes a more recent generation of results from Met 
Office Hadley Centre global and regional climate models included in CMIP5. The climate 
projections presented in the UKCP18 report uses four RCP scenarios and one SRES scenario. 
The global model projections' spatial resolution is 60 km grids, probabilistic projections at 25 
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km resolution, presenting regional model projections at 12 km grid cells resolution and local 
model projections at a 2.2 km scale resolution. The UKCP 09 showed similar distinct levels of 
spatial resolution. The UKCP09 made available a local weather generator (Jones, et al., 
2009), based on the RCM model outputs. However, the UKCP18 will not present such a tool 
as it considers that climate change results for such temporal resolution have limited 
application in impact studies (Lowe, et al., 2018). For the UK, the Prometheus project 
(Eames, et al., 2011; Exeter, 2020) was set to develop risk probability weather datasets for 
51 locations in the UK. A methodology was developed to downscale UKCP09 projections 
with different likelihood levels for the different emission scenarios, time slices and locations 
(Eames, et al., 2011). 

Climate projections based on GCM are spatial and temporal coarse. Grid cells resolutions 
are generally between 100 km to 500 km, and these results' temporal resolution is at best 
on a few hours scale (CIBSE, 2009; Yassaghi, et al., 2019). The current good understanding of 
the climate relationship could enable better resolutions, but a lack of computational 
resources and data storage forces resolution to be coarse. However, for impact studies 
using building simulation, finer spatial and temporal resolutions are required. To achieve 
this, downscaling is often used. Downscaling of climate change projections outputs 
generates data at lower temporal or spatial levels than the original projections (CIBSE, 2009; 
Trzaska, et al., 2014). The temporal downscaling derives finer temporal resolutions from 
coarser original datasets. 

On the other hand, spatial downscaling derives information at a lower spatial resolution, 
assuming that relationships between larger and local climates are kept. There are two major 
types of downscaling: statistical and dynamic. Dynamic downscaling is made using finer 
spatial climate models (RCM, or Local), which are iterated coupled with assumptions from 
GCMs and can be executed in finer temporal scales/resolutions (CIBSE, 2009; Trzaska, et al., 
2014; Herrera, et al., 2017; Bravo Dias, et al., 2020). Statistical downscaling derive climate 
change projection outputs using existing statistical relationships in observed data. 
Dynamical downscaling can potentially model extreme conditions that can only be 
accurately modeled at low spatial resolution modelling. However, these require enormous 
computational resources, produce larger amounts of data and require a high level of 
expertise in setting up simulations and interpreting results (Trzaska, et al., 2014). Statistical 
downscaling is simpler to execute, but future climate trends will contain the current trends 
observed as they are based on observed data. 

Statistical downscaling can be further divided into stochastic and morphing methods. The 
morphing method was developed by Belcher et al. (2005). It consists of generating a time 
series of weather data set from a base series dataset, using three basic operations to derive 
new weather variables: shift, stretch and a combination of stretch and shift. Stochastic 
generation of weather data sets is produced by random generation of weather variables 
based on statistical properties from observed data and meteorological rules (CIBSE, 2009; 
Herrera, et al., 2017; Moazami, et al., 2019). The majority of future weather datasets used 
to analyse climate change 's impacts on buildings utilised statistically downscaled data 
(Bravo Dias, et al., 2020). Both statistical methods are based on observed historical data, 



67 
 

and projections assume that historical trends will be kept, which may not be the case 
(Trzaska, et al., 2014; Herrera, et al., 2017). It is recognised that morphed data may 
exacerbate extreme conditions (Herrera, et al., 2017), and once it deals with each variable 
independently, it loses the prevalent inter-link between variables in historical data. 
Stochastically generated data has the flaw that it reduces the extreme realisations to keep 
current trends. Synthetic stochastic weather generated data is considered the most reliable 
method for BPS, considering the available options for future weather generation (Herrera, 
et al., 2017). 

There are some weather tools available to generate future weather files. For example, 
UKCP09 (Jones, et al., 2009; Eames, et al., 2011) has produced its stochastic weather 
generator, creating 100 iterations of 30 years of hourly weather data for all locations in the 
UK and considering four different scenarios for three timelines. However, this method is 
only available for the UK, as it is based on local RCM simulation for this specific geographic 
resolution. Therefore, it is not possible to use a similar approach to locations that have not 
similar detailed RCM projection results. CCWorldWeatherGen (Jentsch, et al., 2013; 
University of Southampton, 2014) is a tool that morphs weather data for any world location, 
based on data HadCM3 GCM, and considering the A2 emission scenario. Meteonorm is a 
commercial tool based on a stochastic generator that produces weather data based on 
weather datasets' interpolation, combined with morphing technique considering GCM 
results (Meteotest, 2020). WeatherShifttm (Dickinson, et al., 2016; Troup, et al., 2016; Arup, 
et al., 2020) is another tool using morphing techniques to temporally and spatially 
downscale GCM results. This software uses an ensemble of the 14 GCM models from CMIP5, 
to generate six probability levels for two emission scenarios and timelines. Many studies 
that are looking at the impacts of climate change  in building energy demand have been 
using WeatherShift data (for example Aijazi, et al. (2018), Dino, et al. (2019), Troup, et al. 
(2019) and Berardi, et al. (2020)), as it can downscale data for any location in the world, and 
it incorporates some uncertainty. 

Probabilistic projections that some of these weather tools create, incorporate uncertainty 
levels to the analysis of the impacts of climate change, which deterministic projections 
based on a single modification of representative weather files (TMY-TRY) do not include. 
However, probabilistic projections require a spatial detailed and a vast number of climate 
projections, that are only available for specific and limited geographies, like the UK or 
Sweden. Therefore, deterministic approaches are applied more often, when assessing the 
impacts for regions with limited number of climate projections data available. Nevertheless, 
incorporating uncertainty in future weather data is critical to extensively analyse climate 
risks. 

Yassaghi et al. (2019) reviewed the multiple sources of uncertainty in assessing climate 
change impacts for buildings energy performance. It divides this uncertainty into three 
groups: the BPS, the climate projection and current weather data. It discusses that current 
weather data may be influenced by two types of uncertainties, the source and the 
procedure to generate these datasets. Future weather uncertainty may be driven either by 
the downscaling technique used or the inherent uncertainty from the climate projection 
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itself. For example, it is clear that by the end of the century, the uncertainty driven by the 
emission scenario will lead to the most considerable differences in results (Yassaghi, et al., 
2019). However, climate models bias was acknowledged in the climate change research 
community (Maraun, 2016), and was defined as the systematic difference between climate 
model estimations and observed data. This bias is generally dependent on the time-
resolution of the results analysed. 

GCM projection results are the source of most knowledge on future climate change (IPCC, 
2013), providing potential snapshots of future changes (Herrera, et al., 2017). However, 
some climate phenomena are substantially sub represented, especially at lower spatial 
levels (IPCC, 2013). Climate models are often biased and may present implausible results. 
For example, extreme events are not well represented, as they can only be modelled at low-
level resolutions. Model bias correction is used to overcome some of these limitations 
(Maraun, 2016). Bias correction is often used to match present observed data with model 
projections to calibrate them. However, these methods have limited function on 
downscaling global results and cannot change the global climate model's wrong sensitivities. 
Maraun (2016) discusses the correctness of using bias correction methods to correct climate 
models. It identifies that when trying to correct for lower levels, the patterns and interlinks 
in original global models are lost, so they should be used with caution. 

For a realistic and comprehensive assessment of climate change impact for building energy 
performance, it is essential to have building simulation accounting probabilistic climate 
projections to quantify the implications of different impact levels considering its embedded 
risks levels as discussed by Huang et al. (2019). The UKCP09 WG have enabled incorporating 
uncertainty in future weather data (Jones, et al., 2009), and several studies have utilised this 
approach to explore the impacts of climate change in buildings. However, this cannot be 
utilised for another type of climates, as discussed by Huang et al.(2019). However, for 
robust assessment of future climate scenarios, it is necessary to explore a broad range of 
outcomes, more than single projections. As reviewed in this sub-section, the weather 
datasets only indicate future scenarios, as there are multiple challenges for their generation 
and embedded bias. On the other hand, the sensitivity of buildings to weather status and 
the delicate correlation of weather parameters is known. 

2.2.4 Adaptation measures to climate change in buildings 

The energy performance of buildings in the future is highly uncertain for multiple reasons 
discussed in the previous sections of this chapter, namely BEM parameters (Section 2.1) or 
the weather conditions (Sub-section 2.2.3). However, it is important to assess the new 
challenges that building operations might face in the future. These challenges include the 
warmer and more extreme hot temperatures, the role in balancing power grids, and the 
need to reduce carbon emissions in all sectors. In this section, the implications of different 
building designs and related system options are analysed. 

In the future, it is expected that buildings operations will have to adapt to more extreme 
external environmental conditions. Many research studies have looked at the impacts of 
different design solutions for the future performance of buildings, for example, on reducing 
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the overheating risks (Jentsch, 2009; Gupta, et al., 2012; Patidar, et al., 2012; Moazami, et 
al., 2016; Liu, et al., 2020), minimizing additional cooling loads (Chow, et al., 2010; 
Asimakopoulos, et al., 2012; Jenkins, et al., 2015; Gercek, et al., 2019), shifting or shedding 
electricity peak loads or minimizing increase on cooling system design capacities (Jenkins, et 
al., 2013; Sánchez-García, et al., 2019). 

The analysis of the effects of climate change impacts often includes analysing the effects of 
adaptation measures on minimising the additional effects of climate change. The IPCC 
(2018) defines adaptation as the process of adapting to climate conditions and the effects of 
climate change. Adaptation seeks to avoid or moderate the negative consequences or 
exploit the opportunities from these changes. On the other hand, in the context of the 
impacts of climate change, mitigation is defined as the human intervention to reduce the 
sources or enhance greenhouse gas capture (Intergovernmental Panel on Climate Change 
(IPCC), 2018). However, these terms are often used alternatively as adaptation measures 
are considered to mitigate additional demand effects. 

On analysing the effects of climate change impacts for building energy demand, adaptation 
measures are considered alternative building design options. These are often called retrofit 
measures or energy conservation measures (Costa, et al., 2020). The assessment of such 
measures' performance is executed compared to base case results, which are 
current/present-day design conditions. These assessments are executed by using BPA tools 
that evaluate buildings' energy performance, considering future weather datasets. 
Therefore, the assessment of adaptation measures is made by analysing alternative design 
conditions for the same weather conditions. Adaptation measures can be generically 
grouped into different group types: reduction of internal heat gains, reduction of solar 
gains, change in thermal resistance, change of thermal mass, ventilation strategies, the 
adaptation of set-point temperatures, and changes in the efficiency of HVAC systems. 

Studies analysing the effect of adaptation to climate change in buildings energy 
performance have been using changes to the building envelope as one of the main 
measures to consider (Tian, et al., 2011b; Gupta, et al., 2012; Shibuya, et al., 2016; Pérez-
Andreu, et al., 2018; Shen, et al., 2019). Measures that change the envelope properties may 
include changes in different components and over different thermal properties. The aim to 
better insulate buildings’ envelopes (wall, roofs, ground and glazing) is done due to the 
increase of the thermal resistance driven by lower U-values (thermal transfer coefficients). 
Another design solution often evaluated changes on the reflectance (absorptivity and 
reflectance) envelope properties to reduce solar gains into external buildings thermal mass 
(Gupta, et al., 2012; Orehounig, et al., 2014; Vasaturo, et al., 2018). In addition, the effect of 
larger buildings thermal mass is often considered for adaptation (Gupta, et al., 2012; 
Ouedraogo, et al., 2012; Huang, et al., 2016), as it can offer some dampening effect 
between weather heat loads and space cooling requirements. 

Some of the most straightforward and common design strategies to reduce buildings' 
energy consumption are the retrofit of envelope design conditions, considering more 
stringent energy codes. Therefore, research studies assessed alternatives of envelope 
insulations, such as the U-Values of external walls (Shibuya, et al., 2016; Shen, et al., 2019), 
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roofs (Tian, et al., 2011b; Shen, et al., 2019), infiltration rates (Nik, et al., 2016; Mata, et al., 
2019), or window coefficients (Wan, et al., 2011). Several studies  have analysed the impact 
of such measures to mitigate the additional building energy consumption in the future with 
different climate change scenarios (Patidar, et al., 2011; Wan, et al., 2011; Asimakopoulos, 
et al., 2012; Chen, et al., 2017)). For example, Wan et al. (2011) concluded that total annual 
energy consumption for an office building in Hong Kong would be reduced by a maximum of 
4%, considering the different individual envelope design measures analysed (shading 
coefficients, U-values or window to wall ratio). However, the total energy consumption 
would still be at least 4% larger in these scenarios than the base scenario. Similar findings 
were achieved in other research studies (Gupta, et al., 2012; Vasaturo, et al., 2018), 
indicating that increasing insulation or airtightness might be insufficient to mitigate the 
additional energy consumption due to future global warming. 

Another primary type of adaptation measure is focused on reducing glazing solar heat gains. 
Different building design parameters may have effects on this, and so several different 
strategies are often studied. The most studied of these effects include shading design 
solutions over glazing envelope, to avoid direct solar radiation heat gains. An alternative 
design solution to reduce solar heat gains is to reduce the available glazing area, and it is 
quantified by reducing window to wall ratios (Wan, et al., 2011, 2012; Guan, 2012; 
Ouedraogo, et al., 2012). Yassaghi et al. (2019) has also identified adaptative glazing control 
solutions as options to reduce unintended solar heat gains. Adaptative coating solutions 
present encouraging results, blocking or allowing solar heat gains depending on weather 
and indoor conditions (Hoes, et al., 2016). 

There has been a strong focus on evaluating the impact of better building shading to reduce 
additional building heat gains through the envelope (walls and windows). Several studies 
have analysed how overhangs could reduce additional cooling loads and total energy 
consumption on buildings (Patidar, et al., 2011, 2012; Gupta, et al., 2012; Chen, et al., 2017). 
As analysed by Asimakopoulos et al. (2012), building adaptation studies to climate change 
may also consider the impact of cooling paints to reduce the albedo factor of buildings or 
consider the effect of passive solar strategies in building facades as done by Huang et al. 
(2016). The increase in the building thermal mass coupled with some ventilation / AC 
strategies can be considered another adaptation measure, as it explores free cooling 
opportunities and might shift cooling peak loads. 

The reduction of internal heat gains is another type of adaptation measure that has been 
significantly considered. In this type of measure, it is possible to reduce the contribution 
from different internal heat gains, such as lighting (Tian, et al., 2011b; Nik, et al., 2016; 
Mata, et al., 2019; Shen, et al., 2019), equipment (Tian, et al., 2011b; Wan, et al., 2012; 
Shibuya, et al., 2016; Kotireddy, et al., 2018), or occupancy. For example, measures 
considering reducing lighting densities follow the expectation that new lighting technologies 
will enable sharp drops in lighting densities. Similarly, reductions in equipment densities are 
considered using more efficient IT equipment, which will reduce waste heat from these 
appliances. There is a trend for increasing computational requirements in offices, which 
have raised the equipment densities in offices, but on the other hand, there is a trend for 
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more centralised computing power, like cloud computing, which will reduce the local 
computing and so power densities. Some studies (Beddoe, 2012; Kotireddy, et al., 2018) 
have looked at reducing occupancy densities and/or operation schedules. 

The increase in HVAC systems efficiency is another primary type of adaptation measure, 
considering the increasing efficiency of cooling systems (changing the coefficient of 
performance (COP)) or the adoption of heat recovery systems. In addition, it can be 
considered that adaptations of ambient set-point temperatures can also be included under 
this type of measures. Multiple studies have been analysing the effects of increasing cooling 
set-point temperatures for buildings' space cooling and electricity demand (Wong, et al., 
2010; Wan, et al., 2011, 2012; Nik, et al., 2016; Pagliano, et al., 2016; Shibuya, et al., 2016; 
Hooyberghs, et al., 2017; Wang, et al., 2017; Jiang, et al., 2018; Dino, et al., 2019; Mata, et 
al., 2019; Shen, et al., 2019). In some studies, set-point temperatures changes are set based 
on thermal adaptive comfort temperatures (Pagliano, et al., 2016; Liu, et al., 2020). Thermal 
adaptive comfort is an approach based on the occupants' vote for comfort temperatures, 
considering the assumption that occupants react in reflection to the environment’s situation 
experienced and are less likely to suffer discomfort (Nicol, et al., 2002). 

The configuration and operation of HVAC systems are other types of common adaptation 
measure that are analysed. In general, the adaptation of HVAC systems consider altering 
coefficient of performance (COP) (Wan, et al., 2011, 2012; Jenkins, et al., 2013; Nik, et al., 
2016; Chen, et al., 2017; Mata, et al., 2019; Shen, et al., 2019). Including heat recovery in 
HVAC systems, has been also considered to reduce electricity demand for cooling (Chen, et 
al., 2017; Pérez-Andreu, et al., 2018; Mata, et al., 2019). Changing on HVAC operation 
strategies can also be considered, such as changing ventilation strategies, to integrate more 
free-cooling (Patidar, et al., 2012; Dodoo, et al., 2016; Huang, et al., 2016; Wang, et al., 
2017; Dino, et al., 2019), namely through night ventilation (Frank, 2005; Shibuya, et al., 
2016; Hooyberghs, et al., 2017). Impact studies evaluating adaptation may also consider the 
use of further ventilation rates to increase the use of free cooling using buildings thermal 
mass (Gupta, et al., 2012; Ouedraogo, et al., 2012; Dodoo, et al., 2016; Huang, et al., 2016). 
Integrating active storage systems in the HVAC system may also reduce energy consumption 
or obtain other types of design gains (economics of the operation, reduce system design 
capacity level). However, the evaluation of these measures' implications is often made at 
the aggregate level, and it is difficult to understand the individual impact of each measure. 

Many research studies analysing the impacts of climate change on building energy 
performance (Tian, et al., 2011b; Jenkins, et al., 2013) have aimed to address a research 
question similar to: “Is it possible to mitigate the additional demand with the adaptation 
option?”. One or several sets of adaptation options are analysed, including a group of 
changes to the multiple design parameters. For example, this may include reducing internal 
heat gains, increased thermal resistance, improved cooling systems efficiency, and the 
analysis often compares the energy demand reduction of such conditions against base 
conditions in future scenarios. It often shows a design solution that presents similar demand 
levels in future scenarios as the base case in present-day weather conditions, as seen in 
(Tian, et al., 2011b). However, Tian et al. (2011b) found that even considering adaptation 



72 
 

options, for the most extreme weather samples of the scenarios analysed the future 
demand is found to be larger than at current levels. On the other hand, for overheating, 
adaptation options' effectiveness is not enough to avoid overheating for multiple conditions 
and cases as shown by Gupta et al. (2012). 

In order to assess the effectiveness of different retrofit measures, some studies have 
developed systematic metrics to measure the savings compare to base cases and the 
robustness of the different options. For example, Nik et al. (2015, 2016) calculated the 
relative difference of the corresponding space heating demand before and after the retrofit 
for each measure and for each building, climate scenario and projection timeline. In 
addition, a standard deviation from the mean RD among all buildings is calculated to study 
the effectiveness of each measure. Pérez-Andreu et al. (2018) presented the percentage of 
savings of the annual energy demand of different modelled adaptation measures, 
considering all climate scenarios and timelines. Chinazzo et al. (2015) presented multiple 
energy conservation measures performance based on an energy-saving index based on the 
weighting between the relative difference of retrofitted and base case model results, across 
different time points for a determined climate scenario. It is now well established that 
adaptation measures contribute to reduce the impacts of climate change in buildings. 
However, only a few studies have developed systematic ways to assess these measures' 
effectiveness. Exactly how adaptation strategies contribute to effectively mitigate the 
additional demand due to the impacts of climate change remains poorly understood. In this 
research, the mitigative effect of these adaptation options will be systematically analysed 
(Section 6.4). 

Regarding the ranking and identification of the most effective measures discussed 
previously, the COP improvement, reducing lighting and equipment densities, and cooling 
set-point temperature's relaxation seems to be the individual measures to have the largest 
impact. For example, Wan et al. (2011) have shown that annual energy use could be 
reduced by almost 15%, by reducing lighting intensity from 15 to 10 W.m-2, for a generic 
office building in Hong Kong. In the same study, relaxing the cooling set-pointset-point from 
24°C to 27°C, or the improvement of the COP from 4.7 to 6.5, led to a reduction of annual 
energy use by around 8%. Similarly, Shibuya et al. (2016) have found that improved lighting 
and equipment could reduce annual cooling demand by 25% in some cities in Japan, while 
the relaxation of set-pointset-point temperature could reduce around 15%. On the other 
hand, looking at the implication on heating demand, Nik et al. (2016) found that the 
relaxation of the set-pointset-point temperature by one or two degrees could lead to at 
least 20% reduction on annual heating demand, which is the most effective measure among 
the range of options analysed. More efficient equipment led to an increase in annual 
heating demand by around 10%. The consistency between results is robust, hence, it is 
important to point out that most of these results refer to locations in cold or mild climates, 
such as Sweden or the UK. Consequently, there is a lack of understanding of the robustness 
of these results across different sites. 

Studies looking at the effects of adaptation measures as strategies to cope with the impacts 
of climate change are mainly focused on the effects on annual energy demand, and/or 
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looking at the mitigation of thermal discomfort in future conditions. Existing research on 
energy conservation measures mainly focuses on annual demand rather than peak demand, 
as it intends to analyse the energy-savings, and the cost-effectiveness of these measures. 
One study by Jenkins et al. (2013) evaluated the effects of two adaptation solutions on 
reducing electricity annual and peak demand for cooling in an office building. It found that 
annual electricity consumption can be reduced by 33% and 44% for locations as Edinburgh 
and London, respectively. However, the peak electricity consumption is not reduced with 
both measures in comparison to the base design conditions. This may be the case as some 
design conditions may be sufficient to reduce cooling requirements for most of the year but 
might be ineffective during extreme conditions. This becomes a central challenge when it is 
known that the impacts of climate change are intensifying and increasing the duration of 
these extreme warmer conditions. 

To date, only a few studies have analysed systematically the effectiveness of adaptation 
strategies in mitigating additional demand due to climate change impacts. Moreover, very 
few studies have analysed the effects for peak demand. This research is going to analyse the 
effects of a group of fairly standard adaptation options in attenuating both peak and annual 
HVAC and total electricity demand, for three different office types, for different cities. Six 
individual measures are analysed (on relaxing cooling set-point, lighting and equipment 
densities, COP, SHGC and reducing ventilation rate) and three combined measures 
(grouping two, four and all six measures). 

2.3  Discussion of the literature review 
Overall, the literature review in this chapter has covered challenges and methods in building 
energy modelling that may be detrimental when analysing the impacts of climate change on 
building energy consumption. For example, the cooling demand for buildings in the future is 
a challenge, especially on peak loads, that are driven substantially by extremely hot weather 
conditions. This has consequences for the sizing of HVAC buildings and the operation of 
power networks, which can fail more often in the future. However, it is possible to estimate 
the future weather conditions, and the impacts may differ from location to location and 
depending on buildings. 

In the literature reviewed, there are several different methods to estimate the aggregated 
energy consumption of building stocks, divided into top-down and bottom-up approaches. 
For bottom-up approaches, the individual energy performance of buildings is modelled and 
then scaled up. The different types of research objectives in this research area constrain the 
selection of the modelling approaches. Physical energy models and, more specifically, 
dynamic building performance simulation is a modelling approach capable of explicitly 
calculating the end-use energy consumption, at different building levels, spatial and 
temporal, and considering different technological scenarios. Therefore, these methods 
enable the analysis of the potential implications of new technologies and adaptation 
measures in buildings, which are required to be considered when evaluating future long-
term scenarios as aimed in this thesis. 

Future types of buildings’ uses and functions make the modelling of future buildings a 
tremendous challenge, which brings additional complexity for simulation tools (Hensen, et 
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al., 2011). At the moment, these challenges seem still too complicated for most of the 
current modelling approaches and tools, as highlighted in the review by Hong et al. (2018). 
Some of these challenges are related to the limitations of building models and the 
challenges created by an increasing need for integrated and holistic modelling approaches 
as discussed in (Augenbroe, 2011; Hensen, et al., 2011; Wetter, 2011; Clarke, et al., 2015). 
The complexity and detail of physical building models have been evolving, with better 
computational processing capacity. However, even the most detailed and exhaustive models 
have difficulties ensuring the quality of simulation results (Hensen, et al., 2011). Thus, it is 
essential to select the modelling approach based on the requirements for accuracy on the 
outputs and the costs of preparing and simulating the model. 

Given all that has been reviewed, one can indicate that building stock energy models or 
stock aggregated energy models are still very reliant on the accuracy and weighting of 
individual building models. Thus, improving the accuracy of aggregated building stock 
demand requires improving the confidence and robustness of individual building models. 
Uncertainty and sensitivity analysis methods intend to analyse BPS results' robustness, 
identifying the embedded uncertainty in models used and the parameters contributing to 
these uncertainties. The evidence presented in this review suggests that it is important to 
understand further the uncertainty of building models simulation outputs and the 
contribution of different parameters for these changes, through sensitivity analysis. 

Previous studies have failed to show the sensitivity of models relatively to peak electricity 
demand or peak space cooling requirements. In addition, there is a lack of understanding of 
how these measures compare among different climate base conditions and across different 
buildings. Thus far, sensitivity and uncertainty analysis often focus on singular case studies; 
however, it is crucial to have a broader understanding of the implications of these inherent 
modelling assumption uncertainties to critical outputs, such as peak electricity demand and 
peak space cooling requirements. In Chapter 4, the research analysis address research 
question 1 and 2 of this thesis that conveys the research gaps described above. 

Overall, the research indicates that future climate conditions will be warmer and drier, 
showing significant uncertainty ranges and that climate projections present multiple sources 
of uncertainty. One of the primary sources of this uncertainty is the emission scenarios and 
the projections' time scale. Overall, these studies highlight the possibility of bias in the 
weather data generated due to the downscaling approach and the baseline conditions 
considered and the emission scenarios assumed. Therefore, there is a requirement to 
further incorporate uncertainty on the future weather data used in studies looking at the 
effects of climate change on the built environment. Downscaling methods have a different 
type of bias, and that the generation of extreme weather conditions is not well propagated 
in most of the methods. Extreme events are sensitive to the assessment of the effects, as 
they are critical for analysing the resilience of building systems. However, it is essential to 
acknowledge that future weather data-sets are still projections, and it will only be possible 
to use them as possible scenarios of climate conditions. Finally, quantifying cooling demand 
sensitivity due to different weather parameters uncertainty is required to understand the 
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implications of future weather generation in measuring the effects of climate change in 
buildings on impact studies. 

Each method for generating future weather data based on climate projections has its 
limitations; hence there is no best approach for downscaling, as concluded by Trzaska et al. 
(2014). Thus, it is important to be informed on the requirements of the approaches and the 
limitations of the results generated. For the assessment of impacts in buildings energy 
performance, it is still necessary to understand the implications of changes in different 
weather variables, especially for space cooling demand, both for annual and peak demand. 
Analysing the sensitivity of independent weather parameters on building simulations results 
is challenging to execute, as it is impossible to isolate weather variables due to their 
inherent inter-links. Some studies, however, have tried to analyse these sensitivities for 
building energy consumption, with findings that are limited and not possible to extrapolate 
to archetype models in other building simulation programs and locations. Therefore, a 
critical research gap relevant to be addressed is analysing the sensitivity of weather 
variables in building energy performance. Bridging this gap will allow to better understand 
the implications of these weather changes in the electricity demand for cooling demand. It 
is critical to realise how weather generation and changes in weather parameters can drive 
research findings on studies looking at the impacts of climate change in buildings 
performance. 

In recent years, a more significant number of studies have investigated the impacts of 
climate change on building energy performance, as reviewed in (de Wilde and Coley, 2012; 
Li, et al., 2012; Andrić, et al., 2019; Yassaghi, et al., 2019). Overall, these studies highlight 
that the impacts of climate change for buildings will drive overall annual reductions in 
heating demand and an increase in cooling demand. What remains unclear, however, is 
precisely how will be the implications for electricity peak demand and space cooling 
requirements. In addition, the assessments of these impacts lack incorporating different 
uncertainty levels of climate change projections, enabling robust approaches in evaluating 
the effects on climate change impacts. As Trzaska et al. (2014) discussed, it is necessary to 
incorporate quantitative levels of uncertainty to avoid the perception that climate 
projections results are scientific forecasts. Some studies have achieved robust assessments 
of the impacts of climate change, using future weather data generated based on dynamic 
downscaling from the outcomes of RCM. These studies are for locations in the UK, Sweden 
or Switzerland, where research on climate change has been significant. For example, a large 
share of the literature on the effects of climate change impacts on buildings energy 
performance has been done using locations in the UK, using large weather data-sets 
available, as concluded by Moazammi et al. (2019). Thus, this research area is mainly rooted 
in mild and cold climates and inherent assumptions. For different locations and climate 
conditions, research findings are likely to be different, as concluded in (Hong, et al., 2013) 
and (Wang, et al., 2014). 

There are still several gaps in the literature, which are essential to address to fully 
understand the implications of climate change for the cooling demand of buildings. Flagging 
the most relevant: the need to fully incorporate the uncertainty of weather data-sets, to 
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analyse the impacts of climate change, and analyse the effects on distinct locations 
representing a different type of base climate conditions. This thesis proposes a new 
methodology to generate a large sample of weather data, that mimics a pathway of possible 
future climate data. The specific objective of this approach was to study the effects of such 
uncertainty on a broad range of climates, addressing research question number 4 (Chapter 
6). 

Effects of climate change impacts on the built environment may be substantially reduced by 
adaptation measures on building design and operation. Research on the effects of 
adaptation measures to reduce the implications of climate change impacts on buildings 
performance are intended to quantify the reduction effect of adaptation strategies in 
buildings. Many of these studies have proposed a set of measures, and only a minority of 
them have quantified the implications of different individual strategies as conducted by Nik 
et al. (2016). As for research looking at the effects of climate change, these measures are 
mainly focused on reducing annual demand levels or overheating frequencies. Most of these 
design strategies are considered energy conservation measures , commonly incorporated on 
building design optimisation studies, aiming to reduce the energy consumption of buildings 
and consider the investment costs needed. Up to now, very little research has systematically 
analysed the implications of different measures, like Nik et al. (2016) or Mata et al. (2019). It 
is also evident that this analysis used snapshots of future climate conditions and cannot 
systematically analyse the effects of such measures across extensive uncertain future 
conditions. 

This thesis will compare the effectiveness of different standard adaptation options and 
consider the whole uncertainty on future weather conditions, across different 
locations/climates and for different types of buildings. This is aimed to address research 
question number 5, and the results to answer this are presented in Chapter 6, specifically in 
Section 6.4. To sum up, it is important to understand further if these solutions can minimise 
the expected increase in energy demand due to additional cooling demand. It is also 
necessary to know if these solutions can reduce the sizing of HVAC solutions and if it is 
possible to control the increase in on-peak electricity demand. 

2.4 Chapter summary 
This chapter presents a review of the literature related to the research in this thesis. First, a 
review of previous studies related to building energy modelling is made (Section 2.1), 
covering building modelling approaches at stock and individual level. It also analyses 
archetype modelling, validation of building performance simulation and uncertainty and 
sensitivity analysis. Secondly, a review of the literature looking at the implications of climate 
change on cooling demand of buildings is made (2.2). The section looks specifically into the 
effects on building energy performance and then on cooling demand, but also analysis the 
generation of future weather data and adaptation measures. Finally, in Section 2.3, a 
discussion of this literature review is undertaken. 

The review of the literature has highlighted some of the main research gaps in the analysis 
of the effects of climate change impacts for the cooling demand of buildings and identified 
some of the research challenges in this type of studies. This analysis has contributed to 
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defining the research aim and the research questions to be addressed in this study. In 
addition, it serves as a segue to the definition of the research methodology presented in 
Chapter 3.
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3 Methodology 
3.1 Overview 
The research methodology has three parts. First, a sensitivity assessment of building model 
simulation results employing parametric analysis of the building envelope and operational 
input parameters. Second, an assessment of the implications of weather uncertainty, 
through morphing procedures in weather timeseries, for the energy performance of 
buildings. Third, an assessment of the potential impact of climate change, using a novel 
climate pathway approach. In this thesis, each research analysis considers the simulation 
results of three DOE office reference building models in six locations. The metrics assessed 
in each simulation case were annual and peak electricity demand and the space cooling 
requirements of each office building model. 

The first part of the research methodology assesses the sensitivity of different building 
design and operational parameters (Section 3.2, and research results presented in Chapter 
4). This enabled to identify the effects of different office building energy model types, and 
locations on annual and peak electricity demand, together with the implications for 
different design outputs. The main novel contribution of this approach is that it 
systematically evaluates the sensitivity of results among different types of buildings and 
locations. The variability of the results in the simulation samples was quantified by the 
coefficient of variations of each output results analysed, and the sensitivity indices were 
presented for each parameter regarding each output analysed. In this research, a pre-
analysis step was conducted with simplified building energy models to screen a larger 
number of parameters and identify which were the most important physical and envelope 
parameters. For this step. the Morris EE method was applied. Following this, a sensitivity 
analysis using detailed archetype models was conducted.  It involved the application of the 
Sobol SA method to analyse a smaller number of parameters to better quantify the 
sensitivity of electricity demand to these parameters. 

The second part of the method approach (Section 3.3) analyses the sensitivity of change 
parameters on future weather time-series through morphing procedures (research results 
are presented in Chapter 5). The approach assessed the effects of the potential weather 
uncertainty and the implications of different weather characteristics patterns on the energy 
performance of buildings. It evaluated the impact of individual variations on different 
weather variables, assessing the individual impact of the different morphing operations 
used to generate future weather data time series. This approach enabled assessing and 
comparing the different sensitivities to the weather change parameters commonly used to 
generate future hourly annual weather data for building energy simulation. The method 
proposed to study the effects of morphing procedures is pioneering in this research area. 
The methodology approach started by analysing 30 year series of actual weather data and 
the existing weather data downscaled from global climate model projections. It identified 
trends that are likely to occur to define/set the parameter ranges to be analysed in the 
weather sensitivity tests. After that, morphing operations were individually executed for 
multiple weather change parameters. For each distinct morphing operation tested in the 
case study, a linear sensitivity analysis was performed. A ranking of the indices for the 
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different tests enabled identifying which operations had the most significant effect on the 
result analysed. 

Finally, the third part of the research methodology proposed (Section 3.4) was aimed to 
study the effects of potential climate change impacts, developing an innovative approach 
(research results are presented in Chapter 5). A climate scenario pathway was developed to 
assess the effects of climate change impacts. The novelty of the approach is that it created a 
broad continuous set of future climate scenario conditions (a path), which was decoupled 
from the direct result of GCM and RCM climate projections and can be applied to any 
location and current weather file available. An extensive set of synthetic weather files must 
aggregated to compose a climate scenario pathway. In this research, 200 synthetic weather 
files were generated to create a climate scenario pathway for each location analysed. For 
each random iteration, the value of all-weather change parameters must be randomised to 
execute morphing operations on the annual weather -'data-set's main variables. The range 
limit for the weather change parameters to guide these operations should be defined based 
on climate 'projections' existing estimation values. After that,  a set of adaptation measures 
was proposed and the effectiveness of these in reducing the additional demand due to the 
impacts of climate change was investigated. 

For this thesis, a simulation case study was prepared to apply the research approach 
developed (Section 3.5). The three DOE reference office building models were adapted to 
utilise a model structure that enabled accessible parametric iteration, as some stages of the 
approach required. Six distinct locations were utilised as a part of the case study: C1-
Singapore, C2-Cairo, C3-Athens, C4-Beijing, C5-Lisbon and C6-London. 

To address the aim of this research project, the focus of the result analysis of the building 
models simulated was the electricity demand. , Total electricity demand, the HVAC end-use 
and the space cooling requirements of the building models were analysed. Both annual and 
peak demand results were analysed, especially focusing on peak demand, as this research 
aimed to evaluate the potential implications for the power network and the implications to 
HVAC systems design capacities. 

The approach was aimed to evaluate the climate resilience of building designs, not only 
assessing the impacts of a large set of potential future climate conditions/scenarios but also 
evaluating the sensitivity of weather variability. Similarly, comparing the performance for 
different building design and operational model conditions across different buildings and 
locations. The approach was set on a three-stage method sequence; however, the methods 
can be used separately. Similarly, the methodology developed and proposed can be applied 
to a more extensive set of cases, with different sets of simulation outputs, locations and 
building models. 

A general overview of the research methodology developed is given in the previous 
paragraphs. In the following sections of this chapter, more detailed insight is given into each 
part of the approach. First, the developed approach for large and broad sensitivity analysis 
for building simulation is presented in Section 3.2. Second, the approach developed to test 
the sensitivity of weather parameters is described in Section 3.3. Third, in Section 0, the 
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developed method is described to generate the climate pathway scenario and evaluate the 
potential effect of climate change impacts. In Section 3.5, the particular simulation case 
study utilised for the research in this thesis is presented. The characteristics of the building 
office models used are presented in Sub-section 3.5.1, and the locations chosen for the 
simulation case are presented in Sub-section 3.5.2. The parametric details of the sensitivity 
studies executed are presented in Sub-section 3.5.3, and an explanation of the integrations 
of tools used to execute the approach is given in Sub-section 3.5.4. 

 
Figure 3.1 – Overview of the methodology framework developed 

3.2  The systematic sensitivity analysis of building operation and building design 
parameters 

The first part of the methodology developed aimed to evaluate the sensitivity of the energy 
performance of building designs modelled and so addressing research questions number 1 
and 2 of this thesis. The approach was set to execute parametric studies of building energy 
models’ design and operational input parameters to have insights on the effect for the 
energy performance metric or metrics of analysis. The step was subdivided into two main 
phases: a preliminary sensitivity study with simplified models and a sensitivity analysis study 
with a more detailed archetype model. The preliminary study was aimed to explore a vast 
number of parameters, with faster simulation runs and simplified iterations of design 
parameters and the results of the preliminary study were published in two conference 
papers: CLIMA (Zeferina, Birch, et al., 2019) and CISBAT (Zeferina, Wood, et al., 2019). The 
parametric study includes physical form geometric parameters, using a simplified one 
internal zone building model. The following phase, studying the sensitivity of 
archetype/prototype models, aimed to evaluate the variability of the performance in more 
detail, using a lower number of sets of parameters to iterate. It was intended to quantify the 
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sensitivity for the energy performance metric(s) in analysis for different locations, time 
resolution and building types. 

Tian et al. (2013) described a typical six-step sequence for implementing a sensitivity 
analysis in building performance simulation. The typical sequence starts by defining (1) input 
parameters variation, creating (2) and running (3) the model, collecting results (4), running 
the sensitivity analysis (5) and presenting the sensitivity result (6). In this research approach, 
similar steps were executed. In summary, the energy performance is assessed through 
dynamic simulation, parameters sensitivity is ranked, and the importance of each parameter 
is quantified to the contribution of the output metric analysed. The process is used to 
identify the building design parameters (occupancy, operational, HVAC and envelope) with 
the most significant contribution within the performance design constraints evaluated. A 
systematic comparison between different (but comparable) building types and locations is 
conducted to give insights on different performance characteristics and enhance design 
choices' distinct effectiveness for different simulation cases (conditions). 

Using a dual-stage sensitivity analysis approach as proposed and presented in Figure 3.2 
enables the application of a simplified sensitivity method to facilitate the execution of a 
broad parametric study with a smaller number of required simulation runs. After that, a 
reduction of the parameters in analysis can be made, and a more complex (i.e. a global 
method) can be used. In the following sub-sections, a more detailed explanation about the 
methods applied is made. 

 
Figure 3.2 – Description of the dual–stage sensitivity analysis approach 

The R sensitivity package (Iooss, et al., 2020), which provides functions and routines to 
implement several global sensitivity methods, was utilised to prepare the sensitivity analysis 
executed in these studies. For the Morris method, the morris function implements the 
Morris elementary effects screening method (Morris, 1991). In addition, this 
implementation includes some improvements to the original method as the space-filling 
optimisation of the design (Campolongo, et al., 2007) and simplex-based design (Pujol, 
2009). For the Sobol method, the Martinez estimators (M. Baudin, K. Boumhaout, T. Delage, 
2016) were used, which implements a Monte Carlo sampling-based procedure to estimate 
the Sobol indices. 

3.2.1 Application of the Morris elementary effect (EE) method to screen input parameters 
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The Morris EE method is a screening method, a simple but efficient way to evaluate the 
contribution of the main input parameters to changes in the model outputs (Saltelli, et al., 
2008). This method determines two quantitative sensitivity measures, the mean (μ*) and 
standard deviation (σ). The mean μ* measures the overall influence of the input factor 
analysed on the model output and the standard deviation σ assesses the effect of factors 
due to the interaction with the other parameters (see Saltelli, et al. (2008) for an extended 
description of the method). The sampling method considers k independent inputs (Xi); 
where each parameter varies across p selected levels within the input range, creating 
equidistant spaces between input points. Thus, the method produces multiple trajectories 
(r), each with (k+1) samples, where two consecutive samples only differ in one input 
parameter value, which is changed by relative fix amount in that coordinate (Xi), ∆. The 
equations for evaluating the elementary effect (EE), the mean (μ*), and standard deviation 
(σ) can be written as Eq. (3-1), (3-2) and (3-3), respectively. 

 𝐸𝐸 , (𝑥 ) =
[𝑦(𝑥 ) − y(𝑥 )]

∆
 (3-1) 

 𝜇 ∗ =
1

𝑟
𝐸𝐸 ,  (3-2) 

 𝜎 =
1

𝑟 − 1
𝐸𝐸 , − 𝜇  (3-3) 

Where, 

 𝜇 ∗, is the mean sensitivity measure 

 𝜎 , is the standard deviation, sensitivity measure 

 𝐸𝐸 , is the elementary effect relative to factor i along trajectory j 

 𝑟, is the total number of trajectories 

 j, is the current trajectory 

 i, is the parameter analysed 

 ∆, Sampling distance interval 

For each sensitivity analysis simulation case evaluated in this thesis, the Morris EE sensitivity 
method was utilised. The number of input parameters to be screened was distinct, as shown 
in Table 3.1. The input parameter range was varied across p number of levels, six in the 
CLIMA (Zeferina, Birch, et al., 2019) and CISBAT (Zeferina, Wood, et al., 2019) conference 
papers prepared as part of this thesis research on a simplified building model and eight for 
the more complex archetype models. The number of trajectories was defined differently for 
each case, 80 for the archetype studies, 35 and 50, respectively for the preliminary studies 
CLIMA and CISBAT. This number of trajectories is considered a large enough number of 
trajectories for the number of parameters and levels selected (Sarrazin, et al., 2016). Each 
trajectory included k+1 samples configurations, leading to a total number of 595 samples for 
CLIMA study, 450 samples for CISBAT study, 1,200 samples for each location considered for 
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the large office building archetype, 1,040 for the other two archetypes (small and medium). 
In the simulation case with archetype office models, the method was applied considering 
each of the six locations, consequently leading to 7,200 simulation runs, for large offices, 
and 6240 simulation runs for medium and small offices. The sensitivity metrics, μ* and σ 
were calculated for each one of the output metrics considered. The importance of input 
parameters was ranked based on the μ*. An assessment of the influence on each output 
metric was done and contrasted between the different locations and building types.  

Table 3.1 – Morris EE method parameters for each office building model case 

Model k r p Iterations Climate 
scenarios Output 

CLIMA 16 35 6 595 5 Cooling Requirements 
CISBAT 8 50 6 450 1 HVAC 
Small 12 80 8 1040 6 Total, SPC, HVAC 
Medium 12 80 8 1040 6 Total, SPC, HVAC 
Large 14 80 8 1200 6 Total, SPC, HVAC 

 

3.2.2 Applying the Sobol methodology to assess the sensitivity of outputs to selected input 
parameters 

The second stage of the sensitivity approach was applied in the CISBAT study model 
(Zeferina, Wood, et al., 2019) and the large office building archetype cases, using a more 
complex variance-based method, the Sobol method. Sobol is considered one of the most 
efficient methods to quantify the variance of the output and decompose it according to the 
uncertainty of input factors (Saltelli, et al., 2008). The method was only applied to these 
models, due to the associated complexity, as it requires a larger number of simulation runs. 
Indeed, CISBAT study (Zeferina, Wood, et al., 2019) was a development of the CLIMA study 
(Zeferina, Birch, et al., 2019) and the large office buildings was considered the type of 
building more relevant to further study. 

The approach considered uncertainty in all eight parameters on the CISBAT model and 
selected six of the initial parameters in the large office building model, based on the 
screening of the input parameters with the largest contribution, using the Morris Effect 
method described in 3.2.1. The Sobol method generates two random samples with n 
iterations of all input parameters using simultaneous and independent random sampling 
techniques for each input parameter considered. After that, i additional sample matrices (Ci) 
were generated, based on the replacement of values in sample A by the correspondent 
parameter values on sample B. Thus, it made a total number of ((i +2) times n) iterations of 
the building model condition, as there were two base sample iterations (A and B), and i 
more transformed samples ( C ). 

Figure 0.1 and Figure 0.2 show the convergence of Sobol indices, both for the outputs of 
peak and annual total electricity demand for all parameters, with the sample size, which 
indicates the stability of the results presented. 

Variance effect indices are computed, measuring the first-order (Si) and total-effect indices 
(ST) of the input model parameters. Si is the measure of the parameter's primary effect, 
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indicating how much the output variance could be reduced if the parameter i could be fixed. 
ST is the total-effect Sobol index, and it is the addition of the parameter's main effect and 
the interaction effect with other parameters. The main effect (Si) and the total effects (ST) 
can be computed as Eq.(3-4)  and Eq. (3-5) from Saltelli et al. (2008). 

 𝑆 =
𝑉[𝐸(𝑌|𝑋 )]

𝑉(𝑌)
 (3-4) 

 𝑆 = 1 −
𝑉[𝐸(𝑌|𝑋~ )]

𝑉(𝑌)
 (3-5) 

 

where, 

 Y, is the generic scalar model output equal to Y = f(X) 

 𝑋~ , is the matrix of all factors but Xi 

 𝑋 , is the matrix of the generic factor i 

 V(Y), is the variance of the output 

3.3 Methodology to assess the effects of uncertainties associated with climate 
data in energy performance of buildings 

In this section, the methods used to evaluate the sensitivity of peak and annual electricity 
demand to individual weather metrics (dry and wet bulb temperature, relative humidity, 
HIR, direct and diffuse solar gain and wind speed) are presented. 

In the second part of the research methodology of this thesis, a method to generate future 
weather time-series through morphing procedures was developed to be used to explore the 
relationship between weather and model outputs (in this building simulation case: peak 
electricity demand and annual electricity demand). The approach aimed to assess the 
effects of the potential weather uncertainty, through morphing procedures, and the 
implications of different patterns of weather characteristics on the energy performance of 
buildings, as summarised in Figure 3.3, addressing research question number 3 of this 
thesis. 

It did this in two parts. First, it it analysed the variability in weather parameters within the 
existing published weather files (Sub-section 3.3.1), both historical (Lawrie, et al., 2019) and 
those which have been generated to represent future climate scenarios (Prometheus 
(Eames, et al., 2011; Exeter, 2020), WeatherShift (Dickinson, et al., 2016; Troup, et al., 2016; 
Arup, et al., 2020) and Meteonorm (Meteotest, 2020)). Therefore, it identified potential 
uncertainties in future weather data that permitted to define/set the parameter ranges to 
be analysed in the weather sensitivity tests step. Secondly, linear sensitivity tests of 
morphing operations on the total electricity demand of office buildings were assessed (Sub-
section 3.3.2). Each morphing operation modified the annual timeseries of a particular 
weather variable in the representative weather file of the location to be analysed. This 
permitted evaluating: the impact of individual variations of the weather parameters, dry 
and wet bulb temperature, relative humidity, HIR, direct and diffuse solar radiation and 
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wind speed on the model output (Sub-section 3.3.3). In the building simulation case utilised 
in this research, the outputs analysed were annual total electricity demand and peak total 
electricity demand. 

This approach is pioneering because it enables to assess the implication of each morphing 
operation on the energy performance of the building models. Creating this type of synthetic 
weather files, enables to decouple/isolate the modification of each weather variable from 
the remaining variables.

 
Figure 3.3 – Description of the second methodology stage 

3.3.1 Analysis of the patterns in historic weather data and published projections 

The analysis of the weather data examined the changes and uncertainties of several 
weather variables included in the annual hourly weather files used in dynamic building 
performance simulation . The EnergyPlus thermal engine uses 13 out of the 35 variables 
available in EnergyPlus Weather Format (EPW) files (see Table 0.4, it presents the list of 
variables in EPW files ), of which three relate to temporal resolution (year, month and day). 
The weather variables chosen to be analysed in this research methodology are included in 
this list, and they have been determined to be crucial to assess space cooling demand. The 
analysis focussed on the effects due to changes in the dry-bulb temperature (DBT), relative 
humidity (RH), wind speed, and three solar radiation parameters the horizontal infrared 
radiation intensity (HIR), direct normal radiation (DNR) and diffuse horizontal radiation 
(DHR) because these are the variables used in the EnergyPlus thermal engine (EnergyPlus, 
2015). 

Multi-year historical sets of weather data are analysed to identify some of the possible 
inter-annual natural weather variability that may occur. A statistical analysis of the different 
weather variables was conducted, analysing the standard deviation (σ) of the annual means 
and maximum yearly values. Similarly, the historical data-set average deviations to the base 
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TMY considered (Δ) were presented for the different weather variables analysed. In this 
research,  the sets of historical weather data were made available by 
climate.one.building.org (Lawrie, et al., 2019), which derived the data from several public 
data sources. 

To analyse the potential changes associated with climate change projections, future 
weather data generated by currently available weather generators, for time-frames up to 
the 2080s were analysed. In this research (Section 5.2) weather patterns of EnergyPlus 
Weather (EPW) data files generated by WeatherShift (all case study locations (Dickinson, et 
al., 2016; Troup, et al., 2016; Arup, et al., 2020)) and the Prometheus Study (for London only 
(Eames, et al., 2011; Exeter, 2020)) were analysed. Shifts on annual average temperatures, 
maximum temperatures, and changes in average solar radiations were compared. The 
WeatherShift and Prometheus datasets used different approaches and sources of weather 
data; however, the Prometheus study only generated results for the UK, including London – 
the only location in common with the sets of locations selected for the simulation case of 
this research. 

The results of this analysis identified potential uncertainties in future weather data, which 
allowed to set which morphing operations were to be tested. In addition, it permitted to 
define/set the ranges of the uncertainty of parameters for the morphing operations to be 
analysed in the weather sensitivity tests step. 

3.3.2 Application of morphing methods to develop future weather files capturing the 
uncertainties associated with climate change. 

In this sub-section, the description of the morphing operations utilised in the research 
methodology of this thesis is presented. The morphing methodology described by Belcher et 
al. (2005) is used in the research approach to producing design weather data for dynamic 
building simulation, combining present weather data with projections from global climate 
model results. 

These morphing operations are utilised to modify and generate future weather data at 
different stages of the research methodology of this thesis. First, it is applied in the research 
approach to create weather files for the linear sensitivity analysis of morphing parameters 
(described in Sub-section 3.3.3). Respective research results are presented in Section 5.3, 
addressing research question 3 of this thesis. Second, morphing operations are used to 
generate the weather datasets samples to create climate pathway approaches, which are 
described in Sub-section 3.4.1. Respective research results are presented in Section 6.3, 
which aimed to address research question number 4 of this thesis. 

The morphing procedure uses three generic operations: shift (or designated additive shift), 
linear stretch (also designated scaling transformation or multiplicative shift) and a 
combination of shift and stretch. The morphing technique uses the weather variables' 
monthly-mean values to morphed high resolution (hourly) present/baseline weather data-
sets for the site. Equations (3-6), (3-7) and (3-8) describe the basic operation for morphing 
weather data-sets. 
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Shift operation: 

 𝒙 = 𝒙𝟎 + ∆𝒙𝒎 (3-6) 

Linear stretch operation: 

 𝒙 = 𝜶𝒎 ∙ 𝒙𝟎 (3-7) 

Combination of shift and stretch operation: 

 𝒙 = 𝒙𝟎,𝒎 + ∆𝒙𝒎 + (𝟏 + 𝜶𝒎) ∙ 𝒙𝟎 − 𝒙𝟎,𝒎   (3-8) 

where, 

𝒙 is the changed variable value; 
𝒙𝟎 is the baseline value of the variable; 

∆𝒙𝒎 is the monthly mean shift of the variable 
𝜶𝒎 is the fractional change in the monthly-mean value of the variable 

𝒙𝟎,𝒎 is the baseline mean monthly value of the variable 
 

For this research methodology, a divergent seasonal shift of weather parameters is used, 
and Equation ( 3-10 ) shows the seasonal summer ratio, the relationship between the 
summer shift parameter (ΔxSummer) and the annual global shift parameter (ΔxGlobal). The 
approach to perform distinct seasonal shifts based on the summer ratio parameter was 
developed to mimic seasonal differences in weather changes. Divergent seasonal/monthly 
changes were used when generating dry-bulb temperature timeseries, but they were also 
applied to shifts on RH or stretches on solar radiation. Equation ( 3-9 ) shows the 
relationship between the summer change parameter (∆x ) and the change parameter 
for the remaining of the year (∆𝑥 .). 

Seasonal Change: 

 ∆x  =  ∆x ∙
𝑛

365
+ ∆x . ∙

365 − 𝑛

365
 ( 3-9 ) 

 

 𝑅 . =
 ∆x

∆x
 ( 3-10 ) 

where, 

𝑹𝑺𝒆𝒂𝒔. is the seasonal summer ratio of the change in variable x; 
∆𝐱𝑮𝒍𝒐𝒃𝒂𝒍 is the annual value change of the variable x; 
∆𝐱𝑹𝒆𝒎. Is the change/shift value of the variable x during summer period; 

∆𝐱𝑺𝒖𝒎𝒎𝒆𝒓 Is the change/shift of the variable x during the remaining period of the year; 
𝒏𝒔𝒖𝒎𝒎𝒆𝒓 number of days in summer period; 
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A different stretching approach was executed to alter dry-bulb temperature time-series 
during annual extreme hot (hottest) periods (heatwaves). This operation intends to 
generate an additional stretch on dry-bulb temperature series during the hottest period in 
the weather data, to reflect a heatwave period. Equation ( 3-11 ) presents the change made 
on dry-bulb temperature during the five days considered in each weather file. Daily dry-bulb 
amplitude for each day in this period was stretched by a factor (R -1), and corrected by a 
sinusoidal function that was lagged by a daily shift factor of around 8h (considering daily 
peak at 14 and then subtracting 6). This leads to the high and low end of the amplitude at 2 
p.m. and 2 a.m., respectively, where the additional shift will be the largest (positive or 
negative). Thus, the daily average temperatures of the weather data series after this 
operation were unaltered from the initial timeseries, as the positive stretch performed 
during peak periods will be cancelled out by negative stretches below the average 
temperature periods. However, this morphing stretching operation is done after executing a 
shift morphing operation described by Equation (3-6), which had then previously modified 
the initial dry-bulb temperature time series by monthly mean shift value of ∆𝒙𝒎. 

The values and patterns of weather changes executed by these morphing operations 
described in the previous paragraphs were derived from the findings of the analysis of 
historical and future weather data, described in Sub-section 3.3.1 and the research results 
presented in Section 5.2. 

Daily amplitude stretch operation during heatwaves: 

 𝑇 = 𝛥𝑇 , × (𝑅 − 1) × sin (
𝑡 − (𝑑 − 6)

24
× 2𝜋) ( 3-11 ) 

 

 𝑅 =
𝛥𝑇 ,

𝛥𝑇 ,
 ( 3-12 ) 

where, 

𝑇 , the temperature shift during the heatwave temperature sequence; 

𝛥𝑇 , , is the daily temperature amplitude on the original daily temperature 
sequence; 

𝛥𝑇 , , is the daily temperature amplitude on the updated temperature sequence; 

𝑅 , is the ratio of the daily temperature amplitudes; 

𝑡, is the hour of the day; 

𝑑, is the hourly daily shift of the peak to the standard sinusoidal wave (at 8h). 

Some restrictions on the morphing operations were considered when changing the weather 
variables. For example, relative humidity (RH) was restricted to stay within 20% to 100%, so 
the final value of the variable after the operation cannot be extrapolated beyond this range. 
This restriction avoids the relative humidity to takes values over 100%, that is the state in 
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which the air is super saturated with water vapor. Below 20%, relative humidity is extremely 
low, and humidification is recommended, which brings into consideration more factors to 
the building simulation assumptions. In addition, the wet-bulb temperature is re-calculated 
based on Equation ( 3-13), after changes in dry-bulb temperature or relative humidity. A 
threshold on the maximum values of these weather variables was identified in the future 
weather data from Prometheus projections, but no restrictions on stretching of solar 
irradiance were made in these tests. 

 
𝑇 = 𝑇 −

100 − 𝑅𝐻

5
 ( 3-13 ) 

where, 

𝑇  Dew point temperature in °C 

𝑇  Dry-bulb temperature in °C 

𝑅𝐻 Relative humidity in per cent [%] 
 

3.3.3 Sensitivity analysis tests of morphing procedures 

In this sub-section, a description of the linear sensitivity analysis (LSA) for the electricity 
demand of office buildings, using the building simulation case of this thesis is presented. 
Table 3.2 lists the different LSA tests performed. For each test, the influence of different 
parameters associated with a morphing operation executed in the weather variables time-
series is analysed in order to evaluate the effects on the electricity demand of office 
buildings. The results are compared to the same outputs from simulations using the baseline 
representative weather file for each location. The baseline weather file is the current 
representative typical weather dataset for the location, which are made available in 
EnergyPlus weather databases (U.S. Department of Energy, 2021). In Sub-section 3.5.2, a 
detailed description of the baseline weather conditions for the locations chosen in the 
simulation case of this research is made. 

The shift operation of the 'morphing' procedure was used to transform dry-bulb 
temperature data series in tests 1 and 2, and to transform relative humidity in tests 5 and 6. 
For test 1 and test 5, a constant annual increase by (∆x ) was performed using a shift 
operation from the morphing procedure, for each hourly value in the annual weather 
variable time-series, following Equation (3-6), respectively for dry-bulb temperature and 
relative humidity. Thus, for test 1 a shift operation was executed on dry-bulb temperature, 
considering a constant increase on a range between 0°C (present – no change) and 5°C 
(maximum), and for test 5 the shift operation on relative humidity variable was executed 
between a -10% (drier) 0% (current values – no change). Test 2 and test 6, considered two 
different shift change values, one for summer months (ΔxSummer) and the other for the 
remaining months (ΔxRem.). In both tests, the seasonal summer ratio is tested, varying 
between 1 (constant) to 1.75 (maximum). The response to changes in the seasonal summer 
ratio of dry-bulb temperature was studied in test 2, assuming an annual average 
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temperature shift of 2.5°C. On test 6, the sensitivity driven by seasonal summer changes 
(𝑅 .) on relative humidity was studied, assuming an annual global shift (∆RH ) of -
5%. 

Table 3.2 – Linear sensitivity analysis tests performed, the test description and weather variables operated 

Test 
number 

Weather 
Variable Description of the test 

1 DBT Annual DBT shift, using an annual average shift  

2 DBT 
Fix average annual average DBT shift, with different seasonal shifts 
levels 

3 DBT Fix average annual average DBT shift, with a localised stretch during 
the hottest annual period 

4 WS Stretch of wind speed value series 
5 RH Test of different levels of annual shift of RH variable  
6 RH Constant annual shift of RH, with different seasonal shifts levels 
7 HIR Test of different levels of horizontal infrared radiation series stretch. 
8 DNR Test of different levels of DNR series stretch. 
9 DHR Test of different levels of DHR series stretch. 

The linear stretch operation, defined by Equation (3-7) were executed in the remaining 
weather variables, producing a growth by a factor 𝜶𝒎 in each hourly value of the variable in 
the annual series. The weather variables that were modified using this approach were the 
wind speed (WS) – test 3, horizontal infrared radiation (HIR) – test 7, direct normal radiation 
(DNR) -test 8 and diffuse horizontal radiation (DHR) – test 9. For these variables, the 
stretching parameter was unique for the whole year, not considering any variation across 
different months. For test 4, the wind speed variable was stretched considering factors 
between 0.5 and 3, meaning that values were halved or got tripled, respectively. On test 7, 8 
and 9, the sensitivity was driven by HIR, DNR and DHR, which tested the effect of multiplying 
different constant factors for stretch, which were between 1 (no change) to 1.25, leading to 
an additional 25% of the parameter value in all points in the data series. 

Table 3.3 summarises each of the LSA tests performed, informing the weather variable 
transformed, and the operation (stretch or/and shift) undertaken and the range of values 
iterated in each case. The range of values considered intends to explore the influence of 
these parameters in the electricity demand of these buildings, based on a plausible range of 
alteration of the parameters. The values were identified in historical data-sets and in 
existing future weather data-set projections, where some limits of these ranges have been 
present in changes for RCP 8.5 weather data. 

Table 3.3 – Details on the operations executed on weather variables in each test 

 Test number 
 1 2 3 4 5 6 7 8 9 
Variable DBT DBT DBT WS RH RH HIR DNR DHR 
Shift 0-5°C 3°C 3°C - -10%-0% -5 - - - 
Seasonal R - 1-1.75 - - - 1-2 - - - 
Stretch - - 1 - 1.25 0.5 - 3 - - 1-1.25 1-1.25 1-1.25 
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The results of each test indicated the effect of the respective iterated weather parameter on 
the electricity demand of the building analysed. Therefore, it was possible to rank the 
contribution of each morphing operation to changes in the electricity demand, and to 
compare the levels of change of the same morphing operation among different locations 
and building types. Thus, the findings of this research stage allowed to identify which 
morphing operations are more relevant to be utilised in the sampling of weather data to 
generate the climate pathway weather data sample, utilised in the next stage of the 
research approach (presented in Sub-section 3.4.1). 

3.4 Climate pathway and the effects of adaptation measures 
The third stage of the methodology generated a climate pathway approach to evaluate a wide 
range of potential climate change impacts. The analysis using the climate pathway approach 
was applied into two distinct steps as described in Figure 3.4. The first evaluated the effects 
of climate change impacts on the building energy performance. After that, the second step 
evaluated the potential mitigation effects of adaptation measures on the energy performance 
of buildings studied under the climate pathway scenario. The generation of future weather 
files for the make-up of a climate pathway sample is presented in Sub-section 3.4.1, and also 
describing how the effects on the energy performance were quantified. The climate pathway 
sample was composed of a large number of weather data-sets (in the simulation case used, 
200 iterations per location were considered), independently generated from changes of 
baseline weather data-set. Section 1.1.1 presents the different design adaptation measures, 
and Sub-section 1.1.1 presents the methods to quantify their impacts on the energy 
performance of the case studies. 

 
Figure 3.4 – Overview of the climate pathway strategy 

3.4.1 Climate pathway sampling 

The generation of synthetic future weather files was made to analyse a broad spectrum of 
plausible weather conditions that may represent future weather conditions. In the 
generation of these annual hourly weather files, the baseline weather data-set (hourly time 
series) were transformed, while a set of weather variables were modified. For the climate 
pathway created for the research analysis in this thesis, five parameters were considered to 
produce the synthetic changes for each weather file in the climate pathway. These 
parameters were annual dry-bulb temperature shift, the seasonal ratio of dry-bulb 
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temperature shift, the stretch parameter on dry-bulb temperature for a heatwave period, 
relative humidity (RH) shift and the stretch parameter for solar irradiation parameters. The 
solar variables transformed in the weather data-sets were the horizontal infrared radiation 
(HIR), direct normal and diffuse horizontal irradiance. 

The climate pathway utilised to analyse potential climate change impacts aimed to include a 
large set of independently generated weather data-sets. The climate pathway generated for 
this research included 200 files generated using this approach and the baseline data-set. 
Each weather parameter considered on the climate pathway generation was independently 
attributed from a uniform random number on the respective defined range. Table 3.4 
presents the range and weather parameters utilised to generate the pathway in this thesis. 
The ranges selected for the operations to modify the baseline weather data-sets were based 
on the analysis of existing future weather data-sets generated based on existing climate 
projections (research findings in Section 5.2). For example, changes in annual mean 
temperatures were set to be between 0°C and 5°C. However, changes in average dry-bulb 
temperature for the summer season were between 1 to 1.75 times the value for the winter 
season, and the stretch of DBT daily amplitude in the heatwave period was between 1 to 
1.75. Changes in annual mean relative humidity were from -5% to 0%, and the stretch on 
solar irradiance variables was between 1 to 1.25. 

Output results of these simulation samples were normalised to the respective location 
baseline result, which were related to the respective building energy model simulation 
coupled to the baseline weather data-set. 

Table 3.4 – Parameters used to generate synthetic weather files and the possible range of the parameter value 

Operation Parameter Range 
DBT shift [°C] 0-5 
DBT seasonal ratio 1-1.75 
DBT stretch on heat wave 1-1.75 
RH shift [%] -5 to -0 
Solar Radiation stretch 1-1.25 

3.4.1.1 Comparison with other weather data-sets 
For comparison, the simulations were also executed with weather files that are morphed 
with climate projections using available weather generator tools (WeatherShift (Dickinson, 
et al., 2016), Meteonorm (Meteotest, 2020) and CCWorldWeatherGen (Jentsch, et al., 
2013)). A second series of future weather files, which was obtained from weather 
generators tools.. This step intended to identify how the simulation outcomes from the 
existing weather data-sets used for climate impact studies compared to simulation runs 
with the climate pathway data-sets developed here. The simulation results (Pathway + 
comparison weather data-sets) were presented in ascending order, and the quantile   which 
the simulation results for weather generators data-sets fall in were indicated within the 
results for the pathway sample. 

3.4.2 The impact of-adaptation measures on mitigating additional electricity demand due 
to the climate change, using climate pathway approach 
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The second step of this stage of the methodology intended to evaluate the mitigation effect 
of a set of adaptation measures, on reducing the additional demand due to potential 
climate change impacts. The simulation case of this thesis was utilised for this, and the 
simulation results using the climate pathway generated were used to estimate the potential 
additional demand.  In this research, a total of nine adaptation measures were evaluated as 
presented in Table 3.5. Measures 1 to 6 considered the change of one individual design 
parameter. The design parameters varied by these adaptation measures were identified as 
some of the most used in prior studies as discussed in the literature review (Sub-section 
2.2.4). Measures 7 to 9 considered the combined effect of several measures. 

Adaptation measure 1 considered the change of cooling ambient set-point temperature 
from 24°C to 27°C. Measure 2 considered a reduction of outdoor ventilation rate of 36 % 
from 0.673 lt/s.m-2 to 0.4312 lt/s.m-2. Adaptation measures 3 and 4 analysed reducing 
equipment and lighting load density, respectively, from 10.76 to 7.5 W.m-2, a 30% reduction. 
Measure 5 investigated improvements on the coefficient of performance of the 
HVAC/chillers systems of buildings, with an improvement of 20%, increasing from 5.5 to 6.5 
for large office buildings, from 3.23372 to 3.9 in medium office buildings and from 3.66684 
to 4.4 for small office building model cases. Measure 6 studied the change of solar heat gain 
coefficients of windows in these buildings to a level of 0.15. The combined measure number 
7 considered the combined effect of adaptation measures 3,4 and 5, and the combined 
measure 8 evaluated the combined effect of measures 1,2, 5 and 6. Measure 9 investigated 
the combined effect of all the individual adaptation measures (1-6). The choice of the 
change in the values of the measures investigated was based on the expected progress of 
energy efficiency measures in the related technologies, using assumptions levels that have 
been used in previous studies (e.g. (Korolija, et al., 2013))and the most recent values used in 
ASHRAE prototype building models (Goel, et al., 2014). 

Simulations were executed with all-weather data-sets from the scenario pathway sample for 
each iteration of the building model representing the adaptation measure. Thus, 3 618 runs 
for each of the adaptation measures were simulated (201 weather files in the pathway × 6 
locations × 3 building type) and for all adaptation measures yielded a total of 32,562 
EnergyPlus simulation runs. Simulation output results under the climate pathway sample for 
each adaptation measure were compared to the original office model sample (no 
adaptation). Overall reduction metrics were compared as discussed in the following section. 

Table 3.5 – Adaptation measures 

Adaptation 
Option Description 

1 Cooling set-
point Cooling set-point from 24°C to 27°C 

2 Ventilation 36% reduction of ventilation rate: 
0.673 lt/s.m-2 to 0.4312 lt/s.m-2 

3 Equipment From 10.76 to 7.5 W.m-2 (30 % reduction) 
4 Lighting From 10.76 to 7.5 W.m-2 (30 % reduction) 
5 COP 20% improvement 
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Small from 3.66684 to 4.4 
Medium from 3.23372 to 3.9 
Large from 5.5 to 6.5 

6 Solar HGC 
Small from 0.39 to 0.15 
Medium from 0.3 to 0.15 
Large from 0.25 to 0.15 

7 3+4+5  
8 1+2+5+6  

9 All Individual 
measures  

 

3.4.3 Ranking and comparison of  adaptation simulation results 

A normalisation operation was executed within the simulation results for the set of 
simulation results for each adaptation measure analysed in this research. This was achieved 
by making a ratio between the output result of each iteration in the pathway sample and 
the original base condition (baseline) for that location and specific type of office building. 
Equation (3-14) presents this relationship: 

 
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 , , , =

𝑆𝑎𝑚𝑝𝑙𝑒 𝑂𝑢𝑡𝑝𝑢𝑡 , , ,  

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑂𝑢𝑡𝑝𝑢𝑡 , ,
− 1 × 100 (3-14) 

Where: 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑂𝑢𝑡𝑝𝑢𝑡 ,  
, is the simulation output, for the output variable Var, in 
location Loc, for the office type Model, in the n iteration of 
the climate pathway; 

𝐵𝑎𝑠𝑒 𝑂𝑢𝑡𝑝𝑢𝑡 ,  
, is the simulation output for the variable Var, in location 
Loc, for the office type Model, for the baseline weather file; 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 , , ,  
, is the normalised simulation output for the variable Var, in 
location Loc, for the office type Model, to the baseline 
weather conditions. 

Therefore, the simulation results of a simulation case in the research (one location and type 
of office building) were presented in ascending order, from 0 to the number of files 
generated, where position 0 is the baseline case condition. The normalised output value 
represented the rate of change relative to the original base condition. Therefore, a value 0 
meant no relative change to the original condition (baseline value). The last position of the 
ordered sample was the most extreme value, so the most considerable effect change 
relative to the current base values. For output values considering adaptation measures, 
values can be below zero, meaning that demand output is reduced under the baseline 
condition value. 

In order to analyse the effectiveness of design adaptation measures, the reduction of the 
demand across all sample conditions was quantified, considering the average change from 
the base case (building case with no adapting measures). Equation (3-15) shows the 
calculation of this value: 
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𝑅𝐷(𝑂𝑢𝑡. , 𝐿𝑜𝑐. , 𝐵𝑢𝑖𝑙. )  =

𝑂𝑢𝑡𝑝𝑢𝑡 , −  𝑂𝑢𝑡𝑝𝑢𝑡  

𝑂𝑢𝑡𝑝𝑢𝑡  

 (3-15) 

Where: 

𝑅𝐷(𝑂𝑢𝑡. , 𝐿𝑜𝑐. , 𝐵𝑢𝑖𝑙. )   , is the reduction rate for measure n, for a specific output, 
location and building type; 

𝑂𝑢𝑡𝑝𝑢𝑡 ,  , is the average value of a simulation output across the sample 
with adaptation measure n, for a location and building type; 

𝑂𝑢𝑡𝑝𝑢𝑡   
, is the average value of a simulation output across the sample 
with no adaptation measure, for a location and building type. 

 

3.5 Description of the simulation case (building models and locations) used for the 
research analysis 

In this section a description of the building model simulation case utilised for the research 
analysis of the thesis is presented. Three office buildings, based on the DOE reference 
building model set were selected and utilised to apply the methodology developed. Details 
on the description of these building models are given in Sub-section 3.5.1. Similarly, six 
different locations were selected for the analysis in this research, representing a broad set 
of base climate conditions. In Sub-section 3.5.2, further details are given about the weather 
conditions of these locations. A description of the building models and the input model 
parameters studied in the sensitivity analysis stage of the research methodology are 
described in further detail in Sub section 3.5.3. Finally, in Sub-section 3.5.4, a description of 
the software tools to prepare the building simulation case for this research are presented. 

3.5.1 Archetype office buildings 

In the simulation case for the research analysis, the three office buildings models from the 
DOE reference buildings model data-set were used, small (Figure 3.5), medium (Figure 3.6) 
and large (Figure 3.7). These office building models were developed based on DOE 
commercial reference building models of the US national building stock. The DOE 
commercial reference buildings are a set of reference buildings developed by the US DOE 
representing the whole national building stock. Deru et al. (2011) reported the development 
and reference characteristics of these models in detail, including model definition and 
sources for the parameter values. The DOE reference model data-set considers 16 different 
locations, exploring and representing all eight climate zones and most of the moisture 
regimes defined by ASHRAE (ASHRAE, American Society of Heating, 2020). Therefore, 
envelope and HVAC system model assumptions for each climate condition are adapted to 
the different requirements that climates present to building design. 

The DOE reference building models provide an initial point to measure energy efficiency 
research progress and enable consistent and robust comparison of results. The models are a 
reasonably realistic representation of building characteristics and construction practices. 
However, these buildings are not representative of the 'buildings' characteristics and their 
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energy use in any particular building type. They are hypothetical models, with ideal/fixed 
operation assumptions and following minimum requirements defined in ASHRAE building 
design standards (ASHRAE, American Society of Heating, 2013). For each type of buildings, 
the same form, area and operation assumptions are considered for all the submodels. Three 
types of sub-models are created for each type of building, namely new construction, post-
1980 construction, and pre-1980 construction. These differences reflect a different level of 
values for the 'buildings' characteristics: equipment, HVAC, lighting and insulation. 

In the simulation case utilised for  this research work, six different locations were 
considered; however, the base office model assumptions were defined equally for all 
locations for the same office type. For example, using the same base model assumptions for 
different locations in different countries may neglect the different design specificities of 
internal spaces, envelopes, and HVAC systems for different countries and regions. On the 
other hand, for an accurate study of the propagation of uncertainties in a model, standard 
base conditions must exist to analyse the impacts of the 'parameter's changes. One can also 
argue that the uncertainty range study leads to design conditions that will differ significantly 
from all locations' initial design conditions. In this research, the building model base case 
was adapted considering the most recent construct vintage (new 2004) and from the 
climate zone 3A-Miami. 

 

Figure 3.5 – Small office reference building model 
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Figure 3.6 – Medium officereference  building model 

 

Figure 3.7 – Large office reference building model 

Table 3.6 shows an overview of the building model form details for the three office types. 
The total floor space area of the building models was 511 m2 (1 story), 4,982 m2 (3 storeys) 
and 46,320 m2 (12 + Basement), respectively for small (Figure 3.5), medium (Figure 3.6) and 
large (Figure 3.7) office building types. Each storey equally distributes the total floor space 
area, and the space in each office floor was divided into four perimeter zones and a central 
core zone. The ratio between external building surfaces (external wall area plus roof area) 
and floor space area was 33% for the large office, 70% for the medium and 155% for the 
small office. The HVAC system for the large office building type included two water-cooled 
chillers, used as the cooling source, and multizone variable air volume equipment, used for 
space air distribution. The small and medium buildings considered direct expansion systems: 
the small office with a single-speed and the medium office with a double speed system. 

Table 3.6 – Office building model form details 



98 
 

 Unit Small Medium Large 
Total area m2 511 4982 46320 
Floors  1 3 12 
Total height m 3.05 11.7 51 
Width m 18.5 33.3 48.7 
Length m 27.7 49.9 73.1 
Aspect ratio  1.5 1.5 1.5 
Perimeter zones % of total 155% 70% 33% 
Thermal zones  5 per floor 5 per floor 5 per floor 

For modelling of buildings, design and construction characteristics are often taken from 
benchmark data. Benchmark data is defined as the representative information of building 
stock characteristics. Benchmark data is often collected from surveys or expert insights. 
Design standards and building energy codes, which set thresholds on building design 
parameters, may also be another source for benchmark information. For example, ASHRAE 
prototype building models (Goel, et al., 2014) use ASHRAE standard values (ASHRAE, 
American Society of Heating, 2013)and DOE building energy code program to define 
building model archetypes. The ASHRAE prototype archetypes present multiple model 
editions, as for each new set of standard models values are updated. The chartered 
institution of building services engineers (CIBSE) and the ASHRAE have collected and made 
several data-sets that statistically describe the type of internal loads and schedules of 
building operations. These data-sets yield detailed information for office buildings (CIBSE, 
2012; American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2013). 

The CIBSE published several technical documents in the UK, such as design guidelines, good 
practices booklets, technical memorandums, or application manuals. These documents are 
the source for multiple reference values and the data relative to the building stock 
information in the UK. The design details for the office models in the research have been 
significantly shaped by the values presented in CIBSE documents (CIBSE, 2007; Butcher, et 
al., 2015). 

3.5.2 Locations / Baseline climate conditions  

The simulation case utilised for this research work considered six different locations to 
evaluate the effects of different climate conditions. These locations were C1-Singapore, C2-
Cairo, C3-Athens, C4-Beijing, C5-Lisbon and C6-London. The weather files used to represent 
these climates were typical meteorological years (TMY) and were accessed from the 
EnergyPlus weather database(U.S. Department of Energy, 2021). 

Table 3.7 – Summary of weather files (TMT) used 

 C1 – 
Sin 

C2 – 
Cai 

C3 – 
Ath 

C4 – 
Bei 

C5 – 
Lis 

C6 - 
Lon 

ASHRAE Classification Zone 1 Zone 2 Zone 3 Zone 4 Zone 4 Zone 4 
Average DBT 27.5 21.7 17.9 12.6 16.3 10.2 
Max. DBT 33.8 43 37.2 37.2 36 31.3 
Min DBT 21 7 2 -14.2 4.1 -5.9 
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CDD 10 6374 4276 2966 2274 2328 864 
CDD 18 3454 1746 1076 837 474 32 
HDD 10 0 0 82 1308 20 778 
HDD 18 0 390 1112 2790 1087 2866 
Hot days 259 152 58 64 34 1 
Tropical nights 365 123 89 61 6 0 
DBT Monthly Shift [C] 2.1 14.2 18.0 30.3 11.9 13.4 
Annual IHR 
[KWh.m-2.day-1] 9.80 8.61 8.21 7.75 8.04 7.60 

Annual GHR [KWh.m-

2.day-1] 4.58 5.26 4.57 3.84 4.52 2.77 

Annual avg. RH[%] 83.6 58.9 61.5 55.4 74.1 79.3 

The meteorological conditions in these locations are significantly different, as they aimed to 
represent different climates. C1-Singapore weather is defined by a typical tropical humid 
climate, leading to almost constant space cooling requirements. C2-Cairo is a hot desert 
climate. C3-Athens and C5-Lisbon present Mediterranean climates, but present different 
ASHRAE climate region classifications. With a dry winter and a hot and humid summer, C4-
Beijing is a continental climate and presents a large temperature amplitude between 
seasons. On the other hand, C6-London has a humid maritime climate, which drives much 
lower cooling requirements. These differences are expressed in the summary of the 
weather data presented in Table 3.7. Figure 3.8 provides the summary statistics for several 
of the main weather variables: a) and d) dry-bulb temperature (DBT), b) global horizontal 
radiation (GHR) and c) relative humidity (RH). As shown in the figure, the number of cooling 
degree days (CDD) between all these locations varies between 32 in C6-London and 3454 in 
C1-Singapore. The maximum annual dry-bulb temperature is the highest for C2-Cairo, with 
43°C, and the lowest for C6-London with a value of 31.8°C. 
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Figure 3.8 – Climate variables annual distribution: a) Monthly mean DBT, and boxplot of annual values b)GHR, c) RH and 
d)DBT 

For the research analysis in this thesis (results presented in 5.2.3 and methodology 
described in 3.3.1), a set of actual meteorological year (AMY) data for the different locations 
were analysed, from data made available by climate.one.building.org (Lawrie, et al., 2019) 
deriving the data from a number of public data sources. The AMY reports data from 1975-
2018 (for C1-Singapore, due to lack of data for 1975 to 1981, the analysis presented was 
between 1982-2018). Table 3.8 presents a summary of the information of the sources of 
both AMY and TMY data for the locations analysed. 
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Table 3.8 – Details about weather stations related to weather files analysed (TMY and AMY) 

Location TMY description 

Weather 
station 
number Lat. ; Long. AMY source 

C1 – Sin IWEC Data 486980 1.35,103.99 Singapore Changi Airport 
C2 – Cai IWEC Data 623660 30.13,31.40 International Airport of Cairo 
C3 – Ath IWEC Data 167160 37.88,23.735 Hellinikon International airport 

C4 – Bei CSWD Data 545110 40.38,116.86 
(AMY different) 

Beijing Capital International 
Airport 

C5 – Lis INETI Data 085360 38.77,-9.13 
(AMY different) Portela Airport - Lisbon 

C6 - Lon IWEC Data 037760 51.15,-0.18 Gatwick Airport 
 

3.5.3 Sensitivity analysis implemented with simulation cases in the thesis 

In this subsection, a description of the parameters used in the building simulation cases 
utilised in the research analysis for the first stage of the methodology (sensitivity analysis) is 
presented. First, in Sub-section 3.5.3.1, a more detailed description of the simplified models 
and the parameters analysed in the preliminary sensitivity studies is given. Then, in Sub-
section 3.5.3.2, a description of the parameters and range of values used for the sensitivity 
analysis in archetype models is provided. Figure 3.9 provides an overview of the parameters 
and building models utilised in the simulation cases for the research analysis at the 
sensitivity analysis stage of the research methodology. 

 
Figure 3.9 – Scheme of the methodology approach used in the different studies in the chapter 

3.5.3.1 Preliminary sensitivity analysis simulation case 
Two batteries of sensitivity analysis tests were performed, using a simple generic office 
building model, as shown in Figure 3.10. For the first batch of tests (CLIMA study (Vasco 
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Zeferina, Birch, Edwards, et al., 2019)), the Morris EE screening method was executed to 
identify the space cooling demand's sensitivity. The findings of this part of the work were 
presented at the CLIMA 2019 conference, and published in the conference proceedings 
referred to as the CLIMA study in this thesis. For the second batch of tests, both Morris EE 
and Sobol sensitivity analysis were performed to study electricity demand sensitivity for 
cooling requirements. This second study's findings were presented at the CISBAT 2019 
conference (V. Zeferina, Wood, et al., 2019) and published on its proceedings  and are 
referred to as CISBAT study. Both studies' simulations were executed using the whole 
annual hourly data in the test reference year (TRY) weather file for the current climate in 
Manchester - the UK, produced by the PROMETHEUS project (Eames, et al., 2011). 

 
Figure 3.10 – Simplified office model used in the preliminary studies (CISBAT and CLIMA) 

A generic simplified office building energy model was used for the analysis, as shown in 
Figure 3.10. An one-floor building model was developed in EnergyPlus, consisting of a single 
space zone, with a gross internal floor area of 1600 m2, 40 m width, 40 m length, 3.5 m 
height, with a glazing area of 40% on its external wall. The building model's envelope 
characteristics were selected based on the benchmark values of ASHRAE 189.1 (ASHRAE, 
2009), available in OpenStudio libraries (US DOE, 2019). A summary of the thermal 
properties of these construction materials is given in Table 3.9. The algorithm chosen for 
internal calculations of the EnergyPlus engine was the standard option. Therefore, the heat 
balance in the geometries used the conduction transfer function model, the zone air heat 
balance used the third-order backward difference model and TARP. DOE-2 was used to 
calculate inside and outside surface convection coefficients, respectively. 

Table 3.9 – General Conditions of the Simplified generic building 

Building 
Component Program's Construction Object 

U-Values 
[W.m-2.K-1] 

Floor ExtSlabCarpet 4 in Cli. Zone 1-8 0.19 

External Wall ASHRAE 189.1-2009 External Wall 0.45 

Windows ASHRAE 189.1-2009ExtWindow Cli. Zone 4-5 2.5 

External Roof ASHRAE 189.1-2009 ExtRoof IEAD Cli. Zone 2-5 0.22 
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For the building model in CLIMA study, the Ideal HVAC system object was used, representing 
a building operation where cooling or heating loads were supplied to meet the zone control 
specifications. Space cooling demand was reported as the output results, and different post-
process was conducted to obtain analysis at different time resolutions (annual and peak 
demand). This output referred to the HVAC system's total cooling load, including sensible 
and latent cooling loads. The building model for CISBAT study used a Fan coil HVAC system 
to replace the idealised HVAC system in the CLIMA model. In this case, the simulation 
output results covered were the electricity demand for HVAC systems (cooling + fan). The 
simulations were then executed at six timesteps per hour for both cases, and results were 
reported hourly during a whole simulation year. 

The operation settings of the building model for both studies were defined as being 
uninterrupted, so all the occupancy assumptions were fixed at a single constant value for 
the whole simulation period. For the analysis, the operational parameters assumptions were 
based on generic benchmark information for office buildings given by CIBSE (Butcher, et al., 
2015) and BRE (Energy, 2003). For example, total IHG was set at 40 W.m-2, and the 
ventilation rate plus the building's infiltration rate was defined to be 1.6 air changes per 
hour. The cooling set-point of the zones in the model was set at 24°C. Table 3.10 shows the 
base values of the different input parameters iterated in the preliminary studies. 

Korolija et al. (2013) defined similar baseline input parameters as used in this base model, 
for the UK office buildings archetypal models proposed IHG, infiltration and ventilation rates 
and cooling set-pointset-points. The latest review of UK regulation for office buildings (HM 
Government, 2010) defined maximum values for envelope elements U-values [W.m-2.K-1] as 
0.35 for external walls and 2.2 for glazing and 0.25 for roof and ground floor. The base 
model in these studies presented higher U-values than these legislation limits for glazing 
and external wall envelopes. However, the range of parameters covered in the SA also 
included samples that will simulate cases with much lower values than the legislation limits. 
The range of values covered in these sensitivity studies covered either buildings that pre-
dated or not matched the standards as builds, and buildings that specifications overcome 
standards. For the CISBAT study, only four input parameters from the building model in 
CLIMA study were considered, and four additional parameters were included related to the 
operation of the HVAC system (Table 3.10, column CISBAT). The value of the parameters not 
transposed from the model in CLIMA to the CISBAT study were kept at baseline levels of the 
original CLIMA study model. 

The range considered in the analysis of the model input parameters conducted for both 
CLIMA and CISBAT studies is shown in Table 3.10. The analysis presented has tested the 
input variation with this range of parameters; accordingly, the distribution of conditions 
used, and it did not intend to represent the parameters' statistical representation in the 
current office building stock. Instead, the purpose was to test the model output results' 
sensitivity on the possible foreseeable range of the input parameter. Therefore, uniform 
distribution of these parameter values was considered, with ranges spanning from the 
minimum and maximum values assumed to be plausible to find in office buildings. 
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The first preliminary sensitivity study, CLIMA, analysed the sensitivity of 16 parameters on 
the space cooling demand. In this case, the input parameters were grouped into three 
functional categories of building characteristics. The first group focused only on the building 
envelope (P1-P8), the second focused on operational parameters (P9-P12), and the third 
category focused on the building form (P13-P16). For CISBAT preliminary sensitivity study, a 
selection of the four most important from CLIMA's analysis was carried to further analysis 
(P1-4 at CISBAT Model). Four more parameters were included, relative to HVAC systems 
operation systems (P5-P8 at the CISBAT model). In this study, the Morris EE Method and 
Sobol global sensitivity analysis were used to analyse the sensitivity of eight parameters, for 
the electricity demand for HVAC end-use. 
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Table 3.10 – CLIMA 2019 - Input Parameters 

  Parameter description Unit Baseline value Distribution range CISBAT's model 

En
ve

lo
pe

 
P1 Thermal absorptance1,2  0.9 0.5 ; 0.96 n/a 
P2 Solar absortance1,2  0.7 0.3 ; 0.96 n/a 
P3 Solar glass transmissivity1  0.3311 0.15 ; 0.38 n/a 
P4 CP concrete1,3 J.kg-1.K-1 837 200 ; 4000 n/a 
P5 Glass conductivity1 W.m-1.K-1 0.0133 0.005 ; 0.03 n/a 
P6 External wall insulation1 W.m-1.K-1 0.0432 0.01 ; 0.065 n/a 
P7 Roof insulation1 W.m-1.K-1 0.049 0.01 ; 0.065 n/a 
P8 External absorptance1,2  0.92 0.5 ; 0.97 n/a 

O
pe

ra
tio

n P9 Sensible IHG 4,5 W.m-2 40 10 ; 80 P1 
P10 Ventilation rate4,5 m3.s-1.m-2 0.0015 0.0005 ; 0.005 P2 * 
P11 Infiltration rate4,5 m3.s-1.m-2 0.0002 0.0001 ; 0.001 n/a 
P12 Cooling set-point4 °C 24 18 , 26 P3 ** 

Fo
rm

 P13 North rotation ° 0 0 ; 180 n/a 
P14 Glazing area % 40 5% ; 75% n/a 
P15 North facade / East facade ratio  1 0.4 ; 9 n/a 
P16 Area ratio relative to base model  1 0.08 ; 25 P4 

H
VA

C 

n/a Chiller water SP. °C 7.22 5 – 9 P5 
n/a Nominal chiller COP  4 2.5 - 6 P6 
n/a Chiller sizing factor  1.2 1 – 1.4 P7 
n/a Min. unloading factor  0.25 0.1 – 0.4 P8 

*For CISBAT model, Ventilation Rate range was considered to be 0.5-10.3 ACH, and at a baseline of 1.54 ACH 
** For CISBAT model parameter range was considered to be 20-28°C 
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The future weather data-sets files, produced by the PROMETHEUS project (Eames, et al., 
2011), were utilised in these simulation procedures, and Manchester was used as the 
location for the study. Five files were used, as shown in Table 3.11, one representing the 
baseline weather conditions (C5) and four different potential future climate impacts (C1-4). 
It evaluated the implications of different levels of climate change impacts, as these four files 
considered the different level of probabilities (10%, 50%, and 90%) for the high emission 
scenario (A1F1) in 2080 and 90% probability of the medium scenario (A1B) in 2080, using 
UKCP09 data-sets. 

Table 3.11 – Weather data information on climate files utilised 

Weather data description 
Annual 
CDD* 

3 Days 
CDH* 

Max. 
Temp. 

C1 2080 A1F1 90% 1020 813 37.2 
C2 2080 A1B 90% 836 767 33.3 
C3 2080 A1F1 50% 596 703 31.4 
C4 2080 A1F1 10% 296 415 28 
C5 Baseline period 103 337 28.3 

*CDD and CDH calculated based on 15oC baseline 

Simulations were executed using the whole annual hourly data contained in these weather 
files. Figure 3.11 compares the DBT hourly profile of three weather data-sets used, between 
the days that preceded and succeed the maximum temperature day in the annual data-set. 
It emphasises the possible level of change during annual extreme warmer periods. The DBT 
profile is significantly shifted in these scenarios compared to the current baseline weather 
profile (C5). The annual maximum temperature is expected to reach 37.2°C in the worst 
analysed case conditions (C1), almost 9°C higher than the current baseline maximum DBT.  
summarises the weather data in terms of annual cooling degree days (CDD) and cooling 
degree hours (CDH) in the five weather data-sets. A steep increase (tenfold) in the number 
of CDDs is predicted within the A1F1 (C1 case) climate projection. Similarly, during the three 
days analysed in , the CDH in scenario C1 doubled compared to the baseline period levels 
(C5). For the CLIMA study (Zeferina, Birch, et al., 2019), the same series of simulations will 
be conducted with the five different weather files to assess the climate's implications in the 
space cooling demand of the model. For the CISBAT study (V. Zeferina, Wood, et al., 2019), 
only one climate condition (C5) was considered, as the analysis was focused on quantifying 
each parameter's implication on electricity demand for cooling demand. 
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Figure 3.11 – Dry-bulb temperature in a 3-day period, between the days that precede and succeed the day of maximum 
temperature 

3.5.3.2 Sensitivity studies with archetype office building models 
In the following section, a presentation of the range of input parameters iterated for the 
sensitivity analysis of the archetype office buildings is given with an explanation and sources 
of the underlying data. The parametric range of the sensitivity analysis studies conducted in 
this part of the work is presented in Table 3.12. A total of 14 input parameters was 
considered in this analysis. For small and medium office buildings, parameter 9 (chiller's 
water-cooling temperature) and parameter 13 (unload chiller ratio) were not included as 
the HVAC system of these models did not use such parameters. The base conditions for 
each office model type were based on the respective DOE reference model's baseline 
characteristics. Whenever the impacts of a particular parameter were not to be explored in 
the sensitivity analysis iteration approach, this parameter in the building model was 
assumed as the standard base case value. 

The quantification of uncertainty on the probabilistic distribution for input parameters is the 
most challenging aspect of uncertainty analysis (Sun, Gu, et al., 2014; Tian, Heo, et al., 
2018). Each office type model represented several vintages and locations in this study, so 
model parameters concatenated different benchmark data. Uniform distributions are 
commonly used to represent different possible design strategies (Tian, Heo, et al., 2018). In 
this study, the 14 design input parameters were considered as continuous variables, and the 
inputs ranges were assumed to be a uniform distribution. The limits of these ranges were an 
own research choice based on a variety of data sources collected from previous publications 
that were reviewed in Section 2.1.4. For example, these choices were based on data 
identified in (Petersen, et al., 2019), the range of existing parameters on the reference 
model data-set (Deru, et al., 2011) and on benchmark values given in standards and 
guidelines (American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2007; 
CIBSE, 2012; Chartered Institution of Building Services Engineers, 2016). 

Differences between base model assumptions for the different office types existed for 
envelope characteristics (P1-P4), infiltration rates (P11) and COP of the HVAC system (P12). 
For parameter P14, the number of effective annual hours of operation for equipment and 
lighting were controlled. Operation schedules for lighting, equipment and occupants in the 
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model were adapted from Korolija et al. (2013). The range values went from 3,132 hours for 
lighting and 3,602 hours for equipment to a maximum of 4,007 and 4,285, respectively. It 
was achieved by stretching the operational index of schedules during weekend hours (6 a.m. 
- 9 p.m.) and on the standard workdays' margins (6 a.m.- 7 a.m. and 8 p.m. - 9 p.m.). Figure 
3.12 shows an illustration of the changes in the schedules. The choice to have large 
amplitudes of input parameters ranges, and uniform distribution of these ranges, was made 
as this study intended to evaluate design parameter options. Therefore, the methodology 
was not focused on comparing the plausibility of each value within the range. Nevertheless, 
the input ranges were chosen based on limit values considered possible to occur as design 
parameters and have been reported in previous literature (Deru, et al., 2011; Petersen, et 
al., 2019). Large amplitudes of the parameter limits were considered for ventilation (P10) 
and infiltration (P11), as the rates can be fine controlled and assumptions can be 
substantially different based on the operation of the space. For example, due to the indoor 
air quality (IAQ) requirements needed or the number of people. 

Figure 3.12 – Schedules used on simulations assumptions, a) lighting, b) equipment and c) people 
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Table 3.12 – Input parameters used on sensitivity analysis 

 
Description Unit 

Large Small Medium 
Lower 
Limit 

Upper 
Limit 

Std DOE 
Lower 
Limit 

Upper 
Limit 

Std 
DOE 

Lower 
Limit 

Upper 
Limit 

Std 
DOE 

P01 
Conductivity of the concrete layer on the 
external wall 

W.m-1.K-1 0.1 2 1.311    0.005 0.08 0.049 

P02 Roof Conductivity W.m-1.K-1 0.005 0.08 0.049 0.02 0.3 0.16 = = = 
P03 Solar heat gain coefficient (SHGC) - 0.075 0.5 0.25 = = 0.39 = = 0.3 
P04 Window U-value W.m-2.K-1 1 7 6.92716 = = 3.23646 = = 2.6118 
P05 Lighting W.m-2 5 20 10.76 = = = = = = 
P06 Equipment W.m-2 6 22 10.76 = = = = = = 
P07 Floor space per person m2.p.-1 5 20 18.58 = = = = = = 
P08 Ambient temperature set-point °C 21 26 24 = = = = = = 
P09 Cooling water set-point °C 5.5 8 6.7 n/a n/a n/a n/a n/a n/a 

P10 Ventilation rate 
m3.s-1.m-

2 
0.0002 0.005 0.000625 = = = = = = 

P11 Infiltration rate 
m3.s-1.m-

2 
0.0001 0.003 0.000302 0.05 1.5 0.36 0.05 1.5 0.36 

P12 Reference coefficient of performance (COP) - 4 7 5.5 2.2 5.5 3.66684 2.2 5.5 3.23372 
P13 Minimum 'chiller's unload ratio - 0.1 0.3 0.2 n/a n/a n/a n/a n/a n/a 
P14 Schedule stretch - 0 1 0 = = = = = = 

 
=, means it is equal to large office building model 
P05 – 06 – 07 – 10 - per floor space area 
P11 - per external envelope surface area 
P13 – it is where the chiller capacity can no longer be reduced by unloading 
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3.5.4 Tools used  

The following sub-section describes the function of different tools and the interaction 
between outcomes from each tool is presented. Figure 3.13 presents a diagram with the 
links between tools used. The office building energy models were developed in EnergyPlus 
(E+) and Openstudio was utilised in the research methodology approach as a reliable source 
for benchmark data and objects for the E+ building models. The Energyplus input text files 
templates (IDF) were prepared to perform changes directly and automatically in 
parts/objects of the building office models. To make automated changes in E+ input files, 
input macro files (IMF) were developed, which are imported in an auxiliary program of 
EnergyPlus (EP-Macro program). The EP-Macro program automatically generates E+ input 
files (IDF) from the IMF, updating complete changes in E+ building model objects that are 
ready to be imported in the program and simulated. This approach was also used by Korolija 
et al. (2013), in order to define and modifying EnergyPlus building models in IDF files, by 
iterating from a poll of different modelling objects, utilising jEplus (jEPlus, 2013). 

The Python library eppy (Santosh, et al., 2016) was used to analyse the E+'s objects defining 
existing E+'s archetype models. This tool takes advantage of the rich data structure available 
in Python programming to script Energyplus input and output files. It permits fast and 
repeatable ways to compare different models and make automated queries about input 
values. The jEplus software (Zhang, 2009) was used to perform the automatic 
parameterisation of values to be studied and execute all the simulations required. IMF files 
were adapted to indicate the parameters to be iterated. To execute the parametric model 
simulations, jEPlus requires a joblist, a CSV file, and a RVX file, a text file with a data 
structure to collect the 'simulation's output results. Joblists are CSV files that include all the 
values of the variables in the project's parameter tree, model templates, and weather files 
used in each iteration of the parametric study. The RVX file is a JSON language-based file 
that stores the output variables' positions that should be collected. For more information on 
jEPlus software refer to the program manual in (jeplus.org, 2014). 

The R programming environment (R Core Team, 2020) was used using RStudio (RStudio 
Team, 2019) in several stages of this research as a statistical and visualisation tool. For 
example, it was used to generate the joblists, using the functions from the sensitivity 
package (Weber, 2020) , namely: morris and sobolmartinez, to sample the input values for 
the iterated input parameters. After that, a case name column for the respective IDF file and 
EPW weather file was filled to each model iteration. The simulations were executed and 
managed by jEPlus, which uploaded these files to the program and set the directories to 
store output files and the necessary IDF and EPW files to load in the iteration. The jEPlus 
program enabled a distribution of the model simulation jobs in parallel by the CPU 
processors cores. Every simulation run in EnergyPlus generated specific output files that 
were stored in a specific iteration case directory. At the end of the parametric simulation 
process, jEPlus collected the output variables defined in the RVX file from the output files in 
'iterations' directory, creating summary tables of the output variables and the values for the 
simulations executed. 
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Figure 3.13 – Overview of the integration of modelling tools in the research methodology 

The research data analysis was performed on these summary output files created by jEPlus. 
The data analysis was initiated by uploading the simulation output CSV file in the R-
environment. For the research analysis conducted, the simulation output results evaluated 
were often aggregated to the whole building model level, and results were always 
normalised by the model floorspace area and frequently by the model base case result. 
Equation (3-16) presents the floorspace normalisation operation done to the simulation 
results. In addition, to compare the sensitivity and uncertainty of results among different 
types of buildings, results were often normalised by the original base case. After that, all 
parametric study results were to be divided by the respective base case scenario (i.e. 
standard input modelling conditions for that respective city and building model), as shown 
in Equation (3-17). The results were also to be analysed with no normalisation to the base, 
when the absolute value was significant to be retained, for example, for base case values. 

 
𝑂𝑢𝑡𝑝𝑢𝑡 , =

𝑂𝑢𝑡𝑝𝑢𝑡

𝐴𝑟𝑒𝑎
 (3-16) 

 
𝑂𝑢𝑡𝑝𝑢𝑡 , =

𝑂𝑢𝑡𝑝𝑢𝑡

𝑂𝑢𝑡𝑝𝑢𝑡
 (3-17) 

where, 
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𝑂𝑢𝑡𝑝𝑢𝑡 ,  , is the output result in iteration I normalised to the office 
floorspace area [unit.m-2]; 

𝑂𝑢𝑡𝑝𝑢𝑡  is the output result for iteration i ; 

𝐴𝑟𝑒𝑎 office floor space area of the model in consideration [m2]; 

𝑂𝑢𝑡𝑝𝑢𝑡 ,  normalised output result for iteration i, relatively to the base case 
result in the city analysed; 

𝑂𝑢𝑡𝑝𝑢𝑡  is the output result for the city analysed in base conditions. 

The coefficient of variation (CV) measures the variability of a population concerning the 
mean of this population and can be written as Equation (3-18). It is the ratio between the 
standard deviation of the population (𝜎) to the mean of the population (𝜇). For the 
comparison of different design options on case studies, the coefficient of variation was 
calculated for all output results of each site, building type and building design iteration 
analysed. 

 𝐶𝑉 =
𝜎

𝜇
 (3-18) 

Statistical tools were utilised in the research data analysis, such as boxplot, scatterplots, and 
Q-plots, to identify the parametric studies' variability. Multiple R packages were used for the 
necessary data manipulation, processing and visualisation. The main R-packages used for 
this were: dplyr (Wickham, et al., 2020), ggplot2 (Wickham, 2016), tidyverse (Wickham, et 
al., 2019) and tidyr (Wickham, 2020). In addition, the R-package eplusr (Yu, et al., 2020) was 
used to import and manipulate EPW files. Weather data-sets were manipulated using eplusr 
functions, executing morphing operations and generating new EPW files to be utilised in 
parametric simulation studies. 

3.5.5 Building model simulation output results 

In this section, an explanation of the research simulation output variables analysed for the 
case study is provided. EnergyPlus provides multiple variables and meters as output results, 
which can be assessed for each 'simulation's timestep. EnergyPlus also aggregates results in 
summary tables, reporting consumption for the whole building and for critical/specific 
components or requirements (for example HVAC systems, lighting and indoor air quality). 
For the simulation cases  of this research work, the study was primarily on buildings' 
electricity demand, and EnergyPlus reports a total of 13 electricity end-uses. The 
'EnergyPlus' summary table: Annual Building Utility Summary provides the annual electricity 
consumption for all the energy end-uses for annual demand. Similarly, results can be 
extracted from the summary table ‘Demand End Use Components Summary’ for peak 
demand. For more information on the source of the EnergyPlus 'outputs' variables, refer to 
'EnergyPlus' Input Output Reference document (EnergyPlus, 2015), and refer to 'EnergyPlus' 
Output Details and Examples document (Berkeley, et al., 2017) for a detailed description of 
the EnergyPlus output files. 

The space cooling requirements output result was extracted from the E+ output meter: 
"Cooling:EnergyTransfer". This meter refers to the sum of all the model 'zones' Air System 
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Sensible Cooling energy. This variable's annual demand is reported in the EnergyPlus 
summary table "Annual and Peak Values – Other" on the Energy Meters Report. The peak 
results presented reported to the end-use demand at the moment of total peak electricity 
demand. Therefore, the results were not precisely the moment of maximum demand for 
each end-use or the space cooling demand. The peak demand result was a snapshot of all 
outputs at the moment of total peak demand. 

The methodology for sizing the cooling loads in the EnergyPlus models took on several 
assumptions. The E+ object Sizing:Parameters set the sizing factor as 1.33 for cooling, as 
given by the DOE archetype models used. The SimulationControl object set active the sizing 
calculation of zone, system and plant. The SizingPeriod defined for the models is the 
SizingPeriod:WeatherFileConditionType, which takes the SummerExtreme condition of EPW 
weather files to perform the office 'models' sizing calculations. Therefore, it enabled the 
'model's sizing to be adapted to the weather data coupled with the simulation run. ASHRAE 
handbook fundamentals (American Society of Heating, Refrigerating and Air-Conditioning 
Engineers, 2013) presents multiple criteria for design day conditions and mentions that 
designers should adapt the chosen design criteria to the situation under consideration. For 
several simulation cases used in this research, the design criteria of the weather files utilised 
had led to unmet cooling hours or similar performance degradation. However, the research 
methodology required an unique approach for the design criteria to ensure a reliable 
comparison of the results. 

3.6 Chapter summary 
This chapter presents the research methodology used in this thesis. The three main stages 
composing the research methodology developed applied in this thesis are presented. First, a 
detailed description of the sensitivity analysis executed in this research is presented in 
Section 3.2. Second, the research approach to evaluate the effects uncertainty in weather 
datasets through morphing procedures is presented in Section 3.3. In Section 3.4, the third 
and final stage of the research methodology is presented, the generation of climate 
pathway to evaluate a wide range of potential climate change impacts, followed by the 
assessment of the mitigation effect of adaptation measures. Finally, a description of the 
building simulation cases used in the research for this thesis and the tools used for its 
generation is presented in Section 3.5. 

The methodology presented in this chapter introduces the research approach utilised in the 
research studies presented in the research result chapters (Chapter 4, Chapter 5 and 
Chapter 6).Therefore, it provides an overview of the research approach common to the 
research work done in this thesis, which is further detailed in each of the following chapters. 
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4 Sensitivity analysis of office building energy models 
4.1 Introduction 
In previous chapters, the research background for the analysis of climate change impacts for 
building energy performance was disclosed, so the relevance and the related challenges 
were discussed. Before in this thesis, it has also been discussed and summarised some of 
the challenges related to future building energy modelling scenarios. To better understand 
simulation results, it is essential to explore the uncertainty and sensitivity of energy models. 
This chapter intends to address this requirement, exploring the sensitivity and uncertainty 
of office building energy modelling. Specifically, analysing the sensitivity and uncertainty of 
different office models, regarding the simulation results of cooling requirements. 

Building performance simulation (BPS) requires detailed physical correctness of the building 
energy model, thus detailed characterisation of the building envelope and operational 
conditions. Similarly, rational and sensible development of modelling approaches and 
definition of their outputs is required, to keep models targeted to the simulation study's 
objectives (Hensen, et al., 2011; Clarke, et al., 2015). Furthermore, the adaptation of 
buildings to climate change impacts is one of the main challenges in building design 
(Hensen, et al., 2011). Therefore, it will require detailed and dynamic simulation to estimate 
how building energy performance changes with meteorological conditions and due to 
uncertainty of design conditions. 

To bridge the often-reported energy performance gap, it is necessary to define how, what, 
and when the comparisons are made. It is also necessary to understand that the energy 
performance models have limitations, and one should expect and accept differences 
between the model results and actual building performance. It is also essential to use the 
correct modelling tools, and analysts should have the ability and knowledge to apply them 
appropriately (de Wilde, 2014). For example, systematic and holistic design optimisation is 
needed to avoid unintended side effects from changes to building design standards 
(Hensen, et al., 2011; Clarke, et al., 2015). In not doing so, the credibility of models, 
modellers and design teams is affected, and the design solutions proposed by the industry 
to reduce energy consumptions and or shave peak loads on buildings operations may be 
rejected. 

More research has been done using BPS tools as computational capacity has been 
increasing. Hensen et al. (2011) concluded that computational simulation is a powerful 
analytical tool, but it is challenging to ensure quality. Therefore, the building design 
community should pursue an understanding of the topic area. Uncertainty and sensitivity 
analysis techniques can enable further understanding of the parameters and factors that are 
most critical for buildings' energy performance. This enables the accuracy of the models to 
be improved by updating model assumptions. On the other hand, it enables the dimensional 
reductions of models while preserving most of the variance. Thus, the number of model 
input iterations can be minimised and still effectively analyse the possible range of building 
design choices. 
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The scope of uncertainty and sensitivity analysis in BPS is multifield, and the potential 
number of statistical methods available is considerable. For example, the uncertainty on 
future buildings' energy performance is the aggregation of different sources of uncertainties 
in model inputs and modelling scenarios (Hopfe, et al., 2011; Tian, 2013). Uncertainties 
result from possible discrepancies in occupancy characterisation, building envelopes and 
HVAC systems in future building stocks, and the estimation of future weather conditions. It 
is important to quantify the implication of each building system model component and 
boundary conditions, on the energy demand and peak load of space heating and cooling 
demand. Previous literature has not often focused on cooling demand for office buildings 
and their peak loads. However, these peak loads may have a critical impact on system 
design capacities and power network operation, as Wood et al. (2015) suggested. Therefore, 
the research work presented in this chapter aims to understand and quantify the sensitivity 
of office buildings modelling to different inputs. The quest to pursue this research aim, was 
based in two main research questions, that are addressed in this chapter: 

 The first research question: How sensitive is the office building energy modelling 
to different operational and design input parameters? 

 The second research question: What is the relative impact on peak and annual 
HVAC and total electricity demand of office buildings as cooling requirements 
differ with changing building design and operational conditions? 

The research contributes to understanding the implications of input parameterisation for 
the simulated demand of buildings' cooling requirements. More specifically, it examines the 
sensitivity of cooling demand related results (total electricity demand, HVAC end-use and 
space cooling) for different types of buildings and different locations. Moreover, this study 
investigates the difference between the effects of annual and peak analysis for cooling 
demand of office buildings, which can provide insight on cooling demand from the 
perspectives of total cooling energy and system capacity for building cooling systems, 
respectively. The study would also help identify cooling design best practices for office 
buildings to guide energy engineers during the retrofit and development of new buildings. 

Finally, the work presented in this chapter summarises the findings on the extensive pre-
analysis of the sensitivity office building models that were in the preamble of this PhD 
research project. This work has led to three distinct research publications. First, the work 
entitled: "Sensitivity analysis of peak and annual space cooling load at simplified office 
dynamic building model" (Zeferina, Birch, et al., 2019) presented at the CLIMA 2019 
conference. Second, a study of the "Sensitivity analysis of a simplified office building" 
(Zeferina, Wood, et al., 2019) presented at CISBAT 2019. Finally, the "Sensitivity analysis of 
cooling demand applied to a large office building" published in the Energy and Buildings 
journal (Zeferina, et al., 2021). 

4.2 Research results 
4.2.1 Preliminary sensitivity analysis studies 
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4.2.1.1 CLIMA study 
In this section, the results for the SA in the CLIMA study are presented. In the study, 
sensitivity was analysed considering five different weather data files for the same location, 
considering different climate change projections. The results of the SA are then presented 
for the baseline weather data (C5) and for the future weather data with the largest impacts 
of climate change, 2080 A1F1 -90% probability (C1). 

Figure 4.1 shows the CV values on the simulation sample of both annual and peak cooling 
demand. It is possible to conclude that the variation of results is significantly more 
considerable for annual than peak demand resolution. For the annual demand, the CV is 
1.27 for annual demand in the control base file, and the peak demand is 0.44. However, the 
difference between annual and peak demand CV is significantly reduced with warmer 
climate projections conditions, so in C5-2080, the CV is 0.71 for annual demand and 0.37 for 
the peak. Similarly, the sensitivity µ* values of parameters are larger for the annual demand 
than for peak demand, as presented in Figure 4.2–. 

  
Figure 4.1 – Coefficient of variation of space cooling demand considering the temporal resolution, for the different samples 
of weather files simulated on CLIMA study 

For the annual demand, the internal heat gains (P9) is the parameter with the largest 
contribution for change, followed by the cooling set-point (P12) and ventilation rate (P10), 
with a µ* value half of the value of the contribution of P9. Infiltration rate (P11) and area 
ratio (P16) follows, showing approximately a tenth of the contribution of P10 or P12 and 
almost 20 times lower than P9. Com paring results between the analysis for two different 
weather data scenarios (2080 A1F1 90% weather data versus the baseline TMY), the 
contribution for annual demand of P9 and P12 are larger than for the baseline weather data 
analysis, and the contribution of P10 is reduced. For peak demand, IHG (P9) is the 
parameter that contributes the most, followed by the cooling set-pointset-point (P12) and 
the ventilation rate (P10). The area ratio (P16) and the glazing area (P14) follows with lower 
contributions. For the future weather data (2080 A1F1 90%), the ventilation rate (P10) 
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contribution significantly increases and becomes the largest, but the changes for 
parameters 12 and P9 are small, and the value of P16 also doubles.  

Figure 4.2–- CLIMA Morris SA indexes relative to the space cooling demand 

4.2.1.2 CISBAT study 

 
Figure 4.3 – Boxplot the electricity demand for 
cooling in the CISBAT study 

Table 4.1 – Distribution of the electricity demand for cooling results in 
CISBAT study, Sobol Sample 

 Annual Peak 
CV 1.0795 0.5535 
Mean 38.2 kWh.m-2 23.9 W.m-2 
Stand. dev. 41.3 kWh.m-2 13.2 W.m-2 
Base cond. 38.9 kWh.m-2 16.3 W.m-2 

 

This section presents the results for the sensitivity analysis performed on the simplified 
office model for the CISBAT case study. In this case, the output analysed is the electricity 
demand for the HVAC end-use, both for annual and peak resolution. Figure 4.3 presents the 
distribution of sample results and CV values are presented in Table 4.1. It is possible to say 
that the variation of annual demand is larger than for peak demand. For annual demand, 
the CV value is 1.0795, and for peak demand, it is 0.5535. 

For annual demand, the parameter that contributes the most is P1, IHG, and at a lower level 
by ventilation rate (P2) and cooling set-point (P3). The remaining parameters present much 
lower contributions. The sensitivities calculated by both Morris EE (Figure 4.5 –) and Sobol 
(Figure 4.7 –) methods/samples show similar findings for the ranking of the input 
parameters contribution to the annual demand. For the peak demand, the area ratio 
parameters (P4), cooling water set-point (P5), sizing factor (P7) and unload factor (P8) show 
low contribution for the result. The ambient cooling temperature set-point (P3) is the 
parameter that presents the largest contribution, followed by similar levels of contribution 
from IHG (P1) and ventilation rates (P2), and at a smaller level by the COP (P6). For peak 
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output, the Morris method (Figure 4.4 –) shows similar contribution levels from ventilation 
rate and cooling set-pointset-point; however, the Sobol method (Figure 4.6 –) shows that 
the contribution of P3 is significantly larger. In addition, for annual demand, the 
contribution of the individual parameters identified is much larger than for peak, as the IHG 
present almost 60% of the change in annual demand, while for peak P3 at maximum 
contributes 38%. 

 
Figure 4.4 – Morris EE metrics for peak power 

  
Figure 4.5 – Morris EE metrics for annual demand 

 

Figure 4.6 –Sobol indices for peak power cooling demand. 

 

Figure 4.7 –Sobol indices for annual cooling demand 

4.2.2 Archetype office model studies 

4.2.2.1 Demand for base cases conditions 
In this section, the results for the archetype buildings are presented. This sub-section 
presents annual and peak demand for the base case conditions for all models in different 
locations. The base case conditions of the models were presented in , as the standard DOE 
column in each office type. Figure 4.8 presents the total electricity demand, divided by the 
different end-uses, for each office type, in each location, both annually and at peak period.  

First, looking at the annual demand, the demand may be up to 50% larger on location C1-
Singapore than it is in location C6-London. The total annual electricity demand varies 
between a minimum of 97.3 kWh.m-2 (Large and Medium C6-London) and 151 kWh.m-2 

(Medium – C1-Singapore). Total demand on a m2 basis is larger for small buildings, up to 15 
kWh.m-2 (up to 10%), for all locations except C1, where total annual electricity demand is 
approximately the same for all three office types. The non-HVAC demand (other total) is 
equal across all locations, as is not dependent on weather conditions, and is slightly larger 
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for medium office buildings (90.4 kWh.m-2) than it is for small (87.8 kWh.m-2) and large (84.4 
kWh.m-2) offices. The total HVAC demand is heavily related to the location/climate. For the 
three types of office models, the annual demand in C1-Singapore is between 60.7 kWh.m-2 
and 63.5 kWh.m-2. On the other hand, for C6, the HVAC demand varies between 7 kWh.m-2 

for medium and 19 kWh.m-2 for small buildings. It is related to the much larger annual 
demand verified for fans electricity end-use on small buildings. For this office type, the fans 
annual demand is between 15.4 kWh.m-2 to 20 kWh.m-2, while for other building types, the 
value is no more than 4 kWh.m-2. 

 
Figure 4.8 – Electricity demand by end-use for base case conditions in the archetype study 

Relative to peak demand, the range of values verified for total peak demand is between 
33.5 W.m-2 (Large – C6) and almost 50.1 W.m-2 (Medium – C4). Medium office building 
office types across all locations present the largest total peak demands, followed by the 
small office and the large office building types (except C4). For location C2, the difference 
between medium and large office building types is more than 11 W.m-2 (49.3 W.m-2 – Small 
vs 38.1 W.m-2 - Large). The proportion of total HVAC demand is significantly larger for peak 
demand than for annual demand, except for location C1. For example, the electricity for 
HVAC end-use represents 40% of total load in C2-Cairo, medium office building but only 10% 
in the annual demand. The Non-HVAC demand is variable relative to the location, as the 
peak time may occur at different periods of the day. 
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4.2.2.2 Distribution of results on archetype Morris samples 
Figure 4.9 shows the distribution and amplitude of the several results analysed in this study. 
The base model conditions results are in the lower end of the spectrum of results in the 
sample obtained for this Morris EE analysis. For all office types, locations, output variables 
analysed and time resolutions, the base condition is within the first quantile. Looking at the 
coefficient of variation (CV) of different output results in Figure 4.10, the peak demand 
output has larger CV values than for annual demand. There are some exceptions, namely for 
the total electricity demand in C1 – Singapore, for small buildings and medium offices in C6-
London. In addition, for SPC demand, the CV of the annual demand is for all models and all 
locations larger than peak demand. However, it is essential to emphasise that differences 
between annual and peak CV increases significantly from C1-Singapore to C6-London. 

 
Figure 4.9 – Boxplot of results for the Morris EE method in the archetypes study 

Relatively to differences among the type of office buildings, it is possible to identify that the 
medium office type presents lower CV than large and small buildings across all locations, 
both for SPC, Total and HVAC, for annual demand. Again for annual demand per m2, the 
small office building type has a wider spread of results, larger upper-end outliers, which are 
also expressed by the larger CV than the remaining models for all locations, for HVAC and 
SPC. In total annual demand, large office building CV presents similar values with small 
office buildings, which are slightly higher than medium offices. 

Looking at peak demand distribution in Figure 4.9, the medium office building has larger 
upper outliers, but the base case peak demand for this type of offices has also presented 
larger than the other type of offices. Looking at the CV values for the peak demand, the 
small office buildings present the largest values relative to the total demand, and medium 
buildings show the lowest values for total demand. For some locations, namely, C1-
Singapore, C4-Beijing and C6-London, large office buildings show larger CV than small office 
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types, but on the remaining locations values are similar to medium office buildings. 
However, for the peak HVAC demand, CV values the large office type are the smallest for 
most of the locations, and the CV of medium offices are the largest for most of the 
locations. For SPC, the CV of all office types is similar, with a slight lead for large office 
buildings followed by medium and then small offices. 

 
Figure 4.10 – Coefficient of variation (CV) values for the different results and modelling groups 

4.2.2.3 Morris EE sensitivity analysis results 
In Figure 4.11, the contribution of each input parameter analysed by the Morris EE method 
is shown for total electricity demand, presenting the mean sensitivity measure μ*. Looking 
at annual demand, the parameter P05, lighting and P06, equipment density, present the 
largest contribution for all office types, in all locations, except for C1- Singapore. The value 
of the contribution of parameters P05 and P06, on total annual electricity demand is the 
largest for C6-London and the minimum for C1- Singapore. The mean sensitivity measure μ* 
varies from 0.495 to 0.577 (C6-London, large), or 0.575 (C1-Singapore, large) to 0.675 (C6-
London, large), respectively for P05 and P06. See figures and tables in Appendix C1 to 
consult all mean sensitivity measures values. The parameter P08, ambient cooling set-point, 
and P12, COP, also contribute significantly after P05 and P06, especially for small and 
medium office buildings. Parameter P10, the ventilation rate, presents significant 
contribution, especially in large office types, namely for location C1-Singapore. P14, 
occupancy schedule stretch, also has a significant contribution, similar across all locations 
and models, around 0.2. 

Looking at the contribution of the different input parameters on total peak demand, lighting 
(P05), equipment (P06), ambient set-point (P08), ventilation rate (P10) and COP (P12), all 
present similar large contributions (μ*), when compared to the remaining parameters. The 
contribution of P05 and P06 is at a similar level for all models. However, there are slight 
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differences among locations, larger for C6-London and minimum for C4-Beijing or C2-Cairo 
(medium offices). For small office buildings, the contribution of P08, P10 and P12 present 
similar levels of contribution to total peak load as presented by parameter P05 or P06. 
Medium office buildings also present large contributions of these parameters, but at slightly 
smaller levels. For large office buildings, the contribution of P08 and P12 is lower than for 
the other models. On the other hand, parameter P10 shows the largest contribution for 
large office buildings for C1 and C4 (0.79 and 0.85 respectively). The fact that the ventilation 
rate contribution outstand in these specific case conditions, may be related to large relative 
humidity conditions existing for these locations, especially for peak conditions. Cooling 
latent loads are expected to have larger impacts for the electricity demand in large office 
building models. 
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Figure 4.11 – Morris EE µ* value for total electricity demand 

For HVAC electricity end-use demand, the µ* value is significantly larger than for total 
electricity demand, except for parameters P05, P06 and P14. For annual demand, cooling 
set-point temperature parameter (P08) is the one with the largest contribution, especially 
for small office buildings. Parameter P10, ventilation rate, follows, especially for large office 
buildings, with larger values for location C1 and C4. The following parameter with a larger 
contribution is the COP (P12), which for small offices, have significantly larger µ* values. 
P08, P10 and P12 show similar large levels of contribution for the variation of HVAC demand 
for peak demand. Parameter P12 presents the largest µ* value for most locations, especially 
for small and medium office types. The mean sensitivity measure (μ*) for parameter P10 
outstands the remaining parameters, for large office buildings, on-location C1-Singapore 
and C4-Beijing. 

For space cooling, what stands out is that the different input parameters' contribution 
among locations is very similar for peak demand. However, for annual demand, there are 
apparent differences in the contribution to different locations. Especially for location C6-
London, the contributions are significantly larger, even more for small office types. Lighting 
(P05) and equipment (P06) densities are the parameters with larger contribution both on 
annual and peak results. Similarly, cooling set-point, P08, also presents one of the largest 
levels of contributions, both on-peak and annual resolution, with more evidence for small 
buildings. Solar heat gain coefficient parameter (P03) presents a more significant relative 
contribution for SPC than it has shown for total electricity demand and HVAC electricity end-
use. 

Comparing the µ* values for the different types of office models, the values are similar for 
the different types of offices for almost all parameters. However, differences are 
outstanding for cooling set-point (P08), ventilation rate (P10) and COP (P12) parameters. For 
example, small office buildings present larger µ* values on P08 and P12 than large office 
buildings, for total electricity demand and HVAC demand. Comparing the µ* among the 
different types of output variables, it is clear and expected that HVAC results are 
significantly larger for HVAC than for total demand. Similarly, for some parameters (P5,06 
and P10), the contrary is expected and seen, as µ* on total demand is larger than for HVAC. 
It is evident that C1 – Singapore outlies the remaining locations for total annual electricity 
demand results regarding discrepancies among locations. On the other hand, the results for 
C6-London stand out on the lower end for total peak demand. For space cooling demand, a 
clear distance of µ* results can be seen across locations, at annual demand resolution. For 
this, the relative contribution on C6-London location is larger than warmer location as C1-
Singapore. 

4.2.2.4 Sobol sensitivity analysis 
In this section, the findings for the Sobol sensitivity analysis on the large office building are 
presented. Figure 4.12 and Figure 4.13 present the Sobol total sensitivity indices for all 
output variables, respectively for annual and peak demands. For the Sobol sensitivity 
analysis, only the large office type was utilised, due to the large number of simulation runs 
that are required. The quantification of sensitivity with Sobol analysis, for the different 
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outputs and across different locations, enables to better understand and rank the 
importance of the different design parameters, regarding the different potential design 
constrains. In addition, this also enables to understand that the contribution of particular 
design parameters may stand out for particular locations. 

For annual total electricity demand, the total contribution of lighting (P5) and equipment 
density (P6) may reach up to 40% and 60% of the total contribution on change, for location 
C6 - London, while the other parameters have little to almost no impact for annual 
electricity demand. However, for C1-Singapore, the contribution of cooling set-point 
parameter (P10) is 42%, while the contribution of P5 and P6 is around 20% for each. 
Parameters P08 and P12 (COP) have a maximum contribution of 8% and 10% for change in 
annual electricity demand respectively, in this location, the largest across all locations 
analysed. For the peak total electricity demand, the contribution of P10 – ventilation rate is 
the largest, reaching a total contribution up to 42%. The contribution of P05 and P06 is 
between 20% and 30%, and the contribution of P08 and P12 is around 10%. However, for 
location C6-London, the contribution of P05 and P06 is around 40%, while the contribution 
of P10 is 12% and around 5% for both P08 and P12. The contribution of occupants density 
(P07) is almost neglectable both on annual and peak resolution. 

 
Figure 4.12 – Sobol total sensitivity indices for annual demand for the large office 

The contribution of the different parameters on HVAC electricity end-use demand, both on 
annual and peak resolution, is significantly more alike across the different locations than for 
total electricity demand. P10, ventilation rate, has the largest contribution, with up to 70% 
of the total change in results. While the contribution of P08, cooling set-point, and P12, 
COP, are between 15% to 20% each. The contribution of the remaining parameters is 
minimal. For annual space cooling demand, the contribution of lighting (P05) and equipment 
(P06) densities parameters is the most significant, with contributions slightly larger than 
30% and around 50%, respectively. In this case, the contribution of P08, cooling set-point, 
follows with a contribution of up to 20% and by P07, occupants density, with a contribution 
of around 10%. 



125 
 

 
Figure 4.13 – Sobol total sensitivity indices for peak demand for the large office 

4.3 Discussion 
The main aim of this chapter was to evaluate and quantify the sensitivity of office building 
models utilised in the simulation case of the thesis. Relative to the first research question: 
“How sensitive is office building energy modelling to different operational and design input 
parameters?” the research shows that few parameters have major contributions for the 
HVAC demand of office buildings. For electricity demand for HVAC end-use, the parameters 
that contribute the most are the ventilation rate, cooling set-point, and COP (e.g. for large 
offices in the Sobol analysis was respectively around 50%, 20% and 18%). The contribution 
for total electricity demand may be significantly reduced, depending on the climate profiles 
of the location (average and extreme weather conditions) and type of building. The share of 
HVAC on annual total demand is smaller than for peak demand, for most of the cases 
analysed (for C1-Singapore the proportion is similar throughout the whole year, but for all 
other locations analysed the value is much larger for peak demand). The internal heat gain 
density parameter also makes a significant contribution, especially for HVAC end-use annual 
demand (up to 15% in the same analysis). On the other hand, when looking to the space 
cooling requirements sensitivity, internal heat gains (lighting and equipment) present the 
largest contribution (up to 70% for peak and 80% for annual demand). 

At total electricity demand level, cooling set-point (P08), ventilation rate (P10), COP (P12), 
lighting (P05) and equipment (P06) densities all present a high contribution, both for peak 
and annual demand. However, for annual demand, the parameters lighting (P05) and 
equipment (P06) densities have the largest contribution for most sites analysed (up to 40% 
and 50% respectively, looking at the Sobol analysis case study). In general, the sensitivity 
indices for different parameters within the output variables and model types are relatively 
stable/consistent across the sites analysed. However, for specific simulation results (office 
type, output variables) some sites analysed clearly stand out. For total annual demand, the 
results for C1-Singapore stand out from the remaining sites and on the other hand, the 
results for C6-London stand out for total peak demand. The cooling requirements are 
significant throughout the whole year in C1-Singapore, and so the contribution of internal 
heat gains is smaller than for other locations. Conversely, for C6-London, due to the milder 
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extreme weather conditions, the internal heat gains (lighting and equipment) present larger 
contributions for peak demand. 

Relative to the second research question: “What is the relative impact on peak and annual 
HVAC and total electricity demand of office buildings as cooling requirements differ with 
changing building design and operational conditions?”, the research findings show that the 
difference between the coefficient of variation (CV) for the annual and peak demand is 
different regarding sites, building types, and output metrics analysed. The CV or relative 
standard deviation is a measure of frequency distribution in a population, expressing the 
variability in relation to the mean. As it would be foreseeable, the uncertainty of total 
building electricity demand is usually larger for peak demand than for annual demand. For 
example, the CV was 29% for peak and 24% for annual demand in large offices in C4-Beijing. 
The differences in uncertainty between annual and peak demand is clearly related to the 
location (i.e. the weather conditions), and the type of office building analysed. For example, 
the difference between annual and peak demand CV values is larger for small offices than 
large. However, for C1-Singapore in the small office, the CV value is 28% for both, while for 
large offices is 29% for peak and 26% for annual demand. 

At electricity demand for HVAC end-use level, the difference of CV values between peak and 
annual demand for small buildings is much smaller than for large and medium office 
buildings (it is respectively 41% vs 38 for small offices, and 40% vs 33% for large and 46% vs 
30% for medium, in C4 - Beijing). By contrast, in the preliminary study presented at the 
CISBAT (Zeferina, Wood, et al., 2019), the HVAC demand variation is significantly larger for 
annual demand than for peak demand (annual 108% and peak 55%). Similarly, for space 
cooling requirements, the findings show that the CV for annual demand is larger for all 
locations except C1–Singapore. The research findings also show that the difference between 
annual and peak CV is increasing from C1-Singapore to C6-London, and is larger for small 
office types (e.g. 39% vs 22% for C6- London, or 30% vs 24% for C1- Singapore, for small 
buildings). In terms of differences on sensitivity indices (µ*) for different simulation cases, 
the values may be significantly different for different building types. For example, in large 
office buildings, the ventilation rate is clearly more important than for the other office 
building types. It seems possible that these results are due to differences in the HVAC 
system of each building type and the relationship of the cooling needs, and the electricity 
consumption of each building case analysed. These results therefore need to be interpreted 
with caution. More detailed analysis is required, in order to mutually evaluate the sensitivity 
of parameters for the different components of HVAC electricity demand, and analyse 
potential correlation effects. 

The methods presented in this chapter have several limitations that restrict the scope and 
wider applicability of the research findings. For example, the sensitivity analysis of 
archetype office models conducted in this chapter did not include the building form 
characteristics, such as glazing area ratio, the ratio between the building's length and width, 
or expanding stretch the ratio between floor space and envelope area. These parameters 
were possible to iterate on the simplified office models used for the preliminary studies 
(Zeferina, Birch, et al., 2019; Zeferina, Wood, et al., 2019). However, due to DOE reference 
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office models' additional modelling complexity, it is onerous to iterate such input model 
parameters recursively. The pre-analysis studies showed that these parameters do 
contribute to the response of cooling demand, but they have only a minor individual 
contribution. However, the analysis of some of these parameters' implications is still 
relevant, especially regarding the possible interactions that may exist with some of the 
other parameters considered. The lack of exploration/evaluation of the interaction effects 
and non-linearities of the sensitivity analysis in the studies presented is another limitation of 
the work done in this chapter. The relationship between σ and µ* on Morris EE shows the 
linearity of the interaction of the parameters. Similarly, the differences between ST and SI in 
a Sobol sensitivity analysis are a measure for the interaction of a parameter on the 
remaining parameters' change. The analysis of such influences may lead to a better 
understanding of the effects of parameters in models. However, it also requires a larger 
number of simulations and increases the result analysis' detail and complexity. 

The literature reviewed presented a focus on single-site studies, and not many studies have 
analysed the implications of different sites for the sensitivity of cooling related demand in 
buildings. It is not common to compare the sensitivity across different building archetypes, 
as the range of uncertainties of the inputs does not coincide. Mechri et al. (2010) identified 
that the value of a parameter's sensitivity index for cooling energy needs is similar across 
five different locations representing significantly different climates across Italy. In this study, 
similar findings were achieved on the sensitivity linked to space cooling demand. However, 
the effects on total and HVAC demand are significantly different, also found by Huang et al. 
(2018). The weather conditions significantly influence the optimal configuration of building 
chillers in studying the uncertainty of cooling loads. These different findings show that it is 
essential to have a more holistic approach to analysing the uncertainty and sensitivity of 
building models. Therefore, this study has analysed simultaneously different output 
variables and considering both peak and annual periods. It is not common to compare the 
sensitivity across different building archetypes, as the uncertainty range of the design and 
operational model input parameters are potentially distinct between the models. 

The research results presented in this chapter utilises simulation cases that include several 
offices and considers up to six distinct sites/cities. Exploring a larger number of building 
archetypes, and extending the analysis to a broader range of climate conditions, or the 
same analysis for multiple sites in each climate zone, could give better insight on design 
solutions for different climate conditions and type of buildings. In the same way, the 
assumptions on the limits of the uncertainty range and especially on the distribution of 
these ranges may lead to bias in the results. Further work is required to establish the effect 
of uncertainty quantification assumptions, considering diversified archetypes that include 
more detailed and representative benchmark data. Finally, it may be interesting to analyse 
the implications between HVAC demand and space cooling needs, considering the 
requirements specifically for sensible and latent loads. 

The Morris EE method undertakes an efficient sampling to screen many input parameters in 
a model. However, there are limitations for the use of this method. For example, it creates a 
sparse number of iterations throughout the input range, which for non-linear methods may 
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create more discontinuities. In this chapter, the Morris EE method was used to compare the 
different office archetype models' sensitivity. In the future, it would be interesting to run 
global sensitivity analysis, for example with Sobol methods, for all these building types. For 
example, it would be interesting to explore the interaction effect analysis on the Sobol 
method and include the analysis of building form parameters. Besides the difficulties of 
recursively iterating these parameters in the current building model, the number of samples 
to be executed are also onerous. 

For the design of new buildings or the retrofit of buildings, the research findings can inform 
that it is important to focus on the reduction of the ventilation rate, equipment and lighting 
densities, to reduce total electricity building peak load. It is also important for small and 
medium offices to look at ambient cooling set-point temperatures and COP of the HVAC 
systems. To reduce annual electricity demand, reduction on equipment and lighting energy 
use can have the largest contribution. However, for climates with constant large cooling 
demand throughout the whole year, such as Singapore, ventilation rates have the largest 
contribution to the annual electricity demand. For the sizing of the HVAC equipment (peak 
and annual HVAC electricity demand), the ventilation rate is the parameter that contributes 
the largest, and it is followed by the ambient set-point and the coefficient of performance. 
Nevertheless, changing anyone of these parameters there will be ramification for the 
occupants of the buildings and other non-energy performance indicators (for example IAQ 
or lighting requirements). 

The results presented in this chapter are significant in at least two significant respects. First, 
peak demand change can be significantly larger than it is for annual demand, especially in 
climates with hot summers and significant seasonal patterns (C2-Cairo, C3-Athens, C4-
Beijing and C5-Lisbon). Second, the input parameters' contribution to the HVAC demand is 
similar between locations, both annually and for peak demand. However, the total 
electricity demand contribution is strongly affected by the location, which is caused by the 
share of HVAC loads on the total demand. Finally, for both annual and peak demand, 
ventilation rate (P10) is the single parameter that contributes the most for HVAC demand, 
and consequently for total demand. Equipment (P06) and lighting (P05) densities are the 
contributors that follow for total demand, and together they can still contribute to more 
than 50% of demand. 

4.4 Chapter summary 
The research analysis presented in this chapter was aimed to understand and quantify the 
sensitivity of office buildings modelling to different inputs. The research findings presented 
have identified and quantified the input parameters on building performance simulation 
that have the largest influence on the cooling demand of office buildings and related 
electricity demand. The ranking and level of contribution of the parameters depends on the 
site, office building type and output metric analysed. Similarly, this research enabled to 
assess the cooling demand and related electricity consumption for different types of office 
building models, for different sites, comparing the uncertainty ranges for different output 
metrics and cases analysed. For example, the research finding showed that for total 



129 
 

electricity, the response for peak demand is in general larger than for annual demand, for 
most of the sites and building types. 

The findings presented in this chapter provide insights to address two research questions of 
this thesis, which were introduced in Section 1.3 and restated in the Introduction of this 
chapter (4.1). For the design of new buildings or retrofit of buildings, the research findings 
can inform that it is important to focus on minimising the ventilation rate, equipment and 
lighting densities, to reduce total electricity building peak load. It is also important for small 
and medium offices to look at ambient cooling set-point temperatures and COP of the HVAC 
systems. This chapter enabled us to screen the parameter range of the building model 
assumptions, identify estimations for what-if analysis scenarios and spot unexpected 
sensitivities of the models. Having a good understanding of the limits of models utilized is 
critical for the application of these models in the research approaches in the following 
chapters.
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5 The effects of the uncertainties associated with climate data on 
the cooling demand of office buildings 

5.1 Introduction 
Chapter 4 aimed to understand and quantify the sensitivity of office buildings modelling to 
different inputs (design and operational). Thus, the thesis moves on, pursuing to understand 
and quantify the effects of weather data changes. Then, the research findings will enable to 
inform the range of potential weather changes considered in the application of the climate 
pathway framework presented in Chapter 6. 

The main aim of the study presented in this chapter is to analyse the changes in electricity 
demand for office buildings due to weather variability. Firstly, it identifies and quantifies the 
natural variability and potential change due to climate change impacts by analysing existing 
sets of weather data (both historical weather data and future weather data based on 
climate projections). Thus, it explores the effects of weather variability using linear 
sensitivity analysis tests on different weather variables and so evaluates the effects for the 
electricity demand of office buildings. The analysis intends to identify the weather variables 
with the largest effect on the electricity demand, such as wind speed, solar irradiation, 
relative humidity and dry-bulb air temperature. The study also analyses how the electricity 
demand responds to these changes across different climates (six locations are analysed) and 
building types (three types of DOE reference office buildings are used. Consequently, this 
study addresses the following research question: 

 How does the morphing of weather timeseries influence the peak and annual total 
electricity demand in a case study of archetype office buildings? 

The study presented in this chapter has three objectives: 

 Firstly, to explore, identify and quantify the natural variability of weather using 
historic datasets (Sub-section 5.2.3); 

 Secondly, to identify the variability of weather metrics within two sets of weather 
files generated from global climate models for different locations; each set was 
developed using a different downscaling method to interpret global outputs at 
hourly resolution into city-scale weather files and used different climate models and 
emission scenarios (Sub-section 5.2.1 and  5.2.2); 

 Thirdly to assess and quantify how individual weather variables influence annual 
and peak electricity demand (Section 5.3). 

The structure of the chapter is as follows: first, in this section, it introduces the context of 
the research and the aim of the study. Second, Section 5.2 presents an analysis of the 
variability of different variables in several weather datasets. Third, it shows the results on 
the electricity demand of offices of the linear sensitivity analysis on weather parameters 
(Section 5.3). Then, the research findings are discussed (Section 5.4) and finally, a summary 
of the chapter is presented in Section 5.5. 
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5.2 Analysis of weather variability in existing weather data 
The following part of this chapter moves on to describe the analysed changes in multiple 
weather variables, on different sets of weather data. This analysis intended to study the 
variability of variables in historical weather data, and the patterns of change of weather 
variables due to the impacts of climate change projections. First, an analysis of the changes 
of the weather variables in WeatherShift (Dickinson, et al., 2016; Arup, et al., 2020) data is 
presented (Sub-section 5.2.1), identifying the average shifts for the different levels of 
likelihoods and emission scenarios. Second, an analysis of other future weather data-sets 
generated from morphing global projections is presented (Sub-section 5.2.2), analysing the 
data available from the Prometheus project. Finally, a historical multi-annual data-set for all 
locations is analysed (Sub-section 5.2.3), identifying the variability and the deviation of 
these data-sets from the used TMY. This analysis collectively identified the natural variability 
and potential levels of change due to the climate change impacts, thus it allows a 
quantification of the limits of the uncertainty to explore when studying the effects of these 
on the cooling demand of office buildings. 

5.2.1 Analysis of WeatherShift data 

In the section that follows, the future weather data-sets (total of 36 files per location) 
generated by WeatherShift are analysed for each one of the six locations studied in this 
work. An analysis of several weather variables is made, such as dry-bulb temperature (DBT), 
relative humidity (RH), wind speed (WS), horizontal infrared radiation (HIR) intensity, direct 
normal (DNR) and diffuse horizontal radiation (DHR). As shown in Figure 5.1 b), annual mean 
DBT are estimated to increase across these locations between 3.1°C to 5.2°C in 2090, 
considering the emission scenario RCP 8.5 with 50% probability level. 

    
Figure 5.1 – Changes in mean dry-bulb temperature for the different location in weather data from WeatherShift a) 
Monthly in RCP 8.5 – 2090 and b) annually for RCP 8.5 50% probability level. 

An overview of the changes in dry-bulb temperature across all locations, scenarios and 
timelines is presented in Figure 5.2. When analysing the DBT changes for the different 
projections for RCP 8.5 - 2090, it was found that these changes can go from 2.4°C (C6-10%) 
to 7.1°C (C5-95%). It is apparent from Figure 5.2 that the temperature change is different 
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between locations: smaller for C1-Singapore and larger for locations such as C4-Beijing and 
C5-Lisbon. As can be seen from Figure 5.1 a), the difference in mean DBT for month seven, 
July, can be up to 57% larger for C4-Beijing than the change in the annual average value. 
However, the difference in DBT month average change is very small for C1 (ratio change of 
15%). 

 
Figure 5.2 – Annual mean change in dry-bulb temperature in all future weather data from WeatherShift 

Table 5.1  shows the projected change in the wind speed values for RCP 8.5 (2090 – 95%), where the largest relative change 
on annual mean value is 0.3% over base/original climate conditions. Monthly relative changes are at a maximum of 0.9% of 
the original monthly mean values. For relative humidity, as shown in  
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Table 5.2, the weather data-set presents drier weather conditions in the future across all 
locations. In C5-Lisbon, the annual relative humidity mean value can decrease up to 6.4% in 
absolute value. For monthly averages, the changes are larger for summer months, as shown 
in Figure 5.3, when RH can decrease in absolute values up to 11.4% in C5-Lisbon or 11.5% 
for C6-London. 

Table 5.1 – Wind speed changes [m.s-1] in RCP 8.5 – 2090 proj. prob . 95%, WeatherShift data 

 
C1  

Sin. 
C2 

Cai. 
C3 

Ath. 
C4 

Bei. 
C5 
Lis. 

C6 
Lon. 

Mean annual change [m.s-1] 0.0002 0.0030 0.0018 -0.0005 -0.0007 0.0017 
Growth(%) 0.02% 0.3% 0.18% -0.05 -0.07 0.16% 

Monthly max. change 0.07 0.15 0.15 0.04 0.05 0.12 
Growth(%) 0.27 0.59 0.89 0.38 0.31 0.67 
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Table 5.2 – RCP 8.5 – 2090 – Change in relative humidity, WeatherShift data 

 C1  
Sin. 

C2 
Cai. 

C3 
Ath. 

C4 
Bei. 

C5 
Lis. 

C6 
Lon. 

Mean change for proj. prob. 50% [%] -1.1 -1.05 -2.14 -0.76 -4.40 -3.15 
Mean change for proj. prob. 95% [%] -3.2 -1.3 -3.2 -1.2 -6.4 -4.4 
Monthly max. change for p.p. 95% [%] -6.9 -2.9 -4.5 -4.7 -11.4 -11.5 
 

 
Figure 5.3 – Monthly change in relative Humidity for RCP 8.5 - 2090, location C1-Sin and C6-Lon for probability  50% and 
95% 

In the WeatherShift RCP 8.5 data, it was noticed that absolute changes in global horizontal 
(GHR), direct normal (DNR) and diffuse horizontal radiation (DHR) are precisely the same, as 
shown in  and Table 5.3. On the other hand, there are no changes in the horizontal infrared 
radiation (HIR) intensity from the sky. Annual mean irradiation change (DHR, DNR and GHR) 
can go up to 17 W.m-2 (C5-Lisbon) and may represent an annual increase up to 14.2% in GHR 
annual mean for C6-London, with a 16.3 W.m-2 increase (Table 5.3). This absolute change, 
16.3 W.m-2 in C6-London, represents a 19% and 24% annual increase, respectively for DNR 
and DHR. 

Table 5.3 – Change on solar radiation relative to baseline, for RCP 8.5 – 2090, probability 95% 

 C1  
Sin. 

C2 
Cai. 

C3 
Ath. 

C4 
Bei. 

C5 
Lis. 

C6 
Lon. 

GHR [W.m-2] 7.8 3.8 15.5 6.3 17.0 16.3 
Share(%) 4.1 1.7 8.1 4.0 9.2 14.2 
DNR [W.m-2] 7.8 3.8 15.5 6.3 17.0 16.3 
Share(%) 9.9 2.0 8.9 4.2 9.7 19.3 
DHR [W.m-2] 7.8 3.8 15.5 6.3 17.0 16.3 
Share(%) 6.0 4.5 19.9 10.4 23.0 24.1 
HIR [W.m-2] 0 0 0 0 0 0 
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Figure 5.4–- Change on solar radiation variables relative to baseline,  for RCP 8.5-2090-95%, across all locations 

5.2.2 Weather Analysis of the Prometheus data 

Another set of future weather data downscaled from global climate projection was analysed 
to assess the assumptions used in the downscaling of solar radiation variables. The data 
analysis is focused only on solar radiation changes, as the approach used in the previous 
data-set (WeatherShift) was found to have discrepancies from weather changes that would 
be expected to occur.  

The new data-set analysed is from the Prometheus project (Exeter, 2020). Table 5.4 
presents the pattern of changes for the same weather variables analysed in the previous 
sub-section for WeatheShift data. Looking at dry-bulb temperature for London, the average 
change of the annual mean value is 5.8°C, but the monthly average change can go up to 
8.8°C, for the A1F1 emission scenario, 2090, with 90% probability. Annual total GHR 
increases by 10.52%, but the yearly maximum value does not change (Figure 5.5). A similar 
pattern of change is identified for DNR and DHR, with changes in annual mean values of 
+24.32% and -0.94%, respectively. However, there are no changes in yearly maximum 
values. Regarding HIR, the annual mean value increase by 11.84%, and the maximum yearly 
increases by 27.18%. 

Comparing the changes on the timeseries data for solar radiation variables for the 
Prometheus and WeatherShfit cases, it is possible to identify different trends in the 
morphing procedures. First, for the horizontal infrared radiation series, the Prometheus 
approach proceeds with morphing procedure, but the WeatherShift approach does not. 
Second, the Prometheus morphing approach shows to promote different changes for 
diffuse and direct radiation, and that the procedure is truncated at maximum radiation 
levels, making that no changes occur at maximum values. By contrast, for Weather Shift, the 
morphing approach for these solar variables (GHR, DHR and DNR) was precisely the same. 
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Figure 5.5 – Violin-plot of solar radiation variables (DHR, DNR,GHR and HIR) for two cases in Prometheus future weather 
data for London 

Table 5.4 – Changes between A1F1 – 90% -2090 scenario and the baseline in Prometheus weather data for London 

 DBT HIR GHR DNR DHR 
Mean change 5.8°C +11.84% +10.52% 24.32% -0.94% 
Max. change 8.8°C +27.18% 0.13% 0.00% 0.00% 

5.2.3 Annual variability of actual meteorological year data-sets of all locations 

In this subsection, actual meteorological year (AMY) data for the different locations are 
analysed, from data made available by climate.one.building.org (Lawrie, et al., 2019) 
deriving the data from a number of public data sources. Therefore, an assessment and 
quantification of the variability of weather data across a multiple year data records is 
possible to be made and assess the differences to the baseline weather data in the typical 
weather files data records. 

Table 5.5 summarises the statistical analysis made for all cities and several weather 
variables. For example, mean values, standard deviation across the whole data-set period, 
and the mean difference between AMY weather data and TMY data are presented for each 
city. For dry-bulb temperature, the standard deviation of the annual mean is up to 0.8°C, for 
C2 - Cairo and C5 - Lisbon, and the standard deviation for the annual maximum is up to 
2.7°C in C6 - London. The difference between dry-bulb temperature mean for the AMY data 
and the respective TMY data are between +0.1°C for C4 – Beijing and +0.4°C for C2 - Cairo. 
The difference of the maximum annual DBT between the AMY and TMY is negative by 1.1°C 
and 0.8°C, for C6 and C2, respectively. However, this difference is positive for all the other 
cities, up to a maximum of 2.2°C for C5-Lisbon. Interestingly, annual mean dry-bulb 
temperature are similar between TMY data and AMY data, but maximum annual 
temperatures registered can be significantly different. 

Looking to relative humidity, the standard deviation of the mean annual value on the AMY 
data is between ±1.9% for C6 and up to ±3.3% in location C4. The difference in mean values 
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between AMY and TMY data is from -2.3% for C2 – Cairo to +1.3% in C6 - London. Looking to 
global horizontal radiation, it is possible to identify that standard deviation among the inter-
annual mean values on the AMY data is between 2.3 W.m-2 for C2 - Cairo and 18.5 W.m-2 for 
C1 - Singapore, and the coefficient of variability (CV) is between ±1% for C2 - Cairo and 
±10.7% for C6 - London. The deviation of the mean GHR value between the AMY to TMY 
data is between -3.4% for C1 - Singapore and +15.6% for C4 - Beijing. The standard deviation 
of GHR annual maximum is between ±4.1 W.m-2 (C3) and ±7.8 W.m-2(C6), while C1 – 
Singapore outlies with ±22.8 W.m-2. These values correspond to CVs between ±0.4% (C3 and 
C4), ±0.9% (C6) and ±2.2% for C1. The difference between AMY and TMY maximum values is 
between -1.7% for C1 and +0.4% for C2, having an outlying value of -21.4% for C4 - Beijing. 

  



138 
 

Table 5.5 – Summary of AMY data and comparison to TMY data for the 6 locations in the simulation case 

Variable Annual AMY Serie C1 
Sin. 

C2 
Cai. 

C3 
Ath. 

C4 
Bei. 

C5 
Lis. 

C6 
Lon. 

DBT 
[°C] 

Mean. 

Min. year 26.7 20.9 16.6 11.1 14.9 9.0 
Mean 27.7 22.1 18.1 12.7 16.6 10.4 
Max. year 28.5 24.2 19.5 13.8 18.2 11.8 
σ AMY 0.4 0.8 0.7 0.7 0.8 0.7 
Δ AMY-TMY 0.2 0.4 0.2 0.1 0.3 0.2 

Max. 

Min. year 33.0 38.0 35.0 33.0 35.0 26.9 
Mean 34.2 42.2 38.0 38.1 38.2 30.2 
Max. year 37.0 45.0 42.0 42.0 43.0 39.0 
σ AMY 0.9 1.7 1.8 2.0 2.2 2.7 
Δ AMY-TMY 0.4 -0.8 0.8 0.9 2.2 -1.1 

RH [%] Mean 
Mean AMY 82.8 56.6 61.4 54.6 73.4 80.5 
σ AMY 2.0 2.2 2.2 3.3 3.0 1.9 
Δ AMY-TMY -0.8 -2.3 -0.1 -0.8 -0.7 1.3 

GHR 
[W.m-2] 

Mean 

Mean AMY 184.5 240.1 205.9 189.4 194.3 126.9 

σ AMY 
18.5 2.3 6.4 8.8 6.5 13.6 
10.0% 1.0% 3.1% 4.6% 3.4% 10.7% 

Δ AMY-TMY 
-6.3 21.0 15.3 29.5 6.1 11.6 
-3.4% 8.7% 7.4% 15.6% 3.1% 9.2% 

Max 

Mean AMY 1022.4 1033.2 999.7 988.5 993.9 883.6 

σ AMY 
22.8 6.7 4.1 4.4 4.6 7.8 
2.2% 0.6% 0.4% 0.4% 0.5% 0.9% 

Δ AMY-TMY 
-17.6 4.2 2.7 -211.5 -14.1 -9.4 
-1.7% 0.4% 0.3% -21.4% -1.4% -1.1% 

HIR 
[W.m-2] 

Mean 

Mean 438.8 368.4 353.0 321.2 350.8 324.5 

σ AMY 
5.9 3.7 4.3 3.8 5.7 3.1 
1.3% 1.0% 1.2% 1.2% 1.6% 1.0% 

Δ TMY 
30.5 9.7 11.0 -1.5 16.0 7.8 
6.9% 2.6% 3.1% -0.5% 4.6% 2.4% 

Max 

Mean 483.0 485.0 456.1 487.1 457.1 428.6 

σ AMY 
4.7 15.7 10.2 7.6 14.4 14.8 
1.0% 3.2% 2.2% 1.6% 3.1% 3.5% 

Δ TMY 
22.0 8.0 21.1 0.1 -0.9 20.6 
4.6% 1.6% 4.6% 0.0% -0.2% 4.8% 

Looking to results on horizontal infrared radiation, the standard deviation of the annual 
mean values on the AMY data for the different locations is between 3.1 W.m-2 (C6) and 5.9 
W.m-2 (C1). The coefficient of variation (CV) is between 1.0% (C6 and C2) and up to 1.6% 
(C5). The annual maximum values of the AMY data present CVs between 1% C1 and 3.5% for 
C6. The deviation of the mean of the AMY data to the respective TMY can be from -0.5% for 
C4 and 6.9% for C1. The deviation between the average of the annual maximums and the 
respective TMY data is between -0.2% for C5 and 4.8% for C6. 
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5.3 Analysis of the effects on total electricity demand of office buildings, due to 
linear sensitivity analysis of weather parameters modified through morphing 
procedures 

In this section, the response of total electricity consumption is analysed to changes driven 
by linear sensitivity analysis (LSA) tests on different weather parameters, for the building 
energy models of three different office types. Figure 5.6 and Figure 5.7 present the 
maximum response of total electricity demand on the office buildings models, among the 
simulations iterated for each linear sensitivity analysis test, respectively for peak and annual 
temporal resolution. It is apparent from the results that changes in annual mean dry-bulb 
temperatures (test 1) drive the most significant impacts on electricity demand, both for 
peak and annual loads, for all office building energy models. The value of the maximum 
change driven for each LSA test is presented in Appendix C2, where values for peak demand 
are summarised in Table 0.5 and for annual demand, are summarised in Table 0.6. 

For example, the shift on dry-bulb temperature annual mean (test 1) is associated with 
increases in total electricity peak demand between 13% (C6-London in large office) up to 
27% (C1–Singapore in medium office). The screening of the summer seasonal ratio that 
changes the seasonal shift of dry-bulb temperature (test 2) drives changes up to 15.4% (C3–
Athens in a large office), and in the minimum case by 4.9% (C6–London in a large office). The 
screening of the heatwave stretch parameter (test 3) imposes a change up to 9.4% for C5–
Lisbon in a medium office. On the screening of the shift (negative - drier) on relative 
humidity (test 5), peak demand can decrease up to 5.7% (C5–Lisbon in a large office). 
However, in some locations (C2-Cairo and C3-Athens), reductions may only lead to peak 
consumptions increases of 1.3% and 3.1 %, respectively. The screening on relative humidity 
seasonal ratio (test 6) can lead on its own, to a reduction of 2.6%, for C5–Lisbon in a large 
office. The stretch on wind speed (test 4) presented the lowest implication to the peak total 
demand, for the three office models, up to a maximum of 1.4% (C5–Lisbon in a large office). 
The three LSA tests related to solar irradiations weather variables (HIR – test 7, DNR – test 8 
and DHR -test 9) have shown relatively low implications on total peak load (up to +4.3%, test 
7, C4 - Beijing in a small office). 
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Figure 5.6 - Maximum change on peak total electricity demand for the different LSA tests executed, in the three type of 
offices (large, medium and small) 

For the response of total annual electricity demand, the LSA ratio results are presented in 
Figure 5.7. The screening of the dry-bulb temperature mean annual shift (test 1) can lead to 
a change between 9.1% for C6–London in a small office, to up to 38% for C1–Singapore in a 
large office. The response to the screening of the dry-bulb temperature seasonal ratio shift 
(test 2) leads to a change up to a maximum of 3.1%, for the medium model, 3.4% for a small 
model, and 4.5% for a large office, in C4-Beijing. The response to screening the stretch of 
wind speed data (test 4) has shown low implications, with a maximum increase of 0.75% 
(C5–Lisbon in a large office). The results for the heatwave stretch parameter screening (test 
3) are up to 0.5%. Shifts in the relative humidity variable (test 5) drive changes up to -5.1% 
for the maximum negative. The response to seasonal ratio changes (test 6) leads to changes 
up to -0.9%. 
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Figure 5.7 – Maximum change on annual total electricity demand for the different LSA tests executed, in the three type of 
offices (large, medium and small) 

A more detailed percentile analysis of the result throughout the LSA series of results is 
provided in Appendix C2. These graphs enable to assess the relative changes to baseline in 
different percentiles of the annual hourly results, and it also informs on the slope of the 
change within the series of results in each test. 

In Figure 5.8, the number of cooling hours for each simulation run in these series for test 1 is 
presented. For example, in C1 - Singapore cases, for test 1 – shift DBT, the change in mean 
hourly results is significantly higher (equivalent to annual change) than for the highest 
percentiles (Q95, Q99 and Peak-Q100). It is somewhat surprising that the number of annual 
hours requiring cooling increases significantly (from 5,503 hours to 8,021 hours, for large 
office type in C1-Singapore), while for other locations for the large office type, the number 
of hours requiring cooling tends to be steady (see: C3-Ath, C5-Lis, C6-Lon). A possible 
explanation for this might be that the increase in the space cooling needs during the less 
demanding unoccupied hours of the building does not surpass the threshold cooling value 
driven by the unload factor on chillers (that only exists for large office types). The same does 
not occur for medium and small offices, as the HVAC systems model does not include an 
unload factor. 
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Figure 5.8 – Number of annual hours requiring cooling for the different simulation cases for LSA test 1 – DBT shift 

For large office type, in C2 - Cairo and C3 - Athens, for the maximum percentile, there are 
sudden significant increases by the end of the Test – 1 serie (see Figure 0.3). The simulation 
iterations of the series where the discontinuity of the results coincide with a 
discontinuity/change in the time occurrence/moment of the total electricity peak demand 
of the simulation run. This discrepancy could be attributed to the fact that the peak demand 
is not only driven by the change in the DBT timeserie, but that other weather variables and 
building operation conditions influence the change and the occurrence of the peak demand. 
It is also somewhat surprising that lower wind speeds increase demand, but higher wind 
speeds reduce total electricity demand, when looking at the series of test 5 results (wind 
speed stretch, see Figure 0.6). 

Figure 5.9 summarises the effect on total electricity demand in response to the LSA test on 
shifts in relative humidity (test 5). The most interesting aspect of this graph is that it 
illustrates that shifts in relative humidity can either decrease total electricity demand (if 
shifts are negative) or increase if shifts in relative humidity are positive. For peak load, the 
increase in the peak electricity load can be up to +11.5% C5-Lisbon in a large office. 
Interestingly, in locations C2-Cairo and C3-Athens, the screening has shown that for drier 
conditions (negative shift) on small and medium building models, the peak demand can 
increase 3.1% (C3-Athens) and 1.3% (C2-Cairo). These outlier trends may be related to the 
actual value of the relative humidity weather variable at the moment of peak cooling 
requirements of the building case analysed. For example, for C2-Cairo and C3-Athens, the 
relative humidity is below 20% at the timestep of the peak load, and the research approach 
for the morphing of relative humidity update the value for the 20% threshold assumed by 
the research approach (details in Sub-section 3.3.2). The linear sensitivity analysis on the 
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shift of relative humidity (from negative to positive shift values in Figure 5.9) is less 
prominent for annual demand, but it can drive variations of ±5% for C1-Singapore in a large 
office. 

 
Figure 5.9 – Effect on total electricity demand in response to shifting changes in relative humidity 

Figure 5.10 presents the change in total electricity demand for the LSA screening tests 
related to the screening of solar radiations weather variables (HIR, DNR, DHR). What stands 
out in this figure is that the response is consistently more significant for horizontal infrared 
radiation screening, both for peak and annual, across the three office models. The change 
can go up to +5% in annual total electricity demand for a location such as C1. In Figure 5.10, 
there is also a clear trend that the response is consistently larger for a small office compared 
to large and medium, both for annual and peak load. For peak demand, the stretch of 
horizontal infrared radiation (test 7) and direct normal radiation (test 8) can lead to 
responses up to +4.1% and +3.6%, respectively. 
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Figure 5.10 - The response of total electricity demand for LSA test on solar radiation variables (HIR, DNR and DHR) 

Comparing the response of total electricity demand for the different office building types 
across all the screening tests, the response is slightly different for the different types of 
models. It is also evident that model types that are more responsive to some variables can 
be the least responsive to other weather variables. In addition, the significant response 
levels may be only evident to some of the locations analysed. For example, for solar 
radiation screening tests (test 7, 8 and 9), the response of small office results is larger than 
for large and medium office models. For the screening of relative humidity (test 5), the 
change in the total demand for a large office model is larger than for the other two office 
models, especially for the annual demand. For test 3, the stretch of dry-bulb temperature 
during a heatwave period, the peak demand response on medium and small buildings is 
consistently larger than for large office buildings. Similarly, for the other tests related to the 
change of dry-bulb temperature (test 1 and 2), the peak total electricity demand change 
seems larger for medium and small office buildings than for large models. However, this is 
not the case for all locations. 

5.4 Discussion of the effects of the uncertainties associated with weather data on 
the electricity demand of office buildings 

This chapter analyses the effects of morphing procedures associated with future weather 
data considering the impacts of climate change upon office buildings’ electricity demand. 
This was made on a two-step approach: first, identifying the possible changes in weather 
data and the associated variabilities in the different variables, to have a better 
understanding of the factors influencing weather parameters (Section 5.2). Secondly, an 
analysis was made on the effects of the changing weather variables (applying morphing 
procedures) on office buildings’ electricity demand (Section 5.3), based on a plausible range 
of the weather variables identified in the first step. 
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The analysis of the different sets of historic weather data (available in 
climate.one.building.org (Lawrie, et al., 2019)) and that from climate projections (from 
WeatherShift (Dickinson, et al., 2016) and the Prometheus Project (Eames, et al., 2011; 
Exeter, 2020)) enabled the identification of patterns of potential weather changes due to 
climate change as well as the natural variability of weather conditions. The analysis of future 
weather data-sets associated with climate change, created using morphing procedures to 
downscale global climate models projections, have shown that projections of future 
weather changes can vary substantially. The amplitude of changes varies considering 
different emission scenarios, timelines, and the probability of projections under each 
scenario. 

For example, projections of annual average dry-bulb temperature changes in C5-Lisbon can 
go from 0.8°C (2035 – 10%) to 7.1°C (2090 – 90%) under  RCP 8.5. The changes are distinct 
between cities analysed, as projected annual average dry-bulb temperature changes are 
3.1°C (2090 – 95%) for C1 – Singapore and 5.2°C (2090 – 95%) using the same GCM outputs 
for RCP 8.5 for C4 – Beijing. Likewise, the impacts of climate change will lead to lower values 
for relative humidity, with annual average reductions of up to 6.4%. Changes in annual 
mean global horizontal radiation value may lead to an increase by up to 14%. In addition, 
the impacts of climate change will lead to lower values for relative humidity, with annual 
average reductions of up to 6.4%. Changes in annual mean global horizontal radiation value 
may lead to an increase by up to 14%. 

It is also evident that the monthly changes may be significantly different from the overall 
annual change. For example, in some locations, the dry-bulb temperature average month 
shift in July is up to 58% larger than the annual average change (12°C versus 7.1°C, for C4 – 
Beijing). Similarly, the change on monthly mean relative humidity is much more intense in 
some months than it is annually. This shows that impacts of climate change may have a 
significant seasonal trend, being prone to have more intense warming effects during the 
summer season than on the remaining seasons. For maximum annual values, shifts may 
even be more extreme as seen for changes in maximum dry-bulb temperature. 

It is important to emphasise that assumptions used in the downscaling of climate 
projections may lead to different trends and levels of change. For example, the 
WeatherShift and Prometheus weather data-sets have shown different assumptions on the 
morphing approaches for the temporal downscaling of solar radiation variables. The 
generation of weather data from WeatherShift tool does not consider changes in horizontal 
infrared radiation intensity (HIR), but the Prometheus approach does. On the other hand, 
the shift changes for direct (DNR) and diffuse (DHR) radiation on Prometheus approach is 
truncated, not enabling the value to exceed the current maximum values. However, these 
variables are shifted with no restrictions on WeatherShift approach. The variability of 
historical weather data (5.2.3), is in contrast with this approach, as it is reported variability 
of mean GHR, but low variability for maximum annual GHR. Hence, it seems that there is a 
potential bias due to the downscaling methods as referred in (Hall, 2014; Trzaska, et al., 
2014; Maraun, 2016), which may lead to entirely unreasonable trends in some weather 
variables, as for solar radiation. 
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The analysis of historic weather annual hourly data (AMY) of these locations permits to 
understand the level of inter-annual variability of these weather variables. The different 
variables' level of variance is significant, especially on DBT, where annual average 
temperatures were found to differup to 3.3°C (from minimum to maximum annual mean 
records), or the maximum annual temperatures registered in the multiple-year series were 
found to differ up to 12.1°C. The variance of annual mean relative humidity was found to be 
around 3%, and the coefficient of variance of global horizontal radiation is up to 10%. The 
coefficient of variation (CV) of the maximum annual GHR is lower than 1%. On the other 
hand, the CV of maximum HIR is above 3%. These type of variances have been reported in 
other weather data-sets analysis (Hong, et al., 2013) 

Barnaby et al. (2011) stated that it is challenging to represent all possible weather variability 
with a TMY data. Thus, it is possible to expect that in extreme years during their lifetime, 
buildings may face very different weather conditions than are represented in typical design 
weather data-sets used. This can lead to significant differences in model result for energy 
estimated demand between real (AMY) and standard typical weather files (TMY). This is 
often more significant for peak demand, as concluded by Hong et al. (2013). Therefore, 
when analysing future conditions, it is essential to consider both the natural variability of 
the weather and expected future changes due to the impacts of climate change. 

Both the quantification of weather changes on sets of future weather data (WeatherShift in 
Sub-section 5.2.1 and Prometheus in Sub-section 5.2.2) and the inter-annual variability of 
the actual weather data (in Sub-section 5.2.3) helped to identify plausible ranges of weather 
conditions that may take place in the future. In summary, this allows the identification of 
the potential ranges in variability for the different climate parameters in the future for each 
location. 

On the second stage of this study (Section 5.3), the implications of weather variability on the 
office reference buildings' electricity demand were analysed. It assessed how weather 
effects (through morphing procedures) the building’s annual and peak total electricity 
demand. The linear sensitivity analysis study findings showed that dry bulb temperature 
leads to the largest response on both peak and annual electricity demand. However, for 
peak demand, changes in the seasonal ratio parameter (test 2) and the heatwave stretch 
parameter (test 3) present a much larger effect than for the annual demand. The change in 
solar radiation variables leads to an increase of up to 4%, both for peak and annual demand. 
The wind speed shows minimal effects on the demand, even if the changes tested are much 
larger than the changes estimated on climate projections. The change in relative humidity 
leads to a reduction of demand up to 4%. 

For location C1 - Singapore, annual demand changes are larger than peak demand changes 
for all models. A similar finding is discussed in Chapter 4, when there is a constant high 
demand for cooling over the whole year, for C1-Singapore, and so changes in space cooling 
requirements due to building model parameter uncertainty lead to more considerable 
changes on annual than on peak demand. It is also possible to verify that responses differ 
from the building model type and the location analysed. These responses are also 
significantly different for the different variables tested. In the same way, for small office 
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buildings types, demand may be strongly biased by not accounting for the potential changes 
in solar radiation variables, while it may be possible to neglect the implication of these 
variables for other types of office buildings. 

Considering that dry-bulb temperature is the weather variable with the most considerable 
implications for building electricity demand, it is necessary to detail the downscaling of GCM 
projections of this variable into hourly weather data-sets. For peak demand, which is critical 
on the sizing of HVAC systems, it is also evident that it is necessary to account for the 
seasonal patterns of change and the possible trend in extreme conditions. The downscaling 
of dry-bulb temperature has been already identified to be critical, and that dynamic options 
are preferable (Hall, 2014; Trzaska, et al., 2014), to account for the possible variations, 
seasonal and during the extremes. It is also critical for a specific type of buildings or 
locations to account for changes in other weather variables, such as solar radiation or 
relative humidity. However, there is always a compromise between the necessary effort and 
data requirements to generate data-sets, plus the additional simulation conditions to be 
computed against the building demand's accuracy requirements. 

To date, little research has been paid into the analysis of the implication of weather 
variability on building energy demand. While research studies have analysed the singular 
effects of different weather variables on building performance analysis (Bhandari, et al., 
2012; Chen, et al., 2012; Kalamees, et al., 2012; Kim, et al., 2017), this is the first study to 
investigate the sensitivity of energy demand to a range of weather modifications through 
morphing procedures. The approach utilised is innovative, as it isolates the effects of 
individual weather variables from  the effects of other weather variables upon the electricity 
demand of office buildings. 

The findings in this research have shown that the effects of the changes in weather variables 
may be significantly different for different locations/climates. Previous studies have only 
looked at a limited type of base climate condition which may infer limitations to the 
research findings. The research also indicates that changes in dry-bulb temperature variable 
presents a principal effect on the annual and peak electricity demand of the buildings 
analysed. Nevertheless, changes in other variables like relative humidity and solar radiation 
can show considerable effects on electricity demand. Previous studies have identified dry-
bulb temperature as the single weather variable with more significant energy demand 
implications. Bhandari et al. (2012) identified that it is essential to incorporate detailed dry-
bulb temperature and relative humidity data variables to analyse cooling demand in 
buildings. Chen et al. (2012) presented a similar finding for office buildings. In contrast to 
previous studies, this research has provided evidences that the pattern of change in dry-
bulb temperature (seasonal ratio test 2 and heatwave stretch – test 3) present significant 
implications for the effect on electricity demand. On the other hand, Kalamees et al. (2012) 
and Kim et al. (2017) utilised the same research approach to modify weather data in the 
same geographies, but presented contradictory findings on the relevance of weather 
parameters changes for energy demand of buildings. It suggests that modelling assumptions 
and modelling methods may lead to considerable difference on results.  
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The independent transformation of weather variables values used in this study enables the 
identification of the impact of each weather variable change on the electricity demand. 
Therefore, the analysis enables the critical weather parameters to be identified for different 
building performance simulation outputs (sizing, annual energy demand or peak energy 
demand). Having identified the critical weather parameters for different types of simulation 
studies here, it may be possible to know when simplifying the downscaling operation for 
some weather variables such as wind speed or related solar radiation variables is 
appropriate, for example when looking at annual demand.  Whereas for peak load analysis, 
it may be necessary to apply approaches that capture the more extreme shifts on dry-bulb 
temperature, with different time resolution for shift and stretch parameters used to 
generate downscaled weather data. 

Real weather data-sets contain climate variability, and it is not possible to isolate the 
changes on one variable from the remaining (Guan, et al., 2007). Therefore, the 
independent and individual screening of weather variables studied in these tests is not 
expected to occur in real weather data and is an explicit limitation of this study. However, 
the approach aims not to deliver precise results but to understand the propagation of 
weather uncertainty in building performance simulation outcomes. To pursue a reliable 
understanding of the variability of individual weather parameters on the response of cooling 
demand in office buildings, it is necessary to decouple analysed weather variables from the 
potential response noise effects from other weather variable changes. Rastogi (2016) has 
also discussed that synthetic weather data may contribute to a more robust assessment of 
building design solutions. 

The synthetic weather data-sets created to perform these analyses are not representative of 
real weather conditions. The creation of these specific synthetic files enabled the 
exploration of the effects of designed weather variables changes. For example, it allows the 
exclusion of the possible contribution of other weather variables and focuses exclusively on 
the effect of the changes in one particular weather variable. This approach enables the 
further understanding of the effects of weather changes on building energy performance, 
but there are limitations on the scope of the findings, as it was done only for a limited range 
of locations and type of buildings. The complexity of the building systems and the 
interaction of multiple variables may lead to different trends. Similarly, these findings were 
considered using EnergyPlus, and specific algorithms for the internal thermal calculations. It 
would also be interesting to understand the implication of similar tests on different main 
thermal engines (IES or TRNSYS). Even different internal EnergyPlus processing algorithms 
may have different implications for results. 

This study allowed the quantification of the implications of the variability of several weather 
variables on the annual and peak total electricity demand for office buildings. In addition, 
this study identified and ranked the weather variables that have larger implications for the 
electricity demand for office buildings. These findings enable trends across locations and 
type of office buildings to be identified, and make it possible to adapt the morphing 
procedure of each weather variable differently, in the generation of future weather data-
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sets. The approach taken to generate the weather data-set may differ depending on the 
target output variable for different locations, or building types analysed. 

5.5  Chapter summary 
The main aim of the work presented in this chapter was to analyse how does weather 
uncertainty influence the peak and annual electricity demand in office buildings. However, it 
was necessary two divide the approach in two distinctive stages: first, analysing weather 
variability in existing weather datasets and; second, analysing the sensitivity of electricity 
demand of office buildings to changes in the different weather parameters. A summary of 
the main findings: 

 Changes may be significantly larger during summer than annual changes; 
 Differences on morphing approaches of solar radiation create significant differences 

on changes of these variables; 
 Dry-bulb temperature is the variable that clearly contribute the most for change in 

electricity demand, both for peak and annual demand; 
 Sensitivity for seasonal changes and stretches in heatwave periods show significant 

contribution for electricity demand for peak demand. 

The research findings in this chapter are important to understand the effect of different 
climate change projections for the electricity demand of buildings. Having quantified these 
effects on the models and mapping the range of potential changes due to the impacts of 
climate change for the different weather variables, it is possible to develop alternative 
approaches to generate synthetic future weather files. These type of files, can be used to 
map a pathway of potential climate change states, that can robustly and continuously assess 
the effects of climate change to building energy performance
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6 The impacts of climate change under a climate pathway and the 
effects of adaptation measures 

6.1 Introduction 
The previous chapters presented the results of sensitivity analysis on cooling demand of 
office buildings regarding uncertainty in design and operational energy modelling 
parameters and the effects of weather morphing procedures. Thus, those findings provide a 
detailed understanding of the implications of the energy modelling assumptions and give an 
insight on the potential impacts of climate change on sample reference office buildings 
electricity demand for cooling. 

To date, most of the studies looking to the impacts of climate change in buildings have only 
been carried out in limited deterministic future conditions; hence, there has been few solid 
analyses of the effects on the electricity demand for cooling in a broad range of buildings 
and conditions. In addition, the generation of future hourly weather data-sets, that is 
required for dynamic building simulation, requires complex efforts, weather data and 
climate projections to produce. Therefore, heuristic approaches are often used to assess the 
impacts of climate change on building energy performance. Instead, deterministic 
approaches are made by discrete examinations of future scenarios using an ensemble set of 
future weather scenarios. Existing analyses are also limited in the number of building 
technologies/designs scenarios used and the locations considered. Regarding research on 
the effect of adaptation measures to mitigate the effects of climate change, it is concluded 
that combined sets of different adaptation measures are utilized to reduce the complexity 
and number of simulations required. Therefore, this study has prepared a methodology and 
applied it in a case-study to address some of these research gaps. 

In the study presented in this chapter, a climate change pathway, reflecting climate change 
projection scenarios, is created to provide a range of possible weather conditions, and the 
effect of these on the electricity demand of office buildings for cooling are analysed. More 
specifically, the effects of extreme weather conditions in the climate pathway for the peak 
and annual electricity demand of the office buildings are quantified, at a total and HVAC 
end-use level. After quantifying these potential impacts, the study uses the climate pathway 
approach to evaluate the potential reduction effects of a set of adaptation measures, 
comparing to the base case impact scenario. 

Nik et al. (2020) emphasised the need to develop methods that consider climate 
uncertainties, as well as to account for high stochasticity and multi-dimensional impacts of 
weather uncertainty, for assessing climate resilience of energy systems. To fully assess 
climate risks for building operations, it is necessary to screen a much wider range of 
potential climate scenarios, and including a large range of design assumptions. A number of 
researchers have utilised an ensemble of future weather files from WeatherShift to reflect a 
broad range of climate change scenarios and have elevated building energy performance 
(Moazami, et al., 2019; Troup, et al., 2019; Berardi, et al., 2020).What remains unclear, 
however, is precisely how the effects of global warming for building performance occur 
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throughout the potential path of progressive impacts climate change, for any given location 
in the world.   

Specifically, the study will address the fourth research question of this thesis, presented in 
Section 1.3: “To what extent could the electricity demand of office buildings be affected by 
changes in cooling demand due to the impacts of climate change, given a wide range of 
future weather scenarios?”. Thus, the climate pathway method is applied in the proposed 
case study of this thesis, to study the effects on electricity demand for cooling, on three 
different types of office buildings, for six different locations in the world. The effects for the 
peak and annual electricity demand, both on total and HVAC end-use are studied (Section 
6.3). In addition, it is quantified and compared the effect of different adaptation measures 
in reducing additional cooling demand during this pathway. The specific question which 
drives the research in this second part of the chapter (Section 6.4) is the fifth and final 
research question of this thesis: “To what extent and magnitude could a potential increase 
in electrical peak load due to cooling provision be limited in future scenarios by adaptation 
measures?”. 

6.2 Analysis of weather variables in the climate pathway 
In this section, an analysis of the weather changes throughout the climate scenario pathway 
and across the weather variables is made. Figure 6.1 presents the spectrum of values for the 
different weather metrics for the different locations across the pathway, namely presenting 
the annual values for mean DBT, maximum DBT, CDD, mean DNR, and mean HR. Looking at 
the distribution of values on the climate pathway for the different location, in Figure 6.1 b), 
relative to mean HR and mean DBT, it is possible to identify the same distribution pattern 
for all locations. This is due to the fact that the changes made to each location base weather 
file are the same for all locations.  
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Figure 6.1 – Distribution of different weather metrics in the whole pathway sample for each location: (a) CDD, (b) maximum 
DBT, (c) annual mean DBT and (d) Mean DBT/Max. DBT 

On the other hand, the changes for maximum DBT or DNR are different among the 
locations, as can be observed in Figure 6-1 (a) and (c), respectively. In Figure 6-1 (b) or (c), it 
is also possible to observe that the distribution of samples in the space is not entirely 
uniform, which is explained by the method and the number of iterations used to generate 
the sample. However, the space range is widely covered, and this approach may be 
sufficient to explore the effects of conditions represented in the scenario pathway. 

Figure 6-1(d) shows the changes in maximum DBT and CDD across the scenario climate 
pathway for each location. It can be seen that maximum DBT within each location increases 
in different scales, and the amount of change in CDD is also distinct. This is because each 
location presents different weather patterns, that are captured in the base weather file. 
Therefore, for each location, when stretching DBT in extreme periods of these datasets, 
changes are more extensive for baseline datasets that show larger DBT amplitudes. In Table 
6.1, the delta between maximum DBT observed in the scenario sample and original weather 
datasets maximum DBT is also presented. For location C6-London or C5-Lisbon, changes can 
go up to 13.7°C and 12.7°C, respectively, and only 9.3°C for location C1-Singapore. 

Similarly, CDD will increase in larger amounts for climates with larger original average 
temperatures; however, relative changes are more extensive for climates with lower CDD. 
For example, in location C1, CDD is increased by 1821 degree days (67%). In contrast, for C6- 
London, there is an increase of 481 CDD (7117%). The range of change in average DNR is 
also slightly different among locations. For C5-Lisbon it goes from 195 to 241 W.m-2 (+24%), 
and for C1-Singapore it goes from 76 to 96 W.m-2 (+26%). Observed weather changes in the 
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weather pathway created for each location are similar and, on average present similar levels 
of changes. However, the level of change for extreme and for CDD requirements is not the 
same which is expected. Weather changes will be unique for different conditions, therefore, 
attempting to uniformise methods and levels of change across different locations may lead 
to additional discrepancies. 

Table 6.1 – Analysis of weather metrics in the pathway sample for each location 

Location 

Max. 
DBT 
[°C] 

Original 
Max. DBT 

[°C] 

Δ Max. 
DBT 
[°C] 

Max 
CDD 

Original 
CDD 

CDD 
ratio 
[%] 

C1–Singapore 43.1 33.8 9.3 4545 2724 67 
C2–Cairo 54.3 43.0 11.3 2657 1291 106 
C3–Athens 47.6 37.2 10.4 1910 754 153 
C4–Beijing 49.5 37.2 12.3 1623 577 181 
C5–Lisbon 48.7 36.0 12.7 1278 218 485 
C6–London 45.0 31.3 13.7 488 7 7117 

6.3 Impacts of climate change for electricity demand of office buildings applying the 
climate pathway 

In this section, the effects of the possible impacts of a synthetic climate pathway on office 
building electricity demand are evaluated. First, in Sub-section 6.3.1, the effects on total 
electricity demand on both annual and peak conditions are analysed. Next, in Sub-section 
6.3.2, the effect on HVAC electricity end-use is analysed for annual and peak resolutions. 
Finally, in Sub-section 6.3.3, the effects on demand due to the impacts of climate change 
represented in already existing future weather files for building simulation are compared to 
the results obtained for the climate scenario pathway generated, for each location. 

6.3.1 The effect on total electricity demand under the climate pathway 

In Figure 6.2, the total peak demand results for all model runs included in the climate 
pathway is presented. Results are presented for each location and grouped by the type of 
office building. Peak demand results are presented in ascending order for each building type 
and each location. Looking at the whole climate pathway, it can be seen that the total 
electricity peak demand can increase up to a maximum of 62.3%, for the medium office 
model in C5-Lisbon. For other extreme case conditions, the rate of change is below 40% for 
the same building type (medium office building) in other locations. For example, in locations 
C2–Cairo, C3–Athens or C4-Beijing, the changes are 38.6% or 39.5% and +36.5%, 
respectively. For large office buildings, changes in peak demand are smaller, and the lowest 
rate of change on the most extreme condition of the pathway is 25.6% for C4-Beijing, 
followed by 26.3% for C2-Cairo. From the results presented, it can be seen that changes in 
peak demand are significantly larger for medium office building types, and the lowest for 
large office types, generically across all locations. 
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Figure 6.2 – Normalised rate of peak demand change for total electricity along the weather pathway, for all locations and 
grouped by office building type 

In Figure 6.3, the effects on annual total electricity demand are presented. For large office 
buildings in location C1-Singapore, the increase in demand at the end of the scenario 
pathway is up to 37.7%. On the other hand, for location C6-London, the change in annual 
demand for the most extreme weather condition in the scenario pathway is up to 15.4%, 
13.1% and 13.4%, respectively for large, medium and small office buildings. Changes in 
annual demand are generally larger for locations with larger CDD, as can be seen by the 
decreasing rate of change from location C1-Singapore to C6-London. The mean annual 
demand rate change for the pathway is 16.8%, for large buildings in C1-Singapore and only 
5.3% for medium office buildings in C6-London, more than a three-fold difference. The trend 
of the progression of the total annual demand across the pathway approximately presents a 
linear trend for the first three quantiles (75% of the sample), when it shows an inflexion 
point, and then it observed a larger linear relationship in the last quantile. This points to a 
tendency for a larger additional total electricity consumption at the extreme end of the 
pathway. 
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Figure 6.3 – Normalised rate of annual demand change for total electricity along the weather pathway, for all locations and 
grouped by office building type 

Comparing the increase in total electricity peak demand to the increase in annual demand, 
the rate of change on the peak demand is substantially larger than for the annual demand, 
for most buildings and locations. For example, the mean rate change of the peak demand 
across the scenario pathway differs 20% in absolute terms from the respective annual 
demand change for medium office buildings for location C5-Lisbon or 17% for C6-London. 
However, this difference is substantially smaller for location C1-Singapore, which for 
medium buildings is 1% larger. For large buildings, annual demand is even larger than 
average peak change, for location C1-Singapore and C2-Cairo. Across all locations, the 
difference between peak and annual demand change rates is much smaller for large 
buildings. In Appendix C3, Table 0.7 and Table 0.8 present a summary of the changes in total 
electricity throughout the results under the climate pathway, respectively, for peak and 
annual temporal resolutions. 

6.3.2 The effect on electricity demand for HVAC end-use under the climate pathway 

In this sub-section, the changes in electricity demand for HVAC end-use are presented. First 
results for peak demand (Figure 6.4) are presented and then the results for annual demand 
resolution (Figure 6.5) are given. Changes for peak demand can go up to 158% in location 
C6-London or 145% in C5-Lisbon, for the medium office building. The change on the end of 
the scenario pathway is significantly smaller in other locations, as low as 56.4% for large 
office buildings in C4-Beijing, or approximately 62% for medium office buildings (C4-Beijing). 
The average change of HVAC peak demand on the pathway can be as high as 70.3% for C5-
Lisbon location (Medium) or 65.7% for C6-London (Medium). However, for the large office 
building, the mean average change is approximately 25% for locations such as C1-Singapore, 
C2-Cairo or C4-Beijing.  
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Table 0.9 and Table 0.10 presented, in Appendix C3, present a more detailed summary of 
the changes in demand throughout the pathway, respectively, for peak and annual demand. 

  
Figure 6.4 – The implication of the climate pathway for HVAC electricity end-use peak demand 

Changes in annual electricity demand for HVAC end-use are presented in Figure 6.5. The 
change in annual HVAC demand on the extreme end of the climate scenario pathway is up 
to 182% in location C6-London, for the medium office building. For small office buildings, 
the trend of the rate of change on the scenario pathway sample is similar across all 
locations. At the extreme warmest end of the sample, the rate of change is approximately 
75% of the original level, and the mean rate of change across the pathway is 35%. The 
lowest rate of change at the end of the samples is in C1-Singapore and for the medium 
office buildings, where it is 64%. The mean average rate of change is the largest in the 
location C6-London, for the medium office building, with a value of 75%, and followed by 
C5-Lisbon with 53%. 

On the other hand, for medium office buildings, the mean rate of change is only 29% in 
location C1. Among different locations, changes tend to be more significant for location C6-
London, and then for location C5-Lisbon. For location C6-London, medium office buildings 
present the larger rate of change across the scenario pathway, followed by large office types 
and the last are small office buildings. This trend is also evident for location C5-Lisbon, but 
differences are relatively smaller between building types. For example, in location C1, 
medium office buildings have the smallest degree of change, and large buildings present the 
most considerable change. 
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Figure 6.5 – The implication of the climate pathway for HVAC electricity end-use annual demand 

Closer inspection of the evolution of annual HVAC demand throughout the climate pathway 
sample, categorised by end-uses as presented in Figure 6.6, the distinct responses across 
different locations and office types can be observed. Looking at results for C6-London, it 
becomes evident that changes are the most significant for medium offices, as the change in 
cooling end-use is much higher in relative terms of the whole HVAC load. Thus, even if the 
cooling category increase is similar, from 0.5 W.m-2 to 1.5 W.m-2 for the different offices, the 
change in the whole HVAC demand is much sharper for medium building (from around 0.75 
W.m-2 to 2.25 W.m-2 for medium offices, versus around 1.5 W.m-2 to 3.2 W.m-2 for large 
offices). In addition, changes are larger for C6-London than for C1-Singapore, as the non-
cooling components (fan, heat rejection and pumps) present a large share of the whole 
HVAC annual load. 
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Figure 6.6 –Annual HVAC demand stacked by different end-use categories, for locations C1-Sin., C3-Ath. and C6 – Lon. 

Turning to the peak demand on HVAC demand, detailed by different end-uses in Figure 6.7, 
it is striking that the increase in cooling component is much larger for medium offices than 
for large offices. It is also apparent that there is a sudden rapid increase for large buildings, 
for some locations (C3- Athens and C5-Lisbon), throughout the climate pathway sample. The 
detailed analysis by end-use reveals that these changes are due to increases in the fans end-
use (e.g. C3-Athens around position #150, C5-Lisbon around position #25). Similar trends are 
also present, for medium offices, for location C5-Lisbon or C6-London, by the end of the 
climate pathway sample. A possible explanation for this might be that the ventilation rate 
due to additional cooling requirements is increased. These hypotheses are related to the 
research finding in Chapter 4, where it is indicated that ventilation rate is indicated to be 
one of the parameters with the main contribution to the sensitivity of peak electricity 
demand, and it is even more evident for large offices. 

Similar trends were observed for total peak demand (see figure Figure 6.2); though, the 
ratios of changes are significantly smaller. That is the case once the non-HVAC end-use 
(other) load is included in the total demand, diluting the relative rate of change. Looking at 
total annual demand, demand increases for C-Singapore much more than for the other 
locations, and that can be explained as the HVAC share represents 43% of the total in C1-
Singapore and only 13% in C6-London, for the baseline condition for large offices cases. In 
addition, what stands out is that annual demand for large offices increases at a larger rate, 
mainly for location C1. Like what was observed in the LSA tests analysis, comparing the 
change in the different hourly quantiles, the increase for this building is only larger at lower 
percentiles (see Figure 0-18 ). 
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Figure 6.7-Peak HVAC demand stacked by different end-use categories, for locations C3-Ath., C5-Lon. and C6 – Lon. 

6.3.3 Comparison of pathway results with weather data from existing weather generators 

In this sub-section, the distribution of the results for weather data from existing weather 
generators into the results from the pathway is analysed. Figure 6.9 and Figure 6.8 show the 
comparison of the results relative to the baseline between the existing weather data and 
the weather data from the pathway sample, respectively, for peak and annual demand. It 
can be seen that these existing weather data cover a broad range of the results from 
pathway data both annual and peak demand. This means that the climate scenarios 
represented in the existing future weather files are included in the space covered by the 
climate pathway prepared here. For example, looking at the annual demand of medium 
office type (Figure 6.8), the largest result weather data from existing weather generators 
(RCP 8.5, 2090, 95%) file fits in the upper end of the pathway sample for most locations. 
Likewise, for location C5-Lisbon, the results from some weather data by weather generators 
are slightly larger than the limit conditions on the climate pathway sample. Looking at the 
peak demand (Figure 6.9), it can be noticed that the most critical existing files at maximum, 
fit the 85% and 54% percentile of the pathway, respectively for locations C4 - Beijing and C6 
- London. As a result, this indicates that the scenario pathway sample suits the range of 
results represented in existing files better for annual demand than for peak demand. In 
addition, it is possible to report differences between locations, as weather generators 
results covered most of the pathway sample for location C5-Lisbon, especially for peak 
demand. However, for C1-Singapore or C6-London, the weather generator results cover a 
much smaller portion of the results under the climate pathway. When looking for similar 
emission scenarios for the same climate projections, the fit on the pathway for C5-Lisbon is 
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ranked at larger positions than for C6-London. 

 
Figure 6.8 – The implication of the climate pathway for total electricity annual demand, compared to weather data from 
existing weather generators 

Looking in detail for results for a single location and one type of building as presented in 
Figure 6.10 (a) and Figure 6.10 (b), it is possible to distinguish the differences of the effects 
of weather data reporting to different emission scenarios, timelines, and probability levels. 
For example, weather data relative to the scenario RCP 8.5, and data relative to the end of 
century timelines (2090) and relative to the largest probability levels present larger 
implication to the demand. It is evident that weather data from lower emission scenarios 
like RCP 4.5 present a relative fit to the pathway sample region with lower effects (below 
50% of the sample). In general, only a minority of the existing future weather data from 
weather generators fit results in the upper half of the pathway, for peak. While for annual 
demand, most of RCP 8.5 projections for 2090 are included in the upper half of the pathway. 
Figure 6.10 clearly indicates that the pathway presents larger changes on peak conditions 
than annual, when compared to data from WeatherShift. 

Finally, it is important to note that the world seems to be heading to global warming of 
about 3°C by 2100, which is significantly lower than RCP 8.5 projections and closer to RCP 
4.5. 
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Figure 6.9 – The implication of the climate pathway for total electricity peak demand, compared to weather data from 
existing weather generators 

 
Figure 6.10 – The effects of weather data from WeatherShift compared to the climate pathway a)  for a small office in C6-
London and (b) for a large office in C5-Lisbon 

6.4 Effects of adaptation measures on mitigating additional electricity demand 
6.4.1 Reduction on the whole pathway 

The reduction levels achieved by adaptation options can be significantly different from the 
baseline value (start of the pathway, 0 in the x-axis) to the end extremity result under the 
climate pathway (200 in the x-axis). In general, the pattern of the change across the 
pathway sample is substantially different across the measures and varies for each location, 
building type, and simulation output. The complete set of results for the climate pathway 
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and the reduction effect due to adaptation measures is given in Appendix C3. In Figure 6.11, 
the reduction of different adaptation scenario options is shown, relative to baseline, for 
total annual demand, for a small office in C2-Cairo. For total electricity annual demand, the 
difference in demand reduction for the baseline result (0 on x-axis) and the result for the 
end limit extremity of the climate pathway (200 on x-axis) is noticeable on measure 1 
(17.6% vs 31.2%), measure 2 (3.9% vs 8%) and 5 (7.2% vs 13.4%). 

 
Figure 6.11 – Reduction effect of different adaptation measures for annual total electricity demand under the climate 
pathway, for a small office in C2-Cairo. 

It is necessary to acknowledge that throughout the pathway, the annual total electricity 
demand for the no adaptation scenario increases substantially over the baseline (+27%). It is 
also important to acknowledge that the original change under the climate pathway reported 
by the ‘No adaptation’ scenario, is significantly different depending on the location, office 
type, and output analysed (peak vs annual, HVAC vs total). Therefore, in the following sub-
sections results are evaluated separately for total electricity demand and electricity demand 
for HVAC end-use. Results are analysed utilizing a reduction metric (RD) that measures the 
reduction effect of the adaptation options for the whole pathway, for each office type and 
location, as expressed in equation . 

6.4.2 The effect of adaptation measures in total electricity demand 

The effects of all single adaptation measures (M1 – M6) on total electricity demand are 
presented in Figure 6.12. The effect of adaptation measures on total peak demand tends to 
be more extensive for small buildings, than for medium and last for large office building 
types. This trend is apparent on measure 1, 5 and 6 (for example,  the average RD among 
the six locations for measure 1 is 20.9% for small, 12.9% for medium and 8.6% for large 
office). However, for measure 3 and 4, the effects are similar across all models (average RD 
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of all location for measure 3: 9.5% – large, 8.3% - medium and 10% - small). For measure 2, 
reduction of ventilation rate, the effect on small offices show smaller reductions than the 
other types (small 4.2%, medium 6.4% and large 5.4%). These trends occur both for annual 
and peak total demand. But, for annual demand, the large building has more considerable 
reductions than medium buildings for measure 2 (2% vs 1.9%), measure 5 (3.1% vs 1.1%) 
and measure 6 (2.4% vs 1.9%). Looking among different locations, reduction levels on 
annual demand are generally larger on locations with larger CDD (C1 - Singapore) for 
measures 1, measure 2 and measure 5. In contrast, the trend is opposite for measure 3 – 
lighting and measure 4 – equipment, being the largest in locations with smaller CDD (C6-
London). For peak electricity demand, locations C4-Beijing and C5-Lisbon, have the largest 
reductions from measure 1 – relaxing cooling set-point. 

 
Figure 6.12 – Average reduction (RD) in total electricity on the pathway sample, for all single adaptation measures 

The single measure with the largest effect in reducing the peak demand is adaptation 
measure 1, the relaxation of the cooling set-point temperature. For small buildings, this is 
especially evident, where reductions of 18.5% (C6) and up to 23.8% (C4) can be seen. For 
medium buildings, reductions of 10.9% and 17.9% can be seen for C6 and C4, respectively. 
For large building type, the reduction is between 6.6% (C2) and 9.8% (C4); however, there 
are other measures with larger individual effects. For example, measures 3 (M3) and 4 (M4) 
have average demand reduction of 10% across all locations, for both peak and annual 
temporal resolution. The reduction is marginally larger for M4 than for M3, especially on the 
annual demand. For the annual demand, the effect of M1 is dominant for small buildings, 
with reductions between 12.4% (C6) and 20.4% (C1), but for other building types the 
reduction is substantially lower (4.1%-8.1% for medium offices, 2.6%-5.0% - for large 
offices), being surpassed by measure 3 and 4. For peak demand, measure 5 leads to declines 
around 8% for small buildings, making the 4th measure most effective for all office types 
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followed by measure 2, being more effective in medium and large offices, where reductions 
are between 3.5% and 8.5%. 

6.4.3 The effect of adaptation measures in HVAC demand 

The following section presents the effects of adaptation measures in reducing the HVAC 
electricity demand end-use, for both annual and peak resolution. Figure 6.13 presents the 
reduction effect on peak and annual HVAC electricity demand for the different adaptation 
measures. Adaptation measure 1 has the largest individual reduction effect for all building 
types, both at annual and peak demand scale/resolution. Adaptation measure 5 (increase in 
COP) is the second most effective on reducing peak HVAC demand, followed marginally by 
measure 2 (reducing ventilation rate), namely for large and medium office building types. 
On the other hand, measure 6 (reducing SGHC) tends to be the second most effective in 
reducing annual HVAC demand. Likewise, the remaining measures present almost similar 
reduction levels. 

 

Figure 6.13 - Average reduction (RD) in HVAC electricity end-us on the pathway sample, for all single adaptation measures 

Reductions on peak HVAC demand are significantly larger than for annual demand for 
measure 2 and measure 5, and for measure 1 for large buildings. By contrast, the remaining 
measures present more considerable reductions in annual demand than for peak demand. 
Reduction on HVAC demand, both for annual and peak demand is the largest for small office 
building types for most measures (all except for measure 2). Likewise, the reductions on 
medium office buildings types tend to be larger than for large office buildings, namely for 
measure 1, 5 and 6, for peak demand. However, annually, the reduction on large buildings 
becomes larger for measure 5 and 6. Relative to differences between locations, reductions 
for annual HVAC demand due to measure 1, 3, 4 and 6 seem to be larger in locations with 
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lower CDD. On the other hand, for measure 2 and measure 5, reductions seem to be larger 
for locations with larger CDD. 

6.4.4 Combined measures 

In this section, the effect of combined adaptation measures (M7, M8 and M9) on electricity 
demand is presented. The combined adaptation measures are the coupling of several single 
adaptation measures, which effects are presented in the previous sections. Regarding the 
peak total electricity demand, it is apparent that results for M9 are consistently below 
baseline consumption levels, for all locations and building types, as shown in Figure 6.14 for 
large office buildings. Even for the end extremity results under the climate pathway, 
reductions are seen to be at a minimum of 30%, 13.3% and 11.5%, for small, large and 
medium office building types, respectively, below the baseline consumption levels. Similarly, 
across the whole climate pathway, results for adaptation measure 8 in small office buildings 
for all locations are lower than the baseline peak demand results. At the extremity of the 
pathway results, reduction levels are around below 3% the baseline. In Appendix C3, a 
summary of the reduction levels from the baseline value, across the pathway is given, for 
example in Table 0.11 for the peak total electricity demand level in comparison of the 
baseline in the extremity of the pathway. In Table 0.12, it is done the same for annual total 
electricity demand. 

Turning now to the effects on annual total electricity demand, adaptation measure 9 
consistently permits consumption to stay below baseline levels, for the whole climate 
pathway. Likewise, adaptation measure 7 is effective on restraining annual consumption 
below baseline levels, with the exception for location C1-Singapore, where results show to 
be higher for 3% 4.5% and 19.4% of the iterations in the scenario sample, for the small, 
medium and large office cases respectively. Measure 8 is effective in restraining annual 
demand for small office buildings, but for large office buildings at all locations, at least 25% 
of the pathway will present larger consumption than original values. For medium buildings, 
for location C6, almost 38% of the pathway will still present greater demand than current 
levels. 

Looking at these effects on HVAC end-use demand, even all combined measures (measure 
9) cannot guarantee restraining demand below current base levels, for all building types in 
all locations analysed. For example, for peak demand, in location C3-Athens, C4-Beijing and 
C5-Lisbon, and for large and medium office buildings in some iterations (up to 8% of the 
sample) of the pathway scenario, the demand will be higher compared to original levels. For 
medium office buildings, the values may be 16% larger than original levels at the extreme 
point of the pathway. For annual demand, measure 8 and 9 permit consumption to be 
restrained below current levels, for small office types. In contrast, for large and medium 
building types, demand may be superior to current levels, for up to 18% and 17% of 
pathway conditions, when looking at results for measure 9. Similarly, for measure 9, at the 
extreme pathway point, demand can increase up to 31% for medium buildings and between 
10%-20% for large buildings. 
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Figure 6.14 – The effect of combined adaptation measures (M7,8 and 9) on the climate pathway for the peak total demand 

6.5 Discussion 
The research results presented in this chapter evaluate the implications of changing climates 
on building electricity consumption, using an innovative climate pathway approach. The 
thesis simulation case study is utilised, three office building archetypes for the six locations 
selected, and assessed using  200 distinct future weather datasets for each location 
generated using a climate pathway approach. Across the pool of datasets created for the 
case study locations, by the climate pathway approach, annual maximum dry-bulb 
temperature reached a maximum between 54.3°C for C2-Cairo and 43.1°C for C1-Singapore. 
These changes in maximum annual dry-bulb temperature represent an increase from 
original values of between 13.7°C (C6 - London) and 9.3°C (C1 - Singapore). The respective 
value for Weather data from WeatherShift is respectively, 8°C for London and 4°C for 
Singapore. Likewise, the CDD can reach a maximum between 488 in C6 - London and 4 545 
in C1 - Singapore. The respective increase in CDD from the original value is 481 (+7117%) for 
C6 - London and 1 821 (+67%), for C1 - Singapore. The change in CDD from WeatherShift 
data is 426 (+6 071%) for C6-London and 1 568(+58%) for C1-Singapore. 

The effects of the climate change impacts on the total electricity demand are significant, 
especially for peak demand,throughout the case study for which the climate pathway was 
applied and results analysed. The magnitudes of the effects on electricity demand are 
notably distinct, considering the different model types, the locations, and between annual 
and peak temporal resolution. For example, in medium office buildings, an increase in total 
electricity peak demand may be driven up to 62.3% for C1-Singapore, whereas for the large 
office building, in C4-Beijing, it is only 25.3%. Regarding annual demand, the maximum 
increase under the climate pathway may be up to 37.7%, in C1 - Singapore, for large office 
buildings, or in contrast 13.1 %, for medium office buildings, in C6 - London. For HVAC 
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electricity end-use, the growth of peak demand on the high end of the climate pathway may 
be between 158%, for medium offices, in C6-London, and 56% for large offices, in C4 - 
Beijing. Annual HVAC demand may increase up to 160%, for C1 - London, or 150% in C5-
Lisbon. The mean values of change under the climate pathway are between 5% and 15% for 
annual demand, and 7% and 20% for peak demand. It is clear that medium office buildings 
present more sensitivity under the climate pathway, and that distinct locations have 
different levels of changes. 

The comparison of the effects of the climate change impact on the electricity demand of 
office buildings, under the climate pathway developed and the weather data from weather 
generators showed that the approach developed includes the impacts from existing weather 
data. For the total annual energy demand, the simulation results from the set of existing 
future weather data (WeatherShift, CCWeatherGen or Meteonorm) cover most of the 
extension of the results under the climate pathway. For some locations in the case study, 
the results regarding weather scenarios with largest impacts are above the maximum result 
from the pathway sample. By contrast, for the total electricity peak demand, the simulation 
results for these weather scenarios correspond to only a value below the 75% percentile of 
the climate pathway simulation results, which for some locations is even below 50% (C1-
Singapore or C6-London). Consequently, the climate pathway approach may overestimate 
the effects on peak conditions (extreme warm-weather events), especially when comparing 
to the highest climate impact projections considering RCP 8.5 emission scenario. However, 
the climate pathway indicates to be a good proxy of the range of effects on an annual 
demand basis. Considering that current carbon emission trajectories are likely to avoid RCP 
8.5 scenario, a significant part of the impacts created by the climate pathway are more 
severe than the likely weather futures. 

Regarding the effectiveness of adaptation measures, it can be concluded that no single 
individual measure can robustly reduce the electricity demand levels, throughout the whole 
climate scenario pathway, in all locations and for all models. The results varied depending 
on the building case and location under the case study. Results showed that the adaptation 
measure 1 is the most effective measure on reducing annual and peak demand, especially 
for small and large office building types. It is also possible to indicate that adaptation 
measure 3 and 4 (reduction on lighting and equipment density), produce significant levels of 
demand reduction, especially for total electricity demand. However, the same was not seen 
for HVAC electricity end-use, as these measures (M3 and M4) only have an indirect effect 
over the requirements and performance of HVAC systems. 

For most of the locations, building types and type of demand end-uses selected for the case 
study, the analysis of the effectiveness of the combined adaptation measures (M7, M8 and 
M9) indicates that it is possible to restrain demand levels below baseline results. 
Interestingly, all the three combined measures show robust capacity to restrain demand 
levels below original baseline demand, for all modelling conditions (office types and 
locations), both for peak and annual demand. In contrast, for HVAC end-use, demand is not 
restrained below original base values, for some pathway conditions, when up to 18% of the 
iterations included in the pathway exceed the baseline results, while for peak HVAC demand 
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it is 8%. However, the maximum increase rate over the original levels for all the models 
analysed is up to 15% for peak or 31% for annual demand, for medium offices in C6 – 
London. 

Previous studies showed similar findings when, assessing whether  adaptation measures can 
offset the effects of climate change, - showing that adaptation can consistently reduce 
energy demand to levels below current conditions. For example, Wan et al. (2012) 
evaluated the mitigation of the impacts of climate change on annual demand, by analysing 
several measures: lighting densities, improving COP levels, or changing building envelopes. 
All these measures were sufficient to mitigate the additional demand due to impacts of 
climate change on an office building in China. Jenkins et al. (2013) showed that improving 
COP can reduce the annual demand substantially, but that the reduction of the peak load is 
not considerable, in an office building in London. In contrast, some studies (Patidar, et al., 
2012; Dodoo, et al., 2016; Pagliano, et al., 2016) showed that different adaptation measures 
may not be sufficient to avoid the use of active cooling systems, in the long-term and for 
high emission scenarios. However, in those analyses, the focus is on naturally ventilated 
buildings, which present  a different type of design and operational constraints. 

One of the main limitations of the study performed in this chapter is that it analyses a 
limited number and type of standard adaptation measures. Likewise, the analysis is aimed 
only on peak and annual demand time resolution, and only for electricity demand end-use. 
For a more insightful understanding of the impacts of climate change in the energy 
performance of these type of buildings, it would be interesting to analyse other metrics 
related to cooling requirements and indoor environment. For example, it would be relevant 
to analyse both the sensible and latent space cooling requirements of the building, or the 
number of hours that the cooling set-point is unmet, and the overheating limits verified. 

Another limitation of the study, is that it does not  explore  alternative HVAC systems or 
passive cooling solutions in the analysis. For example, it would be interesting to analyse the 
effects considering mixed-mode ventilation solutions, hydronic cooling systems, absorbent 
chillers and other passive solutions. Similarly, it is necessary to analyse further adaptation 
measures, namely more flexible operative conditions and demand responses mechanisms 
utilizing thermal storage potential in buildings and potential load shifting associated with 
HVAC end-uses. However, including such type of measures on building energy models, leads 
to changes on building operations assumptions that increase the complexity and 
requirements of the simulation runs. 

6.6 Chapter summary 
In this chapter, the effects climate change impacts on the electricity demand of buildings 
were assessed, using an innovative climate pathway approach on the thesis case-study. The 
climate change pathway was developed to provide a range of potential future weather 
conditions, reflecting climate change projection scenarios. The set of office building models 
and locations of the simulation case study of this thesis was utilised to evaluate the effect of 
these climate pathways on the electricity demand of office buildings for cooling. Section 6.2 
presented an analysis of the changes in the different variables of the weather data in the 
climate pathway sample. The effects for the peak and annual electricity demand, both on 
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total and HVAC end-use were presented in Section 6.3. In addition, it was quantified and 
compared the effect of different adaptation measures in reducing additional cooling 
demand under the climate pathway, in Section 6.4. 

Previous result chapters (Chapter 4 and Chapter 5) and the findings from research questions 
addressed in those chapters (research question 1 and 2 in Chapter 4, research question 3 in 
Chapter 5) were fundamental to developing the climate pathway framework and set of 
adaptation options analysed in the results presented in this chapter. However, the research 
findings presented in this chapter are the ones that directly permit to address the primary 
aim of this thesis: 

“to study the implications of climate change upon the space cooling requirement for office 
buildings in different regions of the world, operating in different representative future 
climates over this century (up to 2100).” 

In the following chapter, an overall discussion of the findings in this thesis is done, leading to 
putting the findings presented in this chapter in perspective with remaining findings and the 
wider research area.
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7 Discussion 
This chapter discusses the broad implications of the research findings presented in the 
previous chapters of this thesis. Chapter 1, the introduction chapter of this thesis, provides 
the context and rationale for each research question addressed. In Chapter 4, the sensitivity 
and uncertainty of the cooling demand of office buildings to different building design and 
operational parameters are quantified. In Chapter 5, the implications of morphing 
procedures used to develop time series of weather variables from historical and climate 
projections are analysed and the impacts of individual weather parameters on total 
electricity demand were assessed. In Chapter 6, the analysis of the impacts of climate 
change was conducted, using a climate pathway for each of the study locations. In addition, 
the effect of different adaptation measures on reducing cooling demand is also evaluated. 
This chapter discusses how the research findings answer each research question (Section 
7.1), the significance of the research findings (Section 7.2), and some of the study’s 
limitations and future research work in this area (Section 7.3). 

7.1 Addressing the research questions 
7.1.1 The first research question: “How sensitive is the office building energy modelling to 

different operational and design input parameters?” 

The results presented show that ventilation rate (P10) made the most significant 
contribution to electricity HVAC end-use both for peak and annual demand (around 60% for 
both according to the Sobol analysis (4.2.2.4)), with cooling set-point (P08, around 20%) and 
coefficient of performance (P12, around 18%) following as the most influential. The 
contribution of lighting (P05) and equipment (P06) densities (internal heat gains) were the 
most significant for annual total electricity demand changes (around 35% and 50%, 
respectively). While lighting and equipment densities have a small indirect contribution to 
electricity demand for HVAC end-use (below 5%), they have a significant impact on total 
electricity demand, by the direct contribution on lighting and equipment end-use. For peak 
total electricity demand, not only lighting (20%) and equipment (25%) densities but also 
ventilation rate (35%), cooling set-point (10%) and COP (8%) present significant 
contributions. For example, for large office buildings, in the Sobol analysis, the contribution 
of lighting and equipment densities are around 40% and 50%, respectively, for the annual 
total electricity demand, while it is around 20% for each of these, for peak total electricity 
demand. 

The preliminary sensitivity model studies research findings (Zeferina, Birch, et al., 2019; 
Zeferina, Wood, et al., 2019), presented in Sub-section 4.2.1, showed that internal heat 
gains, ventilation rate and cooling set-point parameters have large implications for space 
cooling requirements. The space cooling requirement is the rate at which sensible and 
latent heat must be removed from the space to maintain a constant space air temperature 
and humidity. At the same time, the electricity demand for HVAC end use is the electricity 
supplied to the HVAC system to follow set-point controls. For electricity consumption on 
HVAC end-use, the contribution of internal heat gains is much larger (up to 58%) than the 
other two parameters for annual demand, but only 25% for peak. Preliminary studies (Sub 
section 4.2.1) also identified the relatively minor contribution of envelope and building form 
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parameters in influencing cooling demand; however, the floor space area stretching 
parameter was found to present some contribution. 

The analysis presented in Chapter 4 set out to better understand the sensitivity and 
uncertainty of peak demand. Only a handful of studies have analysed the sensitivity, both 
for total electricity and HVAC end-uses, and looked at peak loads. The research 
methodology developed is set out to extract peak demand results from building model 
simulations, to normalise results among the different modelling conditions (locations, type 
of buildings) and outputs (annual vs peak, electricity demand for HVAC end-use vs Total). 
Thus, it is possible to assess and compare sensitivities (𝑆  of parameters) and the 
uncertainty levels (CV). In this thesis, an analysis of a simulation case study is made that 
includes three office types and six locations, focused on electricity demand at total and 
HVAC end-use. However, the methodology can be applied and adapted for any building 
model, parameters, and energy performance simulation outputs, determined for the 
specific research aims. Therefore, more than the research findings reported relative to the 
case presented, the research provides an approach to assess sensitivities and uncertainties 
in building simulation systematically and thoroughly. The results presented quantify the 
difference in the level of contribution of each of the parameters and their ranked order, to 
total and HVAC demand at a temporal resolution of both peak and annual demand. 
Differences in the sensitivities were also identified among the three different office 
buildings and the different cities considered. For example, the contribution of cooling set-
point (P12), both for total electricity demand and for HVAC end-use, is much larger for small 
than medium and large office building types. However, lighting or equipment density 
parameters present a similar level of implications for the total electricity demand among all 
locations and office types. 

The research work elucidated that just a few parameters drive most of the change in 
electricity end-use for HVAC and the total annual demand. However, the ranking of these 
design and operational parameters and the level of contribution of each one may be 
significantly different for different cities or types of offices. For example, for Singapore, 
where there are high cooling requirements throughout the year (CDD at 18°C is 3454), HVAC 
control parameters such as cooling set-point, ventilation rate and COP, present a 
significantly larger contribution for the annual total electricity demand than for the other 
cities. On the other hand, for London, with typical mild summers (CDD at 18°C is 32), the 
contribution of these parameters is much smaller on total electricity demand, both annually 
and for the peak. 

For the large office building type, looking at the Sobol sensitivity analysis, the contribution 
on annual total electricity demand is 0%, 7% and 3%, in London and 8%, 45% and 10% for 
Singapore, respectively for cooling set-point, ventilation rate and COP. The contribution of 
these parameters in total electricity demand and HVAC end-use demand is directly 
correlated; however, the share of HVAC consumption in the total electricity demand follow 
different trends. For example, the HVAC end-use share in total electricity demand is larger 
for peak consumption than annually. Hence the cooling set-point, COP and ventilation rate 
are the parameters with the largest contribution for HVAC demand. Nevertheless, if looking 
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solely at total electricity demand, the lighting and equipment densities are also as critical, 
especially at the annual scale for all locations and building types. 

Previous studies on sensitivity analysis applied to building energy model simulation do not 
generally assess the sensitivity of peak electricity demand to different parameters. For 
example, Sun, Gu, et al. (2014) concluded that occupancy has the largest contribution on 
peak cooling demand, while Eisenhower, et al. (2012) found that a set of parameters related 
to the cooling source (chiller) has the largest contribution on peak total electricity demand. 
Similarly, very few studies have compared sensitivity across different building types (Huang, 
et al., 2018) and among different cities (Mechri, et al., 2010; Wang, et al., 2012). One 
example, Mechri et al. (2010) identified that the sensitivity index values for cooling energy 
needs of the model input parameters are similar across five different locations across Italy. 
The findings in this thesis provide additional evidence that for space cooling demand, the 
location does not vary the sensitivity towards different parameters. However, the effects on 
sensitivities for the total and HVAC electricity demand are significantly different among 
different locations, which is also concluded by Huang et al. (2018). Space cooling and 
electricity demand for HVAC end-use may correlate significantly differently between 
locations, and/or based on HVAC technologies, so further investigation on this is required. 
Wang et al. (2012) concluded that weather uncertainty created by a weather time series of 
15 years created low uncertainty on total annual demand compared to the uncertainty 
created by other parameters. On the other hand, the uncertainty range driven by other 
parameters is significantly different among the different cities analysed. 

Multiple previous research studies have identified that internal heat gains have one of the 
most considerable contributions to annual electricity demand (Lam, et al., 2008; Heiselberg, 
et al., 2009; Wang, et al., 2012) or electricity for cooling demand (de Wilde, et al., 2009; 
Tian, et al., 2014), which is aligned with the finding of this research. Tian et al. (2014) have 
also identified the COP and ambient cooling set-point to have significant implications for 
annual space cooling requirements. Tian, de Wilde (2018) and Sun, Gu, et al. (2014) 
concluded that occupant density is the largest contributor for sensitivity for cooling 
demand, which differs from the finding in this work. This inconsistency is likely to be related 
to modelling assumptions associated with ventilation rate, as in this work, it is completely 
decoupled from occupancy, which is often not the case. In contrast, ventilation rate was 
found to be the most or one of the most important factors for demand in buildings as 
concluded in (Heiselberg, et al., 2009; Wang, et al., 2012; Østergård, et al., 2017; Huang, et 
al., 2018). Infiltration rate was also found to have a minor contribution to sensitivity in 
demand as in this research, in studies such as (Mansur, et al., 2008; Tian, et al., 2014) but 
paramount relevance in studies like (Tian, et al., 2012; Sun, Gu, et al., 2014). Heiselberg et 
al. (2009) and Lam et al. (2008) have found that annual operation hours contribute to the 
sensitivity of total electricity annual demand, as found for the total annual electricity 
demand of office archetype models in this work. 

Clarke et al. (2015) discussed that building performance simulation should screen the 
variability of input ranges to seek more robust design solutions and look for vulnerabilities 
in the model assumptions. In the same way, Tian (2013) identified that more uncertainty 
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and sensitivity analysis studies are required to improve the credibility of results from 
building model simulations. The research presented in this thesis about the sensitivity of 
office building models, and making the methodology openly available, clearly contribute to 
addressing this major challenge in the building simulation research domain. A particular 
focus was put on developing a  methodology for sensitivity studies that enables multiple 
variables and time resolutions, cities and buildings types to be assessed simultaneously. 
Simplified modelling geometries were utilised to first screen ranges (pre-analysis studies) in 
a broad scope of parameters, including investigating the physical form parameters. Then, 
more complex geometries were investigated, using archetype models and more 
circumscribed range of uncertainties. 

Rather than high absolute accuracy, i.e. aiming to be close to a known actual value, building 
performance simulation should seek to analyse the effects of change and uncertainty in 
design parameters as discussed by Augenbroe (2011). Unfortunately, current approaches in 
building design decision making do not introduce enough uncertainty consideration in the 
simulation process, which is imprudent, as concluded by Hopfe, et al. (2013). The sensitivity 
analysis of the research simulation case presented in Chapter 4 has extended our knowledge 
on the contribution of key design parameters to the electricity demand of office buildings. 
The possibilities for parametric evaluation in building performance simulation are endless, 
as models can have thousands of input parameters. Therefore, an exhaustive investigation 
of the uncertainty in the main modelling assumptions can be executed with the research 
framework developed in this thesis. This is possible to achieve by following a holistic 
approach in understanding the implications of the different parameters, looking for the 
impacts over multiple variables, time resolutions and different cities. 

The findings summarised in the last paragraphs are relevant to both designers and 
practitioners on building design, providing insights for the preparation of models, and the 
parameters that require more detailed assessment. This also provides some ideas on which 
energy-saving measures may most significantly reduce cooling and total energy demand on 
office buildings. In these sensitivity analyses, the influence of external weather is only taken 
into account, by replicating the simulation case analysis among six different locations, using 
TMY weather data for each. A more detailed analysis of the effects of weather uncertainty 
on the total electricity demand of the office buildings was done in Chapter 5, when 
addressing research question number three. 

7.1.2 The second research question: “What is the relative impact on peak and annual 
HVAC and total electricity demand of office buildings as cooling requirements differ 
with changing building design and operational conditions?” 

The research findings showed that the uncertainty of the demand of office buildings differs 
for different types of office buildings and when looking at different cities. In addition, the 
level of response was significantly different for the different energy performance variables 
analysed, namely when looking at peak or annual demand levels. The uncertainty range of 
the total electricity demand for reference office models may go from 53% to 337%, or from 
57% to 319%, for peak and annual demand respectively, from baseline demand. The 
maximum coefficient of variation (CV) values among office types and locations were 29.1% 
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and 27.7%, respectively, for peak and annual demand respectively. The level of response of 
HVAC electricity demand end-use is significantly larger than it is for total electricity demand; 
hence the range of results for HVAC was shown to go from 5% to 588%, and 35% to 560% 
and the CV can be as high as 46.9% or 43.9%, respectively for peak or annual. This indicates 
that HVAC end-use demand is far more variable than total electricity demand. 

Differences in the level of variability among different climate conditions (cities) are also 
significant, showing different profiles for hot climates such as C1-Singapore. For example, CV 
on annual total electricity demand for small offices is around 28% in C1-Singapore, while 
around 22% for the other cities. For climates with relatively mild summers, such as C6-
London, the CV on peak total electricity demand for medium offices is around 18% while 
around 24% for the remaining cities. For example, CV values are consistently larger in C1-
Singapore for the total and HVAC annual demand (for small offices is respectively 28% and 
44% in C1-Singapore and around 23% and 38% for the other locations). In contrast, for large 
office buildings in C4-Beijing, the CV for HVAC peak demand is 41% and 34% for annual 
demand, while for total electricity, CV is 29% and 24% respectively for peak and annual 
demand. For annual space cooling demand, the CV is significantly larger for C6-London (39% 
for small and 34% for large offices) than for the other cities (C1-Singapore is 30% and 22% 
respectively for small and large). While for space cooling peak demand, results for C6-
London are larger than other cities, when for small buildings, it is C1-Singapore that 
presents the largest CV value (24% for C1-Singapore, followed by 22% for C6-London and 
minimum 19% for C2-Cairo). 

In general, it is expected that cooling requirements differ between different office building 
types, especially looking at the building form characteristics, volume and aspect ratio 
differences existing between the office types analysed in simulation cases of this research, 
as concluded in (Hong, et al., 2013; Huang, et al., 2018). Similarly, the different climate 
severities presented among the cities considered are expected to drive different cooling 
requirements levels and substantially different total electricity demand levels, as concluded 
in (Guan, 2012; Huang, et al., 2018). The findings in this research work contribute to existing 
knowledge, by quantifying the differences in uncertainty among locations and different 
types of offices. The share of HVAC, and non-HVAC loads in the total electricity demand, is 
distinct for each modelling condition considered (cities and building type), both for annual 
and peak demand levels. The electricity demand density per floor space area is also distinct. 
Therefore, when screening the input ranges at normalised levels, these differences 
identified at the initial base modelling condition results are perpetuated through the 
models' response during the parameter screening. 

DOE reference buildings have been utilized for multiple research studies, namely to explore 
demand and/or performance of for the building stock level (Hong, et al., 2013; Wang, et al., 
2014), or sensitivity studies (Wang, et al., 2012; Huang, et al., 2018). Some studies have 
compared the energy performance of the different types of buildings. For example, Hong et 
al. (2013) investigated the influence of the different climate zones on the heating and 
cooling demand of buildings. However, it focused on understanding the response of annual 
and peak demand due to the effect of varying weather datasets from actual meteorological 
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years data. In this research case study, different locations were utilised to evaluate the 
potential response differences on electricity demand of office buildings for different climate 
severities represented by the different locations. Korolija et al. (2013) have developed UK 
office models, but have focused on annual demand levels, with no insight into the sizing of 
HVAC systems. In the simulation case utilised in this research, only three types of office 
buildings and six cities were investigated. However, the thesis has developed a novel 
framework for systematic comparison of electricity demand both for peak and annual 
demand for a broad scope of different conditions. Analysing the variability of the sample of 
results analysed, studying CV values and the boxplot of results, and comparing these 
between simulation case conditions (buildings, sites and time resolution) allows insights 
rarely presented in the literature. 

The research findings found that the three office types investigated presented different 
responses when exposed to similar input uncertainty levels. However, it is essential to 
remember that the buildings’ HVAC systems and building form characteristics were 
substantially different in this set of simulation cases. For example, a large office building has 
a smaller ratio of envelope area by floor space (0.40 for large office versus 1.05 and 2.55 for 
medium and small respectively), and a much more complex HVAC system. Therefore, it is 
reasonable that large office buildings differ from medium and small buildings on the ranking 
of their sensitivity to parameters and the different response variability they showed to peak 
versus annual demand. These findings are consistent with Hong et al. (2013), who have 
highlighted that HVAC and envelope differences led to a different response to the weather 
impacts among office archetype results. 

This research has demonstrated and quantified the difference in the sensitivity to different 
parameters between simulation cases of different office types and locations. For example, 
the results for some cities in this research work were outliers trends for some but did not 
for other office types. Singapore and Beijing presented the largest CV values for total peak 
demand for large office buildings (29% vs around 25% for others), while Cairo presented the 
largest for small (29%) and medium offices (26%). This may be related to the different 
responses of different HVAC systems coupled with different building forms and differences 
in climates for different systems. For example, C2-Cairo and C4-Beijing have larger solar 
irradiance during peaks, and C4-Beijing and C1-Singapore have larger relative humidity. 

A note of caution is due here since the research approach was not focused on 
understanding the implications of the parametric analysis at more granular levels of cooling 
requirements (e.g. sensible or latent loads, percentile analysis of hourly demand) and 
assessing potential correlation effects of input parameters and output performance metrics. 
Nevertheless, the developed research framework is an essential tool to provide/increase 
confidence in building simulation research methods and results, as it enables a very 
systematic and broad analysis of design and operational input parameter sensitivities; 
however, the development of building models structures is required to allow automatic 
iteration of building form parameters such as glazing area, aspect ratios, volume/envelope 
ratio, or HVAC definition. 
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7.1.3 The third research question: “How does the morphing of weather timeseries 
influence the peak and annual HVAC and total electricity demand?” 

Research results showed that changes in dry-bulb temperature (DBT) have the largest 
impact on the total electricity demand of office buildings. A uniform increase (shift) of 5°C in 
DBT hourly data led to the largest contribution to the change in total electricity demand, 
both for peak (up to 26.8% more than baseline) and annual level (up to 38% more than 
baseline). For annual demand, the ratio between summer and winter mean DBT shift 
changes, the uniform reduction of 10% (negative shift) in relative humidity and the growth 
by a factor of 1.25 (stretch) in horizontal infrared radiation (HIR) present a similar level of 
implication (4.5%, -5.1% and 5.2% of the baseline, respectively). For peak demand, changes 
in the DBT seasonal ratio (up to 1.75 ratios between mean shift change in DBT during 
summer and the remaining seasons) and heatwave stretch parameter (growth/stretch of up 
to 1.25 in the daily DBT amplitude in the hottest period of the year) are the parameters that 
followed, with an increase of up to 15.4% and 9.4%, respectively. 

The research findings showed that uniformly reducing relative humidity (RH) by 10% (in 
absolute terms) tended to reduce the total electricity demand of office buildings (-5.7% for 
peak and -5.1% annually). Even at significant growth levels (200%), the impact of an increase 
in wind speed has low implications for changes in total electricity demand (up to 1.4% for 
peak and 0.7% annually). Growth of up to a factor of 1.25 (stretch) in solar radiation 
timeseries (horizontal infrared radiation (HIR), direct normal (DNR) and diffuse horizontal 
irradiation (DHR)), drove larger changes for HIR (peak:4.3% and annual:5.2%), than for direct 
(peak:3.6% and annual:2.7%) and than for the diffuse (peak:1.4% and annual:1.7%) variable. 
Though the demand change effect was smaller than for changes in DBT, together, 
simultaneous composite growth/stretch of 1.25 (of the three radiation weather variables) 
could potentially drive a change in demand up to 10%. The response of total electricity 
demand for growth in solar radiation is especially acute for the small office case. The 
research findings have also shown that sensitivity is different among different cities and 
slightly different for different building types. 

These research results showed that the main driver for additional electricity demand is the 
changes in DBT , although there are differences in the implications among different office 
buildings and locations. Uniform increase (shift changes – test 1) in DBT is critical for 
changes in electricity demand; however, the seasonal pattern of the DBT increase (test 2) 
and the growth of DBT in extreme periods (test 3) presents a significant contribution to 
electricity demand changes for peak periods. The findings related to the variability of 
relative humidity (uniform reductions up to 10% - test 5) showed that this is the only 
weather parameter range test that could give a consistent reduction in total electricity 
demand due to the expected impacts of climate change. On the other hand, the implication 
of wind speed might be neglected. The implication of a 1.25 growth factor (stretch) in solar 
radiation variables can be quite significant in total electricity demand increase (up to 5%), 
but they present a much lower impact than changes in DBT. 

This is the first study to investigate the effect of different ‘morphing’ operations in weather 
variable timeseries on the total electricity demand of building models. The method to 
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process changes in weather data is based on the seminal ‘morphing’ method by Belcher et 
al. (2005). In this research study, the different morphing procedures applied on the different 
weather variable time-series were decoupled to assess their isolated effect on demand. 
Only a few studies have attempted to isolate the effect of particular weather variables on 
building energy demand. For example, (Bhandari, et al., 2012; Kalamees, et al., 2012; Kim, et 
al., 2017) also concluded that DBT has the largest contribution to the cooling demand of 
buildings. However, Kalamees et al. (2012) and Kim et al. (2017) had contradictory findings 
on the importance of air humidity and solar radiation for cooling demand, while utilizing the 
same approach to generate weather data. For example, Kim et al. (2017) utilised a basic 
building model program on residential buildings cases, disregarding internal heat gains and 
moisture loads, to focus only on the influence of different climate parameters on building 
energy consumption. While Kalamees et al. (2012) used a dynamic simulation tool (IDA-ICE) 
on office and residential cases to show the influence on heating and cooling energy 
demand. These inconsistencies in the simulation cases selected may explain the 
contradictory findings presented. Therefore, the framework developed in this thesis and the 
selected simulation case was intended to address a consistent and systematic analysis of 
these effects. 

The findings in this research work described and quantified the implication of each weather 
parameter, for the total electricity demand of office buildings. Although the changes 
produced in weather data, by the research method, are theoretical, the present study has 
offered a framework for the exploration of the effects of the different weather parameters 
on the electricity demand of buildings. For example, Rastogi (2016) developed an innovative 
emulator to generate weather time-series that enable explicit calculation of the uncertainty 
in building simulation due to weather inputs. However, it is unable to evaluate the 
implication of each weather parameter in the uncertainty of building simulation. This is the 
first study the author is aware of to have quantified the impacts of the different ‘morphing’ 
operations in weather data on the electricity demand of buildings. 

It is important to bear in mind the possible bias of the building simulation results from the 
implication of some weather parameters (primarily wind and irradiation). These results are 
often very reliant on how the integration of these weather parameters is made in the 
calculations within the building energy model. For example, the building simulation program 
used by Kim et al. (2017) is based on hygrothermal component models that weigh weather 
parameters significantly on the outputs analysed, while EnergyPlus use integrated building 
simulation techniques that often dilute the effect of individual weather parameters on the 
whole building energy performance. The research findings indicated that the effects from 
wind speed modifications could be neglected and individual modification in solar radiation 
variables present modest implications. Interestingly, the effect was significantly larger for 
small office buildings than the other types. Hong et al. (2013) concluded that the weather 
has the most significant impact on medium office archetypes; there are greater effects on 
peak electricity demand than annual demand and better quality of solar radiation data is 
required for robust assessment of HVAC end-use demand. 
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These research findings identified and stated some of the main differences in response to 
weather data changes, between building types and simulation results (annual vs peak, total 
and HVAC). It can thus be suggested that to assess the effects of changing climates in 
building electricity demand, a special focus should be put on how the dry-bulb temperature 
data serie is modified, and changes in solar radiation are significantly more important than 
wind speed changes in building cases more driven by external heat gains (as small or 
medium office buildings). However, further analysis and focus on different energy 
performance factors (e.g. space cooling requirements, not meet cooling hours) are required 
to analyse the root causes of the different sensitivities across different simulation cases. 

The research approach to operating changes in weather data-sets to study weather 
variables' uncertainty to the demand for buildings is simple and decoupled from the known 
relationships among climate variables. Therefore, the weather datasets used are unrealistic, 
as they neglect the intrinsic correlation between weather variables. However, as Huang et 
al. (2019) concluded, weather uncertainty must be further included in building performance 
analysis, as currently it is sparsely used, and when included, it is done using variability within 
AMY datasets or the use of weather generators. In the same way, it may be possible to 
hypothesise that linear sensitivity analysis restricts the scope of the analysis, as it is a simple 
approach to execute sensitivity analysis, as discussed in Sub-section 2.1.6. However, as Tian 
(2013) concluded, even with its shortcomings, the simplest approach can still be a very 
useful tool to analyse the sensitivity of parameters in building performance analysis. 

7.1.4 The fourth research question: “To what extent could the electricity load of office 
buildings be affected by changes in cooling demand due to the impacts of climate 
change?” 

The research results show that HVAC end-use demand and total electricity demand for 
office buildings might increase significantly, considering the climate pathways developed. 
The increase in total electricity demand in the pathway analysed can be as high as 37.7% 
annually (C1-Singapore with an increase in CDD of 67%) and 62.3% for peak demand (C5-
Lisbon with maximum dry-bulb temperature increasing 12.7°C). For HVAC demand, the 
increase can be as high as 182.3% annually and 158.4% for peak demand. For most future 
climate iterations points in the pathways, changes in total peak demand are larger than 
annually, except for large office buildings in Singapore and Cairo. However, changes in 
annual HVAC demand are often larger than for peak. Relative changes in electricity for HVAC 
end-use, both for peak and annual demand, are larger for the cities which currently have 
lower annual cooling needs (lower CDD18 – London, 32 and then Lisbon, 474). For changes 
in total peak demand, the level of changes is also more significant for these cities, which can 
be attributed to larger increase in maximum temperatures, which is likely to be related to 
the existence of larger daily temperature amplitudes in these locations. However, for annual 
total electricity demand, the increase in demand is significantly larger for the cities with 
larger CDD (Singapore and then Cairo), even considering that they show lower potential 
relative increases in CDD (C1-Singapore 67% versus 488% in C5-Lisbon). 

These findings provide important insights into the response of the electricity demand for 
different office buildings in different locations under climate pathway scenarios. The 
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research presented a progression of results across the climate pathway and quantified the 
differences among the building simulation conditions analysed. Thus, it rendered the 
difference in shape and proportion of the results, depending on each analysed variable, 
demand temporal resolution, city and office type. Though the electricity demand change 
might be significant for HVAC end-use (could increase more than 100%), the increase in total 
electricity demand is significantly lower (no more than 62.3%, for peak). Once the share of 
HVAC end-use on total electricity demand for peak periods was larger than annually, the 
implication of a similar rate of changes on HVAC demand always led to higher total 
electricity changes for peak periods. 

The use of weather data provided by weather generators related to the climate projections 
from RCM, has been one distinct approach to incorporate uncertainty into the analysis of 
the impacts of climate change, as concluded by Huang et al. (2019). Weather datasets 
generated by weather tools like WeatherShift or CCWeatherGen utilise ensemble climate 
model projections to generate a probabilistic sample of future weather files. However, 
downscaling methods ignore some aspects of future climate change, which lead to some 
inaccuracies, especially for extreme conditions, as concluded by Herrera et al. (2017). 
Herrera et al. (2017) also reviewed that an increase in frequency and intensity of extreme 
events is expected, and so there is a growing urgency to simulate buildings in such 
conditions. 

The climate pathway research method developed in this research work provides a 
framework that enables a more profound insight into the effect of the uncertainty of future 
weather datasets on the building energy performance of buildings. The review of the 
literature has identified that including uncertainty on future weather data is central to the 
assessment of climate change impacts on building energy performance. Rastogi (2016) 
discussed that the building community has faced a “deterministic paradigm”, so uncertainty 
based approaches (including weather) may not be integrated into current building design 
workflows. In the same way, Huang et al. (2019) concluded that there have been very few 
attempts to examine the effect of weather uncertainty in building performance simulation 
and advocated that it is necessary to develop tools to generate uncertainty in weather 
datasets that enable to incorporate the analysis of this type of uncertainty in BPA. Nik, 
Perera, et al (2020) stated that to assess the climate resilience of built environment 
infrastructure, assessments must incorporate a broader scope of weather and technological 
conditions, including much more significant and broad uncertainties in modelling.  

In this research, it was possible to incorporate the similar uncertainty approach found in 
(Moazami, et al., 2019) or (Jenkins, et al., 2013), whilst comparing the implications at 
multiple locations as conducted by (Dirks, et al., 2015) and (Wang, et al., 2014). However, 
the research did not present the effects for aggregated stock levels of demand that 
(Moazami, et al., 2019) and (Dirks, et al., 2015) had. Moazami et al. (2019) and Jenkins et al. 
(2013) used a large sample of future weather datasets to more robustly evaluate building 
designs under the impacts of climate change. However, this type of approach to generate 
weather datasets is onerous to replicate into other locations worldwide, as it requires the 
detailed outcomes of regional climate model projections, as discussed in Sub-section 2.2.3. 
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Thus, the application of the climate pathway framework developed in the simulation case 
study, enabled multiple locations to be assessed using the same approach in a time-efficient 
manner. In addition, the simulation case focused on the effects upon total and HVAC end-
use electricity demand of office buildings, both annually and for peak level, central to the 
challenges to systematic and broad analyses of the impacts of climate change in building 
performance. 

The research results on the effects of climate change under the climate pathway scenarios 
presented, provide an understanding of the extent to which buildings are or can be climate-
proofed. The screening of building models for different future weather has a pivotal role in 
assessing the climate resilience of buildings designs. However, it is necessary to analyse the 
implications for both annual and for peak energy demand, not only for cooling purposes but 
also for the changes it represents at the total demand level (while also bearing in mind that 
future heating systems for buildings may also become electrified). Changes in the electricity 
demand for HVAC end-use are essential to evaluate the implication for the sizing and 
operation of HVAC systems. On the other hand, the total electricity demand effect highlights 
the overall implications for the power network. Therefore, this research distinctively 
showed that in the future, weather scenarios represented under the pathway scenario 
would lead to a significant increase in the design capacity of HVAC systems. However, the 
implication to the electricity demand of buildings is up to 62%, but the peak increase is 
smaller for most of the climate pathway points included in the simulation case conditions 
utilised in this research. 

7.1.5 The fifth research question: “To what extent could a potential increase in electricity 
demand due to cooling provision be limited in future scenarios by adaptation 
measures?” 

The research results indicated that a set of elementary adaptation/energy-saving measures 
could robustly maintain an office building electricity demand levels, below baseline results, 
in a climate pathway scenario that incorporates extreme impacts of climate change. 
Throughout the climate pathway simulation sample, it is easier to restrain electricity 
demand below the current baseline values for the total level, than it is to reduce electricity 
HVAC end-use. For example, for the total electricity demand, the largest value in the whole 
climate pathway sample is 11.5% and 8% below the baseline values, for peak and annual 
resolution respectively. While for HVAC end-use, the largest values in the whole pathway 
can reach up to 16% and 31% more than the baseline values,  for peak and annual demand 
respectively. 

In any case, even for HVAC electricity demand, for both peak and annual levels, it is often 
possible to keep demand below baseline conditions for most of the pathway scenario 
sample. The individual measures that have the largest effect on reducing total electricity 
demand are: reducing either lighting or equipment densities (measure 3 and 4, which 
reduce around 10% both for peak and annual resolution) and relaxing cooling set-point 
temperatures (measure 1, up to 24% reduction and especially for small buildings). The 
adaptation measure options that combine a number of individual measures (measure 7, 8 
and 9) reduce all types of existing electricity loads under baseline levels (HVAC and total; 
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peak and annual), for the large majority of the climate pathway scenarios evaluated. For 
almost all buildings and locations, it is possible to restrain demand below baseline values, 
for all the pathway sample points, if all individual measures are applied (measure 9). Finally, 
the effect on demand reduction of the measures and their effectiveness significantly differs 
among the different office types and cities analysed. The research results elucidated that 
demand loads can be substantially and consistently reduced below baseline demand levels, 
even considering the implications of the future climate pathways scenarios. However, the 
research analysis had only considered standard, and elementary types of adaptation 
measures. It is possible to hypothesise that novel and more sophisticated adaptation 
measures could save even more electricity demand. 

From previous literature, very limited studies have systematically analysed and compared 
the effects of different individual and combined adaptation/energy-saving measures in 
mitigating the additional demand from the impacts of climate change. In the review of the 
literature for this thesis, no studies were found looking at the effects on aggregated building 
stock level, using dynamic building simulation that also assesses the effects of adaptation 
measures (some examples that do not consider adaptation (Wang, et al., 2014; Dirks, et al., 
2015; Moazami, et al., 2019)). The present study makes noteworthy contributions to the 
assessment of adaptation measures in mitigating the impacts of climate change in buildings. 
For example, Jenkins et al. (2013) has concluded that the effect of adaptation scenarios 
considered is not significant on peak loads. The present study has presented pieces evidence 
showing that a set of measures can substantially reduce demand, even for peak electricity 
demand for HVAC demand. Mata et al. (2019) have presented a new methodology to 
robustly assess multiple retrofit measures to reduce heating demand in the future with 
climate change, for four Swedish cities. This Thesis = has taken a similar framework to 
evaluate multiple adaptation/energy-saving options, into the analysis for electricity demand 
for cooling. This study is one of the first studies that has evaluated multiple adaptation 
options, considering a climate pathway, and for several distinct locations. Some studies have 
analysed the effects of adaptation measures, but often they have taken approaches, that 
only provide a snapshot and static assessments of future scenarios, evaluating for single or a 
couple of climate scenario conditions. In the approach taken in this study, the focus is to 
understand the feasibility of attenuating additional electricity demand for cooling due to the 
impacts of climate change. 

The research results described that the impacts of climate change on cooling demand are 
significant, but the effect of adaptation measures might balance out the impact of climate 
change on the total electricity demand of buildings. Therefore, overall total electricity 
demand annually and at peak periods might not increase unrestrainedly as it might be 
intuitively assumed. The research approach used models that automatically resized the 
HVAC equipment to every iteration of weather data on climate pathways. In practice, HVAC 
systems have spare capacity, which may accommodate additional requirements from 
warming climates. However, the ordinary rate of replacement of HVAC systems may not 
occur sufficiently regularly to keep up with the impacts of climate change, creating unmet 
cooling demand and the potential for more energy inefficient cooling measures to be 
implemented by occupants. 
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The research also identified and quantified the single measures that are the most effective 
in reducing cooling demand, both annually and for peak periods. Reducing both lighting or 
equipment power densities by 30% on its own, was sufficient to reduce total electricity 
demand by around 10%, both annually and for peak. For HVAC demand, increasing cooling 
set-point temperatures from 24°C to 27°C, is clearly the most effective individual measure. 
The combination of some of these measures (relaxing cooling set-point, increase COP, 
reducing lighting and equipment densities) may often be sufficient to reduce demand 
bellow baseline levels, for the HVAC demand. However, for some model case conditions, 
especially for annual HVAC demand, it is more challenging to reduce demand below current 
baseline levels. The results showed that for large and medium office buildings, the reduction 
effect of measures were not enough to keep annual HVAC demand restrained below current 
baseline levels, for the most challenging scenario iterations in the climate pathway. While 
for small office buildings the levels were kept well below current levels considering 
combining all individual measures. 

Anyway, this type of analysis shows that there is potential on currently known and available 
adaptation measures to robustly reduce electricity demand below current baseline levels, 
even considering for the most extreme likely future climate scenarios. The comparison of 
the weather data from current weather generators have shown that only the future 
weather data with the largest probability levels (90% and 95%) and relative to the highest 
emission scenario (RCP 8.5) will compare to the highest percentile at the end of the climate 
pathways scenario sample. Most of the future weather data generated by existing weather 
generators (WeatherShift (Dickinson, et al., 2016), Meteonorm (Meteotest, 2020) and 
CCWorldWeatherGen (Jentsch, et al., 2013)), is comparable to iterations on the first half of 
the climate pathway, for all locations analysed. 

7.2 Significance of the research work 
Clarke et al. (2015), Hopfe et al. (2013) and Tian (2013), have all advocated that it is 
necessary to introduce uncertainty into the inputs to building models, even for the most 
accurate models. Building models are only approximations of actual performances, and it is 
impossible to validate models of unbuilt buildings or hypothetical operations of existing 
buildings, but only to increase the robustness of their results. It is necessary to increase the 
robustness of building simulation results, and sensitivity and uncertainty can play essential 
roles in this, supporting better design decisions. The research framework presented in this 
thesis has a systematic approach to evaluate the implications of input uncertainty and 
explore a broad scope of design and operational parameters. The research framework 
developed provides a deep understanding of the sensitivity and uncertainty of the office 
building model utilized. These sensitivity studies explored the limits and understood the 
difference between building models, which disclosed the various responses of office cooling 
demands. Therefore, more confidence in applying these models was gained, shaping and 
preparing the research conditions explored in the following stages. 

The deep exploration and screening of the model’s assumptions revealed the different 
responses of their electricity demand, for different time resolutions (peak and annual), 
locations and different simulation output metrics (total electricity, HVAC end-use or space 
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cooling). The approach has methodically compared the effects of different building design 
and operational parameters uncertainties, for different cities and types of office buildings. 
The research focused on the implications on the peak loads, not only for cooling needs but 
also for total electricity demand, which the majority of previous studies using BPS tools have 
not included (few examples: Dirks, et al., 2015; Tarroja, et al., 2018)). In the future, with the 
supplementary effects of the impacts of climate change on building peak loads, these may 
become very challenging constraints for the design and planning of infrastructures. The 
additional demand for cooling is not only critical for the sizing of HVAC systems of buildings, 
but also for the operation of power networks, the sizing of grid infrastructure or potentially 
for the sizing of cooling district networks. 

Previous studies such as Wang et al. (2014) or Hong et al. (2013) have identified that energy 
demand of buildings is significantly different for different cities and building types. This 
thesis has disclosed and quantified the different effects of these options. In the same way, 
in this work, the effects of the uncertainty of different weather variables = on the total 
electricity demand of buildings were investigated, addressing one of the research gaps 
identified by Huang et al. (2019), in the study of uncertainty in building simulation results. 

In this thesis, the screening of model design parameters along with weather parameters in 
the weather datasets used in building simulation were studied. Up to now, previous 
research studies have not generally analysed the sensitivity of ‘morphed’ future weather 
time-series in building simulation results. Therefore, this study is innovative for enabling the 
quantification of the implication of each weather variable and weather characteristics on 
the electricity demand of office buildings. The type of weather data generated for the 
research did not represent any actual weather record; however, this approach gave valuable 
insights, as it made it possible to explore the response of the models. 

The research framework has developed systematic methods to automatically analyse 
sensitivity and uncertainty in archetype models, which are made openly available, and 
guided by open science principles. Tian (2013) and Clarke et al. (2015) have advocated for 
the automatic generation of sensitivity analyses, collecting simulation data and automatic 
statistical analyses of simulation results, which was addressed with some of the tools 
developed in this work. 

The research in this thesis contributed to the existing knowledge by providing a clear 
numerical understanding of the potential impacts of climate change for the total and HVAC 
electricity demand of office buildings, both for peak and annual levels. Andrić et al. (2019), 
de Wilde and Coley (2012), and Yassaghi et al. (2019) have concluded that studies on the 
effects of the impacts of climate change in buildings present significant differences. The 
identified differences in results could have been due to differences in the origins of weather 
datasets, building modelling assumptions, or climate modelling assumptions. The effects of 
climate change seem to be higher for hot climates than for cold (Andrić, et al., 2019). This 
study confirms that the relative increase in total electricity annual demand is larger for hot 
climates(the largest simulation case was for large offices in C1-Singapore with 37.7% 
increase) than for colder climates (large office, C6-London, 15.4% or 13.1% for medium); 
However, the opposite is verified for total electricity peak demand (62.3% for medium office 



184 
 

in C5-Lisbon versus 32.9% for small offices in C1-Singapore). The review of the literature in 
Chapter 2, and more specifically in Section 2.2, identified that effects for the peak demand 
were often overlooked; whilst, the impacts of climate change have been identified to 
potentially lead to further strain on the power grid due to significant growth on peak 
demand driven by additional cooling end users. 

The research approach utilized in this work was innovative by developing a climate pathway 
scenario to recreate a path of uncertain future climate conditions (Chapter 6) that enables 
exploring and screening multiple levels of climate warming and quantifying its implications 
on building energy performance. In addition, in this thesis, a set of simulation cases was 
analysed to explore and compare the implications for different locations, for different types 
of buildings and at different degrees of end-use of the electricity demand. Moazami et al. 
(2019) concluded that the impacts of climate change studies have been focused on cold 
climates, where accessible future weather datasets are made available and have led to most 
of the existing research studies. However, it is not easy to apply similar approaches to any 
other location without the detailed climate projections datasets underpinning the 
generation of these future weather datasets. De Wilde and Coley (2012) have also 
concluded that there is a lack of uncertainty studies on the climate projections used for 
impact studies. Similarly, Nik, Perera, et al. (2020)  concluded that it is necessary to account 
for the uncertainties and variations on climate projections and future technological 
scenarios to effectively develop climate-resilient designs – which is addressed by this Thesis. 

De Wilde and Coley (2012) advocated the development of approaches to rank different 
adaptation measures in impact studies analysis. The research also adds to the knowledge by 
quantifying the effect of a broad number of simple and well-established adaptation/energy-
saving measures in reducing demand levels. Some of these adaptation measures scenarios 
considered are already happening driven by mitigation efforts in reducing demand. For 
example, there are trends in the reduction of the power density of lighting and IT 
equipment in buildings, and efficiency improvements in HVAC equipment, substantially 
raising the system COP. 

Therefore, the research findings gave a clear view of the impacts of climate change on the 
electricity demand of office buildings and the effect of adaptation measures to attenuate 
the potential growth of electricity demand 

7.3 Research limitations and further work 
All the analyses included in this thesis include only the three primary types of DOE reference 
office buildings, which incorporate generic HVAC systems and enable only a limited analysis 
of the building envelope characteristics. However, there may exist shares of the building 
stock that shall differ substantially from the characteristics represented by these 
archetypes, namely in the form characteristics, glazing areas, and the type of ventilation and 
cooling mechanisms. In the same way, the office building stock may be substantially 
different across the different cities/countries utilised in the simulation case. Therefore, the 
reference office models may not be representative of the building stock. Therefore, it would 
be interesting to analyse additional types of office building archetypes, that could represent 
a more extensive set of building sizes, different shapes and especially and different types of 
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HVAC systems. Energy demand is highly correlated to the HVAC option considered, as 
Korolija et al. (2013) explored, in investigating UK office archetypes. Finally, the study is 
conducted only for six different locations, and this choice may not cover all types of 
climates. 

The research work presented in this thesis is limited in the scope of the building design and 
operational parameters analysed and the conditions included when analysing the office 
models' electricity demand for cooling requirements. For example, there is limited 
understanding of the implication of form envelope parameters for the demand and/or the 
analysis of the effects for more complex components of the cooling requirements, namely 
latent and sensible loads. The number of options for HVAC systems considered in these 
studies is limited, limiting the analysis to single systems, and the findings can be 
considerably changed with the other HVAC options. Future research should look to similar 
building performance comparisons considering a wider variety of HVAC systems for each 
office type. Similarly, it may be relevant to analyse the differences in more detail for 
different cities and representative climates and other buildings. 

In this thesis, a static approach was used to model several operational parameters in the 
research analysis, namely for lighting, occupancy and equipment densities, ventilation rates 
and HVAC system settings. A more dynamic and sparse modelling approach will enable to 
analyse the implication of intelligent control of detrimental operational parameters during 
peak periods. Such a type of modelling may mimic real practices on building systems 
management and upgrade the impacts of the analysis. 

A more dynamic setting of the building models could allow analysing the interaction effect 
between some energy-saving measures and the response of the thermal zone status and 
HVAC systems. For example, it could be analysed automatic management of heat gain loads 
in response to weather conditions or more flexible and stochastic behaviour of internal heat 
gains. Samuelson et al. (2020) concluded that it is imperative to take advantage of the 
synergies of multiple energy-saving measures on different performance indicators. 
Performing a similar analysis of the mitigation effect of other types of adaptation options 
and more complex simulation settings, are important to be undertaken. Further energy-
saving opportunities may be provided by these, and could be more easily incorporated in 
future building designs and operations than the measures studied here. 

It is also limiting that only one HVAC system option is analysed for each building in these 
simulation case studies. It is difficult to compare the performance of different types of 
building models without bringing in a lack of consistency to the analysis. Trying to compare 
systematically and screen model conditions and assumptions may easily result in 
inconsistencies. One of the future steps should be looking at similar sensitivity/uncertainty 
comparisons considering a wider variety of HVAC systems for each office type. This 
approach will enable the screening of the technology options in office models and highlight 
any vulnerabilities of the different technology options. However, it is still relevant to 
understand and quantify the different responses of each model, to check potential 
vulnerabilities on modelling assumptions/approaches that are taken when using these 
models. 
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7.3.1 Limitation on sensitivity and uncertainty analysis 

In this thesis, a systematic and broadly methodical analysis of the sensitivity and uncertainty 
of office buildings is presented. While broadly and systematically screening 14 input model 
parameters, many other parameters were still not accounted into the analysis. For example, 
the implications of physical envelope/form parameters are poorly investigated. As discussed 
above in this section, a more insightful investigation of these parameters and understanding 
of the implications on space cooling requirements and electricity demand for this end-use is 
required to drive wider-reaching and generalisable findings. One other limitation of this 
study is that it might incur inconsistencies when setting the same uncertainty levels for all 
modelling conditions investigated (cities and office types). For example, Tian et al. (2018) 
concluded that uncertainty databases should cluster information by model types, climate, 
and the vintage of buildings. 

For a more insightful sensitivity analysis for building performance analysis, it is important to 
quantify and relate probability functions that better represent the input parameters' 
uncertainty ranges to better evaluate the uncertainty of results. An improved ability to 
integrate building models is necessary for this to occur, permitting more standard changes 
of archetypes. More repositories of building models could be made available to understand 
and reproduce previous research studies. Another limitation of exploring the uncertainty of 
results as done in the present investigation is the cluttered and 
communication/presentation of key results. In the future, it is necessary to develop new 
tools that facilitate the generation of building models, collect simulation results, execute 
statistical analysis and better visualization methods to conduct and present this analysis as 
discussed in (Tian, 2013; Tian, Heo, et al., 2018; Huang, et al., 2019). 

A limitation of the research approach assessing the sensitivity of weather parameters was 
focusing mainly upon the total electricity demand, and so it was unattainable to explore in 
detail the implications of these weather changes for specific HVAC end-uses and space 
cooling requirements. The effects of weather variability in the total electricity demand were 
critical to evaluate, and so identify the different responses for the different types of 
buildings, locations and temporal resolutions of the demand. The analysis only looks at the 
implication for office models using the EnergyPlus thermal engine. It would be very relevant 
to quantify and compare the effects of these weather changes for different thermal engines, 
as it is likely to exist different intricacy of weather variables on thermal engines, Another 
limitation of the study is not to explore more complex sensitivity and uncertainty analysis 
techniques to quantify the combined uncertainty of multiple variables and so to analyse the 
potential interaction effect between climate parameters and other modelling parameters 
(namely: form and envelope characteristics). 

The sensitivity/uncertainty studies performed in this thesis, looked separately at the 
uncertainty of input model parameters (Chapter 4) and the uncertainty of weather variables 
(Chapter 5). Thus, the approach is limited in its ability to identify the potential interaction 
effects between building modelling parameters and weather parameters. Nevertheless, the 
research approach presented in this thesis provides a framework that addresses the need 
for flexible and systematic analysis of sensitivity. In future investigations, there is abundant 



187 
 

room for further progress in extending the approach to different simulation case conditions 
to focus on different output metrics and consider more complex model parameters to 
iterate. 

7.3.2 Limitations on the assessment of the impacts of climate change and the effects of 
adaptation/energy-saving measures 

Regarding the impacts of climate change using a synthetic climate pathway, some 
limitations are identified and discussed. The generation of the weather datasets in the 
climate pathway for the different locations presents limitations, as the same approach led 
to different levels of the sprawl of the weather variables time series across different 
locations (presented in Sub-section 6.2). The climate pathway approach ignores the known 
fact that climate change impacts are geographically distinct and all the microclimate 
phenomena that may affect the performance of buildings. In the same way, only six 
locations were analysed, limiting the understanding of the effects of such pathways 
scenarios to other climates and even other cities with similar climates. It would also be 
interesting to introduce correlation patterns between weather variables when operating 
changes on future weather datasets for a climate pathway. It would also be helpful to create 
climate pathways adapted to the time span of the climate change projection results at the 
source of the analysis. 

The approach was also focused on the effects on the electricity demand, and did not 
evaluate the implications for multiple other metrics that could also be detrimental to the 
operation of buildings (overheating, heating demand and space cooling). In addition, the 
research findings reported the effects at the individual building level and did not quantify 
the effects at the aggregated stock level, which is the level that stresses energy networks. In 
any case, the use of weather datasets from the climate pathway scenario enabled a more 
robust evaluation of building design climate resilience. Climate pathways allowed climate-
proof building designs in a faster and straightforward approach, which can be systematically 
replicated. As Nik, Perera, et al (2020) discussed, this is fundamental to assessing the 
climate resilience of built infrastructure designs. Finally, with the increasing number of 
simulation iterations and the number of output variables analysed, it becomes incredibly 
challenging to communicate uncertainty in this type of research work. Tian et al. (2018) 
advocated that new visualization tools should be developed, and new statistical metrics 
should be used to communicate the outcomes of uncertainty studies in building 
performance analysis. Whilst this research intended to evidence straightforward 
comparison of sensitivities and uncertainties, part of this challenge remains to be solved. 

The research findings reveal the direction and magnitude of the overall change associated 
with well-known adaptation measures. In the future, it would be interesting to evaluate a 
range of integrated adaptation solutions, which consider more flexible building operational 
conditions. It is also important and relevant that other types of solutions, and how they 
relate to other occupancy factors (lighting, thermal comfort, well-being, productivity) are 
assessed. It will also be important to understand the cost-effectiveness of the solutions 
analysed. The individual building level scope of the analysis limited the extrapolation of 
findings to a larger building stock level. However, it is valuable to understand the 
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fundamental level effect of different type of measures, when trying to design adaptation 
solutions for the whole stock. It will also be essential to analyse the effects of urban 
morphology adaptation measures at individual levels, and develop simplified ways to 
integrate into building performance simulation runs, the effects of such measures. In 
addition, it would also be interesting to analyse the effect of stock level solutions, such as 
demand response, thermal storage, district cooling networks, on shaving peak demand, and 
reducing cooling demand of the building stock. 

7.4  Chapter summary 
This chapter discussed how the research findings in this thesis addressed the research 
questions defined for the project, and described in the introduction (Chapter 1). Each of the 
five research questions is explored (Section 7.1), scrutinising the research findings that 
address those. Following, a reflection on the significance of these research findings (Section 
7.2) is provided, and the research limitations and recommendations for further analysis are 
discussed (Section 7.3). The discussion made in this chapter puts in a larger perspective on 
research findings presented throughout the thesis. The remarks made establish and support 
the research conclusions presented in the next chapter and propose ideas for future 
research. 
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8 Conclusions and recommendations 
In this investigation, the aim was to explore the potential effects of future climate change 
impacts on the cooling HVAC demand of office buildings, and quantified the implications for 
electricity demand in different regions of the world. This thesis set out to examine the 
impacts of climate change upon the cooling requirement and total electricity demand for 
three type of office buildings (small, medium and large office reference models) in six 
different cities (Singapore, Cairo, Athens, Beijing, Lisbon and London). A climate pathway 
framework was developed to capture the uncertainty in the future weather datasets, and 
used to quantify the impacts of climate change for cooling demand of office buildings. 

First, in Chapter 4, the sensitivity of different input parameters on office buildings was 
assessed together with the uncertainty of different building energy modelling outputs. In 
these studies, the two first research questions are addressed. In Chapter 5, an assessment 
of the effects of isolated morphing procedures is made, addressing the third research 
question. Finally, in Chapter 6, the last result chapter, the effect of a synthetic future climate 
pathway on the space cooling requirements and electricity demand of the office buildings 
were analysed (Section 6.3) and assessed the effectiveness of several adaptation measures 
in controlling additional demand due to the effects of climate change (Section 6.4). Thus, it 
addressed the fourth and fith research questions of this thesis. The following section 
summarises the responses to these research questions. 

8.1 Answering research questions 
8.1.1 The first research question: “How sensitive is the office building energy modelling to 

different operational and design input parameters?” 

The research question was addressed by conducting a systematic sensitivity analysis of 
office building design and operational parameters on total electricity, HVAC end-use and 
space cooling requirements for both peak and annual demand levels. A systematic 
framework to perform parametric building simulation studies was developed, utilising a 
dual-stage sensitivity analysis (Morris EE and Sobol analysis), first in simplified office building 
models and then on archetype DOE office models. 

The research findings showed that lighting and equipment densities, cooling set-point 
temperature, coefficient of performance and ventilation rate, make a significant 
contribution to the total electricity demand in office buildings. For HVAC electricity end-use 
and space cooling, cooling set-point temperature, coefficient of performance and 
ventilation rate, were the key parameters for both annual and peak demand. However, it 
was clear that both the ranking and the relative contribution of the parameters differed, 
when looking at different output and temporal resolutions. Similarly, the relative 
contribution of parameters varied for each office building type and city analysed. 

8.1.2 The second research question: “What is the relative impact on peak and annual 
HVAC and total electricity demand of office buildings as cooling requirements differ 
with changing building design and operational conditions?” 
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The systematic framework developed in this thesis for sensitivity studies on building 
performance analysis was prepared to assess and compare the simulation results across 
different locations, different types of office buildings, for different simulation output metrics 
and for different demand levels (peak and annual). The framework normalises results 
among different simulation case conditions to compare results systematically. Similarly, 
results are compared across the different locations looking at CV of simulation result 
samples, and boxplots are presented to compare results across the different simulation case 
conditions. 

The research findings in this work have shown that, in general, the response of peak 
demand is larger than for annual demand for all office buildings across most of the locations 
analysed within the simulation cases evaluated. In addition, the response was more 
significant on electricity demand for HVAC end-use and more limited on total electricity 
demand. Besides the exhaustive and comprehensive analysis among demand levels, type of 
buildings and locations, it is challenging to make a general conclusion for the whole building 
sector/building stock based on these findings for a limited set of simulation cases. 
Nevertheless, the research framework developed and applied to investigate the sensitivity 
of building design and operational parameters, and the uncertainty of electricity demand for 
cooling requirements is innovative and pertinent for the building design and building 
simulation research. 

The research approach was developed to contribute to a breakthrough on the systematic 
and broad dissemination of uncertainty and sensitivity analysis in building simulation 
studies. Finally, the work presented in Chapter 4 has led to three distinct research 
publications (Zeferina, Birch, et al., 2019), (Zeferina, Wood, et al., 2019) and (Zeferina, et al., 
2021). 

8.1.3 The third research question: “How does the morphing of weather timeseries 
influence the peak and annual HVAC and total electricity demand?” 

In Chapter 5, the research explored the implications of climate variability for the total 
electricity demand of archetype office buildings. The research study applied an innovative 
methodology developed approach to assess the sensitivity of morphing operations at 
weather timeseries in building performance simulation. 

The research findings, regarding the simulation results for the simulation cases where the 
approach was applied, have shown that the dry bulb temperature is the weather variable 
that drives total electricity demand the largest, due to additional demand from the HVAC 
end-use. For example, an uniform 5°C increase (shift) in dry-bulb temperature variable 
values lead to a rise up to 26.8% and 38%, respectively, for peak and annual total electricity. 
The temperature change operation for summer season prevalence (larger shifts in summer 
than in the remaining of the year) or additional growth on the daily dry-bulb temperature 
amplitude (stretch) during heatwave periods were also relevant for peak total electricity 
demand of buildings (the first leads to rise up to 15.4% and the other up to 9.4%). The 
implication of relative humidity for the electricity demand is likely to reduce total electricity 
demand (a uniform reduction of 10%, may decrease up to 5.7% peak demand and 5.1% 



191 
 

annual demand). The effect due to a growth factor (stretch) of 1.25, individually in solar 
radiation variables lead to increases up to 5.2% (annually). Wind speed has shown low 
implications for the demand (no more than 0.7% annually or 1.4% for peak). 

The research provides pieces of evidence that the implications of the choices on how 
morphing operations are executed on dry-bulb temperature may create significant changes 
in electricity demand. In addition, it indicates that solar radiance is important in assessing 
demand in future weather scenarios, while wind speed shows lower effects than the 
changes in the other weather variables. In addition, it also shows that the effects are related 
to the building types utilised and the original weather data considered (locations). 

8.1.4 The fourth research question: “To what extent could the electricity load of office 
buildings be affected by changes in cooling demand due to the impacts of climate 
change?” 

A climate pathway framework was developed to evaluate a wide range of potential climate 
change impacts, in a systematic and time-efficient approach for different locations. In the 
simulation case conditions utilised, 200 synthetic future weather sample conditions were 
iterated for each location, and building simulations were run for the three distinct archetype 
office buildings. The comparison of the energy performance results among the sample of 
simulations was based on the additional electricity demand over the baseline values, for 
HVAC end-use and total demand, for both peak and annual levels.  

The weather changes represented by the climate pathway framework is driven by morphing 
procedures that are inferior to annual mean temperature shifts of 5°C (which can be up to 
7°C shifts on summer periods while only 4°C for winter). Thus, in the climate pathway 
sample, maximum dry-bulb temperatures increased up to 13.7°C for C6- London and 12.7°C 
for C5-Lisbon; while the maximum change in cooling degree days was for C6-London from 7 
to 488 and from 218 to 1278 for C5-London. Some of these weather changes are equivalent 
to the most extreme future scenarios within WeatherShift file sample (RCP 8.5 – 2085 – 95 
probability). 

The research results showed that the potential impacts of climate change are significant, 
both for the HVAC demand end-use and the total electricity demand end-use. For the 
simulation case selected to apply the climate pathway approach developed, increase 
relative to the baseline in total annual electricity demand, when considering the whole 
climate pathway, can reach up to 38%, and for peak total demand can go up to 62%. For 
HVAC demand, the level of change relative to the baseline was found that could be much 
larger (182% for annual and 158% for peak). The relative level of change is different across 
all cities analysed and for the different office types. From the results, for HVAC demand, it is 
evident that the pathway developed drove larger changes for colder climates, so a marked 
rise in C6-London (e.g. up to 182% - annual and 156% - peak, medium office), than for hotter 
climates, so a slower increase in C1-Singapore (e.g. up to 64% - annual or 97%,- peak for 
medium office). However, for total annual electricity demand, the implications of the 
climate pathway are larger for cities with hotter climates cities than for colder cities. In 
comparison, the opposite occurs for peak total electricity demand. 
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More than the quantification of the impacts of climate change on annual and peak 
electricity demand for the set of conditions covered in the simulation cases (office types and 
six locations), this research presents a method that guarantees a broad set of weather 
scenarios. The approach delivers a sample with a large range of weather iterations, 
including extreme peak conditions, that is possible to apply for any weather dataset in the 
world and adapt the uncertainty ranges that may apply for the likely time-span. Therefore, 
the research is able to provide a tool to assess the reliability of the building performance 
and so assess the climate resilience of a building design in future conditions/scenarios. 

8.1.5 The fifth research question: “To what extent and magnitude could a potential 
increase in electrical peak load due to cooling provision be limited in future scenarios, 
by adaptation measures?” 

To pursue this, a set of adaptation/saving measures (six simple/single and three sets of 
combined measures) were selected, to evaluate the potential to mitigate additional demand 
due to potential climate change impacts, using the simulation sample generated by the 
climate pathway framework created. A systematic framework to normalise and compare the 
simulation output results was developed to evaluate the mitigation potential throughout 
the climate pathway sample. 

The research findings have shown that even in the worst point of the synthetic climate 
pathway, total electricity demand can be maintained below current baseline demand levels, 
both for annual (option measure 9 lead to reduction at least of 8% - large, 16% - medium or 
27% - small offices) and peak demand (13% - large, 11% medium or 29% - small), in all cities 
and building type analysed. For HVAC demand, reduction levels achieved robustly reduce 
levels under current base conditions, but for the same cases, at extreme weather datasets 
for some modelling options (city and building type), demand will grow relative to baseline 
levels (. 15% or 16% above peak baseline demand, and 10% and 31% for annual, in London, 
respectively for large and medium offices). Research results also showed that the relaxation 
of the cooling set-point, reduction of lighting and equipment power densities are the 
individual measures that can have the largest reductions in the total electricity demand 
(mean reduction effect for the first can reach 20% and the for the other two is around 10% 
each). 

The findings showed that total electricity consumption levels could be maintained below 
current baseline levels, both for peak and annual resolution, for all office types and cities 
analysed, using a range of known and straightforward measures. However, for HVAC 
electricity end-use, the effect of these measures might not be sufficient to reduce the 
potentially large increase for some points under the whole pathway scenario and for all 
modelling options (cities and building types). 

Having summarised the conclusions of this thesis, it will now move on to identifying the 
contribution of these research findings for the research community and building modelling 
practitioners. 
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8.2 Research contribution 
In this thesis, a comprehensive and systematic analysis of the sensitivity of the model 
assumptions was conducted, either by analysing the sensitivity of building design and 
operational model parameters’, or the effect of the uncertainty of weather variables. Thus, 
the research has enabled the quantification and a better understanding of the dynamics of 
the systems underlying the cooling demand of office buildings. The research done in this 
thesis adds to the growing body of work that understands the sensitivity of building energy 
modelling (Tian, 2013; Tian, Heo, et al., 2018; Huang, et al., 2019). This work has both 
deeply analysed the sensitivity of the building design and operational input 
parameterisation of different buildings, climates and the effects on peak load both for HVAC 
end -uses, space cooling, and total electricity. As far as the author is aware, this is the first 
study to investigate, quantify and compare the sensitivity of electricity demand model 
outputs, for different locations and building types. The research findings raise questions on 
whether looking at the findings from case studies (single building type and location) can 
misjudge the design decision making of building design practitioners. This research suggests 
that input sensitivities may be divergent among all the modelling conditions analysed (time 
resolution, locations and building types). 

The research combined modelling approaches for the analysis of sensitivity and uncertainty 
in building energy modelling using the three office DOE reference models. The research 
done is one of the few studies systematically looking at DOE archetype models sensitivity 
and uncertainty. The study revealed that annual and peak demand uncertainty is 
significantly different, quantifying the different outputs across the iteration sample in the 
sensitivity studies (with CV values, boxplot figures and quantile value figures). One strength 
of these sensitivity studies is that it quantifies and compares the uncertainty for the 
different output metrics, temporal resolutions, building types and locations. The results 
revealed that the uncertainty of models is significantly different among the locations 
analysed and different types of buildings. The distinctions are especially highlighted when 
looking at total electricity and HVAC end-use. 

In addition, the research takes sensitivity analysis into the screening of weather datasets 
through the application of morphing procedures. This is the first study the author is aware 
of that has explicitly examined the sensitivity of morphed weather data on the energy 
performance of buildings. Despite its exploratory nature, these findings offer some 
innovative insights into the impacts of weather variability in building simulation, as they 
quantify the isolated implications of ‘morphing’ operations in weather variables time series 
to the total electricity demand of office buildings. The 'morphing’ operations are central to 
the methodologies applied in standard weather tools for the generation of weather data 
with generic geographical scope (e.g. WeatherShift (Dickinson, et al., 2016), Meteonorm 
(Meteotest, 2020) and CCWorldWeatherGen (Jentsch, et al., 2013)) and which are 
frequently utilised in research analysing the impacts of climate change in building 
performance. Therefore, the research approach to analyse the sensitivity of the morphing of 
weather timeseries provides a relevant framework to analyse the uncertainty in building 
performance simulation related to the generation of future weather data. 
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Once the analysis of the effects is made across multiple locations and types of offices, the 
effects on total electricity demand enable to better understand the potential effects to 
overall electricity demand for the power network. The findings suggested that different 
weather time series operations led to substantially different outcomes in the total demand 
and informed the demand ranking of these weather parameters. The research findings 
clearly state that changes in dry-bulb temperature led to more significant responses to total 
electricity demand than changes in other weather variables. These findings raise questions 
on the necessary detail of generating some of the variables for building performance 
simulation, as it suggests that some of these changes (for example, changes in wind speed) 
have a limited implication on the total demand of office buildings. 

In this thesis, a research tool was developed, which generated a sample of weather datasets 
to simulate a pathway of future weather conditions. The climate pathway framework aims 
to simulate an uncertain scenario of future climate conditions, which can be applied to any 
geographical location, adapting the uncertainty levels and weather variables morphed to 
assess the potential impacts of climate change. The methodology developed has offered a 
framework for a robust assessment of building energy performance, on a range of different 
future climate conditions, and evaluating and ranking the implications of progressive levels 
of climate change impacts. The research simulation case, used in the application of the 
climate pathway framework in the thesis, replicated a research approach of evaluating the 
impacts of climate change using dynamic building simulation with existing archetype models 
(previous examples are (Drury Browne Crawley, 2008; Wang, et al., 2014; Dirks, et al., 2015; 
Tarroja, et al., 2018; Moazami, et al., 2019; Berardi, et al., 2020)); however, focusing on 
observing the implications for cooling demand end-uses and total electricity demand. The 
literature review has identified that previous research has overlooked the analysis on peak 
demand, which changes might create stress on energy systems sizing, which changes on 
annual demand do not inform. 

In addition, the research contributed to the quantification of the potential of 
adaptation/energy-saving measures in reducing the additional demand for cooling due to 
the warming effects of the impacts of climate change. The research utilised the climate 
pathway method to quantify a range of potential effects in the future and also assessed the 
effects of a set of known adaptation/energy-saving measures to attenuate the additional 
demand due to cooling requirements in the climate pathway. The set of adaptation/energy-
saving measures included the relaxation of the cooling set point (measure 1), reduction of 
the ventilation rate (measure 2), reduction of lighting (measure 3) and equipment (measure 
4) densities, increasing the COP (measure 5) and reducing the SHGC of windows (measure 
6). The analysis replicated previous analysis that assessed the effectiveness of different 
adaptation/energy-saving measures on attenuating additional demand (Mata, et al., 2019), 
extending the analysis for a range of conditions prepared throughout the pathway. 

This is the first study the author is aware of that has evaluated the effectiveness of 
adaptation/energy-saving measures in a broad range of climate scenarios, as provided by 
the climate pathway framework. Therefore, the study makes several noteworthy 
contributions to the research assessing the effects of adaptation/energy-saving measures to 
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mitigate additional demand due to the impacts of climate change. For example, the 
simulations case selected for the research in the thesis, enable to analyse the effect for 
demand both annually and for peak loads, both for total and HVAC electricity end-uses, for 
different locations and type of office buildings. 

Overall, the research in this thesis contributes with an innovative and original approach to 
assess the potential impacts of climate change. The frameworks developed permit to 
generate weather data samples that mimic a range of future weather conditions that 
included mild to extreme changing effects. This type of tool enables the investigation of 
climate-resilient designs and evaluates the effects of possible and expectable adaptation 
measures in attenuating the effects of climate change. Having summarised the contributions 
of the research findings of this thesis, It will now move on to identifying the implications of 
these for the research community and building modelling practitioners. 

8.3 Reflections 
The research findings have implications for different stakeholders and on multiple research 
aims/topics. For example, the research findings brought out from the research analyses of 
the simulation cases produced, provide a better understanding of the overall energy 
demand implications of modelling uncertainty for offices buildings (space cooling, HVAC 
end-use, and total electricity demand). The research findings, relative to the simulation 
cases analysed, also intend to propel building energy modellers and building designers to 
further interrogate the implication of these uncertainties across different climates and 
different types of buildings with different building characteristics. The research approach 
and framework developed in this thesis was set up to pursue a more holistic understanding 
of the implications of these factors in the energy performance of buildings and in their 
cooling systems. This type of research study suggests the importance of moving the 
research field into this direction, reporting results on a broader range of output metrics and 
assessing the implications for a span of metrics rather than focus on single ones. Thus, the 
research findings and the research framework developed contribute to moving away from 
the deterministic paradigm that the research field has set, towards a holistic sight that is 
necessary for credible assessments of building performance using BPS as highlighted by 
Rastogi (2016). 

The research work in the thesis has also brought a broader understanding of the 
implications of climate change using a pathway framework rather than deterministic 
method that are the usual approach in the building research area. Besides all limitations 
discussed, this type of approach provides different insights into climate change implications 
to buildings energy performance and designs. Policymakers, urban planners and entities 
responsible for building energy standards benefit from these findings, as these inform and 
explicitly quantifies the trend of effects of general measures, and effects of climate change 
in a broad range of conditions. These findings may provide important insights to tailor and 
adapt different type of measures for different buildings, locations, and understand their 
impact for different metrics. 

The climate impact modelling framework developed permits to reveal the tendencies and to 
show a continuous progression of the changing climate effects upon the building energy 
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performance. For the set of simulation cases produced in this research, the focus of the 
output performance is for cooling demand and related energy demand. This approach 
decouples the analysis from climate projection vectors like the temporal resolution of 
projections and the emission scenarios. The analysis enabled by the framework focuses on 
the driving factor of the implications of climate change for buildings, the uncertainty in the 
weather conditions, and the progressive effect that weather changes will have on buildings’ 
energy performance. The research findings show that it is important to get the level of 
internal heat gains (especially lighting and equipment densities) in the analysis of buildings 
designs, as accurate as it is possible, once they have a major contribution to total electricity 
demand. Similarly, it is important to consider adapting design parameters as the COP, 
ventilation rate and cooling set-point temperature to minimize HVAC electricity demand and 
its sizing. In addition, the findings show that uncertainty in weather conditions must be 
considered in the evaluation of future building performance, primarily due to changes in 
dry-bulb temperature, but also solar irradiance and relative humidity. These findings are not 
only relevant for building designers and building modellers, but also for building operators 
and district and energy network planners. The findings have shown that there is a large 
uncertainty of the energy demand due to design and weather assumptions, and that these 
volatilities must be considered. Similarly, the research findings indicate that there are 
multiple opportunities in the operation of buildings that can be further explored when 
synchronised with energy networks operation. 

In addition, the research framework introduces a systematic procedure to assess the effects 
of adaptation measures. Therefore, coupling these assessments with a pathway, it is 
possible to analyse such measures’ effectiveness for a span of conditions. As highlighted by 
Nik et al. (2020), future research should move toward the analysis of reliability and 
robustness of designs solutions, developing frameworks that explore the potential 
uncertainties of assumptions and the effect of different scenarios, instead of seeking 
authoritative estimations of long-term futures. 

8.4 Recommendations 
 Drive for open science principles 

The research work has pursued open science principles, opting to openly share building 
models, simulation outputs, research algorithm methods and data analysis. Having access to 
previous methods and openly available models have enabled the research to move from the 
time-consuming tasks of constructing and validating models to the curious exploration of 
different assumptions and uncertainties. Opting for open availability of methods, sources, 
data, models, and algorithms, the research limitations and modelling incongruences will be 
easily detected and challenged. Nevertheless, the open accessibility may drive researchers 
to build upon the work (models and frameworks), and so giving continuation to the research 
and the unfolded future research work ideas. In the future, it is essential that the 
community focus progressing to further challenges, explore different assumptions and 
extend frameworks. 

 Research community joint efforts 
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It is necessary to invest more effort and funds in developing archetype models, tools and 
frameworks that enable and promote the investigation of uncertainty in building models. 
The research findings in this work may show the importance of investing in the 
development of these tools, which may lead to a better understanding of buildings' system 
dynamics. In addition, it is essential that efforts on validating and creating uniform 
frameworks to compare different simulation tools evolve to comparison on a much larger 
scope of conditions. Therefore, these research findings may also show the relevance of 
investigating and comparing the different sensitivities of building performance simulation 
tools on equivalent output metrics. Also, this research may show that it is necessary to 
generate future climate data and tools/frameworks to climate-proof building, stock and 
energy systems design in a more resilient way. 

 Building design guidelines 

The research findings and the further application of the research frameworks may also help 
to build designers to develop rules of thumb for different design choices in their projects. 
This type of findings may also help some building designers take existing archetype models 
for exploratory analysis of their assumptions and scenarios and test different hypotheses. 
Simultaneously, it is necessary that energy efficiency policies keep pushing the limits of 
building technologies and that the most outstanding efforts are made on technologies that 
may have the largest effects on the building stock and the design and operational challenges 
that they face. Therefore, it is essential to investigate the potential effects of different 
energy-saving measures further and compare their effectiveness. It is relevant to further 
expand this analysis and evaluate their effectiveness on a broader lens scope. 

8.5 Future research work 
To address some of the most immediate limitations of the research in this thesis identified 
in Section 7.3, a list of additional key analysis is proposed: 

 Expand the application of the frameworks developed into simulation case studies 
that explore different DOE reference model types, locations, alternative HVAC 
systems, and use other building energy simulation tools; 

 Adapt the research frameworks proposed for different building performance 
simulation tools and explore the implications for other building performance 
indicators; 

 Execute sensitivity analysis looking at different types of input model parameters, 
associated with changes on weather parameters, and exploring possible interaction 
effects. 

In the following paragraphs, some pivotal research options to further extend the research 
work beyond the current limitations of the thesis are discussed. 

Considerably more work will need to be done to develop and make available archetype 
building models that are idealized and prepared for exploring many uncertainties in their 
design parameters, including the physical characteristics. Such efforts would trigger 
important research avenues in the building performance simulation area. For example, it 
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could pursue sensitivity and uncertainty analysis on a broader scope of modelling 
parameters, leading to further understanding of the implications of modelling assumptions 
and the uncertainty of the building energy models. More broadly, it is pivotal to make this 
type of systematic analysis readily available, not only models but also simulation outputs 
and data manipulation procedures, following open science principles. Such an approach may 
enable future research efforts to extend the coverage of model uses and research analysis 
rather than build up and validate models repeatedly. For example, DOE reference models 
should be prepared and made available for parametric iterations of a larger set of 
parameters, different types of HVAC systems and form characteristics (glazing areas, 
envelope ratio areas and width-length ratios). 

Further work on the research methodology on the generation/modification of weather data 
will have to be done, namely on the morphing operations. For example, on the stretching of 
extreme events, on imposing some correlation factors between solar and temperature 
changes, and by including considerations about cloud cover, when generating weather 
timeseries. In the same way, further research is required to further develop the climate 
pathway framework. Further development of the pathway framework could make it 
possible to select weather variables, the range of changes and the morphing operations 
made in the weather variables. Further work is also required to develop and incorporate a 
more quantitative analysis of risks throughout the climate pathway. In addition, another 
avenue for research can be to incorporate into the climate pathway framework, a similar 
stochastic approach used to generate weather data to define design and operational 
building modelling parameters, in order to analyse in wider scopes the performance 
uncertainty in future scenarios. 

Finally, a natural progression of this work is to develop aggregate weight models based on 
archetype simulation results that can analyse implications at building stock levels, so helping 
to drive building design policies, infrastructure and energy systems planning. Another 
avenue for research is to understand the effects on district scale demand level, based on 
aggregating weight model methods, considering the uncertainty of building occupancy 
assumptions and/or weather uncertainty. For example, district cooling systems may become 
technological solutions that will be much more common in the future. However, the design 
of this type of solution may be affected more significantly by the implications of climate 
change than power grid infrastructure or buildings at individual levels.  

8.6 Chapter summary 
The chapter presented the concluding remarks of the thesis. Firstly, it stated the answers to 
the research questions addressed throughout the thesis (Section 8.1). Then, it presented the 
thesis's contribution (Section 8.2), some research reflections (Section 8.3) and research 
recommendations (Section 8.4). Finally, ideas for future research work were presented 
(Section 8.5). 

The thesis manuscript's body is concluded here, after presenting the conclusive remarks 
that summarise this work's research findings. In the appendixes, supplementary results from 
the result chapter are presented, and summary tables of the studies covered in the 
literature review are given. A description is made of the materials available in the repository 
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made available with this work. This repository is made available to allow further replication 
of the research and advancements in the research methods used.
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Appendix A - Heat transfer mechanisms 
A1 - Conduction 

The law of heat conduction, also known as Fourier’s Law, states the heat conduction 
mechanism as the following (Spitler, 2011): 

 �̇� = −𝑘 ∙ 𝐴 ∙
∆𝑇

𝑥
= 𝑈 ∙ 𝐴 ∙ (−∆𝑇) (0-1) 

where 

�̇�  
is the conduction heat rate between the extremities of the material 
[W] 

𝑘 is the material conductivity [W.K-1.m-1] 
𝐴 is the cross-section surface area of the material [m2] 

∆  
is the temperature difference between the extremities of the 
material [K] 

𝑥 is the distance between the extremities of the material [m] 
𝑈 is the conductance of the material [W.m-2] 

This is a one-dimensional simplification of more complex two and three-dimensional heat 
conduction patterns that occur in the envelope of a building. Thus, the heat transfer in the 
other directions is ignored, as it is assumed that the only temperature gradient is on the 
direction of the envelope’s heat flow. Whenever these assumptions are not valid, as for 
example in a not isotropic envelope, the governing heat transfer expression has to be 
adapted. For example, the CIBSE guide A (2015, pp. 3–13) proposes an alternative formula 
to express the thermal transmittance (Ueff) of the floor surface to the ground and 
surrounding perimeter soil surface, as the heat flow pattern is more complex than a one-
dimensional heat conduction case. The governing equation in such a case is proposed to be 
as the following: 

 �̇� = 𝐴 ∙ 𝑈 ∙ ∆𝑇  (0-2) 
where  

𝐴 is the cross-section surface area of the material [m2] 

𝑈  is the effective heat transfer coefficient, considering the combination of all 
thermal resistance from the interior to the exterior air films [W.m-2.K-1] 

∆𝑇  
is the air temperature difference between the internal zone and outdoor 
[K] 

 

A2 - Convection 
The convective heat transfer occurs due to the flow of fluids, and in the building envelope 
surfaces, this phenomena occurs mainly through air flows. The convection heat transfer rate 
can be stated as the following (Spitler, 2011; ASHRAE, 2013c): 

 �̇� = ℎ ∙ 𝐴 ∙ ∆  (0-3) 
where 

𝐴 is the surface area of the material exposed to the flow [m2] 
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ℎ is the convection heat transfer coefficient [W.m-2.K-1] 
∆  is the temperature difference between the surface and the air [K] 

The convection of heat can be driven by two distinct type of flow mechanisms such as 
natural and forced convection. The natural convection is driven by temperature differences 
in the fluid that lead to buoyancy movement of the fluid (Spitler, 2011; ASHRAE, 2013c). On 
the other hand, forced convection is driven by the movement of a fluid resulting from 
external forces, such as a fan. The heat transfer coefficient (h) of the flow is estimated 
accordingly the respective type of flow, as stated in the following expressions: 

Forced: 
(ASHRAE, 2013c, pp. 4–17) 

ℎ

=  
𝑘

𝐿
∙ 𝑁𝑢(𝑅𝑒, 𝑃𝑟) (0-4) 

 

Natural: 
(ASHRAE, 2013c, pp. 4–19)  

ℎ

=  
𝑘

𝐿
∙ 𝑁𝑢(𝑅𝑎, 𝑃𝑟) (0-5) 

where 

𝑁𝑢 Nusselt number 
𝑅𝑒 Reynolds number 
𝑃𝑟 Prandtl number 
𝑅𝑎 Rayleigh number 
𝑘 is the conductivity of the fluid [W.K-1.m-1] 
𝐿  is the characteristic length [m] 

These characteristics are quantified based on the flow properties and the development of 
their laminar and turbulent layers, and on the dimension of the body in contact with the 
flow. 

A3 - Radiation 
The emissive power of a perfect black-body is described by the Stefan-Boltzmann law: 

 𝑊 = 𝜎 ∙ 𝑇  (0-6) 
It relates the emissive power to the product of the 4th order of the temperature and Stefan-
Boltzmann’s constant (𝜎). The thermal radiant energy emitted by a non-perfect body 
assumes that the body emits a fraction, body emissivity (𝜀), of the equivalent perfect black 
body, as the body does not absorb all incident radiation. The emitted radiation heat rate is 
then expressed as the following: 

 �̇� = 𝐴 ∙ 𝜀 ∙ 𝑊 = 𝐴 ∙ 𝜀 ∙ 𝜎 ∙ 𝑇  (0-7) 
where 

�̇�  is the heat radiation rate of a body [W] 
𝐴  is the area of the body surface [m2] 
𝜀 is the emissivity of the body/surface 

𝑊  is the blackbody emissive power [W.m-2] 
𝜎 is the Stefan-Boltzmann constant, 5.67 x 10-8 [W.m-2.K-4] 

𝑇  is the absolute surface temperature [K] 
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Similarly, the radiation between two surfaces separated by a non-participating medium is 
given by:  

 �̇� =
𝜎 ∙ (𝑇 − 𝑇 )

1 − 𝜀
𝐴 𝜀

+
1

𝐴 𝐹
+

1 − 𝜀
𝐴 𝜀

 (0-8) 

where 

𝑇 , 𝑇  are the temperature of surfaces 
𝜀 , 𝜀  are the emissivity of surfaces 1 and 2 
𝐹  is the view factor from surface 1 to surface 2 

The thermal radiant energy that reaches a surface can be absorbed (𝛼), reflected (𝜌) or 
transmitted (𝜏 ) (ASHRAE, 2013c, p. 4.13). Considering the first law of thermodynamics, the 
following expression is applicable to any point in the surface: 

 𝛼 + 𝜌 + 𝜏 = 1 (0-9) 
and the absorbed radiation of an object is: 

 �̇� = 𝛼 ∙ 𝐴 ∙ 𝐺 (0-10) 
where 

𝛼 is the absorptivity, the fraction of incident radiation absorbed 
𝜌 is the reflectivity, the fraction of radiation reflected by the surface 

𝜏 
is the transmissivity, the fraction of radiation transmitted by a non-
opaque surface 

𝐴  is the area of the surface [m2] 
𝐺 is the rate of radiant energy incident on a surface [W.m-2] 

Generally, the thermal radiation in building models is treated in two different procedures, 
distinguishing the phenomena for opaque envelopes and windows (Spitler, 2011). 
Furthermore, the thermal radiation reaching building’s opaque surfaces is distinguished in 
two categories: short wavelength radiation or the visible-solar spectrum, and long 
wavelength radiation, the radiation emitted by bodies at relatively much lower 
temperatures than the sun. Finally, for windows, the radiation is divided in direct and 
diffuse. 

External radiation 

The thermal radiation in building’s external surfaces is expressed in the following equations. 

For short wavelength: 

 �̇� , = 𝛼 ∙ 𝐴 ∙ 𝐺  (0-11) 
where 

𝐺  is the total solar shortwave irradiation (direct and diffuse) on the 
surface [W.m-2] 

Long wavelength 

The long wavelength radiation in external surfaces to the surrounding of buildings is a very 
complex phenomenon, and assumptions have to be made to simplify and make model 
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calculations feasible. Therefore, these calculations assume opaque, diffuse and isothermal 
characteristics in the model surfaces, as well as uniform radiosity, which is the radiation 
leaving the surface (emitted plus reflected radiation) and on the incident radiation in 
surfaces (irradiation). The surface is assumed to be a grey body (𝜀 = 𝛼) and there is a single 
absorptivity value for the wavelength (long) spectrum analysed. The emitted radiation to an 
imaginary sky surface, assumes the surrounding body’s atmosphere is a participating 
medium and it is modelled as the radiation transferred to a surface at an effective sky 
temperature (Spitler, 2011). The governing expression is described as the following: 

 �̇� , = 𝜀 ∙ 𝜎 𝐹 ∙ 𝑇 − 𝑇 + 𝐹 ∙ 𝑇 − 𝑇  (0-12) 
where 

𝐹  is the surface to the ground view factor 
𝐹  is the surface to the sky view factor 
𝑇  is the ground temperature [K] 
𝑇  is the effective sky temperature [K] 

Internal radiation 

The thermal radiation inside buildings is also distinguished between the long and short 
wavelength. This formulation assumes that all direct radiation transmitted by glazing is 
incident in the floor and the radiation reflected by the floor is uniformly absorbed by all wall 
surfaces. Moreover, the diffuse radiation transmitted in the glazing is uniformly absorbed by 
the internal envelope surfaces. 

Short wavelength 

The equation (0-13) and (0-14) express respectively the total short wavelength radiation in 
the internal walls and in the floor of the zone: 

 �̇� , , = �̇� , + 1 − 𝛼 ∙ �̇� ,  (0-13) 

 

 �̇� , , = �̇� , + 𝛼 ∙ �̇� ,  (0-14) 

where 

�̇� , ,  
is the short wavelength radiation absorbed in the zone wall surfaces 
[W] 

�̇� , ,  is the short wavelength radiation absorbed in the zone floor [W] 

�̇� ,  
is the total diffuse short wavelength radiation transmitted from the 
glazing [W] 

�̇� ,  
is the total direct short wavelength radiation transmitted from the 
glazing [W] 

𝛼  is the absorptivity, the fraction of incident direct SW radiation absorbed 
by the floor [W] 

Long wavelength 
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The net long wavelength exchange radiation in an internal surface of a building is expressed 
as the following: 

 �̇� , = �̇� , − �̇� ,  (0-15) 
where 

�̇� ,  is the net exchange of long wavelength radiation in the zone wall surface [W] 

�̇� ,  
is the net exchange radiation between the surface and other zone’s envelope 
surfaces [W] 

�̇� ,  is the net exchange radiation from internal heat gains of the building zone 
[W] 

Glazing 

The cooling load resulting from the total heat transfer through a window can be calculated 
as proposed in equation (0-16) (Underwood, et al., 2004, p. 45). This method assumes that 
the energy conducted in a window is negligible, and so only considers the incident radiation 
in the glazing and the convective heat transfer between the outdoor and the interior. The 
implication of the incident energy is divided in the effect of the transmitted energy through 
the surface and the absorbed energy by the glazing and then transferred through 
convection in the internal surface to the interior zone. The heat flux in the glazing surface is 
expressed as:  

 𝑞′′ = 𝜏 +
𝑈

ℎ
𝛼 𝐼 + 𝑈 ∙ (𝑇 − 𝑇 ) (0-16) 

where  

𝑞′′  is the total heat flux in the glazing [W.m-2] 
𝜏 is the transmissivity of the window  
𝛼 is the absorptivity of the window 
𝐼  is the Incident total radiation [W.m-2] 
𝑈 is the overall convective heat transfer coefficient for the window 

[W.K-1.m-2] 
𝑇  Is the outdoor temperature [K] 
𝑇  Is the ambient temperature [K] 

Considering that absorbed and transmitted solar radiation are expressed as: 

Absorptivity 𝜏 ∙ 𝐼 = 𝜏 ∙ 𝐼 + 𝜏 ∙ 𝐼  (0-17) 
 

Transmissivity 𝜏 ∙ 𝐼 = 𝜏 ∙ 𝐼 + 𝜏 ∙ 𝐼  (0-18) 
where 

𝛼 is the total absorptivity of the glazing material 
𝛼  is the direct radiation absorptivity of the glazing material 
𝛼  is the diffuse radiation absorptivity of the glazing material 
𝜏 is the total transmissivity of the glazing material 

𝜏  is the direct radiation transmissivity of the glazing material 
𝜏  is the diffuse radiation transmissivity of the glazing material 
𝐼  is the incident total radiation [W.m-2] 
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𝐼  is the total direct incident radiation [W.m-2] 
𝐼  is the total diffuse incident radiation [W.m-2] 
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Appendix B - Literature review summarty tables 
B1 - Summary table of the literature review on the impacts of climate change in buildings 

Table A. 1 – Summary table of the literature review on the impacts of climate change in buildings 
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Berardi2020 2020 
Canada - 
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Chai2019 2019 China           x   x      x x x        x 
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Isaac2009 2009 World     x x  x                   x    

Jenkins2011 2011 UK               x          x      

Jenkins2013 2013 UK x  x x       x   x   x   x      x x   x 
Jenkins2015 2015 UK - Edinburgh x        x x     x     x  x     x x x x 

Lam2010 2010 HK                               

Li2018 2018 China              x                 

Lu2010 2010 USA - Canada x         x                     

Miller2008 2008 USA - California    x            x       x        

Moazami2019 2019 Switzerland          x   x      x x  x x    x x   

Mulville2016 2016 UK x          x    x          x      

Nik2013 2013 Sweden          x     x  x   x  x     x    

Nik2015 2015 Sweden                              x 

Nik2016 2016 
Switzerland and 

Sweden 
x         x x   x x  IDA

-ICE 
             

Pagliano2016 2016 Italy - Milan           x  x       x  x   x  x   x 
Parkpoom2008 2008 Thailand    x    x                    x   

Patidar2012 2012 UK x  x x       x    x          x     x 
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Patidar2014 2014 UK x  x x           x          x x     

Shibuya2016 2016 Japan x          x   x      x   x    x   x 
Tarroja2018 2018 California - USA         x     x x   x  x x      x x   

Tian2011 2011 UK           x         x       x    

Tian2011a 2011 UK x           x  x      x       x    

Wan2011 2011 China x          x x x x             x    

Wan2012 2012 China x  x x       x   x         x x   x   x 
Wang2014 2014 USA x           x x x x    x x   x   x x x   

Wright2013 2013 UK x           x   x          x      

Xu2012 2012 USA - California        x          x  x           

Yassaghi2019a 2019 
USA - 

Philadelphia 
                              

zheng2019 2019 USA - Los Angels          x   x x x   x  x x x    x x  x  

Zhou2013 2013 China, USA     x   x            x   x x   x    

Zhou2014 2014 USA     x   x        x    x x      x    
Table A. 2
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Appendix C - Supplementary results 
C1 - Chapter 4 – Sensitivity analysis studies results 

 

Figure 0.1 – Sobol stability -Peak total electricity demand 
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Figure 0.2 – Sobol stability for annual total electricity demand  

Table 0.1 – Coefficient of variation of total electricity demand in the archetype Morris SA study 

Temporal 
Resolution Model 

C1 – 
Sin 

C2 – 
Cai 

C3 – 
Ath 

C4 – 
Bei 

C5 – 
Lis 

C6 - 
Lon 

Annual 
Large 26% 23% 23% 24% 24% 24% 

Medium 23% 21% 21% 21% 22% 22% 

Small 28% 24% 23% 23% 23% 22% 

Peak 
Large 29% 26% 25% 29% 25% 25% 

Medium 25% 26% 25% 24% 25% 18% 

Small 28% 29% 28% 29% 28% 26% 

Table 0.2  – Coefficient of variation of electricity demand for HVAC end-use, in the archetype Morris SA study 

Temporal 
Resolution Model 

C1 – 
Sin 

C2 – 
Cai 

C3 – 
Ath 

C4 – 
Bei 

C5 – 
Lis 

C6 - 
Lon 

Annual 
Large 37% 29% 28% 33% 30% 34% 

Medium 36% 28% 28% 30% 30% 33% 

Small 44% 39% 38% 38% 41% 39% 

Peak 
Large 41% 36% 34% 40% 34% 34% 

Medium 38% 39% 44% 46% 42% 41% 

Small 45% 40% 40% 41% 40% 40% 
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Table 0.3 – Coefficient of variation of space cooling requirements in the archetype Morris SA study 

Temporal 
Resolution Model 

C1 –  
Sin 

C2 –  
Cai 

C3 – 
Ath 

C4 –  
Bei 

C5 –  
Lis 

C6 –  
Lon 

Annual 
Large 22% 24% 27% 28% 29% 34% 

Medium 22% 23% 24% 25% 26% 30% 

Small 30% 30% 31% 33% 33% 39% 

Peak 
Large 22% 21% 22% 23% 24% 26% 

Medium 21% 20% 21% 21% 23% 24% 

Small 24% 19% 21% 20% 21% 22% 

C2 – Chapter 5 – Uncertainties associated with weather data 
Table 0.4 – EPW file description of variables 

Num. E+ 
(Used) 

Variable Description 

1 
 

Year 
2 y Month 
3 y Day  
4 y Hour 
5  Minute 
6  Datasource 
7 y Dry-Bulb Temperature {C} 
8 y Dew Point Temperature {C} 
9 y Relative Humidity {%} 

10 y Atmospheric Pressure {Pa} 
11  Extraterrestrial Horizontal Radiation 

{Wh/m2} 
12  Extraterrestrial Direct Normal 

Radiation {Wh/m2} 
13 y Horizontal Infrared Radiation Intensity 

from Sky {Wh/m2} 
14  Global Horizontal Radiation {Wh/m2} 
15 y Direct Normal Radiation {Wh/m2} 
16 y Diffuse Horizontal Radiation {Wh/m2} 
17  Global Horizontal Illuminance {lux} 
18  Direct Normal Illuminance {lux} 
19  Diffuse Horizontal Illuminance {lux} 
20  Zenith Luminance {Cd/m2} 
21 y Wind Direction {deg} 
22 y Wind Speed {m/s} 
23  Total Sky Cover {.1} 
24  Opaque Sky Cover {.1} 
25  Visibility {km} 
26  Ceiling Height {m} 
27 y Present Weather Observation 
28 y Present Weather Codes 



237 
 

29  Precipitable Water {mm} 
30  Aerosol Optical Depth {.001} 
31 y Snow Depth {cm} 
32  Days Since Last Snow 
33  Albedo {.01} 
34 y Liquid Precipitation Depth {mm} 
35  Liquid Precipitation Quantity {hr} 
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Table 0.5 – Maximum peak electricity demand variation response for all LSA tests, model and locations 

Model Location 01 02 03 04 05 06 07 08 09 

Large 

C1 – Sin 18.6% 7.0% 0.0% 0.3% -3.9% -1.2% 1.4% 0.9% 0.8% 
C2 – Cai 23.3% 12.4% 0.6% 0.1% -2.8% -0.6% 1.6% 1.2% 0.6% 
C3 – Ath 25.6% 15.4% 3.8% 0.0% -2.4% -0.7% 1.7% 1.5% 0.6% 
C4 – Bei 16.3% 5.9% 0.5% 0.4% -4.2% -2.2% 2.3% 0.7% 0.6% 
C5 – Lis 24.2% 5.3% 2.7% 1.4% -5.7% -2.6% 1.0% 0.0% 0.3% 
C6 – Lon 13.1% 4.9% 3.0% 0.7% -3.2% -1.6% 2.0% 1.8% 0.7% 

Medium 

C1 – Sin 26.8% 11.7% 2.2% 0.1% -2.9% -1.5% 1.6% 0.7% 0.7% 
C2 – Cai 18.5% 7.4% 5.6% 0.1% 0.0% -1.1% 1.5% 0.6% 0.9% 
C3 – Ath 21.2% 7.7% 3.2% 0.2% 0.0% 0.0% 2.0% 1.0% 0.6% 
C4 – Bei 24.1% 7.3% 3.2% 0.0% -3.6% -1.8% 1.6% 0.0% 0.9% 
C5 – Lis 25.4% 9.3% 9.4% 0.2% -4.2% -2.2% 1.5% 0.0% 0.7% 
C6 – Lon 18.8% 6.9% 7.0% 0.2% -2.4% -1.1% 1.9% 1.2% 0.7% 

Small 

C1 – Sin 19.9% 6.5% 1.1% 0.1% -2.2% 0.0% 3.2% 0.7% 1.1% 
C2 – Cai 18.7% 7.2% 4.5% 0.0% 0.0% -0.3% 2.9% 1.7% 1.1% 
C3 – Ath 21.3% 7.7% 3.1% 0.2% -1.8% -0.3% 3.1% 2.1% 0.9% 
C4 – Bei 17.7% 6.4% 1.5% 0.2% -2.5% -1.5% 4.3% 2.1% 0.7% 
C5 – Lis 21.0% 9.8% 4.6% 0.5% -3.3% -1.7% 3.1% 3.6% 1.4% 
C6 – Lon 19.9% 7.4% 5.4% 0.4% -1.9% -0.6% 3.2% 2.8% 1.1% 

Table 0.6 - Maximum annual electricity demand variation response for all LSA tests, model and locations 

Model Location 01 02 03 04 05 06 07 08 09 

  Shif 
DBT         

Large 

C1 38.0% 2.2% 0.0% 0.6% -5.1% -0.6% 5.2% 0.9% 1.6% 
C2 20.3% 3.4% 0.4% 0.4% -3.2% -0.7% 2.6% 1.3% 0.8% 
C3 16.6% 3.1% 0.4% 0.4% -2.3% -0.6% 2.1% 1.4% 0.7% 
C4 17.3% 4.5% 0.0% 0.3% -2.3% -0.9% 2.3% 1.2% 0.5% 
C5 17.3% 2.9% 0.5% 0.7% -2.3% -0.7% 1.7% 1.2% 0.8% 
C6 11.9% 2.8% 0.0% 0.5% -1.0% -0.4% 1.2% 1.5% 0.5% 

Medium 

C1 28.2% 0.6% 0.0% 0.1% -3.4% -0.2% 3.0% 0.4% 1.2% 
C2 20.6% 2.1% 0.2% 0.1% -1.5% -0.4% 2.0% 1.0% 0.7% 
C3 18.3% 2.1% 0.2% 0.1% -1.3% -0.3% 1.7% 0.9% 0.5% 
C4 13.9% 3.1% 0.1% 0.1% -1.1% -0.5% 1.6% 0.6% 0.4% 
C5 19.9% 1.6% 0.1% 0.2% -1.5% -0.3% 1.2% 0.9% 0.6% 
C6 11.9% 2.2% 0.0% 0.1% -0.4% -0.1% 0.6% 0.4% 0.3% 

Small 

C1 27.7% 1.4% 0.0% 0.2% -2.6% -0.3% 4.9% 0.9% 1.7% 
C2 20.0% 3.0% 0.4% 0.3% -1.2% -0.3% 3.8% 2.0% 1.2% 
C3 16.3% 3.2% 0.3% 0.3% -0.7% -0.2% 3.2% 1.8% 1.0% 
C4 13.1% 3.4% 0.0% 0.1% -0.9% -0.4% 3.2% 1.6% 0.7% 
C5 15.8% 2.5% 0.2% 0.5% -0.9% -0.3% 2.9% 2.7% 1.2% 
C6 9.1% 2.3% 0.0% 0.2% -0.2% -0.1% 2.2% 1.8% 0.8% 
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Figure 0.3 – Percentile analysis of annual hourly demand through Test 1 iterations, DBT shift  
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Figure 0.4 – Percentile analysis of annual hourly demand through Test 2 iterations, DBT seasonal stretch  
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Figure 0.5 – Percentile analysis of annual hourly demand through Test 3 iterations, DBT heatwave stretch  
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Figure 0.6 –  Percentile analysis of annual hourly demand through test 4 iterations, wind speed  stretch 
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Figure 0.7 – Percentile analysis of annual hourly demand through test 5 iterations, relative humidity shift 
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Figure 0.8 – Percentile analysis of annual hourly demand through test 6 iterations, relative humidity seasonal stretch 
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Figure 0.9 – Percentile analysis of annual hourly demand through test 7 iterations, solar HIR 
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Figure 0.10 – Percentile analysis of annual hourly demand through test 8 iterations, direct solar radiation 
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Figure 0.11 – Percentile analysis of annual hourly demand through test 9 iterations,diffuse solar
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C3 - Chapter 6 –The impacts of climate change under a climate pathway 
Table 0.7 – Statistical summary of change [%] under the pathway relative to baseline for peak total electricity demand 

STAT. MODEL C1 – 
Sin 

C2 – 
Cai 

C3 - 
Ath 

C4 - 
Bei 

C5 – 
Lis 

C6 - 
Lon 

MAX. 
Large 34.8 26.9 37.6 25.6 37.9 34.8 
Medium 43.5 38.6 39.5 36.5 62.3 54.2 
Small 32.9 39.2 40.0 31.7 43.0 45.2 

MEDIAN 
Large 9.7 8.7 12.0 10.3 22.5 14.6 
Medium 15.7 18.0 16.5 20.8 28.9 21.1 
Small 15.3 18.5 17.9 15.2 22.1 20.2 

MEAN 
Large 11.3 9.3 15.6 10.5 22.2 15.8 
Medium 17.4 18.5 17.4 20.0 29.7 22.5 
Small 15.6 19.3 18.1 15.3 22.7 20.8 

MIN. 
Large -1.2 -0.4 0.0 0.0 0.0 0.0 
Medium 0.0 0.0 0.0 0.0 0.0 0.0 
Small 0.0 0.0 0.0 0.0 0.0 0.0 

IQR 
Large 10.7 6.9 18.0 9.0 8.6 12.7 
Medium 14.5 13.3 12.5 12.8 22.9 15.0 
Small 11.9 12.6 12.4 10.9 12.9 13.3 

STD 
DEV. 

Large 7.9 5.3 10.2 5.9 6.7 8.2 
Medium 10.2 8.1 8.4 8.5 14.3 10.7 
Small 7.7 8.2 8.5 7.0 9.0 9.0 

 

Table 0.8 – Statistical summary of change [%] under the pathway relative to baseline for annual total electricity demand 

STAT. MODEL C1 – 
Sin 

C2 – 
Cai 

C3 - 
Ath 

C4 - 
Bei 

C5 – 
Lis 

C6 - 
Lon 

MAX. 
Large 37.7 24.9 21.7 23.9 21.4 15.4 
Medium 25.9 22.1 20.1 18.0 20.1 13.1 
Small 30.6 26.4 23.1 19.9 19.7 13.4 

MEDIAN 
Large 15.8 10.1 8.9 8.7 8.7 5.9 
Medium 11.3 9.4 8.3 6.9 8.6 5.0 
Small 13.9 11.9 10.1 8.3 9.6 6.0 

MEAN 
Large 16.8 10.4 9.2 9.2 8.9 6.2 
Medium 11.8 9.7 8.6 7.2 9.0 5.3 
Small 14.4 12.2 10.4 8.6 9.8 6.1 

MIN. 
Large 0.0 0.0 0.0 -0.1 0.0 0.0 
Medium 0.0 0.0 0.0 0.0 0.0 0.0 
Small 0.0 0.0 0.0 0.0 0.0 0.0 

IQR 
Large 14.7 8.9 7.7 8.7 7.6 5.4 
Medium 10.3 8.1 7.3 6.5 8.0 5.3 
Small 11.9 9.3 8.1 6.7 7.3 4.6 

STD 
DEV. 

Large 10.2 6.1 5.2 5.7 5.1 3.6 
Medium 7.0 5.6 5.1 4.4 5.4 3.4 
Small 8.0 6.3 5.4 4.7 4.8 3.1 
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Table 0.9 – Summary of the effects on peak electricity for HVAC end-use throughout the pathway [%] 

STAT. MODEL C1 – 
Sin 

C2 – 
Cai 

C3 - 
Ath 

C4 - 
Bei 

C5 – 
Lis 

C6 - 
Lon 

MAX. 
Large 85.9 79.1 111.0 56.4 108.0 124.9 
Medium 97.1 80.0 101.7 74.3 145.4 158.4 
Small 115.2 74.6 86.3 62.2 92.5 119.4 

MEDIAN 
Large 24.2 23.7 37.2 22.6 64.0 52.9 
Medium 35.0 37.5 40.0 42.4 67.7 61.7 
Small 68.7 35.1 38.7 29.8 47.7 53.4 

MEAN 
Large 28.3 25.7 46.8 23.2 63.2 57.1 
Medium 38.9 38.8 42.2 40.7 70.3 65.7 
Small 68.7 36.8 39.1 30.0 48.8 54.9 

MIN. 
Large -2.9 -1.2 0.0 0.0 0.0 0.0 
Medium 0.0 0.0 0.0 0.0 0.0 0.0 
Small 0.0 0.0 0.0 0.0 0.0 0.0 

IQR 
Large 26.5 19.1 54.7 19.9 24.4 44.8 
Medium 32.4 28.5 30.3 26.1 50.8 43.8 
Small 31.6 23.9 26.8 21.4 27.8 35.0 

STD 
DEV. 

Large 19.7 15.0 30.4 12.9 18.8 29.4 
Medium 22.9 17.1 20.6 17.3 33.0 31.4 
Small 22.1 15.7 18.2 13.8 19.3 23.8 

 

Table 0.10 – Summary of the effects on annual electricity for HVAC end-use throughout the pathway  [%] 

Stat. Model C1 – 
Sin 

C2 – 
Cai 

C3 - 
Ath 

C4 - 
Bei 

C5 – 
Lis 

C6 - 
Lon 

MAX. 
Large 87.7 87.2 91.7 108.9 101.9 115.6 
Medium 64.4 82.4 103.2 102.1 120.1 182.3 
Small 73.6 77.8 83.6 77.7 79.3 75.4 

MEDIAN 
Large 36.7 35.4 37.7 39.6 41.2 44.8 
Medium 28.1 35.0 42.6 38.8 51.8 70.1 
Small 33.5 35.0 36.5 32.5 38.8 33.9 

MEAN 
Large 39.0 36.5 38.7 41.7 42.3 46.9 
Medium 29.3 36.2 44.2 40.8 53.7 74.1 
Small 34.5 35.8 37.5 33.6 39.7 34.5 

MIN. 
Large 0.0 0.0 0.0 -0.3 0.0 0.0 
Medium 0.0 0.0 0.0 0.0 0.0 0.0 
Small 0.0 0.0 0.0 0.0 0.0 0.0 

IQR 
Large 34.3 31.0 32.4 39.6 35.9 40.5 
Medium 25.7 30.1 37.6 36.7 48.0 73.0 
Small 28.6 27.4 29.4 26.2 29.5 25.6 

STD DEV. 
Large 23.7 21.4 22.1 26.1 24.2 27.2 
Medium 17.5 20.9 26.2 24.7 32.1 46.9 
Small 19.3 18.5 19.6 18.4 19.5 17.4 
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Table 0.11 – The effect on the extremity of the pathway relative to baseline for peak total demand [%] 

Model Scenario C1 – 
Sin 

C2 – 
Cai 

C3 - 
Ath 

C4 - 
Bei 

C5 – 
Lis 

C6 - 
Lon 

Large 

No adaptation 34.8 26.9 37.6 25.6 37.9 34.8 
M1 – Cool. Set Point 20.1 15.1 24.4 14.7 25.1 22.0 
M2 – Ventilation Rate 17.3 15.1 27.1 16.8 31.2 31.2 
M3 – Equipment 23.6 17.6 25.6 15.3 25.9 21.6 
M4 -  Lighting 23.5 16.2 25.2 15.0 25.5 21.2 
M5 – COP 27.0 20.7 30.9 18.0 30.6 29.1 
M6 – Solar HGC 33.9 29.9 31.4 22.2 33.3 30.4 
M7 – 3+4+5 5.6 2.0 6.5 -1.6 6.8 2.9 
M8 – 1+2+5+6 4.8 1.3 10.0 -1.8 9.8 9.7 
M9 – 1+2+3+4+5+6  -18.9 -20.0 -13.3 -21.5 -13.5 -15.4 

Medium 

No adaptation 43.5 38.6 39.5 36.5 62.3 54.2 
M1 – Cool. Set Point 13.6 20.8 22.9 8.9 28.1 31.7 
M2 – Ventilation Rate 27.0 28.8 28.5 32.6 52.4 41.1 
M3 – Equipment 33.0 28.7 30.1 26.5 50.9 41.6 
M4 -  Lighting 29.9 27.8 29.4 25.6 47.9 40.2 
M5 – COP 31.0 26.2 27.6 23.8 47.1 41.6 
M6 – Solar HGC 36.0 34.7 40.4 32.1 49.6 51.3 
M7 – 3+4+5 8.3 6.2 9.3 4.0 22.8 16.2 
M8 – 1+2+5+6 -0.8 1.9 4.7 -5.2 7.4 13.6 
M9 – 1+2+3+4+5+6  -21.5 -17.3 -14.9 -25.1 -14.8 -11.2 

Small 

No adaptation 32.9 39.2 40.0 31.7 43.0 45.2 
M1 – Cool. Set Point 1.0 8.1 6.8 -1.5 9.4 14.8 
M2 – Ventilation Rate 27.2 31.2 30.9 26.9 37.4 37.5 
M3 – Equipment 20.3 27.7 27.6 19.3 29.6 31.3 
M4 -  Lighting 19.6 27.0 26.9 18.5 28.8 30.5 
M5 – COP 21.0 25.8 27.6 19.6 30.0 33.4 
M6 – Solar HGC 26.2 33.2 34.7 26.1 38.3 37.0 
M7 – 3+4+5 -2.4 3.4 3.1 -4.4 4.0 5.8 
M8 – 1+2+5+6 -9.1 -7.6 -7.1 -14.9 -7.1 -2.7 
M9 – 1+2+3+4+5+6  -30.3 -29.3 -30.5 -36.3 -31.8 -29.3 
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Table 0.12 – The effect on the extremity of the pathway relative to baseline for annul total demand [%] 

Model Scenario C1 – 
Sin 

C2 – 
Cai 

C3 - 
Ath 

C4 - 
Bei 

C5 – 
Lis 

C6 - 
Lon 

Large 

No adaptation 37.7 24.9 21.7 23.9 21.4 15.4 
M1 – Cool. Set Point 34.4 18.8 15.6 18.2 16.3 8.9 
M2 – Ventilation Rate 26.3 20.3 18.4 19.3 17.6 14.6 
M3 – Equipment 28.3 14.3 10.7 12.8 10.1 3.2 
M4 -  Lighting 27.3 13.3 9.6 11.7 8.9 2.0 
M5 – COP 27.9 19.2 17.2 19.4 17.2 13.1 
M6 – Solar HGC 34.4 21.7 18.4 21.6 18.3 12.4 
M7 – 3+4+5 9.2 -2.6 -5.6 -3.3 -6.2 -11.9 
M8 – 1+2+5+6 10.9 7.3 6.1 8.1 7.1 4.8 
M9 – 1+2+3+4+5+6  -8.1 -14.6 -16.4 -14.8 -16.2 -19.9 

Medium 

No adaptation 25.9 22.1 20.1 18.0 20.1 13.1 
M1 – Cool. Set Point 16.6 11.7 11.2 10.8 11.0 7.1 
M2 – Ventilation Rate 16.6 18.3 17.3 14.4 17.4 12.2 
M3 – Equipment 17.3 12.2 9.7 7.6 9.2 1.8 
M4 -  Lighting 15.9 10.4 8.0 6.1 7.4 0.3 
M5 – COP 20.2 20.1 18.5 15.7 18.7 12.7 
M6 – Solar HGC 24.0 19.0 17.4 16.4 16.9 11.3 
M7 – 3+4+5 1.7 -1.5 -4.0 -6.6 -4.5 -11.3 
M8 – 1+2+5+6 2.0 4.3 5.3 4.6 5.2 4.6 
M9 – 1+2+3+4+5+6  -16.4 -16.6 -16.6 -17.3 -17.4 -19.0 

Small 

No adaptation 30.6 26.4 23.1 19.9 19.7 13.4 
M1 – Cool. Set Point 5.6 2.9 2.4 0.8 -0.8 -2.7 
M2 – Ventilation Rate 24.0 23.1 20.9 17.7 18.5 13.2 
M3 – Equipment 20.6 15.8 12.0 8.8 8.2 1.8 
M4 -  Lighting 19.2 14.4 10.5 7.5 6.8 0.4 
M5 – COP 21.4 19.8 18.0 15.4 15.4 11.3 
M6 – Solar HGC 24.5 20.4 17.5 15.7 14.4 8.3 
M7 – 3+4+5 0.7 -2.1 -5.0 -7.6 -8.2 -12.8 
M8 – 1+2+5+6 -8.0 -6.6 -5.2 -5.5 -7.6 -6.9 
M9 – 1+2+3+4+5+6  -28.1 -27.2 -26.6 -26.9 -29.5 -29.3 
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Table 0.13 – The effect on the extremity of the pathway relative to baseline for peak HVAC demand 

Model Scenario C1 – 
Sin 

C2 – 
Cai 

C3 - 
Ath 

C4 - 
Bei 

C5 – 
Lis 

C6 - 
Lon 

Large 

No adaptation 85.9 79.1 111.0 56.4 108.0 124.9 
M1 – Cool. Set Point 49.5 45.5 72.0 32.4 71.4 78.9 
M2 – Ventilation Rate 47.4 41.2 80.0 37.0 88.8 112.0 
M3 – Equipment 78.0 77.1 101.7 50.1 98.5 112.4 
M4 -  Lighting 77.8 73.4 100.7 49.4 97.6 111.1 
M5 – COP 66.6 62.2 91.1 39.8 87.2 104.4 
M6 – Solar HGC 83.6 81.6 92.7 48.9 94.9 109.0 
M7 – 3+4+5 53.3 57.8 71.8 29.1 69.0 80.5 
M8 – 1+2+5+6 11.9 3.5 29.5 -4.0 27.8 34.8 
M9 – 1+2+3+4+5+6  -6.9 -8.0 13.4 -15.0 11.4 14.5 

Medium 

No adaptation 97.1 80.0 101.7 74.3 145.4 158.4 
M1 – Cool. Set Point 30.4 43.1 55.5 18.1 65.5 92.6 
M2 – Ventilation Rate 60.4 59.8 69.2 66.5 122.3 120.3 
M3 – Equipment 89.4 73.3 91.3 67.1 135.8 146.1 
M4 -  Lighting 82.6 71.5 89.6 65.3 128.8 142.2 
M5 – COP 69.1 54.3 67.0 48.4 109.9 121.6 
M6 – Solar HGC 80.4 72.0 98.1 65.3 115.8 150.1 
M7 – 3+4+5 50.0 40.3 58.9 34.7 87.4 96.4 
M8 – 1+2+5+6 -1.9 4.0 11.4 -10.6 17.3 39.8 
M9 – 1+2+3+4+5+6  -16.6 -8.4 0.3 -24.6 -0.5 16.5 

Small 

No adaptation 115.2 74.6 86.3 62.2 92.5 119.4 
M1 – Cool. Set Point 20.3 15.4 14.6 -2.9 20.2 39.0 
M2 – Ventilation Rate 100.2 59.4 66.7 52.8 80.4 99.0 
M3 – Equipment 102.6 66.3 77.1 52.5 81.1 107.3 
M4 -  Lighting 100.7 65.0 75.6 51.0 79.4 105.3 
M5 – COP 83.9 49.1 59.5 38.4 64.5 88.2 
M6 – Solar HGC 93.6 63.2 74.9 51.3 82.4 97.5 
M7 – 3+4+5 58.0 33.7 41.9 20.5 43.5 65.0 
M8 – 1+2+5+6 -24.0 -14.5 -15.3 -29.2 -15.3 -7.0 
M9 – 1+2+3+4+5+6  -38.8 -28.5 -30.8 -42.1 -33.5 -27.6 
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Table 0.14 – The effect on the extremity of the pathway relative to baseline for annual HVAC demand 

Model Scenario C1 – 
Sin 

C2 – 
Cai 

C3 - 
Ath 

C4 - 
Bei 

C5 – 
Lis 

C6 - 
Lon 

Large 

No adaptation 87.7 87.2 91.7 108.9 101.9 115.6 
M1 – Cool. Set Point 80.1 65.6 65.9 82.8 77.7 67.1 
M2 – Ventilation Rate 61.2 70.9 77.6 87.9 83.7 109.6 
M3 – Equipment 81.4 79.1 83.0 100.0 91.8 100.6 
M4 -  Lighting 80.5 78.3 81.8 98.9 90.6 98.8 
M5 – COP 64.9 67.3 72.5 88.4 82.0 98.4 
M6 – Solar HGC 80.0 76.1 77.9 98.3 87.0 93.0 
M7 – 3+4+5 54.0 52.1 55.1 72.0 62.6 69.9 
M8 – 1+2+5+6 25.3 25.6 25.9 36.9 33.8 36.4 
M9 – 1+2+3+4+5+6  13.7 10.1 9.7 19.7 14.8 10.0 

Medium 

No adaptation 64.4 82.4 103.2 102.1 120.1 182.3 
M1 – Cool. Set Point 41.2 43.7 57.4 61.1 65.8 98.2 
M2 – Ventilation Rate 41.3 68.2 88.6 81.5 104.5 169.8 
M3 – Equipment 59.2 75.0 94.6 93.9 109.6 166.1 
M4 -  Lighting 57.3 71.2 90.2 90.0 104.2 157.6 
M5 – COP 50.3 74.8 94.8 89.1 112.2 176.9 
M6 – Solar HGC 59.8 70.7 89.1 92.6 101.2 156.9 
M7 – 3+4+5 38.3 56.7 73.9 69.4 87.0 137.8 
M8 – 1+2+5+6 5.0 16.2 27.2 26.2 31.3 64.5 
M9 – 1+2+3+4+5+6  -6.8 0.5 9.2 8.8 9.9 31.3 

Small 

No adaptation 73.6 77.8 83.6 77.7 79.3 75.4 
M1 – Cool. Set Point 13.5 8.6 8.9 3.3 -3.4 -15.0 
M2 – Ventilation Rate 57.7 67.9 75.7 69.0 74.5 74.1 
M3 – Equipment 65.2 68.2 72.7 66.8 67.0 61.8 
M4 -  Lighting 63.4 66.3 70.4 64.8 64.5 59.2 
M5 – COP 51.3 58.3 65.2 60.2 62.0 63.7 
M6 – Solar HGC 58.8 60.1 63.6 61.3 58.0 46.8 
M7 – 3+4+5 34.7 39.4 43.7 38.8 38.1 36.9 
M8 – 1+2+5+6 -19.1 -19.5 -18.9 -21.4 -30.5 -38.6 
M9 – 1+2+3+4+5+6  -34.6 -34.4 -34.8 -36.8 -47.5 -56.1 
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Figure 0.12 – Percentile analysis of the hourly total electricity load for C1 Singapore 

 
Figure 0-13 – Percentile analysis of the hourly total electricity load for C2 - Cairo 
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Figure 0-14 – Percentile analysis of the hourly total electricity load for C3 - Athens 

 
Figure 0-15 – Percentile analysis of the hourly total electricity load for C4 - Beijing 
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Figure 0-16 – Percentile analysis of the hourly total electricity load for C5 - Lisbon 

 
Figure 0-17 – Percentile analysis of the hourly total electricity load for C6 - London 
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Figure 0-18 –Percentile analysis of the hourly total electricity load for C1 Singapore, for the three type of buildings 
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Appendix D – Repository 
 

Mendeley Dataset 

Cite the dataset: 

Zeferina, Vasco (2022), “The impacts of climate change on the electricity demand of 
archetypal office buildings”, Mendeley Data, V1, doi: 10.17632/pw3rrtnctc.1 

http://dx.doi.org/10.17632/pw3rrtnctc.1 

 

Github: 

https://github.com/vascozeferina/The-Impacts-of-climate-change-on-the-electricity-
demand-of-archetypal-office-buildings 


