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Abstract

Introgressive descents such as recombination, gene fusion and horizontal gene
transfer (HGT) cause reticulate patterns in the evolutionary history of prokaryotes
and eukaryotes, which are too complex to show in traditional tree-based models. In
this thesis, we introduced network-based approaches such as the sequence similarity
network (SSN) and explored its potential to investigating large datasets. Two
different genetic features were investigated: (1) composite genes that are generated
by the remodelling of two unrelated genetic segments; (2) CRISPR-Cas systems that
are widely spread in prokaryotes as adaptive immune systems.

First, we employed a network-based approach to explore gene remodelling. Non-
homologous genes can form into a single open reading frame (ORF) through gene
fusion. The new gene is called a composite gene while the parental genes are called
component genes. To investigate the distribution of composite genes across all of
life, we constructed SSNs of a large dataset containing more than 1 million genes
from prokaryotes, eukaryotes, viruses and plasmids. In our dataset, 18.57% of genes
were identified as composite genes, which were pervasively spread across three
domains of life as well as all COG functional categories. We also found eukaryotic
genes were more likely to be composites than prokaryotic genes.

Second, we investigated the evolution history of the CRISPR-Cas locus. Prokaryotes
are engaged in the constant arms race with foreign mobile genetic elements (MGEs).
CRISPR-Cas, an important adaptive immune system in Archaea and Bacteria, is
involved in diverse evolutionary processes. While under attack, it is thought that a
spacer is directly acquired from the segment of the invader and integrated between
the leading sequence and the first spacer, so spacers are ordered chronologically
corresponding to the infection time. However, through comparative genome
analysis, we found that old spacers were located upstream of new spacers, which
indicated either the role of ectopic spacer integration or recombination. Further, we
found the distribution of CRISPR-Cas is not uniform across prokaryotic phylogeny.
To understand why this is the case, we used a co-occurrence approach to identify the
association and disassociation between protein-coding genes and CRISPR-Cas
systems. We found that genes that co-occurred with CRISPR-Cas are mainly in
metabolic pathways and that the distribution of co-occurred genes in the phylogeny
is compatible with the distribution of CRISPR-Cas subtypes, which suggested the
influence of genetic background on the distribution of CRISPR-Cas systems.

Collectively, network-based approaches have shown great potential in helping
identify non-vertical evolutions.

10



Declaration

I declare that no portion of the work referred to in the thesis has been submitted in
support of an application for another degree or qualification of this or any other

university or other institute of learning.

11



Copyright

i. The author of this thesis (including any appendices and/or schedules to this
thesis) owns certain copyright or related rights in it (the “Copyright”) and
s/he has given The University of Manchester certain rights to use such
Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or
electronic copy, may be made only in accordance with the Copyright,
Designs and Patents Act 1988 (as amended) and regulations issued under it
or, where appropriate, in accordance with licensing agreements which the
University has from time to time. This page must form part of any such
copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other
intellectual property (the “Intellectual Property”) and any reproductions of
copyright works in the thesis, for example graphs and tables
(“Reproductions”), which may be described in this thesis, may not be owned
by the author and may be owned by third parties. Such Intellectual Property
and Reproductions cannot and must not be made available for use without the
prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual
Property and/or Reproductions described in it may take place is available in
the University IP Policy (see
http://documents.manchester.ac.uk/Doculnfo.aspx?DocID=2442 0), in any
relevant Thesis restriction declarations deposited in the University Library,
The University Library’s regulations (see
http://www library.manchester.ac.uk/about/regulations/) and in The

University’s policy on Presentation of Theses

12



Acknowledgement

I would like to express my deepest and sincerest gratitude towards my supervisor
Professor James Mclnerney for being the supervisor and mentor that any student
could ever wish for. Thank you for your guidance, inspiration and support
throughout my whole PhD. I could never finish my PhD without your
encouragement. Specially, I would like to thank members of Mclnerney group in
Nottingham, Fiona Whelan, Maria Rosa Domingo Sananes and Rebecca Hall for
countless ideas inspired in scientific discussions, precious supports during the
lockdown and gracious helps in revising my thesis. Along with Peter Mulhair and
David Orr from O’Connell group, I would like to thank you all for creating such a
positive and pleasant research atmosphere in the lab. I really appreciate all great time

we shared together.

In addition, I would like to thank the former members of McInerney group, Martin
Rusilowicz, Ignacio Riquelme Medina and Rob Leigh for their patient and generous
help at the beginning of my PhD, the time that I did not even know what does pwd
mean in Unix Command. In addition, I would like to thank The University of

Manchester and Chinese Scholarship Council for sponsoring my PhD.

My special and warmest thankfulness goes to my family. Thank you Mum (Hui Liu),
for being my best friend and my role model. I could never imagine how my life
would be without you. Thank you, Dad (Zhenyu Ou) and Grandma, for being my
rocks and supporting me with your love. A special gratitude towards my Grandpa,
who passed away on the second year of my PhD, thank you for being my Grandpa.
Last but not least, I am extremely grateful for the massive mental (and a little
financial) supports from my husband Weihao Sun during the past four years. Thank
you for being in my life, completing my life and always appreciating me for just who

I am.

I would like to thank my dearest friends Wenjun Zhang, Jingshu Liu and Jiayun
Wang for the uncountable happy and meaningful moments we shared. Thank you for
bringing sunshine into my life when I am depressed, being happy for my happiness

and motivating me when I did not believe in myself.

13



MclInerney Lab (Nottingham)

Maria Rosa ingo Sananes
Mclnerney Lab D"

(Manchester) Fiona@helan / Rebed@a Hall
— // 7
Marti’n,@sﬂbwi’ci - ’*** nerney

Matthe@ﬂrri)jbf‘é - ‘ Damdﬁbwman ] ;I\Q‘db.gigh
N =\ - " Mclnerney Lab (Ireland)

Ignacio Rl:;i@lyy’ﬁeiMéding )

Tinguliu
Fuhuﬁﬁen — ’W@ﬁu&ﬁang -
o Charley ®cCarthy
Yan®ong / /
H‘,, i -

Friends O’Connell’s lab

Qingxiang Guo Zhoﬁ&n Ou

Family Members

The network of people that I would like to thank throughout my PhD. This idea is
inspired by Jananan Pathmanathan, who is also the developer of programme
CompositeSearch.

14



Rational for submitting the thesis in a journal format

This thesis is approved to be presented in a journal format. The results (Chapters 2, 3
and 4) are in the style of peer-reviewed journal articles. Chapter 2 is in the format of

Genes journal and has been accepted for publication (https:/www.mdpi.com/2073-

4425/10/9/648/htm). Chapters 3 and 4 are written in the format of Genome Biology

and Evolution. References of all chapters are unified for consistency and listed

together at the end of this thesis.

15



16

Chapter 1.

General Introduction



1.1 Network Thinking

1.1.1 Evolution Is Not Always Tree-like

Evolutionary biologists are keen on depicting the processes that shape diverse lives.
Ever since Charles Darwin proposed the use of tree diagrams in order to portray
phylogenies (Darwin, 1859), they have become the dominant mechanisms for
recognizing and illuminating species relationships. When trying to interpret analysis
of vertical genealogical relationships, such as offspring divergent from one common
ancestor, the phylogenetic tree approach is critical approach (O’Hara 1997; Bapteste
et al. 2012). Scientists such as Darwin believed that species evolved gradually in a
slow rhythm. However, tree-like models might not be appropriate in order to fully
describe saltational evolutionary events such as gene fusion, hybridization, and
horizontal gene transfer (HGT, also known lateral gene transfer (LGT)) or symbiosis

(Bapteste et al., 2013; Coleman et al., 2015).

Genetic material that transits between more than one lineage and propagates is called
“introgressive descent” (Bapteste et al., 2012), which is an important evolutionary
process aside from vertical descent. Gene introgression impacts across all levels of
biological organization (Bapteste et al., 2012; Corel et al., 2016). For example, at the
level of molecules, composite genes can arise from introgression of genes from
different families (Figure 1.1a) (Jachiet et al., 2013). At the level of genomes,
composite genome formation can occur through HGT from individual sequences, or
indeed entire genomes can merge with other genomes (Figure 1.1b) (Alvarez-Ponce
et al., 2013; Hotopp et al., 2007; Nelson-Sathi et al., 2012). At the level of organisms
(Figure 1.1c¢), composite organisms can be formed between endosymbionts and hosts
(Andam et al., 2011; Bapteste, 2014). A very important hypothesis presented by
Rivera & Lake (2004) called “The ring of life”, postulated that the origin of
eukaryote genomes came about through a fusion of archaeal and bacterial genomes.
This hypothesis broke the traditional bifurcation model and inspired network

thinking (Alvarez-Ponce et al., 2013; Mclnerney et al., 2014).
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Composite gene Composite genome Composite organism

Sequence Sequence Sequence/Genome Genome Mobile genetic Cell/Organism
elements (MGEs)

(@ (b) ©

Figure 1.1 Patterns of introgression infiltrating in different levels of biological
organisms. (a) Composite gene constructs from fusion of sequences at the molecular
level. (b) Composite genome arises by introgression of a gene or genome into a
genome at the genomic level. (¢) Composite organism forms from the mosaicism of
mobile elements, such as plasmid, and a host cell or organism at the organismal
level. Figure adapted from Corel et al. 2016.

1.1.2 Horizontal Gene Transfer (HGT) in Prokaryotes and
Eukaryotes

One of the main approaches of interchanging genetic materials is through HGT,
which is essential and widespread in the evolution of the three domains of life
(Keeling and Palmer, 2008; Koonin et al., 2001; Polz et al., 2013). HGT describes
the movement of genetic materials between distant or closely related organisms
(Keeling and Palmer, 2008) and firstly been described by Griffith in an infectious

experiment of Streptococcus pneumoniae and mice (Griffith, 1928).

HGT predominantly proceeds through three mechanisms: transformation, the ability
to take in naked DNA from the surrounding environment; transduction, which
acquires or moves DNA fragments between bacteria by bacteriophage; conjugation,
the transmission of genetic information between species by physical interaction

between donor and recipient (Ochman et al., 2000).
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Among prokaryotes, HGT exists universally and occupies an important position in
gene neo-functionalization (Koonin et al., 2001; Ochman et al., 2000). Through
comparison analysis of three Escherichia coli genomes, Welch et al. (2002)
identified multiple HGT events in discrete gene islands. Moreover, HGT facilitates
the acquisition of antibiotic resistance (Kay et al., 2002), virulence attributes
(Gemski et al., 1980; Hacker et al., 1997), and metabolic properties as principal traits
of Bacteria (Ochman et al., 2000). HGT also plays a vital role in the evolution of
Archaea (Williams et al., 2017). A study from Nelson-Sathi et al. (2012) has shown
that the origin of Haloarchaea was driven by the acquisition of many functional
genes from eubacteria through HGT. This includes genes encoding catabolic and
heterotrophic carbon metabolism, membrane transporters, respiratory chain
components, and additional cofactor biosynthesis genes. Furthermore, as for the
genetic relationships between bacteria and archaea, the transfers are quite
unsymmetrical, in that the transfer of DNA from archaea to bacteria is more than

five times more frequent as in the other direction (Nelson-Sathi et al., 2015).

The importance of HGT in eukaryotes is often overshadowed by its pervasive impact
on prokaryotes (Van Etten and Bhattacharya, 2020; Keeling and Palmer, 2008).
Many recent studies have revealed that genes with adaptive or important metabolic
functions are derived through HGT. For example, the ice-binding proteins that can
mitigate freezing damage in Antarctic algae Chlamydomonas sp. are acquired from

bacteria through HGT (Raymond and Morgan-Kiss, 2017). HGT was also observed

in the antifreeze genes of fish, which allows fish to live in icy environments (Graham
et al., 2008). To live in an extreme hot spring environment, the red alga Galdieria
sulphuraria encodes a series of functional genes, such as genes involved in
detoxifying heavy metals to glycerol as the carbon source. These genes originated in
bacteria, while genes encoding the ability to resist high salinity are from archaea
(Schonknecht et al., 2013). Additionally, approximately 2.5% of genes in the human
gut parasite Blastocystis spp. have been acquired by HGT from both eukaryotic and
prokaryotic donors. These genes participate in diverse metabolic pathways and

promote better adaptation of the host in an anaerobic environment (Eme et al., 2017).
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1.1.3 Sequence Similarity Network (SSNs) in Evolutionary Studies

Introgressive descent like HGT results in reticulate evolution and has created a
complex evolutionary pattern, which is the hobgoblin of tree-based models (DeSalle
and Riley, 2020). With the rapid development of high-throughput sequencing
technology, enormous biological datasets have become available. To
comprehensively investigate reticulate evolutionary processes, a novel approach of
using network-based models has been employed in evolutionary studies (Corel et al.,

2016; Proulx et al., 2005).

Traditionally, networks are extensively used in the analysis of traffic systems, such
as railroads mapping (Jordan and Turnquist, 1983). In the modern society, the usage
has expanded to Internet searching, web building (Chau, 2011) and analysing
relationships on social media such as Facebook (Viswanath et al., 2009). In the
epidemiological field, the importance of network-based models is first reported in
tracing AIDS “Patient Zero” and revealed the transmission pathway of sexual
contacts (Klovdahl, 1985). This network thinking was also used in the study of the
SARS-COV-2 pandemic from the perspective of tracing origins (Forster et al., 2020)
and tracking the spread route in population (Gudbjartsson et al., 2020).

In the field of genetic analyses, sequence similarity networks (SSNs) are widely used
in presenting reticulate evolutionary relationships since its first proposal by Tatusov
et al. (1997). In SSNs, entities (such as genes, genomes or species) are represented as
nodes whilst the evolutionary connections (such as significant similarity between
genes, common features among genomes) are represented by edges (Figure 1.2)
(Bapteste et al., 2012; Coleman et al., 2015). Normally, SSNs consist of at least one
connected component(s) (CCs) (Figure 1.2) which are made up of related sequences
(Alvarez-Ponce et al., 2013). Those entities in any given clique do not have to be

genealogically related to all others, but usually have comparable functions (Pradhan

et al., 2012).
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Figure 1.2 Sequence Similarity Networks (SSNs) are mostly composed of more
than one connected component (CCs). Encoding sequences are represented by
nodes (coloured circles A/B/C), while the evolutionary relationships are illustrated
by edges (short lines) between nodes. Several CCs samples are highlighted as large
colour aureolas which contains high accordance nodes. Adapted from Corel et al.
(2016).

SSNs have been employed in many research projects analyzing evolutionary
relationships (Alvarez-Ponce et al., 2013), detecting gene sharing and recombination,
and performing functional annotation. In 2010, Fondi and Fani constructed SSNs to
reveal that through multiple HGT events, distantly located or related bacteria can
exceed the distance both geographically and genealogically. They described a global
influence of this type of “horizontal flow” on whole bacterial community regarding
antibiotic resistance determinants (Fondi and Fani, 2010). With the help of SSNs,
Halary et al. (2013) assembled a database including over half million protein
sequences from prokaryotes, eukaryotes, and mobile genetic elements (MGEs) and
investigated the plasmids and their relevant genes. They found that although most
genes were widely shared, in Borrelia genes were more like private genetic goods
and were not so widely shared (Mclnerney et al. 2011). It is likely that this
restriction in gene sharing contributed to the survival of Borrelia against the host
immune environment (Barbour et al., 2006; Chaconas and Kobryn, 2010). Later,
Cheng et al. (2014) identified two major diversification events in the evolution of
prokaryotic pathways through the SSN approach. SSNs can also be used in

investigating community diversity. Arroyo et al. (2020) discovered a putative novel
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holozoan group in 7ara Ocean through building and exploring a unicellular holozoa

network which contains collected environmental sequences and reference sequences.

Many tools already have been developed to visualise and modularize networks such
as Gephi (Bastian et al., 2009), Cytoscape (Smoot et al., 2011), and a recent tool
Graphia that can present networks in 3D space (Freeman et al., 2020). Although
network-based models have better performance in presenting introgressive descent,
treelike histories and reticulate histories are not necessarily in conflict with one
another. Composite entities that result from introgression can subsequently carry out
vertical descent. Fusion between entities from introgressive descent generate a
network between bifurcating trees (Corel et al., 2016). Therefore, network methods
have gained attention owing to their capacity to depict both vertical and lateral
evolutionary history at the same time (Corel et al., 2016; Mclnerney et al., 2011).
My PhD focussed on applying network thinking in investigating reticulate evolution
on composite genes and CRISPR-Cas loci. In this section, the mechanisms and

recent findings about these two systems were briefly introduced.

1.2 Origin and Pervasive Existence of New Composite Gene

Structures

Composite genes are produced by gene remodelling and play a key role in the
evolution of many biological entities including eukaryotes, prokaryotes, plasmids
and viruses (Chothia et al., 2003; Jachiet et al., 2013, 2014; Méheust et al., 2018).
Composite genes are composed of component genes which are genetic fragments
derived from other gene families (Corel et al., 2016). As shown in Figure 1.3a,
sequence A and B, C and B show similarity to each other whereas sequence B and C
has no overlap. Therefore, A is regarded as composite gene whilst B and C are
regarded as component genes and the clique A, B and C is called a “non-transitive

triplet” (Haggerty et al., 2014).
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Figure 1.3 Patterns of non-transitive triplet, composite and component genes in
sequence similarity network (SSN). (a) Sequence A is known as composite gene
while sequences B and C is known as component genes. When component genes
show no similarity to each other, in other words, there is no overlap between two
component genes, sequence A, B and C are in the nontransitive relationship. (b)
Non-transitive triplets in SSN. Adapted from Jachiet et al. (2013) and Haggerty et al.
(2014).

Many factors can contribute to these non-transitive relationships, including gene
fusion, exon or domain shuffling and non-homologous recombination (Bapteste et

al., 2012; Corel et al., 2016; Haggerty et al., 2014).

1.2.1 Mechanisms of Gene Fusion

Gene fusion occurs when open reading frames (ORFs) from previously separate
sources combine and form a new transcription unit, which is an important molecular
mechanism of generating new genes (Long et al., 2003), especially multi-domain
genes (Pasek et al., 2006). There are two main mechanisms promote the formation of
fusion genes: genetic rearrangement such as gene duplication (Figure 1.4a), and

transcription read-through (Figure 1.4b) (Kaessmann, 2010).
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Figure 1.4 The mechanisms gene fusion. (a) Partial duplicated gene can be
juxtaposed and fused to a new fusion gene. (b) Fusion genes can also form through
transcription read-through with intergenic splicing. Chimeric mRNA might be
integrated into genome as fusion genes through reverse transcription. Adapted from
Kaessmann (2010).

Rearrangement-mediated gene fusions

Gene fusion could occur through rearrangements of duplicated gene copies at the
DNA level (Figure 1.4a) (Kaessmann, 2010; Rogers et al., 2009). One of the most
famous examples is origin of the jingwei gene in Drosophila (Long, 2000). Jingwei
(jgw) is formed through a duplication event of Yellow-emperor (called yande), a
retroposition event of the alcohol dehydrogenase gene (4dh) into the middle of
yande and a recombination of Adh and partial exons of yande (Long et al., 2003,
2013). Expressed JGW proteins showed a novel specificity of detoxifying long-chain

alcohols whereas its ancestral ADH preferred short-chain alcohols such as ethanol
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(Zhang et al., 2004). Additionally, for fusion genes from duplication, the original
function of the parental gene can be maintained (Kaessmann, 2010). More fusion
genes with beneficial functions have also been identified in flowering plants and

mammals (Brennan et al., 2008; Liu et al., 2009).

Transcription-mediated gene fusions

Another mechanism of gene fusion is through transcription read-through from
neighbouring genes and intergenic splicing at RNA level (Figure 1.4b) (Kaessmann,
2010; Latysheva and Babu, 2016). Fusion transcripts can be reverse transcribed and
integrated into the host genome (Kaessmann, 2010; Long et al., 2013). The hominoid
gene PIPSL was found to have arisen through co-transcription and intergenic
splicing of two adjacent parental genes PIP5K1A and PSMD4, followed by a
retrotransposition event (Babushok et al., 2007). This new fusion gene PI/PSL
experienced positive selection shortly after emergence, which indicates the
beneficial role it encodes (Babushok et al., 2007; Kaessmann, 2010). Using the
approach of SSNs, McCartney et al. (2019) identified 45 novel genes from seven
animals that were formed through transcription-mediated gene fusions and 64.4% of

these fusion genes had annotated transcripts.

1.2.2 Network Thinking in Analysis of Composite Genes

Composite genes could result from juxtaposition of non-homologous genes, which
step over the boundary of single gene families and become obstacles of tree-based
models (Corel et al., 2016; Haggerty et al., 2014). To investigate this process, the
network-based model such as SSN is equipped with several advantages (Figure 1.3).
First, it can depict composite and component genes in genomes or communities
systemically. Second, the convergent and divergent events can be distinguished by
taxonomical distribution comparison. Third, it can be used to evaluate the
conservation overlapping degree of composite and component fragments (Corel et

al., 2016).
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Composite genes are widespread in nearly all huge and dominant communities,
especially those giant connected components (GCCs) of SSNs. Haggerty et al.
(2014) identified composite genes from 15 eukaryote genomes using a network
approach. They found that in the GCC, approximately one-quarter of the sequences
belonged to composite genes and one-tenth of the sequences were detected as multi-
composite genes. Multi-composite genes are formed from two or more composite
genes. Nonetheless, in the rest of the network, only 6% sequences are identified as
composite genes (Haggerty et al., 2014). In the same way, Coleman et al. (2015)
reconstructed SSNs of using published data (Kim and Y1i, 2012) containing 319
actinobacterial genomes and detected 13 composite genes. This network was
decomposed into 10 small CCs and one GCC which occupied 82% of the network
and covered all 13 composite sequences. Jachiet et al. (2013) mined the 591,439
sequences from three domains of life, viruses and plasmids through constructing
SSNs. Gene fusions have been found from both cellular organisms and MGEs, and
the frequency of composite genes in eukaryotes was significantly higher than in
prokaryotes and MGEs. It has been shown that 53% of triplets were detected from
cellular organisms and 42% detected between prokaryotes and MGEs. In particular,
genes of mobile elements were involved in a large portion of gene fusion events.
However, transferred mobile elements can only maintain and propagate in host
lineages with quite a low probability (Graham et al., 2008). The sources contributing
to mobile element gene remodelling therefore need to be investigated further. In the
viral world, Jachiet et al. (2014) applied the mobilome network into 3,008 complete
viral genomes. Probably due to the blurry boundaries between viral gene families,
there were 8-15% composite genes observed from the network. Additionally, these
mosaic genes distributed extensively in all functional categories in viruses and
almost all were crucial functional encoding sequences, for instance the family of
DNA polymerase beta/AP endonuclease proteins and multi-domain
helicase/methyltransferase proteins. Furthermore, network analysis also promotes
our understanding of the origin of composite genes. Eukaryotic-specific multi-
domain nitrate reductase EUKNR was found to have arisen from fusion of
eukaryotic SUOX, Cyt-b5, and NADH reductases using a SSN-based model (Ocafia-
Pallargs et al., 2019). In the origin of Haloarchaea, 320 new composite genes were
identified in early history and then subsequently proliferated to descendent groups

(Méheust et al., 2018). Among these composite genes, almost 40% have parental
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genes from bacterial genomes, involved in metabolic pathways and promoting the

adaptation to oxygenic and salty niches (Méheust et al., 2018).

1.3 Mechanisms and Evolution of CRISPR-Cas Systems

1.3.1 The History of CRISPR Discovery

Direct repeat structures were first identified by Ishino and colleagues in 1987, when
they analysed the iap gene in E. coli. They noticed highly conserved DNA fragments
of 29 nucleotides were spaced by DNA fragments of 32 nucleotides (known as
spacers) on the 3’ flank of the iap gene (Ishino et al., 1987). A similar pattern was
also seen in the Gram positive bacterium Mycobacterium tuberculosis complex
(MTBC) (Van Soolingen et al., 1993). Later, Mojica et al. (1995) discovered
interspaced dyad symmetry repeats in the archaeal species Haloferax mediterranei
and Haloferax volcanii. This work was credited by Jansen et al. (2002) and together
they referred to the class of repeats as one family is now known as: Clustered
Regularly Interspaced Short Palindromic Repeats (the acronym CRISPRs). Jansen et
al. (2002) suggested spacers with similar length but unique sequences could

potentially be important in prokaryotes and remain to be deciphered.

In addition, Jansen et al. (2002) firstly recognised CRISPR-associated (cas) genes.
They found four homologous genes (cas! to cas4) that associated with CRISPR loci,
adjacent to the repeat arrays, in a specific order. Functional analysis of Cas3 and
Cas4 proteins implied that they might play a role in DNA modifying and cleavage.
Additionally, Jansen et al. (2002) noticed different species with dissimilar repeats
also possessed different sets of cas genes. Furthermore, the analysis of homologies
indicated that these Cas genes were functionally associated with CRISPR loci. This
work was a breakthrough for the construction of the model of CRISPR-Cas system

and indicated that a diverse classification of this system was needed.

In 2005, Mojica et al. (2005) observed the homology of spacers in CRISPR loci with

external sequences like bacteriophages and conjugative plasmids, which firstly
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predicted its biological functions in defending foreign DNA like the eukaryotic RNA
interference system. At the same time, Pourcel et al. (2005) and Bolotin et al. (2005)
also independently reported that spacers were derived from extrachromosomal
elements in Yersinia and Streptococcus. More Cas genes were then identified (Haft
et al., 2005) and the role that the CRISPR-Cas system may play in prokaryotic
immunity was becoming clearer (Koonin et al., 2006). In 2007, a laboratory
experiment observed novel spacer integration in Streptococcus thermophiles after
challenge by bacteriophages (Barrangou et al., 2007). They suggested that Cas
proteins in CRISPR-Cas system could mediate adaptation of novel as well as direct
invader immunization. The same research also reported that bacterial resistance to
phages was correlated with similarity between spacers and phage. Since then,
research has focussed on the mechanisms by which CRISPR-Cas systems work, and
the potential applications of CRISPR-Cas in gene editing (Adli, 2018; Cong et al.,
2013; Deveau et al., 2008; Mali et al., 2013a; Sapranauskas et al., 2011). Thrillingly,
the 2020 Nobel Prize in Chemistry was rewarded to Emmanuelle Charpentier and
Jennifer Doudna for their discovery and application of CRISPR-Cas technology in
precise gene editing (Strzyz, 2020). CRISPR-Cas technology was also employed in
rapid disease infectious diagnosis (Strich and Chertow, 2018), which has made great

contributions to SARS-CoV-2 detection (Broughton et al., 2020).

1.3.2 Classification and Mechanisms

CRISPR-Cas is an adaptive immune system that exists in most Archaea and half of
Bacteria (Horvath and Barrangou, 2010). It contains a CRISPR array and a cluster of
cas genes. A CRISPR array is composed of nearly identical direct repeats and
interspaced diverse spacers. Spacers are derived from different foreign MGEs,
derived from situations where the host species is under attack (Shmakov et al.,
2017b). The process of acquiring new spacer sequences is one of three stages of the
CRISPR-Cas mediated defence process, and it is called Adaptation (Figure 1.5). The
other two processes are known as Expression and Interference. In the expression
stage, an array containing spacers is transcribed into a long precursor CRISPR RNA
(pre-ctrRNA) and this RNA is then processed into smaller mature CRISPR RNAs

(crRNAs). In the subsequent interference stage, the invading sequence is combined

28



with complementary matured crRNA and is destroyed by incorporated effector Cas
complex (Rath et al., 2015). Upstream of the CRISPR arrays is an AT-rich leader
sequence. Though it does not directly participate in elimination of invading genetic
elements, it is essential in regulating spacer integration and crRNA biogenesis (Hille

etal., 2018; Yosef et al., 2012).
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Figure 1.5 Overview of CRISPR-Cas in prokaryotic immunity. The defence
process of CRISPR-Cas system can be divided into three stages. Upon integration,
part of foreign segment is adapted into CRISPR locus that is located in host genome
while under attack from a novel invader. Subsequently, if a known phage is
encountered, CRISPR locus will be transcribed into pre-crRNA and processed into
matured crRNAs. These crRNAs guide a cluster of Cas proteins and protect the host
by cleaving invading sequences.
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According to studies that have been published to date, CRISPR-Cas systems are
classified into 2 classes, 6 types and 33 subtypes. The classification of class 1
includes type I (subtype A, B, C, D, E, F, G), type III (subtype A, B, C, D, E, F) and
type IV (subtype A, B, C) while class 2 includes type II (subtype A, B, C), type V
(subtype A, B, C, D, E, F, G, H, I, U) and type VI (subtype A, B, C, D) (Makarova et
al., 2020). The main difference between these two classes is the effect modules
where the class 1 system employs multiple Cas proteins on crRNA binding and
target cleavage whereas the class 2 system uses a single but multi-domain Cas
protein on these activities (Figure 1.6) (Makarova et al., 2020). Class 1 systems
occupy widely around 90% of all CRISPR-Cas while the remaining 10% are class 2
systems and mostly discovered from Archaea (Makarova et al., 2012, 2020). The
famous Cas9 protein that is used in genetic engineering is derived from type II
system that belonging to class 2 (Hsu et al., 2014). This subsection will briefly

introduce the mechanisms of three stages in two CRISPR-Cas classes.
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Figure 1.6 The function modules of two classes of CRISPR-Cas systems.
Multiple effector modules are involved during expression and interference of class 1
system while single but multi-domain Cas protein is encoded in class2 system. RT,
reverse transcriptase; LS: large subunit; SS, small subunit. Adapted from Koonin &
Makarova (2019).

1.3.2.1 The Mechanism of Adaptation

As an adaptive immune system, adaptation (also known as integration or acquisition)

is the key stage that endows CRISPR-Cas systems with the ability to store memories
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of invaders, and enables the inheritance of the adaptation by offspring (Figure 1.7).
Integration in both classes are mediated by two core proteins: Casl and Cas2. These
two proteins are highly conserved in almost all subtypes (Koonin et al., 2017). The
integration stage can be concisely divided into two steps: 1) identify and extract the
foreign segments (called “protospacer’) from the exogenous genome; 2) integrate
the spacer into the right position of the CRISPR array in the host genome. Casl and
Cas2 form as a heterohexameric [(Cas12-Cas2):] complex (hereafter, Cas1-Cas2)
and play important roles through both phases of integration (McGinn and Marraffini,
2018). Here, we introduce the spacer adaptation in two phases based on the current

best-studied models: type I-E and type II-A.
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Figure 1.7 The mechanism of spacer integration in CRISPR-Cas system.
Protospacer substrates (prespacers) are generated by DNA repair system like
RecBCD or AddAB. Cas1-Cas2 then binds and cleavage specific length of
protospacer. With the help of integration host factor (IHF) in type I-E or leader
anchoring sequence (LAS) in type II-A, Cas1-Cas2 with protospacer complex causes
two nucleophilic attacks between leading site and the first repeat, which result in
precisely integration and first repeat duplication.
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Adaptation - Phase 1

During the first phase of adaptation (Figure 1.7), protospacers from foreign genetic
elements are first recognised and processed before being integrated into CRISPR
loci. In Gram positive species, substrates that contain protospacers are possibly
generated from phage genomes by DNA repair system RecBCD (Bernheim et al.,
2019; Levy et al., 2015; Radov¢i¢ et al., 2018). RecBCD can unwind and degrade
DNA fragments during the repair of double-stranded DNA (dsDNA) breaks (DSBs),
and often works on replication forks (Wigley, 2013). Meanwhile, RecBCD activity
is controlled by asymmetry crossover hotspot instigator (Chi) sites. A Chi site is an
eight-nucleotide length motif and serves as a repressor. In other words, RecBCD
degrades linear DNA to smaller segments until it reaches Chi sites (Smith, 2012).
Chi works in an asymmetrical manner, which requires RecBCD only to interact from
one side, and RecBCD from the opposite direction would be limited by reverse
complement of Chi sites (Smith, 2012). The degraded segments can then be
recognised by Cas1-Cas2 complex in order to facilitate subsequent integration
(Ivanci¢-Bace et al., 2015). This proposal is supported by identification of
protospacers hotspots between stalled folks and Chi sites (Levy et al., 2015). Similar
results also were found in Gram positive organisms who use RecBCD’s paralogs
AddAB as the DNA repair machinery (Modell et al., 2017). The follow-up study
further clarified that the helicase activity of RecBCD is important to spacer
adaptation rather than the nuclease activity and inactivation of 5’ single-stranded
(ssDNA) exonucleases could invoke significant spacer acquisitions (Radov¢i¢ et al.,
2018). Nevertheless, spacer adaptation was still identified in strains that lacked
RecBCD or AddAB (Levy et al., 2015; Modell et al., 2017). This indicated the
possibility of other routes that were also able to provide protospacer substrates, such
as restriction-modification systems (Dupuis et al., 2013b; McGinn and Marraffini,

2018).

Chi sites are highly enriched in host genomes compared with phage genomes and
MGESs. This enrichment is an important method for differentiating self from non-self
genomes. The activity of RecBCD (or AddAB) in prokaryotic organisms is

restrained by a high density of Chi sites in order to protect species from integrating
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self DNA and autoimmunity. By contrast, invading phages or plasmids that are
devoid of Chi sites can have their DNA mostly or fully degraded and supply
sufficient protospacer substrates to Cas1-Cas2 (Levy et al., 2015).

In addition to Chi sites, protospacer adjacent motifs (PAM) that are located in phage
genomes also assist with locating protospacers and avoiding host autoimmunity.
This short motif is normally two to six nucleotides long and situated immediately
downstream of targets (Mojica et al., 2009; Shah et al., 2013). In type I-E systems,
the protospacer substrates (called “prespacers”) that degenerated by RecBCD in last
step forms dual-forked structure, and then binds to and is stabilized by Cas1-Cas2
complex. PAM in the 3’ overhang of the dual-fork DNA is recognised and cleaved
by one Casl. Considering Cas1-Cas2 complex is symmetrical with two Casl
proteins, after one Casl binds with one side, the 3’ overhang on the other side is
subsequently bound and cleaved by the other corresponding Cas1. This results in
two-side 3’OH on each overhang (Li et al., 2015). In this process, the length of
captured protospacer is likely to be determined by the Cas1-Cas2 complex which
serves as a molecular ruler (Li et al., 2015; Nuiez et al., 2015). A recent finding
reported Cas4 might also be functional with PAM in type I CRISPR-Cas systems
(Kieper et al., 2018). In type II system, Cas9 is also required to specifically interact
with PAM-adjacent protospacers along with the Cas1-Cas2 complex and accessory
protein Csn2 (Heler et al., 2015). By contrast, some type III systems have been
identified that favoured integrating RNA transcripts as spacers rather than DNA
segments. This preference for RNA transcripts is encoded by a fusion protein that is

comprised of reverse transcriptase (RT) and Casl (Figure 1.6) (Silas et al., 2017a).

Adaptation- Phase 2

In the second phase of spacer adaptation, processed protospacers integrate into the
leader end of CRISPR array. This is thought to record past infections in a
chronological order (Barrangou et al., 2007). To ensure precise acquisition, an AT-
rich leader sequence that lies upstream of CRISPR arrays and plays a vital role. In

type I-E systems, to facilitate the recognition of boundary between leader sequence
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and the first repeat by Cas1-Cas2 complex, an Integration Host Factor (IHF)
specifically binds with the leader sequence and forms a U-shape structure (Figure
1.7) (Nufiez et al., 2016). Cas1-Cas2 with a protospacer then docks into the leader-
proximal repeat. Next, two nucleophilic attacks happen on borders of the repeat. In
the first nucleophilic attack, the 3°’OH of the protospacer interacts with the leader-
repeat junction and ligates to the repeat. The second nucleophilic attack happens
between the first repeat-spacer boundary (Nuiiez et al., 2016; Yoganand et al., 2017).
Moreover, there are two conserved and palindromic inverted repeat motifs in the
CRISPR repeat settle Cas1-Cas2 like an anchor (Figure 1.7). The Cas1-Cas2
complex again serves as a molecular ruler and determines the size of the repeat and
the second attack site (Goren et al., 2016). After the spacer integrates in a polarized
manner, double strands of the first repeat serve as templates, and gaps are filled by
DNA repair enzymes, resulting in the duplication of the first repeat (Jackson et al.,

2017).

The IHF is essential for the process described above, therefore species who lack IHF
require other mechanisms in order to guide spacer integration. In type II-A, a short
motif that directly upstream to the CRISPR array determines the site of new spacers.
This conserved site is known as the leader-anchoring site (LAS). Mutations in the
LAS would lead to ectopic spacer integration in which spacer inserts in the middle of
an array (McGinn and Marraffini, 2016). A similar conserved leader motif has also
been reported in type [-D (Kieper et al., 2019), but the detailed molecular

mechanism still remains to be discovered.

The two adaptation phases as described above are the canonical mechanisms of
CRISPR-Cas when encountered a novel invader, which is termed “naive spacer
adaptation” (Fineran and Charpentier, 2012). However, phages can escape
elimination through point mutations in PAM or target sequences (Deveau et al.,
2008; Westra et al., 2014). To overcome this possibility, prokaryotes carry out a
different integration processes called primed spacer adaptation (also known as
priming) (Fineran et al., 2014; Richter et al., 2014). For those invaders who perfectly

or partially match pre-existing spacers, primed adaptation triggers rapid and efficient

34



integration of additional spacers. Primed adaptation is closely related to interference,
which has been reported in laboratory experiments and bioinformatics studies of type
I (Fineran et al., 2014) and type II CRISPR-Cas systems (Nicholson et al., 2019;
Nussenzweig et al., 2019). In the type I-E system, in order to perform this
interference-driven adaptation, the Cas1-Cas2 complex is required to interact with
CRISPR-associated complex for antiviral defence (Cascade) and Cas3. After
recognising the presence of PAM in exogenous MGE, the Cas1-Cas2 can bind to the
invading segment and Cas3 can annihilate it at the interference stage (Figure 1.9)
(Richter et al., 2014; Swarts et al., 2012). Cas3 retains helicase and nuclease
activities which can generate protospacer substrates for Cas1-Cas2 acquisition
(Kiinne et al., 2016). Similar machinery has also been reported in type I-F which
includes a large Cas1-Cas2-3 complex (including a composite protein fusion of Cas2
and Cas3) operating in both the interference and acquisition stages (Fagerlund et al.,
2017; Rollins et al., 2017). However, the presence of priming in other types still
remains unclear, and the underlying mechanisms in type Il system are also waiting to

be addressed (Nussenzweig et al., 2019).

1.3.2.2 The Mechanism of Expression

Sequence-specific target elimination by CRISPR-Cas system relies on spacers that
are found in the CRISPR loci and are complementary to the target foreign genetic
elements. At the expression phase, the CRISPR locus is normally transcribed from a
site in the leader sequence, and produces a long pre-crRNA that contains the
complete array transcript. The pre-crRNA is then processed by Cas genes into
mature crRNAs that include the spacer and part of the repeat (Haurwitz et al., 2010).
The process of transcription is similar across the two classes, whereas maturation is

carried out using different endoribonucleases (Figure 1.8) (Richter et al., 2012a).
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Figure 1.8 Spacer expression in CRISPR-Cas system. Expression varies in two
classes. Pre-crRNA in class] system are mainly processed by Cas6. Repeats with
hairpin structures can be directly recognised by Cas6 while the non-structured ones
are based on sequence distinguishing. The multi-domain proteins Cas9, Cas12 and
Cas13 are employed in crRNA biogenesis. A special trans-activating crRNA
(tracrRNAs) is required in type II. It can bind with repeat in crRNA and form a
duplex for Cas9 combination. The long pre-crRNA with multiple effector complexes
is then cleavage by RNase III and an unknown RNase to short mature crRNAs. By
contrast, repeats in type V and VI can form stem-loops and directly be distinguished
and cleaved by Cas12 and Cas13, respectively. Adapted from Hille et al. (2018).
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In almost all class1 systems, the group of Cas6 and its variants are used during
expression. For instance, Cas5d in type [-C (Nam et al., 2012), Cas6f in type I-F
(Przybilski et al., 2011) and Csf5 in type IV (Ozcan et al., 2019) can all be used.
Cas6 can recognise and cleave repeat sequences in pre-ctrRNA, and generate mature
crRNAs. Most CRISPR loci of type I contain palindromic repeats that are able to
form stem-loop structures, which provide bonding and cleavage sites for
endoribonucleases. After processing, the mature crRNA consists of a full spacer, a 5’
repeat handle and a 3’ stem-loop that belongs to the next repeat (Figure 1.8)
(Haurwitz et al., 2010; Richter et al., 2012a; Sashital et al., 2011). In particular, Cas6
remains associated with crRNAs after cleavage and facilitates Cascade formation.
CrRNA serves as scaffold for other Cas proteins combinations in the subsequent
interference stage (Nam et al., 2012; Wiedenheft et al., 2011). In contrast, repeats in
type I-A and type I-B are non-palindromic (Kunin et al., 2007), and these cannot
form stem-loops naturally. Though hairpin structure is very importation for Cas6
cleavage, Cas6 can work independently of repeat sequence recognition (Wang et al.,
2016b). However, other studies assumed the interaction was more related with Cas6
remodelling activity and formed a dimerization structure for reposition site
recognition (Sefcikova et al., 2017; Shao and Li, 2013; Shao et al., 2016). Similarly,
repeats that are found in type III systems are predominantly non-structured or only
form week stem-loops (Kunin et al., 2007). In type III-A system, metal ions mediate
Casb6 activity for crRNA processing (Hatoum-Aslan et al., 2014; Wei et al., 2019).
The further maturation requires a trans-acting non-Cas nuclease protein; however,
full elucidation of the underlying mechanism requires more investigation (Hille et
al., 2018). In particular, for systems that lack structured repeats, such as I-A, I-B and
ITI-A, Cas6 detaches crRNA after cleavage and do not participate in subsequent
Cascade formation (Plagens et al., 2014; Richter et al., 2012b). Meanwhile, for
systems such as the I1I-B variant that lack homologues of Cas6 nucleases, crRNA
biogenesis might be carried out by host housekeeping endonuclease RNase E as a

replacement (Behler et al., 2018).

CRISPR expression and crRNA maturation in type 2 systems is quite different to
class 1. In type II systems, RNAs that are called trans-activating crRNAs

(tracrRNAs) mediate maturation and immunity (Deltcheva et al., 2011; Shmakov et
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al., 2015). These tractrRNAs contain segments that can base-pair with repeats within
the pre-crRNA and this compensates for the drawback associated with unstructured
repeats. These tractrRNA:crRNA duplexes can be combined and stabilized by the
Cas9 effector protein in preparation for interference (Deltcheva et al., 2011). Then, a
RNase III is recruited to cleave within the repeat. The tracrRNA:crRNA duplex is
subsequently matured through removing 5’ repeat-derived tag by an unknown RNase
(Hille et al., 2018; Jinek et al., 2012). Transcription in type II-C is slightly different.
Promoter elements are located in repeats rather than in the leader sequence, so
crRNAs are individually transcribed before binding with tracrRNAs and Cas9
(Zhang et al., 2013). In type V and VI systems, repeats with stem-loops can be
recognised by the corresponding effector proteins Cas12 and Cas13 (Figure 1.8).
Most systems in type V and VI do not require tractrRNAs for crRNA processing
except type V-B (Shmakov et al., 2015). The multi-domain proteins Cas12 and
Casl13 are able to cleavage within the repeat and accomplish crRNA biogenesis
independently (Hille et al., 2018). It has also been noted that some long pre-crRNAs
in type VI-A can directly serve as guides for the interference machinery without

maturation (East-Seletsky et al., 2017).

1.3.2.3 The Mechanism of Interference

During the last stage of CRISPR-Cas mediated immunity, mature crRNA guides
interference machinery and performs a sequence-specific destruction, which
provides robust protection against invaders. Generally, interference can be divided
into two steps: 1) target recognition and binding; 2) target cleavage. Both stages of
interference involve different Cas proteins, which causes a diverse classification of

CRISPR-Cas systems (Makarova et al., 2020).
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Figure 1.9 Interference in CRISPR-Cas system. Diverse Cas genes are involved
during interference stage of two classes. In class1, multiple Cas genes are bonded
with crRNA and forms Cascade (or Csm/Cmr) complex. In type I, crRNA with a
spacer can quickly combine with target complementary sequences and the
dissociative ssDNA cleaved by Cas3. However, type III can target both DNA and
RNA sequences. After attaching the target, Cas10 in Csm or Cmr initiate breaks on
both stands and activating Csm6 RNA cleavage by mediating cyclic oligoadenylates
(cOAs) production. The complementary RNA transcript is abolished by Cas7 in
complex. By contrast, interference in class?2 is relatively simplified. Individual multi-
domain effector remains connected with crRNA (and tracrRNAs in type II) since
expression stage. Then, target sites are cleaved by nucleases domains like HNH and
RuvC in Cas9 (type II) and RuvC in Casl12a (type V-A). Adapted from Hille et al.
(2018).

In class 1 systems, multiple Cas proteins normally would unite together as one large
effector complex. The complex works with crRNA and other nuclease in invader
binding and annihilation. In type I, the functional machinery is Cascade complex
with nuclease Cas3, which was briefly described in expression section 1.3.2.2.
Cascades in all subtypes of type I are largely conserved but with minor differences
(Makarova et al., 2015). Here, we will mainly introduce Cascade in subtype I-E
because it is the most well-studied model (Figure 1.9). Cas6 that works in expression
stage remains binding with crRNA, and sequentially serves as a scaffold for
assembly of 1 Cas5, 6 Cas7, Cas8 and 2 Casl1, which forms a Cascade in a
seahorse-like shape (Van Der Oost et al., 2014; Semenova et al., 2011). Cas5, Cas6
and Cas7 all belong to repeat-associated mysterious proteins (RAMPs) that can bind
RNA sequences (Wang and Li, 2012). Multiple Cas7 proteins form the backbone of
Cascade with Cas5 at the 5° end. Meanwhile, Cas6 on the other side is bound with a
repeat hairpin (not necessary for non-structured repeat) (Jackson et al., 2014). At the
beginning of interference, PAM in the foreign genetic element is recognised by a
large subunit (LS) Cas8 and then dsDNA is unwound for crRNA-protospacer
binding (Hayes et al., 2016). In this process, a seven-nucleotide region (first eight
nucleotides except the sixth, termed the seed sequence) flanking to PAM was found
play a key role in protospacer base pairing. Mutations in the seed sequence
significantly abolish foreign elements target compared to mutations outside this
region, which indicates its function in mediating efficient initial protospacer

scanning (Semenova et al., 2011). After target binding, an R-loop including double-
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stranded DNA-crRNA hybrid and a non-target ssDNA is formed and stabilized by
the two Cas11 small subunits (SS) (Mulepati et al., 2014). At the final step, the non-
target stand is bulged for single-stranded nuclease Cas3 cleavage (Figure 1.9)

(Redding et al., 2015; Xiao et al., 2017).

Interference machinery in type III system can target both DNA sequence and RNA
transcript. Type III-A and III-B also employed similar complexes like Cascade for
target destruction, which are known as Csm and Cmr, respectively (Figure 1.9)
(Hochstrasser et al., 2014; Jackson et al., 2014). In the complex, Cas5 binds the 5’
end of mature crRNA and multiple Cas7 family proteins form the backbone. Cas11
and Cas10 are defined as small and large subunits, respectively (Osawa et al., 2015;
Taylor et al., 2015). Interference starts with effector complex binding with the
nascent transcript that possesses a cognate repeat segment. While the RNA transcript
is degraded by Cas7 subunits, Cas10 also performs a DSB of the invader DNA
(Figure 1.9) (Osawa et al., 2015; Staals et al., 2014). A recent finding has
subsequently revealed a second role played by Cas10 during interference. It can help
generate cyclic oligoadenylates (cOAs), which can active RNase (belonging to
Csmb) to cleavage RNAs non-specifically (Kazlauskiene et al., 2017). Though PAM
is not involved in the mechanism of self versus non-self discrimination in most type
III systems, a motif called RNA-PAM that adjacent to target RNA seems crucial for
recognition and degradation in type III-B (Elmore et al., 2016; Marraffini and
Sontheimer, 2010).

In contrast to the class 1 system which used multi-subunit effector complexes as
interference machinery, class 2 prefers single multi-domain proteins that cooperate
with crRNA. The use of simple structured proteins by class 2 means it is favoured in
the extensive application in the genome-editing field (Mali et al., 2013b). Cas9,
Casl2 and Cas13 are the featured effector proteins of type I, type V and type VI in
class 2, respectively (Hille et al., 2018). They operate from the expression stage
(section 1.3.2.2) and sequentially bind with crRNA until cleaving targets. The most
well-characterised interference mechanism of class 2 is in type II system in which

the duplex tracrRNAs:crRNA unites with Cas9 and form a ribonucleoprotein
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complex (Figure 1.9) (Mir et al., 2018). A PAM that is located downstream of the
target sequence assists the probe for complementary seed sequences. This results in
base-pairing between crRNA and the target strand in an R-loop structure (Jinek et
al., 2012; Sternberg et al., 2014). HNH and RuvC domains in Cas9 who have
nuclease activities are then triggered to produce blunt breaks in both strands (Jinek et
al., 2014; Yamada et al., 2017). Similar multifunction genes were also identified in
type V system: Cas12a, Cas12b and Cas12c¢ for type V-A, V-B and V-C,
respectively (Shmakov et al., 2015). Unlike Cas9 and Cas12b, the activity of Cas12a
does not associate with tracrRNAs (Shmakov et al., 2015). In type V-A, target
sequence binds with crRNA from a T-rich PAM recognition and then both strands
are degraded by the RuvC domain in Cas12a (Swarts et al., 2017). However, the
Ruv-like domain is missing in Cas13 and its activity does not require tracrRNAs
either (Abudayyeh et al., 2016; Shmakov et al., 2015). In Cas13, two higher
eukaryotes and prokaryotes nucleotide (HEPN)-containing domains act as RNases to
destroy the target. After crRNA binding with complementary single-stranded RNA
(ssRNA) transcripts, the machinery is activated and a global degradation of all
exposed RNA including RNA transcripts from the invader is carried out (Liu et al.,

2017).

Intriguingly, the interference module is not restricted to the combination with crRNA
from its adjacent CRISPR array. In Marinomonas mediterranea, ctrRNAs from type
I-F system can guide the interference machinery from type I1I-B system to destroy
segments from invaders (Silas et al., 2017b). This cooperation provides dual
protection for the host. Phages that possess mutant PAM escape defence from type I-
F but can still be captured by type I1I-B since the interference complex of the latter
system does not require specific PAM (Marraffini and Sontheimer, 2010) and is

more tolerant of protospacer mutations (Staals et al., 2014).
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1.3.3 Arms Race between CRISPR-Cas Systems and Phages

Spacers in CRISPR loci provide specific protection to the host in defending a range
of MGEs. However, a comparative analysis has reported that the majority of known
spacers lack traceable origins, which is known as “dark matter” (Shmakov et al.,
2017b). The rest of the spacers that have recognisable protospacers are mostly
mapped to phages (80% to 90% based on different subtypes) (Shmakov et al., 2017a,
2017b). This constructs a co-evolution relationship between prokaryote and phages
(Westra et al., 2016). The special “cut and paste” mechanism of CRISPR-Cas system
determines its high specificity during immunization. Correspondingly, phages also
encode several counter-defence strategies against the immunity from CRISPR-Cas.
In this section, we are going to briefly introduce several strategies that phages

employ during the constant arms race with CRISPR-Cas.

First, phages can circumvent target from CRISPR-Cas through modifying self-
genomes such as mutation and deletion. A co-evolution study has revealed that even
a single mutation in target sequences (like protospacer) can help avoid cleavage
(Heidelberg et al., 2009; Semenova et al., 2011). Additionally, mutations are more
likely happen in phage PAM, which avoid annihilation from those CRISPR-Cas
subtypes that more tolerant with mutations (Deveau et al., 2008; Pyenson et al.,
2017; Sun et al., 2013). As mentioned before (section 1.3.2.1), CRISPR-Cas triggers
primed adaptation when cleaving known phages, especially with mutated targeted
regions. Under this selective pressure, corresponding segments were observed
deleted in phage genome in advantage from escaping capture by crRNA (Watson et
al., 2019). Moreover, genetic rearrangement was noticed in phage genomes as well.
Multiple phages recombined and formed a mosaic genome, in which the targeted
region was exchanged and phages resistance was raised (Paez-Espino et al., 2015;
Westra et al., 2016). Under pressure from CRISPR-Cas immunity, point mutations
and phages segments rearrangement were also observed could accrue in order to

enhance the survival rate (Paez-Espino et al., 2015).
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Aside from genome modification, some phages specifically encode a protein called
anti-CRISPR (Acr) that interacts directly with interference machinery, including the
effector complex or nuclease, and abolishes CRISPR-Cas immunization (Borges et
al., 2017; Hampton et al., 2019; Hille et al., 2018). Acr has been identified from both
temperate and lytic phages (Borges et al., 2017; Hynes et al., 2017) and target a wide
range of CRISPR-Cas subtypes including I, II, III, V and VI in Bacteria (Borges et
al., 2017; Hwang and Maxwell, 2019) and type I and III in Archaea (Bhoobalan-
Chitty et al., 2019; Peng et al., 2020). Diverse Acr proteins are highly specific to
different CRISPR-Cas subtypes. In type I-F, multiple Acr proteins were identified to
prevent CRISPR-Cas. AcrF1, AcrF2 and AcrF10 bind subunits of Cascade in order
to impede target DNA binding, while AcrF3 directly circumvents cleavage from the
Cas3 nuclease (Bondy-Denomy et al., 2015; Guo et al., 2017). Similar inhibition
activity was also noticed in type II. AcrlIA4 blocks Cas9 activity in many-fold ways.
Firstly, it combines with PAM-interaction domains to abolish DNA binding (Basgall
et al., 2018; Dong et al., 2017; Yang and Patel, 2017). Next, it associates with the
DNA-melting region to prevent DNA binding and unwinding (Trasanidou et al.,
2019). Finally, it interacts with the RuvC domain and the bond that connected RuvC
and HNH domain, which repress DNA cleavage sterically (Dong et al., 2017; Shin et
al., 2017). The multi-angle regulation by Acrll4 also suggests its potential
application in manipulating CRISPR-Cas9 gene editing (Sontheimer and Davidson,
2017). Most discoveries of the Acr functions focussed on interactions with
interference machinery and its role in adaptation and expression remains an open

question (Hille et al., 2018).

Intriguingly, CRISPR-Cas systems also can be encoded by phage, which serves as an
anti-defence counteract against the host genome (Faure et al., 2019; Hampton et al.,
2019; Hille et al., 2018). A complete and functional I-F system was identified in
Vibrio cholerae phage, in which spacers in phage CRISPR loci can target host
genomic islands. These islands are normally dominant in prokaryotic phages
inhibition (Seed et al., 2013). Moreover, many Cas gene clusters in phages are
incomplete and harbour short CRISPR arrays (Faure et al., 2019; Hampton et al.,
2019). The range of spacers in phage CRISPR loci covers not only bacterial
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genomes but also other phages, which hypothetically indicates the role of phages

encoded CRISPR-Cas in virus-virus competition (Faure et al., 2019).

1.3.4 Origin and Evolution of CRISPR-Cas Systems

The CRISPR-Cas machinery can be briefly divided into adaptation and effector
modules from the perspectives of structure and function (Makarova et al., 2015). As
introduced in section 1.3.2, adaptation modules in both classes mainly involve Cas1
and Cas?2 proteins whereas effector modules are relatively more diverse. In
particular, MGE not only participate in the co-evolution of CRISPR-Cas, but have
also made vital contributions to its origin and subsequent diversification multiple

times (Koonin and Krupovic, 2015; Mohanraju et al., 2016; Shmakov et al., 2017a).

The Casl endonuclease in the adaptation module is thought to be derived from a
superfamily of self-synthesizing DNA transposons called casposons (Krupovic et al.,
2014). During transposon integration, casposon has been found to employ the
transposase activity of Casl homologous. This process is very similar to spacer
integration and thus casposon is predicted, and experimentally demonstrated, to be
relevant to the origin of CRISPR-Cas adaptation module (Krupovic et al., 2014,
2016). Cas2 is thought to have originated from the insertion of a toxin-antitoxin
module into an ancestral casposon, which completes the emergence of adaptation

module (Mohanraju et al., 2016).

Compared to the adaptation module, the understanding about the origin of effector
module is less evident. A recent study revealed the process of effector complex
emergency in class 1 using type III system as an ancestral candidate (Koonin and
Makarova, 2019). They hypothesized that the ancestor of CRISPR-Cas is a putative
signalling system (likely to be an abortive infection module) that was comprised of a
Cas10 homologous, CRISPR-associated Rossmann fold (CARF) domain and HEPN
domain. This theory is compatible with the previously presented biochemical
mechanisms (Kazlauskiene et al., 2017; Niewoehner et al., 2017). cOA molecules

that synthesized by effector complex Cas10 can bind Csm6 from CARF domain and
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activate the Csm6’s RNase activity respect to HERP domain. This RNase activity of
HERP domain can abolish RNA sequences indiscriminately and potentially regulate
dormancy or programmed cell death. Based on the cOA-Cas10 signalling
interaction, Koonin & Makarova (2018) proposed that the effector module of
CRISPR-Cas may have initialised from a stress-response system that is mediated by

cOA.

Class1 CRISPR-Cas system employs multiple Cas proteins in interference
machinery and is regarded as the ancestral system considering the widespread across
prokaryotes (Koonin and Makarova, 2019). Effector module in class2 requires a
single, multiple domain Cas protein. The detailed evolutionary process is still not
completely understood, but comparative analysis has revealed that the origin of type
IT and type V is due to random insertion of TnpB-coding transposons (Shmakov et

al., 2017a).

1.3.5 Horizontal Gene Transfer (HGT) and CRISPR-Cas Systems

HGT, including transformation, conjugation and transduction frequently occurs
between prokaryotes and has been identified to have affected CRISPR-Cas loci
through phylogenetic and comparative analyses (Godde and Bickerton, 2006;
Makarova et al., 2013, 2015). Complete CRISPR-Cas systems have also been found
in different classes of MGEs, such as plasmids, viruses and transposons (Faure et al.,
2019; Newire et al., 2020; Peters et al., 2017; Seed et al., 2013), indicating their
mobility between organisms. HGT is thought to contribute to the widespread
distribution of CRISPR-Cas systems in Archaea and Bacteria (Makarova et al.,
2015).

CRISPR-Cas systems can also affect HGT through several mechanisms. For
example, a spacer in the CRISPR loci of Staphylococcus epidermidis complements a
nickase gene that is widespread in staphylococcal conjugative plasmids (Marraffini
and Sontheimer, 2008). When a plasmid carrying this gene enters a cell, it is
recognised as invading DNA, and its acquisition by the host cell is prevented by the
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CRISPR-Cas system. Homologies between spacers and integrative conjugative
elements have also been noted in Pseudomonas aeruginosa (Wheatley and Maclean,
2020). From a pneumococcal virulence study of Streptococcus pneumoniae, natural
transformation has also been found to be constrained by CRISPR-Cas, and
additionally this study stressed the fact that the environment can drive losses of
CRISPR-Cas (Bikard et al., 2012). In addition, a comparative analysis found that
species with active CRISPR-Cas enclosed less MGEs and have a narrower spread in
environments, which indicated the inhibition force exerted by CRISPR-Cas in order
to prevent HGT (Zheng et al., 2020). Consistently, Wheatley & Maclean (2020)
proposed a similar hypothesis that species without CRISPR-Cas or those that
harboured inactive CRISPR-Cas are better at adapting to new niches through
acquiring beneficial genes such as antibiotic resistance genes (ARGs) by HGT.
Moreover, another independent study showed the association between acr genes and
ARGs in P. aeruginosa (Shehreen et al., 2019). They hypothesized that acr genes in
the host that were obtained through HGT might inhibit the activity of CRISPR-Cas,
consequently promoting the gains of ARGs. In contrast, HGT by transduction can be
enhanced by the presence of short segments in the host genome that match the
invasive DNA (Varble et al., 2019; Watson et al., 2018). Interestingly, there does not
seem to be a correlation between CRISPR activity (measured by the length of
CRISPR arrays) and the extent of HGT on evolutionary timescales (Gophna et al.,
2015). From the perspective of long-term evolution, the inhibitory effect of CRISPR-
Cas systems on HGT might therefore be balanced by promoting transduction or

other mechanisms (Faure et al., 2019).

HGT of CRISPR-Cas is pervasive and the inhibition of CRISPR-Cas to HGT were
not significant in long timescale (Bikard et al., 2012; Gophna et al., 2015; Marraffini
and Sontheimer, 2008). Therefore, Bernheim & Sorek (2020) proposed a model
called the “pan-immune system” that describes how closely related organisms carry
different defence mechanisms, giving the bacterial community the ability to resist a
large range of invaders. In this model, HGT plays a key role in transferring and
maintaining defence systems, when the transfer between species bears low fitness
costs. Aided by HGT, defence systems can be regarded as public goods, collectively

defending closely related organisms. Correspondingly, phages will mutate constantly
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to escape bacterial resistance systems (Paez-Espino et al., 2015), which drives rapid

and constant co-evolution between phages and prokaryotes (Faure et al., 2019).

1.3.6 Objectives of This Study

Although phylogenetic approaches have been employed as the principal evolutionary
tools for more than a century, many complex patterns such as hybridization, HGT,
gene fusion cannot be accurately and thoughtfully presented solely by the tree-based
model. Gene fusion and HGT have contributed to the origin of many organisms and
these processes are still ongoing. To study these patterns, we employed network-
based approaches such as SSNs. We hypothesized that networks had great potential
in handling large datasets and have applied network thinking in studies about

composite genes and CRISPR-Cas systems.

One of the main aims of this study is to assess the power of network approaches.
Different large datasets were constructed according to the research objectives. To
study composite genes in the three domains of life as well as MGEs, we constructed
a dataset containing 182 complete eukaryotic and prokaryotic genomes, 79 viruses
and 1614 plasmids. The main objectives and findings for studying composite genes

(Chapter 2) are as follows:

(1) Taimed to identify composite genes and parental component genes using
SSNs and identified 221,043 (18.57%) through construing networks in
program CompositeSearch.

(2) Taimed to investigate the distribution of composite genes in different species.

(3) Taimed to figure out whether composite genes are biased in their distribution,
and to explore the underlying reasons through functional annotations.
Through Odd Ratios test, composite genes are more likely to derive from

eukaryotes rather than prokaryotes in most COG categories.
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The other research objects in this thesis relate to CRISPR-Cas systems, which show
complex evolutionary patterns within and across prokaryotic organisms. To
comprehensively understand the evolution of this system, we collected all available
prokaryotic nucleotide genomes from the NCBI RefSeq database and used different
approaches, including comparative analysis, phylogenies and networks. The

objectives and finding of studying CRISPR-Cas are as follows:

(1) Taimed to compare different CRISPR-Cas identification tools from the
perspective of bioinformatics using the same dataset (Chapter 3).

(2) Taimed to investigate the spacer evolution in CRISPR loci and analyse the
effects of insertion, deletion, and recombination (Chapter 3). Diverse
evolutionary processes were observed in spacers.

(3) I aimed to examine the “pan-immune model” hypothesized by Bernheim and
Sorek (2020) and found pervasive repeat sharing and a small number of
spacer sharing between species using network and phylogenetic approaches
(Chapter 3).

(4) I aimed to analyse the distribution of CRISPR-Cas system and demonstrated
related genetic backgrounds through a co-occurrence study (Chapter 4).

(5) Iaimed to explore CRISPR-Cas chemical mechanisms through combinations

of a network model and a co-occurrence study (Chapter 4).
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Chapter 2.

Eukaryote Genes Are More Likely than
Prokaryote Genes to be Composites
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2.1 Abstract

The formation of new genes by combining parts of existing genes is an important
evolutionary process. Remodelled genes, which we call composites, have been
investigated in many species, however, their distribution across all of life is still
unknown. We set out to examine the extent to which genomes from cells and mobile
genetic elements contain composite genes. We identify composite genes as those that
show partial homology to at least two unrelated component genes. In order to
identify composite and component genes, we constructed sequence similarity
networks (SSNs) of more than one million genes from all three domains of life, as
well as viruses and plasmids. We identified non-transitive triplets of nodes in this
network and explored the homology relationships in these triplets to see if the middle
nodes were indeed composite genes. In total, we identified 221,043 (18.57%)
composites genes, which were distributed across all genomic and functional
categories. In particular, the presence of composite genes is statistically more likely

in eukaryotes than prokaryotes.

2.2 Introduction

Reticulation occurs when two or more evolutionary lineages merge, and
consequently, reticulation cannot be visualised or analysed using tree-like models of
evolution. We see reticulate events occurring during meiotic recombination,
horizontal gene transfer (HGT, also known as lateral gene transfer) (Nelson-Sathi et
al., 2012), exon shuffling (Oakley, 2017), and hybrid speciation (Linder et al., 2004)
for example. Merger events can be seen at multiple levels, such as genes, genomes,

operons and gene clusters.

This paper focuses on the combination of genetic fragments from unrelated gene
families to produce a single gene. This process of gene fusion occurs when parental
(or component) genes merge to form a new gene called a composite (or fused) gene
(Corel et al., 2016; Oakley, 2017). Because reticulate evolution cannot be adequately
represented using tree-like representations, we constructed sequence similarity

networks (SSNs, also known as protein/gene similarity networks) and visualised
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them using Gephi (Bastian et al., 2009) and Cytoscape (Shannon et al., 2003). In
these kinds of networks, gene, genome or species data can be used to detect
recombination events. In the SSNs that we have constructed, genes or proteins are
represented as nodes while inferences of homology between genes are represented
by edges. Within the framework of the SSN, some special relationships, such as non-
transitive triplets when two component genes have no overlap, can be identified as
motifs in the network. SSNs have been used elsewhere in order to investigate the
existence of composite genes (Coleman et al., 2015; Haggerty et al., 2014). In an
analysis of 15 eukaryotic genomes, Haggerty et al. (2014) constructed a network that
contained a giant connected component (GCC) where one quarter of all sequences
were identified as composite genes and approximately 10% of sequences were
identified as multi-composite genes (those formed from the union of two or more
composite genes). Moreover, Coleman et al. (2015) used SSNs to explore 1642
antibiotic resistance genes derived from more than 100 species. They found 73 fused
genes using the FusedTriplets software (Enright et al., 1999; Jachiet et al., 2013),
which accounted for 4.43% of the total gene count. In addition, Jachiet et al. (2013)
using the MosaicFinder software, found gene fusions in both cellular organisms and
mobile genetic elements (MGESs). In another analysis using the same kind of
approach, viruses were suggested to consist of only 8-15% of composite genes, with
this low number being attributed to the blurry boundaries between viral gene
families (Jachiet et al., 2014). In addition, gene fusion has been shown to have
played an essential role in the evolution of the cellular life cycle, with composite
gene formation seen in genes related to chromatin structure and nucleotide
metabolism (Méheust et al., 2016). Also, Ocafia-Pallares et al. (2019) concluded that
there was a significant role for gene fusion in the origin of eukaryotes, as evidenced
by SSN built from eukaryotic EUKaryotic restricted Nitrate Reductase (EUKNR)
and similar eukaryotic and prokaryotic sequences. The result indicated that EUKNR
was formed by a fusion of eukaryotic sulfite oxidases (SUOX, N-terminal) and
NADH (C-terminal) reductases. Therefore, while it is clear that gene fusion is a
common feature of genes, a comprehensive comparison across a broad range of taxa

and molecule types would provide more evidence for its frequency and impact.
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In this paper, we describe an approach to identify composite genes using a dataset of
1875 completed genomes, comprising more than one million sequences, from all
three domains of life as well as from MGEs. We tested whether the rate of gene

remodelling has been uniform across all of life, and all cellular functional categories.

2.3 Materials and Methods

2.3.1 Dataset Construction and BLAST Analysis

A total of 1,190,265 protein sequences were collected from the RefSeq database at
the National Centre for Biotechnology Information (Pruitt et al., 2006). We manually
selected taxa in order to maximise diversity, while also ensuring computational
tractability. The final dataset covered 182 species from the main representative
lineages, belonging to 36 eukaryotes (13 phyla, 21 classes), 56 archaea (4 phyla, 9
classes), 90 bacteria (25 phyla, 32 classes), 79 viruses and 1,614 plasmids.
Homology between pairs of amino acid sequences was inferred using an all-versus-
all protein BLAST (BLASTP version 2.4.0, NCBI, Bethesda, MD, United States),
with an E-value cutoff of 1e-5, 5000 max target sequences, and soft masking
parameter (the others by default) (Altschul et al., 1997). The dataset species
information and download paths are available at

https://github.com/IJMclnerneyLab/CompositeGenes/blob/master/accession.txt.

2.3.2 Composite Gene Identification

Using the BLAST results as input, we identified composite genes as motifs of
triplets in the graph where there was a “non-transitive” relationship between three
nodes (Corel et al., 2016). Composite gene detection was carried out by the
CompositeSearch program (Pathmanathan et al., 2017) when associated component
genes have no overlap theoretically, with default identity cutoff of 30% and 20
amino acid overlaps to limit false negative error. The CompositeSearch output
contains information on composite genes, component genes and the families to
which they belong. This output was depicted, explored, and manipulated using

Gephi (version 0.9.2, The Gephi Consortium, Paris, France) (Bastian et al., 2009).
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Because the proportion of composite gene from different domains might be affected
by biased sequence database sampling, we randomly sampled 50,000 protein-coding
genes from archaea, bacteria, eukaryotes and plasmids respectively. These random
samples were taken forward for analysis in the same way as the original data. The
major difference between the subsampled datasets and the original data was that in
the subsampled datasets, the number of genes from each of the four kinds of dataset
was the same. We used CompositeSearch in order to construct an SSN from the
BLASTP output of the subsampled datasets containing 200,000 genes. These SSNs
were then used in order to identify composite genes. Sampling was repeated 100

times and the results were summarised graphically.

2.3.3 Functional Annotations

We used EggNOG (version 4.5.1, Computational Biology Group—EMBL,
Heidelberg, Germany) (Huerta-Cepas et al., 2015) in order to assign gene functional
categories. The analysis was carried out through the web interface using the
DIAMOND (Buchfink et al., 2015) mapping mode. In the output, genes were
assigned to different Orthologous Groups (OGs), and each OG had functional
annotations that included Clusters of Orthologous Groups (COGs) functional
categories: COG for universal Bacteria, EuKaryotic Orthologous Groups (KOGs) for
Eukaryotes and arKOGs for Archaea (Tatusov, R. L., Galperin, M.Y., Natale, D.A.,
Koonin, 2000); Gene Ontology (GO) terms (Consortium, 2004); Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways and SMART/Pfam protein
domains. Both composite and non-composite genes were placed into at least one of

23 COQG categories and at least one of four GO terms.

2.3.4 Statistical Analysis

In the EggNOG output, each gene has a detailed functional annotation and is
associated with at least one general COG category code (A to Z apart from R and X).
Because of recombination, the category code for a given gene could be single letter

like “A” or multiple letters such as “ABC”. When counting the number of genes that
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possess a particular function, if a multiple letter category was selected, we counted
this gene multiple times. For instance, if the most common COG category for a gene

was “ABC”, and then this gene was counted three times as A, B and C.

To investigate the distribution of composite genes and non-composite genes among
eukaryotes and prokaryotes, an odds ratio (OR) test (Szumilas, 2010) was carried
out. OR tests are normally used to test the strength of the association between two
events. Here, for each protein function, we used an OR test to test the association

between gene origin and the likelihood of fusion (See Equation 1).

_afc _ ad
"~ b/d  bc

where a is the number of composite eukaryote genes, b is the number of non-

OR @™

composite eukaryote genes, c is the number of composite prokaryote genes, d is the
number of non-composite prokaryote genes. The 95% confidence intervals (CI) were

calculated by

Upper 95% CI = e |In(OR) + 1.96 <1+1+1+1) @
pper=ob i =en i ' a b ¢ d

1 1 1 1
Lower 95% CI = e” |In(OR) — 1.96 <— +—-+ —+—)
a b ¢ d

Considering all OR tests that were carried out on 24 COG categories, simultaneous
tests are likely along with false statistical inference (Chen et al., 2017). Therefore,
we used a conservative Bonferroni correction (Sedgwick, 2012) to limit type I error.
Bonferroni correction is method that has been widely used for multiple comparisons
to adjust p-values through controlling the familywise error rate (Bland and Altman,
1995). Since the size of our tests is moderate, the conservativeness of Bonferroni
adjustment should be tolerant. The critical level of significance was initially set as o
= 5%, we corrected it as o/2N, N is the number of performed tests, which in our case

is 24. The new significance level is 0.1% and corresponding confidence coefficient
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01 99.9% is 3.09 standard deviations, using the standard normal distribution table.

The corrected CI was calculated by

Upper 95% CI = e”

Lower 95% CI = e”"
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2.4 Results

2.4.1 Pervasive Existence of Composite Genes across All of Life

We assembled a dataset of 1,190,256 genes from 36 eukaryotes, 56 archaea, 90
bacteria, 79 viruses and 1614 plasmids from more than 60 taxonomic classes.
Following an all-versus-all BLAST, a total of 540,325,758 significant hits were
detected. Using CompositeSearch, an SSN containing 1,025,263 nodes and
109,650,422 edges was constructed. In this network, 221,043 composite genes
(18.57% of the gene dataset, Figure 2.1a) were identified, linked to 603,604

component genes. Collectively, these genes were assigned to 360,981 gene families.
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Figure 2.1 Pictures of composite and component genes among different
domains. (a) Proportion of composite genes within different domains and mobile
genetic elements. Dots represent individual genomes. (b) Numbers of nested
composite, strict composite, strict component, and non-remodelled genes within
different domains for each of the 100 replicates of equal sampling. All analyses were
replicated 100 times and each replicate is represented by a dot.

To gain a better understanding of those genes involved in non-homologous
recombination, all genes were categorized into four groups: nested composite genes,
strict composite genes, strict component genes, and non-remodelled genes (Figure
2.2). Nested composite genes have been formed by the merging of at least two
sequences but are additionally involved in other non-transitive triplets as
components; that is to say they themselves are composites but also form other
composites. In contrast to nested composites, strict composite genes only act as

composite genes in the network, similar to strict component genes. Non-remodelled
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genes do not show evidence of having participated in any recombination events. In
our dataset, 181,157 genes as nested composite genes, 39,886 genes were identified
as strict composite genes, 422,447 as strict component genes, and 546,766 as non-

remodelled genes (Figure 2.3a).

Figure 2.2 Sample patterns of nested composite, strict composite, strict
component, and non-remodelled gene families. Genes in family A not only
participate in the fusion of genes in family D as component genes but are also
formed by genes from family B and C as composite genes; this is regarded as nested
composite genes. In contrast, genes in family B, C and E belong to strict component
families which only act as component genes in this network. Similarly, genes in
family D as members of a strict composite family. In additional, family F is non-
remodelled gene. Also, because there is no overlap between gene family A and C,
gene family B and E so “A-B-C” and “B-D-E” can be regarded as non-transitive
triplets.

Within 182 species across the three domains of life, remodelled composite genes
were discovered in all species, indicating that gene fusion is, and has been,
widespread across all life on Earth. Overall, 23.66% (205,913 composites identified
from 870,120 eukaryotic and prokaryotic genes) of examined genes were identified
as composite. However, there was a considerable amount of variation in the
proportion of composite genes across species and molecule type. Table 2.1 presents
the ten genomes with the highest and lowest rates of composite genes among
eukaryotes and prokaryotes. Composite genes account for almost one third of the
genomes of Homo sapiens, Volvox carteri f. nagariensis and Aureococcus

anophagefferens.
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Table 2.1 The ten species that contain the highest and lowest proportions of
composite genes. The ten species that contain the highest (left) and lowest (right)
proportions of composite genes. All species that contains more than 24% composite
genes are from eukaryotes, whereas most species that contain less than 11% composite
genes are from archaea (Crenarchaeota family, mostly).

Total Number of

Species Number Composite Proportion
of Genes Genes
Homo sapiens 109018 34455 31.60%
Volvox carteri 14436 4298 29.77%
f. nagariensis
Aureococcus
Tgn species  anophagefferens 11520 3227 28.01%
W.lth Capsaspora owczarzaki 8792 2413 27.45%
highest
proportions Chlorella variabilis 9780 2626 26.85%
of ] Polysphondylium pallidum 12367 3313 26.79%
composite . o .
genes Monosiga brevicollis 9203 2322 25.23%
Salpingoeca rosetta 11731 2939 25.05%
Allomyces macrogynus 19446 4829 24.83%
Tetrahymena thermophila 10626 2625 24.70%
Fervidicoccus fontis 1385 152 10.97%
Thermoproteus uzoniensis 2112 224 10.61%
Nanoarchaeum equitans 540 57 10.56%
Ten species  Staphylothermus marinus 1598 168 10.51%
with lowest gy, -onhali
' phalitozoon
Proportions  jusestinalis 1939 203 1047%
of . 0
composite Ignisphaera aggregans 1930 198 10.26%
genes Methanopyrus kandleri 1687 173 10.25%
Pyrobaculum neutrophilum 1966 195 9.92%
Hyperthermus butylicus 1681 165 9.82%
Pyrolobus fumarii 1885 175 9.28%
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As shown in Figure 2.1a, the proportion of composite genes often shows a wide
distribution, depending on the classification of the genome in which the gene is
found. Among cellular lifeforms, eukaryote genomes contain the highest proportion
of composite genes on average (22.66%), followed by bacteria (14.76%) and then
archaea (12.78%). However, the distributions are quite wide though prokaryote
species manifested a narrower distribution of composite frequency when compared
with eukaryotes. When considering mobile genetic elements, the average percentage
of composite genes in plasmids (14.69%) is almost the same as bacteria but is

noticeably higher than the average seen for virus genes (4.82%).

To avoid the effects of unequal sampling in large dataset, we used a jackknife
resampling approach in order to generate datasets of 50,000 sequences each from
eukaryotes, archaea, bacteria and plasmids. With these uniformly-sized gene sets we
used the same analysis methods as for the large dataset: sampling, identifying
homologs and constructing SSNs. We then replicated this process 100 times. On
average, across all replicates, 19,443 (9.72%) genes were identified as composite
genes (Figure 2.1b), which is approximately half the percentage identified from the
large dataset (18.57%). The difference indicates that the detection rate of composite
genes is related to genomic sequence sampling size and therefore, the reporting of
composite genes is always a lower bound for the actual percentage. The resampling
procedure was designed to analyse composite gene distribution while attempting to
normalise for the difference in data size for each of the four main classifications
(eukaryote, bacteria, archaea and plasmids). Plasmids have the highest proportion of
strict composite genes while eukaryotes have the largest proportion of nested
composite genes (Figure 2.1b). Nonetheless, even though there is no obvious
difference between eukaryotes and prokaryotes in terms of the number of nested
composite genes, strict composite genes are approximately twice as likely in
eukaryotes as in archaea and bacteria. Bacteria and archaea are quite similar, in
terms of their proportions, for all four categories of remodelled and non-remodelled
genes. Finally, strict component genes do not show much difference across any of
our genome types though eukaryotes have the highest number of strict components

but the lowest number non-remodelled genes.
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2.4.2 Sequence Functional Annotations

The EggNOG mapper program (Huerta-Cepas et al., 2015) was used to assign
functions to all sequences. For all results, COG and GO annotations were used to
evaluate functional categories. First, composite genes were found to be widespread
across all functional categories (Figure 2.3, Appendix A - Figure S2.1). Gene
distributions show different patterns across different functions (Figure 2.3a,
Appendix A - Table S2.1). Genes with unknown function (category S, 66.23% non-
remodelled) are less likely to have been remodelled. The category of genes that have
the second-lowest rate of remodelling is cell motility (N, 49.08% non-remodelled).
Genes in RNA processing and modification (A, 26.52%) and dynamics (B, 25.96%)
had the highest rate of nested composites. Conversely, genes involved in signal
transduction (T, 59.05%) tend to have the highest proportion of strict component
genes whereas genes involved in extracellular structures (W, 7.3%) are more likely

to be strict composite.
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Figure 2.3 Function analysis of composite and non-composite genes. (a) Numbers
of nested composite, strict composite, strict component, and non-remodelled genes
across all COG categories. (b) Numbers of OR, upper 95% CI and lower 95% CI value
(after Bonferroni correction) across all COG functions. The detailed numbers are
shown in Appendix A - Table S2.1. There was not composite gene identified from
prokaryote in category Y in this dataset, so OR test was not applied. Apart from A and
W, which span 1.0, the odds of composite gene presence in all COG categories shows
statistically significant tendency in eukaryotes. A: RNA processing and modification;
B: chromatin structure and dynamics; C: energy production and conversion; D: cell
cycle control and mitosis; E: amino acid metabolism and transport; F: nucleotide
metabolism and transport; G: carbohydrate metabolism and transport; H: coenzyme
metabolism; I: lipid metabolism; J: translation; K: transcription; L: replication and
repair; M: cell wall/membrane/envelope biogenesis; N: Cell motility; O: post-
translational modification: protein turnover, chaperone functions; P: Inorganic ion
transport and metabolism; Q: secondary metabolites biosynthesis: transport and
catabolism; T: signal transduction; U: intracellular trafficking and secretion; V:
defence mechanisms; W: extracellular structures; Y: Nuclear structure; Z:
cytoskeleton; S: function unknown.
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We used an odds ratio (OR) test and Bonferroni correction (see Methods 2.3.4) on
composite and non-composite genes from eukaryotes and prokaryotes in different
functional categories in order to understand if genes from different classifications
were more likely to be remodelled in one or the other. If the OR value and its upper
and lower 95% CI value span 1, we take this as evidence that there is no significant
difference in composite gene formation between eukaryotes and prokaryotes, and
vice versa. If the OR number is greater than 1, this indicates a positive correlation
between remodelling and being from a eukaryotic genome, while if the number is
less than 1, it indicates an association between remodelling and being a prokaryote.
From the results of these analyses, the frequency of composite genes in eukaryotes
were found to be statistically higher than from that of prokaryotes for most kinds of
gene (Figure 2.3b, Appendix A - Figure S2.1, Appendix A - Table S2.1). Some
exceptions were found for genes in extracellular structures (category W) and RNA
processing (category A) whose 95% CI was found to span 1 (Figure 2.3b).
Therefore, across all the species examined, the odds of a gene being a composite if it

is a eukaryote is statistically significant higher than if it is a prokaryote.

2.5 Discussion

Network models such as SSNs have been broadly employed in studies of
evolutionary relationships (Alvarez-Ponce et al., 2013) and gene sharing and
recombination detection. We carried out a large-scale examination of more than one
million genes across 1875 complete proteomes including archaea, bacteria,
eukaryote, plasmids and viruses. The results suggest that composite genes exist in all

organisms and across all kinds of genes.

Eukaryotes, are known to have originated from the merger of an archaeon and a
bacterium (Mclnerney et al., 2014). On average, more than one fifth of eukaryote
genes show evidence of remodelling by gene fusion and the probability of a gene in
our dataset being composite if it is derived from a eukaryote genome are

significantly higher than the probability if the genes comes from a prokaryote
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genome. What is not known at this stage is the process that has led to the change in

frequency of gene remodelling.

Candidates for the process include the combination of homologous recombination
during meiosis, combined with the relatively lower level of horizontal gene transfer
(HGT) in eukaryotes compared with prokaryotes. The lower level of HGT means
that evolutionary innovation via HGT is more restricted in eukaryotes and this
restriction, combined with the opportunities for illegitimate crossover events during
meiosis could account for the elevated levels of remodelling. In other words,
restricting HGT sets up a situation where composite gene formation is one of the
main routes to evolutionary innovation. These findings are consistent with Jachiet et
al. 2013) who found that eukaryote sequence evolution was highly influenced by

gene fusion.

Although evidence of remodelling is quite high in eukaryote genes, plasmid genes
also show evidence for a large number of gene fusion events. The average
percentage composite genes found in plasmid genomes in our dataset is 14.69%,
which is almost as high as the percentage recorded for bacteria. In 2013, Jachiet et
al. (2013) mined a data set from three domains of life and MGEs, discovered 42% of
composite genes were included at least one MGE gene as a component. Likewise,
Halary et al. (2013) found that the plasmids in Borrelia genes behaved like “private
genetic goods” (Mclnerney et al., 2011) and were much less likely to be involved in
gene remodelling or sharing with other taxa. It has been suggested that this
restriction in gene sharing contributed to the survival of Borrelia against the host
immune environment (Barbour et al., 2006; Chaconas and Kobryn, 2010). The high
level of remodelling seen in plasmid genes would suggest that MGEs act as a source
for remodelling. Corel et al. (2018) also found that gene externalization (gene fusion

between cellular organism and MGE) played an important role in microbial

evolution (Sibbald et al., 2019).
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In our dataset, compared to non-composite genes, fusion genes are more likely to be
involved in chromatin structure and dynamics, extracellular RNA processing and
modification, as well as cytoskeleton. It has already been shown for eukaryotes that
composite genes have been foundational (Méheust et al., 2016), particularly in
photosynthetic lineages (such as ubiquitin-nickel superoxide dismutase fusion
protein in algae) (Sibbald et al., 2019). Further, a recent published work by
McCartney et al. (2019) suggested novel functional protein coding genes in human
could emerge through transcription-derived gene fusion. Novel composite genes also
have been reported in the origin of haloarchaeal lineages contributed by bacteria,
which is named as chimeric (ChiC) genes (Méheust et al., 2018). ChiC genes are
more likely to be involved transport and metabolism whereas other composite genes
more likely to be involved in replication, recombination and repair, both functions
have high composite gene portion in my dataset. In additional, the research from
Corel et al. (2018) also suggested that recent externalized genes in abundant in
replication, recombination, and repair but hard to accumulate, which could be the
result of transposon. Moreover, composite genes in viruses tend to be found in
nucleotide metabolism and transport, replication and repair, cell wall, membrane and
envelope biogenesis as well as post-translational modification. This finding is

consistent with Jachiet et al. (2014).

In conclusion, we applied a network approach in order to investigate composite gene
in species across all of life, although the results of this study really only provide a
lower-bounds estimate of the extent of gene remodelling, we have been able to show

that it is a pervasive and important element of evolutionary history.
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Chapter 3.

Dynamics of Spacer Evolution in CRISPR-Cas
Systems
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3.1 Abstract

CRISPR-Cas is a common immune system that exists in prokaryotes. Many studies
have focused on its application to gene editing, but the process through which
CRISPR systems arise and are maintained is not completely clear and needs to be
studied. In this study, we collected 12,184 prokaryotic species and identified
CRISPR arrays using four different computer programs. Using a series of
conservative filters, CRISPR arrays were identified in 82.7% of Archaea and 40.6%
of Bacteria. Using a combination of mutation tracking in CRISPR repeats, and a
comparative genomic analysis using arrays who share multiple similar spacers,
different evolutionary processes including polarised integration, middle (or ectopic)
spacer integration, deletion, recombination and horizontal gene transfer (HGT) were
detected that jointly produce a very complex pattern of CRISPR arrays. Our results
suggest that a large proportion of spacers appear in CRISPR arrays in non-
chronological order, which probably results from recombination or insertion in the
middle of an array. Also, although spacer insertions and deletions occur continuously
over time, the last spacer on the end of an array is likely to be more strongly
conserved than any other spacer. From network and phylogenetic approaches, we
found spacers are rarely shared between distant species compared to universally
similar repeats, which potentially indicates little effect resulting from HGT in

CRISPR-Cas systems.

3.2 Introduction

In nature, approximately 50% of Bacteria and 90% of Archaea use Clustered
Regularly Interspaced Short Palindromic Repeat (CRISPR)-CRISPR associated
protein (Cas) as a guard to defend against invading prophage or other mobile genetic
elements (Horvath and Barrangou, 2010). As a defence system, CRISPR-Cas can
integrate modified genetic segments from viruses (called protospacers) into CRISPR
loci located in the host genome. The integrated sequence is called a spacer
(Barrangou et al., 2007) and this process is called adaptation (also known as
integration or acquisition). Therefore, CRISPR-Cas can be regarded as a system for
generating a library that stores short fragments of foreign DNA from invaders, that

are separated by highly conserved direct repeats. Upon subsequent infection, a
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spacer and part of its associated repeat can be transcribed and matured as CRISPR
RNA (crRNA), which integrates and guides adjacent assembled Cas nucleases to
destroy complementary invading DNAs (Brouns et al., 2008).

However, protospacers are not randomly selected during adaptation. In type I, I and
V CRISPR-Cas systems, the protospacer is only sampled near protospacer adjacent
motifs (PAM) in the viral genome (Gleditzsch et al., 2019). PAMs can be thought of
as a marker in the invader that the Cas protein recognised during adaptation. PAMS
also help Cas proteins distinguish between self and invaders and avoid autoimmunity

during interference (Horvath and Barrangou, 2010; Mojica et al., 2009).

Through comparative analysis and phylogenetic comparison, horizontal gene transfer
(HGT) has been seen to affect the CRISPR-Cas systems of many species (Godde and
Bickerton, 2006; Makarova et al., 2013, 2015). Also, the discovery of complete
CRISPR-Cas systems in mobile genetic elements such as plasmids or viruses
suggests that they can be seen as “public goods” to some extent (Koonin et al., 2017;
Mclnerney et al., 2011). However, as a defence system, the effects of CRISPR-Cas
on transferred genes are still debated. As we know, there are three main mechanisms
of HGT: transformation, conjugation and transduction, which show different
interactions with CRISPR-Cas. On one hand, it has been reported that conjugation
and transformation can be inhibited by CRISPR-Cas systems. Marraffini and
Sontheimer (2008) discovered a homologous region between a CRISPR spacer and a
widespread plasmid in Staphylococcus epidermidis. They also showed that an active
CRISPR-Cas system in the host inhibited potential conjugation of plasmids that have
spacer-homologous segments. Secondly, natural transformation has been reported to
be prevented by CRISPR-Cas in Streptococcus pneumoniae (Bikard et al., 2012).
They have also shown that species that possess a CRISPR-Cas system would face
different selective pressure; which means species who lack CRISR-Cas systems may
possess fitness advantages. These results are consistent with the research of Zheng et
al. (2020). Their experiments in Bacillus cereus suggest that strains that have
inactive CRISPR-Cas systems, or that lacked them completely, could better adapt

into hosts or environments by promoting HGT of beneficial genes. However, on the
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other hand, a contradictory result with respect to HGT was observed in the case of
transduction. For instance, CRISPR-Cas in Pectobacterium atrosepticum facilitates
plasmid and chromosomal gene transfer through generalized transduction (Watson et
al., 2018). A similar result was shown in Staphylococci, where matches between
viral genomes and spacers could enhance specialized transduction of CRISPR-

adjacent genes (Varble et al., 2019).

As described above, the effects of CRISPR-Cas systems on HGT can be different,
depending on the different mechanisms of HGT. Intriguingly, an early study reported
that significant HGT cannot be observed in long timescales (Gophna et al., 2015),
potentially owing to the rebalance between promotion from CRISPR-mediated

transduction and inhibition from conjugation and transformation (Faure et al., 2019;

Watson et al., 2018).

In natural environments, prokaryotes and bacteriophages synchronously evolve in an
arms race with one another (Hampton et al., 2019). Hence, a comprehensive
understanding of the evolution of CRISPR-Cas systems would be beneficial both
from the perspective of ecological and medical applications. Diverse processes
including insertion, deletion and recombination have been reported in CRISPR loci

(Lopez-Sanchez et al., 2012). The most common insertion is naive adaptation which

happens when a cell encounters a new invader (McGinn and Marraffini, 2018). One
of the best-known adaptation mechanisms is seen in CRISPR subtype I-E (Figure
3.1a). During spacer adaptation, the Cas1-Cas2 complex needs to recognise the
boundary between the leading sequence and the first repeat. This activity is
dependent on an integration host factor (IHF) that combines with the leading AT-
rich segments and forms a U-shape structure for recognition (Nufiez et al., 2016;
Wright and Doudna, 2016). The other example is seen in subtype II-A, where there
is a highly conserved leading-anchor sequence (LAS) located upstream of the first
repeat, which makes sure all newly integrated spacers are inserted at the leading side
(McGinn and Marraffini, 2016). In addition, the unique integration of foreign DNA,
apart from naive acquisition, can be triggered by an existing spacer in a CRISPR

locus, and this process is called primed spacer acquisition (Amitai and Sorek, 2016).
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When a prokaryote encounters a phage that contains a perfect or partial match to a
spacer region, one or more additional protospacers can be acquired through primed
acquisition upon interference (Hille et al., 2018). This process has been discovered in
both type I and type II CRISPR-Cas systems in vitro and in silico (Fineran et al.,
2014; Nicholson et al., 2019; Nussenzweig et al., 2019). However, both known
integration paths are thought to add CRISPR loci to the leading side of the array, that
is to say, the order of spacers in CRISPR arrays is thought to reflect the
chronological order in which integration has occurred (Yoganand et al., 2017).
McGinn & Marraffini (2016) also regarded CRISPR locus as “a molecular fossil
record of infections”; the leading spacer records the most recent attack while
downstream spacers match more ancient threats (McGinn and Marraffini, 2016).
Their research focussed on the mechanism and physiological significance of type II-
A polarized integration. They showed that mutations in the LAS would lead to
ectopic spacer integration. In this process, a sequence in the middle was recognised
as the anchor and consequently the spacer was inserted on the downstream rather
than on the leading side. Additionally, they found, under the same phage attack, a
corresponding spacer located on the leading side (mimicking polarised spacer
integration) confers selective advantages to the host compared to it being located in
the middle (mimicking ectopic spacer integration). In particular, it has been noticed
that an ectopic integrated spacer can become the first spacer by deleting all segments

between the mutated LAS and the new anchor (McGinn and Marraffini, 2016).

Considering spacers that located in leading side encoded more robust immunization
against invaders, we speculated within a community, some prokaryotes carried the
canonical CRISPR locus while some carried the locus with reordered spacers by
recombination and deletion to boost overall immunity against phage. In this scenario,
the order of spacers in an array may not be chronological and unable to reflect the
timeline of invaders but instead be more dynamic and adaptive as a community. In
addition, when we regard a strain or population as a whole, recombination between
loci (Kupczok et al., 2015) and HGT across species (Bernheim and Sorek, 2020; Van
Houte et al., 2016) can both increase spacer diversity and expand immunity range.
Although research from Kupczok et al. (2015), in an analysis of two

Gammaproteobacteria (type I) and two Streptococcus species (type 1), suggested
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that the evolution of spacer arrays in CRISPR loci is shaped more by deletion and

acquisition than by recombination, we hypothesized that the role of recombination
should still be studied.

To date, multiple processes - such as addition, deletion, recombination and HGT -
have been reported in the history of the CRISPR-Cas system, and these have the
potential to result in an extraordinarily complex evolutionary pattern. In this chapter,
in order to understand those evolutionary processes in a more comprehensive way,
we have introduced different approaches to categorise and visualise spacer insertion,
deletion, recombination and transformation within and between CRISPR loci. We
have compiled a dataset containing 12,184 complete Archaeal and Bacterial
genomes and used four well-known CRISPR-Cas identification programs to identify
CRISPR-Cas loci. In total, we used three different approaches to investigate spacer
evolution. First, we traced spacer insertion and deletion in one CRISPR locus
through tracking the adjacent duplicated repeats. However, this can only reflect
changes within a single locus. In order to investigate the possibility of recombination
and HGT between species, we then clustered similar CRISPR arrays and constructed
species phylogenies using core genes as taxonomic markers. Core genes represent
genes that are highly conserved in all members of the strain (Charlebois and
Doolittle, 2004). These genes normally correspond to the most essential
housekeeping genes such as those responsible for translation and transcription
(Koonin and Makarova, 2013) and are strongly conserved (Segata and Huttenhower,
2011), making them ideal for constructing organismal phylogenetic trees (Ciccarelli
et al., 2006; Creevey et al., 2011; Szollosi et al., 2012). Thus, we built species
phylogenies by identifying and aligning core genes in each group of array clusters.
Combining phylogenetic trees with manually aligned CRISPR loci clusters, we
observed spacer gains, losses, and duplications in the CRISPR loci of the various
array families. In particular, we found spacers that are located on the end of an array,
far from the leading end, show high sequence conservation. Finally, to investigate
CRISPR array sharing between species, we used a network approach to study repeats
and spacers simultaneously. Significantly similar repeats and spacers were clustered
and were used to construct weighted sequence similarity networks. Here, we

investigated three questions: 1) Do CRISPR spacers in an array always appear in the
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chronological order in which they were inserted? If not, why not? 2) How do spacers
evolve in a CRISPR array? What processes shape it more: insertion, deletion or
recombination? 3) Do closely related species in a community share their CRISPR-
Cas systems with one another in order to help obtain immunization prior to attack?
We hypothesized that CRISPR-Cas evolution is affected by complex, diverse
processes (such as through insertion, deletion and recombination), that help
determine the immunity of an individual strain, and immunity of the community

(through HGT).

3.3 Method and Materials

3.3.1 Dataset Construction

To construct our dataset, all available Archaeal and Bacterial complete nucleotide
genomes were collected from the National Center for Biotechnology
Information(NCBI) RefSeq database (Pruitt et al., 2006) in January 2019. In total,
there were 277 genomes belonging to Archaea and 11,907 genomes belonging to
Bacteria. All data were stored on the University of Manchester high performance
computing cluster for further analysis. All species information and download path
are available from Appendix B - Table S3.1 and
https://github.com/JMclInerneyl ab/CRISPRsharing/tree/master/dataset.

3.3.2 CRISPR Array Mining

Four published programs have been widely used to identify CRISPR arrays in
prokaryotic genomes: MinCED (Bland et al., 2007), PILER-CR (Edgar, 2007),
CRISPRDetect (Biswas et al., 2016) and CRISPRCasfinder (Couvin et al., 2018). I
will briefly describe them here, as well as the ways in which they were used in order

to identify CRISPR arrays.
3.3.2.1 MinCED

MinCED (version 0.2.1) is short for Mining CRISPRs in Environmental Datasets, a

Java-based program that derives from program CRT (Bland et al., 2007). It is

73



designed for detecting CRISPR repeats and spacers from complete genomes or
environmental databases. Repeats are nearly identical in CRISPR loci. The sizes of
repeats are normally 23 to 47 bp (Horvath and Barrangou, 2010) but extra-large
repeats of 50 bp also have been identified (Biswas et al., 2016). Therefore, in order
to find all possible CRISPR arrays, the lengths of repeats were set to between 23 to

55 bp during execution of all programs.
3.3.2.2 PILER-CR

PILER-CR (version 1.06) is a C++ based program that can be used to identify
CRISPR arrays rapidly and accurately (Edgar, 2007). On top of detecting CRISPR
arrays, PILER-CR can also cluster similar direct repeats into groups with the help of
software MUSCLE (Edgar, 2004), in which the minimum identity is set as 75%. The

cut-off for repeat length was set to the same values as was used in MinCED.
3.3.2.3 CRISPRDetect

CRISPRDetect (version 2.4) (Biswas et al., 2016) is a part of the CRISPRSuite, a
CRISPR detection, viewing, analysis, and comparison package. It supports both web
and command platforms, and input can be fasta, gff or gbk files. CRISPRDetect uses
the CRISPRDirection algorithm (also in the package CRISPRSuite) to identify
CRISPR array direction (Biswas et al., 2014). In particular, CRISPRDetect has a
scoring system that evaluates arrays based on nine known biological properties such
as repeat length, similarity to referenced sequences, cas genes and so forth. The
detailed calculation can be found in Appendix B - Table S3.2. The developers have
suggested that an array with a score above 4.0 can be graded as good. However,
CRISPRDetect can only predict cas genes from gbk formatted input rather than the
fasta format that was used in this study. Therefore, 3.0 was set as a conservative
quality score cut-off during the execution of the program. In contrast to other
programs, the threshold of spacer lengths is not fixed during execution, cutoffs

change with repeat length of the array.
3.3.2.4 CRISPRCasFinder

CRISPRCasFinder (version 4.2.17), an update of the web program CRISPRFinder, is
one of the newest programs designed to predict CRISPR arrays (Couvin et al., 2018).
It is similar to CRISPRDetect, CRISPRCasFinder seeks to verify the direction of the
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CRISPR array (using CRISPRDirection). CRISPRCasFinder also has a scoring
system that ranks four evidence levels based on the number and conservative level of
repeats and spacers. Detailed level rules are listed in Appendix B - Table S3.2. Any
potential CRISPR array that satisfies the two criteria that the evidence level is higher
than level 2 and also it has a known direct repeat sequence, is retained. In particular,
CRISPRCasFinder can call the dependency program Macromolecular System Finder
(MacSyFinder) during execution to predict Cas proteins. Then the identified cluster

Cas proteins are used to classify system subtypes (Abby et al., 2014).

3.3.3 Resample Dataset Construction

Different programs show very different results for CRISPR array identification. In
order to minimise the possibility that we are analysing false positives and to
maximise the likelihood that we are analysing “true” CRISPR arrays, all arrays that

were identified by at least three programs were collated into a “resample dataset”.

A strain could contain multiple CRISPR loci and a locus is composed of several to
hundreds of repeats and spacers (Couvin et al., 2018). Considering the huge size of
these results, this study applied a unique indexing system on spacers and repeats to
quickly track and compare different loci. Each spacer was named based on its
taxonomic ID, species name, RefSeq accession number, array number, starting
position and identified program. An example of the naming system looks like this:
“79885 Bacillus_pseudofirmus NC 013791 3 SP3792003 CAS”, which is the
name given to a spacer that was identified using CRISPRCasFinder (CAS), and is
located at position 3792003 bp of CRISPR array 3 on NC 013791 chromosome (or
plasmid) of species Bacillus pseudofirmus (taxid number is 79885). As for the
corresponding repeat, since only conservative repeats were collected, the index is
similar but lacks a start position. This naming system helped us to easily track back

the origin and a location of sequence in the raw data.
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3.3.4 Spacer Acquisition

Typically, as described above, during the adaptation stage of CRISPR array
formation, new spacers insert between the leader sequence and repeat, and the first
repeat is duplicated (Wang et al., 2016a). It is expected, therefore, that spacers and
repeats should be ordered chronologically according to infection time. That is to say,
if a mutation in the first repeat happens before a new integration, the mutation will
be duplicated and will present itself in the subsequent repeats (Figure 3.1a). Hence,
mutations within an array could reflect spacer uptake and removal processes to some

extent.

In this study, to track spacer evolution in a detailed way, we presented an approach
of depicting mutations in repeats. Here, we have chosen to draw the repeats in an
alignment, with each repeat being found in the alignment in the order in which they
are observed in the array. In other words, the first sequence in the alignment is the
first repeat in the array, the second row of the alignment is the sequence of the
second repeat in the CRISPR array, etc. All repeats are ordered from 5’ to 3’, but
many CRISPR loci are in the reverse orientation. Therefore, we noted orientation
(predicted by program CRISPRDirection that is embedded in CRISPRCasFinder and
CRISPRDetect) and adjacent Cas gene cluster position next to the y-axis. In Figure
3.1b, any nucleotide that is identical to the array’s conservative repeat is simply
coloured grey. If a mutation has arisen, we have coloured the nucleotide according
to the colours in the figure legend. In this way, new mutations can be easily
observed. By representing the arrays in this way, we can characterise the patterns of
mutation. Considering the conserved repeat length in a CRISPR loci, the patterns are

very similar to heatmaps.

To filter meaningless mutations, we only collect loci that contain identical mutations
that happened at least three times in the same position. In total, 685 CRISPR loci
were identified that have trackable mutated repeats and 685 repeat heatmaps were

drawn using R’s ComplexHeatmap package (Gu et al., 2016).
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Initially, we only expected one kind of pattern of repeats in which a mutation arises
and persists from an internal position within the array, until the beginning of the
array. However, we observed a more diverse and complex picture after
classification. Accordingly, we categorised all 685 repeat heatmaps into the

following five patterns (Figure 3.1b):

Pattern 1: A mutation arises in the repeat and this mutation is subsequently

conserved through at least two duplications of the repeat.

Pattern 2: A mutation arises, it persists through at least two duplication events and

then there is a reversal back to the original nucleotide character state.

Pattern 3: A mutation arises; a reversal occurs and then the mutation arises once

again.

Pattern 4: The same mutation appears to arise and then reverts to the original

character state several times.

Edge: Mutations that only occur on the edge of the array.
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Figure 3.1 The mechanism of integration and clues of constructing a model of
repeat-mutation patterns. (a) General schematic of spacer integration. With the
help of integration host factor (IHF, in eggshell colour), Cas1-Cas2 complex that
binds to the protospacer proceeds two nucleophilic attacks between the leading
sequence and the first repeat. A new spacer was inserted between the gap and two
strands of repeat serve as templates for duplication. (b) In one array, repeats that
have trackable mutation are ordered based on their position and coloured in a
heatmap format. Grey nucleotides are regarded as conserved sites while other
coloured nucleotides are regarded as different mutations. The X-axis represents
conserved repeat sequences. The Y-axis represents positions of repeats that rank
from 5’ to 3°. Other information including species, locus, array number, array
orientation and associated Cas gene are also labelled next to y-axis. The order of Cas
label indicates its location near the CRISPR locus: upside means upstream (near 5°)
of CRISPR locus and downside means downstream (near 3°) of CRISPR locus. Full
size pictures of example repeat patterns are shown in Appendix B - Figure S3.3.

3.3.5 Spacers Dynamics

There are a limited number of CRISPR loci that possess recognisable mutations, and
this cannot reflect the full extent of the dynamics between species, particularly multi-
spacer transformation through HGT. Therefore, to investigate how spacers evolve
between loci within chromosome or between cells, we categorised similar arrays and
placed them into families based on their spacer similarity. Along with phylogenetic
analysis, we can trace the route of spacer gains and losses along the evolutionary

history of each CRISPR locus.

3.3.5.1 Similar Spacer/Repeat Clustering

In order to group similar CRISPR arrays, we first searched and grouped homologous
spacers and repeats. Even though repeats in CRISPR arrays are highly conserved,
from last section we can see that mutations still have been observed. Here, we used a
global alignment approach, taking consideration of the short size of spacers (mostly
27 to 45 bp) and repeats (mostly 23 to 47 bp). A UCLUST (version 2.1) search was
performed to identify spacers with significant similarity to one another and group
them into clusters. The identify cut off was set as 90% for spacer comparisons and

92% for repeat comparisons.
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3.3.5.2 CRISPR Array Family Allocation

To cluster CRISPR loci based on similarity, we used the Markov Cluster (MCL)
algorithm which evaluates and generates clusters based on stochastic flows in graphs
(Van Dongen, 2000). In our case, the strength of the links between nodes is based on
the similarity between two CRISPR arrays. Every shared spacer between two loci
increases the strength of association between two nodes. For example, if two arrays
have 20 significantly similar spacers, it would be identified as very similar and the e-
value would be set to 1e-20. Similarly, if two arrays only share 1 spacer, the link
between them would be very weak and the e-value would be set to 0.1. Only pairs
with more than two similar spacers were selected and CRISPR array families were

clustered using the MCL algorithm (inflation value: 2.0).

3.3.5.3 CRISPR Array Visualisation and Alignment

To visualise each group of clustered CRISPR arrays, we used CRISPRStudio (Dion
et al., 2018) which is a Python-based program that can colour clustered homologous
CRISPR spacers in a duo colour square-diamond mode. However, the
CRISPRStudio software is limited to the use of complete .gff results that are
produced as output from the CRISPRDetect program. Therefore, all other CRISPR
identification results were formatted into GFF3 format to fit CRISPRStudio using
bespoke scripts. The scripts to perform these conversions were written in Python
(Version3.5.3) and are available at

https://github.com/JMclnerneyLab/CRISPRsharing/blob/master/crispr_gff.py.

In order to reconstruct the evolution of individual CRISPR loci, gene families were

manually aligned to track spacer changes using the vector graphic tool Inkscape

(Bah, 2007).

3.3.5.4 Phylogenetic Tree Construction

CRISPR arrays that clustered into a single family were regarded as having been

derived from the same origin. To track the process of spacer dynamics in an array
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family, an independent species tree is required to show an evolutionary timeline.
Here, we chose the core genes (those genes found in every member of the species) as

phylogenetic markers to construct phylogenies for each family.

Following the MCL analysis of the array similarity graph, we only selected array
families that containing at least 10 members. Of note is the fact that we observed that
the species in each array group all belonged to the same genera, thus the outgroup
species for each family was selected from different genera, but the same taxonomic
family. Additionally, all genomes were annotated, using Prokka (version 1.13.7)
(Seemann, 2014), and these annotated genomes were used as input files for Roary
(version 3.13.0) (Page et al., 2015) in order to search for core genes across each
array family with an identity threshold of 80%. After this, core genes were aligned
using MAFFT (version 7.453) (Katoh et al., 2005) and a gene tree was inferred using
IQ-TREE (version 1.6.1) (Nguyen et al., 2015) employing the Maximum Likelihood
GTR+I+G model. Confidence in phylogenetic hypotheses was evaluated using
bootstrap resampling (1,000 replicates).

3.3.5.5 Gain and Loss Analysis

To analyse the gain and loss of spacers within each gene family, it is necessary to
reconstruct the ancestral character states at each internal node in a phylogenetic tree
(Creevey et al., 2011; Segata and Huttenhower, 2011). In this way, if we know the
ancestral state, we can track whether there were subsequent gains or losses of
spacers. We used the program Tree Analysis Using New Technology (TNT) (version
1.5) (Giribet, 2005) in conjunction with a spacer presence-absence (0/1) matrix and
the phylogenetic tree that was constructed tree as outlined in section 2.5.4. The
dynamics of spacer gains and losses were plotted onto the corresponding tree nodes

and presented using the iTOL online tool (Letunic and Bork, 2007).
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3.3.6 CRISPR Loci Networks

To investigate the effects of recombination and HGT on CRISPR-Cas families, we
applied a network approach to out CRISPR loci, in addition to phylogenetic analysis.
We constructed a weighted spacer sharing network where nodes represent CRISPR
loci, and edges represent the property that those loci share similar spacers. To
underline the effects of HGT and limit the number of spacers deriving from the same
foreign genetic elements, only loci that were found in different family or genera but
share similar spacers were included. The weight of an edge is represented by the
number of spacers that are shared between two CRISPR loci. The Python package
ETE3 in combination with the NCBI Taxonomy (Huerta-Cepas et al., 2016) were
used to quickly retrieve the full taxonomic description of any given species. Nodes
are coloured according to the taxonomic order from which the species originates.

The Gephi program (Bastian et al., 2009) was used to render and display networks.

The exact repeat sharing pattern between species is likely different to the spacer
sharing pattern. To investigate this possible difference, a similarity-based tree-
network pattern for shared spacers and repeats was constructed. Although a spacer
sharing network has been built, the evolutionary relationships between species could
not be fully presented just through colouring nodes by the taxonomic origins. Here,
we used the public All-Species Living Tree Project (LTP) 16S ribosomal RNA
(rRNA) prokaryotic tree as a resource (Yarza and Munoz, 2014). However, this also
limits the capacity of samples because there are only 843 species in this project that
possess identified CRISPR arrays. Therefore, connections were drawn between these
843 species if at least one spacer or repeat was detected in both species. Trees were

displayed through the iTOL webtool (Letunic and Bork, 2007).
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3.4 Results

3.4.1 Resample dataset

In total, four programs (MinCED, PILER-CR, CRISPRDetect, CRISPRCasFinder)
were used to identify CRISPR-Cas systems present in 277 Archaeal and 12,184
Bacterial complete nucleotide genomes from NCBI RefSeq database. The results
obtained from all four programs indicate a similar proportion of putative CRISPR
arrays across all Archaea. However, the four programs produced quite different
results when used to analyse bacterial genomes (Table 3.1). PILER-CR and
CRISPRCasFinder identified more CRISPR loci in Bacteria compared with
CRISPRDetect and MinCED. To conservatively compare and analyse CRISPR loci
across species, a resampled dataset was constructed which only contained CRISPR
loci that were identified by at least 3 programs. As shown in Table 3.2, 889 CRISPR
loci were identified from 229 archaeal strains (82.7%) and 10,703 CRISPR loci were
identified from 4,947 bacterial strains (40.6%) in the resample dataset. The most
common length of a spacer is 32 bp, followed by 36 bp, whereas the most common

length of a direct repeat is 29 bp, followed by 36 bp (Appendix B - Figure S3.1).

Considering that cas genes are only predicted by the CRISPRCasFinder software,
the cas information in the resample dataset is only retrieved using this software
program. According to the output of CRSPRCasFinder, across the 11,592 putative
CRISPR arrays, 1,426 arrays (12.3%) were found without adjacent cas genes (these
are known as “Orphan CRISPR” arrays (Makarova et al., 2015)).

In addition, when analysing the position of cas genes in all 4,283 CRISPR arrays
that have recognisable cas genes in the neighbourhood (<= 10,000 bp window),
3,012 CRISPR loci were located downstream of cas genes, 1,064 upstream, and
interestingly, 207 loci were found to be situated between protein coding cas genes

(Appendix B - Figure S3.2) with cas gene orientation changed.
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Table 3.1 Numbers of species who have identified CRISPR arrays in Archaea
and Bacteria by four programs.

Archaea Bacteria
MinCED 239 (86.3%) 6,079 (49.9%)
PILER-CR 259 (93.5%) 9,804 (80.5%)
CRISPRDetect 237 (85.6%) 5,399 (44.3%)
CRISPRCasFinder 252 (91.0%) 9,718 (79.8%)

Table 3.2 Lists of different CRISPR related results identified in the resample
dataset.

Archaea Bacteria
Species that have CRISPR arrays 229 (82.7%) 4,947 (40.6%)
Species that have identified cas genes 193 (69.7%) 4,545 (37.3%)
CRISPR loci in plasmids 13 (9.6%) 160 (1.5%)
Cas genes in plasmids 8 (5.9%) 114 (1.1%)
Total number of CRISPR arrays 889 10,703
Range of spacer number in a locus 2 to 245 2 to 587

3.4.2 Direct repeat tracking

In addition to constructing a conservative CRISPR-Cas dataset from the complete set
of available genomes, we also wanted to investigate the process of spacer evolution
within and between CRISPR loci. First, we depicted the evolution of spacers by
tracing changes in the proximal repeat. As noted previously (see Introduction
1.3.2.1, Figure 3.1a), when a spacer adapts into a host genome, both the innate and
primed procedures trigger the duplication of the first direct repeat (McGinn and
Marraffini, 2018). That is to say, if mutations occur before duplication, this mutation
would be reproduced in the following repeats unless a reverse mutation occurred.
From all putative CRISPR arrays in the resample dataset, we filtered 685 arrays that
have trackable mutations in their repeat region and plotted these mutations as a form
of heatmap image, owing to the character of the most highly-conserved length of
repeats. We used the heatmap to show the locations of mutations in all repeats of

each CRISPR array (Figure 3.1b). The X-axis represents the consensus repeat
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sequence, whereas the y-axis represents the position of each repeat (ordered 5’ - 3°).
One array could contain multiple patterns and all arrays were categorized into

different patterns based on their characters (see Methods 3.3.4).

Pattern 1 conforms to the current understanding of the spacer adaptation process.
This pattern indicates that a mutation arose once as the CRISPR array was growing
and this mutation was subsequently retained throughout further duplications. This
pattern is observed in 331 (43.55%) CRISPR loci, which is also the most common
among all the patterns (Figure 3.2a). Interestingly, however, we also observed many
instances of patterns 2 (141 loci, 18.55%) and 3 (179 loci, 23.55%), and together
these amount to approximately half as many as the number of observations of pattern
1. Patterns 2 and 3 could either arise as a consequence of nucleotide mutations and
the reversal of the mutations or alternatively, they could arise as a consequence of
insertions of spacers into the middle of the array. Pattern 4 is observed the least often
(74 loci, 9.74%) among four normal patterns, and this pattern probably results from
nucleotide flip flop in the direct repeats or gene recombination within CRISPR
arrays. All these unusual patterns (2,3,4) suggest the effects of more complex
processes like recombination, middle spacer integration besides polarized insertion
and deletion. Finally, the Edge pattern, which is present in the smallest number (35
loci, 4.61%), could arise by either of two mechanisms. One, previously reported in
subtype I-E system (Swarts et al., 2012), suggests that PAM can donate its last
nucleotide during spacer integration. To test this hypothesis, we identified the
subtypes of all 685 samples (Table 3.3) based on results from CRISPRCasFinder
Cas cluster. We found that type I-E was present in 48.6% of all edge samples. The
remaining samples which show edge pattern may indicate the role that PAM played
in this subtype. The other reason is possibly due to software programs incorrectly
identifying break points between spacers and repeats. During identification, the first
(or last) nucleotide of spacer might be accidently included in the repeat sequence,

and reflected flaws of CRISPR loci identification by bioinformatic tools.
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In addition to allocating all mutations into different patterns, we also analysed the
patterns of nucleotide substitution (Figure 3.2b). In total, 990 nucleotide mutations
were observed containing 658 transitions and 332 transversions. The ratio of

transitions to transversions is 1.98.
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Table 3.3 Numbers of CRISPR-Cas subtypes in 685 repeat mutation examples
(One array may include multiple patterns).

CRISPR-Cas Repeat pattern Total
subtypes 1 2 3 4 Edge

Type I-A 10 3 6 9 0 28
Type I-B 52 15 17 9 5 98
Type I-C 35 9 6 1 4 55
Type I-D 6 2 2 2 0 12
Type I-E 9 34 47 18 18 216
Type I-F 37 34 39 7 2 119
Type I-U 3 1 1 3 0 8
Type II-A 6 3 3 1 2 15
Type II-U 14 3 8 2 0 27
Type III-A 10 7 9 3 1 30
Type 111-B 9 7 11 3 2 32
Type U 2 0 3 0 0 5
Orphan CRISPR 48 23 28 18 3 120
Total 331 141 180 76 37 765

3.4.3 Spacer dynamics

From the previous repeat pattern analysis, we observed that spacer integration was
not always in a polarized manner. New spacer integration does not seem to proceed
from edge side, which could result from recombination within or between similar
loci, HGT between species or undiscovered mechanism of ectopic spacer integration.
However, this repeat-mutation trace analysis can only reflect dynamics within one
array and the number of arrays who have recognisable mutations are limited.
Therefore, to investigate further the evolutionary history of spacers in arrays, we
clustered homologous CRISPR arrays based on the similarity of spacers (see
Methods 2.5.2) and analysed spacer dynamics along the phylogenetic tree. A total of
87 array families were found to contain 10 or more array members. The program
CRISPRStudio was used to visualise the dynamics of spacer changes between

closely related loci across genomes. Similar spacers in each array family are
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coloured by the same colour (two-colour square-diamond pattern in Figure 3.3a) and

all loci were manually aligned (Figure 3.3b, 3.3c¢).

In our hands, almost all array families could be aligned well, except for two families
that have extra-long arrays and aligning these long arrays exceeded our manual
processing ability. That is to say, in one family, spacers shared between loci were
basically in the same ordered. Since we ignored all spacer order information while
clustering, recombination within CRISPR arrays makes the process of alignment
impossible. Thus, the fact that we could align CRISPR spacers in 85 families

suggested that rate of recombination within a locus during spacer evolution is rare.

In order to test the effects of ectopic spacer integration and HGT in CRISPR arrays,
we constructed a core gene phylogenetic tree for each family. Along with aligned
spacers, the evolutionary history can be tracked over time. Core genes were
identified using the program Roary (Page et al., 2015) and aligned using MAFFT
(Katoh et al., 2005). Using core genes alignment as input, I[Q-TREE (Nguyen et al.,
2015) was used to infer the species maximum likelihood tree. Together with the
spacer presence and absence matrix, the gain and loss of spacers were calculated

using what program TNT (Giribet, 2005) (see Methods 3.3.5).

Here, we presented two examples (Figure 3.3b, 3.3¢c) from all 87 sample families.
We selected these two examples because the array lengths are appropriate to show in
one figure and also because they exemplify particular evolutionary processes, such
as priming and duplication. Spacers in the manually aligned CRISPR loci families
were marked with integers. Together with the phylogenetic tree, first, Family 23
(Figure 3.3b) is presented that contains 29 strains of Escherichia coli with Raoultella
sp. X13 used as an outgroup. Gains and losses of spacers occurred independently
multiple times but most in recent history. Evidence for the gain of new spacers
support the possibility that there are other methods of integration apart from
polarised integration. For example, spacers 14, 25 and 26 in strain NZ_CP018206.1
(and NZ _CP018976.1, NZ CP010116.1) are located in the middle but their
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restricted phylogenetic distribution suggests that they were inserted on a later branch
than spacers 28, 29 on the leading side. This is the most parsimonious explanation
for the observed pattern, though, of course, it does not rule out more complex,
unobserved events of gain and loss. Also, a series of priming event (spacer 4-6 in the
red square of Figure 3.3b) can be tracked though CRISPR alignment. Similarly,
evidence of priming was detected in 33 out of 87 samples. Another example is
Family 36 (Figure 3.3c) that includes 18 stains of Sa/monella enterica, with
Lelliottia amnigena being used as an outgroup. There are multiple gains along the
history of these strains and minor losses only in the recent history of the strains.
Similarly, in Family 36, spacers 4, 11 in NZ_CP022034.1 were integrated in recent
history but located downstream of spacers 22, 23 that were integrated earlier in the
history of the genomes, providing additional evidence for non-chronological spacer
integration. In particular, spacers 7, 8, 10 are shared between two distant genomes
NZ CP022019.1 and NZ CP024165.1 (or NZ_CP030288.1) with independent
inheritance, which indicate the effects of HGT in spacer evolution. Moreover, as
shown in the bottom of Figure 3.3c¢, a five-spacer gain pattern (spacers 46-50)
detected in NZ_CP032816.1 indicates an independent array duplication.
Duplications were detected in 23 out of 87 samples and may result from
recombination (Kupczok et al., 2015). Overall, different evolutionary processes
including polarized integration (including priming), ectopic integration, duplication,
loss, and HGT are reported, which cooperatively lead to an intricate spacer history

cooperatively.

To visualise the spacer dynamics thoroughly, we analysed the evolutionary history
by combining repeat patterns with aligned CRISPR loci. In our 87 examples, only
Family 59 (Figure 3.4a) has recognisable mutations in direct repeats. Among loci in
Family 59, repeats adjacent to spacers 2-6 can be traced with repeat-mutation
heatmaps. All loci in this family are in the reverse orientation, which means spacer 1
which is located at the 5’-end is the earliest spacer. Also, since CRISPR array
identification follows a “repeat-spacer-repeat” pattern (Figure 3.4f), a spacer is
located between two repeats. That is to say, for a spacer in an array, two adjacent
repeats can be traced in the corresponding repeat heatmap that are vertically ordered.

The upper repeat is the older repeat and serves as the template for the subjacent
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repeat duplication. In Family 59, the earliest branching of this CRISPR locus is
found in NZ_CP027440.1 (Figure 3.4b), where we see spacers 5 and 6 integrated
chronologically as evidenced through the fact that we can trace a single nucleotide
mutation (from T to A) that is found in all four repeats that flank the spacers. As we
move along the phylogenetic tree, we see the insertion of spacer 2 on the branch
subtending Node 1, the node that subtends all groups on the tree except for
NZ_CP027440.1 and the outgroup. As shown Figure 3.4c, in NZ_CP025859.1, site
A mutated to G and conserved to the following integration of spacer 5. However,
abnormal repeat duplications (pattern 3) were identified in Node 2 while spacers 3
and 4 integrated (as shown in NZ CP010169.1, Figure 3.4d). The repeat that is next
to spacer 4 still followed previous mutations while spacer 3, located upstream next to
the locus, conserved the repeat. Considering that the evolutionary history of spacer 5
was missed, we proposed three possible conjectures that may explain this pattern.
First, spacer 3 initially integrated downstream of spacer 5 but was shuffled to the
middle through recombination. Second, a replacing recombination may happen
between loci who share the same repeat; this could result in deletion of the repeat
with mutation and insertion of the original conserved repeat. The third is probably
due to ectopic spacer integration with an unknown repeat duplication mechanism. In
the most recent strain NZ_CP020058.1, there were 5 spacer losses (spacers 4 to 8),
which only left repeats with two spacers in Figure 3.4e. Together with the previous
two examples (Family 23 and 36), we found that spacer deletions only occur in the
middle of an array. Intriguingly, we found spacers 1, 5, 6 are shared across all loci in
Family 59 in the same order but integrated with different repeats, which may result
from HGT or indicate a robust fitness benefit of these three spacers. Together, these
results indicate that CRISPR array evolution is much more complex than previous

appreciated.

90



Leader

Repeat Spacer  Repeat  Spacer

Repeat  Spacer  Repeat

*

(@

OO

100

100

100 100‘
100
100

100

100

@ 1 Spacer gain
o

| Spacer loss

Circle diameter size
= 5 spacers change

Species Tree

63
7 123

92 100 .
d

100

N
0 ®

84
93

l23.72021

@ 1142526 o4
17-11,13 ®121
128,29 | 100 P T2t
14,79
120

100

100
100 100

32

100 12,3,4,22

100
100

100
94

91

NZ_CP030874.1 ; , ,
NZ_CP021879.1
NZ_CP021732.1
NZ_CP028578.2
NZ_CP027701.1 @-
NZ_CP025950.2
NZ_CP010172.1
NZ_CP018103.1
NZ_CP018121.1
NZ_CP018115.1
NZ_CP018109.1
NZ_CP023353.1
NZ_CP018206.1
NZ_CP018976.1
NZ_CP010116.1
NZ_CP023364.1
NZ_CP026723.1
NZ_CP025573.1
NZ_CP024851.1 [ - -
NZ_CP029579.1 [l -
NZ_CP032261.1 [ -
NZ_CP023960.1 [ - -

456 7

NZ_CP027134.1 -
NZ_CP033884.1 ==
NZ_CP021202.1 -

NZ_CP024862.1 @ -
NZ_CP023820.1 @1 -
NZ_CP022229.2 @1 -
NZ_CP032879.1 @1 -

NZ CP028589.1 @1 -

(b)

CRISPR Arrays
8 91011 1213141516171819ZUZI2223242526628293&]3I
—————————————— - - -0 -oa
—————————————— - - -0- -oa
—————————————— - - -0- -oa

——————————————— 8- - -B- -oa
——————————————— - - -B- -oh
——————————————— - - -B- -oh
——————————————— 8- - -B- -oh
—————————————— B - -0 - ok
—————————————— - - -0 -0k
—————————————— - - -0 - ok
——————————————— B- - -B- -oh
——————————————— B- - -B- -of
——————————————— B- - -B- -oh
——————————————— B- - -B- -oh
——————————————— B- - -8- -oh

Priming



NZ_CP015774.1 1 5 3 4 5 6 7 8 9 1011121314151617181920 2122232425 26 27 24 B 30 BL 2IB134 35 36 37 38 39 40 4142 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 6970 7172737475
100 122,23 ® NZ_CP022034.1 §-[OR3- - - - - - o -Ell-------------- e m e, - —
- 100 468 NZ_CPO17720.1 8]= = — = = = = === == = =~ — QI —~[0]0]~ = = — = = — = = = = — == ———mmmmmmm e = R - - - - - -

w0 10t iy t26 NZ_CPO19184.1 8]~ - = ===~ = = ==~ — -SRI -~~~ ~ === === === === === === === === = === = = — oB-B------
122.28 100 62-64,70-74 . NZ_CP022019.1 @- - - -OIC0-@- - - ----------BOBPA---------------—--———"—-—-————————— ORICI- - - - [CIORKEKY -
%6 178 NZ_CP007533.1 0@~ - 4--- -} - - -0 -Eom- - - - - @B~~~ - —-—-—-——=—~—~—~—~—~~ =~~~ —~~—~~~~—~—~—~—~~—~—~ - B--------- B
100 NZ_CP019174.1 010 - Bkl - - - -} - @008 -Eom - - - - - @R~~~ -~ ——— === —~—= =~~~ =~~~ ~—~~~~~—~—~—~~—~—~ - Ol-—mmm o=
76 R *5i2 NC_011094.1  RO10]-OKN - - - ~|- ~@OM® B~~~ -~ =~ B~ - =~ ==~ ===~ — =~ =~ = — o —— o —— o W----------
& 5.5 NZ 154834811 18] -6K) - - - - |- ~[@[OI® - EAOM - - - - - Bl -~~~ —— - -~~~ - - - - - - - - - - - Bl----——————
100 PY 12882 N7 CP024165.1 [l - - - CRICORIC el - m e e e e — -] Pl--------—-—--
o NZ_CP030288.1 [l- - - RO 00 OB ORISIIIOIORI®] — — — — = — = —— ——— == ——=— = — ===~~~ =~~~ —~~—~—~ —~~— —~ — Bo---——-———-—
Ceo | % e Yiea - NZ_CP020752.1 BloT8) - [OK] -SOBE-0-- - - - - - - - - - - ESEOCPEEXRICBOON - - - - - DSOS - - - - -~ - - - - -~ -~ -
15,13 _ 100 NZ_CP007540.2 o] -OK- - - - - - eepe-B------------ SIS RI SIOIONS)] - — — - — Rk - - - - - - - - ----—- -
16,18 NZ_CP007222.1 BI0[@- 0K~ - - - - - OO - (S PRICKISRERICRIOR - - - - - COROORIOREIS] - ~ - - - = = = = = = = = =
‘ “ NZ_CP017972.1 BI0@I-0R- - - - - - OB -B- - - --------- DK - -ERXRACBOI0) - - - - - DO OB ODRI® - — - — =~ = =~ =~ = — - -
12,3,31:34, 35 Tel NZ_CP017970.1 (0[®]-[OF3 - - - - - - @PeRe-Ba- - - - - - - - - - - - CPRCPERERICRRRR - - - - -CRRCOORKIR0 - - - - - - - - - - - - - -
., Circle diameter size 37-45,51-60 100 — NZ_CP017973.1 Blo@l-OK- - - - - - eeEE-A- - - - - - - - - - - - PRI - - - - - ORI - - -~ — === === = = — =
= 5 spacers change 8 NZ_CP017971.1 (0[®]-[OF3- - - - - - eeRe-a- - - - - - - - - - - - - EERICRRO0] - — - - - CRRICOOREI®] ~ - — = = == === == — = =
13 e —NZ CP32816.1 Bee-en- - - - - - eeRpe-B------------- PRSI ORIORR] OO0 - - - — - ————————— -

Potential HGT Duplication

©

Figure 3.3 Aligned CRISPR arrays with the associated phylogeny for Family 23 (b) and 36 (c). (a) shows the idea of how spacers in one
array was drawn for each Family. Phylogeny is constructed from core genes in each family. Gains and losses of spacers in strains and nodes are
represented by the pie chart. Red represents gain and blue represents loss. The size of pie chart is related with the total number of changes.
Integers next to the pie charts represent changing spacers and the evolution process be tracked in the alignment. Phylogenetic trees are depicted
by iTOL and CRISPR loci are manually aligned through software Inkscape.
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Figure 3.4 CRISPR array alignment of Family 59 (a) with recognisable mutation patterns (b-e). One array can be visualised through two

different ways: repeat heatmap (b-e) and spacer alignment (a). Considering that CRISPR locus identification requires repeats on both sides, the
number of repeats is greater than the number of spacers by 1. The two repeats that adjacent by spacer order vertically in repeat heatmap and the
bottom one is the newly duplicated repeat.
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3.4.4 Anchor spacer

The evolution of spacers within CRISPR loci is diverse in order to defend against
challenges from the environment or host. However, as seen with conservative
spacers 1, 5 and 6 in Family 59 (Figure 3.4), spacers seem to face different fitness
costs during losses. After observation of all 87 CRISPR spacer alignment samples,
we noticed a pattern that for loci in one family, along with rapid spacer turnover, it is
also common to have a shared spacer situated near the edge, like an anchor (Figure
3.5a). To test this hypothesis, we calculated the number of conservative spacers
(defined as spacers that presenting in more than 85% of strains) and its position in an
array. During calculation, we used percentage instead of index numbers to mark the
spacer’s position, which may increase false positive when evaluating the relationship
between position and chance of conservative site in short arrays. Therefore, we
calculated arrays from the full dataset and subset the results of arrays that containing
more than 7 spacers. Surprisingly, the conservative spacer located at an edge is
dramatically higher than in other positions (Figure 3.5b), followed by the site that
located in the middle. Also, the conservative edge is normally an ending edge, which
is very likely to be the oldest spacer. This also indicates the uneven selective

pressure of spacer loss based on position.
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Figure 3.5 The scenario and number of conservative (anchor) spacers in
CRISPR arrays. (a) Spacers located on one edge (normally the earliest integrated
spacer) is highly conserved across loci compared to spacers in other positions. (b)
The number of conservative spacers in different positions of CRISPR loci.

3.4.5 Shared spacers and direct repeats

In addition to integration, deletion, and recombination in CRISPR loci, HGT may
potentially play an important role in CRISPR-Cas evolution. Evidence of HGT of
CRISPR loci between strains has been presented in array Family 36 (Figure 3.3¢)
and complete CRISPR-Cas systems in plasmids (Table 3.2) also indicates CRISPR-
Cas loci are shared through conjugation. Although HGT in CRISPR-Cas has also
been reported by other studies (Godde and Bickerton, 2006; Makarova et al., 2013,
2015), the timescale of HGT and how distantly CRISPR-Cas loci can be shared
across species is still controversial issue. Here, we have displayed the sharing
patterns of repeats and spacers between CRISPR loci across all prokaryotes using

both network and treelike approaches.
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Firstly, we used the results from the clustered spacer families (see Methods 2.5.1)
identified in the resample dataset, in which a global alignment and clustering was
performed by UCLUST (identity cut off 90%). In total, 169,329 spacer families were
identified, and 24,236 families were composed of more than 1 member. Using the
clustered families as input, we depicted a weighted spacer similarity network that
visualised similar spacers. Edges in this network can exist for three possible reasons.
First, considering successful phage infection is specific particular receptors on the
surfaces of particular bacteria (Seed, 2015), same spacers could derive from the
same phage attacks. Second, spacers with extremely high fitness benefit in ancient
CRISPR loci would be inherited by their offspring. Last but not least, spacers or
even complete CRISPR loci might spread via HGT. The last relationship is what we
wished to investigate in the spacer network. Thus, to reduce edges caused by the first
two possibilities, we only select edges shared by spacers from different taxonomic
genera and families. In this network, nodes represent CRISPR loci, and are coloured
based on taxonomic order. The size of a node represents the size (number of spacers)
of the locus while the weight of an edge represents the number of shared spacers
between two loci. There are 36,416 edges in the genera spacer network (Figure 3.6a)
and the three largest connected components are all among loci in Enterobacterales.
By contrast, the network of spacers shared between loci from different taxonomic
families is much smaller, containing only 50 edges (Figure 3.6b). The dramatic
reduction in connections between loci suggests infrequent HGT of CRISPR-Cas
between remote species. Also, we found most loci that are found to have similarity
across different families only share a single spacer but there are 4 pairs of loci that
have multiple spacers in common, such as the khaki coloured edge (Figure 3.6b)

between Rhodocyclaceae bacterium and Zoogloeaceae bacterium Par-f-2.
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Figure 3.6 Networks of CRISPR loci across different genera (a) and families (b)
that contain similar spacers. Nodes are regarded as CRISPR loci and coloured
based on taxonomic orders. Nodes are connected by edges if a similar spacer is
identified between two loci. The size of a node is correlated with spacer numbers
within a locus and the weight of an edge is correlated with the number of shared
spacers. Both networks are depicted by software Gephi (Bastian et al., 2009) with
Fruchterman-Reingold layout (Fruchterman and Reingold, 1991).
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Although we did not find many relationships between distant taxa groups in our
networks, we wanted to investigate further by putting the network results in the
context of the phylogenetic tree of life. Our full dataset contains thousands of strains,
which can be easily handled using a network approach, but exceeds calculation
capacity of the phylogenetic approach. Therefore, we used the published 16S rRNA
tree from the LTP project and mapped to our resample dataset. To maintain species
diversity, we selected 843 species (91 archaea and 752 bacteria) from 125 taxonomic
orders (labelled in different colours, Figure 3.7) from the LTP dataset that contain
identified CRISPR-Cas systems and pruned the phylogeny to create a subtree. The
previous clustered outputs of spacer and repeat families from UCLUST (see
Methods 2.5.1) were employed here. In both phylogenies, edges were drawn
between species if they have commonly shared spacers or repeats, respectively. The
weight of an edge represents the number of shared elements. The tree-networks
revealed universal shared repeats between species (1,965 connections, Figure 3.7a),
even including 1 remote hit between archaea Ammonifex degensii KC4 and bacteria
Sulfodiicoccus acidiphilus. It has been reported that even short sequence homology
between phages and plasmids (like newly required spacer) can promote transduction
rates of plasmids dramatically (Deichelbohrer et al., 1985; Maniv et al., 2016; Varble
et al., 2019). Also, complete CRISPR-Cas systems have been reported from
bacteriophages (Naser et al., 2017; Seed et al., 2013). Therefore, we conjecture that
the extensive shared direct repeats might provide the opportunity for transduction
between CRISPR loci who have similar repeats. However, spacer sharing between
species reduced dramatically (28 connections, Figure 3.7b) compared to repeat
sharing. This result is consistent with previous network results but conflicts with our
shared repeats results, which may indicate that other elements are at play that inhibit

HGT of CRISPR-Cas systems.
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Figure 3.7 Patterns of repeats and spacers sharing across prokaryotic species.
The Phylogenetic tree is pruned from 16S rRNA tree from the LTP project that
contains 843 species who possess identified CRISPR-Cas systems. The red shade
represents species from Archaea while green shade represents species from Bacteria
Species names are coloured in the outer ring based on its taxonomic order. In the
network, edges connect species who share similar repeat (a) or spacers (b).

3.5 Discussion
In this study, we collected 12,184 fully sequenced prokaryotic genomes from the

entire NCBI RefSeq dataset and performed CRISPR-Cas system identification using

four published CRISPR identification tools (PILER-CR, MinCED,
CRISPRCasFinder and CRISPRDetect). We found the results from the four
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programs quite different. Therefore, to reduce the bias of false positive results from
different programs, we constructed a resample dataset by only selecting CRISPR-
Cas systems that were identified using at least three software programs. The
resample dataset then is regarded as a conservative CRISPR-Cas dataset from the
perspective of bioinformatics predictions. However, among these four programs,
only CRISPRCasFinder is able to identify cas genes and infer their subtypes. Thus,
subtype information was derived entirely from the output of CRISPRCasFinder. In
total, CRISPR loci were identified from 82.7% of species across Archaea and 40.6%
of species across Bacteria whereas cas genes were identified from 69.7% and 37.3%
of Archaea and Bacteria, respectively. This result is consistent with Makarova et
al.’s detection of 13,116 complete genomes (Makarova et al., 2019) but the
proportion in Archaea slightly lower than previously observed results from
CRISPRFinder (84%) (Grissa et al., 2007). Meanwhile, the numbers of cas genes are
similar to the recent update of CRISPRCasdb in which across species from Archaea
and Bacteria, respectively 75.3% and 36% have identified cas gene cluster (Pourcel
et al., 2020). Intriguingly, while identifying the position of CRISPR arrays and cas
gene clusters, we found 227 CRISPR arrays located between protein-coding cas
genes. This pattern was also identified as a subtype variant of subtype II-C in recent
CRISPR-Cas classification (Makarova et al., 2019). However, the pattern in our
results is not only limited to subtype II-C but widespread across 11 subtypes. Also,

many of them occur with cas genes in the reverse orientation.

To explore the evolutionary processes at play in CRISPR loci, we took three
different approaches. Processes like insertion, deletion, recombination and HGT
were depicted through repeat-mutation patterns, aligned spacer dynamics with
phylogenetic trees, and similarity networks. From repeat-mutation patterns, polarized
integration was visualised by conserved mutation in repeats until the end of the array
or the occurrence of mutations at the same site. However, we found that liner
mutation was frequently interrupted by other activities, which resulted in the same
mutation at the same site but scattered along the whole array. We propose that
activities such as recombination or novel integration mechanisms can both cause this
pattern. It has been reported that mutation in conserved LAS can also result in

middle spacer acquisition in type II-A CRISPR-Cas systems, which is termed as

102



‘ectopic spacer integration”. For strains who lack LAS or with a mutant-LAS can
potentially use other sequence within CRISPR loci as an anchor during integration to
guarantee a precise position (McGinn and Marraffini, 2016). Although through
ectopic spacer integration, mutations in repeats should still be reserved to duplicates,
it reveals the possibility of other, undiscovered mechanisms in which spacers might
integrate along with repeats duplication in other position rather the adjacent one.
Another possible explanation for the patterns we observed is recombination. It could
be led from within array rearrangement after all mutations have occurred. However,
aligned groups of array families suggest the rigorous order of CRISPR loci were
rarely affected by recombination within a locus. Nevertheless, recombination can
also occur between loci on one host genome or across different organisms. During
recombination, when new spacer acquired from other loci, the original spacer with
repeat will be deleted (Deveau et al., 2008; Kupczok et al., 2015). Also, the
recombination rate is associated with sequence similarity between the donor and
recipient (Majewski and Cohan, 1999). We found that repeats were universally
shared across prokaryotes using a phylogenetic approach, which suggests that
recombination between different loci is possible. In addition, duplication of spacers,

as a result of recombination (Kupczok et al., 2015; Lopez-Sanchez et al., 2012;

Nickel et al., 2013), was identified in 26.4% array families. By contrast, the study
from Kupczok et al. (2015) suggested that CRISPR evolution was mainly shaped by

acquisition and pervasive deletion instead of recombination.

Ubiquitous new spacer gains and losses along history have also been reported here
using aligned array families with phylogenetic trees. Similar loci were clustered into
families based on spacer similarity. In addition, to trace the timeline of spacer
dynamics, core genes from species in each family were detected and used to
construct a representative species phylogeny. Gains and losses of spacers were
reconstructed at each node. We found acquisition and deletion occurred across the
phylogeny. In the examples we presented, spacers that were acquired in recent
history are located downstream of old spacers, supporting the previous conclusion
that spacers are not always ordered chronologically. Also, we found deletion
normally occurred in the middle of an array, which was consistent with previous

research (Lam and Ye, 2019). However, although spacers turnover diversely in
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CRISPR loci, a special retention pattern was observed. Spacers located on the edge
of an array were highly conserved across different array families, like an anchor. A
similar model was identified in another study, which called “trailer end spacer” (Lam
and Ye, 2019). However, study from McGinn2016 showed that the immunity ability
of spacer in CRISPR locus is related with their position. The newly integrated spacer
has the highest robustness when being attacked. Also, spacers located at the very
beginning had more transcribed crRNA (Deltcheva et al., 2011; Elmore et al., 2013;
Nickel et al., 2013; Richter et al., 2012a) and lead to more robust immunity,
simultaneously. For example, crRNA from Position 1 is twofold higher than from
position 5 (McGinn and Marraftini, 2016). Overall, the location of spacers is very
important to a CRISPR locus. The selective rates and fitness effects behind spacer in

different positions remain to be studied.

In brief, we applied multiple approaches to investigate and visualise the evolutionary
processes like insertion (including polarized integration, ectopic integration,
duplication, and priming), deletion, recombination, retention, and HGT of the
CRISPR-Cas system. Jointly these results suggest a complex pattern of CRISPR-Cas
evolution but the mechanisms behind ectopic spacer integration and potential

recombination between different loci are worth further investigation.
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Chapter 4.

A Study of Genes that Associated
with CRISPR-Cas Systems
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4.1 Abstract

CRISPR-Cas system, as an adaptive defence system, has pervasively spread in most
Archaea and half of Bacteria. The distribution of CRISPR-Cas systems is non-
uniform with respect to phylogenetic relationship. However, the elements and
mechanisms that affect this distribution remain to be clarified. CRISPR-Cas has been
reported to have high mobility and thus the fixation or abolition is likely to be
determined by host and environment (Makarova et al., 2020). In the current study,
12,184 complete nucleotide genomes from Archaea and Bacteria were collected and
the CRISPR-Cas identification and classification results were obtained from Chapter
3. To elucidate the effect of host genetic background on CRISPR-Cas system, we
then subsampled a smaller dataset of 1,824 species. After annotation, all protein-
coding genes were clustered into families, and we assessed the association between
CRISPR-Cas and each gene family. Proteins that showed significant association
were then functionally classified and grouped based on KEGG BRITE. We have
found that the number of genes that co-occur with type II and type III are
significantly higher than the number of genes that disassociate these CRISPR-Cas
types, and they mostly function in metabolic pathways. Also, genes that are
associated with CRISPR-Cas subtypes were likely to be compatible to the
phylogeny, which indicates the consequences of shaping CRISPR-Cas distribution

by host co-occurring genes.

4.2 Introduction

CRISPR-Cas systems became one of the popular themes in recent years due to their
ease of use as a genome editing tool (Adli, 2018). As an adaptive immune system
that commonly exists in most Archaea and approximately half of Bacteria, CRISPR-
Cas system is composed of CRISPR locus and cas gene cluster. CRISPR loci contain
diverse short sequences of previous invaders (known as “spacers”) that are separated
by identical or near-identical short palindromic repeats (Karginov and Hannon,
2010). CRISPR arrays can be regarded as a memory bank of previous invaders in
which spacers are cognate with different mobile genetic elements (MGEs). The
defence ability of CRISPR-Cas is encoded by Cas proteins and involves three stages:

adaptation, expression and interference (Marraffini, 2015). Adaptation takes place at
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the beginning of a defence procedure in which part of the invading DNA (or RNA)
sequence is recognised and integrated into the leading side of the CRISPR array. In
subsequent invasions, the CRISPR array is processed and matured into CRISPR
RNAs (crRNAs) containing the spacer sequence. Subsequently, the crRNA can bind
a new invading segment under complementary base pairing rule, and guides
combined with the Cas protein for target destruction (Hille et al., 2018; Makarova et
al., 2011). In prokaryotes, there are several mechanisms that help avoid cell death
from autoimmunity. One of the most important ones is through the protospacer
adjacent motif (PAM). PAM in phage can be recognised by Cas before cleavage and

promotes distinction between self, versus non-self, sequences.

The latest study by Makarova et al. (2020) has revealed 2 classes, 6 types and 33
subtypes of CRISPR-Cas systems, hierarchically defined according to a series of
features including signature cas gene identification, phylogenetic analysis, and even
considering experimental data. They covered 13,116 complete bacterial and archaeal
genomes and significantly expanded their finding from Makarova et al. (2015). In
their research, CRISPR-Cas systems were identified in 85.2% of Archaea and 42.3%
of Bacteria Makarova et al. (2011). The reasons behind this uneven and sparse
distribution can be manifold. First, the distribution could be related to the genetic
background. For instance, type Il CRISPR-Cas systems are mostly identified in
bacterial species. This distribution is possibly due to the associated RNase III. This
enzyme plays a key role in pre-crRNA expression stage and is bacterial-specific
(Garrett et al., 2011). Second, horizontally transferred CRISPR-Cas systems have
been found in many species (Godde and Bickerton, 2006; Makarova et al., 2015;
Marraffini and Sontheimer, 2008), which promotes the extensive spreading.
However, fitness costs in different recipients could determine the maintenance and
cause the scattered distribution. Additionally, a study (Bernheim et al., 2019) has
proposed that loss or retention of successfully acquired CRISPR-Cas systems might
be associated with host double-strand break (DSB) repair system. Another
assumption is that CRISPR-Cas limited the horizontal gene transfer (HGT) of
beneficial genes like antimicrobial resistance (AMR) genes (Zheng et al., 2020).
Thus, the strong selection pressure of AMR genes may drive losses of CRISPR-Cas
systems (Shehreen et al., 2019). Also, the discovery of orphan CRISPR loci (no
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adjacent cas genes) might also be result from independent loss in multiple lineages

(Faure et al., 2019).

Therefore, we investigated the effects of the presence or absence of genetic elements
in organisms on the distribution of different CRISPR-Cas systems. To understand
the connection, we applied a co-occurrence study between gene-gene or gene-
CRISPR-Cas systems. Genes that associate with, or disassociate one another more
often than expected by chance may indicate functional relationships between the
genes, or fitness contributions or costs to hosts. So far, gene co-occurrence thinking
has been widely used in many studies (Al-Aamri et al., 2019; Kim and Price, 2011;
Shapiro et al., 2017; Whelan et al., 2020), especially related to CRISPR-Cas system
(Bernheim et al., 2019; Makarova et al., 2020; Shmakov et al., 2018a). Shmakov et
al. (2018) predicted 79 genes that occurred with CRISPR-Cas systems. Also,
functional analysis revealed the association with membrane proteins and signal
transduction, especially in type III systems. Interference machinery of type III
CRISPR-Cas systems can cleave double-stranded DNA (dsDNA), single-stranded
DNA (ssDNA) and single-stranded RNA (ssRNA) (Peng et al., 2015; Zhang et al.,
2016). An important step of RNA clearance is regulated by cyclic oligoadenylate
(cOA), generated by the Cas10 subunit from ATP. Then, cOA binds and activates
CRISPR-Cas Associated Rossmann Fold (CARF) domain in type III ancillary genes,
like Csmo6, and mediates an RNA universal degradation (Figure 4.4a) (Makarova et
al., 2020; McMahon et al., 2020). This explains previous detected strong association
between type III and signalling pathways. Consistently, other studies also discovered
the intense link between CARF domains and type III systems (Makarova et al., 2014,
2020; Shah et al., 2019). However, around half of CRISPR-linked genes that
identified by Shah et al. (2019) were found to lack of CARF domains and this needs

further investigation.

CRISPR-Cas systems not only associate with ancillary genes, but also cooperate
with other subtypes or immune systems (Dupuis et al., 2013a; Oliveira et al., 2014).
This phenomenon may be attributed to the arms race between prokaryotes and

phages (Hampton et al., 2019). It has been found that species that encode type I1
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CRISPR-Cas and type II restriction-modification (RM) systems simultaneously are
more likely to have enhanced defence against infection in host cells (Dupuis et al.,
2013a). Significant co-occurrence relationships were also detected between
CRISPR-Cas and RM as well as CRISPR-Cas and Argonaute (ARGO) (Oliveira et
al., 2014). Considering that foreign MGE-encoded CRISPR-Cas inhibitors (called
“anti-CRISPR”) are system-specific (Pawluk et al., 2018), a cell with multi-systems
is able to target more invaders and provide two-tier protection. Correspondingly, 9%
of bacterial genomes were identified with multiple clusters of Cas proteins
(Bernheim and Sorek, 2020). Type I system was found to co-occur with type III
(Staals and Brouns, 2013). Consistently, type I-F and type I1I-B have been found to
work synergistically in Marinamonas mediterranea (Silas et al., 2017b). Phage with
PAM mutations could evade clearance from type I-F but will be captured by the

interference machinery from type III-B with the same crRNA.

In this study, to understand the association between genome protein-coding genes
and CRISPR loci, we constructed a dataset that containing 1,824 diverse prokaryotic
species. After identifying all protein-coding genes and CRISPR-Cas subtypes from
nucleotide genomes, we performed a gene-locus coincident search. Contingency
tables were built for each pair of gene-locus presence-absence numbers. Genes that
significantly associated or disassociated with CRISPR-Cas were selected and
categorised. In order to explore mechanisms behind those associations, we
functionally annotated all co-occurring proteins using EggNOG. In addition, we
constructed a heatmap of the distribution of CRISPR-Cas associated genes across
different species. Though gene co-occurrence studies have been reported before,
questions still remain unanswered and were investigated in this study: 1) Are there
genes that are likely to function in CRISPR-Cas systems, but have not found yet? 2)
What genes in host genomes are likely to influence the fitness cost of transferred
CRISPR-Cas system? 3) Would genes that negatively assocaited with certain

CRISPR-Cas genes have potential for being a new defence system?
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4.3 Methods and Materials

4.3.1 Complete and Subset Dataset Construction

To investigate the distribution of CRISPR-Cas system across different taxonomic
ranks, we collected 277 archaeal and 11,907 bacterial complete nucleotide genomes
from The National Center for Biotechnology Information (NCBI) Reference
Sequence (RefSeq) database (see Methods in Chapter 3) (O’Leary et al., 2016) in
January 2019 as the complete dataset and fetched their lineage information from

Python ETE3 packages.

4.3.2 CRISPR-Cas Distribution across Different Taxonomic Family

In order to determine how CRISPR-Cas systems are distributed within Archaea and
Bacteria, we used the result of CRISPR-Cas identification and classification from
Chapter 2 and calculated the proportion of species that contain CRISPR-Cas systems
within each family in taxonomy. The family phylogeny was extracted and pruned
from 16S Ribosomal RNA (rRNA) tree from The All-Species Living Tree Project
(LTP) (Yarza and Munoz, 2014) and depicted using the iTOL webtool (Letunic and
Bork, 2007). Also, to explore different subtype distribution, we coloured the
CRISPR proportion bar of each taxonomic family based on the number of CRISPR-
Cas subtypes it belongs to. As mentioned before, species may encode multiple Cas
clusters belonged to more than one subtypes. For these species, we randomly
selected one subtype as the representative. Also, the proportion of species who have
had two subtypes and more than two subtypes were calculated respectively and

marked this information on the periphery.

4.3.3 Proteins Prediction

To comprehensively analyse the association between CRISPR loci and other genes,
we firstly need to clarify all protein-coding genes in prokaryotes. To analyse
CRISPR-Cas distribution, we collected all available prokaryotic genomes, but this
complete dataset is beyond our computer capacity to annotate all genes. Therefore,

we retrieved a subset that contains 1,824 respective organisms that spread across 125

110



taxonomic orders from the complete dataset. The subset dataset comprises 843
species that possess identified CRISPR arrays and 981 species that do not. Next, we
identified all potential protein-coding genes using Prodigal (version 2.6.3) (Hyatt et
al., 2010) to predict and translate all proteins in the 1,824 species.

4.3.4 Gene Family Clustering

Similar genes were clustered into families for gene coincident search. Considering
the size of our subset database, we performed a fast DIAMOND (version 0.9.30.131)
all-versus-all search, using an identity cut-off of 30%, and an e-value cut-off le-5.
Significant similar hits were identified and served as input for clustering into
families using the MCL algorithm with the inflation value set to 2.0 (Van Dongen,
2000).

4.3.5 Detection of Genes that Associated and Disassociated with

CRISPR

To find gene families that significantly co-occur with, and those that disassociated
with CRISPR-Cas systems, we applied an association study that including three
parts. First, investigation of gene families that co-occurred with CRISPR-Cas
regardless of CRISPR-Cas classification. Second, comparison of gene families that
co-occurred with different CRISPR-Cas types. Third, identification of gene families
that co-occurred with different CRISPR-Cas subtypes. The test methods were
similar, but we sampled different subset based on the questions about CRISPR-Cas
system, types or subtypes. For example, to find out whether geneA is associated with

CRISPR loci, we built a 2X2 contingency table including counts of species with
present and absent of CRISPR loci and geneA like Table 4.1. We assumed if the

presence of one gene family is significantly associated with the presence of specific
CRISPR-Cas type, this gene family is potentially linked with this type from the
perspective of function or possible contributions to fitness. On the other hand, if one

gene family is more associated with the absence of CRISPR-Cas system, this may be
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because of negative interactions with CRISPR, or it could be because it is part of

different resistance system and there is conflict between the two.

Table 4.1 Example of the contingency table of testing the co-occurrence between
geneA and the chance of have identified CRISPR loci. A, B, C, D presents the
number of species with presence and absence of CRISPR-Cas types and gene family.

GeneAd
Total
Present Absent
Present A B A+B
CRISPR loci
Absent C D C+D
Total A+C B+D A+B+C+D

*OR = (A/C)/(B/D) = AD/BC

Here, a Pearson’s chi-squared test (Python SciPy 1.3.1) is applied to determine the
statistically significant association between CRISPR-Cas and gene family present in
more than 10 species. P-value was set as 0.01 initially and then decreased to 9.39e-
09 after Bonferroni correction. Subsequently, to further investigate how gene
background effected CRISPR-Cas system, we classified all significantly related
families into positive association, and negative association groups based on Odds
ratio (OR) values (Szumilas, 2010). OR was calculated (Table 4.1*) for families who
showed significant results. If OR is higher than 1, CRISPR-Cas and this family is

positively related, and vice versa.

4.3.6 Functional Annotation

Genes in all associated gene families were annotated though the web-based software
EggNOG mapper2 (Huerta-Cepas et al., 2015). To compare the function between
positively and negatively CRISPR-linked genes, KEGG Orthology (KO) numbers of
proteins were retrieved and categorised into different hierarchies (Kanehisa et al.,

2019).
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4.3.7 Associated Gene Heatmaps

We hypothesised that the distribution of different CRISPR-Cas systems is influenced
by the presence or absence of other genes. To test this hypothesis, we created a
heatmap of species with genes that co-occurred with different CRISPR-Cas
subtypes. However, the entire heatmap is too large to show on paper and more
suitable to present in digital form. Therefore, to visualise the trend of CRISPR-Cas
subtypes linked gene, we selected the most significant 160 genes for each subtype.
We choose 160 as the cut-off because this number is big enough to show the
distribution but also within the visualise capacity. All associated genes were
included for subtypes that co-occurred with fewer than 160 genes. In total, a smaller
heatmap of species with total 1,640 CRISPR-linked genes was depicted by iTOL.
Genes were coloured based on different linked subtypes while species were coloured

according to taxonomic order.

4.3.8 Gene Association Network

Gene co-occurrence studies can also promote our understanding of mechanisms of
CRISPR-Cas system. Species of Mycobacteriaceae have been widely used in studies
of CRISPR type III (Griischow et al., 2019; Wei et al., 2019). Here, to test the
potential application of gene association studies for understanding CRISPR
mechanisms, we applied a network approach on genes in Mycobacteriaceae that
positively associated with subtype III-A as an example. In this example, we
summarised all genes that significantly co-occurred with subtype III-A and used
their Cluster of Orthologous Group (COG) membership as input for protein
association network. I then analysed all potential connections such as gene
neighbourhood, gene fusion, or co-expression, between proteins using STRING

web-based tool (Szklarczyk et al., 2015).
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4.4 Results

4.4.1 CRISPR-Cas Systems in Different Taxonomic Family

In the analysis described in Chapter 3, I analysed the genomes of 12,461 fully
sequenced prokaryotic species (12,184 bacteria and 277 archaea) to identify their
CRISPR-Cas loci. To minimise biases in evaluating genome content and CRISPR-
Cas distributions, we analysed all complete Archaeal and Bacterial genomes
available from NCBI RefSeq. This analysis showed that 82.67% of Archaea and
40.60% of Bacteria possess CRISPR systems. However, in this Chapter, closer
analysis of this dataset revealed that the prevalence of CRISPR systems and their
subtypes vary remarkably across taxonomic units (Figure 4.1). For example,
CRISPR-Cas systems are present all species in Sulfolobaceae or Thermotogaceae
while absent in all species in Nitrosopumilaceae or Chlamydiaceae. In addition, the
most widespread subtype in Archaea is type I-B whereas in Bacteria is type I-E
(followed by type I-C). Also, CRISPR-Cas subtypes were not restricted to specific
clades (Figure 4.1) and different types of CRISPR-Cas systems often existed
simultaneously even within a species. There are 3,792 species where I identified a
single type of CRISPR-Cas system, while 666 species encode multiple CRISPR-Cas
gene clusters, in which 568 species possess two subtypes and 98 species possess
more than two subtypes (Figure 4.1). Overall, CRISPR-Cas systems spread sparsely

among prokaryotes and none of these types is found solely in a single clade.
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Figure 4.1 Distribution CRISPR-Cas systems across different taxonomic
families. Each bar represents the percentages of species that have CRISPR-Cas
systems in a taxonomic family and the bar was divided based on subtype
proportions. The two bars on outer rings represent proportions of species who
encode multiple CRISPR-Cas subtypes in one family. The family phylogenetic tree
is pruned and collapsed from published 16s rRNA species tree of LTP project (Yarza

and Munoz, 2014). Families with red background are from Archaea whereas in green
background are from Bacteria.
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4.4.2 Associated Genes with CRISPR-Cas

In order to comprehensively understand how genetic background affects the
distribution and evolution of CRISPR-Cas system, we carried out gene-CRISPR co-
occurrence studies for a dataset including 1,824 diverse species. CRISPR loci and
Cas were identified and classified into subtypes in Chapter 3. To identify the
different genes that co-occur with, and/or disassociated with CRISPR-Cas, all
protein-coding genes in our dataset were annotated and clustered into gene families.
In total, there are 1,064,556 gene families classified. For all gene families present in
more than 10 species (59,092 families in total), a Pearson’s chi-square test was
carried out to detect the association between the gene family and the chance of
possessing CRISPR-Cas system regardless of types. Among 59,092 tested gene
families, 574 were predicted to co-occur with CRISPR-Cas while 984 were found to

disassociate with CRISPR-Cas more often than is expected by random chance.

To investigate the mechanism behind association between CRISPR-Cas and genes,
we then functionally annotated all associated genes using EggNOG (Huerta-Cepas et
al., 2015). From the list of associated genes, KO numbers of each related gene
families were retrieved and categorised according to KEGG BRITE hierarchies for
comparison (Figure 4.2a). Since type classification was ignored in this test, we used
the term “CRISPR loci” as the label. The number of genes that co-occur and
disassociate with CRISPR loci is significantly different (t-test, p-value = 0.0058).
Genes that disassociate with CRISPR loci are widely represented in most KEGG
functions except terpenoids and polyketides metabolism, as well as translation.
Meanwhile, co-occurring genes are mostly involved in metabolism and genetic
information processing (Figure 4.2a). In functions such as carbohydrate metabolism,
lipid metabolism as well as glycan biosynthesis and metabolism, genes that

disassociate with CRISPR loci highly outnumber co-occurred genes.
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Although different types of CRISPR-Cas systems all act as adaptive immune system
in prokaryotes, they utilized different genes during adaptation, expression and
interference. There are no genes that are found commonly encoded by all CRISPR-
Cas systems (Makarova et al., 2020). For instance, in the interference stage, class I
normally employ multiple genes as effector modules, while class II systems use
single a gene with multiple domains (Makarova et al., 2015). Therefore, to
understand gene-CRISPR associations for each type, we carried out chi-square tests
to find out genes that significantly associate or disassociate with the three most
frequent types of CRISPR-Cas systems (type I, II, III). These types are found in
81.14% of species in our dataset. In total, there were 353 families (131 positively,
222 negatively) linked with type I, 1,350 families (1,340 positively, 10 negatively)
linked with type II and 299 families (290 positively, 9 negatively) linked with type
III. Compared to CRISPR loci and type I, the number of genes that disassociate with
type Il and type III systems are very low.

Following a similar approach to the one used for the complete set of CRISPR-Cas
systems, gene families that co-occurred or disassociated with each CRISPR-Cas type
were functionally annotated using EggNOG and classified based on belonged KO
numbers. Consequently, we observed a discrepancy on genes that related to different
types. For all functions, gene families that co-occur with type I CRISPR-Cas loci did
not show significant difference compared to families of genes that tend to
disassociate with type I CRISPR-Cas (paired two-tailed t-test, p = 0.0186). By
contrast, for the other two types, the difference between numbers of positively and
negatively associated gene families are statistically significant (type II p-value =
0.0054, type III p-value = 0.0038). In addition, genes that co-occurred with type II
CRISPR-Cas systems play important roles in metabolism including cofactor, amino
acid and nucleotide metabolism, as well as signal transduction. A similar tendency
also was observed in families that were positively associated with the presence of
type III systems, except with more families involved in xenobiotics biodegradation

and fewer in Carbohydrate metabolism.
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Figure 4.2 Comparison of KO numbers between genes that positively and negatively associate with CRISPR-Cas systems. Genes that had a
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Processes; 5. Organismal Systems; 6. Human Diseases.
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4.4.3 Genes Associated with Subtypes

Genes related to different types were observed have different functional preference.
However, it is still unclear how these genes affect the distribution of CRISPR-Cas
systems. Therefore, we analysed associations in more detail, by identifying genes
that co-occur or disassociate with different CRISPR-Cas subtypes. The procedures
were similar to those for detecting type-linked genes: gene families that showed
significantly associations with each CRISPR-Cas subtype as assessed using a chi-

square test, were selected and functionally annotated through EggNOG.

In total, we have identified 8,144 gene families that significantly associated with
various CRISPR-Cas subtypes and 399 gene families that significantly disassociated
with being with them in the same genome (detailed numbers of different subtypes
are shown in Appendix C - Table S4.1). Genes that significantly associated with
different subtypes were visualised via iTOL webtool and coloured based on
associated subtypes. The complete heatmap is too large to display on paper and is

available at https://itol.embl.de/tree/78145146138451531594157733. Thus, we

subsampled the most significant 1,640 gene families that associated with CRISPR-
Cas subtypes (Figure 4.3). As shown in the figure, for many subtypes, associated
genes are mostly compatible with phylogeny, like I-A, I-F and II-A. Intriguingly, for
subtypes like I-E dozens of genes with very significant associations are widely
distributed across the tree, whereas other genes were restricted to Actinobacteria. By
contract, genes that co-occur with subtypes like I-B are widespread across the tree of

prokaryotes, except certain phyla like Actinobacteria and Proteobacteria.
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Figure 4.3 Heatmap of subset of genes that significantly associated with different CRISPR-Cas subtypes. It includes the most significant
1,640 genes that associated with different CRISPR-Cas subtypes. For each subtype, genes were ordered based on increasing p-value. That is the
most significant co-occurring gene is situated on the very left side. The encoded CRISPR-Cas subtypes in each species are shown on the left of
phylogeny, which are in the same colour with their corresponding associated genes. The species’ phylogeny was pruned from LTP 16s rRNA
phylogenetic tree, including 843 species that have identified CRISPR-Cas systems. Species in phylogeny were coloured based on their
taxonomic phylum.
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4.4.4 Subtype III-A in Mycobacteriaceae

Investigations of CRISPRs-linked genes can not only promote our understanding of
the scattered distribution of CRISPR subtypes, but also facilitates study of the
mechanisms by which the CRISPR-Cas subtypes might work. Here, we used subtype
III-A in Mycobacteriaceae as an example. In our dataset, there are 308 strains of
Mycobacteriaceae, 169 of them possess an identified subtype III-A system. After
chi-square tests, 4 gene families were retrieved that positively associated with
subtype III-A. The associated genes were subsequently annotated by EggNOG and
the COG numbers were used as indexes for constructing a protein-protein
association network via the STRING web tool (Figure 4.4b). As shown in Figure
4.4b, STRING constructs protein networks using eight different types of association.
Node COG1353 in the Cas cluster was annotated as Cas10. Cas10 works as a
nuclease and is clustered with other Cas proteins like Csm3 (COG1337) in the type
III interference machinery (called Csm complex) (Niewoehner et al., 2017). In the
STRING network, it connected with node COG2206 and node COG0664 in
relationship of text mining and gene fusions. COG2206 is annotated as cyclic di-
GMP phosphodiesterase class II (or its inactivated variant) in HD-GYP domain
while COG0664 is annotated as complexes with cyclic AMP (cAMP)-activated
global transcriptional regulator CRP. They work together in bacterial signalling
pathways and both connect with COG1353 (Cas10).
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Figure 4.4 Interference mechanism and protein-protein interaction network

related to CRISPR-Cas type III-A. (a) Type III-A system can abolish both DNA and
RNA sequences. The interference is encoded by Csm complex that contains multiple Cas
proteins and can be divided to three parts. Firstly, target RNA transcript is bind with crRNA and
cleaved by crRNA-combined complex. Secondly, exogenous dsDNA is destroyed by HD domain
of Cas10. Thirdly, Cas10 mediates the production of messager cOA from ATP. cOA then
activates Csm6 and regulates a global RNA cleavage. Figure adapted from (Rouillon et al.,
2019). (b) Protein-protein association network of genes in Mycobacteriaceae that associated with
type I1I-A. Nodes represent proteins while edges represent protein-protein association. The
detailed COG annotations were included Appendix C - Table S4.2.
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4.5 Discussion

In this study, we analysed the distribution of different subtypes of CRISPR-Cas
systems and attempted to elucidate genetic factors behind this pattern. We
constructed two datasets: the large one is designed to investigate the broad
distribution trend of CRISPR-Cas, which contains 12,184 completely sequenced
prokaryotic genomes; the smaller one aims for exploring interactions between host
genes and CRISPR-Cas, which is comprised of 1,824 species that retrieved from

large dataset.

We observed that the distribution of CRISPR-Cas subtypes is not strictly related to
phylogeny, which is consistent with a previous study (Makarova et al., 2020). The
same study also proposed the most recent classification of CRISPR-Cas, which
includes 6 types and 33 subtypes. However, considering the lag of software
developments from up-to-the-minute discovery, our CRISPR-Cas subtype
classification is still based on the old classification Makarova et al. (2015). Those
cas gene clusters that could not be classified into known subtypes were grouped into
type U. Despite the inevitable drawbacks from bioinformatics tools, we still
identified three dominant CRISPR-Cas types (I, 11, III), which account for 81.14% of
all identified systems. Also, although diverse subtypes were detected in prokaryotes,
I-B and I-C are dominant in Archaea and Bacteria, respectively. This result is in line

with the study from Makarova et al. (2015).

To find the genes that co-occurred with CRISPR-Cas, we constructed 2x2
contingency tables for every gene family including the numbers of presence and
absence of CRISPR-Cas and this gene family in our dataset. Then, genes that
significantly associated with CRISPR loci and different types were functionally
annotated and categorized to evaluate the existence of associated functional
pathways. There are several possible mechanisms that affect the scattered
distribution of CRISPR-Cas (Bernheim et al., 2019; Garrett et al., 2011). HGT of
CRISPR-Cas has been reported to be common in prokaryotes (Chakraborty et al.,
2010; Makarova et al., 2015). However, whether the transferred system will be fixed
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or lost by recipient is likely related to the host’s genetic background, such as DSB
repair systems RecBCD and AddAB. These systems have been reported that may
involve in protospacer processing during adaptation stage (Bernheim et al., 2019;
Radov¢ic¢ et al., 2018). In addition, a gene that positively associates with CRISPR-
Cas could have roles in operating or regulating CRISPR-Cas during defence
(Radov¢i¢ et al., 2018), or confer fitness advantages to niches (Shehreen et al.,
2019). By contrast, we found the number of genes that disassociated with CRISPR
loci is higher than co-occurring genes and the coverage of functions is wider. This
may indicate the influence of mechanisms shaping the distribution of CRISPR-Cas.
This disassociation relationship can be elucidated from two sides. On one hand, a
gene that significantly conflicts with CRISPR-Cas probably is a barrier for CRISPR-
Cas retention. On the other hand, CRISPR-Cas system in host genome might
constrain HGT of other genes. Many studies have reported the limitation effects
from CRISPR-Cas to HGT (Marraffini and Sontheimer, 2008; Nozawa et al., 2011).
This also has been supported by comparative analyses which revealed species in
diverse environments tended to have inactivated or deleted CRISPR-Cas system.
They suggested that species without CRISPR-Cas have more chance to obtain
beneficial, adaptive genes and better adapt to stressed environments Zheng et al.
(2020). However, in the gene-type co-occurrence study, negatively associated genes
are quite different in three types, which may imply the different gene interactions
behind different types. In addition, some of the KEGG categories like cancer or
neurodegenerative diseases are not expected to be identified from prokaryotic
proteins. These categories that significantly associated with CRISPR-Cas systems
are likely to originate from very ancient history, or alternatively, have been
incorrectly functional annotated. Bonferroni correction was applied for multiple tests
in this study, which adjusted the p-value from 0.01 to 9.39¢-09. Bonferroni
correction was thought to be a very conservative adjustment, especially when applied
in numerous tests simultaneously (Chen et al., 2017). Therefore, some CRISPR co-
occurred genes are likely to be falsefully filtered out after correction. However, this
study mainly concentrated on the function and distribution of genes that positively
and negatively with CRISPR-Cas system. The current results of CRISPR-Cas
mechanism analysis and subtype distribution would not be dramatically affected due
to the conservativeness issue from Bonferroni correction. Also, due to the limitation

of A4 paper frame, almost a half of CRISPR subtypes associated genes with lower p-

124



value were hidden when analysing the effects of genetic background to subtype
distribution (Figure 4.3). In further research, other less stringent adjustments like
Benjamini-Hochberg adjustment could be considered when analysing all possible

CRISPR-associated genes.

In order to further explore the relationships between CRISPR-Cas subtypes and
linked genes, all associated genes were depicted using a phylogenetic tree associated
with a presence-absence matrix. We could identify that the distributions of genes that
were associated with many subtypes such as I-A, II-A and II-U, were compatible
with archaeal and bacterial phyla. CRISPR immunity in some subtypes requires
collaboration with nucleases from the host, especially during the expression and
interference stage (Behler et al., 2018; Hille et al., 2018). In recipients that lack the
required enzyme, CRISPR-Cas systems may not function properly. This may explain
why CRISPR-Cas genes have been reported to potentially elicit dormancy or
programmed cell death in response to immunity failure (Koonin and Zhang, 2017;
Kiinne et al., 2016; Makarova et al., 2012). In addition, although some subtypes (like
I-E) were found to be widespread across Bacteria, there were only a dozen linked
genes, in agreement with their broad distribution. The remaining associated genes
are only present in Actinobacteria, which probably indicates that the phyletic spread
of CRISPR-Cas sometimes may be influenced by many genes (like Actinobacteria)
but sometimes a few genes (like other species with type I-E). The specific
mechanisms were not probed in this study, but our results could provide directions
for further CRISPR-Cas-related research. Furthermore, considering negatively
associated genes were only detected from type I-B and type I-F, our data is currently
not enough to investigate the inhibition of different CRISPR-Cas subtypes to HGT
or the effects from avoidant genes to the distribution of CRISPR-Cas loci, although

it can suggest directions for further co-occurrence and avoidance studies.

In the last section, we aimed to expand the application of gene co-occurrence
analyses into an investigation of CRISPR-Cas mechanisms. In our example, we
applied a network approach on type III-A associated genes that are found in

Mycobacteriaceae. Interactions between Cas10 (COG1353) and signal pathways
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(COG2206: HD-GYP domain and COG0664: CRP) were observed. This result is
consistent with a previous finding regarding Cas10 defence in CRISPR-Cas type I1I-
A. Type III-A can target both DNA and RNA sequences. Upon CRISPR-Cas
interference, the HD domain in Cas10 cleaves double-stranded DNA while the Palm
domain mediates the production of cOA from ATP (Figure 4.4a). Following, the
generated cOA serves as a second messenger, binding Cmr6 and activating
nonspecific RNA degradation (Kazlauskiene et al., 2017; Rouillon et al., 2019). The
positive regulation of type III-A by CRP signal pathway also has been reported by
Agari et al. (2010). However, Cmr6 was not identified that associated with type I1I-A
in our analysis. This is because the Cmr6 gene family is only present in 10 species

and were ignored in the significance test.

In conclusion, we applied gene co-occurrence studies on three levels of CRISPR-Cas
systems to investigate the interactions between genetic background and CRISPR-Cas
loci. The spread of CRISPR-Cas subtypes is compatible with phylogeny and
sometimes can be determined only by a dozen closely associated genes. The wide
range of repellent genes may also indicate inhibition of HGT by CRISPR-Cas.
Meanwhile, we applied a network approach on associated genes to verify our gene
association analysis and detected a significant interaction between type I1I-A
immunity and signal transduction pathway. Overall, our study demonstrates the
usefulness of gene-gene association studies for understanding the function of

CRISPR-Cas systems which can point the direction for further in vivo research.
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Chapter 5.

Discussion, Future Work and Conclusion
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5.1 General Discussion

Network-based models provide fresh angles of identifying and analysing
introgressive descent and expand the evolutionary thinking (Bapteste et al., 2013). In
a sequence similarity network (SSN), genes, genomes or organisms are represented
as nodes and are connected by edges if they show significant homologous
relationships. Hybrid nodes in the SSN enable its ability to identify gene remodelling
events. Composite genes could be detected in non-transitive triplets, in which
composite genes show significant similarity to component genes while there is no
overlap between components (Corel et al., 2016; Watson et al., 2019). Horizontal
gene transfer (HGT) events between species through mobile genetic elements
(MGESs) can also show by SSNs (Fondi and Fani, 2010). Also, SSNs are flexible and
can be adapted to different types of research. Apart from showing similarity between
entities, nodes in a network can be coloured with additional information, such as
modularity, taxonomic ranks and functional categories, whereas edges can be
directed to show divergence or convergence, or be weighted based on similarity to
parental/offspring genes. The characters of network allow scientists to navigate and

manipulate according to their research objective.

To explore the potential of network approaches to analyse introgression of large-

scale data, this thesis covers two datasets: one containing more than 1 million amino
acid sequences to investigate gene fusion across three domains of life and MGEs; the
other containing 12,184 complete nucleotide genomes to investigate the evolutionary

history of prokaryote CRISPR-Cas systems.

In the first study, through identifying significantly similar sequences and
constructing SSNs, a total of 221,045 composite genes were detected. These
composite genes accounted for 18.57% of the complete dataset, connecting with
603,604 component genes. Although composite genes were widely distributed across
all cellular organisms of our dataset, the proportion of composite genes within a
species varied. 31.6% of genes in Homo sapiens were identified to be composites,

which is the largest percentage among species across the three domains of life,
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followed by Volvox carteri f. nagariensis (29.77%). In addition, the average
percentage of composite genes in eukaryotes is higher than in Archaea and Bacteria.
To verify this result, we functionally annotated all composite and non-composite
genes, and grouped them according to their origin and involved COG categories.
Odd Ratio (OR) tests were performed to assess the association between a gene’s
origin and the likelihood of it being composite in each COG category. We concluded
that the composite genes were more likely to have originated from eukaryotes than
from prokaryotes, which is consistent with the initial result. The role gene fusion
played in the origin of eukaryotes has been stated in many previous studies (Brennan
et al., 2008; Leonard and Richards, 2012; Liu et al., 2009; Rogers et al., 2009) and a
large number of composite genes were also identified in eukaryotes by Jachiet et al.

(2013).

In the second study, we focused on the evolution of the CRISPR-Cas system, which
is an important adaptive immune system in prokaryotes. Diverse studies
investigating CRISPR-Cas systems including the evolution, mechanisms and
applications have flourished in the past decades (Cong et al., 2013; Hille et al., 2018;
Makarova et al., 2020). Here, to investigate possible HGT events in CRISPR-Cas
systems, we constructed SSNs in which nodes represented CRISPR loci while edges
represented evolutionary relationships such as sharing significantly similar spacers.
Networks do not replace other evolutionary approaches such as tree-based models.
Instead, a combined approach can promote our understanding of evolutionary
biology (Corel et al., 2016). Therefore, we mapped the network results onto a
phylogenetic tree. From both models, we found spacer sharing was rare between
distant species but common between close species, whereas repeats were shared
universally. This result is compatible with the hypothesized “pan-immune model” in
prokaryotic population (Bernheim and Sorek, 2020). In this model, all immune
systems are not required to be encoded by individual species but could be shared
through HGT within a community. However, we only detected a few shared spacers
across distant species, which suggests that the time or distance scale of pan-
immunity is limited. That is to say, either CRISPR-Cas systems could not be
transferred between distant species through genealogical and geological barriers, or

transferred CRISPR-Cas could not be maintained. Although HGT of CRISPR-Cas
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(Faure et al., 2019; Makarova et al., 2013, 2015) has been identified in different
species, a study by Gophna et al. (2015) suggested that the effect of HGT on
CRISPR-Cas was not significant in long time-scales, which is compatible with our

latter hypothesis.

To depict diverse evolutionary processes such as integration, deletion, and
recombination in CRISPR-Cas system, we used repeat-mutation patterns and
comparative genomic analyse. Network thinking can also contribute to this task.
Lam & Ye (2019) presented a directed compressed spacer network (graph) that
connected spacers based on their order in CRISPR loci. In a compressed spacer
network, conservative and uninterrupted spacers are united in one single node and
edges with arrows indicate the direction and order of spacers. The main structure is
stabilized by core spacers that shared between species. Rapid spacer loss were
captured through identifying triangular motifs in the network. Multiple gains on the
leading sides were also noticed through a radial pattern on one side of the structure.
Lam and Ye’s reported diverse spacer dynamics are consistent with our findings;
however they did not identify ectopic spacer integrations because spacer integration
time was not concluded in their work. Similarly, Kupczok et al. (2015) also
identified CRISPR-Cas evolutionary patterns from graphs. In this work, they focused
on detecting order divergence events (ODEs) from the comparison of two arrays that
contained similar spacers. They concluded that adaptation and deletion contributed
more to CRISPR evolution compared to recombination. This result is consistent with
our comparative analysis but leaves us the question: which evolutionary process
causes the irregular patterns of mutation in repeats? Although ectopic spacer
integration has been reported in subtype II-A (McGinn and Marraffini, 2016), the
irregular mutations in our results were widely distributed across all 11 subtypes. The

underlying reason for this remains to be elucidated.

Another interesting finding are the highly conserved spacers at the end of CRISPR
loci, which has been termed “trailer end clonality” (Weinberger et al., 2012). This
sequence pattern has been found in many studies (Mick et al., 2013) and a

metagenomic stability study found a conserved spacer that lasted for 5 years (Sun et
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al., 2016). The order of spacers has been reported to be critical to an array (McGinn
and Marraffini, 2016). Spacers that are newly integrated (located at the leader end)
possess higher resistance against phages by expressing more crRNAs than spacers in
the middle (McGinn and Marraffini, 2016; Nickel et al., 2013; Richter et al., 2012b).
This observation inspired our hypothesis about intention of priming. CRISPR-Cas
can integrate more than one copy of the same spacer when under attack of a known
invader, which is called priming. However, when encountering new MGEs, novel
spacers will be integrated into the leading side again. Therefore, to maintain the
robust immune response against familiar invaders, the lower number of transcribed
crRNAs from a single downstream spacer can subsequently be made up by multiple
copies of the same spacer in one array. Nonetheless, this hypothesis cannot explain
the trailer-end clonality because we only identified one sole spacer conserved at the
trailer end. Some other hypotheses about this pattern were stated. Diverse spacers
encoded at the leading side are involved in constant expansion and contraction
during evolution. Comparatively, spacers at the trailer end are conserved across a
population in order to limit diversity of a CRISPR loci, which could possibly
contribute to the maintenance of CRISPR-Cas (Haerter et al., 2011). Additionally,
through a model simulation with metagenomic analysis, Weinberger et al. 2012)
proposed that the clonality might be mediated by rapid selective sweeps of robust

immune lineages.

The spread of CRISPR-Cas is non-uniform across the prokaryotic phylogeny and the
reasons underlying this have not been described systematically before (Makarova et
al., 2020). In my thesis, I utilized an association study on exploring the co-
occurrence and avoidance between protein-coding genes and the CRISPR-Cas
system. I identified a series of genes that co-occurred and disassociated with
CRISPR-Cas types and found that these genes were mostly functional in different
metabolic pathways. Through mapping the CRISPR-Cas subtypes and co-occurring
genes to the phylogeny, we observed that the distribution of subtypes was diverse.
This result is consistent with previous reports (Bernheim et al., 2019; Makarova et
al., 2011). Specifically, subtype spreading is compatible with the distribution of
positively associated genes. The number of highly co-occurring genes range from a

dozen to hundreds, which indicates the influence of the genetic background to
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distribution of CRISPR-Cas. Considering that the HGT of CRISPR-Cas loci has
been identified in our previous findings and many other studies (Faure et al., 2019;
Shmakov et al., 2015), we conjectured that the distribution is influenced by the
fitness trade-off of HGT and the CRISPR-Cas system. On one hand, the CRISPR-
Cas system itself in prokaryotes may inhibit HGT (Bikard et al., 2012; Van Houte et
al., 2016). It was proposed that species may deactivate CRISPR-Cas to promote
HGT of beneficial genes in stressful environments, which serves as a “bet-hedging”
strategy (Jiang et al., 2013; Zheng et al., 2020). Alternatively, the genetic
background of the host may influence the fixation of the transferred system. This is
consistent with the recent finding of an association between double-stranded DNA
break (DSB) repairing systems and CRISPR-Cas subtypes (Bernheim et al., 2017,
2019). Moreover, diverse mutation rates in bacterial genomes also affect the
distribution of CRISPR-Cas (Chevallereau et al., 2020). They indicated that bacteria
with mutated surface genes, especially phage receptors, contributed to a fitness
advantage and resulted in reducing of CRISPR-Cas evolution. Aside from the
influences from internal factors of prokaryotes, the distribution of CRISPR-Cas
could be affected from external factors of two levels: interaction between bacteria
and phage, and ecological conditions. First, co-evolution studies have revealed the
dynamics of CRISPR-Cas evolution to cope with constant phage infections
(Common et al., 2019; Hampton et al., 2019; Paez-Espino et al., 2015). However,
many CRISPR-Cas losses were observed in host-phage coevolution at a system level
rather than a spacer level (Jiang et al., 2013; Weissman et al., 2018; Westra and
Levin, 2020). A recent finding also revealed that a prophage in bacterial genome,
deriving from temperate phage infection, could trigger CRISPR-Cas self-targeting.
This could lead to loss of the CRISPR-Cas system (Rollie et al., 2020) through
cytotoxic effects (Vercoe et al., 2013). Second, prokaryotic niches may also
contribute to the sparse distribution of CRISPR-Cas system. Metagenomic
experiments have revealed high prevalence of CRISPR-Cas in high-temperature
environments (Anderson et al., 2011) and marine sponge-associated microbes (Horn
et al., 2016) but shrunk popularity in groundwater filtrates (Burstein et al., 2016).
Also, bacteria may favour different immune systems under different environmental
conditions. For example, it was found that Psedomonas aeruginosa preferred
CRISPR-Cas in nutrient deficient conditions while preferring surface mutations in

nutrient excess conditions (Westra et al., 2015). Overall, the evolution of CRISPR-
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Cas is affected by multifaceted processes, and therefore, good analyses may require
thinking from the perspective of interdisciplinary methodology that combine

bioinformatics, mathematical models with metagenomics (Westra and Levin, 2020).

5.2 Future Work

Regarding the study of composite genes, the general distributions and functional
annotations of these results have been analysed in detail. A further step could focus
on specific genes such as antimicrobial resistance (AMR) genes. In addition,
corresponding RNAseq data could be included to map identified composite genes
precisely, for example, by confirming the expression of these genes. This could also
promote the understanding of the mechanisms behind composite genes generation.
Furthermore, through EggNOG functional annotations, in 23 COG categories, only
composite genes within the RNA processing and modification (A) as well as
extracellular structures (W) categories show no preference between eukaryotes and
prokaryotes. Genes belonging to these groups could be further investigated, in which

the convergent or divergent evolutionary patterns could be mapped in the context of

phylogeny.

Concerning CRISPR-Cas evolution, complicated evolution has been identified in
this thesis. Inspired by the thought of identifying evolutionary patterns through
mining different motifs in spacer networks (Kupczok et al., 2015; Lam and Ye,
2019), further research could focus for developing a pipeline of detecting insertion,
deletion and recombination using network-based models. However, several potential
problems may hinder such identification. First, large populations of long CRISPR
arrays may include too many complicated patterns to analyse, whereas a small
dataset may miss important evolutionary processes because of limited comparisons
between CRISPR loci. Therefore, it is important to determine the proper threshold of
dataset scale. Second, one motif could result from different kinds of evolutionary
processes. For example, a triangle in a spacer network could be generated from
middle insertion (or recombination, or HGT of a single spacer), or resulted from

middle deletion. To comprehensively identify these process, a combination of
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network thinking, phylogenetic approaches and mathematical models could be
considered. Third, recombination and duplication can disrupt the conservative order

of core spacers, which could result in chaos within the network.

A large number of genes were identified that co-occurred with different CRISPR-
Cas subtypes. Even though we employed four programmes to identify CRISPR loci,
the results of Cas protein cluster detection are only based on one program
CRISPRCasFinder, which classify subtypes according to the Makarova et al. (2015)
method rather than the latest classification (Makarova et al., 2020). In future work,
more Cas proteins and subtypes could be detected through new programs, such as
CRISPRCasldentifier (Padilha et al., 2020) and CRISPRCasTyper (Russel et al.,
2020). In this study, the phylogenetic tree with heatmap was depicted to show
relationships between the genetic background and distribution of CRISPR-Cas.
However, the full heatmap is too long to clearly present in one A4 paper. In the
future work, a bipartite network of subtypes and the associate genes could be
involved in portraying the association. Furthermore, the role of avoidant genes in the
distribution of CRISPR-Cas could also be further identified through network-based

and tree-based approaches.

5.3 Conclusion

In this study, the power and application of network-based approaches is shown
through investigations into composite genes and the CRISPR-Cas system. We
constructed SSNs to identify composite genes in cellular organisms and find
CRISPR sharing across prokaryotes. More specifically, we demonstrated that
although composite genes were pervasive in prokaryotes and eukaryotes, the
likelihood of composite genes deriving from eukaryotes was significantly higher
than from prokaryotes. Separately, we found that CRISPR-Cas loci are involved in
rapid and complex evolution. We identified and visualised integration, deletion and
recombination through tracking mutations in repeats and comparative analysis of
clustered CRISPR loci. Quite a number of irregular patterns might be produced by

other spacer integration mechanisms except polarized adaptation and priming. Also,
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HGT in CRISPR-Cas was analysed through phylogenetic and network approaches.
Distant sharing might be restricted but CRISPR-Cas sharing between close species is
quite common, which potentially results in its unbalanced distribution across
prokaryotes. However, we found that even though the spread of CRISPR-Cas is
scattered, the subtype distribution is compatible with co-occurring genes. This
suggests that species that encode CRISPR-Cas are affected by their genetic
background. The number of closely related genes vary from a dozen to hundreds
depending on the subtype. A protein-protein network was also constructed
containing genes that co-occurred with CRISPR-Cas subtype II-A. Genes that
connected with this Cas gene cluster can mediate RNA cleavage during interference,
which have been proved in experiments. This suggested the potential application of

co-occurrence and networks in exploring gene functions and mechanisms.
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S1. Odds ratio (OR) test on GO annotations

To analysis the distribution of composite gene in eukaryotes and prokaryotes, apart
from the COG annotations, we carried out the Odds ratio (OR) test on GO
annotations as well. The results were collected from EggNOG output. Analysis was
similar to COG analysis, for both eukaryotes and prokaryotes genes, counted the
frequency of each function, OR value, upper and lower confidential interval (CI)
values with conservative Bonferroni correction. Composite genes acted as cellular
components and involved in biological process were statistical more likely to be
from eukaryotes but genes in molecular function did not show much difference

between eukaryotes and prokaryotes. The detailed information was showing in ST1.

Cellular Component

]

Molecular Function - }

GO annotation

Biological Process

e

Unknown

o]

13 1.6
Odds Ratio (OR) values

e e e - -

Figure S2.1. Numbers of OR, corrected upper 95% CI and lower 95% CI value
across all GO annotations.
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Table S2.1. Numbers of composite and non-composite genes from eukaryotes
and prokaryotes in different functional categories, OR, corrected upper and
lower 95% CI values.

Composite Non-composite Corrected Corrected
Functional annotations  Eukaryotes Prokaryotes Eukaryotes Prokaryotes OR ~ lower  upper
(a) (©) (b) (d) 95% CI  95% CI

A 4633 27 11303 40 0.61 0.281 1.314

w 1019 19 2174 44 1.09 0461 2.556

C 3408 5603 9049 19626 1.32 1.22 1.426

L 4043 5159 8477 14734 1.36  1.261 1.472

T 16220 3376 41878 13821 1.59  1.485 1.694

J 4594 4213 12711 18724 1.61 1.49 1.731

P 4674 4867 9861 16715 1.63 1.511 1.754

E 4163 7247 7456 22038 1.7 1.578 1.826

D 2620 638 6151 2620 1.75  1.499 2.041

G 5291 4078 11275 15524 1.79  1.658 1.925

Q 2905 1291 6917 5547 1.81  1.605 2.029

COG N 89 535 304 3474 19 1275 2.833

B 2303 44 4606 169 1.92  1.132 3.259

H 1954 3231 3633 11762 1.96 1.761 2.177

I 4701 1919 10648 8966 2.06 1.876 2.268

U 6011 814 16986 4758 2.07 1.824 2.346

o 11432 2225 29759 12086 2.09 1928 2.258

F 1538 1777 3174 7748 211 1.863 2.396

M 1916 3310 4139 15532 2.17  1.958 241

v 826 1161 1906 6145 2.29 1.95 2.698

K 8418 3372 22301 22575 2.53 2.358 2.709

Z 4391 11 10486 91 3.46 1.29 9.304

S 37613 9440 122130 125751 4.1 3.951 4.26

~ Celular Component 21063 9743 57403 41686 157 1.504  1.639

Molecular Function 1832 1863 4469 4837 1.06  0.944 1.2
Biological Process 60444 16205 139926 58163 1.55 1.503 1.6
Unknown 58928 35835 283635 280001  1.62  1.588 1.66
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S2. Sequence Similarity Network (SSN) of Composite genes in

Prochlorococcus marinus

Network-based analyse has the potential to become one of best ways of showing the
complexity and diversity of gene evolution. In a network, nodes (representing genes)
are connected by edges when they show are potentially homologous. Previous
studies have shown the important role of gene fusion in cyanobacteria, thus here we
used composite genes in Prochlorococcus marinus as an example to show how
potentially can network been utilized in investigating genomic evolutionary
relationships (Méheust et al., 2016). Using our apporach, we detected 218 composite
genes in P. marinus, which showed significant similarity with 4,505 components. In
the network, there were 4,717 nodes attached by 137,681 edges that formed 171

connected components (CCs).

All nodes were coloured by the COG category which the corresponding gene
belongs to. Interestingly, most CCs consisted of genes from a single category code.
In most non-transitive triplets, composite genes shared the same COG category with
its component genes even though there was no obvious homology between these
component genes. In Figure S2, there were several composite genes which showed
the same functional type with a small subset of its component genes. For instance,
Node 1 shared a COG category (labelled in green) with 2 components rather than
105 component genes. Another interesting observation was that composite and
components involved in non-transitive triplets belonging to different COG
categories. For example, Node 2 from P. marius was involved in tRNA-
methyltransferase function whereas Node 3 from P. marius included functions such
as phosphoribosyl-AMP cyclohydrolase and phosphoribosyl-ATP diphosphatase
HisIE. However, the gene Family 4 that connected these two families that play roles
in generation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase and they
were from Galdieria sulphuraria and Cyanidioschyzon merolae. These genes had
quite different functions but formed composite gene origin from non-homologous

species showed potential for further research.
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Figure S2. Example of sequence similarity network of composite and related
component genes from Prochlorococcus marinus. The Fruchterman-Reingold
algorithm was used to determine node layout. All nodes were coloured based on its
COG category codes.
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Abstract: The formation of new genes by combining parts of existing genes is an important
evolutionary process. Remodelled genes, which we call composites, have been investigated in
many species, however, their distribution across all of life is still unknown. We set out to examine
the extent to which genomes from cells and mobile genetic elements contain composite genes.
We identify composite genes as those that show partial homology to at least two unrelated component
genes. In order to identify composite and component genes, we constructed sequence similarity
networks (SSNs) of more than one million genes from all three domains of life, as well as viruses and
plasmids. We identified non-transitive triplets of nodes in this network and explored the homology
relationships in these triplets to see if the middle nodes were indeed composite genes. In total,
we identified 221,043 (18.57%) composites genes, which were distributed across all genomic and
functional categories. In particular, the presence of composite genes is statistically more likely in
eukaryotes than prokaryotes.

Keywords: composite genes; sequence similarity networks; odds ratio test

1. Introduction

Reticulation occurs when two or more evolutionary lineages merge, and consequently, reticulation
cannot be visualised or analysed using tree-like models of evolution. We see reticulate events occurring
during meiotic recombination, horizontal gene transfer (HGT, also known as lateral gene transfer) [1],
exon shuffling [2], and hybrid speciation [3] for example. Merger events can be seen at multiple levels,
such as genes, genomes, operons and gene clusters.

This paper focuses on the combination of genetic fragments from unrelated gene families to
produce a single gene. This process of gene fusion occurs when parental (or component) genes
merge to form a new gene called a composite (or fused) gene [2,4]. Because reticulate evolution
cannot be adequately represented using tree-like representations, we constructed sequence similarity
networks (SSNis, also known as protein/gene similarity networks) and visualised them using Gephi [5]
and Cytoscape [6]. In these kinds of networks, gene, genome or species data can be used to detect
recombination events. In the SSNs that we have constructed, genes or proteins are represented as
nodes while inferences of homology between genes are represented by edges. Within the framework
of the SSN, some special relationships, such as non-transitive triplets when two component genes
have no overlap, can be identified as motifs in the network. SSNs have been used elsewhere in
order to investigate the existence of composite genes [7,8]. In an analysis of 15 eukaryotic genomes
Haggerty et al. [7] constructed a network that contained a giant connected component (GCC) where one
quarter of all sequences were identified as composite genes and approximately 10% of sequences were
identified as multi-composite genes (those formed from the union of two or more composite genes).
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Moreover, Coleman et al. [8] used SSNs to explore 1642 antibiotic resistance genes derived from more
than 100 species. They found 73 fused genes using the FusedTriplets software [9,10], which accounted
for 4.43% of the total gene count. In addition, Jachiet et al. [10], using the MosaicFinder software, found
gene fusions in both cellular organisms and mobile genetic elements (MGEs). In another analysis
using the same kind of approach, viruses were suggested to consist of only 8-15% of composite genes,
with this low number being attributed to the blurry boundaries between viral gene families [11].
In addition, gene fusion has been shown to have played an essential role in the evolution of the cellular
life cycle, with composite gene formation seen in genes related to chromatin structure and nucleotide
metabolism [12]. Also, Ocafia-Pallares et al. [13] concluded that there was a significant role for gene
fusion in the origin of eukaryotes, as evidenced by SSN built from eukaryotic EUKaryotic restricted
Nitrate Reductase (EUKNR) and similar eukaryotic and prokaryotic sequences. The result indicated
that EUKNR was formed by a fusion of eukaryotic sulfite oxidases (SUOX, N-terminal) and NADH
(C-terminal) reductases. Therefore, while it is clear that gene fusion is a common feature of genes,
a comprehensive comparison across a broad range of taxa and molecule types would provide more
evidence for its frequency and impact.

In this paper, we describe an approach to identify composite genes using a dataset of 1875
completed genomes, comprising more than one million sequences, from all three domains of life as
well as from MGEs. We tested whether the rate of gene remodelling has been uniform across all of life,
and all cellular functional categories.

2. Materials and Methods

2.1. Dataset Construction and BLAST Analysis

A total of 1,190,265 protein sequences were collected from the RefSeq database at the National
Centre for Biotechnology Information [14]. We manually selected taxa in order to maximise diversity,
while also ensuring computational tractability. The final dataset covered 261 species from the main
representative lineages, belonging to 36 eukaryotes (13 phyla, 21 classes), 56 archaea (4 phyla, 9 classes),
90 bacteria (25 phyla, 32 classes), 79 viruses and 1,614 plasmids. Homology between pairs of amino
acid sequences was inferred using an all-versus-all protein BLAST (BLASTP version 2.4.0, NCBI,
Bethesda, MD, United States), with an E-value cutoff of 1e-5, 5000 max target sequences, and soft
masking parameter (the others by default) [15]. The dataset species information and download paths
are available at https://github.com/[McInerneyLab/CompositeGenes/blob/master/accession.txt.

2.2. Composite Gene Identification

Using the BLAST results as input, we identified composite genes as motifs of triplets in the graph
where there was a “non-transitive” relationship between three nodes [4]. Composite gene detection
was carried out by the CompositeSearch program [16] when associated component genes have no
overlap theoretically, with default identity cutoff of 30% and 20 amino acid overlaps to limit false
negative error. The CompositeSearch output contains information on composite genes, component
genes and the families to which they belong. This output was depicted, explored, and manipulated
using Gephi (version 0.9.2, The Gephi Consortium, Paris, France) [5].

Because the proportion of composite gene from different domains might be affected by biased
sequence database sampling, we randomly sampled 50,000 genes from archaea, bacteria, eukaryotes
and plasmids respectively. These random samples were taken forward for analysis in the same way
as the original data. The major difference between the sub-sampled datasets and the original data
was that in the subsampled datasets, the number of genes from each of the four kinds of dataset
was the same. We used CompositeSearch in order to construct an SSN from the BLASTP output of
the subsampled datasets containing 200,000 genes. These SSNs were then used in order to identify
composite genes. Sampling was repeated 100 times and the results were summarised graphically.


https://github.com/JMcInerneyLab/CompositeGenes/blob/master/accession.txt
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2.3. Functional Annotations

We used EggNOG (version 4.5.1, Computational Biology Group-EMBL, Heidelberg, Germany) [17]
in order to assign gene functional categories. The analysis was carried out through the web interface
using the DIAMOND [18] mapping mode. In the output, genes were assigned to different Orthologous
Groups (OGs), and each OG had functional annotations that included Clusters of Orthologous Groups
(COGs) functional categories: COG for universal Bacteria, EuKaryotic Orthologous Groups (KOGs)
for Eukaryotes and arKOGs for Archaea [19]; Gene Ontology (GO) terms [20]; Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways and SMART/Pfam protein domains. Both composite and
non-composite genes were placed into at least one of 23 COG categories and at least one of four
GO terms.

2.4. Statistical Analysis

In the EggINOG output, each gene has a detailed functional annotation and is associated with
at least one general COG category code (A to Z apart from R and X). Because of recombination,
the category code for a given gene could be single letter like “A” or multiple letters such as “ABC’.
When counting the number of genes that possess a particular function, if a multiple letter category was
selected, we counted this gene multiple times. For instance, if the most common COG category for a
gene was ‘ABC’, and then this gene was counted three times as A, B and C.

To investigate the distribution of composite genes and non-composite genes among eukaryotes
and prokaryotes, an odds ratio (OR) test [21] was carried out. OR tests are normally used to test the
strength of the association between two events. Here, for each protein function, we used an OR test to
test the association between gene origin and the likelihood of fusion Equation (1).

a/c ad
OR = — = — 1
b/d  bc @
where a is the number of composite eukaryote genes, b is the number of non-composite eukaryote
genes, ¢ is the number of composite prokaryote genes, d is the number of non-composite prokaryote

genes. The 95% confidence intervals (CI) were calculated by

Upper 95% CI = e‘[ln(OR) +1.96 \/(% + E + % + 1)j

b d
1 1 1 1
Lower 95% CI = e{ln(OR) - 1.96 \/ (; Tyt E)j @

For all OR tests that were carried out on 24 COG categories, we used a conservative Bonferroni
correction [22] to limit type I error. The critical level of significance was initially set as a = 5%,
we corrected it as a/2N, N is the number of performed tests, which in our case is 24. The new
significance level is 0.1% and corresponding confidence coefficient of 99.9% is 3.09 standard deviations,
using the standard normal distribution table. The corrected CI was calculated by

Upper 95% CI = e{ln(OR) +3.09 \/(% + % + % + %)j

Lower 95% CI = e{ln(OR) —3.09 \/(% T % + % + %)j ©



Genes 2019, 10, 648 40f 11

3. Results

3.1. Pervasive Existence of Composite Genes across All of Life

We assembled a dataset of 1,190,256 genes from 36 eukaryotes, 56 archaea, 90 bacteria, 79 viruses
and 1614 plasmids from more than 60 taxonomic classes. Following an all-versus-all BLAST, a total of
540,325,758 significant hits were detected. Using CompositeSearch, an SSN containing 1,025,263 nodes
and 109,650,422 edges was constructed. In this network, 221,043 composite genes (18.57% of the gene
dataset, Figure 1a) were identified, linked to 603,604 component genes. Collectively, these genes were
assigned to 360,981 gene families.

To gain a better understanding of those genes involved in non-homologous recombination, all genes
were categorized into four groups: nested composite genes, strict composite genes, strict component
genes, and non-remodelled genes (Figure 2). Nested composite genes have been formed by the
merging of at least two sequences but are additionally involved in other non-transitive triplets as
components; that is to say they themselves are composites but also form other composites. In contrast
to nested composites, strict composite genes only act as composite genes in the network, similar to
strict component genes. Non-remodelled genes do not show evidence of having participated in any
recombination events. In our dataset, 181,157 genes as nested composite genes, 39,886 genes were
identified as strict composite genes, 422,447 as strict component genes, and 546,775 as non-remodelled
genes (Figure 3a).
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Figure 1. Pictures of composite and component genes among different domains. (a) Proportion of

composite genes within different domains and mobile genetic elements. Dots represent individual

genomes. (b) Numbers of nested composite, strict composite, strict component, and non-remodelled
genes within different domains for each of the 100 replicates of equal sampling. All analyses were
replicated 100 times and each replicate is represented by a dot.

Within 182 species across the three domains of life, remodelled composite genes were discovered
in all species, indicating that gene fusion is, and has been, widespread across all life on Earth. Overall,
23.66% (205,913 composites identified from 870,120 eukaryotic and prokaryotic genes) of examined
genes were identified as composite. However, there was a considerable amount of variation in the
proportion of composite genes across species and molecule type. Table 1 presents the ten genomes
with the highest and lowest rates of composite genes among eukaryotes and prokaryotes. Composite
genes account for almost one third of the genomes of Homo sapiens, Volvox carteri f. nagariensis and
Aureococcus anophagefferens.
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Figure 2. Sample patterns of nested composite, strict composite, strict component, and non-remodelled
gene families. Genes in family A not only participate in the fusion of genes in family D as component
genes but are also formed by genes from family B and C as composite gens; this is regarded as nested
composite genes. In contrast, genes in family B, C and E belong to strict component families which only
act as component genes in this network. Similarly, genes in family D as members of a strict composite
family. In additional, family F is non-remodelled gene. Also, because there is no overlap between gene
family A and C, gene family B and E so “A-B-C” and ‘B-D-E’ can be regarded as non-transitive triplets.
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Figure 3. Function analysis of composite and non-composite genes. (a) Numbers of nested composite,
strict composite, strict component, and non-remodelled genes across all COG categories. (b) Numbers
of OR, upper 95% CI and lower 95% CI value (after Bonferroni correction) across all COG functions.
The detailed numbers are shown in Table S1. There was not composite gene identified from prokaryote
in category Y in this dataset, so OR test was not applied. Apart from A and W, which span 1.0, the odds
of composite gene presence in all COG categories shows statistically significant tendency in eukaryotes.
A: RNA processing and modification; B: chromatin structure and dynamics; C: energy production and
conversion; D: cell cycle control and mitosis; E: amino acid metabolism and transport; F: nucleotide
metabolism and transport; G: carbohydrate metabolism and transport; H: coenzyme metabolism; I: lipid
metabolism; J: translation; K: transcription; L: replication and repair; M: cell wall/membrane/envelope
biogenesis; N: Cell motility; O: post-translational modification: protein turnover, chaperone functions;
P: Inorganic ion transport and metabolism; Q: secondary metabolites biosynthesis: transport and
catabolism; T: signal transduction; U: intracellular trafficking and secretion; V: defence mechanisms;
W: extracellular structures; Y: Nuclear structure; Z: cytoskeleton; S: function unknown.

As shown in Figure 1a, the proportion of composite genes often shows a wide distribution,
depending on the classification of the genome in which the gene is found. Among cellular lifeforms,
eukaryote genomes contain the highest proportion of composite genes on average (22.66%), followed
by bacteria (14.76%) and then archaea (12.78%). However, the distributions are quite wide though
prokaryote species manifested a narrower distribution of composite frequency when compared with
eukaryotes. When considering mobile genetic elements, the average percentage of composite genes in
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plasmids (14.69%) is almost the same as bacteria but is noticeably higher than the average seen for
virus genes (4.82%).

Table 1. The ten species that contain the highest (left) and lowest (right) proportions of composite
genes. All species that contains more than 24% composite genes are from eukaryotes, whereas most
species that contain less than 11% composite genes are from archaea (Crenarchaeota family, mostly).

Total Number of Total Number of
Species Number  Composite Proportion Species Number Composite Proportion
of Genes Genes of Genes Genes
Homo sapiens 109,018 34,455 31.60% Fervidicoccus fontis 1385 152 10.97%
Volvox carteri f. nagariensis 14,436 4298 29.77% Thermoproteus uzoniensis 2112 224 10.61%
Aureococcus anophagefferens 11,520 3227 28.01% Nanoarchaeum equitans 540 57 10.56%
Capsaspora owczarzaki 8792 2413 27.45% Staphylothermus marinus 1598 168 10.51%
Chlorella variabilis 9780 2626 26.85% Encephalitozoon intestinalis 1939 203 10.47%
Polysphondylium pallidum 12,367 3313 26.79% Ignisphaera aggregans 1930 198 10.26%
Monosiga brevicollis 9203 2322 25.23% Methanopyrus kandleri 1687 173 10.25%
Salpingoeca rosetta 11,731 2939 25.05% Pyrobaculum neutrophilum 1966 195 9.92%
Allomyces macrogynus 19,446 4829 24.83% Hyperthermus butylicus 1681 165 9.82%
Tetrahymena thermophila 10,626 2625 24.70% Pyrolobus fumarii 1885 175 9.28%

To avoid the effects of unequal sampling in large dataset, we used a jackknife resampling approach
in order to generate datasets of 50,000 sequences each from eukaryotes, archaea, bacteria and plasmids.
With these uniformly-sized gene sets we used the same analysis methods as for the large dataset:
sampling, identifying homologs and constructing SSNs. We then replicated this process 100 times.
On average, across all replicates, 19,443 (9.72%) genes were identified as composite genes (Figure 1b),
which is approximately half the percentage identified from the large dataset (18.57%). The difference
indicates that the detection rate of composite genes is related to genomic sequence sampling size
and therefore, the reporting of composite genes is always a lower bound for the actual percentage.
The resampling procedure was designed to analyse composite gene distribution while attempting to
normalise for the difference in data size for each of the four main classifications (eukaryote, bacteria,
archaea and plasmids). Plasmids have the highest proportion of strict composite genes while eukaryotes
have the largest proportion of nested composite genes (Figure 1b). Nonetheless, even though there is
no obvious difference between eukaryotes and prokaryotes in terms of the number of nested composite
genes, strict composite genes are approximately twice as likely in eukaryotes as in archaea and bacteria.
Bacteria and archaea are quite similar, in terms of their proportions, for all four categories of remodelled
and non-remodelled genes. Finally, strict component genes do not show much difference across any of
our genome types though eukaryotes have the highest number of strict components but the lowest
number non-remodelled genes.

3.2. Sequence Functional Annotations

The EggNOG mapper program [17] was used to assign functions to all sequences. For all results,
COG and GO annotations were used to evaluate functional categories. First, composite genes were
found to be widespread across all functional categories (Figure 3, Figure S1). Gene distributions
show different patterns across different functions (Figure 3a, Table S1). Genes with unknown function
(category S, 66.23% non-remodelled) are less likely to have been remodelled. The category of genes
that have the second-lowest rate of remodelling is cell motility (N, 49.08% non-remodelled). Genes in
RNA processing and modification (A, 26.52%) and dynamics (B, 25.96%) had the highest rate of nested
composites. Conversely, genes involved in signal transduction (T, 59.05%) tend to have the highest
proportion of strict component genes whereas genes involved in extracellular structures (W, 7.3%) are
more likely to be strict composite.

We used an odds ratio (OR) test and Bonferroni correction (see Methods) on composite and
non-composite genes from eukaryotes and prokaryotes in different functional categories in order to
understand if genes from different classifications were more likely to be remodelled in one or the other.
If the OR value and its upper and lower 95% CI value span 1, we take this as evidence that there is
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no significant difference in composite gene formation between eukaryotes and prokaryotes, and vice
versa. If the OR number is greater than 1, this indicates a positive correlation between remodelling
and being from a eukaryotic genome, while if the number is less than 1, it indicates an association
between remodelling and being a prokaryote. From the results of these analyses, the frequency of
composite genes in eukaryotes were found to be statistically higher than from that of prokaryotes
for most kinds of gene (Figure 3b, Figure S1, Table S1). Some exceptions were found for genes in
extracellular structures (category W) and RNA processing (category A) whose 95% CI was found to
span 1 (Figure 3b). Therefore, across all the species examined, the odds of a gene being a composite if
it is a eukaryote is statistically significant higher than if it is a prokaryote.

4. Discussion

Network models such as SSNs have been broadly employed in studies of evolutionary relationships [23]
and gene sharing and recombination detection. We carried out a large-scale examination of more than
one million genes across 1875 complete proteomes including archaea, bacteria, eukaryote, plasmids
and viruses. The results suggest that composite genes exist in all organisms and across all kinds
of genes.

Eukaryotes, are known to have originated from the merger of an archaeon and a bacterium [24].
On average, more than one fifth of eukaryote genes show evidence of remodelling by gene fusion
and the probability of a gene in our dataset being composite if it is derived from a eukaryote genome
are significantly higher than the probability if the genes comes from a prokaryote genome. What is
not known at this stage is the process that has led to the change in frequency of gene remodelling.
Candidates for the process include the combination of homologous recombination during meiosis,
combined with the relatively lower level of horizontal gene transfer (HGT) in eukaryotes compared
with prokaryotes. The lower level of HGT means that evolutionary innovation via HGT is more
restricted in eukaryotes and this restriction, combined with the opportunities for illegitimate crossover
events during meiosis could account for the elevated levels of remodelling. In other words, restricting
HGT sets up a situation where composite gene formation is one of the main routes to evolutionary
innovation. These findings are consistent with Jachiet et al. [10] who found that eukaryote sequence
evolution was highly influenced by gene fusion.

Although evidence of remodelling is quite high in eukaryote genes, plasmid genes also show
evidence for a large number of gene fusion events. The average percentage composite genes found
in plasmid genomes in our dataset is 14.69%, which is almost as high as the percentage recorded
for bacteria. In 2013, Jachiet et al. [10] mined a data set from three domains of life and MGEs,
discovered 42% of composite genes were included at least one MGE gene as a component. Likewise,
Halary et al. [25] found that the plasmids in Borrelia genes behaved like “private genetic goods” [26]
and were much less likely to be involved in gene remodelling or sharing with other taxa. It has been
suggested that this restriction in gene sharing contributed to the survival of Borrelia against the host
immune environment [27,28]. The high level of remodelling seen in plasmid genes would suggest that
MGE:s act as a source for remodelling. Corel et al. also found that gene externalization (gene fusion
between cellular organism and MGE) played an important role in microbial evolution [29].

In our dataset, compared to non-composite genes, fusion genes are more likely to be involved
in chromatin structure and dynamics, extracellular RNA processing and modification, as well
as cytoskeleton. It has already been shown for eukaryotes that composite genes have been
foundational [12], particularly in photosynthetic lineages (such as ubiquitin-nickel superoxide
dismutase fusion protein in algae [30]). Further, a recent published work by McCartney et al.
suggested novel functional protein coding genes in human could emerge through transcription-derived
gene fusion [31]. Novel composite genes also have been reported in the origin of haloarchaeal lineages
contributed by bacteria, which is named as chimeric (ChiC) genes [32]. ChiC genes are more likely
to be involved transport and metabolism whereas other composite genes more likely to be involved
in replication, recombination and repair, both functions have high composite gene portion in my
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dataset. In additional, the research from Corel et al. also suggested that recent externalized genes
in abundant in replication, recombination, and repair but hard to accumulate, which could be the
result of transposon [29]. Moreover, composite genes in viruses tend to be found in nucleotide
metabolism and transport, replication and repair, cell wall, membrane and envelope biogenesis as well
as post-translational modification. This finding is consistent with Jachiet et al. [11].

5. Conclusions

In conclusion, we applied a network approach in order to investigate composite gene in species
across all of life, although the results of this study really only provide a lower-bounds estimate of the
extent of gene remodelling, we have been able to show that it is a pervasive and important element of
evolutionary history.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/9/648/s1,
Figure S1: Numbers of OR, corrected upper 95% CI and lower 95% CI value across all GO annotations, Table S1:
Numbers of composite and non-composite genes from eukaryotes and prokaryotes in different functional categories,
OR, corrected upper and lower 95% CI values.
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program MinCED, PILER-CR, CRISPRDetect, CRISPRCasFinder and in
resample dataset.
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Figure S3.2. Sample of CRISPR array that situated within cas gene clusters.
The cas gene modes adapted from Makarova et al. (2020).
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Figure S3.3 Full-size pictures of example repeat patterns. (a): Pattern 1; (b):
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Table S3.1. Summary of species in CRISPR-Cas identification dataset.

Domain Taxonomic Order ;I:i;i;:r Domain Taxonomic Order ;I:i;i;:r

Archaca Acidilobales 3 Bacteria Fibrobacterales 2
Archaeoglobales 8 Fimbriimonadales 1
Ii?‘cr;gis((i)i?lilales 1 Flavobacteriales 270
Desulfurococcales 12 Frankiales 5
Halobacteriales 21 Fusobacteriales 49
Haloferacales 15 Gemmatimonadales 3
Methanobacteriales 24 Geodermatophilales 3
Methanocellales 2 Gloeobacterales 2
Methanococcales 19 Glycomycetales 1
Methanomassiliicoccales 4 Halanaerobiales 7
Methanomicrobiales 10 Holosporales 3
Methanosarcinales 33 Hydrogenophilales 1
Natrialbales 14 Ignavibacteriales 2
Nitrosopumilales 3 Immundisolibacterales 1
Nitrososphaerales 1 Kineosporiales 1
Sulfolobales 41 Kiritimatiellales 1
Thermococcales 39 Kosmotogales 3
Thermoplasmatales 7 Lactobacillales 1054
Thermoproteales 10 Legionellales 126
NO RANK 10 Limnochordales 1

Bacteria Acholeplasmatales 12 Magnetococcales 1
Acidaminococcales 3 Marinilabiliales 4
Acidiferrobacterales 3 Mariprofundales 2
Acidimicrobiales 1 Methylacidiphilales 2
Acidithiobacillales 7 Methylococcales 9
Acidobacteriales 7 Micrococcales 157
Acidothermales 1 Micromonosporales 19
Actinomycetales 32 Mycoplasmatales 181
Actinopolysporales 1 Myxococcales 22
Aeromonadales 59 Nakamurellales 2
Alteromonadales 148 Natranaerobiales 1
Anaerolineales 4 Nautiliales 2
Aquificales 14 Neisseriales 169
Ardenticatenales 1 Nevskiales 2
Bacillales 1349 Nitrosomonadales 27
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Bacteria

Bacteriovoracales
Bacteroidales

Bacteroidetes Order 11.
Incertae sedis

Bdellovibrionales
Bifidobacteriales
Brachyspirales
Bradymonadales
Bryobacterales
Burkholderiales
Caldilineales
Caldisericales
Calditrichales
Campylobacterales
Candidatus Babeliales
Candidatus Brocadiales

Candidatus
Nanopelagicales

Cardiobacteriales
Catenulisporales
Caulobacterales
Cellvibrionales
Chitinophagales
Chlamydiales
Chlorobiales
Chloroflexales
Chromatiales
Chroococcales
Chroococcidiopsidales
Chrysiogenales
Clostridiales
Coprothermobacterales
Coriobacteriales
Corynebacteriales
Cytophagales
Deferribacterales
Dehalococcoidales
Deinococcales
Desulfarculales

Desulfobacterales

90

12

130

155
15

30

13

278

10

588

46

24
19

10

Bacteria

Nitrospirales

Nostocales
Oceanospirillales

Opitutales
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Oscillatoriales
Parachlamydiales
Parvularculales
Pasteurellales
Pelagibacterales
Petrotogales
Phycisphaerales
Planctomycetales
Pleurocapsales

Propionibacteriales
Pseudomonadales

Pseudonocardiales
Puniceicoccales
Rhizobiales
Rhodobacterales
Rhodocyclales
Rhodospirillales
Rickettsiales
Rubrobacterales
Salinisphaerales
Saprospirales
Sedimentisphaerales
Selenomonadales
Solirubrobacterales
Sphaerobacterales
Sphingobacteriales
Sphingomonadales
Spirochaetales
Streptomycetales
Streptosporangiales
Synechococcales
Synergistales

Syntrophobacterales
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Bacteria

Desulfovibrionales

Desulfurellales

Desulfurobacteriales

Desulfuromonadales

Dictyoglomales
Eggerthellales
Elusimicrobiales
Endomicrobiales

Enterobacterales

Entomoplasmatales

Erysipelotrichales

Euzebyales

23 Bacteria Thermales 16
2 Thermoanaerobacterales 36
2 Thermodesulfobacteriales 4
19 Thermomicrobiales 1
2 Thermotogales 29
11 Thiotrichales 99
1 Tissierellales 11
2 Veillonellales 13

2270 Verrucomicrobiales 22

48 Vibrionales 186
14 Xanthomonadales 226
1 NO RANK 104

Table S3.2. Score scheme of CRISPRDetect. Adapted from Biswas et al. (2016).

No. Elements Score Calculation
This method is only applied when an annotation file
Presence of . . .
. (NCBI gbk or gbff file) is used as input. The annotation
either cas! or .
. +1, or files are searched (term based) to create a list of
1. cas2 genes in . .
. 0 all cas genes present in the genome. The scoring system
the genome is . S, .
awards the quality score with ‘+1” when annotation of
awarded. . . .
either casl or cas2 genes are present in the input file.
26 experimentally were used to verify representative
repeats as reference and increased the set of known
Match to repeats by allowing up to 7 base mismatches. This
known repeat extended set of around 400 repeat was used to predict a
using a set of higher confidence set. Arrays were predicted then those
reference +3, or with greater than 7 repeats and scores > 4 were used to
2. ) . . .
repeats from 0 predict a set of likely repeats. This file was converted in
high to a BLAST database and potential repeat searched
confidence against that with blastn-short which is optimised for short
arrays sequences. When a match is found, the array quality

score 1s awarded ‘+3°. This file or the score can be
modified in the commandline version.
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Repeat has at
least 23 bases

Another feature adapted from the CRISPRDirection
algorithm is the presence of motif ATTGAAA(N) at the
3’ end of repeats. We observed that, this motif is an
accurate indicator of the direction of transcription. In that

and +3,0or paper we also observed that all the potential repeats that
0 are >=23nt long containing this motif were genuine
ATTGAAA . . .
CRISPRs. Hence, we used this information to contribute
(N) at the end. . . . .
to the quality score, and the quality score is awarded with
‘+3” when the repeats are >=23nt long and contains
ATTGAAA(N) at the 3' end.
Overall The overal'l repeats identity score (S) is calculated using
reneat the following method
. P . S= (average % identity of the repeats - 80)/20
identity Oto1l . } .
r s The maximum possible positive score can be 1 (when all
within an . . .
repeats are identical). However, the score will be
array . e
negative, when the overall repeat identity is <80%.
The repeats in
the array do The repeats are clustered using CD-HIT-EST if they
not form one  -1.5, ) ) .
form more than one cluster the quality score is penalized
sequence or 0 S
e by -1.5.
similarity
cluster.
In this method, frequent repeat length distribution was
used. The relative score (S) for a repeat of length (L) is
determined using the following rules:
range S=0.25+L/H [where, L>=23 and L =<47;
Scoring the 3 tg H is the most abundant repeat length for Bacteria or
repeat lengths :L | © Archaea]

S=-0.25*(23 - L) [where, L <23]
S=-0.25*(L - 47) [where, L >47]

The maximum negative score limit is set to -3, and
maximum positive score limit is +1.
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Scoring the range
7. spacer -3 to
lengths. +3

In this method, each spacer of an array is independently
scored, and counted towards a final spacer length score.
The individual spacer length score (S) for a spacer with
length (L) within the range 28-48 are awarded a positive
score using the formula:
S=0.01+N/H [where, 27< L =<48]
N= Total number of spacers of this length;
H= Most abundant spacer length for Bacteria or Archaea
Any spacer length outside this range is penalised by the
following rule:
S=-0.10* (28 - L) [where, L<28]

=-0.10* (L -48) [where, L>48]
Finally, an average spacer score for the current array is
calculated using
Average score=Sum_of scores/no_of spacers
The maximum negative score limit is -3 and maximum
positive score limit is +1.

Overall
8. spacer
identity

-3 to
+1

In this method we test the sequence (dis)similarity
among all the spacers. If the spacers are all near identical
it is more likely to be a direct repeat, possibly a tandem
repeat rather than a CRISPR array. If the spacers belong
to a total number of clusters (C) with identity >=80%, the
spacer identity score (S) for an array with number of
spacers (N) is calculated using the following rule:

S=-3 [where, C =< integer (N/2); ]
S=0.20*C [where, C > integer (N/2); ]

The positive score limit is +1.

Scoring total
number of
9. identical Otol

repeats

Since longer arrays, and those with a greater number of
identical repeats are more likely to be a true CRISPR,
this scoring method uses both. If an array contains ‘P’
identical repeats out of the ‘N’ total number of repeats,
then the score (S) is calculated using the following rule:
S=log (N) - log (N-P) [where, P=Identical repeats,
N= total number of repeats]

The maximum positive score limit is +1.
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Table S3.2. Evidence level rating system of CRISPRCasFinder (Couvin et al.,
2018).

Level Requirement
1 CRISPR-like arrays having 3 spacers or less.
5 CRISPR arrays having an entropy-based conservation (EBcons) of

repeats lower than 70.

CRISPR arrays having a EBcons of repeats greater or equal to 70, and a
3 spacer conservation (BioPerl’s overall percentage identity) greater than
8%,

CRISPR arrays having a EBcons of repeats greater or equal to 70, and a
4 spacer conservation (BioPerl’s overall percentage identity) lower than
8%.
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Table S4.1. The number of genes that co-occur or disassociate with different
CRISPR-Cas subtypes. Gene families that show significant associations from chi-
square tests were counted and then classified into positive and negative related
groups by OR value.

Number of genes that
CRISPR-Cas Number of genes that positively
negatively associated

subtype associated CRISPR-Cas CRISPR.Cas
Type I-A 784 0
Type I-B 1321 395
Type I-C 62 0
Type I-D 36 0
Type I-E 1641 0
Type I-F 1344 4
Type [-U 65 0
Type 1I-A 1204 0
Type 11-B 88 0
Type 1I-U 1576 0
Type 11I-A 276 0
Type I1I-B 78 0
Type 11I-U 122 0
Type U 69 0
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Table S4.2. Annotations of COG number in type III-A protein association

network by STRING.
Node
COG Annotation
Colour
® COG0066 3-isopropylmalate dehydratase small subunit
COG0491 Glyoxylase or a related metal-dependent hydrolase, beta-
lactamase superfamily I1
COG0535 Radical SAM superfamily enzyme, MoaA/NifB/PqqE/SkfB
family
COG0602 Organic radical activating enzyme
Single-stranded DNA-specific exonuclease, DHH
® COG0608 superfamily, may be involved in Archaeal DNA replication
intiation
COG0614 ABC-type Fe3+-hydroxamate transport system,
periplasmic component
- COG0664 cAMP-binding domain of CRP or a regulatory subunit of
cAMP-dependent protein kinases
COGI1011 FMN phosphatase YigB, HAD superfamily
o COG1036 Archaeal flavoprotein
COG1048 Aconitase A
COGI180 Pyruvate-formate lyase-activating enzyme
COG1337 CRISPR/Cas system CSM-associated protein Csm3,
group 7 of RAMP superfamily
CRISPR/Cas system-associated protein Casl0, large
COGI353 subunit of type III CRISPR-Cas systems, contains HD
superfamily nuclease domain
COGI1355 Predicted class 11l extradiol dioxygenase, MEMO1 family
COG1499 NMD protein affecting ribosome stability and mRNA decay
COG1574 Predicted amidohydrolase YtcJ
COG1651 Protein-disulfide isomerase
COG1716 Forkhead associated (FHA) domain, binds pSer, pThr,
pTyr
COG1752 Predicted acylesterase/phospholipase RssA, containd
patatin domain
COG2078 Uncharacterized conserved protein, AMMECRI domain
COG2206 HD-GYP domain, c-di-GMP phosphodiesterase class I1

(or its inactivated variant)
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C0OG2207

C0OG2303

COG2318

COG2816

COG2896

COG3861

COG35317

NOG11049

NOG257039

NOG299149

NOG32667

NOG48198

NOG52950

NOG56581

NOG76658

NOG89043

arCOGO01916

arCOG03712

COG1336

COG1604

COG3337

COG1769

COG1367

AraC-type DNA-binding domain and AraC-containing
proteins

Choline dehydrogenase or related flavoprotein

Uncharacterized damage-inducible protein DinB (forms a
four-helix bundle)

NADH pyrophosphatase NudC, Nudix superfamily
Molybdenum cofactor biosynthesis enzyme MoaA
Stress response protein YsnF (function unknown)
Uncharacterized protein

non supervised orthologous group

RAMP superfamily

Hypothetical protein DUF2513)

Protein of unknown function (DUF3108)
Domain of unknown function (DUF4148)

non supervised orthologous group

non supervised orthologous group

non supervised orthologous group

non supervised orthologous group

RHH-fold DNA-binding ptotein

HEPN domain containing protein

CRISPR/Cas system CMR subunit Cmr4, Cas7 group,
RAMP superfamily

CRISPR/Cas system CMR subunit Cmr6, Cas7 group,
RAMP superfamily

CRISPR/Cas system CMR-associated protein Cmr3, small
subunit

CRISPR/Cas system CMR-associated protein Cmr3, group
5 of RAMP superfamily

CRISPR/Cas system CMR-associated protein Cmrl1, group
7 of RAMP superfamily
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