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Abstract

Data stream management systems exist to support dynamic analysis of streaming data, often

to inform decision-making. Decision Support Systems (DSSs) exist to enable decisions to be made

that take into account user priorities. However, although these categories of system are now quite

mature, there has been little work investigating their use together. Bringing these technologies

together in a way that enables trustable decision support for dynamic applications is a di�cult

problem with particular impact in the military and medical domains. A framework has been

proposed, comprising eight desiderata for trusted dynamic decision support. These desiderata

aim to inform architects of dynamic DSSs on the implications of di�erent capacities for decision

support. An approach to dynamic decision support employing Genetic Algorithms (GAs) has

been proposed. Two case studies have been utilised to show how this approach can be leveraged

to provision DSSs with our desiderata. Weighted Product Model (WPM), Analytic Hierarchy

Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and

Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) have been

assessed on the stability of results and the consistency of trade-o�s, two of our desiderata. This

assessment determined TOPSIS to be the method that is the most suitable for dynamic decision

support. The problem of evaluating the e�ect of DSS features on trust has also been addressed

and a theoretical framework modelling trust and its antecedents in a real-time DSS has been

proposed. This model has then been used to carry out an assessment of the impact of explanation,

preferences and dynamic updates as components of dynamic decision support, giving designers

of DSSs an indication of which of these features are likely to have a positive impact on decision

making in a dynamic environment. Finally, the research has concluded with the identi�cation

and discussion of potential areas for future investigation.
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1 | Introduction

1.1 Motivation

Often, the problem of selecting the correct solution to a problem can be speci�c to a particular

decision maker. An example of this is selecting the correct train journey to get to a destination.

One train may be cheaper, whilst another is quicker. Which of these options is better depends on

the priorities of the decision maker. Therefore, a DSS with the ability to elicit user preferences is

required. Even for a task as simple as train journey planning, the list of requirements for a DSS

can become challenging. Preferences must be elicited, synthesised to create a recommendation or

ranking, and then presented in a way that is trusted and understood by the decision maker. For

train journey planning, this is required in a context where there is uncertainty relating to criteria

e.g. train arrival times. As a result, presenting a recommended journey to a user can become a

di�cult task.

Although DSSs can be built in any knowledge domain, it is an expensive operation to distil

information from a system to assist a decision maker. Therefore, in low-stakes decision making,

it is generally preferable to remove the human from the loop. As a result of this the majority of

DSSs are employed in high-stakes domains, such as medical or military decision making.

Clinical DSSs are often employed in medical practice to help doctors perform accurate diagno-

sis. These systems can analyse multi-modal data to highlight risks and recommend treatments,

whilst ultimately leaving the �nal decision to the doctor. In the military domain, DSSs can be
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used to support command and control. Command and control is a set of organisational and tech-

nical attributes and processes employing human, physical, and information resources to solve

problems and accomplish missions [140].

Command and control can be split into the planning and execution stages. Militaries have

spent considerable e�ort on development of DSSs to support the planning stage. Comparatively,

far less has been spent on assisting with execution [19]. The problem of assisting execution can

be framed as a dynamic decision making problem and therefore requires a dynamic DSS. For

dynamic decision support, trust is even more critical. The decision maker must make decisions

under real-time constraints and therefore has less opportunity to verify or second guess the sys-

tem. Therefore, to support the execution of missions a trusted dynamic DSS is required.

Maritime facilities face challenging demands, including monitoring ocean tra�c, port safety,

and emergency response. New technology is required to tackle these challenges, under the

stresses of higher levels of tra�c and an increased need for rigorous safety and prompt emer-

gency response [104, 123].

Drones are a technology that has been identi�ed for this role, and managing these drones for

various tasks is one aspect of the expanding role of harbour management. Situational awareness

has been highlighted as crucial in domains where the e�ects of ever-increasing technological and

situational complexity on the human decision maker are a concern [95]. Drones provide a means

for aerial situational awareness, within a harbour and beyond [48, 88]. One task, which has the

potential to improve situational awareness, is the automatic identi�cation of ships approaching

a harbour. Drones can be employed to take photos of ships, for the identi�cation of tra�c and

potential threats. To select an appropriate route, the decision maker must consider multiple con-

�icting objectives, such as identifying as many ships as possible, identifying ships as early as

possible and reducing fuel costs. Navigating this large space of potential routes and making con-

sistent trade-o�s between objectives is a di�cult task. Therefore, the management of such drones

is a complex command and control problem that can potentially be simpli�ed through the use

17



of MCDM methods, employed within a DSS. A further challenge for such a system is that ocean

tra�c is constantly moving and quickly changes direction. This necessitates that the problem be

solved using a dynamic DSS, supporting the execution stage by updating routes as the scenario

unfolds.

1.2 Decision Support

A DSS is a computer system designed to support users when making complex decisions. For a

DSS, the choices made by decision makers often a�ect the state of the system. It is therefore useful

to model decision makers as not just users, but as components of a Cyber-Physical-Social System

(CPSS). CPSSs span the physical, information, cognitive and social domains. In the CPSS �eld,

human users are considered a component of the system, falling within the cognitive domain [82].

Human components can be a necessary part of a system, such as when making the �nal judgement

for life or death decisions. DSSs are therefore often vital, as they bridge the information and

cognitive domains by distilling data to assist decision makers. Furthermore, DSSs also support

information moving in the other direction by enabling the elicitation of knowledge from the user.

DSSs are enabled by decision analysis. Decision analysis is the �eld concerned with the study

of complex decisions. Multi-Criteria Decision Making (MCDM) is a sub-discipline of decision

analysis comprising techniques for evaluating solutions with multiple con�icting criteria [54].

A common example of this is purchasing a car; the safest car is not usually the cheapest and so

these criteria are con�icting. For such problems, the presence of multiple objectives gives rise

to a set of optimal solutions (known as Pareto-optimal solutions), rather than a single optimal

solution. In the absence of information regarding the priorities of a user, it is impossible to say

if any one of these Pareto-optimal solutions is better than any other. As a result, a vital part of

the elicitation of knowledge from the user is understanding the user’s priorities (or preferences)

towards each objective. Pairwise Comparisons (PCs) are a common approach for this, used as
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part of many MCDM methods [4, 16, 118–120, 150]. The strategy breaks down the problem of

assigning ratio values to a set of objectives into manageable chunks. This is done by asking the

user to determine their preference with respect to only two objectives at a time. Once a set of

PCs is complete, one for each pair of objectives, a one-dimensional priority weighting vector can

be derived. The PC methodology has been shown to outperform constraint-based approaches for

preference elicitation [5].

1.3 Decision Support for Dynamic Applications

DSSs exist to support users in navigating a space of Pareto-optimal solutions [54]. Data

streams exist as an abstraction to support analysis of dynamic data as it is produced [100]. These

seem to be complimentary paradigms, which can be brought together to support decision making

with dynamic data.

Current practice in stream data processing makes extensive use of Stream Processing Engines

(SPEs) which provide a framework for acting upon elements in a stream. For decision support, an

interesting challenge is how to build on these capabilities to support real-time decision support

over streams. Dynamic decision support is necessitated by real-time MCDM problems; real-time

problems require a response within speci�c time constraints. An MCDM problem can be de-

scribed as real-time when it is a�ected by changing values of criteria, or changing sets of solutions

to a problem. For the example of purchasing a car, this could mean the devaluation of a car over

time or cars being removed from the marketplace. These problems require a prompt response, as

the best solution is likely to change if the decision maker spends too long adjudicating.

1.3.1 Multi-objective Evolutionary Algorithms

As a result of the lack of a single optimal solution, multi-objective problems demand an ap-

proach to �nding as many Pareto-optimal solutions as possible. Multi-Objective Evolutionary
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Algorithms (MOEAs) have been proposed as a solution to this problem [30, 46, 62]. The primary

reason for this is their ability to calculate multiple Pareto-optimal solutions in a single run [31].

The iterative nature of MOEAs also lends itself to real-time problems. The population (the in-

termediate set of solutions) can be updated each generation, in an attempt to maintain a set of

Pareto-optimal solutions as the environment evolves. The result is a Dynamic Multi-Objective

Evolutionary Algorithm (DMOEA) [148]. Research into DMOEAs is still in the early stages but

has recently seen growing attention from the evolutionary computation community [154].

Muruganantham et al. [99] called for more benchmark problems, appropriate performance

metrics and more e�cient algorithms to further the research into DMOEAs. In their paper, they

introduced the Kalman �lter technique for DMOEAs. This approach uses predictions to help

guide the search towards changed optima, as a means of accelerating convergence. To meet the

growing trend of DMOEA research, Gee et al. [51] put forward a test suite. Their paper proposed

a new dynamic test suite that allows researchers to assess the diversity maintenance and tracking

ability of DMOEAs. Diversity is an important metric for DMOEAs, with high diversity allowing

the algorithm to adapt more e�ciently to a changing environment.

1.3.2 Frameworks for dynamic multi-criteria decision making

Whilst providing a means to produce and maintain a set of pareto-optimal solutions, DMOEAs

alone do not solve the problem of dynamic decision support. This is due to two problems:

1. DMOEAs maintain a set of solutions rather than a single recommendation;

2. these sets of solutions are often highly unstable.

Together, this causes much di�culty when the decision maker is faced with selecting a single

solution. Consequently, multiple frameworks for dynamic decision maker have been created to

help guide the decision maker in a dynamic environment. To tackle the problem of selecting a
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solution, Campanella et al. [22] introduced a framework for improving stability in dynamic de-

cision making. Their approach takes into account the historical criteria values of alternatives to

evaluate the appropriateness of a solution at decision-time. Their paper presents a number of

aggregation methods for synthesising this historical data into a single criterion. The choice of

aggregation depends on how the decision maker values the best-case value and the worst-case

over the time period. To improve this approach, Zulueta et al. [156, 157] suggested a temporal

factor for the selection process. This approach takes into consideration the rate and direction of

change in criteria values as part of the aggregation. Another framework, produced by Yan et al.

[149], proposes an alternative method for handling the di�erences in temporal behaviour of al-

ternatives using grey numbers. A grey number is an abstraction that represents an indeterminate

value that falls within an interval or a set of numbers [81]. These numbers can be "whitenized" to

return a crisp value. This framework applies grey numbers as a means to aggregate the criteria

values of alternatives across periods of time.

These methodologies aim to improve the stability of the rankings as the problem evolves,

highlighting stability of results as a desired feature for dynamic DSS. An outstanding question

is what is the best way to evaluate stability and which methods can be employed to provide high

stability of results?

1.4 Trustable Decision Support

Decision analysis is often utilised to support decisions in medical and military �elds. In these

high-stakes decision making domains, experts are relied upon to make a �nal decision, supported

by DSSs. Together they form a human-computer team, (ideally) performing better than either the

human or computer alone [129, 133].

An important aspect underpinning the e�ectiveness of human-computer teams is trust. If

a decision maker does not trust the system they are working with, then useful outputs can be
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discarded or ignored. On the other hand, if a user has too much trust in a system this can lead

to over-reliance [9, 78]. Therefore, an e�ective team requires a decision maker to be aware of

what the system does and does not know. This highlights the importance of interpretability in

DSS. Interpretability is the ability to explain or to present in understandable terms to a human

[39]. This includes giving decision makers the ability to understand what aspects a system has

taken into consideration, and how it has used these factors to arrive at a solution. We refer to

this capability as transparency [146].

Transparency allows a decision maker to make use of their expert knowledge, supplemented

by the systems’ ability to process large amounts of data. For a system to be interpretable, it should

provide enough information for its decision process to be understood, without overloading a

user. Therefore, a system should be designed to be transparent, without inducing high cognitive

load. Unfortunately, any features added to a system are likely to incur additional cognitive load,

therefore when building DSS it is important to scrutinise the cost-bene�t of features. We have

identi�ed decision maker preferences [113] and explanation [73] as two system features that

should help improve transparency in DSSs.

Trust is especially challenging when working with dynamic data; a decision maker does not

have time to ascertain if a black box system has made a mistake, and therefore it is highly bene�-

cial to provide provenance data to the decision maker, ensuring that the information motivating

a recommendation is readily available. Data provenance provides a historical record of data and

its origins, which allows the user to trace and assess data quality and suitability. In addition to

the underlying evidence, it is also important that the user has some understanding of the space of

possible solutions; as a result, some form of explanation mechanism is required that explains how

a recommendation has been arrived at, and/or describes the relationship between alternative op-

tions. Therefore provenance is another feature of DSS that has potential to improve transparency

and hence increase trust. A latent construct is an idea which cannot be observed or measured

directly; trust and transparency are two examples of latent constructs. As a result of their latency,
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a di�cult challenge in the �eld is evaluating how trust and its antecedents are a�ected by these

decision support features.

1.5 Approach

The approach taken in this work involved compiling a list of desiderata or desired features/char-

acteristics for trustable dynamic decision support. To explore and analyse our desiderata, we

utilise two dynamic MCDM case studies: train journey planning and harbour management. A

system is developed for each, and the harbour management scenario is used as part of a evaluation

of MCDM methods and a user study to assess trustability.

1.5.1 Desiderata

A framework for trusted dynamic decision support has been developed, comprising a bundle

of desiderata for DSSs. Through analysis of the literature and the train journey planning case

study, we began with a set of 5 desiderata. The di�erentiating characteristic between an algo-

rithm that generates a set of pareto-optimal solutions, and a DSS, is the ability to recommend a

speci�c solution to a user. The ability to dynamically revise this solution, makes a DSS dynamic.

Therefore, declarative speci�cation of preferences and dynamic revision of recommendations are

deemed the cornerstones of dynamic decision support. Declarative speci�cation means that the

preferences are expressed without describing how the DSS will interpret them [83]. This allows

the system to elicit preferences in an intuitive fashion.

In addition to the provision of preferences and dynamic updates, data provenance has been

identi�ed as a feature that provides trustability. To support the underlying evidence, it is also

important that the user has some understanding of the space of possible solutions; as a result,

some form of explanation mechanism is required that makes explicit how a recommendation has

been arrived at, and/or describes the relationship between alternative options.
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All this is required in a context where there may be genuine uncertainty relating to criteria

that inform a recommendation. As such, it is important for maintaining trust to ensure that the

uncertainty intrinsic in a recommendation is either presented to a user or able to be re�ected

within the decision-making process.

Drawing this together, we arrive at the following desiderata for trusted dynamic multi-criteria

DSSs:

• declarative speci�cation of preferences,

• dynamic revision of recommendations,

• provenance capturing the data underpinning decisions,

• explanation of outputs, and

• explicit support for uncertain data.

Di�erent methods can produce di�erent rankings when applied to an identical problem, even

with identical user preferences. For an MCDM problem, it is often impossible to say which resul-

tant ranking is optimal [152]. Therefore, selecting an appropriate MCDM method for a problem

is di�cult. A solution to this is to pick some alternate desired characteristics for a method [72],

for example, consistent trade-o�s or high stability of results. Utilising our second case-study as

a test-bed environment we revised our set of desiderata to include these desired characteristics.

The revised set of desiderata for the harbour management task adds three desired characteristics

of MCDM methods for dynamic decision support:

• high stability of results,

• high diversity of options,

• consistent trade-o�s between criteria.

24



A desirable characteristic for dynamic decision support problems is high stability of results.

In this work we refer to the propensity to reorder under changes to criteria values as the stability

of a ranking. For a ranking to be functional, the frequency of change must be less than the

time it takes for a decision maker to act. For this to be ful�lled, the rankings must take into

account changing criteria values, without reordering signi�cantly when small changes are made.

Therefore, it is desirable for the rankings to be stable under small changes to criteria values.

We also noted that, it is impossible to capture every nuance of a problem within a DSS. Con-

sequently, it is important that the expert is presented with a diverse array of options, rather than

multiple similar solutions which may fall prey to similar pitfalls that have been overlooked by

the system. If our diverse set of results still doesn’t present the user with a suitable solution, the

decision maker can alter their preferences.

To make e�ective use of preferences, it would be useful for changes in criteria weights to

have predictable e�ects. An aspect underpinning the predictability of changes in criteria weights

is the consistency of trade-o�s between criteria. It is expected that as the weighting for a criterion

increases, the trade-o�s become more favoured towards that criterion. However, this relationship

is not always predictable, as small changes in criteria weightings can lead to large changes in how

an algorithm values certain trade-o�s. We view consistency in trade-o�s as a desired feature, as

it gives rise to predictable e�ects when decision makers adjust their preferences. After expanding

our framework with these points in mind, we arrived at the following set of revised desiderata as

shown in Figure 1.1.
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1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

3. high stability of results,

4. explicit support for uncertain data,

5. explanation of outputs,

6. provenance capturing the data underpinning decisions,

7. high diversity of options, and

8. consistent trade o�s between criteria.

Figure 1.1: The eight proposed desiderata for trusted dynamic multi-criteria DSSs

1.5.2 Train Journey Planning Case Study

The �rst case study considers an application relating to train journey planning. We assume

that a user can state where they need to go from and to, along with the proposed start time.

We also assume that the most suitable journey time for a user may depend on di�erent criteria,

speci�cally the arrival time of the journey, the price of the journey, and the number of changes.

One such criterion, arrival time, indicates the expected arrival time of a journey. This is subject

to change, as trains may be delayed or lines closed. Ticket prices are also subject to change until

the time of purchase.

To investigate how our desiderata could be supported using SPEs, a dynamic DSS for train

journey planning has been developed. The approach demonstrates how user preferences (Desider-

ata 1) can be combined with a continuously running genetic algorithm to provide a dynamically

revised ranking of recommendations (Desiderata 2). The system shows how the uncertainty in-
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herent in train journeys can be captured and quanti�ed to help guide decision makers (Desiderata

4). The system also gives an explanation of the ranking of routes (Desiderata 5) and captures the

provenance data detailing changes to the train schedule (Desiderata 6).

1.5.3 Harbour Management Case Study

The second case study is a harbour management task. In this task, a decision maker takes

the role of a harbour master managing a harbour. The harbour master controls a single drone

to identify ships close to the harbour zone. The job of the user is to select a route for the drone,

identifying ships before they reach the harbour zone. The length of these routes is limited by the

fuel of the drone. Once the drone has run out of fuel, it must return to the refuel point, located

within the harbour zone. We assume that the most suitable route may depend on di�erent criteria:

the time spent by unidenti�ed ships in the harbour, the average time between identi�cation of a ship

and its arrival in harbour and the amount of fuel used to identify each ship.

To demonstrate how these desiderata can be supported, we outline a dynamic DSS. This sys-

tem applies an MCDM method as a �tness function within a continuously running genetic al-

gorithm. The system takes into consideration user preferences (Desiderata 1), to generate a con-

tinuously updated ranking (Desiderata 2), with a mechanism to control the diversity of options

(Desiderata 7).

This DSS is then used as a test-bed environment. This environment can be controlled through

a User Interface (UI), to assess UI features of DSSs, or run in headless mode, to assess character-

istics of MCDM methods. Using this test-bed environment to determine an appropriate method

for dynamic DSSs, we evaluate MCDM methods with respect to the stability of their rankings

(Desiderata 3) and the consistency of trade-o�s between criteria (Desiderata 8). The methods

evaluated are the WPM [20], the AHP [118], the TOPSIS [150] and the PROMETHEE [16].
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1.5.4 Harbour Management Trustability Study

Trust is a principal in�uence in the interactions between a user and a DSS. As a result, dy-

namic DSS architects should try to understand what characteristics of a DSS govern trust. What

are the principal drivers of trust? What DSS features a�ect these drivers? We have carried out

a study that investigates this in the context of the harbour management scenario by develop-

ing a trust-based model for interactions with real-time DSSs. We have validated this model by

applying the Partial Least Squares Structural Equation Modeling (PLS-SEM) technique [147], pro-

viding empirical evidence that transparency is a strong determinant of a decision maker’s trust

and satisfaction with a system. This study also assessed the e�ect of explanation, preferences and

dynamic updates on our model. To collect data for validation, we used our harbour management

test-bed environment. Users of the system were provided with a random selection of interface

features enabled/disabled. The users then completed a series of tasks before �lling out a ques-

tionnaire. The features and questionnaire answers for experiment users were then compiled for

analyses.

1.6 Aims and Objectives

The overarching aim of the project is to investigate the suitability of decision support features

and methodologies for trusted dynamic DSSs. To achieve this we accomplished the following

research objectives:

1. To identify and demonstrate desiderata for dynamic DSSs, through the development and

analysis of a train journey planning application.

2. To show how to support and evaluate desiderata for dynamic DSSs through a test-bed based

on harbour management.
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3. To evaluate the suitability of WPM, AHP, TOPSIS and PROMETHEE for dynamic DSSs

through the assessment of the stability of results and consistency of trade-o�s for each

method.

4. To assess the e�ect of enabling/disabling explanation, preferences and dynamic updates,

through the production of a trust-based model for interactions with real-time DSSs, which

was then validated using PLS-SEM.

1.7 Contributions

This thesis provides contributions in the �eld of dynamic decision support and the role of trust

in governing interactions between a user and a dynamic DSS. The contributions are as follows:

1. A set of desiderata for dynamic decision support, along with examples of how they can

surface in speci�c applications. The set of desiderata includes eight desired features/char-

acteristics that form the basis of trustable dynamic DSSs.

2. A dynamic genetic algorithm that can be used to incrementally re�ne recommendations,

with a speci�c emphasis on the production of diverse recommendations. This algorithm

applies the principles of DMOEAs, combined with MCDM methods as a �tness function,

to support the cornerstones of dynamic decision support.

3. An evaluation of MCDM methods in terms of our desiderata for dynamic decision sup-

port. WPM, AHP, TOPSIS and PROMETHEE were assessed on their ability to provide high

stability of results and consistent trade-o�s between objectives.

4. A theoretical framework modelling trust and its antecedents in a real-time DSS. To create

this, we have applied a methodology for the assessment of DSS and their features in the

absence of clear success criteria.
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5. An assessment of the e�ect of explanation, preferences and dynamic updates on our model

is also included. This gives designers of DSS an indication of which user interface features

are likely to assist decision making in a dynamic environment.

1.8 Thesis Outline

The structure of the thesis and �ow through the chapters is shown in Figure 1.2.

This chapter has introduced the concept of trustable dynamic decision support, motivated the

work and outlined the aim and contributions of the thesis.

In Chapter 2, multi-criteria decision making methods are described along with background

on the streaming methodologies employed to process dynamic data.

In Chapter 3, details are given for the rail journey planning case study and the set of desiderata

designed and implemented with this study in mind.

In Chapter 4, a description is given of the harbour management case study and the revised

set of desiderata for dynamic decision support. This chapter features an approach to real-time

decision support driven by a dynamic genetic algorithm, along with a discount function designed

to encourage diversity.

In Chapter 5, various MCDM methods are evaluated in relation to the revised set of desiderata.

The consistency of trade-o�s and the stability of results for each algorithm are considered to

determine an appropriate method for dynamic decision making.

In Chapter 6, a methodology is outlined for the assessment of decision support features with-

out a clear metric for success. The methodology applies PLS-SEM to a user case study to assess the

impact of dynamic updates, explanation and pairwise preferences on trust and its antecedents.

Finally, Chapter 7 presents the conclusions from the research and identi�es areas of potential

future investigation.
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Figure 1.2: Overview of the thesis chapters.
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2 | Technical Background

In this chapter the concepts that are built upon and evaluated in our case studies are described.

Firstly, the MCDM methods that are integrated into our dynamic DSSs are detailed. Secondly, the

chapter introduces basic constructs of stream processing and describes how stream processing

can be combined with MCDM methods to produce a dynamic DSS.

2.1 Multi-criteria Decision Making Methods

MCDM methods provide a methodology for synthesising a set of con�icting criteria relating to

an overall goal, a set of alternatives which relate to each criterion, and an expression of a decision

maker’s preferences into a ranking. This ranking indicates how appropriate each alternative is

for ful�lling the overall goal, ordered from most to least appropriate.

In this section we describe four of the predominant MCDM methods;

1. the Weighted Product Model (WPM);

2. the Analytic Hierarchy Process (AHP);

3. the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS);

4. the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE).

These four were chosen to represent the principal schools of MCDM methods; WPM typi�es

the early approaches to MCDM, AHP belongs to the category of value measurement models,
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TOPSIS is a goal, aspiration and reference model and PROMETHEE exempli�es the French school

of decision support. We explore the background and concepts behind each methodology, the

advantages and disadvantages they give rise to, and present details of our implementation.

2.1.1 Weighted Product Model

2.1.1.1 Background

The WPM is a modi�cation of the Weighted Sum Method (WSM) proposed by P. Bridgman

in 1922. WSM is the earliest multi-dimensional decision making method [136]. WSM combines

scores for criteria in a linear model. The criteria values are normalised, then multiplied by the

weighting of the criterion and summed for each alternative. This sum represents the global score

for the alternative. WPM overcomes some of the weaknesses of the WSM approach [20]. These

weaknesses of WSM include rank reversal under di�erent normalisation methods and rank re-

versal on removal of an alternative [132]. Such occurrences of rank reversal under WSM are

caused by the interdependence between scores of alternatives incurred by normalisation. WPM

raises weights as powers of the criteria value (positive powers for bene�ts and negative powers

for costs), eliminating any units of measure.

The main bene�t of the WPM approach is that the di�erent units do not require normalisation

[103]. As a result, WPM is often referred to as providing dimensionless analysis [135]. The lack

of normalisation means that all scores for alternatives derived through WPM are independent

and therefore the method su�ers less from rank reversal. A drawback of the method is that it is

required that the decision maker’s preferences are encoded as a vector of weights, expressing the

relative values of criteria. This process of expressing preference as a vector of weights is often

non-intuitive to decision makers.
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2.1.1.2 Implementation

WPM scores alternatives by a simple multiplicative model. The algorithm involves the fol-

lowing steps:

WPM Step 1. Weights are used to score each alternative using Equation 2.1. The criteria

value of alternative 0 is represented as 0 9 for criterion 9 . The weighting for criterion 9 is given as

F 9 . For criteria we seek to minimise, we replaceF 9 with −F 9 .

,%" (0) =
=∏
9=1
(0 9 )F 9 (2.1)

WPM Step 2. Rank alternatives according to the value of,%" (0).

2.1.2 Analytic Hierarchy Process

2.1.2.1 Background

AHP was developed by T. Saaty in the 1970s as an alternative to these simplistic multi-

dimensional models [118]. AHP is a structured technique for organising and analysing com-

plex decisions. AHP consists of an overall goal, a group of options or alternatives for reaching

the goal, and a group of factors or criteria that relate the alternatives to the goal. The decision

maker’s preference between two alternatives are quanti�ed on a scale of 1 to 9, with 1 represent-

ing no preference of G over ~ through to 9 representing a strong preference of G over ~. The same

methodology can be used to compare criteria, resulting in a weighting vector expressing a deci-

sion maker’s preferences. These judgements can then be used to synthesise an overall ranking of

alternatives.

This approach proved popular; by 2008 there were more publications that reported application

of AHP than any other MCDM method [142]. AHP �ts into the category of value measurement
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Figure 2.1: AHP hierarchy structure for the harbour management task; A-F represent the candidate routes

models, sometimes referred to as the American school of multi-criteria decision analysis [85].

2.1.2.2 Implementation

AHP is implemented in the following steps:

AHP Step 1. The problem is modelled as a hierarchy. The goal of the problem is at the

highest level, with the criteria below it. These criteria can be divided further into sub-criteria,

then at the lowest level we have the alternatives. Figure 2.1 shows the hierarchy for the harbour

management task (discussed in detail in Chapter 5).
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AHP Step 2. Criteria values are normalised according to the range of values across all al-

ternatives using the formula given in Equation 2.2, where minX and maxX are the smallest and

largest criteria values respectively.

#>A<(G) = G −<8=-
<0G- −<8=- (2.2)

AHP Step 3. Priorities are established across the hierarchy by constructing a pairwise com-

parison matrix for each level. In our experiments, we evaluate a �xed set of weights and therefore

it is only alternatives that require comparison. Each alternative has a value assigned according

to each of the criteria, we refer to these as criteria values. To produce a ranking, criteria values

must be scored. The normalised values are compared pairwise to generate a comparison matrix.

For three alternatives 01, 02 and 03 and a criterion - with normalised criteria values G1, G2,

G3, we would generate a comparison matrix � .

C =

01 02 03


01 1 5 (G1, G2) 5 (G1, G3)

02 5 (G2, G1) 1 5 (G2, G3)

03 5 (G3, G1) 5 (G3, G2) 1

Equation 2.3 is applied to compare criteria values. This formula maps two normalised values

(G , ~) to the fundamental scale proposed by Saaty [118].

5 (G,~) = 4 G−~ (2.3)

AHP Step 4. Comparison matrices generated through AHP have a concern with departure

from consistency between judgements. When a matrix is inconsistent, the resultant vector of

relative weights is viewed as untrustworthy. Therefore, the next step in AHP is to check the

consistency of the matrix. In general practice, this is done by calculating the consistency ratio
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(CR) and discarding matrices with a CR greater than 0.1 [127]. A matrix � = (28 9 ) is termed

consistent if:

28 9 · 2 9: = 28: ∀ 8, 9, : = 1, 2, ..., = [10]

It is unnecessary to check consistency in our application of AHP as the comparison formula

5 (G) produces comparison matrices that satisfy this equation for all values of 8, 9, : as shown

below.

5 (8, 9) · 5 ( 9, :) = 5 (8, :)

4 8− 9 · 4 9−: = 4 8−:

4 8−: = 4 8−:

AHP Step 5. The principal eigenvector % 9 of the comparison matrix for each criterion 9 is

calculated; this vector represents the priorities for each alternative. This priority vector % 9 is then

multiplied by the weighting F 9 of each criterion 9 and summed to produce a global score vector

� . For a problem with< alternatives and = criteria, the formula is given by Equation 2.4.

� = (68)< =

=∑
9=1

% 9 ·F 9 (2.4)

AHP Step 6. Rank alternatives according to their global score. For alternative 8 , the global

score is entry 68 in � .
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2.1.3 TOPSIS

2.1.3.1 Background

Another school of MCDM methods is comprised of goal, aspiration and reference models.

These models formulate the problem as a comparison to a goal rather than assigning value directly

from the criteria values.

The �rst such model, TOPSIS, was developed in the 1980s by Hwang and Yoon [150]. TOPSIS

de�nes a positive ideal solution which represent the best alternative. This imaginary solution is

created by collecting the best possible values across all criteria. The same is done with the worst

criteria values to create a negative ideal solution. The best alternative is then determined by

minimising the euclidean distance from the positive ideal solution and maximising the euclidean

distance from the negative ideal solution. These distance metrics are used to score each alterna-

tive, to form an overall ranking of solutions. The distances along each dimension of the problem

are scaled using a weighting vector. This weighting vector is an encoding of decision maker

preferences. Unfortunately, TOPSIS provides no method to derive this vector from pairwise com-

parisons or any other natural expression of a decision maker’s preferences. Consequently, this

method is often combined with AHP, with AHP being utilised to create a weighting vector from

a pairwise comparison of criteria.

2.1.3.2 Implementation

TOPSIS is described by the following steps:

TOPSIS Step 1. Create an evaluation matrix (G8 9 )<×= consisting of< alternatives and = cri-

teria, with the criteria values for each alternative 8 and criterion 9 given as G8 9 .
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TOPSIS Step 2. Calculate the normalised evaluation matrix ' = (A8 9 )<×= by applying the

formula given in Equation 2.5.

A8 9 =
G8 9√∑<
:=1 G

2
: 9

, 8 = 1, 2, ... ,<, 9 = 1, 2, ... , = (2.5)

TOPSIS Step 3. Calculate the weighted normalised decision matrix T = (C8 9 )<×= by applying

the formula from Equation 2.6.

C8 9 = A8 9 ·F8 9 , 8 = 1, 2, ... ,<, 9 = 1, 2, ... , = (2.6)

TOPSIS Step 4. Compute the positive (�+) and negative (�−) ideal solutions. These serve

as imaginary perfect and worst points in the solutions space, from which we can calculate the

distance from real solutions as a form of evaluation.

�+ = {G+1 , G+2 , ... , G+= }

where G+9 = {<0G (G8 9 ) if 9 ∈ �;<8=(G8 9 ) if 9 ∈ �)}

�− = {G−1 , G−2 , ... , G−= }

where G−9 = {<8=(G8 9 ) if 9 ∈ �;<0G (G8 9 ) if 9 ∈ �)}

where � is associated with bene�t criteria (values we seek to maximise) and � with cost cri-

teria (values we seek to minimise).

TOPSIS Step 5. Calculate the !2-distance from positive ideal (3+8 ) and negative ideal (3−8 )
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solutions for each alternative.

3+8 =

√√√ =∑
9=1
(G8 9 − G+9 )2, 8 = 1, 2, ... ,<

3−8 =

√√√ =∑
9=1
(G8 9 − G−9 )2, 8 = 1, 2, ... ,<

TOPSIS Step 6. Calculate the similarity to the worst condition for each alternative (B−8 ).

B−8 =
3−8

3−
8
+ 3+

8

, 8 = 1, 2, ... ,<

TOPSIS Step 7. Rank the alternatives according to the similarity to the worst condition (B −8 ).

2.1.4 PROMETHEE

2.1.4.1 Background

The French school was founded by B. Roy, who produced the series of ELimination Et Choix

Traduisant la REalité (ELECTRE) methods [116]. This served as inspiration for the family of out-

ranking methods, characterised by the limited degree to which a disadvantage on one criterion

may be compensated by advantages in another. PROMETHEE is an outranking method devel-

oped by J.P Brans [16]. PROMETHEE ranks a set of alternatives on the basis of several criteria

by identifying pros and cons of the alternatives in a pairwise fashion. Criteria for MCDM prob-

lems can fall across a wide-range of scales, with di�erent utility for similarly valued trade-o�s.

For example, when selecting a car, price may create an exponential range of values, whereas
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horsepower falls across a linear range. This is caused by the net worth of individuals forming

an exponential scale, whereas horsepower is limited by engineering. To capture these di�erence

between criteria, PROMETHEE de�nes a preference function (% (G)) for each criterion.

The provision of % (G) enables a more �exible approach to the comparison of criteria values.

In a similar fashion to TOPSIS, PROMETHEE requires information on the relative importance of

the criteria and is therefore often paired with AHP.

Multiple versions of PROMETHEE have been introduced [15, 17, 18]. PROMETHEE I produces

a partial ranking, whereas PROMETHEE II computes a complete ranking of alternatives. In our

case, a complete ranking of alternatives is required. Consequently, PROMETHEE II has been

implemented as outlined below.

2.1.4.2 Implementation

In our work, PROMETHEE is de�ned by the following procedure:

PROMETHEE Step 1. Pairwise comparisons 3 9 (G,~) are made between each criteria value

G8 9 for alternative 8 and criterion 9 using Equation 2.7.

3 9 (G8 9 , G: 9 ) = G8 9 − G: 9 (2.7)

PROMETHEE Step 2. Unicriterion preference degree is calculated by applying a preference

function % (G) to the di�erence as shown in Equation 2.8.

c: (G8 9 , G: 9 ) = % [3: (G8 9 , G: 9 )] (2.8)

This function can be di�erent for each criterion. Six types of preference function are pro-

posed; usual criterion, quasi criterion, criterion with linear preference, level criterion, V-shape

with indi�erence criterion, and Gaussian criterion [15]. In this work, the criterion with linear
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preference is applied, as shown in Equation 2.9.

% (G) =


0 G ≤ 0

G 0 < 3 ≤ 1

1 3 > 1

(2.9)

PROMETHEE Step 3. A multi-criteria (global) preference degree c (G,~) is computed to

globally compare every pair of alternatives as shown in Equation 2.10.

c (G8 9 , G: 9 ) =
@∑
:=1

c: (G8 9 , G: 9 ) ·F: (2.10)

PROMETHEE Step 4. Calculate the positive (q+(0)) and negative (q−(0)) preference �ows

for each alternative.

q+(0) = 1
= − 1

∑
G∈�

c (0, G)

q−(0) = 1
= − 1

∑
G∈�

c (G, 0)

PROMETHEE Step 5. Calculate the net preference �ow q (0).

q (0) = q+(0) − q−(0)

PROMETHEE Step Six. Rank alternatives according to the net preference �ow.

2.2 Stream Processing

A growing number of large-scale data processing use-cases involve data which is produced

continuously over time. As a result, streaming analytics is a growing area of data science with
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Figure 2.2: An example of an operator consuming a stream of random integers and doubling them to
produce another stream.

considerable commercial interest. To handle these use-cases, a number of SPEs have been cre-

ated, such as Apache Storm [23], Apache Spark Streaming [151] and Apache Flink [134]. These

platforms o�er an API to process data as it is produced, utilising the abstraction of data streams.

In this section we introduce the generic streaming concepts employed by SPEs. We also in-

clude background on the two SPEs used as components of our dynamic DSSs: Apache Storm

and Apache Flink. Finally, we explain how we can build upon the extensibility points of SPEs to

provide decision support over dynamic data.

2.2.1 Streaming Concepts

Data streams are an abstraction for modelling dynamic data. A data stream is an in�nite

sequence of elements. Elements are made up of a piece of data and a timestamp, indicating when

an element was produced or when it was made available for processing. This could be the content

of a tweet and the time it was sent, or an update to the price of a car and when it was updated.

Such data streams are manipulated through the application of operators. Operators are func-

tions which consume zero or more streams to produce zero or more streams. A mapping is an

operator which consumes a single stream to produce a single stream, with each element in the

input stream corresponding to an element in the output stream. Figure 2.2 shows an example of a

mapping consuming a stream of random integers and doubling them to produce another stream.

Windows are another common operator which are one of the core building blocks of stream-

ing applications. Windows apply a function over a �nite section of a data stream. For example, a

window could be used to calculate the number of tweets made in the last 10 minutes. The most

common forms of windows are time-based and count-based windows, bound by either time or
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Figure 2.3: An example of a count-based sliding window (n=3) calculating the sum of a stream of random
integers.

number of elements respectively.

Windows can further be distinguished as sliding windows, calculating an output with the

arrival of each new element, or tumbling windows, which can accumulate multiple elements

before a new calculation is performed [14]. Figure 2.3 shows an example of a count-based sliding

window, calculating the sum over a stream of random integers.

2.3 Multi-Criteria Dynamic Genetic Algorithm

A GA is a meta-heuristic search algorithm modelled on the process of natural selection. GAs

rely on mutate, crossover and selection operators to de�ne the search process. New solutions are

derived from a previous population through a combination of mutations and crossovers, with the

highest �tness solutions selected for the next population [97].

In this work, we apply SPEs to solving dynamic multi-criteria decision making problems. We

do this by using an incremental genetic algorithm utilising MCDM methods as a �tness function.

Incremental genetic algorithms are designed to handle problems which undergo frequent minor

modi�cations [89].
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This approach builds upon the GA methodology to maintain a solution set ranked according to

preferences, as the situation and therefore solutions, evolve over time. To apply this architecture

to a dynamic multi-criteria decision making problem it is must be formulated as a combination

of solutions, criteria, and state.

2.3.1 Formulating the problem

A solution (G ) is an encoding of an alternative, a criterion (�) is a property of an alternative

that contributes towards the goal and the state ((C ) is a snapshot of the problem which allows the

criteria values for a solution to be calculated at a given time. For each criterion it is required that

we de�ne a function as follows:

Let G be a solution,

Let (C be the state at time C,

G2C = � (G, (C )

This function calculates the value of G2C , which is the value of the criterion� at time C for so-

lution G . Together these data structures form an interface with the algorithm. For example, if the

problem is selecting an appropriate train journey to a destination, the solutions are the potential

journeys and the state is the information regarding line closures or delays. A journey duration

criterion function could then be applied to calculate a predicted duration for each journey.

To implement this architecture, we must also de�ne two of the operators for the genetic al-

gorithm: mutate(G ) and crossover(G,~). The mutation operator exists to maintain the diversity

of the population. This function takes a solution and produces a slightly modi�ed but new solu-

tion at random. Whereas the crossover operator combines two solutions together to produce a

new solution, inheriting characteristics from both parents. The forms for mutate and crossover
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functions are shown below:

Let G,~, I be solutions of the problem,

~ = mutate(G),

I = crossover(G) (~)

2.3.2 Architecture

Figure 2.4 shows the �ow of data through the algorithm. The Solution Creator takes the current

state of the scenario and the previous ranking, and applies mutate(x) and crossover(x,y) opera-

tions to create new solutions. For the �rst generation it creates a random set of solutions. The

Criteria Calculator then calculates the criteria values for each solution (G ) using the current state

of the scenario ((C ) by applying criterion functions. This produces criteria values G2=C for each

solution (G ) and each criterion (�=), valid at time C .

A time-based sliding window is taken for all solutions valid at time C , closing when a solution

marked with time C + 1 arrives. This window comprises the current generation of solution. The

Solution Ranker uses this window as context to score each of the solutions validated at time C .

This is done by applying one of the MCDM methods described in Section 2.1. Initial calculations

for each algorithm are applied within the solution ranker, by producing scores for each criterion.

These intermediary values and criteria weightings are then passed to the Fitness Calculator.

Within the Fitness Calculator, solutions are assigned a �tness value calculated using the MCDM

method. When selecting solutions for the next generation of the algorithm, we �rst choose the

solution with the highest �tness. We then apply a �tness penalty to solutions that share charac-

teristics with the set of solutions chosen for the next generation. This is intended to promote a

diverse set of solutions for recommendation. This set of solutions forms a ranking, ordered by
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the �tness assigned to each solution. The ranking can be used as an input to the Solution Creator,

acting as a basis for the next generation.

2.4 Conclusions

The decision support literature outlines a wide variety of MCDM methods. These methods

apply di�erent approaches to the problem of synthesising a ranking from a list of potential so-

lutions and decision maker preferences. Generally, these methods are applied in a static context,

with a �xed set of solutions and preferences. If the set of solutions and preferences are subject to

change, then the problem is dynamic [22].

SPEs provide a set of tools for tackling dynamic problems. They handle dynamic data by

utilising the abstraction of data streams. Acting upon these streams, SPEs employ a variety of

streaming concepts to enable users to create dynamic applications. We have outlined an ap-

proach to solving dynamic multi-criteria decision making problems using SPEs. This approach

applies streaming abstractions to build a multi-criteria dynamic genetic algorithm that maintains

a ranking of solutions as both solutions and preferences change over time.

In later chapters we discuss this approach in the context of both a train journey planning

case study and a harbour defence case study; further we evaluate the suitability of the outlined

MCDM methods as a �tness function.
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Figure 2.4: The architecture for the dynamic genetic algorithm
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3 | Desiderata for Decision Support for

Dynamic Applications: A rail

journey planning case study

In this chapter, we identify some of the key issues and concepts in dynamic decision support.

We explain how these give rise to our 8 desiderata for dynamic decision support. The literature

review continues by giving examples of dynamic DSSs and outlining which of our desiderata are

enabled. We then give a rail journey case study to illustrate how we can enable 5 of our desiderata,

namely:

1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

4. explicit support for uncertain data,

5. provenance capturing the data underpinning decisions, and

6. explanation of outputs.

The application helps a user to plan a journey between two stations according to the arrival

time, price and the number of changes.
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3.1 Related Work

In this section we introduce the concepts inspiring our list of desired features for dynamic

decision support. We explain how these concepts inform our desiderata and we discuss method-

ologies that can enable the provision of our desiderata in dynamic DSSs. Finally, we give examples

of dynamic DSSs and detail which desiderata are supported.

3.1.1 Concepts

In this subsection we describe dynamic decision making as a concept and the desiderata which

fall out of the dynamic aspect of the problems. We then discuss the issues revolving around trust

calibration and features which can assist in the process. Together, these sections give rise to our

desiderata for dynamic decision support.

3.1.1.1 Dynamic Decision Making

As a result of the dimensionality of MCDM problems there is no single optimal solution,

instead we de�ne solutions as dominated or undominated. A solution is dominated by another

solution if it performs worse under every criterion. A solution which is not dominated by any

other is called pareto-optimal.

The set of pareto-optimal solutions is known as the Pareto-optimal front (POF). It is impossible

to say which ranking of a POF is optimal [152]; the di�erentiating factor is the trade-o�s between

criteria, consequently to compare solutions within the POF we require information regarding the

relative importance of criteria. These criteria can have di�erent importance to di�erent decision

makers, therefore common decision analysis techniques provide methods to elicit user prefer-

ences. These preferences allow the decision maker to traverse the POF, guiding the process of

selecting an appropriate solution.

For dynamic MCDM problems, it is not just the decision maker preferences that change, but
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also the values of criteria and the set of solutions. As a result, the best solution is likely to change

and it is important to dynamically revise the recommendations. Dynamic problems are subject to

real-time constraints; a decision maker must select a solution as the problem continues to evolve

and therefore, for a functional ranking, the frequency of change must be less than the time it

takes to act. If a ranking of solutions completely reorders under small changes to the problem,

it becomes di�cult to make a decision in a timely manner. Campanella et al. [22] noted this

problem and introduced a framework for improving stability in dynamic decision making. This

approach provides stability by combining historical values for criteria through an aggregation

function.

3.1.1.2 Calibrating Trust

Trustability is an important characteristic of the human-computer team comprising the DSS

and the human decision maker. If a DSS is not trusted then the results can end up discarded and

the team is only as capable as the human alone [9, 78]. Issues can also arise from a DSS being too

trusted; common sense being overridden can lead to problems that would be avoided by a human

decision maker.

Lack of trust can be especially detrimental in a dynamic environment, as the decision maker

must act under real-time constraints. This means that more time deliberating over a decision may

a�ect the outcome. Consequently, trust calibration is a vital aspect of any DSS.

An important aspect of trust calibration is communicating the level of uncertainty within

a system [139]. Uncertainty is often divided into aleatoric and epistemic uncertainty; aleatoric

uncertainty is representative of unknowns that di�er each time we run an experiment (modelled

probabilistically) whereas epistemic uncertainty results from a lack of knowledge [133, 145].

For DSSs, there is often both aleatoric and epistemic uncertainty relating to the criteria that

inform a recommendation. As such, it is important to propagate both kinds of uncertainty to

ensure that the uncertainty intrinsic in a recommendation is either presented to a user or able to
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be re�ected within the decision-making process.

Epistemic uncertainty is often di�cult to quantify, and as a result several authors argue for

the need to use verbal expressions (linguistic variables) for risk assessment [35, 64]. An exam-

ple of this is using “trustworthy“ or “untrustworthy“ to represent the uncertainty underlying the

reliability of a piece of information. Another method for dealing with epistemic uncertainty is

understanding the source of information. Data provenance is a method for supporting this within

information systems. Data provenance provides a historical record of data and its origins, which

allows the user to assess data quality and suitability [21]. Understanding the source of infor-

mation allows a decision maker to judge for themselves the limitations, and therefore epistemic

uncertainty of the underlying data [69]. This allows a decision maker to judge the correct level

of trust to give data within a system.

Tomsett et al. [133] proposed that for trust calibration, AI systems should communicate expla-

nations for all outputs. For DSS, explanations complement the underlying evidence by allowing

the user some understanding of the space of possible solutions; this means explaining how a

recommendation has been arrived at, and/or describing the relationship between alternative op-

tions. Rudin et al. [117] noted that it is possible for machine learning training data to be �awed in

unknown ways; this is also the case for the data underpinning DSSs. Provenance and explanation

together can help to expose these �aws, allowing trust to be calibrated to an appropriate level.

When �aws are exposed in the recommended solution, it becomes the role of the decision

maker to navigate the space of options to choose an appropriate alternative. It is impossible to

avoid �aws in the underlying data and therefore it is imperative that DSSs provide capabilities to

deal with them.

If all the solutions are very similar it is more likely that a single �aw could permeate the

entire ranking. To solve this, Evans [43] argues that algorithms for supporting problem solving

should generate a diverse set of alternatives. Following this logic, a diverse o�ering of solutions

is a desired feature of DSSs [138]. Approaches to generating a diverse set of alternatives have
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employed agent technology [137] and genetic algorithms [45].

If a diverse ranking is insu�cient for selecting an appropriate solution the decision maker can

navigate the space of options by altering their preferences. To make e�ective use of preferences,

it is crucial for changes in criteria weights to have predictable e�ects. This helps to maintain con-

sistency in the search, an important goal of any MCDM method [130]. Promoting predictability

has been proposed as a foremost responsibility of leadership in project management [101]. For

dynamic decision support, this becomes the responsibility of the system. An aspect underpinning

the predictability of changes in criteria weights is the consistency of trade-o�s between criteria.

It is expected that as the weighting for a criterion increases, the trade-o�s become more favoured

towards that criterion. However, this relationship is not always predictable, as small changes in

criteria weightings can lead to large changes in how an algorithm values certain trade-o�s [25,

127]. We view consistency in trade-o�s as a desired feature, as it gives rise to predictable e�ects

when decision makers adjust their preferences.
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3.1.2 Desiderata

Figure 3.1: The eight proposed desiderata for trusted dynamic multi-criteria DSSs

In summary, to enable e�cient decision making in a dynamic environment, in addition to

the provision of preferences (Desiderata 1), it is required for the system to dynamically revise

recommendations (Desiderata 2) with a high stability of results (Desiderata 3).

All this is required in a context where there may be genuine uncertainty relating to the criteria

informing a recommendation. As such, it is important to ensure that the uncertainty intrinsic to

a recommendation is either presented to a user or able to be re�ected within the decision-making

process (Desiderata 4).

In an environment with dynamic uncertain data, calibrating trust is more important than ever.
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Two features are put forward to enable the calibration of trust: data provenance (Desiderata 5)

and explanation of outputs (Desiderata 6).

Once trust is properly calibrated, two desiderata are proposed to enable an e�cient and in-

tuitive search of the solution space. These are providing the users access to a high diversity of

options (Desiderata 7) and the ability to change preferences, with consistent trade-o�s between

criteria (Desiderata 8). Drawing this together, we arrive at the 8 desiderata for trusted dynamic

multi-criteria DSSs shown in Figure 3.1.

We can break our desiderata down into �ve categories of requirements: decision support,

dynamic problems, uncertain problems, trust calibration and handling poor results. Declarative

speci�cation of preferences is a basic requirement for decision support, allowing a user to select

the right solution from the POF. Dynamic revision of results and high stability of results allow

this to be done in a dynamic environment.

For uncertain problems, it is important to propagate the uncertainty through to the decision

maker, this is therefore a requirement for problems with uncertainty in the underlying data. An

example of this would be choosing an appropriate train based on train times, it is important that

the decision maker understands the uncertainty inherent to train arrivals. Provenance and expla-

nation provide a means to calibrate trust. These desiderata allow the human decision maker to

assess the evidence and reasoning behind a recommendation. The decision maker can then make

an informed decision on whether to follow a recommendation. In the case that a recommendation

is rejected, we are required to continue searching the solution space.

A high diversity of options and consistent trade-o�s between criteria allow us to deal with

poor results by �nding alternatives e�ciently.

These desiderata gives us a framework for comparing dynamic decision support systems but

cannot de�nitively say that an individual system is good and trustable. Instead the framework

gives us direction for improving dynamic decision support systems. Most systems will not ful�l

all eight desiderata but it gives architects an idea of the e�ects of di�erent features and char-
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acteristics. For example, if a problem is uncertain we can improve the system by propagating

uncertainty from the underlying data through the decision making logic. If the users are hav-

ing di�culty calibrating trust, then we can add explanation or provenance data. If the users are

struggling to handle poor results, then we can either improve the consistency of trade-o�s or

the diversity of the results. These examples show how such a framework is important for the

production and improvement of dynamic decision support systems.

3.1.3 Methodologies

In this section we describe the literature surrounding the methodologies that allow us to

enable our desiderata in dynamic DSSs. First we describe MOEAs, the methodology we employ to

provide declarative speci�cation of preferences with dynamic revision of recommendations. This

methodology enables the dynamic revision of rankings for problems where the size of the solution

space makes the reapplication of MCDM methods intractable.

3.1.3.1 Dynamic Multi-objective Evolutionary Algorithm

GAs have been widely applied to multi-objective optimisation problems, employing a heuris-

tic search methodology to calculate the most appropriate solution from the solution space [53].

GAs applied to multi-criteria decision making are known as Multi-Objective Evolutionary Algo-

rithms (MOEAs).

GAs have been highlighted as superior to conventional optimisation algorithms for multi-

objective problems as a result of the following features [12, 13]:

1. GAs search with a population of candidate solutions rather than a single point. Thus, they

are less likely to be trapped in a local optimum.

2. GAs use only the values of the payo� (objective function) information, and not the deriva-

tives or other auxiliary knowledge.
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3. GAs work with a coding (representation) of a parameter set not the parameters themselves.

Thus the search method is naturally applicable for solving discrete and integer program-

ming problems.

4. GAs use randomised parents selection and crossover from the old generation. Thus they

e�ciently explore the new combinations with the available knowledge to �nd a new gen-

eration with better �tness values.

Bingul et al. [12] identi�ed these advantages of GAs and proposed a genetic algorithm for real-

time multi-objective problems. The approach was applied to a war resource allocation problem,

controlling the blue side allocations with four criteria to optimise: minimise the territory the blue

side loses, minimise the blue side aircraft lost, maximise the number of red side strategic targets

killed and maximise the number of red side armour killed. The GA had three possible �tness

functions, shown in Equations 3.1, 3.2 and 3.3 respectively.

�1 = 5
4
1 + 5 32 + 5 23 + 54 (3.1)

Where �1 is a �tness score, 51 is the smallest criteria value, 52 is the second smallest criteria

value, 53 is the third smallest criteria value, and 54 is the largest criteria value.

�2 = 5
2
1 + 5 22 + 5 23 + 5 24 (3.2)

Where �2 is a �tness score and 51, 52, 53 and 54 are the MOEAs criteria values.

�3 = �<0G −
4∑
8=1
(5<0G − 58)2 (3.3)

Where �<0G (16 for this case) is the maximum value of total �tness score and 5<0G (2 for this

case) is maximum value of each �tness score.
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These �tness functions were applied in a GA with a �xed population size of 50, a crossover

probability of 0.7 and a mutation probability of 0.02.

In a later paper [13], Bingul et al. introduced an adaptive system for setting the mutation and

crossover rates. This change was designed to improve the convergence speed and stability of the

results. To do this, the authors use the mean, variance and the best �tness value of each generation

to set the mutation and crossover rates going forward. The results found that the adaptive GA

had a higher rate of convergence and converged to a higher �tness value. Convergence rate is an

important characteristic that underpins the stability of resultant rankings as a slow convergence

can unsettle rankings as the scenario evolves over time.

Following similar reasoning, Deb et al. [31] introduced the Non-dominated Sorting Genetic

Algorithm II (NSGA-II), an elitist genetic algorithm for multi-objective optimisation. This al-

gorithm is often used as a baseline for comparing new MOEAs [51]. The algorithm employs a

fast non-dominated sorting approach with $ ("# 2) computational complexity, where " is the

number of objectives and # is the population size. The elitist selection operator creates a new

generation by combining the parent and o�spring populations and selecting the best # solutions.

To do this, the solutions are �rst sorted into dominated and non-dominated (pareto-optimal) solu-

tions. These non-dominated solutions form the �rst level non-dominated front. These solutions

are then removed and the process is repeated to �nd the second level non-dominated front. For

each solution, this hierarchy is used to calculate two entities: the domination count (the number

of solutions dominating a solution) and the set of solutions dominated by a solution. The fronts

are then integrated into the next generation, beginning with the �rst level non-dominated front.

The �nal front is then sorted using the crowded-comparison operator, that preserves diversity by

selecting solutions in a less crowded region of the solution space.

This approach approximates a pareto-optimal front e�ciently, providing a means for dynamic

revision, but integration with an MCDM method is required to solve the problem of recommend-

ing a single solution to the user.
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Example Preferences Dynamic Revision Stability Uncertainty Provenance Explanation Diversity Trade-o�s
1 X X × X X X × ×
2 X X X × × X X X
3 X X × × × × × X
4 X X × × × × × X
5 X X X × × × × ×
6 X × × × × × × ×

Table 3.1: The fulfilment of our desiderata in a bundle of dynamic decision support case studies; 1 -
Train journey planning DSS, 2 - Harbour management DSS, 3 - A dynamic decision support system for
evaluating peer-to-peer rental accommodations in the sharing economy [131], 4 - A dynamic decision
support system for sustainable supplier selection in circular economy [6], 5 - A knowledge based system
for supporting sustainable industrial management in a clothes manufacturing company based on a data
fusion model [141], 6 - Urbanization suitability maps: a dynamic spatial decision support system for
sustainable land use [24].

3.1.4 Examples

In this section we outline some recent dynamic decision support case studies from the litera-

ture and highlight how our desiderata surface within each system.

Tavana et al. [131] designed a dynamic DSS for evaluating peer-to-peer rental accommo-

dations in the sharing economy. This system compares rental accommodation based upon 28

di�erent criteria divided into 5 categories of evaluation, property, neighbourhood, economic and

distance factors. The system applies TOPSIS over dynamic data to enable the provision of pref-

erences in a dynamic environment. The system does not automatically revise results but allows

for recalculation on demand. This system is applied in a context with no uncertain data and as

the results are not revised repeatedly, stability of results is not an issue that has been addressed.

The system also addresses a problem with a small number of solutions and therefore promoting

a high diversity of options is not a priority.

Alavi et al. [6] presented a similar dynamic DSS for sustainable supplier selection in circular

supply chains. This system also considered a large number of criteria and therefore chose to

apply the Best Worst Method (BWM). This method is similar to AHP but focuses on reducing

the number of pairwise comparisons needed by deducing the values of missing comparisons,
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reducing the number of pairwise comparisons required from =(=−1)
2 in AHP to 2=− 3. The system

enables dynamic revision through the re-application of BWM over dynamic data. The authors

also investigate the consistency of the trade-o�s by applying sensitivity analysis to assess the

robustness of rankings under changes to the weightings of criteria, concluding that the rankings

achieve a reasonable level of sensitivity. In our framework, we ignore the sensitivity of trade-o�s

in criteria in favour of a focus on consistency (Desiderata 8).

Vieira et al. [141] delineated a knowledge based system for supporting sustainable industrial

management in a clothes manufacturing company based on a data fusion model. They apply a

D-MCDM model proposed by Campanella et al. [22]. The model uses an aggregation function to

synthesise historical and predicted future criteria values to create a ranking which aims to achieve

a high stability of results. The model also allows for the speci�cation of user preferences and is

recalculated as the situation unfolds as a means for dynamic revision. Overall, in the literature

most dynamic DSSs aim to ful�l a handful of our desiderata but fail to adequately address all our

desired features and characteristics for dynamic decision support.

Cerreta et al. [24] outlined a dynamic spatial DSS for guiding and managing sustainable land

use. The system applies AHP to select suitable land for consumption whilst minimising envi-

ronmental impacts of spatial planning. Through the AHP, decision makers can express their

preferences across a hierarchy of factors, such as geomorphology or the natural resources and

ecological network. Their approach is not dynamic in an integrated temporal sense but instead

models land consumption as a dynamic process, predicting the scenarios that might result from

the implementation of city planning strategies. The possible outcome is predicted but the char-

acteristics of the uncertainty are hidden and not propagated to the decision maker.
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3.2 Rail Journey Case Study

This section introduces a rail journey case study, which is used to give illustrate how a DSS

can be built which supports 5 of our desiderata, namely;

1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

4. explicit support for uncertain data,

5. data provenance, and

6. explanation of outputs.

Further details of how we enable and evaluate (3) high stability of results , (7) high diversity of

options and (8) consistent trade-o�s between criteria are given in Chapter 5.

3.2.1 Motivating Example

To illustrate multi-criteria decision support over streams, we consider an application relating

to train journey planning. We assume that a user can state where they need to go from and to,

along with the proposed start time. We also assume that the most suitable journey time for a

user may depend on di�erent criteria, speci�cally the arrival time of the journey, the price of the

journey, and the number of changes. For example, in Figure 3.2, a decision maker must choose a

route from A to F in a way that takes into account price, arrival time and number of changes.

Solution Price (£) Changes Arrival Time
ABF 15 1 14:00
ABDF 16 2 14:00
ACDF 9 2 14:40

Table 3.2: The solutions to figure 3.2.
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Figure 3.2: Example Train Routing Scenario

Circles and arrows depict stations and trains respectively.

Table 3.2 shows the solutions to this example. We note that the solution��� dominates����

as it is equal or better for all criteria values. This leaves us with two potential solutions; ��� and

���� . A business person may prefer ��� because it is quicker, whereas a student may prefer to

save money and take ���� . There is no optimal solution for everyone and so we require user

speci�cation of criteria preferences (Desiderata 1).

One such criterion, arrival time, indicates the expected arrival time of a journey. This is

subject to change, as trains may be delayed or lines closed. Ticket prices are also subject to change

up until the time of purchase. If a train is delayed or the price increases, the resulting solution may

no longer be optimal, therefore dynamically revising recommendations (Desiderata 2) to re�ect

the most recent information is clearly bene�cial. The user may also move between stations as

a part of their interaction with the system, hence requiring an entirely new set of solutions. A

decision maker may see these solutions and choose option���� because they believe it will only

take 10 minutes. However, this route may be unreliable due to engineering works, so it may be

important for the user to understand the source and derivation of criteria values (Desiderata 3)
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Figure 3.3: Prototype Architecture; PROV is defined in Subsection 3.2.3

to improve trustability, or to understand the uncertainty that is characteristic of this particular

train service (Desiderata 5).

Finally, after expressing their preferences, accepting criteria values and understanding uncer-

tain aspects, a user is left with a recommended journey. It may be di�cult to trust this recommen-

dation without understanding why it was selected. Therefore we should provide the user with an

explanation of where the recommendation falls in the solution space, so that they can understand

the trade-o�s being made, and how this ties into their preferences for criteria (Desiderata 4).

3.2.2 Architecture

To evaluate our approach, a prototype platform has been developed. This platform imple-

ments our desiderata from Section 1.5.2, whilst providing decision support for train route plan-
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ning. The system utilises a micro-services architecture shown in Figure 3.3.

The decision maker operates the DSS through the user interface. The user inputs details for

a planned trip; an origin station, a destination station and a departure time. The user also must

specify their preferences with regard to the criteria. This information is sent with a request to

open a web-sockets connection to the Application Controller. The Application Controller holds the

state of the train journeys (solutions) within the system. The controller uses the planned trip to

build a http request to send to the Timetable Service.

Our architecture requires a solution service to generate the initial solution space. The Timetable

Service is the implementation of the solution service for the train route planning scenario. The

service generates a list of train journeys between the requested origin and destination stations at

the speci�ed departure time. Initial values are then calculated for all criteria. The Timetable Ser-

vice returns an unranked list of train journeys which are passed from the Application Controller

to the Live Train Service. A streaming component is also required to update the dynamic criteria

and to produce a new ranking in real-time. The Live Train Service is an implementation of this

component for the train scenario. In this case the live train service must update the expected train

arrival time. The Live Train Service is initialised with a list of train journeys, which are ranked

by the Ranking Service. A stream of UK-wide train updates from National Rail is �ltered, and

matching updates are used to update criteria values. The updated list of train journeys is then

re-ranked by the Ranking Service. The output stream of ranked train journeys is communicated

to the User Interface over web-sockets.

The Ranking Service accepts a speci�cation of preferences and a list of solutions, to produce

a ranking. This ranking is calculated through the application of the AHP.

The criteria and criteria behaviour are speci�ed through the con�guration. For example,

we specify that price is a criterion and should be minimised. This allows the service to remain

generic. The other generic component is the provenance sub-system. The provenance sub-system

generates, stores and serves provenance data within the platform. This subsystem is made up of a
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Operator Input Output
NationalRailSpout N/A <timestamp :: Timestamp, id :: trainID, destination :: String, newExpectedArrival :: Timestamp>
DelayBolt NationalRailSpout <timestamp :: Timestamp, journeys :: [Journey]>
RankingBolt DelayBolt <timestamp :: Timestamp, rankedJourneys :: [<score :: Double, journey :: Journey>] >

Table 3.3: Input and Output types for each operator

message queue, a database (Prov DB) and two services; one for generating provenance (Prov Gen-

erator Service) and one for serving it (Prov Provider Service). The sub-system receives messages

from the streaming service which are processed to produce provenance graphs.

3.2.3 Architecture Components

In this subsection, we provide further details of the components in Figure 3.3.

Live Train Service

SPEs are programming frameworks designed to enable the intuitive manipulation of stream-

ing data. The live train service makes use of Apache Storm to transform streams of live train

updates. Apache Storm is an open source SPE that utilises three abstractions: spouts, bolts and

topologies. Spouts produce streams; bolts consume any number of streams to produce new output

streams; and a topology describes a network of spouts and bolts. Within our streaming compo-

nent we instrument these operators to extract provenance data.

We extend the base classes for bolts and spouts to produce two new provenance aware classes:

ProvenanceAwareBolt and ProvenanceAwareSpout. An example of a bolt extending this class is

shown in Listing 3.1. Execute de�nes how a bolt processes each tuple and declareOutputFields

declares the shape of tuples in the output stream. An operator inheriting from these classes will

write provenance information concerning its inputs and outputs to the provenance sub-system.

For the train route scenario we have three operators: NationalRailSpout, DelayBolt and Rank-

ingBolt . The NationalRailSpout produces a stream of delays; the DelayBolt applies relevant delays

to a list of journeys; and the RankingBolt interfaces with the Ranking Service to calculate a score
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for each journey. Table 3.3 shows the input and output tuples for each operator. We instrument

all the operators to supply us with provenance regarding the history of solutions, their criteria

values and the resulting ranking.

public c l a s s ExampleBo l t extends ProvenanceAwareBol t {

public void e x e c u t e ( Tuple t u p l e ) { }

public void d e c l a r e O u t p u t F i e l d s ( D e c l a r e r d e c l a r e r ) { }

}

Listing 3.1: Code for a provenance aware bolt

Ranking Service

To calculate a recommendation we apply the AHP [118], using pairwise comparisons between

criteria to generate weightings. The details for this process are given in Subsection 2.1.2. We

applied the methodology as outlined with two potential formulas for comparing criteria values

under consideration, depending on whether the values fall along a linear scale (3.4) or an expo-

nential scale (3.5). These formulas map two normalised values (G , ~) to the fundamental scale

proposed by Saaty [118]. For the train route planning scenario, we apply the �rst formula (3.4),

because all criteria form a linear scale. For example, train prices might be £10, £15, £20 for three

alternative routes and not £10, £100, £1000.

5 (G,~) = | (G − ~) × 8| + 1 (3.4) 5 (G,~) = 4G

4~
(3.5)

The ranking service operates over web-sockets. The service requires a con�guration �le when

a connection is opened, providing information about criteria. Critically, the con�guration indi-

cates the number of criteria and whether numerical criteria should be maximised or minimised.
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Figure 3.4: Provenance graph for a train schedule update

The con�guration also allows us to indicate how we should compare non-numerical criteria. Once

a connection is opened, AHP is applied to a stream of solutions, producing a stream of rankings.

Provenance Sub-system

The provenance sub-system processes messages from the streaming system and stores the

output in a database for future querying. To store this data we choose to conform to the PROV

standard [98]. PROV de�nes a data model consisting of a set of vertices and edges for modelling

provenance as graphs. We adapt a subset of these to map to concepts from data stream analysis.

For vertices we use entities, activities and agents. For edges we use wasGeneratedBy, used and

wasAssociatedWith. The PROV data model describes entities as “an immutable piece of state”,

activities as “dynamic aspects of the world which produce entities” and agents as “parties which

take a role in activities”. We model stream elements as entities; stream operations as activities;

and stream operators as agents. Note, we call a set of inputs and outputs a stream operation. The

stream operator refers to the operator applied to these inputs to produce the outputs.
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Edges describe the relationships between two entities. wasGeneratedBy links an entity to the

activity which generated it. used links an activity to an entity it consumed. wasAssociatedWith

links an activity to an agent associated with it. We say a stream element was generated by a

stream operation. These operations used a stream element or window of elements. The operation

also wasAssociatedWith the operator which was applied.

An example provenance graph is shown in Figure 3.4. This example shows the derivation for

an expected train arrival time. The new arrival time wasGeneratedBy an operation which used

the scheduled arrival time and the schedule delay. The operation wasAssociatedWith the delay

operator (DelayBolt).

3.2.4 Framework Concepts

In the remainder of this section, we explain what we mean by explanation and uncertainty

and how these concepts surface within our architecture.

Explanation

The AHP algorithm outputs a weight vector for criteria and a score for each solution. Whilst

this is useful for constructing a ranking, these values are di�cult for a human to interpret. There-

fore we require some further explanation of how the system arrived at a recommendation. Fun-

damentally we describe explanation as a description of how a set of criteria preferences are used

by AHP to select a solution from a solution space. Perhaps the most important aspect is an expla-

nation of the trade-o�s and bene�ts of a recommendation and how this ties into the speci�ed user

preferences. For instance, in the case of train route planning, a user could specify that price is crit-

ical to them. Assuming the system recommends ��� , the cheapest option, a simple explanation

would be that ��� is the cheapest train and price is the most important criterion.

Our recommendations are dynamic and so it is important that an explanation can be pro-

cessed by the user quickly. This lead us towards visual forms of explanation such as bar and spi-
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der charts. Spider charts visualise multi-variate data as a shape constructed from three or more

quantitative variables across axes stemming from the same point. Typically a chart with a larger

area represents a better solution, but these charts can be misleading as the order of criteria can

greatly a�ect the area. For this reason we chose instead to visualise the solution space through

bar charts where the values for each criterion and solution are plotted side-by-side. Bar charts

are one of the most simple forms of data visualisation, leaving less room for misinterpretation.

Uncertainty

Uncertainty is modelled using Cumulative Distribution Functions (CDFs) drawn from histor-

ical data. These functions capture information regarding the potential values of an uncertain

criterion for a particular solution. Arrival time is an uncertain criterion for train route planning.

We derive a CDF of arrival times for a journey from the historical performance of the trains

travelling the same route. Such CDFs are a simple model, capturing the distribution of poten-

tial criteria values. Through this distribution we can view the probability of the potential risks

(lateness) for a journey. CDFs serve as alternatives to criteria values for uncertain criteria but

we require a method of comparing two CDFs. To do this we extract three key values from the

distribution; optimistic, expected and pessimistic values. For a CDF 5 , we de�ne optimistic, ex-

pected and pessimistic values as G such that 5 (G) = 0.05, 5 (G) = 0.5 and 5 (G) = 0.95 respectively.

An example for train arrival times is shown in Figure 3.5. The user interface allows the decision

maker to toggle which of these three values is fed into the ranking algorithm.

3.2.5 Motivating Example Application

In this section we explain how the user interacts with the system and how this interface

supports the desiderata from Section 3.1.2. The user interface aims to target end-users, rather

than decision scientists [128]. The user interface for the train route planner is shown in Figure 3.6.

For a decision maker planning a train journey, the �rst task is to specify the planned trip. The
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Figure 3.5: Cumulative Density Function for Arrival Time

top left corner shows the trip input form, where the user can input where they wish to travel From

(Origin Station), To (Destination Station) and the time they are Leaving At (Departure Time).

Once these values are set the user can click Calculate Routes to generate a set of possible journeys.

The next task is for the user to specify their preferences (Desiderata 1). In our user interface these

pairwise user preferences are located in the bottom left. In Figure 3.6 the preferences are set

to default, with all criteria equal. Each pair can be set through a drop-down menu one of �ve

potential values:
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Figure 3.6: Route Planning User Interface

1. - is much more important than . ,

2. - is more important than . ,

3. - is just as important as . ,

4. - is less important than . ,

5. - is much less important than . .

These preferences can be changed at any point, triggering the system to re-rank the journeys.

Once the planned trip and preferences have been detailed the user is presented with the top �ve

ranked journeys (the fourth and �fth fall below the fold). Immediately the user can view criteria
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values of each journey (Price, Arrival Time and Transfers ). These values and the resultant ranking

are updated continuously once routes have been calculated (Desiderata 2).

To prevent information overload some extra details are hidden. Clicking the plus next to

Journey Path displays the information needed to undertake a journey, including the journey path

and the trains of which the journey is composed. Each journey also has a View Detail button,

which allows the user to view provenance information in a pop-up window (Desiderata 3). The

design for this window is shown in Figure 3.7. Here the user can view the history of values for

Arrival Time and the data sources.

The values for each of the criteria are shown in the bar charts at the top of Figure 3.6, with

the x-axes ordered according to the ranking. These charts allow the user to visually compare

a recommendation (the furthest left value) to the solution space (all other values). The charts

are also ordered according to the weighting calculated through AHP, with the most important

criteria appearing on the left. This means a user can both understand the trade-o�s of a rec-

ommendation and how this ties into their speci�ed preferences (Desiderata 4). Finally, the user

can toggle between Pessimistic, Expected and Optimistic modes for the predicted arrival time by

clicking the corresponding button. These modes simply change the value extracted from the CDF,

as described in Section 3.2.4 (Desiderata 5). Expected values are more useful for users making a

journey many times (such as commuters) whereas pessimistic values would be more important in

a scenario where a user is travelling for something more time critical (such as a job interview).

3.3 Conclusions

In this chapter, we identi�ed and demonstrated desiderata for dynamic DSSs, through the

development of a train journey planning application. We presented a literature review revolving

around the key issues and concepts in dynamic decision support. This discussion explains how

these issues give rise to our eight desiderata. The chapter contributes these eight desiderata;

72



jointly making up a framework for trustable dynamic decision support.

Our train journey planning case study illustrated how our eight desiderata surface in a real

application. The developed DSS helps a user to plan a journey between two stations according to

the arrival time, price and the number of changes. This DSS support the �ve desiderata that can

be viewed as desired features (rather than characteristics), namely:

1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

4. explicit support for uncertain data,

5. data provenance, and

6. explanation of outputs.

For our train journey planning DSS, declarative speci�cation of preferences and dynamic revi-

sion of recommendations are enabled by employing a dynamic GA with AHP applied as a �tness

function. This is integrated with the uncertainty inherent to train arrival times, allowing the

user to swap between expected, optimistic and pessimistic criteria values for uncertain criteria.

Data provenance is provided, informing a decision maker on the source of information relating

to train delays. Finally, the system provides a visual comparison of the alternatives as a means of

explaining the rankings to the decision maker. This aims to provide an explanation of the outputs

in a medium suitable for real-time decision making.

The �nal three desiderata are desired characteristics of dynamic DSSs, with the details of

how we enable and evaluate these desiderata given in later chapters. In Chapter 4, we outline

a methodology for enabling high diversity of options (Desiderata 7), along with an evaluation.

In Chapter 5, we evaluate four MCDM methods as �tness functions for our dynamic GA, as-

sessing their stability of results (Desiderata 3) and the consistency of trade-o�s between criteria

(Desiderata 8).
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Figure 3.7: Provenance Data for an Arrival Time
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4 | Harbour Management Case Study

Maritime facilities face challenging demands, including monitoring ocean tra�c, port safety

and emergency response. New technology is required to tackle these challenges, under the

stresses of higher levels of tra�c and an increased need for rigorous safety and prompt emer-

gency response [104, 123]. Drones are one technology that has been identi�ed for this role, and

managing these drones for various tasks is one aspect of the expanding role of harbour man-

agement. Situational awareness has been highlighted as crucial in domains where the e�ects

of ever-increasing technological and situational complexity on the human decision maker are a

concern [95].

Drones provide a means for aerial situational awareness, within a harbour and beyond [48,

88]. One task, which has the potential to improve situational awareness, is automatic identi�-

cation of ships approaching a harbour. Drones can be employed to take photos of ships, for the

identi�cation of tra�c and potential threats. Selecting an appropriate route for the drone is a

complex decision that can be informed through a DSS.

In this chapter we present our harbour management case study for situational awareness

using drones. This case study is used as the basis for a test-bed environment that we used to

assess appropriate MCDM methods for decision support in Chapter 5 and to analyse the e�ect of

UI features on trust and its antecedents in Chapter 6.

An overview of the literature related to DSS applications to vehicle routing and drones is

given. We then explain the motivation for using a DSS to manage a Unmanned Aerial Vehicle
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(UAV) for situation awareness. Next, we explain how our desiderata relate to the task and give

details of the criteria for this case study, when formulated as a MCDM problem. Finally, we

present our DSS, showing the architecture and the user interface that a decision maker uses to

interact with the system.

4.1 Related Work

In this section, an overview of the literature surrounding the problems solved and techniques

used in the harbour management case study is presented. Firstly, an introduction to the Vehicle

Routing Problem (VRP) and some studies producing VRP DSSs are described. We then introduce

the UAV Task Assignment Problem (UAVTAP) and the application of MOEAs to solve them.

4.1.1 Vehicle Routing Problem

VRP is a well known problem in operational research and combinatorial optimisation. In VRP,

routes must be assigned to a set of vehicles that must visit a set of customers such that the total

cost of the operation is minimised. VRP has been tackled in a wide array of real-world systems.

Santos et al. [122] introduce a web-based spatial DSS for waste collections. The system pro-

vides static solutions with inputs in terms of constraints: shift time limit, vehicle types, capacities

and an attribute to maximise/minimise. The system is therefore limited by its ability to optimise

towards multiple objectives, requiring the user to specify a single attribute to optimise towards.

Addressing this issue in the Safe Route Planner, a DSS designed to provide drivers with rec-

ommendations for the safest route between two locations, Sarraf et al. [124] integrate MCDM

methods. The integration of user preferences allows the system to optimise towards multiple

objectives at once and trade-o� between the shortest, fastest and safest routes. They assess the

AHP, Fuzzy AHP, TOPSIS, Fuzzy TOPSIS and PROMETHEE for suitability, concluding that AHP

is most appropriate due to its simplicity and robustness.
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Abbatecola et al. [1] introduce a decision support approach for postal delivery and waste

collection. This system provides static routes for o�ine optimal planning of vehicle assignments.

They apply a two-phase heuristic algorithm based on a clustering strategy and a fast insertion

heuristic for solving a travelling salesman problem. This approach scales very well compared to

a mixed integer linear programming approach, allowing results to be quickly recalculated. This

improvement paved the way for future work, including plans to modify in real-time the planning

of routes. Continuing the research, the approach was applied to a more complex problem, now

including time and shift constraints [44]. Abbatecola et al. [3] provides further assessment under

these conditions, concluding that the approach obtains a set of well balanced routes with respect

to the vehicle travelling times and assigned loads. The latest paper [2], applied this algorithm to

a dynamic VRP, encapsulating the routing problem of pick-up and delivery services considering

both time windows and capacitated vehicles. The paper shows how the method can be applied

by the vehicles for both planning the workday of the pick-up services, and adapting the routing

plan to manage the ongoing requests.

These papers highlight user preferences as a desired feature for future VRP DSSs. This is

because the suitability of a route in the real-world depends upon a wide array of criteria. To

complement the addition of preferences, explanation is put forward as another useful feature for

decision support. Explanation refers to the addition of capabilities allowing the user to distin-

guish the trade-o�s made between solutions according to the user’s preferences. We also identify

dynamic updates as a desired feature of VRP DSSs.

4.1.2 Situational awareness with drones

The UAVTAP consists of �nding an optimal assignment of UAVs to a set of tasks [28]. In this

section we discuss previous research in the area and their approach to solving UAVTAP as an

MCDM problem.
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Ries and Ishizaka [114] present a multi-criteria support system for a dynamic UAVTAP. Their

case study employs UAVs for surveillance to investigate ships in a maritime environment. The

approach applies AHP to calculate weightings for PROMETHEE, ranking ships from least to most

suspicious as a means of facilitating an e�cient priority for surveillance. The system then assigns

a UAV to investigate the most suspicious ship. This approach di�ers from our own as it calculates

only the next ship to be visited, whereas in our own system we attempt to qualify an entire tour,

limited by the fuel of the drone. This approach allows us to plan further ahead to �nd more

fuel and time e�cient routes. As a result of planning further ahead, our case study features an

exponentially larger set of possible solutions. To explore this large set of possible solutions, we

integrate a genetic algorithm as a meta-heuristic search function.

Ramerirez et al. �rst formulated UAVTAP as a constraint satisfaction problem, with the mis-

sion being modelled and solved using constraint satisfaction techniques [109]. In a later paper

[111], UAVTAP is formulated as a multi-objective optimisation problem. Their objective consists

of minimising the number of drones employed, the total �ight time, the total fuel, the total dis-

tance, total cost and the time taken. The original approach was combined with a MOEA [110],

this algorithm provides an estimate of the POF, i.e. the set of all non-dominated solutions of the

problem. A solution B1 is dominated by B2 if B1 is not better in any objective and B2 is better in

at least one. A solution is non-dominated if it is not dominated by any solution in the solution

set. Their conclusion is that, as the complexity of the mission increases the number of solutions

in the POF becomes huge, and therefore the time needed to calculate the complete POF becomes

intractable.

To improve on this approach, Ramirez et al. [107] introduce a Knee-Point MOEA intending

to reduce the POF to a set of the most likely best solutions. This reduces the size of the POF

from hundreds to tens of solutions. This however, still leaves a di�cult task for decision mak-

ers who must select the most appropriate mission plan. In a later paper, the authors rank the

outputted POF using a selection of MCDM algorithms according to user preferences [108]. The
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work assumes that the decision maker cannot provide a priori information regarding preferences

on criteria. A limitation of this approach is that it can become costly in a dynamic setting, as the

POF must be recalculated each time the mission scenario is updated.

Coelho et al. [27] also proposed a multi-objective UAVTAP. Taking inspiration from a multi-

criteria view of real systems, the approach considers seven di�erent objective functions which

it seeks to minimise using a mixed-integer linear programming model solved by a matheuristic

algorithm. This produces an estimate of the POF but the paper does not attempt to rank the

non-dominated solutions.

In our work, we apply the MCDM methods as a �tness function of a genetic algorithm, rather

than applying an MOEA. We take this approach as it is infeasible to calculate a POF in a dynamic

setting. Our approach is enabled by the fact that the decision maker’s preferences are available

prior to route calculation. If they are not available, we assume the decision makers priorities

are split evenly between objectives. Using a genetic algorithm with MCDM methods as a �tness

function allows us to maintain a solution set ranked according to preferences, as the situation

and therefore solutions, evolve over time.

4.2 Harbour Management Case study

In this section, we describe an UAVTAP for aerial situational awareness. For this task, a

decision maker takes the role of a harbour master managing a harbour. The harbour master

controls a single drone to identify ships close to the harbour zone. The job of the user is to select

a route for the drone, with a view to identifying ships, before they reach the harbour zone. The

length of these routes is limited by the fuel of the drone. Once the drone has run out of fuel,

it must return to the refuel point, located within the harbour zone. We assume that the most

suitable route may depend on di�erent criteria: Unidenti�ed Ships in the Harbour, Average Lead

Time and Fuel per Ship.
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• Unidenti�ed Ships in the Harbour - The number of unidenti�ed ships which will arrive

in the harbour over the course of the route.

• Average Lead Time - The average amount of time between a ship being identi�ed and

arriving in the harbour.

• Fuel Per Ship - The amount of fuel used by the drone per ship identi�ed.

4.2.1 Desiderata for Situational Awareness with Drones

As with all MCDM problems, these criteria have di�erent values for di�erent decision makers,

so we require a speci�cation of preferences (Desiderata 1).

In our case, the criteria are predicted values, based upon the current trajectory of ships in

the area surrounding the harbour. Ships approaching a harbour can quickly change direction,

causing the criteria values of a route to change. This has an impact on the ranking of options,

necessitating dynamic revision of recommendations (Desiderata 2).

Such changes cause the criteria values for routes to change rapidly, resulting in di�cultly

when selecting a route under real-time constraints. This creates a requirement for a high stability

of results (Desiderata 3).

In this environment, there is no uncertainty captured in the underlying data. This means

that for this case study, uncertainty cannot be propagated through the decision making process

(Desiderata 4).

There is also only a single source for the incoming data, so we ignore the desired provision

of provenance (Desiderata 5).

Without provenance data, we require another mechanism to enable to calibration of trust. In

this case study, the harbour master has to select a route based on our three criteria. Understanding

where each route falls within our solution set and the trade-o�s being made is an important

factor when creating understanding of the system. As a result, explanation is a desired feature
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for calibrating trust (Desiderata 6).

It is also worth noting that a decision maker may have knowledge outside the scope of the

system. An example for harbour management could be multiple ships that do not require iden-

ti�cation. If every route visits these ships then the decision maker is left to manually plot a

route, rendering the system useless. This suggests that a diverse set of routes would be desired

(Desiderata 7).

When this diverse ranking is insu�cient for selecting an appropriate route, the decision

maker must generate a new ranking by altering their preferences. It is important that alter-

ing preferences has a predictable e�ect on the trade-o�s between our three criteria: Unidenti�ed

Ships in the Harbour, Average Lead Time, Fuel Per Ship if the user is to make a timely decision.

Hence, consistent trade-o�s between criteria are desired (Desiderata 8).

Bringing this together, we have the following list of desiderata for our harbour management

case study:

1. declarative speci�cation of preferences,

2. dynamic revision of recommendations,

3. high stability of results,

6. explanation of outputs,

7. high diversity of options, and

8. consistent trade-o�s between criteria,

In this section we have detailed how we enable (1) declarative speci�cation of preferences, (2)

dynamic revision of recommendations, (6) explanation of outputs and (7) high diversity of options.

Further details of how we enable and evaluate (3) high stability of results and (8) consistent trade-

o�s between criteria are given in Chapter 5.
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4.2.2 Criteria

In this section we describe the motivation and calculations for each of the criteria used for

route selection in our harbour management task.

4.2.2.1 Unidentified Ships in the Harbour

The primary goal of the situational awareness task is to identify ships before they reach the

harbour. As a result, the �rst criterion is the number of unidenti�ed ships which will arrive in

the harbour over the course of the route. The system calculates the length of time needed to

complete a route, then uses the current trajectory and speed of all boats to calculate which of

the unidenti�ed ships will reach the harbour before the drone returns. The amount of time each

of these ships will spend in the harbour unidenti�ed is then summed. The total time spent by

Unidenti�ed Ships in the Harbour should be minimised.

4.2.2.2 Average Lead Time

For situational awareness, information gained sooner is more valuable. If a ship is identi�ed

seconds before it passes the threshold into the harbour, there is no time to respond to the gathered

information. As such, it is important to maximise the time between a ship’s identi�cation and its

arrival in the harbour. We call this metric lead time. The system takes the speed and trajectory of

each ship within a route to predict the lead time for each. The average of these values is calculated

and used as the criterion Average Lead Time. The Average Lead Time should be maximised.

4.2.2.3 Fuel Per Ship

An important part of managing any operation is minimising cost. For this task, that means

reducing the amount of drone fuel we expend. To maximise e�ciency, another objective is there-

fore to minimise the fuel cost per ship visited. For our simulation, the drone burns a �xed amount
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Figure 4.1: A visualisation of the Edinburgh scenario

of fuel per distance travelled. To compute a value for this criterion, we �rst determine the total

fuel required for a route, by calculating the total distance of the route divided by the fuel e�ciency

of the drone. We calculate the distance of the route by predicting an intercept point for each ship

then summing the distance between each intercept plus the distance to return to harbour. The

total fuel is then divided by the number of ships identi�ed, giving us Fuel per Ship. Fuel per ship

should be minimised.

4.2.3 Scenarios

To analyse and evaluate our desiderata we have ten scenarios which simulate tra�c in har-

bours around Great Britain and Ireland. The set of scenarios comprises simulations of the follow-

ing locations:

1. Edinburgh
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2. Liverpool

3. Dublin

4. Belfast

5. Portsmouth

6. Plymouth

7. Oban

8. Douglas

9. Dover

10. Hull

A scenario is de�ned by a set of 600 points in time and the position of all ships at each point.

To maintain comparability between scenarios, each simulation includes 30 ships, of which 20

arrive at the harbour. The gap between each time step is equivalent to 30 seconds, therefore

the entire simulation plots the routes of ships over a duration of �ve hours. We chose a �ve

hour window of time for each scenario as this represents a sensible maximum �ight time for a

harbour management drone (based on domain expertise). This allows the drone time to identify

roughly 20/30 of the ships. Therefore, if the correct route is picked, the drone should be able

to achieve a perfect score. Unfortunately, due to the ships changing directions and speed, this

route is impossible to predict every time, and often ships will arrive in the harbour before the

drone reaches them or ignored ships will change path towards the harbour. Figure 4.1 shows a

screenshot of the Edinburgh scenario visualised through a web interface.
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Table 4.1: Criteria weightings - USH: Unidentified Ships in the Harbour; ALT: Average Lead Time; FPS:
Fuel Per Ship

Weighting USH ALT FPS
A 1 0 0
B 0 1 0
C 0 0 1
D 0.5 0.5 0
E 0.5 0 0.5
F 0 0.5 0.5
G 0.33 0.33 0.33

Table 4.2: The A-G represent the labels for the weightings.

4.2.4 Criteria Correlations

For a multi-criteria decision making problem to be interesting, it is important to have criteria

that do not correlate strongly or have a negative correlation. For example, when purchasing a

car, buyers may choose to minimise cost whilst maximising top speed. These criteria are cor-

related but con�icting, producing a need for trade-o�s between objectives and therefore a need

for MCDM methods. If the criteria are too strongly correlated then often all objectives can be

maximised at the same time. As a consequence, strongly correlated criteria would be un�t for

evaluating the capabilities of a MCDM system.

4.2.4.1 Experimental Set Up

To analyse the suitability of our criteria, we designed an experiment to calculate the Pearson

Correlation between pairs of criteria. We generated 20 routes across each of the 10 scenarios

outlined in Subsection 4.2.3 using the criteria weightings given in Table 4.1 for a total of 1400

generated routes. Each of these routes has a criterion value for Unidenti�ed Ships in the Harbour,

Average Lead Time and Fuel Per Ship. We then calculated the Pearson Correlation Coe�cient

between each pair of criteria values, with the results given in Table 4.3.
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4.2.4.2 Results

Before analysing the results given in Table 4.3, it is worth noting that Unidenti�ed Ships in the

Harbour and Fuel Per Ship are both criteria we seek to minimise whilst maximising the Average

Lead Time as stated in Subsection 4.2.2. With this in mind, the following can be observed:

• Average Lead Time and Fuel Per Ship have a high degree of correlation, but are con�icting.

• Unidenti�ed Ships in the Harbour and Fuel Per Ship have a moderate degree of correlation.

• Average Lead Time and Unidenti�ed Ships in the Harbour have a low degree of correlation.

The highest correlation occurs between Average Lead Time and Fuel Per Ship. These two

criteria are highly correlated because Fuel Per Ship is low when a route identi�es groups of ships

which are close to the harbour zone and therefore fuel e�cient. For these kinds of routes, the

Average Lead Time is also low as only a short amount of time passes between the identi�cation

of ships and their arrival in the harbour. Fortunately, these criteria are con�icting as one is a

cost (Fuel Per Ship) and the other is a bene�t (Average Lead Time), therefore the correlation is

acceptable.

The second most correlated pair is Unidenti�ed Ships in the Harbour and Fuel Per Ship. These

two criteria are correlated as identifying many ships which are close to the harbour often in-

cludes ships which are most likely to pass into the harbour zone. The pair are not highly corre-

lated though as the most fuel e�cient route often includes ships which are moving away or are

otherwise unlikely to enter the harbour. Average Lead Time and Unidenti�ed Ships in the Harbour

also have a weak correlation, explained as a transitive e�ect of the other correlations. Overall,

the set of criteria are suitable as it is impossible to simultaneously minimise Unidenti�ed Ships in

the Harbour and Fuel Per Ship whilst maximising Average Lead Time.
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Table 4.3: Criteria Pearson correlation coe�icient - USH: Unidentified Ships in the Harbour; ALT: Average
Lead Time; FPS: Fuel Per Ship

Criteria USH ALT FPS
USH 1
ALT 0.254679 1
FPS 0.434399 0.644990 1

Criteria Objectives - Maximise: Unidentified Ships in the Harbour, Fuel Per Ship; Minimise: Average Lead
Time

4.3 Genetic Algorithm for Route Selection

In our work, we apply MCDM methods as a �tness function, rather than applying an MOEA.

This approach is enabled by the fact that the decision makers ’preferences are available prior to

route calculation. The approach allows us to maintain a solution set ranked according to pref-

erences (Desiderata 1), via a continuously running evolutionary algorithm, as the situation and

therefore solutions, evolve over time (Desiderata 2). In this section we describe the genetic algo-

rithm applied for route selection, how it �ts into our streaming genetic algorithm architecture,

and our approach to encourage diversi�cation of results (Desiderata 7).

4.3.1 Formulation of the problem

In this section we describe the genetic algorithm for the harbour management task. We in-

clude evaluation of the optimal number of generations to compute for future experiments.

4.3.1.1 Chromosome encoding of Routes

The routes for the drone in the harbour management task can be represented by Chromo-

somes that consist of genes. Each gene of the Chromosome represents a ship to be identi�ed.

The routes can therefore be modelled as follows:
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Let S be the set of ships to be visited,

For B8 ∈ (,

A = (B1, B2, .. B=)

For the harbour management task, this chromosome represents the route

B1 → B2..→ B=

To ensure the validity of the route the following conditions are needed:

1. Each ship may only be visited once.

2. The total distance of the route must be less than the range of the drone.

3. A route must visit at least one ship.

4.3.1.2 Fitness Function

The �tness function is used to evaluate the quality of the route. As this is an MCDM problem,

a MCDM algorithm is used calculate the �tness. This MCDM method could be one of AHP, WPM,

TOPSIS or PROMETHEE, outlined in Section 2.1. The method is given a set of criteria weights,

which are used to calculate a score for each solution. A diversity discount is then applied to each

solution (described in Section 4.3.3) and the scores are normalised with the following formula:

#>A<(G) = G −<8=-
<0G- −<8=-
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4.3.1.3 Mutate Function

The mutation operator exists to maintain the diversity of the population. Generally, for trav-

elling salesmen problems, mutate is de�ned as a swap operation, swapping the order of two cities

in a route. This is because in the travelling salesmen problem, all cities must be visited for a route

to be valid. In the harbour management task the drone can only visit a portion of the ships, lim-

ited by fuel. As a result we de�ne mutate as a combination of two functions; add a ship (Equation

4.1) and remove a ship (Equation 4.2). When a route (A ) is chosen to be mutated, one of the two

functions is applied with equal chance of each. The two functions are de�ned below:

Let S be the set of ships to be visited,

Let A = (B1, .. B=), BG ∈ (, BG ∉ A,

�33 (A, BG ) = (B1, .. BG , .. B=) (4.1)

Such that the ship BG is selected from ( and its position in A is selected at random.

Let S be the set of ships to be visited,

Let A = (.. B~, ..), B~ ∈ (,

'4<>E4 (A, B~) = (.. , ..) (4.2)

Such that the ship B~ is selected at random from A .
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4.3.1.4 Crossover Function

The crossover operator combines two selected routes together. For our harbour management

task the crossover operator is a single-point crossover function 2 (G,~) de�ned by the following

steps.

1. Two parents are selected from the population as parents; denoted as G and ~.

For B8, C8 ∈ (,

G = (B1, B2, .. B=), ~ = (C1, C2, .. C<)

2. A sub-path I is selected from parent G at a random point 9 of length : < =.

I = (B 9 , B 9+1.. B 9+:)

3. All ships from sub-path I are removed from parent ~ except the �rst ship in the path. This

produces an intermediate path ~1

For B 9 = C2, B 9+1 = C4, B 9+: = C6,

~1 = (C1, C3, C5, C6.. C<)

4a. The path is merged into parent ~ at the point of the �rst ship in the path.
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For B 9 = C2,

2 (G,~) = (C1, B 9 , B 9+1, .. B 9+: , .. C<)

4b. If the �rst ship in the path doesn’t exist in ~ then add the path to the end of ~.

For B 9 ∉ ~,

2 (G,~) = (C1, .. C<, B 9 , B 9+1, .. B 9+: , )

4.3.1.5 Solution Selection

The selection operator is used to select individuals from the last generation. This is a signi�-

cant operator for determining the balance between exploration and exploitation [40]. The choice

of strategy for this operator is therefore important and previous studies have evaluated di�erent

strategies in the context of the travelling salesman problem [112]. One of the strategies that has

been evaluated is elitism.

Elitism is the process of preserving the previous high �tness solutions from one generation

onto the next [106]. This is typically accomplished by copying these elite solutions directly into

the new generation. Various studies have implied that elitist strategies can considerably improve

performance for MOEAs [31, 155]. Consequently, we have chosen to apply an elitist strategy for

solution selection as outlined below.

To keep a high quality set of solutions, individuals are selected based on their �tness value.

This �tness value is calculated by applying one of the MCDM methods described in Section 2.1.

The route with the highest �tness is �rst selected for the next generation. To improve the diversity

of the population, we then apply a �tness penalty to all other routes based upon their overlap
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with the chosen route. Another route is then chosen and the process is repeated with all other

routes being discounted according to the overlap with the set of selected routes. This process

continues until enough routes have been selected for the population.

The discount function includes a diversity weighting, . This weighting can be set to control

to what extent overlapping routes are discounted to promote diversity. A value of 0 for, means

that no discount is applied. The discount function 3 (G) is described in Equation 4.3.

Let 5 (A ) be the �tness of route A,

' refers to the set of selected routes,

> (A, ') be the overlap between A and ',

3 (A ) = 4, > (A, ') 5 (A ) (4.3)

This discount formula calculates the overlap between a route A and the selected routes ' using

the formula described in Equation 4.4.

|' | refers to the cardinality of ',

|A | refers to the numbers of ships in A,

# (', B) is the number of routes in ' visiting ship B,
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> (A, ') = 1 − 1
|A |

A∑
B

# (', B)
|' | (4.4)

The discount function 3 (A ) is introduced in an attempt to improve diversity (Desiderata 3).

We evaluate the e�ect changing the diversity weighting, has on diversity and the impact on

quality of solutions in Subsection 4.3.3.

4.3.1.6 Solution Initialisation

The initialisation operator is used to create a set of individuals for the initial generation. To

create a sensible set of solutions, a distance heuristic is applied. To begin, a single ship BG is

selected from ( . The distance from this ship to all others is calculated and the reciprocal is taken,

as shown in Equation 4.5.

Let S be the set of ships to be visited,

BG , B~ ∈ (,

3 (BG , B~) is the Euclidean distance between BG and B~ .

3−1(BG , B~) =
1

3 (BG , B~)
(4.5)

The reciprocal of these distances are calculated and summed as shown in Equation 4.6.

BD<(BG ) =
B=∑
(

3−1(BG , B=) (4.6)

Finally, we select B8 ∈ ( from ( with probability ?A>1 (BG , B8), as shown in Equation 4.7.
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?A>1 (BG , B~) =
3−1(BG , B~)
BD<(BG )

(4.7)

We then repeat the process for B8 . This process repeats until the distance to each remaining

ship is less than the fuel remaining for the drone. At this point the process for creating a single

route is terminated. Routes are created by employing this procedure until the desired population

size is reached.

4.3.2 Number of Generations Experiment

In this section we measure the convergence of the population in our streaming genetic algo-

rithm (described in Section 2.3) to determine an appropriate number of generations for further

experiments.

4.3.2.1 Evaluation Methodology

To determine the number of generations to run for future experiments, we measured the

convergence of our population to a stable set of solutions. For this experiment we applied our

genetic algorithm with WPM as the �tness function, to the �rst time-step of the 10 scenarios,

with each of the 7 weightings outlined in Table 4.1. The population size for the genetic algorithm

is chosen to be 30 solutions. First, we initialise the population using the procedure described in

Subsection 4.3.1.6. We then iterate the algorithm given in Section 2.3 and at each generation we

output the current ranking of solutions in the population.

To quantify the similarity between rankings of subsequent generations, we utilise the evalu-

ation metric Average Overlap (AO) discussed by Sarraf and McGuire [124] and Webber et al [144].

AO is a similarity measurement algorithm that assigns more weights to the top of the list. It

is based on simple set overlap, where the user compares the overlap of the two rankings at in-

crementally increasing depths. The formula to calculate AO is given in Equation 4.8. The AO
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between generations is given with the results shown in Figure 4.2.

%C is the population at generation C

%C+1 is the population at generation C + 1

: is the evaluation depth,

3 is the depth.

�$ (%C , %C+1, :) =
1
:

:∑
3=1

|%C ∩ %C+1 |
3

(4.8)

4.3.2.2 Results

The results show that di�erent criteria weightings converge at di�erent times. The di�erence

between these weightings can be explained by observing that weightings C, E, F and G include

a non-zero weighting for Unidenti�ed Ships in the Harbour. This criterion favours longer routes,

which naturally creates a larger search space of potentially optimal routes than Average Lead

Time which is optimal for short routes. Unidenti�ed Ships in the Harbour also takes longer to

optimise than Fuel per Ship, because the heuristic used to initialise the population is most similar

to Fuel per Ship.

As shown in Figure 4.2, weightings A, B and D converge the fastest, achieving an AO between

populations of 1 after 103 generations. Weightings C, E, F and G converge more slowly, achieving

an AO of 1 between populations after 789 generations. Therefore, 800 generations is chosen as

the appropriate parameter for later experiments.
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Figure 4.2: Average Overlap Between Generations

4.3.3 Diversification of Options

In this section, we analyse our approach to enabling a high diversity of options (Desiderata

3). We evaluate the e�ect of di�erent diversity weightings on the discount function outlined in

Subsection 4.3.1.5.

4.3.3.1 Evaluation Methodology

To evaluate the e�ect of the diversity discount function (shown in Equation 4.3), we generated

rankings using di�erent values for the diversity weighting, . A ranking was generated for each

of the 10 scenarios, using each weighting from Table 4.1. The ranking was generated by running
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the genetic algorithm for 800 generations, using WPM as the �tness function.

To calculate the e�ect of, , diversity was measured for each of the resultant rankings. To

calculate diversity, we removed each route (one at a time) from the ranking then calculated the

overlap (given in Equation 4.4) between the route and the routes remaining in the ranking. Di-

versity 3 was then calculated as the average of these overlap values as shown in Equation 4.9.

' is the ranking

|' | is the number of routes in the ranking

A8 is a route in the ranking,

' \ A8 is the ranking without A8 .

d(') = 1
|' |

|' |∑
8=1

> (A8, ' \ A8) (4.9)

It is also important to note that changing the �tness function has an e�ect on the quality of the

solutions in a ranking. To measure this e�ect, we recorded the criteria values for each criterion.

The average of these criteria values across the rankings are compared as the diversity weighting

, changes. When analysing criteria values, we plot only weightings that include a non-zero

weight for the respective criterion. We analyse only these weightings because maximising a

speci�c criterion is only an objective of the algorithm when the weighting is non-zero.

4.3.3.2 Results

Figure 4.3(a) shows the e�ect of diversity weightingF on diversity. For each criteria weight-

ing, increasingF increases the diversity of the rankings. It can also be observed that the criteria

weighting has a signi�cant e�ect on the diversity. Criteria weightings � and � both have lower
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(a) Diversity of rankings. (b) Unidentified Ships in the Harbour

(c) Average Time of Arrival. (d) Fuel per Ship.

Figure 4.3: The e�ect of changing the diversity weighting on the diversity of rankings, Unidentified Ships
in the Harbour, Average Time of Arrival and Fuel per Ship.
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diversity, whereas weightings � and � both have higher diversity. This is because � and � are

highly weighted towards distance per ship, and this criterion favours longer routes which there-

fore overlap more frequently, whereas � and� have a high weighting for average lead time, which

favours shorter routes.

Figures 4.3(b), 4.3(c) and 4.3(d), show the e�ect of, on criteria values for Unidenti�ed Ships

in the Harbour, Average Time to Arrival and Fuel per Ship, respectively. Unidenti�ed Ships in the

Harbour is a (cost) criterion we seek to minimise, Fuel per Ship is another cost criterion. Whereas,

we seek to maximise values for the Average Time to Arrival because it is a bene�t. Weightings �,

� and � are weighted towards only one criterion. Each of these weightings shows a decrease in

quality as the diversity weighting increases.

The e�ect is more complex for weightings � , �, � and � as a result of the relationships

between criteria. Figure 4.3(c) shows that weighting � features the highest Average Lead Time

values at a diversity weighting of 2.0. This is caused by weighting � having equal weighting

across criteria. Average Lead Time is correlated with the other criteria, and therefore more optimal

values are attained as the solutions decline in overall quality.

4.3.3.3 Conclusion

Increasing diversity weighting, gives rise to the desired e�ect on diversity, at the cost of a

decreased quality of solutions. This is because the optimal routes with 0 diversity weighting,

often visit the same ships. It is worth noting that the recommended (�rst route) in each ranking

is unchanged by altering, .

4.3.4 Architecture

The architecture for our test-bed environment is shown in Figure 4.4.

The decision maker operates the DSS through a web interface. To access this interface, a get

request is made to the Static File Server (1) and the static �les are returned. From here the user can
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Figure 4.4: The system architecture

input their credentials and start a scenario. When a user starts a scenario, a scenario request is

sent to the User Server (2) and the user is assigned a set of features. The User Database (3) contains

the id for a user, their enabled/disabled features and their score for a session.

When a scenario request is authenticated it is placed onto the Message Queue (4). Once the

Track Processor (5) receives a scenario request it retrieves scenario data from the Scenario Database

(3). This database holds a set of scenarios de�ned by a set of ships and their position at each point

in time called tracks. The Track Processor processes the stream of tracks, tracking the position of

the drone and which tracks have been identi�ed. The resultant stream of drone and ship tracks is

passed to the front-end via the Message Queue. This stream is also processed further by the Route

Processor (6). This component calculates a ranking of routes for each time-step and passes it to

the front-end via the Message Queue.
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Once a scenario has begun, a user can activate a route from the ranked recommendations or

by drawing a path between tracks. The drone will then identify ships along the active route. If

the recommendations are not appropriate, a user can input preferences to re�ne the selection of

routes. This alters the weighting of criteria in the �tness function of the evolutionary algorithm.

4.3.5 Interface

Figure 4.5: The user interface with no features enabled

The environment also provides a UI, which is used to evaluate the e�ectiveness of interface

features in Chapter 6. In this section we explain this UI and how the user interacts with the

system.

The UI for the harbour management task is shown in Figure 4.5. The window includes a map

(1), the route selection popover (2) in the bottom left and a scenario information popover (3) in the

top right. To render the map, Lea�et™ [76] was chosen as an open-source alternative to Google

Maps™.

The map shows the current condition of the scenario, including: tracks, the drone, any visible
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routes, the harbour zone and the refuel point. The tracks are indicated by a ship icon coloured

yellow or green for unidenti�ed or identi�ed, respectively. The harbour zone (4) is displayed as a

blue polygon and the position of the refuel point is shown as a fuel icon within.

The route selection popover shows the routes recommended by the system. These routes are

ranked according to their �tness and similarity to the best possible route. The user can toggle

each route as visible/hidden on the map. Any visible routes will be displayed within the scenario

information popover. When a route is visible and has been deemed acceptable, the user can ac-

tivate it by clicking activate in the scenario information popover. This popover also includes the

current stage, the score for the current stage, and the time remaining. The recommended routes

are dynamically updated until a route is activated, at which point the route selection popover is

hidden.

If all routes recommended by the system are deemed unsuitable, the user can select the pencil

icon to access the draw a route interface shown in Figure 4.6. Once this tab is open, a route can be

drawn by clicking on ships in order. In this tab the user can view the criteria values of the drawn

route, reset the drawn route, or activate the drawn route.
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Figure 4.6: The interface for drawing a route

4.4 Conclusions

In this chapter, we aimed to show how we can support and evaluate desiderata for dynamic

DSSs through a test-bed based on a harbour management case study.

The case-study employs a drone to provide situational awareness in a harbour area. The job

of the user is to select a route for the drone, with a view to identifying ships, before they reach

the harbour zone. The test-bed comprises a DSS for the case study and multiple scenarios over

which we can evaluate the ful�lment of our desiderata. We apply the environment to carry out

experiments on appropriate MCDM methods for decision support in Chapter 5, and to test the
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e�ect of user interface features on trust and its antecedents in Chapter 6.

This case study has been formulated as a dynamic MCDM problem, including a validation of

the suitability of the criteria. We assume that the most suitable route may depend on di�erent

criteria: Unidenti�ed Ships in the Harbour, Average Lead Time and fuel per ship. The set of criteria

were deemed suitable con�icting, as it is impossible to simultaneously minimise Unidenti�ed

Ships in the Harbour and Fuel Per Ship whilst maximising Average Lead Time. This is following

the logic that if all objectives could be maximised simultaneously, the problem would be more

suitably formulated as a single objective optimisation problem.

The test-bed DSS was built using a multi-criteria decision making genetic algorithm. This

chapter contributes a dynamic genetic algorithm that can be used to incrementally re�ne recom-

mendations, with a speci�c emphasis on the production of diverse recommendations. This algo-

rithm applies the principles of DMOEAs, combined with MCDM methods as a �tness function,

to support the cornerstones of dynamic decision support. The convergence of this algorithm has

been analysed, indicating that all combinations of criteria converge after 789 generations. This

has been used to support the choice of 800 generations as the appropriate parameter for assessing

(3) high stability of results, (7) high diversity of options, and (8) consistent trade-o�s between criteria.

We also have provided an outline and evaluation of our approach for enabling a high diversity

of options. It was found that increasing diversity weighting, gives rise to the desired e�ect on

diversity, at the cost of a decreased quality of solutions. This is caused by the optimal routes with

0 diversity weighting, often visiting the same ships. Our 7th desiderata is therefore provisioned

within our DDS for situational awareness within a harbour area.
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5 | Evaluating Decision Support

Methods for Harbour Management

Case Study

In this chapter we present an evaluation of WPM, AHP, TOPSIS and PROMETHEE for suit-

ability as components of a dynamic DSS using our situational awareness case study, as described

in Chapter 4. Evaluation metrics are proposed for measuring the stability of results (Desiderata

3) and the consistency of trade-o�s (Desiderata 8). The methods are then compared according to

these desired characteristics for dynamic MCDM problems.

5.1 Related Work

In this section we give examples of previous studies evaluating MCDM methods. These papers

generally fall into two di�erent categories: studies that outline issues or criteria and encapsulate

them as evaluation metrics, and studies that compare rankings to a baseline method. Both kinds

of studies are described below, including the methods that are evaluated and the metrics that are

used.
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5.1.1 Evaluating MCDM methods

Evaluating multi-criteria decision making methods is understood to be one of the most di�-

cult problems in the �eld of decision analysis. Zanakis et al. [152] stated that it is impossible or

di�cult to answer questions such as: which method is more appropriate for what problem and

what are the advantages or disadvantages of using one method over another.

In this section we discuss literature attempting to answer these questions. Speci�cally, we

outline the application of concern, the methods compared, and their evaluation metrics.

Zanakis et al. [152] propose a simulation-based approach which compares the resultant rank-

ing of an MCDM method to one generated through WSM, referred to in their paper [152] as the

Simple Additive Weighting method. In the absence of any other objective standard, WSM is cho-

sen as a result of its simplicity and the popularity of the method at the time of publication. The

paper evaluates rankings produced by WPM (referred to in the paper as Multiplicative Exponent

Weighting), AHP, ELECTRE and TOPSIS. The methods are evaluated through a bundle of metrics,

notably mean squared error of weights, the mean squared error for ranks and Spearman’s corre-

lation for ranks, comparing both the weights assigned to alternatives and the resultant rankings.

The paper concludes that AHP behaves most similarly to WSM, with ELECTRE being the least

similar and the rest of the methods falling between the two.

The same study also evaluated the frequency of rank reversal. Rank reversal, �rst observed

by Belton and Gear [11], refers to changes in the ranking of alternatives by addition or deletion of

an alternative. In this paper, rank reversal was raised as an unintuitive characteristic of AHP. For

their �rst example, the addition of alternative � to a ranking � > � > � results in the ranking

� > � ∼ � > � . The ranking of � and � has reversed, despite no change to either alternative or

the user preferences. This is an unintuitive and therefore undesirable characteristic of an MCDM

method, as user understanding and faith in the results are imperative. Since then, rank reversal

has also been noted to occur in other prominent MCDM methods, such as TOPSIS, ELECTRE and

106



PROMETHEE [50, 91, 143]. The study by Zanakis et al. introduces a new non-optimal alternative,

then counts both how often the top ranked alternative remained the same, and the total number

of ranks that are not altered as a percentage of the number of alternatives. This experiment found

that TOPSIS su�ered the least from rank reversal, followed by AHP and ELECTRE respectively.

Selmi, Kormi and Ali [126] compare the results of ELECTRE III, PROMETHEE I and II, TOPSIS,

AHP and the Pareto-Edgeworth-Grierson method (PEG) in two case studies. The �rst study �nds

a similarity between PROMETHEE II and AHP, and observes the starkest di�erence between

TOPSIS and ELECTREE III. The second study �nds that ELECTREE III, PROMETHEE, and AHP

agree on the �rst alternative being the best, while TOPSIS and PEG rank the third alternative as

the highest. The study calculated the Gini Index to measure the rankings dispersion and uses the

mean value of dispersion to perform comparisons between rankings. Sarraf and McGuire [124]

highlight an issue with this approach as it does not consider that the top of the ranked list as

being more important than the bottom. In this study, AHP-PROMETHEE II switches one pair at

the bottom of the ranked list, whilst TOPSIS-PROMETHEE II switches a pair at the top of the list,

yielding the same mean value of the Gini index. They propose that a change in the ranks at the

top of the list must have a higher negative impact on the evaluation.

Sarraf and McGuire [124] compare the results of AHP, Fuzzy AHP, TOPSIS, Fuzzy TOPSIS and

PROMETHEE through two real-world transport based case studies. They evaluate the similarity

of each method compared to AHP. AHP is chosen as the baseline as it is the most widely used

method in the literature. They attempt to rectify their issue with equal weighting being given

to changes regardless of position in the Selmi, Kormi and Ali paper [126] by employing AO and

Discounted Cumulative Gain (DCG) as evaluation metrics. AO is highlighted by Webber, Mo�at

and Zobel [144] as an approach to assign greater weighting to di�erences at the top of the list.

It is based on simple set overlap where the overlap of the two rankings is compared at an in-

crementally increased depth. DCG was proposed by Jarvelin and Kekalainen [65] and is used in

information retrieval to evaluate the relevance of results returned by search engines. This metric
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is an alteration of cumulative gain that discounts scores of alternatives using a logarithmic dis-

count function as their rank increases. The paper �nds that the PROMETHEE ranking �ts well

with the AHP ranking and these two methods produce the best results. They found that fuzzy

AHP produced acceptable results and that TOPSIS and fuzzy TOPSIS produced poor ranking re-

sults. The writers recommend AHP as a simple and robust method for the transportation �eld.

The limitation of Sarraf and McGuire’s [124] approach is that both DCG and AO only compare

the rankings generated by each method to those generated through AHP.

For dynamic decision support, the alternatives are no longer static so the issues with rank

reversal become more pronounced. As a result of rank reversal and other behaviour, applying

MCDM methods designed for a static environment to dynamic problems can result in unstable

rankings. Instability in rankings means that the best solution often changes rapidly, leading to

distrust in recommendations which may only be valid for a short window. This e�ect spotlights

the need for high stability of results.

In our research, we propose eight desiderata for dynamic decision support. Each desideratum

is a desired feature or characteristic for dynamic decision support. Two of these desiderata, (3)

high stability of results and (8) consistent trade-o�s between criteria, have been captured as metrics

to evaluate the suitability of MCDM methods for dynamic decision making problems. These

two are chosen for evaluation as they comprise the desired characteristics in our framework. The

other desiderata are features which are either present or not and therefore unsuited for evaluation.

5.2 Trade-off Evaluation

Our second desired feature is consistent trade-o�s between criteria. Changing criteria weight-

ings is an important part of a decision maker’s process of exploring a solution space. For MCDM

methods it is desirable for changing criteria weightings to create predictable e�ects on the out-

comes of decisions.
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In this section we generate rankings using each of WPM, AHP, TOPSIS and PROMETHEE,

with various weightings for criteria. The top 3 routes for each ranking were then simulated to

calculate the outcomes (in comparison to predicted values that were previously used as criteria).

The smoothness of the change in criteria outcomes as criteria weightings increase is used to

evaluate the consistency of trade o�s between criteria (Desiderata 8).

5.2.1 Motivation

In a dynamic setting, the outcomes of decisions are uncertain. For example, in our situational

awareness case study, the decision maker selects a route based upon the predicted outcomes. These

predicted values for the criteria, Unidenti�ed Ships in the Harbour, Average Lead Time and Fuel

per Ship, are not sure to be consistent with the actual values for the route. Therefore, in this

experiment we simulate routes across the scenarios to calculate values for the outcome of a route.

The outcome is measured through three criteria that map to a corresponding predicted criterion.

• Score - The number of ships that arrive at the harbour identi�ed minus the number of ships

that arrive unidenti�ed.

• Average Lead Time - The actual average lead time for identi�ed ships.

• Fuel Per Ship - The actual amount of fuel used per ship identi�ed.

Score is a metric that captures the overall outcome of the scenario. The value for score is

estimated through the predicted value for Unidenti�ed Ships in the Harbour. The other metrics

are simply the simulated outcome for the criteria values. Average lead time is the outcome that

corresponds to the predicted average lead time and fuel per ship is the outcome for the predicted

fuel per ship.

To measure the consistency of trade-o�s in a dynamic setting, we compare the weighting for

our criteria to the corresponding actual outcomes for the top 3 routes in a ranking. A linear rela-

tionship between the weighting and outcome is simple to understand and so leads to consistent
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and predictable results. We therefore assess the consistency of trade-o�s by the linearity of the

relationship between these two variables. The linearity is measured through the Pearson correla-

tion between the weighting and the outcome. A linear trade-o� front is consistent because each

change in weightings maps to a proportional change in the outcome.

5.2.2 Evaluation Methodology

To generate rankings, the GA was run for each of the 10 scenarios, for 800 generations using

the weightings shown in Table 5.1. The weightings capture a smooth transition of the weight of

�1 between a weighting of 0 and 1. This process was repeated to generate 11 rankings for each

criterion (�1) and scenario pair. We then simulated the drone according to the �rst 3 routes, across

all 600 time-steps of the corresponding scenario, allowing us to calculate each of the outcomes:

score, average lead time and fuel per ship.

To combine these three outcomes into a single metric for each ranking, we used discounted

cumulative gain (DCG) [65, 66]. We chose DCG because when providing recommendations, the

further an option is down the ranking, the less likely it is to be picked. DCG quanti�es this by

giving a higher weighting to higher ranked solutions. The result is three evaluation metrics for a

ranking ': the DCG of score (score-DCG(')), the DCG of average lead time (ALT-DCG(')) and

the DCG of fuel per ship (FPS-DCG(')). The formulas are given in Equations 5.1, 5.2 and 5.3

respectively.

Let ' be a ranking

Let A8 be the ith route in a ranking

Let sc(A8) be the simulated score of A8
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score-DCG(') = sc(A1)
log3 2

+ sc(A2)
log3 3

+ sc(A3)
log3 4

(5.1)

Let lt(A8) be the simulated average lead time of A8

ALT-DCG(') = lt(A1)
log3 2

+ lt(A2)
log3 3

+ lt(A3)
log3 4

(5.2)

Let fps(A8) be the simulated fuel per ship of A8

FPS-DCG(') = fps(A1)
log3 2

+ fps(A2)
log3 3

+ fps(A3)
log3 4

(5.3)

For each of the rankings generated through weightings 1-11 over a criterion�1, the DCG of the

corresponding outcome is calculated. The average DCGs across all scenarios of each algorithm

for Unidenti�ed Ships in the Harbour, Average Lead Time and Fuel per Ship are shown in Figures

5.1, 5.2 and 5.3 respectively.

To measure the smoothness of trade-o�s, the Pearson correlation between the weight of a

criterion and the corresponding outcome is calculated. This metric re�ects the linear correlation

of variables, and thus provides an indication of the consistency of trade-o�s as the weighting

changes. The correlation is calculated for each scenario, from which we calculate a mean and

standard error of the mean. Tables 5.2, 5.3, 5.4 show the mean and standard error of the mean for

111



Weighting �1 Weight �2 Weight �3 Weight
1 0 0.5 0.5
2 0.1 0.45 0.45
3 0.2 0.40 0.40
4 0.3 0.35 0.35
5 0.4 0.30 0.30
6 0.5 0.25 0.25
7 0.6 0.20 0.20
8 0.7 0.15 0.15
9 0.8 0.10 0.10
10 0.9 0.05 0.05
11 1.0 0 0

Table 5.1: Weighting for criteria to evaluate changing �1 weight

Unidenti�ed Ships in the Harbour weight vs score, predicted average lead time weight vs average

lead time and fuel per ship weight vs fuel per ship.

5.2.3 Results

Figure 5.1 shows the weighting for Unidenti�ed Ships in the Harbour against the score DCG.

It can be observed that as the weight for Unidenti�ed Ships in the Harbour increases, the score

DCG also increases. The exception to this can be seen at the highest weights where score DCG

decreases. This is caused by the fact that the other criteria also have an e�ect on score. Increas-

ing the weighting past 0.6 gives diminishing returns for the criterion at the cost to other criteria.

Unidenti�ed Ships in the Harbour is not a perfect predictor of score because ships can change

direction unexpectedly, therefore having a small weighting towards fuel per ship improves per-

formance.

Figure 5.2 shows the weighting for average lead time against the average lead time DCG. It

can be observed that as the weighting for average lead time increases, the average lead time DCG

also increases. Once the weight reaches 0.7 the average lead time DCG peaks with no further

gains in outcome associated with a higher weighting. This is caused by the algorithm selecting
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the routes with the highest average lead time once the weight is equal to or greater than 0.7.

Figure 5.3 shows the weighting for fuel per ship against the fuel per ship DCG. It can be ob-

served that as the weight for fuel per ship increases, the average fuel per ship DCG decreases.

This is because the fuel per ship is a cost criterion. The fuel per ship DCG decreases quickly, then

reaches an optimum value at a weighting of 0.5 with no further gains in outcome associated with

a higher weighting. The exception to this is with the PROMETHEE algorithm, which shows an

increase in fuel per ship DCG as the criterion weight increases. The likely cause of this is the

preference function being unsuitable for the range of values of fuel per ship. The criterion with

linear preference function was applied to all criteria, as described in Subsection 2.1.4. The values

for fuel per ship fall closer to an exponential scale, therefore the trade-o�s made are inappro-

priate. This creates a linear correlation for the predicted values. It is worth noting that there is

a di�erence between predicted values and the actual outcomes measured. This noise is particu-

larly great for fuel per ship due to the wide range of possible values. As a result, the correlation

is reversed.

Table 5.2 shows the mean Pearson correlation and standard error of the mean for Uniden-

ti�ed Ships in the Harbour weight vs score. TOPSIS has the highest correlation, followed by

PROMETHEE, AHP and WPM respectively. TOPSIS has substantially more consistent trade-o�s

than the other algorithms, with a correlation of 0.833. Table 5.3 shows the mean Pearson corre-

lation and standard error of the mean for average lead time weight vs average lead time. WPM

has the highest correlation, followed by PROMETHEE then TOPSIS and AHP. All the correla-

tions are strong, with little di�erence between the algorithms. Table 5.4 shows the mean Pearson

correlation and standard error of the mean for fuel per ship weight vs fuel per ship. Fuel per ship

is a cost criterion, therefore a high negative correlation corresponds to consistent trade-o�s be-

tween criteria. The correlations are negative with the exception of PROMETHEE. Generally the

correlation is weak, showing inconsistent behaviour of changing weightings. The most consis-

tent trade-o�s are made by the TOPSIS algorithm, which had a correlation of -0.64. TOPSIS was
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Figure 5.1: The change in score DCG as the weighting for Unidentified Ships in the Harbour increases

followed by WPM, AHP and PROMETHEE respectively.

5.2.4 Conclusions

Overall, TOPSIS was found to be the algorithm which made the most consistent trade-o�s

between criteria (Desiderata 4), only under-performing another algorithm with respect to average

lead time. AHP and WPM were the next most consistent algorithms with no signi�cant di�erence

in correlation between weights and outcome. Finally, PROMETHEE was the least consistent

algorithm; this was caused by the implementation using a �xed preference function % (G) for all

criteria.
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USH weighting vs score DCG
WPM 0.541 +- 0.115
AHP 0.603 +- 0.049
TOPSIS 0.833 +- 0.0355
PROM 0.629 +- 0.0895

Table 5.2: Correlation between USH weighting and score DCG for each algorithm; USH refers to Uniden-
tified Ships in the Harbour

ALT weighting vs ALT DCG
WPM 0.942 +- 0.00541
AHP 0.885 +- 0.0415
TOPSIS 0.885 +- 0.0245
PROM 0.893 +- 0.0208

Table 5.3: Correlation between ALT weighting and ALT DCG for each algorithm; ALT refers to Average
Lead Time

FPS weighting vs FPS DCG
WPM -0.268 +- 0.109
AHP -0.166 +- 0.176
TOPSIS -0.64 +- 0.0997
PROM 0.436 +- 0.159

Table 5.4: Correlation between FPS weighting and FPS DCG for each algorithm; FPS refers to Fuel Per
Ship

115



Figure 5.2: The change in Average Lead Time DCG as the weighting for Average Lead Time increases

5.3 Sensitivity Evaluation

In this section we generate rankings using each of WPM, AHP, TOPSIS and PROMETHEE

as a �tness function for our dynamic GA. The stability of the resultant rankings is evaluated

(Desiderata 5) under small changes to criteria values.

5.3.1 Evaluation Methodology

To evaluate the stability of rankings we used each MCDM method for 800 generations to

generate a ranking. This process was repeated for each of the scenarios to generate a total of 10
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Figure 5.3: The change in Fuel per Ship DCG as the weighting for Fuel per Ship increases

rankings per method. Each algorithm used weighting � which assigns equal weighting to each

criterion. For this experiment the diversity weight , was set to 0 to remove any e�ect of the

diversity discount function on the outcome. Previous studies have analysed the sensitivity of

MCDM algorithms over changes to criteria weightings [42, 126]. For a dynamic problem it is the

values of criteria that are changing, therefore we assess the sensitivity over changes to criteria

values.

Once we generated a ranking, we applied small changes to criteria values to model changes

over time. The distribution is unknown so to do this we modelled a random variable (- ) using

a gamma distribution (Γ) for each criteria value of each route in the ranking [86]. The gamma

117



Figure 5.4: Gamma distribution probability density function with criteria values (2G ): 21 = 5, 22 = 15, and
23 = 30.

distribution is a two-parameter family of continuous probability distributions. The gamma dis-

tribution is parameterised using shape : and scale \ as shown in Equation 5.4. For a gamma

distribution with shape : and scale \ , the mean (`) and variance (f2) are given in Equations 5.5

and 5.6 respectively.

- ∼ Γ(:, \ ) = �0<<0(:, \ ) (5.4)

` = :\ (5.5) f2 = :\ 2 (5.6)
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The shape parameter e�ects the shape of the distribution rather than shifting it or stretching

it. The scale parameter spreads the distribution across a larger range. We created a gamma dis-

tribution with the mean (`) as the original value for the criteria (2G ) and the variance (f2) being

0.1% of the value for the criteria. To achieve this we parameterised the gamma distribution with

\ and : as shown in Equations 5.7 and 5.8 respectively. Resultant gamma distributions are shown

in Figure 5.4 for criteria values (2G ): 21 = 5, 22 = 15, and 23 = 30.

\ =
1

1000 (5.7) : =
2G

\
(5.8)

Each - was then sampled 200 times to generate 200 new sets of solutions with small changes

to all criteria values. The sampled rankings were then re-ranked according to the MCDM method

used to generate the original ranking. We then measured the average change in rank for each

route.

The change in rank for each route for the Edinburgh scenario is shown in Figures 5.5(a),

5.5(b), 5.5(c) and 5.5(d) for WPM, AHP, TOPSIS and PROMETHEE respectively. The changes in

rank were then averaged to calculate an average change across each ranking for each algorithm

and scenario, as shown in Table 5.5. Finally, these scores were averaged across all scenarios to

calculate the average change for each algorithm, given in Table 5.6.

5.3.2 Results

Figure 5.5 show the ranks of routes across 200 samples for each algorithm over the Edinburgh

scenario. The original rank of the route is shown across the bottom with the box plot showing

the mean, upper quartile, lower quartile and range of ranks for each route, circles are drawn to

represent outlying values.

Figure 5.5(a) shows that the WPM ranking is very unstable, with an average rank change of
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(a) WPM; showing an average rank change of 2.91
across 200 samples.

(b) AHP; showing an average rank change of 0.604
across 200 samples.

(c) TOPSIS; showing an average rank change of
1.43 across 200 samples.

(d) PROMETHEE; showing an average rank
change of 0.853 across 200 samples.

Figure 5.5: Ranking sensitivity box plots; the bars show the range of rankings derived for each route a�er
perturbations of criteria values.
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Algorithm WPM AHP TOPSIS PROM AVG
Edinburgh 2.91 0.604 1.43 0.853 1.45
Liverpool 0.294 0.185 0.222 0.0547 0.189
Belfast 1.57 1.3 1.11 1.79 1.44
Dublin 0.633 0.743 0.47 0.408 0.564
Portsmouth 4.90 1.51 1.35 3.27 2.76
Plymouth 2.32 0.41 0.486 0.661 0.969
Oban 4.98 2.17 1.00 4.82 3.24
Douglas 4.98 0.489 0.853 0.586 1.73
Dover 4.89 1.54 1.31 3.39 2.78
Hull 0.153 0.244 0.132 0.11 0.160

Table 5.5: Average change of rank across rankings for each algorithm and scenario; AVG refers to the
average for all algorithms across each scenario; PROM refers to PROMETHEE.

2.91. It can be observed that the ranks of routes varies through almost the entire range of potential

values, with the trend of increasing rank from left to right only visible through the mean and

interquartile range. Figure 5.5(b) shows the most stable ranking, generated by AHP, resulting in

an average rank change of 0.604. The top four routes are always the same, with positions varying

more for lower ranked routes. Figure 5.5(c) shows a ranking generated by TOPSIS with an average

rank change of 1.43. The �rst two routes are always the same, with positions varying over a large

range for the rest of the ranking. Figure 5.5(d) shows a relatively stable ranking generated by

PROMETHEE, with an average rank change of 0.853. For this ranking, the lowest ranked routes

are the most stable, with the top results varying across a wider range of ranks.

Table 5.5 shows the average rank change for each algorithm across each scenario. It can be

observed that the scenario has a signi�cant e�ect on the stability of the rankings. For example,

the Liverpool scenario on average generated much more stable rankings, resulting in an average

rank change of 0.189. This was caused by the fact the scenario tended towards shorter routes

which caused larger di�erences between criteria values in the resultant rankings. On the other

hand, scenarios which tended towards longer routes, such as Oban which had an average rank

change of 3.24, generated clusters of very similar routes. This created rankings with much smaller
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Algorithm Average Change in Rank
WPM 4.40 +- 0.0172
AHP 1.50 +- 0.0204
TOPSIS 0.931 +- 0.0107
PROM 2.88 +- 0.0403

Table 5.6: Average rank change and standard error for each algorithm across all scenarios; PROM refers
to PROMETHEE.

di�erences between criteria values that were therefore much less stable under small changes.

Table 5.6 shows the average change for each algorithm across all scenarios. The standard

error resulting from the randomness of sampling is also given. We found that applying TOPSIS

resulted in the most stable rankings, followed by AHP, PROMETHEE and WPM respectively. The

standard error for each algorithm was very small, meaning that all the di�erences were highly

signi�cant, under the epistemic uncertainty generated by random variable - from Equation 5.4.

This was calculated via a t-test between all pairs of distributions (each generated by a di�erent

MCDM method).

5.3.3 Conclusions

TOPSIS was found to be the most stable method under small changes to criteria values (Desider-

ata 5). AHP was the second most stable with a slightly higher change in rank than TOPSIS. AHP

was followed by PROMETHEE and WPM respectively, which were found to be substantially less

stable.

5.4 Discussion

In this chapter, we investigated the suitability of decision support methodologies for trusted

dynamic DSSs. To do this, we evaluated the suitability of WPM, AHP, TOPSIS and PROMETHEE

for dynamic DSSs in our test-bed environment according to their ful�lment of our desiderata.
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There are few comparative studies addressing di�erent MCDM methods. Such studies fall into

two categories: those that compare the results of MCDM methods and those that compare speci�c

attributes of the methods. The �rst category includes Sarraf et al. [124], a study that compares the

results of di�erent methods to a benchmark. Generally, these benchmarks are results generated

using the most popular MCDM method at the time. The second category includes Zanakis et al.

[152], a study that evaluates the frequency of rank reversal in MCDM methods. Rank reversal

is an undesired characteristic for MCDM methods, therefore understanding its prevalence is in-

valuable when selecting an appropriate algorithm. Another paper, by Triantaphyllou et al. [136]

presents a study based upon two criteria, comparing each method to a benchmark (category one)

and determining the stability of a ranking when a non-optimal alternative was replaced with a

worse alternative (category two). For example, given a ranking � > � > � , one of the non-

optimal alternatives (� or�) would be replaced with a worse alternative (�). The ranking is then

recalculated and the stability is analysed.

The second category compares methods according to the prevalence of unintuitive behaviour

[152] and through the evaluation of desired criteria [136]. Both approaches can be seen as de�ning

desired characteristics of a method, generally the absence of unintuitive behaviour, and creating

an evaluation metric encapsulating this desideratum. Our study therefore falls into the second

category, comparing desirable attributes of methods in the context of dynamic decision support.

This chapter builds on this framework through the assessment of two of our desiderata for

dynamic decision support. These desiderata, namely high stability of results under small changes

to criteria values (Desiderata 3) and the consistency of trade-o�s (Desiderata 8), have been put

forward as important characteristics in the context of dynamic problems.

The e�ect of di�erent strategies for the integration of criteria weightings is not well studied

but is an important characteristic contributing to the suitability of an MCDM method. In our

evaluation, TOPSIS was found to be the MCDM method that made the most consistent trade-

o�s between criteria. The trade-o�s between criteria in TOPSIS are controlled by the scaling of
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dimensions, each representing a criterion, in the solution space. This strategy has been shown to

create consistently linear trade-o�s, that can easily be understood by a decision maker.

TOPSIS was also found to be the most stable method under small changes to criteria values.

This result is consistent with the study by Zanakis et al. [152], which found TOPSIS to be the

most stable algorithm (su�ering the least from rank reversals) when the members of a ranking

are changed. Albeit using a di�erent de�nition for stability, these results show the robustness of

the goal, aspiration and references-based models. This is because this class of models relates the

solutions more directly to an objective, rather than each other, leading to less sensitivity in the

rankings when solutions are added, removed or criteria values are altered.

On the other hand, both AHP and PROMETHEE rely substantially on comparisons between all

solutions and therefore have increased risk of rank reversal both under small changes to criteria

values or when solutions are added or removed. Zanakis et al. showed that WPM is relatively

stable under addition and removal of solutions, because there is no relative scoring of solutions

beyond normalisation. Unfortunately, this normalisation causes a large amount of instability

when criteria values change. When the largest criteria value changes, the multiplicative approach

of WPM can cause a substantial change in the relative values of criteria. This leads to unstable

rankings, under small changes to criteria values.

This chapter contributes two metrics, encapsulating stability of results under small changes to

criteria values (Desiderata 3) and consistency of trade-o�s (Desiderata 8). These metrics are then

used to carry out an evaluation of MCDM methods, capturing their suitability for application to

dynamic decision support problems. WPM, AHP, TOPSIS and PROMETHEE were assessed, and

from the results we have found that TOPSIS best ful�ls both desiderata. Our �nal contribution is

the suggestion of TOPSIS as an appropriate MCDM method for dynamic decision making.
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6 | Trust in Dynamic Decision Support

In this chapter we aim to assess the e�ect of features of decision support on trust and its

antecedents. We demonstrate a methodology applying PLS-SEM to assess these features in the

absence of clear success criteria. A theoretical framework is applied to model the antecedents of

trust in real-time decision support.

We conducted a user study with a drone-assisted maritime operations scenario to evaluate

the e�ectiveness of declarative speci�cation of preferences (Desiderata 1), dynamic revision of

recommendations (Desiderata 2) and explanation (Desiderata 6).

6.1 Technical Background

Structural Equation Modeling (SEM) is a set of statistical methods used to create and validate

models. These models are used to test complete theories and concepts in a wide variety of �elds,

such as marketing, business and decision support [74, 92]. This is done by creating constructs

that represent latent concepts, such as a user’s trust in a system, known as latent variables. Such

latent variables are formed from indicator variables, which o�er a measurable indication of the

value for a latent variable, such as how often a user chooses to engage with a system.

The relationship between each latent variable construct and the associated indicator variables

is called the measurement model. This relationship can either be re�ective or formative. For a

formative relationship, the indicators cause the latent variable, whereas in a re�ective relationship
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Figure 6.1: Theoretical SEM and constructs

the indicators are caused by the latent variable.

The second part of the model is called the structural model. The structural model represents

the structural paths between the constructs. These paths capture the e�ect of one latent variable

on another.

Figure 6.1 illustrates how these two models �t together. - , . and / represent the latent

variables such as trust, transparency, cognitive load and satisfaction. -1, -2 and -3 represent the

indicator variables for - . In our model the indicator variables for these four latent variables are
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calculated from the answers to our questionnaire, such as TRUST1, TRUST2, TRUST3, TRUST4

and TRUST5 for trust, as shown in Table A.1.

To assess these models, the causal relationship between variables is analysed using two pow-

erful statistical approaches: exploratory factor analysis and structural path analysis. This enables

the assessment of the measurement model and structural model simultaneously [79]. Two preem-

inent SEM methods are available to researchers: Covariance-based Structural Equation Modeling

(CB-SEM) [68] and variance-based SEM (PLS-SEM) [67, 84]. The approach, strengths and weak-

nesses of each method are outlined below.

6.1.1 CB-SEM

CB-SEM is built on the common factor model [58]. This model approximates latent variables

by common factors, as in common factor analysis [125]. The common factor model assumes the

analysis should be based only on the common variance in the data. The speci�c variance and

the error variance are removed before the model is examined. The method starts developing a

solution by calculating the covariance between variables. This is done with the statistical ob-

jective of estimating the model parameters that minimise the di�erences between the observed

sample covariance matrix and the covariance matrix estimated after the revised theoretical model

is con�rmed [55]. Once the optimal parameters are found the model can be used to con�rm the

existence of relationships between variables but not for predictions. As a result, CB-SEM is used

principally for the con�rmation of established theory.

6.1.2 PLS-SEM

Partial least squares is a prediction-oriented approach to SEM, primarily used for exploratory

research, but also appropriate for con�rmatory research. Maximising the variance explained in

the dependent variables is the statistical objective of PLS-SEM [56]. This is done through an
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iterative approach, that parameterises the latent variables by projecting the predicted variables

and the observable variables to a new space. The algorithm then terminates after a predetermined

number of iterations. or when an appropriate tolerance threshold is reached.

PLS-SEM is based on the composite model. This model approximates latent variables as

weighted composites of observed variables, as in multivariate statistics such as canonical corre-

lation analysis and principal component analysis [125]. The composite model includes common,

speci�c, and error variance, and therefore uses all variance from the independent variables that

can help to predict the variance in the dependent variables. This additional information allows

the composite model approach to more e�ectively maximise the variance explained in the de-

pendent variables. It is a result of this that when using PLS-SEM, a speci�c relationship is more

likely to be statistically signi�cant, given that it is present in a population. This is referred to as

greater statistical power.

PLS-SEM achieves a greater statistical power than CB-SEM at all sample sizes, but particularly

with a smaller sample size. Therefore, PLS-SEM is the recommended method for studies where

# < 100 [59]. Consequently, PLS-SEM has been chosen as the methodology for analysing our

theoretical framework of trust and its antecedents.

6.2 Related Work

In this section we outline some papers that apply PLS-SEM to measure trust and its an-

tecedents. We then identify which factors are key drivers for success of DSSs.

6.2.1 PLS-SEM

The Swedish econometrician Herman Wold [147] developed the statistical methods underpin-

ning PLS-SEM. PLS-SEM estimates partial model structures by combining principal component

analysis with ordinary least squares regressions [57]. This statistical method allows us to analyse
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complex interrelationships between observed and latent variables. A latent variable is a variable

not observed, but inferred from the observed variables. Often, latent variables are aggregated

observable variables, created to represent an underlying concept.

In the case of decision support, we can use latent variables to represent user trust and its

antecedents in a system. Kim et al. [74] used PLS-SEM to assess the role of trust, perceived risk,

and their antecedents in consumer decision making. The paper �nds that user trust both directly

and indirectly a�ects their intention to purchase online. PLS-SEM enable the authors to show

that trust is a critical facet of the decision making process.

In another paper, Hsu et al. [63] use PLS-SEM to examine factors a�ecting intention to repur-

chase in online group-buying, including trust. The authors �nd that satisfaction with the website

and satisfaction with sellers exert signi�cant in�uences on user intention to repurchase. In addi-

tion, the results indicate that trust in a website is a strong predictor of satisfaction with a website,

and trust in a seller is a strong predictor of satisfaction with the seller.

The literature indicates that both trust and satisfaction are key predictors for user intention

to engage with a system or new technology. It is therefore important to gain an understanding

of which features of DSSs in�uence trust and satisfaction. In our case, we observe the features

enabled for each user: dynamic updates, user preferences and explanation, and assess the e�ect

each feature has on our latent variables: transparency, cognitive load, trust and satisfaction.

6.2.2 Frameworks for trust and the acceptance of technology

The study of trust is di�cult due to inconsistencies in the conceptualisation and measure-

ment of trust in previous research [36]. One conceptualisation, proposed by Mayer et al. [93]

is the Integrative Model of Organisational Trust, a theoretical framework examining trust in an

organisational setting involving two individuals: a trustor (the individual trusting) and a trustee

(the individual being trusted) [52]. In this model, trust is de�ned as "the willingness of a party to

be vulnerable to the actions of another party based on the expectation that the other will perform
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a particular action important to the trustor, irrespective of the ability to monitor or control that

other party".

Trust of this kind is often broken down into three categories; a�ective, cognitive and overall

trust [36]. A�ective or emotional trust refers to the trust stemming from the emotional bond

between the truster and the trustee. A�ective trust implies a feeling of emotional security and

belief that one’s concern for another is reciprocated. On the other hand, cognitive trust is a

willingness to be vulnerable to the trustee that is based on beliefs about the trustee’s ability and

integrity [93].

Mayer et al. also investigated the competence (knowledge, skills and competencies), benev-

olence (the extent to which a trustor believes that a trustee will act in the best interest of the

trustor) and integrity (the extent to which the trustor perceives the trustee as acting in accord

with a set of principles that the trustor �nds acceptable). Competence, benevolence and integrity

were postulated to be antecedents for the cognitive aspect of trust. Gill et al. [52] provided em-

pirical evidence for the in�uence of these antecedents through a study that analysed participants

propensity to trust a leader.

The cognitive aspect of trust is of particular interest when the trustee is not an individual but

a technology or information system. We tend not to rely on emotional connections with informa-

tion systems therefore in this domain the a�ective aspect of trust is less important. Mcknight et

al. [94] have explored the idea of what makes people trust information systems, challenging the

idea that "People trust people, not technology" [49]. The authors propose replacements for com-

petence, benevolence and integrity when the trustee is technology. Competence is replaced with

functionality, benevolence is replaced with helpfulness, and integrity is replaced with reliability.

Functionality is the ability of a technology to deliver the capabilities promised, the competence

of a person and the functionality of a technology are similar because they represent users’ expec-

tations about the trustee’s capability. Helpfulness is the ability of the software help function to

provide the advice necessary to complete a task, this replaces benevolence as technology has no
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sense on moral agency. Reliability is the ability of technology to function with little or no down-

time and to predictably respond to inputs, the reliability of technology is similar to the integrity

of a person as they both de�ne the ability to act in a predictable manner.

Another alternative model of trust in technology is the Technology Acceptance Model (TAM).

TAM captures the intention of users when interacting with a computer system [29]. TAM is an

adaption of the theory of reasoned action (TRA), an intention model that has been e�ective at

predicting and explaining behaviour across many domains [8]. The goal of TAM is to provide the

reasoning behind the acceptance of new technologies in a general way. TAM de�nes perceived

usefulness and perceived ease of use as the two main drivers of a users attitude towards using a

technology as shown in Figure 6.2.

For our framework, we accept the de�nition of trust as set out in the Integrative Model of Or-

ganisational Trust by Mayer [93], with the technological drivers of trust: functionality, helpfulness

and reliability [94]. We also integrate into our model the concept of satisfaction. Satisfaction is

how enjoyable a system is to use. We separate these two concepts as trust is needed for initial

adoption whereas satisfaction is a key driver for continued use (citation needed).

Of the key drivers for trust, the decision support features we examine do not change the over-

all functionality or reliability but instead target helpfulness. This key driver of trust is closely

related to perceived ease of use from TAM. For our framework we break the perceived ease of

use/helpfulness into two adversarial factors: transparency and cognitive load. Transparency de-

�nes the ease of understanding the system and cognitive load is the amount of mental e�ort

required to operate a system. This allows us to measure how these features contribute to help-

fulness and transitively to trust by understanding whether they improve/reduce cognitive load

or improve/reduce transparency. We also simultaneously assess the e�ect of these concepts on

satisfaction to gain an understanding of how these features might e�ect continued use of dynamic

decision support systems.
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Figure 6.2: The technology acceptance model

6.2.3 Features

To investigate which features are useful for real-time decision support, we provided each

experiment user with a set of features. In this section we will describe the features that can be

enabled or disabled for di�erent users.

6.2.3.1 Explanation

Explanation is the provision of reasoning describing how an output was reached. To facilitate

explanation of the recommendations in the harbour management scenario, we added coloured

bar charts. These charts display how a solution performed over a speci�c criterion, in the route

selection popover, as shown in Figure 6.3.

A visual form of explanation was designed to quickly give decision makers an idea of how

each criterion contributed towards the ranking of solutions. The size of the bar indicates how

well a criterion value compares to the optimal value for the criterion. A bar is coloured green if

it is greater than 75% of the optimal. A yellow bar for values between 50% and 75% and a red bar

is used for values less than 50%. If the feature is disabled the user will see only the show/hide

button, as shown in Figure 4.5.
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Figure 6.3: Routes with the explanation feature enabled

6.2.3.2 Preferences

The preferences feature allows decision makers to state their criteria preferences in the form

of pairwise comparisons. For instance, a decision maker could express that “Ship Distance is more

important than Ship Direction”. The interface for setting preferences is shown in Figure 6.4. This

menu is accessed by clicking on the scales icon on the route selection popover. Here the user

can set their preferences through a drop down menu for each pair. AHP is applied to transform

these pairwise comparisons into criteria weightings. The bars at the top of the interface provide

visual feedback of the resultant weightings. If this feature is disabled the criteria tab is hidden

and criteria weights are �xed evenly.

6.2.3.3 Dynamic Updates

The dynamic updates feature refers to the system’s capacity to make new recommendations

whilst the drone is in motion. If this feature is enabled, after a route is activated the route selection

popover will not be hidden, and the system will continue to recommend updates to the plan.

These updates could be small adjustments, or a complete change of plan, depending on how the

scenario unfolds. If this feature is disabled when a route is active, the route selection popover is
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Figure 6.4: The interface for se�ing criteria preferences

hidden and no routes will be recommended until the drone returns to refuel.

6.3 Research model and hypotheses

6.3.1 Theoretical Model

Trust and satisfaction have been shown to be key measures of success for a DSS. The research

model (Figure 6.5) shows how these measures are driven by two more practical targets, trans-

parency and cognitive load. The model suggests that trust and satisfaction can both be improved

by increasing the transparency of a system and lowering cognitive load.

6.3.1.1 Transparency

For our study, we de�ne transparency as a measure of how well the user understands what

actions are being performed. The understanding of how the recommendations are calculated,

how an activated route will perform, and the current status of a task, are therefore all aspects

of transparency. A system with greater transparency allows a decision maker to make more

accurate judgements of the limits of a system. This means that transparency should improve a
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Figure 6.5: The basic theoretical framework

users’ con�dence in their decisions, and lead to greater trust in the system [146].

Understanding when to trust a recommendation creates a more competent human-computer

team. This improvement in e�cacy should create a higher user satisfaction with the system.

Therefore we hypothesise:

Hypothesis 1. Transparency increases trust.

Hypothesis 2. Transparency increases satisfaction.

6.3.1.2 Cognitive Load

We de�ne cognitive load as a measure of the amount of mental e�ort invested in operating

a system. This mental e�ort detracts from the thought a user can put into selecting a solution.

This gives the user less con�dence in their decisions, undermining trust in the system. The added

di�culty in correctly estimating the limits of the system may also cause lower user satisfaction.
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Figure 6.6: The research model

Therefore we hypothesise:

Hypothesis 3. Cognitive load decreases trust.

Hypothesis 4. Cognitive load decreases satisfaction.

6.3.2 Extended Research Model

Improving transparency can be speci�cally targeted by features of DSS. Architects of these

systems should consider that all features are likely to increase cognitive load. Figure 6.6 shows

how we hypothesise explanation, dynamic updates and preferences a�ect transparency and cog-

nitive load.
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6.3.2.1 Explanation

Explanation aims to provide reasoning describing how an output was reached. Our expla-

nation feature provides this in the form of bar charts, shown in Figure 6.3, with detail given

in Subsection 6.2.3.1. These charts show how the solutions perform over each criterion. This

should give the user an understanding of how a ranking of solutions was reached, improving

transparency [73]. This also gives the decision maker more information to consider; increasing

cognitive load. We hypothesise:

Hypothesis 5. Explanation increases transparency.

Hypothesis 6. Explanation increases cognitive load.

6.3.2.2 Dynamic Updates

Dynamic updates is the ability to provide updated rankings of routes whilst the drone is

in �ight. Details for this feature are given in Subsection 6.2.3.3. This feature should increase

transparency, as the user is provided with more information regarding the ranking of routes. This

extra information comes at the cost of increased cognitive load whilst a route is active. Therefore

we hypothesise:

Hypothesis 7. Updates increase transparency.

Hypothesis 8. Updates increase cognitive load.

6.3.2.3 User Preferences

The user preferences feature allows decision makers to state their criteria preferences in the

form of pairwise comparisons. The details for our implementation of this feature are given in

Subsection 6.2.3.2 and the interface is shown in Figure 6.4. This feature gives the user a lever to

tailor recommendations. Another bene�t is it gives the decision makers insight into the criteria
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under consideration, and trade-o�s made by the system, providing transparency [113]. At the

same time, this creates an extra tab of input which must be read and understood, increasing

cognitive load. We therefore hypothesise:

Hypothesis 9. Preferences increase transparency.

Hypothesis 10. Preferences increase cognitive load.

6.4 Approach

In this section we outline the method for collecting data for analysis by PLS-SEM using our

harbour management DSS.

6.4.1 Data Collection

To test our theoretical framework, we surveyed users of our harbour management system.

The users were Amazon Mechanical Turk (MTurk) [7] workers that attained our harbour man-

agement quali�cation in exchange for compensation at the rate of the UK minimum wage. MTurk

is a crowdsourcing website for businesses (known as requesters) to hire remotely located "crowd-

workers" to perform discrete on-demand tasks. One issue was that these workers are not specif-

ically trained for harbour management. To address this issue we created a speci�c harbour man-

agement quali�cation, allowing us to test user e�cacy and understanding of the harbour man-

agement task, before allowing them into the study.

As a further test for workers, the questionnaire also included two repeated questions. Work-

ers giving di�erent answers to the same question were marked as inappropriate. A total of 58

workers completed the task. After eliminating inappropriate responses and system errors, a total

of 43 usable responses were included for construct validation and hypothesis testing. Of these 43

responses, 23 had explanation enabled, 24 had dynamic updates enabled and 24 had preferences

enabled.
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6.4.2 User Journey

The architecture of the system was previously given in Chapter 4, Figure 4.4. The interface

was shown in Figure 4.5.

Users began the experiment by receiving a link to the Static File Server and credentials to

authorise with the User Server. When authorised, the users were presented with the harbour

management DSS. Each user was provided with a random selection of features enabled/disabled,

recorded within the User Database. Users were required to complete a tutorial tailored to the

features enabled within their interface. Once they had completed the tutorial, they were given

three �ve-minute scenarios of increasing di�culty, presented as three stages to complete.

To incentivise and measure performance for this task, a score is recorded in the User Database.

The user is awarded one point for each identi�ed ship, and deducted one point for each unidenti-

�ed ship, that enters the harbour zone. The score was recorded, and reset to zero between stages.

The users were incentivised to maximise their score across all three stages through a bonus pay-

ment, paid to the best performing harbour manager.

After all three stages were complete, users were presented with the questionnaire, comprising

questions relating to trust, satisfaction, transparency, and cognitive load (as shown in Table A.1).

The questionnaire used 7-point Likert scales [70], with responses ranging from one (strongly

disagree) to seven (strongly agree). The features and questionnaire answers for experiment users

were then compiled for analysis. This analysis was completed by applying the answers to these

questions as indicator variables that form a re�ective or formative relationship with the relevant

latent construct.
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6.5 Results

To test our proposed research model we performed data analysis using PLS-SEM. Figure 6.7

shows the results calculated using the python package, PLSPM version 0.5.5 [105].

6.5.1 Reliability

To calculate internal consistency we used both Cronbach’s Alpha (Alpha) and Composite

Reliability (CR). Table 6.2 shows that the CR values are above 0.7 [47] and the Alpha values are

all above 0.65 [77], satisfying the standard requirements for internal consistency. We also show

that all Average Variance Extracted (AVE) values were higher than 0.50, the suggested minimum.

An AVE greater than 0.5 indicates that more than 50% of the variance of the measurement items

can be accounted for by the constructs.

6.5.2 Construct Validity

Construct validity was assessed via convergent validity and discriminant validity. Convergent

validity is shown to be acceptable in Table A.1, with all item loadings greater than 0.50, and all

items for each construct loading onto only one factor with an eigenvalue greater than 1.0.

To evaluate discriminant validity we applied the Heterotrait-Monotrait ratio of correlation

(HTMT). Henseler et al. [60] proposed HTMT, providing evidence for its superior performance

by means of a Monte Carlo-based simulation study, that showed that HTMT is able to achieve

higher speci�city and sensitivity rates (97% - 99%) compared with the Fornell-Lacker (20.82%).

HTMT values close to 1 imply a lack of discriminant validity. Table 6.1 shows that all values are

below the accepted threshold value of 0.9. This indicates discriminant validity among variables.
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Table 6.1: HTMT ratios of correlation for constructs

Construct TRAN CL TRUST
CL 0.892
TRUST 0.872 0.619
SAT 0.880 0.734 0.828

6.5.3 Structural model assessment

To assess the structural model we assessed both path coe�cients and '2. Both '2 and path

coe�cients give us an indication of the model �t. Figure 6.7 shows the results. Transparency

(TRAN) had a strong positive e�ect on trust (TRUST) and satisfaction (SAT). The path coe�cients

TRAN→ TRUST and TRAN→ SAT were both signi�cant at the 0.01 level. Therefore Hypotheses

1 and 2 were supported.

Cognitive Load (CL) was shown to have no e�ect on trust, with a small negative e�ect on

satisfaction. The CL→ SAT path coe�cient fell short of the 0.05 level, therefore we failed to �nd

evidence to support Hypotheses 3 and 4.

For the paths from features, contrary to our hypothesis, explanation showed a small negative

e�ect on transparency. This path and the hypothesised path from explanation to transparency

were not signi�cant, therefore not supporting Hypotheses 5 and 6.

The dynamic updates feature had a similar outcome, with neither Dynamic Updates→ TRAN

or Dynamic Updates→ CL showing signi�cance at ? < 0.05. So hypotheses 7 and 8 were not

supported.

The hypothesised paths from preferences to transparency and preferences to cognitive load

showed weak positive and negative e�ects respectively, signi�cant at ? < 0.05. This validates

Hypotheses 9 and 10.

The '2 for trust and satisfaction were both 0.79, showing that transparency and Cognitive

Load provide a strong explanation for trust and satisfaction in a system. On the other hand,

transparency and cognitive load had an '2 value of 0.27 and 0.21 respectively, implying that
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Table 6.2: Descriptive statistics and reliability indices for constructs

Construct Item Model Loading AVE CR Alpha
TRAN TRAN1 REFL 0.879 0.573 0.815 0.693

TRAN2 REFL 0.774
TRAN3 REFL 0.442
TRAN4 REFL 0.851

CL CL1 FORM 0.866 0.758 0.926 0.879
CL2 FORM 0.923
CL3 FORM 0.819

TRUST TRUST1 FORM 0.826 0.600 0.885 0.836
TRUST2 FORM 0.831
TRUST3 FORM 0.795
TRUST4 FORM 0.772
TRUST5 FORM 0.631

SAT SAT1 FORM 0.832 0.676 0.873 0.802
SAT2 FORM 0.882
SAT3 FORM 0.763
SAT4 FORM 0.808

The questions corresponding to each item are given in Table A.1; REFL indicates a reflective relationship;
FORM indicates a formative relationship.

these variables were largely driven by factors outside the scope of the study.

6.6 Conclusion and Discussion

In this chapter, we assessed the e�ect of enabling/disabling explanation, preferences and dy-

namic updates. To do this we produced a trust-based model for interactions with real-time DSSs,

which was then validated using PLS-SEM.

PLS-SEM has been used extensively to investigate the antecedents of trust in electronic com-

merce [26, 74, 75] and the adoption of emerging technologies [80, 87, 90]. In these papers, the

authors survey participants that have used pre-existing systems: online retailers, in the case

of electronic commerce; or mobile banking services, as an example of an emerging technology.

These systems are assessed for features and the e�ect of these features is measured on the re-
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Figure 6.7: The results of PLS analysis

search model. Our study di�ers from this standard PLS-SEM approach as we assess participants

engaging with a purpose-built system, controlling which features are enabled.

We have applied a methodology for the assessment of DSS and their features in the absence

of clear success criteria. Through this method, we contribute a theoretical framework for the

antecedents of trust in a real-time DSS. This model implies that transparency is a strong predictor

of trust and satisfaction in a system.

An earlier study by Kawamoto et al. in clinical decision support has investigated validity

of decision support features by assessing the improvement in clinical practice. This assessment

was enabled through the measurement of patient outcomes or process measures [71]. The study
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summarised 82 relevant comparisons of which 71 compared a clinical DSS with a control group

(control-system comparisons) and 11 directly compared a system with the same system plus extra

features (system-system comparisons). Another study conducted a similar assessment with 162

randomised control trials [115].

The above studies collate data from a multitude of papers, assessing features for purpose-built

clinical DSS. This type of study is enabled in clinical decision support by the presence of clear

success criteria (patient outcomes), to compare against the presence of decision support features.

In lieu of this, our study instead assesses the e�ect of the presence of features on the constructs

trust, satisfaction, transparency and cognitive load through the application of PLS-SEM.

The study by Kawamoto et al. investigated 15 decision support features. These were mostly

speci�c to the clinical setting, but there was one feature that had signi�cant overlap with our

study: justi�cation of decision support via provision of reasoning. We view this as a clinical

domain-speci�c implementation of explanation. The study found that systems with this feature

had a 12% uplift in success rate; this corresponds with Hypothesis 5. Unfortunately we did not �nd

evidence to support this hypothesis. Instead, our implementation of explanation caused reduced

transparency and increased cognitive load, therefore reducing trust and satisfaction. This may

have been caused by our speci�c implementation of explanation for route selection.

The empirical results suggest that the transparency of a system positively impacted the trust

and satisfaction that a user associated with a DSS. This is consistent with previous research,

�nding that transparency of a leader signi�cantly a�ected trust [102]. While di�erent, human

teams share many similarities with human-computer teams. In both contexts, the leader or DSS

prescribes a plan of action, with trust and transparency being signi�cant factors shaping the out-

comes of the interaction. Furthermore, a large portion of the variance within trust and satisfaction

can be explained through the constructs of transparency and cognitive load. This validates the

argument that architects should target transparency as an imperative aspect of real-time decision

support.
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The study also provides evidence that the ability to set user preferences improve transparency,

indirectly improving trust and satisfaction. Our implementation of preferences was also found to

reduce the cognitive load induced by a system. This feature provided necessary insight into the

criteria considered for recommending routes. We hypothesise that the presence of explanation

without preferences induced additional cognitive load, as users did not have adequate information

to understand the system reasoning. This suggests that the ability to set preferences provides the

user with a better understanding of the system and recommendations, enabling them to follow

the reasoning provided by an explanation. Therefore reducing cognitive load.

Future work is needed to assess the generalisability of this model to other VRP and UAVTAP

applications. We �nd that preferences improve transparency, but it is worth noting that our

results are speci�c to the implementations within the harbour management system. Another

limitation is that a low '2 for transparency and cognitive load imply they were largely driven by

factors outside the scope of the study. Therefore a future study taking into account more factors

could provide an explanation of the drivers of these constructs. One such driver, outside the

scope of this study is a users explicit propensity to trust, also known as dispostional trust [96].

Dispositional trust represents an individuals overall tendency to trust automation, independent of

context or a speci�c system [61]. Previous studies have revealed that this type of trust is largely

driven by biological and environmental factors such as: culture, age, gender and personality

traits. The e�ect of dispositional trust can outweigh the e�ects of features of DSSs on trust. It

is also evident from the low '2 values that transparency (or understanding of the system from

the user perspective) and cognitive load are largely driven by factors relating to the individual.

As a result, we failed to achieve statistical signi�cance regarding the e�ect of explanation and

dynamic updates on cognitive load and transparency. This is likely caused by the relatively small

impact of these two features. It would therefore be bene�cial for a study to be conducted at a

larger scale, to provide conclusive results of the e�ect of these features.

From a practical standpoint, our research highlights several features that an architect should
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consider when building a real-time DSS. The �ndings imply that the implementation of these fea-

tures should be carefully considered. For instance, we found that our implementation of expla-

nation had an e�ect contrary to our hypotheses. This suggests that architects should be mindful

that reasoning provided is concise and clear, because it is possible for an explanation to reduce

transparency.
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7 | Conclusion

In this chapter, we summarise the contributions of the thesis then present some possible av-

enues for future research.

7.1 Reflections

This research investigated which decision support features and methodologies would be suit-

able to employ as part of trustable decision support for dynamic applications. Providing a trustable

DSS for dynamic problems requires a broad range of problems to be tackled. To help deal with

these problems, a framework has been proposed. This framework consists of eight desiderata for

DSSs, together o�ering a basis for trustable dynamic DSSs. We illustrated these desiderata by

showing how they surface in our two case studies, train journey planning and harbour manage-

ment, and have given examples of how they can surface in similar applications. These desiderata

help to inform architects of DSSs on how to equip their systems with the capabilities needed to

handle dynamic problems.

The major issue facing an architect of a dynamic DSS is how to recommend a continuously

revised recommendation, whilst incorporating decision makers’ preferences. To solve this, we

have outlined a dynamic GA that can be used to incrementally re�ne recommendations, with a

speci�c emphasis on the production of diverse recommendations. This algorithm applies the

principles of DMOEAs, combined with MCDM methods as a �tness function, to support the
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cornerstones of dynamic decision support. The approach applies preferences in an a priori fashion

to maintain a small set of candidate solutions, compared to previous algorithms that maintain

a large POF. The POF then requiring navigation through a separate application of an MCDM

method.

The research also includes an evaluation of MCDM methods in terms of our desiderata. WPM,

AHP, TOPSIS and PROMETHEE were assessed on their ability to provide high stability of results

and consistent trade-o�s between objectives. The research concluded that TOPSIS is an appropri-

ate method for trustable dynamic decision support. Applying TOPSIS as a �tness function for our

dynamic GA therefore provides an approach to decision support that enables declarative speci-

�cation of preferences (Desiderata 1), dynamic revision of recommendations (Desiderata 2), high

stability of results (Desiderata 3), high diversity of results (Desiderata 7), and consistent trade-o�s

between criteria (Desiderata 8).

To understand the factors contributing to trustability in dynamic decision support, we have

put forward a theoretical framework modelling trust and its antecedents in a real-time DSS. We

applied PLS-SEM to evaluate this model through our harbour management case study. This model

highlights how transparency and cognitive load drive trust and satisfaction, giving architects of

DSSs more tangible concepts to target when they design a UI. An assessment of the e�ect of

explanation, preferences and dynamic updates on our model has also been included. This gives

architects an indication of how UI features a�ect transparency and cognitive load and which

features are likely to assist decision making in a dynamic environment.

7.2 Future Research

In this section we propose some directions for future research in the �eld of dynamic decision

support.
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7.2.1 Multi-objective ant colony optimisation for decision support

We outlined a dynamic GA applying MCDM methods as a �tness function as a means to pro-

vide dynamic decision support. GAs are a family of meta-heuristic search algorithms, inspired by

the process of natural selection. An alternative family of meta-heuristic search algorithms is Ant

Colony Optimisation algorithms (ACOs) [38]. ACOs are inspired by the methodology employed

by ants to forage for food. These ants lay and follow pheromone trails, using pheromones as a

means of coordinating their search [37]. ACOs copy this methodology, generating probabilistic

paths through the parameter space. These paths are referred to as pheromone trails. A solution

is generated by applying an "ant" to follow the pheromone trail. The algorithm begins with the

most basic pheromone trail, which is equally likely to generate every solution (this trail generates

a random solution from the space of options). Multiple ants are employed each generation to de-

rive a set of solutions, a �tness value is calculated for each solution, and these values are used to

update the pheromone trail. Through updating the pheromone trail, we amend the distribution

of generated solutions to increase the chance of generating "good" solutions.

In nature, both search algorithms operate under dynamic environments. They are both there-

fore prime candidates as a starting point for dynamic decision making problems [37, 51]. The main

di�erences between the two algorithms come from the abstraction that encodes the progress of

the algorithm. For a GA, the progress of an ongoing search is represented by a collection of in-

termediate solutions. An intermediate solution of a dynamic GA can be generated by taking the

solution from the population with the highest �tness. ACOs encode the progress of a search as

probabilistic paths through graphs, where these graphs inform the process of building a solution.

For a dynamic ACO, an intermediate solution can be generated by applying # ants to this graph

to generate # solutions and taking the solution with the highest �tness.

For example, in our harbour management scenario, a solution may be � → � → � . The

progress of an ongoing GA search would be represented by a population of these solutions, e.g.
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{� → � → � , � → � → �}. The progress of an ongoing ACO search would be represented by

a probabilistic graph that encodes the process of building a route, as shown in Figure 7.1. The

route is then built by applying "ants" to follow the pheromone trail, each ant will derive a route.

ACOs have been found to lend themselves well to changing environments [32–34, 41, 153].

One reason for this is the nature of the ACO encoding of progression. The algorithm can adjust

branches and their weights to e�ciently adapt to dynamic problems. For example, if ship� is no

longer available to visit, the GA is required to remove� from each solution in the population. The

ACO is only required to remove the node from the pheromone trail. If this proves to be faster to

adapt than the GA approach, it could cut down recalculation times, giving decision makers more

time to react to rapidly evolving situations.

Further work could produce a dynamic ACO, applying MCDM methods as a �tness function,

and compare the method with our GA-based methodology. A possible approach to this would be

to analyse the convergence of each algorithm. Comparing the initial convergence time, and the

convergence time as the situation evolves, could provide insight into potential bene�ts of ACOs

over GAs for dynamic decision support.

7.2.2 Integrating frameworks for dynamic decision support

Our work identi�ed stability of results as a desired characteristic of trusted dynamic decision

support. Aggregation-based dynamic decision making frameworks have been highlighted in the

literature as an approach to improving stability in dynamic DSSs [121].

Aggregation-based frameworks provide a methodology for taking a stream of criteria values

and collating them into a single value for a time period through the application of aggregation

functions. Further investigations could evaluate the e�ect of these frameworks on the stability

of rankings. The framework put forward by Campanella et al. [22] suggested a variety of aggre-

gation functions, including: average aggregation functions, conjunctive aggregation functions,

disjunctive aggregation functions and mixed aggregation functions. Further work could evaluate
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how these functions e�ect the stability and quality of results.

The crux of this approach is to include temporal factors as a method of selecting which solu-

tion will be best in the future (or over the period of time required to execute a recommendation).

Therefore providing a generalisable approach to the assessment of dynamic criteria values. Our

approach uses domain knowledge to assess what will happen when a route is carried out. Gener-

ally, with better domain knowledge comes better results; knowing a ship is a ship makes it much

easier to predict its position in the future. Nevertheless, there is scope to combine both methods.

As new information becomes available, the criteria values still evolve over time e.g. when a ship

changes direction. It would therefore be of interest to evaluate how these frameworks compare

to and complement the domain-based prediction approach.

7.2.3 Trust calibration versus improving trust

Trust is an important factor underpinning the e�ectiveness of the human-computer team

formed when a decision maker utilises a DSS. The more a decision maker trusts a DSS, the more

likely they are to follow a recommendation. If a DSS is trusted completely, assuming that ev-

eryone recommendation is taken, the human-computer team functions as well as the computer

component. Whereas, if the DSS is completely untrustworthy, assuming that the human over-

rides every recommendation, the human-computer team will function only as well as the human

component [9, 78]. Therefore, for the human-computer team to operate at a higher capacity than

both of the components, it is required for trust to be calibrated e�ectively.

Trust calibration is a measure of the decision makers’ ability to know when to follow a rec-

ommendation and when to override it. Calibrating trust can be posed as a problem of commu-

nication: the system must quickly communicate its abilities and limitations to a user [133]. The

level of trust calibration can therefore be viewed as one facet of how well the decision maker

understands the system (referred to as transparency in this research).

This research investigates the antecedents of trust (including transparency), by building a
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model of trust and its antecedents then measuring the e�ect of various DSS features on the model.

This yields understanding of trust and its role in real-time decision support, providing insights

into how to build trust between the decision maker and the DSS. Whilst useful, this approach

focuses on improving trust, rather than addressing the problem of trust calibration. Reducing

the visibility of errors is a potential avenue to improve a decision makers trust in a DSS. It is

therefore possible that ignoring the subtleties of trust calibration in favour of improving trust

could undermine the raison-d’etre of DSSs, e�ectively removing the human from the loop.

Features that help the decision maker to understand when to override the computer are of

particular relevance to trust calibration. In terms of our desiderata for dynamic decision support,

these features are data provenance (Desiderata 5) and explanation of outputs (Desiderata 6). Data

provenance enables a user to check the integrity of the data underlying the recommendations

and explanation provides insight into the reasoning. Both of these features should aim to bring

into focus the limits of a DSS, surfacing errors in the data or reasoning respectively. It is di�cult

to know whether improving the visibility of errors in a system would undermine trust or build

it. It is also important to note that either could be bene�cial, depending on the circumstance.

Therefore, for these two desiderata, and other features of DSSs that target trust calibration, it

would be ideal if we could evaluate the e�ect on trust calibration.

An approach to this would be to evaluate the performance of the decision maker, the computer

component and the human-computer team separately. By comparing these three metrics it would

be possible to yield a latent variable representing how well trust is calibrated between the human-

computer team. Through the application of PLS-SEM, researchers could measure the e�ect of DSS

features on trust calibration, rather than on trust. It would also be bene�cial to create a model of

trust calibration (including trust and its antecedents) in the context of dynamic decision support,

to provide a better understanding of the concept.
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Figure 7.1: A pheromone trail for building a route visiting ships�, � and� ; each route starts at�, selects
� or � with even probability, then the route is finished with the unselected ship; this pheromone trail is
equivalent to the population {�→ � → � , �→ � → �} in a GA.
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A | Appendix

A.1 Harbour Management �estionnaire

Table A.1: Proposed Measurement Items for Constructs

Construct Question Loading
TRAN1 I understood why the recommended routes were provided over alternatives. 0.879
TRAN2 The recommended routes were clearly justi�ed. 0.774
TRAN3 I was aware of trade-o�s when I was choosing routes. 0.442
TRAN4 I felt I was kept up to date with events in the scenario. 0.851

Eigenvalue : 2.18
CL1 The interface of the exercise was complex. 0.866
CL2 The way the interface presented information was distracting. 0.923
CL3 It was di�cult to �nd relevant information for selecting routes. 0.819

Eigenvalue : 2.42
TRUST1 I felt that I could trust the application. 0.826
TRUST2 The recommended routes were good. 0.831
TRUST3 The recommended routes helped me to make decisions. 0.795
TRUST4 The recommended routes often turned out as expected. 0.772
TRUST5 I believe the application has been designed to enhance my decision making. 0.631

Eigenvalue : 3.05
SAT1 I feel satis�ed with the overall experience of using the application. 0.832
SAT2 I enjoyed using the application. 0.882
SAT3 I think route recommendations are a good idea. 0.763
SAT4 I feel good about the decisions I made with the support of the application. 0.808

Eigenvalue : 2.55
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A.2 Harbour Management �alification

The harbour management exam assessed users for the trustability study. The questions were

designed to assess a users’ comprehension of the brie�ng and to remove users that were com-

pleting tasks hastily.

Question Answers Correct
What colour is attributed to unidenti�ed ships? Red.

Blue.
Yellow. X
Green.

What are the three criteria for route recommendations? Ship direction, ship distance, identi�cation speed. X
Ship direction, ship speed, identi�cation speed.
Ship speed, ship direction, identi�cation time.
Ship distance, ship direction, identi�cation time.

How many scenarios will you have to complete? 1.
2.
3. X
4.

If an unidenti�ed ship reaches the harbour you will... Gain 1 point.
Gain 2 points.
Lose 1 point. X
Lose 2 points.

How many routes can be active at once? 1. X
2.
3.
4.

Ship distance is... A measure of the distance of a ship from the harbour.
A measure of the distance between ships on a route.
A measure of the distance of a ship from the drone.
A measure of the distance of ships on a route from the harbour. X

Ship direction is... A measure of how directly ships along a route are travelling away from the harbour.
A measure of how directly ships along a route are travelling towards the harbour. X
A measure of how directly a ship is heading towards the drone.
A measure of how directly a ship is heading away from the drone.

Identi�cation speed is... A measure of the time taken for a route to be completed.
A measure of the time taken for a ship to arrive at a harbour.
A measure of the time taken for a drone to identify a ship.
A measure of the time taken to identify each ship over a route. X

The length of a route is limited by the... Number of ships.
The fuel of the drone. X
The speed of the drone.
The distance from the harbour.

If none of the recommended routes are satisfactory... There is no other option.
A route can be drawn by dragging a line between ships.
A route can be drawn by clicking ships in order, on the draw a route tab. X

Table A.2: �estions and answers for the harbour management qualification.
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A.3 Acronyms

ACO Ant Colony Optimisation algorithm. 149

AHP Analytic Hierarchy Process. 12, 27, 60, 76, 105

Alpha Cronbach’s Alpha. 140

AO Average Overlap. 94, 107

AVE Average Variance Extracted. 140

BWM Best Worst Method. 59

CB-SEM Covariance-based Structural Equation Modeling. 127

CDF Cumulative Distribution Function. 69

CPSS Cyber-Physical-Social System. 18

CR Composite Reliability. 140

DCG Discounted Cumulative Gain. 107

DMOEA Dynamic Multi-Objective Evolutionary Algorithm. 20, 147

DSS Decision Support System. 12, 16, 18, 32, 49, 75, 105, 128, 147

ELECTRE ELimination Et Choix Traduisant la REalité. 40, 106

GA Genetic Algorithm. 12, 44, 56, 110, 147

HTMT Heterotrait-Monotrait ratio of correlation. 140
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MCDM Multi-Criteria Decision Making. 18, 32, 50, 75, 76, 105

MOEA Multi-Objective Evolutionary Algorithm. 19, 56, 76

MTurk Amazon Mechanical Turk. 138

PC Pairwise Comparison. 18

PEG Pareto-Edgeworth-Grierson method. 107

PLS-SEM Partial Least Squares Structural Equation Modeling. 28, 125, 148

POF Pareto-optimal front. 50, 78, 148

PROMETHEE Preference Ranking Organization METHod for Enrichment Evaluation. 12, 27,

105

SEM Structural Equation Modeling. 125

SPE Stream Processing Engine. 19, 43, 65

TAM Technology Acceptance Model. 131

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution. 12, 27, 59, 76, 105

UAV Unmanned Aerial Vehicle. 75

UAVTAP UAV Task Assignment Problem. 76

UI User Interface. 27, 75, 101, 148

VRP Vehicle Routing Problem. 76

WPM Weighted Product Model. 12, 27, 105

WSM Weighted Sum Method. 33, 106
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