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Abstract

Ad-hoc Mobile Collaborative Community (MCC) enables two or more low band-
width mobile phone/PDA network channels to achieve a virtual high-bandwidth
channel for collaborative data transfer using inverse multiplexing techniques. This
research looks at how to achieve best effort QoS for MCC communities and pro-
poses a novel Risk-Aware Workload (RAW) scheduler, to support efficient collab-
orative data transfer in MCC. To this end, the thesis has made the following four
novel contributions. Firstly, it presents a comprehensive requirements analysis
of the MCC scenarios and literature review of the existing solutions proposed to
address these requirements. The analysis and literature review have led to the
identification of our research aim, i.e. to design the RAW scheduler, an energy
and QoS performance efficient workload scheduler for MCC. Secondly, it presents
a novel architecture for the RAW scheduler. The architecture is designed for
battery and memory constrained mobile devices and supports best effort QoS for
multi-stream applications. The design has made use of a modular approach so
that any of the architectural modules can be replaced as technologies advance
without affecting other modules. Thirdly, it presents the design and evaluation
of an energy-efficient Multi-level Work Queue (MWQ) scheduling algorithm, a
core component of the RAW scheduler. The algorithm is application require-
ment aware and is adaptive to the changes in the underlying channel conditions.
We have evaluated the QoS performance of the MWQ scheduling algorithm by
comparing it against the performances of three other state-of-the-art scheduling
algorithms using the NCTUNs simulator. The simulation setup aggregates the
bandwidth of two independent channels and results show an improvement of 45%
in total data transfer time for MWQ as compared to the Single Work Queue
(SWQ) algorithm and up to 62% as compared to the Round Robin (RR) algo-
rithm. In comparison with the Channel Pinned (CP) algorithm, the improvement
ranges between 28% to 95%, depending on the distribution of data to the two
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channels. Fourthly, we have implemented an "HTTP Downloader" application
with the novel RAW scheduling design built-in. This test-bed implementation is
done using real world mobile devices and network communication technologies.
We performed a detailed evaluation of the QoS performance of our "HTTP Down-
loader". The evaluation results show that the RAW scheduler delivers better QoS
results in terms of average throughput and total data transfer times by adapting
to the changes in the channel conditions. It has been found that, among the four
alternatives, the MWQ algorithm delivers the best results when we plugged it
into our test-bed application. To download a 2MB file from the Internet using
four collaborators, MWQ showed an improvement of 46% in total download time
as compared to the RR algorithm. The percentage improvement values in the
similar scenario for the CP algorithm is 35% and the SWQ algorithm is 17%.
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Chapter 1

Introduction

1.1 Mobile Collaborative Community (MCC)

Wireless mobile networks and devices have become extremely popular as they
provide access to information and communication anytime and anywhere. Mo-
bile devices such as laptops, mobile phones, smart phones and PDAs that come
equipped with multiple wireless network channels are called multi-homed devices.
These channels include at-least one Wireless Wide Area Network (WWAN) chan-
nel to connect to the Internet and at-least one Wireless Local Area Network
(WLAN) channel to connect the device to the neighbouring wireless network de-
vices. WWAN (e.g. GPRS [6], EGDE [7]) channels are comparatively limited in
bandwidth and loss-prone in packet delivery. WLAN (e.g. Wi-fi [8], Bluetooth
[9]) channels in contrast provide higher bandwidth. Though WLANs can provide
high-speed Internet connectivity to mobile users, their coverage is limited to a
relatively small geographical area. The users have to rely on WWAN channels
with limited bandwidth to connect to the Internet when wired Internet access
point is not available. The bandwidth limit of many WWANs is often insufficient
for data demanding multi-stream applications, such as telemedicine and disaster
relief management systems requiring simultaneous transfer of the audio, video
and other data streams.

High speed Internet access is one of the major hurdles in implementing appli-
cations discussed above in emergency scenarios. Despite 3G/4G hype, it is still
difficult for an individual WWAN channel to effectively support high bandwidth
applications. One possible solution to this problem is to use inverse multiplexing
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[10] [11]. Inverse multiplexing is a process by which multiple relatively low band-
width channels are aggregated to form one high bandwidth virtual channel (See
section 2.2 for details). A device with multiple WWAN connections can inverse
multiplex these low bandwidth channels together. Existing systems, e.g. Mobile
Access Router (MAR) [12], Pluribus [13], MobiStream [14], NATALIE [15] and
Horde [16] support such bandwidth aggregation.

Moreover, multiple multi-homed devices in close vicinity can discover each
other through a high speed WLAN to form an ad-hoc community to logically
combine and share the bandwidth of each other’s WWAN channels using inverse
multiplexing. This ad-hoc community of multi-homed devices is called Mobile
Collaborative Community (MCC).

Figure 1.1: MCC Infrastructure. Reproduced from [1].

Figure 1.1 illustrates the infrastructure of MCC, where a few multi-homed
devices in WLAN range form a mobile community and collaborate to simulta-
neously use multiple WWANs. PRISM [1], COMBINE [17], Handheld Routers
[18] and MOPED [19] have proposed collaborative data transfer mechanisms for
MCC. The Inverse Multiplexer (IMUX) running on the source node schedules
data across the multiple collaborators in the MCC. A source node uses high
speed WLAN channels to transfer data to its collaborators. Every collaborator
then transfers allocated data using individual WWAN channel to the destination.
Hence, the data reaches the destination at an aggregated rate. This collaboration

21



can increase the effective WWAN bandwidth available to every node of the MCC
(See section 2.4 for details).

1.2 Research Motivation and Challenges

Achieving a high speed virtual broadband channel for the members is the main
objective of MCC. A number of solutions have been proposed to support the
efficient data transfer between the MCC nodes and a remote host across the
Internet. However, existing MCC solutions have concentrated on collaborative
data downloading, specially multimedia streaming [1] [17] [18], but have ignored
the data uploading. Some assumed that the same solution can work for the
upstream data transfer as well [1]. This assumption is not valid, as in the case
of collaborative downloading, an IMUX/ workload scheduler runs on a sever or
a proxy in the Internet, but in the case of uploading, it resides on a resource
(i.e. battery power, computation power and memory) constrained mobile node.
Hence, the solutions designed for the collaborative data downloading may not be
most efficient when being applied to the collaborative data uploading

Consider the scenario of battle field reporting, where soldiers are equipped
with multi-homed mobile devices and they may want to use these devices to
communicate their location, physical geography, video of battle field and other
important observations, etc. to their commanders located at a distant head quar-
ter. Same is the case for the emergency responders in a disaster relief scenario or
reporters covering the wars, they may require a high-speed Internet connection
to effectively communicate with their headquarters, or to efficiently access re-
sources available on the Internet. Similarly, deploying a telemedicine or an emer-
gency service in rural/remote areas are other potential applications of MCC. All
these applications clearly require the support for upstream data transfer. Some
applications may require transfer of he sensitive data, e.g. military reporting,
telemedicine. Furthermore, applications may require to support multiple streams
of data with distinct Quality of Service (QoS) requirements.

Existing systems have largely focused on the community formation protocols,
efficient data scheduling algorithms, and congestion control mechanisms. Pro-
viding security for the sensitive data has been side-stepped in almost all of the
existing systems. They either assumed that the same user owns all mobile de-
vices [19], or that the improved throughput alone is the main requirement [18].
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UCAN [20] have considered the secure crediting in mobile ad-hoc collaborative
environment, but it is not a MCC solution, and more importantly, it ignores a
key resource, viz. energy. COMBINE [17] discusses an energy efficient and secure
accounting scheme to keep track of the credits earned or debits incurred as nodes
buy and sell bandwidth. The systems in [17] [1] have briefly discussed the data
security issues and suggested to use the encryption techniques or reputation sys-
tem to protect against the malicious behaviour of collaborating nodes. However,
they haven’t designed or implemented any solution to cater data security.

As mentioned earlier, existing systems are largely motivated by the multime-
dia streaming, hence, they do not support the simultaneous transfer of multiple
data streams. Only, Horde [16] supports the multiple data streams and allows an
application to specify its QoS goals for each data stream. Supporting multiple
data streams each with distinct and possibly conflicting QoS acquirements is a
major issue that this research is set to address and it is addressed in a way that
is energy efficient.

Collaborative data transfer in the MCC offers a significant performance im-
provement, but it also raises a number of challenging issues:

1. How to adapt to the dynamically changing set of available WWAN channels
and their QoS conditions, for example varying bandwidth, loss rate and
latency of underlying WWAN channels.

2. How to support the multiple applications/data streams, which might have
diverse QoS and security requirements.

3. In the case of collaborative data uploading, an IMUX runs on a resource (i.e.
battery power, computation power and memory) constrained mobile node,
which raises a significant challenge of finding the solution with minimal
resource consumption.

4. How to address data security issues, as we can not assume that all the
collaborators are trustworthy. Particularly, in the ad-hoc collaborative en-
vironment of the MCC, members may not have previous interactions, so
may be totally strangers to each other. Moreover, the data that needs to
be transferred can have multiple levels of sensitivity.

Previously, a majority of the related work done in workload scheduling is
under the assumption that the underlying channels are homogeneous and have
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stable QoS conditions. Hence, these static scheduling algorithms assign a fixed
amount of data to each channel in a given time period. For example, the most
commonly used scheduling algorithm is Round Robin (RR) (or its variants) that
allocates a fixed percentage of data on each channel. Also if this assumption is
true then the applications need not to know any information related to the under-
lying network conditions. In our MCC scenario, however, the biggest challenge
is that the underlying channels are using WWAN technologies which are prone
to disconnections and QoS fluctuations resulting in varying levels of bandwidth,
packet latencies and loss rates. Furthermore, the applications we are consider-
ing are heterogeneous in terms of the network QoS aspects they are sensitive to.
For example, some applications are sensitive to latency, some are not. Hence, a
scheduling algorithm should be able to schedule the transmission of application
packets with heterogeneous QoS requirements on the channels with varying chan-
nel conditions. This leads us to employ an intelligent scheduling algorithms that
can continuously change the data allocation to different channels according to
the application requirements and updated channel conditions. Such scheduling
algorithms are called the dynamic scheduling algorithms and some state-of-the
art inverse multiplexing solutions [16] [17] [1] [18] have used these algorithms.

1.3 Research Aim and Objectives

The aim of this research is to develop a novel solution to support efficient col-
laborative data transfer in MCC. The core component of this solution is a novel
scheduler, a Risk-Aware Workload (RAW) scheduler. Our scheduler minimizes
the risk of selecting malicious collaborating nodes by ranking them according to
their QoS trust levels and ensuring that the high priority data are scheduled over
the most trusted nodes. Our proposed scheduler exhibits the following features:

• Awareness of the application specific QoS requirements.

• Adaptive to the changes in underlying WWAN channel conditions, e.g.
available bandwidth, loss rate, and latency.

• Adaptive to the QoS trust levels of the collaborators.

• Energy efficient in terms of communication and processing cost.

The above aim is supported by the following six objectives.
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1. To investigate and identify the scenarios of collaborative data uploading in
MCC.

2. To investigate and specify the functional requirements for supporting effi-
cient collaborative data transfer based upon the scenarios identified in 1.

3. To investigate and critically analyse the related work against the require-
ments specified in 2, so as to identify research gaps and challenging issues.
In analysing the related works, we focus on:

• their assumptions and implementation methods,

• the strengths and limitations in their methods,

• the areas for improvement and technology advance.

Our initial research led us to the identification of a research gap, i.e. the
need for a novel workload scheduler to support efficient collaborative data
uploading in MCC.

4. To design a novel workload scheduler to address this identified gap. To
achieve this design, the most challenging tasks were :

(a) to design an algorithm to rank the potential collaborators according
to their QoS trust levels;

(b) to design a multi-criteria scheduling algorithm. This algorithm should
take into account the following factors:

i. application specific QoS requirements,
ii. channel conditions,
iii. QoS sensitivity levels of data, and
iv. collaborator’s trust levels.

(c) It is worth emphasising that while achieving (a) and (b), the scheduler
should also be made as energy efficient as possible, and we achieve
this by using computationally efficient operations in the design of the
associated algorithms and by reducing the number of interactions and
inter-operations among the architectural building blocks as much as
possible, such that the scheduler will consume as less battery power as
possible on the hosting mobile node.
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5. To implement and evaluate the designed solution and compare the results
with those from the related work.

6. Publish papers to benchmark our efforts and get reviews.

1.4 Research Hypothesis

The hypothesis of this research is that dynamic scheduling of priority data packets
over best-effort QoS channels may better support the end-to-end QoS than the
static scheduling.

1.5 Research Method

The research methodology used for this project consists of three key components:
a literature survey and a critical analysis of the related work, theoretical work,
and an evaluation of the proposed solutions using simulation modeling and test-
bed experiments.

The research for this project is conducted in a three phase process. First of
all, a literature review is conducted. All the literature regarding the related work
done in the past is thoroughly surveyed with an eye on any current development.
During the literature review, the areas that have potential for enhancement and
have gaps for improvement are identified which leads to the second phase of
the research. In the second phase, theoretical work on the enhancement areas
identified is conducted. The theoretical work is guided by the findings of the
literature survey to develop a novel solution. Finally, in the third phase an
evaluation of the solution is performed. We performed simulation as well as
test-bed experiments.

1.5.1 Literature Review

The project is started with a detailed study of the literature on Inverse Multi-
plexing, MCCs and QoS in mobile ad-hoc environment. A full understanding was
developed about the MCC application scenarios, characteristics of an MCC set-
up and its QoS requirements. It was evident from the beginning of the research
that all the existing works mainly focused on improving the QoS for the down-
loading of homogeneous data streams, especially for video streaming. On further
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thorough investigation and analysis it was established that the data uploading
and multi-stream data transmission was not worked on as there was very little
existing work in the area. Performing critical analysis and review of the previous
work satisfies objectives (1) and (3). After a careful and detailed analysis of the
most advanced and related solutions of scheduling, access control and QoS for
MCC, an enhancement hypothesis was developed. The useful data and informa-
tion were extracted and compiled for the reference during the design of solution.
The guide lines for the solution were drawn by establishing the requirements for
the solution to support QoS in the presence of multiple streams of data upload.
This satisfies the objective (2) of our research. The formulation of an enhance-
ment hypothesis and a design requirements specification leads to the next step of
our work, i.e. the theoretical work.

1.5.2 Theoretical Work

During the initial literature review, a potential enhancement area was identified,
i.e. to support secure and efficient multi-stream data transfer (uploading as well
as downloading) for the MCC. The survey, analysis and review of the existing
relevant work continued in this phase as well. In the literature review phase, the
focus of research was more general and wider. However, the research focus in this
phase is dictated by the enhancement hypothesis and requirements specifications
drawn in phase one.

In this phase, an extensive research and analysis of the current work con-
tinued. However, the scope and direction of the research was determined by
our enhancement hypothesis and the requirements specifications goals. As a re-
sult of this work, we concluded three novel solutions. First, the design of a
novel RAW scheduler architecture which supports the dynamic adjustments of
scheduling strategies in response to the dynamic MCC channel conditions and
QoS requirements provided by the multi-stream application. Second is the de-
sign and evaluation of a Multi-level Work Queue (MWQ) scheduling algorithm.
Third novel solution is the design of a CAPability-aware Access Control (CAPAC)
model. The MWQ algorithm is one of the major components of the CAPAC. The
detailed design of these three solutions satisfies the objective (4).
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1.5.3 Evaluation

In the third and final phase of the project the proposed solutions are evaluated and
backed by the evaluation result statistics. Evaluation could be performed by any
of the following four methodologies i.e. simulation, emulation, experimental or
mathematical. Out of these four, we choose simulation and experimental method-
ology as they suited our evaluation goals the most. The simulation methodology
was chosen to evaluate the suitability and performance of our proposed MWQ al-
gorithm in a controlled environment. Later, a detailed evaluation was conducted
by doing the test-bed experiments, to proof the efficiency of our proposed RAW
scheduler by implementing an example application and testing it in a real world
scenario. On the other hand, mathematical methodology is not feasible and ap-
plicable in our scenario due to the complex nature of network. The emulation
require specialised hardware devices to connect with the emulation software.

A hybrid of simulation and experimental methodologies is used for the RAW
scheduler performance evaluation. NCTUns [21] simulation tool is used for the
initial evaluation of the work. Before conducting the evaluation, simulation model
was designed carefully. To validate the simulation model we used validation
scripts that come with the simulation tool i.e. NCTUns. The simulator output
was then compared with the reference output to validate if the simulator has
been correctly configured. After being certain that the simulation model repre-
sents our solution specification exactly and accurately, the simulations were run
and results were obtained. Later, we implemented a test-bed application. We im-
plemented an "HTTP Downloader" application that implements the RAW sched-
uler design to download data from the Internet using multiple mobile phones.
We performed a detailed experimental evaluation of the QoS performance of our
proposed scheduling solution as compared to other state-of-the-art scheduling
algorithms. A detailed analysis of the proposed solutions was performed on the
basis of the simulation as well as experimental results which satisfied our research
objective (5).

Finally the simulation as well as experimental results were analysed and a
comparison was drawn between the existing state-of-the-art scheduling solutions
and the efficiency of our proposed solution was established. After final evalua-
tion and analysis of the results the thesis culminates with the conclusions and
identification of the future research directions.
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1.6 Novel Contributions

The work presented in this thesis has led to four novel contributions:

1. An architecture for a novel RAW scheduler that can run on a resource
(memory, processing and battery power) constrained mobile device and
supports best effort QoS for multi-stream applications.

2. The implementation, simulation and performance evaluation of a novel
MWQ scheduling algorithm that can schedule multiple data streams ac-
cording to the application level QoS requirements.

3. The test-bed implementation of a RAW scheduler application, in MCC
using real world mobile devices and network channels. All implementation
was done at the application layer using suitable tools and technologies.

4. The design of a novel CAPAC model along with its components to support
the novel RAW scheduler.

1.7 Publications

Parts of the research contained in this thesis have led to the following conference
publication, which has been peer-reviewed.

• Sadia Saleem & Ning Zhang, "A Risk-Aware Workload scheduler to support
secure and efficient collaborative data transfer in mobile communities”, 9th
Annual Conference on Wireless On-demand Network Systems and Services
(WONS), Courmayeur, 9-11 January 2012.

1.8 Thesis Structure

The remainder of this thesis is organised as follows:

• Chapter 2 introduces the background concepts and presents the motivating
application scenarios and a survey of the related literature. A number of
observations are made on the applications scenarios. The challenges posed
by the MCC environment are discussed. This chapter also reviews state-
of-the art solutions to collaborative data transfer in MCC and outlines the
missing bits.
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• Chapter 3 focuses on the literature review of workload scheduling algo-
rithms, it classifies and compares the existing scheduling approaches in
MCC and proposes a RAW scheduler for efficient and secure collaborative
data transfer.

• Chapter 4 specifies the design requirements, assumptions and architecture
overview of the proposed RAW scheduler. Architectural components are
discussed at the block level. The main components include the MWQ al-
gorithm, the QoS tagging framework, the data encryption module, and a
CAPAC model. This chapter also outlines the evaluation methodology used
in this research. Parts of this chapter have been published in the following
conference paper: ’A Risk-Aware Workload scheduler to support secure and
efficient collaborative data transfer in mobile communities’ [22].

• Chapter 5 presents the detailed evaluation of our proposed scheduling solu-
tions. It presents a simulation study which compares the QoS performance
of our novel MWQ algorithm with three state-of-the-art scheduling algo-
rithms. The results of this simulation study is discussed to identify the
best way to achieve better QoS in a MCC environment. Later, the test-
bed implementation of a "HTTP Downloader" application is built using the
RAW scheduler design is discussed in detail. Justification and use of all
the tools and technologies is given. The lengthy details of implementation
are moved to the appendices for reference. The QoS performance claims
are listed and experimental scenarios are discussed. Finally, the results
obtained to compare QoS performance and they are analysed against our
research claims and conclusions are made.

• Chapter 6 concludes this thesis and suggests directions for the future re-
search.
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Figure 1.2: Thesis Structure
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Chapter 2

Background and Literature
Research

2.1 Chapter Introduction

This chapter presents an overview of the basic concepts that will be subsequently
used in the design of our solution for efficient data transfer in a MCC. It also
presents the motivation for this research, a survey of the related literature in the
area of MCC, and identifies a way forward to address the issue of QoS provisioning
for multi-stream collaborative data transfer in MCC. The building blocks of this
scheduler will be covered in Chapter 4.

The organisation of the chapter is as follows: Section 2.2 introduces the con-
cept of inverse multiplexing. Section 2.3 presents the two classes of wireless
networks and compare them against their throughput and coverage capabilities.
Later, it discusses how the concepts of inverse multiplexing and MCC can be used
to overcome the throughput and coverage limitations of these networks. Section
2.4 describes the MCC architecture in detail. Section 2.5 analyse potential appli-
cation scenarios of collaborative data transfer in MCC. This section also identifies
three generic models of collaborative data transfer in MCC. Section 2.6 identi-
fies the functional requirements and challenges associated with data transfer in
MCC. Section 2.7 discusses some related efforts to collaborative data transfer in
MCC and identifies what is missing in the related work. Section 2.8 outlines the
way forward to achieve best effort QoS provisioning in MCC. Finally, Section 2.9
summarises the chapter.
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2.2 Inverse Multiplexing

Inverse multiplexing traditionally used in analogue dial-up installations, is a pro-
cess of aggregating several low-bandwidth information channels in a network to
form an effective high-bandwidth virtual channel. Inverse Multiplexer (IMUX)
stripes the data from a sender over multiple channels, each of these channels then
forwards the data to the receiver. At the final destination, the forwarded packets
are reassembled at an aggregated rate. For example, if six different independent
56-kb/s data channels are established between points A and B, inverse multiplex-
ing can be used to combine these channels to create a single 336-kb/s (6x56 =
336) virtual channel. Figure 2.1 illustrates the scenario of inverse multiplexing of
multiple low bandwidth channels to get a high bandwidth virtual channel.

Figure 2.1: Inverse Multiplexing of Multiple Channels.

The task of the IMUX is to perform this channel aggregation (Figure 2.1).
Specifically, the IMUX assures that all the channels are present. It establishes di-
alled channels as required and verifies the integrity of any existing leased channels.
The IMUX then segments the transmission data stream and sends it out over the
individual channels. At the receiving end, the IMUX accepts the data from these
channels, reorders the segments, and compensates for variances in channel’s tran-
sit times. Depending upon the inverse-multiplexing protocol in use, the IMUX
may monitor the integrity of the aggregated connection. If transmission problems
occur, the IMUX can take diagnostic action by replacing failed or failing chan-
nels with the functional channels to maintain the integrity of the connection. The
IMUX can also add or remove channels from the aggregated connection without
terminating the connection. This allows the total amount of bandwidth between
the two sites to vary according to the real-time bandwidth requirements or for
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the economies of operation. This feature is sometimes referred to as dynamic
bandwidth allocation, or rubber bandwidth.

How is dynamic bandwidth allocation helpful? In video conferencing, the
quality of video increases as the bandwidth between sites increases. A video
conferencing session might use a 384 kb/s inverse-multiplexed connection at the
beginning of a course lecture, when the lecturer is on camera and moving on the
stage. The bandwidth can be reduced when the camera focuses for an extended
period on a static screen or board, when the relative lack of motion requires
less bandwidth and therefore less expense. In LAN inter networking, an inverse-
multiplexed connection between two remote LANs might be established at 64 or
128 kb/s, which would be adequate for most simple interactive activities. If that
connection becomes saturated for a predetermined period of time, for example,
by a large file transfer, the bandwidth of the connection can be adjusted to
accommodate the increase in traffic. The file transfer would take place much
more quickly. At the end of the file transfer, the bandwidth could be reduced
to the original value. The benefit is efficient utilisation of available bandwidth,
hence, reduced overall bandwidth costs.

Inverse multiplexing has been used in a variety of applications with the details
of implementation are dependent upon the usage model. In any case, a complete
solution must include [23]:

• A means for determining when to impose inverse multiplexing.

• A mechanism for the segmentation of data.

• A mode for scheduling the data over multiple links.

• A fast and accurate reassembly method.

2.3 Inverse Multiplexing of Wireless Channels

Wireless networks have become incredibly popular recently. Although they may
not become a substitute for traditional wired networks, due to security issues,
network performance and cost; they are becoming an increasingly popular sec-
ond option. Wireless networks can largely be classified into two categories based
upon the size of geographic coverage areas, WLANs and WWANs.
WLANs: WLANs are designed for the wireless connectivity in the home and
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office environments. The typical range of geographical coverage is in the order of
tens of meters in diameter [9][8]. To increase the coverage, repeaters or additional
access points can be deployed. A WLAN has two modes of working, an infras-
tructure mode and an ad-hoc mode. In the infrastructure mode, an access point
is used, and nodes communicate with each other through the access point. In the
ad-hoc mode, wireless nodes communicate with each other directly, or via other
communication nodes. Power consumption is fairly high for the WLAN commu-
nication as compared to the WWAN, making battery life and heat a concern.
Bluetooth [9] and Wi-Fi [8] are two important WLAN technologies.

• Bluetooth is an open communication standard for exchanging data over
short distances, using short length radio waves. Bluetooth can connect
several devices, creating Wireless Personal Area Networks (WPANs) at dis-
tances up to 10 meters [9]. As devices in the WPAN broadcast radio waves,
they do not have to be in the line of sight of each other.

• Wi-Fi sometimes called "Wireless Ethernet", denotes a set of WLAN stan-
dards commonly referred as IEEE 802.11x standards. Wi-Fi uses the same
radio frequencies as Bluetooth, but with higher power, resulting in a stronger
connection and better range from the base station. The Wi-Fi router using
a 802.11b or 802.11g standard typically have a coverage area in the range of
32 meters indoors and 95 meters outdoors [8]. The new 802.11n standard
however, can exceed that range by more than two times [8].

WWANs: WWANs connect different devices over a large geographical area
to allow long range communication and resource sharing. The typical range of
geographical coverage is in the order of tens of kilometres in diameter. WWANs
are connected via radio, satellite and mobile phone technologies. WWANs can be
broadly classified into (1) cellular networks and (2) mobile data networks, based
on the types of network switching technologies being used. Cellular networks,
being primarily voice oriented, generally utilise a circuit switching technology;
whereas a mobile data network uses a packet switching technology. However, new
cellular network technologies support the packet switching technology. Cellular
technologies fall broadly into four categories:

• First Generation (1G) Technologies support the analogue cellular networks
that use circuit switched connections for the data transport. In general,
the analogue cellular infrastructure systems are not an efficient means of
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sending data due to limited available capacities, limitations of data recovery,
low security, and the high cost of use for many applications. One of the
widely used 1G standards is Nordic Mobile Telephone (NMT) [24].

• Second Generation (2G) Technologies use the digital transmission technolo-
gies. Digital technologies provide many advantages for both the voice and
data transmission. These advantages include increased system capacity, in-
creased security against casual eavesdropping, superior cell hand-off, and
better recovery of radio signal under different conditions. In addition to
speech, these technologies support services such as fax, short messaging,
and roaming of mobile end-stations. The existing standards in use world-
wide include Global System for Mobile communications (GSM) [25], Gen-
eral Packet Radio Service (GPRS) [6] and Enhanced Data rates for GSM
Evolution (EDGE) [7].

• Third Generation (3G) Technologies use the high-tech infrastructure net-
works, handsets, base stations, switches and other equipment, that enable
mobile service providers to offer high-speed Internet access, data, and mul-
timedia services. An example of 3G technology is Wideband Code Division
Multiple Access (WCDMA) also known as Universal Mobile Telephony Sys-
tem (UMTS) [26].

• Forth Generation (4G) Technologies support all IP packet-switched net-
works, mobile ultra-broadband (gigabit speed) access and multi-carrier trans-
mission. They enable facilities such as IP telephony, ultra-broadband In-
ternet access, gaming services and streamed multimedia for mobile users.
Pre-4G technologies such as mobile WiMAX [27] and Long Term Evolution
(LTE) [28] available in market are already being labeled "4G".

WLANs vs. WWANs WLANs generally provide higher bandwidth capabili-
ties than the WWANs. They are typically privately owned, e.g. wireless systems
that are deployed in a corporation, hospital, educational campus, etc. Wi-Fi com-
pliant WLANs are used more by the home users and as public WLANs. WWANs
use various devices, e.g. telephone lines, satellite dishes, and radio waves to ser-
vice an area broader than a WLAN can cover. The typical coverage range of
GSM is 35 kilometres [25] and 5-15 kilometres for WiMAX [27], as compared
to 32-95 meters range for Wi-fi [8] and 10 meters for Bluetooth [9]. However,
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the bandwidth/data transfer rate offered by the WWAN channels are up to 3
times lower than that offered by the WLANs [18]. (See Appendix A for detailed
throughput comparison).

To overcome the bandwidth limitations of a single WWAN channel, Snoeren
et al. [29] proposed to use inverse multiplexing. However, frequent variations in
the participating channel conditions, e.g. available bandwidth, packet drop rate
etc. adds extra challenge to the IMUX performance. He proposed an inverse mul-
tiplexing scheme, termed Link Quality Balancing (LQB), adaptive to the changes
in the QoS conditions of bundled channels. LQB uses relative performance met-
rics to adjust traffic scheduling across the bundled channels. Prior work in the
domain of inverse multiplexing of WWAN channels broadly follows two paths:
(1) the bandwidth aggregation of all the WWAN channels attached to a single
device and (2) multiple devices collaborate to aggregate the bandwidth of their
individual WWAN channels.

2.3.1 Inverse Multiplexing of Multiple Channels attached
to Same Device (MCSD)

This section briefly discusses the existing works supporting collaborative data
transfer using inverse multiplexing of multiple channels attached to one device.
Following is the brief summary of a few existing MCSD solutions:

• Horde: Horde[2] is a middleware that facilitates the flexible data striping
for a diverse range of applications. However, its publications discuss only
telemedicine applications. Horde supports inverse multiplexing of multiple
WWAN channels attached to a special device. It claims to separate the data
striping policy from the scheduling mechanism by providing support for
applications to specify their network QoS objectives dynamically, using an
objective specification language. Each objective simply defines the network
QoS requirements of an individual data stream. Horde employs a random-
walk scheduler that uses the QoS objectives specified by the application to
schedule packets across multiple channels. The QoS variations in underlying
WWAN are observed and scheduler make dynamic scheduling decision. We
will discuss the scheduling algorithm employed by Horde in section 3.5.4.

• MAR: The Mobile Access Router (MAR) [12] makes use of the multiple
WWAN channels available to a single mobile device. It studies how to
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exploit different levels of diversity (e.g. channel diversity, network diversity,
and technology diversity) in wireless data networks to support the high-
speed mobile data applications. The MAR router is a multi-homed wireless
device that can include multiple wireless interfaces from different wireless
networks (e.g. GPRS, 3G, WLAN etc.) and operators (e.g., Vodafone,
Orange etc.) simultaneously. MAR aggregates the available bandwidth in
all available wireless interfaces. The MAR router can be placed in a moving
vehicles (e.g. car, bus, train) to enable high-speed data access to multiple
end users. Based on the application’s QoS requirements, it dynamically
instantiate new channels, aggregates the bandwidth and shifts load from
low quality to better quality channels. MAR thus provides a faster, more
stable, and reliable communication channel to the mobile users.

• NATALIE: NATALIE [15] is a network-aware traffic distributor, which
combines multiple heterogeneous network channels and schedules IP packet
transmissions over those channels dynamically. To achieve the maximum
possible throughput, NATALIE measures the communication characteris-
tics of the underlying links and dynamically adjusts its scheduler to assign
packets to each link in proportion to its available capacity.

• PluriBus: PluriBus [13] is a system to provide high performance Internet
access on-board in moving vehicles. Like other systems described above,
its aim is to seamlessly combine multiple lossy WWAN channels into a
reliable communication channel. PluriBus employs a novel technique called
opportunistic erasure coding to achieve its aim.

• MobiStream: MobiStream [14] is a video streaming system that exploits
the perceptual value in video content and the characteristics of the link
layer and physical layer channels to enable error-resilient video streaming
over WWAN. MobiStream achieves this by partitioning the video frames
into a number of small, independently decode-able, blocks of data called
"slices" and assigns priority based on its perceptual (visual) usefulness. Its
priority-based video-data scheduling over multiple WWAN links enables
error-resilient video streaming.

• BAG: Chebrolu et al. proposed a network layer architecture that enables
a diverse multi-access service. Bandwidth Aggregation (BAG) is one of
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these services [30]. This architecture supports simultaneous use of multiple
network interfaces attached to one mobile terminal. An important aspect
of the BAG service is the Earliest Delivery Path First (EDPF) scheduling
algorithm that partitions the traffic onto different interfaces such that the
QoS requirements of the application are met. It ensures that the packets
meet their playback deadlines by scheduling them based on the estimated
delivery time of the packets.

These works have proposed solutions mainly for video streaming and telemedicine
applications. Horde [16], pTCP [31], and Snoeren et al. [29] have focused on the
mechanism of striping packets across multiple WWAN channels attached to the
same device. Since these systems assume that the multiple WWAN channels are
attached to the same device, the issues of how to accomplish local communication,
nodes privacy and data security are not considered.

2.3.2 Inverse Multiplexing of Multiple Channels in MCC

Other systems have followed the second path, and considered an ad-hoc group
of multiple mobile computing devices interconnected through their compatible
high-speed LAN interfaces. Sharma et al. [18] has named this ad-hoc group a
MCC . Each MCC member uses its WAN interface independently, and optionally
offers to transfer data for other members.

The set of participating channels connecting the MCC members to the IMUX
can be logically combined to yield a higher-speed aggregated channel that is
available for any of the individual MCC members. Distinct features associated
with the MCC are local communication, presence of stranger nodes, node mobility
and heterogeneity, etc. Next section discusses the MCC architecture and its
features in detail.

2.4 MCC in Detail

As discussed in previous section, multi-homed mobile devices can form collabo-
rative community to share the bandwidth of each other’s WWAN channels using
inverse multiplexing [18][1][17]. One of the promises of MCC is efficient data
transfer across the Internet. The nodes in MCC are interconnected through their
compatible high-speed WLAN channels. Each MCC member node independently
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uses its WWAN interface to connect to the Internet via cellular base station.
MCC member nodes share their WWAN channel (fully or partially) with other
community members. The set of participating WWAN channels can be logically
combined using an inverse multiplexing protocol. The IMUX running on the
source node strips/schedules data across multiple collaborators in the MCC. Ev-
ery collaborator then transfers allocated data using individual WWAN channel to
the common destination. Figure 2.2 illustrates the infrastructure of MCC, where
multi-homed devices in WLAN range form a mobile community and collaborate
to simultaneously use multiple WWANs [1]. Such collaboration can increase the
effective WWAN bandwidth available to every node of the MCC.

Figure 2.2: (MCC) Infrastructure: The environment includes various multi-
homed mobile devices equipped with both WWAN and WLAN interfaces. Mobile
devices form a mobile community using WLAN and collaborate to simultaneously
use multiple WWANs. Reproduced from [1].

Existing systems supporting collaborative data transfer in MCC largely fo-
cus on the group (community) formation protocols, efficient data scheduling
algorithms and congestion control mechanisms. PRISM [1] proposes a proxy
based network layer implementation of an inverse multiplexer (PRISM-IMUX)
and a congestion control mechanism (TCP-PRISM) at the sender side. MObile
grouPEd Device (MOPED)[19] is a framework that enables a user’s set of personal
devices to appear as a single mobile entity connected to the Internet. This frame-
work includes a transport layer protocol to aggregate the bandwidths of multiple
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channels. It also provides a lightweight network layer MOPED Routing Archi-
tecture (MRA) to support multi-paths between the home agent and a receiver.
Sharma et al. in Handheld Routers [18] proposes an application requirements
aware and channel conditions adaptive architecture for data scheduling over mul-
tiple channels. COMBINE [17] is a system for collaborative downloading which
proposes energy efficient algorithms for group formation and workload scheduling.
It also proposes a framework for the collaboration incentives. It also models and
estimates the energy cost required for the accounting system to support proposed
incentive mechanism.

It is important to mention that most of the existing works have concentrated
on collaborative data downloading, specially multimedia streaming [18][17], but
have ignored the data uploading. Two major reasons for ignoring the support for
upstream data transfer could be:

1. Existing systems assume that same solutions can work for upstream data
transfer, e.g. PRISM [1] claims that it can support upstream data transfer
by placing PRISM-IMUX at a mobile node in the community. Later, we will
demonstrate that the scenarios of collaborative uploading have particular
requirements (section 2.6.1) and challenges (section 2.6.2) associated with
them. These factors should be kept in mind while designing an IMUX to
support data uploading.

2. Mobile devices (specially mobile phone handsets) were not capable of gener-
ating and storing large amount of data. Even less than ten years ago mobile
phone handsets and similar devices had internal memory/storage in tens of
MegaBytes (MBs). These days the storage capability of many mobile de-
vices is in tens of GigaBytes (GBs). Moreover, there is a recent trend in
improving multimedia capturing support in mobile phones. Nowadays, mo-
bile phones are usually equipped with high resolution digital cameras and
video capturing support. All these factors add to the possibilities of creat-
ing and storing large files on mobile phones. Now mobile users may want
to upload and share these files or broadcast live video streams. See Ap-
pendix B for trend graphs in mobile phones storage and camera resolution
capabilities.

The majority of the existing works ignore security and privacy issues, which
are vital in such a highly ad-hoc setting. COMBINE [17] and PRISM [1] briefly
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discuss security issues and ask for a reputation and punishment system to discour-
age malicious behaviour of collaborating nodes, and propose to use encryption
techniques to protect data. However, they do not address these issues in their
system design, implementation and evaluation.

Moreover, most of the existing works ignore application specific QoS require-
ments. They are aimed at providing improved data scheduling algorithms under
the assumption that the underlying channels are relatively stable and homoge-
neous. If this assumption holds, there is little reason to give an application control
over how the scheduling is done. In an MCC environment, however, the under-
lying links are neither stable nor homogeneous. Therefore, the manner in which
the IMUX decides to schedule the transmission of application packets can have
a large influence on the observed bandwidth, packet latencies and stream loss
rates. Furthermore, the application streams may be heterogeneous with respect
to which aspects of the network service they are sensitive to: some applications
care about average latency, some not; some care about the data loss more than
the others; and some care more about the variance of the latency than they do
about the average latency.

Although, there is not any particular application that motivated this work,
understanding some aspects of the potential application scenarios is useful in
understanding many of the design decisions underlying our proposed solution.
Next section describes some of the scenarios of collaborative data transfer. It
also lists some common observations from the application scenarios. At the end,
three models of collaborative data transfer are presented.

2.5 Collaborative Data Transfer in MCC

The idea of Mobile Collaborative Communication (MCC) is not new and there
is some existing work in this area as well. In the recent few years there has been
immense development and progress in the area of mobile network technologies
and device capabilities which can result in progress in the area of collaborative
communication as well. This is the motivation of this project; to explore the
possibility of an idea of achieving the efficient collaborative data transfer in a
variety of scenarios.

The idea of MCC is very thrilling in the sense that it can revolutionised the
way communication is done in many scenarios. If there is a solution that is a
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bit more generic and provides enough security or reliability (which currently no
system does) then it can take connectivity and usability of existing systems to a
whole new level and open a door to a different realm. MCC uses low cost, highly,
widely available and accessible mobile data connection. These connections can
be owned or even hired. MCC can be used for myriad of purposes and it can
open a whole new range of possibilities.

For some clarifications, let’s consider the following MCC application scenarios.

2.5.1 Potential Application Scenarios

• Disaster Relief: I personally participated in the relief efforts when Pak-
istan was hit by a massive earthquake in October 2005 that caused widespread
destruction in the country’s Northern regions. Responding to the urgent
need of coordination and management of the relief efforts, an information-
sharing web portal named Relief and Information Systems for Earthquakes
in Pakistan (RISE-PAK) 1 was set up. As a member of the RISE-PAK
team, I witnessed the challenges in acquiring data from remote, earthquake
affected villages. The traditional telephone wiring system had collapsed due
to the earthquake. We had to rely on mobile phone services, which started
working in most of the affected areas within 2-3 days of the disaster. Though
the mobile service providers were offering Internet connectivity using GSM
and GPRS technologies, the bandwidth was not sufficient to upload mul-
timedia data on our portal efficiently. Another web portal was developed
for locating the missing persons. In order to enter their details and pic-
tures, the teams had to collect the required information from relief camps
and hospitals and later upload it from the nearby offices with high speed
Internet connections. Again, the data collection team had mobile phones
but since the high bandwidth Internet connectivity was unavailable, a lot
of time was consumed in collecting, transferring and entering data from the
remote locations.

Later in 2011, a case study by Gisli Olafsson on how Information and Com-
munications Technology (ICT) played a role in the 2011 Pakistan flood re-
sponse, and how information was managed during the response, concludes
that nothing much has evolved since 2005. The Internet connectivity had

1http://en.wikipedia.org/wiki/RISE-PAK
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improved but only slightly [32] [33].

• Battlefield Reporting: As discussed earlier, in battlefield reporting the
soldiers equipped with multi-homed wireless devices may require to send
data efficiently and securely to their commanders, in case of damage to their
specialized communication equipment. This data may include geographical
information like maps, video of battle field, pictures and voice messages.
In this case, high reliability and security are two important requirements
along with the efficiency of communication channel. This is also the case for
many other emergency services, e.g. fire brigade, police and law enforcement
agencies etc.

• Telemedicine: Consider the scenario of a person injured in a road accident
that needs immediate medical care. If the patient’s vital statistics can be
relayed to the doctors at the hospital while still in the ambulance, doctors at
hospital can be better prepared and patient can get treatment immediately
upon its arrival. Such telemedicine application may have different data
streams for pulse rate, blood pressure etc, and may require high speed,
reliable Internet connectivity.

Another application of telemedicine is extremely relevant in developing
countries since the major percentage of the population lives in remote,
rural areas whereas the best-equipped hospitals and medical experts are
concentrated in the urban areas. Access to health care by the majority of
the population is limited given the low ratio of doctors to patients and the
general economic deprivation of the people. Telemedicine is a cost effective
and efficient way to bridge this gap between demand and supply of health
care facilities in remote areas.

• Tourisms: Now consider a scenario of a group of tourists travelling or stay-
ing together. They may want to stream videos, share some large images or
video files over the social media, or backup important data. They may also
want to access other high bandwidth web services using their mobile de-
vices. However, geographical or monetary limitations can limit their access
to high speed Internet. Same scenario is valid for wild life photographers,
mountaineers, or news reporters, etc.
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2.5.2 Common Observations from Application Scenarios

Important observations that are common in all above mentioned scenarios are
listed below.

• Lack of Wired Infrastructure: Wired communication channel for Inter-
net connectivity is either not available or access to it is not feasible.

• High Bandwidth Communication Channel: High bandwidth commu-
nication channel is required, as many scenarios require the transfer of large
data files or multiple data streams.

• Heterogeneous Data Streams: Most of the applications require the
simultaneous transmission of multiple data streams, and these streams could
be heterogeneous, e.g. video, audio etc.

• Data Security: Data that needs to be transferred may contain sensitive
information, e.g. patient’s personal information in telemedicine application
and geographical location in military reporting application.

• Availability & Reliability: Communication channel should be highly
available and reliable; i.e. ideally, there should not be any connection drop
out. Secondly, there should not be a single point of failure in the network.

All scenarios require high speed, secure and reliable wireless Internet connectivity.
WLANs can not be used because of their limited geographical coverage. WWAN
channels can be used for the Internet connectivity in such situations. Despite 3G
hype, individual WWAN channel may not be able to support high bandwidth
applications efficiently. High speed WWAN technologies (e.g. EvDO, 4G) will
take years to become widely available, especially in third world countries. These
High speed WWAN connections can also incur significant monetary cost for the
mobile users. Even in the presence of high speed WWAN connections, we may
require back up communication channels that can be formed on demand. Ad-hoc
networks can operate without the presence of any pre installed network infrastruc-
ture, while being able to handle node mobility and dynamic network topologies.
Due to these properties, ad-hoc networks have been employed in many critical
applications, such as military, law enforcement, or disaster-relief operations [34].
Hence, one possible solution is to form an ad-hoc MCC that aggregates a few low
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bandwidth WWAN channels to form a high bandwidth virtual channel. Transfer-
ring data through this collaborative community promises an efficient data transfer
even if few connections are lossy or unavailable. This solution is cost effective as
the MCC is formed on demand using mobile devices and channels already avail-
able to the members. Moreover, it is flexible, scalable and easy to deploy as it
uses existing networking infrastructure and its components (multi-homed mobile
devices) are readily available. It has the potential to act as a primary as well as
backup communication channel.

2.5.3 Generic Data Transfer Models

In this section, we present three generic models of collaborative data transfer in
MCC. They are models for collaborative uploading and downloading in MCC,
respectively, and a combined model which supports both. The main entities in
these models include:
– Initiator (I)
– Collaborators (C1, C2, C3)
– IMUX / Data Scheduler (DS)
– MCC
– WWAN and WLAN channels
– Proxy
– Web/Application Server
– Internet Cloud

2.5.3.1 Collaborative Uploading

The collaborative uploading model supports upstream data transfer from the col-
laborators to a web/application server on the Internet. Consider a setting where a
mobile node (named Initiator) wants to send a large data file to a web/application
server. Due to power, time, bandwidth or monetary constraints, the initiator
seeks to utilize the WWAN channels of multiple neighbouring mobile devices,
i.e. Collaborators. We assume that both the initiator and the collaborators are
equipped with multi-homed mobile devices. Steps they need to follow for collab-
orative uploading are:
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Figure 2.3: Model of Collaborative Upstream Data Transfer

Step 1. Initiator uses its WLAN channels to build a community of mobile collab-
orators who agree to share their WWAN channels to send data for the initiator.
Step 2. Once the group of collaborators is formed, the initiator starts dividing
the file into data chunks. An IMUX/DS running on the initiator does this slicing
and sends the scheduled data to the multiple collaborators through fast WLAN
channels.
Step 3. Collaborators use their respective WWAN channels to send allocated
data to the server across the Internet cloud.
Step 4. Aggregation program running on the server reassembles the data packets
received from the multiple collaborators.

2.5.3.2 Collaborative Downloading

Now, we present the typical model of collaborative data transfer for the down-
stream traffic, which has been used in many existing systems [17][18][1]. Here, an
initiator wants to receive a large data file or a data stream from a server through
multiple collaborators. The motivation and assumptions are same as that for
collaborative uploading, but steps to accomplish collaborative downloading are
different.

Step 1. Initiator first builds a community of mobile collaborators.
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Figure 2.4: Model of Collaborative Downstream Data Transfer

Step 2. Once the group of collaborators is formed, the initiator sends a list of
collaborators and their WWAN channel conditions to the IMUX/DS. In the case
of downstream data transfer, the IMUX/DS runs on the server itself or on a ded-
icated proxy. This proxy can be located any where in the Internet cloud.
Step 3. IMUX/DS divides the file into appropriate data chunks and sends them
to multiple collaborators through their respective WWAN channels.
Step 4. Collaborators receive data chunks and send them to the initiator through
their high speed WLAN channels.
Step 5. Aggregation program running on the initiator reassembles the data
chunks.

2.5.3.3 A Combined Model

The combined model of collaborative data transfer supports both upstream and
downstream traffic. This model aggregates the components and functionality
of previously described models. It can be seen from the Figure 2.5 that, to
support the collaborative data transfer in both directions, the solution must have
a dual implementation of IMUX/DS. As discussed earlier, most of the existing
solutions in the MCC support downstream data transfer only, with IMUX/DS
running on the proxy/server. To support data uploading in MCC, an IMUX/DS
runs on the MCC initiator node. These nodes could be resource (e.g. battery,
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Figure 2.5: A Combine Model of Collaborative Data Transfer

processing power, and memory) constrained. Moreover, in the case of uploading,
the IMUX/DS running on the initiator and collaborators communicate through
WLAN instead of WWAN channels. Hence, the design considerations for the
IMUX/DS running on the initiator are different from the one running on the
server.

2.6 Achieving Efficient Collaborative Data Trans-
fer in MCC

2.6.1 Requirement Specifications

In this section, we present the requirement specifications for supporting collabo-
rative data transfer (both uploading and downloading) in the MCC, based on the
potential application scenarios and the data transfer models. These requirements
motivated our design of a novel and efficient data scheduler. We also demon-
strate later, in section 2.7.5 that none of the existing solutions satisfies these
requirements completely.

1. Real Time Dynamic Channel Selection: The proposed solution should
support on demand group formation. Group formation should be initiated
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by the source node, i.e. initiator, who wants to transfer a data file. Collab-
orators should respond to the collaboration request and exchange necessary
information, e.g. remaining battery power and WWAN channel conditions
like available bandwidth, loss rate, and latency etc. Initiator should be able
to choose the most appropriate channels dynamically from a set of avail-
able channels. It should also be able to capture and adapt to the changes
in underlying channel conditions.

2. Application Requirements Aware: The proposed solution should be
aware of the application specific QoS and security requirements. Different
applications may have different QoS requirements e.g. some applications
can not tolerate data loss, where as, few are sensitive to jitter, latency, etc.
[16]. Some applications may also have multi-level security requirements
e.g. in telemedicine application, a patient’s personal information might
require higher security than the pulse rate stream. Our proposed solution
should adapt to these requirements, during group formation and workload
scheduling.

3. Support for Applications with Heterogeneous Data Streams: Some
scenarios of collaborative data transfer may require transmission of multiple
and possibly heterogeneous data streams. These data steams may have
dissimilar QoS and security requirements. Our system should be able to
handle these multiple and possibly heterogeneous data streams originated
from the same or multiple applications.

4. Protection for Sensitive Data: Some scenarios of collaborative upload-
ing may require the transfer of sensitive data, e.g. military reporting,
telemedicine. This data may have multiple levels of sensitivity, hence our
proposed solution should satisfy security requirements and be able to adapt
to different sensitivity levels. MCC is a highly ad-hoc collaborative environ-
ment, where collaborating nodes may have no prior interactions with each
other. Hence, our proposed solution should be able to deal with strangers
and be able to operate securely with malicious collaborators.

5. Battery Power and Processing Efficient: As we have illustrated in
the model for collaborative uploading that an IMUX/DS runs on a mobile
node. This mobile node could be resource (e.g. memory, processing power,
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battery power) constrained. Hence our solution should incur:

• Minimal Computational Cost
Proposed system architecture and constituent algorithms should be de-
signed such that, they incur minimum processing cost. Less processing
will save the battery power of the host node.

• Minimal Communication Cost
Also the proposed solution should be designed to minimize the inter-
node and intra-node communication. Minimal communication will
save the battery power consumed during the information transfer and
the computational power used during the processing of transmitted
information.

2.6.2 Challenging Issues

Challenging issues in designing a solution for MCC based on the above mentioned
requirements are:

1. Multiple Criteria Optimal Scheduling: Our proposed solution must
take into account the following factors and schedule data optimally, to uti-
lize the collaborator’s shared resources. Support for data security must be
integrated into this optimal scheduling criteria.

• Application Specific QoS Requirements: Application may have
strict constraints on network QoS. How to specify and interpret these
requirements, and adapt the solution according to them is one of most
challenging task.

• Dynamically Varying Set of Available WWAN Channels: As
discussed earlier, in MCC nodes mobility is high, i.e. nodes can leave
and join the community rapidly. These departures could be announced
or unannounced, e.g. because of the channel failure. Furthermore we
need to differentiate between the channel failure and temporary drop-
out.

• Dynamically Changing WWAN Channel Conditions: WWAN
channels are characterised with frequent QoS fluctuations [16], e.g.
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short term changes in available bandwidth, loss rate and jitter. Cap-
turing and adapting to these changes is challenging and usually incur
considerable processing and reporting cost.

2. Support Data Security and Privacy: In an ad-hoc collaborative en-
vironment, data security is one of the major concerns. The possibility of
eavesdropping, spoofing, denial-of-service, and impersonation attacks in-
creases, due to anonymity, high mobility, limited range and potentially un-
reliable wireless links of collaborating nodes. Security approaches used for
the fixed networks are not feasible here due to the salient characteristics of
the ad-hoc networks. In our MCC scenario, the following factors are most
important:

• Unknown Collaborators: Due to high mobility, the collaborators
in MCC may have no prior interactions with the initiator, which raises
a serious issue i.e. lack of trust between the peers. Our system should
be able to handle multiple levels of collaborator’s trust.

• Multi-level Data Sensitivity: Different applications may have dif-
ferent security requirements, depending on the level of data sensitivity,
e.g. a battle field video is more sensitive than a music video uploaded
to web. Furthermore, different data streams or data segments origi-
nated from the same application may have different sensitivity levels,
e.g. for military reporting application, highlighted important observa-
tions or geographical information may have high security requirements
than the video or audio streams.

3. Finding a Solution with Minimal Battery Power Consumption:
The most challenging task is to make the solution energy efficient such that
its associated algorithms and the interactions and inter-operations among
the architectural building blocks, will consume the least level of battery
and processing power on the hosting mobile node. Although achieving
energy efficiency is not the primary goal of our solution, still it is a major
consideration during the design phase.
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2.7 Existing Systems Supporting Collaborative
Data Transfer in MCC

This section presents an overview of the existing works supporting collaborative
data transfer in MCC and in the end critically analyses these existing works
against the MCC scenario requirements specified in section 2.6.1.

2.7.1 Handheld Routers

Sharma et al. in Handheld Routers [18] focus on the delivery of high-bandwidth
streaming media. They have proposed an application-aware and channel-adaptive
architecture for data assignment over multiple low bandwidth channels. They
have proposed three application aware data scheduling algorithms:

1. Layer Priority Striping (LPS)

2. Frame Priority Striping (FPS)

3. Independent Path Striping (IPS)

These algorithms schedule layers/frames/sub flows of data to the collaborators
according to their WWAN channel reliability. They use loss rate as a metric for
channel reliability. We will look into the details of these algorithms in section
3.5.1.

2.7.2 COMBINE

COMBINE [17] supports collaborative downloading in the MCC. It mainly fo-
cuses on the protocols of fast and energy-efficient group formation and data
scheduling. It has proposed an energy efficient data scheduling algorithm named
as Work Queue (WQ) algorithm. We will discuss this algorithm in detail in sec-
tion 3.5.3. In the WQ algorithm, the initiator forms a WQ with fixed, equal
sized data chunks of the file to be downloaded. Each collaborator queries the
initiator for the next data chunk when it is finished with previous download
and is ready for more work. The collaborators keep getting the download work
until the queue is empty. Hence, the work performed by each collaborator is
proportional to its WWAN speed. The initiator does not need to allocate work
explicitly. COMBINE also discusses the incentives for collaboration, and security
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and privacy issues in relation to their proposed accounting scheme. COMBINE
is implemented at the application layer which makes it easy to get application
requirements, and also to deploy existing networking infrastructure and mobile
devices without any changes in hardware or operating systems.

2.7.3 PRISM

PRISM [1] focuses on the data scheduling and congestion control mechanism to
reduce the out of order packet deliveries. It proposes a proxy based network-layer
implementation of an inverse multiplexer (PRISM-IMUX) and a transport layer
implementation of a congestion-control mechanism (TCP-PRISM) at the sender
side. PRISM-IMUX handles both the data forwarding and TCP acknowledg-
ments (ACKs). It captures the data traffic at the network layer and schedules
it to the best WWAN channel using an ADAptive Scheduler (ADAS). We will
discuss ADAS in detail in section 3.4.3. The TCP-PRISM uses negative ACK
information shipped by the Reverse Path Controller (RPC) at the proxy to re-
duce loss recovery time. It adjusts the congestion window size based on the
WWAN-channels-state information.

2.7.4 MOPED

MObile grouPEd Device (MOPED) [19] is a network model that deals with the
group mobility. This framework treats a user’s set of personal devices as a single,
virtual device and supports the collaboration of these devices to appear as a single
entity in the internet. MOPED includes a transport layer protocol to dynamically
aggregate the available bandwidths of multiple channels to provide the user with
the best possible network service. It also provides a lightweight network layer
MOPED Routing Architecture (MRA) to support the multi-paths between the
home agent and a receiver. MRA can take advantage of the additional bandwidth
by routing different flows through different connections.

2.7.5 Analysis Summary

Table 2.1 presents an overview of the assumptions, main contributions and future
directions of the existing works described in previous sections.
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Sate of Assumptions Main Future
the Art Contributions Directions

Handheld Used for delivery of high- Channel adaptive scheduling Estimation of WWAN sharing cost
Routers bandwidth streaming media. for video transfer. and accounting system.

Application’s QoS Implement application aware support for information privacy
requirements are known LPS algorithm. and security.

Identify homogeneous links for
better aggregation results.

COMBINE Multi-homed devices willing Cost model for collaboration Need for reputation system
to share resources for a cost. incentives and accounting system. to blacklist cheaters.

Mainly used for collaborative Energy efficient and network Certification of transferred
downloading. conditions adaptive protocol contentblocks by source

for group formation. (like BitTorrent).

Presence of a trusted Energy efficient and network
accounting server. adaptive workload scheduling by

implementing WQs.

Lightweight and secure accounting
scheme.

Briefly discuss data/nodes privacy
and security issues.

Application level implementation.

User interface.

PRISM Mainly used for music/video A network layer implementation of Use proxy as trusted party
file download. inverse multiplexer (PRISM-IMUX) and encryption to secure

on proxy. packet header information.

Multi-homed devices willing to Propose ADAS algorithm that is Use reputation and punish-
form collaborative community adaptive to WWAN channel conditions ment system to discourage
for mutual benefit. and incur least reporting overhead. malicious collaborators.

Mobile community is formed via A transport layer congestion
Service Location Protocol. control mechanism TCP-PRISM

at sender side.

IMUX is located at Performance
Enhancement Proxies (PEPs) of
each 3G’s access network.

Generic Routing Encapsulation
(GRE) is enabled at each
mobile host.

Both sender and receiver
support TCP-SACK.
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Sate of Assumptions Main Future
the Art Contributions Directions

MOPED Single user owns all the Transport layer implementation of Support for sharing with
devices in collaborative aggregation protocol. non-MOPED-enable devices.
group.

Mobile community is formed via Lightweight network layer routing MOPED specific transport
Service Location Protocol. architecture to support multi-paths layer protocol.

between home agent and a receiver.

Presence of a fixed proxy Support multiple components of User interaction model to
within the internet. locally connected set of devices. configure and manage MOPED.

Support movement of devices from
one component to another.

Table 2.1: Analysis Summary of Existing Systems Supporting Collaborative Data
Transfer in MCC.

2.7.6 What is Still Missing?

We have already seen a brief overview of the existing works supporting collabora-
tive data transfer. We are comparing the state-of-the-art in terms of addressing
all the functional requirements stated earlier in section 2.6.1. We have added Sup-
port for Data Uploading as an additional requirement (justified by data transfer
models in section 2.5.3.3). Table 2.2 summarises the comparisons that leads us
to identify the knowledge gaps in existing efforts and finally, to an open issue,
which we address in this research.

It can be seen from the table that there is not a single system that addresses all
of the basic requirements of collaborative data transfer. Providing security for the
sensitive data has been side-stepped in all of the above mentioned systems. They
either assume that the same user owns all the devices (e.g., MOPED [19]) or that
the improved performance alone is the key requirement (e.g., Handheld Routers
[18], PRISM [1]). COMBINE [17] briefly discusses few data security issues and
the candidate solutions. It discusses an energy efficient and secure accounting
system in detail, to support its proposed collaboration incentives framework.
Similarly PRISM [1] also mentions few data security issues and suggests to use
encryption techniques or reputation system to protect against malicious behaviour
of collaborating nodes. However, they do not include data security support in
their proposed solutions. We are not aware of any prior work that addresses data
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Requirements State of the Art

Handheld COMBINE PRISM MOPED
Routers

On Demand Group Formation X X X X

Dynamic Channel Selection X X X X

Application Requirements Aware X X X X

Heterogenous Data Streams X X X X

Protection for Sensitive Data X 1 2 X

Energy and Processing Efficient X X X X

Support for Data Uploading X X 3 X

Table 2.2: Comparison of Existing Systems Supporting Collaborative Data Trans-
fer in MCC against Scenario Requirements.

security issues in the context of collaborative data transfer in mobile collaborative
communities.

Another important observation is that almost all systems support collabora-
tive downloading, specially multimedia streaming, (e.g. COMBINE, PRISM). As
illustrated in Model for Collaborative Downloading (see section 2.5.3.2) in case of
downstream data transfer, IMUX runs on the proxy or server. This could be the
reason that most of the existing systems ignored energy efficiency while designing
their data schedulers. PRISM [1] claims that it can support upstream traffic by
placing PRISM-IMUX at a mobile node in the community. In terms of energy
efficiency they only mention the reduction in power consumption achieved by fast
data transmission. There is no evidence that they consider energy efficiency as a
key requirement in their system architecture and components design.

Considering the resource limitations of the MCC member devices, we can not
simply use existing implementations of IMUX for data uploading. We need to

1Briefly discusses few data security issues and recommends to use authentication and repu-
tation system.

2Listed few data security issue in future work and recommends to use encryption and repu-
tation system for data security.

3Claims that their solution for collaborative downloading can work for uploading, but no
implementation and evaluation.
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consider the requirements and challenges associated with data uploading scenarios
while designing an IMUX for mobile nodes. Energy efficiency and data security
are issues that have largely been ignored and we are discussing and considering
these open issues in our research.

Furthermore, there is not a single MCC solution that supports the simulta-
neous transfer of multiple data streams according to their individual QoS and
security requirements. Designing a scheduling solution that can supports best ef-
fort QoS for multiple data streams is going to be the focus of our research. Energy
efficiency and data security would be part of our design consideration, however,
they both are complete studies in their own. We have therefore included the
detailed study, enhancement and evaluation, of energy efficiency and security of
RAW scheduler in future work.

2.8 Our Research Goal

Analysis of existing systems has led us to the open issue of how to design a
data scheduler that is application requirements aware, adaptive to the changes
in underlying channel conditions and supports the multiple levels of QoS and
security in an energy efficient manner. Hence, our research goal is to design a
performance efficient workload scheduler to support collaborative data transfer in
dynamic MCC environment. Chapter 4 describes the design of a novel workload
scheduler that meets this goal.

2.9 Chapter Summary

The contributions of the chapter are three-fold: first, it has provided background
information on inverse multiplexing and MCC; second, the applicability of MCC
to a range of scenarios was analysed and requirements and challenges associated
with collaborative data transfer in MCC were identified; third, the related liter-
ature was surveyed for the state-of-the-art approaches to support collaborative
data transfer. Based on this survey, a research gap has been identified that may
help to achieve better QoS in a MCC environment. The next chapter presents the
literature survey of the state-of-the-art approaches to data scheduling employed
by the IMUXs.
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Chapter 3

Workload Scheduling Algorithms:
A Literature Review

3.1 Chapter Introduction

This chapter provides a survey of workload scheduling schemes employed by In-
verse Multiplexers (IMUXs). As we have discussed in previous chapters, IMUX
schedules data segments, i.e. packets or fragments, across multiple outgoing chan-
nels. Scheduling techniques employed by IMUX varies from simple approaches
like RR scheduling to more complex ones like application requirements aware,
channel conditions adaptive scheduling. We have classified these scheduling
schemes into four broad classes based on the approach used, These classes are (1)
Simple Scheduling, (2) Application-Aware Scheduling, (3) Channel-Conditions
Adaptive and (4) Application-Aware and Channel-Conditions Adaptive. This
chapter critically analyses these approaches and evaluates their suitability. In
conducting the survey, the good design principles of the approaches are exam-
ined for possible inclusion in our proposed solution. This chapter also briefly
highlights various implementations of the scheduling algorithms such as the RR,
CP and SWQ algorithm. We will be using these algorithms as a reference during
the performance evaluation of our novel scheduling algorithm.

The organisation of the chapter is as follows: Section 3.2 discusses the working,
merits and limitations of simple scheduling approaches. Section 3.3 discusses
the working, merits and limitations of application requirements aware scheduling
algorithms. Section 3.4 analyse the scheduling algorithms that are adaptive to
the changes in underlying channel conditions. Section 3.5 discusses the most
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intelligent class of scheduling algorithms which are both application requirements
aware as well as adaptable to the network changes. Section 3.6 summarises the
comparison between different scheduling approaches. Section 3.7 outlines the
proposed approach we are going to employ in a novel RAW scheduler. Finally,
Section 3.8 summarises the chapter.

3.2 Simple Scheduling Approaches

Broadly speaking simple scheduling schemes distribute data over multiple chan-
nels using some static criteria. These criteria may require information about i)
the data to be scheduled, e.g. file size, packet size, and ii) channel conditions, e.g.
bandwidth, loss rate, latency etc. These scheduling algorithms assume that the
channel conditions are static, i.e. these conditions do not change over the period
of time.

3.2.1 Round Robin (RR) Scheduling

The simplest scheduling approach is RR. It divides the data into segments of equal
size. The RR scheduler keeps a static list of available channels. It cycles through
all available network channels and sends the same number of data segments on
each channel. In this way all the channels get the same amount of workload.

RR scheduling method is simple, which makes it easy to implement, and
computation/energy efficient. It works reasonably well and provides fair workload
distribution when the underlying channels are stable and homogeneous and data
segments are of the same size [29].

However, this method can not make optimum channel usage when underlying
channels are heterogeneous in terms of channel’s QoS. Slow channel(s) may limit
the overall throughput of inverse multiplexing system, by causing delay in data
reassembly at the receiver [29]. This situation could be worse in the case of varying
size of data segments, e.g. if scheduler alternates between long and smaller data
segments and schedules them over two heterogeneous channels. In this case, all
the longest data segments may get scheduled on the slow channels. Hence, arrival
order of data segments at the receiver may differ from their order at the source.
RR scheduling can be adjusted by adding sequence numbers to the data segments,
which can be used to re-sequence data at the receiver [35].
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3.2.2 Weighted Round Robin (WRR) Scheduling

WRR scheduling is designed to achieve a fair data distribution across the hetero-
geneous channels. It computes a weight for each network channel. These weights
can be fixed or estimated based on the channel conditions, e.g. bandwidth, loss
rate, etc. This scheduling algorithm cycles through the network channels and
sends as many data segments as indicated by the weight associated with that
channel [29] [16]. For example, if there are only two channels, and weight of
channel c1 is 1 and channel c2 is 3, then c1 will get (1/(1 + 3)), i.e. one forth of
the total workload. Hence a channel with the higher weight gets more workload.

Weighted Random (WR) scheduling is a special case of WRR where weights
are computed using weighted probability. Weighted probability indicates the
probability of selecting a particular channel for the next transmission. This allows
a proportionality that is not limited to the ratios of integers as in WRR scheduling
[23].

WRR scheduling improves the overall throughput of the system by assigning
less workload on slow channels that can reduce delay in data reassembly at the
receiver. However varying size packets are still problematic for fair load distribu-
tion and data reassembly. Moreover, computing weights based on the channel’s
QoS is computationally expensive, specially in the case of MCC which is charac-
terised with frequent QoS changes due to the mobility of the collaborating nodes.
Furthermore, RR and WRR scheduling schemes assume that all packets are from
one data stream, and for multi-stream applications may result in unfair distri-
bution [16]. For example, consider an application with three input data streams
s1, s2 and s3 and have three or a multiple of three network channels available.
Suppose, there are three channels c1, c2 and c3. RR or WRR scheduler will map
s1 to c1, s2 to c2 and s3 to c3. This is a fair distribution if underlying channels
are homogeneous. However, for heterogeneous channels if c3 is lossier than the
other two, then stream s3 will experience much higher average loss rate than the
other two data streams.

3.2.3 Randomized Round Robin (RandRR) Scheduling

To overcome the limitations of RR and WRR for supporting multi-streams, Zhau
[36] proposed Randomized Round Robin (RandRR) scheduling. In this case,
the IMUX keeps a static list of the input data streams and output transmission

61



channels. It first selects an output channel using a random function then applies
any RR variant scheduling scheme for selecting the input data stream and vice-
versa [16] [36].

Although this scheduling scheme tries to deal with the multiple data streams
fairly, it inherits a few limitations from RR and WRR scheduling, e.g. varying
sized data segments may delay some packets.

3.2.4 Limitations

The simple scheduling approaches described above have a few common limita-
tions, one major limitation is that they all use static criteria for the data schedul-
ing. These schemes assume that the number of underlying physical channels will
remain the same, i.e. no channel will leave or join, and that the channel conditions
will stay static during the scheduling.

Secondly, scheduling schemes that fall in this class do not consider the ap-
plication level scheduling requirements. Different applications may have diverse
QoS and security requirements, e.g. some applications are sensitive to data loss
few are to jitter, latency, etc. [16]. Cheung [37] analysed special scheduling re-
quirements associated with the delay sensitive media, and developed an algorithm
for smart scheduling of streaming media along with error correction over multi-
ple burst-loss channels. Making the scheduler aware of these requirements can
improve the overall QoS performance.

3.3 Application-Aware Scheduling Approaches

Different applications may have diverse QoS and security requirements, which can
not be handled by the simple scheduling algorithms. Furthermore, multi-stream
applications may have different requirements for different data streams. Hence
scheduling algorithms should be more flexible to accommodate these diverse re-
quirements. Existing application aware scheduling algorithms include Channel
Pinned scheduling and Call-back scheduling.

3.3.1 Channel Pinned Scheduling

Channel Pinned (CP) scheduling allows multi-stream applications to pin each
data stream with a pre-defined network channel, i.e. each data stream will be
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scheduled on at least one fixed network channel. This scheduling technique is
simple and easy to implement as it doesn’t make dynamic decisions about the
channel allocation. It is a popular solution for scheduling multi-path multimedia
streams [11]. Channappayya [11] uses this scheduling scheme by dividing an
image into four coded bit streams, then transmitting them over the four low-rate
noisy channels. At the receiver, the image is reconstructed by assembling the
data received from each channel.

This scheme doesn’t support reallocation of data streams in the case of channel
failure. Moreover, it discards all the packets of a data stream that its associated
channels can not hold, even if other channels have capacity. To overcome these
limitations, splitting scheme should be able to facilitates interpolation, i.e. the
estimation of lost data from available data. For example, Channappayya [11]
presents a multiple description image coding scheme which facilitates the inter-
polation process in the case of one or more channel failures.

3.3.2 Call-back Scheduling

Call-back scheduling exposes available network channels to the application, asking
it to assign data across the network channels itself. The application’s policy is
hard-wired in the call back code. Since the application itself is scheduling the
data across the channels, it can provide specialized code to meet its requirements
[12][38].

In principle, a call-back scheduler implemented for a specific application has
the potential to be more computationally efficient. However, it is difficult to
implement for even moderately complex applications [16]. This is specially true
when there are multiple applications and multiple streams each having diverse
requirements.

3.3.3 Limitations

This class of scheduling algorithms try to cater for the applications with spe-
cific requirements and schedule the data over the appropriate network channels.
However, application-level implementation of these scheduling algorithms usu-
ally incur packet processing overhead. Most importantly, these algorithms do not
adapt to the QoS changes in the underlying channel conditions. This adoption
is very crucial specially when underlying channels are WWAN channels, as they
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are characterised with frequent QoS fluctuations and drop-offs [16].

3.4 Channel-Conditions Adaptive Scheduling Ap-
proaches

In our scenario of inverse multiplexed WWAN channels, we need to consider
frequent changes in the underlying channel conditions, e.g. failure, announced
departures or fluctuations in QoS. In case of these changes, scheduler should
respond and reallocate data accordingly. Following scheduling algorithms adapt
in response to the changes in channel conditions.

3.4.1 Link Quality Balancing (LQB) Scheduling

LQB scheduling proposed by Snoeren [29] extends the WRR scheme by dynam-
ically adjusting the Maximum Transmission Unit (MTU) size for each link1. In
this scheme the packets are split into fragments of MTU size, proportional to
the observed bandwidth of the underlying channels. LQB uses the loss rate as
link quality metric to compute a relative short-term available bandwidth for each
channel. Here, the goal is to create variable length fragments such that each
fragment can be transmitted in roughly the same amount of time. In this way
reassembly can proceed with much less delay. Although this scheme reduces the
chances of packet reordering, slow channels can limit overall throughput of the
system. Furthermore, fragmentation incurs reasonable processing overhead.

3.4.2 Rate Based Scheduling

Magalhaes et al. [39] addresses data scheduling over multiple channels of the
same mobile host. The rate based transmission technique is used for the band-
width tracking and congestion control. They employ the packet pair probing
technique [40] to measure the available bandwidth of a channel. This technique
entails sending two packets back-to-back on a channel, and measuring the inter
arrival time of those packets at the receiver. The inter arrival time is a snap-
shot of the bandwidth of that channel when packet size is equal to the channel’s

1Terms links and channels can be used interchangeably
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MTU. Inverse of this time defines the optimal rate to send packets on this chan-
nel. Hence by sending packets at regular intervals, and tracking the inter arrival
times at the receiver, changes in channel bandwidth can be tracked without using
packet pair method. The Multimedia Multiplexing Transport Protocol (MMTP)
[38] is a rate based multiplexing protocol designed to carry packets with strict
deadlines. Another rate based protocol is Reliable Multiplexing Transport Pro-
tocol (R-MTP) [41], designed for the reliable transmission of bulk data to the
mobile systems that have access to multiple link-layer technologies. R-MTP uses
selective acknowledgements for the reliability and bandwidth estimation for flow
and congestion control.

3.4.3 ADAptive Scheduling (ADAS)

Optimal scheduling of packets over heterogeneous wireless channels require up-to-
date channel-state information. Obtaining this information is expensive, specially
in mobile environments, due to the fluctuating data traffic rate and the wireless
channel dynamics [1]. Although it is possible to measure a channel’s condition and
report it to the proxy, but frequent changes will incur significant report processing
overhead and transmission power consumption to resource limited mobile hosts.
ADAS proposed in PRISM [1] is a light weight packet scheduling algorithm. It
maintains up-to-date channel-state information by using an ACK-control mech-
anism i.e. Reverse Path Controller (RPC). The RPC exploits TCP’s control
information which is carried by ACKs and infers each channel’s state information
e.g. packet loss, delay and data rate from the ACKs. It provides this information
to ADAS without incurring any reporting overhead to mobile nodes. Moreover,
it uses packet’s expected arrival times over each channel to reduce out-of-order
packet deliveries, and to increase overall system throughput. It is important to
mention that PRISM is a solution for collaborative downloading, in that case
RPC and ADAS runs on a proxy. PRISM takes off reporting overhead from the
mobile hosts but RPC is still a processing overhead in the case of collaborative
uploading, where RPC needs to run on a mobile device.

3.4.4 Limitations

This class of scheduling algorithms adapt to the changes in underlying channel
conditions. Maintaining channel conditions information is expensive in terms of
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processing and communication overhead. Most of the algorithms in this class
are implemented at transport or network layer, which require end-system kernel
or protocol stack modification. Additional disadvantage of the network layer
implementation is that, it is generally not aware of the application characteristics
and requirements.

3.5 Application-Aware and Channel-Conditions
Adaptive Scheduling Approaches

The scheduling algorithms belonging to this class are both application require-
ments aware and adaptive to the changes in channel conditions. Several efforts
in this class meet most of our scenario requirements. (see Table 3.1)

3.5.1 Adaptive Channel Pinned Scheduling

This scheduling approach is based on the concept of channel pinned scheduling
described earlier in section 3.4.1. However this Adaptive version responds in adap-
tation to the underlying channel conditions by redistributing the data streams
as the channel conditions change. Redistribution is usually not frequent, and
short term variations are ignored. Sharma et al. in Handheld Routers [18] has
presented following three algorithms for video streams.

3.5.1.1 Layer Priority Striping (LPS)

This algorithm can schedule video streams that are hierarchically layer-coded.
This encoding process generates a base layer l0 containing the most important
information required for decoding, and one or more enhancement layers (li :
i = 1, ..., n). Enhancement layer lk can only be constructed if all sub-layers
li : i = 0, ..., k − 1 are available. Thus, the layer index i corresponds to the layer
priority. The LPS algorithm assigns base layer to the most reliable channels,
and enhancement layers to the channels of corresponding reliability level. It uses
the channel loss rate as the metric for reliability. For each layer, packets are
distributed across the allocated channels using WRR scheduling. Allocation of
layers to the channels Shift Up if a new channel of higher reliability joins and
Shift Down if it becomes unavailable.
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3.5.1.2 Frame Priority Striping (FPS)

The FPS algorithm splits data based on the frame type. Sharma et al. [18]
have used this algorithm for scheduling MPEG video stream, due to its inherent
frame types. MPEG video [42] in general consists of three types of frames, 1)
intra-coded pictures i.e. I-frames, 2) predictive coded pictures i.e. P -frames,
and 3) bi-directionally coded pictures i.e. B-frames. The priority order of the
frames is I >P >B, based on their dependency on each other for decoding. Hence,
MPEG video stream can be separated into three sub-streams (sfI , sfP , sfB) based
on these frame types. Similar to LPS, in FPS channels are allocated according
to the sub-stream priority. The I-frame sub-flow (sfI) is sent over the most
reliable channels, and so on. This allocation also adapts to the changes in channel
conditions, which in this case is channel’s loss rate.

3.5.1.3 Independent Path Striping (IPS)

This algorithm is well suited to the multiple state video coding [43], where a
stream is encoded into multiple independently decode-able sub-flows. However,
information from one sub-flow can be used to correct the errors in other sub-flows.
The IPS tries to achieve path diversity by allocating a separate channel for each
description. Video can be reconstructed back (although at lower quality) even if
one or more sub-flows are lost. This scheduling scheme is helpful in the scenarios
where unannounced channel drop-off are frequent. This scheme adapts to the
long term drop offs by re-allocating corresponding sub-flows to other available
channels.

3.5.2 Adaptive Call-back Scheduling

Adaptive call-back scheduling allows applications to schedule data across the avail-
able channels itself and adapts to the changes in channel conditions. See section
3.4.2 for details on call-back scheduling. It works like the congestion manager
framework of the operating systems [44]. This framework uses a module called
congestion manager, which provides the network flow management and allows ap-
plications to be notified and adapt to the changing network conditions. However,
such algorithm is difficult to implement for multiple applications and for multiple
streams.
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3.5.3 Work Queue (WQ) Scheduling

COMBINE [17] proposes this energy efficient algorithm that supports collabora-
tive downloading. According to this algorithm, the initiator splits the file to be
downloaded into fixed equal sized work items. These data chunks (byte ranges)
constitute the WQ at the initiator, i.e. the sender. Collaborators query the ini-
tiator and pick up the next available work item from the WQ. Each collaborator
downloads the amount of data specified in its work item and transfers it to the
initiator. It then picks up more work by querying WQ and keep working until WQ
is empty. In this way the work performed by each collaborator is proportional to
its WWAN speed, without the initiator having to allocate work explicitly. Hence,
there is no need to maintain up-to-date channel state information. This inherent
feature of WQ algorithm makes it energy efficient and suitable to run on a mobile
device.

However, the work-item size needs to be picked appropriately. Too large work-
item size will make this algorithm less agile to the changes in channel conditions.
It also increases the amount of data that needs to be resent in case of any channel
failure. On the other hand, too small a work-item size will place considerable
processing overhead on the scheduler.

3.5.4 Objective Driven Scheduling

Horde [16] introduces an objective driver scheduling technique in which an appli-
cation can specify its QoS objectives. Horde also provides a specification language
that allows the applications to express their scheduling goals as network-QoS ob-
jectives. "An Objective defines a QoS goal and describes how the achievement of
that goal adds to, or subtract from, overall application utility" [16].

Objectives can be defined for single or multiple streams. When an application
does not specify an objective for some QoS aspect of a stream, it is assumed
that the application does not care about that aspect of QoS for that particular
stream. Hence, better channel transmission slots are first assigned to the streams
who specify that QoS aspect in their objective and rest of transmission slots are
allocated to those stream who have not.
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3.5.5 Limitations

This class of scheduling algorithms makes most intelligent schedules, but it in-
curs significant processing overhead, as obtaining the updated channel conditions
and application requirements is expensive in terms of processing and reporting.
Moreover, such multi criteria scheduling algorithm is difficult to implement.

3.6 What is Still Missing?

We have already discussed the working, merits and limitations of each scheduling
algorithm and have classified them into four scheduling classes. Table 3.1 summa-
rizes the comparison of these scheduling approaches against our scenario require-
ments stated in section 2.6.1. This comparison leads us to identify knowledge
gaps in the existing efforts and finally to our choice of a novel RAW scheduling
approach.

Scheduling Scheduling Requirements
Approaches Dynamic Application Support for Protection Minimal

Channel Requirements Heterogenous for Sensitive Computation and
Selection Aware Data Streams Data Communication Cost

Simple X X X X X

Application-Aware X X X X X

Channel-Conditions
Adaptive X X X X 1

Application-Aware and
Channel-Conditions Adaptive X X 2 X 3

Table 3.1: Comparison of Existing Workload Scheduling Approaches against Data
Scheduling Requirements.

Table 3.1 shows that none of the scheduling approaches fulfils all the MCC
scenario requirements. However, the application-aware and channel-conditions
adaptive scheduling approach is most related to our scenario requirements. This
approach successfully addresses the two basic requirements, i.e. dynamic chan-
nel selection and application requirements awareness. There are three very im-
portant MCC requirements that are overlooked by almost all related scheduling
algorithms. These requirements are:

1ADAS claims to be energy efficient.
2Objective driven scheduling supports multiple heterogeneous data streams.
3WQ scheduling is energy efficient by design.
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1. Support for Multiple Heterogeneous Data Streams: Some scenar-
ios of collaborative data transfer may require the transmission of multiple
and possibly heterogeneous data streams. Almost all existing scheduling
approaches can not handle these multiple and possibly heterogeneous data
streams originated from one or multiple application(s). Most of the appli-
cation requirements aware algorithms focused on one application with only
one data stream except Horde [16]. They consider multimedia streaming
[1] [17] as a motivating application. Only the objective driven scheduling
approach proposed by Horde [16] allows an application to specify its QoS
goals for the multiple streams.

2. Data Security: Some scenarios of collaborative data transfer may re-
quire transfer of sensitive data, e.g. military reporting, telemedicine. This
data may have multiple levels of sensitivity, hence the scheduling algorithm
should be able to satisfy security requirements and, be able to adapt to dif-
ferent sensitivity levels. Providing security for the sensitive data has been
side-stepped in all of the above mentioned scheduling approaches. They
assume that the improved performance alone is the key requirement [18]
[1]. We are not aware of any prior work that addresses the data security
issues in the context of collaborative data transfer in MCC.

3. Energy Efficiency: As mentioned earlier, almost all existing systems sup-
port collaborative downloading, where IMUX runs on a proxy/server. This
could be the reason that most of the existing systems ignore energy effi-
ciency while designing their workload schedulers. PRISM [1] claims that
it can support upstream traffic by placing PRISM-IMUX at a mobile node
in the community. In terms of energy efficiency they only mention the re-
duction in power consumption achieved by fast data transmission. There
is no evidence that they consider energy efficiency as a key requirement in
their system architecture and components design. Considering the resource
limitations of MCC member devices, we can not simply use the existing
implementations of IMUX for supporting data uploading.
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3.7 Best Way Forward: A Risk-Aware Work-
load (RAW) Scheduler

Analysis of existing scheduling schemes against the requirements has led us to a
design decision that our proposed solution must be adaptive to the application
requirements and changes in the channel conditions. Furthermore, it is realised
that energy efficiency should be an important design consideration, hence, the
proposed scheduler needs to be designed such that the QoS performance is opti-
mal and the energy consumption is minimum. By providing the scheduler with
the application specific QoS and security requirements and channel conditions
information, we are making it aware of the risk associated with each scheduling
decision.

Few existing works in data scheduling are most related to our proposed schedul-
ing approach. For example, the WQ algorithm proposed by COMBINE [17] is
adaptive to the channel conditions in an energy efficient manner. We propose to
use a novel multi-level WQ algorithm to cater the multiple levels of application’s
QoS and security requirements (see chapter 5 for details). The application-aware
scheduling algorithms presented by Sharma et al. in Handheld Routers [18], are
of our interest as they schedule data according to the priority of frames, layers or
sub-flows.

3.8 Chapter Summary

This chapter has surveyed some of the scheduling algorithms that are proposed for
the inverse multiplexed environments. It has classified them into four classes and
critically analysed each class. It then compared the state-of-the-art scheduling
approaches in terms of addressing all the MCC scenario requirements. It has been
identified that the application-aware and channel-conditions adaptive scheduling
approach is most related to our MCC scenario requirements. However, several
limitations have been identified in most of the related work. For example, limited
support for multiple heterogeneous data steams, lack of data security and energy
efficiency. At the end, we have outlined our vision to design a RAW scheduler
that overcomes the limitations of existing solutions. We will discuss our vision
of risk-aware scheduling and a detailed design of the proposed RAW scheduler in
the next chapter.
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Chapter 4

The RAW Scheduler:
Architectural Design

4.1 Chapter Introduction

This chapter describes the architectural design of the RAW scheduler, and the
methodology used to evaluate its performance. It describes the working of each
of its architectural component in details. These components are the Data Split-
ting Module (DSM), the Encryption and MAC (Message Authentication Code)
Service, the Work Queue Manager (WQM), the Trust Manager (TM), the Access
Control Module (ACM) and the Collaborators Monitoring Module (CMM).

The organisation of this chapter is as follows. Section 4.2 and 4.3 outlines the
requirements and assumptions for a novel RAW scheduler. Section 4.4 presents
the high-level architectural overview. Section 4.5 presents the detailed architec-
ture design. It describes the functionality of each component of the proposed
scheduler. Section 4.6. discusses a case study of MPEG video scheduling using
the RAW scheduler. Section 4.7 discusses different evaluation methodologies and
justifies the choice of using a hybrid of simulation and test-bed experiments as
the evaluation methodology for this thesis.

4.2 Design Requirements

The RAW Scheduler enables efficient and secure scheduling of data in the MCC, in
a processing efficient manner. The architectural design of this scheduler is based
on the requirements discussed in section 2.6.1. These requirements include:
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• Support for multiple applications where each may have multiple data streams.

• Best-effort support of QoS and security requirements associated with each
application.

• Adaptive to the changes in channel conditions measured in terms of available
bandwidth and data loss rate, etc.

• Adaptive to the QoS capability levels of the collaborators,.

• Energy efficient.

• In addition to the functional requirements mentioned above, the RAW
scheduler architecture should be modular to enable flexibility and exten-
sion of its components.

In satisfying the above requirements, we need to:

1. Design a framework to capture the application level QoS and security re-
quirements for multiple streams.

2. Design a data splitting algorithm which takes into account the application
level requirements.

3. Design an algorithm to evaluate the capability levels of the potential col-
laborators.

4. Design an access control method that takes into account both application’s
QoS requirements and collaborator’s QoS capability levels while granting
the access permissions to multiple collaborators.

The challenging issue here is how to accomplish (1)-(4) with minimum costs. In
other words, design decisions should be taken at the architectural, components
and algorithmic levels to minimise the communication and processing costs on
the hosting mobile node.

4.3 Design Assumptions

The following assumptions have been made in the design of the RAW scheduler:
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• The community formation is managed outside the scheduler by a module
called the Community Manager. The task of community formation can
be accomplished by using a community formation protocol such as those
proposed in [17] [18]. the Community Manager has the option of adding
more collaborators in cases where existing transmission channels are not
capable of supporting the required level of QoS and if there are more (ideally
better quality) channels available.

• The congestion control mechanism has not been considered in this scheduler
design. This function is considered as a separate module from the scheduler.
There are a few existing proposals to control the transport layer congestions
[1][38].

• The RAW scheduler can support multiple QoS priority levels, but, for the
proof of concept, in this thesis, we use three QoS priority levels. The data
with highest QoS priority, ( i.e. highest bandwidth and/or loss tolerance
requirements 1) is hosted in highest level WQ, i.e. WQ1. The WQ2 hosts
data with lower QoS requirements and so on. It is worth noting that the
RAW scheduler design is dynamic, hence, can support WQs with more than
three levels.

• We assume that the RAW scheduler runs only one scheduling session at
a time, and during each session it schedules data for one application only.
However, an application can have multiple streams with different, possibly
conflicting, QoS and security requirements.

• We also assume that applications specify their QoS and security require-
ments by attaching a corresponding tag to the data. Implementing a ’Data
Tagger’ is outside the scope of our project, however, we have defined the
specifications for these QoS and security tags. For application level QoS,
we consider end-to-end channel characteristics like available bandwidth and
loss tolerance. Three security requirements namely confidentiality, integrity
and availability are considered in the design. It is important to mention
that the design is flexible enough to support additional QoS and security
characteristics.

1we have reversed the data loss rate to get a loss tolerance value to make it a measure of
goodness
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4.4 Architecture Overview

This section presents a high level view of the RAW scheduler’s architecture.
"Risk is the combination of the probability of an event and its consequences" [45].
Whereas, "trust is the extent to which one party is willing to depend on the other
party in a given situation with a feeling of relative security, even though negative
consequences are possible" [46]. Generally, a trust relationship involves two par-
ties: a trustor and a trustee. Yan [47] defines "trustor as a person or entity who
holds confidence, belief, faith, hope, expectation, dependence, and reliance on the
goodness, strength, reliability, integrity, ability, or character of another person or
thing, which is the object of trust - the trustee". As shown in Figure 4.1, there is
a correlation between the risk and trust, i.e. more trust implies less risk and vice
versa [48]. Hence, trusting infers the willingness of a trustor to accept perceived
risk, if any, from the trustee.

Figure 4.1: Risk and Trust. Reproduced from [2]

In the MCC, perceived risk is higher mainly because of the node anonymity,
high mobility, limited range and potentially unreliable wireless links of the collab-
orating nodes, etc. The possibility of eavesdropping, spoofing, denial-of-service
attacks increases. The QoS and security approaches used for the fixed networks
are not feasible in MCC due its ad-hoc infrastructure and resource constrained
nature of the member devices.
Our Vision: The RAW scheduler employs the correlation between the values at
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stake and the values of trust (as shown in Figure 4.1 ), to minimize the risk of
poor QoS performance associated with the scheduling decisions. To do so, it splits
a data stream into multiple sub-streams according to the QoS requirements of the
application. The application requirements are specified for each data stream and
are notified using tags that are sent along with the associated data stream. The
RAW scheduler splits a data stream S into multiple sub-streams Si : i = 1, ..., n
based on the QoS tags. Here, the sub-stream index i corresponds to the sub-
stream QoS priority, where the first index refers to the data with the highest
bandwidth and loss tolerance requirement. In other words, S1 would be a data
stream with strict QoS requirements and S2 with less strict QoS requirements and
so on. The multi-level WQs are also assigned with the priority levels. The sub-
streams are allocated to the multi-level WQs in such a manner that the highest
priority data is buffered in the WQ with the highest priority level. Hence, there
is a one-to-one relation between the sub-stream QoS priority level and the WQ
priority level (here after called index). Equation (4.1) represents the assignment
of sub-streams on the WQs.

WQi ⇐ Si : i = 1, ..., n (4.1)

The RAW scheduler also ranks collaborators according to their QoS (band-
width/loss tolerance) capability levels, Ci : i = 1, ..., n. The capability level of
a collaborating node is evaluated based on its QoS offered value and QoS trust
value. The QoS offered value is provided by each collaborator during the com-
munity formation phase. The QoS trust value is evaluated by the initiator and it
is based on the collaborator’s QoS performance during previous collaborations.
The trust evaluation process considers previous collaborations of a collaborator
with the initiator as well as with other MCC member nodes.

The scheduler schedules a sub-stream over the nodes with a capability level
that is not lower than the priority level of the sub-stream. In other words, as-
suming that a sub-stream has a priority level of Sk. The nodes that are allowed
to serve this sub-stream must have a minimum capability level of Ci ≥ Sk, where
i = k, k + 1, ..., n. To define these access permissions, a novel CAPability-aware
Access Control (CAPAC) model is proposed. In this model, access permissions
are defined based on the collaborator’s (i.e. subject’s) QoS capability level. The
objects to be protected are WQs. In this way, a RAW scheduler makes risk-aware
scheduling decisions to achieve best effort QoS. Figure 4.2 represents our vision
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of capability-aware access control model.

Figure 4.2: CAPability-aware Access Control (CAPAC) model

Figure 4.3 sketches the high-level architecture of the RAW scheduler. It can
be seen that scheduler has the following architectural components:

• Data Splitting Module (DSM)

• Encryption and MAC (Message Authentication Code) Service

• Work Queue Manager (WQM)

• Trust Manager (TM)

• Access Control Module (ACM)

• Collaborator Monitoring Module (CMM).

The security requirements of an application are also specified in the form
of tags, and these tags are generated and attached to the data stream(s) by a
module called the ’Data Tagger’. Upon the receipt of a data stream, the DSM
first interprets the tags attached to the data stream to obtain its QoS and security
requirements. Depending on the QoS requirements carried in the data tags, the
DSM splits incoming data into sub-streams. The QoS requirements of a sub-
stream define the priority rank of that sub-stream. A data stream with the highest
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Figure 4.3: RAW Scheduler Architecture

bandwidth and loss tolerance requirements will get the highest priority. Moreover,
the DSM uses security tags to identify any sensitive data that requires encryption
and/or MAC to ensure its confidentiality and/or integrity, respectively. For any
such sensitive data, the DSM passes the data to the Encryption and MAC Service
where the data is encrypted and/or MACed. The DSM then sends these QoS
priority ranked, partially encrypted, sub-streams to the multi-level WQs. These
WQs buffer the highest priority data in the highest level WQ and the lowest
priority data in the lowest WQ, and so on. WQM monitors the state of the WQs,
e.g. the length of each queue. If a WQ has its buffer full, then WQM tries to send
its associated data to the next available (lower level) WQ. In this way, the chances
of congesting a particular WQ can be minimised. In other words, WQM applies
some extra constraints on the data allocation to the WQs. The TM evaluates the
trust values of the collaborators based on their previous QoS performances. The
CMM uses these trust values to compute the QoS capabilities of the collaborators.
It then classifies them into QoS capability levels, each corresponding to one WQ.

The assessment of the QoS requirements of an application and calculation
of the QoS capability levels of collaborators are carried out independently. The
ACM defines access permissions that matches the data priority levels with the

78



Figure 4.4: CAPability-aware Access Control (CAPAC) Components

collaborator’s QoS capability levels. Figure 4.4 presents the contribution of dif-
ferent modules in the CAPAC model employed by the RAW Scheduler. The
CMM coordinates the communication between the RAW scheduler and the Com-
munity Manager, and monitors the long-term changes in the channel conditions,
i.e. node departure and channel failure. It also helps TM in assigning the trust
certificates/ratings to the collaborators after each collaborative session. The next
section presents the detailed working of each architectural component.

4.5 RAW Scheduler In Depth

This section describes the workings of the RAW scheduler’s architectural compo-
nents in detail.

4.5.1 Data Splitting Module (DSM)

The DSM splits an application’s data stream into multiple sub-streams, accord-
ing to the application’s QoS and security requirements. The RAW scheduler uses
two conventional metrics to capture the application level QoS requirements, these
are bandwidth and loss tolerance. It recognises three application level data secu-
rity requirements: confidentiality, integrity and availability. The RAW scheduler
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supports the availability requirement by integrating it with the conventional QoS
parameters described above. Hence, an application may only specify confiden-
tiality and integrity as security parameters. An application might have multiple
streams, each having different, possibly conflicting requirements. Consider the
scenario of an emergency health care application. The application may require
to secure patients personal identification data but may not be concerned about
the security of a data stream carrying the pulse information or a video stream
used for correspondence with doctors at a distant location. However, the stream
carrying pulse rate may impose a lower data loss rate than the video stream.

We propose to use tags to allow an application to attach its requirements to
its data streams. Our proposed tags are similar to the tick-tags [49]. These tags
are stream centric, i.e. they are defined for the data streams and are interleaved
with the data inside the streams. In other words, these tags are not maintained
separately from the data they refer to. A tag uniquely identifies the streaming
data objects to which it refers. In the data model used for our tagging framework,
a data stream S is considered as a sequence of packets that arrive over the time.
An application can attach a tag t to a streaming object O, where O can be an
entire data steam S or an individual packet P or a group of packets G. Moreover,
an object O can have multiple tags attached to it. A tag has the following format:

t : {tid, sid, applicability, type, content}

• Here, tid uniquely identifies the tag, and sid is the stream identifier that
allows our scheduler to support multiple streams simultaneously.

• Applicability defines the granularity of a streaming object to which the tag
refers. It has three values: 0 to represent an entire stream, 1 to represent
one packet and a number n > 1 to represent a group of n packets. The
more fine-grained tagging generates more tags for a stream, hence, incurs
higher tag processing cost.

• The Type attribute of this tagging schema classifies a tag as QoS or security
tag. At the moment, we specify two values for the type field: 0 means it
is a security tag and 1 means it is a QoS tag. This design is flexible to
accommodate new tag types.

• The value of content depends on the type of the tag. For example, if it
is a security tag then the value of content is an array: {confidentiality,
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integrity}, where each element can have value either 1 or 0. This is to rep-
resent whether that particular security aspect is required or not. However,
if it is a QoS tag the value of content is an array: {bandwidth, loss tol-
erance} where each element can have value either H, M or L to represent
High, Medium or Low requirement for that QoS aspect, respectively. It is
worth noting that the content can be a string, number, or an array and
content array can be of any length.

This tagging method has a number of advantages.

• The tags can be shared by several streaming objects. This can be done by
specifying an appropriate applicability value. It can reduce the memory
and processing overhead.

• The tags interleave with streaming data, facilitating a faster search for the
objects they refer to. The data splitting algorithm proceeds in a sequential
manner when processing a tag and its associated data.

• These tags are as dynamic as the streaming data. They are infinite, arrive
on-time, stay in the system for a finite time and later get discarded.

• Furthermore, the frequency and structure of these tags are independent
of the data they refer to. If an application does not tag its data streams
then the data streams will be not be processed for any specific QoS and
security support. However, the RAW scheduler tries to support the best-
effort QoS by maximising the utilisation of the high bandwidth and loss
tolerant channels.

As shown in Figure 4.5, the Data Tagger embeds tags into the original data
streams. These tags precede the data they refer to. The DSM processes the
stream in a sequential order. It first processes a tag and then its associated
data and so on. Based on the values of security tags for confidentiality and
integrity it identifies the data that requires security processing. The DSM then
uses the Encryption and MAC Service to encrypt and/or append MAC to any
data identified.

The DSM also splits data into sub-streams based on the QoS requirements,
namely the required bandwidth and data loss rate. We have reversed the data
loss rate to get a loss tolerance value to make it a measure of goodness. It makes
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Figure 4.5: Data Tagging and Splitting

the tag design consistent. Each of the two parameters can have three possible
values, i.e. High, Medium and Low. The DSM ranks these sub-streams according
to the QoS parameter values. The sub-stream with the highest QoS requirements
will be assigned to the highest QoS priority level. The DSM then feeds these
partially encrypted and MACed, QoS priority ranked sub-streams into the WQs
of corresponding levels.

4.5.2 Encryption and MAC Service

The Encryption and MAC Service is a library of light-weight encryption algo-
rithms, e.g. SRMT [50] and MAC algorithms. Any encryption and MAC algo-
rithm can be supported, plugged in or deleted from the Encryption and MAC
Service. If an incoming streaming object has its security tag value(s) set, the
DSM calls this service for security processing (encryption and/or MACing). In-
stead of applying the computationally expensive data security techniques to the
entire data stream, the RAW scheduler supports selective encryption and MAC-
ing of the data at several granularity levels: a single or a group of packet(s). The
selective security processing of data makes the solution light-weight [51] [52] [53]
[54]. Applications can always specify a requirement for applying these security
techniques on the entire stream(s).
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4.5.3 Work Queues Manager (WQM)

The WQM executes the novel MWQ algorithm. In proposed multi-level WQs,
each WQ has a distinctive index, corresponding to the priority levels of multiple
sub-streams generated by the DSM. The placement of the sub-streams onto the
WQs is pretty straight forward and is expressed by the equation (4.1). This
equation places the sub-stream with the highest priority level (most strict QoS
requirements) in the WQ with the highest QoS index.

To further optimize scheduling, the WQM considers other factors as well, e.g.
lengths of queues, the number of collaborating nodes serving a WQ, etc. WQM
monitors the status of each WQ. If a WQ is full then it tries to schedule the
associated data onto a WQ at a lower index. The WQ index determines the
QoS capability levels of the collaborators that can access it. The CMM uses
the trust values to determine the trustworthiness of the QoS capability claims
made by the collaborators. The Trust Manager evaluates these trust values of
the collaborators.

4.5.4 Trust Manager (TM)

The ad-hoc and open environment of the MCC and resource constraints in mobile
devices make the design of TM a challenging task as compared to other Internet
related solutions. For example, the Internet relies on a central, fixed and always
available infrastructure of certification-authority and directory servers for trust
management [55]. However, such a fixed trust infrastructure is not feasible in
MCC, that suggests a decentralized trust infrastructure. Furthermore, Internet
trust relations are generally long-lived and stable, therefore they do not need to
be evaluated frequently [55]. In contrast, the MCC trust relations are typically
short lived due to the node mobility. Therefore, the evaluation of trust in MCC
should be on the fly, and this process must be short and fast. Most importantly,
trust establishment may need to be performed with a subset of trust relations, i.e.
with incomplete trust evidence, since there may be times where very few nodes
are reachable in a MCC.

Based on the design considerations discussed above, we propose a decentral-
ized and reputation based design of the TM. The TM running on an initiator i
(i.e. trustor) uses the following four factors to estimate a trust value Tij for a
collaborator j (i.e. trustee).
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1. Direct Trust (DT): i’s previous direct experiences with the trustee (DTij)

2. Indirect Trust (IT): j’s reputation in the MCC (ITij)

3. Direct Contribution (DC): j’s direct contribution for the truster (DCij)

4. Indirect Contribution (IC): j’s contribution for other MCC members (ICij)

Hence, the value of Tij is calculated using the following equation:

Tij = f(DTij, ITij, DCij, ICij) (4.2)

TM uses weights to govern the relative significance of the four factors. It is im-
portant to note that the TM evaluates the trust values for bandwidth and loss
tolerance of a collaborator separately. We are not representing the trust equations
for both QoS trust ratings separately in this section, as formulas are essentially
the same.

Direct Trust (DT): The DT represents the initiator’s belief on the collabo-
rator’s QoS capacities based on the past collaborations. Given α and β, the DT
can be expressed as [56]:

DTij = 1− αn
β

(4.3)

Where, n is the number of node i’s satisfied transactions with the node j (the
meaning of satisfied transaction is defined later in this section). α is the learning
rate - a real number in the interval [0,1]. The smaller the α, the faster the trust
value grows. β is the punishment coefficient of an unsatisfied transaction. For
a satisfied transaction, the β value is equal to 1 and obviously for an unsatisfied
transaction β > 1. This coefficient makes the descending rate faster than the
ascending rate for the trust value [57]. This reflects human behaviour of distrust,
where it takes much more time/transactions to gain trust than to lose it. The
value of DTij is in the range of [0,1]. The value of n starts from 0 to reflect zero
level of trust when there is no prior interaction between the pair of nodes. As the
number of satisfied transactions increase, the DT value approaches to 1.

Indirect Trust (IT): In the dynamic and open environment of MCC, an ini-
tiator may encounter an unknown collaborator. In such cases, the direct trust
between the two nodes is zero. The initiator has to estimate the collaborator’s
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trustworthiness and one way of doing this is through the recommendations from
other nodes. Trust built on the recommendations is termed as indirect trust and
it can be calculated using Equation(4.4) [56]:

ITij =
∑k
t=1(DTit ∗DTtj)

k
(4.4)

where, k is the minimum number of recommendations required to calculate a
significant IT value, and this number is determined by the initiator. If recom-
mendations are more than k, then initiator only uses the top k recommendations.
If the number of recommendations are less than k, then the division is still by
k, resulting in a lower indirect trust level. DTit denotes the direct trust value
node i gives to the node t (recommending node), and DTtj direct trust value
node t gives to the node j. Since the direct trust values DTit and DTtj are in
the range of [0,1], the indirect trust of node i in node j (based on the node t’s
recommendations) is also in the range of [0,1] and is always less than DTit or
DTtj.

It is important to note that the recommendations involve only a single level of
indirection, i.e. they must come from the nodes who have direct interactions with
both node i and node j. The indirect trust value can be derived via a recommen-
dation path, involving two or more nodes [58]. However, such recommendation
path is not favoured in our TM design as its implementation is expensive and it
is complex to derive a very insignificant trust value.

Direct Contribution (DC):DCij denotes the total amount of data (in megabytes)
that node j has transferred for node i. For the derivation of an overall trust value
in the range to [0,1], we need to normalize DCij by scaling it between 0 and 1.
To do so, assume that there are DC values stored in i’s trust database. Here,
DC = (DCij,...,DCin) and n is the total number of collaborators who had direct
experience with i. The normalized value of DCij for a collaborator j can be
calculated using Equation(4.5):

Normalized(DCij) = DCij −min(DC)
max(DC)−min(DC) (4.5)

where,
min(DC) = the minimum value for DC
max(DC) = the maximum value for DC
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If max(DC) is equal to min(DC) then Normalized(DCij) is set to 0.5.

Indirect Contribution (IC): IC indicates the contribution that a collaborator
has made for other nodes in the MCC. The formula to evaluate the IC score of a
node j from node i’s point of view is as follows [56]:

ICij =
k∑
t=1

(DTit ∗DCtj) (4.6)

Where,
DTit is the direct trust value node i gives to the node t
DCtj is the direct contribution value of node j towards the node t
k is the number of recommending nodes.

Instead of calculating the contribution that a node has made to all the MCC
members, the above formula reflects the view that is realistic for the initiator.
Initiator is interested in knowing the contribution of the collaborator to the nodes
the it knows and trusts. Weighing the recommendation score from a node with
its DT value helps to neutralize the effect of colluding parties, where a group of
nodes lie about their contributions against each other.

Trust Evidence Management: The TM evaluates the direct experience and
direct contribution of a node j, i.e. DTij and DCij, from the trust evidence
stored on the trustor, i, itself in its local trust database. To compute the repu-
tation values, i.e. ITij and ICij, we suggest that each node carries its portfolio
of credentials [59] earned from the past interactions with any of the MCC mem-
bers. A collaborator provides this trust evidence (certificates) to the initiator
prior to a collaborative session. In this way, the collaborators can prove their
trustworthiness, without the presence of a recommending node. Hence, there is
no need to propagate reputation information across the community. This reduces
the communication costs introduced by the trust evaluation process. To further
reduce the communication and processing overheads, we suggest that an initiator
publishs a list of recommenders trusted by it, during the community formation
process. The collaborators are required to send only trust certificates signed by
the recommenders in the list. Although, it may reduce the quantity of trust evi-
dence, the overall quality of evidence is improved.
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Transaction Rating: After the completion of a collaborative session, the initia-
tor has to issue a new trust rating certificate to each of the participating collab-
orators. Initiator also updates its DT and DC scores in its local trust database
based on the transaction satisfaction level. In our design, there are three trans-
action satisfaction levels: satisfied, fair and unsatisfied. The two threshold values
(for bandwidth and loss tolerance separately) are configured for each collabo-
rative session and are used to define the transaction satisfaction levels. These
threshold values are: th(H) and th(L), representing the threshold for high QoS
and low QoS, respectively. A transaction is regarded as satisfactory for a certain
QoS aspect if that QoS aspect’s average performance is greater than the th(H)
value (configured for that particular QoS aspect). In other words, a transaction
is regarded as satisfactory in terms of bandwidth if the average data transfer
speed has reached the th(H) level configured for bandwidth and the same is true
for the data loss rate. The transaction is treated as fair where the QoS perfor-
mance falls below the th(H) level but stays above the th(L). Below th(L) level,
the transaction is regarded as unsatisfactory for that QoS aspect. As mentioned
earlier, we are not representing trust equations for both QoS aspects separately,
as formulas are essentially the same. Hence, the formulas to update DT based
on the equation (4.3) are:

• Satisfied: DTij = 1−αn+1

1

• Fair: DTij unchanged

• Unsatisfied: DTij = 1−αn−1

β

For a satisfied transaction, the β value is equal to 1 while for an unsatisfied
transaction the β value is > 1. This coefficient makes the descending rate faster
than the ascending rate for the trust value [57]. Moreover, the malicious nodes
are added to a black list. In this way, nodes making false claims about their QoS
and/or showing malicious behaviour, get their trust rating reduced.

4.5.5 Access Control Module (ACM)

As we have discussed earlier, the TM evaluates the QoS trust values of each col-
laborators. These trust values are used as weights to compute the more realistic
QoS values, from the QoS values offered by the collaborator. Based on these
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realistic QoS value of each collaborator, it is placed in a QoS capability level.
Each capability level is treated as an access right group. The ACM defines ac-
cess permissions for each of the right groups, instead of defining them for each
collaborator. Figure 4.6 represents the process of capability level assignment of a
collaborator, carried out by the CMM and TM during the community formation
phase. The capability level of a member remains the same during a collaborative
session.

Figure 4.6: Process of Capability Level Assignment

Figure 4.6 shows that a collaborator, i.e. subject, provides CMM with offered
bandwidth and loss tolerance values, represented by the OB and OL in figure 4.6.
The CMM then asks TM to compute trust values for that subject (for each QoS
parameters, i.e. bandwidth and loss tolerance) using its QoS performance history.
Based on the returned trust values, i.e. TB and TL, and QoS values offered by
he subject itself, i.e. OB and OL, CMM calculates the realistic values for the
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bandwidth and loss tolerance, i.e. RB and RL, for that node. Using the QoS
threshold values th(H) and th(L), defined in previous section, node with RB
and RL will be assigned to a QoS capability level. As mentioned earlier, each
capability level represents a right group, hence CMM binds that collaborator
with a right group with QoS capability level index ’C’. In this thesis, three QoS
capability levels are defined as proof.

• High represented by index 1

• Medium represented by index 2

• Low represented by index 3

The collaborators with a capability index 1 offer the highest level of QoS. ACM
considers WQ’s as objects that need to be protected and collaborator groups are
subjects who should be granted proper access rights. ACM defines the access
scope for each group in terms of the highest level of WQ that can be accessed
by the nodes in that group. A group needs to have its capability level value
(C) equal to or greater than the corresponding index of the WQ. Hence, the
nodes that are allowed to serve a WQ must have a minimum capability level of
Ci ≥ WQk, where i = k, k + 1, ..., n. The ACM also defines the priority order in
which different WQs should be accessed.

Capability Level Access Privileges
High WQ1

WQ2
WQ3

Medium WQ2
WQ3

Low WQ3

Table 4.1: Access Control Policy for CAPAC.

Table 4.2 shows the proposed access control policy for a MWQ with three
levels. As shown in the table, access control rules restrict the low capability nodes
to get data from the WQ3 only. The medium capability nodes can access both
WQ3 and WQ2 while he high capability nodes can access all three WQs. The
order of access is from top to bottom, i.e. a node will first serve the WQ of highest
index that is accessible. If this WQ is empty then it will serve the WQ at a lower
level and so on. This access control policy reduces the chances of allocation of
the data with strict QoS requirements over the least capable (low QoS) nodes.
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4.5.6 Collaborator Monitoring Module (CMM)

the CMM provides an interface between the RAW scheduler and the collaborators.
It coordinates with the TM to calculate the capability levels of the collaborators.
At the end of each session, it assigns trust certificates to the collaborators based
on their QoS performance during a collaborative session. Most importantly it
monitors the long-term changes in the channel conditions, e.g. unannounced
node departure and channel failure, etc. and notify Community Manager, which
inturn can add new nodes in the MCC, if required.

4.6 A Case Study: Scheduling MPEG Video
Stream using RAW Scheduler

This section explains the scenario of risk aware scheduling of MPEG video [42]
in the MCC. We have employed a modified version of the FPS algorithm (see
details in section 3.5.1.2) with some preliminary assumptions. We assume that
all participating nodes involved in the MPEG video transfer have already been
classified into QoS capability levels by the CMM. For this example, we assume
three QoS capability levels namely High (H), Medium (M), Low (L). We also
assume that the collaborative group is formed such that the aggregated bandwidth
of bundled WWAN channels is sufficient for the desired MPEG video stream
transmission.

Our proposed algorithm splits a MPEG video stream into multiple sub-streams
and assigns them to the MWQs based on the importance of the frames. Access
privileges are defined to restrict the scheduling of important frames over the most
trusted nodes.

4.6.1 Structure of MPEG Video Stream

The MPEG-1 standard [60] is a coding format for the audio and video streams.
We are considering the video streams [42] for this case study. A MPEG video
frame typically is composed of 20 to 60 packets. The loss of one packet leads to
the loss of a complete frame. Depending on the type of frame, this loss leads to
the perceptible artifacts. For example, some coloured squares (blocking) might
appear in the video, different scenes overlap, videos may become completely un-
recognisable, or the movement of objects in the video is irregular, etc. The main
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feature of the MPEG video is that frames are no longer independent of each other
as is the case with Motion-JPEG, which is a series of single JPEG [61] images.

A MPEG video sequence consists of three different frame types:

1. Intra-coded pictures i.e. I-frames

2. Predictive coded pictures i.e. P -frames

3. Bi-directionally coded pictures i.e. B-frames

The frames from one I-frame up to the frame before the next I-frame form a
so called the Group of Pictures (GoP). Since, the I-frames are encoded similarly
to the JPEG images, their decoding is independent of other frames. The decoding
of the P -frames depends on the preceding I or P frames of the same GoP. The
decoding of the B-frames depends on both the preceding and the succeeding I
and P frames [62].

Figure 4.7: Typical Structure of a Group-of-Pictures (GoP) in a MPEG Video
Stream. Reproduced from [3].

Figure 4.7 shows a sequence of MPEG frames and their inter-dependencies which
are relevant for decoding the stream. The arrows show the dependencies between
the frames. For example, correct decoding of B2 is not possible without the
presence of I0 and P3. Similarly, the whole GOP cannot be decoded properly if
the corresponding I-frame is not present.

In terms of user-perceived quality, the loss of an I or P frame causes visible
artifacts to appear during the rendering of the dependent frames (see Figure 4.8)
while the loss of a B-frame does not influence the quality of any other frames
much. This makes the loss of B-frames preferable to the loss of P and I frames
[3].
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Figure 4.8: MPEG Video’s B-frames in Presence (left) and Absence (right) of
Base-frames. Reproduced from [3].

4.6.2 Adaptive Video Streaming

The multimedia streaming over the wireless networks experience high channel
error rate and variable channel bandwidth. Hence, it is very important to adapt
the transmission rate to the variable network conditions. There are two different
approaches to perform transmission rate adaptation. The first approach is to
adapt the source rate to match the channel rate. This approach often incurs a
large delay on the adaptation as the channel state information needs to be sent
back to the multimedia server and multimedia server has to wait for the next clear
point (e.g. an I-frame in case of MPEG) in order to switch to a different rate.
The second approach is to prioritize the packet transmission and selectively drop
packets at the wireless last hop [3][63]. Packets that are the least important in
terms of reducing overall distortion should be dropped first. In practical network
deployments, these two approaches can complement each other. Our work favours
the second approach.

Kozlov et al. [62] built a scheduling mechanism for the MPEG video streaming
over a single WWAN channel. Their algorithm favours the transmission of more
important MPEG frames at the expense of the less important ones. They use
Medium Access Control (MAC) of the 802.11 standard to do instant detection of
the bandwidth fluctuations by observing the transmission rate from the sending
buffer. The decision on whether to drop and how many frames need to be dropped
is based on the deadline, size, and importance [63]. Sharma et al. [18] have
used FPS algorithm to split the MPEG video data based on the frame type.
It separates a MPEG video stream into three sub-streams (sfI , sfP , sfB) based
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on the three frame types. The wireless transmission channels are then allocated
according to the sub-stream priority, i.e. I-frame sub-flow (sfI) is sent over the
most reliable channels, and so on. This allocation also adapts to the changes in
the channels conditions, which in this case is channel’s loss rate. We have utilized
the same concept of FPS for MPEG video splitting with the difference that we
utilized our light weight MWQ algorithm to schedule these sub-streams onto most
reliable channels. Our proposed CAPAC ensures that the most important frames
are scheduled over the channels offering best QoS.

4.6.3 Risk Aware MPEG Scheduling

As discussed earlier, the MPEG video consists of three different frame types, I,
B, and P frames. The I frames are independent of other frames. The decoding
of P frames depends on the preceding I or P frames, and correct decoding of
B frames is not possible without presence of base frames i.e. I and P frames.
The whole GoP cannot be decoded properly if the corresponding I frame is not
present. Hence, the order of frame importance is I > P > B.

We are using three level WQs corresponding to each frame type (i.e. I-Queue,
P -Queue and B-Queue). The DSM have employed an algorithm that schedules
MPEG frames to the corresponding work queues, i.e. I frames to the I-Queue,
P frames to the P -Queue and B frames to the B-Queue. In this way, the WQ
at the highest level, i.e. I-queue accommodates the most important data, i.e.
the I-frames. Figure 4.9 presents the flow chart of the MPEG frame splitting
algorithm. Algorithm 1 presents the pseudo code of the algorithm.
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Figure 4.9: Flowchart of MPEG Video Splitting Algorithm
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Algorithm 1: Assign S =⇒ WQ

Require: S ∧WQ
Ensure: S =⇒ WQ
WQ.initialize(3) {initialize a 3 level WQ}
while S.nextFrameAvailable() do
F ⇐ S.nextFrame()
if F.isType = B then
WQB.push(F ) {push frame in B-queue}

else if F.isType = P then
WQP .push(F ) {push frame in P-queue}

else
WQI .push(F ) {push frame in I-queue}

end if
end while

The CMM evaluates the QoS capability value of each collaborating node and
classify it as a High (H), Medium (M) or Low (L) capability node. The ACM
defines the access scope for each capability level.

(i) Trust Level (ii) QoS Capability Level Work Queues

Trusted High I-Queue
P-Queue
B-Queue

Semi Trusted Medium P-Queue
B-Queue

Untrusted Low B-Queue

Table 4.2: Access Control Policies for Risk Aware MPEG Scheduling to Maximise
(i) Security and (ii) QoS.

Table 4.2 shows the proposed access control policy for the WQs hosting
MPEG video frames. It restricts the Low capability nodes to get data from the
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B-Queues. The nodes belonging to the Medium capability level can access both
the B and P queues while nodes belonging to the High capability level can access
all WQs. The priority order of the WQ access is from top to bottom, i.e. a node
will serve the WQ of highest accessible level first, if it is empty then it can serve
the node at the lower level and so on. In this way, the chances of base frames (I
and P ) allocation over the low QoS nodes are reduced.

Interestingly same scheduling technique is useful for the security purpose. If
CMM ranks the collaborators into ‘Trusted’, ‘Semi Trusted’ or ‘UnTrusted’ (in
terms of security) then the Untrusted nodes are not able to spoof videos as we are
not sending the base frames on them. The WQ access rules are the same (shown
in Table 4.2) and can be used to ensure that the base frames get scheduled over
the Trusted nodes. Hence, if least trusted nodes try to render dependent frames
transferred through them, visible artifacts appear in the video (see Figure 4.8).
We can apply data encryption techniques on the dependent frames to make video
completely unrecognisable.

4.7 Evaluation Methodology

This section discusses four popular evaluation methodologies for the QoS perfor-
mance evaluation in the network research. These methodologies are (i) modelling,
(ii) test-bed experiments, (iii) emulation and (iv) simulation. A hybrid approach
of using simulation and test-bed experiment methodology is found to best suit
our evaluation requirements, and justifications for this choice are provided.

The purpose of our QoS evaluation is to determine the ability of our proposed
solutions to provide the QoS functions in the MCC. However, experiments must
be repeatable and assessable to guarantee the reproducibility of the results [64].
Vitek et al. [65] in their research highlighted a few structural factors inhibiting
quality research. They suggest that ”Important results in systems research should
be repeatable, they should be reproduced, and their evaluation should be carried
with adequate rigour” [65]. For the purpose of the following discussion, we make
a distinction between the repeatability and reproducibility. Repeatability is the
ability to repeat experiments in a consistent manner. Reproducibility is the
ability to reproduce the results derived from the previous experiments, typically
performed by other researchers [64].
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4.7.1 Modelling

Evaluation using modelling is valuable when a controlled test-bed experiment is
not feasible. Mathematical models can capture many aspects of a network and
network performance. However, creating a mathematical model for a large-scale
dynamic network like MCC is complex. This is because of the difficulty to model
the network characteristics, such as node mobility, wireless channel characteris-
tics, etc. We can develop mathematical models to represent an appropriate level
of complexity, however, it will lead to a smaller set of findings. This limitation
reduces the usefulness of the findings. Furthermore, the degree of rigour in model
development and assessment can vary greatly, and existing beliefs might influ-
ence the model assumptions and results. Hence, evaluation via mathematical
modelling is ruled-out for use in this thesis.

4.7.2 Test-bed Experiments

The test-bed experiments evaluate the performance of new network protocols and
architectures on full-scale physical networks. The major benefit of generating ex-
perimental data from a test-bed is that these data are based on the real-world
conditions. Hence, results are more closer to those which are likely to be experi-
enced during a general real-world deployment.

However, the real-world characteristic of test-beds introduces a number of
drawbacks. First, they are affected by stochastic factors e.g., radio environment
and node mobility that make them hard to reproduce results [66]. To reproduce
the results, these factors need to be controlled but this can limit the design of
test-beds [64]. Second, test-beds are expensive to construct. The costs include the
cost of equipment, and the time cost of the participating people. The experimen-
tal evaluation methodology, no doubt is the most accurate way of performance
evaluation, that is why we used test-bed experiments for the detailed evaluation
of our proposed scheduler despite of time, cost and equipment constraints.

4.7.3 Emulation

While modelling and simulation simplify some parts of a real environment to
understand the impact of other factors. Emulation go half way between the
simulation and test-beds, by modelling some parts and running other parts in
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the real world. [64] They try to address the problems of scaling and repeatability
by emulating the wireless channel and the mobility.

However, many emulator test-beds require special hardware components. There-
fore it is difficult for other researchers to reproduce and verify results [64]. Emu-
lator test-beds can not always be a substitute for real world experiments [64].

4.7.4 Simulation

Simulation is one of the most widely used evaluation methodologies in the area
of computer networks. It allows to model a computer network by specifying the
behaviour of network nodes and communication channels [67].

Simulation is economical because it can carry out experiments without the
actual hardware. Also, it is easy to control stochastic factors (e.g., radio environ-
ment and node mobility) and scalability. Hence it is easy to repeat experiments
and reproduce results [68] [64]. Moreover, simulation is flexible that enables
the evaluation of new communication protocols and network architectures un-
der various conditions [68]. Using simulation-based evaluation as a first-step can
significantly contribute to the success of experimental testing later [66]. Hence,
simulation is chosen as the first-step evaluation methodology for this thesis.

4.7.5 Our Hybrid Approach

A hybrid approach of using the simulation and test-bed methodology is found
to best suit our evaluation requirements. As simulation is an economical and
easy way for making initial assessment of new network protocols and algorithms.
Firstly, the simulation was used to evaluate the QoS performance gain of our
proposed MWQ scheduling algorithm as compared to existing state-of-the-art
scheduling solutions in a controlled environment. The NCTUns [21] simulation
tool was used for the initial evaluation of the work given its built-in support for
the multi-interface node (details in Chapter 5). Before conducting the evaluation,
simulation model was designed carefully. To validate the simulation model we
used validation scripts that come with the simulation tool, i.e. NCTUns. The
simulator output was then compared with the reference output to validate if the
simulator has been correctly configured. After being certain that the simulation
model represents our solution specification exactly and accurately, the simulations
were run and results were obtained. The results of this initial evaluation helped
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us to identify the best way to achieve better QoS in a MCC environment, and
conduct more detailed evaluation of our RAW scheduler. However, a software bug
in the simulator restricted the expansion of the MCC network (see Appendix B.1).
We could only evaluate limited scenarios by running simulation experiments.

In stage two evaluation, we implemented a test-bed application, an "HTTP
Downloader", that is built using the RAW scheduler design to conduct experi-
ments in a real life environment (networks and devices). The "HTTP Downloader"
application downloads data from the Internet by using WWAN channels of multi-
ple mobile phones simultaneously. The implementation details are discussed (for
details, refer to Chapter 5), and the selections of, and justifications for, the selec-
tions of the tools and technologies are given. Core components of RAW scheduler
were implemented and tested to see if the MWQ algorithm still performs better.
The QoS performance of the RAW scheduler was tested for long-term as well as
short term fluctuations in channel conditions. The results obtained were anal-
ysed against our research claims and conclusions are made. A detailed analysis
of the proposed solutions was performed on the basis of the simulation as well as
experimental results.

4.8 Chapter Summary

This chapter has presented the building blocks of RAW scheduler and has dis-
cussed how it is evaluated. The building blocks of RAW scheduler are the DSM,
Encryption and MAC Service, WQM, TM, ACM and CMM. A case study of
MPEG video scheduling has been used to demonstrate the working of proposed
RAW Scheduler. A hybrid approach of using the simulation and test-bed ex-
periments is introduced in last section. Simulation was selected as the first-step
investigation methodology, and the NCTUns was chosen as the simulator. For
detailed performance evaluation, test-bed experiments were selected, details of
which can be found in the next chapter.
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Chapter 5

The RAW Scheduler: Evaluation

5.1 Chapter Introduction

This chapter presents the evaluation of the novel RAW scheduler and its core
components namely the MWQ scheduling algorithm, the CAPAC module and the
CMM. The main focus of this novel scheduler is to support the best-effort QoS
provisioning for multi-stream data in a processing efficient way. The algorithm
achieves this by (1) ranking the data into multiple priority queues based on the
application-level requirements, (2) create and maintain an ad-hoc community
of collaborating mobile devices, (3) rank collaborators according to their QoS
capability levels, (4) allowing collaborators to request for a work-item only when
ready to transfer, instead of assigning them the data by the scheduler, (5) making
sure that only the collaborators with high QoS capability can access the data in
high priority queues.

The chapter is organised as follows. Section 5.2 presents the design of a
MWQ scheduling algorithm. Section 5.3 presents the MWQ implementation in
detail using pseudo-code. The three state-of-the art scheduling algorithms are
implemented to compare the QoS performance of our proposed algorithm. These
algorithms belongs to different classes of scheduling algorithms already being dis-
cussed in chapter 3. The section 5.4 presents a simulation-based performance
evaluation of the MWQ algorithm. This section also discusses the major findings
from the simulation. These findings helped us to conduct thorough test-bed ex-
periments to evaluated the QoS performance of the RAW scheduler. Section 5.5
provides test-bed implementation details and the design of an example applica-
tion. It also provides the details of experiments performed to measure the QoS
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performance gains. Finally, Section 5.6 presents a summary of the chapter.

5.2 MWQ Algorithm Design

The design of MWQ algorithm consists of three parts: a sender entity, a receiver
entity, and a data queue entity. The sender maintains a WQ of the fixed sized
work-items. It splits the data to be transferred into work-items and place them
into multiple WQs. These WQs are then accessed by the collaborators who
are willing to fetch data for the receiver. The distinctive features of the MWQ
algorithm are explained below.

1. Priority Data Queues: Multiple data queues are maintained, where each
queue has a priority index/level. Data from multiple streams can be split
and assigned to these priority data queues according to their QoS or security
requirements. This feature will later help scheduling the most important
data on the better QoS path or trusted nodes. This priority ranking sup-
ports the access control model of the RAW scheduler.

2. Request-Assign Model: The MWQ algorithm is energy efficient by de-
sign as it supports a Request-Assign model. In this model, the scheduler is
not assigning the data on the available channels instead the collaborators
are requesting for work-items. It reduces the communication and processing
cost at the sender node hosting the workload scheduler. This model enables
the fast nodes/channels to get more work automatically and also adapts to
the short terms changes in channel conditions by design.

3. Queue Access Order: MWQ algorithm supports an access order to the
WQs where all collaborators first request data from the highest priority
WQ. If that WQ is empty only then they request for the data in WQ of a
lower level and so on. This access order ensures that the highest priority
data gets scheduled first. If aggregative bandwidth of the collaborating
channels are not able to hold the incoming data stream then the data from
the lowest queue gets delayed or dropped.

The following section describes the implementation details of the MWQ algorithm
and our reference scheduling algorithms.
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5.3 MWQ Algorithm Implementation

This section describes the implementation of RR, CP, SWQ and MWQ algo-
rithms. As we have discussed earlier, inverse multiplexing is a simple concept
used in data communication when a data stream is too large for a single trans-
mission channel. The data is split into smaller fragments and the fragments
are transmitted over separate transmission channels and are reassembled at the
receiving end. These channels may have different QoS characteristics like band-
width, latency, and loss rates. Once data have been fragmented, a scheduler on
the multiplexer decides when and in what order to transmit these fragment on to
the available links. To improve the performance scheduler strives to balance the
fragments distribution. We present four of these scheduling algorithms here.

5.3.1 Round Robin (RR) Algorithm

The first is the RR approach that allocates the fragments amongst all the available
links in an ordered fashion. Our implemented application creates multiple TCP
connections with the receiver on each of its IP addresses (Interfaces) and sends
data in a fixed order. The application creates dummy data packets of 1kb size
and sends them to the receiver alternatively on each interface in RR fashion. For
example it reads 1kb and sends it on interface-1 and then again reads 1kb and
sends it to interface-2 and so on.

Algorithm 2: RR Scheduling Algorithm
Input: number of collaborates, Single Queue Q
Output: Average throughput, transfer time
while data_sent ≤ total_data do

for i← 1 to number_of_collaborators do
fragment← read next chunk from Q;
collaborator[i]⇒ sends fragment;
data_sent+ = fragment

5.3.2 Channel Pinned (CP) Algorithm

The CP scheduling approach pins a data stream to a selected channel. This
scheduler sends fragments from a particular stream to the pinned channel only
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and discarding all the fragments that the channel can not hold, even if other
channels have spare capacity.

Our implemented application creates multiple TCP connections with the server.
It creates multiple independent threads in it, one thread for each connection. Each
thread use an independent queue to send the data.

Algorithm 3: CP Scheduling Algorithm
Input: number of collaborates N, multiple Streams 〈S1, S2, . . . , Sn〉
Output: Average throughput, transfer time
foreach thread i← 1 to N do

while data_sent[i] ≤ S[j]Size do
fragment← read next chunk from S[j];
collaborator[i]← sends fragment;
data_sent[i]← data_sent[i] + fragment

5.3.3 Single Work Queue (SWQ) Algorithm

In this approach, all collaborators gets their data fragments from a single data
queue. Each collaborator checks the queue for data fragment (also termed as
work-item) as soon as it successfully transferred the previous fragment.

Algorithm 4: SWQ Scheduling Algorithm
Input: number of collaborates N, single queue Q
Output: Average throughput, transfer time
foreach thread i← 1 to N do

while data_sent ≤ Qsize do
if (mutual exclusion condition) then

fragment← read next chunk from Q;
collaborator[i]← sends fragment;
data_sent← data_sent+ fragment

5.3.4 Multi-level Work Queue (MWQ) Algorithm

The MWQ scheduling algorithm uses multiple data queues and prioritizes queues
so that most important data can be assigned to the high priority queues and any
free collaborators can read the data from the top priority queue first.
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Algorithm 5: MWQ Scheduling Algorithm
Input: number of collaborates N, Multiple queues mQ1,mQ2, . . .mQn

Output: Average throughput, transfer time
for j ← 1 to total_queues do

foreach thread i← 1 to N do
while data_sent[j] ≤ mQsize[j] do

if (mutual exclusion condition) then
fragment← read next chunk from mQj;

collaborator[i]← sends fragment;
data_sent[j]← data_sent[j] + fragment

5.4 MWQ Algorithm Performance Evaluation
using Simulation

This section analyses four different scheduling algorithms (RR, CP, SWQ and
MWQ) to compare and contrast their QoS performance in a simulated environ-
ment and evaluate their strengths and weaknesses. The aim is to measure the
performance gains of the MWQ algorithm against other algorithms and to find
directions of improvement before conducting the detailed evaluation using real
world test-bed experiments.

5.4.1 National Chiao Tung University network simulator
(NCTUns)

The ns2 (network simulator) [69] is most widely used in the MCC research. The
literature review phase revealed that most of the-state-of-art have used this sim-
ulator. More than 80% of the research papers cited in chapter 2 and 3 have used
ns2 for quantitative evaluation. Hence, it was our first choice as a simulator. We
installed, configured and programed it to simulate the underlying MCC network
(shown in Figure 5.1).

However, we decided to switch to another simulator, i.e. NCTUns (National
Chiao Tung University network simulator) [5] after a few months, due to following
reasons:

• The ns-2 simulator does not support network tunnelling by design and its
implementation involves changes in transport and network level protocols.
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Figure 5.1: The Basic MCC Simulation Topology

On the other hand, NCTUns supports a multi-interface node that is ideal
for simulating a receiver node in the MCC.

• The ns-2 cannot dynamically change its destination node at run time like
a normal real-life application program does. The traffic sink agent on the
destination node must be paired with the traffic source agent on the source
node at the beginning of a simulation.

• Ns-2 network simulator is a user-level program, it does not let another user-
level application program to ‘run’ on top of it. Hence, a real-life application
program cannot run normally on a network simulated by ns-2. However,
NCTUns allows an application/algorithm to run on a simulated node.

• NCTUns uses the operating systems (Linux kernel) TCP/IP (or UDP/IP)
protocol stack to conduct simulations and emulations. To enable the use of
Linux’s TCP/IP stack, kernel re-entering methodology is used. This feature
enables it to test any real world network application.

• NCTUns provides a highly-integrated and easy-to-use GUI environment for
constructing the topologies and traffic models. After simulation is com-
pleted, with playback option data flow could be seen.

• The NCTUns simulation engine adopts an open-system architecture and is
open source.
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• NCTUns supports remote, concurrent, and distributed simulations.

• NCTUns can be easily used as an emulator.

5.4.2 Simulator Capabilities and Features

A key advantage that NCTUns gains over other network simulators is that it
allows for the use of real TCP/IP protocol stack, which in turns enables the use
of real life applications as traffic generators for the simulation purposes. The
NCTUNs achieves this ability by employing a novel kernel re-entering simulation
methodology.

NCTUns has a built-in support for a multi-interface node that can conve-
niently simulate a receiver node in the MCC. In the following,sections, we describe
its capabilities and features that are relevant to our simulation scenario.

5.4.2.1 Kernel Re-entering Methodology

NCTUns takes advantage of an abstraction of Linux that allows to create âĂĲpseu-
doâĂİ network interfaces (tunnel interface) which may or may not have corre-
sponding physical network device. From the kernel’s point of view, a network
interface is a software object that can process packets hence a pseudo network
interface functionality is exactly the same as that of a normal network inter-
face. If an application program writes a packet to this virtual device it will enter
the kernel and for the kernel the packet would appear to have come from real
network and will be passed on to the TCP/IP stack for further processing just
like real Ethernet packet. Similarly, the receiving application program will read
the packet and for kernel the packet would appear to have transmitted over the
network. Figure 5.2 depicts this concept.

Figure 5.2, illustrates how to simulate a TCP sender application program
running on host 1 to send its TCP packets to a TCP receiver application program
running on host 2 by using tunnel (virtual) network. The network interfaces here
are pseudo network interfaces and does not have associated physical network.
The TCP/IP stack being used is the real stack run the by the kernel and two
TCP/IP protocols depicted here actually are the same.

The setting up of virtual simulation network involves following two operations.
First, is to configure kernel routing table of the simulation machine in such a way
that any TCP packets sent from host 1 to host 2 should be sent through tunnel
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Figure 5.2: The Kernel Re-entering Simulation Methodology. Reproduced from
[4]

(pseudo) network interface 1 and similarly tunnel (pseudo) network interface 2
must be chosen for the packets sent from host 2 to host1. Second, for the two
links to be simulated, a simulation engine process is run to simulate them. it
simulates a packet’s transmission on the link from host i to host j (i = 1 or 2 and
j = 3 - i) by reading a packet from the special file of tunnel interface i, waiting
for the link’s propagation delay time plus the packet’s transmission time on the
link (in virtual time) to elapse, and then writing this packet to the special file of
tunnel interface j.

While the NCTUNs simulation engine is running, this simulated "virtual net-
work" is alive. Figure 5.2(b) depicts this simulation scheme. Since simulation of
links happens outside the kernel, the kernel on both hosts do not know that their
packets actually are exchanged on a virtual simulated network. This makes it
possible for all TCP/IP based real-life network application programs to run on
the simulation network. The kernels and TCP/IP stacks on both the sending and
receiving hosts are the same hence the name âĂĲkernel re-entering methodology.
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5.4.2.2 Reusing All Real-Life Application Programs

The ability of NCTUNs to run real life applications (unmodified code) on sim-
ulated environment as well as on real UNIX machines not only save time and
effort but also provides several other unique advantages. A key advantage is the
generation of realistic network traffic, which leads to more useful and accurate
results than using the simple synthetic benchmarks. Also it allows to evaluate
performance of these real-life applications under various network conditions and
then improved before releasing to the public.

5.4.2.3 High Simulation Speeds and Repeatable Simulation Results

NCTUns combines the kernel re-entering simulation technique with its discrete
event simulation methodology which results in the execution of speedy simula-
tions. NCTUns has modified the process scheduler of the Linux kernel to con-
trol the execution order all processes involved in the simulation more accurately.
These processes include simulation engine process and all other real-life applica-
tion processes. If we keep the random number seed same across our simulation
runs then results are repeatable.

5.4.2.4 Support for Various Important Networks

NCTUns simulates Ethernet-based IP networks with fixed nodes and point-to-
point links. It simulates IEEE 802.11 (a)(b) wireless LAN networks, GPRS cellu-
lar networks, advanced optical burst switching (OBS) etc. Moreover, it simulates
multi-interface mobile nodes multiple heterogeneous wireless interfaces.

5.4.2.5 Multi-interface Mobile Node

Multi-interface network node is a mobile node equipped with multiple radio de-
vices. NCTUNs implements four types of radios namely IEEE 802.11(b) in-
frastructure mode, IEEE 802.11(b) ad-hoc mode, GPRS, and DVBS2/RCST.
Availability of these radios enable a multi-interface node to access wireless LAN,
mobile ad-hoc networks, telecommunication networks, and satellite networks at
the same time.

As shown in Figure 5.3, at the time of creating a multi-interface node, type
and number of radios the multiple-interface node contains must be specified.
This multi-interface node is called a device node because the simulation engine
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Figure 5.3: The Relationship between the Multi-interface Node and the Device
Node. Reproduced from [4]

simulates this radio using a single-interface network node. A GUI program is
used to help in creating node structure for a specific selected radio.

Figure 5.4: An example of a multi-interface node structure. Reproduced from [4]

The application programs exploit pseudo network interface (tunnel device
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driver) to utilize the four heterogeneous network radios on a multi-interface node
without modification. They achieve this by creating sockets for each interface as
normal and use these sockets in an ordinary manner.

5.4.3 Components and Architecture of NCTUns

In this section, we provide an overview of the architecture of NCTUns. As shown
in Figure 5.5, NCTUns is mainly composed of six components: 1) Graphical
User Interface (GUI); 2) Dispatcher; 3) Coordinator; 4) simulation engine; 5)
application programs; and 6) patches to the kernel TCP/UDP/IP protocol stacks.
The main functions of these components are explained below.

Figure 5.5: The architecture of NCTUns. Reproduced from [5]

1. GUI: A front-end GUI ("nctunsclientâĂİ) in NCTUns provides useful fa-
cilities for users to efficiently create simulation and emulation Cases.

2. Dispatcher: In NCTUNS, a simulation engine and GUI can reside on dif-
ferent machines, so the Dispatcher program is sent an inquiry message by
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GUI to find out which simulation server is available. The Dispatcher pro-
gram, apart from keeping a register of simulation server also monitors their
status and selects an available simulation server upon receiving a request
issued by the GUI program.

3. Coordinator: The Coordinator program is the first program to be run
before starting a simulation server as it forks (creates) a simulation engine
to perform simulation. Also it processes the commands received from Dis-
patcher and reports back to the Dispatacher with the status of the created
simulation engine process. The Coordinator also collects the simulation
results and sends them to the GUI program.

4. Simulation Engine: The core responsibilities of the simulation engine
is simulating various protocol behaviours and implementation of an event
scheduler. In addition, during simulation the simulation engine process will
periodically report the current simulation time to the GUI program.

5. Application Program: Application program are responsible for gener-
ating network traffic in a simulated network. As stated earlier that the
way the network is simulated enables most real-life application program to
run directly on a node simulated by NCTUns to generate realistic network
traffic.

6. Kernel Patches: NCTUns uses Linux patches to modify real TCP/IP
stack running on the simulated machine. These modfications however are
restricted to the Kernel timers so that each simulated node can advance
their times based on the NCTUNs simulated clock rather than the real-
world clock.

In the following, we explain how NCTUns performs a simulation in detail.
Suppose that one has finished specifying his simulation case. By clicking the
"Run" command (on the GUI control panel), one can trigger the GUI program
to start a simulation. The GUI program first inquiries the Dispatcher program
whether any simulation server is now available. If not, the Dispatcher program
returns a "No servers are available" message to the GUI program. Otherwise,
the Dispatcher program picks an available simulation server and then sends the
GUI program the IP address of the chosen simulation server. After receiving the
IP address of the chosen simulation server, the GUI program sends a simulation

111



request (with the files describing the simulation case to be run) to the Coordinator
program running on the chosen simulation server. After receiving such a request,
the Coordinator program forks a simulation engine process to run the received
simulation case.

The simulation engine first constructs the topology of the simulated network,
sets up global data structures used for the simulation, and creates/initializes
the protocol stack of each simulated node. It then initializes the simulation
clock to zero, inserts "Create Application" events (explained below) into the event
scheduler, and finally starts the simulation. A "Create Application" event is used
to notify the simulation engine of when and which application should be created
(forked) during simulation. When the simulation clock advances to the time
specified by a "Create Application" event, the simulation engine will fork the
application program specified by that event (to generate traffic). Note that the
timers of an application process forked by the simulation engine are controlled
by the virtual clock of NCTUns. That is, when an application process invokes
library calls, such as gettimeofday(), sleep(), and alarm(), these library calls will
be triggered based on the virtual clock of NCTUns. This is achieved by modifying
time-related system calls in the kernel. During simulation, the simulation engine
periodically reports the current simulation time to the GUI program to show
the progress of the simulation. After the simulation is done, the Coordinator
program will collect and pack all the log files generated during simulation and
then transmit them back to the GUI program for further processing and display.

5.4.4 Simulation Environment

Simulations are performed using the NCTUns (version 6.0). The data is generated
and scheduled using applications written in C language. To further facilite the
application, configuration files are used to setup network paths and set data
queue(s) size. Simulations are conducted on a laptop computer (on MacBook Pro
2.66 GHz (Intel Core 2 Duo) with 4 GB RAM) running the Fedora 12 operating
system running in a Virtual Machine (VM). There are other applications running
in parallel to VM on MacBook laptop.
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5.4.4.1 Scenario

The considered scenario consists of a MCC with a sender node (multi-interface)
connected to the two collaborators (mobile access points). These collaborators
are also connected to a common destination node, i.e. a receiver. Figure 5.6
shows the simulated network topology.

Figure 5.6: The Simulation Setup - Static Conditions

In this simulated MCC network topology, we are using two distinct paths
from a single sender (node1) to a receiver (node13). These two paths are distinct
Internet channels via two collaborators (node4 and node5) to a receiver. The
dynamic channel conditions on both paths are simulated by adding a delay vari-
ance on both paths. The path 2 provides higher QoS in terms of data rate, drop
ratio and delay. The scenario chosen for our simulations has the following path
characteristics:

• Path 1:
Bandwidth: 1 Mbps
Delay: 5ms
Drop Ratio: 5%
Delay Variance: minimum 1% to maximum 5% with mean 3%
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• Path 2:
Bandwidth: 2 Mbps
Delay: 1ms
Drop Ratio: 1%
Delay Variance: minimum 1% to maximum 10% with mean 5%.

During the simulation, all four data scheduling algorithms (RR, CP, SWQ,
MWQ) were run one by one on the sender node. These algorithms schedule data
to the collaborators for simultaneous data transfer.

5.4.4.2 Configurations

To facilitate the process of reproducing the simulation results, below are screen
shots of how to configure the simulation setup described above.

First, the topology editor provides a convenient and intuitive way to graphi-
cally construct a network topology. A constructed network can be a fixed wired
network or a mobile wireless network. Due to the user-friendly design, all GUI
operations can be performed easily and intuitively.

Figure 5.7: The Topology Editor

A major component of our simulation scenario is multi-interface node, that
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can be added as a mobile node with multiple network interfaces ready to configure
and run. (See Figure 5.8 )

Figure 5.8: The Multi-interface Node.

A network device (node) may have many attributes. Setting and modifying
the attributes of a network node can be easily done. Just double-clicking the
icon of a network node. An attribute dialog box pertaining to this node will pop
up. A user can then set the device’s attributes in the dialog box as shown in
Figure 5.9.

The node editor provides a convenient environment in which a user can flexibly
configure the protocol modules used inside a network node. By using this tool, a
user can easily add, delete, or replace a module with his (her) own module. This
capability enables a user to easily test the performance of a new protocol. Using
the node editor, a user can also conveniently set the parameter values used by
a specific protocol module. Each box in the node editor represents a protocol
module. A user can double-click a protocol module box to pop up its parameter
dialog box. (see Figure 5.10).

Similarly for network links, settings can be done by double-clicking the path.
A dialog box will appear where different values of different attributes can be
specified (see Figure 5.11).
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Figure 5.9: The Node Editor

Figure 5.10: The Node Editor - Protocol Module Settings

By using the packet animation player, a packet transfer trace logged during a
simulation can be replayed at a specified speed. Both wired and wireless networks
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Figure 5.11: The Link Editor

are supported. This capability is very useful because it helps a researcher visually
see and debug the behavior of a network protocol. It is very useful for educational
purposes because students can see how a protocol behaves.

After finishing a simulation, a binary trace file, SimulationName.ptr, is gener-
ated by the simulator (see Figure 5.12). We used printPtr application to decode
the binary file into a plain text file. The traces have the following scheme:
802.11 RX 1503414258 2030 ACK <0 0> <133 149 149> 13248917 14 0 NONE
3

1. The first entry is the type of protocol

2. The second entry is the type of event. This can be RX (response), TX
(transmission), RTX (retransmission) and DROP.

3. The third column is the time of the event shown by number of ticks.

4. The fourth column is the duration of the event.

5. The fifth column is the type of message. This can be DATA (802.3/802.11
Data packet), RTS (802.11 RequestToSend packet), ACK (802.11 Acknowl-
edgement packet), etc.
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Figure 5.12: The Log File

6. The sixth column is the node IDs based on the IP address.

7. The seventh column is the node IDs based on the MAC address.

8. The eighth column is the ID of the packet.

9. The ninth column is the size of the packet.

10. The tenth column is about the number of RTX for a package.

11. The eleventh column is the cause of DROP, e.g. COLL (collision), CAP
(capture), BER (bit error), etc.

12. The last column is the frequency channel.

All useful information from the trace files are extracted using AWK scripts.

5.4.5 Performance Metrics

The performance evaluations of the different scheduling algorithms are carried
out by using the following metrics. The following metrics have been analysed:
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throughput, total data transfer time and percentage improvement. In the fol-
lowing, we describe how we computed every metric. We made 10 independent
simulation runs for each result and the averages of the results are presented below.

• Throughput: is calculated dividing the total amount of data received by
the time of simulation.

throughput = receivedpackets ∗ packetsize
simulationtime

(5.1)

• Total data transfer time is measured in seconds for each end-to-end file
transfer.

• Improvement percentage is the ratio of positive change from one number
to a higher number as expressed by a percentage. The total data transfer
time for any algorithmX is the first base number against which we calculate
the improvement of base number2 which is total data transfer time of our
proposed MWQ algorithm.

Improvement Percentage = (number1 - number2/number2)*100
Where,
number1 = total data transfer time for algorithm X

number2 = total data transfer time for MWQ algorithm

5.4.6 The Abbreviations Used

The abbreviations that are used in the evaluation section are given in following
table.

Abbreviations Descriptions
RR RR algorithm
CP 20:30 CP algorithm with 20MB data allocated to path 1

and 30MB to path 2
SWQ SWQ algorithm
MWQ 20:30 MWQ Queue algorithm with 20MB data placed in Queue 1

and 30MB in Queue 2

Table 5.1: Abbreviations for Simulation Results

Here CP 20:30 means the data is divided such that 20MB is scheduled to path
1 and 30MB to path 2. Similarly, CP 60:40 means 60MB is scheduled to path 1
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and 40MB through path 2. Similarly, MWQ 20:30 means that queue 1 has 20MB
of data whereas queue 2 has 30MB of data assigned to it.

In next section, we perform evaluation by running different experiments using
the scenario and the simulator that we have described earlier.

5.4.7 QoS Evaluation of MWQ Algorithm

5.4.7.1 Simulation Experiment 1

We run all four scheduling algorithms listed above and measured the average
end-to-end throughput in Kbps. We then calculated the total transfer time taken
by each algorithm to transfer 50MB data. We also calculated the improvement
gained by the MWQ algorithm and derived the improvement percentage. Results
are shown in the following tables:

Algorithm Time (sec)
RR 243
CP 20:30 194
SWQ 220
MWQ 20:30 152

Table 5.2: Total Transfer Time for 50 MB

Algorithm Improvement (sec) Improvement (%)
RR 92 60.92
CP 20:30 43 28.47
SWQ 69 45.69

Table 5.3: Improvement Percentage of MWQ for 50 MB

Improvement Percentage Calculation:
From the results presented in Table 5.4, we can see the baseline for the compar-
ison of MWQ total data transfer time improvement with RR for 50MB data is
243 seconds.
The improvement gained by MWQ is (243-151) =92 seconds.
Hence, Improvement Percentage is (92/151)*100 ≈ 61%

Analysis:

1. Table 5.4 shows that RR performed worst due to its static scheduling
approach. MWQ transferred data quicker than all other algorithms.
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2. Table 5.5 shows that MWQ is showing Improvement percentage ranging
from 28.5% to 61% to other scheduling algorithms.

3. An interesting observation from Table 5.4 shows that the SWQ algorithm
is taking more time than the CP algorithm, i.e. CP is performing better
than the SWQ algorithm. To further investigate the CP performance, we
have conducted another experiment (Simulation Experiment 2) explained
in next section by altering the channel allocation for the data.

5.4.7.2 Simulation Experiment 2

One possible reason of the CP’s better performance could be that both individual
channels had sufficient bandwidth to support their data load. To confirm this,
we repeated the above experiment and changed the channel allocation such that
more data (30MB) is now allocated to the path 1 and 20MB to the path 2. We
also altered the data allocation for MWQ algorithm such that more data, i.e.
30MB in kept in queue 1 and 20MB in queue 2. Following are the combined
results from the previous experiments:

Algorithm Time (sec)
RR 243
CP 20:30 194
CP 30:20 290
SWQ 220
MWQ 20:30 152
MWQ 30:20 151

Table 5.4: Revised Total Transfer Time for 50 MB

Algorithm Improvement (sec) Improvement (%)
RR 92 60.92
CP 20:30 43 28.47
CP 30:20 139 92.05
SWQ 69 45.69

Table 5.5: Revised Improvement Percentage of MWQ for 50 MB

Analysis:

1. Above results confirm that changing the data allocation to queues does not
affect the performance of the MWQ algorithm, however, it has increased
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Figure 5.13: Graph: Total Transfer Time for 50 MB

the total data transfer time of the CP algorithm from 194 seconds to 290
seconds.

2. Improvement percentage of MWQ against CP increased from 28.5% to 92%
after altering the channel allocations. To further analyse the above results,
we calculated the average throughput of all the algorithms, See Figure 5.14
to see the throughput plotted against the time scale.

Analysis:

1. RR throughput is constantly less than all other algorithms; unless CP
throughput suddenly drops lower than the RR algorithm.

2. SWQ andMWQ stayed consistent in terms of throughput and their through-
put is high as well.

3. MWQ shows slightly better throughput rates than the SWQ, hence, it fin-
ished the data transfer earlier.

4. In the case of CP, the throughput has dropped by more than half when one
of the channel finishes its data transfer and second channel is still sending.
The reason is that the CP algorithm does not support dynamic re-allocate
of data to the idle channel.
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Figure 5.14: Graph: Throughput (kbps) for 50MB Data Transfer

5. In the case of CP 30:20 less data was schedule through the fast channel,
hence it finished its job early and stayed idle during the rest of simulation.

5.4.7.3 Simulation Experiment 3

To verify the results from simulation experiments 1 and 2, we have repeated both
of them for 100MB data size. Results confirmed that MWQ behaved consistently
and maintained its improvement percentage. Results can be seen in the following
tables and graphs.

Algorithm Time (sec)
RR 491
CP 20:30 391
CP 30:20 591
SWQ 439
MWQ 20:30 302
MWQ 30:30 303

Table 5.6: Total Transfer Time for 100 MB
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Algorithm Improvement (sec) Improvement (%)
RR 189 62.58
CP 40:60 89 29.47
CP 60:40 289 95.69
SWQ 137 45.36

Table 5.7: Improvement Percentage of MWQ for 100 MB

Figure 5.15: Graph: Throughput (kbps) for 100MB Data Transfer

5.4.8 Major Findings

The simulation study of the four scheduling algorithms has led us to the following
two major findings.

1. MWQ supports better QoS in terms of throughput than other three algo-
rithms. This improvement in QoS is achieved by adapting dynamically to
the QoS changes in the short term network conditions.

2. The SWQ algorithm can lead to similar QoS as the MWQ algorithm. How-
ever, MWQ is more flexible in terms of storing data according to their
priority order. To achieve this, the MWQ algorithms should be integrated
with an access control model discussed in Chapter 4.

From the findings presented in this section, we can conclude that MWQ sup-
ports better QoS than the reference scheduling algorithms under short-term QoS
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changes in network conditions. However, we need to consider the QoS capabilities
of the collaborators before giving them access to a WQ. It enables the scheduling
of most important data on trusted or high QoS channels only. Hence, it is sug-
gested to integrate this MWQ implementation with an access model presented
in chapter 4 and perform more experiments. These experiments must be able to
produce long-term changes in QoS of underlaying network. After careful consid-
eration, we chose to conduct test-bed experiments to evaluate RAW scheduler in
real life scenario.

5.5 Performance Evaluation using Test-bed Ex-
periments

5.5.1 Experimental Setup

In our experimental setup, we used a Mobile Terminal (MT), i.e. a laptop as
an HTTP data receiver. The laptop we used is a Lenovo Intel Core i3 (2.40
GHz) with 4 GB RAM. MT was running Windows 7 operating system with
service pack 1 installed. The MT was connected to the WWAN network through
three collaborating mobile devices, i.e. mobile phones. We used three Nokia
206 mobile phones as collaborating mobile devices. The MT downloaded the web
content from the web host by using the WWAN links of participating MCC mobile
phones simultaneously. To establish an underlaying MCC network, the MT first
connected itself to these mobile phones through bluetooth and established a Point-
to-Point Protocol (PPP) connection with each of them. We used a bluetooth
device plugged into the USB port of the laptop that helps connecting to the
multiple Nokia phones simultaneously. For this purpose, the phones were placed
in close proximity to one another and they did not use any specialized antennas.
The experimental setup is shown in the Figure 5.16 below.

These mobile phones were using the mobile data services of two leading cellular
service providers, namely, Virgin and Lyca, through their GPRS interfaces. The
QoS effects of the bluetooth links were negligible as compared to the GPRS effects,
which dominate the changes in QoS performance during these experiments. It
is an established fact that the round trip time and variance of a GPRS link is
much greater than a bluetooth link and it supports lower bandwidth as well. We
did not do any special hardware enhancements in the phone or at the network.
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Figure 5.16: The Test-Bed Setup for Experiments

The only change that had to be done in the collaborating device is to change
its name to a set convention. To become part of our implemented MCC, the
device name should start with the service provider name like lyca, virgin etc. In
this way, only those devices that had agreed to be a part of the collaborative
community by changing their names were used for the bandwidth aggregation.
There is, however, a regular procedure of bluetooth handshake and acceptance
from the user is required (see section 5.5.3). Before proceeding to further details
of the MCC formation, the next section briefly lists the tools and libraries used
to implement our test-bed network and example application.

5.5.2 Toolset and Language

5.5.2.1 Java

We uses Java as the programming language for our application development.
Java is useful when programs require lower-level network communication. Fur-
thermore, it has a library with built-in support for high-level application protocols
(such as HTTP). Several other tools and libraries have been used for implement-
ing different modules of our application. The main tools and libraries used are
listed below.
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5.5.2.2 Bluez

We installed bluez package to pair the bluetooth devices from the command line
with the bluez-simple-agent using following command.

bluez-simple-agent hci# xx:xx:xx:xx:xx:xx
Replace # with the Bluetooth adapter number (e.g. hci0) and xx:xx:xx:xx:xx:xx

with the MAC of our Bluetooth device. If we already had paired a device and
need to remove it from the database (e.g. for re-pairing), following command can
be used

bluez-simple-agent hci# xx:xx:xx:xx:xx:xx remove

5.5.2.3 HCI Tool

"hcitool" is a helpful utility which scans for available bluetooth devices in the
surroundings and tries to connect to them. It has been used in this application
to find new mobile devices and connect to them over bluetooth.

hcitool is also used to configure Bluetooth connections and send special com-
mands to Bluetooth devices. If no command is given, or "option -h" is used,
hcitool prints some usage information and exits. Below is the script that uses the
hcitool to discover all available bluetooth connections.

5.5.2.4 IP Route

Linux routes all network traffic with the help of routing tables. There is a default
routing table that redirects all traffic to a default connection, i.e. to an optimal
route. In order to utilize the paths from all connections, the "ip route" utility
is used to add a new routing table against each connection and to add its entry
into the default routing table. These alternate tables enable data traffic to flow
though all network connections simlutaneosly. An example of "ip route" usage
can be seen in the Figure5.18.

5.5.3 MCC Network Formation

To test any application for the scenario of collaborative data transfer in MCC,
our application should be able to form an underlying network of the collaborating
mobile devices. Following are the main steps and scripts to configure our test-bed
MCC network.

127



Figure 5.17: HCI Tool Script to Get Available Bluetooth Connections

Figure 5.18: Script to Add Alternate IP Tables
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5.5.3.1 Hand Shaking Process

Handshaking sometimes referred to as "pairing" is a process where two devices
negotiate on how they will be communicating with each other. This is especially
important in the case of multiple wireless devices so that they don’t interfere with
each other. Bluetooth pairing is generally initiated manually by a device user.
The bluetooth link of a device is made visible to the other devices. The standard
steps of bluetooth pairing that we used to connect our MT with the collaborating
mobile phones are explained in the Appendix C.1.

5.5.3.2 Adding Multiple PPP Connections

As stated earlier, one of the biggest challenges presented by the MCC network
topology is the simultaneous transfers of data from one sender, to one destination,
but via multiple network routes. Operating systems use a routing tables that by
default pick an optimal route to the destination and redirect all the data to it.
To override this default bahaviour, we have written a script (see Figure 5.18)
that adds a new routing table for each connection and then adds its entry into
the main routing table. All data traffic having source IP of the newly creating
connection should use this new routing table called alternate routing table. These
alternate routing tables helped us in achieving the desired functionality of routing
data through a specific network channel/route.

5.5.3.3 PPP Configuration and Chat Scripts

Figure 5.19 shows the configuration we used for the PPP connection authenti-
cation with the Virgin (also called VirginMedia) mobile service provider. Fig-
ure 5.20 is the chat script used to connect to the Virgin’s mobile data service.

5.5.4 RAW Scheduler Implementation: An HTTP Down-
loader

In this section, we present the details of a prototype application that we developed
for proof of concept. This application is an "HTTP Downloader" that downloads
the HTTP data in MCC from the Internet to realize the core functionality of
novel RAW scheduler.

The HTTP Downloader is a software that enables HTTP data download while
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Figure 5.19: Configuration for a Dialup Connection Authenticated with Virgin

Figure 5.20: Chat Script to Dial Out to Virgin Mobile Data Services
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utilizing the multiple WWAN connections (if available) through inverse multi-
plexing. To keep it expendable and easy to maintain, we have divided our imple-
mentation into different modules where each handle different functionality. Our
HTTP Downloader modules are closely aligned with the RAW Scheduler modu-
lar design. Following sub-sections explain the main components of our example
application in details.

5.5.4.1 Device Scanner/Manager

The device scanner, also referred as the device manager, is responsible for the
process of adding mobile device into MCC. It starts off by scanning for all the
available devices that can be connected to the application. Once a device is
found, it checks if it is already connected to the application. Once the device
scanner establishes that the device is not already connected, the mobile data
carrier on the device is identified through the device name (pre-configured by
the user) and script to connect to the Internet service provider is triggered. As
adding a new connection alone into MCC does not allow multiple connections
to be multiplexed, hence, this module calls a script to add a new routing table
for this connection and to add an entry in the main routing table. In this way,
all the traffic having source IP of the newly created connection could use this
new routing table. These multiple routing tables later help HTTP Downloader
to route a data chunk through a specific channel. Figure 5.21 lists all classes
belong to this module and shows the interaction between different methods of
these classes.

The main actor shown in Figure 5.21 is a GUI class. As soon as a user opens
the application, the GUI initiates the device scanner and performs the following
steps:

1. The GUI starts a thread in which the device scanner runs a method that
searches for any new devices and adds the new device channels to the sys-
tem. It also checks if any existing device channel has dropped and updates
this information in the application state.

2. It also logs the state of devices for the analysis.

3. Run() then calls ConnectNewDevice which in turn calls multiple scripts to
perform various tasks at the operating system level. The following describes
the steps of this process.
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Figure 5.21: Device Manager Flow
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(a) In the first step, information of all available interfaces is saved into a
list to be accessed and compared in the following steps.

(b) getNewDevices returns a list of devices that are reachable via blue-
tooth.

(c) Then the connectDevice method is called with the MAC and friendly
name of the device. It then runs the connection script using a process
and if successful, gets the IP address and other details of the device
by calling getDeviceParameters.

(d) Once all the details of the device are retrieved, an alternate route to
the Internet is updated in the routing tables using addAlternateRoute
script explained earlier in section 5.5.3.2.

4. This process repeats itself throughout the execution of our application on
a fixed interval of time.

5.5.4.2 Partition Scheduler

The core aim of the application is to enable receiver to download HTTP data
from Internet through multiple channels simultaneously. The HTTP request is
broken down into smaller HTTP requests that can be downloaded in parallel. The
size of each request has been fixed after studying the characteristics of channels
to improve the probability of completing each request in a single attempt. Each
partition request is handled by a thread and it can be downloaded in parallel. The
partition manager also referred as the thread manager, manages these threads. Its
main responsibility includes assigning partition threads to different collaborating
channels and keeping track of the progress. Once the thread manager detects that
all the threads have finished downloading requests, it triggers another module that
is described later, namely "file manager". The file manager is responsible for the
re-construction of the original file from the partition data. Figure 5.22 shows the
flow of Single Queue implementation in partition scheduler module.

Figures 5.22 and 5.23 show how the partition scheduler works at a macro
level, starting from the point when a downloading request is initiated till it is
completely finished and the file manager is triggered. The following describes the
steps of the process.

1. The user enters the URL of the file (media/non-media) to be downloaded
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Figure 5.22: Partition Scheduler - SWQ (a)
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Figure 5.23: Partition Scheduler - SWQ (b)
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and hits the download button. All inputs are validated and the total down-
load size is calculated.

2. The application calculates all the partitions based on the download size.
Note that it also tags each partition with a priority level but for SWQ
based scheduler, it does not have much effect on the the overall download
process.

3. Later, all the partitions are created as separate download requests (parti-
tions). Each channel can then request to process a download partition. The
partition scheduler also takes into account the quality of the channel but it
is not applicable in the case of SWQ implementation. In Figure 5.22 you
can see a bootstrap partition assignment. This assignment is followed by
the allocation that is done according to the WQ policy. However, in the
boot-strap assignment it is done outside the scheduler as threads might get
contention while being run between the download threads, device threads
and UI thread. This strategy helps to start the download process right
away.

4. Before scheduling, each partition state is checked. The download should
not be in progress already, completed or stopped.

5. At this stage all available channels are assigned a download partition and
the list of all partitions along with the currently running thread list is
passed on to the partition scheduler. The partition scheduler is also given
the original download request information so it can forward a request to
the file manager after the simultaneous download is completed.

6. In Figure, 5.23 the partition scheduler flow starts off by checking for any
finished threads. A thread is considered finished if it has downloaded its
assigned partition successfully or it has failed to download the partition
completely. Note that if a thread fails to download a complete download
partition assigned to it, the next thread would resume downloading it rather
than restarting it in order to save power and cost. If the thread has not
failed yet then the partition scheduler does not re-assign the work and waits
for it to resume downloading or go to the fail state.

7. This implementation checks repeatedly after a fixed number of seconds if
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any download request is still waiting to be downloaded. If so, it is assigned
to a free channel.

8. In this way, the scheduler continues to manage the partitions and makes
sure all of them are downloaded. Once all the HTTP data is downloaded,
it calls the file manager through a file joining thread which re-construct the
required file from the data downloaded by multiple partition threads.

Figure 5.24: Partition Scheduler - MWQ (a)

In the above Figures 5.24 and 5.25 the differences between SWQ and MWQ
implementation are marked with an asterisk (*). The main difference is in the
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Figure 5.25: Partition Scheduler - MWQ (b)
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process of how a partition of work is assigned to a channel. In MWQ implementa-
tion each channel is assigned a tag according to its QoS capability. You can see in
Figure 5.24 that rather than calling makeParitionsBySize() method, the partition
scheduler call makePartitionsByPriority() method. This creates data partitions
and assigns a specific level of quality tag out of the given priority array. Next, the
DownloadRequest gets DownloadRequestParitition by passing along a tag that
represents the quality of channel it wants to assign work to. The scheduler makes
sure that correct channel is assigned according to the QoS requirement of the
partition to be downloaded. If a channel of same level of QoS is not available,
the scheduler looks up for channels at a lower level of QoS to serve the request.

The only scenario when a partition tagged with a better QoS requirement is
assigned to a channel with lower quality is when there is no better QoS channel
available and there is a danger of queue starvation.

5.5.4.3 Partition Downloader

The partition downloader is a thread created by a partition manager to down-
load a partition request. Each partition downloader also referred as a partition
downloading thread itself queries the manager to check out a partition request.
The manager returns with the next work item/partition (HTTP bytes to be
downloaded) if it has not been downloaded by any other partition downloading
thread. When the partition downloading thread completes a download, it marks
the request as downloaded and requests the manager for the next work item.

As a result, better performing thread (hence the channel associated with the
thread) will automatically download more partitions. In this way, our application
is not maintaining any QoS information of the participating MCC channels but
still all connections/channels download data according to their QoS capabilities.

In case of a blackout, a timeout would occur. The downloaded part of the
request would be saved and the partition would be marked incomplete. The
partition manager would assign it to threads/channels requesting for more work.
The newly assigned partition downloading thread will continue downloading from
the point where the last thread stopped. This ensures that no duplicate data is
downloaded, to save time and bandwidth.
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5.5.4.4 File Merger

Once all the partitions have been downloaded, the file merger comes into play. It
is responsible for joining data of all the partitions that have been downloaded by
the partition downloader threads into one single file in correct sequence so that
it can be used by the users.

Figure 5.26: File Merger Code

5.5.4.5 Operating System (OS) Interactions

There are many operations that are carried out at the OS level with the help
of scripts being executed from the application code itself. These include scripts
for detecting all available devices over bluetooth that can be connected to this
system, dialing the script of a device that hasn’t been connected, the alteration of
the main routing table along with the creation of connection specific routing table
and cleaning of "rfcomm" ports once their corresponding connections depart.
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5.5.4.6 GUI

The Graphical User Interface (GUI) of our HTTP Downloader is minimalistic yet
effective. It allows the user to enter the URL of the file to be downloaded and
buttons to start or cancel the downloading. It also shows progress of the down-
load, number of connections/channels connected along with the overall download
speed per second.

Figure 5.27: HTTP Downloader GUI

5.5.5 QoS claims to be evaluated

This section lists major claims that we make related to improved QoS perfor-
mance during collaborative data transfer for an "HTTP Downloader" application,
implemented as an example application of RAW Scheduler. We claim that our
application is:

1. Adaptive to the following QoS fluctuations/changes in channel conditions.

(a) Short term QoS changes/fluctuations are addressed by using the MWQ
algorithm which by design is adaptive to these frequent short term QoS
changes. We have already established that MWQ algorithm adapts
well to QoS fluctuations using simulation. Now, we are evaluating
an example application of RAW scheduler in a real life scenario to
measure its QoS performance gains.

(b) Long-term QoS changes due to node arrival/departure/failure are han-
dled in the RAW Scheduler using CMM and community manager. Our
test bed implementation is using a device manager and a partition
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scheduler to adapt to these node membership changes. The device
manager periodically scans for all available collaborators in the blue-
tooth range and also detects the collaborators lost during that interval.
It notifies the departures to the partition scheduler which reschedules
the work of departed collaborators to other available collaborators.
These modules can add new collaborators and assign them work if
required.

2. Degrade QoS gracefully in case of QoS fluctuation/degradation such that
the data with the highest priority is served first. And if the channel condi-
tions are such that the scheduler needs to drop or delay some data then it
would be the data with the least priority.

Though energy efficiency is not our major claim, different measures are taken at
the architectural and algorithmic levels to minimise the processing and communi-
cation costs. To prove each claim, we carefully designed the following experiment
sets. The next section provides the details of the experiments that evaluate our
claims.

5.5.6 Test-bed Experiments and Results

5.5.6.1 Experiment 1

This experiment is designed to serve as a reference to evaluate the QoS perfor-
mance of inverse multiplexed channels. In this experiment, we downloaded a file
of size 2 MegaBytes (MBs) which is equivalent to 16 MegaBits (mbs) from a live
web hosting server. The download was using HTTP downloader application with
only one participating mobile phone. The mobile phone was using a Virgin GPRS
channel.

Observations:

1. We observed that the throughput observed during the download was in the
range of 41.6 - 49.6 kilo bits per second (kbps).

2. Total time taken from the start of the download till the file reconstruction
at receiver was 330 seconds.

3. Although throughout of GPRS channel was fluctuating but there was no
connection drop out during the download.
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Figure 5.28: Ex1: 2 MB Download over a Single Virgin Channel (a)

Figure 5.29: Ex1: 2 MB Download over a Single Virgin Channel (b)
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5.5.6.2 Experiment 2

This experiment is the base/reference experiment to evaluate the QoS capability
of a Lyca GPRS channel. A 2 MB data file was downloaded from the Internet
over a single Lyca channel.

Observations:

1. We observed that the throughput observed during the download was in
the range of 24.88 - 36 kilo bits per second (kbps). This throughput is
considerable lower than the data rates achieved by the corresponding Virgin
channel.

2. Download was completed in 540 seconds which is longer than the total
download time of a single Virgin channel.

3. There were quite a few spikes in the throughput but there was no connection
drop out.

4. The over all QoS observed is poor as compared to an individual Virgin
channel. Hence, we classified Lyca as low QoS channel and Virgin as a high
QoS channel for the following experiments.

Figure 5.30: Ex2: 2 MB Download over Single Lyca Channel (a)
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Figure 5.31: Ex2: 2 MB Download over Single Lyca Channel (b)

5.5.6.3 Experiment 3

This experiment is designed to compare the QoS performance of inverse mul-
tiplexed channels as compared to the individual channels and to evaluate the
performance gains. Here, we observed the performance of Lyca channels while
simultaneously downloading a 2 MB file from the Internet.

Observations:

1. The aggregated speed achieved was in the range of 33.6 - 60 kbps. This
throughput improvement is huge as compared to the individual channel.

2. File download was completed in 301 seconds only. Hence, there is a reduc-
tion in the total download time, which saves battery of individual mobile
device.

3. There were quite a few spikes in throughput but again there was no con-
nection drop outs.
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Figure 5.32: Ex3: 2 MB Download over Two Lyca Channels (a)

Figure 5.33: Ex3: 2 MB Download over Two Lyca Channels (b)
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5.5.6.4 Experiment 4

This experiment is designed to observe the QoS performance of the inverse mul-
tiplexing of heterogeneous channel. Here, we evaluated the performance of one
virgin and two Lyca channels while simultaneously downloading a 2 MB file from
the Internet. As we have mentioned earlier that we have already classified Virgin
channels as high QoS capability and Lyca channels as low QoS capability based
on results of experiment 1 and 2.

Observations:

1. The aggregated throughput achieved was between 67.2 - 122.4 kbps.

2. Total time for downloading was just 159 seconds, which is approximately
half of total time taken by one Virgin channel and one third of the time
taken by one Lyca channel to download the same file.

3. After 1 minute and 3 seconds, one of the networks stopped transferring
data and the channel got disconnected. However, it was reconnected by the
device manager in the next scan within a few seconds. You can see in the
graph below that the throughput recovered after channel was included back
in the MCC by our application.

4. Obviously aggregated throughput of three channels is far better than the
aggregated throughput of two channels. It is important to note that spikes
in throughput are not very frequent because aggregated channels compen-
sate each other for short term changes to some extent.

5. A reduction in total download time means less battery power consumed by
individual mobile device during the download.
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Figure 5.34: Ex4: 2 MB Download over one Virgin and Two Lyca Channels (a)

Figure 5.35: Ex4: 2 MB Download over one Virgin and Two Lyca Channels (b)
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5.5.6.5 Experiment 5

Next, we observed the QoS performance of 4 inverse multiplexed connections (2
Lyca and 2 Virgin) to download a 2 MB file. It is important to note that all
connections were present throughout during the download process.

Observations:

1. The aggregated throughput achieved was in the range of 123.2- 158.4 kbps.
Here minimum speed achieved was better than previous experiment where
one node departed for some time.

2. The total download time for this experiment was 111 seconds. It is the best
performance recorded by our MCC network running a MWQ algorithm to
send more data on better quality Virgin channels.

Figure 5.36: Ex5: 2 MB Download over two Virgin and Two Lyca Channels (a)
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Figure 5.37: Ex5: 2 MB Download over two Virgin and Two Lyca Channels (b)

5.5.6.6 Experiment 6

We repeated all experiments with RR, CP and SWQ algorithms and below is a
comparison of total download time taken to finish a 2 MB download with four
channels (same as in experiment 5).

Observations:

1. The MWQ performed better than other algorithms by allocating data in-
telligently over all channels.

2. The data was divided in the ratio of 60:40 where 60% data has high through-
put as a requirement. RR algorithm tried to allocate the data equally on
all channels, hence slow channels proved a bottleneck and it took longer to
complete download as compared to smart scheduling of MWQ algorithm.

3. As data was divided in the ratio of 60:40, in case of CP algorithm, the
throughput of the pinned channels dictated the overall throughput achieved,
which was better than RR as we tied Virgin channels with 60% of the data.

4. The percentage improvement of MWQ in terms of total download time is
46% as compared to RR algorithm, 35% for CP algorithm and 17% for
SWQ algorithm in the presence of four collaborating nodes.
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Figure 5.38: Comparison: 2 MB Download over four Channels using four Schedul-
ing Techniques

5.5.7 Major Findings

Based on the above experimental results we can safely say that HTTP Downloader
is able to utilise the bandwidth aggregation of collaborative channels intelligently.
All the above experiments were using two levels of work-queues and majority of
the data was tagged with better throughput requirement. Short terms changes
as well as long term changes were handled by the system and they are reflected
in the throughput graphs and download completion time graphs.

5.6 Chapter Summary

This chapter presented the QoS evaluation of our novel RAW scheduler. Firstly,
the design of dynamic MWQ scheduling algorithm and three alternatives of MWQ
algorithm have been presented. A trace driven simulator was used for the initial
QoS assessments of the MWQ algorithm in controlled environment. We simulated
short term QoS fluctuations in the channel conditions to observe the behavior and
measure the performance gain of all four algorithms. Later, test-bed experiments
were conducted for detailed study of RAW scheduler performance and compari-
son. An example application as well as other scripts of network formation were
implemented to realise an example application. This application downloaded
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HTTP data from the Internet by using WWAN channels of multiple mobile de-
vices simultaneously. It has been found that RAW scheduler delivers better QoS
results in terms of average throughput and total data transfer times by adapting
to the changes in channel conditions. It has been found that, among the four
alternatives the MWQ algorithm delivers the best results when we plugged it
into our test-bed application.
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Chapter 6

Conclusion and Future Work

The focus of this thesis is on achieving the best effort QoS in the MCCs dur-
ing collaborative data transfer. This chapter summaries the work in this thesis,
presents the conclusions drawn from the findings of this research, and gives rec-
ommendations for the future work.

6.1 Conclusion

A good knowledge about the area of collaborative data transfer in mobile com-
munities, especially about workload scheduling algorithms, has been acquired by
a thorough literature review. Several scenarios of collaborative data transfer have
been analysed in order to specify the requirements and the challenges associated
with them. Related work has been critically analysed against these requirements
to find the missing bits.

Data transfer models employed by existing MCC solutions [17][18] have been
found to be incomplete. These solutions have concentrated on the data down-
loading, specially multimedia streaming [1][17], but have ignored data uploading.
The main cause was the inability of mobile phone handsets to generate and store
large amounts of data, and also because they assumed that the same solution
can work for the upstream data transfer [1]. This assumption is not valid, as in
the case of collaborative downloading, a workload scheduler runs on a sever or
a proxy in the Internet, but in the case of uploading, it resides on the resource
constrained mobile source node. Hence, the same solution can not work for both.
In addition to this, the existing systems have ignored data security and privacy
issues. They either assumed that the same user owns all mobile devices [19], or
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that performance alone is the main requirement [18]. The systems in [17][1] have
briefly discussed data security issues and suggested to use encryption techniques
or reputation system to protect against the malicious behaviour of collaborating
nodes.

A preliminary RAW scheduler has been designed, keeping in mind the scenario
requirements, resource limitations of mobile nodes and the ad-hoc environment
of a MCC. Instead of using the computationally expensive encryption techniques,
risk-aware scheduling has been designed for data security. A modular approach
has been adapted to make the solution flexible, and components re-usable. Our
proposed scheduler has five main components: (1) a DSM, to split the data
according to its sensitivity levels and QoS requirements, and feed to corresponding
WQs; (2) a WQM to manage WQ interactions and operations; (3) a TM to
classify the collaborating nodes according to their trust levels; (4) an ACM to
ensure that the collaborating nodes of a particular trust class can only access
WQs of the corresponding sensitivity level; and (5) a CMM to coordinates the
communication between the RAW scheduler and the community manager. It
also provides an interface for the collaborating nodes and monitors long-term
QoS changes in their WWAN channels.

The implementation and evaluation of the proposed MWQ scheduling algo-
rithm have shown that it delivers better results for the average throughput and
reduces total data transfer time by adapting to the changes in channel conditions.
Three alternatives of the MWQ algorithm have been presented. The simulation
as well as experimental methodology was used for the validation and comparison.
A test-bed implementation was done to conduct the real world experiments. It
has been found that, among the four alternatives the MWQ algorithm delivers
the best results by adapting to changes in both long as well as short term channel
conditions. These encouraging result have lead us to believe that by plugging a
smart CAPAC and TM into the core RAW scheduler can generate even better
results.

6.2 Suggestions for Future Research

The following presents four recommendations for the future research.

• Energy Efficiency Given that the battery power is a very expensive re-
source for mobile devices, a detailed study of energy efficiency gained by
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using the proposed RAW scheduler is due for future work.

• Access Control Studies The results obtained from the MWQ evaluation
are encouraging and suggest that better results can be produced after some
some further research. One possible future work could be the detailed design
and implementation of an ACM that can define the smart access permissions
for the MWQs.

• Trust Management Studies Further research is possible on the detailed
design and evaluation of the TM. The evaluation of the proposed TM for
the energy efficiency gain could be an interesting work for future.

• Data Tagger Enhancements Further fine grain enhancements can be
done at the scheduler design level, specially in the data tagger module. It
could be made more intelligent and energy efficient

In conclusion, the aim of this research is to achieve the best effort QoS in
the MCCs during collaborative data transfer has been achieved by proposing the
detailed design of the RAW scheduler, although a number of areas for the future
work remain.
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Appendix A

WLANs Vs. WWANs:
Throughput Comparison

A.1 Typical Throughput Rate of WLAN Tech-
nologies

Technology Data Rate

802.11a (Wi-Fi5) 54 Mbps

802.11b (Wi-Fi) 11 Mbps

802.11g 54 Mbps

bluetooth 1-3 Mbps

UWB 675 Mbps

Table A.1: Typical Throughput Rate of WLAN Technologies.
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A.2 Typical Throughput Rate of WWAN Tech-
nologies

Technology Data Rate(Uplink) Data Rate(Downlink)

GPRS 20-40 Kbps 60-80 Kbps

EDGE 59 Kbps 236 Kbps

EDGE-2 1.2 Mbps 474 Kbps

WCDMA 384 Kbps 384 Kbps

HSUPA .73-11.5 Mbps N/A

HSPA+ Up to 22 Mbps Up to 42 Mbps

EVDO Rel. 0 .15 Mbps 2.45 Mbps

EVDO Rel. A 1.8 Mbps 3.1 Mbps

EVDO Rel. B 3.6 Mbps 9.6 Mbps

WiMAX (802.16e) 6.4 Mbps 9.5 Mbps

WiMAX II (802.16m) Up to 130 Mbps Up to 130 Mbps

LTE Up to 86 Mbps Up to 326 Mbps

Table A.2: Typical Throughput Rate of WWAN Technologies.
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Appendix B

NCTUns Simulation Details

B.1 NCTUns Network Scalability Problem

NCTUns is a very wise choice for our simulation scenario due to its support
for multi-interface node and ability to run real time applications on any network
node. The simulator has became a commercial product named Estinet since 2009.
Due to this reason, fewer researchers are using it for the simulations recently.
Hence, developer forums are not active. The developers manuals are outdated
and incomplete. Furthermore, the simulator code available still has some bugs
which might have been fixed in the recent releases but these are not available free
of cost.

We did experience a major setback soon into our simulation, our network
topology was not scaling according to our scenario requirements. The problem
arises when we connect the sender with the receiver through multiple paths and
try to send data on each path simultaneously. The simulator is supporting si-
multaneous transfer of data on two paths but when we try to use a third path,
the data do not get transferred through it. It caused a hindrance in simulating
more than two collaborators and several network scenarios. We spent few months
trying to find and fix this bug. After lots of research and code debugging, we
decided to contact Estinet (commercial version of NCTUns) support team to get
the commercial product but during trial it became evident that problem lies with
the software, and it does not support the functionality required by us. Later
Estinet team confirmed through email that this scaling issue is a bug in their
software and they will try to fix it in next release.
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B.2 Simulation Code

Given below are the files corresponding to the implementation or four scheduling
algorithms. As NCTUns allows to run any application code on an a network
node, I run them on the sender node, one by one through GUI using commands
in the following format. Here xxx is the abbreviation of algorithms name.

xxx_sender /*path of config file*/xxx_config.txt

where xxx_config.txt has a list of Local IPs and corresponding server IPs.
At the end, it has size of data to be transferred. It is important to note that
different algorithms have different configuration file formats for the data section
depending upon the nature of scheduling algorithm.

B.2.1 Round Robin Algorithm Code

************* rr_sender.c *************
****************************************
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <pthread.h>

#define PORT 3490 // the port client will be connecting to
#define MAXDATASIZE 200 // max number of bytes we can get at once
#define MAXCOLABORATORS 10
#define MAXLINELENGTH 256

char* remove_newline(char *s)
{

int len = strlen(s);
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if (len > 0 && s[len-1] == ’\n’){ // if there’s a newline
s[len-1] = ’\0’; // truncate the string

}
return s;

}

int main(int argc, char *argv[])
{
/*****************/

if(argc!=2){
printf("Usage: ./rr_sender Recvr_First_IP Recvr_Second_IP
sndr_First_IP sndr_Second_IP, data\n");
return 0;

}
int i = 0;
int err, name_len=0;
int linenum = 0;
char line[MAXLINELENGTH];
char *serverIPs[MAXCOLABORATORS] = {’\0’};
char *localIPs[MAXCOLABORATORS] = {’\0’};
long int data[MAXCOLABORATORS];
int counter[MAXCOLABORATORS];
int cur_colaborators=0;
printf("File to open is %s\n", argv[1]);
FILE *fin;
if ((fin = fopen(argv[1], "r")) == NULL){

fprintf(stderr, "Unable to open config file rr-config.txt!\n");
exit(1);

}
/********* to read server IPs ***************/
while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
int testlen = 0;
testlen = strlen(line);

168



serverIPs[linenum] = malloc(testlen + 1);
strcpy (serverIPs[linenum], remove_newline(line));
linenum++;

}

/********* to read local IPs ***************/
linenum=0;
while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
int testlen;
testlen = strlen(line);
localIPs[linenum] = malloc(testlen + 1);
strcpy (localIPs[linenum], remove_newline(line));
linenum++;
cur_colaborators++;

}
/********** to get data size ************/
linenum=0;
while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
sscanf(line, "%ld", &data[linenum++]);

}
/*******************************/

for(i=0;i<cur_colaborators;i++){
// serverIPs[i]="127.0.0.1"; //Dummey
//localIPs[i]="127.0.0.1"; //Dummey
//data[0]=50000000; //Dummey
counter[i]=0;
}

int sockfd[MAXCOLABORATORS], numbytes;
char buf[MAXDATASIZE];
int buf_len=0;
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buf[0]=’\0’;
struct hostent *he[MAXCOLABORATORS];
struct sockaddr_in their_addr[MAXCOLABORATORS],
local_addr[MAXCOLABORATORS]; // connector’s address information
/*if(argc!=6){
printf("Usage: ./rr_sender Recvr_First_IP Recvr_Second_IP
sndr_First_IP sndr_Second_IP, data\n");
return 0;
}*/
for(i=0;i<cur_colaborators; i++){

printf("Server[%d]=%s\n", i, serverIPs[i]);
printf("local[%d]=%s\n", i, localIPs[i]);

}
for(i=0;i<cur_colaborators; i++){

if ((he[i]=gethostbyname(serverIPs[i])) == NULL) {
// get the host info
herror("gethostbyname");

exit(1);
}

if ((sockfd[i] = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}
int yes =1;

if (setsockopt(sockfd[i], SOL_SOCKET, SO_REUSEADDR,
&yes, sizeof(int)) == -1) {

perror("setsockopt");
exit(1);

}

local_addr[i].sin_family = AF_INET;

local_addr[i].sin_addr.s_addr = inet_addr(localIPs[i]);
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if(bind(sockfd[i], (struct sockaddr *) &local_addr[i],
sizeof(local_addr[i]))==-1)

{
perror("Client: bind");
exit(1);

}

their_addr[i].sin_family = AF_INET; // host byte order
their_addr[i].sin_port = htons(PORT);

// short, network byte order
their_addr[i].sin_addr = *((struct in_addr *)he[i]->h_addr);
memset(their_addr[i].sin_zero, ’\0’, sizeof their_addr[i].sin_zero);
if (connect(sockfd[i], (struct sockaddr *)&their_addr[i],

sizeof their_addr[i]) == -1) {
perror("connect");
exit(1);

}
}
sprintf(buf,"The Quick Brown Fox Jumps over the Lazy Dog. The Quick
Brown Fox Jumps over the Lazy Dog");
int len=strlen(buf);
int data_sent=0;

while(data_sent < data[0]){
for(i=0; i<cur_colaborators; i++){

if (send(sockfd[i], buf, strlen(buf), 0) == -1)
perror("Client: send");
counter[i]+=len;
data_sent+=len;
if(data_sent>=data[0]) break;

}
}

for(i=0; i<cur_colaborators; i++){
printf("Client: Total Data Sent on path %d: %d\n", i, counter[i]);
close(sockfd[i]);
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}
printf("\nClient: Total Data Sent: %d\n", data[0]);

return 0;
}

************* rr_config.txt ************
****************************************
1.0.1.1
1.0.1.1
#
1.0.6.2
1.0.7.2
#
50000000
#

B.2.2 Channel Pinned Algorithm Code

************* cp_sender.c *************
*****************************************
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <pthread.h>

#define PORT 3490 // the port client will be connecting to
#define MAXDATASIZE 200 // max number of bytes we can get at once
#define MAXCOLABORATORS 10
#define MAXLINELENGTH 256
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char* remove_newline(char *s)
{

int len = strlen(s);
if (len > 0 && s[len-1] == ’\n’){ // if there’s a newline

s[len-1] = ’\0’; // truncate the string
}
return s;

}

pthread_t tid[MAXCOLABORATORS];
struct arg {

char *server_ip;
char *local_ip;
uint16_t port;
long data_size;

};
typedef struct arg arg;
void* doSomeThing(void *);

int main(int argc, char *argv[])
{
/*******************************/

if(argc!=2){
printf("Usage: ./rr_sender Recvr_First_IP Recvr_Second_IP
sndr_First_IP sndr_Second_IP, data\n");
return 0;

}

int i = 0;
int err, linenum=0;
char *serverIPs[MAXCOLABORATORS];
char *localIPs[MAXCOLABORATORS];
long data[MAXCOLABORATORS];
char line[MAXLINELENGTH];
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int cur_colaborators=0;
FILE *fin;
if ((fin = fopen(argv[1], "r")) == NULL){

fprintf(stderr, "Unable to open config file!\n");
exit(1);

}
/********* to read server IPs ***************/

while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
int testlen = 0;
testlen = strlen(line);
serverIPs[linenum] = malloc(testlen + 1);
strcpy (serverIPs[linenum], remove_newline(line));
linenum++;

}

/********* to read local IPs ***************/
linenum=0;
while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
int testlen;
testlen = strlen(line);
localIPs[linenum] = malloc(testlen + 1);
strcpy (localIPs[linenum], remove_newline(line));
linenum++;
cur_colaborators++;

}
/********** to get data size ************/
linenum=0;
for(i=0; i<cur_colaborators; i++)
data[i]=0;
while(fgets(line, MAXLINELENGTH, fin) != NULL)
{
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if(line[0] == ’#’) break;
sscanf(line, "%ld", &data[linenum++]);

}

/*******************************/

for(i=0;i<cur_colaborators;i++){

err = pthread_create(&(tid[i]), NULL, &doSomeThing,
&(arg) {serverIPs[i], localIPs[i], 3490, data[i]});

if (err != 0)
printf("\ncan’t create thread %d:[%s]", i, strerror(err));

}
for(i=0;i<cur_colaborators;i++){

pthread_join(tid[i], NULL);
}

return 0;
}

void* doSomeThing(void *ptr)
{

arg *x = ptr;
int sockfd, numbytes;
char buf[MAXDATASIZE];
long counter=0;
long queue_size;
queue_size=x->data_size;
struct hostent *he;
struct sockaddr_in their_addr, local_addr;
// connector’s address information
if ((he=gethostbyname(x->server_ip)) == NULL) {
// get the host info
herror("gethostbyname");
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exit(1);
}

if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}
int yes =1;

if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR,
&yes, sizeof(int)) == -1) {

perror("setsockopt");
exit(1);

}

local_addr.sin_family = AF_INET;
local_addr.sin_addr.s_addr = inet_addr(x->local_ip);
if(bind(sockfd, (struct sockaddr *) &local_addr,
sizeof(local_addr))==-1)
{
perror("Client: bind");
exit(1);
}

their_addr.sin_family = AF_INET; // host byte order
their_addr.sin_port = htons(x->port);
// short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
memset(their_addr.sin_zero, ’\0’, sizeof their_addr.sin_zero);
if (connect(sockfd, (struct sockaddr *)&their_addr,
sizeof their_addr) == -1) {
perror("connect");
exit(1);
}
int i;
sprintf(buf,"The Quick Brown Fox Jumps over the Lazy Dog. The Quick
Brown Fox Jumps over the Lazy Dog");
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int len=strlen(buf);
printf("This Data = %ld\n", queue_size);
while(counter < queue_size){

if (send(sockfd, buf, strlen(buf), 0) == -1)
perror("send");
counter+=len;
}
printf("Total Data Sent in this thread: %d\n", counter);

close(sockfd);

return NULL;
}

************* cp_config.txt ************
1.0.1.1
1.0.1.1
#
1.0.8.2
1.0.9.2
#
30000000
20000000
#
*****************************************

B.2.3 Single Work Queue Algorithm Code

************* swq_sender.c *************
*******************************************
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
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#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <pthread.h>

#define PORT 3490 // the port client will be connecting to
#define MAXDATASIZE 200 // max number of bytes we can get at once
#define MAXCOLABORATORS 10
#define MAXLINELENGTH 256

char* remove_newline(char *s)
{

int len = strlen(s);
if (len > 0 && s[len-1] == ’\n’){ // if there’s a newline

s[len-1] = ’\0’; // truncate the string
}
return s;

}

pthread_t tid[MAXCOLABORATORS];
long counter;
int line;
pthread_mutex_t lock;

struct arg {
char *server_ip;
char *local_ip;
uint16_t port;
long data;

};
typedef struct arg arg;
void* doSomeThing(void *);
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int main(int argc, char *argv[])
{
/*******************************/

if(argc!=2){
printf("Usage: ./rr_sender Recvr_First_IP Recvr_Second_IP
sndr_First_IP sndr_Second_IP, data\n");
return 0;

}

int i = 0;
int err;
line=0;

if (pthread_mutex_init(&lock, NULL) != 0)
{

printf("\n mutex init failed\n");
return 1;

}
char *serverIPs[MAXCOLABORATORS];
char *localIPs[MAXCOLABORATORS];
long data[MAXCOLABORATORS];
char line[MAXLINELENGTH];
int cur_colaborators=0;
int linenum=0;
FILE *fin;
if ((fin = fopen(argv[1], "r")) == NULL){

fprintf(stderr, "Unable to open config file!\n");
exit(1);

}
/********* to read server IPs ***************/

while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
int testlen = 0;
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testlen = strlen(line);
serverIPs[linenum] = malloc(testlen + 1);
strcpy (serverIPs[linenum], remove_newline(line));
linenum++;

}

/********* to read local IPs ***************/
linenum=0;
while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
int testlen;
testlen = strlen(line);
localIPs[linenum] = malloc(testlen + 1);
strcpy (localIPs[linenum], remove_newline(line));
linenum++;
cur_colaborators++;

}
/********** to get data size ************/
linenum=0;
for(i=0; i<cur_colaborators; i++)
data[i]=0;
while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
sscanf(line, "%ld", &data[linenum++]);

}
/*******************************/
/* Dummey Entering of Colaborators and Sender/Receiver

Data until File program in incomplete */
for(i=0;i<cur_colaborators;i++){

//serverIPs[i]="127.0.0.1"; //Dummey
//localIPs[i]="127.0.0.1"; //Dummey
//data[0]=50000000; //Dummey
err = pthread_create(&(tid[i]), NULL, &doSomeThing,
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&(arg) {serverIPs[i], localIPs[i], 3490, data[0]});
if (err != 0)

printf("\ncan’t create thread %d:[%s]", i, strerror(err));
}
for(i=0;i<cur_colaborators;i++){

pthread_join(tid[i], NULL);
}

/********* Till Here *****************/
pthread_mutex_destroy(&lock);

/******************************/
return 0;

}

void* doSomeThing(void *ptr)
{

arg *x = ptr;
int sockfd, numbytes;
char buf[MAXDATASIZE];
int buf_len=0;
int loc_counter=0;
buf[0]=’\0’;
struct hostent *he;
struct sockaddr_in their_addr, local_addr;
// connector’s address information
if ((he=gethostbyname(x->server_ip)) == NULL) {
// get the host info
herror("gethostbyname");

exit(1);
}

if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}
int yes =1;
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if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR,
&yes, sizeof(int)) == -1) {

perror("setsockopt");
exit(1);

}
local_addr.sin_family = AF_INET;
local_addr.sin_addr.s_addr = inet_addr(x->local_ip);
if(bind(sockfd, (struct sockaddr *) &local_addr,
sizeof(local_addr))==-1)
{
perror("Client: bind");
exit(1);
}

their_addr.sin_family = AF_INET;
// host byte order
their_addr.sin_port = htons(x->port);
// short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
memset(their_addr.sin_zero, ’\0’, sizeof their_addr.sin_zero);
if (connect(sockfd, (struct sockaddr *)&their_addr,
sizeof their_addr) == -1) {
perror("connect");
exit(1);
}
int i;
sprintf(buf,"The Quick Brown Fox Jumps over the Lazy Dog. The Quick
Brown Fox Jumps over the Lazy Dog");
int len=strlen(buf);

do{
pthread_mutex_lock(&lock);
if(counter > x->data) {pthread_mutex_unlock(&lock); break;}
counter+=len;
loc_counter+=len;
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//x->data-=len;
pthread_mutex_unlock(&lock);
if (send(sockfd, buf, strlen(buf), 0) == -1)
perror("send");
}while(1);

printf("Total Data Sent in this thread: %d\n", loc_counter);
//printf("Total Data Sent by ALL threads: %d\n", counter);
close(sockfd);
return NULL;
}

************* swq_config.txt ************
*******************************************
1.0.1.1
1.0.1.1
#
1.0.8.2
1.0.9.2
#
50000000
#

B.2.4 Multi-level Work Queue Algorithm Code

************* mwq_sender.c *************
********************************************
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
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#include <netinet/in.h>
#include <sys/socket.h>
#include <pthread.h>
#include <time.h>

#define PORT 3490 // the port client will be connecting to
#define MAXDATASIZE 200 // max number of bytes we can get at once
#define MAXCOLABORATORS 10
#define MAXQUEUES 10
#define MAXLINELENGTH 256

pthread_t tid[MAXCOLABORATORS];

long queue_pos[MAXQUEUES];
long data[MAXQUEUES];
int cur_colaborators;
int total_queues;
pthread_mutex_t lock;

struct arg {
char *server_ip;
char *local_ip;
uint16_t port;

};
typedef struct arg arg;
void* doSomeThing(void *);

char* remove_newline(char *s)
{

int len = strlen(s);
if (len > 0 && s[len-1] == ’\n’){ // if there’s a newline

s[len-1] = ’\0’; // truncate the string
}
return s;

}
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int main(int argc, char *argv[])
{
/*******************************/

if(argc!=2){
printf("Usage: ./rr_sender Recvr_First_IP Recvr_Second_IP
sndr_First_IP sndr_Second_IP, data\n");
return 0;

}

int i = 0;
int err, linenum=0;
char line[MAXLINELENGTH];
if (pthread_mutex_init(&lock, NULL) != 0)
{

printf("\n mutex init failed\n");
return 1;

}

char *serverIPs[MAXCOLABORATORS];
char *localIPs[MAXCOLABORATORS];
cur_colaborators=0;
total_queues = 0;
FILE *fin;
if ((fin = fopen(argv[1], "r")) == NULL){

fprintf(stderr, "Unable to open config file!\n");
exit(1);

}
/********* to read server IPs ***************/

while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
int testlen = 0;
testlen = strlen(line);
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serverIPs[linenum] = malloc(testlen + 1);
strcpy (serverIPs[linenum], remove_newline(line));
linenum++;

}

/********* to read local IPs ***************/
linenum=0;
while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
int testlen;
testlen = strlen(line);
localIPs[linenum] = malloc(testlen + 1);
strcpy (localIPs[linenum], remove_newline(line));
linenum++;
cur_colaborators++;

}
/********** to get data size ************/
linenum=0;
for(i=0; i<MAXQUEUES; i++)
data[i]=0;
while(fgets(line, MAXLINELENGTH, fin) != NULL)
{

if(line[0] == ’#’) break;
sscanf(line, "%ld", &data[linenum++]);
total_queues++;

}

/*******************************/

/* Dummey Entering of Colaborators and Sender/Receiver
Data until File program in incomplete */

for(i=0;i<total_queues;i++)
{

queue_pos[i]=0;
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//data[i]=50000000; //Dummey
}

for(i=0;i<cur_colaborators;i++){
//serverIPs[i]="127.0.0.1"; //Dummey
//localIPs[i]="127.0.0.1"; //Dummey

err = pthread_create(&(tid[i]), NULL, &doSomeThing,
&(arg) {serverIPs[i], localIPs[i], 3490});

if (err != 0)
printf("\ncan’t create thread %d:[%s]", i, strerror(err));

}
for(i=0;i<cur_colaborators;i++){

pthread_join(tid[i], NULL);
}

/********* Till Here *****************/

pthread_mutex_destroy(&lock);
/******************************/

return 0;
}

void* doSomeThing(void *ptr)
{

arg *x = ptr;
int sockfd, numbytes;
char buf[MAXDATASIZE];

int counter=0;
buf[0]=’\0’;
struct hostent *he;
struct sockaddr_in their_addr, local_addr;
// connector’s address information
if ((he=gethostbyname(x->server_ip)) == NULL) {
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// get the host info
herror("gethostbyname");

exit(1);
}

if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
perror("socket");
exit(1);

}
int yes =1;

if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR,
&yes, sizeof(int)) == -1) {

perror("setsockopt");
exit(1);

}
local_addr.sin_family = AF_INET;
local_addr.sin_addr.s_addr = inet_addr(x->local_ip);
if(bind(sockfd, (struct sockaddr *) &local_addr,
sizeof(local_addr))==-1)
{
perror("Client: bind");
exit(1);
}

their_addr.sin_family = AF_INET;
// host byte order
their_addr.sin_port = htons(x->port);
// short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
memset(their_addr.sin_zero, ’\0’, sizeof their_addr.sin_zero);
if (connect(sockfd, (struct sockaddr *)&their_addr,
sizeof their_addr) == -1) {
perror("connect");
exit(1);
}
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sprintf(buf,"The Quick Brown Fox Jumps over the Lazy Dog. The Quick
Brown Fox Jumps over the Lazy Dog");
int len=strlen(buf);
int i;

for(i=0; i<total_queues;i++)
{

do{
pthread_mutex_lock(&lock);
if(queue_pos[i] > data[i]) {pthread_mutex_unlock(&lock); break;}
counter+=len;
queue_pos[i]+=len;
pthread_mutex_unlock(&lock);
if (send(sockfd, buf, strlen(buf), 0) == -1)
perror("send");

}while(1);

printf("Total Data Sent of %i queue: %d\n", i, counter);
counter=0;

}
close(sockfd);
return NULL;
}

************* mwq_config.txt ************
*******************************************
1.0.1.1
1.0.1.1
#
1.0.8.2
1.0.9.2
#
30000000
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20000000
#

B.2.5 Receiver Code

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <signal.h>

#define MYPORT 3490 // the port users will be connecting to
#define BACKLOG 10 // how many pending connections queue will hold
#define MAXDATASIZE 200 // max number of bytes we can get at once

void sigchld_handler(int s)
{

while(waitpid(-1, NULL, WNOHANG) > 0);
}
int main(void)
{

int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
struct sockaddr_in my_addr; // my address information
struct sockaddr_in their_addr; // connector’s address information
socklen_t sin_size;
struct sigaction sa;
char buf[MAXDATASIZE];
int con_counter=0;
int yes=1, numbytes;
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
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perror("socket");
exit(1);

}
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR,

&yes, sizeof(int)) == -1) {
perror("setsockopt");
exit(1);

}
my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(MYPORT);

// short, network byte order
my_addr.sin_addr.s_addr = INADDR_ANY;

// automatically fill with my IP
memset(my_addr.sin_zero, ’\0’,

sizeof my_addr.sin_zero);
if (bind(sockfd, (struct sockaddr *)&my_addr,

sizeof my_addr) == -1) {
perror("bind");
exit(1);

}
if (listen(sockfd, BACKLOG) == -1) {

perror("listen");
exit(1);

}
sa.sa_handler = sigchld_handler; // reap all dead processes
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
if (sigaction(SIGCHLD, &sa, NULL) == -1) {

perror("sigaction");
exit(1);

}
while(1) { // main accept() loop

sin_size = sizeof their_addr;
if ((new_fd = accept(sockfd, (struct sockaddr *)

&their_addr, &sin_size)) == -1) {

191



perror("accept");
continue;

}
con_counter++;
printf("server: got connection from %s, from port

%d\n", inet_ntoa(their_addr.sin_addr), ntohs(their_addr.sin_port));

if (!fork()) { // this is the child process
close(sockfd); // child doesn’t need the listener

int i, datacounter;
datacounter = 0;
do{

if ((numbytes=recv(new_fd, buf, MAXDATASIZE-1, 0)) == -1) {
perror("Server: recv");
exit(1);

}
datacounter+=numbytes;

buf[numbytes] = ’\0’;
}while(numbytes!=0);

close(new_fd);
exit(0);

}
close(new_fd); // parent doesn’t need this

}
return 0;

}
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Appendix C

HTTP Downloader
Implementation Details

C.1 Bluetooth Pairing Process

The Bluetooth pairing process is typically triggered automatically the first time a
device receives a connection request from a device with which it is not yet paired.
In order that Bluetooth pairing may occur, a password has to be exchanged
between the two devices. This password or "Passkey" as it is more correctly
termed is a code shared by both Bluetooth devices. It is used to ensure that both
users have agreed to pair with each other.

The process of Bluetooth pairing is summarised below:

1. Bluetooth device looks for other Bluetooth devices in range: To be found
by other Bluetooth devices, the first device, Device 1 must be set to dis-
coverable mode - this will allow other Bluetooth devices in the vicinity to
detect its presence and attempt to establish a connection.

2. Two Bluetooth devices find each other: When the two devices: Device 1
and device 2 find each other it is possible to detect what they are. Normally
the discoverable device will indicate what type of device it is - cellphone,
headset, etc., along with its Bluetooth device name. The Bluetooth device
name is the can be allocated by the user, or it will be the one allocated
during manufacture.

3. Prompt for Passkey: Often the default passkey is set to "0000", but it is
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advisable to use something else as hackers will assume most people will not
change this.

However many more sophisticated devices - smartphones and computers -
both users must agree on a code which must obviously be the same for both.

4. Device 1 sends passkey: The initiating device, Device 1 sends the passkey
that has been entered to Device 2.

5. Device 2 sends passkey: The passkeys are compared and if they are both
the same, a trusted pair is formed, Bluetooth pairing is established.

6. Communication is established: Once the Bluetooth pairing has occurred,
data can be exchanged between the devices.

Once the Bluetooth pairing has been established it is remembered by the
devices, which can then connect to each without user intervention. If necessary,
the Bluetooth pairing relationship may be removed by the user at a later time if
required.

C.2 Chat Script Example and Explanation

Below is the details and explanation of configuration for a point to point connec-
tion authentication with PAP or CHAP. Each step is explained in comments.

C.2.1 Example Configuration for a PPP Connection Au-
thentication
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Figure C.1: Example Configuration for a PPP Connection Authenticated with
PAP or CHAP

C.2.2 Chat Script to Connect to Default Service Provider

Following is an example chat script to dial out to a default service provider.
We followed same example to write our chat scripts for two mobile data service
providers, Lyca and Virgin.
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Figure C.2: Chat Script to Connect to Default Service Provider

C.2.3 Configuration for a PPP Connection Authenticated
with Lyca

I have written connection authentication and chat scripts for Virgin and Lyca
mobile service provider. Following are the scripts used for making connections
with Lyca Mobile.
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Figure C.3: Configuration for a PPP Connection Authentication with Lyca

C.2.4 Chat Script to Connect to Lyca
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Figure C.4: Chat Script to Connect to Lyca Mobile Service Provider

C.2.5 Log File
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Figure C.5: Log File from a Test Run

C.3 HTTP Downloader Code

C.3.1 DownloadRequest.java

package com.imux.vo;
import java.util.ArrayList;
import java.util.List;

/**
* Keeps the download request and its sub-requests i.e. partitions.
* @author sadia
*
*/

public class DownloadRequest {

private String url;
private int contentLength;
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private String fileName;
private List<List<DownloadRequestPartition>> partitionLists;

public DownloadRequest(String argUrl, int argContentLength,
String argFileName){
this.url = new String(argUrl);
contentLength = argContentLength;
fileName = argFileName;
partitionLists = new ArrayList<List<DownloadRequestPartition>>();
}
public String getUrl() {
return url;
}

public void setUrl(String url) {
this.url = url;
}

public int getContentLength() {
return contentLength;
}

public void setContentLength(int contentLength) {
this.contentLength = contentLength;
}

public List<List<DownloadRequestPartition>> getParitionList() {
return partitionLists;
}

public void setParitionList(List<List<DownloadRequestPartition>>
paritionList) {
this.partitionLists = paritionList;
}
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/**
* Makes only work chunks into one queue as the passed number
* of connection count.
* @param argConnectionCount
*/

public void makePartitionsByConnectionCount(int argConnectionCount){
// We only make a single queue here and put all partitions in it.
List<DownloadRequestPartition> partitions = new ArrayList<
DownloadRequestPartition>();
this.partitionLists.add(partitions);
int partitionSize = this.contentLength/argConnectionCount;
int index = 0;
for( int i = 0 ; i < argConnectionCount ; i++){
DownloadRequestPartition partition = new DownloadRequestPartition();
partition.setStartingByte(index);
partition.setEndingByte(index + partitionSize);
partition.setPartitionFileName(fileName + i);
partition.setUrl(url);
partition.setPartitionCompleted(false);
partition.setPartitionDownloading(false);
partition.setPartitionStoped(true);
index = partitionSize + 1;
partitions.add(partition);
}
}

/**
* Makes n number of partitions (work chunks) of passed partition size
* to complete the request.
* @param argPartitionSize
*/

public void makePartitionsBySize(int argPartitionSize){
int partitionSize = argPartitionSize;
int partitionCount = (int)(this.contentLength/argPartitionSize);
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if(partitionCount != 0){
if( this.contentLength % partitionCount != 0)
partitionCount++;
}
else
partitionCount++;

// We only make a single queue here and put all partitions in it.
List<DownloadRequestPartition> partitions = new ArrayList<
DownloadRequestPartition>();
this.partitionLists.add(partitions);

int index = 0;
for( int i = 0 ; i < partitionCount ; i++){
DownloadRequestPartition partition = new DownloadRequestPartition();
partition.setStartingByte(index);
if(i == partitionCount - 1){
index = index + (contentLength % argPartitionSize) - 1;
partition.setEndingByte(index);
}
else{
index = index + partitionSize - 1;
partition.setEndingByte(index);
}
partition.setPartitionCompleted(false);
partition.setPartitionDownloading(false);
partition.setPartitionStoped(true);
partition.setPartitionFileName(fileName + i);
partition.setUrl(url);
index = index + 1;
partitions.add(partition);
}
}

/**
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* Makes n number of partitions (work chunks) of passed partition size
* to complete the request.
* @param argPartitionSize
*/

public void makePartitionsByPriority(int argPartitionSize, int
argPriorityQueueCount, int argPercentInQueue[]){
if(argPercentInQueue == null
|| argPriorityQueueCount != argPercentInQueue.length
|| sum(argPercentInQueue) != 100)
throw new RuntimeException("Number of queues should be same
as number of %ages and their sum must be 100.");
// Ok lets make the partitions first.
int partitionSize = argPartitionSize;
int partitionCount = (int)(this.contentLength/argPartitionSize);
if(partitionCount != 0){
if( this.contentLength % partitionCount != 0)
partitionCount++;
}
else
partitionCount++;

// We make multiple queues as required.
for( int i = 0 ; i < argPriorityQueueCount ; i++){
List<DownloadRequestPartition> partitions = new ArrayList<
DownloadRequestPartition>();
this.partitionLists.add(partitions);
}
// roughly calculate how many partitions each queue will get.
int partitionPerQueue[] = new int[argPriorityQueueCount];
for(int i = 0 ; i < argPriorityQueueCount ; i++){
// total is partitionCount
// each queue might be off by one partition but we want to round such
// that no queue at top has less data than percentage assigned to it.
partitionPerQueue[i] = (int)Math.ceil(partitionCount
* argPercentInQueue[i] / 100);
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}
int index = 0;
int currentQueue = 0;
for( int i = 0 ; i < partitionCount ; i++){
// Create a partition.
DownloadRequestPartition partition = new DownloadRequestPartition();
partition.setStartingByte(index);
if(i == partitionCount - 1){
index = index + (contentLength % argPartitionSize) - 1;
partition.setEndingByte(index);
}
else{
index = index + partitionSize - 1;
partition.setEndingByte(index);
}
partition.setPartitionCompleted(false);
partition.setPartitionDownloading(false);
partition.setPartitionStoped(true);
partition.setPartitionFileName(fileName + i);
partition.setUrl(url);
index = index + 1;
// Put the partition in the correct queue. If current queue is full, move
down to next queue.

if(partitionPerQueue[currentQueue] <= 0)
currentQueue++;
partitionLists.get(currentQueue).add(partition);
partitionPerQueue[currentQueue]--;

}
}

private int sum(int argValues[]){
int sum = 0;
for (int i : argValues) {
sum += i;
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}
return sum;
}

public int getDownloadedByteCount(){
int sum = 0;
for (List<DownloadRequestPartition> list2 : partitionLists) {
for (DownloadRequestPartition downloadRequestPartition : list2) {
sum += downloadRequestPartition.getBytesDownloaded();
}
}
return sum;
}

public DownloadRequestPartition getNextPartitionToDownload(Integer
argConPriority){
DownloadRequestPartition request = null;
List<DownloadRequestPartition> subQueue = null;
// has this instance been initialised with priority queue
// (i.e. more than one queue)
if( partitionLists.size() > 1 && argConPriority != null){
// this is priority scheduler.
// Step 1, look for a partition in its level or the level below.
int actualIndex = argConPriority < partitionLists.size() ?
argConPriority : partitionLists.size() - 1;
for(int i = actualIndex ; i < partitionLists.size() ; i++){
subQueue = partitionLists.get(i);
for( int j = 0 ; j < subQueue.size() ; i++){
DownloadRequestPartition temp = subQueue.get(j);
if(!temp.isPartitionCompleted() && !temp.isPartitionDownloading()
&& temp.isPartitionStoped()){
request = temp;
break;
}
}
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// Get the next available partition waiting to be downloaded.
if(request != null)
break;
}
if( request == null){
// a partition was not found in its level and below.
// Lets go towards the top.
for(int i = actualIndex - 1 ; i >= 0 ; i--){
subQueue = partitionLists.get(i);
for( int j = 0 ; j < subQueue.size() ; i++){
DownloadRequestPartition temp = subQueue.get(j);
if(!temp.isPartitionCompleted() && !temp.isPartitionDownloading()
&& temp.isPartitionStoped()){
request = temp;
break;
}
}
// get the next available partition waiting to be downloaded.
if(request != null)
break;
}
}

}else{
// there will always be only 1 queue for simple round robin request.
// But lets keep the code consistent.
for(int i = 0 ; i < partitionLists.size() ; i++){
subQueue = partitionLists.get(i);
for( int j = 0 ; j < subQueue.size() ; i++){
DownloadRequestPartition temp = subQueue.get(j);
if(!temp.isPartitionCompleted() && !temp.isPartitionDownloading()
&& temp.isPartitionStoped()){
request = temp;
break;
}
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}
// get the next available partition waiting to be downloaded.
if(request != null)
break;
}
}
return request;
}

public int getCompletedPartitionCount(){
int count = 0;
for (List<DownloadRequestPartition> list : partitionLists) {
for (DownloadRequestPartition downloadRequestPartition : list) {
if(downloadRequestPartition.isPartitionCompleted()
&& !downloadRequestPartition.isPartitionDownloading()
&& downloadRequestPartition.isPartitionStoped())
count++;
}
}
return count;
}

public boolean isMultiqueue(){
return partitionLists.size() > 1;
}
}

C.3.2 DownloadRequestPartition.java

/**
*
*/

package com.imux.vo;

/**
* @author sadia

207



*
*/

public class DownloadRequestPartition {

private String url;
private int startingByte;
private int endingByte;
private int bytesDownloaded;
private String partitionFileName;
private boolean partitionDownloading;
private boolean partitionCompleted;
private boolean partitionStoped;
private int failureCount;

public int getEndingByte() {
return endingByte;
}

public void setEndingByte(int endingByte) {
this.endingByte = endingByte;
}

public String getPartitionFileName() {
return partitionFileName;
}

public void setPartitionFileName(String partitionFileName) {
this.partitionFileName = partitionFileName;
}

public int getStartingByte() {
return startingByte;
}

public void setStartingByte(int startingByte) {
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this.startingByte = startingByte;
}

public boolean isPartitionCompleted() {
return partitionCompleted;
}

public void setPartitionCompleted(boolean partitionCompleted) {
this.partitionCompleted = partitionCompleted;
}

public String getUrl() {
return url;
}

public void setUrl(String url) {
this.url = url;
}

public boolean isPartitionDownloading() {
return partitionDownloading;
}

public void setPartitionDownloading(boolean partitionDownloading) {
this.partitionDownloading = partitionDownloading;
}

public boolean isPartitionStoped() {
return partitionStoped;
}

public void setPartitionStoped(boolean partitionStoped) {
this.partitionStoped = partitionStoped;
}
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public int getBytesDownloaded() {
return bytesDownloaded;
}

public void setBytesDownloaded(int bytesDownloaded) {
this.bytesDownloaded = bytesDownloaded;
}

public int getFailureCount() {
return failureCount;
}

public void setFailureCount(int failureCount) {
this.failureCount = failureCount;
}
}

C.3.3 HTTPRequestUtil.java

package com.imux.network;

import java.io.BufferedInputStream;
import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.net.InetAddress;
import java.net.MalformedURLException;
import java.net.URL;

import org.apache.commons.httpclient.Header;
import org.apache.commons.httpclient.HostConfiguration;
import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.HttpMethod;
import org.apache.commons.httpclient.HttpStatus;
import org.apache.commons.httpclient.methods.GetMethod;
import org.apache.commons.logging.Log;

210



import org.apache.commons.logging.LogFactory;

import com.imux.threads.SinglePartitionThread;
import com.imux.vo.DownloadRequestPartition;
import com.imux.utils.*;

public class HTTPRequestUtil {

private Log log = LogFactory
.getLog(HTTPRequestUtil.class);

private int bytesDownloaded;

public int getBytesDownloaded(){
return bytesDownloaded;
}

public static int getContentLength(String argRequestURL)throws
MalformedURLException, IOException{
URL url = new URL(argRequestURL);
return url.openConnection().getContentLength();
}

@SuppressWarnings("deprecation")
public boolean downloadWithResume(DownloadRequestPartition
argRequestPartition, SinglePartitionThread argPartialDownloadingThread)

{
argRequestPartition.setPartitionDownloading(true);
argRequestPartition.setPartitionCompleted(false);
argRequestPartition.setPartitionStoped(false);
int argEndRange = argRequestPartition.getEndingByte();
String argFragmentFileName = argRequestPartition.getPartitionFileName();
int argStartRange = argRequestPartition.getStartingByte();
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String argRequestURL = argRequestPartition.getUrl();
InetAddress argInterfaceInetAddress = argPartialDownloadingThread.
getInterfaceInetAddress();
log.debug("Using interface " + argInterfaceInetAddress.getHostAddress()

+ " downloading " + argStartRange + " - " + argEndRange + " of "
+ argRequestURL + " into file " + argFragmentFileName + " - Device name

- " + argPartialDownloadingThread.getChannel().getDeviceFriendlyName());

long localFileSize = 0;
long remoteFileSize = 0;
HttpClient client = null;
BufferedInputStream in = null;
RandomAccessFile out = null;
HttpMethod request = null;
int bytesDownloadedThisTime = 0;
try{
File file = new File(ApplicationConstants.DOWNLOAD_FOLDER_PATH

, argFragmentFileName);
if (file.exists()) {

localFileSize = file.length();
log.debug("File exists, size : " + localFileSize);
if( localFileSize == argEndRange - argStartRange){
log.info("Its already downloaded.");

return true;
}else if( localFileSize > argEndRange - argStartRange){
log.debug("Should never happen. Something wrong! file size is

grater than chunk size! Not downloading.");
return true;
}

}
if( argPartialDownloadingThread.getChannel().getHttpClient() == null){
client = new HttpClient();
argPartialDownloadingThread.getChannel().setHttpClient(client);
log.debug("Created new HTTPClient.");
}else{
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client = argPartialDownloadingThread.getChannel().getHttpClient();
log.debug("Reusing HTTPClient");
}

client.setTimeout(ApplicationConstants.connectionTimeout);
client.setConnectionTimeout(ApplicationConstants.readTimeout);
request = new GetMethod(argRequestURL);

HostConfiguration configuration = new HostConfiguration();

configuration.setLocalAddress(argInterfaceInetAddress);

if (localFileSize > 0) {
/* Note: server must support partial content for resume

* Now move the starting point of the reader so that you
* read what you missed last time.
*/
argStartRange += localFileSize;

request.addRequestHeader("Range", "bytes=" + argStartRange
+ "-" + argEndRange);

log.debug("New range = " + argStartRange + "-"
+ argEndRange);

if (client.executeMethod(configuration, request) !=
HttpStatus.SC_PARTIAL_CONTENT)

// the server does not support resume. So we will have
to download the complete file in one go.

return false;
} else {
log.debug("File size was zero; range remains " + argStartRange

+ "-" + argEndRange);
request.addRequestHeader("Range", "bytes=" + argStartRange

+ "-" + argEndRange);
int status = client.executeMethod(configuration, request);
if (status != HttpStatus.SC_OK && status !=

HttpStatus.SC_PARTIAL_CONTENT)
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// response not ok, server is either busy or having issues
// we don’t need to handle.

return false;
}

Header contentLengthHeader = request.getResponseHeader("content-length");
if (contentLengthHeader == null) {
// We don’t know what is the length of content, cannot start with that.

return false;
}
remoteFileSize = Long.parseLong(contentLengthHeader.getValue());

log.debug("Local file size is " + localFileSize + " bytes.");
log.debug("Remote file size is " + remoteFileSize + " bytes.");
log.debug("Bytes Remaining " + (remoteFileSize - localFileSize)

+ " bytes.");

log.debug("The HTTPClient port being used : " +
client.getHostConfiguration().getPort());

in = new BufferedInputStream(request.getResponseBodyAsStream());
out = new RandomAccessFile(file, "rw");
out.seek(localFileSize);

int offset = 0;
int len = ApplicationConstants.readBufferLength;

/*
*
* Length is 4 K is the max we can receive in one go.
* Webserver dictates e.g. in a .NET application running in

Windows 2002 server as of 01-August-2003 would be
* dictated by the maxRequestLength setting in the
* machine.config file or web.config file and is the total amount
* of data that can be sent through HTTP Post to the server.
* The default is 4MB (4096)...and is generally set low so that your
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* server will not be overwhelmed by possible DoS attacks.
*/

int bytes = 0;
long totalBytes = 0;
bytesDownloaded = argRequestPartition.getBytesDownloaded();
byte[] block = new byte[len];
while ( (bytes = in.read(block, offset, len)) > -1) {

out.write(block, 0, bytes);
totalBytes += bytes;
bytesDownloaded += bytes;
argRequestPartition.setBytesDownloaded(bytesDownloaded);
bytesDownloadedThisTime += bytes;

}

boolean retVal = totalBytes == remoteFileSize;
log.debug("Bytes written: " + totalBytes);
argRequestPartition.setPartitionCompleted(retVal);

argRequestPartition.setPartitionStoped(!retVal);
argRequestPartition.setPartitionDownloading(false);
argPartialDownloadingThread.setDownloadThreadInterrupted(!retVal);
return retVal;

} catch (Exception e) {
argRequestPartition.setPartitionCompleted(false);

argRequestPartition.setPartitionStoped(true);
argRequestPartition.setPartitionDownloading(false);
argPartialDownloadingThread.setDownloadThreadInterrupted(true);
argPartialDownloadingThread.getChannel().setFaultCount(
argPartialDownloadingThread.getChannel()

.getFaultCount()+1); // for channel
argRequestPartition.setFailureCount(argRequestPartition

.getFailureCount()+1); // for thread
e.printStackTrace();
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return false;
}catch(Error e){
argRequestPartition.setPartitionCompleted(false);

argRequestPartition.setPartitionStoped(true);
argRequestPartition.setPartitionDownloading(false);
argPartialDownloadingThread.setDownloadThreadInterrupted(true);
argPartialDownloadingThread.getChannel().setFaultCount(

argPartialDownloadingThread.getChannel()
.getFaultCount()+1); // for channel

argRequestPartition.setFailureCount(argRequestPartition
.getFailureCount()+1);

e.printStackTrace();
return false;
}finally {
try {
argPartialDownloadingThread.getChannel().setBytesDownloaded(
argPartialDownloadingThread.getChannel().getBytesDownloaded()

+bytesDownloadedThisTime);

log.debug("Closing file out stream.");
if (out != null ) out.close();
}catch(IOException ioe) {
log.debug("Closing file out stream FAILED.");
ioe.printStackTrace();/* do nothing */
}

try {
log.debug("Closing input stream of HTTPClient");
if (in != null) in.close();
}catch(IOException ioe) {
log.debug("Clould not close input stream of HTTPClient");
ioe.printStackTrace();/* do nothing */
}
// comment this for not closing the request connection

( which closes the HTTPClient channel )
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// try{
// log.debug("Releasing request connection.");
// if( request != null)
// request.releaseConnection();
// }catch(NullPointerException e){
// log.error(e.getMessage());
// e.printStackTrace();/* do nothing. */}

}
}

public static boolean doesServerSupportPartialContent
(String argUrl) throws IOException{

HttpClient client = null;
HttpMethod request = null;

client = new HttpClient();
request = new GetMethod(argUrl);

request.addRequestHeader("Range", "bytes=0-2");
if (client.executeMethod(request) != HttpStatus.SC_PARTIAL_CONTENT)
// the server does not support resume. So we will have to

download the complete file in one go... ( it doesnot support ranges )
return false;

else
return true;

}
}

C.3.4 PartitionScheduler.java

package com.imux.threads;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
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import com.imux.bluetoothconnection.BlueChannel;
import com.imux.bluetoothconnection.DeviceList;
//import com.imux.gui.ConnectionMultiplexerMainGui.FileMergingThread;
import com.imux.vo.DownloadRequest;
import com.imux.vo.DownloadRequestPartition;

/**
* This class handles thread scheduling and removes dead threads.
* @author sadia
*
*/

public class PartitionScheduler implements Runnable{

private DownloadRequest request;
private long timeTaken;

private Log log = LogFactory
.getLog(PartitionScheduler.class);

//
private List<SinglePartitionThread> singlePartitionThreadList;
private DeviceList deviceList;
private FileJoiningThread fileMergingThread;

public PartitionScheduler(DownloadRequest argDownloadRequest,
String argFileName, DeviceList argDeviceList,
FileJoiningThread argFileMergingThread, List<SinglePartitionThread>
argPartitionThreadArray){
request = argDownloadRequest;
timeTaken = 0;
deviceList = argDeviceList;
fileMergingThread = argFileMergingThread;
singlePartitionThreadList = argPartitionThreadArray;
}
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public void run(){
timeTaken = System.currentTimeMillis();

while(true){
log.debug("PartitionScheduler for thread: Starting scheduler.");
// first remove dead threads
List < SinglePartitionThread> deadThreads = new ArrayList<
SinglePartitionThread>();
for( int i = 0 ; i < singlePartitionThreadList.size() ; i++){
SinglePartitionThread temp = singlePartitionThreadList.get(i);
if( temp.isFinishedSuccessfully() == false ){
log.debug("PartitionSchedulerThread:
Thread not finished. i = " + i);
if( temp.isDownloadThreadInterrupted() == true){
log.debug("PartitionSchedulerThread:
Thread intrupped too. i = " + i);
deadThreads.add(temp);
}
}else{
log.debug("PartitionSchedulerThread: Thread Completed. i = " + i);
deadThreads.add(temp);
}
}

log.debug("PartitionSchedulerThread: DeadThread.Size() =
" + deadThreads.size());
log.debug("PartitionSchedulerThread: partitionThreadArray.size() =
" + singlePartitionThreadList.size());
for( int i = 0 ; i < deadThreads.size() ; i++)
singlePartitionThreadList.remove(deadThreads.get(i));
// dead threads removed.
log.debug("PartitionSchedulerThread: Dead threads removed. rescheduling");
log.debug("PartitionSchedulerThread: singlePartitionThreadList.size() =
" + singlePartitionThreadList.size());
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// now reschedule the partitions
if(request.isMultiqueue())
multiQueueScheduler();
else
singleQueueScheduler();

if( request.getCompletedPartitionCount() == request.getParitionList()
.size()){
log.debug("All partitions done.");
break;
}
else
try {
// Lets check progress in 5 seconds.
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}// while(true) loop
timeTaken = System.currentTimeMillis() - timeTaken;
for( int i = 0 ; i < request.getParitionList().size() ; i++){
List<List<DownloadRequestPartition>> queues = request.getParitionList();
for (List<DownloadRequestPartition> list : queues)
for (DownloadRequestPartition drp : list)
log.info("Downloaded partition:" + drp.getBytesDownloaded()
+ " bytes with " + drp.getFailureCount() + " attempts");

}
log.info("Time Taken = " + timeTaken + " milliseconds.");
Thread fileMerger = new Thread(fileMergingThread);
fileMerger.start();
}

/**
* Simply gets a partition thats not finished, finds a free interface
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* and assigns it to download this partition.
*/

private void singleQueueScheduler(){
for( int i = 0 ; i < request.getParitionList().size() ; i++){
DownloadRequestPartition temp = request.getParitionList().get(0).get(i);
if( temp.isPartitionDownloading())
continue; // this one is running, check the next one.
else if( temp.isPartitionCompleted())
continue;// completed partitions
else if(temp.isPartitionStoped()){
// reschedule it;
List<BlueChannel> channelList = deviceList.getDevices();
//log.debug("partitionThreadArraySize = " + partitionThreadArray.size());
//for(int k = 0; k < listAllAddresses.size(); k++){
for(int k = 0; k < channelList.size(); k++){
boolean foundAddress = false;
// Check if an interface is free.
for(int l = 0; l < singlePartitionThreadList.size(); l++ ){
if((singlePartitionThreadList.get(l).getInterfaceInetAddress().equals
((channelList.get(k).getInetAddress())))){
foundAddress = true;
break;
}
}// l
if (!foundAddress){
log.debug("Found " + channelList.get(k).getInetAddress().
getHostAddress() + " free. Using it.");
SinglePartitionThread pdThread = new SinglePartitionThread(temp,
channelList.get(k));
Thread thread = new Thread(pdThread);
singlePartitionThreadList.add(pdThread);
thread.start();
log.debug("Thread started.");
break;
}
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}// k
}//endif
}// partition loop
}

/**
* Priority queue scheduler. Finds free connections, then finds a

* partition corresponding to the quality and assigns it to
* that link for downloading.
*/

private void multiQueueScheduler(){
List<BlueChannel> channelList = deviceList.getDevices();

for(int k = 0; k < channelList.size(); k++){
boolean foundAddress = false;
// Check if an interface is free.
for(int l = 0; l < singlePartitionThreadList.size(); l++ ){
if(singlePartitionThreadList.get(l).getInterfaceInetAddress() != null
&& (singlePartitionThreadList.get(l).

getInterfaceInetAddress().equals((channelList.get(k)
.getInetAddress())))){
foundAddress = true;
break;
}
}// l
if (!foundAddress){
// its better to just start a downloading thread here.
log.debug("Found " + channelList.get(k).getInetAddress().getHostAddress()
+ " free. Using it.");
DownloadRequestPartition temp = request.getNextPartitionToDownload(k);
if( temp != null){
SinglePartitionThread pdThread = new SinglePartitionThread(temp,
channelList.get(k));
Thread thread = new Thread(pdThread);
singlePartitionThreadList.add(pdThread);
thread.start();

222



log.debug("Thread started.");
}else
log.debug("No more data to download for interface " + k + ".");
break;
}
}// k
}
}

C.3.5 SinglePartitionThread.java

package com.imux.threads;

import java.net.InetAddress;
//import java.net.MalformedURLException;
//import java.net.URL;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import com.imux.bluetoothconnection.BlueChannel;
import com.imux.network.HTTPRequestUtil;
import com.imux.vo.DownloadRequestPartition;

public class SinglePartitionThread implements Runnable {

private Log log = LogFactory
.getLog(SinglePartitionThread.class);

private boolean finishedSuccessfully;
private InetAddress interfaceInetAddress;
private HTTPRequestUtil downloadUtil;
private boolean downloadThreadInterrupted;
private DownloadRequestPartition requestPartition;
private BlueChannel channel;
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public SinglePartitionThread(DownloadRequestPartition
argDownloadRequestPartition, BlueChannel argBlueChannel){
requestPartition = argDownloadRequestPartition;
finishedSuccessfully = false;
channel = argBlueChannel;
interfaceInetAddress = argBlueChannel.getInetAddress();
}
public void run() {
log.debug("Downloading thread starting. " + System.
currentTimeMillis());
downloadUtil = new HTTPRequestUtil();
if( requestPartition != null){
requestPartition.setPartitionDownloading(true);
requestPartition.setPartitionCompleted(false);
requestPartition.setPartitionStoped(false);
}
finishedSuccessfully = downloadUtil.downloadWithResume(
requestPartition, this);
downloadThreadInterrupted = !finishedSuccessfully;

log.debug("A downloading thread ended. " + System.currentTimeMillis()
+ ", completed = " + finishedSuccessfully
+ " ; provider = " + this.channel.getDeviceFriendlyName());
}

public boolean isFinishedSuccessfully() {
return finishedSuccessfully;
}

public void setFinishedSuccessfully(boolean finishedSuccessfully) {
this.finishedSuccessfully = finishedSuccessfully;
}
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public int getDownloadedBytes(){
return downloadUtil.getBytesDownloaded();
}

public InetAddress getInterfaceInetAddress() {
return interfaceInetAddress;
}

public boolean isDownloadThreadInterrupted(){
return downloadThreadInterrupted;
}

public void setDownloadThreadInterrupted(boolean
downloadThreadInterrupted) {
this.downloadThreadInterrupted = downloadThreadInterrupted;
}

public BlueChannel getChannel() {
return channel;
}

public void setChannel(BlueChannel channel) {
this.channel = channel;
}
}
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