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Abstract
Environments Associated with Dryline Convection in

the Southern Great Plains
Trevor J. Mitchell

A thesis submitted to The University of Manchester
for the Degree of Doctor of Philosophy, 2020

This thesis is in the alternative format and comprises two separate journal ar-
ticles and an intermediate chapter that together form a coherent research project.
Synoptic-scale differences between drylines that produce deep, moist convection
and those that do not are determined in two papers.

In the first paper, a dataset of drylines within a region of the Southern Great
Plains is constructed from surface analyses. Doppler radar, visible and infrared
satellite imagery are used to identify convective drylines, where deep, moist con-
vection was deemed to have been associated with the dryline circulation. Com-
posite synoptic analyses of 179 convective and 104 non-convective dryline days
reveal previously unidentified differences between convective and non-convective
drylines. Convective drylines feature more amplified upper-level flow, associated
with a deeper trough in the western US and a stronger downstream ridge than
non-convective drylines in the three days preceding a dryline event. As a result of
greater poleward low-level moisture transport, significant differences are observed
between the composites on the day of a dryline event. The convective composite
features greater specific humidity at low to mid levels and higher CAPE than the
non-convective composite.

A more objective method of analysis, machine learning, is then investigated as
a tool for predicting dryline convection and identifying its sensitivity to numeri-
cal weather prediction model output. Gradient boosting is applied to model data
obtained for 205 dryline days identified during the climatology. The model has a
high probability of detecting convective drylines, but labels too many drylines as
convective, resulting in false positives. Analysis of model feature importance re-
veals variable performance varies spatially. The model attaches high importance
to the strength of the upper-tropospheric jet over the Rockies when predicting
dryline convection. However, instability and mid-level moisture are important
variables in locations immediately east of the dryline. These results are consis-
tent with analysis of the composites, and provide evidence that synoptic-scale
processes can help determine whether or not a dryline will produce deep, moist
convection.
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Chapter 1

Introduction

1.1 Overview

Drylines are moisture boundaries that separate a moist air mass from a dry air

mass, usually identified by horizontal gradients in surface dewpoint. The dew-

point across a dryline can vary by more than 18◦C in less than 10 km (Parsons

et al. 1991). The moisture gradient is sometimes, but not always associated with

a wind shift or pressure trough which aids in identification. Some drylines also

exhibit large temperature differences between the moist and dry air. However,

drylines are unlike fronts in that the direction of temperature gradient usually

reverses at night.

In the USA a dryline is often found in the Great Plains, east of the Rock-

ies. Drylines in the Great Plains separate moist air from the Gulf of Mexico and

drier air sourced from elevated regions in the desert south-west of the USA. An

example of a Great Plains dryline is shown in Fig. 1.1. The dryline is represented

by continuous orange semicircles and arcs from north to south. Drylines most

frequently occur in late spring and early summer because the zonal gradient in

dewpoint is greatest during these months (Dodd and Dodd 1965; Schaefer 1974).

The dryline season coincides with a period of favourable vertical wind shear and

instability in the Great Plains, which can lead to the formation of severe thun-

derstorms.

Convergence in the vicinity of the dryline means they often serve as a focus

for convection initiation (Fig. 1.2). Severe thunderstorms that form along the

12



1.1. OVERVIEW 13

Figure 1.1: An example of a Weather Prediction Center surface analysis depicting
a dryline. The dryline is represented by the orange semicircles and stretches from
the Kansas-Nebraska border to the USA-Mexico border. Troughs and outflow
boundaries are represented by orange dashed lines.

dryline can bring hazards such as strong winds, heavy rain, hail and tornadoes.

The environment in the vicinity of the dryline often supports severe thunder-

storms if convection can initiate. Therefore, whether or not convection initiation

occurs can be the difference between a day with severe thunderstorms and no

significant weather at all. Hence, predicting whether a dryline will produce deep,

moist convection is of paramount importance.

Deep, moist convection requires moist air to be lifted such that instability can

be released and parcels can ascend to a through a large depth of the troposphere.

In the vicinity of the dryline, a warm layer of air with steep lapse rates typically
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Figure 1.2: A radar reflectivity mosaic obtained using the NCEI/NOAA Inter-
active Radar Map Tool (NCEI 2016), for the same time as in Fig. 1.1. A string
of high reflectivity echoes arc from north-east to south-west. These echoes are
thunderstorms that formed along the dryline.

sits above a moist air mass, creating a conditionally unstable environment that

creates the potential for this deep convection. The warm layer is usually referred

to as an elevated mixed layer (EML), which is generated in conditions of strong

heating and mixing in elevated terrain to the west. As the EML is advected into

the Great Plains it rides over the top of a low-level moist air mass and creates a

capping inversion (Fig. 1.3).

For deep, moist convection to occur, air parcels must either be lifted through

the capping inversion, or the inversion must be removed. Synoptic-scale ascent is

thought to condition the environment so that either of these processes can occur.

Adiabatic cooling associated with large-scale ascent reduces convective inhibition

(CIN). However, the magnitude of ascent is not thought to be enough to initiate

deep convection due to the large timescale of lifting a parcel from the surface to

the level of free convection (LFC); the height at which a moist parcel becomes

positively buoyant and can ascend freely. Ascent is thought to bring parcels close

to saturation, with mesoscale processes such as the dryline circulation believed

to reduce any remaining CIN or provide enough ascent for parcels to reach the
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Figure 1.3: Vertical profiles of temperature (red) and dewpoint (green) from
(a) Albuquerque, New Mexico and (b) Fort Worth, Texas. The Albuquerque
sounding is from 00 UTC 7th April 2008 and the Fort Worth sounding from 24
hours later. At Fort Worth, a moist air mass is in place beneath an inversion at
around 840 hPa. Above the inversion, the temperature and moisture profiles are
broadly similar to those seen at Albuquerque a day before, suggesting that the
well-mixed layer at Albuquerque was advected downstream.

LFC. However, the residence time of an individual updraft in a mesoscale area of

ascent is a determining factor in convection initiation. For deep, moist convec-

tion, parcels must reach the LFC before they become detrained from a mesoscale

updraft by wind shear (Ziegler and Rasmussen 1998).

The necessity of considering these atmospheric processes ranging from the

synoptic to the convective-scale makes dryline convection a difficult forecasting

problem. Forecasters typically use an ingredients-based approach to forecast

deep, moist convection, whether or not the area of interest is along a dryline.

Deep, moist convection requires the presence of three key ingredients: moisture,

instability and lift (Doswell 1987). These three ingredients are required, but not

necessarily sufficient for deep, moist convection, and the dryline is a region in

which these ingredients are often present. The environment east of the dryline is
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often conditionally unstable as a moist boundary layer exists beneath the EML.

Convergence at the dryline can provide the lift necessary to initiate deep, moist

convection. However, not all drylines produce deep, moist convection, despite the

apparent presence of these ingredients. What are the differences between drylines

that produce deep, moist convection and those that do not?

Synoptic-scale processes regulate dryline formation and intensity and are

thought to prime the dryline environment for deep, moist convection. However,

the precise nature of how these processes lead to convection initiation is not well

understood. How does forcing for synoptic-scale ascent determine the initiation

of convective storms along the dryline? Stronger drylines are associated with the

passage of a short-wave trough, which promotes cyclogenesis, increased conflu-

ence and the tightening of the moisture gradient across the dryline (Schultz et al.

2007). Are there similarities between the environments associated with strong

drylines and those with dryline convection? More generally, are there large-scale

differences between drylines that produce deep, moist convection and those that

do not? Or is dryline convection initiation determined only by smaller-scale pro-

cesses which are harder to predict at short time scales?

This thesis attempts to answer some of these questions via two methods.

Firstly, a climatology of dryline convection is constructed from surface analyses,

radar, and visible and infrared satellite data. Synoptic composite analyses are

created from reanalysis data for two categories: convective and non-convective

drylines. Secondly, a machine learning technique is tested using the climatology

dataset and reanalysis data to answer two primary questions. Can dryline con-

vection be predicted using machine learning, and if so, which variables are best

at predicting whether dryline convection will occur?

The thesis is structured as follows. Section 1.2 defines the dryline, and dis-

cusses the importance of dryline convection. The formation and typical char-

acteristics of the Great Plains dryline are presented in section 1.3. Section 1.4

explains current hypotheses of the causes dryline motion. The processes by which

dryline convection occurs are synthesized in Section 1.5 Section 1.5 is broken into

sections, separated by spatial scale. Section 1.5.1 introduces quasi-geostrophic

theory and its applications. Some of the concepts of quasi-geostrophic theory
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are applied in section 1.5.2, which discusses the role of synoptic-scale processes

in dryline convection. Section 1.5.3 describes how mesoscale processes provide

ascent along the dryline. Small-scale convective processes are then discussed in

section 1.5.4. Section 1.6 provides an overview of previous dryline climatologies,

and discusses the benefits of creating a climatology of dryline convection. Chap-

ter 2 presents a synoptic climatology of dryline convection in the Southern Great

Plains. Chapter 3 discusses alternative approaches to examining dryline con-

vection via machine learning. A machine learning technique known as gradient

boosting is applied to dryline data in chapter 4. Finally, conclusions of chapters

2 and 4 are presented in chapter 5.
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1.2 What is a Dryline?

A dryline is an elongated zone of enhanced horizontal moisture gradient, usually

at a boundary of air masses of different moisture content. Drylines were first

documented after meteorologists noticed that tornadoes were often associated

with thunderstorms that formed along instability lines (Beebe 1958). Aircraft

traverses of instability lines in western Nebraska were analysed by (Beebe 1958),

and (Fujita 1958). Beebe noted a rapid change in 800-hPa moisture which he

referred to as a dewpoint “front”. Fujita identified a “frontal surface‘ between

dry and moist air at 700-hPa, and referred to the intersection of that surface and

the ground as a “dry front”. McGuire (1962) may have been the first to refer

to these moisture boundaries as drylines when he documented aircraft traverses

of moisture discontinuity lines in western Texas. Although these early studies

of drylines focused on cases east of the Rockies, drylines are not restricted to

the USA. Countries with documented cases of drylines include China, India and

Australia (Weston 1972; Golden 1980; Arnup and Reeder 2007).

In the USA a dryline is often found in the Great Plains, east of the Rockies.

Drylines in the Great Plains separate moist air from the Gulf of Mexico and drier

air from the desert southwest. The elevation of the Rockies and the topography

of the Great Plains are significant in the formation of drylines because the Great

Plains generally increase in elevation in a westerly direction. The dryline can be

considered to be the western edge of the moist air mass from the Gulf of Mexico

as it intersects the sloping terrain of the Great Plains.

Gradients in surface dewpoint are frequently used to identify the western edge

of the moist air mass. The dewpoint across a dryline can vary by more than 18◦C

in less than 10 km (Parsons et al. 1991). The moisture gradient typically in-

creases during the late morning and afternoon and is sometimes, but not always,

coincident with a wind shift or pressure trough, which can aid in identification.

Drylines are most common in late spring and early summer because the zonal

gradient in dew point is greatest during these months (Dodd and Dodd 1965;

Schaefer 1974). In addition to a large dewpoint gradient, some drylines also

have large temperature differences between the moist and dry air. However, un-

like fronts, the temperature gradient typically reverses at night. This change in
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temperature gradient occurs because the dry air usually has a larger diurnal tem-

perature range than the moist air. Dry air has a lower specific heat capacity than

moist air, so it heats more quickly during the day and cools more quickly at night.

Drylines in the USA are the most studied in the world. Convergence in the

vicinity of the dryline means they often serve as a focus for convection initia-

tion. Air parcels can often be lifted sufficiently for convective instability to be

released and deep, moist convection to occur. In the Great Plains, favourable

wind shear and the release of this convective instability can often lead to the for-

mation of severe thunderstorms. These storms can produce hazards such as high

winds, lightning, large hail and tornadoes and flash flooding. As a result, dryline

convection is closely monitored by forecasters, especially in the spring and early

summer when the threat of severe thunderstorms is greatest.
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1.3 Dryline Formation and Characteristics

The topography of the Great Plains is an important factor in the formation of

the dryline because elevation generally increases in a westerly direction (Fig. 1.4).

The dryline can be considered as the location where the western edge of a moist

Gulf air mass intersects the sloping terrain.Hoch and Markowski (2005) found

that the dryline was most commonly located around 101◦W at 0000 UTC during

spring. They hypothesized that drylines were favoured in this region as it is where

the east-west elevation changes at a greater rate. Due to the close proximity

of the Gulf of Mexico, drylines are most commonly found in western regions of

Texas, Kansas and Oklahoma. However, in conditions of long fetch southerly flow,

drylines can also be found further north. For example, Campbell et al. (2014)

performed a case study of a dryline in Wyoming. Drylines are not restricted to

the Great Plains, they have been identified as far east as Mississippi (Duell and

Van Den Broeke 2016).

Figure 1.4: The topography of the contiguous United States. Elevation increases
from east to west in the Great Plains. Drylines are most commonly found in
western parts of Texas (TX), Oklahoma (OK) and Kansas (KS).

Synoptic-scale processes help create the conditions for dryline formation and

intensification given the topography of western and central USA. Westerly flow

across the Rockies results in lee troughing which can help a west-east moisture
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gradient to develop (Fig. 1.5). When there is westerly flow across elevated ter-

rain, column stretching occurs as the air descends in the lee of the mountains.

The stretching of a column is associated with increased surface vorticity and

convergence, and the formation of a surface low. Convergence and deformation

associated with lee cyclones helps create an airstream boundary between the

moist Gulf air and the dry air from the south-west (Schultz et al. 2007). Hobbs

et al. (1996) proposed that the confluence of the moist Gulf air and warm, dry

air from the Rockies creates a strong west-east gradient in moisture. Horizontal

convergence associated with lee troughs helps increase the moisture gradient and

troughs can acquire dryline-like characteristics.

In addition to aiding dryline formation, synoptic-scale processes are also im-

portant in regulating dryline intensity. Schultz et al. (2007) analysed spring days

over two years to see if a moisture gradient was present between two Texas lo-

cations using West Texas Mesonet data. Composite analyses were produced for

strong (upper quartile) and weak (lower quartile) dryline cases sorted by the mag-

nitude of the moisture gradient. The strong cases featured a short wave trough

in the westerly flow to the west of the region, and an attendant strong surface

low over eastern New Mexico resulting in southerly flow over the southern Great

Plains. They concluded that contraction associated with surface cyclones inten-

sifies the large scale west-east moisture gradient.

The west-east moisture gradient is also partly caused by the characteristics of

the land surface. Vegetation and soil moisture generally increase in an easterly

direction in the Great Plains; therefore sensible heating tends to have an east-west

gradient. In a study of the relationship between soil moisture and dryline posi-

tion and strength, Johnson and Hitchens (2018) found that strong soil moisture

gradients may contribute to more intense drylines. They also found that overall

soil moisture, not just the magnitude of the horizontal gradient, can influence

dryline position. As soil moisture values increased, the dryline tended to form

farther west.

Areas farther west tend to be drier, have stronger mixing, and a deeper bound-

ary layer than areas farther east (Lanicci et al. 1987; Ziegler et al. 1995). The

deeper boundary layer to the west of the dryline is associated with a mixing down

of westerly momentum from aloft, which leads to low-level veering and increased
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Figure 1.5: Schematics illustrating airflows and the formation of a drytrough as
an eastward moving, shortwave trough passes over the Rocky Mountains, (a) The
confluence of westerly downslope flow off the Rockies, warm, moist air from the
Gulf of Mexico, and cold, dry arctic air. (b) Adiabatic warming of downslope air
from the Rockies produces a lee trough, (c) The lee trough acquires the charac-
teristics of a dryline and becomes a drytrough. (d) Confluence and frontogenesis
east of the drytrough causes air from the Gulf of Mexico to rise and turn toward
the northeast as it approaches the drytrough. (e) Downslope flow of warm, dry
air from the Rockies reaches its lowest altitude over the drytrough then rises
above the warm, moist air from the Gulf, (f) The elevated mixed layer from the
Mexican plateau flows above the other two airstreams. Also, a low-level jet of
warm, moist air flows northward (Hobbs et al. 1996).
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convergence (McCarthy and Koch 1982; Atkins et al. 1998).

The differences in boundary layer height are not only caused by horizontal

soil moisture gradients. A capping inversion or “lid” is often present above the

relatively cool, moist air from the Gulf of Mexico. This lid is an elevated mixed

layer, created by strong heating over arid regions such as the Mexican Plateau,

then advected into the Great Plains where it overruns the moist air (Lanicci and

Warner 1991). During the afternoon, the western edge of the lid roughly corre-

sponds to the surface dryline location (Schaefer 1974).

Vertical mixing is a dominant factor in the intensification of synoptically qui-

escent drylines; when no major synoptic-scale system is translating from west to

east (Schaefer 1986; Hane 2004). Schultz et al. (2007) found that dryline intensifi-

cation primarily results from a combination of vertical mixing and frontogenetical

circulations when upper-level synoptic forcing is lacking.

Solenoidal circulations can increase the moisture gradient at the dryline (Sun

and Ogura 1979; Ziegler and Hane 1993), and are frontogenetical in nature. In

a modelling study across a dryline in western Oklahoma, Ziegler et al. (1995)

found a thermally direct circulation is driven by horizontal gradients in virtual

potential temperature. Easterly low-level flow induced by the virtual potential

temperature gradient decelerates as it approaches the dryline. The resultant

low-level convergent flow at the dryline is frontogenetical in regards both temper-

ature and moisture, intensifying the dryline. The convergence at the dryline is

associated with ascent which tilts in an easterly direction over the moist air mass.

Some of the features of a solenoidal circulation can be seen in (Fig. 1.6), which

shows cross-sections across a dryline through late afternoon for a dryline observed

during the International H2O Project (Weckwerth et al. 2004; Buban et al. 2007).

Near-surface air moves west towards the dryline, rises, then tilts to the east be-

fore descending. Also of note is how the westward advance of the dryline appears

to coincide with enhancement of the gradient of virtual potential temperature at

the boundary.
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Figure 1.6: Vertical cross sections of (left) water vapor mixing ratio (g kg−1) and
(right) virtual potential temperature (K) across a dryline during IHOP. Ground-
relative wind vectors (1-km length equal to 10 ms−1), and vertical vorticity every
2 x 10−3 s−1 with positive values (black solid lines) starting at 1 x 10−3 s−1 and
negative values (black dashed line) starting at -1 x 10−3 s−1 are overlaid (Buban
et al. 2007).

Gradients in virtual potential temperature have been observed in several dry-

line studies (e.g. Parsons et al. 1991; Sun and Wu 1992; Ziegler and Hane 1993).

These gradients can develop if the increase in moisture from west to east is not



1.3. DRYLINE FORMATION AND CHARACTERISTICS 25

large enough to offset the reduction in potential temperature (Ziegler and Hane

1993). In a study of a retrogressing dryline in western Texas, Parsons et al. (1991)

found a density gradient in late afternoon and evening. They proposed that the

leading edge of the westwardly-moving moisture acts similarly to a density cur-

rent. Geerts (2008) also observed a density gradient across a dryline in western

Texas. He found that the strength of convergence is related to the gradient of

virtual potential temperature, with a stronger gradient implying stronger vertical

motion. Convergence at the dryline can lead to vertical motion as high as 8–9

ms−1 (Weiss et al. 2006).
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1.4 Dryline Motion

Many drylines migrate eastwards throughout the day. Under synoptically qui-

escent conditions, mixing is one of the main processes in dryline propagation

(Schaefer 1986). The dryline propagates east due to mixing as moist air at the

boundary entrains dry air. This eastward advance of the dryline is sensitive to

the magnitude of surface heat flux, the strength of the inversion and the depth

of the mixed layer (Jones and Bannon 2002). The term propagation is used as

drylines do not always exhibit continuous motion (McCarthy and Koch 1982;

Schaefer 1986; Crawford and Bluestein 1997). Sometimes a dryline will jump as

the inversion is removed over a large area in a short time.

In synoptically active cases, advection is a greater factor in the eastward

progression of a dryline. Hane (2004) investigated a north-eastward translat-

ing upper-level height minimum with an attendant trough extending southward.

He found that the dryline broadly moved northeast with the upper-level wave.

Eastward motion and development of a dryline bulge was associated with strong

vertical mixing near the surface and strong advection of dry air aloft.

In synoptically quiescent cases, the eastward motion of the dryline is some-

what opposed by south-easterly flow ahead of the lee trough, which typically

intensifies due to strong heating over dry plateau regions to the west (Benjamin

and Carlson 1986). The presence of the lee trough can lead to the dryline retreat-

ing westwards during the evening and overnight. As vertical mixing reduces and

a nocturnal inversion starts to form, winds back in response to the lee trough,

moisture flows westwards and the dryline retreats.

However, the mass response to a lee trough may not be the sole reason for

retrogression of the dryline. Ziegler et al. (1995) speculated that the westward

propagation of the density current is opposed by westerly shear at the dryline

and the sloping terrain. A reduction of mixing to the west of the dryline and

subsequent formation of an inversion would be likely to reduce the magnitude

of the westerly shear and slow or even reverse the eastward propagation of the

dryline.
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1.5 Dryline convection

The migration of the dryline is important because deep, moist convection often

occurs within the vicinity of it. But how does this convection occur? Doswell

(1987) proposed an ingredients-based approach for forecasting deep, moist con-

vection. His approach requires the existence of three main ingredients; moisture,

instability and lift. All three ingredients are required for deep moist convection;

however, any of them can act as the trigger given the presence of the other two.

Furthermore, the processes by which these ingredients are brought together may

vary between weather events.

The processes associated with deep, moist convection are often diagnosed

using parcel theory. Deep, moist convection requires the release of instability,

allowing parcels to ascend through a large vertical depth. Saturated air parcels

must be unstable throughout a large depth of the troposphere above the level of

free convection (LFC).

Instability is often measured in terms of convective available potential energy

(CAPE), which may be considered as the amount of energy available for convec-

tion. Once a parcel reaches its LFC, potential energy can be converted to kinetic

energy as the parcel accelerates vertically. CAPE is a measure of the instability

between the LFC and the equilibrium level; the level at which the parcel is no

longer positively buoyant. CAPE is strongly related to both low-level moisture

and the environmental lapse rate; the rate at which the atmosphere cools with

height. Increases in low-level moisture and lapse rates are both associated with

increase in CAPE.

Often, a warmer layer of air exists above the LCL, and air parcels will become

negatively buoyant within the inversion. For continued ascent, parcels must ob-

tain enough momentum to rise above this inversion and reach their LFC, either

by sustained lift or removal of the inversion. Therefore, the updraft velocity and

the strength of the inversion are important in determining whether deep, moist

convection will occur.

Updraft velocity is a function of CAPE, with large CAPE associated with

stronger updrafts. Therefore CAPE is one of the main convective forecasting
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tools. However, the location and distribution of CAPE needs to be considered

when forecasting convection. Two profiles with the same overall magnitude of

CAPE can produce vastly different forms of convection depending on the distribu-

tion of the instability. Large low level CAPE will produce a greater updraft veloc-

ity than skinny CAPE that is distributed more evenly vertically (Blanchard 1998;

McCaul and Cohen 2002). Updrafts with greater vertical momentum are thought

to be less affected by water loading and entrainment (Lucas et al. 1994b,a).

An elevated mixed layer (EML) often acts as a capping inversion, especially

over the moist air to the east of a dryline. Strong mixing commonly occurs in

arid regions of New Mexico, Arizona and northern Mexico where sensible heating

is large, resulting in a deep mixed layer. If this air is advected towards lower

terrain in the east, it essentially rides over the top of the moist air mass near the

surface. The EML is typically close to dry adiabatic, resulting in large lapse rates.

The presence of an EML above a moist boundary layer is of interest to weather

forecasters as large mid-level lapse rates can create an atmosphere that is condi-

tionally unstable. The EML is often warm enough to provide a significant capping

inversion that can lead to a loaded gun sounding (Fig. 1.7). Strong inversions can

lead to a build-up of CAPE and deep convection if the instability can be released.

The magnitude of instability regulates the strength of any convection that may

occur. If CAPE is small then updraft velocities will be small and convection may

be shallow. Deep convection requires the build-up of instability, which can occur

when there is a capping inversion.

Inversions can help create conditions favourable for deep moist convection;

however they can also lead to convection initiation failure. If an inversion layer is

too warm, saturated parcels may not become more buoyant than the surrounding

environment and be able to ascend freely. If the inversion is deep, parcels may not

acquire enough vertical momentum to be able to reach the LFC. Additionally, the

convective environment is dynamic. It should not be assumed that the mid-level

temperatures and lapse rates will remain constant when waiting for the updrafts

to reach the LFC. For instance, strong advection from an EML source region

could reinforce the capping inversion by increasing mid-level temperatures.

Deep, moist convection can only occur if instability can be released. The
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Figure 1.7: A vertical profile of temperature (red) and dewpoint (green) for
Oklahoma City, Oklahoma at 1200 UTC on 3rd May 1999. An inversion existed
at approximately 850hPa, sitting atop moist air sourced from the Gulf of Mexico.
If an air parcel can be lifted above the inversion, or the inversion weakened or
removed, convective instability can be released. The red dotted line shows the
theoretical ascent of a heated surface parcel to its lifting condensation level. Once
it reaches the level of free convection it can utilize large amounts of CAPE (shown
in yellow).
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release of instability is primarily caused by weakening or erosion of a capping

inversion. However, the removal of convective inhibition (CIN) is not necessarily

enough for sustained convection. Sometimes no storms will form despite neg-

ligible CIN (Ziegler and Rasmussen 1998; Markowski et al. 2006). Conversely,

storms can sometimes form despite the presence of CIN (Mueller et al. 1993).

Air parcels can acquire enough vertical momentum that they can ascend through

the inversion and reach the LFC. Convection can initiate once CIN becomes min-

imal (Colby 1980, 1984). However, convection does not necessarily occur in areas

where CAPE is maximized Colby (1984).

A capping inversion can be weakened by cooling such as provided by synoptic-

scale ascent. To explain how synoptic-scale processes can produce ascent, it is

beneficial to introduce some concepts of quasi-geostrophic theory.

1.5.1 Quasi-geostrophic theory

Quasi-geostrophic theory describes a theoretical atmosphere which is ‘almost’

geostrophic. That is, the flow is mostly geostrophic apart from small accelera-

tions which act to restore thermal wind balance after thermal advection by the

geostrophic wind. The atmospheric response to departure from thermal wind

balance is adjustment of the height field via ageostrophic flow and vertical mo-

tion. The associated ageostrophic circulation is typically of order 1 cm s−1 for

synoptic-scale motion.

The quasi-geostrophic (QG) equations that represent the atmospheric re-

sponse are shown below. They are known as the QG omega and QG height

tendency equations respectively. A full derivation of these equations is provided

by Bluestein (1992).

where p is pressure, f0 is the coriolis parameter, σ is a static stability parameter,

Vg is geostrophic wind, ζ is relative vorticity, f is planetary vorticity, R is the gas

constant, T is temperature, ω is pressure velocity and χ is geopotential height
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tendency.

The equations above can be useful in diagnosing synoptic-scale motion, as

vertical motion and geopotential height tendency can be estimated by evaluating

the right hand side of the equations. The left hand side of each equation may be

considered to be the Laplacian of ω and χ respectively. For sinusoidal flow, the

Laplacian of ω can be approximated to be proportional to ω. This approxima-

tion is reasonably valid in the mid-troposphere (Trenberth 1978). Therefore by

analysing the right hand side of (1.1) it is possible to get a sense of the vertical

motion because vertical velocity and pressure velocity have opposing signs. The

first term on the right hand side of (1.1) is the differential advection of absolute

vorticity by the geostrophic wind. Taking this term in isolation, if cyclonic vor-

ticity advection (CVA) increases with height then the term will be positive and

ω negative (Note: ∂
∂p

is analogous to - ∂
∂z

). Therefore positive vertical velocity

would be expected.

A physical interpretation of the effect of cyclonic vorticity advection is that

an air parcel exiting a vorticity maximum will have to reduce its vorticity to

reach equilibrium with the surrounding environment. A reduction in vorticity at

a given level is associated with divergence at that level. Assuming the vortic-

ity maximum is aloft (500 hPa is a commonly analysed height), divergence will

be associated with air ascending from beneath. Conversely, a parcel entering a

vorticity maximum needs to gain vorticity to reach equilibrium, so there is con-

vergence and air moves towards the surface.

Alternatively, the effects of vorticity advection can be considered in terms

of layer thickness, as relative vorticity is proportional to the Laplacian of the

height field. Consider a case where vorticity advection is analysed at two heights.

Vorticity advection is typically of greater magnitude aloft than near the surface.

Therefore, the vorticity tendency aloft is likely to be positive whereas close to

the surface it may be considered to be negligible. The Laplacian of the height

field will increase with time, and the layer thickness reduces. A reduction in

layer thickness implies cooling in the layer, which must be associated with rising

motion because diabatic processes are neglected in the omega equation.

Differential vorticity advection must be analysed with caution. Anticyclonic
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vorticity advection (AVA) decreasing with height will be associated with the

same vertical motion tendency as CVA increasing with height. It is usually a

safe assumption that vorticity advection dominates at upper levels and thermal

advection dominates lower down. However, that is not always the case. Even if

CVA is occurring aloft, if it is also occurring at low levels then differential vortic-

ity advection could be minimal or even negative. Therefore, the vertical profile

of vorticity advection should be considered when diagnosing vertical motion.

The second term on the right hand side of (1.1) is a Laplacian of tempera-

ture advection by the geostrophic wind. Taking this term in isolation, if there is

warm advection the overall term will be positive. Therefore ω will be negative

and vertical velocity will be positive. Warm air advection is associated with ris-

ing motion because air parcels move along isentropes in the absence of diabatic

processes. Isentropes tend to be sloped, with parcels increasing in height as they

move up the sloped surfaces.

Warm air advection within a layer increases the layer thickness. An increase

in layer thickness implies height rises above the region of maximum thermal ad-

vection, with height falls below. Because relative vorticity is proportional to the

Laplacian of height field, there should be a relative increase in vorticity at low

levels and a relative decrease aloft. A local increase in vorticity at a given height

is associated with convergence and a local decrease with divergence. Mass con-

tinuity implies that divergence aloft with convergence beneath will be associated

with ascent.

The QG omega equation must also be interpreted with care as terms can

counteract each other. For instance, CVA might be increasing with height, while

cold advection occurs at low-levels, resulting in a cancellation of terms. Hoskins

et al. (1978) developed the Q-vector form of the omega equation, which avoids

the problem of cancellation. Q-Vectors represent the rate of change of tempera-

ture gradient on an isobaric surface. Vertical motion can be estimated from the

convergence of the Q-field (Sanders and Hoskins 1990).

Durran and Snellman (1987) reviewed methods of diagnosing vertical motion
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for different forms of the omega equation. They found that there was good agree-

ment between implied vertical motion and precipitation patterns when the QG

omega equation was applied at 500 hPa level, agreeing with the assumption of

Trenberth (1978). However, they emphasized the importance of analysing several

heights as the traditional form of the QG omega equation performed less well at

700 hPa.

The QG omega equation is an elliptic partial differential equation that is

computationally expensive to solve. Care must be taken when choosing a fi-

nite differencing method as poor implementation can produce noisy fields (Dunn

1991). In a review of techniques for estimating vertical motion, Durran and

Snellman (1987) stated “The traditional form of the omega equation is not well

suited for practical calculation.” If calculating vertical motion numerically, they

recommended using the Q-vector from of the omega equation.

1.5.2 Synoptic-scale Convective Processes

How can the omega equation be related to synoptic-scale systems? As upper-

level troughs are associated with relative vorticity maxima, CVA usually occurs

downstream. Given the assumption that vorticity is generally greater in magni-

tude in the upper-levels of the atmosphere than near the surface, CVA typically

increases with height downstream of a trough. Therefore the region downstream

of a trough is a preferred region for ascent. Lifting of an unsaturated layer will

result in adiabatic cooling as it ascends. Therefore, large-scale ascent is a mech-

anism by which inversions can be weakened by cooling.

It may be tempting to think that cold air advection around the height of

the inversion should reduce CIN. However, diagnosis of the QG omega equation

shows that cold air advection within a layer is associated with descent. Colby

(1984) examined convection initiation along a Kansas dryline. He found that the

weakening of CIN associated with cooling aloft was somewhat offset by subsi-

dence and warming just above the convective boundary layer.

Synoptic-scale ascent reduces CIN by lifting and cooling. However, the mag-

nitude of synoptic scale lift is not large enough to explain dryline convection

initiation on its own. Synoptic scale ascent is typically in the range of 1–10 cm
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s−1. With ascent of that magnitude it will take many hours to lift a parcel from

the surface to the LFC (Doswell and Bosart 2001). Additionally, ascent would be

likely to lead to widespread convection, rather than the more isolated modes that

often occur at the dryline e.g (Bluestein and Parker 1993). However, mesoscale

lift is usually much stronger, typically of order 1 ms−1. At this velocity, raising

a parcel to an LFC at an altitude of 2 km would take approximately 30 min-

utes. Clearly mesoscale ascent will be far more efficient at raising parcels to the

LFC. It is thought that synoptic scale lift provided helps prime the profile so that

mesoscale lift can initiate storms (Doswell and Bosart 2001; Markowski et al.

2006). A mesoscale region of ascent can either raise parcels through the remain-

ing inversion or mesoscale processes can further weaken the capping inversion.

Reduction of CIN due to adiabatic cooling is not the only mechanism by which

synoptic-scale processes can prime the atmosphere for deep moist convection. Lift

helps deepen the low-level moist layer by vertically transporting moisture from

the surface where it is more abundant. Additionally, lee cyclogenesis or the

passage of a baroclinic system can promote northward moisture transport in the

Southern Plains. This moisture advection can help offset the reduction in low-

level moisture caused by mixing. Increased low-level moisture tends to increase

CAPE and reduce CIN, increasing the likelihood of deep, moist convection.

1.5.3 Mesoscale Convective Processes

Cumulus congestus are often found in the vicinity of the dryline, implying that

parcels frequently reach the LCL. However, this does not always result in deep

convection, suggesting parcels often fail to reach the LFC e.g.(e.g., Demoz et al.

2006). The length of time parcels spend in a zone of ascent is important in

determining the likelihood of deep convection. Ziegler and Rasmussen (1998)

suggested that deep convection requires parcels to be lifted to the LFC before

leaving a mesoscale updraft. Similarly, Markowski et al. (2006) concluded that

the lack of a persistent area of mesoscale lift contributed to the failure of con-

vection initiation along an outflow boundary. Convection initiation is favoured

when lift occurs over a mesoscale region. In convection-allowing simulations of

a dryline, Trier et al. (2015) found that sustained convection occurred within

a broader zone of vanishing negative buoyancy as opposed to a narrower zone.

Within the narrower zone, cells moved into an area of more hostile buoyancy
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before they could mature.

Wind shear is important in determining the residence time of an air parcel in

an area of mesoscale ascent. Peckham and Wicker (2000) studied the effects of

wind shear and topography on a dryline. They found that stronger line-normal

flow leads to shorter residence time for updrafts in the main zone of ascent.

Furthermore, cross-dryline flow can strengthen the capping inversion due to sub-

sidence and warming as air moves downslope. Demoz et al. (2006) speculated

that convection initiation failure along a dryline in Oklahoma may have been due

to a strong inversion and detrimental effects of entrainment in strong westerly

wind shear. Wind shear affects the rate of entrainment by tilting updrafts; the

rate of entrainment is larger for more tilted updrafts. However, the tilting of

an updraft is also a function of buoyancy. Stronger updrafts are less affected by

entrainment than weaker updrafts.

Although roughly vertical near the surface, the dryline tilts eastward over the

moist air aloft due to the westerly wind shear that is typical in the dryline envi-

ronment. The westerly shear also enables moisture transport across the dryline.

Hane et al. (1997) noted an elevated moist layer to the east of the dryline. They

proposed that moist air from the top of an updraft plume is transported in the

westerly flow. Ziegler et al. (1995) found a similar moist layer to the east of a

modelled dryline. They suggested that the EML may be moistened by its journey

over dryline. This raises the question of whether the presence of updrafts helps

weaken the capping inversion by moistening the EML.

Updrafts transport moisture vertically through the boundary layer. Demoz

et al. (2006) analysed a dryline during IHOP primarily using radar and LIDAR

data. They observed updrafts exceeding 3 ms−1 with widths typically between 2

and 5 km. These updrafts were more moist than the surrounding environment and

extended through the depth of the boundary layer. Moistening of the boundary

layer is likely to reduce the reduction of buoyancy in updrafts due to entrainment

of drier air. Entrainment can also be caused by downdrafts transporting air from

the inversion into the boundary layer below. In the absence of moisture advection,

strong mixing within the boundary layer tends to reduce surface dew points as the

moisture is redistributed through the boundary layer. However, replenishment
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of low-level moisture by evapotranspiration or moisture advection can counteract

the reduction of surface moisture. The maintenance of low-level moisture may be

important in determining whether deep, moist convection can occur. Weldegaber

et al. (2011) hypothesized that deep and persistent boundary layer moisture is

required for convection initiation at the dryline.

1.5.4 Small-scale Convective Processes

Low-level moisture quantities are not uniform along the dryline. Drylines often

feature localized areas of enhanced convergence. In a modelling study of a dryline

in Texas, Xue and Martin (2006b) found that updrafts grew faster and were more

intense when they stayed within the zone of enhanced convergence. This result

is consistent with the findings of Ziegler and Rasmussen (1998) and Markowski

et al. (2006) who emphasized the importance of updraft residence time within an

area of mesoscale lift.

Convergence bands can form both ahead of and behind the dryline due to the

presence of horizontal convective rolls (HCRs) within the boundary layer. Pref-

erential cloud development occurs in locations where HCRs intersect the dryline

(Weckwerth et al. 1997; Peckham et al. 2004). Xue and Martin (2006b) developed

a conceptual model of the interaction between horizontal convective rolls and the

dryline (Fig. 1.8). They propose that enhanced convergence occurs where HCRs

intersect the dryline. Along the dryline, misocyclones are found in between the

areas of enhanced convergence.

Other studies have also found misocyclones along the dryline e.g (Pietrycha

and Rasmussen 2004; Wakimoto and Murphey 2009; Murphey et al. 2006). Mur-

phey et al. used LIDAR and Airborne Doppler radar to study a dryline in Kansas.

They found that updrafts were generally located to the north of misocyclones and

initiated in regions of enhanced mixing ratio. As storms grew the updrafts be-

came more collocated with the misocyclones. Recent studies have suggested that

dryline misocyclones move northwards along the dryline with a speed similar to

that of the mean wind in the boundary layer (Buban et al. 2007, 2012).

Convergence and cloud formation may also be related to the motion of the dry-

line. Pietrycha and Rasmussen (2004) used mobile mesonet data to study three

drylines in Texas. They noted that cloud dissipation was observed in tandem with
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Figure 1.8: A conceptual model of the interaction between the dryline and hor-
izontal convective rolls. In (a), the black circles denote where convergence is
enhanced where the dryline intersects the horizontal convective roles. Misocy-
clones are located along the dryline in-between the rolls, and are denoted by the
circles containing “V” in (b). Circulations associated with the misocyclones act
to enhance convergence to their north and south. Figure from Xue and Martin
(2006b).

sudden increases in dryline motion and weakening moisture gradients. However,

they offered the caveat that with such a small sample size one must be careful

in interpreting this result. Does the westward propagation of a density current

oppose the westerly shear at the dryline as suggested by Ziegler et al. (1995)? If

so, it is possible that a weakening of the density current decreases convergence

and cloud formation and leads to eastward propagation of the dryline.

Summary

Convection initiation at the dryline occurs due to processes across a wide-range

of spatial scales. Synoptic-scale ascent is thought to condition the atmosphere

to deep, moist convection. Ascent is associated with adiabatic cooling which
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reduces CIN. Furthermore, large-scale convergence provided by lee cyclogenesis

can bring air parcels close to saturation (Crook and Moncrieff 1988). However,

synoptic-scale ascent is not sufficient to reduce CIN to zero and initiate deep

convection. The mesoscale dryline circulation enhances moisture convergence

and helps to further reduce CIN. Deep, moist convection can occur if parcels can

reach the LFC before leaving a mesoscale updraft (Ziegler and Rasmussen 1998).

If mesoscale convergence and ascent is not sufficient, localized convergence such

as that provided from the interaction of the dryline with HCRs can aid convection

initiation (Xue and Martin 2006a,b).

1.6 Dryline Climatologies

Much research into drylines has been performed by way of case studies, such as

events documented during IHOP (Weckwerth et al. 2004), but there have been

very few climatologies of drylines or dryline convection. Rhea (1966) performed

the first substantial analysis of drylines within the Great Plain. He used three-

hourly surface charts to identify drylines, and required a dew point discontinuity

of at least 10◦ F between a station and its nearest neighbour. Drylines were iden-

tified in approximately 45% of April, May and June days for 1959–1962. Schaefer

(1973) extended these criteria to include an approximately uniform moisture field

to the east of the dryline with a mean value of 50◦. He also required the dew

point discontinuity last at least six hours and a diurnal reversal of sign of the

temperature gradient across the dryline. A dryline was present for all or part of

41% of the days he examined.

Peterson (1983) used similar criteria to Schaefer in a dryline study spanning

1970–79; however the domain chosen was much smaller, mainly covering the west

Texas region. Dryline days occurred on average 30 days a year, ranging between

26 and 58 days in any given year. The study by Peterson (1983) found a lower

dryline frequency than that of Rhea (1966) and Schaefer (1973). This lower fre-

quency may be due to the smaller domain chosen, which is likely to have excluded

drylines in some regions of Oklahoma and Kansas.

The most recent climatology of drylines was created by Hoch and Markowski

(2005). They used 0000 UTC surface observations for April, May and June for
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1973–2002. A dryline required confluent flow and a specific humidity gradient of

at least 3 g kg−1 per 100 km. They found that drylines occurred on approximately

32% of days, a lower frequency than found by Rhea (1966) and Schaefer (1973).

It is possible that the criteria used by Hoch and Markowski were more restrictive,

as they only identified drylines that were present at 0000 UTC. Comparison of the

studies is difficult due to the different criteria used. The American Meteorological

society defines the dryline as “A low-level mesoscale boundary or transition zone

hundreds of kilometers in length and up to tens of kilometers in width separating

dry air from moist air”(AMS 2016). However, there is no universal standard of

required moisture gradient for a dryline. Gradients in surface dew point are con-

venient to use in dryline identification because they are reported by most weather

stations. However, dew point varies with pressure, so large altitude differences

between stations could lead to a misleading analysis. A conserved quantity such

as water vapour mixing ratio which Hoch and Markowki used is arguably better.

Although the dryline studies performed by Rhea, Schaefer and Peterson were

all within the southern Great Plains, only two studies have specifically investi-

gated dryline position. Hoch and Markowski (2005) found the dryline was most

commonly located around 101◦W at 0000 UTC. They found that the average dry-

line position trended westwards through the season. Drylines can progress farther

east than the Great Plains, especially in synoptically active cases. Although they

did not distinguish between quiescent and synoptically active drylines, Hoch and

Markowski noted that “virtually all” dryline cases east of 97◦W were associated

with a migrating cyclone.

There have been fewer climatologies of dryline convection than drylines in

general. The first, and arguably most comprehensive study of dryline convection

was performed by Rhea (1966). He used microfilm of hourly radar summaries

to identify convective echoes associated with the dryline. Convection occurred

within 200 nautical miles (370 km) of the dryline on 70% of days with an identi-

fiable dryline, with most new echoes forming within 50 n mi of the dryline. After

examining a subset of these cases he found that 45% of new radar echoes formed

between 1400 and 1600 Central time.
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Bluestein and Parker (1993) examined hourly summaries of radar data to cre-

ate a climatology of isolated severe storms and their initial storm mode when

formed at the dryline. Over half of the storms they studied were initially isolated

cells. However, they were unable to discern significant differences in the environ-

ment for storms that were not initially isolated. Cells were identified by analysing

WSR-57 microfilm, but they speculated that the use of new techniques such as

Doppler radar or high resolution surface observations may help with resolving

smaller scale variations. The WSR-57 radar network is now obsolete and has

been replaced by WSR-88D radar. A primary advantage of the WSR-88D net-

work is Doppler capability which aids in the detection of severe weather (Whiton

et al. 1998).

Although not a climatology of dryline convection, Ziegler and Rasmussen

(1998) examined the processes associated with convection initiation at the dry-

line using special mesoscale observations obtained from three field projects. They

found that “Cumuli were concentrated within the interval from 10 km west to

40 km east of the dryline”, with these cloudy regions being associated with deep

mesoscale moisture convergence. However, on two occasions deep moist convec-

tion did not occur despite the presence of zero CIN. The authors determined that

deep convection requires parcels to be lifted to the LFC before leaving a mesoscale

updraft, and suggest that strong deep layer convergence is a better predictor of

convection initiation than surface convergence alone.

The work of Ziegler and Rasmussen (1998) greatly improved knowledge of

mesoscale dryline processes. However, there has been very little work that directly

relates to the influence of synoptic-scale processes on dryline convection. Rhea

(1966) documented the distance of an upstream feature from the first initiation

point based upon 1200 UTC charts. He found that only 29% of convective drylines

did not have some form of discrete feature in the wind or temperature field at 500

hPa. The most common feature associated with convective drylines was a weak

upstream trough. The availability of reanalysis data in recent years means that a

study similar to that performed by Rhea could now be conducted in more detail.

Furthermore, digital radar archives can provide a much more precise estimate of

initiation time and location than the microfilm summaries he had available.
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More recently, Schultz et al. (2007) investigated the relationship between syn-

optic processes and dryline intensity. Drylines were categorised by the magni-

tude of the west-east dewpoint gradient. “Strong” drylines featured a short wave

trough in the westerly flow to the west of the region with an attendant strong

surface low over eastern New Mexico leading to southerly flow over the southern

Great Plains. The authors determined that synoptic-scale forcing has an impor-

tant contribution in providing the confluence and intensification of drylines. A

linear relationship exists between confluence and the west-east dewpoint gradient.

The work of Schultz et al. did not differentiate between convective and non-

convective drylines. However, “strong” dryline cases in their study were generally

associated with greater convergence. What does this imply for convection initi-

ation? All other things being equal, stronger convergence is more likely to raise

parcels to the LFC. Crook and Moncrieff (1988) proposed that largescale con-

vergence is a mechanism that brings parcels close to saturation. Furthermore,

Ziegler et al. (1997) found that convection initiation is more likely in locations

where moisture convergence reduces CINH to zero. Therefore the “strong” dry-

line cases may be more likely to produce deep moist convection.

Schumann and Roebber (2010) investigated the role of synoptic features and

how they affect storm mode. Potential temperature advection on the dynamic

tropopause was used as a measure of synoptic forcing, and synoptic-scale fea-

tures were classified by shape and areal extent. They found that more organized

convective modes (multicellular lines and isolated rotating) were associated with

weaker forcing. The study also investigated the influence of the wind profile on

the initial convective mode. It was found that multicellular storms were more

likely with an increase in the meridional component of the 0–6 km mean wind.

They also found that convective lines were more likely with an increase in the

zonal component of the 0–6 km wind, when all convection and transitions were

considered.

Schumann and Roebber did not study drylines specifically, and the study only

contained 56 individual storm days. Their study did not discriminate between

the types of initiating boundary, so it is uncertain how many of these cases were

dryline convection. How might their results vary if they considered only dryline
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convection? Drylines are generally north-south oriented, as opposed to fronts

which are far more variable. Therefore, the influence of the mean wind is likely

to be different for dryline storms than for the storms they studied, especially

when it is considered that they did not account for the orientation of the initiat-

ing boundary.

Dial et al. (2010) investigated convective mode for storms that form along

boundaries. They investigated the effects of shear, wind and ascent on convective

mode and transition. Drylines favoured discrete storm modes more than cold

fronts. It was suggested that one reason for the difference in preferred mode is

that drylines often feature strong westerly flow and capping. A narrow zone of

ascent and strong westerly flow can lead to shorter residence times for updrafts

at the boundary. Cloud layer boundary normal shear was found to be skilful

in determining whether storms would stay discrete. Higher values of boundary

normal shear resulted in longer lasting discrete storms.

The study by Dial et al. did not include non-convective drylines, therefore no

comparison could be made between convective and non-convective dryline envi-

ronments. However, some of the arguments they provided for why drylines favour

discrete modes may also apply to cases of convection initiation failure. Strong

westerly flow could reinforce a capping inversion and inhibit convection. Addi-

tionally, strong shear relative to buoyancy would lead to short residence times

and parcels would not reach the LFC before leaving the zone of ascent.

The synoptic environment plays a large role in determining the environmen-

tal wind shear. Forcing for ascent is likely to be associated with changes in the

wind shear in the vicinity of the dryline. How would changes in wind shear affect

entrainment rates and residence time of updrafts in mesoscale regions of ascent?

Additionally, would the advection of mid-level air from the west reinforce the

capping inversion?

Many questions remain as to the role of large-scale processes in dryline con-

vection initiation. For instance, are there large-scale differences between drylines

that produce deep, moist convection and those that do not? Or is dryline con-

vection initiation determined only by smaller-scale processes which are harder to
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predict at short time scales? These questions suggest the need for a climatology

of dryline convection initiation.
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ABSTRACT

A dataset of drylines within a region of the southern Great Plains was constructed to investigate the large-

scale environments associated with the initiation of deep moist convection. Drylines were identified using

NOAA/NWSWeather Prediction Center surface analyses for all April,May, and June days 2006–15. Doppler

radar and visible and infrared satellite imagery were used to identify convective drylines, where deep, moist

convection was deemed to have been associated with the dryline circulation. Approximately 60% of drylines

were convective, with initiation most frequently occurring between 2000 and 2100 UTC. Composite synoptic

analyses were created of 179 convective and 104 nonconvective dryline days. The composites featured an

upper-level long-wave trough to the west of theRockies and a ridge extending across the northern and eastern

United States. At the surface, the composites featured a broad surface cyclone over western Texas and

southerly flow over the south-central states. Convective drylines featured more amplified upper-level flow,

associated with a deeper trough in the western United States and a stronger downstream ridge than non-

convective drylines up to 5 days preceding a dryline event. By the day of a dryline event, the convective

composite features greater low-level specific humidity and higher CAPE than the nonconvective composite.

These results demonstrate that synoptic-scale processes over several days help create conditions conducive to

deep, moist convection along the dryline.

SIGNIFICANCE STATEMENT

The southern Great Plains dryline separates moist air from the Gulf of Mexico from drier air farther west.

Drylines sometimes initiate convective storms, that is, storms that produce lightning, tornadoes, and other

extremeweather.Wewanted to know if we could tell the difference between days when such storms occur and

days when they do not. We found that there were distinctive weather patterns in the middle and upper

troposphere that distinguished these two sets of days. These differenceswere apparent 3–5 days ahead of time,

suggesting an opportunity for more lead time in forecasting such storms.

1. Introduction

The southern Great Plains dryline is a boundary that

separates moist air originating over the Gulf of Mexico

from drier air originating from the desert southwest

(e.g., Rhea 1966; Schaefer 1973, 1974; McCarthy and

Koch 1982; Schaefer 1986; Hane 2004; Hoch and

Markowski 2005). The dryline is often associated with a
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zone of convergence beneath the ascending portion of a

thermally direct circulation (e.g., Sun and Ogura 1979;

Ziegler et al. 1995). This convergence zone is a preferred

region for convection initiation (e.g., Fujita 1958; Beebe

1958; Miller 1959; McGuire 1962; Rhea 1966). However,

low-level moist air east of the dryline is typically capped

by warmer, drier air. The environment east of the

dryline can also be hostile to deep convection because

dry-air entrainment can reduce the buoyancy of as-

cending air parcels. For deep convection to occur,

moist air parcels need to be lifted to their level of

free convection before leaving the mesoscale updraft

region (Ziegler and Rasmussen 1998). As incipient

convection moves away from the dryline, it requires

sufficient instability for deep convection to develop.

Moisture, instability and lift are necessary ingredients

for deep, moist convection to occur (Doswell 1987),

and the dryline is often a region where these ingredi-

ents overlap. However, despite the apparent presence

of these ingredients, sometimes deep, moist convection

does not develop along or near the dryline (Ziegler

et al. 1997).

Uncertainty over whether deep convection will occur

is not limited to drylines. Convection initiation in gen-

eral is sensitive to small changes in conditions, such as

changes in temperature and moisture within the plane-

tary boundary layer (Mueller et al. 1993; Crook 1996)

and changes in lapse rate above the level of free con-

vection (Houston and Niyogi 2007). Improving under-

standing of convection initiation has been a motivation

of research projects such as the International H2O

Project (IHOP_2002;Weckwerth and Parsons 2006) and

the Spring Forecast Experiment of 2011 (Kain et al.

2013). Although not focused on dryline convection

specifically, some cases of convection initiation during

those projects occurred along the dryline. However,

robust conclusions regarding dryline convection initia-

tion are hard to draw due to the small number of dryline

events. For instance, the Spring Forecast Experiment of

2011 included only five cases of dryline convection ini-

tiation. Despite this limitation, the literature on dryline

convection contains several examinations of the causes

of convection initiation failure along the dryline, par-

ticularly during IHOP.

One such example of initiation failure during IHOP

was examined by Demoz et al. (2006). They speculated

that a relatively dry near-surface layer, a strong capping

inversion, and moisture detrainment in a dry layer

between the LCL and the LFC were detrimental to

initiation. The presence of a dry layer between the

LCL and LFC was also thought to have contributed to

initiation failure during the Verification of the Origins

of Rotation in Tornadoes Experiment (VORTEX;

Weiss and Bluestein 2002) and in an IHOP case ex-

amined by Cai et al. (2006). Cai et al. (2006) also found

that midlevel subsidence contributed to a strong capping

inversion over the dryline. Midlevel subsidence and

warming were also blamed for initiation failure in a case

fromVORTEX studied byRichter andBosart (2002) as a

short-wave ridge migrated over the Texas Panhandle

region. The importance of migratory mesoscale features

for convection initiation was also demonstrated by Hill

et al. (2016). In a simulation of two dryline events, they

found that convection initiation was sensitive to the lo-

cation of a 700-hPa short-wave trough.

Although the passage of features such as short-wave

ridges and troughs are primarily mesoscale processes,

variables such as the strength of a capping inversion, the

vertical distribution of moisture, and the magnitude of

moisture detrainment can also be affected by large-scale

processes. Schultz et al. (2007) showed that synoptic-

scale processes are important in regulating the strength

of the dryline. Stronger drylines were associated with

passage of a short-wave trough in the ambient westerlies,

favoring surface cyclogenesis, increased confluence, and

tighter moisture gradients. Short-wave troughing may

also increase the likelihood of convection given the

presence of a dryline. Rhea (1966) found that 71% of

cases of storm formation within 100n mi (185km) of the

dryline were associated with a discrete feature at 500hPa

in the temperature or wind field at 1200 UTC. The most

frequent of these features was an upstream trough.

However, Rhea did not examine the synoptic environ-

ment for drylines that did not produce convection.

Questions remain as to the role of large-scale processes

in dryline convection initiation. Does short-wave trough-

ing west of the dryline increase the chances of convection?

More generally, are there large-scale differences between

drylines that produce deep, moist convection and those

that do not?Or is dryline convection initiation determined

only by smaller-scale processes that are harder to predict at

short time scales? These questions suggest the need for a

climatology of dryline convection initiation.

Although there have been several studies of the

mechanisms by which dryline convection occurs, there

has only been one previous climatology of dryline con-

vection specifically. Rhea (1966) identified thunder-

storm formation along drylines on April, May, and June

days for 1959–62. The dryline location was estimated

using 3-h surface charts, and thunderstorms were

identified by examining hourly radar summaries for

new echoes within 200 n mi (370 km) of the dryline.

However, Rhea’s work was somewhat limited by the

lack of meteorological data available. Present-day ob-

servation networks such as the state mesonets in Texas

and Oklahoma make it easier to determine dryline
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location and subsequent convection today. Furthermore,

the availability of atmospheric reanalyses provides

more options for examining dryline conditions, in-

cluding the potential for automated detection (Clark

et al. 2015).

To address the question of whether there are large-

scale differences between convective and nonconvective

drylines, we present a climatology of dryline convec-

tion initiation in the southern Great Plains by sepa-

rating days with drylines into those that produced

deep, moist convection and those that did not. In

section 2, dryline days are identified using NOAA/NWS

Weather Prediction Center surface analyses, then

days with or without convection are identified using

NEXRAD radar mosaics and visible and infrared

satellite imagery. Section 3 presents a climatology of

convection at the dryline. In section 4, the differences

between convective and nonconvective drylines are

discussed by examining composite dryline environ-

ments constructed from North American Regional

Reanalysis (NARR) data. Section 5 examines com-

posite dryline environments in the days preceding a

dryline event. Finally, section 6 summarizes the main

results of this article.

2. Data and methods

a. Dryline selection

Drylines have commonly been identified using gradi-

ents in moisture obtained from surface station data (e.g.,

Rhea 1966; Schaefer 1973; Peterson 1983). Dewpoint

temperature has often been used as a measure of surface

moisture because it is easily obtained from NWS ob-

servations (Schaefer 1986). However, the dryline is not

always identified by exclusively considering moisture

gradients. In addition to requiring a 108F (5.68C) dew-
point discontinuity between neighboring stations, Rhea

(1966) also required an organized line of veering sur-

face wind. Schaefer (1973) expanded these criteria to

include a diurnal reversal of the direction of the tem-

perature gradient across the dryline. More recently, in

their climatology of drylines, Hoch and Markowski

(2005) excluded the necessity for a wind shift or diurnal

reversal of temperature gradient. They also considered

specific humidity rather than dewpoint, because specific

humidity is conserved when gradients in pressure are

present due to sloping terrain. Finding a reliable method

to identify drylines is an ongoing problem (e.g., Coffer

et al. 2013; Clark et al. 2015), with no widely used

method to automate dryline identification. Because

the focus of the present study was to identify dryline

convection rather than develop a method to identify

drylines, we therefore used an existing dataset that in-

cludes previously identified drylines by an independent

organization.

The Weather Prediction Center (WPC) combines

analyses from the Hydrological Prediction Center,

Ocean Prediction Center, National Hurricane Center,

and the Honolulu Weather Forecast Office to form the

Unified Surface Analysis, available at 3-h intervals

(Berg et al. 2007). These analyses are created by expe-

rienced surface analysts using a library of conceptual

models with the aid of data from surface observations,

satellite data, and model analyses, and the analyses

depict synoptic and mesoscale features such as fronts,

troughs, outflow boundaries, and drylines (NOAA

2013). According to the Unified Surface Analysis

Manual, ‘‘A tight 148C (258F), or a broader 178C
(308F), dewpoint gradient is used to help determine the

existence of a dryline. The dryline does not have to be

the leading edge of all the change in the dewpoint,

merely where the best gradient/leading edge of foehn

winds exists.’’ Dryline data were obtained from an

online archive of surface analyses produced by the

WPC, with analyses available from May 2005 onward.

The choice of the WPC analysis for our dryline pro-

vided an independent analysis of dryline occurrence

and location, minimizing any bias on our analysis. It

also avoided us having to develop, verify, and imple-

ment criteria for dryline occurrence from gridded

model output. Thus, in this instance, a manual method

of detection was deemed superior to an automated

method (Schultz 2009, 210–212).

WPC analyses were obtained for all April, May, and

June days for 2006–15. These months were chosen for

two reasons: 1) consistency with the months examined

in previous dryline climatologies (e.g., Rhea 1966;

Schaefer 1973; Peterson 1983; Hoch and Markowski

2005) and 2) convective storms most often initiate

along the dryline during these months (Hoch and

Markowski 2005).

Although most dryline studies have focused on late

spring and early summer, previous climatologies differ

in the size and location of the region in which drylines

were considered. Schaefer (1974) only selected drylines

in the south-central United States. Peterson (1983) was

even more restrictive than Schaefer, only studying dry-

lines in the West Texas region. However, Hoch and

Markowski (2005) chose a broader region, identifying

drylines within the Great Plains. The domain chosen for

the present study (Fig. 1) was guided by the work of

Hoch and Markowski (2005) who found that drylines

were most frequent around 1018W, with approximately

98% of drylines located between 978 and 1048W. Thus,

to limit the domain to be considered, we studied drylines
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within a domain with a western boundary imposed

along a line at 1048W, and an eastern boundary imposed

at 978W. The western boundary was chosen to incor-

porate dryline convection in western Texas and eastern

New Mexico while avoiding convection initiation asso-

ciated with upslope flow. Although dryline formation

is dependent on the sloping terrain, topographic fea-

tures can lead to localized regions of enhanced con-

vergence, increasing the likelihood of convection (e.g.,

Banta 1984). The effects of local features on dryline

convection are beyond the scope of this study. For

similar reasons, the southern boundary was restricted

to 31.58N to avoid including the higher terrain in the

Trans Pecos region (e.g., Nielsen et al. 2016). The

northern boundary was imposed at 408N, coincident

with the Kansas–Nebraska state line. Although dry-

lines can be observed north of this boundary, drylines

are more frequently observed in Texas, Oklahoma,

and Kansas (Schaefer 1986).

A day was classified as having a dryline if at least

100 km of a WPC-analyzed dryline was present within

the domain in any analysis between 1500 and 0300 UTC

the following day. Although drylines can occur outside

of this time frame (e.g., see Fig. 5b in Hane 2004),

drylines typically have a diurnal cycle with a peak in

intensity in the late afternoon and early evening.

Convection associated with the dryline also has a

diurnal cycle. Rhea (1966) found that the first occur-

rence of convective echoes in the vicinity of the dry-

line was most common between 1900 and 2100 UTC,

with no occurrences before 1500 UTC or after 0200

UTC. Therefore, the use of analyses between 1500

and 0300 UTC seems appropriate to capture most

events.

Most dryline days featured drylines being present

in more than one of the WPC analyses produced.

However, occasionally there were inconsistencies be-

tween consecutive analyses. An example of one such

inconsistency is a feature analyzed as a cold front in the

morning, but identified as a dryline in a subsequent

analysis. We believe that these cases represent the same

feature. Overnight, dry air west of the dryline often

cools more quickly than the moist air to the east over-

night, resulting in a west–east temperature gradient

by morning. This temperature gradient may be mis-

identified as a cold front, before the gradient reduces or

even reverses during the day. Because a dryline is only

required to be present on one analysis on a given day,

these instances were included, despite the duration of

the dryline being in question.

Drylines were identified on 33 days per season on

average, corresponding to approximately 36% of all

days analyzed. This frequency of dryline occurrence is

greater than that obtained by Hoch and Markowski

(2005), who found drylines on 32% of the days they

analyzed over a 30-yr period. They identified drylines

using gradients of specific humidity obtained from sur-

face observations, requiring a horizontal gradient of

3 gkg21 (100 km)21. The most likely explanation why

Hoch and Markowski identified a lower proportion of

drylines is the use of a more restrictive time con-

straint. They required a dryline to be present at

0000 UTC, whereas the criteria used in this study al-

lowed for a dryline at any time between 1500 and

0300 UTC. Sometimes a dryline can be present in the

late morning or early afternoon, but may no longer

exist by 0000 UTC. One such example is when a cold

front moves east faster than the dryline, and they

eventually merge.

b. Identifying dryline convection

The Iowa Environmental Mesonet generates and

archives national radar mosaics, which are derived

from base reflectivity output from the Next Generation

Weather Radar (NEXRAD) network. The mosaics are

available at 5-min intervals and can be viewed using

the NCEI/NOAA Interactive Radar Map Tool (NCEI

2016). Potential dryline convection was identified

using the radar tool, with a minimum radar re-

flectivity factor of 40 dBZ required for a continuous

period of at least one hour. Echoes that satisfied

these criteria were most likely indicative of deep,

moist convection.

Echoes were not considered if they were deemed to

have been caused by a feature other than a dryline.

Preexisting convection such as a mesoscale convective

system was excluded. Cases of convection that could be

identified as being initiated along an outflow boundary

were also excluded, as well as that associated with

FIG. 1. The domain chosen for the dryline study is enclosed by the

red box.
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frontal boundaries. However, convection that occurred

at the intersection of a dryline and convective outflow

or a front was considered. On occasion, a dryline was

present during the afternoon, but was later overtaken

by a cold front. Echoes were rejected if convection was

not determined to have initiated along the dryline be-

fore it was overtaken by a cold front, even if subsequent

echoes fulfilled the reflectivity criterion.

Visible and infrared satellite imagery were used to

help distinguish convection initiating along the dryline

from convection initiating along outflow boundaries or

fronts. The dryline can often be spotted in visible im-

agery as a thin line of cumulus or the western edge of a

cumulus field. When it was not possible to confidently

identify the dryline using visible satellite imagery, in-

frared images were used. Infrared satellite images

were useful in distinguishing drylines from fronts,

particularly when the frontal temperature gradient

was strong.

When a combination of visible and infrared satellite

images failed to distinguish dryline convection, Doppler

radar imagery was sourced for the nearest radar site with

the aim of identifying radar fine lines. Radar fine lines

are lines of low reflectivity returns that are not associ-

ated with precipitation. The returns are associated with

scattering by insects and typically occur in areas of low-

level convergence (Russell and Wilson 1997). The

presence of fine lines is helpful in detecting boundaries

such as drylines, fronts, and outflow (e.g., Geerts and

Miao 2005).

On 41 occasions, the use of satellite and radar imagery

failed to distinguish dryline convection from other types

of convection. In these cases, Storm Prediction Center

mesoscale discussions and National Weather Service

(NWS) area forecast discussions were used as a sup-

plement to the WPC analyses. Mesoscale discussions

are usually issued in advance of severe weather and

contain a forecaster’s thoughts about a mesoscale

event within the forecast area. The product is often a

combination of a text forecast plus a mesoscale anal-

ysis, which can sometimes offer greater detail than the

WPC surface analyses. However, mesoscale discus-

sions are issued on an ad hoc basis and are not available

every day, as opposed to area forecast discussions,

which are issued by NWS offices several times a day.

Area forecast discussions usually give a detailed break-

down of the forecast for a NWS forecast area and often

include a summary of the challenges and general thoughts

of the forecaster when making their forecast for the area

(NOAA 2016).

Once dryline convection had been established, echoes

were also required to have initiated no farther than

100km from the dryline in a perpendicular distance to

the dryline orientation. The 100 km is consistent with

Fig. 4 in Rhea (1966) who found first new radar

echoes formed within 50 n mi (93 km) of 69 non-

consecutive dryline days. More recently, Ziegler and

Rasmussen (1998) used special mesoscale observa-

tions from three drylines studied during separate

field projects. One of the cases they examined fea-

tured high-based cumulus 55 km east of the dryline.

They found a peak cumulus frequency approximately

15 km east of the dryline, but urged caution when

interpreting the results of such a small sample. Given

the time it takes for initial cumuli to develop to 40-dBZ

echoes, movement of the convective storms of the

order of tens of minutes and tens of kilometers could

have placed the storms farther east, as much as 100 km

eastward.

Initiation was deemed to occur at the first occurrence

of a 40-dBZ echo that maintained or exceeded that in-

tensity for a continuous period of at least one hour. This

threshold is consistent with previous literature on con-

vection initiation (e.g., Parker and Johnson 2000; Fowle

and Roebber 2003; James et al. 2005; Trapp et al. 2005;

Hocker and Basara 2008; Grams et al. 2012). Because

radar scans are available at 5-min intervals, the recorded

time of initiation was at worst a late estimate by four

minutes, but never early. At the time of initiation, the

location of initiation was defined as the center of a local

maximum in reflectivity.

3. Climatology of dryline convection

Three-hourly WPC surface analyses were analyzed

between 1500 and 0300 UTC for all April, May, and

June days 2006–15. Of the 329 drylines identified, 199

(60%) were associated with convective storms as de-

fined in section 2b. The other 130 days did not fulfill the

criteria of deep, moist convection defined in section 2b.

The proportion of dryline days that produced deep,

moist convection was less than that found by Rhea

(1966) in his study of thunderstorm formation along

drylines. He found new radar-echo development within

200 nautical miles (370 km) of the dryline for 70% of

drylines identified. The most likely explanation for the

lower frequency of dryline convection found in this

study is the more restrictive criteria used. Echoes were

required to be within 100km of the dryline, rather than

370 km used by Rhea. The lower frequency may also be

explained by the different durations examined. Rhea’s

study spanned only 4 years and may have sampled a

period where dryline convection was more frequent

than the long-term average.

The importance of the dryline sampling period is

demonstrated when assessing the interannual variability
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of dryline convection (Fig. 2). Dryline frequency shows

large year-to-year variation with as few as 16 dryline

days in 2007 to as many 50 in 2011. As with dryline

frequency, there appears to be large interannual vari-

ability in dryline convection. The number of convective

dryline days ranged from as few as 10 in 2007 to as many

as 27 in 2013.

In addition to the variability in dryline frequency

between years, the frequency of both drylines and

dryline convection also varied within a season.

Both dryline days and convective dryline days were

most frequent in May, followed by April then June

(Fig. 3). These results are similar to that of Hoch

and Markowski (2005) who found that peak dryline

frequency occurred in mid- to late May. When

broken down by week (Fig. 4), dryline frequency

appears to reduce toward the end of June. Hoch and

Markowski also found a reduction in dryline fre-

quency at the end of June. They hypothesized that

the onset of the North American monsoon season

moistening air over the elevated mixed-layer source re-

gions such as the desert southwest may be responsible for

the reduction in dryline occurrence. The moistening of

these regions would likely reduce the moisture gradient

between the tropical continental air and moist air from

the Gulf of Mexico.

a. Convection initiation

The first occurrence of dryline convection initiation

most commonly occurred in the midafternoon to

early evening (Fig. 5a). In total, 71% of convective

drylines had first initiation between 1900 and 2300

UTC, with a peak in frequency between 2000 and

2100 UTC. This result is not unexpected, as the

conditions for dryline convection are often optimal

around the time of maximum heating. Convergence

at the dryline is often at a maximum in the mid- to

late afternoon (Ziegler et al. 1995). Furthermore,

instability generally increases with surface temper-

ature while surface heating can help reduce convec-

tive inhibition.

A midafternoon peak in convection initiation is

consistent with previous studies of both drylines and

surface-based convection more generally. Rhea (1966)

found 45% of first echoes associated with the dryline

occurred between 1900 and 2100 UTC. More recently,

the International H2O Project studied convection initi-

ation and evolution in the southernGreat Plains. During

the field campaign, surface-based initiation most com-

monly occurred between 1800 and 2100 UTC (Wilson

and Roberts 2006). However, only 6 out of 55 initiation

episodes featured a dryline.

In the present study, the first occurrence of con-

vection initiation was generally most common in the

Texas Panhandle, but much less common farther

FIG. 3. The number of convective (purple) and nonconvective

(orange) dryline days (2006–15) separated by the month in which

they occurred.

FIG. 4. The number of convective (purple) and nonconvective

(orange) dryline days (2006–15) separated by the week in which

they occurred.

FIG. 2. The number of convective (purple) and nonconvective

(orange) dryline days that occurred in a given year.
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north (Fig. 5b). Eastern Colorado and far western

Kansas were rarely locations where storms first initiated.

Overall, the first occurrence of initiation was more

common in the southern half of the domain. Convection

often initiated west of 1008W in Texas. Initiation in that

region is consistent with Hoch and Markowski (2005)

who found that the 0000 UTC dryline position had a

peak frequency around 1018W. This longitude approxi-

mately coincides with the Caprock escarpment, which

extends southward for around 200 miles from the east-

ern Texas panhandle. Across the escarpment, elevation

changes by as much as 300m. The elevation change may

be a contributing factor as to why there is a peak in dryline

frequency at that longitude. The dryline can be considered

as the location where the western edge of the moist air

mass intersects with the sloping terrain (Jones andBannon

2002). Fewer initiations occur in Colorado and Kansas,

consistentwith synoptic experience that the dryline ismore

common in Texas than farther north (e.g., Schaefer 1986).

There are many questions that remain unanswered

with regard to orography. For instance, do storms initi-

ate earlier in certain locations than surrounding areas?

Does convection preferentially occur in some locations,

but not others? However, answering these questions is

beyond the scope of this study.

b. Temporal clustering

Drylines often occurred in multiday sequences. The

frequency of consecutive dryline days is shown in Fig. 6.

FIG. 5. (a) The frequency of convection initiation separated by the time at which it occurred. (b) The location of

first occurrence of convection initiation for all convective dryline days (2006–15). Each blue circle represents an

initiation location for a dryline day. Background shading represents topography.

FIG. 6. The proportions of the total (gray) drylines and convec-

tive (purple) drylines that occurred for a given number of consec-

utive days (2006–15).
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Over 66% of drylines occurred over two or more con-

secutive days, and drylines were identified as many as

nine days in succession. Consecutive dryline days were

typically due to a dryline persisting overnight, rather than

regeneration of a new dryline each day. The occurrence of

dryline days in temporal sequences has previously been

studied by Schaefer (1974). He found that 22 distinct

dryline events over 3 years resulted in 114 dryline days.

FIG. 7. 500-hPa geopotential height for (a) convective and (b) null

days at 2100 UTC. (c) The difference between the two fields, cal-

culated by subtracting the null from convective. Stippling indicates

significant points controlled for a false discovery rate of 0.1.

FIG. 8.Mean sea level pressure for (a) convective and (b) null days

at 2100UTC. (c)The difference between the twofields, calculated by

subtracting the null from convective. Lack of stippling indicates that

no differences were significant using a false discovery rate of 0.1.
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These results suggest that conditions conducive to

dryline development often exist for more than one day

in the Great Plains.

Convective drylines were less likely to occur in

multiday sequences. Only 34% of convective drylines

occurred in sequences of two or more consecutive

days. On 52 of the 199 convective dryline days (26%),

a convective dryline occurred on the second day of a

dryline sequence or later. However, even if conditions

were conducive to deep, moist convection on one day,

it does not mean that subsequent dryline days would

produce deep, moist convection. On 43 occasions (22%),

a convective dryline day was followed by a dryline

day with no convection. Thus, the ingredients for

deep, moist convection are either not consistently

present following a convective dryline day, or pres-

ent in insufficient quantity or magnitude. Are any

ingredients missing on days that do not produce deep,

moist convection? The following section will ex-

plore synoptic composites on days with and without

FIG. 9. (left) 850- and (right) 700-hPa specific humidity composite fields. (a),(b) The convective composites;

(c),(d) the null; and (e),(f) the difference between the two. Stippling indicates significant points controlled for a false

discovery rate of 0.1.
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dryline convection to identify any differences in these

ingredients.

4. Synoptic composites of days with and without
dryline convection

To examine differences between drylines that pro-

duce deep, moist convection and those that do not,

synoptic composites were created using NCEP North

American Regional Reanalysis (NARR) data. The

NARR is available from 1979 and consists of 45 ver-

tical levels of data at a 32-km horizontal grid spacing

(Mesinger et al. 2006). Composites of hourly mean

conditions were created from 2100 UTC data, chosen

because dryline convection most commonly initiates

between 2000 and 2100 UTC. Days where a dryline was

not present at 2100 UTC were excluded. Two composites

were created: convective and null. The convective com-

posite consisted of drylines that satisfied the criteria for

convective storms defined in section 2, whereas the null

composite was created from all the remaining dryline

cases. The convective composite contained 179 days, and

the null composite contained 104.

Composite differences were calculated by subtracting

the null composite from the convective composite.

Statistical significance of the differences was initially

calculated using a two-tailed t test applied to each grid

point. Field significance was tested by applying the false

discovery rate (FDR) method recommended by Wilks

(2016). The FDRmethod accounts for random rejections

of local null hypotheses that occur when performing

multiple hypothesis tests and is robust to spatial auto-

correlation of underlying data. An acceptable proportion

of incorrect rejections of local null hypotheseswas chosen

by controlling the FDR using the Benjamini–Hochberg

procedure (Benjamini and Hochberg 1995). The proce-

dure calculates a local threshold p value for each grid

point. Unless otherwise stated, field significance pre-

sented in this section is calculated using an FDR of 0.1.

The remainder of this sectionwill present a comparison of

the synoptic-scale conditions in the convective and null

composites, before focusing on the ingredients necessary

for deep, moist convection.

a. Synoptic overview

At 500hPa, both the convective and null composites

show a long-wave trough with an axis extending from

north to south, west of the Rockies (Figs. 7a,b), while

there is long-wave ridging in the eastern United States.

However, the convective composite shows amore amplified

pattern than the null. Figure 7c shows the difference be-

tween the two composite height fields, calculated by sub-

tracting the null from the convective. The heights in the

convective composite are lower overArizona, NewMexico,

and southern Colorado, but higher in the northeastern

United States, suggestive of both a deeper trough and

stronger ridge in the convective composite.

At the surface, there is a high over southern Florida

and low pressure in the lee of the Rockies (Figs. 8a,b).

In both composites, the low pressure area extends

FIG. 10. Surface-based CAPE for (a) convective and (b) null days at 2100 UTC. (c) The difference between the two fields,

calculated by subtracting the null from convective. Stippling indicates significant points controlled for a false discovery rate

of 0.1.
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through the Texas and Oklahoma panhandles, south-

west Kansas, southeast Colorado, and eastern New

Mexico. However, in the null composite, troughing ex-

tends farther north into Wyoming. This northward ex-

tensionmay be explained by the greater zonal component

to winds aloft over the northern Rockies (Fig. 7), which

would induce stronger lee troughing. Figure 8c shows

the effect of this troughing, with higher surface pressure

in northern Wyoming and southern Montana in the con-

vective composite.

b. Moisture

The synoptic-scale conditions in the composites pro-

vide a favorable environment for dryline development

FIG. 11. 700–400-hPa lapse rate for (a) convective and (b) null days at 2100UTC. (c) The difference between the two fields, calculated by

subtracting the null from convective. Regions where the convective composite has steeper lapse rates are shown in red. Lack of stippling

indicates that no differences were significant using a false discovery rate of 0.1.

FIG. 12. Surface-based convective inhibition for (a) convective and (b) null days at 2100UTC. (c) The difference between the two fields,

calculated by subtracting the null from convective. Lack of stippling indicates that no differences were significant using a false discovery

rate of 0.1.
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and deep, moist convection. Lee troughing east of

the Rockies results in large-scale confluence that fa-

cilitates the development of a dryline. The average

dryline position can be approximated as the location

of strongest west–east moisture gradient at 850 hPa

(Figs. 9a,b). The strongest gradient is at the western

edge of a tongue of moisture that extends northward

from the Gulf of Mexico. In the convective compos-

ite, the moist air east of the dryline extends farther

north and is more moist than in the null composite.

Differences of over 1 g kg21 extend from northern

Texas into the Midwest (Fig. 9c). These differences in

moisture are not restricted to east of the dryline, however.

In fact, the convective composite is more moist almost

everywhere east of the Rockies.

At 700 hPa, the poleward-extending moist tongue is

not as well defined, especially in the null composite

(Figs. 9d,e). The highest specific humidity values in the

FIG. 13. As in Fig. 12, but for 700-hPa temperature.

FIG. 14. Vertical velocity at 850 hPa for (a) convective and (b) null days at 2100 UTC. (c) The difference between the two fields,

calculated by subtracting the null from convective. Regions where the convective composite has more ascent are shown in red. Lack of

stippling indicates that no differences were significant using a false discovery rate of 0.1.
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convective composite are observed in the central states, but

the null composite is drier in this region and lacks an obvious

region of higher values. As at 850hPa, the 700-hPa con-

vective composite is more moist than the null over a large

swath extending from Texas into the Midwest (Fig. 9f).

However, the region of significant difference between the

composites extends farther south and west than at 850hPa,

andoverspreads someof the surfacedryline.All other things

being equal, incipient convection would be less affected by

the detrimental effects of dry-air entrainment.

c. Convective instability

As with the 850-hPa specific humidity field, the loca-

tion of the dryline in both composites can be identified

by the west–east gradient in surface-based CAPE

(Figs. 10a,b). A region of high CAPE exists east of

the dryline, extending north and east from the Gulf

of Mexico. There is a maximum in CAPE in eastern

Oklahoma, where values exceed 2600Jkg21 in the con-

vective composite and 2000Jkg21 in the null composite.

Overall, the convective composite has higherCAPE values

than the null composite over Texas, Oklahoma, Kansas,

Nebraska, and all locations farther east (Fig. 10c). The

differences in CAPE are most pronounced east of the

dryline, where values differ by as much as 700Jkg21.

The regions of largest difference in CAPE are somewhat

collocated with the regions of largest difference in specific

humidity, suggesting that the CAPEdifferences are caused

by differences in low-level moisture.

The argument that the CAPE differences between the

composites are driven by low-level moisture is sup-

ported by the 700–400-hPa lapse-rate difference shown

in Fig. 11. The steepest lapse rates occur over southern

Colorado, northern New Mexico and northwest Texas.

However, areas where the convective composite has

steeper lapse rates than the null are separated from the

FIG. 15. 500-hPa geopotential height for (left) 120, (center) 72, and (right) 24 h before a dryline event. (a)–(c) The convective

composite, (d)–(f) the null, and (g)–(i) the difference between the two. Stippling indicates significant points controlled for a false

discovery rate of 0.1.
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region of higher CAPE values, implying that the dif-

ferences in CAPE are primarily driven by moisture

differences.

d. Convective inhibition

The presence of moisture and instability are neces-

sary, but not sufficient, ingredients to initiate deep,

moist convection as enough lift must be provided to

overcome any existing convective inhibition. In both

composites, inhibition is weak near the dryline and in-

creases in an easterly direction toward central Texas and

Oklahoma (Figs. 12a,b). The strongest inhibition is found

over the Gulf of Mexico near the Texas coastline. The

convective composite has inhibition values that rarely ex-

ceed 80Jkg21, with most of the dryline region exhibiting

less than 60Jkg21, and has weaker inhibition than the null

composite over a large area east of the dryline. The largest

differences in inhibition occur in eastern Oklahoma where

the difference widely exceeds 30 Jkg21.

What effect do midlevel temperatures have on the

magnitude of inhibition? At 700 hPa, temperatures

are lower in the convective composite over Arizona,

New Mexico, Colorado, and western regions of Kansas,

Oklahoma, and Texas (Fig. 13). In fact, the convective

composite is colder over almost all of the domain

defined in section 2. However, as with convective in-

hibition, there are no areas where the differences

are significant. Furthermore, the regions of weaker

inhibition are somewhat separated from regions of

lower 700-hPa temperatures. This separation is evi-

dent in the Midwest where the convective composite

is warmer than the null (Fig. 13c), but inhibition is

weaker (Fig. 12c). The differences in inhibition are

primarily controlled by low-level moisture rather

than midlevel temperature. Examination of 850-hPa

specific humidity (Fig. 9e) reveals that regions of

higher moisture are roughly collocated with regions

of lower CIN (Fig. 12c), suggesting that moisture is

FIG. 16. As in Fig. 15, but for 850-hPa geopotential height.
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the primary factor driving differences in inhibition as

well as CAPE.

e. Lift

Weak inhibition will not always result in deep,

moist convection along the dryline. The inhibition

must be overcome by low-level convergence and

ascent through the inversion, weakened by large-

scale ascent and cooling, or a combination of the two.

Even before the smoothing effect of compositing,

the dryline circulation cannot be resolved by the

NARR, which has a horizontal grid spacing of 32 km.

However, vertical motion over larger spatial scales

can be analyzed.

Ascent is observed in both the convective and null

composite 850-hPa vertical velocity fields over a large

area of the Great Plains (Figs. 14a,b). The strongest

ascent over the Plains is located through central regions

of Texas, Oklahoma, and Kansas. Larger ascent is ob-

served in the convective composite than the null to the

immediate east of the dryline, with the difference widely

exceeding 0.1 Pa s21. However, these differences are not

significant.

A similar pattern is also observed at higher altitudes

(not shown), but the magnitude of the ascent over the

Great Plains generally weakens with increasing altitude.

The ascent in both the convective and null composites

is likely associated with warm-air advection. However,

there may be some contribution from ongoing con-

vection given that the composites are created from

2100 UTC data.

5. Synoptic composites of days preceding a dryline

Many differences are observed between convec-

tive and nonconvective composites of 2100 UTC

NARR data on the day of a dryline, but is it possible

to distinguish between convective and nonconvective

drylines at longer lead times? Applying the same

criteria as in section 4, composites were created of

FIG. 17. As in Fig. 15, but for mean sea level pressure.
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conditions at 2100 UTC for 120, 72, and 24 h before a

dryline day.

a. Synoptic overview

Figure 15 shows the difference in 500-hPa geopotential

height, for 120, 72, and 24h before a dryline day (T). In

both the convective and null composites, heights rise in

the upper Midwest and Great Lakes region as the lead

time reduces, while heights fall over the west coast be-

tweenT–72 andT–24.At T–72, significant differences can

be observed between the composites. The convective

composite features a more amplified west coast trough

and higher heights in the east than the null. By T–24, the

convective composite features a prominent trough west

of the Rockies and a ridge in the Midwest. However, the

null composite has a less amplified pattern. The trough

over the west coast is more shallow, and the ridge is

weaker and located slightly farther west than in the

convective composite.

The building of a ridge in the east in combination with

stronger troughing in the west is also seen at lower al-

titudes (Fig. 16). At T–120, both 850-hPa composites

have a height minimum in Colorado and higher heights

in the southeast (Figs. 16a,d). At T–96 (not shown) and

T–72, the null composite also features a heightminimum

over Colorado, but the convective composite has sig-

nificantly lower heights over the central Rockies in ad-

dition to higher heights in the northeastern United

States than the null. By T–24, the convective composite

has higher heights over the entire eastern United States,

with the largest differences occurring over the upper

Midwest. However, the differences in the strength of the

western trough have all but disappeared by T–24.

A similar trend is observed in mean sea level pressure

as the differences between the composites are maxi-

mized at T–72 and reduced by T–24 (Fig. 17). At T–120,

both composites feature lower pressure in New Mexico

and southern Colorado, and higher pressure in the

FIG. 18. As in Fig. 15, but for 850-hPa specific humidity.
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southeast with southerly flow into the Great Plains. By

T–72, the convective composite has a deeper low pres-

sure region than at T–120, but the low pressure region in

the null composite is relatively unchanged. As a result,

the mean sea level pressure in the convective composite

is over 3hPa lower over Colorado and parts of adjacent

states. At T–24, both composites have a deeper low

pressure area than at T–72; however, the differences

between the composites have all but disappeared.

b. Moisture

The presence of significant differences in mean sea level

pressure at T–72, but none on the day of a dryline, suggests

that the large-scale pattern in the three or four days

before a dryline event can help create the differences ob-

served on a dryline day. The composites at T–72 feature a

large-scale pattern that is conducive to moisture advection

into the Great Plains from the Gulf of Mexico. The con-

vective composites feature a stronger trough, likely asso-

ciated with greater moisture advection than the null.

Composites of 850-hPa specific humidity (Fig. 18)

confirm that convective cases are more moist in the days

preceding a dryline event. For all the times shown, the

highest specific humidity values are found in the south

and southeastern United States, with drier air in the

southwest. At T–120 h, the convective composite is more

moist over the western Plains. By T–72, a tongue of

moisture extends farther north in the convective com-

posite and the convective composite is more moist over

the entire Great Plains region. This difference is signif-

icant over much of Oklahoma and Kansas, and signifi-

cant differences extend as far north as NorthDakota. By

T–24, the convective composite has specific humidity

values over 1.6 g kg21 higher than the null composite in

eastern Oklahoma.

c. Convective instability

A result of this difference in specific humidity is

that the convective composite has greater surface-based

CAPE values in the Plains from T–72 onward (Fig. 19).

FIG. 19. As in Fig. 15, but for surface-based CAPE.
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At T–72, the convective composite has CAPE values

over 300 J kg21 greater than the null over most of

Oklahoma and Kansas. By T–24, the convective com-

posite has larger CAPE values over a large swath ex-

tending from Texas into theMidwest. The differences in

CAPE are greatest over eastern Oklahoma and Kansas,

and western Missouri.

The steepest lapse rates (exceeding 7.58Ckm21) exist

over Colorado and New Mexico (Fig. 20), appearing to

be collocated with the 850-hPa trough (Fig. 16), while

the 78Ckm21 isopleth extends eastward to central

Oklahoma. By T–24, the region of lapse rates greater

than 78Ckm21 extends farther east, reaching the Kansas–

Missouri border. The steepening lapse rates are likely

explained by the arrival of cool air aloft due to the ap-

proaching trough. However, the increase in lapse rates

farther east as the lead time shortens may be also be an

indicator of advected elevated mixed-layer air.

The argument that the increase in lapse rates is

associated with the elevated mixed layer is supported

by an increase in convective inhibition (not shown)

between T–72 and T–24. Convective inhibition in-

creases over almost all of Texas, Oklahoma, and

Kansas between those times. However, even if the

elevated mixed layer is responsible for the increase in

convective inhibition, the characteristics of the ele-

vated mixed layer do not appear to be important in

distinguishing between convective and nonconvective

drylines. No significant differences are observed be-

tween the convective and null composites of 700–

400-hPa lapse rate (Figs. 20g–i).

d. Lift

There are also no significant differences between the

convective and null composites of vertical velocity in the

days preceding a dryline event (Fig. 21). Composites of

FIG. 20. 700–400-hPa lapse rate for (left) 120, (center) 72, and (right) 24 h before a dryline event. (a)–(c) The convective composite,

(d)–(f) the null, and (g)–(i) the difference between the two. Regions where the convective composite has steeper lapse rates are shown in

red. Lack of stippling indicates that no differences were significant using a false discovery rate of 0.1.
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850-hPa vertical velocity featureweak ascent (;0.1Pa s21)

over most of the southern Great Plains. The magni-

tude of this ascent is greatest at T–24 with values ex-

ceeding 0.1 Pa s21 over much of Oklahoma and Kansas.

Although the magnitude of ascent is slightly greater

(,0.1Pa s21) in the convective composite at T–24, this

difference is not significant.

Ascent is also present over much of the southern

Plains at higher altitudes (not shown), but the magni-

tude of ascent weakens with height. The strongest ascent

is at low levels, and the southerly winds over the

southern Plains in the mean sea level pressure com-

posites (Fig. 17) suggest the ascent in both composites is

associated with warm-air advection. In the midlevels

(not shown), there is no clear signal for vertical motion

in the Plains, even at short lead-times. Although it

appears that the large-scale pattern is conducive to

warm-air advection and ascent in the low-levels, the

large-scale influence of vertical motion at higher alti-

tudes is unclear.

6. Summary

A dataset of drylines within a region of the southern

Great Plains was constructed to investigate the impor-

tance of large-scale processes in the initiation of deep

moist convection. Drylines were identified using WPC

surface analyses, then radar and satellite imagery were

used to establish whether deep, moist convection initi-

ated along the dryline. Over the 10 years examined in

this study, approximately 60% of drylines produced

deep, moist convection, with convectionmost frequently

initiating between 2000 and 2100 UTC. Convective

drylines were most common in May.

Synoptic composites were created in an attempt to

identify differences between convective and nonconvective

FIG. 21. 850-hPa vertical velocity for (left) 120, (center) 72, and (right) 24 h before a dryline event. (a)–(c) The convective composite,

(d)–(f) the null, and (g)–(i) the difference between the two. Regions where the convective composite has more ascent are shown in red.

Note the different scale used in (g)–(i). Lack of stippling indicates that no differences were significant using a false discovery rate of 0.1.
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drylines. Analysis of the composites reveals that the

large-scale environment appears to not only facilitate

the development of a dryline, but also create condi-

tions conducive to deep, moist convection. Three days

before a dryline event, convective drylines feature a

stronger 500-hPa ridge in the eastern United States

and a deeper west coast trough. Meanwhile, convective

drylines feature a deeper surface low over the central

Rockies. As a result of greater poleward advection of

low-level moisture into the Great Plains, the convective

composite is more moist over large areas east of the

Rockies.

On the day of a dryline, the synoptic composites fea-

ture a long-wave trough over the western Rockies and a

ridge in the east. However, convective drylines have

more amplified flow, a deeper trough, and a stronger

downstream ridge. At the surface, both composites

feature low pressure over the Texas panhandle region

with associated poleward moisture advection to the east

of the low. However, convective drylines have more

abundant low-level moisture over the Plains, which re-

sults in greater values of CAPE east of the dryline.

Although CAPE differences appear to be primarily

caused by differences in low-level moisture, the influ-

ence of the elevated mixed layer in creating greater

CAPE values in convective cases is unclear. No signif-

icant differences were found in 700–400-hPa lapse

rates or midlevel temperatures between the composites.

Although convective inhibition was weaker in the con-

vective composite east of the dryline, this result was also

insignificant. It is possible that convection initiation is

affected by variations in convective inhibition on a

smaller spatial scale than the NARR can resolve.

Of course, composites cannot help answer all of the

questions regarding dryline convection initiation.Whether

or not the magnitude of convergence, and hence ascent,

along the dryline can help distinguish between convective

and nonconvective drylines remains unclear. Drylines vary

in location and orientation within the Plains, and conver-

gence is often confined to a narrow band along or ahead of

the dryline. Future work could benefit from accounting for

dryline location, orientation, and strength to help establish

the importance of both convergence, any frontal circula-

tion, and the strength of the moisture gradient in deter-

mining whether convection will initiate.

Despite these unanswered questions about finescale

dryline variations, we have shown that the large-scale

pattern is not only important in creating conditions

conducive to dryline development, but may also help

determine whether or not deep, moist convection initi-

ates along the dryline. Convective drylines are associ-

ated with greater low-level moisture and higher values

of surface-based CAPE than nonconvective drylines, a

result of greater moisture advection into the Plains

in the preceding days. Our results indicate that synoptic-

scale processes may be important in determining

whether dryline convection will occur.
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Chapter 3

Objective Analysis of the Dryline

Environment

3.1 Overview

Chapter 2 identified the large scale conditions conducive to dryline convection

primarily by the creation of synoptic composites of variables understood to be

representative of the ingredients of deep, moist convection. The selection of vari-

ables for compositing was heavily influenced by previous literature recommending

an ingredients-based approach to forecasting deep, moist convection. Moisture,

instability and lift are necessary, but not necessarily sufficient for deep, moist

convection to occur (Doswell 1987).

However, which variables best represent the aforementioned ingredients is

open to question. When nowcasting, tools such as surface observations, atmo-

spheric soundings and satellite imagery at different wavelengths can be useful

in establishing whether the ingredients for deep, moist convection are present.

When forecasting at longer lead times, forecasters are forced to make more use of

numerical weather prediction. But which of the variables output by models are

most useful? Some models can output vast amounts of data. For instance, the

most recent version of the Rapid Refresh model (RAP) (Benjamin et al. 2016)

outputs nearly 300 variables, many of which are either directly or indirectly re-

lated to moisture, instability and lift. Does a hierarchy of variable importance

exist?

68
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Given the number of variables available at multiple vertical levels in North

American Regional Reanalysis (NARR) (Mesinger et al. 2006) used in Chapter

2, the composites were unable to be comprehensive. It is possible that variables

that were not examined also differ between convective and non-convective dry-

lines. Can the variables be examined more objectively?

Many dryline studies have focused on the near-dryline environment (e.g. Ziegler

and Hane 1993; Atkins et al. 1998; Buban et al. 2007). The environment along

and immediately ahead of the dryline helps to determine whether convection can

initiate and sustain. Therefore, it may be useful to examine conditions imme-

diately ahead of the dryline. One drawback of the creation of composites in

Chapter 2 is that they do not specifically provide information on the pre-dryline

environment. The dryline location was not taken into account because of a focus

on synoptic-scale conditions.

While creating a climatology of dryline convection, Weather Prediction Cen-

ter (WPC) analyses featuring drylines were obtained. Additionally, a database of

convection initiation times and locations was created. By extracting dryline posi-

tion data from the WPC analyses and combining it with the existing database on

convection initiation, conditions in the vicinity of the dryline could be examined

more thoroughly. How does the environment in the vicinity of the dryline affect

the likelihood of convection initiation? Furthermore, are the results consistent

with those in chapter 2?

3.2 Dryline data extraction

a. WPC Dryline Locations

The WPC analyses are image files depicting features such as fronts, troughs, out-

flow boundaries, and drylines (Fig. 1.1). However, they do not have embedded

geographical data, so obtaining dryline location data from the analyses is not a

trivial task. Dryline locations were obtained in three stages.

Firstly, the images were filtered by colour to isolate drylines, troughs and

outflow boundaries, all of which are represented by orange symbols in the WPC
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analyses, from other features. Secondly, the images were converted to greyscale

(Fig. 3.1), before a Gaussian filter was applied to isolate drylines (solid lines)

from troughs and outflow boundaries (dashed lines). Finally, the images were

overlaid on a Matplotlib (Hunter 2007) map with the same map projection so

that accurate end points of each dryline could be obtained.

Figure 3.1: An example of a Weather Prediction Center surface analysis after
all boundaries except drylines, troughs and outflow have been excluded. The
image was converted to greyscale before a Gaussian filter was applied to isolate
the dryline (the brightest line on the image) from troughs ad outflow boundaries
(the fainter lines).

b. Model Analysis Data

Given that cumulus associated with the dryline is most frequent within 25 km

of the dryline itself (Ziegler et al. 1997), the NARR was clearly not suitable for

examining the near-dryline environment as it only has a horizontal grid-spacing

of 32 km. In recent years convection-allowing models such as the 3-km High
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Resolution Rapid Refresh model (HRRR) (Benjamin et al. 2016) have been de-

veloped, however, data were not available for the entire period 2006–2015. The

highest resolution model available throughout that period was the RAP, (for-

merly known as the Rapid Update Cycle (RUC)). The RAP has a horizontal

grid-spacing of 13 km, has 50 vertical levels and typically outputs around 300

variables (see Appendix A). However, the precise number of variables output

varies as minor updates are applied. The RAP was deemed to be the most suit-

able model to choose with regards to analysis frequency. The RAP analyses are

available for every hour, as opposed to another mesocale model, the North Amer-

ican Mesoscale Forecast System (Rogers et al. 2009), which is only available at

intervals of six hours with a grid-spacing of 20 km. The RAP was also considered

the most suitable source in terms of dryline positional accuracy. The accuracy of

experimental convection-allowing models has been previously verified using the

RAP as “truth” (Coffer et al. 2013), most likely because it uses a data assimila-

tion scheme that incorporates radar reflectivity, satellite, and surface data hourly.

The RAP replaced the RUC (Benjamin et al. 2004) in May 2012. The RUC

had a horizontal grid-spacing of 20 km, therefore the model data had to be pre-

processed to maintain consistency throughout the ten years examined. Because

no grid points were shared between the RAP and the RUC, data were obtained

for the nearest model point to a relative location. Although convective drylines

have an obvious reference point, namely the location of convection initiation, non-

convective drylines do not. By choosing a relative position for each dryline, it is

possible to perform a fair comparison of days with and without convection. The

reference location chosen was the northern end of the dryline. Dryline lengths

ranged between approximately 100km and 1500km, so to ensure all drylines were

included in analysis and to allow fair comparison, it seemed prudent to choose ei-

ther the northern or southern end of the dryline. The northern end of the dryline

(herein referred to as the dryline origin) often intersects a frontal boundary and

can be an area of enhanced convergence. Therefore it is of great interest when

considering convection initiation.

Data were initially obtained at 0.2◦ intervals, extending 3◦ north, south, east

and west of the dryline origin, creating a 31 x 31 square. For each location, a

value was obtained for every available variable at 1800 UTC on all dryline days,
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excluding variables which were not present in all RUC and RAP analyses. After

removing the aforementioned variables, 305 were left remaining (see Appendix B

for further details). The time of 1800 UTC was chosen because it was the earliest

analysis time available that had a large number of drylines (205 in total).

3.3 Machine Learning for Binary Classification

The combination of dryline locations and model data within the vicinity of the

dryline provided a useful dataset for analysis. Given this dataset, dryline convec-

tion initiation can be reduced to a binary classification problem. Either a dryline

initiated deep, moist convection, or it did not. Can an objective classification

technique show any skill in determining whether convection will initiate along

the dryline? If so, which variables are most important in making that determi-

nation? The results could confirm existing conceptual models, or perhaps reveal

something new.

Recently, machine learning has been increasingly employed as a tool for analysing

the increasingly large amount of meteorological data available. They are often

used to automate tasks that may take a long time to perform manually. There

are many potential methods for performing these analyses, however, the choice of

technique applied is influenced by factors such as the size and type of input data,

the interpretability of how a model makes its predictions, and the complexity and

cost of implementation.

Linear regression is a relatively simple form of machine learning used to predict

a non-categorical output variable. It has been used for such purposes as forecast-

ing probabilities of severe weather from radar data (Kitzmiller et al. 1995), and

to predict hail size from a combination of radar and modified upper-air soundings

(Billet et al. 1997). Both of these studies were outputting probabilities, however,

logistic regression is required when predicting binary outcomes. Mecikalski et al.

(2015) used logistic regression to convective initiation at lead times of less than an

hour using satellite and numerical weather prediction (NWP) parameters. They

found that the logistic regression method incorporating NWP performed better

than predicting initiation using satellite alone.
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Linear regression is relatively easy to implement and can be a valuable tool

when the relationships between the independent and dependent variables are not

complex. However, it tends to perform poorly when the data is not linearly

separable or there is a large degree of multicollinearity between the independent

variables. Furthermore, logistic regression is prone to overfitting when there is a

large number of input variables.

Another relatively simple form of machine learning is the use of decision trees

(Breiman et al. 1984). Decision trees are constructed to predict an output cate-

gory or value based on a set of input variables. At each branch node, the data

is split by finding the variable and threshold value that produces the most infor-

mation gain. Decision trees have also been used in meteorological classification

problems. Gagne et al. (2009) determined that decision trees are a viable method

to classify storm type using simulated and observed radar reflectivity. However,

although decision trees are relatively easy to implement and interpret, they are

prone to overfitting of training data (Schaffer 1993).

Ensembles of decision trees can reduce variance and the problem of overfit-

ting. Two prominent ensemble methods are random forest classifiers (Breiman

2001), and gradient boosting (Friedman 2001). Random forest classifiers use an

ensemble of decision trees trained on different subsets of data (McGovern et al.

2019). They have been used for a wide range of meteorological problems in re-

cent years. Williams et al. (2008) used random forests to train a forecasting tool

to predict thunderstorm intensity using multiple data sources including satellite,

radar, weather model output and weather station data. Random forests have

also been used to forecast the probability of hail from convection-allowing model

output (Gagne et al. 2017), to forecast aircraft turbulence (Williams 2014), and

to help identify drylines from weather model output (Clark et al. 2015). Clark

et al. (2015) created an algorithm to identify drylines using gradients of specific

humidity and dewpoint. Random forests were then used on the remaining dry-

lines and model data to reduce the number of false positives.

In contrast to the independent trees generated using random forests, gradi-

ent boosting sequentially adds trees which are trained using the residual error of
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the previous ensemble (Natekin and Knoll 2013). This learning is achieved by

minimizing a loss function via gradient-descent. Far fewer meteorological stud-

ies have applied gradient boosting in comparison to random forests. McGovern

et al. (2015) created a competition in which they invited artificial intelligence

researchers and environmental scientists to produce solar energy forecasts. They

found that the winning entries all used gradient boosting and that it outperformed

random forests, linear regressions, and neural networks. Although these results

may not apply to some other datasets, the authors hoped they would encourage

more atmospheric scientists to use gradient boosting.

Although gradient boosting has historically lagged behind random forests in

terms of how often it is applied, it has been used far more frequently of late.

For instance, Ma et al. (2018) created an hourly rain area delineation scheme

that applies gradient boosting to multispectral geostationary satellite and to-

pographic elevation data. Gradient boosting has also been applied directly to

weather model output. Xu et al. (2020) improved Weather Research and Fore-

casting model (WRF) near-surface wind speed forecasts using model output of

wind speed and direction, temperature, pressure and vorticity.

More complex, but powerful machine learning techniques such as neural net-

works (Rumelhart and McClelland 1986) have also been used in the atmospheric

sciences. A comprehensive description of neural network design and function

is provided by Svozil et al. (1997). Neural networks have been used to predict

hail size using radar-derived parameters (Marzban and Witt 2001), and using

sounding-derived predictors (Manzato 2013). Neural networks (NN) have fre-

quently been used to solve classification problems. For instance, Bankert (1994)

classified cloud types from high resolution radiometer data, and Lakshmanan

et al. (2014) classified precipitation type from polarimetric radar scans.

Several binary classification problems have also been addressed by using NN.

Marzban and Stumpf (1996) applied NN to output from a mesocyclone detection

algorithm to attempt to establish whether or not a tornado occurred. Similarly,

NN was applied to the same alogrithm to identify if a damaging wind event

occurred (Marzban and Stumpf 1998). Neural networks have also been used

in conjunction with radar data for binary classification. Anagnostou (2004) used
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radar reflectivity data to separate convective and stratiform rainfall. Lakshmanan

et al. (2007) used NN for quality control purposes, separating meteorological and

non-meteorological echoes.

Although NN has been used for many meteorological classification problems

and tends to perform well when dealing with a large amount of input variables

(Rumelhart and McClelland 1986), it suffers from poor interpretability (Kot-

siantis et al. 2007). Furthermore, NN are difficult to implement and can be

computationally expensive.

Machine learning is being increasingly used in the atmospheric sciences and is

a valuable tool for objectively analyzing data. It can be used in conjunction with

the data obtained when creating the climatology with a goal of providing further

insight into dryline convection initiation. In particular, tree-based classifiers such

as random forests and gradient boosting appear to be suitable for modelling dry-

line convection initiation. They are relatively simple to implement, do not suffer

from the poor interpretability of techniques such as neural networks and are not

as prone to overfitting as using singular decision trees.

Gradient boosting has been shown to outperform random forests in a variety

of binary classification problems (Caruana and Niculescu-Mizil 2006). Therefore,

it was chosen to test its viability in determining whether it can predict whether

dryline convection will occur. Chapter 4 describes the training and testing of a

gradient boosting model applied to drylines for the very first time.
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The viability of using machine learning to predict deep, moist convection

along the Great Plains dryline was explored with a method known as gradient

boosting. Using a dataset of 10 years of drylines occurring within a region

of the Southern Great Plains, gradient boosting was applied to Rapid Update

Cycle (Benjamin et al. 2004) and Rapid Refresh (Benjamin et al. 2016) model

data obtained for 205 dryline days. The model was tested across two domains,

firstly using data from locations relative to the dryline, and secondly from

fixed locations across a domain spanning the contiguous United States. Tuned

to maximize the harmonic mean of precision and recall, the gradient boost-

ing model resulted in a high probability of detection of convective drylines

(mean = 0.993). Low precision (mean = 0.638) resulted in a mean F1 score of

0.778 and accuracy of 0.638. Analysis of feature importance revealed a spa-

tial variation in the performance of variables. In the dryline-relative domain,

surface lifted index exhibited the highest values of feature importance east of

the dryline. However, 675-hPa relative humidity was the leading variable in

the most locations. The importance of instability and mid-level moisture in

distinguishing between convective and non-convective drylines is consistent

with the synoptic composites created in Chapter 2. In the large domain the

100 and 125-hPa u-component of the wind were leading variables at the high-

est number of locations, and also had the highest values of feature importance,

mostly in the northwest US. Our results suggest that gradient boosting is not

viable as a tool for directly predicting dryline convection, but may provide

further avenues of research. We recommend that future work uses a larger

dataset to determine whether gradient boosting could be improved with more

training data.
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1. Introduction33

Determining whether deep, moist convection will initiate along the dryline is a difficult forecast-34

ing problem. Often, an ingredients-based approach is used to help forecast deep, moist convection35

with moisture, instability and lift being necessary ingredients (Doswell 1987). Forecast model36

output can be examined to identify whether these ingredients will be present in the vicinity of the37

dryline, but which variables best represent moisture, instability and lift? Furthermore, are any vari-38

ables better discriminators of whether a dryline will produce deep, moist convection? In this paper39

we apply a machine learning technique to gridded model output to attempt to identify variables40

important for determining whether or not convection will occur on any day a dryline is present.41

In recent years, machine learning has been increasingly used to solve other multi-variate prob-42

lems in atmospheric science. Learning systems can be trained on samples of data where the out-43

come is already known, in what is known as supervised learning (Kotsiantis et al. 2007). Super-44

vised learning has been used to solve regression problems such as predicting quantities of precip-45

itation (e.g. Hall et al. 2002; Gagne et al. 2014), but also to automate classification tasks such as46

identifying cloud type (e.g. Lee et al. 2004; Xia et al. 2015), storm type (Gagne et al. 2009) and47

sudden stratospheric warming events (Blume et al. 2012).48

Given a dataset of drylines and knowledge of whether there was convection, dryline convection49

initiation can be reduced to a binary classification problem. However, the selection of an appro-50

priate classification method depends on many factors. The performance of a classification method51

can be sensitive to factors such as the number of input features, the balance of the dataset and the52

separation between the categories (Kotsiantis et al. 2007). However, even if one technique is found53

to outperform others in terms of accuracy, the practicality of implementation may be prohibitive.54

For example, although support vector machines (Cortes and Vapnik 1995) and neural networks55

4



(Rumelhart and McClelland 1986) tend to perform well with a large amount of features, both56

techniques suffer from poor interpretability (Kotsiantis et al. 2007). Because the purpose of this57

study is to provide insight into the classification process rather than solely focus on the accuracy58

of predictions, the selection of a technique that allows the interpretation of variable importance is59

vital.60

Tree-based classifiers such as decision trees (Breiman et al. 1984) fulfil this interpretability crite-61

rion and are also relatively simple to implement. However, complex trees are prone to overfitting62

of the training data (Schaffer 1993a). The problem of overfitting can be reduced by employing63

ensemble methods such as random forests (Breiman 2001) or gradient boosting (Friedman 2001),64

with minimal loss of interpretability. Random forest classifiers use an ensemble of decision trees65

trained on random samples of data. Each tree predicts a class, and the most common class is66

used as the model prediction. In contrast to the independent trees generated using random forests,67

gradient boosting sequentially adds trees which are trained using the residual error of the previ-68

ous ensemble (Natekin and Knoll 2013). This learning is achieved by minimizing a loss function69

via gradient-descent. Gradient boosting generally outperforms random forests, provided that the70

boosting algorithm is correctly tuned.71

The purpose of this paper is to explore the viability of gradient boosting for predicting whether72

a dryline will produce deep, moist convection. Using a dataset of 10 years of drylines occurring73

within a region of the Southern Great Plains, gradient boosting is applied to Rapid Update Cycle74

(Benjamin et al. 2004) and Rapid Refresh (Benjamin et al. 2016) model data obtained for each75

dryline day. Gradient boosting is tested with regards to two primary questions. Firstly, does the76

method have any skill in predicting whether a dryline will produce deep, moist convection? And77

if so, are any variables better discriminators of whether convection will initiate?78
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The layout of the paper is as follows. Section 2 describes the dryline dataset, the Rapid Re-79

fresh Model analyses and how gradient boosting was implemented. Section 3 explains how the80

algorithm was optimized to maximize performance and avoid overfitting. The viability of gradient81

boosting is tested over a small near-dryline domain in section 4. Section 5 analyses the per-82

formance of gradient boosting when applied to data obtained from the entire contiguous United83

States, before the paper is concluded in section 6.84

2. Data and method85

a. Dryline dataset86

A dataset of drylines was created from Weather Prediction Center analyses for all April, May87

and June days 2006–2015. Deep moist convection initiating along the dryline was subjectively88

determined from visible and infrared satellite, and radar imagery. A detailed description of the89

methods used to identify dryline convection is provided in chapter 2. Rapid Refresh (Benjamin90

et al. 2016) and Rapid Update Cycle (Benjamin et al. 2004) model data were obtained for 180091

UTC on each of the convective (123) and non-convective (82) dryline days where a dryline was92

present at 1800 UTC. Rapid Update Cycle (RUC) data was obtained for drylines occurring before93

May 2012. The model was replaced by the Rapid Refresh (RAP) in 2012, therefore RAP data was94

obtained for the remainder of the period.95

Data were obtained at the nearest 1◦ interval for all variables available within each model anal-96

ysis. This horizontal grid-spacing was chosen to allow for changes in resolution of the model data97

within the period of study. The RUC upgraded from a horizontal grid-spacing of 20 km to 1398

km in 2007, therefore using fixed points was preferred to obtaining data from all grid points. For99

each location, a value was obtained for every available variable at 1800 UTC on all dryline days,100
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excluding variables which were not present in all RUC and RAP analyses. Using the remaining101

model data from each dryline day, and the knowledge of whether or not that dryline produced con-102

vection, a gradient boosting model was trained to predict whether a dryline would produce deep,103

moist convection.104

b. Gradient boosting model105

Gradient boosting is an ensemble-based method that combines many decision trees to produce an106

improved model. Individual decision trees are weak learners, often unable to adequately separate107

and classify data. However, gradient boosting sequentially adds these weak learners to create108

an ensemble of trees, improving the model with each iteration. A comprehensive description of109

gradient boosting is provided by Natekin and Knoll (2013).110

Each tree is constructed to predict an output category based on a set of input variables. At the111

root of the tree, the data is split by finding the variable and threshold value that produces the most112

information gain, obtained by calculating the entropy of the data before and after the split is made.113

This process is then repeated for the branches created from the original split. The splitting process114

continues in an iterative fashion, typically until a predetermined type of tree is reached.115

After each tree is constructed, predictions are made for each sample of data using the class116

probabilities from all the leaves in the ensemble of trees. A cost function is then calculated for117

the residuals of the predictions and the known outcomes. The cost function used is the log loss118

function, which punishes confident incorrect predictions more than it rewards confident correct119

predictions. At each iteration, a decision tree is fit to the negative gradients of the cost function120

from the previous iteration. The contribution of each tree to the ensemble is scaled by the learning121

rate, a parameter that shrinks the contribution of each tree and slows the rate of convergence to a122

solution. Gradient boosting can also be considered to follow the process outlined below:123
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1. Create an initial decision tree using observed categories124

2. Calculate the error of the predictions of the initial tree125

3. Adjust the predictions via gradient descent126

4. Add the new tree to the ensemble127

5. Create a new set of predictions from the expanded ensemble and calculate the errors128

6. Construct a new tree129

7. Adjust the predictions via gradient descent130

8. Add the new tree to the ensemble131

9. Repeat steps 5 to 8 until a predetermined number of trees have been created132

A gradient boosting model was trained using RUC and RAP data obtained for 205 dryline days133

using the Python package scikit-learn (Pedregosa et al. 2011). Although there were 329 dryline134

days within the period of study, to maintain a consistent dataset, 89 days where a dryline was135

not present at 1800 UTC were excluded. The number of drylines was reduced further by missing136

data in the RUC and RAP archives. No 1800 UTC analyses were available for 11 days. Using137

the remaining 205 days of data, each of the 1◦ x 1◦ locations was treated independently, with a138

gradient boosting model trained on data acquired from each location, and predictions only made139

for that location.140

The choice of metric to measure the skill of classification predictions is a topic of much dis-141

cussion (e.g. Doswell 2004; Roebber 2009). If the event is rare or has dire consequences, false142

positives may be acceptable, hence thresholds are often used that increase the probability of detec-143

tion. If a missed event is unacceptable, a model will benefit from being tuned to maximize recall,144

defined as TP/(TP+FN) where TP and FN stand for true positives and false negatives respectively.145
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Whereas if false positives are unacceptable, it is typical to maximize the precision, defined as146

TP/(TP+FP). However, increasing the probability of detection is also likely to increase the number147

of false positives (e.g. Brooks 2004).148

Dryline convection is not rare. Approximately 60% of drylines identified in chapter 2 produced149

deep, moist convection. It could be argued that a high false alarm rate is acceptable because deep,150

moist convection can produce severe weather. However, not all deep, moist convection produces151

severe weather. We choose not to make a determination whether false positives or false negatives152

have greater cost with regards to dryline convection. We elect to tune the model by using the153

harmonic mean of precision or recall, the F1 score (Chinchor 1992), because it punishes large154

differences between them. The F1 score is defined as 2 x (precision x recall) / (precision + recall).155

3. Parameter tuning156

Maximizing the forecast skill can be achieved in a variety of ways because the scikit-learn157

package provides many different parameters which can be modified. The choice of values of these158

parameters is somewhat dependent on the goals of the project. For instance, factors such as the159

speed of training, the size of the dataset and the independence of variables may all influence the160

degree of complexity of the model implemented. Complex trees may produce higher skill, but161

can be computationally expensive and may also be prone to overfitting. There is no one “correct”162

method of implementing any machine learning technique, and the performance of the model is163

affected by variations in parameters to different degrees. Therefore, implementing a system of164

parameter tuning was deemed appropriate.165

The selection of parameters to use in the gradient boosting classifier was an iterative process.166

The F1 score was computed for training and test data at 20 randomly selected locations. The167

performance of the model was optimized by varying one parameter at a time, while the other168
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parameters remained unchanged. Values were selected after examining how the model performed169

with training and test data (Fig. 1). The value at which the test score peaks was applied at the170

next iteration, when a different variable was examined. For example, in Fig. 1a, the test score is171

maximized using 60 trees. At that value, the training score is no longer increasing, therefore the172

model would not benefit from a further increase in the number of trees. Therefore, 60 trees were173

used for the remaining iterations.174

Consideration of both the training and test scores in tandem is important because a high training175

score does not guarantee a well-trained model. A training performance much greater than test176

result can often be a sign of overfitting. Overfitting can occur as a result of a model training on177

noise from the training data and applying it too generally (Dietterich 1995), a common problem178

when dealing with a small dataset. Two techniques were used to avoid overfitting the dryline data:179

cross-validation and regularization.180

Cross-validation (Stone 1974; Geisser 1975) is a technique that repeatedly holds out a different181

part of the dataset for testing at each iteration while training on the remaining data. A benefit182

of cross-validation is that it avoids the problem of choosing an unrepresentative sample and can183

increase the average performance of a model (Schaffer 1993b). K-fold cross validation is a tech-184

nique that divides the dataset into k segments, with each segment being held out as test data in185

turn. A 5-fold stratified technique was applied to data from each location. Stratification attempts186

to preserve the proportions of each category in the training and test samples. The cross-validation187

process was performed 20 times, with the data resampled on each of the 20 occasions.188

To test if the gradient boosting model was overfitting the dryline data, learning curves were189

plotted for 50 randomly chosen locations (Fig. 2). Learning curves show how the performance of190

the model on training and test data varies with the size of the sample. If the training performance191

does not increase with sample size, or is still increasing even at the largest sample size, it may192
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indicate the model is failing to learn enough information from the training data. This failure193

is known as underfitting. Conversely, a model may be overfitting if the model learns too much194

from noise in the training data, resulting in a training performance much higher than the test195

performance.196

Figure 2a shows learning curves after the iterative parameter-tuning process, and provides an197

example of overfitting. The model performs relatively well on the training data, but much worse198

on test data. This overfitting was reduced using regularization; the simplification of a model. In199

the case of gradient boosting, this is typically achieved by reducing the learning rate, or reducing200

the complexity of the trees used. Varying the number of trees and the learning rate are the main201

methods of regularization, however, there are a number of tree attributes that can also affect the202

performance of the model. Other methods of reducing overfitting include, but are not limited203

to, reducing the depth of trees used in the ensemble, reducing the number of features randomly204

selected before making a splitting decision, and subsampling data before creating each tree.205

The parameters used to produce the learning curves in Fig. 2a were as follows: learning rate =206

0.1, number of trees = 60, maximum tree depth = 2 layers below the root, maximum features before207

choosing a split = 6, and subsampling = 90%. The overfitting observed in Fig. 2a was eradicated208

by reducing the learning rate to 0.01 (Fig. 2b). The updated parameters were then applied to data209

acquired from within the vicinity of the dryline to test the predictive ability of gradient boosting210

and identify important variables in the classification process.211

4. Dryline-relative domain212

Fair comparison of convective and non-convective dryline using machine learning requires care-213

ful consideration of which locations from which to extract data. Convective drylines provide a214

reasonable option for choice of location from which to obtain data: the location of first convection215
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initiation. But what location should be chosen for non-convective dryline days? Days with no con-216

vection initiation have no obvious point of reference. One possible approach would be to select a217

fixed location for both convective and non-convective days. However, a weakness of this approach218

is caused by day-to-day variations in dryline position. A fixed location may sample from ahead219

of the dryline in some cases, but behind it in others. In this scenario a comparison of small-scale220

dryline variations would be futile.221

It seems reasonable to expect that fair comparison of drylines requires some sort of commonality222

with regards to the dryline position. Fixed locations struggle to achieve this characteristic, but223

using locations that are fixed relative to the dryline location offers an alternative approach. Data224

were obtained from locations relative to a location along the dryline at 1800 UTC, extracted from225

Weather Prediction Center analyses.226

Dryline lengths ranged between approximately 100km and 1500km, so to ensure all drylines are227

included in analysis and to allow fair comparison, it seemed prudent to choose either the northern228

or southern end of the dryline. The northern end of the dryline often intersects a frontal boundary229

and can be an area of enhanced convergence. Therefore it is of great interest when considering230

convection initiation. The reference point chosen was the northernmost extent of the dryline,231

herein referred to as the dryline origin. Data were obtained at 0.2◦ intervals, extending 3◦ north,232

south, east and west of the dryline origin, creating a 31 x 31 square.233

a. Forecast skill234

At each point, a gradient boosting model was trained and tested on the data obtained from that235

location. At each point, four forecast metrics were calculated: the F1 score, precision, recall,236

and the accuracy, defined as the proportion of drylines that were correctly categorized (Fig. 3).237

The values in Fig. 3 represent the skill of predictions of whether dryline convection would occur238
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anywhere along the dryline, given data obtained from each location. For example, an accuracy of239

0.650 was produced by using 229 samples of data only obtained from point X.240

The F1 score ranged between 0.774 in areas well southwest of the dryline to 0.795 east of241

the dryline origin. The region with best skill was between 1◦ and 2◦ east of the dryline origin,242

at around 0◦ relative latitude. The environment east of the dryline is important in determining243

whether incipient convection can intensify as it moves east, thus the region of higher skill east of244

the origin is not surprising.245

Regions with highest F1 score were collocated with regions of higher precision, lower recall,246

and higher accuracy (Fig. 3b,c,d). The higher precision implies that a higher proportion of drylines247

labelled as convective are correct using data from these areas. However, the lower recall suggests248

that in these locations thresholds are used which lower the probability of detection of convective249

drylines. In general, recall is high over the whole domain, with no values lower then 0.970. The250

model is very effective at detecting convective drylines, but the large difference between recall and251

accuracy suggests that the high probability of detection comes at a cost. The model appears to be252

labelling too many drylines as convective, and labels some non-convective drylines incorrectly.253

b. Variable importance254

Highest F1 scores are observed east of the origin, but which variables were most important in255

making those predictions? Figure 4 shows the variable with highest feature importance for each256

location. The feature importance is a measure of how important a variable is in the decision trees257

created, calculated by averaging the information gain produced by the variable across all trees.258

Values range from 0 to 1, with high values representing variables that have high importance.259

Relative humidity at 675 hPa was most frequently the most important feature (n=67). A cluster260

of locations in the east-central portion of the domain featured 675-hPa relative humidity as the261
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best variable. In general, mid-level moisture appears to be important in determining whether262

dryline convection will occur. In addition to relative humidity at 675 hPa, there is also an area263

along and immediately east of the dryline where 825-hPa relative humidity is the leading variable.264

Furthermore, relative humidity at 650 and 725 hPa also appear in the top ten variables by number265

of locations.266

The surface lifted index (herein lifted index) was also an important variable east of the dryline.267

The lifted index is defined as the difference between the environmental temperature at 500 hPa268

and the theoretical temperature of an air parcel lifted dry adiabatically from the surface until it269

reaches saturation and then moist adiabatically up to 500hPa. The lifted index was the leading270

variable in a region around a relative latitude of -0.5, and relative longitude 1 (-0.5, 1) and (-2,271

2). The presence of the lifted index as a leading variable east of the dryline is most likely because272

it is a measure of instability, a necessary ingredient for deep, moist convection. However, west273

of the dryline instability is usually minimal, meaning distinguishing between convective and non-274

convective days is more difficult using data from locations there.275

Overall, it appears that feature importance has some regional dependence. Several distinct areas276

are observed where a particular variable performs best. For instance, northwest of the dryline, at277

around (1, -2.5), there is a an area where 125-hPa temperature is the leading variable. Although278

675-hPa relative humidity and the lifted index are measures of moisture and instability, it is not279

immediately obvious how 125-hPa temperature can influence the likelihood of convection along280

the dryline. Over the Great Plains, 125-hPa would typically be in the lower stratosphere. We281

suggest that the 125-hPa temperature may be a proxy for the height of the tropopause, and the282

strength of upper-level troughing. The passage of short-wave troughs is associated with stronger283

drylines (Schultz et al. 2007), which may increase the likelihood of convection.284

14



Another prominent variable that does not appear to relate to the three ingredients of deep, moist285

convection is the v-component of the wind at 400 hPa. It is the leading variable in a region centred286

around (2, 1). It is unclear as to why this variable may be a useful in distinguishing between287

convective and non-convective drylines. However, it is likely that its appearance as a leading288

variable is also related to troughing. The v-component of the wind at 400 hPa may be an indicator289

of the amplification of the upper-level flow.290

Although the v-component of the wind at 400 hPa is the leading variable in several locations,291

mainly in the northern half of the domain, how well does it perform relative to the other variables292

discussed? The feature importance was calculated at every location for four variables: 675-hPa293

relative humidity, lifted index, 125-hPa temperature and the 400-hPa v-component of the wind294

(Fig. 5). Given that 305 variables were used in the model, if each variable were equally important,295

they would all have a feature importance of 0.003. However, the four variables all have a feature296

importance in excess of 0.300 in the areas where they perform best. Each variable tends to have297

its highest values of importance collocated with where it was the lead variable overall.298

Relative humidity at 675 hPa is the leading variable at the highest number of locations, but the299

lifted index is the variable that achieves the highest values of feature importance. Around 1◦ east300

of the dryline origin the feature importance is as high as 40%. Yet, there are areas east of the301

dryline where the lifted index is disregarded by the model. In fact, all of the four variables shown302

have large areas with zero feature importance.303

How can a variable have a feature importance of 0.4 in one location and an importance of304

zero at a location only 1◦ away? Some variables have high feature importance because those305

variables were preferred when determining the best split. Other variables may also provide a large306

information gain if they were used to split the data. However, if a variable does not produce307

the best information gain, it is essentially ignored until another split is made. Hypothetically a308
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variable could be only surpassed by only one variable at each node in every tree, yet have a feature309

importance of zero. The splitting process outlined here may explain why a variable such as 675-310

hPa relative humidity leads in 67 locations, 725-hPa relative humidity in 40 locations, yet the level311

in between, 700-hPa relative humidity, only leads in 20 locations. Physically, there seems little312

reason why 700-hPa relative humidity would perform worse than the levels adjacent to it.313

Overall, gradient boosting produces highest accuracy to the east of the dryline, but the accuracy314

and feature importance show large variation over small spatial scales. Given that at lead times315

longer than a few hours the precise dryline location can be difficult to predict, how does gradient316

boosting perform when the location is not known? The following section presents the results of317

the gradient boosting model applied to fixed locations across the contiguous United States.318

5. Fixed-location domain319

Data were obtained for 1800 UTC at 1◦ x 1◦ intervals for the contiguous United States, with the320

dryline location ignored. Rapid Refresh model data is available on a 451 x 337 grid with horizontal321

grid-spacing of 13 km, However, older RUC data uses a grid of 301 x 225 with a grid-spacing of322

20 km. Because the two sets of data do not have grid points at the same geographical locations,323

data was extracted to the nearest degree of longitude and latitude. When the model contained no324

data at the requested grid point, the nearest model location was used.325

a. Forecast skill326

Figure 6 shows the forecast skill for the larger domain. In general, the F1 score of gradient327

boosting using fixed locations is similar to the score obtained using locations relative to the dryline.328

The model produces a small range of F1 scores, with a minimum of 0.774 and a maximum of329

0.788. Highest skill is observed in the northern Rockies, but there are also regions of relatively330
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high skill in the central Plains and the Lower Midwest. As was observed in the smaller domain,331

the regions of higher F1 score are collocated with higher precision and accuracy, and lower recall.332

These results provide more evidence that the model is labelling too many drylines as convective.333

b. Variable importance334

Which variables are the most important in these high scoring regions? Figure 7 shows the335

leading features using data from each location in the large domain. The u-component of the wind336

at high altitudes dominates over most of the northwestern US. More specifically, the 100-hPa and337

125-hPa u-component of the wind are the leading two variables by frequency, with 72 and 69338

locations respectively. However, there is a large gap in frequency to the third best variable. The339

100-hPa v-component of the wind is the leading variable in 37 locations, and those locations are340

widely scattered.341

The importance of the zonal wind at high altitudes may be related to the effects of lee troughing.342

Stronger westerlies across the Rockies would induce greater lee troughing, and a stronger dryline.343

High-altitude winds are also important in the central Plains and lower Midwest, but most of the344

region had a leading variable that was not among the ten best variables in the US. Figure 8 shows345

the five leading variables in a region comprising some of the central Plains and Lower Midwest.346

In this region, the leading variables are all related to the v-component of the upper-tropospheric347

jet.348

Other areas of note are the southwest, where 125-hPa temperature is a leading variable, and the349

southern Plains, where the lifted index leads in a few more scattered locations. However, Figure350

7 does not inform how well these variables perform in other locations. Figure 9 shows the spatial351

variation in feature importance for the 100-hPa u-component of the wind, lifted index, 125-hPa352

temperature and the 225-hPa v-component of the wind. Apart from the latter variable, which did353
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not appear in the top ten leading variables over the contiguous US, the variables tended to have354

their highest importance in similar regions to where they were the leading variable. On average, the355

100-hPa u-component of the wind had higher importance than the other three variables. However,356

the highest values of feature importance are lower than those observed in the smaller domain.357

Despite these lower feature importance values, Fig. 9 shows that feature importance is strongly358

dependent on location. The lifted index has its highest values in southeast Colorado and northeast359

New Mexico, and generally performs better in the southern Plains than elsewhere. It may not be360

coincidence that the lifted index performs well near the typical dryline location, because it is a361

measure of two ingredients of deep, moist convection: moisture and instability.362

Meanwhile, 125-hPa temperature has highest values over a larger area than the lifted index, ex-363

tending from Wyoming down to the Mexico border Fig. 9c. This variable may be an indicator of364

the strength of troughing encroaching into the Plains. Not only is troughing associated with in-365

creased dryline convergence, but cyclonic vorticity advection downstream of a trough is associated366

with ascent and cooling, helping to reduce convective inhibition.367

6. Discussion368

This study aimed to answer two main questions. Firstly, is gradient boosting a viable method369

for predicting dryline convection? And secondly, which variables are the best discriminators of370

whether a dryline will produce convection?371

a. The viability of gradient boosting372

The forecast skill of gradient boosting was primarily measured with the F1 score, which was373

similar in magnitude and range in both domains, falling between 0.77 and 0.79. These scores374

generally occurred as a result of high recall, but much lower precision. Values of recall never fell375
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below 0.96, implying the method applied here has a high probability of detection of convective376

drylines. However, precision did not exceed 0.65 in any location, even close to the dryline. The377

model appears to use thresholds that enable a high probability of detection of convective events as378

the expense of a large number of false positives. These false positives explain the modest accuracy379

of around 0.64.380

Although peak accuracy values were slightly higher in the small domain, in general the accu-381

racy was similar for both domains. This result suggests that gradient boosting does not suffer in382

performance when the dryline position is not provided. However, despite the potential benefit of383

not requiring the dryline location to make a forecast, the accuracy would need to be increased for384

the method to be used to directly forecast dryline convection. Predictive accuracy did not exceed385

0.675, even in areas near where a dryline would typically be located.386

Why might the methods applied in this paper have such a modest accuracy? The answer could387

be split into two categories. Firstly, it may be possible that no model will ever be able to predict388

dryline convection with high accuracy because the problem is too complex. Alternatively, the389

methods used here were simply inadequate to produce accurate predictions of dryline convection.390

If it is possible to accurately predict dryline convection, the most likely explanation for why391

gradient boosting does not perform better is that decision trees are too simplistic to model poten-392

tially complex relationships between dependent variables. This weakness is exacerbated when the393

model can only be trained on a small dataset. However, it is possible that despite parameter tuning,394

there is still some combination of parameters that could yield a higher performance than obtained395

here.396
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b. Variable importance397

Although gradient boosting does not appear to be a viable technique to accurately forecast dry-398

line convection, it may provide some insight into the variables that may best determine whether399

dryline convection will occur. A strong signal exists that there is a regional variation in variables400

important for predicting dryline convection. However, the high number of false positives suggests401

that although these variables may be effective in detecting convective drylines, they may not be402

good at distinguishing between convective and non-convective drylines.403

Despite this weakness, analysis of the importance of individual variables yields interesting re-404

sults. East of the dryline, mid-level relative humidity and the lifted index were leading variables.405

However, variables seemingly unrelated to the ingredients of deep, moist convection were also406

prominent. An example is provided by the 125-hPa temperature, which was the leading variable407

in a region northwest of the dryline origin.408

The temperature at 125-hPa also appears in the top ten variables in the large domain. It is409

the leading variable in a few scattered locations in the southwest US. We propose that this vari-410

able is related to the height of the tropopause, a proxy for the strength of upper-level troughing.411

Synoptic-scale features are also proposed as an explanation for perhaps the most striking result412

in the analysis of the large domain. The leading two variables by number of locations are the413

u-component of the wind at 100 and 125 hPa respectively. These two variables dominate in the414

central Rockies. We suggest that the magnitude of flow across the Rockies is important because415

stronger flow promotes greater lee troughing, and strengthens the dryline.416

However, despite our speculation about why these variables have highest feature importance, we417

are unable to determine the nature of the relationships between these variables and the likelihood418

of convection. Gradient boosting does not allow the opportunity to examine the thresholds used419
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when making splits because multiple trees are used and any given variable may be used on more420

than one occasion. Therefore, the significance of these results remains unclear. We recommend421

that similar experiments should be performed with another tree-based classifier that produces a422

measure of feature importance, random forests. Random forests could be used to answer several423

questions. Firstly, can higher forecast skill be obtained using a method other than gradient boost-424

ing? Secondly, does predictive accuracy of dryline convection have an upper limit? And finally,425

will the variables with highest feature importance in this study also be found using random forests?426

7. Conclusion427

A dataset of ten years of drylines within the southern Great Plains was used as “truth” to in-428

vestigate whether machine learning can be used to predict whether a dryline will produce deep,429

moist convection. A gradient boosting model was tuned and tested using RAP and RUC data,430

initially obtained from locations relative to the dryline location, then from fixed locations across431

the contiguous United States. The model was tuned to maximize the harmonic mean of precision432

and recall, the F1 score. Forecast performance was similar across both domains, suggesting that433

knowledge of the dryline location has little effect on the performance of the model. F1 scores434

ranged from 0.774 to 0.795, a result of high recall (mean = 0.993), but lower precision (mean =435

0.638). The model has a high probability of detection of convective drylines, but at the expense436

of a high false alarm rate. These results suggest that gradient boosting is not viable as a tool for437

directly predicting dryline convection.438

Analysis of feature importance revealed a spatial variation in the performance of certain vari-439

ables. In the dryline-relative domain, lifted index had the highest values of feature importance,440

mostly east of the dryline. However, 675-hPa relative humidity was the leading variable in the441

most locations. Regional variations in feature importance were also observed in the larger domain.442
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The 100 and 125-hPa u-component of the wind were leading variables at the highest number of443

locations, and also had the highest values of feature importance. The u-component of the wind at444

high altitude was the best variable in the northwest US. The prominence of these variables may445

be related to the effects of lee troughing. Stronger flow across the Rockies would likely lead to446

stronger lee troughing, and dryline intensification. However, gradient boosting is unable to reveal447

the nature of the relationships between variables and the likelihood of dryline convection.448

The gradient boosting method applied in this study demonstrates that machine learning tech-449

niques have potential as a method for understanding dryline convection. However, future work450

would benefit from a larger dataset for two main reasons. Firstly, to explore whether the forecast451

skill of gradient boosting would be improved given more training data, and secondly, to reduce452

the possibility of overfitting. The model was trained on a small dataset and is susceptible to noise,453

despite the efforts to minimize overfitting during parameter tuning.454

It is possible that alternative machine learning techniques such as support vector machines or455

neural networks may yield higher accuracy than gradient boosting. However, these techniques456

would suffer from a lack of interpretability of result with regards to feature importance in compar-457

ison with tree-based methods. Therein lies a constant dilemma of machine learning applications. A458

similar study that uses random forests rather than gradient boosting would help determine whether459

machine learning has potential as a forecasting tool. Furthermore, if similar variables were found460

to be important it would motivate the need for further investigation into large-scale influence on461

dryline convection.462
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FIG. 1. The performance of the gradient boosting model when varying (a) the number of trees, (b) the

maximum depth of trees, (c) the maximum number of features considered when making a split, and (d) the size

of subsample of the data. 60 trees were used in the remaining tests following (a), a maximum tree depth of 2

was carried forward after (b), and maximum features were set at 6 following (c). In addition to these values, a

subsample value of 0.95 was applied for all modeling thereafter.
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FIG. 2. Learning curves (a) before and (b) after regularization. The learning curves in (a) were created using

60 trees of maximum depth 2, with a learning rate of 0.1 and subsampling 90% of the data. The learning curves

in (b) were created using the same parameters, except for a learning rate of 0.01.

562

563

564

28



FIG. 3. Forecast skill metrics (a) F1 score, (b) precision, (c) recall and (d) accuracy using data from locations

relative to the northern end of the dryline. The dryline location is indicated by the brown line. The scores for

each location are calculated by using data from only that location.
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FIG. 4. The variable with highest feature importance using data from locations relative to the northern end of

the dryline. The dryline is indicated by the dark brown line. The top ten variables by frequency are shown.
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FIG. 5. Feature importance for (a) 675-hPa relative humidity, (b) surface lifted index, (c) 125-hPa temperature

and (d) the 400-hPa v-component of the wind. The importance for each location is calculated by using data from

only that location.
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FIG. 6. Forecast skill metrics (a) F1 score, (b) precision, (c) recall and (d) accuracy using data from across

the contiguous United States. The scores for each location are calculated by using data from only that location.
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FIG. 7. The variable with highest feature importance using data from locations across the contiguous United

States. The top ten variables by frequency are shown.
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FIG. 8. The variable with highest feature importance using data from locations across across a region of the

eastern Great Plains and Lower Midwest. The top five variables by frequency are shown.
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FIG. 9. Feature importance for (a) 100-hPa u-component of the wind, (b) surface lifted index, (c) 125-hPa

temperature and (d) the v-component of the wind at the level of maximum. The importance for each location is

calculated by using data from only that location.
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Chapter 5

Conclusions

The primary goal of this thesis was to answer the following question. Are there

large-scale differences between drylines that produce deep, moist convection and

those that do not? Two different, but complementary approaches were used to

achieve this objective. Firstly, a climatology of dryline convection was constructed

to enable the creation of synoptic composite analyses of dryline events. The

second approach built on the first, using the dryline convection dataset to answer

two questions. Can machine learning be used to predict dryline convection? And

what variables are best at determining whether dryline convection occurs? The

primary conclusions of applying these two methods and potential avenues for

further research are discussed below.

5.1 Conclusions and Future Work

5.1.1 Paper 1: A Synoptic Climatology of Dryline Con-

vection in the Southern Great Plains

A dataset of drylines within a region of the southern Great Plains was constructed

using ten years of WPC analyses for the months of April, May and June. Doppler

radar, visible and infrared satellite imagery were used to identify convective dry-

lines, where deep, moist convection was deemed to have been associated with

the dryline circulation. Approximately 60% of drylines were convective, with

initiation most frequently occurring between 2000 and 2100 UTC.

A relationship was found between the El Nino Southern Oscillation (ENSO)

and the number of dryline days several months later. The Oceanic Nino Index
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(ONI) is a running three-month average of sea surface temperature in the Nino 3.4

region compared to the climatological average. There was a negative correlation (r

= -0.635, p = 0.049) between the July-August-September ONI and the number of

dryline days the following spring. As the time lag between the analyzed ONI and

dryline season was reduced, the correlation became weaker. Conversely, there

was a positive correlation between the the ONI in summer and early autumn

and the proportion of convective drylines the following year. This correlation

was strongest for June-July-August (r = 0.810, p = 0.004). These results were

not deemed to fit with the overall theme of Paper 1, so were not included in

the published article. However, future work could investigate these relationships

further. For instance, ENSO is thought to influence the position and amplification

of the upper-tropospheric jet stream. Does the position of the jet significantly

affect the number of drylines in any given spring?

Using reanalysis data from 1800 UTC, synoptic composites were created of 179

convective and 104 non-convective (null) dryline days identified. Both composites

feature an upper-level long-wave trough to the west of the Rockies and a ridge

extending north through the east-north-central states. At the surface, the com-

posites featured a broad surface cyclone over western Texas and southerly flow

over the south-central states. However, the composites exhibit significant differ-

ences in fields of 500-hPa geopotential height, 700 and 800-hPa specific humidity,

and CAPE. The convective composite is more moist at low-levels, and has higher

CAPE than the null composite. These differences develop over several days pre-

ceding a dryline event. Convective drylines featured more amplified upper-level

flow, associated with a deeper trough in the western US and a stronger down-

stream ridge than non-convective drylines in the three days preceding a dryline

event. Greater poleward moisture transport occurs in stronger southerly flow,

leading to higher values of low-level moisture and CAPE in the convective com-

posite. The likely effect of higher CAPE is higher updraft velocity, meaning

parcels are more likely to overcome the inversion, and deep, moist convection

can sustain if they do so, because stronger updrafts are less affected by dry-air

entrainment.

The fact that significant differences are observed in moisture and instability

over the Great Plains three days before a dryline event emphasizes that a singular

focus on the mesoscale or convective scale is not sufficient to predict dryline con-

vection. However, some of the effects of synoptic-scale forcing were not observed
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in the composites. Despite the fact that convective drylines were associated with

stronger troughing and greater forcing for ascent, no significant differences were

found in mid-level temperature over the dryline region. Greater ascent would

also be expected to result in lower inhibition, but no significant differences were

observed between the composites.

Perhaps the biggest unanswered question with regards to synoptic-scale pro-

cesses is whether convective drylines have stronger convergence. Schultz et al.

(2007) identified a relationship between short-wave troughing and dryline conflu-

ence. Given the increased troughing in the convective composite, it follows that

the convective composites should have stronger dryline convergence. However,

it was not possible to establish the strength of the dryline using the techniques

employed when creating the composites. The width of the dryline circulation is

usually smaller than the NARR is capable of resolving. Furthermore, both con-

vergence and vertical motion fields are noisy, even when there is a well-defined

dryline. Future work could investigate the relationship between dryline conver-

gence and the likelihood of convection by identifying drylines using model or re-

analysis data, rather than the WPC analyses used here. Although reanalysis data

were obtained to create composites, differences in the dryline location between

the surface analyses and NARR data meant that measuring dryline convergence

was subject to large errors.

Another benefit of an alternative identification method is the potential to

increase the size of the dryline dataset. The WPC surface analysis archive is

incomplete before 2006. An objective method of dryline identification such as

used by Hoch and Markowski (2005) could avoid the restriction of sample size.

They created a 30-year climatology of drylines, using Barnes interpolation to

account for variations in the density of surface observations. Recent advances in

dryline identification, such as the use of machine learning (Clark et al. 2015) mean

that using model analyses or reanalyses data to identify drylines are becoming an

increasingly viable option. However, one of the difficulties of using an objective

method to identify drylines is the inability to distinguish between the dryline and

intersecting boundaries such as fronts and convective outflow (Clark et al. 2015).

The ability to correctly label drylines justifies the choice to manually identify

them, despite the fact that it is labour intensive.

Objective identification techniques are also a possibility for identifying dryline

convection. The process of determining whether radar echoes exceed the required
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threshold could be automated, saving time and enabling a larger dataset to be

examined more quickly. An alternative approach would be to document lightning

strikes. However, the dryline convection problem would have to be re-framed,

because on occasion deep, moist convection can occur without lightning.

After identifying convective drylines, the variables for which synoptic compos-

ites were created relied upon current knowledge of deep, moist convection. Com-

posites were produced for variables thought to be representative of the ingredients

of deep, moist convection. However, the composites were not comprehensive. It

is possible that variables that were not examined also differ between convective

and non-convective drylines. This potential drawback was a motivating factor in

trialing a new method of investigating dryline convection, machine learning.

5.1.2 Paper 2: Using Machine Learning to Predict Dry-

line Convection

The creation of the climatology provided an opportunity to use an alternative

approach to identifying key variables. A machine learning algorithm was trained

and tested using the newly created dryline dataset, and short-range model anal-

yses. An important benefit of this approach was to be able to examine variables

in an objective manner, and provide some measure of the importance of each

variable in terms of how useful it is in distinguishing between convective and

non-convective drylines.

A gradient boosting model was trained using RAP and RUC analyses to

achieve two objectives. Firstly, to establish the skill of gradient boosting in

predicting whether a dryline will produce deep, moist convection. Secondly, to

identify the variables that are most important when making those predictions.

The gradient boosting method had a high probability of detection of convective

drylines (mean recall = 0.993). However, the high rate of detection occurred be-

cause the model labelled too many drylines as convective. As a result, the model

was not good at predicting non-convective drylines, which resulted in relatively

low precision (mean = 0.638) and accuracy (mean = 0.638). The modest values

of precision and accuracy mean that the gradient boosting model is not viable as

a method of directly forecasting dryline convection.

There are several potential reasons why gradient boosting did not have high

forecast skill. The most likely explanations are that either the parameters used
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were not optimal, the dataset was not large enough, or a combination of the two.

Parameter tuning attempted to maximize the harmonic mean of precision and

recall, but initially overfit the training data. The parameters were adjusted to

reduce overfitting, but as a consequence reduced performance. Future work would

benefit from using a larger sample of drylines to increase the signal-to-noise ratio,

and provide more data for training. It could then be determined whether more

training data would improve forecast skill, and what is the upper limit to the

ability of gradient boosting.

Despite the modest accuracy of gradient boosting, examination of variable

importance revealed large spatial variations, and produced many results that

were consistent with the synoptic composites. The importance of moisture and

instability peaked east of the dryline, although in the case of instability, CAPE

was outperformed by another measure of instability, the lifted index. Over the

larger, more coarse domain of the contiguous US, the u-component of the wind at

100-hPa and 125-hPa were the two variables that had highest feature importance

at the greatest number of locations. Most of these locations were concentrated

in a region over the central Rockies. The u-component of the wind in this region

is likely important because the strength of flow across the Rockies regulates the

strength of lee troughing, and hence dryline confluence. Whether a stronger

dryline is more likely to produce deep, moist convection is yet to be confirmed.

The importance of the large-scale pattern was also demonstrated by the 150-

hPa temperature and the v-component of the wind around the level of the upper-

tropospheric jet. The former was the leading variable in a cluster of locations in

the southwest US, the latter in the eastern Great Plains and lower Midwest. The

temperature at 125-hPa is related to the height of the tropopause, a proxy for the

strength of upper-level troughing. However, the importance of the v-component

of the wind at high altitude indicates that not only is the strength of the jet

important, but also the amplification of the flow.

It is important to note that feature importance is a measure of how useful a

variable was when making predictions, but not necessarily how good a variable

was in distinguishing between convective and non-convective drylines. This is an

especially pertinent point given the large differences observed between recall and

precision. The leading variables may only be good at detecting convective dry-

lines, rather than distinguishing between them. However, the importance of the

large-scale pattern is consistent with the results of the synoptic compositing, and
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does not contradict any current knowledge of atmospheric processes. Nonethe-

less, the modest accuracy of gradient boosting results in lower confidence in the

conclusions made than would otherwise be the case.

Although this thesis has identified key differences between drylines that pro-

duce deep, moist convection and those that do not, the question arises as to how

these results can be used to help forecasters? Is there a way to identify in ad-

vance if a dryline will produce deep, moist convection? Two alternate paths are

offered to try and answer this question. Firstly, the role of synoptic-scale forc-

ing could be investigated by way of testing the sensitivity of dryline convection

to the strength of an upper-level trough. This could be achieved by performing

model simulations of a convective dryline. The second path would attempt to

improve the machine learning performance by accounting for the lack of variable

independence. Data could be reduced by principal component analysis. Removal

of variables that contribute similar information to the model would increase the

signal-to-noise ratio of the training data, and potentially increase model perfor-

mance. The model performance might also be enhanced by the inclusion of data

not typically produced by mesoscale weather models, such as soil moisture or

vegetation. Following one, or both of these research paths is recommended to

improve predictability of deep, moist convection along the dryline.
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Appendix A

RAP Model Output Inventory

Name, Level Type, Height

1, Geopotential Height, isobaricInhPa, 1000

2, Geopotential Height, isobaricInhPa, 975

3, Geopotential Height, isobaricInhPa, 950

4, Geopotential Height, isobaricInhPa, 925

5, Geopotential Height, isobaricInhPa, 900

6, Geopotential Height, isobaricInhPa, 875

7, Geopotential Height, isobaricInhPa, 850

8, Geopotential Height, isobaricInhPa, 825

9, Geopotential Height, isobaricInhPa, 800

10, Geopotential Height, isobaricInhPa, 775

11, Geopotential Height, isobaricInhPa, 750

12, Geopotential Height, isobaricInhPa, 725

13, Geopotential Height, isobaricInhPa, 700

14, Geopotential Height, isobaricInhPa, 675

15, Geopotential Height, isobaricInhPa, 650

16, Geopotential Height, isobaricInhPa, 625

17, Geopotential Height, isobaricInhPa, 600

18, Geopotential Height, isobaricInhPa, 575

19, Geopotential Height, isobaricInhPa, 550

20, Geopotential Height, isobaricInhPa, 525

21, Geopotential Height, isobaricInhPa, 500

22, Geopotential Height, isobaricInhPa, 475

23, Geopotential Height, isobaricInhPa, 450

24, Geopotential Height, isobaricInhPa, 425
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25, Geopotential Height, isobaricInhPa, 400

26, Geopotential Height, isobaricInhPa, 375

27, Geopotential Height, isobaricInhPa, 350

28, Geopotential Height, isobaricInhPa, 325

29, Geopotential Height, isobaricInhPa, 300

30, Geopotential Height, isobaricInhPa, 275

31, Geopotential Height, isobaricInhPa, 250

32, Geopotential Height, isobaricInhPa, 225

33, Geopotential Height, isobaricInhPa, 200

34, Geopotential Height, isobaricInhPa, 175

35, Geopotential Height, isobaricInhPa, 150

36, Geopotential Height, isobaricInhPa, 125

37, Geopotential Height, isobaricInhPa, 100

38, Temperature, isobaricInhPa, 1000

39, Temperature, isobaricInhPa, 975

40, Temperature, isobaricInhPa, 950

41, Temperature, isobaricInhPa, 925

42, Temperature, isobaricInhPa, 900

43, Temperature, isobaricInhPa, 875

44, Temperature, isobaricInhPa, 850

45, Temperature, isobaricInhPa, 825

46, Temperature, isobaricInhPa, 800

47, Temperature, isobaricInhPa, 775

48, Temperature, isobaricInhPa, 750

49, Temperature, isobaricInhPa, 725

50, Temperature, isobaricInhPa, 700

51, Temperature, isobaricInhPa, 675

52, Temperature, isobaricInhPa, 650

53, Temperature, isobaricInhPa, 625

54, Temperature, isobaricInhPa, 600

55, Temperature, isobaricInhPa, 575

56, Temperature, isobaricInhPa, 550

57, Temperature, isobaricInhPa, 525

58, Temperature, isobaricInhPa, 500

59, Temperature, isobaricInhPa, 475

60, Temperature, isobaricInhPa, 450

61, Temperature, isobaricInhPa, 425

62, Temperature, isobaricInhPa, 400
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63, Temperature, isobaricInhPa, 375

64, Temperature, isobaricInhPa, 350

65, Temperature, isobaricInhPa, 325

66, Temperature, isobaricInhPa, 300

67, Temperature, isobaricInhPa, 275

68, Temperature, isobaricInhPa, 250

69, Temperature, isobaricInhPa, 225

70, Temperature, isobaricInhPa, 200

71, Temperature, isobaricInhPa, 175

72, Temperature, isobaricInhPa, 150

73, Temperature, isobaricInhPa, 125

74, Temperature, isobaricInhPa, 100

75, Relative humidity, isobaricInhPa, 1000

76, Relative humidity, isobaricInhPa, 975

77, Relative humidity, isobaricInhPa, 950

78, Relative humidity, isobaricInhPa, 925

79, Relative humidity, isobaricInhPa, 900

80, Relative humidity, isobaricInhPa, 875

81, Relative humidity, isobaricInhPa, 850

82, Relative humidity, isobaricInhPa, 825

83, Relative humidity, isobaricInhPa, 800

84, Relative humidity, isobaricInhPa, 775

85, Relative humidity, isobaricInhPa, 750

86, Relative humidity, isobaricInhPa, 725

87, Relative humidity, isobaricInhPa, 700

88, Relative humidity, isobaricInhPa, 675

89, Relative humidity, isobaricInhPa, 650

90, Relative humidity, isobaricInhPa, 625

91, Relative humidity, isobaricInhPa, 600

92, Relative humidity, isobaricInhPa, 575

93, Relative humidity, isobaricInhPa, 550

94, Relative humidity, isobaricInhPa, 525

95, Relative humidity, isobaricInhPa, 500

96, Relative humidity, isobaricInhPa, 475

97, Relative humidity, isobaricInhPa, 450

98, Relative humidity, isobaricInhPa, 425

99, Relative humidity, isobaricInhPa, 400

100, Relative humidity, isobaricInhPa, 375
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101, Relative humidity, isobaricInhPa, 350

102, Relative humidity, isobaricInhPa, 325

103, Relative humidity, isobaricInhPa, 300

104, Relative humidity, isobaricInhPa, 275

105, Relative humidity, isobaricInhPa, 250

106, Relative humidity, isobaricInhPa, 225

107, Relative humidity, isobaricInhPa, 200

108, Relative humidity, isobaricInhPa, 175

109, Relative humidity, isobaricInhPa, 150

110, Relative humidity, isobaricInhPa, 125

111, Relative humidity, isobaricInhPa, 100

112, U component of wind, isobaricInhPa, 1000

113, V component of wind, isobaricInhPa, 1000

114, U component of wind, isobaricInhPa, 975

115, V component of wind, isobaricInhPa, 975

116, U component of wind, isobaricInhPa, 950

117, V component of wind, isobaricInhPa, 950

118, U component of wind, isobaricInhPa, 925

119, V component of wind, isobaricInhPa, 925

120, U component of wind, isobaricInhPa, 900

121, V component of wind, isobaricInhPa, 900

122, U component of wind, isobaricInhPa, 875

123, V component of wind, isobaricInhPa, 875

124, U component of wind, isobaricInhPa, 850

125, V component of wind, isobaricInhPa, 850

126, U component of wind, isobaricInhPa, 825

127, V component of wind, isobaricInhPa, 825

128, U component of wind, isobaricInhPa, 800

129, V component of wind, isobaricInhPa, 800

130, U component of wind, isobaricInhPa, 775

131, V component of wind, isobaricInhPa, 775

132, U component of wind, isobaricInhPa, 750

133, V component of wind, isobaricInhPa, 750

134, U component of wind, isobaricInhPa, 725

135, V component of wind, isobaricInhPa, 725

136, U component of wind, isobaricInhPa, 700

137, V component of wind, isobaricInhPa, 700

138, U component of wind, isobaricInhPa, 675
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139, V component of wind, isobaricInhPa, 675

140, U component of wind, isobaricInhPa, 650

141, V component of wind, isobaricInhPa, 650

142, U component of wind, isobaricInhPa, 625

143, V component of wind, isobaricInhPa, 625

144, U component of wind, isobaricInhPa, 600

145, V component of wind, isobaricInhPa, 600

146, U component of wind, isobaricInhPa, 575

147, V component of wind, isobaricInhPa, 575

148, U component of wind, isobaricInhPa, 550

149, V component of wind, isobaricInhPa, 550

150, U component of wind, isobaricInhPa, 525

151, V component of wind, isobaricInhPa, 525

152, U component of wind, isobaricInhPa, 500

153, V component of wind, isobaricInhPa, 500

154, U component of wind, isobaricInhPa, 475

155, V component of wind, isobaricInhPa, 475

156, U component of wind, isobaricInhPa, 450

157, V component of wind, isobaricInhPa, 450

158, U component of wind, isobaricInhPa, 425

159, V component of wind, isobaricInhPa, 425

160, U component of wind, isobaricInhPa, 400

161, V component of wind, isobaricInhPa, 400

162, U component of wind, isobaricInhPa, 375

163, V component of wind, isobaricInhPa, 375

164, U component of wind, isobaricInhPa, 350

165, V component of wind, isobaricInhPa, 350

166, U component of wind, isobaricInhPa, 325

167, V component of wind, isobaricInhPa, 325

168, U component of wind, isobaricInhPa, 300

169, V component of wind, isobaricInhPa, 300

170, U component of wind, isobaricInhPa, 275

171, V component of wind, isobaricInhPa, 275

172, U component of wind, isobaricInhPa, 250

173, V component of wind, isobaricInhPa, 250

174, U component of wind, isobaricInhPa, 225

175, V component of wind, isobaricInhPa, 225

176, U component of wind, isobaricInhPa, 200
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177, V component of wind, isobaricInhPa, 200

178, U component of wind, isobaricInhPa, 175

179, V component of wind, isobaricInhPa, 175

180, U component of wind, isobaricInhPa, 150

181, V component of wind, isobaricInhPa, 150

182, U component of wind, isobaricInhPa, 125

183, V component of wind, isobaricInhPa, 125

184, U component of wind, isobaricInhPa, 100

185, V component of wind, isobaricInhPa, 100

186, Vertical velocity, isobaricInhPa, 1000

187, Vertical velocity, isobaricInhPa, 975

188, Vertical velocity, isobaricInhPa, 950

189, Vertical velocity, isobaricInhPa, 925

190, Vertical velocity, isobaricInhPa, 900

191, Vertical velocity, isobaricInhPa, 875

192, Vertical velocity, isobaricInhPa, 850

193, Vertical velocity, isobaricInhPa, 825

194, Vertical velocity, isobaricInhPa, 800

195, Vertical velocity, isobaricInhPa, 775

196, Vertical velocity, isobaricInhPa, 750

197, Vertical velocity, isobaricInhPa, 725

198, Vertical velocity, isobaricInhPa, 700

199, Vertical velocity, isobaricInhPa, 675

200, Vertical velocity, isobaricInhPa, 650

201, Vertical velocity, isobaricInhPa, 625

202, Vertical velocity, isobaricInhPa, 600

203, Vertical velocity, isobaricInhPa, 575

204, Vertical velocity, isobaricInhPa, 550

205, Vertical velocity, isobaricInhPa, 525

206, Vertical velocity, isobaricInhPa, 500

207, Vertical velocity, isobaricInhPa, 475

208, Vertical velocity, isobaricInhPa, 450

209, Vertical velocity, isobaricInhPa, 425

210, Vertical velocity, isobaricInhPa, 400

211, Vertical velocity, isobaricInhPa, 375

212, Vertical velocity, isobaricInhPa, 350

213, Vertical velocity, isobaricInhPa, 325

214, Vertical velocity, isobaricInhPa, 300
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215, Vertical velocity, isobaricInhPa, 275

216, Vertical velocity, isobaricInhPa, 250

217, Vertical velocity, isobaricInhPa, 225

218, Vertical velocity, isobaricInhPa, 200

219, Vertical velocity, isobaricInhPa, 175

220, Vertical velocity, isobaricInhPa, 150

221, Vertical velocity, isobaricInhPa, 125

222, Vertical velocity, isobaricInhPa, 100

223, MSLP MAPS System Reduction, meanSea, 0

224, Surface pressure, surface, 0

225, Pressure tendency, surface, 0

226, Potential temperature, heightAboveGround, 2

227, 2 metre dewpoint temperature, heightAboveGround, 2

228, Dew point depression or deficit, heightAboveGround, 2

229, 10 metre U wind component, heightAboveGround, 10

230, 10 metre V wind component, heightAboveGround, 10

231, 2 metre temperature, heightAboveGround, 2

232, Specific humidity, heightAboveGround, 2

233, Pseudo-adiabatic potential temperature, surface, 0

234, Convective available potential energy, surface, 0

235, Convective inhibition, surface, 0

236, Surface lifted index, surface, 0

237, Best lifted index to 500 hPa, surface, 0

238, Large scale precipitation non-convective, surface, 0

239, Convective precipitation water, surface, 0

240, Categorical rain, surface, 0

241, Categorical freezing rain, surface, 0

242, Categorical ice pellets, surface, 0

243, Categorical snow, surface, 0

244, Water equivalent of accumulated snow depth, surface, 0

245, Storm relative helicity, surface, 0

246, Pressure, isothermZero, 0

247, Geopotential Height, isothermZero, 0

248, Relative humidity, isothermZero, 0

249, Pressure, tropopause, 0

250, Potential temperature, tropopause, 0

251, U component of wind, tropopause, 0

252, V component of wind, tropopause, 0
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253, Pressure, maxWind, 0

254, U component of wind, maxWind, 0

255, V component of wind, maxWind, 0

256, Precipitation rate, surface, 0

257, Moisture availability, surface, 0

258, Storm surface runoff, surface, 0

259, Temperature, pressureFromGroundLayer, 3000

260, Relative humidity, pressureFromGroundLayer, 3000

261, U component of wind, pressureFromGroundLayer, 3000

262, V component of wind, pressureFromGroundLayer, 3000

263, Vertical velocity, pressureFromGroundLayer, 3000

264, Temperature, pressureFromGroundLayer, 6000

265, Relative humidity, pressureFromGroundLayer, 6000

266, U component of wind, pressureFromGroundLayer, 6000

267, V component of wind, pressureFromGroundLayer, 6000

268, Vertical velocity, pressureFromGroundLayer, 6000

269, Temperature, pressureFromGroundLayer, 9000

270, Relative humidity, pressureFromGroundLayer, 9000

271, U component of wind, pressureFromGroundLayer, 9000

272, V component of wind, pressureFromGroundLayer, 9000

273, Vertical velocity, pressureFromGroundLayer, 9000

274, Temperature, pressureFromGroundLayer, 12000

275, Relative humidity, pressureFromGroundLayer, 12000

276, U component of wind, pressureFromGroundLayer, 12000

277, V component of wind, pressureFromGroundLayer, 12000

278, Vertical velocity, pressureFromGroundLayer, 12000

279, Temperature, pressureFromGroundLayer, 15000

280, Relative humidity, pressureFromGroundLayer, 15000

281, U component of wind, pressureFromGroundLayer, 15000

282, V component of wind, pressureFromGroundLayer, 15000

283, Vertical velocity, pressureFromGroundLayer, 15000

284, Temperature, pressureFromGroundLayer, 18000

285, Relative humidity, pressureFromGroundLayer, 18000

286, U component of wind, pressureFromGroundLayer, 18000

287, V component of wind, pressureFromGroundLayer, 18000

288, Vertical velocity, pressureFromGroundLayer, 18000

289, Storm relative helicity, heightAboveGroundLayer, 1000

290, Orography, surface, 0



138 APPENDIX A. RAP MODEL OUTPUT INVENTORY

291, Pressure of highest freezing level, unknown, 0

292, Height of highest freezing level, unknown, 0

293, Relative humidity, unknown, 0

294, Snow depth, surface, 0

295, Precipitable water, entireAtmosphere, 0

296, 2 metre relative humidity, heightAboveGround, 2

297, Baseflow-groundwater runoff, depthBelowLand, 3

298, U-component storm motion, surface, 0

299, V-component storm motion, surface, 0

300, Planetary boundary layer height, surface, 0

301, Wind speed gust, surface, 0

302, Geometrical height, cloudBase, 0

303, Geometrical height, cloudTop, 0

304, Visibility, surface, 0

305, Maximum equivalent potential temperature level, unknown, 0

306, Height of convective cloud top, unknown, 0

307, Height of equilibrium level, unknown, 0

308, Temperature, tropopause, 0

309, Convective available potential energy, pressureFromGroundLayer, 25500

310, Convective inhibition, pressureFromGroundLayer, 25500

311, Temperature, surface, 0

312, Absolute vorticity, isobaricInhPa, 500

313, Geopotential Height, unknown, 0

314, Maximum/Composite radar reflectivity, entireAtmosphere, 0

315, Derived radar reflectivity, heightAboveGround, 1000

316, Derived radar reflectivity, heightAboveGround, 4000

317, Image data, entireAtmosphere, 0
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RAP Model Input to Gradient

Boosting Model

Name, Level Type, Height

Geopotential Height isobaricInhPa 1000

Geopotential Height isobaricInhPa 975

Geopotential Height isobaricInhPa 950

Geopotential Height isobaricInhPa 925

Geopotential Height isobaricInhPa 900

Geopotential Height isobaricInhPa 875

Geopotential Height isobaricInhPa 850

Geopotential Height isobaricInhPa 825

Geopotential Height isobaricInhPa 800

Geopotential Height isobaricInhPa 775

Geopotential Height isobaricInhPa 750

Geopotential Height isobaricInhPa 725

Geopotential Height isobaricInhPa 700

Geopotential Height isobaricInhPa 675

Geopotential Height isobaricInhPa 650

Geopotential Height isobaricInhPa 625

Geopotential Height isobaricInhPa 600

Geopotential Height isobaricInhPa 575

Geopotential Height isobaricInhPa 550

Geopotential Height isobaricInhPa 525

Geopotential Height isobaricInhPa 500
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Geopotential Height isobaricInhPa 475

Geopotential Height isobaricInhPa 450

Geopotential Height isobaricInhPa 425

Geopotential Height isobaricInhPa 400

Geopotential Height isobaricInhPa 375

Geopotential Height isobaricInhPa 350

Geopotential Height isobaricInhPa 325

Geopotential Height isobaricInhPa 300

Geopotential Height isobaricInhPa 275

Geopotential Height isobaricInhPa 250

Geopotential Height isobaricInhPa 225

Geopotential Height isobaricInhPa 200

Geopotential Height isobaricInhPa 175

Geopotential Height isobaricInhPa 150

Geopotential Height isobaricInhPa 125

Geopotential Height isobaricInhPa 100

Temperature isobaricInhPa 1000

Temperature isobaricInhPa 975

Temperature isobaricInhPa 950

Temperature isobaricInhPa 925

Temperature isobaricInhPa 900

Temperature isobaricInhPa 875

Temperature isobaricInhPa 850

Temperature isobaricInhPa 825

Temperature isobaricInhPa 800

Temperature isobaricInhPa 775

Temperature isobaricInhPa 750

Temperature isobaricInhPa 725

Temperature isobaricInhPa 700

Temperature isobaricInhPa 675

Temperature isobaricInhPa 650

Temperature isobaricInhPa 625

Temperature isobaricInhPa 600

Temperature isobaricInhPa 575

Temperature isobaricInhPa 550

Temperature isobaricInhPa 525

Temperature isobaricInhPa 500

Temperature isobaricInhPa 475
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Temperature isobaricInhPa 450

Temperature isobaricInhPa 425

Temperature isobaricInhPa 400

Temperature isobaricInhPa 375

Temperature isobaricInhPa 350

Temperature isobaricInhPa 325

Temperature isobaricInhPa 300

Temperature isobaricInhPa 275

Temperature isobaricInhPa 250

Temperature isobaricInhPa 225

Temperature isobaricInhPa 200

Temperature isobaricInhPa 175

Temperature isobaricInhPa 150

Temperature isobaricInhPa 125

Temperature isobaricInhPa 100

Relative humidity isobaricInhPa 1000

Relative humidity isobaricInhPa 975

Relative humidity isobaricInhPa 950

Relative humidity isobaricInhPa 925

Relative humidity isobaricInhPa 900

Relative humidity isobaricInhPa 875

Relative humidity isobaricInhPa 850

Relative humidity isobaricInhPa 825

Relative humidity isobaricInhPa 800

Relative humidity isobaricInhPa 775

Relative humidity isobaricInhPa 750

Relative humidity isobaricInhPa 725

Relative humidity isobaricInhPa 700

Relative humidity isobaricInhPa 675

Relative humidity isobaricInhPa 650

Relative humidity isobaricInhPa 625

Relative humidity isobaricInhPa 600

Relative humidity isobaricInhPa 575

Relative humidity isobaricInhPa 550

Relative humidity isobaricInhPa 525

Relative humidity isobaricInhPa 500

Relative humidity isobaricInhPa 475

Relative humidity isobaricInhPa 450
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Relative humidity isobaricInhPa 425

Relative humidity isobaricInhPa 400

Relative humidity isobaricInhPa 375

Relative humidity isobaricInhPa 350

Relative humidity isobaricInhPa 325

Relative humidity isobaricInhPa 300

Relative humidity isobaricInhPa 275

Relative humidity isobaricInhPa 250

Relative humidity isobaricInhPa 225

Relative humidity isobaricInhPa 200

Relative humidity isobaricInhPa 175

Relative humidity isobaricInhPa 150

Relative humidity isobaricInhPa 125

Relative humidity isobaricInhPa 100

U component of wind isobaricInhPa 1000

U component of wind isobaricInhPa 975

U component of wind isobaricInhPa 950

U component of wind isobaricInhPa 925

U component of wind isobaricInhPa 900

U component of wind isobaricInhPa 875

U component of wind isobaricInhPa 850

U component of wind isobaricInhPa 825

U component of wind isobaricInhPa 800

U component of wind isobaricInhPa 775

U component of wind isobaricInhPa 750

U component of wind isobaricInhPa 725

U component of wind isobaricInhPa 700

U component of wind isobaricInhPa 675

U component of wind isobaricInhPa 650

U component of wind isobaricInhPa 625

U component of wind isobaricInhPa 600

U component of wind isobaricInhPa 575

U component of wind isobaricInhPa 550

U component of wind isobaricInhPa 525

U component of wind isobaricInhPa 500

U component of wind isobaricInhPa 475

U component of wind isobaricInhPa 450

U component of wind isobaricInhPa 425
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U component of wind isobaricInhPa 400

U component of wind isobaricInhPa 375

U component of wind isobaricInhPa 350

U component of wind isobaricInhPa 325

U component of wind isobaricInhPa 300

U component of wind isobaricInhPa 275

U component of wind isobaricInhPa 250

U component of wind isobaricInhPa 225

U component of wind isobaricInhPa 200

U component of wind isobaricInhPa 175

U component of wind isobaricInhPa 150

U component of wind isobaricInhPa 125

U component of wind isobaricInhPa 100

V component of wind isobaricInhPa 1000

V component of wind isobaricInhPa 975

V component of wind isobaricInhPa 950

V component of wind isobaricInhPa 925

V component of wind isobaricInhPa 900

V component of wind isobaricInhPa 875

V component of wind isobaricInhPa 850

V component of wind isobaricInhPa 825

V component of wind isobaricInhPa 800

V component of wind isobaricInhPa 775

V component of wind isobaricInhPa 750

V component of wind isobaricInhPa 725

V component of wind isobaricInhPa 700

V component of wind isobaricInhPa 675

V component of wind isobaricInhPa 650

V component of wind isobaricInhPa 625

V component of wind isobaricInhPa 600

V component of wind isobaricInhPa 575

V component of wind isobaricInhPa 550

V component of wind isobaricInhPa 525

V component of wind isobaricInhPa 500

V component of wind isobaricInhPa 475

V component of wind isobaricInhPa 450

V component of wind isobaricInhPa 425

V component of wind isobaricInhPa 400
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V component of wind isobaricInhPa 375

V component of wind isobaricInhPa 350

V component of wind isobaricInhPa 325

V component of wind isobaricInhPa 300

V component of wind isobaricInhPa 275

V component of wind isobaricInhPa 250

V component of wind isobaricInhPa 225

V component of wind isobaricInhPa 200

V component of wind isobaricInhPa 175

V component of wind isobaricInhPa 150

V component of wind isobaricInhPa 125

V component of wind isobaricInhPa 100

Vertical velocity isobaricInhPa 1000

Vertical velocity isobaricInhPa 975

Vertical velocity isobaricInhPa 950

Vertical velocity isobaricInhPa 925

Vertical velocity isobaricInhPa 900

Vertical velocity isobaricInhPa 875

Vertical velocity isobaricInhPa 850

Vertical velocity isobaricInhPa 825

Vertical velocity isobaricInhPa 800

Vertical velocity isobaricInhPa 775

Vertical velocity isobaricInhPa 750

Vertical velocity isobaricInhPa 725

Vertical velocity isobaricInhPa 700

Vertical velocity isobaricInhPa 675

Vertical velocity isobaricInhPa 650

Vertical velocity isobaricInhPa 625

Vertical velocity isobaricInhPa 600

Vertical velocity isobaricInhPa 575

Vertical velocity isobaricInhPa 550

Vertical velocity isobaricInhPa 525

Vertical velocity isobaricInhPa 500

Vertical velocity isobaricInhPa 475

Vertical velocity isobaricInhPa 450

Vertical velocity isobaricInhPa 425

Vertical velocity isobaricInhPa 400

Vertical velocity isobaricInhPa 375
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Vertical velocity isobaricInhPa 350

Vertical velocity isobaricInhPa 325

Vertical velocity isobaricInhPa 300

Vertical velocity isobaricInhPa 275

Vertical velocity isobaricInhPa 250

Vertical velocity isobaricInhPa 225

Vertical velocity isobaricInhPa 200

Vertical velocity isobaricInhPa 175

Vertical velocity isobaricInhPa 150

Vertical velocity isobaricInhPa 125

Vertical velocity isobaricInhPa 100

MSLP (MAPS System Reduction) meanSea 0

Surface pressure surface 0

Pressure tendency surface 0

Potential temperature heightAboveGround 2

2 metre dewpoint temperature heightAboveGround 2

Dew point depression (or deficit) heightAboveG...

10 metre U wind component heightAboveGround 10

10 metre V wind component heightAboveGround 10

2 metre temperature heightAboveGround 2

Specific humidity heightAboveGround 2

Pseudo-adiabatic potential temperature surface 0

Convective available potential energy surface 0

Convective inhibition surface 0

Surface lifted index surface 0

Large scale precipitation (non-convective) sur...

Convective precipitation (water) surface 0

Categorical rain surface 0

Categorical freezing rain surface 0

Categorical ice pellets surface 0

Categorical snow surface 0

Storm relative helicity heightAboveGroundLayer 30

Pressure isothermZero 0

Geopotential Height isothermZero 0

Relative humidity isothermZero 0

Pressure tropopause 0

Potential temperature tropopause 0

U component of wind tropopause 0
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V component of wind tropopause 0

Pressure maxWind 0

U component of wind maxWind 0

V component of wind maxWind 0

Precipitation rate surface 0

Moisture availability surface 0

Storm surface runoff surface 0

Temperature pressureFromGroundLayer 30

Relative humidity pressureFromGroundLayer 30

U component of wind pressureFromGroundLayer 30

V component of wind pressureFromGroundLayer 30

Vertical velocity pressureFromGroundLayer 30

Temperature pressureFromGroundLayer 60

Relative humidity pressureFromGroundLayer 60

U component of wind pressureFromGroundLayer 60

V component of wind pressureFromGroundLayer 60

Vertical velocity pressureFromGroundLayer 60

Temperature pressureFromGroundLayer 90

Relative humidity pressureFromGroundLayer 90

U component of wind pressureFromGroundLayer 90

V component of wind pressureFromGroundLayer 90

Vertical velocity pressureFromGroundLayer 90

Temperature pressureFromGroundLayer 12

Relative humidity pressureFromGroundLayer 12

U component of wind pressureFromGroundLayer 12

V component of wind pressureFromGroundLayer 12

Vertical velocity pressureFromGroundLayer 12

Temperature pressureFromGroundLayer 15

Relative humidity pressureFromGroundLayer 15

U component of wind pressureFromGroundLayer 15

V component of wind pressureFromGroundLayer 15

Vertical velocity pressureFromGroundLayer 15

Temperature pressureFromGroundLayer 18

Relative humidity pressureFromGroundLayer 18

U component of wind pressureFromGroundLayer 18

V component of wind pressureFromGroundLayer 18

Vertical velocity pressureFromGroundLayer 18

Storm relative helicity heightAboveGroundLayer 10
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Orography surface 0

Pressure of highest freezing level unknown 0

Height of highest freezing level unknown 0

Relative humidity unknown 0

Snow depth surface 0

Precipitable water entireAtmosphere 0

2 metre relative humidity heightAboveGround 2

U-component storm motion surface 0

V-component storm motion surface 0

Planetary boundary layer height surface 0

Wind speed (gust) surface 0

Visibility surface 0

Height of convective cloud top unknown 0

Height of equilibrium level unknown 0

Temperature tropopause 0

Convective available potential energy pressure...

Convective inhibition pressureFromGroundLayer ...

Temperature surface 0
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