
ON CERTAIN SMALL LIE RANK

SUBGROUPS OF E8(2)

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2022

Mahah Javed

Department of Mathematics

School of Natural Sciences

Contents

Abstract 4

Declaration 5

Copyright Statement 6

Acknowledgements 7

1 Introduction 9

2 Background and Preliminaries 15

2.1 Linear Algebraic Groups . 15

2.2 Working with E8(2) . 19

2.2.1 E8(2) setup . 19

2.2.2 Elements of E8(2) . 21

2.2.3 Embeddings and Determining Maximality 27

3 L2(64) 30

3.1 Methodology . 30

3.2 Non-maximality of L2(64) . 38

4 L2(16) 42

4.1 Methodology . 42

4.2 The Cases . 46

4.2.1 Isomorphism Type L4(2)× Sym(3) 47

4.2.2 Isomorphism Type L4(2)× Sym(3)× Sym(3) 55

4.2.3 Isomorphism Type L4(2)× L4(2) 67

4.2.4 Constructing Copies of L2(16) 74

2

5 L2(8) 81

5.1 Methodology . 81

5.2 The Cases . 89

5.2.1 QJ , xJ,a for J = {2, 4, 7, 8} . 91

5.2.2 QJ , xJ,a for J = {2, 4, 6, 7} . 96

5.2.3 QJ , xJ,a for J = {3, 4, 7, 8} . 105

6 L3(4) and L3(3) 108

6.1 Commonalities . 108

6.2 L3(4) . 118

6.3 L3(3) . 121

Bibliography 127

A Programs 132

A.1 Code for L2(64) . 132

A.2 Code for Conjugating Groups in a BadSub 141

A.3 L2(8) Code 1 . 142

A.4 L2(8) Code 2 . 151

A.5 L2(8) Code 3 . 156

A.6 L2(8) Code 4 . 159

B Brauer Character Tables 161

B.1 L2(64) . 161

B.2 L2(16) . 162

B.3 L2(8) . 164

B.4 L3(4) . 166

B.5 L3(3) . 167

B.6 F4(2) . 167

B.7 Ω+
8 (4) . 169

Word count 53489

3

The University of Manchester

Mahah Javed
Doctor of Philosophy
On Certain Small Lie Rank Subgroups of E8(2)
March 22, 2022

This thesis forms a part of the much lager project whose aim is to classify the
maximal subgroups of the finite simple exceptional group of Lie type E8(2). Groups
H with F ∗(H) isomorphic to L2(64), L2(16), L2(8), L3(4), or L3(3) arise as some of
the possible candidates for maximal subgroups of E8(2). We prove that if F ∗(H) is
isomorphic to L2(64), L2(16) or L3(4) then H cannot be maximal in E8(2). Partial
progress is made towards establishing whether L2(8) can be a maximal subgroup. A
highlight is that we find maximal subgroups of E8(2) isomorphic to L3(3); we show
that there are at most 3 conjugacy classes of them. Extensive use of the computer
algebra package Magma has been made to prove our results. After the work done in
this thesis not much is left to do in order to classify the maximal subgroups of E8(2).

4

Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

5

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or Re-

productions described in it may take place is available in the University IP Policy (see

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=2442), in any relevant

Thesis restriction declarations deposited in the University Library, The University

Library’s regulations (see http://www.manchester.ac.uk/library/about/regulations)

and in The University’s Policy on Presentation of Theses.

6

Acknowledgements

I would like to thank my supervisor Peter Rowley for his constant support, especially

during these trying times. Having had regular meetings with him without fail has

been a giant motivator. There’s Magma and then there’s Peter, a walking database

of group theoretic knowledge. The progress I’ve made would not have been possible

without his expertise on the subject.

I would also like to thank Peter Neuhaus and Alex McGaw for showing me the

Magma ropes, especially Peter for entertaining my questions even after he’d left.

I wish to thank all my family and closest friends, especially for their prayers. My

family has kept me sane by putting up with my insanity. My special thanks goes to my

brother for being the one person in my life who truly understands me. I’m extremely

grateful for being surrounded with family and friends, and yet, probably not grateful

enough.

Doing a PhD at Manchester comes with the gift of becoming a part of the ATB.

I’ve come across many people since starting my journey here, a few of them have

become very special to me, but all of them simply define what it means to be nice,

understanding and helpful. Firstly, I’d like to thank Sunny, Clément and Raymond;

they are the ones that got me through this. I also wish to thank Rose, Brian and Dan

for adding more merriment, Stephanie and Connor for the longest that I’ve known

them and Robbie for always having been there. Next I’d like to thank all the office

mates that I’ve had, in particular Jacob for being a tolerant DM and a good person,

Ulla for being a wonderful person, Zoltan for all the light-hearted conversations and

Val for being musical and baking brownies. I also wish to thank my karate buddy

Jake, my amazing academic sibling Rob, my neighbour Rudradip, the sweetest person

ever Rajenki, and the caring Anja. And thank you to everybody else at the ATB,

especially Tom A, George D, Sam and Alex B. My special thanks goes to Claudio for

7

helping me with modules and to Connor, Rose, Deacon, Clément and Rob for their

offer of technical help on the day of submission or viva.

Finally, I wish to thank my examiners, David Craven and Charles Eaton, for helping

to make this thesis more correct and readable.

8

Chapter 1

Introduction

If the maximal subgroups of a finite group are known and, in turn, the maximal sub-

groups of those are known, and so on, then one knows everything there is to know about

the subgroup structure of the group. Also, the maximal subgroup problem for all finite

groups can be reduced to understanding the maximal subgroups and the 1-cohomology

groups of almost simple groups, see [5]. Hence it is no surprise that following the con-

struction of finite simple groups, the classification of their maximal subgroups, (and

of the maximal subgroups of the almost simple groups), is highly sought after. We

mention some pieces of literature that have contributed to the progress made towards

achieving a solution to this problem.

The classification of the maximal subgroups of the alternating groups is, of course,

given by the O’Nan-Scott theorem, see e.g. [31] for a proof which the authors then

use in [32] for a classification.

As for the sporadic groups, we simply mention that full classifications are indeed

available except in the incomplete case of the Monster. Wilson has been working on

the outstanding case and has provided latest news in [51].

Turning our attention to the groups of Lie type, a classification of the maximal

subgroups of the classical groups was given by Aschbacher [2] in 1984. Following this,

a significantly more detailed version was provided by Kleidman and Liebeck [28]. We

mention that prior to [2], classification was achieved for L2(q) by Dickson [19] in 1901

and for L3(q) by Mitchell [44] in 1911 for q odd and Hartley [22] in 1925 for q even.

There are several infinite families making up the finite simple exceptional groups of

Lie type, with the group that is studied in this thesis belonging to one of them. Here

9

10 CHAPTER 1. INTRODUCTION

things got kicked off by Suzuki, who in 1962 [48] determined the maximal subgroups

of the infinite family of groups that he found and is named after him. The case of the

Tits group is also a settled one, and one may look at [18], [50] or [49] for details. The

eighties saw several authors providing results for the G2(q) case. Cooperstein dealt

with G2(q) for q even in [17] and Migliore for q odd in [43]. Maximal subgroups of

G2(q), for all q, can also be attributed to Aschbacher [3]. Note that Kleidman has also

enumerated the maximal subgroups of G2(q) for q odd in [26] where he used a different

approach to Migliore’s and in addition described the maximal subgroups of the almost

simple groups with socle G2(q) (q odd). Petrov and Tchakerian [47] listed the maximal

subgroups of 2G2(q), q = 32m+1, with the same having been done by Levchuk and

Nuzhin [30] earlier and independently. Note that [26], applying the methods used to

analyse G2(q), q odd, also provides an answer for the case of 2G2(q), but extended to

the almost simple groups. The list of maximals in 3D4(q) was determined by Kleidman

[27] (almost simple groups inclusive). The list for F4(2) (and the one for F4(2) : 2) is

due to Norton and Wilson [46]. The maximal subgroups of E6(2) (and Aut(E6(2)))

were determined by Kleidman and Wilson [29], and of 2F4(2
2m+1) by Malle [40]. We

mention that [4] and [39] are works on the maximal subgroups of E6(q) and F4(q),

respectively, but both have some unresolved cases of candidate maximal subgroups.

These are works of Aschbacher and Magaard, respectively.

Coming up to more recent years, the maximal subgroups of E7(2) were established

by Ballantyne, Bates and Rowley [9] in 2015 and although the original result has

been known for many years, it wasn’t until 2018 that the classification of the maximal

subgroups of 2E6(2) (and its automorphism groups) appeared in [52]. Craven [13] has

completely classified the maximal subgroups of every almost simple group with socle

F4(q), E6(q) or 2E6(q), along with correcting an error in [40] regarding the maximal

subgroups of 2F4(8). A major contribution to classifying the maximal subgroups of

E7(q) has been made by Craven [14] also.

Although maximal subgroups of all of the exceptional groups of Lie type have

not yet been classified, this is a subject that has been extensively studied by various

researchers, notably Liebeck and Seitz. The advances made reduce the work on finding

the maximal subgroups of a finite exceptional group of Lie type to considering a finite

list of almost simple groups. We state what we mean exactly by this as Theorem 1.1.

11

This is a result of [35] and one may look to this survey for a map of how the result

came about.

In the following theorem, G denotes an adjoint simple algebraic exceptional group

of Lie-type over Fq and σ a standard Frobenius homomorphism of G. It will be more

clear what G and σ are in the next chapter when we briefly discuss algebraic group

theory.

Theorem 1.1. Let H be a maximal subgroup of the finite exceptional group Gσ over

Fq, q = pa where p is a prime. Then one of the following holds:

(i) H = Mσ where M is a maximal closed σ-stable subgroup of positive dimension

in G; the possibilities are as follows;

(a) Both M and H are parabolic subgroups;

(b) M is a reductive group of maximal rank. The possibilities for M are deter-

mined in [33].

(c) G = E7, p > 2 and H = (22 × Ω+
8 (q).22).Sym(3) or 3D4(q).3;

(d) G = E8, p > 5 and H = PGL2(q)× Sym(5);

(e) M is as in Table 1 of [35], and H = Mσ as in Table 3 of [35].

(ii) H is of the same type as G;

(iii) H is an exotic local subgroup (see [15]);

(iv) G is of type E8, p > 5 and H ∼ (Alt(5)× Alt(6)).22;

(v) F ∗(H) = H0 is simple, and not in Lie(p): the possibilities for H0 are given up

to isomorphism by [36];

(vi) F ∗(H) = H(q0) is simple and in Lie(p); moreover rk(H(q0)) ≤ 1
2
rk(G), and one

of the following holds:

(a) q0 ≤ 9;

(b) H(q0) ∼= A2(16) or 2A2(16);

(c) q0 ≤ (2, p − 1)u(G) and H(q0) ∼= A1(q0), 2B2(q0) or 2G2(q0), where the

values of u(G) for each type of exceptional group are as follows:

G G2 F4 E6 E7 E8

u(G) 12 68 124 388 1312

12 CHAPTER 1. INTRODUCTION

In cases (i)–(iv), H is determined up to Gσ-conjugacy.

For the group Gσ, Theorem 1.1(v),(vi) will give a list of almost simple groups so

that if H is a maximal subgroup of Gσ, not given by Theorem 1.1(i)–(iv), then H can

only be isomorphic to a group in this list. Therefore achieving the classification of the

maximal subgroups of Gσ, is a matter of going through the list and checking if a group

in it can be maximal or not.

This is indeed how the maximal subgroups of E7(2) were determined. Of course,

if one were to pick finite exceptional groups with incomplete classifications one by

one, make a list of possible maximal subgroups and work their way through it, then

they’d never finish. A contrasting approach to the classification problem is adopted

by Craven [11]: Theorem 1.1(v) lists groups H with F ∗(H) ∼= Alt(n), 5 ≤ n ≤ 18 as

being possible maximal subgroups, [11] eliminates these as possibilities in almost all

cases.

The only finite simple group of Lie type defined over GF(2) that we have not yet

mentioned with regards to its maximal subgroups is E8(2). However, after around 8

years since the project was taken on, the classification of the maximal subgroups of

E8(2) is finally near completion. This is due to efforts of Aubad, Ballantyne, Javed,

McGaw, Neuhaus, Rowley and Ward and the unpublished paper [7] in the works is

hoped to see the light of day before long. This thesis provides details of the latest

work done on the classification problem.

For E8(2), Theorem 1.1(v),(vi) generates a list of 75 groups (after eliminations of

certain alternating groups afforded by [11]) that simple maximal subgroups of E8(2)

could be isomorphic to; of course automorphic extensions of these 75 groups are also

candidates for maximal subgroups. Seventy of the cases have been laid to rest, [7], [42],

[45], with the 5 unsettled ones being L2(64), L2(16), L2(8), L3(4) and L3(3). Theorem

1.1(v) gives rise to L3(3). In Theorem 1.1(vi)(a), rk(H(q0)) ≤ 1
2
rk(G) = 4 and q0 ≤ 9

means that A1(8) = L2(8) and A2(4) = L3(4) are indeed among the possibilities for

H(q0). In Theorem 1.1(vi)(c), q0 ≤ 1312 and H(q0) ∼= A1(q0) implies that L2(16) and

L2(64) are also among the possibilities.

We now give the list of some of the maximal subgroups of E8(2). These either arise

from Theorem 1.1(i)-(iv), or are the product of work done by people involved in the

project, other than the author of this thesis.

13

[278] : Ω+
14(2) [298] : (Sym(3)× L7(2))

[2106] : (Sym(3)× L3(2)× L5(2)) [2104] : (Alt(8)× L5(2))

[297] : (L3(2)× Ω+
10(2)) [283] : (Sym(3)× E6(2))

[292] : L8(2) [257] : E7(2)

Ω+
16(2) Sym(3)× E7(2)

L9(2) : 2 3 · U9(2) : 2

(L3(2)× E6(2)) : 2 3 · (U3(2)× 2E6(2)) : Sym(3)

(L5(2))2.4 (U5(2))2.4

SU5(4).4 PGU5(4).4

(Ω+
8 (2))2.(Sym(3)× 2) Ω+

8 (4).(Sym(3)× 2)

(3D4(2))2.6 3D4(4).6

(L3(2))4.GL2(3) [32].(U3(2))4.[32].GL2(3)

(U3(4))2.8 U3(16).8

38.(2.Ω+
8 (2).2) 54.((4 ∗ 21+4).Alt(6).2)

74.(2.(3× U4(2))) 112.(5× SL2(5))

132.(12 ∗GL2(3)) 312.(5× SL2(5))

151.30 331.30

L3(5) : 2 PSp4(5)

U3(3) : 2× F4(2) L2(31) : 2

In Chapter 2, after briefly touching upon the topic of linear algebraic groups,

leading up to the definition of a finite group of Lie type, we will focus on our particular

case of E8(2). Our work heavily involves the computer algebra package Magma so

we will discuss how we set E8(2) up as a group of 248 × 248 matrices in Magma.

Information on the conjugacy classes of involutions and the semisimple elements of

E8(2) plays a crucial role in calculating complete centralisers of elements and is also

important in other ways; it will be provided in the chapter. Most importantly, this

chapter will contain the main tool used to rule out a group as being maximal in E8(2).

This is a result from [12], and a result in [37] will tell us in which situations we can

immediately use it.

Chapters 3, 4 and 5 are allotted to the groups L2(64), L2(16) and L2(8), respec-

tively. We will determine that L2(64) and L2(16) (and their extensions) cannot be

maximal in E8(2). It is yet to be established whether L2(8) can be maximal in E8(2),

14 CHAPTER 1. INTRODUCTION

however substantial progress has been made. Not all the progress made will make its

way into Chapter 5 though. The work done in these chapters is a continuation of the

work done by Neuhaus [45] on the groups L2(128) and L2(32), hence these chapters

share the same basic notions. However as the size of the group decreases, the problem

becomes more difficult and newer methods need to be developed. The notation will

mostly remain consistent across the three chapters.

The groups L3(4) and L3(3) are collectively dealt in Chapter 6. This is because

these groups will share the subgroup that is built up on to construct them inside E8(2).

We will see that no group isomorphic to L3(4) or an automorphic extension of L3(4)

can be maximal in E8(2). Usually it is said of groups arising from Theorem 1.1(v),(vi)

that they cannot be maximal in E8(2). So it will be fascinating to see L3(3) defying

the norm. Chapter 6 will see us construct maximal subgroups of E8(2) isomorphic to

L3(3).

This thesis comes with two appendices. Appendix A contains programs that are

used in Chapters 3, 4 and 5. Appendix B contains information from [45] on the

possible embeddings in E8(2) of the groups under scrutiny in this thesis, see Chapter

2 for more.

Chapter 2

Background and Preliminaries

2.1 Linear Algebraic Groups

In this section we will briefly discuss algebraic groups G, state basic notions surround-

ing them, define what it means for G to be reductive or semisimple, say what the

set of roots of G is, discuss the classification of semisimple algebraic groups, look at

standard Frobenius homomorphisms and finally define finite groups of Lie type. The

main source of the material in this section is [41] with both it and [24] being excellent

books for a more detailed account.

Let k be an algebraically closed field of arbitrary characteristic. A linear algebraic

group is an affine algebraic variety (so a subset of kn, n > 0) such that the group

operations are morphisms of varieties. We have GLn(k) as an example of an algebraic

group since it can be identified with the closed (with respect to the Zariski topology)

subset {(A, y) ∈ kn×n × k : detA · y = 1} with componentwise multiplication, via

A 7→ (A, detA−1), A ∈ GLn(k). Multiplication and inversion can be seen to be

polynomial maps. Any closed subgroup of GLn(k) will be a linear algebraic group

and in fact the converse is a well-known theorem: Any linear algebraic group can be

embedded as a closed subgroup into GLn(k).

We give two more examples of linear algebraic groups that will feature later. We

denote by Ga the additive group (k,+) of k defined by the zero ideal; addition is

given by a polynomial. We denote by Gm the multiplicative group (k×, ·) of k; this

can be identified with the algebraic set {(x, y) ∈ k2 : xy = 1} where multiplication is

componentwise and again given by polynomials. Note that here the coordinate ring

15

16 CHAPTER 2. BACKGROUND AND PRELIMINARIES

is k[X, Y]/(XY − 1) ∼= k[X,X−1] and now the inverse ((x, y)−1 7→ (y, x)) can also be

seen to be given by a polynomial.

For the rest of this section, G will always denote a linear algebraic group. We now

find out what it means for G to be unipotent. It is true that for any embedding ρ

of G into GL(V), V an n-dimensional vector space over k, and for any g ∈ G, there

exist unique gs, gu ∈ G such that g = gsgu = gugs, where ρ(gs) is semisimple (i.e. a

diagonalisable endomorphism of V) and ρ(gu) is unipotent (i.e. some power of ρ(gu)−1

is 0). The element g ∈ G is called semisimple if g = gs and unipotent if g = gu. We

denote by Gu, the set of all the unipotent elements of G. If G consists entirely of

unipotent elements then we say that G is a unipotent group. We remark that over

k = Fp, unipotent elements are p-elements. This follows from the fact that over a field

of positive characteristic p, u, an endomorphism of V , is unipotent if and only if it

has p-power order (0 = up
i − 1 = (u− 1)p

i
). It is also true that if G is unipotent then

it can be embedded into the group of upper unitriangular matrices. It follows that a

unipotent linear algebraic group is nilpotent, hence soluble.

The group G is called connected if it cannot be decomposed as a disjoint union

of two non-empty closed subsets. We are finally in a position to see what it means

for a group G to be semisimple or reductive. We denote by R(G) the maximal closed

connected soluble normal subgroup of G; this is called the radical of G. It is true that

if a linear algebraic group is connected and soluble then the set of all its unipotent

elements is a closed connected normal subgroup. Hence R(G)u, the set of unipotent

elements of R(G), is a normal connected unipotent subgroup of R(G). We observed

above that a unipotent group is soluble. Therefore, any closed connected normal

unipotent subgroup of G is contained in R(G) and hence in R(G)u. We get that

R(G)u is the maximal closed connected normal unipotent subgroup of G, the so-called

unipotent radical of G.

Remark 2.1.1. In the case where k = Fp, the unipotent radical is the largest connected

normal subgroup consisting entirely of p-elements, so the analogue of the maximal

normal p-subgroup Op(G) for a finite group G.

A linear algebraic group G is called reductive if R(G)u = 1. It is called semisimple

if it is connected and R(G) = 1. We get that a semisimple group is connected and

2.1. LINEAR ALGEBRAIC GROUPS 17

reductive. Semisimple groups can be classified. To comment on the structure of

semisimple groups, we first familiarise ourselves with some more notions.

A linear algebraic group is called a torus if it is isomorphic to a direct product

Gm × . . .×Gm, that is, to a group of diagonal invertible matrices. A subtorus T ≤ G

is a maximal torus of G if it is maximal among subtori with respect to inclusion. It is

true that all maximal tori of G are conjugate.

A character of G is a morphism of algebraic groups χ : G → Gm. The set of

characters of G is denoted by X(G). Note that it can naturally be considered as a

subset of k[G].

The Lie algebra of G, Lie(G), is the space of left-invariant derivations of k[G]. An

important use of the Lie algebra is that it defines a natural rational representation

G → GL(Lie(G)), the so-called adjoint representation of G. We do not go into the

details of defining the action of G on Lie(G).

It turns out that the best way to investigate reductive groups is via their adjoint

action on the Lie algebra. Let T ≤ G be a maximal torus and write g := Lie(G). For

χ ∈ X(T), consider the intersection of eigenspaces, gχ = {v ∈ g : t·v = χ(t)v for all t ∈

T}. The set of non-zero characters with non-zero eigenspace, Φ(G) := {χ ∈ X(T) :

χ 6= 0, gχ 6= 0} is called the set of roots of G with respect to T .

From now on let G be a connected reductive group. For each α ∈ Φ(G) there

exists a morphism of algebraic groups uα : Ga → G, which induces an isomorphism

onto uα(Ga) such that tuα(c)t−1 = uα(α(t)c), for all t ∈ T, c ∈ k. Uα := im(uα) is

the unique one-dimensional connected unipotent subgroup of G normalized by T with

Lie(Uα) = gα and is known as the root subgroup of G (with respect to T) associated

to the root α. It is true that G = 〈T, Uα : α ∈ Φ(G)〉.

W := NG(T)/CG(T) is called the Weyl group of G with respect to T . It can be

shown that W stabilises Φ(G). The theory can be further developed to see that Φ(G)

is an abstract root system but abstract root systems can be classified. A crucial notion

is that of a base: For an abstract root system Φ in Euclidean space, E, a subset ∆ ⊆ Φ

is called a base of Φ if it is a vector space basis of E and any β ∈ Φ is an integral

linear combination of elements of ∆ with coefficients either all negative or all positive.

The roots in ∆ are then called simple. For a root system, one can define its Dynkin

diagram, the underlying graph of which has one node for each element of ∆. A root

18 CHAPTER 2. BACKGROUND AND PRELIMINARIES

system is called indecomposable if its base cannot be partitioned in a certain way and

it possesses this property if and only if its Dynkin diagram is connected. A semisimple

algebraic group is called simple if it has no non-trivial proper closed connected normal

subgroups. It can be shown that simple algebraic groups have indecomposable root

systems (and conversely). Thus, as a first step in the determination of simple groups

one needs a classification of indecomposable root systems: Up to isomorphism, an

indecomposable root system is one of a total of nine types (see e.g. Chapter III in [23]

for an excellent account on root systems and a classification).

The groups with root system of type An, Bn, Cn or Dn are called groups of classical

type; the remaining simple groups are called groups of exceptional type. It should

be noted that there exist non-isomorphic simple algebraic groups having the same

root system, but not to say that the classification of semisimple algebraic groups is

incomplete.

We now come to defining a finite group of Lie type. Let k = Fq, where q = pr. The

map Fq : k → k, t 7→ tq, is a field automorphism of k which fixes Fq pointwise. Letting

Fq act on the matrix entries, this induces a group homomorphism Fq : GLn(k) →

GLn(k), (aij) 7→ (aqij) with finite fixed point group GLn(k)Fq := {g ∈ GLn(k) :

Fq(g) = g} = GLn(Fq), and Fq is called the standard Frobenius map of GLn(k) with

respect to Fq. Standard Frobenius maps can be induced by other automorphisms of k.

Let F : GLn(k)→ GLn(k), (aij) 7→ (aqij)
−tr. Thus F is the composite of the previous

Fq with the map sending a matrix to the transpose of its inverse. These two maps

commute and F 2 : GLn(k) → GLn(k), (aij) 7→ (aq
2

ij), is the standard Frobenius map

Fq2 with respect to Fq2 . Here the fixed point group GLn(k)F ≤ GLn(k)Fq2 = GLn(q2)

is the general unitary group over Fq2 . The map F is an example of a Steinberg

endomorphism: An endomorphism σ : G→ G of a linear algebraic group G such that

for some m ≥ 1 the power σm : G → G is the Frobenius morphism with respect to

some Fpa-structure of G is called a Steinberg endomorphism of G. We write Gσ for

the group of fixed points of σ on G.

Finally, we have the following: Let G be a semisimple algebraic group, σ : G→ G

a Steinberg endomorphism, then the finite group of fixed points Gσ is called a finite

group of Lie type. The Gσ we are interested in is E8(2). To see what the notions

behind algebraic groups translate to in the finite case, one may refer to Part III of

2.2. WORKING WITH E8(2) 19

[41].

2.2 Working with E8(2)

2.2.1 E8(2) setup

Our work goes hand in hand with performing computations in Magma. In order

to exploit a result in [12] (see Proposition 2.2.3), we would want information on how

subgroups of E8(2) act on its 248-dimensional adjoint module, which henceforth will be

denoted by V248. Therefore, we start by constructing E8(2) as a subgroup of GL248(2)

using its adjoint representation. First note that if ∆ is a base of the root system, Φ,

of type E8 then E8(2) is generated by the root subgroups Uα, U−α where α ∈ ∆.

As the first step in the construction, we have Magma produce E8(2) as an object

in the “GrpLie” category:

H:=GroupOfLieType("E8",GF(2));

The command Roots(H); would then give us the ordered set of roots in Φ, with the

first 8 of them being the simple roots (forming a base), the first 120 being the positive

ones and the last 120 being the negative. The ordering is first by height and then by

lexicographic order with respect to the labelling of the simple roots. Therefore, if α is

the ith root then −α will be the (120 + i)th root. Let α be the root labelled by some

i ∈ {1, . . . , 240}, then in order to construct the group Uα we need a generator for it.

This will be given by elt<H|<i,1>>. We now continue with the construction.

//We will require the natural matrix representation,

//the adjoint representation.

f:=AdjointRepresentation(H);

Q:=Codomain(f); //In this case Q will be GL(248,2);

//Let’s get generators for H by taking elements corresponding to the

//simple roots and their negatives.

Hgens:=[];

20 CHAPTER 2. BACKGROUND AND PRELIMINARIES

for i:=1 to 8 do

Append(~Hgens,elt<H|<i,1>>);

end for;

for i:=1 to 8 do

Append(~Hgens,elt<H|<120+i,1>>);

end for;

//Now we map them into the matrix group.

Ggens:=[];

for h in Hgens do

Append(~Ggens,f(h));

end for;

//And now we can construct E_8(2) as a subgroup of Q.

G:=sub<Q|Ggens>;

Note that going forward, Q will always be GL(248,2) wherever it appears. This

construction of G ∼= E8(2), G ≤ GL248(2) will be used for the majority of our compu-

tations. From [16],

|G| = 2120.313.55.74.112.132.172.19.312.41.43.73.127.151.241.331.

This is an enormous size and it is desirable to work in smaller subgroups of G whose

structure would also be better known. A natural example of subgroups of G are the

standard parabolic subgroups. These are readily constructed using appropriate root

subgroups and the structure of the Levi complements can be read off from the E8

Dynkin diagram. Constructing certain standard parabolic subgroups marks the start

of the computations involved in Chapters 3, 4 and 5 so more on parabolic subgroups

can be found there.

Another example of subgroups of G that we will be working with are centralisers of

its elements. Structures of centralisers of certain elements of E8(2) are known to us and

given in the next subsection. A procedure, named FindCent, to calculate centralisers

2.2. WORKING WITH E8(2) 21

of elements of E8(2) was developed by Ballantyne and Rowley and can be found in

[42]. It builds up the centraliser of an element g ∈ G by piecing together centralisers

of g found in small enough subgroups of G. The order of CG(g) needs to be checked

against the actual order given in the next subsection to make sure all of it has been

produced. This procedure will be making appearances in later chapters. Note that

FindCent as written needs a subgroup H ≤ G conjugate to CG(g) before it can be

run. Note that this isn’t necessary as FinCent can be modified to construct CG(g)

without H being available.

2.2.2 Elements of E8(2)

We now give information on the conjugacy classes of involutions and semisimple ele-

ments of E8(2). The importance of this information has been hinted at in the previous

subsection and will become more apparent as we progress.

Proposition 2.2.1. With G ∼= E8(2), let t be an involution in G. Also let U be

the unipotent radical of CG(t) having a complement L (so CG(t) = UL). Then the

possibilities for t are as follows:

(i) If t ∈ 2A, then dim(CV248(t)) = 190, U ∼= 21+56 and L ∼= E7(2),

(ii) If t ∈ 2B, then dim(CV248(t)) = 156, U ∼ [278] and L ∼= Sp12(2),

(iii) If t ∈ 2C, then dim(CV248(t)) = 138, U ∼ [281] and L ∼= Sym(3)× F4(2),

(iv) If t ∈ 2D, then dim(CV248(t)) = 128, U ∼ [284] and L ∼= Sp8(2).

Proof. See [6] for the shape of CG(t). The dimension of CV248(t) can be calculated

directly in Magma by asking for a random involution, t, in G ≤ GL248(2), then using

CentraliserOfInvolution to get a group centralising t, then using LMGFactoredOrder

on this group to see which of the 4 possibilities it matches up with and then using

Dimension(Eigenspace(t,1)).

The semisimple elements of G ∼= E8(2) have been investigated in [8], the main result

being Theorem 2.2.2. The Lübeck number associated to a set of classes identifies it to

a set in [38], where much of the data was determined.

22 CHAPTER 2. BACKGROUND AND PRELIMINARIES

Theorem 2.2.2. The semisimple conjugacy classes of G, their centraliser structures,

dimensions of their fixed spaces on V248, together with power maps and Lübeck numbers

are displayed in Table 2.1.

2.2. WORKING WITH E8(2) 23

C
on

ju
ga

cy
C

la
ss

L
ü

b
ec

k
N

u
m

b
er

C
G

(x
)

|C
G

(x
)|

d
im

(C
V
2
4
8
(x

))
P

ow
er

s
1A

1
E

8
(2

)
|E

8
(2

)|
24

8
-

3A
29

4
3
×
E

7
(2

)
26

3
·3

1
2
·5

2
·7

3
·1

1
·1

3
·1

7
·1

9
·3

1
·4

3
·7

3
·1

27
13

4
-

3B
37

6
3
×

Ω
− 1
4
(2

)
24

2
·3

1
0
·5

3
·7

2
·1

1
·1

3
·1

7
·3

1
·4

3
92

-
3C

14
7

3.
(2
E

6
(2

)
×
U
3
(2

))
.3

23
9
·3

1
3
·5

2
·7

2
·1

1
·1

3
·1

7
·1

9
86

-
3D

25
8

3
×
U
9
(2

)
23

6
·3

1
2
·5

2
·7
·1

1
·1

7
·1

9
·4

3
80

-
5A

48
0

5
×

Ω
− 1
2
(2

)
23

0
·3

6
·5

4
·7
·1

1
·1

3
·1

7
·3

1
68

-
5B

24
7

S
U
5
(4

)
22

0
·3

2
·5

5
·1

3
·1

7
·4

1
48

-
7A

44
1

7
×
E

6
(2

)
23

6
·3

6
·5

2
·7

4
·1

3
·1

7
·3

1
·7

3
80

-
7B

51
6

7
×
L
3
(2

)
×

3
D

4
(2

)
21

5
·3

5
·7

4
·1

3
38

-
9A

56
0

9
×

Ω
− 1
0
(2

)
22

0
·3

8
·5

2
·7
·1

1
·1

7
48

3C
9B

65
6

9
×

S
y
m

(3
)
×

3
D

4
(2

)
21

3
·3

7
·7

2
·1

3
34

3C
9C

58
0

9
×

S
y
m

(3
)
×
U
5
(2

)
21

1
·3

8
·5
·1

1
30

3C
9D

36
6

9
×

S
y
m

(3
)
×
U
3
(8

)
21

0
·3

7
·7
·1

9
28

3C
11
A

67
9

11
×
U
5
(2

)
21

0
·3

5
·5
·1

12
28

-
13
A

71
2

13
×

3
D

4
(2

)
21

2
·3

4
·7

2
·1

32
32

-
13
B

70
9

13
×
U
3
(4

)
26
·3
·5

2
·1

32
20

-
15
A

54
0

15
×

Ω
+ 1
0
(2

)
22

0
·3

6
·5

3
·7
·1

7
·3

1
48

3B
,5

A
15
B

63
6

5
×

32
:

2
×

Ω
− 8

(2
)

21
3
·3

6
·5

2
·7
·1

7
34

3A
,5

A
15
C

68
6

15
×
U
5
(2

)
21

0
·3

6
·5

2
·1

1
28

3D
,5

A
15
D

62
1

5
×
G
U
3
(2

)
×
L
4
(2

)
29
·3

6
·5

2
·7

26
3C

,5
A

15
E

60
0

15
×
L
2
(4

)
×
U
4
(2

)
28
·3

6
·5

3
24

3B
,5

A
15
F

70
6

15
×
U
3
(4

)
26
·3

2
·5

3
·1

3
20

3B
,5

B
15
G

69
5

15
×
L
2
(1

6)
24
·3

2
·5

2
·1

7
16

3D
,5

B
17
A
B

73
8

17
×

Ω
− 8

(2
)

21
2
·3

4
·5
·7
·1

72
32

-
17
C
D

69
3

17
×
L
2
(1

6)
24
·3
·5
·1

72
16

-
19
A

82
3

19
×

3·
P
G
U
3
(2

)
23
·3

4
·1

9
14

-

T
ab

le
2.

1:
C

on
ju

ga
cy

cl
as

se
s

of
se

m
is

im
p
le

el
em

en
ts

of
E

8
(2

).

24 CHAPTER 2. BACKGROUND AND PRELIMINARIES

C
on

ju
ga

cy
C

la
ss

L
ü
b

ec
k

N
u
m

b
er

C
G

(x
)

|C
G

(x
)|

d
im

(C
V
2
4
8
(x

))
P

ow
er

s
21
A

61
0

21
×
L
6
(2

)
21

5
·3

5
·5
·7

3
·3

1
38

3A
,7

A
21
B

72
0

21
×

3
D

4
(2

)
21

2
·3

5
·7

3
·1

3
32

3A
,7

B
21
C

72
8

21
×

Ω
− 8

(2
)

21
2
·3

5
·5
·7

2
·1

7
32

3B
,7

A
21
D

46
9

7
×

3.
(3

2
:
Q

8
×
L
3
(4

))
:

3
29
·3

6
·5
·7

2
26

3C
,7

A
21
E

59
4

21
×
L
3
(2

)
×
L
2
(8

)
26
·3

4
·7

3
20

3A
,7

B
21
F

69
7

7
×
L
3
(2

)
×

31
+
2

+
:

2A
lt

(4
)

26
·3

5
·7

2
20

3C
,7

B
21
G

76
0

21
×

3
×
L
2
(8

)
23
·3

4
·7

2
14

3B
,7

B
21
H

82
6

21
×

31
+
2

+
:

2A
lt

(4
)

23
·3

5
·7

14
3D

,7
B

31
A
B
C

67
2

31
×
L
5
(2

)
21

0
·3

2
·5
·7
·3

12
28

-
31
D

85
7

31
2

31
2

8
-

33
A
B

76
8

33
×
U
4
(2

)
26
·3

5
·5
·1

1
20

3D
,1

1A
33
C
D

74
8

11
×

S
y
m

(3
)
×

31
+
2

+
:

2A
lt

(4
)

24
·3

5
·1

1
16

3C
,1

1A
33
E

81
1

33
×

31
+
2

+
:

2A
lt

(4
)

23
·3

5
·1

1
14

3A
,1

1A

33
F

79
0

33
×

3
×

S
y
m

(3
)2

22
·3

4
·1

1
12

3B
,1

1A
35
A

77
8

35
×
U
4
(2

)
26
·3

4
·5

2
·7

20
5A

,7
A

39
A

76
2

13
×

S
y
m

(3
)
×
L
2
(8

)
24
·3

4
·7
·1

3
14

3A
,1

3A
39
B

82
0

13
×

31
+
2

+
:

2A
lt

(4
)

23
·3

4
·1

3
14

3C
,1

3A
39
C

87
2

19
5

3
·5
·1

3
8

3B
,1

3B
41
A
B

86
4

20
5

5
·4

1
8

-
43
A
B
C

83
7

12
9
×

S
y
m

(3
)

2
·3

2
·4

3
10

-
45
A

77
3

45
×
L
4
(2

)
26
·3

4
·5

2
·7

20
3C

,9
A

,5
A

,1
5D

45
B

79
8

45
×

3
×

A
lt

(5
)

22
·3

4
·5

2
12

3C
,9

A
,5

A
,1

5D
45
C

85
3

45
×

3
×

S
y
m

(3
)

2
·3

4
·5

10
3C

,9
C

,5
A

,1
5D

51
A
B

78
3

51
×
L
4
(2

)
26
·3

3
·5
·7
·1

7
20

3B
,1

7A
B

51
C
D

76
4

51
×

S
y
m

(3
)
×

A
lt

(5
)

23
·3

3
·5
·1

7
14

3A
,1

7A
B

51
E
F

83
2

17
×
G
U
3
(2

)
23
·3

4
·1

7
14

3C
,1

7A
B

51
G
H

87
0

25
5

3
·5
·1

7
8

3D
,1

7C
D

2.2. WORKING WITH E8(2) 25

C
on

ju
ga

cy
C

la
ss

L
ü
b

ec
k

N
u
m

b
er

C
G

(x
)

|C
G

(x
)|

d
im

(C
V
2
4
8
(x

))
P

ow
er

s
55
A

87
7

16
5

3
·5
·1

1
8

5A
,1

1A
57
A
B

82
3

19
×

3·
P
G
U
3
(2

)
23
·3

4
·1

9
14

3C
,1

9A
57
C

86
1

3
×

19
×

9
33
·1

9
8

3A
,1

9A
57
D
E

86
3

57
×

3
32
·1

9
8

3D
,1

9A
63
A
B
C

75
4

63
×

S
y
m

(3
)
×
L
3
(2

)
24
·3

4
·7

2
16

3C
,9

B
,7

B
,2

1F
63
D

80
2

63
×

A
lt

(5
)

22
·3

3
·5
·7

12
3C

,9
A

,7
A

,2
1D

63
E

84
3

63
×

7
×

S
y
m

(3
)

2
·3

3
·7

2
10

3C
,9

B
,7

A
,2

1D
63
F
G
H

84
9

63
×

3
×

S
y
m

(3
)

2
·3

4
·7

10
3C

,9
D

,7
B

,2
1F

65
A
B
C
D

80
0

65
×

A
lt

(5
)

22
·3
·5

2
·1

3
12

5B
,1

3B
65
E
F

85
8

13
×

52
52
·1

3
8

5A
,1

3B
73
A
B
C
D

81
4

73
×
L
3
(2

)
23
·3
·7
·7

3
14

-

85
A
B

80
4

85
×

S
y
m

(3
)2

22
·3

2
·5
·1

7
12

5A
,1

7A
B

85
C
D
E
F

87
0

25
5

3
·5
·1

7
8

5B
,1

7C
D

91
A
B
C

81
7

91
×
L
3
(2

)
23
·3
·7

2
·1

3
14

7B
,1

3A
91
D

86
5

91
×

7
72
·1

3
8

7A
,1

3A
93
A
B
C

80
8

93
×
L
3
(2

)
23
·3

2
·7
·3

1
14

3A
,3

1A
B

C
93
D
E
F

78
8

93
×

A
lt

(5
)

22
·3

2
·5
·3

1
12

3B
,3

1A
B

C
99
A
B

84
1

99
×

S
y
m

(3
)

2
·3

3
·1

1
10

3C
,9

C
,1

1A
,3

3C
D

99
C
D

86
7

99
×

3
33
·1

1
8

3C
,9

A
,1

1A
,3

3C
D

10
5A
B

82
9

35
×
G
U
3
(2

)
23
·3

4
·5
·7

14
3C

,5
A

,7
A

,1
5D

,2
1D

,3
5A

10
5C

79
4

10
5
×

S
y
m

(3
)2

22
·3

3
·5
·7

12
3B

,5
A

,7
A

,1
5A

,2
1C

,3
5A

10
5D

85
1

10
5
×

3
×

S
y
m

(3
)

2
·3

3
·5
·7

10
3A

,5
A

,7
A

,1
5B

,2
1A

,3
5A

11
7A
B
C

84
5

11
7
×

S
y
m

(3
)

2
·3

3
·1

3
10

3C
,9

B
,1

3A
,3

9B
11

9A
B

87
8

35
7

3
·7
·1

7
8

7A
,1

7A
B

12
7A
B
C
D
E
F
G
H
I

83
5

12
7
×

S
y
m

(3
)

2
·3
·1

27
10

-

26 CHAPTER 2. BACKGROUND AND PRELIMINARIES

C
on

ju
ga

cy
C

la
ss

L
ü

b
ec

k
N

u
m

b
er

C
G

(x
)

|C
G

(x
)|

d
im

(C
V
2
4
8
(x

))
P

ow
er

s
12

9A
B
C
D
E
F

83
7

12
9
×

S
y
m

(3
)

2
·3

2
·4

3
10

3D
,4

3A
B

C
12

9G
H
I

85
9

12
9
×

3
32
·4

3
8

3A
,4

3A
B

C
12

9J
K
L
M
N
O

85
9

12
9
×

3
32
·4

3
8

3B
,

43
A

B
C

15
1A
B
C
D
E

86
8

15
1

15
1

8
-

15
3A
B

87
9

15
3

32
·1

7
8

3C
,9

A
,1

7A
B

,5
1E

F
15

5A
B
C

87
6

46
5

3
·5
·3

1
8

5A
,3

1A
B

C
16

5A
B

87
7

16
5

3
·5
·1

1
8

3D
,5

A
,1

1A
,1

5C
,3

3A
B

,5
5A

17
1A
B
C
D
E
F

84
7

17
1
×

S
y
m

(3
)

2
·3

3
·1

9
10

3C
,9

D
,1

9A
,5

7A
B

19
5A
B
C
D

87
2

19
5

3
·5
·1

3
8

3B
,5

B
,1

3B
,1

5F
,3

9C
,6

5A
B

C
D

20
5A
B
C
D
E
F
G
H

86
4

20
5

5
·4

1
8

5B
,4

1A
B

21
7A
B
C
D
E
F

83
9

21
7
×

S
y
m

(3
)

2
·3
·7
·3

1
10

7A
,3

1A
B

C
21

9A
B
C
D

87
5

21
9

3
·7

3
8

3A
,7

3A
B

C
D

24
1A
B
C
D
E
F
G
H
I
J

86
6

24
1

24
1

8
-

25
5A
B
C
D

85
5

25
5
×

S
y
m

(3
)

2
·3

2
·5
·1

7
10

3A
,5

A
,1

5B
,1

7A
B

,5
1C

D
,8

5A
B

25
5E

F
86

0
25

5
×

3
32
·5
·1

7
8

3B
,5

A
,1

5A
,1

7A
B

,5
1A

B
,8

5A
B

25
5G
H
I
J
K
L
M
N

87
0

25
5

3
·5
·1

7
8

3D
,5

B
,1

5G
,1

7C
D

,5
1G

H
,8

5C
D

E
F

27
3A
B
C

87
3

27
3

3
·7
·1

3
8

3A
,7

B
,1

3A
,2

1B
,3

9A
,9

1A
B

C
31

5A
B

87
1

31
5

32
·5
·7

8
3C

,5
A

,7
A

,9
A

,1
5D

,2
1D

,3
5A

,4
5A

,6
3D

,1
05

A
B

33
1A
B
C
D
E
F
G
H
I
J
K

86
9

33
1

33
1

8
-

35
7A
B
C
D

87
8

35
7

3
·7
·1

7
8

3B
,7

A
,1

7A
B

,2
1C

,5
1A

B
,1

19
A

B
38

1A
B
C
D
E
F
G
H
I

87
4

38
1

3
·1

27
8

3A
,1

27
A

B
C

D
E

F
G

H
I

46
5A
B
C
D
E
F

87
6

46
5

3
·5
·3

1
8

3B
,5

A
,1

5A
,3

1A
B

C
,9

3D
E

F
,1

55
A

B
C

51
1A
B
C
D
E
F
G
H

86
2

51
1

7
·7

3
8

7A
,7

3A
B

C
D

65
1A
B
C
D
E
F

88
0

65
1

3
·7
·3

1
8

3A
,7

A
,2

1A
,3

1A
B

C
,9

3A
B

C
,2

17
A

B
C

D
E

F

2.2. WORKING WITH E8(2) 27

2.2.3 Embeddings and Determining Maximality

Our aim is to determine whether certain groups H can be isomorphic to maximal

subgroups in G ∼= E8(2). If H can’t be ruled out as being a subgroup of G using

group some theoretic properties, which is likely if the order of H is small, then a way

to proceed is by trying to construct copies of H in G and see if we are successful.

Knowing what fusion patterns are possible for an embedding of H in G would give us

a starting point when trying to construct H. For H isomorphic to L2(2
n), n = 3, 4, 6,

L3(4) or L3(3) the fusion patterns possible have been calculated in [45] and are given

in Appendix B. This was done by determining all the possible feasible decompositions

of H on V248. Note that by a feasible decomposition of H on V248, we mean a GF(2)H-

module V such that for every x ∈ H, there exists an element y ∈ G of the same order

as x, such that the Brauer character at y on V248 is equal to the Brauer character at

x on V .

Therefore to find all possible feasible decompositions, one would first need the

Brauer character values on V248 of semisimple classes of G. These have been calculated

for elements of order ≤ 57, see [45]. One would also need the Brauer character values

of all irreducible GF(2)H-modules of dimension ≤ 248, for H being any one of the

five aforementioned groups, these can be calculated in Magma using the commands

IrreducibleModules and BrauerCharacter. The Feasible Character Code in [45],

written by Neuhaus, then finds all possible sums of the irreducible Brauer characters

of H corresponding to feasible decompositions of H on V248. Given a possible feasible

decomposition, the corresponding fusion pattern can be written down.

Given a fusion pattern, one can go on to see if an embedding of H following it

exists. Following the construction of H, finding CV248(H) can possibly eliminate H as

being maximal in G (see Proposition 2.2.3).

Let G̃ be a simple, simply connected algebraic group of exceptional type over the

algebraic closure of Fp, p a prime, and L(G̃) its Lie algebra.

Proposition 2.2.3. If H is a finite subgroup of G̃ such that H centralises a line on

L(G̃)◦, then H is strongly imprimitive.

Proof. See [12, Propostion 4.5]

Let X denote the collection of maximal subgroups of positive dimension in G̃. We

28 CHAPTER 2. BACKGROUND AND PRELIMINARIES

have the following definition from [12].

Definition 2.2.4. If σ is a Frobenius endomorphism on G̃ and a subgroup H ≤ G̃

is contained in G = G̃σ, then H is called strongly imprimitive if H is contained in a

σ-stable, NAut+(G̃)(H)-stable member of X .

For us G̃ is the simple algebraic group of type E8, p is 2, and so L(G̃)◦ = L(G̃).

After having constructed a subgroup H of G̃σ
∼= E8(2), if we find that H fixes a non-

zero vector in V248 then H will fix the same vector in L(G̃) and thus, by Proposition

2.2.3, H will be contained in a σ-stable member, X, of X . Let H0 ≤ G̃σ be an

automorphic extension of H. Then since H0 ≤ Aut+(G̃) and X is NAut+(G̃)(H)-stable

and maximal in G̃, we have that H0 ≤ X.

Later we will attempt to construct subgroups H of G ∼= E8(2), with H ∼= L2(64),

L2(16), L2(8), L3(4) or L3(3). Given such a H, if we find that CV248(H) is non-

zero, we will know, by Proposition 2.2.3, that H and any automorphic extension

of H will not be maximal in G. Note that in order to find dim(CV248(H)), we run

Dimension(Fix(GModule(H))). However, constructing H is not always necessary to

see whether dim(CV248(H)) will be non-zero.

The following result is [37, Proposition 3.6] and is based on [34, Lemma 1.2]. It tells

us when we can immediately say, just by looking at a possible feasible decomposition

of H on V248, that if H (compatible with that feasible decomposition) existed as a

subgroup of G then it’d fix a non-zero vector of V248. This would then save us an

attempt at constructing H.

Lemma 2.2.5. Let S be a finite group and M a finite-dimensional kS-module, with

composition factors W1, . . . ,Wr, of which m are trivial. Set n =
∑

dim H1(S,Wi),

and assume H1(S, k) = {0}.

(i) If n < m then M contains a trivial submodule of dimension at least m-n,

(ii) If m = n and M contains no nonzero trivial submodule, then H1(S,M) = {0},

(iii) Suppose that m = n > 0, and that for each i we have H1(S,Wi) = {0} ⇐⇒

H1(S,W ∗
i) = {0}. Then M has a nonzero trivial submodule or quotient.

2.2. WORKING WITH E8(2) 29

Proof. See [37].

Keeping to the notation in the above lemma, if we’re in a situation where m = n,

we will proceed by checking if the Wi’s are self-dual. If so, then M would have a

nonzero trivial submodule (in which case S can’t be maximal in G by the Proposition

2.2.3) or quotient. But the dual of this quotient would be a (trivial) submodule of

V ∗248, see [1]. Since V248 is self-dual we again have that S cannot be maximal in G.

Chapter 3

L2(64)

3.1 Methodology

We need to establish whether L2(2
n) , where n ∈ {3, 4, 6}, can be maximal in G ∼=

E8(2) or not. Note that the cases n ∈ {5, 7} have been dealt with in [45]. We will

first need to find all copies of L2(2
n) up to conjugacy in E8(2). To do this we follow

the methodology in [45] which we explain here in more detail. We also write down a

few adjustments that we make and introduce a strategy that can be used to discard

numerous groups of order 2n, saving us on computations, since otherwise these groups

would need to be considered to see if they can be built up to copies of L2(2
n).

The methodology explained below is at the heart of dealing with L2(2
n) for every

n ∈ {3, 4, 6} and we will stick to it exactly for L2(64). The implementation in code

is given in A.1; the original version of this program can be found in [45]. Additional

strategies that we introduce in order to deal with L2(16) and L2(8) will be discussed

in the respective chapters.

We first have the following lemma on the structure of L2(2
n).

Lemma 3.1.1. Let H be a group isomorphic to L2(2
n), and S ∈ Syl2(H). Then S is

elementary abelian of order 2n, there exists an element x ∈ NH(S) of order 2n− 1 and

an involution t that inverts x such that NH(S) = 〈S, x〉 and H = 〈S, x, t〉. Furthermore

x acts irreducibly on S.

Proof. By [21, Lemma 15.1.1], S is elementary abelian of order 2n, NH(S) = 〈S, x〉 is a

Frobenius group, maximal in H, with x, an element of order 2n− 1, acting irreducibly

30

3.1. METHODOLOGY 31

on S. Then by [21, Theorem 2.7.7], NNH(S)(〈x〉) = 〈x〉. By [20, Theorem 1.3], NH(〈x〉)

is a dihedral group of order 2(2n − 1). Therefore there exists an involution t /∈ NH(S)

that inverts x. Since NH(S) is maximal, we have that H = 〈S, x, t〉.

The following theorem tells us where we can find p-groups and elements that nor-

malise them.

Theorem 3.1.2. (Borel-Tits Theorem). Let H be a simple linear algebraic group

defined over an algebraically closed field of characteristic p 6= 0. Let σ be a Frobenius

morphism on H and Hσ the fixed point group of σ. Let U be a non-identity p-subgroup

of Hσ. Then there exists a parabolic subgroup Pσ such that NHσ(U) ⊆ Pσ and U ⊆

Op(Pσ).

Let J ⊆ {1, . . . , 8} and PJ the standard parabolic subgroup of G associated to the

roots labelled by J . Then PJ = QJLJ , where QJ is the unipotent radical of PJ and

LJ the standard Levi complement. We make the following definition.

Definition 3.1.3. Given g ∈ LJ , we say that 〈g〉 (or g) is LJ -cuspidal if 〈g〉 is not

LJ-conjugate to a subgroup in any LI , I (J . Given an element g ∈ G that is LJ-

cuspidal for some J ⊆ {1, . . . , 8}, we say that 〈g〉 (or g) is a Levi-cuspidal subgroup

(or element) of G.

Going by the information in Lemma 3.1.1, in order to find all copies of L2(2
n) in

G, we first find all copies of S:〈x〉 in G, where S ∼= 2n and x is an element of order

2n − 1. By Theorem 3.1.2, we may search for the required groups S:〈x〉 in parabolic

subgroups of G.

So let P be a parabolic subgroup of G, given to us by Theorem 3.1.2, so that

S:〈x〉 ≤ P and S ≤ O2(P). But we are interested in the groups S:〈x〉 up to G-

conjugacy. So if there is a smaller parabolic subgroup, R, of G inside P , containing

a conjugate, xp for some p ∈ P , of x then we may conjugate S:〈x〉 into R whilst

conjugating S into O2(R). Note that Sylow 2-subgroups of any parabolic subgroup

of G are Sylow 2-subgroups of G and so O2(P) =
⋂

Syl2(P) ≤
⋂

Syl2(R) = O2(R).

Therefore, we indeed have that S
p ≤ O2(P)p = O2(P) ≤ O2(R).

Since we are interested in S:〈x〉 only up to G-conjugacy and parabolic subgroups

of G are just conjugates of the standard parabolic subgroups, PJ , J ⊆ {1, . . . , 8}, we

32 CHAPTER 3. L2(64)

need only search for the groups S:〈x〉 in the standard parabolic subgroups of G. In

fact, we need only search in those standard parabolic subgroups, PJ = QJLJ , which

contain elements x of order 2n − 1 that don’t have PJ -conjugates lying in any smaller

parabolic subgroups, R ≤ PJ of G. Such a PJ will contain an element x of order

2n − 1 so that 〈x〉 is not LJ -conjugate to a subgroup in any LI ≤ PI , I (J . Hence

the standard parabolic subgroups we search in are those that contain Levi-cuspidal

subgroups of G of order 2n − 1.

By Lemma 3.1.1 we know that x acts on S irreducibly. So given a standard

parabolic subgroup P containing a Levi-cuspidal element, x, of G, we must search

inside O2(P) for all elementary abelian subgroups, S, of order 2n that x acts on irre-

ducibly. Since O2(P) E P , x acts on it and so x also acts on O2(P)/Φ(O2(P)), where

Φ(O2(P)) is the Frattini subgroup of O2(P). Since O2(P)/Φ(O2(P)) is elementary

abelian we can use the command GModule to realise O2(P)/Φ(O2(P)) as a module on

which 〈x〉 acts.

Assume there exists such an S in O2(P) and let q : O2(P)→ O2(P)/Φ(O2(P)) be

the natural map. Since S is a subgroup of O2(P) on which x acts irreducibly, q(S) is

an irreducible 〈x〉-submodule of O2(P)/Φ(O2(P)). We also have that Φ(O2(P))∩S =

{s ∈ S : s = e} ≤ S and is stabilised by x but since x acts on S irreducibly we have

that Φ(O2(P)) ∩ S = {e} or S. Therefore q(S) is an n- or 0-dimensional irreducible

〈x〉-submodule of O2(P)/Φ(O2(P)). Hence we may search for the groups S in the

preimages of all the n-dimensional irreducible 〈x〉-submodules of O2(P)/Φ(O2(P)).

Assume q(S) is n-dimensional. Then since x acts irreducibly on S we have that

〈x〉 acts faithfully on q(S). If 〈x〉 doesn’t act faithfully on O2(P)/Φ(O2(P)) then it

won’t act faithfully on any submodules of O2(P)/Φ(O2(P)) and in this case we may

search for any groups S in Φ(O2(P)).

We input 〈O2(P), x〉, O2(P) and Φ(O2(P)) as the arguments of GModule. This

gives us O2(P)/Φ(O2(P)) as a 〈O2(P), x〉-module over GF(2). Let k be the dimension

of O2(P)/Φ(O2(P)) and ρ : 〈O2(P), x〉 → GLk(2) the representation corresponding

to the action of 〈O2(P), x〉 on O2(P)/Φ(O2(P)). The image of ρ is called the action

group of O2(P)/Φ(O2(P)) and acts faithfully on it; denote this by A.

Any element in 〈O2(P), x〉 is of the form oxi, o ∈ O2(P), i ∈ {1, . . . , 2n− 1}. Since

O2(P)/Φ(O2(P)) is abelian any o ∈ O2(P) acts trivially on O2(P)/Φ(O2(P)) and so

3.1. METHODOLOGY 33

ρ|〈x〉 : 〈x〉 → A is a surjection. Hence we have that |A| divides 2n− 1. If |A| < 2n− 1

then ρ|〈x〉 is not an injection and so there exists a non-identity element in 〈x〉 that

acts trivially on O2(P)/Φ(O2(P)) and therefore the action of 〈x〉 on O2(P)/Φ(O2(P))

is not faithful.

After using the GModule command, we calculate the action group ofO2(P)/Φ(O2(P))

using the ActionGroup command and check its order. If the order equals 2n − 1, we

think of O2(P)/Φ(O2(P)) as a 〈x〉-module and proceed by finding the preimages of all

its irreducible n-dimensional submodules.

We run DirectSumDecomposition on O2(P)/Φ(O2(P)), to get a decomposition

U ⊕ V 1
1 ⊕ . . . ⊕ V 1

n1
⊕ . . . ⊕ V m

1 ⊕ . . . ⊕ V m
nm , where U is a direct sum of irreducible

submodules of O2(P)/Φ(O2(P)) whose dimension isn’t n, and for i ∈ {1, . . . ,m} and

j, k ∈ {1, . . . , ni}, V i
j is an n-dimensional irreducible submodule of O2(P)/Φ(O2(P))

with V i
j
∼= V i

k ; here m,ni ∈ N. We stress here that the bigger the dimension of U is,

the better this will be for us. Denote V i
1 ⊕ . . .⊕ V i

ni
as V i. Let V be an n-dimensional

irreducible submodule of O2(P)/Φ(O2(P)) then V is isomorphic to one of V 1
1 , . . . , V

m
1 .

If V is isomorphic to V i
1 then V is a submodule of V i. Hence, the preimage of V will be

contained in the preimage of V i and so we consider the preimages of V i, i ∈ {1, . . . ,m}.

The preimages of V i, i ∈ {1, . . . ,m} are 2-groups smaller than O2(P) in which lie

the subgroups S that we seek. If Φ(O2(P)) is trivial then each of q−1(V i) is elementary

abelian and we add them to a set we call FinSub (see the program in A.1). Otherwise

we add them to a set we call SetSub2. We then run the process we ran on O2(P) on

all the groups in SetSub2 and we keep on repeating this until nothing more is added

to SetSub2.

If we ever come across a 2-group b for which the order of the action group of b/Φ(b)

is less than 2n − 1, we add it to a set we call ActnGpDiff.

It could also be that b is such that b/Φ(b) is a direct sum of irreducible n-

dimensional modules that are all isomorphic to each other, the order of the action

group of b/Φ(b) is 2n− 1 and Φ(b) is not trivial. In this case we would keep on adding

b to SetSub2, resulting in an infinite loop. To stop this from happening we add b to

a set we call BadSub instead.

Take a group b from BadSub, then b/Φ(b) decomposes into a direct sum of isomor-

phic irreducible n-dimensional modules, V1⊕ . . .⊕Vk for some k ∈ N. We now present

34 CHAPTER 3. L2(64)

a way of generating all irreducible submodules of b/Φ(b); the preimages of these will

contain the required groups S. Note that b itself is too big for us to search in directly

for any groups S.

Let V be an irreducible submodule of b/Φ(b), and v any non-zero vector in it, then

V = 〈v〉, but moreover we have that V = {xi.v : 1 ≤ i ≤ 2n − 1} ∪ {0}. This is

because |{xi.v : 1 ≤ i ≤ 2n − 1}| = 2n − 1, and we know this since we check that

the dimension of the space in b/Φ(b) fixed by a non-identity element of 〈x〉 is 0 (see

the identifier, bool, in A.1). Note that this check was not needed in [45] since there,

|{xi.v : 1 ≤ i ≤ 2n − 1}| = 2n − 1 is implied by the fact that 2n − 1 is always prime.

We aim to collect one non-zero vector from every irreducible submodule of b/Φ(b) so

that we are able to generate all irreducible submodules.

Given an arbitrary vector in b/Φ(b) then either its projection to V1 is the zero vector

or it isn’t. Assume first that it isn’t, fix a non-zero vector v1 ∈ V1 and collect all vectors

v1 +w,w ∈ V2⊕ . . .⊕Vk. We know that V1 = {xi.v1 : 1 ≤ i ≤ 2n− 1}∪ {0} and so we

don’t need to consider any vector xi.v1 +w, i 6= 2n− 1 since xi.v1 +w = xi.(v1 +x−iw)

and xi.v1 + w generates an irreducible submodule iff v1 + x−iw generates the same

irreducible submodule. We are already collecting v1 +x−iw, there is no need to collect

xi.v1 + w as well. Now assume that projection to V1 is the zero vector, then the

projection to V2 is either the zero vector or it isn’t; we proceed as above. What we

have done is that for i ∈ {1, . . . , k} we have fixed a non-zero vector vi ∈ Vi and

collected all vector vi + w,w ∈ Vi+1 ⊕ . . . ⊕ Vk. Given any irreducible submodule of

b/Φ(b) then this can be generated by some vector among the ones we have collected.

We pull these vectors back into b and these elements of b that we get can be used

to generate the preimages of the irreducible submodules of b/Φ(b). Given one such

preimage H, we now need a subgroup A ≤ Φ(b) so that H/A is elementary abelian.

We could then run the process we ran on O2(P)/Φ(O2(P)) on H/A and break H up

into smaller pieces in which we can search for the groups S. We could of course choose

A to be Φ(H), however the way that we define A instead will allow us to rule out some

of the preimages H as containing groups S.

We let C be the commutator subgroup [b,Φ(b)], we then find the Frattini subgroup

of Φ(b)/C and take A to be the preimage of Φ(Φ(b)/C) under the natural map Φ(b)→

Φ(b)/C. Since C ≤ A, we get that Φ(b)/A ≤ Z(b/A). Moreover, since Φ(Φ(b)) ≤ A,

3.1. METHODOLOGY 35

we get that Φ(b)/A is elementary abelian as the homomorphic image of the elementary

abelian group Φ(b)/Φ(Φ(b)).

Now if H is the preimage of a non-zero irreducible submodule of b/Φ(b) then

H = Φ(b) ∪̇ x−1txΦ(b) ∪̇ x−2tx2Φ(b) ∪̇ . . . ∪̇ tΦ(b), where t is a preimage of a non-zero

vector lying in that irreducible submodule. Assume that there exists an S insideH that

intersects trivially with Φ(b), then we have that S = {e, x−1txf1,x−2tx2f2, . . . , tf2n−1},

for some f1, . . . , f2n−1 ∈ Φ(b). Since S and Φ(b)/A are elementary abelian and

Φ(b)/A ≤ Z(b/A), we have that, for any i, j ∈ {1, . . . , 2n − 1}, x−it2xi ∈ A and

the images of x−itxi and x−jtxj in H/A commute.

We have seen that if there exists an S that embeds into H/Φ(b) then it must be

that t2 ∈ A and H/A is elementary abelian. Therefore, going through the vectors

we collected earlier, and calculating a preimage of each of these vectors, we may keep

only those preimages, t, that square into A. These preimages are kept in a set called

SetKeep and are used to generate subgroups H. Note that we are able to disregard a

substantial number of vectors whose preimages don’t square into A, making it practical

to proceed and perform calculations on the groups H/A. Hence working with H/A is

better than having, more naturally, considered all elementary abelian groups, H/Φ(H).

We check that SetKeep is always non-empty (see identifiers, bool2 and SetKeepZero

in A.1) since otherwise we will not pick up any groups S in b if they all lie in Φ(b) .

SetKeep will indeed always be non-empty in the L2(64) case.

We will see what the possibilities for O2(P) are in Section 3.2. To summarise, the

program in A.1 starts by taking O2(P) as the sole element of SetSub2. It then pro-

ceeds to break up O2(P) into preimages of the direct sums of isomorphic irreducible 6-

dimensional 〈x〉-submodules of O2(P)/Φ(O2(P)) and SetSub2 is reset as empty. Each

of the preimages calculated is either added to SetSub2, BadSub or FinSub. Compu-

tationally, we will see that an O2(P) never goes into ActnGpDiff and that, at this

stage, all preimages get added to SetSub2. The process of breaking up the groups

in SetSub2 and resetting SetSub2 is repeated until nothing more can be added to

an empty SetSub2. Of course, along the way appropriate groups have been added to

BadSub, FinSub and ActnGpDiff.

For every b in BadSub, the program then calculates the group A, as defined above,

and preimages H (labelled as Sub4aa in A.1) of certain irreducible 6-dimensional

36 CHAPTER 3. L2(64)

〈x〉-submodules of b/Φ(b). Preimages of certain submodules of H/A for every H are

then added to SetSub2 or FinSub. SetSub2 is dealt with as before, until empty, and

appropriate groups get added to BadSetNew, FinSub and ActnGpDiff along the way.

BadSub then gets reset as BadSetNew and BadSetNew as empty and the entire process

repeated, and so on, until an empty BadSetNew is returned.

The program ends and returns non-empty sets FinSub and ActnGpDiff that we

now turn our attention to.

For b in ActnGpDiff, 〈x〉 doesn’t act faithfully on b/Φ(b) and so, as mentioned

previously (for O2(P) if 〈x〉 doesn’t act faithfully on O2(P)/Φ(O2(P))), we need to

search for any groups S in Φ(b). Therefore we add the Frattini subgroups of the groups

in this ActnGpDiff to an empty SetSub2 and set BadSub, FinSub and ActnGpDiff

as empty. We break up the groups in SetSub2 (by running the repeat loop in A.1

programmed to end when #SetSub2 eq 0), adding appropriate groups to our three

empty sets along the way. If a non-empty ActnGpDiff is output then we repeat

the same process but without resetting BadSub and FinSub as empty. We keep on

repeating this process until an empty ActnGpDiff is returned.

The set FinSub contains elementary abelian 2-groups in which we may search for

groups S, on which x acts irreducibly, such that 〈S, x, t〉 is isomorphic to L2(2
n), where

t ∈ G is an involution that inverts x. Given F ∈ FinSub, we may actually be able to

rule it out as containing any groups S of interest, saving us a search in F .

We denote by V248, the 248-dimensional adjoint module of G ∼= E8(2). Let n ∈

{3, 4, 6}, if L2(2
n) is a subgroup ofG then the possible feasible decompositions of L2(2

n)

on V248 are given in [45] (or see Appendix B). Call L2(2
n) ≤ G as H(= 〈S, x, t〉). Given

a feasible decomposition of H on V248, then this determines the composition factors

of V248 ↓H, the restriction of V248 to H. We are given V248 ↓H as V n1
1 /V n2

2 / . . . /V nk
k ,

where Vi, an irreducible H-module, is a composition factor of V248 ↓H with multiplicity

ni; here k, nk ∈ N, i ∈ {1, . . . , k}.

The Steinberg module of a finite group of Lie type defined over a field of q = pr

elements is irreducible, projective and of dimension equal to the order of a Sylow p-

subgroup of the group (see 9.3 in [25]). This allows us to identify the Steinberg module

from among the irreducible modules of H ∼= L2(2
n).

The following result, as pointed out by Rowley, can be used to disregard groups in

3.1. METHODOLOGY 37

FinSub.

Lemma 3.1.4. Let H ∼= L2(2
n), S ∈ Syl2(H), B = NH(S) and assume that H

is a subgroup of G ∼= E8(2). Let Vr be the composition factor of V248 ↓ H isomor-

phic to the Steinberg module, with multiplicity nr. Then dim(CV248(B)) ≥ nr and if

dim(CV248(B)) > nr, it follows that CV248(H) 6= 0.

Proof. Given a non-trivial irreducible module, U , of H over GF(2) then the dimension

of CU(B) is 1 if U is isomorphic to the Steinberg module and 0 otherwise. This can

be checked in Magma. Since Vr is projective, we have that
⊕nr

i=1 Vr is a submodule

of V248 ↓H. Hence, the dimension of CV248↓H(B) is at least nr.

Assume that the dimension of CV248(B) is > nr. Then we may select v ∈ CV248(B)\⊕nr
i=1 Vr. Now 〈vH〉 is a quotient of the permutation module, the permutation repre-

sentation being H acting on the cosets of B. To see this, let Bx1, . . . , Bx2n+1 be the

right cosets of B in H and set αi = Bxi. Let W =
⊕2n+1

i=1 GF(2)αi be the permutation

module and define ϕ : W → 〈vH〉 by ϕ : αi 7→ vxi and extend linearly. Since ϕ is a

well-defined H-map and 〈vH〉 = 〈vxi : i = 1, . . . , 2n+1〉, we have that 〈vH〉 ∼= W/kerϕ.

Now W has dimension 2n + 1 and contains the Steinberg module. But the Steinberg

module is projective and of dimension 2n and so W must be U1⊕U2 where dim(U1) = 1

and U2
∼= Vr. Since U1 and U2 are irreducible and 〈vH〉 6= 0, 〈vH〉 ∼= U1, U2 or W .

But if 〈vH〉 ∼= U2 then we have that v ∈ 〈vH〉 ≤
⊕nr

i=1 Vr, a contradiction. Therefore

0 6= C〈vH〉(H) ≤ CV248(H), and the lemma holds.

Given F ∈ FinSub and a group S ≤ F of order 2n on which x acts irreducibly,

if there exists an involution t ∈ G such that H = 〈S, x, t〉 ∼= L2(2
n), then we are

interested in S only if dim(CV248(〈S, x〉) = nr. Since otherwise H will fix a non-zero

vector in V248 by Lemma 3.1.4 and thus, by Proposition 2.2.3, H and any automorphic

extension of H will not be maximal in G. Note that nr, as given in Lemma 3.1.4, will

be known to us from Appendix B.

Going through FinSub, if we come across a group F such that the dimension

of CV248(〈F, x〉) > nr, we discard it since any 〈S, x〉 ≤ 〈F, x〉 will also be so that

dim(CV248(〈S, x〉)) > nr. Now let F be such that dim(CV248(〈F, x〉)) ≤ nr, we must

search in it for all subgroups S of order 2n. We also want that x acts irreducibly

38 CHAPTER 3. L2(64)

on each of the subgroups S and so we use the GModule command with arguments,

〈F, x〉, F, {Id248}, to realise F as a 〈x〉-module over GF(2); call this module F . The

image in F of any group S that we are interested in will be an irreducible submodule

of F . Note that every irreducible submodule of F will have dimension n since F was

realised as the preimage of a direct sum of irreducible isomorphic n-dimensional 〈x〉-

modules, under a map q : b → b/{Id248}, where b was an elementary abelian group

once a member of the set SetSub2. Hence we use the command MinimalSubmodules

to calculate all the irreducible submodules of F and then calculate their preimages in

F . The set of these preimages contains all of the elementary abelian subgroups of F

of order 2n on which x acts irreducibly.

We finally have a list all subgroups S that are of interest to us. We now downsize

this list by keeping only those subgroups S such that dim(CV248(〈S, x〉)) is nr. We now

calculate the extended centraliser of x in G, C∗G(x) = {g ∈ G : xg = x or xg = x−1}.

This will contain every involution that inverts x; we run through these involutions t

to see if any are such that 〈S, x, t〉 ∼= L2(2
n).

Note that Lemma 3.1.4 can be used to disregard any 2-group, b (e.g. any group, or

its Frattini, in ActnGpDiff), that we come across such that dim(CV248(〈b, x〉)) > nr,

not just the elementary abelian groups in FinSub. We stress here that Lemma 3.1.4

will prove to be invaluable for us when we go on to perform our computations.

3.2 Non-maximality of L2(64)

Here we establish that L2(64) can’t be a maximal subgroup of E8(2). For this we use

the methods described in Section 3.1. First note that if L2(64) is a subgroup of E8(2),

then out of the three possible feasible decompositions of L2(64) on V248 (see B.1), we

are interested in the following only:

(iii) 12φ1 +4φ2 +1φ3 +0φ4 +1φ5 +1φ6 +0φ7 +0φ8 +0φ9 +0φ10 +2φ11 +0φ12 +0φ13 +

0φ14 (3A → 3C, 5AB → 5B, 7AC → 7B, 9AC → 9B, 13A → 13B, 21AF →

21F, 63AI→ 63AC, 63JR→ 63AC, 65AX→ 65AD)

The φi’s above are all of the irreducible characters of L2(64) over GF(2), ordered

in terms of increasing dimension. The first decomposition, (i), would have a trivial

submodule by Lemma 2.2.5(i). Assume H ≤ E8(2), H ∼= L2(64) following (ii) and

3.2. NON-MAXIMALITY OF L2(64) 39

that 0 = V19 ⊂ V18 ⊂ V17 ⊂ . . . ⊂ V1 ⊂ V0 = V248 ↓H is a composition series of V0.

Then we know that 8 of the Vi/Vi+1’s are isomorphic to φ1 and 2 to φ2; there are three

ways these could appear in the series. Assume that for some 0 ≤ i, j ≤ 18, i < j and

Vi/Vi+1, Vj/Vj+1
∼= φ2.

• Vk/Vk+1
∼= φ1 ⇒ i + 1 ≤ k ≤ j − 1 (all the φ1’s are trapped between the φ2’s):

Let m ≥ i + 1 be such that for no k < m, Vk/Vk+1 is isomorphic to φ1. Then

Vm is a H-submodule of V0 that would contain a trivial submodule by Lemma

2.2.5(i).

• ∃k ≥ j + 1, Vk/Vk+1
∼= φ1: Then Vj+1 would contain a trivial submodule by

Lemma 2.2.5(i).

• ∃k < i, Vk/Vk+1
∼= φ1: Consider the chain Vi ⊂ Vi−1 ⊂ Vi−2 ⊂ . . . ⊂ V3 ⊂ V2 ⊂

V1 ⊂ V0, then at least one factor is isomorphic to φ1 and none are isomorphic

to φ2. Define V �m , 0 ≤ m ≤ 19, to be the submodule of V ∗0 containing all the

elements that annihilate Vm. Consider the chain 0 = V �0 ⊂ V �1 ⊂ V �2 ⊂ . . . ⊂

V �i−2 ⊂ V �i−1 ⊂ V �i of submodules of V ∗0 = V �19. Let 0 ≤ m < i, then V ∗0 /V
�
m
∼= V ∗m

(consider the map V ∗0 → V ∗m that sends an element to its restriction to Vm, see

[10]), and so the submodule V �m+1/V
�
m ≤ V ∗0 /V

�
m is mapped to the submodule

of V ∗m that consists of functionals (from Vm) that annihilate Vm+1, but this is

isomorphic to (Vm/Vm+1)
∗, see [10]. Therefore, V �m+1/V

�
m
∼= Vm/Vm+1 since all

the irreducible modules of H over GF(2) are self-dual. Hence V �i has a trivial

submodule by Lemma 2.2.5(i), but V �i is a submodule of V ∗0
∼= V0.

We have just proved that the decomposition (ii) would have a trivial submodule.

Therefore, we now need to know which of the standard parabolic subgroups of E8(2)

contain Levi-cuspidal elements of E8(2) that are in 63ABCE8(2).

Recall that given a subset J ⊆ {1, . . . , 8}, PJ denotes the standard parabolic

subgroup of E8(2) associated to the roots labelled by J , and LJ denotes the standard

Levi complement of PJ . We have the following result by P. Rowley:

Lemma 3.2.1. Suppose that 〈g〉 is a Levi-cuspidal subgroup of E8(2) and g ∈ 63ABCE8(2).

Set J = {{1, 3, 4, 5, 6}, {2, 4, 5, 6, 7}, {3, 4, 5, 6, 7}, {4, 5, 6, 7, 8}}. Then 〈g〉 is LJ-cuspidal

for some J ∈ J . Moreover, in each LJ , J ∈ J , there is only one LJ-class of LJ-

cuspidal subgroups 〈g〉 with g ∈ 63ABCE8(2).

40 CHAPTER 3. L2(64)

Proof. Will be viewable in [7], once the paper is complete and made available.

Given J ∈ J , J as in Lemma 3.2.1, we calculate LJ as being generated by (the

image in GL248(2) of) all root subgroups Uα, of E8(2), where α is a root labelled by

j or 120 + j, j ∈ J . We also calculate QJ = O2(PJ), as being generated by all root

subgroups Uα, where for i ∈ {1, . . . , 8} \ J , α is a root whose ith coefficient is positive,

see [6]. There is only one class of cyclic groups of order 63 in LJ ∼= L6(2) and so we

take xJ to be any element of order 63 in LJ .

Given J ∈ J , we search for elementary abelian subgroups of order 26 in QJ by

running the program in A.1. The results of the runs are given in Table 3.1.

J

{1, 3, 4, 5, 6} {2, 4, 5, 6, 7} {3, 4, 5, 6, 7} {4, 5, 6, 7, 8}

#FinSub 9 12 10 0

#BadSub 3 1 3 1

#ActnGpDiff 4 2 4 0

#FinSub 955 14 396 78

#BadSetNew 0 0 0 1

#ActnGpDiff 4 2 4 2

#FinSub 81

#BadSetNew 0

#ActnGpDiff 2

Table 3.1: The outcome, at different stages, of running A.1 with QJ and xJ . The third

row shows the outcome of breaking up QJ , fourth of breaking up the groups in BadSub

and the fifth of breaking up the groups in BadSetNew.

The irreducible character of L2(64) corresponding to the Steinberg module is ϕ11

(see table in B.1), so the number of composition factors of V248 ↓L2(64) corresponding

to the Steinberg module is 2.

Given any J ∈ J , let b be a group in ActnGpDiff, then dim(CV248(〈b, xJ〉)) is either

6, 7 or 11 and so we ignore all groups b in ActnGpDiff.

Let J = {1, 3, 4, 5, 6}, 953 of the elementary abelian groups, F , in FinSub have

order 26 but none are such that dim(CV248(〈F, xJ〉)) is 2. The remaining two groups,

3.2. NON-MAXIMALITY OF L2(64) 41

F , both have order 212, one with dim(CV248(〈F, xJ〉)) being 4, the other with it being

6. Therefore QJ does not contain any desired elementary abelian groups of order 26.

Let J = {3, 4, 5, 6, 7}, 394 of the elementary abelian groups, F , in FinSub have

order 26 but none with dim(CV248(〈F, xJ〉)) being 2. One of the remaining two groups,

F , is such that dim(CV248(〈F, xJ〉)) is 4 and the other such that it is 6. Therefore QJ

does not contain any desired elementary abelian groups of order 26.

Let J = {2, 4, 5, 6, 7}, if F ∈ FinSub has order 26 (there’s 10 of these) then

dim(CV248(〈F, xJ〉)) 6= 2, otherwise dim(CV248(〈F, xJ〉)) is either 4 or 1. Let F be

any one of the two groups in FinSub such that |F | 6= 26 and dim(CV248(〈F, xJ〉)) = 1

then |F | = 218, F has 4161 subgroups, S, of order 26 normalised by xJ , all of which

are such that dim(CV248(〈S, xJ〉)) 6= 2. Therefore QJ does not contain any desired

elementary abelian groups of order 26.

Finally let J = {4, 5, 6, 7, 8}, if F ∈ FinSub has order 26 (there’s 11 of these) then

dim(CV248(〈F, xJ〉)) 6= 2, otherwise dim(CV248(〈F, xJ〉)) is either 6, 4 or 1. Let F be any

one of the 62 groups in FinSub such that |F | 6= 26 and dim(CV248(〈F, xJ〉)) = 1 then

|F | = 212, F has 65 subgroups, S, of order 26 normalised by xJ , all of which are such

that dim(CV248(〈S, xJ〉)) 6= 2. Therefore QJ does not contain any desired elementary

abelian groups of order 26.

If we would have proceeded to build any L2(64)’s from any of the elementary

abelian groups of order 26 that we came across above then these would’ve fixed non-

zero vectors in V248, and therefore could not have been maximal in E8(2). We have

the following theorem.

Theorem 3.2.2. If H is a subgroup of E8(2) such that F ∗(H) ∼= L2(64) then H is

not maximal in E8(2).

Chapter 4

L2(16)

In this chapter, we establish that L2(16) and its extensions cannot be maximal in

E8(2). To do this we build up on the methodology given in Section 3.1 which was used

to prove that L2(64) can’t be maximal in E8(2). Throughout this chapter, G will be

isomorphic to E8(2) unless otherwise stated.

4.1 Methodology

From Section 3.1, we know that in order to construct copies of L2(2
n), n ∈ {3, 4, 6}, we

first need to search for subgroups of order 2n in the 2-cores of those standard parabolic

subgroups, P , of E8(2) that contain Levi-cuspidal subgroups of order 2n− 1. Since we

want to construct L2(2
n) up to conjugacy in E8(2), we need to consider every class of

Levi-cuspidal subgroups of P of order 2n − 1, pick one representative, 〈x〉, from each

class, consider every elementary abelian subgroup S of order 2n in O2(P) irreducible

under the action of x, and for every such S, go through all involutions, t, in E8(2) that

invert x to see if 〈S, x, t〉 is isomorphic to L2(2
n) or not.

The list of parabolic subgroups, P , that we need to consider for L2(16) will be

given in the next section. For almost all of these parabolic subgroups we will use a

program similar to A.1, which, for every pair of O2(P) and x, will output a set FinSub

of all elementary abelian subgroups of O2(P) that are normalised by x. The program

achieves this by breaking up O2(P) into smaller and smaller subgroups b which at some

point become members of the ever-changing set, BadSub. It is not always practical to

try and break up each and every group b in BadSub; the following lemma tells us when

42

4.1. METHODOLOGY 43

we can disregard some of the groups in BadSub.

Lemma 4.1.1. Let b1 and b2 be 2-subgroups of G normalised by x such that there

exists g ∈ CG(x) with bg1 = b2, then groups of the form 〈S1, x, t1〉 are conjugate to

groups of the form 〈S2, x, t2〉. Here S1 ≤ b1 and S2 ≤ b2 are elementary abelian groups

of order 2n irreducible under the action of x and t1 and t2 are involution that invert

x.

Proof. Can pick g or g−1 as the conjugating element. Also note that C∗G(x)g = C∗G(x).

Since we are interested in constructing copies of L2(2
n) only up to conjugacy in

E8(2), instead of searching for the groups S in every group in BadSub, we may perform

the search in every group in a smaller subset of BadSub such that every group in BadSub

is conjugate to some group in this subset via an element of CG(x). The sizes of the sets

BadSub we will encounter can be a lot more than what we have seen for L2(64). Hence

Lemma 4.1.1 will prove to be indispensable, not so much for L2(16) but certainly for

the L2(8) case.

In order to exploit Lemma 4.1.1, we need to look for elements g in CG(x) such

that there exists a group b ∈ BadSub such that bg ∈ BadSub. In practice, we don’t

look for such elements in all of CG(x) but in the smaller group CP (x), where P is the

parabolic subgroup of G containing all the groups in BadSub. Let g1 be an element in

CP (x) and B1 a subset of BadSub such that for every b ∈ BadSub \ B1, b
g1 ∈ B1 and

the same does not hold true for any other subset of BadSub of size smaller than |B1|.

Pick a different element g2 ∈ CP (x), we now seek a subset B2 ⊆ B1 such that for every

b ∈ B1 \B2, b
g2 ∈ B2 and no other subset of B1 of size smaller than |B2| has the same

property. Given B2, we now seek a subset of B2 and so on, until we have exhausted all

elements of CP (x). By Lemma 4.1.1, we may replace the set BadSub with Br, where

r = |CP (x)|. It is not necessary, and indeed not always practical, to run through every

element of CP (x), but just through enough random elements, say m of them, such

that the set Bm can be deemed small enough to perform our computations. The code

implementing the process of getting Bm is given in A.2 and we give an explanation of

it next.

Let k ∈ N be the size of BadSub, then we write the indexed set BadSub as

44 CHAPTER 4. L2(16)

{b1, b2, . . . , bk}. The code A.2 takes a random element h (or h) from CP (x) (or cpx)

and for every 1 ≤ j ≤ k − 1 checks if bhi = bj, j + 1 ≤ i ≤ k. If it finds that bhl = bj

for some l ∈ {j + 1, . . . , k}, it doesn’t check if the same holds for any bi, i > l (see

the occurrence of break in A.2) since this can’t happen with BadSub being a set of

distinct groups. Let j ∈ {2, . . . , k−1} and i > j such that bhi = bl for some l < j, then

we could improve the code by not checking if bhi also equals bj since we already know

that this isn’t possible. Before h is picked, orbs is defined as the sequence ({i})ki=1.

If there exist 1 ≤ j, i ≤ k, j < i such that bhi = bj then the set in orbs containing

j and the set containing i are replaced with their union. Take a single element from

every set in orbs, the code may define ind as a sequence of these elements. The set

B1 ⊆ BadSub, described in the previous paragraph, equals {bi : i ∈ ind}. The code

then takes another random element from CP (x) and repeats the same process but only

with the groups in BadSub indexed by ind. We interrupt the running of A.2 once #ind

gets small enough for our purposes or doesn’t change after having selected, say 60,

elements from CP (x). We now need only work with a proper subset of BadSub rather

than all of it.

It was observed in practice that running A.2 for a certain amount of time can

decrease #ind several times, when in the same time #ind stays the same as #BadSub if

we replace CP (x) with CG(x). So it is indeed more efficient to work with CP (x) rather

than CG(x).

We now move on to describe a method that enables us to deal with certain prob-

lematic groups in BadSub.

Let b ∈ BadSub then we know that b/Φ(b) is isomorphic to a direct sum of, say k,

isomorphic irreducible n-dimensional 〈x〉-modules (see Section 3.1). Then we go on to

calculate the group A as the preimage of Φ(Φ(b)/[b,Φ(b)]). Also a set we call SetKeep

is created which contains those preimages of vectors in b/Φ(b) that square into A. This

involves going through 2n(k−1) + 2n(k−2) + . . . + 2n + 1 of the vectors in b/Φ(b). The

elements in SetKeep are used to generate preimages, H, of irreducible submodules of

b/Φ(b) and we break up H into preimages of certain submodules of H/A.

Sometimes k is so large, e.g. k = 8 for n = 4 and k = 11 for n = 3, that Magma

is unable to calculate SetKeep entirely over the span of days. Even if we were to get

our hands on a complete SetKeep at some point in time for large k, its size would be

4.1. METHODOLOGY 45

too big, making it impractical to continue and break up all preimages H.

To counter this problem, instead of considering b/Φ(b) we factor b out with an

overgroup of Φ(b) we call F such that b/F is still elementary abelian. Write b/Φ(b) as

V1⊕ . . .⊕Vk, for some 1 ≤ r < k, we take F to be the preimage of V1⊕ . . .⊕Vr. Then

b/F is a direct sum of k − r isomorphic irreducible n-dimensional 〈x〉-modules. We

now define A as the preimage of Φ(F/[b, F]), proceed to calculate SetKeep as normal

and so on. Essentially, if we look at A.1, we now have that the group Fb is F instead

of FrattiniSubgroup(b).

Note that our preimages H will now be bigger than before. We don’t want them

being too big so in order to choose the best value for r we will run tests with different

values and assess the situation by looking at what sizes of SetKeep we get and how a

few of the resulting H/A behave.

To end this section, we prove a result that will help us to disregard 2-groups by

giving us a bound on the dimension of the fixed spaces of involutions in L2(2
n) ≤ G,

G ∼= E8(2).

Lemma 4.1.2. Given a group H and a H-module V0, let {0} = Vm ⊂ Vm−1 ⊂

. . . ⊂ V1 ⊂ V0 be a composition series of V0. Then for all t ∈ H, dim(CV0(t)) ≤

dim(CV0/V1(t))+dim(CV1/V2(t)) + . . .+dim(CVm−1/Vm(t)).

Proof. Since Vm ⊂ Vm−1 ⊂ . . . ⊂ V1 ⊂ V0, we have that CVm(t) ⊆ CVm−1(t) ⊆ . . . ⊆

CV1(t) ⊆ CV0(t). For i ∈ {0, 1, . . . ,m − 1}, let fi : CVi(t) → CVi(t)/CVi+1
(t) be the

quotient map, then fi is a surjection with kernel CVi+1
(t). Therefore, by the rank-

nullity theorem,

dim(CV0(t)) = dim(CV0(t)/CV1(t)) + dim(CV1(t))

= dim(CV0(t)/CV1(t)) + dim(CV1(t)/CV2(t)) + dim(CV2(t))

= dim(CV0(t)/CV1(t)) + dim(CV1(t)/CV2(t)) + . . .

. . .+ dim(CVm−1(t)/CVm(t)).

For i ∈ {0, 1, . . . ,m − 1}, let ρi : Vi/CVi+1
(t) → Vi/Vi+1 be the map v + CVi+1

(t) 7→

v + Vi+1 and ri its restriction to CVi(t)/CVi+1
(t). Then it is easy to see that im(ri) ≤

CVi/Vi+1
(t) and that ker(ri) = 0. Therefore, by the rank-nullity theorem, we have that

dim(CVi(t)/CVi+1
(t)) = dim(im(ri)) ≤ dim(CVi/Vi+1

(t)) and so the lemma is proved.

46 CHAPTER 4. L2(16)

4.2 The Cases

In this section we construct copies of L2(16) in E8(2). There are eleven possible feasible

decompositions of L2(16) on V248 as listed in B.2. The decomposition (i) would have a

trivial submodule by Lemma 2.2.5(i). All of the irreducible characters of L2(16) over

GF(2), φ1, . . . , φ6, are self-dual and so by Lemma 2.2.5(iii), the decomposition (iv)

would also have a trivial submodule.

We see in B.2 that if L2(16) is a subgroup of E8(2) following fusion pattern (ii),

(iii), (v), (vi), . . . , or (xi) then the conjugacy classes of elements of order 15 of L2(16)

can fuse to any class of elements of order 15 of E8(2) apart from 15AE8(2) and 15BE8(2).

Therefore we need to know which standard parabolic subgroups of E8(2) contain Levi-

cuspidal subgroups 〈x〉 such that x /∈ 15AE8(2)∪15BE8(2). We have the following result

by P. Rowley:

Lemma 4.2.1. Suppose that 〈x〉 is a Levi-cuspidal subgroup of E8(2) where 〈x〉 ∼= Z15

and x /∈ 15AE8(2) ∪ 15BE8(2). Then the possibilities for x and the Levi subgroups are

itemised in the following table.

Isomorphism type of Number L-cuspidal dim(CV248(x))

Levi subgroup L of L subgroups 〈x〉

L4(2)× Sym(3) 20 x ∈ (15ABL4(2), 3ASym(3)) 26

L4(2)× Sym(3)× Sym(3) 10 (15ABL4(2), 3ASym(3), 3ASym(3)) 28

(5AL4(2), 3ASym(3), 3ASym(3)) 24

L4(2)× L4(2) 2 (15AL4(2), 15AL4(2)) 16

(15AL4(2), 15BL4(2)) 16

(5AL4(2), 15ABL4(2)) 20

(15ABL4(2), 5AL4(2)) 20

Proof. Will be viewable in [7], once the paper is complete and made available.

By the above lemma, there are 48 pairs of O2(P) and x to consider; we first

address the first 20 arising from the parabolic subgroups P whose Levi complements

are isomorphic to L4(2)× Sym(3).

Before that, we check in Magma that there is a single class of involutions in L2(16)

and the dimension of the fixed space of an involution on the modules corresponding to

4.2. THE CASES 47

φ1, φ2, φ3, φ4, φ5 and φ6 is 1, 4, 4, 8, 8 and 16 respectively. Summing up the dimensions

of the fixed spaces of an involution on the composition factors in the decompositions

(ii), (iii), (v), (vi), . . . , or (xi) gives 132 in each case. Therefore by Lemma 4.1.2, we

know that if L2(16) is a subgroup of E8(2) following (ii), (iii), (v), (vi), . . . , or (xi) then

for any involution t ∈ L2(16), dim(CV248(t)) ≤ 132. Hence it must be that t ∈ 2DE8(2),

see Proposition 2.2.1. If we come across a subgroup of O2(P) that doesn’t have any

involutions t with dim(CV248(t)) = 128, we discard it.

4.2.1 Isomorphism Type L4(2)× Sym(3)

Looking at the Dynkin diagram ofE8 (one may run DynkinDiagram("E8") in Magma),

we see that the 20 standard parabolic subgroups with Levi complements isomorphic

to L4(2)× Sym(3) are the ones associated to the roots labelled by

{1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8},

{2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 4, 8},

{3, 4, 5, 7}, {3, 4, 5, 8}

{1, 2, 4, 5}, {2, 4, 5, 7}, {2, 4, 5, 8}

{1, 4, 5, 6}, {4, 5, 6, 8}

{1, 5, 6, 7}, {2, 5, 6, 7}, {3, 5, 6, 7}

{1, 6, 7, 8}, {2, 6, 7, 8}, {3, 6, 7, 8}, {4, 6, 7, 8}.

The above sets label all possible subdiagrams of type A3×A1. Consider the first row of

sets above, we have chosen the nodes labelled 1, 3 and 4 to be the three nodes forming

the Dynkin diagram of type A3. This leaves 6, 7 or 8 as the possible choices for the

fourth node. In the second row we have chosen the nodes labelled by 2, 3 and 4 to

form the Dynkin diagram of type A3, and so on.

For J ⊂ {1, . . . , 8} being one of the above sets, we construct the standard Levi

complement, LJ ∼= L4(2)× Sym(3), of the corresponding parabolic subgroup, PJ . We

see that there is a single class of subgroups 〈x〉 of order 15 in LJ with dim(CV248(x)) =

26. Therefore by Lemma 4.2.1, we may choose xJ to be any element of order 15 in LJ

48 CHAPTER 4. L2(16)

that has a fixed space of dimension 26. We also construct QJ = O2(PJ). The groups

LJ and QJ are generated by the appropriate root subgroups.

For an element of order 15 in E8(2), the dimension of its fixed space in V248 com-

pletely determines which class it’s in, see Theorem 2.2.2. Elements in 15DE8(2) have

fixed spaces of dimension 26 and so here we are interested in constructing any L2(16)’s

that would follow fusion pattern (iii) or (vi).

We can check in Magma that out of the two 16-dimensional irreducible modules of

L2(16) over GF(2), the one that is projective has Brauer character (16, 0, 1, 1, 1, 1, 1, 1, 1,

−1,−1,−1,−1,−1,−1,−1,−1). This matches up with φ5 in B.2. Looking at de-

compositions (iii) and (vi), the number of composition factors corresponding to φ5

is 5 in both cases. Hence we are interested in collecting only those elementary

abelian subgroups, S ≤ QJ , of order 24, irreducible under the action of xJ , such

that dim(CV248(〈S, xJ〉)) is 5, see 3.1.

Remark 4.2.2. In this chapter, the process of breaking up a group O2(P) given by

Lemma 4.2.1, will involve running the code A.1 or certain lines from it. However A.1

was written for L2(2
n), n = 6, and now n is 4. Hence before running any part of A.1,

we must replace any occurrences of 6 in it with 4 and of 63 with 15 (= 2n − 1). This

is what we will always be doing in this chapter even if we don’t mention that we are.

In all cases apart from J = {1, 2, 4, 5}, we run the code A.1, taking O to be QJ and

x63 to be xJ . The outcome at different stages of the code runs is given in the tables

that follow.

4.2. THE CASES 49

J

{1, 3, 4, 6} {1, 3, 4, 7} {1, 3, 4, 8} {2, 3, 4, 6}

#FinSub 7 6 5 8

#BadSub 9 8 6 9

#ActnGpDiff 6 4 3 9

#FinSub 1031 616 296 4457

#BadSetNew 61 67 64 36

#ActnGpDiff 10 8 7 9

#SetKeepZero 0 0 0 0

#FinSub 5707 5728 5707 7659

#BadSetNew 3 3 3 6

#ActnGpDiff 10 8 7 9

#SetKeepZero 0 0 0 0

#FinSub 5707 5728 5707 7659

#BadSetNew 0 0 0 0

#ActnGpDiff 10 8 7 9

#SetKeepZero 0 0 0 0

Table 4.1: Running A.1 with QJ and xJ .

50 CHAPTER 4. L2(16)

J

{2, 3, 4, 7} {2, 3, 4, 8} {3, 4, 5, 7} {3, 4, 5, 8}

#FinSub 8 7 6 6

#BadSub 10 10 7 9

#ActnGpDiff 9 8 5 6

#FinSub 1257 1257 208 224

#BadSetNew 42 45 76 70

#ActnGpDiff 9 8 5 6

#SetKeepZero 0 0 0 0

#FinSub 7678 7677 3696 3712

#BadSetNew 6 6 0 0

#ActnGpDiff 9 8 5 6

#SetKeepZero 0 0 0 0

#FinSub 7678 7677

#BadSetNew 0 0

#ActnGpDiff 9 8

#SetKeepZero 0 0

Table 4.2: Running A.1 with QJ and xJ .

4.2. THE CASES 51

J

{2, 4, 5, 7} {2, 4, 5, 8} {1, 4, 5, 6} {4, 5, 6, 8}

#FinSub 9 7 7 7

#BadSub 6 6 8 4

#ActnGpDiff 4 4 5 2

#FinSub 5273 1127 1048 314

#BadSetNew 96 96 81 63

#ActnGpDiff 4 4 10 6

#SetKeepZero 0 0 0 0

#FinSub 11449 7303 7277 5241

#BadSetNew 0 0 1452 122

#ActnGpDiff 4 4 27 6

#SetKeepZero 0 0 0 0

#FinSub 7277 7913

#BadSetNew 0 0

#ActnGpDiff 27 6

#SetKeepZero 1440 0

Table 4.3: Running A.1 with QJ and xJ .

52 CHAPTER 4. L2(16)

J

{1, 5, 6, 7} {2, 5, 6, 7} {3, 5, 6, 7}

#FinSub 7 10 9

#BadSub 8 6 6

#ActnGpDiff 6 4 7

#FinSub 830 4578 845

#BadSetNew 297 41 302

#ActnGpDiff 8 5 8

#SetKeepZero 0 0 0

#FinSub 4078 7590 4093

#BadSetNew 0 0 0

#ActnGpDiff 8 5 8

#SetKeepZero 0 0 0

Table 4.4: Running A.1 with QJ and xJ .

J

{1, 6, 7, 8} {2, 6, 7, 8} {3, 6, 7, 8} {4, 6, 7, 8}

#FinSub 4 7 7 9

#BadSub 3 5 5 6

#ActnGpDiff 2 3 4 4

#FinSub 6 4456 26 602

#BadSetNew 4383 4395 4395 4395

#ActnGpDiff 3 4 5 5

#SetKeepZero 0 0 0 0

#FinSub 12006 12361 12025 12346

#BadSetNew 0 0 0 0

#ActnGpDiff 3 4 5 5

#SetKeepZero 0 0 0 0

Table 4.5: Running A.1 with QJ and xJ .

For each of the 19 cases in the tables above, if b is a group in ActnGpDiff or

SetKeepZero then dim(CV248(〈b, xJ〉)) > 5. For J = {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8},

4.2. THE CASES 53

{2, 3, 4, 6}, {2, 3, 4, 7}, {2, 3, 4, 8}, {3, 4, 5, 7}, {3, 4, 5, 8}, {1, 4, 5, 6}, {1, 5, 6, 7} or {3, 5, 6, 7},

if b is a group in FinSub of order 24 then the dimension of CV248(〈b, xJ〉) is not 5, oth-

erwise dim(CV248(〈b, xJ〉)) > 5.

For J = {2, 4, 5, 7}, {2, 4, 5, 8}, {4, 5, 6, 8}, {2, 5, 6, 7}, {1, 6, 7, 8}, {2, 6, 7, 8}, {3, 6, 7, 8},

{4, 6, 7, 8}, we also have that if b ∈ FinSub with |b| = 24 then dim(CV248(〈b, xJ〉)) 6= 5.

However in each case, there are groups b ∈ FinSub with |b| = 28, 212 or 220 such that

(CV248(〈b, xJ〉)) ≤ 5; there are 3136, 448, 2688, 2689, 2520, 2688, 2520 and 2520 such

groups respectively for the 8 cases. For each of these groups we find all the subgroups

S of order 24 normalised by the relevant xJ that it contains and keep only those with

dim(CV248(〈S, xJ〉)) = 5; the number of S’s we are left with is 40320, 40320, 20160,

40320, 20160, 20160, 20160 and 20160 respectively for the 8 cases. Each one of these

groups is such that any involution in it has a fixed space of dimension 138; hence we

discard them all.

For J = {1, 2, 4, 5}, we break up QJ (by having it as the sole member of SetSub2

and running the repeat loop from A.1 programmed to end when #SetSub2 eq 0) to

get a BadSub of size 4 and then our first BadSetNew of size 1715. Along the way,

6841 groups have been added to FinSub, 18 to ActnGpDiff and none to SetKeepZero

but we can discard these as well as 1441 of the 1715 groups since they all are such

that the dimension of the fixed space of the group generated by any one of them and

xJ is greater than 5. This leaves us with 274 of the groups in BadSetNew to worry

about; the order of a group from among these will be 257, 273 or 277 and all but one

of these are such that the Frattini quotient is a direct sum of 7 isomorphic irreducible

4-dimensional 〈xJ〉-modules. With 7 summands, the size of SetKeep can be 2097 and

it can take approximately a day to go through this and the SetSub2 formed along

the way. This is why we are unable to run A.1 on QJ in a single Magma session.

We divide the 274 groups over twenty new Magma sessions that we run in parallel.

In each session, we load either 13 or 14 of the 274 groups, collected together in a set

we name BadSub; we break up these groups as normal (by running the for loop over

[1..#BadSub] in A.1). The results are given in the following table.

54 CHAPTER 4. L2(16)

#BadSub 13 13 13 13 13 13 14

#FinSub 3058 3346 3058 2770 2914 3058 2946

#BadSetNew 0 0 0 0 0 0 0

#ActnGpDiff 16 16 16 16 16 16 16

#SetKeepZero 0 0 0 0 0 0 0

#BadSub 14 14 14 14 14 14 14

#FinSub 3234 3234 3378 2946 3090 3378 3522

#BadSetNew 0 0 0 0 0 0 0

#ActnGpDiff 16 16 16 16 16 16 16

#SetKeepZero 0 0 0 0 0 0 0

#BadSub 14 14 14 14 14 14

#FinSub 3090 3378 3522 3090 5219 7542

#BadSetNew 0 0 0 0 2304(0) 3751(7)

#ActnGpDiff 16 16 16 16 16 17

#SetKeepZero 0 0 0 0 0 0

#FinSub 7542

#BadSetNew 0

#ActnGpDiff 17

#SetKeepZero 0

Table 4.6: Breaking up the 274 groups.

The 14 groups from the 247th till the 260th group of the 274 give a BadSetNew of

size 2304, but no b in BadSetNew is such that dim(CV248(〈b, xJ〉)) is less than or equal

to 5. The last 14 of the 274 groups give a BadSetNew of size 3751; out of all the groups

b in BadSetNew, there’s only 7 such that dim(CV248(〈b, xJ〉)) ≤ 5 and these are the

only ones that we proceed with (by having them make up the new BadSub in the same

session, setting BadSetNew as empty and running the for loop over [1..#BadSub]

again). For every group b in any of the twenty FinSub’s or twenty ActnGpDiff’s,

dim(CV248(〈b, xJ〉)) > 5.

Let O2(P) and x be any pair from among the first 20 pairs given by Lemma

4.2.1, we have established in this subsection that if there exists an elementary abelian

subgroup S ≤ O2(P) of order 24 irreducible under the action of x and an involution

4.2. THE CASES 55

t ∈ G inverting x such that H := 〈S, x, t〉 is isomorphic to L2(16) then H would fix a

non-zero vector in V248. We move on to considering the next 20 pairs.

4.2.2 Isomorphism Type L4(2)× Sym(3)× Sym(3)

The 10 standard parabolic subgroups with Levi complements isomorphic to L4(2) ×

Sym(3)× Sym(3) are the ones associated to the roots labelled by

{1, 3, 4, 6, 8},

{2, 3, 4, 6, 8},

{1, 2, 4, 5, 7}, {1, 2, 4, 5, 8},

{1, 4, 5, 6, 8},

{1, 2, 5, 6, 7}, {2, 3, 5, 6, 7},

{1, 2, 6, 7, 8}, {1, 4, 6, 7, 8}, {2, 3, 6, 7, 8}.

For J ⊂ {1, . . . , 8} being one of the above sets, we construct the standard Levi com-

plement, LJ , of the corresponding parabolic subgroup, PJ . We see that there is a

single class of subgroups, 〈x〉, of order 15 in LJ with dim(CV248(x)) = 24 and also a

single class with dim(CV248(x)) = 28. Therefore by Lemma 4.2.1 we may choose xJ,24

to be any element of order 15 in LJ with a fixed space of dimension 24, and xJ,28 to

be any element of order 15 with a fixed space of dimension 28, as generators of the

LJ -cuspidal subgroups we are after. We also construct QJ = O2(PJ).

Elements in 15EE8(2) have fixed spaces of dimension 24 and the ones in 15CE8(2)

of dimension 28, see Theorem 2.2.2. Hence when working with the pairs QJ , xJ,24,

we are interested in constructing any L2(16)’s that would follow fusion pattern (ii);

(vii) or (x) when working with the pairs QJ , xJ,28. The number of composition factors

corresponding to the Steinberg module is 4 in (ii), and 6 in each of (vii) and (x).

We first consider all pairs QJ , xJ,24 and for each, run the code A.1 after replacing

any occurrences of 6 in the code with 4 and of 63 with 15, as was done in 4.2.1. The

outcome at different stages of the code runs is given in the tables that follow.

56 CHAPTER 4. L2(16)

J

{1, 3, 4, 6, 8} {2, 3, 4, 6, 8} {1, 2, 4, 5, 7} {1, 2, 4, 5, 8}

#FinSub 6 5 7 7

#BadSub 8 10 8 8

#ActnGpDiff 5 4 4 6

#FinSub 40 151 719 132

#BadSetNew 44 592 134 422

#ActnGpDiff 5 4 5 7

#SetKeepZero 0 0 0 0

#FinSub 992 993 735 180

#BadSetNew 0 0 142 142

#ActnGpDiff 5 4 5 8

#SetKeepZero 0 0 0 0

#FinSub 911 308

#BadSetNew 0 0

#ActnGpDiff 5 8

#SetKeepZero 0 0

Table 4.7: Running A.1 with QJ and xJ,24.

4.2. THE CASES 57

J

{1, 4, 5, 6, 8} {1, 2, 5, 6, 7} {2, 3, 5, 6, 7}

#FinSub 7 10 9

#BadSub 8 10 10

#ActnGpDiff 5 6 5

#FinSub 73 810 6217

#BadSetNew 22 578 578

#ActnGpDiff 6 6 5

#SetKeepZero 0 0 0

#FinSub 255 6218 6217

#BadSetNew 142 0 0

#ActnGpDiff 7 6 5

#SetKeepZero 0 0 0

#FinSub 303

#BadSetNew 0

#ActnGpDiff 7

#SetKeepZero 0

Table 4.8: Running A.1 with QJ and xJ,24.

58 CHAPTER 4. L2(16)

J

{1, 2, 6, 7, 8} {1, 4, 6, 7, 8} {2, 3, 6, 7, 8}

#FinSub 4 6 5

#BadSub 6 10 6

#ActnGpDiff 4 4 2

#FinSub 198 198 6215

#BadSetNew 578 578 578

#ActnGpDiff 4 4 2

#SetKeepZero 0 0 0

#FinSub 6214 6214 6215

#BadSetNew 0 0 0

#ActnGpDiff 4 4 2

#SetKeepZero 0 0 0

Table 4.9: Running A.1 with QJ and xJ,24.

For each of the 10 cases in the tables above, if b is a group in FinSub then

dim(CV248(〈b, xJ,24〉)) > 4; hence we are not interested in b. For J = {1, 2, 4, 5, 7},

{1, 2, 4, 5, 8}, {1, 2, 5, 6, 7} or {2, 3, 5, 6, 7}, there are groups b in ActnGpDiff such that

dim(CV248(〈Φ(b), xJ,24〉)) ≤ 4, we deal with them, for an empty output, as explained

in Section 3.1, starting by adding the subgroups Φ(b) to an empty SetSub2.

For all J apart from {1, 3, 4, 6, 8} and {2, 3, 4, 6, 8}, we run A.1 with QJ and xJ,28

to get the results given in the following tables.

4.2. THE CASES 59

J

{1, 2, 4, 5, 7} {1, 2, 4, 5, 8} {1, 4, 5, 6, 8} {1, 2, 5, 6, 7}

#FinSub 11 9 11 11

#BadSub 7 9 11 7

#ActnGpDiff 6 6 3 6

#FinSub 6032 1935 1761 387

#BadSetNew 434 479 446 226

#ActnGpDiff 6 6 3 7

#SetKeepZero 0 0 0 0

#FinSub 51108 47011 101153 14159

#BadSetNew 209 209 269 0

#ActnGpDiff 6 6 3 7

#SetKeepZero 0 0 0 0

#FinSub 51172 47075 102113

#BadSetNew 0 0 0

#ActnGpDiff 6 6 3

#SetKeepZero 0 0 0

Table 4.10: Running A.1 with QJ and xJ,28.

60 CHAPTER 4. L2(16)

J

{2, 3, 5, 6, 7} {1, 2, 6, 7, 8} {1, 4, 6, 7, 8} {2, 3, 6, 7, 8}

#FinSub 10 5 8 5

#BadSub 6 6 9 5

#ActnGpDiff 5 4 5 3

#FinSub 158 279 300 279

#BadSetNew 214 497 813 497

#ActnGpDiff 6 4 5 3

#SetKeepZero 0 0 0 0

#FinSub 14158 63191 63212 63191

#BadSetNew 0 0 0 0

#ActnGpDiff 6 4 5 3

#SetKeepZero 0 0 0 0

Table 4.11: Running A.1 with QJ and xJ,28.

For each of the 8 cases in the two preceding tables, there are groups b in ActnGpDiff

such that dim(CV248(〈Φ(b), xJ,28)) ≤ 6, we deal with these as explained in Section 3.1 for

an empty output. Also, if b ∈ FinSub with |b| = 24 then dim(CV248(〈b, xJ,28)) 6= 6. How-

ever there are groups b ∈ FinSub with |b| = 28 or 212 such that dim(CV248(〈b, xJ,28)) ≤ 6;

there are 52, 52, 52, 100, 100, 25, 28 and 25 such groups respectively for the 8 cases. For

each of these groups we find all the subgroups S of order 24 normalised by the relevant

xJ,28 that it contains and find that every S is such that dim(CV248(〈S, xJ,28)) 6= 6.

For J = {1, 3, 4, 6, 8}, working with the pair QJ , xJ,28, we break up QJ to get a

BadSub of size 9 and then our first BadSetNew of size 387. Along the way, 61819

groups have been added to FinSub, 3 to ActnGpDiff and 1 to SetKeepZero. For b ∈

SetKeepZero, dim(CV248(〈b, xJ,28)) > 6 and for b ∈ ActnGpDiff, dim(CV248(〈Φ(b), xJ,28))

> 6. If b ∈ BadSetNew then b/Φ(b) is a direct sum of either 3, 4, 5, 6 or 8 isomorphic

irreducible 4-dimensional 〈xJ,28〉-modules; there are 268, 15, 6, 81 and 17 such groups,

respective to the number of summands. We partition the collection of 81 groups into

8 sets; we load a partition into a separate Magma session, naming it BadSub. We

also load the collections of groups of size 268, 15 and 6 as BadSub into three different

Magma sessions, one collection per session. We break up the groups in these 11 sets

4.2. THE CASES 61

(all named BadSub) as normal and get the results shown in the following table.

#BadSub 268 15 6 10 10 10 10

#FinSub 12306 6 340 40722 19730 2322 10514

#BadSetNew 65 12 497 0 0 0 0

#ActnGpDiff 0 0 0 0 0 0 0

#SetKeepZero 0 0 0 0 0 0 0

#FinSub 14627 23 63076

#BadSetNew 0 0 0

#ActnGpDiff 0 0 0

#SetKeepZero 0 0 0

#BadSub 10 10 10 11

#FinSub 2834 10002 2834 20754

#BadSetNew 0 0 0 0

#ActnGpDiff 0 0 0 0

#SetKeepZero 0 0 0 0

Table 4.12: Breaking up 370 of the 387 groups; the Frattini quotient of each is a direct

sum of 3, 4, 5 or 6 isomorphic irreducible 4-dimensional modules.

We now consider the groups in the 12 FinSub’s that have been formed so far. All

the groups in the 8 FinSub’s of sizes 40772, 19730, 2322, 10514, 2834, 10002, 2834

and 20754 are of order 24 and the dimension of the fixed space of the group generated

by any one of them and xJ,28 is not 6. This leaves us with 4 FinSub’s of sizes 61819,

14627, 23, and 63076. After discarding any group b from each of these sets such that

dim(CV248(〈b, xJ,28〉)) > 6 or |b| = 24 and dim(CV248(〈b, xJ,28〉)) 6= 6, we are left with

sets of sizes 4, 12, 4 and 48, respectively. The union of these four sets is of size 52 and

any subgroup S of size 24 normalised by xJ,28 of any one of the 52 groups, is such that

dim(CV248(〈S, xJ,28〉)) 6= 6.

We are left with 17 of the 387 groups, each having a Frattini quotient that is a

direct sum of 8 isomorphic irreducible 4-dimensional 〈xJ,28〉-modules. These are our

first examples of groups, b, where the number of irreducible summands in the de-

composition of b/Φ(b) is large enough so that calculating and going through SetKeep

62 CHAPTER 4. L2(16)

might be impractical. Therefore for b, one of the 17 groups, with b/Φ(b) isomor-

phic to V1 ⊕ . . . ⊕ V8, we define Fb to be the preimage of V1 ⊕ . . . ⊕ V4 instead of

FrattiniSubgroup(b), see Section 4.1. Doing this can give a SetKeep of size 4369

and going through approximately 1000 of these 4369 elements can take a few hours;

so we divide the 17 groups over 10 Magma sessions. A non-empty BadSetNew will

be output in each session (after running the for loop over [1..#BadSub] but with Fb

defined differently) and a group in it can be broken up as usual by considering its

Frattini quotient. See the following table to know what happens in the 10 sessions.

#BadSub 2 2 2 2 2

#FinSub 0 0 0 0 0

#BadSetNew 8738 8738 8738 8738 8738

#ActnGpDiff 0 0 0 0 0

#SetKeepZero 0 0 0 0 0

#FinSub 100626 100626 100626 100626 139538

#BadSetNew 0 0 0 0 0

#ActnGpDiff 0 0 0 0 0

#SetKeepZero 0 0 0 0 0

#BadSub 2 2 1 1 1

#FinSub 0 0 0 0 0

#BadSetNew 8738 8738 4369 4369 4369

#ActnGpDiff 0 0 0 0 0

#SetKeepZero 0 0 0 0 0

#FinSub 139538 100626 81170 81170 100626

#BadSetNew 0 0 0 0 0

#ActnGpDiff 0 0 0 0 0

#SetKeepZero 0 0 0 0 0

Table 4.13: Breaking up 17 of the 387 groups by factoring each out by the preimage

of 4 summands in the decomposition of its Frattini quotient.

Any group in any one of the ten FinSub’s in the table above has order 24 and the

dimension of the fixed space of the group generated by it and xJ,28 is not 6.

We now move on to dealing with the pair QJ , xJ,28, for J = {2, 3, 4, 6, 8}. We break

4.2. THE CASES 63

up QJ to get a BadSub of size 9. One of these 9 groups has a Frattini quotient that is the

direct sum of 7 isomorphic irreducible modules and another has a Frattini quotient

that is the direct sum of 9 modules; we name these groups b7 and b9, respectively,

and take them out of BadSub. We will consider b7 and b9 later. Breaking up the

7 remaining groups in the same session gives a BadSetNew of size 4383, FinSub of

size 13595, ActnGpDiff of size 2 and a SetKeepZero of size 1. If b ∈ ActnGpDiff

then dim(CV248(〈Φ(b), xJ,28〉)) > 6; if b ∈ SetKeepZero then dim(CV248(〈b, xJ,28〉)) > 6.

From FinSub, we take out all groups b such that dim(CV248(〈b, xJ,28〉)) > 6 or |b| = 24

and dim(CV248(〈b, xJ,28〉)) 6= 6. We get left with just one elementary abelian group of

order 212 and any subgroup, S, of this of order 24 normalised by xJ,28 is such that

dim(CV248(〈S, xJ,28〉)) 6= 6.

Remark 4.2.3. From now onwards, if mention of ActnGpDiff or SetKeepZero has

been omitted from results of code runs then it’s because they remain empty.

We now consider the group b7 in a new session. Running the for loop over

[1..#BadSub] we see that the number of preimages of certain vectors in b7/Φ(b7)

collected in SetKeep will be 61713. A FinSub of size 61714 is returned; all of these

elementary abelian groups, b, are of order 24 with dim(CV248(〈b, xJ,28〉)) 6= 6.

Next, we consider b9, with b9/Φ(b9) isomorphic to V1 ⊕ . . . ⊕ V9. We take Fb to

be the preimage of V1 ⊕ . . . ⊕ V5 instead of Φ(b9) but then proceed as normal. Just

a BadSetNew of size 4369 is output. It takes approximately a day to break up 100 of

these groups by considering the Frattini quotients. Hence we divide the groups over

10 Magma sessions; see the table below.

#BadSub 440 440 440 440 440

#FinSub 94446 43959 43978 43903 44021

#BadSetNew 0 0 0 0 0

#BadSub 440 440 440 440 409

#FinSub 43863 43881 43925 43767 44183

#BadSetNew 0 0 0 0 0

Table 4.14: Breaking up the 4639 subgroups of b9.

Any group in any one of the ten FinSub’s in the table above is such that its order

64 CHAPTER 4. L2(16)

is 24 and the dimension of the fixed space of the group generated by it and xJ,28 is not

6.

There is a BadSetNew of size 4383 left to consider. This set contains a group

whose Frattini quotient is a direct sum of 10 isomorphic irreducible 4-dimensional

〈xJ,28〉-modules; we name this group b10 and consider it separately. With b10/Φ(b10) ∼=

V1⊕ . . .⊕ V10, we take Fb to be the preimage of V1⊕ . . .⊕ V5, A to be the preimage of

Φ(Fb/[b10, Fb]) and acquire SetKeep; this will be of size 69905. We partition SetKeep

over 21 Magma sessions, loading a partition of size 3410 in each of the first 20 sessions

and of size 1705 in the last one. We also load the groups Fb and A into each session;

Fb is needed to generate the groups Sub4aa (preimages of submodules of b10/Fb) and

A is what we factor these groups by. Going through the 21 SetKeep’s (we run the

for loop over [1..#SetKeep] immediately followed by the repeat loop programmed to

end when #SetSub2 eq 0) outputs a BadSetNew of size 3410 in each of the first 20

sessions and of size 1705 in the last. In a day, around 120 groups in a BadSetNew can

be broken down by considering the Frattini quotients. All we ever get by breaking

up the groups in the BadSetNew’s, are elementary abelian groups b of order 24 such

that dim(CV248(〈b, xJ,28〉)) 6= 6. The BadSetNew of size 1705 outputs a FinSub of size

144050. For a BadSetNew of size 3410, the size of FinSub increases to around 200000

after going through approximately 2400 of the groups and it is at this point that we

interrupt the for loop over [1..#BadSub], empty out FinSub and restart the loop,

iterating over an appropriate subsequence [k..#BadSub]; we do this because having

a large FinSub takes up too much memory.

It is left to consider 4382 groups and we split these over 11 Magma sessions; see

the following table.

4.2. THE CASES 65

#BadSub 400 400 400 400 400

#FinSub 36114 31506 28050 30930 29202

#BadSetNew 0 0 0 0 0

#BadSub 400 400 400 400 400

#FinSub 30354 29778 30482 30226 118290

#BadSetNew 0 0 0 0 0

#BadSub 382

#FinSub 165164

#BadSetNew 21862

#ActnGpDiff 1

#SetKeepZero 1

Table 4.15: Breaking up all the groups in the BadSetNew of size 4383 apart from b10.

We now consider the non-empty groups in the above table. Any group in any

of the first 10 FinSub’s is such that its order is 24 and the dimension of the fixed

space of the group generated by it and xJ,28 is not 6. From the FinSub of size

165164, we take out any group b such that dim(Cv248(〈b, xJ,28〉)) > 6 or |b| = 24

and dim(Cv248(〈b, xJ,28〉)) 6= 6, and are left with 4 groups of order 212. Any sub-

group S of order 24 normalised by xJ,28 of any one of these 4 groups is such that

dim(Cv248(〈S, xJ,28〉)) 6= 6. If b ∈ ActnGpDiff then dim(Cv248(〈Φ(b), xJ,28〉)) > 6; if

b ∈ SetKeepZero then dim(Cv248(〈b, xJ,28〉)) > 6.

Testing the code on a few of the groups in the BadSetNew of size 21862, it seems like

it’d take around 15 minutes on average to break up one of 21862 groups. It also looks

like a lot of (too many to collect them all if breaking up several groups in BadSetNew

together in a single session) elementary abelian groups, b, of order 24 will be output

but none of them such that dim(Cv248(〈b, xJ,28〉)) = 6. We partition the 21862 into

six sets of sizes 3644, 3644, 3644, 3644, 3643 and 3643. We open six parallel Magma

sessions and load the six sets into them, one each. Each set has been named BadSub as

usual. We try to see if any of the groups in a BadSub are conjugate to each other via

elements that centralise xJ,28 (see Lemma 4.1.1); in order to do this we first calculate

a subgroup of CPJ (xJ,28).

The order of PJ = 〈QJ , LJ〉 is 2120.34.5.7. This is too big a subgroup of GL248(2)

66 CHAPTER 4. L2(16)

for us to comfortably perform computations in and we are unable to get a permuta-

tion representation of it. We can however factor out PJ by its soluble radical using

the command LMGRadicalQuotient and get PJ as a permutation group. Asking for

centralisers of elements in a permutation setting works much better (indeed several

group theoretic operations work much faster in permutation or pc-group settings) and

so we ask for CPJ (xJ,28) using the command Centraliser. This gives us a group

whose preimage K is a proper subgroup of PJ containing CPJ (xJ,28). The order of K

is 2114.33.5; this is less than |PJ | but we are still unable to directly ask for CK(xJ,28) by

using Centraliser. We don’t need to calculate all of CK(xJ,28) = CPJ (xJ,28) anyway;

Lemma 4.2.4 will help us calculate a subgroup of CK(xJ,28) which will prove to be

enough for our purpose of finding conjugating elements.

Lemma 4.2.4. Given a group G, let R and H be subgroups of G, V a G-module and

W the fixed space of H in V . Then NR(H) is contained in StabR(W).

Proof. For any g ∈ NR(H) and v ∈ W , we need to show that g.v ∈ W . For any h ∈ H,

h.g.v = g.h′.v (for some h′ ∈ H) = g.v and the lemma is proved.

Remark 4.2.5. For us G,H and V from Lemma 4.2.4 will be E8(2), a 2-group and

V248, respectively. We will then be able to use the command UnipotentStabiliser

to find StabH(W), which will be a smaller subgroup of H containing NH(R); possibly

small enough to calculate all of NH(R) in. Essentially, pairing Lemma 4.2.4 with the

command UnipotentStabiliser enables one to find normalisers of groups in large

unipotent subgroups of E8(2). This method will make a reappearance in a later chapter.

The soluble radical of PJ is a subgroup of K of order 2114.32 and so contains a

Sylow 2-subgroup of K. Since the size of the soluble radical is less than |K|, we prefer

to run the command LMGSylow on the soluble radical rather than on K. We obtain a

Sylow 2-subgroup R of K. The index of R in K is 135; this is small enough to allow

a smooth run of the command Transversal. We obtain Γ as a right transversal of

R in K. The set of all Sylow 2-subgroups of K, {Rrγ : r ∈ R, γ ∈ Γ} can of course

be calculated as {Rγ : γ ∈ Γ}. We find that K has 9 Sylow 2-subgroups, R1, . . . , R9.

Let W = CV248(xJ,28), we compute the group U = 〈StabRi(W) : i ∈ {1, . . . , 9}〉.

We find that U ≤ CG(xJ,28) and that |U | = 210. We take cpx to be the group

〈U, xJ,28〉 ≤ CPJ (xJ,28) in each of our 6 sessions and run A.2.

4.2. THE CASES 67

We run A.2 until we get #ind (= #orbs, see A.2) as 30, 166, 214, 218, 260 and 223

respectively in our 6 sessions; these will be the sizes of our new BadSub’s, since each

BadSub is replaced by a subset of itself containing the groups indexed by ind. Every

group in the original BadSub will be conjugate to a group in the replacement via an

element that centralises xJ,28 (see A.2 and Section 4.1). Before breaking up groups b in

any of our six BadSub’s we make changes to the for loop over [1..#SetKeep]: If A (the

preimage of Φ(Φ(b)/[b,Φ(b)])) is ever trivial then subgroups, IncGrp, of Sub4aa (see

A.1) are added to FinSub only if |IncGrp| = 24 and dim(CV248(〈IncGrp, xJ,28〉)) = 6

or |IncGrp| 6= 24 and dim(CV248(〈IncGrp, xJ,28〉)) ≤ 6. In each session apart from the

first, a BadSetNew of size 12 is output (the five BadSetNew’s across the sessions are not

all the same), we take this to be the new BadSub, set BadSetNew as empty, and run the

usual for loop over [1..#BadSub]. In each of the five sessions the final size of FinSub

is 39; we take out all the groups b from FinSub such that dim(CV248(〈b, xJ,28〉)) > 6 or

|b| = 24 and dim(CV248(〈b, xJ,28〉)) 6= 6. None of the 4 groups we are left with contain

any subgroups S of order 24 normalised by xJ,28 such that dim(CV248(〈S, xJ,28〉)) = 6.

Let QJ , x be any one of the pairs QJ , xJ,24 or QJ , xJ,28, we have established in

this subsection that if there exists an elementary abelian subgroup S ≤ QJ of order

24 irreducible under the action of x and an involution t ∈ G inverting x such that

H := 〈S, x, t〉 is isomorphic to L2(16) then H would fix a non-zero vector in V248. We

move on to considering the last 8 pairs given by Lemma 4.2.1.

4.2.3 Isomorphism Type L4(2)× L4(2)

The 2 standard parabolic subgroups with Levi complements isomorphic to L4(2) ×

L4(2) are the ones associated to the roots labelled by

{1, 3, 4, 6, 7, 8}, {2, 3, 4, 6, 7, 8}.

Let J be either one of the above sets, we construct the standard Levi complement,

LJ , of PJ . We see that LJ has 14 subgroups of order 15 up to conjugacy and given

such a subgroup, any two elements g, h of order 15 in it are such that dim(CV248(g))

= dim(CV248(h)). Only two of the 14 subgroups are such that every element, x, of

order 15 in them has a fixed space of dimension 16 and only two more are such that

dim(CV248(x)) = 20. By Lemma 4.2.1, these 4 subgroups must be the LJ -cuspidal

68 CHAPTER 4. L2(16)

subgroups we are after. We call the generators of the four subgroups as x1J,16, x
2
J,16,

x1J,20 and x2J,20, respectively. We also compute QJ = O2(PJ).

Since dim(CV248(x
i
J,16)) = 16 and dim(CV248(x

i
J,20)) = 20, by Theorem 2.2.2, xiJ,16

is in 15GE8(2) and xiJ,20 is in 15FE8(2). Hence when working with the pairs QJ , x
i
J,16,

we are interested in constructing any L2(16)’s that would follow fusion pattern (viii)

or (xi) (see B.2); (v) or (ix) when working with the pairs QJ , x
i
J,20. The number of

composition factors corresponding to the Steinberg module is 0 in each of (viii) and

(xi), and 2 in each of (v) and (ix).

Remark 4.2.6. Note that if we find any overgroup H ∼= L2(16) of 〈S, xiJ,16〉, S an

elementary abelian group of order 24 irreducible under the action of xiJ,16, then H will

not fix any non-zero vectors in V248 since we will have chosen S so that 〈S, xiJ,16〉

doesn’t. This means that we won’t be able to immediately discard H or any of its

extensions as being non-maximal in E8(2) using Proposition 2.2.3.

We run A.1 with the pairs QJ , x
i
J,16 and QJ , x

1
J,20 for J = {2, 3, 4, 6, 7, 8} and also

with QJ , x
i
J,20 for J = {1, 3, 4, 6, 7, 8}; see table below.

4.2. THE CASES 69

{2, 3, 4, 6, 7, 8} {1, 3, 4, 6, 7, 8}

x1J,16 x2J,16 x1J,20 x1J,20 x2J,20

#FinSub 6 7 7 6 7

#BadSub 6 10 6 6 8

#ActnGpDiff 4 4 4 3 3

#FinSub 552 4136 117 41 1048

#BadSetNew 4402 275 21 24 312

#ActnGpDiff 4 6 4 3 4

#SetKeepZero 0 0 0 0 0

#FinSub 841 4393 374 1399 10793

#BadSetNew 31 0 48 48 257

#ActnGpDiff 4 6 4 3 4

#SetKeepZero 0 0 0 0 1

#FinSub 871 1158 1399 10921

#BadSetNew 0 0 0 0

#ActnGpDiff 4 4 3 4

#SetKeepZero 0 0 0 193

Table 4.16: Running A.1 with five of the eight pairs under consideration.

We first look at the non-empty sets output in the cases xiJ,16, i ∈ {1, 2}, J =

{2, 3, 4, 6, 7, 8}. If b ∈ ActnGpDiff for the x1J,16 case then 〈Φ(b), x1J,16〉 fixes at least

one non-zero vector. We stumble upon groups b in ActnGpDiff for the x2J,16 case such

that dim(CV248(〈Φ(b), x2J,16〉)) = 0. We deal with ActnGpDiff, for an empty output,

as explained in Section 3.1, starting by adding the Frattini subgroups of the groups in

this ActnGpDiff to an empty SetSub2.

We now turn our attention to the FinSub of size 871 for J = {2, 3, 4, 6, 7, 8}. There

are 240 groups b in FinSub such that |b| = 24 and 〈b, x1J,16〉 does not fix any non-zero

vectors in V248; we collect these elementary abelian groups in a set we name E1
J,16.

There are also 287 groups, b, in FinSub such that |b| = 28 and 〈b, x1J,16〉 does not fix

any non-zero vectors. We find all subgroups S of b of order 24 normalised by x1J,16 and

add those such that dim(CV248(〈S, x1J,16〉)) = 0 to E1
J,16. We get that |E1

J,16| = 3600.

Working in the same way with the FinSub of size 4393, we create a set E2
J,16 of size

70 CHAPTER 4. L2(16)

6960. Every involution in every group in E1
J,16 or E2

J,16 is in 2DE8(2). We come back to

these two sets later.

We now deal with the non-empty sets output in the remaining 3 cases in Table 4.16.

Let b be a 2-group and x the relevant element of order 15 acting on it. If b is in any one

of the three ActnGpDiff’s then dim(CV248(〈Φ(b), x〉)) > 2. If b is in the SetKeepZero

of size 193 then dim(CV248(〈b, x〉)) > 2. There is a group b in the FinSub of size 10921

with |b| = 212 and dim(CV248(〈b, x2J,20〉)) ≤ 2, J = {1, 3, 4, 6, 7, 8}, such that 〈x2J,20〉,

doesn’t act faithfully on it, and so we discard b. This is the first time we have come

across such an elementary abelian group. Working through the three FinSub’s in a

similar way to the two before, we create sets E1
J,20, E

2
J,20 (for J = {1, 3, 4, 6, 7, 8}) and

E1
J,20 (for J = {2, 3, 4, 6, 7, 8}) of sizes 480, 5760 and 480, respectively. Each of these

sets contains elementary abelian subgroups b of order 24 such that the dimension of

the fixed space of the subgroup generated by b and the relevant element of order 15 is

exactly 2 and any involution in b is in 2DE8(2).

For J = {1, 3, 4, 6, 7, 8}, let x = x1J,16. Working with the pair QJ , x, we break up

QJ to get a BadSub of size 5 but only 4 of these groups b are such that CV248(〈b, x〉)

is zero; we care about these 4 groups only. We also get a FinSub of size 8 and an

ActnGpDiff of size 3 (if b ∈ ActnGpDiff then CV248(〈Φ(b), x〉) is non-zero). There is a

group in BadSub with a Frattini quotient isomorphic to a direct sum of 5 irreducible

submodules. We calculate the subgroups Fb (the Frattini) and A of this group as

normal and acquire a SetKeep of size 8465. We split SetKeep over 8 Magma sessions

and also load Fb and A into each session; see the following table to know what happens

when we run appropriate parts of A.1.

4.2. THE CASES 71

#SetKeep 1100 1100 1100 1100

#FinSub 38 38 39 41

#BadSetNew 1101 1101 1101 1101

#ActnGpDiff 2 2 2 3

#SetKeepZero 0 0 0 0

#FinSub 582 310 311 313

#BadSetNew 7 0 1 114

#ActnGpDiff 2 2 2 3

#SetKeepZero 1021 1027 1025 962

#FinSub 589 312 350

#BadSetNew 0 0 0

#ActnGpDiff 2 2 3

#SetKeepZero 1021 1025 1007

#SetKeep 1065 1000 1000 1000

#FinSub 7 7 7 9

#BadSetNew 1066 1001 1001 1001

#ActnGpDiff 3 3 3 3

#SetKeepZero 0 0 0 0

#FinSub 284 284 284 285

#BadSetNew 2066 1926 1941 1895

#ActnGpDiff 3 3 3 3

#SetKeepZero 0 0 0 15

#FinSub 357 355 356 358

#BadSetNew 0 0 0 0

#ActnGpDiff 3 3 3 3

#SetKeepZero 945 870 885 870

Table 4.17: Dealing with the elements in the SetKeep of size 8465.

If b is a group in any one of the eight ActnGpDiff’s in Table 4.17 then dimension

of CV248〈b, x〉 is non-zero. If b is a group in any one of the eight SetKeepZero’s then

dimension of CV248(〈Φ(b), x〉) is non-zero.

There are still 3 groups in the BadSub obtained from breaking upQJ left to consider.

72 CHAPTER 4. L2(16)

Running the for loop over [1..#BadSub] on these 3 groups returns a BadSetNew of

size 45, running the loop again with BadSetNew as the new BadSub returns a FinSub

of size 53 as the only non-empty set.

A total of ten FinSub’s, of sizes 8, 589, 310, 312, 350, 357, 355, 356, 358 and 53,

have been formed during our computations. The union of these sets has size 886.

Working through the groups in this union in the usual way we form a set E1
J,16 of size

3600 containing groups b of order 24 such that 〈b, x〉 doesn’t fix any non-zero vectors

and every involution in b is in 2DE8(2).

Now for J = {1, 3, 4, 6, 7, 8}, let x = x2J,16. Working with the pair QJ , x, we break

up QJ to get a BadSub of size 7. There are two groups, b5 and b7, in BadSub whose

Frattini quotients are isomorphic to a direct sum of 5 and 7 irreducible modules,

respectively. We take b5 and b7 out of BadSub. We then proceed to break up the

remaining groups in BadSub to get 17 groups in BadSetNew which in turn break up

to return a FinSub of size 4122 and an ActnGpDiff of size 5. There are groups, b, in

ActnGpDiff such that 〈Φ(b), x〉 doesn’t fix non-zero vectors. We treat this ActnGpDiff

in the same way as the ActnGpDiff in the x2J,16, J = {2, 3, 4, 6, 7, 8} case was treated,

and get an empty output.

We can run the for loop over [1..#BadSub] with BadSub:={@ b @} to get a

FinSub of size 483 as the only non-empty set. It does take a little while to calcu-

late SetKeep but it turns out to be a small set of size 481.

Working with b5, we calculate the groups Fb (= Φ(b5)) and A and acquire a SetKeep

of size 4385 which we split over four Magma sessions; see table below.

4.2. THE CASES 73

#SetKeep 1100 1100 1100 1085

#FinSub 4 4 4 6

#BadSetNew 1102 1102 1102 1103

#ActnGpDiff 2 2 2 3

#SetKeepZero 0 0 0 0

#FinSub 1171 945 958 1192

#BadSetNew 0 0 0 4353

#ActnGpDiff 2 2 2 4

#SetKeepZero 0 0 0 0

#FinSub 1208

#BadSetNew 0

#ActnGpDiff 4

#SetKeepZero 4080

Table 4.18: Dealing with the elements in the SetKeep of size 4385.

Let b be a group in any ActnGpDiff or SetKeepZero in the above table, then

〈Φ(b), x〉 will fix at least one non-zero vector.

A total of six FinSub’s, of sizes 4122, 483, 1171, 945, 958 and 1208, have been

formed during our computations. The union of these sets has size 8010. Working

through the groups in this union in the usual way we form the set E2
J,16 containing

groups b of order 24 such that 〈b, x〉 doesn’t fix any non-zero vectors and 〈x〉 acts

irreducibly on b; we find that every involution in b is in 2DE8(2) and the size of E2
J,16 is

57360.

We finally address the last pair QJ , x of Lemma 4.2.1, where J = {2, 3, 4, 6, 7, 8}

and x = x2J,20. We break up QJ to get a BadSub of size 10 and then our first

BadSetNew of size 548. Only 275 of the groups in BadSetNew are such that the di-

mension of the group generated by any one of them and x is less than or equal to 2.

Along the way 10840 group have been added to FinSub, 2 to ActnGpDiff and 1 to

SetKeepZero. If b ∈ ActnGpDiff then dim(CV248(〈Φ(b), x〉)) > 2. If b ∈ SetKeepZero

then dim(CV248(〈b, x〉)) > 2. Mostly, the Frattini quotients of the 275 groups are iso-

morphic to direct sums of 7 irreducible modules and it seems like Magma can work

through 5 in around a day. We split the 275 groups over ten Magma sessions and run

74 CHAPTER 4. L2(16)

the for loop over [1..#BadSub] in each session; see the table below.

#BadSub 30 30 30 30 30

#FinSub 29610 29610 29834 30058 30170

#BadSetNew 0 0 0 0 0

#BadSub 30 30 25 20 20

#FinSub 30002 30002 25142 20058 11745

#BadSetNew 0 0 0 0 0

Table 4.19: Breaking up 275 of the groups in BadSetNew.

We have 11 FinSub’s of sizes 10840, 29610, 29610, 29834, 30058, 30170, 30002,

30002, 25142, 20058 and 11745 to consider. Each of these sets has a group of order

bigger than 24 such that the dimension of the fixed space of the group generated by it

and x is less than or equal to 2, but 〈x〉 doesn’t act faithfully on it and so we discard

it. We create sets 1E2
J,20,

2E2
J,20,

3E2
J,20,

4E2
J,20,

5E2
J,20,

6E2
J,20,

7E2
J,20,

8E2
J,20,

9E2
J,20,

10E2
J,20 and 11E2

J,20, each containing those subgroups b of the groups in the respective

FinSub such that |b| = 24, dim(CV248(〈b, x〉)) = 2 and x acts irreducibly on b. We find

that every involution in b will be in 2DE8(2). The sizes of the 11 sets created turn out

to be 5760, 22230, 22230, 22590, 22950, 23130, 22860, 22860, 19185, 15150 and 6495,

respectively.

In this subsection we have constructed 18 sets of elementary abelian groups of order

24 and we must now see if we can build up any of the groups to a copy of L2(16).

4.2.4 Constructing Copies of L2(16)

From the previous subsection, we carry over elements x of order 15 and the corre-

sponding sets E of elementary abelian groups of order 24. For a given pair of x and E,

x acts irreducibly on each group, S, in E and dim(CV248(〈S, x〉)) is either 0 or 2. We

also know that any involution in S is in 2DE8(2). By Lemma 3.1.1, we must now go

through all involutions t in E8(2) inverting x and check whether 〈S, x, t〉 is isomorphic

to L2(16). Recall that it follows from Lemma 4.1.2 that t must be in 2DE8(2). The

pairs x and E are listed in Table 4.20.

4.2. THE CASES 75

x E |E|

x1J,16 E1
J,16 3600

J = {1, 3, 4, 6, 7, 8} x2J,16 E2
J,16 57360

x1J,20 E1
J,20 480

x2J,20 E2
J,20 5760

x1J,16 E1
J,16 3600

x2J,16 E2
J,16 6960

x1J,20 E1
J,20 480

x2J,20
1E2

J,20 5760

2E2
J,20 22230

3E2
J,20 22230

J = {2, 3, 4, 6, 7, 8} 4E2
J,20 22590

5E2
J,20 22950

6E2
J,20 23130

7E2
J,20 22860

8E2
J,20 22860

9E2
J,20 19185

10E2
J,20 15150

11E2
J,20 6495

Table 4.20: The 18 pairs of x and E.

We will now get our hands on all the involutions inverting x, where x is one of

the 8 elements of order 15 listed in Table 4.20. For G = E8(2), consider the extended

centraliser C∗G(x) = {g ∈ G : xg = x or xg = x−1} of x. Let t ∈ G be any involution

such that xt = x−1, then C∗G(x) = 〈CG(x), t〉: Let g ∈ C∗G(x) so that xg = x−1 then

g = (gt)t, where gt ∈ CG(x). Hence, given that we have CG(x), if we can find a single

involution inverting x, we can find them all.

Our x is in 15FE8(2) or 15GE8(2) and so by Theorem 2.2.2, we know that x3 ∈ 5BE8(2).

Also, C∗G(x) ≤ C∗G(x3) and so we attempt to construct C∗G(x3) since centralisers of

elements in 5BE8(2) are readily available to us. The centraliser of an element in 5BE8(2)

is given to us by Neuhaus, and we take this group as the fourth argument of FindCent

(see [42]); G, x3 and 4 are taken as the first three arguments, where 4 is the dimension

76 CHAPTER 4. L2(16)

of the non-trivial irreducible 〈x3〉-module over GF(2). Running FindCent then gives

us CG(x3).

Let LJ be the standard Levi complement containing x3 then running LMGClasses

shows us that LJ has three classes of elements of order 5, one containing x3 (5CLJ)

and two containing elements in 5AE8(2) (5ABLJ). We can randomly search in LJ for

elements f1 ∈ 5ALJ and f2 ∈ 5BLJ so that both centralise x3. Taking the copy of

the centraliser of an element in 5AE8(2) calculated by Neuhaus, we use FindCent to

compute CG(f1) and CG(f2). These centralisers contain x3 and are a good selection of

subgroups of G in which we may search for an involution inverting x3.

We factor out CG(f1) by its soluble radical and calculate the preimage N1, of the

normaliser of 〈x3〉 in CG(f1). The order of N1 is 26.32.54 and it doesn’t contain any

elements inverting x3. Hence we add to N1, the preimage of the normaliser of 〈x3〉

in CG(f2) to get an overgroup N2 of order 28.32.54. Searching in N2 we do indeed

find an involution r inverting x3. We have the group C∗G(x3) = 〈CG(x3), r〉 of order

221.32.55.13.17.41.

We ask for the centraliser in the radical quotient, C∗G(x3), of x and then for the

normaliser of this centraliser. The preimage of this normaliser will contain C∗G(x) and

so in this preimage we ask for the centraliser of x and also search for an involution

t, inverting x. We have the wanted group 〈CG(x), t〉 of order either 25.32.52.17 or

27.32.53.13.

We first consider all pairs x,E from Table 4.20 with dim(CV248(x)) = 20; there are

14 such pairs. The order of C∗G(x) will be 27.32.53.13. Going through all elements of

C∗G(x), we collect all involutions that invert x in a set we name I1; there are 15600

such involutions and they are all in 2DE8(2). We now introduce a way of cutting down

the number, 15600.

Let t ∈ I1 then 〈x, t〉 ∼= Dih(30) is a subgroup of C∗G(x) containing 14 other

involutions of I1, each of which along with an S ∈ E and x would generate the same

group, 〈S, x, t〉. Therefore going through every involution t ∈ I1 to see if 〈S, x, t〉,

S ∈ E, could be isomorphic to L2(16) is redundant. By running the following code

we collect all involutions, in a set called I2, such that each along with x = x15 would

generate a distinct subgroup of C∗G(x) isomorphic to Dih(30); we get the size of I2 as

1040.

4.2. THE CASES 77

I2:={Random(I1)};

for t in I1 do

if forall{g : g in I2 | t notin sub<Q|x15,g>} then

Include(~I2,t);

end if;

end for;

For practicality, we should first check that the order of 〈S, x, t〉, S ∈ E, t ∈ I2

equals |L2(16)| before checking for isomorphism. But even checking the order of all

possible groups 〈S, x, t〉 is not the best if a lot of them will be large. Note that if

〈S, x, t〉 turns out to be a large subgroup of E8(2) then there are a lot of possibilities

for the orders of its elements just because the same is true for elements of E8(2). The

set of possible orders of elements in L2(16) is {1, 2, 3, 5, 15, 17}. If the orders of certain

chosen elements of 〈S, x, t〉 are not all in {1, 2, 3, 5, 15, 17} then we disregard 〈S, x, t〉;

this is employed in code as follows.

subE:=[]; subI2:=[];

for S in E do

for t in I2 do

if {Order(s*t) : s in S} subset {1,2,3,5,15,17} then

Append(~subE,S); Append(~subI2,t);

end if;

end for;

end for;

Note that if 〈S, x, t〉 ∼= L2(16) then 〈S, x, t〉 = 〈S, t〉. In the above code E:= E and

our choice of elements whose orders we check and the way of collecting groups S and

involutions t that pass this check is very similar to [45]. The above code returns a

sequence, subE, of groups in E and a sequence, subI2, of involutions in I2 and we must

now check if the ith term of subE along with the ith term of subI2 generates a group

of order equal to |L2(16)|. Note that checking a group S in E against 1040 involutions

indeed proves to be a lot more practical than having |E|×15600 iterations. Just to give

an idea to the reader of the code run times, we mention that if |E| is approximately

22000 then it can take around 2 weeks for the above code to finish running.

78 CHAPTER 4. L2(16)

Working with the pairs x,E in Table 4.20 with dim(CV248(x)) = 20, we get that

in all 14 cases the sequences subE and subI2 are returned as empty. Working with a

pair x,E with dim(CV248(x)) = 16, we again have that every involution in C∗G(x) that

inverts x is in 2DE8(2). The size of I2 will be 256. This time we do get a non-empty

subE. Let m = |subE| = |subI2| and then for i ∈ {1, . . . ,m}, let Si be the ith term of

subE and ti the ith term of subI2, we construct the set L = {〈Si, ti〉 : i ∈ {1, . . . ,m}}.

We get that |L| = m and that every group in L is isomorphic to L2(16). See the

following table.

x E |E| m |L|

J = {1, 3, 4, 6, 7, 8} x1J,16 E1
J,16 3600 3600 3600

x2J,16 E2
J,16 57360 57360 57360

J = {2, 3, 4, 6, 7, 8} x1J,16 E1
J,16 3600 3600 3600

x2J,16 E2
J,16 6960 6960 6960

Table 4.21: The number of copies of L2(16) that we have constructed in E8(2).

Let H be any copy of L2(16) in E8(2) that we have constructed above. We know

that H will not fix any non-zero vectors in V248 since it contains a subgroup that

doesn’t either (see Remark 4.2.6). The order of Aut(H) is 26.3.5.17; to show that

H or any of its automorphic extensions can’t be maximal in E8(2), we construct an

overgroup of H bigger that this, but smaller than E8(2). To this end we have the

following lemmas.

Lemma 4.2.7. Given a group G, let H be a subgroup of G, g an element of NG(H)

and V a G-module. If W is an irreducible H-submodule of V ↓H then so is W g.

Proof. It is easy to see that W g is a subspace of V , actually isomorphic to the un-

derlying vector space of W . Let h ∈ H, then W gh = W h′g (for some h′ ∈ H) = W g.

Hence W g is a H-module.

Let U 6= 0 be a proper H-submodule of W g. Then we have just proved that U g−1
is

a proper non-zero H-submodule of W , a contradiction. Hence W g is irreducible.

Lemma 4.2.8. Given a group G, let H be a subgroup of G, g an element of NG(H),

and V a G-module. If W is the socle of V ↓H, then W g = W .

4.2. THE CASES 79

Proof. The socle of V ↓H is the sum of all the irreducible H-submodules of V ↓H,

say W = W1 +W2 + . . .+Wk. Then by Lemma 4.2.7, W g = W g
1 +W g

2 + . . .+W g
k is

also a sum of some irreducible H-submodules. For i ∈ {1, . . . , k}, we have that W g−1

i ,

being an irreducible H-submodule, appears as a summand in W and so Wi appears

as a summand in W g. Therefore W g = W .

Going back to H being a copy of L2(16) in E8(2) that we have constructed, let

W be the socle of V248 ↓ H, then we have learned that any extension of H would

stabilise W . In all our cases, W will have a non-zero dimension less than 248, hence

its stabiliser can’t be all of E8(2) (V248 is irreducible). Therefore if H, or an extension,

is a maximal subgroup of E8(2), then it will be equal to the stabiliser of W in E8(2).

In order to show non-maximality, we construct a partial stabiliser of W in E8(2) of

order bigger than 26.3.5.17.

Let 0 < k < 248 be the dimension of W . Asking for W in Magma using the

command Socle returns W with Fk2 as its underlying vector space; our 248-dimensional

matrices (elements of E8(2)) can’t act on vectors of dimension k. The code we present

below incorporates a solution, as suggested by Ballantyne, to this problem.

kspace:=VectorSpace(GF(2),248);

ProbL216s:={@@};

ustabos:={};

for i in [1..#L216s] do

gp:=L216s[i];

gpM:=GModule(gp); //The restriction of the 248-dimensional

//G-module to gp.

W:=Socle(gpM);

Wphi:=Morphism(W,gpM);

genW:=[kspace!Wphi(v): v in Generators(W)];

gpN:=sub<kspace|genW>; //The socle as a subspace of the

//248-dimensional vector space

//over GF(2).

ustab:=UnipotentStabiliser(O,gpN);

ustabo:=Order(ustab);

80 CHAPTER 4. L2(16)

Include(~ustabos,Factorisation(ustabo));

if ustabo le 2^6 then Include(~ProbL216s,gp); end if;

if i mod 1000 eq 0 then i; end if;

end for;

#ProbL216s;

#ustabos;

ustabos;

In the above code, L216s is one of our (indexed) sets L from Table 4.21 containing

groupsH isomorphic to L2(16) and O is the unipotent radicalQJ , J = {1, 3, 4, 6, 7, 8} or

{2, 3, 4, 6, 7, 8}. The code calculates the stabiliser ustab in O of the socle of V248 ↓H. If

the order of ustab is less than or equal to 26 then H is added to a set called ProbL216s.

Running the code with all four sets L in parallel, we see that the order of ustab is

either 220, 224, 238, 240, 242, 244, 254 or 256 and so ProbL216s always remains empty. We

have the following theorem.

Theorem 4.2.9. If H is a subgroup of E8(2) such that F ∗(H) ∼= L2(16) then H is

not maximal in E8(2).

Chapter 5

L2(8)

In this chapter, we make partial progress towards establishing whether L2(8) can be

maximal in E8(2). To do this we first build up on the methodology given in Sections

3.1 and 4.1.

5.1 Methodology

As usual we will need a list of pairs of O2(P) and x, where P is a standard parabolic

subgroup of E8(2) containing a Levi-cuspidal subgroup 〈x〉 of order 7. This list will be

given in the next section. The group O2(P) needs to be broken down and during the

process of doing so, we will encounter elementary abelian subgroups and also groups b

such that b/Φ(b) is a direct sum of isomorphic 3-dimensional irreducible 〈x〉-modules,

say V1⊕. . .⊕Vk. The elementary abelian groups will be added to sets called FinSub and

the groups b to sets called BadSub (or BadSetNew). It may be gleaned from the previous

chapter that things that can get in the way of having a smooth run of the program

A.1 are (a) the size of BadSub becomes too big, or (b) the number of summands, k,

is too big. In the L2(8) case we will very frequently encounter these problems and so

in this section we introduce more ways of countering them. But before that, we recall

some notation.

Let b with b/Φ(b) being V1⊕ . . .⊕Vk be a group in BadSub, then Fb is the Frattini

subgroup of b or the preimage of the sum of the first r of the k summands. The group

A is the preimage of Φ(Fb/[b, Fb]). The set SetKeep contains those preimages in b of

certain vectors in b/Fb that square into A. Let t ∈ SetKeep, Sub4aa = 〈Fb, txi : i ∈

81

82 CHAPTER 5. L2(8)

{1, . . . , 7}〉. Whenever we encounter a Frattini quotient or a quotient Sub4aa/A that

is not a direct sum of isomorphic 3-dimensional irreducible modules, we consider its

submodule generated by isomorphic 3-dimensional summands and add its preimage

to a set called SetSub2; there can be more than one such submodule. See A.1 and

Sections 3.1 and 4.1 for more information.

Note that in the L2(8) case, given a BadSub, before we attempt to break up a

group b ∈ BadSub, we will often calculate its order first. If the order is large then we

will proceed to calculate the number k and the size of SetKeep. Although, we don’t

attempt to calculate SetKeep if k ≥ 11. This information associated to b will help us

establish the best way to break up b into smaller subgroups. Information on groups

in BadSub will be given more often in the L2(8) case than was given in the L2(16)

case. No such information was calculated in the L2(64) case since for every parabolic

subgroup of E8(2) arising from Lemma 3.2.1, it was possible to run A.1 and finish

within realistic time.

We now present solutions to the problem of sizes of sets in which we collect sub-

groups of O2(P) becoming too large.

• We will see in the next section that we are interested in a subgroup of O2(P) only

if it, along with x, generates a group whose fixed space has dimension less than

or equal to 5. Previously we have checked groups collected in FinSub against a

similar condition and discarded them if the condition was not met; at times we

did the same to groups in BadSub. In the L2(8) case, if we break up a group

b ∈ BadSub by running the for loop over [1..#SetKeep] followed by the repeat

loop programmed to end when #SetKeep eq 0, we don’t add a subgroup of b to

SetSub2, BadSetNew or FinSub at all if the dimension of the fixed space of the

group generated by the subgroup and x is greater than 5. Note that the code

was modified once in a similar way before towards the end of 4.2.2.

Given a group b ∈ BadSub, the for loop over [1..#SetKeep] breaks up b by

computing its subgroups Sub4aa. The number of subgroups computed equals

#SetKeep of course. The loop breaks up a Sub4aa by computing preimages of

certain submodules of Sub4aa/A. Each preimage is a subgroup of Sub4aa and is

added to SetSub2 or FinSub. As stated above, now we don’t add a subgroup of

Sub4aa to SetSub2 or FinSub if the dimension of the fixed space of the group

5.1. METHODOLOGY 83

generated by it and x is greater than 5.

While performing computations for the L2(8) case, groups b were encountered

such that running the new for loop over [1..#SetKeep] on any one b yielded

an empty SetSub2 and FinSub. After investigating, it was found that every

group Sub4aa ≤ b was such that dim(CV248(〈Sub4aa, x〉)) was greater than 5.

Hence, the same would hold true for any subgroup of 〈Sub4aa, x〉, and this is

why SetSub2 and FinSub would be returned as empty.

But if dim(CV248(〈Sub4aa, x〉)) > 5, then computing any subgroups of it is

redundant. Hence we adjust the code to always ignore such Sub4aa’s. Note

that if a group b is small, say of order 231, then it is likely that many of its

subgroups Sub4aa are such that dim(CV248(〈Sub4aa, x〉)) > 5, and we will very

often come across large BadSub’s containing small groups. Making the mentioned

adjustment to the code may allow us to deal with these BadSub’s a lot faster than

before.

This adjustment also means that any small group b with large k, giving rise

to a very large SetKeep, no longer needs to be factored out by an Fb that is the

preimage of the sum of the first 0 < r < k summands. Test running code with

different values, in order to choose the best one for r, may be avoided in favour

of running a code that may work even better than any non-zero value for r we

could choose.

• We simply turn the sets into sequences at the end of which new items will be

appended rather than Magma first checking if an item is already in a collection.

The code will then output BadSetNew and FinSub as sequences of, possibly,

non-distinct groups which we may then turn into sets if we wish.

Given an indexed set BadSub, the for loop over [1..#BadSub] considers the

first group b in BadSub, and for every Sub4aa ≤ b adds appropriate subgroups

of Sub4aa to SetSub2 or FinSub. The loop then defines SetSub as SetSub2,

SetSub2 as empty and breaks up every group in SetSub into smaller subgroups,

with each subgroup being added to SetSub2, FinSub or BadSetNew. The process

of breaking up the groups in (the new) SetSub2 is repeated, and so on, until

an empty SetSub2 is returned. The loop then moves on to considering the

84 CHAPTER 5. L2(8)

next group in BadSub, and so on. The sizes of the sets SetSub2, FinSub and

BadSetNew will affect the speed of the loop.

Say that we run the for loop over [1..#BadSub] on a given BadSub but with

SetSub2, FinSub and BadSetNew as sequences. If after the code run we decide

to turn BadSetNew into a set (to obtain a list of distinct groups), then this would

be equivalent to not having changed it to a sequence in the first place. But it

could’ve been that more than one large SetSub2’s were created while running

the for loop, and so it’s important in this case that the SetSub2’s remain as

sequences even if we decide to not have BadSetNew as a sequence. Another

reason to keep SetSub2’s as sequences is that groups added to them may be

bigger than the ones added to BadSetNew and forming a set of large objects is

slower than forming a set, of the same size, of smaller objects.

Note that if after having gotten the sequences BadSetNew and FinSub of non-

distinct groups, we find that these groups are small, it can be much faster to

perform subsequent calculations on a given group more than once rather than

converting the sequences into sets first.

We now give an example demonstrating that switching from sets to sequences

can largely decrease the time taken to run the code. A particular pair of O2(P)

and x from among the ones listed in the next section will be such that O2(P)

will contain 24 groups of order 255, each having a Frattini quotient that is a

direct sum of 7 isomorphic 3-dimensional irreducible 〈x〉-modules. Any one of

the 24 groups will give rise to a SetKeep of size 3017. We choose one particular

group of order 255 and call it b7. Running the for loop over [1..#BadSub] on

b7 and collecting subgroups of it in sets takes around a day and a half to give a

BadSetNew of size 3017 and a FinSub of size 1. Running the loop again but now

collecting groups in sequences takes less than 12 hours to give a BadSetNew of

size 3017 (so we know all these groups will actually be distinct) and a FinSub

also of size 3017; we know that all groups in FinSub will be the same so it’ll be

better to keep it as a set in this case. Just like in this example, we will quite often

have that the groups produced to be added to BadSetNew will all be distinct and

so in these cases having it and SetSub2 as sequences will work exceptionally well

5.1. METHODOLOGY 85

for us.

• Let’s say we have BadSub as a collection of groups that are not too big and

on which the for loop over [1..#BadSub] seems to be running smoothly, but

a lot of groups are being added to the set or sequence BadSetNew (this will

happen quite often). The loop would run smoothly on the even smaller groups

in BadSetNew as well and this could result in an even bigger BadSetNew being

formed subsequently. Instead of collecting large BadSetNew’s we fix our original

BadSub as OrigBadSub, and run the for loop on just the first group in it. We then

keep running the loop on any BadSetNew’s that arise, breaking this first group

all the way down to its elementary abelian subgroups. After this we move on

to the second group in OrigBadSub and do the same. Rather than dealing with

the BadSetNew’s one by one, this is a slightly different way of automating the

process, by keeping on running the for loop on all BadSetNew’s that arise until

an empty one is output, than the one in A.1. This method means that we don’t

have to worry about using too much memory forming large BadSetNew’s and

could even, at times, have them as sets of distinct groups rather than sequences.

On occasions, it will be better to break down all elementary abelian sub-

groups collected in FinSub into subgroups of order 23 and reset FinSub as empty

before moving on to collect elementary abelian subgroups of the next group in

OrigBadSub. If we don’t do this then as more and more groups are added to

FinSub and its size increases, either the code will slow down too quickly (if we

have FinSub as a set) or it’ll keep running at the same speed but too much

memory will get used up (if we have FinSub as a sequence).

As subgroups of O2(P) get smaller the sizes of BadSetNew’s get bigger and

we have just discussed a way of bypassing constructions of large BadSetNew’s.

Note that A.2 is a way of downsizing BadSub but it is mainly a tool against large

subgroups of O2(P) and won’t work well with a BadSub of size over, say, 4000;

the size of BadSetNew can well exceed this if smaller groups of size approximately

230 are being added to it. For example consider the set BadSetNew of size 3017

containing subgroups of b7; the possible orders for these groups are 221, 224, 227

and 228. Picking a second group of order 255 from among the 24 and running

86 CHAPTER 5. L2(8)

the for loop over [1..#BadSub] on it will add 3016 more groups to our existing

BadSetNew of size 3017. Running the for loop on all the 24 groups together

seems to have the potential of returning a BadSetNew containing approximately

3017× 24 distinct groups.

Let b be such that b/Φ(b) is V1 ⊕ . . . ⊕ Vk, as before. The bigger k is, the bigger

#SetKeep will be. We now discuss solutions to the problem of coming across a large k,

or k is not large but there are a lot of groups b to go through. In the latter case, even

if sizes of the SetKeep’s associated to the groups b are not large, running code on all

the groups together would take too long unless sizes of the SetKeep’s are decreased.

• We will very often come across large BadSub’s containing groups of order ap-

proximately 230. Let b have order ≤ 230, very often we will see that b/Z(b) is

elementary abelian. If so then Φ(b) ≤ Z(b) and b/Z(b) will be a direct sum of

≤ k isomorphic modules. We would then take Fb to be Z(b) and if this is bigger

than the Frattini then the SetKeep produced will be of a smaller size and so the

for loop over [1..#BadSub] on b will run faster than if we were to keep Fb as

Φ(b).

Continuing to look at the example of the BadSetNew of size 3017, we have

that 2297 of these have order ≤ 224 among which are those whose quotient by

the centre is elementary abelian. Running the for loop over [1..#BadSub] on

the 2297 groups but with Fb as the centre whenever the quotient is elementary

abelian, as the Frattini otherwise, takes around 6 hours (the next BadSetNew

is output as empty but FinSub will be of size 1153). In the same time, the

loop runs through only 133 of the 2297 groups if we take Fb to always be the

Frattini. Note that in addition to taking Fb as the centre whenever possible, if

we adjust the code to ignore any Sub4aa’s such that dim(CV248(〈Sub4aa, x〉)) > 5

as suggested in the first bullet point, we see that the loop takes just an hour and

a half to finish running.

Remark 5.1.1. The code incorporating all of the methods explained in the above bullet

points is given in A.3, where, also, SetKeepZero will now contain Fb’s instead of b’s.

• We’ve said in the first bullet point that if k, and so SetKeep, is large then as

long as the order of the group b is small we can get away with factoring out with

5.1. METHODOLOGY 87

Φ(b) if we ignore any Sub4aas’s such that the dimension of the fixed space of

〈Sub4aa, x〉 is > 5; there can be many such Sub4aa’s since smaller groups tend

to fix a bigger subspace of V248. However if |b| is large then we have no choice

but to take Fb as the preimage of the sum of the first r summands in V1⊕ . . .⊕Vk
(see Section 4.1 for more details). We’ve had to do this for some of the groups

we came across in 4.2.2, but here we present a different way of going about it.

Very often we will choose r so that k−r is 4 or 5. This means that the number

of vectors in b/Fb whose preimages are considered for inclusion in SetKeep is 585

or 4681, respectively. Frequently, it was seen that #SetKeep turned out to be

exactly 585 or 4681 and moreover, every Sub4aa was such that Sub4aa/A was

a direct sum of isomorphic modules (and so SetSub2 was just the set of all

Sub4aa’s), as was the Frattini quotient of Sub4aa (and so BadSetNew equalled

SetSub2).

If BadSetNew is going to be output as the set of all Sub4aa’s then instead wast-

ing hours on calculating a quotient of every Sub4aa and mapping the preimage

of the entire quotient back into GL248(2), two times, collecting the preimage in

SetSub2 the first time and BadSetNew the second (the process is especially slow

if SetSub2 and BadSetNew are sets instead of sequences), as soon as SetKeep

has been calculated we should simply calculate and collect all groups 〈Fb, t〈x〉〉,

t ∈ SetKeep, to immediately obtain all Sub4aa’s in a sequence. We collect the

Sub4aa’s in a sequence since quite often we will see that all, or many of them,

are distinct. We call this sequence OrigBadSub.

In short, whenever #SetKeep equals 23(k−r−1)+23(k−r−2)+ . . .+23+1, we take

this as an indication that BadSetNew is likely to be output as the collection of

all Sub4aa’s and instead of going through the process of calculating BadSetNew,

we simply put all Sub4aa’s in a sequence called OrigBadSub.

Given our OrigBadSub, it is sometimes possible that a group b in it is such

that b/Φ(b) has an irreducible module not isomorphic to all of the others after

all. To account for this, instead of dealing with OrigBadSub as explained in the

third bullet point above, we straight away add this b to SetSub2, skipping the

for loop over [1..#SetKeep].

88 CHAPTER 5. L2(8)

The code incorporating the method in this bullet point is given in A.4.

The last method we discuss will not make many appearances but is immensely

helpful in situations it can be applied to.

• Let b be a group in BadSub such that Z(b) is elementary abelian but b/Z(b)

isn’t. Let S be an elementary abelian subgroup of b of order 23 on which x

acts irreducibly. Then S = {e, txi : i ∈ {1, . . . , 7}} for any involution t ∈

S. Consider the image of S in b/Z(b) then its preimage is S̃ = 〈Z(b), t〈x〉〉

= Z(b)∪Z(b)tx∪. . .∪Z(b)tx
7
. So assuming the index of Z(b) in b is small enough

for the command Transversal to work, we must search for desired elementary

abelian subgroups of order 23 in the groups 〈Z(b), γ
〈x〉
1 〉, . . . , 〈Z(b), γ

〈x〉
m 〉, where

Γ := {γ1, . . . , γm} is a transversal for Z(b) in b. However, for 1 ≤ i ≤ m,

z ∈ Z(b), (zγi)
2 = zγizγi = z2γ2i = γ2i , since Z(b) is elementary abelian. So the

only cosets with involutions in them are Z(b)γi where γi is the identity or an

involution. Hence we are interested in constructing subgroups 〈Z(b), γ
〈x〉
i 〉 with

o(γi) = 1 or 2, only, which we then add to SetSub2.

Looking at the BadSetNew of size 3017 from above, we have that 384 of these

groups have order 228. None of the 384 groups have an elementary abelian quo-

tient by the centre (so we can’t take Fb to be the centre) but all have elementary

abelian centres. Using the above method on these 384 groups b (adding the

groups 〈Z(b), γ
〈x〉
i 〉 to SetSub2 and then running the repeat loop in A.3 pro-

grammed to end when #SetKeep eq 0, doing the same to the next b and so on)

enables us to break them down to their elementary abelian subgroups in approx-

imately 9 hours. In comparison, taking Fb to always be the Frattini (running

the for loop over [1..#BadSub] in A.3) doesn’t even get us through 31 of the

384 groups in the same time.

The codes incorporating the method in this bullet point are given in A.5 and

A.6. It will become clearer why these codes are written as they are when we use

them later on.

We now move on to listing all the possible pairs of O2(P) and x for the L2(8) case,

and dealing with some of them by utilising the methods described in this section.

5.2. THE CASES 89

5.2 The Cases

We embark on our journey of trying to construct copies of L2(8) in E8(2). In B.3,

all the possible fusion patterns for an embedding of L2(8) in E8(2) are listed. By

Lemma 2.2.5(i) and Proposition 2.2.3, we are not interested in decompositions (i) and

(xi)-(xxi). Also (ii)-(iv) and (viii)-(x) are not realisable since the class of elements of

order 3 of an L2(8) following any one of them will fuse to 3BE8(2) or 3DE8(2) and so

these are the possible classes that powers of elements of order 9 of the L2(8) can lie

in. This contradicts the fact that the 3rd power of any class of elements of order 9 of

E8(2) is 3CE8(2), see Theorem 2.2.2.

We have that the conjugacy classes of elements of order 7 of an L2(8) embedded in

E8(2) according to (v),(vi) or (vii) will fuse to 7BE8(2). The following result by Rowley

tells us where we can find Levi cuspidal subgroups of E8(2) generated by elements in

7BE8(2).

Lemma 5.2.1. Suppose that 〈x〉 is a Levi-cuspidal subgroup of E8(2) with x ∈ 7BE8(2).

Then 〈x〉 is L-cuspidal for L ∼= L3(2)× L3(2) with 〈x〉 being one of two diagonal Z7-

subgroups in L.

Proof. Will be viewable in [7], once the paper is complete and made available.

The standard parabolic subgroups with Levi complements isomorphic to L3(2) ×

L3(2) are the ones associated to the roots labelled by

{1, 3, 5, 6}, {1, 3, 6, 7}, {1, 3, 7, 8},

{3, 4, 6, 7}, {3, 4, 7, 8},

{2, 4, 6, 7}, {2, 4, 7, 8},

{4, 5, 7, 8}.

Out of all the elements of order 7 in E8(2) only the ones in 7BE8(2) fix spaces of

dimension 38, see Theorem 2.2.2. For J being one of the above sets we calculate

LJ and then its subgroups of order 7. There’s 4 of these with only 2 among them

containing elements of order 7 that fix spaces of dimension 38. These two must be the

LJ -cuspidal subgroups given to us by Lemma 5.2.1. We take xJ,a to be the generator

of one of them and xJ,b of the other. We also calculate the groups QJ .

90 CHAPTER 5. L2(8)

We have our pairs, 16 of them, QJ , xJ,a and QJ , xJ,b. The number of composition

factors isomorphic to the Steinberg module in decompositions (v)-(vii) is 2, 4 or 5. So

we care about a subgroup of QJ only if the dimension of the fixed space of the group

generated by it and xJ,a, or xJ,b, is ≤ 5; from now onwards, if a subgroup of QJ is like

so then we say that it satisfies the Steinberg bound.

We’ve not managed to finish running computations on all 16 pairs yet. Note that

A.2 and the methods outlined in Section 5.1 were developed while running computa-

tions on the different pairs for L2(8) and so may not always be used when we describe

our work with some of the pairs in the subsections that follow. We fix notation for

the other/less effective programs used sometimes, below; referring to them will now

be convenient. Denote by:

(†) : the for loop over [1..#BadSub] in A.3 except that Fb will always be the Frattini.

(††) : the for loop over [1..#BadSub] in A.3 except that for every b ∈ BadSub, where

b/Φ(b) ∼= V1 ⊕ . . .⊕ Vk, we take Fb to be the preimage of the sum of the first r

summands. The identifier STH will denote the number r. Note that (††) is what

we did for groups with large k in 4.2.2 and is different from A.4 as detailed in

Section 5.1. Also note that running (††) with STH = 0 is the same as running

(†).

(∗) : A.3 except that Fb is always the Frattini.

For every code that we run, FinSub, SetSub2 and BadSetNew will always be sets

rather than sequences (i.e. we will be using the command Include rather then

Append), unless stated otherwise. Also ActnGpDiff will always remain empty and

hence we make no further mention of it. If a BadSetNew, FinSub or SetKeepZero

is empty after a code run then we may omit mentioning this. For b ∈ BadSub or

BadSetNew, we will always use k to denote the number of summands in a direct sum

decomposition of b/Φ(b) into irreducible modules. Frequently, before trying to break

up b, we will be using appropriate lines from A.4 to examine how the sizes of SetKeep

change as STH is varied. Finally we remark that any code will run slower on the larger

groups.

5.2. THE CASES 91

5.2.1 QJ , xJ,a for J = {2, 4, 7, 8}

Firstly, we mention that before we were able to bring the Steinberg bound down to 5

we were working with a bound of 6 and so a group among the ones collected below

could be so that the dimension of the fixed space generated by it and xJ,a is 6. Also,

since ignoring any Sub4aa’s not satisfying the Steinberg bound wasn’t incorporated

into A.3 until later, none of the codes used below do so; if they did then any code run

times mentioned below could possibly have been shorter.

We now break up QJ by having it as the sole member of SetSub2 and running

the repeat loop in A.3 programmed to end when #SetSub2 eq 0. This just outputs a

single group of order 2113 with k = 4. Running (†) on this group returns a BadSetNew

of size 95; 3 are of order 282 with k = 4, 73 with possible orders 282 and 276 and k = 5,

4 with possible orders 230 and 240 and k = 6, 10 with possible orders 227, 233 and 238

and k = 7, 3 with possible orders 250, 254 and 279 and k = 8, and finally 2 with possible

orders 239 and 270 and k = 9.

We first look at the groups with k = 7 or 9 and two of the groups with k = 8:

• 6 of the 10 groups with k = 7 have order 238. Running (††) with STH = 3 on

them returns a BadSetNew of size 3510 on which we successfully run (∗) but with

FinSub a sequence.

We run (†) on the remaining 4 out of 10 and get a FinSub containing 2772

groups of order 29, none of which contain subgroups of order 23 normalised by

xJ,a, satisfying the Steinberg bound.

• Consider the groups with k = 9. We run (††) with STH = 5 on the group of

order 239 to get a BadSetNew of size 585 on which we run (†) to get a FinSub

containing 10752 groups of order 26; nothing in FinSub contains subgroups of

interest to us.

Running (†) on the group of order 270 returns a BadSetNew containing 7632

groups with possible orders 218, 221 and 224; we run (∗) but with FinSub a se-

quence, on the BadSetNew.

• Consider the group of order 250 with k = 8. Running (†) on it returns a

BadSetNew containing 3264 groups of order 218. We run (∗) but with FinSub a

92 CHAPTER 5. L2(8)

sequence, on the BadSetNew.

We run (††) with STH = 1 on the group of order 254. Doing so can get

#SetKeep down to 2377 and returns a BadSetNew containing 2352 groups with

possible orders 218 and 221. We run (∗) but with FinSub a sequence, on the

BadSetNew.

We now run (†) on the group of order 279 with k = 8 and get a BadSetNew containing

5386 groups, each of order ≤ 244. We divide these groups according to the associated

values for k.

• 2881 of the 5386 have k = 6. One of the 2881 has order 230. Factoring it out

with its Frattini subgroup would give a SetKeep of size 4689 and so instead we

run (††) with STH = 2 to get a BadSetNew containing 576 groups with possible

orders 218 and 221. We run (∗) but with FinSub a sequence, on the BadSetNew.

528 of the 2881 have order 236 with a SetKeep of size 657 each, with STH = 0.

Instead of running (∗) on the lot straight away, we test how (†) runs on them; we

see that the 1st group adds 72 groups to BadSetNew and every subsequent group

seems to be adding approximately 8. It seems like if we were to run (†), the size

of BadSetNew won’t increase detrimentally, whereas running (∗) would give us

528 separate BadSetNew’s intersecting in a lot of groups and we will be wasting

time repeating calculations. Therefore we decide to run (†) on the 528 groups to

get a BadSetNew containing 5568 groups of order 215. We run A.3 on these but

with the line loop:=0; changed to loop:=1; so that for each of the 5568 groups

it’s checked whether the quotient by the centre is elementary abelian.

1008 of the 2881 have order 241 with a SetKeep of size 649 each, with STH = 0.

Again it seems like running (†) won’t increase the size of BadSetNew by a lot,

therefore we do so but after dividing the groups over 2 Magma sessions. Each

session will contain 504 of the groups and return a BadSetNew of size 704. These

two BadSetNew’s aren’t the same but each is a subset of the BadSetNew of size

5568 encountered in the previous paragraph.

1344 of the 2881 have order 243 with a SetKeep of size 1161 each, with

STH = 0. After investigating how well a particular 243 breaks up by choosing

different values for STH, it seems like sticking with 0 will work best. Hence we

5.2. THE CASES 93

divide the 1344 groups over 6 Magma sessions with 224 groups in each and run

A.3.

• 2128 of the 5386 have k = 7. The quickest we are able to break up a chosen

group from the 2128 is by taking STH as 0; this takes 3h. We divide the groups

over 14 sessions with 152 groups in each and run A.3.

• 367 of the 5368 have k = 8. Out of the 367, 85 have possible orders 236 and

241. Further, 14 of these have #SetKeep as 11337 and the rest as ≤ 7753,

with STH = 0. Running (†) on a test group with #SetKeep = 11337 takes

approximately 4h; we run (†) on the 85 groups together.

24 of the 367 have order 243 and #SetKeep 19017. Running (†) on one of the

24 takes ≈ 9h; we run (†) on the lot.

48 of the 367 have order 243 and #SetKeep 11337. Running (†) on one of the

48 takes ≈ 5h; we run (†) on the lot.

210 of the 367 have order 244 and #SetKeep ≤ 7753. Running (†) on one of

the 210 takes ≈ 4h. We divide the 210 over 3 sessions with 70 groups in each

and run (†).

In this bullet point, every time (†) has run to give an empty output. Also,

in every run, despite #SetKeep being quite big, the size of SetSub2 seems to

remain either insignificant or not detrimentally large, and so it makes sense to

keep SetSub2 a set.

• Finally 10 of the 5368 have k = 9. The possible orders are 236 and 241, the

possible values for #SetKeep with STH = 0 are 66121, 291401 and 348745. We

can get #SetKeep down to 2121 for two of the groups with STH = 3. Hence we

run (††) on them (with STH = 3) to get a BadSetNew containing 2552 groups of

order 218; we run (∗) on BadSetNew but with FinSub a sequence.

We run (††) with STH = 5 and everything (FinSub, SetSub2 and BadSetNew) a

sequence, on the remaining 8 groups to get a BadSetNew containing 4680 groups

with possible orders 221, 224, 227 and 232. We run (∗) but with FinSub a sequence,

on the BadSetNew.

94 CHAPTER 5. L2(8)

It is left to consider the groups with k = 4, 5 or 6 arising from the initial split of

QJ . We run (†) on them to get a BadSetNew of size 4839 and a FinSub containing

4874 groups of order 212, 215 or 218. Nothing in FinSub contains subgroups of interest

to us. We divide the groups in BadSetNew according to the associated values for k.

• 1314 have k = 3 and 1393 have k = 4. Together these groups have order 215 or

218 and we run (∗) on them but with FinSub a sequence.

• 1003 have k = 5 and order ≤ 255. We separate out the 3 groups of order 243

because our test runs show that breaking these up will result in groups with

k = 7 being formed. We run (†) on these 3 and get a BadSetNew containing 432

groups of order 221, 224 or 228. A FinSub containing 3 groups of order 221 is also

given but; none of the groups contain subgroups of interest. 216 of the 432 have

k = 5; we run (∗), but with FinSub a sequence, on them. The other 216 have

k = 7 and we run (††) on them, with STH = 4 and everything a sequence. We

obtain a FinSub containing 512 groups of order 215, none of which contain any

subgroups of interest. We also obtain a BadSetNew of size 15207, on which we

run (∗) but with FinSub a sequence.

We divide the remaining 1000 groups over 3 sessions and run (∗) but with

FinSub a sequence.

• 828 of the 4839 have k = 6 and order ≤ 257. We divide them up according to

what #SetKeep with STH = 0 can be. We run (∗), with everything a sequence,

on the following collections: 64 groups with 393, 649, 1161, 1225 and 1617 as the

possible values for #SetKeep, 42 group with #SetKeep = 593, and 48 groups

with SetKeep = 713.

There are 81 groups with #SetKeep = 1609. We run (∗) on them with

everything a sequence apart from FinSub. We also comment out the lines in

the code, towards the end, that deal with groups in the FinSub produced from

breaking up a group in OrigBadSub, before moving on to the next group. A

FinSub containing 584 distinct groups of order 215 is returned; none of these

groups contain any subgroups of interest. Note that if we hadn’t adjusted the

code as stated before running it, several intersecting FinSub’s would’ve been

produced, and calculating subgroups of the groups in them would’ve slowed

5.2. THE CASES 95

the code down and increased memory usage. Indeed, an order of 215 for an

elementary abelian group is a tad too big for our liking.

There is one group of order 224 with #SetKeep = 2057. We run (††) with

everything a sequence and STH = 2. This returns a BadSetNew of size 585 on

which we run (∗).

There is another group of order 237 with #SetKeep = 4689. Taking STH to

be 1 we can get #SetKeep down to 593 and so we run (††) with STH = 1 and

everything a sequence. This returns a FinSub containing 585 groups of order

218, none of which contain any subgroups of interest.

The remaining groups are divided over 5 sessions. In each of two sessions,

we load a collection of 147 groups all having #SetKeep = 585. In each of the

other three sessions, we load 99 groups having #SetKeep = 1097. We run A.3

in each session but with everything a sequence. In each session, a SetKeepZero

containing a single elementary abelian group of order 215 is returned; this group

doesn’t contain any subgroups of interest.

• 234 of the 4839 have k = 7 and order ≤ 251. Most of these have #SetKeep as 8777

or 9801 with STH = 0. Taking STH to be 1 won’t help much with bringing the

values for #SetKeep down; we work with STH = 2 or 3. We have the following

list of 2-tuples: 〈49, 4〉, 〈90, 1〉, 〈153, 5〉, 〈257, 1〉, 〈265, 1〉, 〈585, 108〉, 〈649, 9〉,

〈713, 13〉, 〈841, 1〉, 〈1097, 30〉, 〈1609, 2〉, 〈4681, 59〉. The first entry in each tuple

is a possible value for #SetKeep with STH = 2 and the second entry is the number

of groups out of 234 having that value associated to them.

We run (††) with everything a sequence and STH = 2 on the 67 groups not

having #SetKeep as 585 or 4681. A FinSub containing 73 groups of order 218

is returned; none of which contain any subgroups of interest. A BadSetNew of

size 52878 is also returned, running (∗) on which, but with FinSub a sequence,

takes a month, with a third of the time being spent breaking up the 512 groups

of order 223 among the 52878.

With STH = 3, #SetKeep can go down to under 585 for 148 of the remaining

groups. We divide the 148 over two sessions and in each run (††) with everything

96 CHAPTER 5. L2(8)

a sequence and STH = 3. A non-empty BadSetNew will be returned in each session

and we run (∗), but with everything a sequence, on it.

We run (††) on the remaining 19 of the 234 groups, but with everything a

sequence and STH = 3 (#SetKeep won’t get bigger than 585). A BadSetNew of

size 10154 is returned on which we run (∗) but with everything a sequence.

• 36 of the 4839 have k = 8 and possible orders 236, 242 and 247. We run (††) on

them with STH = 4 and everything a sequence, to get a BadSetNew, of size 20073,

on which we run (∗) but with everything a sequence.

• 1 of the 4839 has k = 9 and order 239. We run (††) on it with STH = 5 and

everything a sequence, to get a BadSetNew, of size 585, on which we run (∗) but

with FinSub a sequence.

We have established that QJ does not contain any elementary abelian subgroups

of order 23, irreducible under the action of xJ,a, satisfying the Steinberg bound.

5.2.2 QJ , xJ,a for J = {2, 4, 6, 7}

Again, some of the groups collected below might be satisfying a bigger Steinberg bound

of 6 and any Sub4aa’s not satisfying the bound were hardly ever ignored.

We break up QJ as in the previous subsection. We have the following infor-

mation on the 11 groups b contained in the BadSetNew output: 〈|b|, k,#SetKeep

(STH = 0)〉 = 〈298, 4, 21〉, 〈285, 6, 273〉, 〈237, 9, 2527817〉, 〈269, 5, 91〉, 〈240, 7, 5001〉,

〈258, 7, 5369〉, 〈252, 8, 2993〉, 〈255, 5, 83〉, 〈221, 6, 8777〉, 〈224, 7, 70217〉, 〈233, 7, 6217〉. A

FinSub containing a single group of order 221 is also output but this group doesn’t

contain any subgroups of interest.

We first look at the last 9 groups in BadSetNew:

• We run (††) with STH = 5 and everything a sequence on the group of order 237. A

BadSetNew containing 585 groups of order 228 is returned, running (†) on which

gives an empty output. All of this takes ≈ 10d; a test group of order 228 had

k = 6 and #SetKeep= 4937.

• We run (†) on the group of order 240 to get a FinSub containing 4968 groups of

order 212, none of which contain any subgroups of interest.

5.2. THE CASES 97

• We run (†) on the 252 to get a FinSub containing 616 groups of order 215, none of

which contain any subgroups of interest. A BadSetNew containing 1792 groups

of order 218 is also returned and we run (∗) on it but with FinSub a sequence.

• We run (††) with STH = 2 and everything a sequence on the group of order 221 to

get a BadSetNew containing 585 groups of order 212; we run (∗), but with FinSub

a sequence, on the BadSetNew.

• We run (††) with STH = 3 and everything a sequence on the groups of order 224

and 233, together. We get a FinSub containing 72 groups of order 212, none of

which contain any subgroups of interest. A BadSetNew containing 200 groups

with possible orders 218 and 221 is also returned; we run (∗), but with FinSub a

sequence, on it.

• Running (†) on the 255 gives a FinSub containing 10 groups of order 218 or 224,

none of which contain any subgroups of interest. A BadSetNew containing 74

groups with possible orders 227, 230 and 231 is also returned; 72 of these have

k = 6 and we run (∗), but with FinSub a sequence, on them. The remaining two

groups have k = 8 and we run (††) with STH = 4 on them; a BadSetNew of size

1170 is returned and we run (∗), but with FinSub a sequence, on it.

• We run (†) on the 258 and get a FinSub containing a single group of order

218 which doesn’t contain any subgroups of interest. We also get a BadSetNew

containing 5369 groups of order ≤ 231; 4992 of these have k = 5 or 6 and we run

(∗), but with FinSub a sequence, on them.

329 of the 5369 have order ≤ 230 and k = 7 and all are such that the quo-

tient by the centre is elementary abelian. Hence we run A.3 (with everything a

sequence) on them but with the line loop:=0; changed to loop:=1;.

The remaining 48 of the 5369 all have order 231 and k = 7. None have an

elementary abelian quotient by the centre. A group we test from among the 48

had a SetKeep of size 41545, going through which would take 29h, it seemed.

On the other hand, running A.4 on the group, with STH = 3, would be a lot

faster; we run this code on all of the 48 groups together.

98 CHAPTER 5. L2(8)

• Running (†) on the 269 gives a FinSub containing 58 groups none of which contain

any subgroups of interest. A BadSetNew of size 92 is also returned. Three of the

92 have order 246 and k = 9; we run A.4 with STH = 5 on them. One of the 92

has order 227 and k = 6; we run (∗), but with FinSub a sequence, on it.

The remaining 88 groups have k = 7 and possible orders 240, 243 and 246.

With STH = 0, 1 of these has #SetKeep as 5001, 7 have 6793 and 80 have 7241.

Running (†) but with SetSub2 and BadSetNew as sequences on a test group of

order 246 with #SetKeep = 7241 takes ≈ 12h to give a BadSetNew containing

2560 groups, all distinct. A FinSub containing 4673 groups of order 212 or 215 is

also returned; its size would’ve been a lot more if we would’ve appended groups

to it instead. It takes ≈ 1.5h to break down the groups in FinSub. Breaking up

the 2560 groups by allowing Fb to be the centre is 4 times faster than if it’s fixed

as the Frattini. We divide the 88 groups over 4 sessions, with 22 groups in each,

and run A.3 but with SetSub2 and BadSetNew as sequences.

We now run (†) on the group of order 298 and get a FinSub containing a single

group of order 224; this elementary abelian group doesn’t contain any subgroups of

interest. A BadSetNew of size 35 is also returned and we deal with this as below:

• 6 of the 35 have k = 6 and order ≤ 234; we run (∗), but with FinSub a sequence,

on them.

• 1 of the 35 has k = 9 and order 239; we run (††), with STH = 5 and everything a

sequence, on it to get a BadSetNew of size 585. We run (∗), but with everything

a sequence, on the 585 groups.

• 5 of the 35 have k = 8. One of the 5 has order 267, #SetKeep for it can go down

to 713 with STH = 3. We run (††) on it with STH = 3 and get a BadSetNew

of size 713. 505 of the 713 have k = 4 and we run A.3 on them. 134 of the

remaining have k = 5, 65 have k = 6 (with possible orders 240, 241, 243 and 248)

and 9 have k = 7 (with possible orders 233 and 244). We pick 6 groups, one of

each order and run (†) on them, separately. In each case the SetSub2’s that are

formed are small except one of size 4020 for the group of order 244. This isn’t

bad considering there’s only 9 groups with k = 7. It seems like we would get a

5.2. THE CASES 99

successful run of (∗), with SetSub2 and BadSetNew as sets (FinSub a sequence),

on all the 208 groups together within a reasonable amount of time; this indeed

holds true.

We calculate #SetKeep with STH = 0 for the remaining 4 of the 5 groups. The

group of order 266 has #SetKeep as 14793 and the three of order 233 have 365129

each. We run (††) on the 4 groups with STH = 4 and get a BadSetNew of size

2342. 2324 of these have k = 5, 74 of which have order 218, 1682 have order 222

and 568 have order 257. With STH = 0, a test group of order 218 had #SetKeep

as 1097, a 222 had it as 713, one 257 had 89 and another had 153. Running (†)

on the four test cases took 42s, 78s, 10m and 35m, respectively. In each case

the size of FinSub, SetSub2 and BadSetNew remained small. We run A.3 on the

1756 groups of order 218 or 222. We divide the 568 groups of order 257 evenly

over two sessions and run A.3 in each.

9 of the 2342 have k = 6, with all but one of these having order 254 and

#SetKeep as 4697. It seems like running (†) on a test 254 will give the first

SetSub2 as a set of size 4698. With STH = 1, however, the #SetKeep can go

down to ≤ 713 for six of the groups and 1097 for two of them. Hence we run (††)

with STH = 1 on the 9 groups and get a FinSub of size 1 (this elementary abelian

group doesn’t contain any subgroups of interest) and a BadSetNew of size 5794.

The 5794 groups have order ≤ 235 and we run A.3 on them but with loop:=0;

changed to loop:=1; and the code lines towards the end dealing with a FinSub

commented out. A FinSub containing 213 groups of order ≤ 215 is output, none

of which contain any subgroups of interest.

Lastly, 9 of the 2342 have k = 7 and order 247. With STH = 0, #SetKeep is

≤ 521 for 8 of them and 1737 for one of them. We run A.3 on the 9 groups.

• 11 of the 35 have k = 5. We run (†) on them and get a BadSetNew of size 2262

and also a FinSub containing a single group of order 227 (this doesn’t contain any

subgroups of interest). We divide the 2262 groups according to the associated

values for k.

5 of the 2262 have k = 9 with possible orders 234, 237 and 239. These are dealt

with below:

100 CHAPTER 5. L2(8)

− We run (††) with STH = 5 and everything a sequence on the three groups

of order 234. This returns a BadSetNew containing 1755 groups of order 225 on

which we run (∗) but with FinSub a sequence.

−We run (††) with STH = 5 and everything a sequence on the group of order

237. This returns a BadSetNew of size 585 on which we run (∗) but with FinSub

a sequence.

− We run (††) with STH = 5 and everything a sequence on the group of

order 239. This returns a BadSetNew containing 585 groups each of which has

an elementary abelian quotient by the centre; we run A.3 on the BadSetNew but

with loop:=0; changed to loop:=1;.

857 of the 2262 have k = 6. These are dealt with below:

− 2 of the 857 are of order ≤ 230, both having a quotient by the centre that

is elementary abelian, and so we run A.3 on them but with loop:=0; changed

to loop:=1;.

− 27 of the 857 have order 234 and 108 have 237. We pick a test group of

each order and run (†) on them. This takes 11m on the 234 and 30m on the 237

to give FinSub’s of sizes 590 and 421, respectively; these sizes aren’t big. We

run A.3 on the 135 groups together.

− 720 of the 857 have order 240. A test 240 had #SetKeep= 1673 (with

STH = 0). Running (†) but with everything a sequence gives a FinSub containing

504 distinct groups and a BadSetNew containing 1088 distinct groups; this takes

≈ 1h. We divide the 720 groups evenly across four sessions and in each run A.3

but with everything a sequence.

1400 of the 2262 have k = 5. We deal with them as below:

− 1176 of the 1400 have order 240. Test running (†) on these groups adds 48

groups to FinSub and 128 groups to BadSetNew after the first iteration. Each

additional iteration seems to be adding 64 more groups to BadSetNew while the

size of FinSub remains the same. We divide the 1176 groups evenly across 2 ses-

sions and in each run A.3 but the code lines dealing with FinSub commented out.

In each session, a FinSub containing 48 groups of order 215 and a SetKeepZero

5.2. THE CASES 101

containing a single elementary abelian group of order 215, are returned; none of

these elementary abelian groups contain any subgroups of interest.

− 42 of the 1400 have order 238. We run (†) on them to get a FinSub of size

48. 168 of the 1400 have order 237. We run (†) on them to get a FinSub of size

48. The two FinSub are not the same; they contain groups of order 215, none of

which contain any subgroups of interest.

− 14 of the 1400 have order 234 and we run (∗) on them but with everything

a sequence.

• 12 of the 35 have k = 7. 3 of these have order 224, 227 and 240 each. We run (††)

on them with STH = 3 to get a BadSetNew of size 1170 on which we run (∗) but

with FinSub a sequence.

3 of the 12 have 263 and #SetKeep for them can go down to ≤ 777 with

STH = 1. Hence we run (††) on them (with STH = 1) and get a BadSetNew of

size 794. The 794 groups are dealt with as follows:

− 641 of the 794 have k = 6 and order ≤ 230; we run (∗), but with FinSub

a sequence, on them.

− 3 of the 794 have k = 8 and order 230. Each has a centre bigger than

its Frattini and an elementary abelian quotient by the centre. With Fb as the

Frattini, #SetKeep was seen to be > 60000 for one of the three groups whereas

with Fb as the centre, it was 1225. We run A.3 on the 3 groups but after changing

loop:=0; to loop:=1;.

− 150 of the 794 have k = 7 and possible orders 227, 230, 233 and 234. We

take three test groups, one of each possible order ≤ 233 and run (†) on them.

Each run takes ≤ 35m and the first SetSub2 itself is output as empty. There

are 102 groups with order ≤ 233 and we run (∗) on them. Running (†), but with

everything sequence, on a test group of order 234 took ≈ 1.5h and collections of

distinct groups were created along the way; we run (∗), but with everything a

sequence on the remaining 48 groups of order 234.

The last 6 of the 12 also have order 263 and #SetKeep for them can go down

to ≤ 713 with STH = 2. Hence we run (††) on them (with STH = 2) and get

102 CHAPTER 5. L2(8)

a FinSub of size 114 (none of these contain any subgroups of interest) and also

BadSetNew of size 2814. The 2814 groups are dealt with as follows:

− 1289 of the 2814 have k = 5 and we run A.3 on them.

− 17 of the 2814 have k = 8, we divide them across two sessions and in each

run A.4 with STH = 4.

− 1 of the 2814 has k = 9 and order 237, we run (††) on it (with STH = 5)

and get a FinSub containing 73 groups of order 218 (none of which contain any

subgroups of interest) and also a BadSetNew containing 512 groups of order 228.

We run (∗), but with FinSub a sequence, on the 512 groups.

− 77 of the 2814 have k = 7. 71 of the 77 have possible orders 233 and 243.

With STH = 0, all 243’s have #SetKeep= 13385. Running (†) on a test 243 takes

< 6h to give the first SetSub2 as a set of size 1; we run (∗) on the 71 groups.

The remaining 6 of the 77 have order 237 and #SetKeep= 5705 with STH = 0.

There’s only 6 groups and we run (∗) on them but with FinSub a sequence.

− The last 1430 of the 2814 have k = 6. We have the following infor-

mation on them: 〈1609, 210, {240, 243}〉, 〈1673, 1154, {240, 243}〉, 〈5193, 1, {224}〉,

〈657, 24, {236}〉, 〈713, 14, {237}〉, 〈777, 15, {241}〉, 〈1161, 12, {240}〉. The first en-

try in each tuple is a possible value for #SetKeep with STH = 0, the second

is the number of groups out of the 1430 having that value associated to them

and the third is the set of possible orders of these groups. There’s only 54

groups with #SetKeep ≤ 777 or 5193; we A.3 on them. Now, we take a test

group with #SetKeep = 1161, one with 1609 and a group of order 240 with

#SetKeep = 1673; running (†) on them, but with everything a sequence, returns

a FinSub and BadSetNew containing distinct groups, and takes 45m, 1.5h and

1h, respectively. However trying to break a group of order 240 or 243 down to

its elementary abelian subgroups can lead to at least 1673 (all same) groups of

order 215 being appended to FinSub. The code A.3 will break these elementary

abelian groups down before moving on to the next group in OrigBadSub; this

will increase memory usage (and by a lot if more groups in OrigBadSub behave

the same), so having FinSub as a sequence is not a good idea (an undesirable

increase in memory usage was indeed witnessed). We divide the remaining 1376

5.2. THE CASES 103

of the 1430 groups over 6 sessions, 2 containing 230 groups each and the rest

229. One session turns out to have all 229 groups as groups of order 240, we run

A.3 with everything a sequence in this one, in the rest we run the same code but

leave FinSub a set.

All that is left to consider now is the group of order 285 with k = 6. We run (†) on

it and get a FinSub containing a single group of order 224 (this doesn’t contain any

subgroups of interest) and also a BadSetNew of size 299. We deal with the 299 groups

as below:

• 24 of the 299 have k = 5 and 2 have 6. These 26 groups are of order ≤ 237 and

we run (∗), but with FinSub a sequence, on them.

• 8 of the 299 groups have k = 8. One of these is a group of order 252 with

#SetKeep = 2993 (with STH = 0). We run (†) on it to get a FinSub containing

616 groups of order 215 (none of these contain any subgroups of interest), and

also a BadSetNew containing 1792 groups of order 218. We run (∗), but with

FinSub a sequence, on the groups in BadSetNew.

The remaining 7 have order 259 and we run (††) on them with STH = 4 and

everything a sequence. This gives a BadSetNew containing 4095 groups of order

250. Running (†) on a few test cases shows that elementary abelian groups of

order 221 are being created. Breaking up a group of order 221 can take a while

so we want to avoid repeating computations on the same group of order 221.

We split the 4095 groups over 4 sessions with 1024 groups in 3 of the sessions

and 1023 in one. In each session, we run A.3 but with the code lines dealing

with FinSub commented out. A FinSub containing 610 groups of order ≤ 221 is

output in each session, none of which contain any subgroups of interest.

• 248 of the 299 have k = 7. 56 of these are of order 259 with #SetKeep = 2505

(with STH = 0), 168 are also of order 259 but with #SetKeep = 2521 and the

remaining 24 are of order 255 with #SetKeep = 3017. Note that the groups of

order 255 have been talked about in Section 5.1. We take a test group from

each of the three types and run (†) but with everything a sequence; in each

case the code will take ≈ 12h to finish running. The three BadSetNew’s output

104 CHAPTER 5. L2(8)

will have sizes 2496, 2521 and 3017, respectively (three non-empty FinSub’s are

also output); each BadSetNew will contain distinct groups. Among the 2496 are

groups of order 225 and some of the groups in each of the other two BadSetNew’s

are of order 228. None of these groups of order 225 or 228 has an elementary

abelian quotient by the centre so we can’t take Fb to be the centre for any of

them. Taking Fb to be the Frattini turns out to be impractical. However all of

the groups do have elementary abelian centres and so we can use the method

described in the last bullet point in Section 5.1 to break them up and be done in

realistic time. The code A.5 will do this for us. But first we run A.2 on the 248

groups and manage to find 12 groups such that each group from among the 248

is conjugate to some group from among the 12 via an element that centralises

xJ,a (see A.2 and Section 4.1). We run A.5 on these 12 groups.

• 17 of the 299 have k = 11. Taking STH to be 0, even after two days Magma is

unable to calculate SetKeep entirely; the size of the partial SetKeep at which

point was 114816. We run A.2 on the 17 groups and manage to get #ind (see

A.2 and Section 4.1) down to 5. We load each of the 5 groups indexed by ind

into a separate Magma session and run A.4 with STH = 6. However elementary

abelian groups of order 221 will be created and so we also comment out the code

lines dealing with FinSub before running A.4. The code run in each of 4 of the

sessions take ≈ 1 month to finish; the FinSub’s output all have size 1 and share

the same group of order 221 (this doesn’t contain any subgroups of interest).

As for the last session, after having calculated an OrigBadSub containing

4681 groups, the code took 2 months to break down 2165 of them (into the same

elementary abelian group of order 221 output in the other 4 sessions). This is

because #SetKeep for these groups increases to ≈ 670 while being ≈ 140 for the

groups in the OrigBadSub’s in the other 4 sessions. We have interrupted the

code and will deal with the remaining 2516 groups by splitting them across 4

sessions. This still needs to be done.

As just mentioned, establishing whether QJ contains any elementary abelian sub-

groups of order 23 that’d be of interest to us is still pending.

5.2. THE CASES 105

5.2.3 QJ , xJ,a for J = {3, 4, 7, 8}

Here every group collected will be satisfying a Steinberg bound of 5 and any Sub4aa’s

not satisfying the bound were almost always ignored.

We break up QJ as usual. We have the following information on the 5 groups

b contained in the BadSetNew output: 〈|b|, k,#SetKeep (STH = 0)〉 = 〈294, 6, 385〉,

〈2109, 5, 111〉, 〈276, 7, 5769〉, 〈227, 6, 377〉, 〈242, 8,−〉. We first look at all the groups

apart from the one of order 2109:

• We run A.4 with STH = 4 on the group of order 242.

• We run (†) on the group of order 227 for an empty output.

• The group of order 276 is a big group with a big #SetKeep and so running (†) on

it would take a while. To speed things up a bit we do run (†) but with everything

a sequence. This returns a BadSetNew containing 5769 distinct groups of order

≤ 240. We run A.2 on these groups until #ind = 195. To finish, we run A.3, but

with SetSub2 and BadSetNew as sequences, on the 195 groups indexed by #ind.

• We run (†) on the 294 and get a BadSetNew of size 387. One of the 387 has order

252 and k = 9, also #SetKeep = 327241 with STH = 0. With STH = 5 though,

#SetKeep can go down to 201, and so we run (††) (with STH = 5) on the group.

We get a BadSetNew containing 201 groups of order 233 or 240 and we run A.3

on it but with SetSub2 and BadSetNew as sequences.

184 of the 387 have k = 6 and order ≤ 260. With STH = 0, #SetKeep for these

groups is ≤ 161 (which is nice and small) except when it’s 377 for one group or

1161 for eight (the only ones of order 260) others. Essentially, these 184 groups

don’t look like they’d give us much grief so we collect them together with the

56 of the 387 with k = 5 and the 56 with k = 4. We run A.2 on the 296 groups

until #ind = 21. We run (†) on the groups indexed by ind and get a BadSetNew

containing 1097 groups of order 231. To finish, we run A.3, but with SetSub2

and BadSetNew as sequences, on the 1097 groups.

One of the 387 has k = 8, order 242 and #SetKeep = 7561 with STH = 0. But

only 2816 of the 7561 Sub4aa’s will satisfy the Steinberg bound. The remaining

89 of the 387 have k = 7 and #SetKeep ≤ 2185, being 1609 forty-two times, with

106 CHAPTER 5. L2(8)

STH = 0; for each possible value for #SetKeep we selected a group and tested

running code on it. It seemed like if we were to run A.3 (with SetSub2 and

BadSetNew as sequences) on the 89 groups, it’d take ≈ 14d to finish. Hence we

do run this code but together on the one group with k = 8 and the 14 groups

indexed by ind (gotten after running A.2 on the 89).

We now run (†) on the group of order 2109 and get a BadSetNew of size 120. We

deal with the 120 groups as below:

• 6 of the 120 have k = 6 and order ≤ 227; we run A.3 on them. We saw that for

each group, #SetKeep was either 8777 or 377 but none of the Sub4aa’s satisfied

the Steinberg bound, and so the code was very quick to run.

• 8 of the 120 have k = 5 and order 276. We run A.2 on them and get 4 groups (the

ones indexed by ind). Running (†) on the 4 groups gives us a FinSub containing

a single group of order 218 (this doesn’t contain any subgroups of interest) and a

BadSetNew containing 457 groups of order ≤ 244. We run A.2 on the 457 groups

followed by A.3 (with SetSub2 and BadSetNew as sequences) on the 63 groups

indexed by ind that we obtain.

• 9 of the 120 have k = 8 and order 267. 97 of the 120 have k = 7; 3 of these are of

order 233 (#SetKeep = 1449 with STH = 0), 241 (#SetKeep = 2017) and 276 each,

94 of 273. Running A.2 on the 9 of order 267 gives #ind = 5. With STH = 0,

#SetKeep for the 5 groups indexed by ind is 3401 two times and 1977 the rest.

Running (†) (with everything a sequence) on a test group with #SetKeep = 3401

and on one with 1977, gives BadSetNew’s of sizes 3312 and 1952, respectively,

both containing distinct groups; empty FinSub’s are also output. We run A.3

(with SetSub2 and BadSetNew as sequences) together on the 5 groups and the

two groups of order 233 and 241 each.

The group of order 276 with k = 7 has #SetKeep = 310 (with STH = 0). We

run (†) on it and get a BadSetNew containing 302 groups of order ≤ 241. We

then run A.2 on the 302 groups followed by A.3 (with SetSub2 and BadSetNew

as sequences) on the 25 groups indexed by ind that we obtain.

It is left to deal with the 94 groups of order 273. With STH = 0, #SetKeep

can either be 6217 or 2633 for any one of these groups. Running (†) (with

5.2. THE CASES 107

everything a sequence) on a test group with #SetKeep = 6217 returns an empty

FinSub and a BadSetNew containing 6205 groups of order ≤ 234, at least 1500 of

which will be distinct; this takes ≈ 2d. For a test group with #SetKeep = 2633,

running the same code takes ≈ 14.5h to give an empty FinSub and a BadSetNew

containing 2633 groups (at least 900 of which will be distinct) of order ≤ 234.

All 2633 groups have elementary abelian centres; among these are 441 groups

b such that |b| = 232, |Φ(b)| = 220 and |Z(b)| = 214 (of course, b/Z(b) is not

elementary abelian). Take a particular b then running (†) on it takes ≈ 1.75m

(to return non-empty but small FinSub and BadSetNew). In comparison, taking

SetSub2 to be the set {〈Z(b), γ〈xJ,a〉〉 : γ ∈ Γ, o(γ) ≤ 2} takes approximately a

minute less; here Γ is a transversal for Z(b) in b. Indeed, running the for loop

over [1..#BadSub] in A.3 (with SetSub2 and BadSetNew as sequences and loop

= 2) on all the 2633 groups takes ≈ 20.5h whereas running the corresponding

loop in A.6 takes ≈ 14h.

We run A.2 on the 94 groups until #ind = 15. We split the 15 groups indexed

by ind over 2 Magma sessions and in each session, run A.6.

Note that in A.6, before asking for a transversal of the centre of a group it

is checked that the index is ≤ 218. This is because the larger the index gets the

longer Transversal will take to execute.

We have established that QJ does not contain any elementary abelian subgroups

of order 23, that’d be of interest to us.

Remark 5.2.2. Note that 5 of the pairs QJ , xJ,a and all 8 QJ , xJ,b have not been

discussed in this thesis. However, computations on five of the remaining cases are

indeed finished (giving rise to no subgroups of interest) and partial progress has been

made with the rest. Finishing the L2(8) problem is simply a matter of setting off code

and, given enough computer time, will be achievable before long.

Chapter 6

L3(4) and L3(3)

In this chapter, we will establish that L3(4) cannot be maximal in E8(2). We will also

see that the same cannot be said for all copies of L3(3) inside E8(2). Throughout this

chapter, G ≤ GL248(2), will be E8(2). We mention that the work done up until Lemma

6.1.4 is by other people involved in classifying the maximal subgroups of E8(2), with

no involvement from the author of this thesis.

6.1 Commonalities

As usual we want to construct copies of L3(4) and L3(3) inside E8(2). Therefore, we

need information on the structure of these groups; this is given in the following two

lemmas.

Lemma 6.1.1. Given H ∼= L3(4) and E ∈ Syl3(H) then:

(i) E ∼= 32;

(ii) NH(E) = E : Q, with Q ∼= Q8;

(iii) The central involution, t, of Q inverts E;

(iv) H = 〈NH(E), CH(Q)〉, with CH(Q) ∼= 22.

Lemma 6.1.2. Given H ∼= L3(3) and S ∈ Syl3(H) then:

(i) S is contained in a subgroup, P1 = E : 〈t〉·K, of H, with E ∼= 32 and 〈t〉·K ∼=

2 ·Sym(4);

108

6.1. COMMONALITIES 109

(ii) The central involution, t, of 〈t〉·K inverts E;

(iii) There is exactly one subgroup of H, other than P1, also containing S and having

shape 32 : 2 ·Sym(4), call it P2;

(iv) H = 〈P1, P2〉;

(v) NP1(S) has exactly two normal subgroups of order 32, one is E, call the other F .

We have that NP1(S) has 9 involutions, s, inverting F , and there are involutions,

x, in CH(s) (F : CH(s) = P2) such that H = 〈P1, x〉.

Looking at the above lemmas we see that in order to construct copies of L3(4)

and L3(3) in G, we first need to construct subgroups of G having shape 32 : Q8 and

also those having shape 32 : 2 ·Sym(4). To do this we will need a subgroup E of G,

isomorphic to 32, and an involution t ∈ G, inverting E. We would then proceed by

searching in CG(t) for groups isomorphic to Q8 and those isomorphic to 2 ·Sym(4). We

start by narrowing down our choices for E and t.

From B.4, we have the following as all the possible fusion patterns for an embedding

of L3(4) in G:

(i) 2φ1 + 3φ2 + 3φ3 + 4φ4 + 2φ5 (3A→3D, 5AB→5B, 7A→7B, 7B∗∗ →7B)

(ii) 4φ1 + 2φ2 + 2φ3 + 1φ4 + 3φ5 (3A→3C, 5AB→5B, 7A→7B, 7B∗∗ →7B)

For the purpose of ruling out pattern (i), we have the following lemma from [7].

Lemma 6.1.3. Suppose that A ≤ G with A elementary abelian of order 9. If A# ⊆

3DE8(2), then up to G-conjugacy there are at most six classes. Further, dim(CV248(A)) =

26 (three times), 32 (once) and 44 (two times).

Proof. Selecting g ∈ A#, we calculate CG(g) ∼= 3 × U9(2) (this can be done using

FindCent). Employing LMGRadicalQuotient gives us CG(g)/〈g〉 as a permutation

group in which we may determine the conjugacy classes of elements of order 3. Taking

inverse images in CG(g), we then check which elementary abelian subgroups of order 9

have all their non-trivial elements in 3DE8(2). This results in six CG(g)-classes of such

subgroups for which we may then calculate dim(CV248(A)).

110 CHAPTER 6. L3(4) AND L3(3)

If our subgroup E ≤ G can be built up to a copy of L3(4) that embeds in G as

described in pattern (i) then it must be that E# ⊆ 3DE8(2) since 3AL3(4) → 3DE8(2).

Hence by Lemma 6.1.3, dim(CV248(E)) = 26, 32 or 44. But the dimension of the fixed

space of any Sylow 3-subgroup of L3(4) on the modules corresponding to φ2, φ3, φ4

and φ5 is 1, 1, 0 and 8, respectively. Hence, it must be that dim(CV248(E)) = 24, a

contradiction.

Now that we know pattern (i) isn’t possible, we are interested in trying to build

up a subgroup E ≤ G to an embedding of L3(4) in G only if E# ⊂ 3CE8(2) and

dim(CV248(E)) = 32.

It can be checked that any involution of L3(4) fixes a space of dimension 5, 5, 8 and

32 on the modules corresponding to φ2, φ3, φ4 and φ5, respectively. Hence by Lemma

4.1.2, we are interested in an involution, t, inverting E (the E we are trying to build

up to an L3(4)) only if dim(CV248(t)) ≤ 128, i.e., t ∈ 2DE8(2) (see Proposition 2.2.1).

We can say the same things about E and t if we are trying to construct an overgroup

of 〈E, t〉 isomorphic to L3(3) instead of L3(4). The possible feasible decompositions of

L3(3) on V248 are given in B.5. The decompositions (iii)-(v) are ignored due to Lemma

2.2.5(i) and Proposition 2.2.3.

Pattern (ii) is eliminated in [45]. L3(3) has subgroups of the form 13 : 3. If

H ∼= L3(3) is a subgroup of E8(2) following (ii) then all elements of order 3 of H are in

3CE8(2) and all its elements of order 13 are in 13BE8(2). It is shown in [45], by working

with the normaliser of a Sylow 13-subgroup of G, that no element in 3CE8(2) can act

on an element in 13BE8(2). Hence pattern (ii) is not achievable after all.

We have that if H ∼= L3(3) is a subgroup of G then H must follow (i). Assume

E : 〈t〉·Sym(4) ≤ H but any elementary abelian subgroup of order 9 of H whose

normaliser in H has shape 32 : 2·Sym(4) has all its non-identity elements in 3AH and

so again we have that E# ⊂ 3CE8(2). Also, it is true that dim(Cφ2(E)) = 4 and

dim(Cφ3(E)) = 2 (φ2 and φ3 as in B.5), therefore dim(CV248(E)) = 32.

Note that E : 〈t〉·Sym(4) ≤ H contains a Sylow 3-subgroup of H, call it S. Then

since 3AH → 3CE8(2) and 3BH → 3DE8(2), it must be that 14 of the non-identity

elements of S are in 3CE8(2) and 12 of them are in 3DE8(2). This fact will be used later

to discard constructed groups of shape 32 : 2·Sym(4) whose Sylow 3-subgroups behave

any differently.

6.1. COMMONALITIES 111

In [45] while working out how V248 ↓ H (H following (ii)) decomposes, it was

established that any involution t in H must be in 2DE8(2). Hence the choices for

E and t have been narrowed down to wanting only those such that E# ⊂ 3CE8(2),

dim(CV248(E)) = 32 and t ∈ 2DE8(2). Of course, we are interested in 〈E, t〉 only up to

G-conjugacy. The next result by Rowley et al. gives us all the possibilities for E and

t, but first we make mention of certain subgroups that will be featured in it.

For x ∈ 3CE8(2), by Theorem 2.2.2,

CG(x) ∼ 3.(2E6(2)× U3(2)).3.

Let Nx denote the subgroup of CG(x) of index 3 with Nx ∼ 3.(2E6(2)×U3(2)), Lx the

full inverse image of 2E6(2) in Nx and Mx the full inverse image of U3(2) in Nx. So

Lx ∼ 3.2E6(2). Note that if we write G1 ∼ G2, then we mean that groups G1 and G2

have the same shape.

We want only the groups E containing x, since those containing x′ ∈ 3CE8(2),

x′ 6= x, will be contained in CG(x′) and be conjugate to the ones (containing x) in

CG(x).

Lemma 6.1.4. Suppose that E ≤ G where E is elementary abelian of order 32 and t

is an involution of G which inverts E. Further assume that

(i) E# ⊆ 3CE8(2);

(ii) dim(CV248(E)) = 32; and

(iii) t ∈ 2DE8(2).

Then 〈E, t〉 is G-conjugate to one of 〈Ei, tij〉 where i = 1, j = 1; i = 2, j = 1, 2, 3, 4, 5; i =

3, j = 1, 2. The Ei are elementary abelian of order 32 and tij are involutions where

〈Ei, tij〉 ≤ NG(〈x〉), some x ∈ E#. Further E1 ≤ Lx, E2 ≤ Nx, but E2 6≤ Lx and

E2 6≤Mx and E3 6≤ Nx.

Proof. We start with L ∼ 38.2.Ω+
8 (2).2 (this is a subgroup of G constructed in [7] since

it contains a Sylow 3-subgroup of G) for which we readily find a faithful permutation

representation. In this setting we carry out the following calculations. Selecting F ∈

Syl3(L), we use ElementaryAbelianSubgroups to find, up to F -conjugacy, 13416

elementary abelian subgroups of F of order 32. Of these only 5078 satisfy condition (ii).

112 CHAPTER 6. L3(4) AND L3(3)

Now we sieve again for those satisfying (i), using dim(CV248(y)) = 86 for y ∈ 3CE8(2).

Only 1192 subgroups survive this sieve. We now take x ∈ Z(F) of order 3 (in fact

〈x〉 = Z(F)). Note that x ∈ 3CE8(2). Now we focus on those 88 subgroups which

contain x. Then running IsConjugate we find there are 13 L-classes of 32-subgroups

which satisfy conditions (i) and (ii). Let F1, . . . , F13 be representatives of these classes.

Employing FindCent gives us Nx (with [CG(x) : Nx] = 3) and hence CG(x) =

〈F,Nx〉. We have Fi ≤ Nx for i ∈ {1, . . . , 12} and F13 6≤ Nx. Looking in NL(〈x〉)

we find an involution s ∈ 2DE8(2) which inverts x. Thus C?
G(x) = 〈CG(x), s〉. Using

elements of order 19 in CG(x), we generate Lx ∼ 3·2E6(2). We find fi such that

〈x, fi〉 = Fi (i ∈ {1, . . . , 13}). Then using LMGIsIn to test whether fi ∈ Lx we

discover, up to labelling, that Fi ≤ Lx for i ∈ {1, . . . , 5} and Fi 6≤ Lx, Fi 6≤ Mx for

i ∈ {6, . . . , 12}.

We now show that the Fi for i ∈ {1, . . . , 5} are all Lx-conjugate. Deploying

FindCent in Lx to produce a partial centralizer for each fi (i ∈ {1, . . . , 5}) we find in

each case X ≤ CLx(fi) with |X| = 2938 and X being 3-closed. Set Lx = Lx/〈x〉(∼=
2E6(2)). From [52], Lx has three classes of elements of order 3 with CLx(3ALx

) ∼=

3 × U6(2), CLx(3BLx
) ∼= 3 × Ω+

8 (2) : 3, and CLx(3CLx
) ∼ 31+6 : 23+6.(3 × 3). Tak-

ing a Sylow 3-subgroup of either 3 × U6(2) or 3 × Ω+
8 (2) : 3 (which has order 37) we

calculate its normaliser in the respective groups getting in each case a group of order

2337. Now X will be 3-closed with |X| = 2937, but this is bigger than the order of

the normaliser of a Sylow 3-subgroup possible in CLx(3ALx
) or CLx(3BLx

), and so we

deduce that fi ∈ 3CLx for i ∈ {1, . . . , 5}. As a consequence the Fi, for i ∈ {1, . . . , 5}

are all Lx-conjugate. Set E1 = F1.

For i ∈ {6, . . . , 12}, similar arguments show that these Fi are all Lx-conjugate.

There we calculate partial centralizers of fi in Nx getting 3×Ω+
8 (2) in each case. Set

E2 = F6, and E3 = F13.

We now hunt for the possible inverting involutions for Ei, i = 1, 2, 3, looking in

Hi = 〈CG(Ei), s〉. In H1 there is only one H1-conjugacy class of inverting involutions,

namely the one containing s. For i = 2, there are sixH2-classes of inverting involutions,

with one of them not in 2DE8(2). While H3 (where CG(E3) ∼ 3×3×3D4(2) : 3) may be

turned into a 1638 degree permutation group and yields three H3-classes of inverting

involutions, two of which are in 2DE8(2).

6.1. COMMONALITIES 113

This completes the proof of Lemma 6.1.4.

Remember, for a pair of E and t given by Lemma 6.1.4, we need to construct groups

E : Q, where Q ∼= Q8 and Z(Q) = 〈t〉, and also groups E : 〈t〉·K where K ∼= Sym(4).

Therefore we may search for the groupsQ and 〈t〉·K insideNCG(t)(E). By Lemma 4.2.4,

we know that NCG(t)(E) ≤ StabCG(t)(CV248(E)). Running CentraliserOfInvolution

gives us CG(t) if a group of order 2100.35.52.7.17 has been returned, see Proposition

2.2.1. We need elements of order 4 to generate Q but these elements square to t and

so map to the identity or involutions in CG(t) (since t is the identity), the radical

quotient of CG(t). Therefore, if we can get our hands on a set of Sylow 2-subgroups

of CG(t) forming an involution cover then the preimages of these Sylow 2-subgroups

will contain the generating elements we seek. We would then need to calculate the

stabiliser of CV248(E) inside these preimages only rather than the whole of CG(t). Call

the preimages as S1, . . . , Sr, r ∈ N, we wish to calculate the group,

J = 〈StabSi(CV248(E)) : i ∈ {1, . . . , r}〉.

Note that 〈t〉·K ∼= Q8 : Sym(3) where Z(Q8 : Sym(3)) = Z(Q8). Let’s say we

have found all the wanted Q’s in J , then the 〈t〉·K’s we seek can only be realised as

overgroups of the Q’s. The involutions needed to generate the Sym(3)’s will all lie in

J since S1, . . . , Sr, being preimages of groups forming an involution cover of CG(t),

form an involution cover of CG(t).

We have just discussed that the groups we seek all lie in J . We now provide further

details on how J is calculated. The space CV248(E) is calculated as the intersection of

fixed spaces of the generators of E and we call it CVE. The following code for calculating

J has been adapted from [42]:

rq1,rq2,rq3:=LMGRadicalQuotient(CGt);

//CGt is the centraliser of the inverting involution.

//rq1 is the radical quotient of the centraliser.

//rq2 is a map from the centraliser to the quotient.

//rq3 is the soluble radical of the centraliser.

Crq1:=Classes(rq1);

114 CHAPTER 6. L3(4) AND L3(3)

//With rq1 a permutation group, the command Classes is executable.

Irq1:={};

for i in [1..#Crq1] do

if Crq1[i][1] eq 2 then

Irq1:=Irq1 join Class(rq1,Crq1[i][3]);

end if;

end for;

//Irq1 is the set of all involution of the quotient.

Srq1:=Sylow(rq1,2);

ISrq1:={};

for i in Srq1 do

if Order(i) eq 2 then Include(~ISrq1,i); end if;

end for;

//ISrq1 is the set of all involutions of a Sylow 2-subgroup of rq1.

ICov:={};

Itest:={};

repeat

old:=#Itest;

r:=Random(rq1);

Itest:=Itest join {k^r : k in ISrq1};

//Itest is created as the set of involutions of conjugates of Srq1.

new:=#Itest;

if new gt old then Include(~ICov,r); end if;

until Itest eq Irq1;

//The set ICov contains elements r of rq1 so that the groups Srq1^r

//form an involution cover of rq1.

SCG:=sub<Q|rq3,{i@@rq2 : i in Generators(Srq1)}>;

//SCG, the preimage of Srq1, is a Sylow 2-subgroup of CGt.

6.1. COMMONALITIES 115

Gamma:=[r@@rq2 : r in ICov];

//Elements g in Gamma are so that the groups SCG^g form an involution

//cover of CGt.

SubGamma:={Random(Gamma) : i in [1..50]}; //A subset of Gamma.

J:=sub<Q|Id(Q)>;

for g in SubGamma do

SCGg:=SCG^g;

JJ:=UnipotentStabiliser(SCGg,CVE);

J:=sub<Q|J,JJ>;

end for;

LMGFactoredOrder(J);

//In most cases J will be the entire group that we are after rather

//than being a proper subgroup of it.

//The size of Gamma will be >3500 so if we can make all of J just

//using up to 50 Sylow 2-subgroups then this is a lot better than

//the alternative of trying to use all >3500 since that’d just add

//more and more generators to J (without increasing its size), making

//it impractical to work with.

//We do still need to check if we have all of J:

for g in Gamma do

if g notin SubGamma then

SCGg:=SCG^g;

JJ:=UnipotentStabiliser(SCGg,CVE);

if LMGIsSubgroup(J,JJ) eq false then

J:=sub<Q|J,JJ>;

end if;

end if;

end for;

LMGFactoredOrder(J);

116 CHAPTER 6. L3(4) AND L3(3)

The result of running the above code on all pairs E, t, is given in the table below.

E t |J |

E1 t11 28.35

E2 t21 219.35

t22 217.33.5

t23 217.33.5

t24 217.33.5

t25 217.33

E3 t31 215.32.7

t32 213.3

Table 6.1: Orders of J .

We are, of course, not interested in all of J but the normaliser of E in it.

Lemma 6.1.5. For i = 1, 3 (both cases) J = NJ(Ei) and for i = 2 (all five cases)

[J : NJ(Ei)] = 8.

Proof. We check whether all the generators of J normalise E and find that they do if

E = E1 or E3 (both cases). In the other cases, forming the subgroup of J generated

by those generators of J which do normalise E, gives a subgroup, Js, of index 8 (4

times) or 24 (once). Note that an element in g ∈ J \ Js normalises E iff everything in

Jsg normalises E. Hence we ask for a transversal of Js in J and find that when index

is 8 only one element of the transversal normalises E and so NJ(E) = J . When index

is 24 we find two elements, other than the one in Js, that normalise E; the subgroups

generated by them and Js is our NJ(E).

Having found NJ(E), we can now search in it for the groups Q to end this section.

Lemma 6.1.6. Up to conjugacy in NJ(E), the following holds.

(i) NJ(E1) with t = t11 has a unique Q8 subgroup.

(ii) NJ(E2) for t = t21, respectively t = t25, has six Q8 subgroups, respectively, four

Q8 subgroups. For t = t22, t23, t24, NJ(E2) has no Q8 subgroups.

(iii) NJ(E3) for t = t31, respectively, t = t32, has fourteen Q8 subgroups, respectively,

two Q8 subgroups.

6.1. COMMONALITIES 117

Proof. In each case, we are able to use PermutationRepresentation on NJ(E) and

will now perform calculations in the permutation setting. We ask for a Sylow 2-

subgroup, S, of NJ(E) and then for all its subgroups of order 8 up to conjugacy. In

the t31 case, S, is a group of a very high degree of 781956 (DegreeReduction doesn’t

do us any good) and will further need to be converted into a pc-group before we ask for

its subgroups. Let L1 be the set of these groups of order 8. We want only those groups

in L1 that have t in them; we collect these in a set we name L2. In L3, we collect

together all the groups in L2 that are isomorphic to Q8. The groups in L3 are unique

up to conjugacy in S; we need to check if any are conjugate in NJ(E). To do this in

the t31 case we need to map the groups in L3 back to the permutation group NJ(E) of

degree 781956. Even though the degree is quite large, IsConjugate will work quickly

enough for our purposes. The code written below turns orbs into a sequence of sets

where each set is a collection of indices that correspond to the positions of groups

in L3 that are conjugate in NJ(E); indices in different sets will label non-conjugate

groups. Below List3 is L3, P is the permutation group NJ(E), p is the isomorphism

from the matrix group to P.

orbs:=[{@i@} : i in [1..#List3]];

for i in [1..(#List3-1)] do

for k in orbs do

if i in k then size:=#k; end if;

end for;

if size eq 1 then

for j in [(i+1)..#List3] do

for k in orbs do

if j in k then size2:=#k; end if;

end for;

if size2 eq 1 then

if IsConjugate(P,List3[i],List3[j]) then

for o in orbs do

if i in o then oi:=o; end if;

if j in o then oj:=o; end if;

end for;

118 CHAPTER 6. L3(4) AND L3(3)

Exclude(~orbs,oi);

Exclude(~orbs,oj);

Include(~orbs,oi join oj);

end if;

end if;

end for;

end if;

end for;

List4:=[(List3[i[1]])@@p : i in orbs];

After the first iteration of the for loop over [1..(#List3-1)], the indices labelling

all the groups conjugate to List3[1] are collected together in a set, say O. Going

forward, we only want to consider i > 1, j > i such that i, j /∈ O and so we make sure

that the identifiers size and size2 have a value of 1. Let L4 be List4, the collection of

all groups in NJ(E) isomorphic to Q8, with 〈t〉 as the centre, up to NJ(E)-conjugacy.

Our findings are displayed in Table 6.2 below.

E t |L1| |L2| L3 |L4|

E1 t11 162 37 1 1

E2 t21 17589 1891 428 6

t22 19941 893 0 0

t23 19941 893 0 0

t24 19941 893 0 0

t25 14041 583 14 4

E3 t31 19405 3039 840 14

t32 10801 502 6 2

Table 6.2: Finding the groups Q.

6.2 L3(4)

Continuing directly from the construction in Lemma 6.1.6 of the groups Q isomorphic

to Q8, we will now construct copies of L3(4) in G. To do this, we need to run through

6.2. L3(4) 119

all (2DE8(2)) involutions x in G that centralise Q and see if 〈E,Q, x〉 ∼= L3(4) (see

Lemma 6.1.1(iv)); here, with t being the central involution of Q, E and t are given in

Lemma 6.1.4.

We label the groups Q in Lemma 6.1.6(i) as Q11, from (ii) as Q21i, 1 ≤ i ≤ 6 and

Q25i, 1 ≤ i ≤ 4, and from (iii) as Q31i, 1 ≤ i ≤ 14 and Q32i, 1 ≤ i ≤ 2. Of course,

CG(Q) ≤ CG(t). We first look at the cases Q11, Q253, Q254 and Q322.

Let C be the radical quotient of CG(t11) then |Q11| = 22, |CC(Q11)| = 210.3. The

preimage of CC(Q11) is a soluble group of order 294.3 containing CG(Q11); we turn it

into a pc-group using LMGSolubleRadical and ask in it for the centraliser of Q11. We

get that |CG(Q11)| = 228.3. This group is too big to go through all of its elements and

pick out the ones in 2DE8(2), and so staying in the pc-group setting, we run Classes

on CG(Q11). Picking out the representatives which (when mapped back into GL248(2))

would fix a space of dimension 128, we take the union of their classes. This gives us

a set of 315392 involutions x. One at a time, we map x back into the matrix setting,

if for every y ∈ E#
1 , o(xy) = 5, we compute L = 〈E1, Q11, x〉. We then check if

|L| = |L3(4)|, if so, we check if L ∼= L3(4). Any L’s that survive the checks are kept

in a set called L; there will be only 3 of them. Note that starting by trying to collect

315392 248 × 248 matrices instead would not have been a good idea. We repeat the

same process for Q253 and Q254 but starting with C as the radical quotient of CG(t25),

and then for Q322. Our findings are displayed in Table 6.3 below.

Ei tij Q |CC(Q)| |CG(Q)| |CG(Q) ∩ 2DE8(2)| |L|

E1 t11 Q11 210.3 228.3 315392 3

E2 t25 Q253 210.3 228.3 315392 0

Q254 210.3 228.3 315392 0

E3 t32 Q322 210.3 228.3 315392 0

Table 6.3: Finding possible L3(4)’s arising from Q11, Q253, Q254 and Q322.

With Q = Q251, Q252 or Q321, we define C to be the radical quotient of C = CG(t25)

or CG(t32). We get CC(Q) as a group of order 212.3.5 and we won’t be able to turn

its preimage in C into a pc-group. We’re interested only in the preimages of its Sylow

2-subgroups anyway, call these groups of order 296 as S1, . . . , Sk, k ∈ N. We then

calculate the group U = 〈StabSi(CV248(Q)) : 1 ≤ i ≤ k〉, by Lemma 4.2.4, U will

120 CHAPTER 6. L3(4) AND L3(3)

contain all the involutions in G that centralise Q. In the Q = Q252 case, U can’t be

turned into a pc-group and so we come back to it later. Proceeding with the other

two cases, we convert U into a pc-group, calculate CU(Q), get CU(Q) ∩ 2DE8(2) and

proceed as above, collecting any L3(4)’s that arise in L.

Going back to the Q = Q252 case, we have that |U | = 234.3.5. We are still able to

find CU(Q): Take the subgroup of U generated by all generators of U that centralise

Q and call it Us, this has a small index in U ; we then take CU(Q) to be the group

generated by Us and all the elements in a transversal of Us that centralise Q. We

get that |CU(Q)| = 232.3.5. We take a Sylow 2-subgroup, S, of CU(Q), turn it into

a pc-group, find all the 2DE8(2) involutions in it (there will be 3325952 of them) and

proceed as usual, collecting any L3(4)’s that arise. It turns out we don’t have to repeat

this with the rest of the Sylow 2-subgroups of CU(Q): All of the 3325952 involutions

are contained in O2(CU(Q)) (membership checked in pc-group setting after taking the

image of O2(CU(Q)) in the pc-group S). Our findings are displayed in Table 6.4 below.

Ei tij Q |CC(Q)| |U | |CU(Q)| |CU(Q) ∩ 2DE8(2)| |L|

E2 t25 Q251 212.3.5 234 232 704512 0

Q252 212.3.5 234.3.5 232.3.5 3325952 16

E3 t32 Q321 212.3.5 232 230 573440 4

Table 6.4: Finding possible L3(4)’s arising from Q251, Q252 and Q321.

We now deal with the t = t21 and t = t31 cases. Let Q be one of the 20 groups

isomorphic to Q8 then Q lies in the soluble radical of CG(t) and so CC(Q) will be

all of C. Recall that an involution cover of CG(t) was calculated in Section 6.1, call

this C. We use the code in Section 6.1 (for calculating J) to calculate the group

U = 〈StabS(CV248(Q)) : S ∈ C〉. We turn U into a pc-group, compute CU(Q) and

proceed as normal. Our findings are displayed in Table 6.5 below.

6.3. L3(3) 121

Ei tij Q |U | |CU(Q)| |CU(Q) ∩ 2DE8(2)| |L|

E2 t21 Q211 241.34 236.33 5066752 0

Q212 241 234 5545984 0

Q213 241.3 234 14897152 0

Q214 241.32 234.3 6094848 0

Q215 241 234 6967296 0

Q216 241 234 13832192 0

E3 t31 Q311 240 234 4059136 0

Q312 240 234 4059136 0

Q313 240 234 3268608 0

Q314 240 234 4059136 0

Q315 240 234 4059136 0

Q316 240 234 4059136 0

Q317 240 234 3268608 0

Q318 240 234 4059136 0

Q319 240 234 4059136 0

Q31(10) 240 234 4059136 0

Q31(11) 240 234 3268608 0

Q31(12) 240 234 3272704 0

Q31(13) 240 234 5578752 0

Q31(14) 240 234 4059136 0

Table 6.5: Finding possible L3(4)’s arising in the t = t21 and t = t31 cases.

Each of the twenty-three subgroups of G isomorphic to L3(4) that we have found

fixes a subspace of V248 of dimension 2, and so we have proved the following result.

Theorem 6.2.1. If H is a subgroup of E8(2) such that F ∗(H) ∼= L3(4) then H is not

maximal in E8(2).

6.3 L3(3)

In order to construct subgroups of G isomorphic to L3(3), by Lemma 6.1.2, we first

need to construct subgroups E : 〈t〉·K ∼= 32 : 2·Sym(4). The possible E and t are given

122 CHAPTER 6. L3(4) AND L3(3)

in Lemma 6.1.4. We know from Section 6.1 that the groups 〈t〉·K will lie in the groups

NJ(E). But 〈t〉·K = Q : S, where Q ∼= Q8, S ∼= Sym(3), and Z(Q : S) = 〈t〉 = Z(Q).

So if we had all the subgroups, Q, of NJ(E) isomorphic to Q8 and containing t, we

could go through involutions in NJ(E), normalising Q, and check if a pair of them

along with Q generated a group isomorphic to 2·Sym(4). But we do have all the

subgroups Q; they are given to us by Lemma 6.1.6.

Lemma 6.3.1. Up to conjugacy in NJ(E), the following holds.

(i) NJ(E1) with t = t11 has two 2 ·Sym(4) subgroups.

(ii) NJ(E2) for t = t21 has ten 2 ·Sym(4) subgroups and NJ(E2) for t = t25 has twelve

2 ·Sym(4) subgroups.

(iii) NJ(E3) for t = t31 and t = t32 has no 2 ·Sym(4) subgroups.

Proof. (i) Let Q1 be the group isomorphic to Q8 in Lemma 6.1.6(i). NJ(E1) is a small

group of order 28.35 and we can simply use Normaliser to calculate NNJ (E1)(Q1). This

will turn out to be a group of order 25.23 containing 43 involutions of 2DE8(2), name

the involutions as r1, . . . , r43. One by one, we compute the groups 〈Q1, ri, rj : 1 ≤ i ≤

42, i + 1 ≤ j ≤ 43〉. If one such group has order 48, we check if it’s isomorphic to

2·Sym(4). Only 9 of the groups survive the checks. Using a permutation representation

of NJ(E1) and the code in the proof of Lemma 6.1.6, we see that only 2 of the 9 are

unique up to NJ(E1)-conjugacy.

(iii) To tackle the t31 case, we use the same method as above except that the

normalisers of the 14 groups isomorphic to Q8 from Lemma 6.1.6(iii) have to be cal-

culated in the permutation group NJ(E). Thirteen of the normalisers have order 210

and so can’t possibly contain any Sym(3)’s. The only normaliser of order 210.3 has 55

2DE8(2) involutions but no groups isomorphic to 2·Sym(4) arise. As for the t32 case,

the normalisers of both the Q8’s in NJ(E) have order 26.

(ii) In the t25 case, given the 4 Q8’s, the order of the normaliser is 29.3 two times

and 29.32, also two times of course. If the order is 29.3 then the number of 2DE8(2)

involutions in the normaliser is 103, it is 295 otherwise. Across all the four Q8’s and

normalising involutions, 416 groups isomorphic to 2·Sym(4) are formed, with 12 of

them being unique up to NJ(E)-conjugacy.

6.3. L3(3) 123

In the t21 case, we convert NJ(E) into a pc-group and work in this setting. Given

the six Q8’s from Lemma 6.1.6(ii), the orders of the normalisers are 211 (three times),

211.3, 211.32 and 211.34. Ignoring the three 2-groups, the number of 2DE8(2) involu-

tions contained in the normalisers is 247, 631 and 1783, respectively. The number of

involutions can be too big to go through all pairs so instead let N be one of the three

normalisers in question, say of the group Q, in NJ(E), and label with C1, . . . , Cn,

n ∈ N, the conjugacy classes of 2DE8(2) involutions in N in descending order of length.

For 1 ≤ i ≤ n − 1, we fix an involution r ∈ Ci and go through all involutions

r′ ∈ Ci+1 ∪ . . . ∪ Cn to see if 〈Q, r, r′〉 is isomorphic to 2·Sym(4). Note that if s is

any involution in Ci other than r then we don’t need to consider any group 〈Q, s, r′〉,

r′ ∈ Ci+1∪. . .∪Cn, since s ∼g r, some g ∈ N , and 〈Qg, sg, r′g〉 = 〈Q, r, r′g〉, a conjugate

of 〈Q, s, r′〉 in NJ(E), is already being considered. Now, for 1 ≤ i ≤ n, let r1, . . . , r|Ci|

be all the involutions in Ci, we check if any of 〈Q, r1, rj〉, 2 ≤ j ≤ |Ci|, are isomorphic

to 2·Sym(4). Across the three Q8’s we obtain 30 groups isomorphic to 2·Sym(4), with

10 of them being unique up to NJ(E)-conjugacy.

We have all the wanted subgroups 〈t〉·K ∼= 2·Sym(4) as given by Lemma 6.3.1.

Recall that if E : 〈t〉·K can be built up to an L3(3) that we are after, then a Sylow

3-subgroup, S, of it should have 14 elements in 3CE8(2) and 12 in 3DE8(2). One of the

two E : 〈t〉·K, with E = E1 and t = t11, has a Sylow 3-subgroup, S, containing 6

3BE8(2) elements and 20 3CE8(2) ones, and so is eliminated. The other has the right

G-fusion in S. None of the ten E : 〈t〉·K, E = E2, t = t21 possess the right G-fusion

in S and can be eliminated; with t = t25 all but two of the E : 〈t〉·K can also be ruled

out in this way.

Now that we have all the groups, P1 = E : 〈t〉·K, from Lemma 6.1.2(i), three

of them, we may proceed to construct possible overgroups isomorphic to L3(3) as

described in Lemma 6.1.2(v). Let S be a Sylow 3-subgroup of P1, we calculate NP1(S)

and then its normal subgroups of order 32, we denote the one not equal to E by F .

Out of the 9 involutions in NP1(S) inverting F , we choose just one, say s (it doesn’t

matter which one we choose). Working in CG(s) we repeat the process for s, F as

for t, E to get a corresponding J , which we denote by JF (i.e. we use the code for

calculating J in Section 6.1). Then, again as for J , we find NJF (F); this group will

contain all involutions in G that centralise s and normalise F .

124 CHAPTER 6. L3(4) AND L3(3)

For E = E1 we get |JF | = 217.33, |NJF (F)| = 214.33 and |NJF (F)∩ 2DE8(2)| = 5839

and for E = E2 with t = t25 in both cases we get |JF | = 28.35 = |NJF (F)| and

|NJF (F) ∩ 2DE8(2)| = 1201. Running through the x ∈ NJF (F) ∩ 2DE8(2) we check

whether 〈P1, x〉 ∼= L3(3). As usual we first sieve the x’s according to element orders

– for y ∈ E# we must have that xy has order 6 or 8. For those x’s that survive, we

must check that |〈P1, x〉| = |L3(3)| before employing IsIsomorphic. The outcome is

that in the case E = E1, we obtain exactly one L3(3) subgroup of G and for E = E2,

one of the possibilities yields no L3(3) subgroups whereas the other gives two L3(3)

subgroups.

Name the three L3(3) subgroups of G as L1, L2 and L3. We find that each Li

doesn’t fix any non-zero vectors in V248.

It is true that Aut(L3(3)) ∼= L3(3) : 2. We have the following result.

Proposition 6.3.2. For i ∈ {1, 2, 3}, there are no subgroups isomorphic to Li : 2 in

G.

Proof. Take a Sylow 2-subgroup of Li, then this has a centre of order 2. Call the

involution in the centre z. Let g be an involution in G that normalises Li. Then g

is Li-conjugate to an involution x ∈ G that fixes z. Also, since x normalises Li, by

Lemma 4.2.8, it’ll stabilise the socle of V248 ↓Li.

Therefore, if C is a set of Sylow 2-subgroups of CG(z) forming an involution cover

of CG(z) and W is the socle of V248 ↓Li, then we may search for x in J = 〈StabS(W) :

S ∈ C〉. We use the code in Section 6.1 to calculate J and find that in all three cases

|J | = 24.3 and J ≤ Li.

Therefore x ∈ Li and so g ∈ Li. We have proved that there is no involution in

G \ Li normalising Li.

One begins to wonder if each Li could be a maximal subgroup ofG and the following

result, whose proof is by Rowley, tells us that this is indeed the case. First note that

if A.B, where A E A.B, B ∼= (A.B)/A, is a group containing Li then either Li ≤ A

or Li ∩ A is trivial: For any g ∈ Li, (Li ∩ A)g = Lgi ∩ Ag = Li ∩ A, but Li is simple.

Further, if Li ∩ A is trivial then Li embeds into B.

Theorem 6.3.3. There are at most three conjugacy classes of maximal subgroups of

E8(2) isomorphic to L3(3).

6.3. L3(3) 125

Proof. Let L be in {L1, L2, L3}, the set containing the three groups in question. If L is

not a maximal subgroup of G, then L < M where M is one of the maximal subgroups

given in the list in Chapter 1.

Recall that CV248(L) = 0. If M is a parabolic subgroup of G, then by constructing

O2(M) in G, we find that either 1 ≤ dim(CV248(O2(M))) ≤ 8 or dim(CV248(O2(M)) =

14. Note that CV248(O2(M)), being generated by all the 1-dimensionalO2(M)-submodules

of V248 ↓O2(M), is, by Lemma 4.2.7, stabilised by all of M . If L < M then from the ta-

ble in B.5, we see that the Brauer character of CV248(O2(M))↓L is nφ1, 1 ≤ n ≤ 8, 14φ1

or 2φ1 +φ2; in any case by Lemma 2.2.5(i) we have that CV248(L) 6= 0, a contradiction.

Because no involution can centralise L (see proof of Proposition 6.3.2), we see that

L cannot be a subgroup of M if M has shape (L3(2)×E6(2)) : 2, 3.(U3(2)× 2E6(2)) :

Sym(3) or Sym(3)× E7(2).

The non-abelian groups whose order is divisible by 13 and involved in one of the

remaining possibilities for M to contain L are: F4(2), PSp4(5), U3(4), 3D4(2), 3D4(4),

Ω+
8 (4), SU5(4), PGU5(4), Ω+

16(2).

Now |PSp4(5)|, |U3(4)|, |SU5(4)| and |PGU5(4)| are not divisible by 33, and so

cannot contain an L3(3) subgroup.

In B.6, all the possible feasible decomposition (i)-(iv) of F4(2) on V248 would have

a trivial submodule by Lemma 2.2.5(i). In B.7, φ5, . . . , φ8, φ12, φ13, φ14 are the only

irreducible characters involved in the decompositions (i)-(iv), but these are all self-dual

and so by Lemma 2.2.5(iii) any copy of Ω+
8 (4) in G would fix a non-zero vector of V248.

Therefore we get that if L < M withM ∼ U3(3) : 2×F4(2) orM ∼ Ω+
8 (4).(Sym(3)×2),

then CV248(L) 6= 0.

If 3D4(2) has an L3(3) subgroup then this subgroup would contain a Sylow 13-

subgroup of 3D4(2). The normaliser of this Sylow 13-subgroup in 3D4(2) would have

shape 13 : 4, whereas in the L3(3) subgroup it’d have shape 13 : 3, a contradiction.

Therefore M ∼ (3D4(2))2 : 6 is ruled out as a possible maximal subgroup containing

L.

The maximal subgroups of 3D4(4) are given in [27]; they are [49]SL2(2
6) ◦ Z3,

[411]Z63◦SL2(4), G2(4), 3D4(2), L2(2
6)×L2(4), (SL2(2

6)◦SL2(2))2, (Z21◦SL3(4)).3.2,

(Z13 ◦ SU3(4)).2, (Z21)
2SL2(3) and Z241.4. A group in this list can’t contain L3(3)

subgroups for one of the following reasons: 13 doesn’t divide its order, L2(2
n) has

126 CHAPTER 6. L3(4) AND L3(3)

abelian Sylow 2-subgroups whereas L3(3) doesn’t or the normaliser of a Sylow 13-

subgroup of 3D4(2) has shape 13 : 4. Therefore 3D4(4) can contain no L3(3) subgroups,

and so if L ≤M then M 6∼ 3D4(4).6.

Finally, Ω+
16(2), being a subgroup of maximal rank can be constructed in G as

being generated by the root subgroups associated to the roots of the extended Dynkin

diagram apart from the one labelled by 1. We then find that the socle of Ω+
16(2) on

V248 is 1⊕ 128, meaning that M ∼= Ω+
16(2) cannot contain L.

Therefore L is a maximal subgroup of G = E8(2).

Bibliography

[1] J. L. Alperin, Local representation theory, Cambridge University Press (1986).

[2] M. Aschbacher: On the maximal subgroups of the

finite classical groups, Invent. Math. 76 (1984), no. 3, 469–514.

[3] M. Aschbacher, Chevalley groups of type G2 as the group of a trilinear form,

Proc. London Math. Soc. (1987), vol. 109, no. 1, pp. 193–259.

[4] M. Aschbacher: The maximal subgroups of E6, preprint, 170pp.

[5] M. Aschbacher and L. Scott: Maximal subgroups of finite groups, J. Algebra, 92

(1985), 44–80.

[6] M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of

even order, Nagoya Math. J. (1976), vol. 63, pp. 1–91.

[7] A. Aubad, J. Ballantyne, M. Javed, A. McGaw, P. Neuhaus, P. Rowley, D. Ward:

The maximal subgroups of E8(2), unpublished manuscript.

[8] A. Aubad, J. Ballantyne, A. McGaw, P. Neuhaus, J. Phillips,

P. Rowley, D. Ward: The Semisimple Elements of E8(2),

http://eprints.ma.man.ac.uk/2457/

[9] J. Ballantyne, C. Bates and P. Rowley, The maximal subgroups of E7(2), LMS

J. Comput. Math. (2015), vol. 18, no. 1, pp. 323–371.

[10] T.S. Blyth, Module theory: an approach to linear algebra, University of St An-

drews (2018).

[11] D. A. Craven, Alternating subgroups of exceptional groups of Lie type, Proc.

Lond. Math. Soc. (2017), vol. 115, no. 3, pp. 449–501.

127

128 BIBLIOGRAPHY

[12] D. A. Craven, Maximal PSL2 Subgroups of Exceptional Groups of Lie Type,

https://arxiv.org/abs/1610.07469.

[13] D. A. Craven, The Maximal Subgroups of the Exceptional Groups

F4(q), E6(q) and 2E6(q) and Related Almost Simple Groups,

https://arxiv.org/abs/2103.04869.

[14] D. A. Craven, On the Maximal Subgroups of E7(q) and Related Almost Simple

Groups, https://arxiv.org/abs/2201.07081.

[15] A. M. Cohen, M. W. Liebeck, J. Saxl and G. M. Seitz, The local maximal sub-

groups of exceptional groups of Lie type, finite and algebraic, Proc. London Math.

Soc. (1992), vol. 64, no. 1, pp. 21–48.

[16] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson: Atlas of

Finite Groups, Clarendon, Oxford (1985).

[17] B. N. Cooperstein, Maximal subgroups of G2(2
n), J. Algebra (1981), vol. 70, no.

1, pp. 23–36.

[18] K. H. Dar, Maximal subgroups of the Tits simple group, J. Natur. Sci. Math

(1979), vol. 19, no. 1, pp. 45–55.

[19] L. E. Dickson: Linear groups, with an exposition of the Galois field theory,

Teubner (1901), reprinted Dover (1958).

[20] T. Fritzsche, The depth of subgroups of PSL(2, q), J. Algebra 349 (2012), 217–

233.

[21] D. Gorenstein, Finite Groups, Second Edition. Chelsea Publishing Co., New

York (1980).

[22] R. W. Hartley: Determination of the ternary collineation groups whose coeffi-

cients lie in the GF(2n), Ann. of Math. 27 (1925), 140–158.

[23] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, New

York: Springer-Verlag, (1972).

BIBLIOGRAPHY 129

[24] J. E. Humphreys: Linear algebraic groups, Graduate Texts in Mathematics,

No.21. New York: Springer-Verlag, (1975).

[25] J. E. Humphreys, Modular representations of finite groups of Lie type, Cambridge

University Press (2006).

[26] P. B. Kleidman, The maximal subgroups of the Chevalley groups G2(q) with q

odd, the Ree groups 2G2(q), and their automorphism groups, J. Algebra (1988),

vol. 117, no. 1, pp. 30–71.

[27] P. B. Kleidman: The maximal subgroups of the Steinberg triality groups 3D4(q)

and of their automorphism groups, J. Algebra 115 (1988), 182–199.

[28] P. B. Kleidman and M. W. Liebeck: The subgroup structure of the finite classical

groups, Cambridge Univ. Press (1990).

[29] P. B. Kleidman and R. A. Wilson, The maximal subgroups of E6(2) and

Aut(E6(2)), Proc. London Math. Soc. (1990), vol. 60, no. 2, pp. 266–294.

[30] V. M. Levchuk and Y. N. Nuzhin, The structure of Ree groups, Algebra i Logika

(1985), vol. 24, no. 1, pp. 26–41.

[31] M. Liebeck, C. Praeger, and J. Saxl, On the O’Nan-Scott theorem for finite

primitive permutation groups, Journal of the Australian Mathematical Society

(1988), 44(3), 389–396.

[32] M. W. Liebeck, C. E. Praeger, J. Saxl: A classification of the maximal subgroups

of the finite alternating and symmetric groups, J. Algebra, 111 (1987), 365–383.

[33] M. W. Liebeck, J. Saxl and G. M. Seitz, Subgroups of maximal rank in finite

exceptional groups of Lie type, Proc. London Math. Soc. (1992), vol. 65, no. 2,

pp. 297–325.

[34] M. W. Liebeck, J. Saxl and D. M. Testerman, Simple subgroups of large rank in

groups of Lie type, Proc. London Math. Soc. 72 (1996), pp. 425–457.

[35] M. W. Liebeck and G. M. Seitz, A survey of maximal subgroups of exceptional

groups of Lie type, Groups, combinatorics and geometry, Durham (2001), World

Scientific (2003).

130 BIBLIOGRAPHY

[36] M. W. Liebeck and G. M. Seitz, On finite subgroups of exceptional algebraic

groups, J. Reine Angew. Math., 515 (1999), pp. 25–72.

[37] A. Litterick: Finite Simple Subgroups of Exceptional Algebraic Groups, Ph.D.

thesis, Imperial College London (2013).

[38] F. Lübeck: Conjugacy Classes and Character Degrees of E8(2),

https://www.math.rwth-aachen.de/~Frank.Luebeck/chev/E82.html

[39] K. Magaard, The maximal subgroups of the Chevalley groups F4(F) where F is

a finite or algebraically closed field of characteristic 6= 2, 3, Dissertation (Ph.D.),

California Institute of Technology (1990).

[40] G. Malle, The maximal subgroups of 2F4(q
2), J. Algebra (1991), vol. 139, no. 1,

pp. 52–69.

[41] G. Malle and D. Testerman, Linear Algebraic Groups and Finite Groups of Lie

Type, Cambridge University Press (2011).

[42] A. McGaw, On Certain Subgroups of E8(2), Ph.D. thesis, The University of

Manchester, 2018.

[43] E. T. Migliore, The Determination of the Maximal Subgroups of G2(q), q Odd,

U.C.S.C. Thesis (1982).

[44] H. H. Mitchell: Determination of the ordinary and modular ternary linear groups,

Trans. Amer. Math. Soc. 12 (1911), 207–242.

[45] P. Neuhaus, On Certain Subgroups of E8(2) and their Brauer Character Tables,

Ph.D. thesis, The University of Manchester, 2018.

[46] S. P. Norton and R. A. Wilson, The maximal subgroups of F4(2) and its auto-

morphism group, Comm. Algebra (1989), vol. 17, no. 11, pp. 2809–2824.

[47] N. Petrov and K. Tchakerian, Maximal subgroups of 2G2(q), Annuaire Univ.

Sofia Fac. Math. Mc. (1985), vol. 79, no. 1, pp. 215–221.

[48] M. Suzuki, On a Class of Doubly Transitive Groups, Ann. of Math. (1962), vol.

75, no. 1, pp. 105–145.

BIBLIOGRAPHY 131

[49] K. B. Tchakerian, The maximal subgroups of the Tits simple group, Pliska Stud.

Math. Bulgar. (1986), vol. 8, pp. 85–93.

[50] R. A. Wilson, The geometry and maximal subgroups of the simple groups of

A. Rudvalis and J. Tits, Proc. London Math. Soc. (1984), vol. 48, no. 3, pp.

533–563.

[51] R. A. Wilson: Maximal subgroups of sporadic groups,

https://arxiv.org/abs/1701.02095.

[52] R. A. Wilson: Maximal subgroups of 2E6(2) and its automorphism groups,

https://arxiv.org/abs/1801.08374.

Appendix A

Programs

A.1 Code for L2(64)

Given J ∈ J , see Lemma 3.2.1, below we denote by O, the group QJ , and by x63, the

element xJ .

function Code(O,x63);

GROUPS:=[**];

RESULTS:=[**];

FinSub:={@@};

BadSub:={@@};

SetSub2:={@O@};

ActnGpDiff:={@@};

count:=0;

repeat

countt:=0;

SetSub:=SetSub2; count+:=1;

SetSub2:={@@};

for x in SetSub do countt+:=1;

Sub63:=sub<Q|x,x63>;

FX63:=FrattiniSubgroup(x);

MNt5aa,phit5aa:=GModule(Sub63,x,FX63);

132

A.1. CODE FOR L2(64) 133

if Order(ActionGroup(MNt5aa)) ne 63 then Include(~ActnGpDiff,x);

else

Com:=DirectSumDecomposition(MNt5aa);

Dim:=[Dimension(Com[i]): i in [1..#Com]];

CheckSet:= {@ 1 @};

ModSet:= {@ Com[1] @};

for i in [2..#Com] do

check:=0;

for j in CheckSet do

if IsIsomorphic(Com[i],Com[j]) then check:=1; end if;

end for;

if check eq 0 then

Include(~CheckSet,i); Include(~ModSet,Com[i]);

end if;

end for;

if Order(FX63) eq 1 then

for m in ModSet do

if Dimension(m) eq 6 then

GenSet:={@@};

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

IncMod:= sub<MNt5aa|GenSet>;

IncGrp:= IncMod@@phit5aa;

Include(~FinSub,IncGrp);

end if;

end for;

134 APPENDIX A. PROGRAMS

else

if #ModSet eq 1 then

if Dimension(Com[1]) eq 6 then Include(~BadSub,x); end if;

else

for m in ModSet do

if Dimension(m) eq 6 then

GenSet:={@@};

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

IncMod:= sub<MNt5aa|GenSet>;

IncGrp:= IncMod@@phit5aa;

Include(~SetSub2,IncGrp);

end if;

end for;

end if;

end if;

count,#SetSub,countt,Dim,#ModSet,#ActnGpDiff,"FinSub",#FinSub,\

"BadSub",#BadSub,#SetSub2,#RESULTS;

end if;

end for;

until #SetSub2 eq 0;

Append(~RESULTS, [*#FinSub,#BadSub,#ActnGpDiff*]);

Append(~GROUPS,BadSub);

A.1. CODE FOR L2(64) 135

BadSetNew:=BadSub;

loopn:=0;

bool:={@@};

bool2:={@@};

SetKeepZero:={@@};

repeat

BadSub:=BadSetNew; BadSetNew:={@@};

for k in [1..#BadSub] do

b:=BadSub[k];

Fb:=FrattiniSubgroup(b);

Pb,pmap:=PCGroup(b);

PFb:=pmap(Fb);

C:=CommutatorSubgroup(Pb,PFb);

QPFb,qPFb:=quo<PFb|C>;

FQPFb:=FrattiniSubgroup(QPFb);

A:=(FQPFb@@qPFb)@@pmap;

MNt,phit:= GModule(sub<Q|x63,b>,b,Fb);

actMNtstar:={@@};

for g in ActionGroup(MNt) do

if Order(g) ne 1 then Include(~actMNtstar,g); end if;

end for;

Include(~bool, forall{g : g in actMNtstar | \

Dimension(Eigenspace(g,1)) eq 0});

Com:= DirectSumDecomposition(MNt);

136 APPENDIX A. PROGRAMS

IsLarge:=[Dimension(Com[i]): i in [1..#Com]];

SetKeep:= {@@};

for i in [1..#Com-1] do

repeat xm:= Random(Com[i]);

until xm ne Zero(Com[i]);

x:= xm@@phit;

setym:={@@};

for j in [i+1..#Com] do

Include(~setym,Com[j]);

end for;

YM:= sub<MNt|setym>;

countym:=0;

for ym in YM do

countym:= countym+1;

y:= ym@@phit;

t:= x*y;

if t*t in A then Include(~SetKeep,t);

end if;

end for;

end for;

repeat x:= Random(Com[#Com]);

until x ne Zero(Com[#Com]);

t:=x@@phit;

if t*t in A then Include(~SetKeep,t);

end if;

Include(~bool2, #SetKeep ne 0);

if #SetKeep eq 0 then Include(~SetKeepZero,b); end if;

for r in [1..#SetKeep] do

x:=SetKeep[r];

A.1. CODE FOR L2(64) 137

set63:={@@};

for i in [1..63] do

Include(~set63,x^(x63^i));

end for;

Sub63:=sub<Q|Fb,x,x63>;

Sub4aa:=sub<Q|Fb,set63>;

MNt4aa,phit4aa:=GModule(Sub63,Sub4aa,A);

Com:=DirectSumDecomposition(MNt4aa);

Dim:=[Dimension(Com[i]): i in [1..#Com]];

CheckSet:= {@ 1 @};

ModSet:= {@ Com[1] @};

for i in [2..#Com] do

check:=0;

for j in CheckSet do

if IsIsomorphic(Com[i],Com[j]) then check:=1; end if;

end for;

if check eq 0 then

Include(~CheckSet,i); Include(~ModSet,Com[i]);

end if;

end for;

if Order(A) eq 1 then

for m in ModSet do

if Dimension(m) eq 6 then

GenSet:={@@};

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

IncMod:= sub<MNt4aa|GenSet>;

138 APPENDIX A. PROGRAMS

IncGrp:= IncMod@@phit4aa;

Include(~FinSub,IncGrp);

end if;

end for;

else

if #ModSet eq 1 then

if Dimension(Com[1]) eq 6 then Include(~SetSub2,Sub4aa); end if;

else

for m in ModSet do

if Dimension(m) eq 6 then

GenSet:={@@};

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

IncMod:= sub<MNt4aa|GenSet>;

IncGrp:= IncMod@@phit4aa;

Include(~SetSub2,IncGrp);

end if;

end for;

end if;

end if;

IsLarge,"loopn",loopn,#BadSub,"k",k,bool,bool2,#SetKeep,r,Dim,#ModSet,\

"FinSub",#FinSub,"BadSetNew",#BadSetNew,#SetSub2;

end for;

count:=0;

repeat

A.1. CODE FOR L2(64) 139

countt:=0;

SetSub:=SetSub2; count+:=1;

SetSub2:={@@};

for x in SetSub do countt+:=1;

Sub63:=sub<Q|x,x63>;

FX63:=FrattiniSubgroup(x);

MNt5aa,phit5aa:=GModule(Sub63,x,FX63);

if Order(ActionGroup(MNt5aa)) ne 63 then Include(~ActnGpDiff,x);

else

Com:=DirectSumDecomposition(MNt5aa);

Dim:=[Dimension(Com[i]): i in [1..#Com]];

CheckSet:= {@ 1 @};

ModSet:= {@ Com[1] @};

for i in [2..#Com] do

check:=0;

for j in CheckSet do

if IsIsomorphic(Com[i],Com[j]) then check:=1; end if;

end for;

if check eq 0 then

Include(~CheckSet,i); Include(~ModSet,Com[i]);

end if;

end for;

if Order(FX63) eq 1 then

for m in ModSet do

if Dimension(m) eq 6 then

GenSet:={@@};

140 APPENDIX A. PROGRAMS

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

IncMod:= sub<MNt5aa|GenSet>;

IncGrp:= IncMod@@phit5aa;

Include(~FinSub,IncGrp);

end if;

end for;

else

if #ModSet eq 1 then

if Dimension(Com[1]) eq 6 then Include(~BadSetNew,x); end if;

else

for m in ModSet do

if Dimension(m) eq 6 then

GenSet:={@@};

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

IncMod:= sub<MNt5aa|GenSet>;

IncGrp:= IncMod@@phit5aa;

Include(~SetSub2,IncGrp);

end if;

end for;

end if;

end if;

"loopn",loopn,count,#SetSub,countt,Dim,#ModSet,#ActnGpDiff,\

"FinSub",#FinSub,"BadSetNew",#BadSetNew,#SetSub2;

A.2. CODE FOR CONJUGATING GROUPS IN A BADSUB 141

end if;

end for;

until #SetSub2 eq 0;

end for;

loopn+:=1; Append(~RESULTS, <loopn,#BadSetNew,#FinSub,#ActnGpDiff,\

bool eq {@true@},bool2 eq {@true@},#SetKeepZero>);

Append(~GROUPS,BadSetNew);

until #BadSetNew eq 0;

BadSub:={@@};

Append(~GROUPS,FinSub);

Append(~GROUPS,ActnGpDiff);

Append(~GROUPS,SetKeepZero);

return RESULTS,GROUPS;

end function;

RESULTS,GROUPS:=Code(O,x63);

A.2 Code for Conjugating Groups in a BadSub

Below cpx is CP (x), where P is a standard parabolic subgroup (see Section 4.1).

ind:=[1..#BadSub];

orbs:=[{@i@} : i in ind];

count:=0;

repeat h:=Random(cpx); count+:=1; old:=#orbs;

for j in [1..(#ind-1)] do

142 APPENDIX A. PROGRAMS

for i in [(j+1)..#ind] do

if BadSub[ind[j]] eq BadSub[ind[i]]^h then

for o in orbs do

if ind[j] in o then oj:=o; end if;

if ind[i] in o then oi:=o; end if;

end for;

Exclude(~orbs,oj); Exclude(~orbs,oi); Include(~orbs,oj join oi);

break;

end if;

end for;

end for;

new:=#orbs;

if new lt old then ind:=[k[1] : k in orbs]; end if;

count,#elts,#orbs;

until 1 eq 2;

BadSub:=[BadSub[orbs[i][1]] : i in [1..#orbs]];

A.3 L2(8) Code 1

Below occurrences of Include(~FinSub, Include(~SetSub2 or Include(~BadSetNew

can be replaced by Append if seen fit according to the situation.

Prob23:={@@};

dimnotmetbool:={@@};

FinSub:=[];

SetSub2:=[];

ActnGpDiff:={@@};

bool:={@@};

bool2:={@@};

bool3:={@@};

A.3. L2(8) CODE 1 143

SetKeepZero:=[];

for obs in [1..#OrigBadSub] do

BadSetNew:={@OrigBadSub[obs]@};

loop:=0;

repeat

BadSub:=BadSetNew; loop+:=1;

BadSetNew:=[];

for k in [1..#BadSub] do

b:=BadSub[k];

Pb,pmap:=PCGroup(b);

if loop eq 1 then Fb:=FrattiniSubgroup(b);

else if IsElementaryAbelian(Pb/Centre(Pb)) then Fb:=Centre(b);

else Fb:=FrattiniSubgroup(b);

end if;

end if;

PFb:=pmap(Fb);

C:=CommutatorSubgroup(Pb,PFb);

QPFb,qPFb:=quo<PFb|C>;

FQPFb:=FrattiniSubgroup(QPFb);

A:=(FQPFb@@qPFb)@@pmap;

MNt,phit:= GModule(sub<Q|x7,b>,b,Fb);

Include(~bool3, Order(ActionGroup(MNt)) eq 7);

144 APPENDIX A. PROGRAMS

actMNtstar:={@@};

for g in ActionGroup(MNt) do

if Order(g) ne 1 then Include(~actMNtstar,g); end if;

end for;

Include(~bool, forall{g : g in actMNtstar | \

Dimension(Eigenspace(g,1)) eq 0});

Com:= DirectSumDecomposition(MNt);

IsLarge:=[Dimension(Com[i]): i in [1..#Com]];

SetKeep:= {@@};

for i in [1..#Com-1] do

repeat xm:= Random(Com[i]);

until xm ne Zero(Com[i]);

x:= xm@@phit;

setym:={@@};

for j in [i+1..#Com] do

Include(~setym,Com[j]);

end for;

YM:= sub<MNt|setym>;

countym:=0;

for ym in YM do

countym:= countym+1;

y:= ym@@phit;

t:= x*y;

if t*t in A then Include(~SetKeep,t);

end if;

end for;

end for;

repeat x:= Random(Com[#Com]);

until x ne Zero(Com[#Com]);

A.3. L2(8) CODE 1 145

t:=x@@phit;

if t*t in A then Include(~SetKeep,t);

end if;

Include(~bool2, #SetKeep ne 0);

if (#SetKeep eq 0 and Dimension(Fix(GModule(sub<Q|Fb,x7>))) le 5) \

then Include(~SetKeepZero,Fb); end if;

beta:=0;

for r in [1..#SetKeep] do

x:=SetKeep[r];

set7:={@@};

for i in [1..7] do

Include(~set7,x^(x7^i));

end for;

Sub7:=sub<Q|Fb,x,x7>;

Sub4aa:=sub<Q|Fb,set7>;

if Dimension(Fix(GModule(sub<Q|Sub4aa,x7>))) le 5 then beta+:=1;

MNt4aa,phit4aa:=GModule(Sub7,Sub4aa,A);

Com:=DirectSumDecomposition(MNt4aa);

Dim:=[Dimension(Com[i]): i in [1..#Com]];

CheckSet:= {@ 1 @};

ModSet:= {@ Com[1] @};

for i in [2..#Com] do

check:=0;

for j in CheckSet do

if IsIsomorphic(Com[i],Com[j]) then check:=1; end if;

146 APPENDIX A. PROGRAMS

end for;

if check eq 0 then

Include(~CheckSet,i); Include(~ModSet,Com[i]);

end if;

end for;

if Order(A) eq 1 then

for m in ModSet do

if Dimension(m) eq 3 then

GenSet:={@@};

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

IncMod:= sub<MNt4aa|GenSet>;

IncGrp:= IncMod@@phit4aa;

if Dimension(Fix(GModule(sub<Q|IncGrp,x7>))) le 5 then

Include(~FinSub,IncGrp);

end if;

end if;

end for;

else

if #ModSet eq 1 then

if Dimension(Com[1]) eq 3 then

if Dimension(Fix(GModule(sub<Q|Sub4aa,x7>))) le 5 then

Include(~SetSub2,Sub4aa);

end if;

end if;

else

for m in ModSet do

A.3. L2(8) CODE 1 147

if Dimension(m) eq 3 then

GenSet:={@@};

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

IncMod:= sub<MNt4aa|GenSet>;

IncGrp:= IncMod@@phit4aa;

if Dimension(Fix(GModule(sub<Q|IncGrp,x7>))) le 5 then

Include(~SetSub2,IncGrp);

end if;

end if;

end for;

end if;

end if;

IsLarge,#OrigBadSub,"obs",obs,#BadSub,"k",k,bool,bool2,bool3,\

#SetKeep,r,Dim,#ModSet,#ActnGpDiff,"SetKeepZero",#SetKeepZero,\

"FinSub",#FinSub,"BadSetNew",#BadSetNew,"Prob23",#Prob23,\

"dimnotmetbool",dimnotmetbool,#SetSub2;

end if;

end for;

"obs",obs,"k",k,"#SetKeep",#SetKeep,"beta",beta;

count:=0;

repeat

countt:=0;

SetSub:=SetSub2; count+:=1;

SetSub2:=[];

148 APPENDIX A. PROGRAMS

for x in SetSub do countt+:=1;

Sub7:=sub<Q|x,x7>;

FX7:=FrattiniSubgroup(x);

MNt5aa,phit5aa:=GModule(Sub7,x,FX7);

if Order(ActionGroup(MNt5aa)) ne 7 then Include(~ActnGpDiff,x);

else

Com:=DirectSumDecomposition(MNt5aa);

Dim:=[Dimension(Com[i]): i in [1..#Com]];

CheckSet:= {@ 1 @};

ModSet:= {@ Com[1] @};

for i in [2..#Com] do

check:=0;

for j in CheckSet do

if IsIsomorphic(Com[i],Com[j]) then check:=1; end if;

end for;

if check eq 0 then

Include(~CheckSet,i); Include(~ModSet,Com[i]);

end if;

end for;

if Order(FX7) eq 1 then

for m in ModSet do

if Dimension(m) eq 3 then

GenSet:={@@};

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

A.3. L2(8) CODE 1 149

IncMod:= sub<MNt5aa|GenSet>;

IncGrp:= IncMod@@phit5aa;

if Dimension(Fix(GModule(sub<Q|IncGrp,x7>))) le 5 then

Include(~FinSub,IncGrp);

end if;

end if;

end for;

else

if #ModSet eq 1 then

if Dimension(Com[1]) eq 3 then Include(~BadSetNew,x); end if;

else

for m in ModSet do

if Dimension(m) eq 3 then

GenSet:={@@};

for n in Com do

if IsIsomorphic(n,m) then Include(~GenSet,n); end if;

end for;

IncMod:= sub<MNt5aa|GenSet>;

IncGrp:= IncMod@@phit5aa;

if Dimension(Fix(GModule(sub<Q|IncGrp,x7>))) le 5 then

Include(~SetSub2,IncGrp);

end if;

end if;

end for;

end if;

end if;

count,#SetSub,countt,Dim,#ModSet,#ActnGpDiff,"FinSub",#FinSub,\

"BadSetNew",#BadSetNew,#SetSub2;

150 APPENDIX A. PROGRAMS

end if;

end for;

until #SetSub2 eq 0;

end for;

until #BadSetNew eq 0;

BadSub:={@@};

dimnotmet:=FinSub;

for i in [1..#dimnotmet] do

Mdnmi,phidnmi:=GModule(sub<Q|dimnotmet[i],x7>,dimnotmet[i]);

Sdnmi:=MinimalSubmodules(Mdnmi);

Include(~dimnotmetbool,Order(ActionGroup(Mdnmi)) eq 7);

for s in Sdnmi do ps:=s@@phidnmi;

if Dimension(Fix(GModule(sub<Q|ps,x7>))) le 5 then

Include(~Prob23,ps);

end if;

end for;

end for;

dimnotmet:=[];

FinSub:=[];

end for;

#BadSetNew;

#FinSub;

#ActnGpDiff;

bool eq {@true@};

A.4. L2(8) CODE 2 151

bool2 eq {@true@};

bool3 eq {@true@};

#SetKeepZero;

#Prob23;

dimnotmetbool;

A.4 L2(8) Code 2

Let b be such that b/Φ(b) is V1 ⊕ . . .⊕ Vk. If we want to factor b out by the preimage

of the sum of the first r summands then before running the following we must replace

STH with the number r.

Below occurrences of mean that the code here is the same as in the

relevant parts of A.3.

OrigBadSub:=[];

bool:={@@};

bool2:={@@};

bool3:={@@};

SetKeepZero:={@@};

for k in [1..#BadSub] do

b:=BadSub[k];

ML,phiL:=GModule(sub<Q|b,x7>,b,FrattiniSubgroup(b));

ComL:=DirectSumDecomposition(ML);

BSet:={@@};

for i in [1..STH] do Include(~BSet,ComL[i]); end for;

IncMod:=sub<ML|BSet>;

Fb:=IncMod@@phiL;

152 APPENDIX A. PROGRAMS

Pb,pmap:=PCGroup(b);

PFb:=pmap(Fb);

C:=CommutatorSubgroup(Pb,PFb);

QPFb,qPFb:=quo<PFb|C>;

FQPFb:=FrattiniSubgroup(QPFb);

A:=(FQPFb@@qPFb)@@pmap;

MNt,phit:= GModule(sub<Q|x7,b>,b,Fb);

Include(~bool3, Order(ActionGroup(MNt)) eq 7);

actMNtstar:={@@};

for g in ActionGroup(MNt) do

if Order(g) ne 1 then Include(~actMNtstar,g); end if;

end for;

Include(~bool, forall{g : g in actMNtstar | \

Dimension(Eigenspace(g,1)) eq 0});

Com:= DirectSumDecomposition(MNt);

SetKeep:= {@@};

//Insert usual method of adding elements to SetKeep here.

Include(~bool2, #SetKeep ne 0);

if #SetKeep eq 0 then Include(~SetKeepZero,Fb); end if;

for r in [1..#SetKeep] do

x:=SetKeep[r];

set7:={@@};

for i in [1..7] do

Include(~set7,x^(x7^i));

end for;

A.4. L2(8) CODE 2 153

Sub4aa:=sub<Q|Fb,set7>;

Append(~OrigBadSub,Sub4aa);

end for;

end for;

#OrigBadSub;

bool eq {@true@};

bool2 eq {@true@};

bool3 eq {@true@};

#SetKeepZero;

Prob23:={@@};

.........

for obs in [1..#OrigBadSub] do

BadSetNew:={@OrigBadSub[obs]@};

loop:=0;

repeat

BadSub:=BadSetNew; loop+:=1;

BadSetNew:=[];

for k in [1..#BadSub] do

.........

MNt,phit:= GModule(sub<Q|x7,b>,b,Fb);

154 APPENDIX A. PROGRAMS

Include(~bool3, Order(ActionGroup(MNt)) eq 7);

Com:= DirectSumDecomposition(MNt);

IsLarge:=[Dimension(Com[i]): i in [1..#Com]];

SetKeep:= {@@};

if forall{z : z in Com | (Dimension(z) eq 3) and \

IsIsomorphic(z,Com[1])} eq false then Include(~SetSub2,b);

else

actMNtstar:={@@};

for g in ActionGroup(MNt) do

if Order(g) ne 1 then Include(~actMNtstar,g); end if;

end for;

Include(~bool, forall{g : g in actMNtstar | \

Dimension(Eigenspace(g,1)) eq 0});

for i in [1..#Com-1] do

repeat xm:= Random(Com[i]);

until xm ne Zero(Com[i]);

x:= xm@@phit;

setym:={@@};

for j in [i+1..#Com] do

Include(~setym,Com[j]);

end for;

YM:= sub<MNt|setym>;

countym:=0;

for ym in YM do

A.4. L2(8) CODE 2 155

countym:= countym+1;

y:= ym@@phit;

t:= x*y;

if t*t in A then Include(~SetKeep,t);

end if;

end for;

end for;

repeat x:= Random(Com[#Com]);

until x ne Zero(Com[#Com]);

t:=x@@phit;

if t*t in A then Include(~SetKeep,t);

end if;

Include(~bool2, #SetKeep ne 0);

if (#SetKeep eq 0 and Dimension(Fix(GModule(sub<Q|Fb,x7>))) le 5) then

Include(~SetKeepZero,Fb);

end if;

end if;

beta:=0;

for r in [1..#SetKeep] do

.........

end for;

"obs",obs,"k",k,"#SetKeep",#SetKeep,"beta",beta;

count:=0;

repeat

156 APPENDIX A. PROGRAMS

countt:=0;

SetSub:=SetSub2; count+:=1;

SetSub2:=[];

.........

until #SetSub2 eq 0;

end for;

until #BadSetNew eq 0;

.........

end for;

.........

#Prob23;

dimnotmetbool;

A.5 L2(8) Code 3

Below occurrences of mean that the code here is the same as in the relevant

parts of A.3 except that occurrences of Include(~SetSub2 and Include(~BadSetNew

have been changed to Append.

Prob23:={@@};

.........

for obs in [1..#OrigBadSub] do

A.5. L2(8) CODE 3 157

BadSetNew:={@OrigBadSub[obs]@};

loop:=0;

repeat

BadSub:=BadSetNew; loop+:=1;

BadSetNew:=[];

for k in [1..#BadSub] do

.........

SetKeep:= {@@};

if ((Order(Pb) in {2^(25),2^(28)}) and \

(IsElementaryAbelian(Pb/Centre(Pb)) eq false) and \

(IsElementaryAbelian(Centre(Pb)))) then

zb:=Centre(b);

trp:=Transversal(Pb,Centre(Pb));

for t in trp do

if Order(t) le 2 then

gp:=sub<Q| zb, {(t@@pmap)^(x7^i) : i in [1..7]}>;

if Dimension(Fix(GModule(sub<Q|gp,x7>))) le 5 then

Include(~SetSub2,gp);

end if;

end if;

end for;

else

for i in [1..#Com-1] do

158 APPENDIX A. PROGRAMS

repeat xm:= Random(Com[i]);

until xm ne Zero(Com[i]);

x:= xm@@phit;

setym:={@@};

for j in [i+1..#Com] do

Include(~setym,Com[j]);

end for;

YM:= sub<MNt|setym>;

countym:=0;

for ym in YM do

countym:= countym+1;

y:= ym@@phit;

t:= x*y;

if t*t in A then Include(~SetKeep,t);

end if;

end for;

end for;

repeat x:= Random(Com[#Com]);

until x ne Zero(Com[#Com]);

t:=x@@phit;

if t*t in A then Include(~SetKeep,t);

end if;

Include(~bool2, #SetKeep ne 0);

if #SetKeep eq 0 then Include(~SetKeepZero,Fb); end if;

end if;

beta:=0;

for r in [1..#SetKeep] do

A.6. L2(8) CODE 4 159

.........

#Prob23;

dimnotmetbool;

A.6 L2(8) Code 4

Below occurrences of mean that the code here is the same as in the relevant

parts of A.5.

Prob23:={@@};

.........

SetKeep:= {@@};

if (((Order(Pb)/Order(Centre(Pb))) le 2^(18)) and \

(IsElementaryAbelian(Pb/Centre(Pb)) eq false) and \

(IsElementaryAbelian(Centre(Pb)))) then

zb:=Centre(b);

trp:=Transversal(Pb,Centre(Pb));

for t in trp do

if Order(t) le 2 then

gp:=sub<Q| zb, {(t@@pmap)^(x7^i) : i in [1..7]}>;

if Dimension(Fix(GModule(sub<Q|gp,x7>))) le 5 then

Include(~SetSub2,gp);

end if;

end if;

end for;

else

for i in [1..#Com-1] do

160 APPENDIX A. PROGRAMS

.........

#Prob23;

dimnotmetbool;

Appendix B

Brauer Character Tables

The following information is taken from [45] which is where it was calculated.

B.1 L2(64)

Brauer Character Table

L2(64) 1A 3A 5AB 7AC 9AC 13AF 21AF

φ1 1 1 1 1 1 1 1

φ2 12 -6 -3 -2 0 -1 1

φ3 12 3 -3 5 6 -1 -4

φ4 16 -2 -4 2 -2 3 5

φ5 24 6 9 -4 -6 -2 -1

φ6 24 6 -6 -4 -6 -2 -1

φ7 48 -6 3 -8 -6 9 1

φ8 48 -6 3 6 -6 -4 -6

φ9 48 -6 3 6 12 -4 -6

φ10 48 3 3 6 9 -4 3

φ11 64 1 -1 1 1 -1 1

φ12 96 6 6 -2 0 5 -8

φ13 96 6 -9 -2 0 5 13

φ14 192 -6 -3 -4 6 -3 8

161

162 APPENDIX B. BRAUER CHARACTER TABLES

Feasible Decompositions

(i) 12φ1+1φ2+4φ3+2φ4+0φ5+0φ6+0φ7+2φ8+0φ9+1φ10+0φ11+0φ12+0φ13+0φ14

(3A→ 3C, 5AB→ 5B, 7AC→ 7A, 9AC→ 9A, 13A→ 13B, 21AF→ 21D, 63AI→

63D, 63JR→ 63E, 65AX→ 65AD)

(ii) 8φ1+2φ2+0φ3+2φ4+3φ5+0φ6+1φ7+2φ8+0φ9+0φ10+1φ11+0φ12+0φ13+0φ14

(3A→ 3C, 5AB→ 5A, 7AC→ 7B, 9AC→ 9D, 13A→ 13B, 21AF→ 21F, 63AI→

63FH, 63JR→ 63FH, 65AX→ 65EF)

(iii) 12φ1+4φ2+1φ3+0φ4+1φ5+1φ6+0φ7+2φ8+0φ9+0φ10+2φ11+0φ12+0φ13+0φ14

(3A→ 3C, 5AB→ 5B, 7AC→ 7B, 9AC→ 9B, 13A→ 13B, 21AF→ 21F, 63AI→

63AC, 63JR→ 63AC, 65AX→ 65AD)

Cohomological Dimensions

φ2 = 6, φ3 = 0, φ4 = 0, φ5 = 0, φ6 = 0, φ7 = 0, φ8 = 0, φ9 = 0, φ10 = 0, φ11 = 0,

φ12 = 0, φ13 = 0, φ14 = 0.

B.2 L2(16)

Brauer Character Table

L2(16) 1A 3A 5AB 15AD 17AD 17EH

φ1 1 1 1 1 1 1

φ2 8 -4 -2 1 b17 ∗

φ3 8 2 3 -3 ∗ b17

φ4 16 4 -4 -1 -1 -1

φ5 16 1 1 1 -1 -1

φ6 32 -4 2 -4 ∗ 2b17-1

B.2. L2(16) 163

Feasible Decompositions

(i) 32φ1+1φ2+8φ3+8φ4+1φ5+0φ6 (3A→3A, 5AB→5A, 15AD→15B, 17AD→17AB,

17EH→17AB)

(ii) 16φ1+8φ2+9φ3+2φ4+4φ5+0φ6 (3A→3B, 5AB→5A, 15AD→15E, 17AD→17CD,

17EH→17CD)

(iii) 16φ1+9φ2+8φ3+1φ4+5φ5+0φ6 (3A→3C, 5AB→5A, 15AD→15D, 17AD→17CD,

17EH→17CD)

(iv) 32φ1+8φ2+1φ3+1φ4+8φ5+0φ6 (3A→3B, 5AB→5A, 15AD→15A, 17AD→17AB,

17EH→17AB)

(v) 16φ1+7φ2+4φ3+5φ4+2φ5+1φ6 (3A→3B, 5AB→5B, 15AD→15F, 17AD→17CD,

17EH→17CD)

(vi) 16φ1+7φ2+6φ3+1φ4+5φ5+1φ6 (3A→3C, 5AB→5A, 15AD→15D, 17AD→17CD,

17EH→17CD)

(vii) 16φ1+8φ2+5φ3+0φ4+6φ5+1φ6 (3A→3D, 5AB→5A, 15AD→15C, 17AD→17CD,

17EH→17CD)

(viii) 16φ1+9φ2+4φ3+4φ4+0φ5+2φ6 (3A→3D, 5AB→5B, 15AD→15G, 17AD→17CD,

17EH→17CD)

(ix) 16φ1+5φ2+2φ3+5φ4+2φ5+2φ6 (3A→3B, 5AB→5B, 15AD→15F, 17AD→17CD,

17EH→17CD)

164 APPENDIX B. BRAUER CHARACTER TABLES

(x) 16φ1+6φ2+3φ3+0φ4+6φ5+2φ6 (3A→3D, 5AB→5A, 15AD→15C, 17AD→17CD,

17EH→17CD)

(xi) 16φ1+7φ2+2φ3+4φ4+0φ5+3φ6 (3A→3D, 5AB→5B, 15AD→15G, 17AD→17CD,

17EH→17CD)

Cohomological Dimensions

φ2 = 4, φ3 = 0, φ4 = 0, φ5 = 0, φ6 = 0.

B.3 L2(8)

Brauer Character Table

L2(8) 1A 3A 7AC 9AC

φ1 1 1 1 1

φ2 6 -3 -1 0

φ3 8 -1 1 -1

φ4 12 3 -2 -3

Feasible Decompositions

(i) 64φ1 + 2φ2 + 8φ3 + 9φ4 (3A→3A, 7AC→7A, 9AC→9A)

(ii) 30φ1 + 13φ2 + 4φ3 + 9φ4 (3A→3B, 7AC→7B, 9AC→9D)

(iii) 32φ1 + 14φ2 + 3φ3 + 9φ4 (3A→3B, 7AC→7B, 9AC→9C)

(iv) 36φ1 + 16φ2 + 1φ3 + 9φ4 (3A→3B, 7AC→7B, 9AC→9B)

(v) 28φ1 + 14φ2 + 5φ3 + 8φ4 (3A→3C, 7AC→7B, 9AC→9D)

B.3. L2(8) 165

(vi) 30φ1 + 15φ2 + 4φ3 + 8φ4 (3A→3C, 7AC→7B, 9AC→9C)

(vii) 34φ1 + 17φ2 + 2φ3 + 8φ4 (3A→3C, 7AC→7B, 9AC→9B)

(viii) 26φ1 + 15φ2 + 6φ3 + 7φ4 (3A→3D, 7AC→7B, 9AC→9D)

(ix) 28φ1 + 16φ2 + 5φ3 + 7φ4 (3A→3D, 7AC→7B, 9AC→9C)

(x) 32φ1 + 18φ2 + 3φ3 + 7φ4 (3A→3D, 7AC→7B, 9AC→9B)

(xi) 32φ1 + 0φ2 + 24φ3 + 2φ4 (3A→3B, 7AC→7A, 9AC→9C)

(xii) 36φ1 + 2φ2 + 22φ3 + 2φ4 (3A→3B, 7AC→7A, 9AC→9B)

(xiii) 50φ1 + 9φ2 + 15φ3 + 2φ4 (3A→3B, 7AC→7A, 9AC→9A)

(xiv) 28φ1 + 0φ2 + 26φ3 + 1φ4 (3A→3C, 7AC→7A, 9AC→9D)

(xv) 30φ1 + 1φ2 + 25φ3 + 1φ4 (3A→3C, 7AC→7A, 9AC→9C)

(xvi) 34φ1 + 3φ2 + 23φ3 + 1φ4 (3A→3C, 7AC→7A, 9AC→9B)

(xvii) 48φ1 + 10φ2 + 16φ3 + 1φ4 (3A→3C, 7AC→7A, 9AC→9A)

(xviii) 26φ1 + 1φ2 + 27φ3 + 0φ4 (3A→3D, 7AC→7A, 9AC→9D)

166 APPENDIX B. BRAUER CHARACTER TABLES

(xix) 28φ1 + 2φ2 + 26φ3 + 0φ4 (3A→3D, 7AC→7A, 9AC→9C)

(xx) 32φ1 + 4φ2 + 24φ3 + 0φ4 (3A→3D, 7AC→7A, 9AC→9B)

(xxi) 46φ1 + 11φ2 + 17φ3 + 0φ4 (3A→3D, 7AC→7A, 9AC→9A)

Cohomological Dimensions

φ2 = 3, φ3 = 0, φ4 = 0.

B.4 L3(4)

Brauer Character Table

L3(4) 1A 3A 5AB 7A 7B∗∗

φ1 1 1 1 1 1

φ2 9 0 -1 b7-1 ∗∗

φ3 9 0 -1 ∗∗ b7-1

φ4 16 -2 1 2 2

φ5 64 1 -1 1 1

Feasible Decompositions

(i) 2φ1 + 3φ2 + 3φ3 + 4φ4 + 2φ5 (3A→3D, 5AB→5B, 7A→7B, 7B∗∗ →7B)

(ii) 4φ1 + 2φ2 + 2φ3 + 1φ4 + 3φ5 (3A→3C, 5AB→5B, 7A→7B, 7B∗∗ →7B)

Cohomological Dimensions

φ2 = 2, φ3 = 2, φ4 = 0, φ5 = 0.

B.5. L3(3) 167

B.5 L3(3)

Brauer Character Table

L3(3) 1A 3A 3B 13AD

φ1 1 1 1 1

φ2 12 3 0 -1

φ3 26 -1 -1 0

φ4 64 -8 4 -1

Feasible Decompositions

(i) 4φ1 + 3φ2 + 8φ3 + 0φ4 (3A→3C, 3B→3D, 13AD→13B)

(ii) 6φ1 + 4φ2 + 5φ3 + 1φ4 (3A→3C, 3B→3C, 13AD→13B)

(iii) 14φ1 + 0φ2 + 9φ3 + 0φ4 (3A→3C, 3B→3C, 13AD→13A)

(iv) 8φ1 + 5φ2 + 2φ3 + 2φ4 (3A→3C, 3B→3B, 13AD→13B)

(v) 16φ1 + 1φ2 + 6φ3 + 1φ4 (3A→3C, 3B→3B, 13AD→13A)

Cohomological Dimensions

φ2 = 1, φ3 = 1, φ4 = 0.

B.6 F4(2)

Brauer Character Table

168 APPENDIX B. BRAUER CHARACTER TABLES
F

4
(2

)
1A

3A
3B

3C
5A

7A
7B

9A
9B

13
A

15
A

15
B

17
A

17
B

21
A

21
B

φ
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

φ
2

26
8

-1
-1

1
-2

5
2

-1
0

4
-2

∗
b
17

+
1

1
-1

φ
3

26
-1

8
-1

1
5

-2
-1

2
0

-2
4

b
17

+
1

∗
-1

1

φ
4

24
6

12
-6

3
-4

1
1

-3
0

-1
-1

2
b
17

∗
-2

1

φ
5

24
6

-6
12

3
-4

1
1

-3
0

-1
2

-1
∗

b
17

1
-2

B.7. Ω+
8 (4) 169

Feasible Decompositions

(i) 2φ1 + 0φ2 + 0φ3 + 0φ4 + 1φ5 (3A→3D, 3B→3B, 3C→3C, 5A→5B, 7A→7B,

7B→7B, 9A→9D, 9B→9C, 13A→13B, 15A→15F, 15B→15G, 17A→17CD, 17B→17CD,

21A→21H, 21B→21E)

(ii) 2φ1 + 0φ2 + 0φ3 + 1φ4 + 0φ5 (3A→3D, 3B→3B, 3C→3C, 5A→5B, 7A→7B,

7B→7B, 9A→9D, 9B→9C, 13A→13B, 15A→15G, 15B→15F, 17A→17CD, 17B→17CD,

21A→21E, 21B→21H)

(iii) 14φ1 + 1φ2 + 8φ3 + 0φ4 + 0φ5 (3A→3B, 3B→3A, 3C→3C, 5A→5A, 7A→7A,

7B→7B, 9A→9B, 9B→9A, 13A→13A, 15A→15B, 15B→15A, 17A→17AB, 17B→17AB,

21A→21C, 21B→21B)

(iv) 14φ1 + 8φ2 + 1φ3 + 0φ4 + 0φ5 (3A→3A, 3B→3B, 3C→3C, 5A→5A, 7A→7B,

7B→7A, 9A→9A, 9B→9B, 13A→13A, 15A→15A, 15B→15B, 17A→17AB, 17B→17AB,

21A→21B, 21B→21C)

Cohomological Dimensions

φ2 = 0, φ3 = 0, φ4 = 1, φ5 = 1.

B.7 Ω+
8 (4)

Brauer Character Table

170 APPENDIX B. BRAUER CHARACTER TABLES
Ω

+ 8
(4

)
1A

3A
3B

3C
3D

3E
5A

B
5C

D
5E

F
5G

H
5I

J
5K

L
5M

N
5O

5P
5Q

5R
S

7A

φ
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

φ
2

16
10

-8
-8

4
-2

11
-4

-4
1

-4
-4

6
6

-4
-4

1
2

φ
3

16
-8

10
-8

4
-2

-4
11

-4
-4

1
-4

6
-4

6
-4

1
2

φ
4

16
-8

-8
10

4
-2

-4
-4

11
-4

-4
1

6
-4

-4
6

1
2

φ
5

52
16

16
16

-2
-2

22
22

22
7

7
7

7
2

2
2

-3
-4

φ
6

64
25

16
16

4
1

29
-1

6
-1

6
-1

1
-1

-1
4

9
4

4
-1

1

φ
7

64
16

25
16

4
1

-1
6

29
-1

6
-1

-1
1

-1
4

4
9

4
-1

1

φ
8

64
16

16
25

4
1

-1
6

-1
6

29
-1

-1
-1

1
4

4
4

9
-1

1

φ
9

96
12

-2
4

-2
4

0
6

26
-2

4
-2

4
16

9
9

16
-4

-4
-4

1
-2

φ
1
0

96
-2

4
12

-2
4

0
6

-2
4

26
-2

4
9

16
9

16
-4

-4
-4

1
-2

φ
1
1

96
-2

4
-2

4
12

0
6

-2
4

-2
4

26
9

9
16

16
-4

-4
-4

1
-2

φ
1
2

12
8

32
-4

0
-4

0
8

2
-3

2
-1

2
-1

2
-2

13
13

8
8

-1
2

-1
2

-2
2

φ
1
3

12
8

-4
0

32
-4

0
8

2
-1

2
-3

2
-1

2
13

-2
13

8
-1

2
8

-1
2

-2
2

φ
1
4

12
8

-4
0

-4
0

32
8

2
-1

2
-1

2
-3

2
13

13
-2

8
-1

2
-1

2
8

-2
2

B.7. Ω+
8 (4) 171

Feasible Decompositions

(i) 4φ1+0φ2+0φ3+0φ4+1φ5+1φ6+1φ7+1φ8+0φ9+0φ10+0φ11+0φ12+0φ13+0φ14

(3A→ 3A, 3B→ 3A, 3C→ 3A, 3D→ 3B, 3E→ 3C, 5AB→ 5A, 5CD→ 5A, 5EF→

5A, 5GH→ 5B, 5IJ→ 5B, 5KL→ 5B, 5MN→ 5A, 5O→ 5A, 5P→ 5A, 5Q→ 5A,

5RS→ 5B, 7A→ 7B)

(ii) 4φ1+0φ2+0φ3+0φ4+1φ5+1φ6+0φ7+0φ8+0φ9+0φ10+0φ11+1φ12+0φ13+0φ14

(3A→ 3A, 3B→ 3D, 3C→ 3D, 3D→ 3B, 3E→ 3C, 5AB→ 5A, 5CD→ 5B, 5EF→

5B, 5GH→ 5B, 5IJ→ 5A, 5KL→ 5A, 5MN→ 5A, 5O→ 5A, 5P→ 5B, 5Q→ 5B,

5RS→ 5B, 7A→ 7B)

(iii) 4φ1+0φ2+0φ3+0φ4+1φ5+0φ6+1φ7+0φ8+0φ9+0φ10+0φ11+0φ12+1φ13+0φ14

(3A→ 3D, 3B→ 3A, 3C→ 3D, 3D→ 3B, 3E→ 3C, 5AB→ 5B, 5CD→ 5A, 5EF→

5B, 5GH→ 5A, 5IJ→ 5B, 5KL→ 5A, 5MN→ 5A, 5O→ 5A, 5P→ 5B, 5Q→ 5A,

5RS→ 5B, 7A→ 7B)

(iv) 4φ1+0φ2+0φ3+0φ4+1φ5+0φ6+0φ7+1φ8+0φ9+0φ10+0φ11+0φ12+0φ13+1φ14

(3A→ 3D, 3B→ 3D, 3C→ 3A, 3D→ 3B, 3E→ 3C, 5AB→ 5B, 5CD→ 5B, 5EF→

5A, 5GH→ 5A, 5IJ→ 5A, 5KL→ 5B, 5MN→ 5A, 5O→ 5B, 5P→ 5B, 5Q→ 5A,

5RS→ 5B, 7A→ 7B)

Cohomological Dimensions

φ2 = 0, φ3 = 0, φ4 = 0, φ5 = 4, φ6 = 0, φ7 = 0, φ8 = 0, φ9 = 0, φ10 = 0, φ11 = 0,

φ12 = 0, φ13 = 0, φ14 = 0.

	Abstract
	Declaration
	Copyright Statement
	Acknowledgements
	Introduction
	Background and Preliminaries
	Linear Algebraic Groups
	Working with E8(2)
	E8(2) setup
	Elements of E8(2)
	Embeddings and Determining Maximality

	L2(64)
	Methodology
	Non-maximality of L2(64)

	L2(16)
	Methodology
	The Cases
	Isomorphism Type L4(2) Sym(3)
	Isomorphism Type L4(2) Sym(3) Sym(3)
	Isomorphism Type L4(2) L4(2)
	Constructing Copies of L2(16)

	L2(8)
	Methodology
	The Cases
	QJ,xJ,a for J={2,4,7,8}
	QJ,xJ,a for J={2,4,6,7}
	QJ,xJ,a for J={3,4,7,8}

	L3(4) and L3(3)
	Commonalities
	L3(4)
	L3(3)

	Bibliography
	Programs
	Code for L2(64)
	Code for Conjugating Groups in a BadSub
	L2(8) Code 1
	L2(8) Code 2
	L2(8) Code 3
	L2(8) Code 4

	Brauer Character Tables
	L2(64)
	L2(16)
	L2(8)
	L3(4)
	L3(3)
	F4(2)
	+8(4)

