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This thesis is focused around the theoretical study of attenuation of acoustic and
elastic waves due to viscous and thermal effects. The initial focus is on fluid acoustic
media, where we employ the well known theory of linear thermo-visco-acoustics (TVA)
to study the influence of boundary layer effects on the propagation of sound in narrow
channels filled by air and water. In the latter case, the effects of fluid-structure inter-
action are taken into account by assuming the neighbouring solid is elastic, but only
acoustically hard solids are analysed. On an attempt to generalise the type of media
in consideration, the possible advantages arising from the development of a theory for
thermo-visco-elasticity (TVE) in this context are noticed.

We propose a TVE framework which incorporates more general material behaviour
such as creep and stress relaxation, and can be reduced to several other physically rel-
evant theories like TVA for Newtonian fluids, in a way that we can accurately study
a diverse class of materials ranging from metals and polymers to air and water in
a large number of conditions. As for TVA fluids, TVE media accept three families
of modes in free-space, namely two coupled thermo-compressional waves and a shear
wave whose phase speed and attenuation differ significantly depending on the spe-
cific material. Accurate asymptotic approximations to thermo-compressional coupling
are provided which highly simplify the initial expressions for the wavenumbers. We
consider a canonical scattering problem consisting of a compressional plane wave inci-
dent on two TVE half–spaces in perfect contact, where the thermo-viscous effects on
reflection/transmissions and conveniences of the developed framework as opposed to
standard approaches in the literature are highlighted.

We make use of the above framework to extend the initial study by examining
fluid-filled slits within soft viscoelastic media, which we find gives rise to very different
results to those obtained for hard solids in the initial work. We show that this can
partly be attributed to the properties of the Scholte mode which propagates in the
interface of a fluid-solid half-space and is analysed thoroughly. Particular emphasis is
put on how the stress relaxation effects can influence the results, which we find to be
significant under certain conditions that are discussed in detail. Furthermore, given
the generality of the framework, we can analyse the problem of fluid-loaded viscoelastic
plates under the same set of dispersion equations obtained for the slit. In particular,
we find that for sufficiently soft media so that the phase speed of the symmetric coupled
plate-Scholte mode becomes dispersive, the mode experiences a global maximum in
attenuation which may be of physical interest, particularly if stress relaxation can be
exploited.
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Chapter 1

Background

In this chapter, we aim to provide the reader with the necessary physical context that

motivates this project and introduce the well established mathematical models that

underpin the original work developed in the subsequent chapters.

1.1 Introduction

Waves are manifested in many different ways in the world that surrounds us, and they

allow us to encapsulate extremely diverse physical phenomena such as oscillations

observed in oceans, light, radio, sound, vibrations and even gravity under the same

category. Due to their omnipresence, the understanding of how some of these waves

behave under different conditions has been a focus of study for centuries, with early

work on optics dating back to Da Vinci in the fifteenth century. As a result, enough

knowledge has been obtained in order to find various applications in sensing, non-

destructive testing, material characterisation, energy harvesting, noise reduction (and

enhancement) just to name a few. Nevertheless, many phenomena associated with

wave propagation in many complex materials (both natural and synthetic) are not

fully understood. Furthermore, significant interest lies in the development of new

materials that can manipulate waves in novel ways. This field of study is known

as the science of metamaterials, which we will discuss shortly. The design of these

materials will help us improve existing technologies that will be necessary in order to

tackle our current and upcoming problems as a civilization.

Acoustic and elastic transmission consist of three fundamental elements: the source,

9



10 CHAPTER 1. BACKGROUND

the propagation medium and the receiver. For a homogeneous medium in the absence

of any external disturbance or forcing, increasing the distance between the source and

the receiver, not only results in a natural time lag dictated by the finiteness of the

wave speed of the medium in consideration, but it also yields a drop of the intensity of

the signal as the source-receiver distance increases which is besides that of geometric

spreading. This energy loss is predominantly due to viscous and thermal phenomena.

As the wave propagates in a fluid medium, the difference in the motion of adjacent

fluid particles gives rise to reaction forces that oppose the displacements resulting in

an overall damping of the wave. Furthermore, acoustic wave motion is longitudinal

which creates regions of compression where many particles become closely packed, and

regions of rarefaction, where the particles are distributed more sparsely. This creates a

variation in the temperature of the fluid which induces heat transfer from the ‘hotter’

to the ‘colder’ region. Despite this, for many common materials under regimes of in-

terest, the values of energy losses are so small that they are approximated by adding a

small imaginary part to the expression of the wave speed, or completely ignored. From

a modelling perspective, this is particularly convenient since the governing equations

reduce to a scalar wave equation, which is the regime of ‘classical acoustics’ which has

been studied extensively.

The presence of boundaries in the fluid medium leads to thin regions in which

viscosity and thermal dissipation become important, and in these regions the classical

acoustics approximation fails to fully characterize the fluid’s motion. These regions

are denoted as boundary layers and in particular it is easily observable that the dis-

sipation associated with these regions is significantly superior to the losses in the

absence of boundaries. This was demonstrated over one hundred and fifty years ago

when Kirchhoff [1868] proposed a theory for sound propagation in gases based on

the Navier-Stokes equations and Fourier’s equation of heat conduction. He discussed

the effect of attenuation for plane waves and spherical outgoing waves in the absence

of boundaries and for guided waves along the axis of a rigid cylindrical duct. The

presence of boundary layer regions on the duct walls that gives rise to interesting

effects and motivated several posterior studies [Rayleigh, 1896, Zwikker and Kosten,

1949, Tijdeman, 1975, Bruneau et al., 1989, Stinson, 1991, Bruneau, 2006] which have

resulted in a vast general theoretical understanding of visco-thermal attenuation of
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sound in gas-filled waveguides both from the analytical and numerical perspectives

[Bossart et al., 2003, Kampinga et al., 2011, Cutanda-Henŕıquez and Juhl, 2013].

A class of materials that has received significant attention across most disciplines

of wave motion during the last few decades is that of metamaterials and metasurfaces.

Although there is no particular consensus, according to Prof. Vicent Romero-Garćıa

(Metagenierie 2019 ) the following definition captures most of the essence: “Meta-

materials are artificial heterogeneous devices that present new responses that could

not occur in the constitutive resonant elements alone because of physical constraints”.

The reliance on resonances distinguishes them from more traditional fields of compos-

ite materials as well as photonic and phononic crystals, although today these are also

considered metamaterials for many researchers [Ma and Sheng, 2016]. The constituent

scatterers in metamaterials are often periodically arranged, and for wavelengths much

larger than the scatterers size and relative distances, it is well known that this type

of heterogeneous media can be characterized as homogeneous with effective properties

that depend on the scatterers’ resonances. This widely used technique is known as

homogenisation [Parnell, 2004]. In the realm of acoustics, the responses exhibited by

resonances in metamaterials allow to extend the traditional regime where the struc-

ture’s effective bulk modulus Keff and mass density ρeff are positive, into regions of

parameter space where these quantities become near zero [Fleury and Alù, 2013], and

even negative, both individually [Yang et al., 2008, Lemoult et al., 2016] and simul-

taneously [Lee et al., 2010]. As waves propagate through such media, these regimes

allow the effective wave speed ceff =
√
Keff/ρeff to be manipulated in order to achieve

exotic behaviour such as perfect absorption [Romero-Garćıa et al., 2016]. These types

of structures generally consist of very small length scales, and the combination of

resonances with the intrinsic thermo-viscous losses are key elements of their response,

and therefore the classical acoustics theory discussed above is generally not sufficiently

accurate. In fact, modelling of many proposed metamaterial structures in the absence

of losses has led to contradicting results. In Cutanda Henŕıquez et al. [2017] it was

recently shown that a design theoretically presented in Graciá-Salgado et al. [2013] as

a near-zero and negative mass density metamaterial at certain frequencies, has actu-

ally always positive mass density when thermo-viscous losses are taken into account,

which was further validated experimentally. As a consequence, the resulting perfect
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transmission initially proposed in Graciá-Salgado et al. [2013] is nonexistent in prac-

tice and the losses are so strong that it is noted in Cutanda Henŕıquez et al. [2017]

that the structure would perform better as an absorber. As such, losses are often con-

sidered to complicate the possibility of achieving certain exotic effects, but in other

instances they are considered advantageous since they provide an additional tunabil-

ity mechanism to achieve a particular phenomenon [Li et al., 2017, Fernández-Maŕın

et al., 2019, Gerard and Jing, 2020].

Most of the discussion thus far has been focused on the in-air ‘acoustic’ context.

Some acoustic metamaterial devices such as membrane-type media have used resonant

constituents made of very soft media such as aerogels in order to further damp noise

[Fernández-Maŕın et al., 2019]. Nevertheless, for the most part, the low density of air

is such that the majority of boundaries can be considered as acoustically rigid. This is

not the case however for acoustic propagation in heavier fluids such as water. In this

instance, it is generally important to account for the energy that gets radiated into the

solid material and, unlike for gases, in most cases this cannot be simply approximated

by means of a boundary condition. This phenomenon is referred to as fluid-structure

interaction (FSI) and is one of the key reasons why ‘in-air’ structures such as those

encountered in acoustic metamaterials generally cannot perform well underwater (UW)

and alternative designs must be proposed [Meng et al., 2012, Sharma et al., 2019].

Many of these UW designs rely on the presence of soft polymeric media which are

highly viscoelastic.

As opposed to fluids, solid media have a capacity to store energy. Deformations of

viscoelastic media are particularly sensitive to the time scales involved in the applied

forces, as well as temperature. This leads to important physical behaviour such as

stress relaxation and creep, that are related to the dissipation of mechanical energy.

Naturally, this material behaviour largely affects the way waves propagate in such

media which, following the discussion presented above, is clearly of significant interest

for acoustic applications. Nevertheless, applications of viscoelastic media extend across

many other important areas in biology and engineering [Lakes, 2017].

Despite the significant inherent differences between the ways fluids and solids de-

form, in the regime of small deformations and temperature differences, the equations

governing wave propagation including losses in these media obtain very similar forms.
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It turns out that this occurrence is particularly convenient for the types of problems

that will be discussed in this thesis.

1.1.1 Structure and work presented in this thesis

In this PhD thesis, we are concerned with the modelling of attenuation of linear wave

motion across a vast range of homogeneous continua ranging from (Newtonian) fluids

including gases and liquids, to solids which are capable of both storing and dissipating

energy such as rubbery-type media and metals. We are particularly interested in the

behaviour of waves around interfaces bounding fluid-solid media where FSI is impor-

tant. In order to aid this analysis, we will introduce a framework for wave propagation

in linear thermo-visco-elasticity (TVE) that will allow us to simultaneously analyze

the role of viscous and thermal dissipation in all such media. In particular this gen-

eralizes existing approaches in the literature for modelling visco-thermal dissipation

in fluids and solids e.g. Karlsen and Bruus [2015]. The framework is then applied

to study wave propagation in some canonical problems involving fluid-filled slits and

fluid-loaded plates. We show that the role of stress relaxation can give rise to interest-

ing dispersive effects that cannot be captured with commonly used viscoelastic models.

In the remaining sections of this chapter, we aim to introduce the necessary con-

cepts that are used throughout the thesis in order to formulate problems of our interest,

and obtain their respective solutions. Section 1.2 describes the characterization of fluid

media, and in particular the assumptions that must be made in order to arrive at the

governing equations that describe their motion as well as associated types of bound-

ary conditions. This is firstly done for ideal fluids for which dissipative mechanisms

are not taken into account (Section 1.2.1) and subsequently for visco-thermal fluids

which dissipate energy via viscous and thermal effects in Section 1.2.2. The latter

model is put into practice in Section 1.3, where we consider an introductory scattering

problem consisting of a thermo-visco-acoustic (TVA) half–space residing on top of a

rigid substrate. From this problem we are able to identify a regime (namely when

the boundary layers are very narrow compared to the exterior domain) in which the

governing equations can generally be simplified significantly. This regime is discussed

from first principles since it is often used in the associated literature. We then move
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onto the characterization of solid media in Section 1.4 with focus on the idealized media

in Section 1.4.1, and the addition of viscoelastic and thermoelastic effects (separately)

in Section 1.4.2. Finally, we discuss the approach taken in this thesis to analyse dis-

persion relations, and in particular their visualization and the obtention of their roots

which are of high interest since they (can) correspond to particular solutions to the

governing equations. As we will see, various dispersion relations of different physi-

cal significance are considered in this thesis, particularly in Chapters 2 and 4. We

therefore finish the current chapter with a classical example consisting of the Rayleigh

dispersion equation in elasticity, which will be extended upon in subsequent chapters.

Chapter 2 focuses on the study of acoustic propagation in the narrow slit regime

(within infinite media), where boundary layer effects become notable and can greatly

alter the phase speed and attenuation of the corresponding acoustic mode. The study

is focused on air and water, and their differences are noted throughout. Despite

it being well known, it is highlighted how for standard water-metal interfaces the

presence of fluid-structure interaction effects (FSI) must be taken into account for

a correct description of the acoustic field, which is nevertheless unnecessary for air

where the boundaries can assumed to be rigid. The elastic effects of the metal are

introduced by considering a medium obeying the equations of linear elasticity from

Section 1.4.1. The physical consequences, particularly on the reduction of phase speed

and dispersion are discussed extensively. This work is presented in terms of a journal

article, namely Cotterill et al. [2018] which was published during the second year of

this PhD project. In Section 2.3 we briefly comment on the significant differences in

the obtained FSI results that can arise when the hard (metal) interfaces considered in

the paper are replaced by softer media such as those consisting of rubbery materials

and plastics. We note that although some of these differences can be explained with

the linear elastic theory employed, in reality soft media experience internal damping

as a result of viscoelastic effects, due to large molecular rearrangements which lead to

stress relaxation and creep. In order to incorporate these extra physical mechanisms,

we must include far more general modelling assumptions, which are introduced in

Chapter 3, and subsequently applied in Chapter 4.

Chapter 3 is devoted to the development of a framework for linear thermo-visco-

elasticity (TVE). Although frequently addressed in the literature due to the natural
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physical significance, it was noted that unlike in the case of TVA, the literature seemed

to lack a consistent set of equations for the study of general linear TVE with clear

assumptions of the underlying theory that is readily available for the consideration

of dynamic problems. This is attempted in this work, where convenient asymptotic

approximations to the thermo-compressional wavenumbers appearing in the resulting

governing equations are provided. We further discuss the possibility to arrive at the

equations of TVA for Newtonian fluids introduced in Section 1.2.2 which is convenient

for FSI problems, as well as other useful limits from the theory which are discussed in

detail. Since these limits are well behaved, this allows for the study of wave propagation

in a diverse range of media without prior specification. This is put into practice for

the canonical problem of two TVE half–spaces in perfect contact where results for

air, water, steel and rubber are included, and in the last of these stress relaxation is

highlighted. In Section 3.3 we give an additional example to showcase how the TVE

model can be used for the study of TVA fluids with rigid boundaries and further show

the validity of the asymptotic approximations previously obtained by providing direct

comparisons with solutions from Section 2.2.

Chapter 4 makes use of the TVE framework to focus on boundary layer effects,

together with stress relaxation effects on three related canonical problems: namely

two half–spaces, narrow slits (as in Chapter 2) and loaded plates. The study is per-

formed in the absence of thermal effects since the physical interest is in water–solid

interfaces, and both hard and soft solids are considered in order to emphasize their

differences. The half–space problem is relevant to the other two, since it constitutes

their geometrical limit in the short wavelength regime, and this fact is used to iden-

tify the starting point of the numerical root finding technique. Physically, it gives

rise to Scholte and Leaky Rayleigh modes on the fluid–solid interface. It is the for-

mer of these two which is mainly analysed in this paper, since it is present for any

fluid/solid pair and is truly localized to the interface and as a result is of high interest

in sensing and non-destructive testing (NDT). For the slit, this solution turns into a

‘coupled duct–Scholte mode’ whereas for the loaded plates the mode becomes a ‘cou-

pled plate–Scholte mode’. In both instances it is shown how high values of attenuation

can be obtained when the moduli of the solid are close to glass transition. For the

symmetric coupled plate–Scholte mode in soft viscoelastic plates we find the presence
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of a global maximum in attenuation with respect to plate thickness which could be of

particular physical significance.

Finally, in Chapter 5 we summarise the work presented and discuss possible direct

continuations for future studies.

1.1.2 A note on notation

In this introductory chapter, we will interchangeably refer to the different fields in both

vector (tensor) or index notation, where in the former vectors/tensors are represented

in bold whereas for index notation we use light italic with indices as subscripts, and

repeated suffices indicate summation over these indices. Overbars are used throughout

this chapter to represent dimensional quantities.

We note that since this thesis is presented in alternative format, the main bodies

of work in Chapters 2, 3 and 4 are introduced as individual papers involving studies

in various contexts, so that different sets of notation have inevitably been employed.

Furthermore, there is duplication of the equation numbers between the main thesis

body and some of the individual chapters. In order to avoid confusion, when an

equation from one of the papers is referenced in the main thesis body, the chapter in

which it is found will be emphasized.

1.2 Modelling Fluids

In what follows we are assuming fluids follow the continuum hypothesis such that the

concept of a ‘material particle’ can be defined (see e.g. Marsden and Hughes [1994]).

The corresponding dimensions of these particles are large enough so that molecular

scales need not be considered, but smaller than any other relevant physical dimension.

We can apply the fundamental laws of classical physics to a finite volume of these fluid

particles in order to obtain relevant equations for fluid flow, which are mathematically

expressed in integral form. If we further make the common assumption that fluid

properties are continuous and their derivatives exist, we can take an appropriate limit

so that the governing equations become purely differential, and therefore particularly

convenient to tackle with mathematical machinery.
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1.2.1 Linear Acoustics

We commence by deriving the equations governing classical linear acoustics from con-

servation laws in the absence of any form of dissipation, and in particular emphasize

the key thermodynamic assumptions that lead to this classical theory. We state this

level of detail here for notational consistency and to underpin the work that follows.

Similar treatments to this introductory section can be found in most fluid mechanics or

wave motion textbooks such as Landau and Lifshitz [1959], Morse and Ingard [1986],

and Pierce et al. [1981].

Governing Equations

In general, compressible fluids experience overall changes in volume when deformed due

to a particular force. The time rate of change is governed by the physical requirement

of conservation of mass, namely

∂ρ̄

∂t̄
+ ∇̄ · (ρ̄v̄) = 0, (1.1)

where the scalar field ρ̄(x̄, t̄) denotes the fluid’s mass density at a particular position

within the fluid at a given instant of time, v̄(x̄, t̄) represents the associated (vec-

torial) velocity field, and the independent variables of space and time are given by

x̄ ≡ x̄i = (x̄1, x̄2, x̄3) and t̄ respectively. We note here that the overbar notation is

used from here onwards to refer to dimensional quantities.

The fluid’s behaviour in response to applied stresses is incorporated into the model

through the conservation of momentum equations, namely

ρ̄

(
∂v̄

∂t̄
+ v̄ · ∇̄v̄

)
= ∇̄ · σ̄, (1.2)

in the absence of external body forces, where σ̄(x̄, t̄) denotes the Cauchy stress tensor.

For an inviscid fluid, the only internal force acting is that of hydrostatic pressure which

results in the constitutive equation

σ̄ = −p̄I, (1.3)

where p̄(x̄, t̄) denotes the pressure which is a force per unit area, and I is the identity

tensor. Direct substitution of (1.3) into (1.2) yields Euler’s equations, i.e.

ρ̄

(
∂v̄

∂t̄
+ v̄ · ∇̄v̄

)
= −∇̄p̄, (1.4)
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which is a vectorial manifestation of the ubiquitous Newton’s second law (F = ma) per

unit volume, with the negative pressure gradient term on the right of (1.4) acting as the

only force F and the term on the left hand side representing mass times acceleration

ma. At this stage, we notice that for the 5 unknown quantities (in the 3D case)

introduced so far (ρ̄, p̄, v̄) we only have 4 independent equations, namely (1.1), (1.4).

In order to obtain a closure condition, it is customary to specify an equation of state

of the form

p̄ = p̄(ρ̄), (1.5)

which implies the fluid is barotropic, i.e. its pressure only varies with density (and vice

versa). Implicit in this assumption is the fact that the fluid is regarded as being in local

thermodynamic equilibrium1 (sometimes referred to as Stokes’ hypothesis [Rienstra

and Hirschberg, 2004]) so that there is an equation of state that relates the fluid’s

thermodynamic variables which as a result are not independent. Naturally, in order to

analyse thermodynamic processes and a given systems state, we must first introduce

the fluid’s (absolute) temperature field T̄ , and entropy (per unit mass) h̄ which satisfies

dh̄ = δQ̄/T̄ , with Q̄ representing the quantity of heat2 per unit of mass. Except in

some very specific cases (e.g. ideal gases and Van der Waals gases) equations of

state are unknown, but significant progress can be achieved by admitting nothing

else than their existence, and the fact that the thermodynamic variables are therefore

not all independent. The first law of thermodynamics can be invoked by considering

entropy a function of internal energy and volume per unit mass Ē , 1/ρ̄ respectively,

i.e. h̄ = h̄(Ē , ρ̄−1), whose differential is given by

T̄ dh̄ = dĒ + p̄ d

(
1

ρ̄

)
, (1.6)

indicating that the change of internal energy dĒ of a quasi-static system can only

occur due to heat T̄ dh̄ (by definition of entropy) and work, represented by p̄ dρ̄−1 for

an inviscid fluid [Wilson, 1960]. Equation (1.6) is particularly useful, since we observe

that temperature T̄ and pressure p̄ can also be seen as functions of Ē , ρ̄−1. We can

therefore interpret the entropy as a function of any two of the state variables Ē , ρ̄, p̄,
1This is considered valid for quasi-static processes i.e. low frequency disturbances with little spatial

variation (as we are considering here) as explained in detail in Pierce et al. [1981].
2Its differential is represented by the symbol δ since heat (and work) does not describe the state

of a system.
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T̄ , as suggested above due to thermodynamic equilibrium. In particular, this implies

that we can write

p̄ = p̄(ρ̄, h̄), (1.7)

which generalises the barotropic relation (1.5). In order to find out under which

conditions (1.5) can be applied rather than (1.7) we must understand the variation of

entropy in the processes in consideration, which we shall discuss next. The differential

equation of total energy in a fluid particle can be written as [Pierce et al., 1981]

ρ̄

(
∂

∂t̄
+ v̄ · ∇̄

)(
1

2
|v̄|2 + Ē

)
= ∇̄ · (σ̄v̄)− ∇̄ · q̄, (1.8)

where in index notation ∇̄ · (σ̄v̄) = ∂(σ̄ij v̄i)/∂x̄j and q̄ represents the (inward) heat-

flux vector which commonly follows Fourier’s law so that q̄ = −K̄∇̄T̄ where K̄ > 0

represents the coefficient of thermal conductivity which we assume to be constant.

If we further substitute the ideal inviscid fluid relation (1.3), after some algebraic

manipulation using (1.6) we can obtain

ρ̄T̄

(
∂h̄

∂t̄
+ v̄ · ∇̄h̄

)
= K̄∇̄2T̄ , (1.9)

which gives the time evolution of the entropy h̄. Interestingly, in the early stages it was

unclear whether sound was best modelled as an isothermal process where temperature

remains constant, or as an adiabatic process where there is no heat flow [Stokes, 1851].

These two cases are represented by whether heat conduction dominates (RHS term in

(1.9) is predominant) or is negligible (LHS term in (1.9) predominates). Experimental

results confirmed that for standard acoustic scenarios in fluids, the adiabatic approx-

imation is much better3 (see Pierce et al. [1981] Section 1.10) and therefore (1.9) can

be approximated by
∂h̄

∂t̄
+ v̄ · ∇̄h̄ = 0. (1.10)

In particular, if we ignore the (non-linear) advective term in (1.10) we observe that

if the medium is initially isentropic (so that h̄ is the same everywhere), and since

the fluid is homogeneous (so that each fluid particle has same equation of state), the

barotropic assumption (1.5) is a direct consequence of (1.7) and (1.10). This argument

will be made precise next once some extra assumptions are considered.

3Nevertheless, as we will see later this assumption is not particularly accurate in regions near
boundaries.
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We further suppose that the fluid is homogeneous and has ambient quantities

v̄ = 0, p̄ = p̄0, ρ̄ = ρ̄0, T̄ = T̄0, h̄ = h̄0 and is perturbed by a small amplitude motion

so that we can represent the relevant fields as

v̄ = ϵV̄(x̄, t̄) +O(ϵ2), (1.11a)

p̄ = p̄0 + ϵP̄ (x̄, t̄) +O(ϵ2), (1.11b)

ρ̄ = ρ̄0 + ϵϱ̄(x̄, t̄) +O(ϵ2), (1.11c)

T̄ = T̄0 + ϵT̄ (x̄, t̄) +O(ϵ2), (1.11d)

h̄ = h̄0 + ϵH̄(x̄, t̄) +O(ϵ2), (1.11e)

where ϵ ≪ 1 is a small, non-dimensional parameter representing the fact that we are

dealing with small amplitude perturbations from an equilibrium state, so that the

linear approximation (1.11) is adequate. The subscript “0” has been used to denote

the equilibrium value of the various quantities which we assume to be independent of

space and time (i.e. constant). Direct substitution of (1.11) into (1.1), (1.4) gives at

O(ϵ)

∂ϱ̄

∂t̄
= −ρ̄0∇̄ · V̄, (1.12)

ρ̄0
∂V̄

∂t̄
= −∇̄P̄ , (1.13)

so that we have neglected quadratic and higher order terms due to their smallness

given that ϵ ≪ 1. Furthermore, substitution of (1.11e) into the approximate entropy

evolution equation (1.10) gives at O(ϵ) that H̄ must in fact be zero and therefore

h̄ = h̄0 at any given time4, and the barotropic assumption (1.5) is valid in this regime.

We therefore continue by performing a Taylor expansion about the ambient state

p̄0 = p̄(ρ̄0) = p̄(ρ̄0, h̄0) in order to arrive at the first order approximation

P̄ =

(
∂p̄

∂ρ̄

)

ρ̄0,h̄0

ϱ̄, (1.14)

where5 (
∂p̄

∂ρ̄

)

ρ̄0,h̄0

= c̄2A =
K̄A

ρ̄0
, (1.15)

4Since we are considering homogenous fluids.
5The subscript (ρ̄0, h̄0) indicates that the derivatives are evaluated at constant entropy, and with

density subsequently set to ρ̄0.
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and c̄2A is in fact the (square of the) adiabatic6 speed of sound, and K̄A the (adiabatic)

bulk modulus, which are both O(1) constant following the expansion. In the case of

an ideal gas for which (1.5) is explicitly known, it can be shown that c̄2A =
√

γp̄0
ρ̄0

where

γ represents the ratio of specific heats [Bruneau, 2006]. Equations (1.12), (1.13) and

(1.14) constitute what are commonly known as the linear acoustics equations after

using the acoustic approximation since we have omitted O(ϵ2) terms. Further, if we

take the divergence of (1.13) and subtract it from the time derivative of (1.12) whilst

substituting (1.14) we obtain

c̄2A∇̄2P̄ =
∂2P̄

∂t̄2
, (1.16)

which is a linear, homogeneous hyperbolic Partial Differential Equation (PDE) com-

monly known as the (linear) wave equation. From a physical point of view, (1.16)

implies that linear acoustics is governed by compressional (stress) waves. As an obser-

vation, we further note that despite being commonly ignored due to the uncoupling of

the entropy equation (1.9) under the adiabatic approximation, this model can also yield

an associated temperature perturbation. Indeed, if we further consider T̄ = T̄ (p̄, h̄)

and substitute (1.11b), (1.11e) together with the fact that the entropy is a constant,

we obtain at O(ϵ)

T̄ =

(
∂T̄

∂p̄

)

p̄0,h̄0

P̄ , (1.17)

after performing a Taylor expansions over the equilibrium state T̄0 = T̄ (p̄0, h̄0), where

the term in brackets in (1.17) is a constant as a result of the expansion. Further,

a thermodynamic identity7 allows us to write this term in brackets in terms of well

tabulated physical quantities, namely

(
∂T̄

∂p̄

)

p̄0,h̄0

=
ᾱT̄0
ρ̄0c̄p

, (1.18)

where further

ᾱ = ρ̄

(
∂ρ̄−1

∂T̄

)

p̄0

, c̄p = T̄

(
∂h̄

∂T̄

)

p̄0

, (1.19)

correspond to the coefficient of volumetric thermal expansion ᾱ and specific heat at

constant pressure c̄p. Equation (1.17) together with the linearity of (1.16) and the

adiabatic approximation used in (1.9), (1.10) implies that T̄ satisfies the same standard

6Or isentropic since as we have seen adiabaticity is a consequence of an isentropic process.
7The derivation of this identity is straightforward by using a Maxwell relation, see e.g. page 17 of

Pierce et al. [1981].
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wave equation (1.16) in this model (which is the reason why temperature is usually

not mentioned in classical acoustics).

Finally, substitution of (1.3) with Fourier’s law into the energy equation (1.8) and

linearising following (1.11) gives, after writing the (linearised) internal energy in terms

of pressure using (1.6) with dh̄ = 0 and (1.15)

∂Ū
∂t̄

+ ∇̄ · J̄ = 0, with Ū =
1

2

(
ρ̄0|V̄|2 + P̄ 2

ρ̄0c̄2A

)
and J̄ = P̄ V̄, (1.20)

which we note is an O(ϵ2) equation relating the total acoustic energy density Ū , and the

intensity (or energy flux vector) J̄ respectively. The interpretation of (1.20) becomes

clear when integrating it over a fixed closed volume. Letting V be a fixed volume, and

S its corresponding enclosing surface we can write, (using the divergence theorem on

the second term)

d

dt̄

˚
V

Ū dV +

‹
S

J̄ · n dA = 0. (1.21)

with n representing the outward unit normal from S (parametrized by the differential

element dA). This shows that the rate of change of energy on a (fixed) volume particle

is solely due to the work done on it by the surface forces (as expected for an ideal

fluid). The fact that (1.20) can be derived from the leading order equations (1.12),

(1.13) and (1.14) (not shown) implies that it is in fact a Corollary, and hence need

not be discussed to obtain the solution to the linear acoustic mathematical problem.

Nevertheless, its physical importance can be very helpful in specific scenarios, as we

will observe later.

The Helmholtz Equation

Given the linearity of the wave equation (1.16), its Fourier transform [Stein and Weiss,

1971] transforms the directly observable time domain problem into an associated fre-

quency domain problem. In this space we can look for steady, time-harmonic solutions

to (1.16) in the form8 P̄ (x̄, t̄) = Re { ˆ̄P (x̄)e−iω̄t̄} with angular frequency ω̄, so that (1.16)

reduces to the unforced Helmholtz equation

(
∇̄2 + k̄2

) ˆ̄P = 0, (1.22)

8Equivalently, the time factor eiωt is often chosen in the literature. The choice adopted here is
merely due to the author’s preference.
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where k̄ = ω̄/c̄A = 2π/λ̄W denotes the acoustic wavenumber and λ̄W the acoustic

wavelength (Figure 1.1). Given a solution to (1.22), the associated (time harmonic)

velocity ˆ̄V and density ˆ̄ϱ are directly obtained via (1.13), (1.12), which written in the

frequency domain become

iω̄ρ̄0
ˆ̄V = ∇̄ ˆ̄P, (1.23)

iω̄ ˆ̄ϱ = ρ̄0∇̄ · ˆ̄V, (1.24)

where V̄(x̄, t̄) = Re { ˆ̄V(x̄)e−iω̄t̄}, and ϱ̄(x̄, t̄) = Re { ˆ̄ϱ(x̄)e−iω̄t̄}. In principle, when ob-

taining the solution to the steady state problem governed by (1.22) it is possible (under

certain conditions [Stein and Weiss, 1971]) to recover the full time-dependent solution

by taking the inverse Fourier transform. For this reason time-harmonic problems are

of high interest, and in fact the majority of problems in this thesis are set-up in this

regime. Furthermore, from direct substitution into (1.22) we note that plane-wave

solutions of the type

ˆ̄P = Ā1e
−ik̄·x̄ + Ā2e

+ik̄·x̄ (1.25)

where k̄ = (k̄1, k̄2, k̄3) are solutions to the Helmholtz equation provided k̄ · k̄ = ||k̄|| =
k̄2. Ā1, Ā2 are arbitrary constant amplitudes of waves travelling in opposite directions.

The fact that the wave propagates in the direction of k̄ with associated wavelength9

λ̄W = 2π/||k̄|| is illustrated in Figure 1.1. Furthermore, direct substitution of (1.25)

into (1.23) shows that the associated velocity field is parallel to k̄, and therefore to the

direction of propagation10. As we will see this is not always the case in other physical

systems and for this reason pressure (‘P’) waves are also called longitudinal waves.

A very large class of problems of much interest are associated to wave scattering

which encompass waves in its many manifestations e.g. light, vibrations, radio, etc.

In the current acoustic context these can be formulated by using the linearity of the

Helmholtz equation to write e.g.

ˆ̄Ptot =
ˆ̄Pin +

ˆ̄Psc, (1.26)

where ˆ̄Pin is the incident field and ˆ̄Psc the scattered field arising from the presence

of a given scatterer representing a certain obstacle in the otherwise acoustic medium

9The 2π factor arises naturally due to the periodicity of the trigonometric functions that compose
the complex exponential function.

10This in turn implies that the motion is irrotational, which can be seen from taking the curl of
(1.23).
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k̄

λ̄W

Figure 1.1: Heatmap of travelling plane wave solution to the Helmholtz equation

(1.25) (Re{ ˆ̄P}) with Ā1 = 0, Ā2 = 1 and k̄ = (1, 2) m−1 with associated wavelength
λ̄W = 2π/||k̄||. The dotted lines indicate the contours of maximum pressure.

where certain conditions must apply (see section “Boundary Conditions” below). In

general the functional form of ˆ̄Pin is known a priori, and therefore the task is to find

ˆ̄Psc which can be interpreted as the ‘response’ of the scatterer to the incident forcing.

Boundary Conditions (BCs)

Having obtained the governing equation to solve in the domain of interest (1.22), for

finite domains it is important to accurately specify the fluid’s behaviour around the

boundary regions. Depending on the type of media bounding the acoustic medium of

interest, we can distinguish two main different scenarios.

- Interface conditions between neighbouring acoustic media

When two distinct acoustic media occupying regions D1, D2 with associated pressure

and velocity fields { ˆ̄P1,
ˆ̄V1}, { ˆ̄P2,

ˆ̄V2} are in perfect contact, the physical requirement

of continuity of pressure and continuity of normal velocity at the boundary between

these two domains is given by

ˆ̄P1 =
ˆ̄P2 on ∂D, (1.27)

ˆ̄V1 · n = ˆ̄V2 · n on ∂D, (1.28)
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D1 D2

∂D

n

Figure 1.2: Schematic representation of two acoustic media occupying regions D1, D2

and the region of intersection denoted by ∂D with (unit) normal n where the boundary
conditions apply. For the Neumann, Dirichlet and Robin conditions we assume D1 is
the acoustic region of interest and make different assumptions of the medium in D2

that lead to (1.30), (1.31) and (1.34).

where ∂D denotes the boundary between D1 and D2 and n denotes the outer unit

normal to ∂D (see Figure 1.2). We may also write (1.28) in terms of pressure using

the linearised equation (1.23) so that it becomes

1

ρ̄1
∇̄ ˆ̄P1 · n =

1

ρ̄2
∇̄ ˆ̄P2 · n on ∂D, (1.29)

where ρ̄1 denotes the background density in medium 1 i.e. ρ̄10 , where the subscript

“0” has been suppressed for convenience, and similarly with ρ̄2.

- Neumann, Dirichlet and Robin Conditions

When a fluid encounters an impenetrable, rigid body that cannot support acoustic

waves, the interface conditions (1.27), (1.28) must be revisited. We define a surface to

be ‘sound hard’ whenever the normal gradient of the acoustic pressure field vanishes

at its boundary, that is

∇̄ ˆ̄P1 · n = 0 on ∂D, (1.30)

whereD2 is now occupied by the (rigid) solid substrate following the notation in Figure

1.2 above. We refer to (1.30) as the sound hard Neumann boundary condition. It is

particularly relevant for gas-solid interfaces e.g. air-metal, since the density contrast

between the two media does not allow the acoustic energy from the fluid to transmit
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into the solid. This can be seen from letting ρ̄1 ≪ ρ̄2 in (1.29) which approximates

(1.30). On the other hand the ‘sound soft’ or Dirichlet BC is given by the requirement

of the pressure field vanishing on the interface such that

ˆ̄P1 = 0 on ∂D. (1.31)

Intuitively, this BC is often employed when the acoustic medium D1 has a much higher

density11 than that of the material occupying D2 which can for example occur in a

fluid-gas interface, with the fluid (D1) being the acoustic medium of interest (e.g.

water-air).

Further, it turns out that in order to characterize the acoustic behaviour of many

physically relevant materials including porous and lossy media, it is convenient to

define the acoustic impedance (per unit area) Z̄ of a surface, which is given (assuming

the surface is not moving) by the ratio of the surrounding fluid’s pressure divided by

the inward normal component (into the surface, see Figure 1.2) of the fluid velocity,

namely

Z̄ =
ˆ̄P1

ˆ̄V1 · n
, (1.32)

which can be fully written in terms of pressure via (1.23) to yield

Z̄(ω̄) =
iω̄ρ̄0

ˆ̄P1

∇̄ ˆ̄P1 · n
. (1.33)

The acoustic impedance of a surface is generally a function of frequency Z̄(ω̄) found via

experimental means with different techniques often consisting of the study of standing

wave patterns in impedance tubes [Beranek, 1942]. Further, here we will always be

considering Z̄(ω̄) that is independent of position along the surface. The impedance or

Robin BC is then written as, using (1.33) with ω̄ = k̄c̄A

∇̄ ˆ̄P1 · n− ik̄
( ρ̄0c̄A

Z̄
)
ˆ̄P1 = 0 on ∂D, (1.34)

where the term in brackets is a useful non-dimensional number (known as the nor-

malised acoustic admittance of the material) which weighs the bounding material’s

acoustic impedance relative to the fluid’s characteristic impedance (ρ̄0c̄A). In partic-

ular, we observe how for Z̄ ≫ ρ̄0c̄A (1.34) approaches the sound hard BC (1.30) and

conversely the sound soft BC (1.31) is recovered when Z̄ ≪ ρ̄0c̄A. A more general

11This will be made precise shortly, when the acoustic impedance/admittance is introduced.
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description of the same concept which includes moving surfaces is given in Bruneau

[2006]. From a modelling perspective the possibility of characterizing complex acoustic

media via Z̄(ω̄) is attractive, since it can possibly reduce a multi-domain problem into

a single domain (D1) for the pressure ˆ̄P1 with a more complex boundary condition

that encapsulates the bounding medium’s (D2) behaviour.

Finally, for physically sensible solutions to wave-scattering problems of the form

(1.26) taking place in infinite domains, it must also be ensured that the scattered

(outgoing) field solutions are not increasing as you move away from the scatterer. For-

mally, this can be written in terms of the Sommerfeld radiation condition [Sommerfeld,

1949].

1.2.2 Thermo-Visco Acoustics (TVA)

Building from the derivation yielding the linear acoustic model presented in Section

1.2.1, following Pierce et al. [1981] (Chapter 10) we introduce the extra modelling

assumptions that must be considered which lead to the governing equations of linear

thermo-visco acoustics in Newtonian fluids, and discuss the form of common types

of associated boundary conditions. Molecular relaxation effects are not hereby con-

sidered for simplicity, although their importance in the prediction of attenuation at

certain frequency ranges is noted12. Models including molecular relaxation are further

discussed in standard acoustics textbooks by Pierce et al. [1981], and Bruneau [2006]

with emphasis on air.

Governing Equations

We again consider a small amplitude sinusoidal motion in an otherwise still compress-

ible, homogeneous thermo-viscous fluid. In order to characterize the resulting fluid

behaviour, we propose a linear expansion analogous to (1.11) to be substituted in the

relevant governing equations which we revisit next. The first major difference with

the acoustic case is the more general constitutive relation for a compressible, viscous,

12More specifically, they become particularly important when the relaxation time τ (representing
the molecule’s vibration reaction time to an excitation) is close to the period of the wave so that
ωτ ≈ 1 [Bruneau, 2006].
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heat conducting fluid which in component form is given by

σ̄ij =(−p̄+ η̄′∇̄ · v̄)I + η̄(∇̄v̄ + ∇̄v̄T ) (1.35a)

=− p̄0δij + ϵ

[(
−P̄ + η̄′

∂V̄j
∂x̄j

)
δij + η̄

(
∂V̄i
∂x̄j

+
∂V̄j
∂x̄i

)]
+O(ϵ2), (1.35b)

with (1.35b) following from the linear expansion (1.11), where η̄ is the classical shear

viscosity representing the fluid’s resistance to shear forces and η̄′ = η̄K − 2η̄/3 where

η̄K > 0 denotes the bulk/second viscosity associated with hydrostatic compression

(which is often ignored in liquids due to their lower compressibility). Note that despite

thermal effects not arising explicitly in (1.35b), they are contained in the pressure field

P̄ and their particular dependence is given by the equations of state13 which we discuss

shortly. Substitution of (1.35b) into conservation of momentum (1.2) yields at first

order O(ϵ) the linearised Navier-Stokes equations for a compressible fluid, namely

ρ̄0
∂V̄

∂t̄
= −∇̄P̄ + η̄∇̄2V̄ + (η̄ + η̄′)∇̄

(
∇̄ · V̄

)
. (1.36)

On the other hand, the continuity of mass equation (1.1) remains identical in the

same form, (since it is independent of the particular rheology) which after substituting

(1.11) becomes (1.12) at O(ϵ). With regards to the corresponding equation for entropy,

starting from (1.8) with the current expression for the Cauchy stress (1.35a) we can

obtain in component form (details are omitted for brevity, but see Pierce et al. [1981]

Section 10.1)

ρ̄T̄

(
∂h̄

∂t̄
+ v̄i

∂h̄

∂x̄i

)
=
η̄

2
M̄ijM̄ij + η̄K

(
∂v̄i
∂x̄i

)2

+ K̄ ∂2T̄

∂x̄i∂x̄i
, (1.37)

where M̄ij =
∂v̄i
∂x̄j

+
∂v̄j
∂x̄i

− 2
3

(
∂v̄k
∂x̄k

)
δij. Direct comparisons with (1.9) shows how all the

extra terms in (1.37) arise due to the influence of fluid viscosity. Nevertheless, after

linearising via (1.11) yields at O(ϵ)

ρ̄0T̄0
∂H̄

∂t̄
= K̄∇̄2T̄ , (1.38)

observing that all viscous effects no longer appear in (1.38) since they are O(ϵ2).

Importantly, here we no longer make the adiabatic approximation (from which it

can be concluded that h̄ = h̄0) which in turn implies that equations of state such

13Recall that in the purely acoustic case this is given by (1.17).
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as the barotropic (1.5) are no longer valid and the more general form14 (1.7) must

be considered. In particular, note that (1.6) still applies since we are in the quasi-

static regime with thermodynamic equilibrium. Consequently letting ρ̄ = ρ̄(p̄, h̄),

T̄ = T̄ (p̄, h̄) and substituting (1.11) we obtain at O(ϵ),

ϱ̄ =

(
∂ρ̄

∂p̄

)

p̄0,h̄0

P̄ +

(
∂ρ̄

∂h̄

)

p̄0,h̄0

H̄, (1.39a)

T̄ =

(
∂T̄

∂p̄

)

p̄0,h̄0

P̄ +

(
∂T̄

∂h̄

)

p̄0,h̄0

H̄, (1.39b)

after performing two Taylor expansions over the equilibrium states ρ̄0 = ρ̄(p̄0, h̄0), and

T̄0 = T̄ (p̄0, h̄0) respectively. We note that (1.39) are more general versions of (1.14),

(1.17). The terms in brackets in (1.39) are assumed to be O(1) constants. We can

relate them to common physical quantities by making use of (1.18) and the (linearised)

thermodynamic identity

(
∂ρ̄

∂h̄

)

p̄0,h̄0

= − ρ̄0αT̄0
c̄p

, (1.40)

where ᾱ, and c̄p are defined in (1.19), whence (1.39) become

ϱ̄ =
1

c̄2A
P̄ − ρ̄0T̄0ᾱ

c̄p
H̄, (1.41a)

T̄ =
T̄0ᾱ

ρ̄0c̄p
P̄ − T̄0

c̄p
H̄, (1.41b)

after having further used (1.15). We note that if instead, we let e.g. ϱ̄ = ϱ̄(p̄, T̄ ) we

can similarly define an isothermal speed of sound

c̄2Iso =

(
∂p̄

∂ρ̄

)

T̄0

, (1.42)

which is related to the adiabatic speed of sound via the ratio of specific heats γ such

that

γ =
c̄p
c̄v

=
c̄2A
c̄2Iso

, (1.43)

where c̄2v = T̄
(
∂h̄
∂T̄

)
ρ̄0

denotes the specific heat at constant volume. As we will observe

later, the value of γ (and hence the difference between isothermal and adiabatic speeds

of sound) is significantly higher in gases than in liquids (and solids) which has impor-

tant implications in the influence of thermal effects in acoustic propagation. These

14Bruneau [2006] refers to this notion as the bivariance of the fluid.
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quantities are related by the thermodynamic identity

γ − 1 =
ᾱ2T̄0c̄

2
A

c̄p
. (1.44)

Equations (1.12), (1.36) and (1.38) together with the thermodynamic relations in

(1.41) constitute the governing equations for (coupled) linear thermo-visco acoustics

and a strategy for their decomposition will be discussed shortly.

The current model also allows for a useful expression for the energy of a fluid

particle in a similar manner to (1.21) for the purely acoustic case. Indeed, algebraic

manipulation of (1.12), (1.36), (1.38), (1.41) yield an equation of the form (see Pierce

et al. [1981] Sections 10.2.2, 10.8.2)

∂Ū
∂t̄

+ ∇̄ · J̄ = −D̄, (1.45)

with

Ū =
1

2

(
ρ̄0|V̄|2 + P̄ 2

ρ̄0c̄2A
+
ρ̄0T̄0
c̄p

H̄2

)
, (1.46a)

J̄ = P̄ V̄ − η̄KV̄(∇̄ · V̄)− η̄V̄M̄ − K̄
T̄0

T̄ ∇̄T̄ , (1.46b)

D̄ = η̄K(∇̄ · V̄)2 +
η̄

2
M̄ : M̄ +

K̄
T̄0

(∇̄T̄ )2, (1.46c)

where M̄ ≡ M̄ij is defined just under (1.37) and M̄ : M̄ = M̄ijM̄ij > 0. Direct

comparison with (1.20) shows the extra terms included into the total acoustic energy

density Ū and energy flux vectors J̄ as well as an extra term D̄ > 0 discussed shortly.

If we integrate (1.45) over a fixed close volume V with corresponding enclosing surface

S we obtain
d

dt̄

˚
V

Ū dV +

‹
S

J̄ · n dA = −
˚

V

D̄ dV, (1.47)

after employing the divergence theorem on the divergence term to obtain the closed

surface integral term, and n representing the outward unit normal from S. From

(1.47) it becomes clear that for a thermo-viscous fluid, the rate of total energy of a

fluid particle has an additional contribution ‘leaving’ the fixed volume (since D̄ > 0),

and therefore we this term represents the rate of energy dissipation due to visco-

thermal effects. Naturally, if we neglect all visco-thermal effects in (1.46) (i.e. let

η̄, η̄K , K̄ → 0) (1.45) becomes identical to (1.20) and consequently (1.47) becomes

(1.21) so that D̄ → 0.



1.2. MODELLING FLUIDS 31

Non-dimensionalisation

Before continuing with the decomposition of the governing equations obtained above,

it will be useful to non-dimensionalise the system of equations. Introducing a (prob-

lem specific) length-scale L̄ we can scale the physical independent variables to non-

dimensional variables via

x =
x̄

L̄ , t =
c̄A
L̄ t̄, (1.48)

noting that we have dropped the overbar for non-dimensional terms. The first of (1.48)

further implies that ∇ = L̄∇̄. Similarly the non-dimensional visco-thermal (constant)

parameters become

(η, η′, ηK) =
(η̄, η̄′, η̄K)

ρ̄0c̄AL̄
, (1.49a)

K =
T̄0

ρ̄0c̄3AL̄
K̄, (1.49b)

(cp, cv) =
T̄0
c̄2A

(c̄p, c̄v), (1.49c)

α = ᾱT̄0, (1.49d)

C =
K
cp
. (1.49e)

Furthermore, the relevant non-dimensional fields (1.11) become

v =
v̄

c̄A
=
ϵV̄

c̄A
, (1.50a)

p =
p̄− p̄0
ρ̄0c̄2A

=
ϵP̄

ρ̄0c̄2A
, (1.50b)

θ =
T̄ − T̄0
T̄0

=
ϵT̄
T̄0
, (1.50c)

s =
ρ̄− ρ̄0
ρ̄0

=
ϵϱ̄

ρ̄0
, (1.50d)

h =
T̄0
c̄2A

(h̄− h̄0) =
T̄0
c̄2A
ϵH̄. (1.50e)

It follows directly from (1.48)-(1.50) and (1.35b) that this choice further implies that

the non-dimensional Cauchy stress becomes

σ = (σ̄ + p̄0I)/ρ̄0c̄
2
A = (−p+ η′∇ · v) I+ η

(
∇v +∇vT

)
. (1.51)
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Using (1.48)-(1.50) we can summarize our governing equations (1.12), (1.36), (1.38)

and (1.41) in non-dimensional form as

∂s

∂t
= −∇ · v, (1.52)

∂v

∂t
= −∇p+ η∇2v + (η + η′)∇ (∇ · v) , (1.53)

− α

cp

∂p

∂t
=

(
C∇2 − ∂

∂t

)
θ, (1.54)

s = p− α

cp
h, θ =

1

cp
(αp+ h) , (1.55)

where we have used (1.41b) to write the entropy fluctuations in terms of pressure

and temperature in (1.38) in order to arrive at (1.54). From (1.52)-(1.55) we directly

observe that (in three dimensional space) our model consists of seven equations for

seven unknowns {s,v, p, θ, h}. The process of non-dimensionalisation allows one to

solve a particular problem on a convenient domain with fewer parameters, and use this

solution for corresponding physical problems via the scales in (1.48)-(1.50). Hence,

unless otherwise stated, from here onwards we will only consider non-dimensional

quantities.

Decomposition into thermo-compressional and vorticity fields

Following Beltman [1999], we will now focus on the decomposition of (1.52)-(1.55) in

order to arrive at uncoupled equations which are more convenient for the considera-

tion of physical problems. As we show next, in the frequency domain this will lead to

three individual Helmholtz equations for the thermo-compressional fields Θ1,Θ2 and

vorticity Ω which couple through the boundary conditions.

Applying the curl of (1.53), with Ω = ∇ × v where (Ω = L̄Ω̄/c̄A) corresponding
to the fluid vorticity, directly gives the diffusion equation

∂Ω

∂t
= η∇2Ω. (1.56)

Further, using (1.55) in order to rewrite p in terms of s and θ, substituting in (1.53)

and (1.54) gives, recalling (1.44)

∂v

∂t
= −1

γ
{∇s+ α∇θ}+ η∇2v + (η + η′)∇ (∇ · v) , (1.57a)

α

cp

∂s

∂t
=

(
∂

∂t
− γC∇2

)
θ. (1.57b)
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In order to eliminate v from the equations, we take the divergence of (1.57a) and use

continuity of mass (1.52) to yield

∂2s

∂t2
=

1

γ

{
α∇2θ +

(
1 + ζγ

∂

∂t

)
∇2s

}
, (1.58)

where we have introduced the viscous quantity ζ = 2η+ η′ and made use of the vector

identity

∇2f = ∇ (∇ · f)−∇×∇× f , (1.59)

valid for any sufficiently smooth vector field f . We now note that (1.57b), (1.58) form

a system of coupled partial differential equations for {s, θ} from which, as we shall

show next, together with (1.56) all the remaining quantities can be obtained. As we

did to obtain the Helmholtz equation (1.22) in the acoustic case, at this stage we

assume time harmonicity of the dynamic fields in the form e−iωt, where ω = L̄ω̄/c̄A is

the non-dimensional frequency of the oscillation so we write

{s,v, p, θ, h,σ} = Re{{ŝ, v̂, p̂, θ̂, ĥ, σ̂}(x, ω)e−iωt}, (1.60)

which results in ∂/∂t ≡ −iω and the time factor e−iωt will be suppressed from here

onwards, noting that we can still recover the evolution of these signals in time via

Fourier Transforms. In particular, we can now combine (1.57b), (1.58) into a single

fourth order equation for θ̂ which can be rearranged into

(
(1− iωζγ)C∇4 + iω [1− iω(ζ + γC)]∇2 + iω3

)
θ̂ = 0, (1.61)

or, equivalently

(
∇2 + κ21

) (
∇2 + κ22

)
θ̂ = 0, (1.62)

where

κ21 = iω
[1− iω(ζ + γC)] + S(ω)

2(1− iωζγ)C , and κ22 = iω
[1− iω(ζ + γC)]− S(ω)

2(1− iωζγ)C , (1.63)

with

S(ω) =
√

[1− iω(ζ − γC)]2 − 4iωC(γ − 1). (1.64)

Bruneau [2006] (Section 2.5) shows how in the time-domain an equation of the form

of (1.62) can be obtained via an integro-differential operator. Next, we adopt the
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split into thermo-compressional fields θ̂(x, ω) = Θ̂1(x, ω) + Θ̂2(x, ω) such that each

component satisfies

(
∇2 + κ21

)
Θ̂1(x, ω) = 0,

(
∇2 + κ22

)
Θ̂2(x, ω) = 0. (1.65)

Despite (1.65) clearly being a sufficient condition to satisfy (1.62), we must ensure

that we are not overlooking the presence of other solutions with different functional

form. It turns out that all solutions have this linear structure provided κ21 ̸= κ22 [Wu,

1956, Courant, 2011, Pierce et al., 1981]. In the frequency domain, the fluid vorticity

equation (1.56) becomes

(
∇2 + k2Ω

)
Ω̂ = 0, where k2Ω =

iω

η
. (1.66)

Importantly, equations (1.65), (1.66) are the uncoupled governing equations to be

solved for linear TVA propagation (in the absence of any external sources). We note

that although these are all Helmholtz equations as in (1.22), their respective wavenum-

bers (κ1, κ2, kΩ) are very different15 in nature which implies the respective plane wave

type solutions (1.25) will vary significantly for each mode of propagation.

In practice, we are interested in solving problems in domains consisting of different

types of geometries and interfaces where boundary conditions apply. As illustrated

for the inviscid case, these BCs are often written in terms of the velocity field (and

pressure). The extra BCs for TVA are discussed shortly, but in order to apply them

we must first relate the physical fields to {Θ̂1, Θ̂2, Ω̂}.
Applying (1.59) to v, using (1.52) and substituting onto (1.57a) gives

∂v

∂t
= −1

γ

{
α∇θ +

(
1 + ζγ

∂

∂t

)
∇s
}
− η∇× Ω̂, (1.67)

which, in the frequency domain, using (1.57b) to eliminate s, (1.63) and their respective

PDEs (1.65) to introduce Θ̂1, Θ̂2 finally yields

iωv̂ =
cp
2α

{
[1− iω(ζ − γC)− S]∇Θ̂1 + [1− iω(ζ − γC) + S]∇Θ̂2

}
+ η∇× Ω̂. (1.68)

Repeating this same last step on (1.57b) and the equation of state for pressure16

15It is difficult to physically appreciate the distinction between κ1, κ2 via (1.63) but it will become
clear in (1.73) after some approximations.

16This equation is directly obtained by eliminating entropy in (1.55)
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γp = s+ αθ respectively, gives

ŝ =
cp
α

{(
1 + i

γCκ21
ω

)
Θ̂1 +

(
1 + i

γCκ22
ω

)
Θ̂2

}
, (1.69a)

p̂ =
cp
α

{(
1 + i

Cκ21
ω

)
Θ̂1 +

(
1 + i

Cκ22
ω

)
Θ̂2

}
, (1.69b)

and similarly for entropy (not shown). Equations (1.68), (1.69) confirm the above

claim that once {Θ̂1, Θ̂2, Ω̂} are known all the relevant physical fields can be obtained,

and all the coupling occurs in the boundaries. Prior to analysing the extra BCs to

consider, at this stage it is useful to have a physical idea of the magnitude of some of

the parameters in question.

Approximations for air and water

Although as we have mentioned above, the model is valid for a general Newtonian fluid,

we show that for a large class of fluids and frequencies of interest we can further simplify

the model. Due to their fundamental importance as well as intrinsic differences, we

focus on air and water.

Using Table 1 from Section 2.2 we find that, for air at 27◦ Celsius

ωC =
ω̄K̄
ρ̄0c̄20c̄p

≈ (1.865× 10−10s)ω̄, ωζ =
ω̄ζ̄

ρ̄0c̄20
≈ (7.914× 10−11s)ω̄, γ ≈ 1.390,

(1.70)

whereas for water at 10◦ Celsius

ωC ≈ (6.415× 10−14s)ω̄, ωζ ≈ (1.354× 10−12s)ω̄, γ ≈ 1.001, (1.71)

recalling that ω̄ denotes the dimensional frequency of oscillation in rad/s. For example,

at a frequency of 1 MHz we still have ωC = O(10−3), ωζ = O(10−4) for air, whereas

for water ωC = O(10−7), ωζ = O(10−6). Hence, for these fluids (and indeed most

other common fluids) and frequencies of interest, we have that γ = O(1), ωC ≪ 1, and

ωζ ≪ 1 which can give accurate useful approximations to the full theory as we show

next. Indeed, we commence by noting that S(ω) defined in (1.64) can be approximated

by

S = 1− iω[ζ + C(γ − 2)] +O((ωζ)2, (ωC)2), (1.72)
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and direct substitution into (1.63) gives

κ21 =
iω

C
{
1 + iω(γ − 1)[ζ − C] +O((ωζ)2, (ωC)2)

}
, (1.73a)

κ22 = ω2
{
1 + iω[ζ + C(γ − 1)] +O((ωζ)2, (ωC)2),

}
, (1.73b)

where, since the magnitudes of ζ, C vary depending on the fluid by O((ωζ)2, (ωC)2) we
simply refer to the larger contribution of the two terms in each case. Given the plane-

wave solutions of the Helmholtz equation (1.25), observation of the leading order terms

in (1.73a), (1.73b) directly dictates the propagative nature of Θ̂2 (which resembles the

purely acoustic compressional field), as opposed to the diffusive highly attenuated

behaviour of Θ̂1, which is similar to that of Ω̂ in (1.66). This fundamental fact of

TVA propagation is depicted in Figure 1.3. For this reason some authors [Bruneau,

2006] denote Θ̂1 as the “entropic” contribution to temperature and Θ̂2 as the “acoustic”

temperature. Using (1.73) in (1.68)-(1.69) we can obtain similar approximations for

the pressure, velocity and condensation. For the pressure, we have

p̂ ≈ cp
α

[
− iω(γ − 1)[ζ − C]Θ̂1 + (1− iωC)Θ̂2

]
= p̂1 + p̂2, (1.74)

with

p̂1 = −iω
cp
α
(γ − 1)[ζ − C]Θ̂1, (1.75a)

p̂2 =
cp
α
(1− iωC)Θ̂2, (1.75b)

are the entropic and acoustic pressure fields respectively, and we can observe from

(1.75a), (1.75b), that we have |p̂2| ≫ |p̂1|, since ωC, ωζ ≪ 1. For the velocity compo-

nent v̂ we obtain

iωv̂ ≈ cp
α

{
iω(γ − 1)C∇Θ̂1 + [1− iω(ζ − C)]∇Θ̂2

}
+ η∇× Ω̂, (1.76)

which may be decomposed as

v̂ = v̂1 + v̂2 + v̂Ω, (1.77)

where

v̂1 =
cp
α
(γ − 1)C∇Θ̂1, (1.78a)

iωv̂2 =
cp
α
[1− iω(ζ − C)]∇Θ̂2, (1.78b)

iωv̂Ω = η∇× Ω̂, (1.78c)
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Figure 1.3: Comparisons between (unit amplitude) 1D free-space plane wave solutions
(eikx) to the Helmholtz equations with wavenumber k according to the different modes
of propagation {Θ̂1, Θ̂2, Ω̂} given by (1.73) and (1.66) respectively, plotted with re-
spect to their direction of propagation. The top and bottom plots show the real and
imaginary parts respectively. Hypothetical non-dimensional parameters are given by:
ω = 10−3, C = 50, η = 7. The propagative nature of Θ̂2 is noted, as opposed to Θ̂1, Ω̂
which decay much quicker with distance.

are sometimes denoted as the “laminar entropic”, “laminar acoustic” and “vortical”

velocities respectively [Bruneau, 2006]. We further observe that (1.78a), (1.78b) are

similar in functional form to (1.23), which implies that for general plane waves of the

type Θ̂m = eiκm·x (m = 1, 2), the associated velocity field (and hence motion) will have

the same direction of propagation as κm (see discussion below (1.25)). For this reason

we have denoted Θ̂m as compressional, with the prefix ‘thermo’ to further indicate

that in TVA there is an associated thermal coupling. On the other hand for a plane

wave solution of the particular type Ω̂ = eiκΩ·xez (with ez representing a unit vector

along the z direction), all the associated motion from (1.78c) will in fact be confined

to the (x, y) plane and hence orthogonal to ez (by definition of the curl operator)

suggesting that vorticity modes are transverse or shear (‘S’) waves. This distinction

will be further considered in more detail when we discuss wave propagation in elastic

solids, where we fill further make a distinction between two different types of shear

waves, namely ‘SV’ and ‘SH’.
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Boundary Conditions

We have seen above the equations governing a linear, dissipative, thermo-viscous fluid

in free space in the absence of sources and body forces (1.65), (1.66). Conveniently,

these equations have no coupling between the fields, and their individual solutions

are in principle well known in (orthogonal) coordinate systems. Nevertheless, all the

coupling between the different quantities lies in the boundary conditions which are

briefly discussed next, and applied in subsequent sections.

- Interface conditions between neighbouring TVA media

Contrary to the ideal acoustic media from Section 1.2.1, in the case of thermo-visco-

acoustic fluids we cannot neglect the specification of the fluid temperature at the

interface with a neighbouring TVA medium, since there exists a heat flux as a result

of their interaction. For this discussion we refer to a situation similar to Figure 1.2,

although here we replace the subscripts ‘1, 2’ with ‘A,B’ to avoid confusion with

the notation introduced in (1.74), (1.76), so two TVA media occupy DA, DB and

their respective associated quantities are labelled with subscripts ‘A’ and ‘B’. At the

interface these media must satisfy continuity of temperature, as well as continuity of

temperature flux which yields

θ̂A = θ̂B, on ∂D, (1.79)

KA∇θ̂A · n = KB∇θ̂B · n on ∂D, (1.80)

where (1.80) represents continuity of heat flux since we are assuming that the heat

flux vector follows Fourier’s law (see (1.8) and discussion just below). We also note

that in writing (1.79) the background temperature (T̄0 in (1.50c)) in DA and DB is

equal.

As opposed to Euler’s equations (1.4), the Navier-Stokes equations (1.36) contain

second order spatial derivatives. One of the direct consequences is that the requirement

of continuity of normal velocity (1.28) is not sufficient to guarantee unique solutions.

From a physical perspective, the presence of viscosity puts an extra restriction on

the tangential component of the velocity field at the interface with another medium,

[Shapiro, 1961]. We therefore replace (1.28) by the more restrictive condition

v̂A = v̂B on ∂D. (1.81)
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Finally, in accordance with Newton’s third law we must ensure that the traction t̂i =

σ̂ijnj i.e. force per unit area on a surface with normal n is also continuous, which we

write in component form as

σ̂Aijnj = σ̂Bijnj on ∂D, (1.82)

noting that we have used a superscript ‘A’ (‘B’) to refer to the Cauchy stress in medium

DA (DB) in order to avoid confusion with the indices. We note that the continuity of

pressure BC (1.27) is equivalent to (1.82) when substituting the ideal fluid constitutive

relation (1.3).

- Thermal Neumann, Dirichlet and Robin Conditions

We now assume that DB is occupied by a solid medium. In this case, the fluid will

still ‘stick’ to the surface, so that the no-slip condition (1.81) is still applicable. In the

special case in which the solid is stationary (i.e. v̂B = 0) we obtain after using (1.77)

v̂A2 = −v̂A1 − v̂AΩ on ∂D, (1.83)

which comprises the fluid-solid interface (where again we have used superscripts to

avoid confusion).

Even if thermoelastic coupling is ignored (so that in this approximation the solid

body conducts heat but does not deform when doing so, see Section 1.4), we must

ensure that we account for the heat transfer between the fluid and the solid. From a

general perspective, in this case we must ensure that (1.79), (1.80) are satisfied, as well

as the diffusion equation governing the heat conduction in the solid. On this basis,

if we assume the heat flow parallel to the interface is negligible (due to the relatively

small temperature gradient in this direction) one can incorporate this thermal flux

into the solid via a Robin type boundary condition as in (1.34) but for temperature

[Bruneau, 2006]17. For a geometry such as that of Figure 1.2, assuming e.g. n = e⊥

so that the direction orthogonal to the interface ∂D is given by the x⊥ coordinate, we

can write (
1 + LT

∂

∂x⊥

)
θ̂ = 0, on ∂D, (1.84)

17The derivation is performed in the frequency domain.
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where LT = O(C/√ωCB), and CB denotes the (non-dimensional) thermal conductivity

of the wall. It so happens that for rigid substrates the thermal conductivity is generally

much larger than that of the fluid, such that
√CB ≫ C, and hence for most frequencies

of interest |LT | ≪ 1 so that (1.84) can be approximated by the Dirichlet BC

Θ̂2 = −Θ̂1 on ∂D, (1.85)

after using θ̂ = Θ̂1 + Θ̂2. Despite being less physically relevant in standard fluid-solid

conditions of interest, in a situation in which |LT | ≫ 1, (1.84) becomes approximately

∂θ̂

∂x⊥
= 0, on ∂D, (1.86)

i.e. a Neumann type BC. The isothermal condition (1.85) is commonly used in the

thermo-visco-acoustic literature, which as aforementioned has mostly been focused on

the study of gases. In Section 1.3 we will quantify the impact upon reflection between

the Dirichlet and Neumann BCs for a forced semi-infinite TVA medium in contact

with a rigid half-space. We also make comparisons between these two opposing BCs

in Section 2.2 for TVA propagation in narrow slits, where experimental data from

Ward et al. [2015] is further included (FIG 2). As we shall see, the isothermal BC

(1.85) is in fact a better approximation for most channel widths.

From (1.85) we can conclude that thermal modes Θ̂1 should not be ignored near

boundaries (since the magnitude is in fact equal to that of the compressional mode

Θ̂2 on the interface), as opposed to within the bulk of the fluid, where normally Θ̂1,

Ω̂ can be neglected when compared to Θ̂2 to a very good approximation. Intuitively,

this can be seen from Figure 1.3 for plane waves where the hypothetical boundary is

located at x = 0 (where Θ̂1 = Θ̂2 = Ω̂ = 1 is imposed). For this reason, a question

of high interest is, how far from the boundary must we move so that ignoring shear

and thermal mode effects is a valid approximation for the correct description of the

acoustic field? These characteristic lengths are denoted by boundary layers, which are

frequently addressed in this thesis due to their physical inherence. Furthermore, as we

will see in Section 1.3 for the particular case of a rigid half-space, in some instances we

can take advantage of this localization of thermo-viscous effects near solid boundaries

in order to obtain highly accurate approximate solutions of much simpler form.
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1.3 TVA scattering

We very briefly introduced the set-up of a scattering problem in the case of an acoustic

medium satisfying the Helmholtz equation (1.22) via (1.26), and how in these scenarios

it must be ensured that respective solutions do not grow as we move away from the

scatterer. Having discussed a framework to study sound propagation in thermo-viscous

fluids in Section 1.2.2, here we want to consider a canonical scattering problem to put

the theory into practice. Before this, it is convenient to reconsider the energy flux

from (1.45).

1.3.1 Energy flux partition into different modes

As we will illustrate shortly for the half-space problem, it is advantageous for many

problems to know the contributions of each existing mode to the overall energy balance

in order to quantify visco-thermal effects. In non-dimensional form, the energy balance

equation (1.45) with (1.46) becomes

∂U
∂t

+∇ · J = −D, (1.87)

with Ū = ρ̄0c̄
2
AU , J̄ = ρ̄0c̄

3
AJ, D̄ = (ρ̄0c̄

3
A/L̄)D so that

U =
1

2

(
|v|2 + p2 + h2

)
, (1.88a)

J = pv − ηKv(∇ · v)− ηvM −Kθ∇θ = −(σv +Kθ∇θ), (1.88b)

D = ηK(∇ · v)2 + η

2
M : M +K(∇θ)2. (1.88c)

In component form we can write the energy flux vector J as

Ji = −
(
σijvj +Kθ ∂θ

∂xi

)
, (1.88b revisited)

with σij given in (1.51). Since in our decomposition we have assumed the steady-state

condition (1.60), it is helpful to consider the time-average over a period of the energy

flux vector (1.88b) which becomes

⟨J⟩ = −1

2
Re{σv∗ +Kθ∇θ∗}, (1.89)

since the time-average over a period (T = 2π/ω) of the energy flux vector is given by

⟨J⟩ = 1

T

ˆ t+T

t

J ds, (1.90)
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and we have used the result that for two general time harmonic signals F = F0e
−i(ωt+γ1)

f = f0e
−i(ωt+γ2), (γ1, γ2 represent arbitrary phase shifts) we have

⟨Re{F} × Re{f}⟩ = 1

2
Re{Ff ∗}, (1.91)

where asterisk ∗ denotes complex conjugate [Achenbach, 2012]. As we have discussed

above, both the fluid velocity and Cauchy stress are linear combinations of {Θ̂1, Θ̂2, Ω̂}
and we can therefore decompose ⟨J⟩ accordingly.

For example, consider a 1D disturbance in the x-direction consisting of the two

thermo-compressional fields such that

Θ1 = Re{Θ̂1e
−iωt} = Re{eiκ1x−iωt}, (1.92a)

Θ2 = Re{Θ̂2e
−iωt} = Re{eiκ2x−iωt}. (1.92b)

It is clear that (1.92) satisfy the governing equations (1.65). Then, using (1.68) the

resultant velocity component due to Θ̂2 (which we denote v̂Θ2
x ) is given by

iωv̂Θ2
x =

cp
2α

[1− iω(ζ − γC) + S]iκ2Θ̂2, (1.93)

and the (only non-zero contribution) to the non-dimensional stress (1.51) due to Θ̂2,

namely σ̂Θ2
xx is given by

σ̂Θ2
xx =

cp
α

[(
1 +

iCκ22
ω

)
− i(3η + η′)κ2

ω
(1− iω(ζ − γC) + S)

]
Θ̂2, (1.94)

where we used (1.69b) in order to write the pressure fields in terms of Θ̂2 as well as

(1.65) to simplify slightly. Finally, by definition the temperature and its gradient due

to Θ̂2 alone gives

θ̂Θ2 = Θ̂2, ∇θ̂Θ2 =
∂Θ̂2

∂x
= iκ2Θ̂2. (1.95)

Hence, the contribution to the energy flux (averaged over a period) due to Θ̂2 exclu-

sively ⟨JΘ2⟩ is given by (from (1.89))

⟨JΘ2⟩ = −1

2
Re{σ̂Θ2

xx e
−iωt

(
v̂Θ2
x e−iωt

)∗
+Kθ̂Θ2e−iωt

(
∇θ̂Θ2e−iωt

)∗
}

=
1

2
Re{σ̂Θ2

xx (v̂
Θ2
x )∗ +Kθ̂Θ2

(
∇θ̂Θ2

)∗
}, (1.96)

with18 (1.93), (1.94), (1.95) which we note is a scalar field only since we are in 1D

(for simplicity). As expected, the time dependence is no longer present in (1.96). We

18Note that we used the distributivity over multiplication of complex number conjugation to arrive
at (1.96).



1.3. TVA SCATTERING 43

can perform the same calculation with the remaining field in (1.92) to obtain ⟨JΘ1⟩.
Furthermore, there is also a non-zero contribution to the power due to interaction

between different modes, that is e.g. the stress field of Θ1 interacting with the velocity

field of Θ2 which we will denote as

⟨JΘ1Θ2⟩ = −1

2
Re{σ̂Θ2

xx (v̂
Θ1
x )∗ +Kθ̂Θ2

(
∇θ̂Θ1

)∗
} (1.97)

where we note that the order of the subscript is important since it indicates whether

the particular mode is being applied to the stress or the velocity (temperature or

temperature gradient). It can be shown that the overall contributions to the energy

flux due to these cross terms are characteristic of lossy media only, see e.g. Chapter 5

of Borcherdt [1973]. For a free-space TVA medium in the absence of boundaries, as in

this case, there are therefore two (distinct) contributions due to interactions, namely

⟨JΘ1Θ2⟩, ⟨JΘ2Θ1⟩. (1.98)

If we consider a plane orthogonal to the direction of propagation, say at x = 0, the

evaluation of ⟨JΘ1⟩, ⟨JΘ2⟩, together with (1.98) allows us to understand the energy flux

through this plane (which can be thought of as a “fictitious” boundary). As we will

show next, this is particularly relevant for situations involving physical boundaries.

1.3.2 Reflection from a rigid half–space in a TVA medium

We will next apply the model presented in Section 1.2.2 to the simplest possible scat-

terer, namely a two dimensional stationary, rigid half-space such that there is no

mechanical coupling between the fluid and the solid. Above the solid resides a TVA

fluid medium satisfying (1.65), (1.66). In reality it is expected that any source of en-

ergy driving the motion in this setting will induce the three fields Θ̂1, Θ̂2, Ω̂. However,

as we have discussed and seen in Figure 1.3, Θ̂2 is the only propagative field in nature.

We therefore assume that the source is sufficiently far19, such that the incident field

is comprised only of a plane wave of this type, impinging the surface at an angle ψ

(measured anticlockwise from the positive x-axis) which we label Θ̂2I . The boundary

of the half-space is confined to be y = 0. Since we are considering the wall to be rigid

19This argument can be found in the literature as it is a very good approximation, see e.g. Bruneau
[2006], Scharstein and Davis [2007].
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and uniform, we must impose (1.83) and we study both (1.85), (1.86) on y = 0, as

illustrated in Figure 1.4.

Given this set-up we want to understand how the boundary conditions lead to the

corresponding reflected (scattered) fields, and in particular quantify the effect of visco-

thermal effects on the resulting behaviour compared to the (idealized) much simpler

case of a purely acoustic medium from Section 1.2.1. As we will show next, under

certain circumstances we can use approximations to the full theory in order to obtain

an expression for the acoustic impedance which conveniently allows the problem to

be written in a purely acoustic setting through a Robin condition (1.34) which en-

capsulates the visco-thermal losses with high accuracy. Similar analytical discussion

of this approach to solve the problem in consideration are provided in several classi-

cal books e.g. Morse and Ingard [1986], Pierce et al. [1981], Bruneau [2006]. Here

we will further give some exact solutions to the full problem for values of common

fluids in standard scenarios, aiming to provide the reader with some extra physical

intuition. Furthermore, in order to aid physical interpretation we will obtain a use-

ful conservation equation that follows from the BCs and the discussion in Section 1.3.1.

We assume the incident field has the form

Θ̂2I = e−iκ2(x cosψ+y sinψ), ψ ∈ [0, π] (1.99)

and given the translational invariance of the problem in the x direction, we expect the

thermo-compressional and vorticity potentials to behave like20

Θ1(ω, x, y) = Θ1R(ω, y)e
−iκ2x cosψ, (1.100a)

Θ̂2(ω, x, y) = Θ̂2I +Θ2R(ω, y)e
−iκ2x cosψ, (1.100b)

Ω̂(ω, x, y) = ΩR(ω, y)e
−iκ2x cosψ, (1.100c)

where we note that, since this problem is considered in the (x, y) plane, the vectorial

vorticity field becomes a scalar in the out of plane direction, i.e. Ω̂ = Ω̂ez with ez being

a unit normal vector pointing outwards from the plane, and the subscripts (I, R) are la-

bels denoting ‘incident’ and ‘reflected’ respectively. Furthermore, given the symmetry

of the problem it is sufficient to study incident angles in the first quadrant ψ ∈ [0, π/2].

20This particular x dependence follows since the BCs must be satisfied everywhere along y = 0 and
is sometimes called the phase matching condition [Achenbach, 2012].
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v̂(ω, x, y = 0) = 0

θ̂(ω, x, y = 0) = 0

Θ̂2I

TVA Medium
y

x

Rigid Solid

ψ

Figure 1.4: Schematic representation of the configuration of the rigid half-space prob-
lem for a visco-thermal fluid. An incident Θ̂2I mode at an angle ψ (measured anti-
clockwise from the positive x-axis) impinges onto the y = 0 surface, giving rise to
reflected thermo-compressional and vortical modes Θ̂1R, Θ̂2R and Ω̂R. The boundary
conditions on y = 0 explicitly written correspond to the no-slip (1.83) and isothermal
(1.85), but the adiabatic (1.86) is also considered.
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Direct substitution of (1.100a)-(1.100c) into their respective governing PDEs (1.65),

(1.66) gives three one-dimensional Helmholtz equations with straightforward solutions

Θ1R = CΘ1e
iy
√
κ21−κ22 cos2 ψ, (1.101a)

Θ2R = CΘ2e
iκ2 sinψy, (1.101b)

ΩR = CΩe
iy
√
k2Ω−κ22 cos2 ψ, (1.101c)

where the choice of roots made is consistent with the physical requirement of bound-

edness of the scattered field

Im

{√
κ21 − κ22 cos

2 ψ

}
, Im

{√
k2Ω − κ22 cos

2 ψ

}
≥ 0, (1.102)

such that solutions decay away from the boundary, and the fact that scattered waves

must be outgoing in y ≥ 0. The fact that (1.102) is satisfied can be directly verified

when approximating the wavenumbers by (1.73a), (1.73b). The task therefore reduces

to obtaining the complex valued amplitudes {CΘ1 , CΘ2 , CΘΩ
}, which come from the

BCs. Applying the no-slip condition (1.83) yields explicitly

0 =
cp
2α
κ2 cosψ[MCΘ1 +N(1 + CΘ2)]− CΩη

√
k2Ω − κ22 cos

2 ψ, (1.103a)

0 =
cp
2α

[M
√
κ21 − κ22 cos

2 ψCΘ1 +Nκ2(CΘ2 − 1) sinψ] + CΩηκ2 cosψ, (1.103b)

after using (1.68), whereM(ω) = [1− iω(ζ−γC)−S] and N(ω) = [1− iω(ζ−γC)+S].
Before we specify the thermal boundary condition, it is useful to consider the energy

flux at the interface y = 0.

Energy flux conservation at the boundary

In Section 1.3.1 we briefly described the different terms contributing to the overall

energy flux in a one-dimensional example in the absence of boundaries. In this problem,

since a rigid substrate occupies y ≤ 0 we must have that the energy flux satisfies

⟨J⟩ · ey = 0 on y = 0, (1.104)

which follows from the definition (1.89) and the BCs (noting that it holds for either

thermal BC) and ey represents the unit normal to the boundary, since we have motion

in the entire (x, y) plane so that ⟨J⟩ is a vector field. Given the decomposition (1.100),
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we must also take into account the presence of interaction terms arising from the

coupling between the incident and reflected modes, as well as distinct reflected modes.

This results in seven extra terms to be accounted for (compared to the free space case

from Section 1.3.1), so that we decompose ⟨J⟩ as

⟨J⟩ = ⟨JNI⟩+ ⟨JIRR⟩+ ⟨JIRI⟩, (1.105)

where ⟨JNI⟩, ⟨JIRR⟩, ⟨JIRI⟩ denote the contribution to the power due to “Non-Interacting”,

“Interacting Reflected” and “Interacting between Reflected and Incident” modes re-

spectively. These are specifically given by

⟨JNI⟩ = ⟨JΘ2I
⟩+ ⟨JΘ1R

⟩+ ⟨JΘ2R
⟩+ ⟨JΩR

⟩, (1.106a)

⟨JIRR⟩ = ⟨JΘ1RΘ2R
⟩+ ⟨JΘ2RΘ1R

⟩+ ⟨JΘ1RΩR
⟩+ ⟨JΩRΘ1R

⟩+ ⟨JΘ2RΩR
⟩+ ⟨JΩRΘ2R

⟩,
(1.106b)

⟨JIRI⟩ = ⟨JΘ2IΘ1R
⟩+ ⟨JΘ1RΘ2I

⟩+ ⟨JΘ2IΘ2R
⟩+ ⟨JΘ2RΘ2I

⟩+ ⟨JΘ2IΩR
⟩+ ⟨JΩRΘ2I

⟩,
(1.106c)

remembering that for interacting terms, the order in the subscripts is important. We

can therefore rewrite (1.104) as

(⟨JΘ2I
⟩+ ⟨JΘ1R

⟩+ ⟨JΘ2R
⟩+ ⟨JΩR

⟩+ ⟨JIRR⟩+ ⟨JIRI⟩) · ey = 0, (1.107)

after using (1.106). We can now define the energy reflection coefficients R and

interaction-reflected coefficients IR such that

RΘ1 = −⟨JΘ1R
⟩ · ey

⟨JΘ2I
⟩ · ey

, RΘ2 = −⟨JΘ2R
⟩ · ey

⟨JΘ2I
⟩ · ey

, RΩ = − ⟨JΩR
⟩ · ey

⟨JΘ2I
⟩ · ey

, (1.108a)

IRRR = −⟨JIRR⟩ · ey
⟨JΘ2I

⟩ · ey
, IRIR = − ⟨JIRI⟩ · ey

⟨JΘ2I
⟩ · ey

, (1.108b)

so that finally (1.107) becomes

RΘ1 +RΘ2 +RΩ + IRRR + IRIR = 1, (1.109)

which represents conservation of energy and hence provides a physical interpretation

to the various coefficient in terms of energetic principles. In order to calculate these

different quantities we must first determine the complex amplitudes (CΘ1 , CΘ2 , CΩ).

We will continue by calculating them for the isothermal boundary condition, followed

by the adiabatic.
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Isothermal BC

In the (physically relevant) case of an isothermal boundary condition (1.85) at y = 0

we obtain

CΘ1 + 1 + CΘ2 = 0, (1.110)

to be solved together with (1.103), which in matrix form reads




−cpκ2M(ω) cosψ −cpκ2N(ω) cosψ 2αηdΩ

cpd1M(ω) cpκ2N(ω) sinψ 2ακ2η cosψ

1 1 0


 .




CΘ1

CΘ2

CΩ


 =




cpκ2N(ω) cosψ

cpκ2N(ω) sinψ

−1


 ,

(1.111)

where, for brevity, we have introduced d1 =
√
κ21 − κ22 cos

2 ψ and dΩ =
√
k2Ω − κ22 cos

2 ψ.

The solution to this system can be written as




CΘ1

CΘ2

CΩ


 =




2dΩA
cos2 ψ−dΩ(A−D)

− cos2 ψ−dΩ(A+D)
cos2 ψ−dΩ(A−D)

sin 2ψW
cos2 ψ−dΩ(A−D)


 , (1.112)

where

A =
N(ω) sinψ

κ2(M(ω)−N(ω))
, D =

d1M(ω)

κ22(M(ω)−N(ω))
, W =

cpN(ω)

2αη
. (1.113)

Adiabatic BC

In this case, we must naturally still satisfy (1.103) as well as ∂θ̂
∂y

= 0 on y = 0 which

implies that the scattering system becomes




−cpκ2M(ω) cosψ −cpκ2N(ω) cosψ 2αηdΩ

cpd1M(ω) cpκ2N(ω) sinψ 2ακ2η cosψ

d1 k2 sinψ 0


 .




CΘ1

CΘ2

CΩ


 =




cpκ2N(ω) cosψ

cpκ2N(ω) sinψ

k2 sinψ


 ,

(1.114)

where we note that only the last row of the system has changed from the isothermal

scattering system (1.111). The solution to (1.114) is given by




CΘ1

CΘ2

CΩ


 =




−2G sinψ cos2 ψ
cos2 ψ+dΩ(F−G) sinψ

κ22
d1

1 + 2G cos2 ψ
cos2 ψ+dΩ(F−G) sinψκ2
(F−G)W sin 2ψ

cos2 ψ+dΩ(F−G) sinψκ2


 , (1.115)
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Figure 1.5: Comparison of absolute value of complex amplitudes for the TVA rigid
half–space between the isothermal (1.112) and adiabatic (1.115) cases as a function
of incident angle. The material parameters used for air are given in Table A.1 of
Appendix A and the incident frequency is 10MHz. The large variation in the scale of
the y axis is noted.

where

F =
d1M(ω)

κ2(κ2M(ω) sinψ − d1N(ω))
, G =

d1N(ω)

κ2(κ2M(ω) sinψ − d1N(ω))
. (1.116)

A comparison between the magnitude of the complex amplitudes isothermal and

adiabatic solutions (1.112), (1.115) for air is given in Figure 1.5. We can observe

that the (absolute values of the) pressure dominated mode and the vortical mode

|CΘ2|, |CΩ| behave very similarly with the two different boundary conditions. For |CΘ1|
the adiabatic and isothermal solutions are significantly different and seems to suggest

that the coupling with thermal effects is stronger in the isothermal case, noting that in

the adiabatic case |CΘ1| → 0 as ψ → π/2 i.e. towards normal incidence. Nevertheless,

we note that since the incident mode is pressure dominated (with unit amplitude)

(1.99), the respective reflected pressure dominated mode Θ2R is directly comparable,

but this is not the case for Θ1R,ΩR as can be seen from the large variation in the

values of the vertical axis, which makes the physical interpretation unclear. In order

to understand this better, it is convenient to analyse the different energy reflection

coefficients in (1.109). This is done in Figure 1.6, which consists of the different

energy reflection coefficients from (1.108a) for the same input parameters of those in

Figure 1.5. The analytical expressions for these terms are not provided here21 and have

been obtained using symbolic computations in Wolfram Mathematica 12.0 confirming

21A consequence of this computation nevertheless is that RΘ2 = |CΘ2 |2 due to the similarity
between (1.99) and (1.101b).
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Figure 1.6: Comparison of energy reflection coefficients for the TVA-rigid half–space
(1.108a) between the isothermal (1.112) and adiabatic (1.115) cases as a function of
incident angle. The material parameters used for air are those given in Table A.1 of
Appendix A and the incident frequency is 10MHz.

in each case that (1.109) is always satisfied. Furthermore, the only distinction between

the different Rs and IRs for the isothermal and adiabatic boundary condition lies in

the complex amplitudes (1.112), (1.115).

In Figure 1.6 the normalization of values allows for direct comparisons between the

various curves. Indeed as Figure 1.5 suggested, the isothermal BC leads to significant

thermal coupling as seen fromRΘ1 which in turn offsets the maximum value ofRΩ (near

grazing incidence) which is much higher in the adiabatic case. For RΘ2 (and RΘ1) we

note that differences between BCs are noted in the entire interval. We must note that

in Figures 1.5, 1.6 the driving frequency given by 10 MHz which is considered very high

in most instances. In order to see the consequence of the incident frequency on these

results, we consider 10 kHz in Figure 1.7 which we note lies in the audible regime. We

observe that this leads to a much different overall behaviour upon reflection with the

various turning points having been shifted22 very close to grazing incidence (ψ → 0).

At larger angles for both cases of BCs, the majority of the energy gets converted into

the pressure dominated mode. For completeness, in Figure 1.8 we finally give the sum

of the remaining terms that contribute to the energy balance (1.109), noting that in

the absence of dissipation these terms add up to zero. We observe that this is almost

the case at 10 kHz for either BC, whereas at 10 MHz there is a larger magnitude in

the isothermal case.

22The particular scaling describing this shift with frequency will be discussed shortly.
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Figure 1.7: Comparison of reflection coefficients for the TVA rigid half–space (1.108a)
between the isothermal (1.112) and adiabatic (1.115) cases as a function of incident
angle. The plot on the left is the same as that on the right, but for a shorter range of
angles closer to incidence, as indicated by the grey region and the dotted lines. The
material parameters used for air are those given in Table A.1 of Appendix A and the
incident frequency is 10kHz.

Figure 1.8: Comparison of the sum of interaction coefficients for the TVA rigid halfs-
pace (1.109) between the isothermal and adiabatic solutions as a function of incident
angle. The material parameters used for air are those shown in Table A.1 of Appendix
A.
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Obtaining the acoustic admittance of the surface

We next show an alternative approach to the solution of the isothermal TVA rigid half–

space problem from above. We first observe that (1.103), (1.112) can be combined into

a single equation for CΘ2 , namely

− (1 + CΘ2)M(ω)

[
κ22 cos

2 ψ +
√
k2Ω − κ22 cos

2 ψ
√
κ21 − κ22 cos

2 ψ

]

= N(ω)

[
(1− CΘ2)κ2 sinψ

√
k2Ω − κ22 cos

2 ψ − (1 + CΘ2)κ
2
2 cos

2 ψ

]
, (1.117)

or equivalently, using the definitions for d1, dΩ just below (1.111)

κ2 sinψ
1− CΘ2

1 + CΘ2

=
1

dΩ

[−M
N

(
κ22 cos

2 ψ + dΩd1
)
+ κ22 cos

2 ψ

]
(1.118)

which can be simplified by using equation23 (1.72), as well as (1.73a), (1.73b) with ωC,
ωζ ≪ 1 so that

M ≈ iω(γ − 1)C, N ≈ 1− iω(ζ − C), (1.119a)

d1 =
√
κ21 − κ22 cos

2 ψ =

√
iω

C (1 + iω(γ − 1)(ζ − C))− ω2 cos2 ψ(1 + iω(ζ + C(γ − 1)))

=

√
iω

C
√

1 + iωC [(γ − 1)(ζ − C) + cos2 ψ(1 + iω(ζ + C(γ − 1)))]

≈
√

iω

C , (1.119b)

dΩ =
√
k2Ω − κ22 cos

2 ψ =

√
iω

η
− ω2 cos2 ψ(1 + iω(ζ + C(γ − 1)))

=

√
iω

η

√
1 + iωη cos2 ψ(1 + iω(ζ + C(γ − 1))) ≈

√
iω

η
,

(1.119c)

where terms of O(ω
√
ωη, ω

√
ωC) have been neglected. With these approximations

(1.118) can then be rearranged into

ω sinψ
1− CΘ2

1 + CΘ2

= ω3/2
√
−i
(
(γ − 1)

√
C + cos2 ψ

√
η
)
, (1.120)

which we will next show is of great utility since it can be related to the acoustic

admittance discussed in (1.34). The non-dimensional acoustic24 admittance of an

arbitrary surface is defined as

1

Z =
v̂2 · n
p̂2

on the surface, (1.121)

23This is equivalent to applying the approximation (1.77) directly as the no-slip condition.
24By acoustic here we refer to the contributions to the pressure and velocity due to Θ̂2 only.
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with n denoting the (unit) outer normal to the fluid (into the surface boundary). In

this particular case, n = −ey so we are only interested in the vertical component of

the (laminar) acoustic velocity v̂2. From (1.75b), (1.78b) we directly obtain

v̂2|y=0 · n =
cp
α

(
i

ω
+ ζ − C

)
(iκ2 sinψ) [1− CΘ2 ] e

−iκ2x cosψ

= −cp
α
sinψ [1− CΘ2 ] e

−iκ2x cosψ +O(ωζ, ωC), (1.122)

p̂2|y=0 =
cp
α
(1 + iωC) [1 + CΘ2 ] e

−iκ2x cosψ

=
cp
α
[1 + CΘ2 ] e

−iκ2x cosψ +O(ωC). (1.123)

Hence the leading order term of (1.121) is given by

1

Z =
v̂2|y=0 · n
p̂2|y=0

= sinψ
1− CΘ2

1 + CΘ2

, (1.124)

which, when using (1.120) becomes

1

Z =
√
−iω

(
(γ − 1)

√
C + (1− sin2 ψ)

√
η
)
,

= e
−iπ
4
√
ω
(
(γ − 1)

√
C + (1− sin2 ψ)

√
η
)
. (1.125)

It can be observed that there is a direct dependence on the incident angle ψ, as a result,

the surface cannot be considered locally reacting [Opdam et al., 2014]. Moreover, for a

given frequency, grazing incidence ψ = 0 maximizes the (shear) viscous effects which

also yields the largest real part of the admittance (1.125). Conversely, for normal

incident energy (ψ = π/2) these shear effects are not present and (1.125) becomes

minimal. Thermal effects are independent of incident angle. We next note that with

(1.125) we may write (1.124) in terms of CΘ2 to obtain

CΘ2(ψ, ω) =
sinψ − 1

Z
sinψ + 1

Z
=

sinψ − e
−iπ
4
√
ω
(
(γ − 1)

√
C +

√
η cos2 ψ

)

sinψ + e
−iπ
4
√
ω
(
(γ − 1)

√
C +

√
η cos2 ψ

) . (1.126)

As it will become apparent, this is precisely the complex amplitude arising in the

much simpler problem of an acoustic half-space reflection in a non-dissipative fluid as

modelled in Section 1.2.1 and governed by (1.22), but still taking into account the loss

through the boundary via an impedance condition (1.34). That is (in non-dimensional

form so that k = ω),

(
∇2 + ω2

)
p̂ = 0, (1.127)

∂p̂

∂y
+ ωe

+iπ
4
√
ω
(
(γ − 1)

√
C +

√
η cos2 ψ

)
p̂ = 0 on y = 0, (1.128)
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Figure 1.9: Comparison of |CΘ2| (isothermal) between the full TVA approach and the
approximate solution obtained via the acoustic admittance boundary condition as a
function of incident angle. The sound hard (1.30) acoustic solution given by the black
dotted line is independent of frequency. The material parameters used for air are taken
from Table A.1 of Appendix A.

as well as the radiation condition. The solution of the boundary value problem con-

sisting of (1.127), (1.128) assuming unit amplitude incident pressure is simply written

as

p̂ = p̂I + p̂R =
(
e−iωy sinψ + CΘ2e

iωy sinψ
)
eiωx cosψ, (1.129)

where CΘ2 is found by direct application of (1.128) which yields (1.126). This solution

is directly compared to that obtained by solving the full TVA isothermal scattering

system (1.112) in Figure 1.9. We can observe an excellent agreement between both

solutions at both frequencies showing the accuracy and convenience of the concept of

effective admittance for the rigid half-space problem. Although not shown here, the

solution seems to break down when reaching GHz frequencies which is expected since

the assumptions used to obtain (1.119a)-(1.119c) become no longer applicable. In the

bulk of the dissipative fluid (1.73b), visco-thermal effects appear first at O(ωη, ωC),
whereas in the equivalent admittance of the wall (1.125) these damping mechanisms are

manifested at O(
√
ωη,

√
ωC), and for frequencies of interest we have 1 ≫ √

ωη,
√
ωC ≫

ωη, ωC, as can be seen from (1.70), (1.71).

The key for the success of the admittance BC to represent visco-thermal losses lies

in the fact that these effects are only really confined to boundary layers of very narrow

thicknesses compared to the exterior domain of the given problem (which is the reason

this argument is particularly suitable for the half-space). For in-air acoustics, these

(boundary layer) lengths become increasingly small as the frequency increases, e.g. at
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10 MHz they become O(10−7) m. Nevertheless, note that the continuum theory we are

assuming in this project requires that the relevant length scales must be significantly

larger than the mean free path25 of the fluid [Bruneau, 2006]. It turns out that in the

case of air the mean free path is O(10−8) m [Jennings, 1988] so that the conditions

are satisfied (although not by much) indicating that care must be taken at frequencies

beyond those considered here.

Outside the boundary layers, the particle velocity induced by visco-thermal effects

is negligible. Further, in the boundary layers, shear effects dominate over bulk viscosity

effects, which is the reason why (1.125) contains η, but not ηK . Also note that with

this approach, the thermal field θ̂ cannot be fully described in the domain, as opposed

to the full TVA approach. Nevertheless, for most acoustic-engineering applications

this is usually not a concern since it is the influence of visco-thermal effects on the

propagative acoustic pressure wave that is of principal interest [Beltman, 1999].

Extending the concept of acoustic admittance

It is further shown in Bruneau [2006] how an expression for the acoustic admittance

which generalises (1.125) can be obtained regardless of the nature of the incident wave

profile. This extension is key since it allows to approximate thermo-viscous losses in

terms of admittance boundary conditions to more complex geometries than the half-

space illustrated here. Of particular relevance is the propagation of sound in waveg-

uides which has been extensively studied (and we discuss in Chapter 2) but it can also

be applied to classical scattering problems, e.g. spheres under incident plane wave

forcing are given explicitly in Bruneau [2006]. For cylindrical waveguides, two distinct

non-dimensional quantities are useful to ‘partition’ the problem into various differing

regimes, namely the reduced frequency and a non-dimensional viscous boundary layer

parameter [Tijdeman, 1975]. With these parameters, three distinct regimes of stud-

ies can be identified [Weston, 1980]: the “Low frequency-narrow tube range”, “high

frequency-wide tube range” and the “very high frequency-very wide tube range”. In

the second of these, the boundary layers are localised to the vicinity of the waveguide

and the effective admittance BC is valid. The “Low frequency-narrow tube range” is

25This is often stated in terms of the Knudsen number (dimensionless ratio of mean free path of
the fluid to representative physical length scale) being much less than unity.
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concerned with capillary tubes whose width is (less or) of the order of the boundary

layer, so that the ‘bulk’ region where we were allowed to use the asymptotic approx-

imations (1.119) is no longer valid. Nevertheless, other useful approximations can be

made in this regime, such as the “reduced solution” from Zwikker and Kosten [1949].

Using our analysis from Section 2.2, in Section 2.3 we will examine quantitatively

the accuracy of the acoustic admittance BC approximation for a 2D rectangular waveg-

uide, as we transition from the “high frequency-wide tube range” into the capillary

tubes regime.
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1.4 Modelling Solids

As for fluids, it is inherently assumed that the solids in consideration here are con-

tinua for which the concept of a ‘material particle’ can be defined, which allows for a

convenient mathematical description which is highly accurate in our regime of interest

since we are operating at macroscopic lengthscales which are much much larger than

the corresponding characteristic atomic lengthscales. Emphasis is put in the develop-

ment of the ideal lossless theory in the absence of dissipation given in Section 1.4.1,

whereas the inclusion of losses via the theories of viscoelasticy (VE) and thermoelas-

ticity (TE) are discussed in Section 1.4.2. Finally, in Section 1.4.3 we suggest the

possible conveniences resulting from a theory of thermo-visco-elasticity (TVE).

1.4.1 Linear Elasticity

Following the preceding analysis for fluids, we now want to illustrate the different

constitutive assumptions that lead to the governing equations for linearly elastic solids,

and the respective form of their solutions. Here we will mostly follow Nowacki [2013]

and Achenbach [2012], but the author also found useful the classical textbooks by

Love [2013], Graff [2012] (for elastic waves) and Sokolnikoff [1956] for a more technical

description.

Governing Equations

If a solid particle is in equilibrium at a position x̄, and is deformed to a position x̄′,

the displacement field at time t̄ is defined as

ū(x̄, t̄) = x̄′(x̄, t̄)− x̄, (1.130)

which when differentiated with respect to the initial coordinates gives the displacement

gradient tensor, namely

∂ū(x̄, t̄)

∂x̄
= F − I, where F =

∂x̄′(x̄, t̄)

∂x̄
(1.131)

is known as the deformation gradient. In order to develop this linearized theory, we

shall assume that displacement gradients are infinitesimal, so that |∂ūi/∂x̄j| ≪ 1 and

therefore contains no quadratic or higher order terms, so that it can be written as

∂ūi
∂x̄j

= εij + wij, (1.132)
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where

εij =
1

2

(
∂ūi
∂x̄j

+
∂ūj
∂x̄i

)
, and wij =

1

2

(
∂ūi
∂x̄j

− ∂ūj
∂x̄i

)
, (1.133)

correspond respectively to the infinitesimal strain tensor (which is symmetric) and the

rotation tensor (which is anti-symmetric). Under the current theory we are therefore

assuming both small displacements and small rotations. Of course the displacement

further satisfies ∂ūi/∂t̄ = v̄i. With these assumptions, the conservation of mass equa-

tion (1.1) simply states that ρ̄ = ρ̄0 (at leading order) and the linear equation for

conservation of momentum (1.2) (in the absence of external body forces) can be writ-

ten in the current context as

ρ̄0
∂2ū

∂t̄2
= ∇̄ · σ̄. (1.134)

In linear elasticity, the Cauchy stress tensor is symmetric26 and is dictated by Hooke’s

law, which may be written in component form as

σ̄ij = C̄ijklεkl, (1.135)

or εij = D̄ijklσ̄kl, where the fourth order tensors C̄ijkl, D̄ijkl are the elastic moduli and

compliance tensors. In the particular case in which C̄ijkl, D̄ijkl and ρ̄0 are independent

of spatial coordinates, the materials are said to be homogeneous. The symmetries

of the stress/strain tensor reduce the number of independent coefficients from the

apparent 34 to 21, which are in general determined experimentally. Furthermore, in

this thesis we will mainly be focusing on isotropic media whose material properties

have no preferred direction. This assumption further reduces to the simple form

C̄ijkl = λ̄δijδkl + µ̄(δikδjl + δilδjk), (1.136)

so that there are only two physical constants present λ̄, µ̄ commonly known as Lamé

constants which have units of Pascals. Upon substitution of (1.136) into (1.135),

Hooke’s law simply becomes

σ̄ij = λ̄δijεkk + 2µ̄εij = K̄δijεkk + 2µ̄

(
εij −

1

3
δijεkk

)
. (1.137)

It is clear that if we let i = j, (1.137) becomes

σ̄ii = (3λ̄+ 2µ̄)εii = 3K̄εii, (1.138)

26This can be shown directly by the consideration of conservation of angular momentum of a
material particle [Marsden and Hughes, 1994].
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where K̄ is commonly known as the material’s bulk modulus. In fact, this can be

seen by direct comparison of (1.138) with the ideal fluid relation (1.3) which gives

p̄ = −K̄εii. Since εii represents a volume change (also referred to as the dilation), and

hydrostatic pressure reduces the volume of a body, we must have27 K̄ > 0. On the

other hand, by considering a particular state of simple shear so that e.g. σ̄12 = 2µ̄ε12

is the only non-zero component of stress, experiments confirm that σ̄12 and ε12 have

in fact the same direction and so it is well established that µ̄ > 0. This easily mea-

surable quantity is therefore known as the shear modulus. Further simple experiments

involving simple extension of thin rods can give rise to the (non-dimensional) Poisson’s

ratio ν and Young’s modulus Ē ≥ 0, which often appear in the governing equations

due to their straightforward physical interpretation. We can obtain further constraints

on ν by using the relationships from Table 1.1, where we provide useful relationships

between the various moduli. Indeed, we note that as K̄ → ∞ the Poisson’s ratio

approaches ν → 0.5 which in turn implies that the material becomes increasingly in-

compressible (λ̄→ ∞) and µ̄→ Ē/3. On the other hand, ν → −1 results in µ̄, λ̄→ ∞,

and therefore physical materials are constrained by −1 < ν ≤ 0.5. Note that from

substituting (1.138) into (1.137) we can write

εij = D̄ijklσ̄kl =
1

2µ̄
σ̄ij −

λ̄

2µ̄(3λ̄+ 2µ̄)
σ̄kkδij, (1.139)

and hence the corresponding isotropic compliance tensor is given by

D̄ijkl =
1

4µ̄
(δikδjl + δilδjk)−

λ̄

2µ̄(3λ̄+ 2µ̄)
δijδkl. (1.140)

Following the fact obtained above that (3λ̄ + 2µ̄), µ̄ > 0 it is clear from (1.139) that

the strain can be uniquely determined.

Finally, if we substitute the isotropic version of Hooke’s law (1.137) into the conser-

vation of momentum equation (1.134) we obtain the (unforced) Navier-Lamé equations

which governs (isotropic) linear elasticity, namely

(λ̄+ 2µ̄)∇̄
(
∇̄ · ū

)
− µ̄∇̄ × ∇̄ × ū = ρ̄0

∂2ū

∂t̄2
, (1.141)

which will be analysed shortly. We note that although often unmentioned, it is im-

plicitly assumed in this theory that heat conduction within the solids in consideration

27And trivially 3K̄ = 3λ̄+ 2µ̄ > 0, which is used later.
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Independent pair Ē, ν Ē, µ̄ λ̄, µ̄

λ̄ Ēν
(1+ν)(1−2ν)

µ̄(Ē−2µ̄)

3µ̄−Ē λ̄

µ̄ Ē
2(1+ν)

µ̄ µ̄

Ē Ē Ē µ̄(3λ̄+2µ̄)

λ̄+µ̄

K̄ Ē
3(1−2ν)

µ̄Ē
3(3µ̄−Ē)

λ̄+ 2
3
µ̄

ν ν Ē−2µ̄
2µ̄

λ̄
2(λ̄+µ̄)

Table 1.1: Relationships among isotropic elastic coefficients for commonly used inde-
pendent pairs, following Achenbach [2012].

occurs slowly, so that the motion can be treated as adiabatic (as for ideal fluids).

As we have seen, for a linear theory of homogeneous media this in turn implies that

the entropy equation (1.10) satisfies h̄ = h̄0, i.e. it remains constant and as a result

the thermodynamics need not be considered since the equation of energy reduces to

∇̄2θ = 0, which is entirely uncoupled (i.e. independent) of the solid’s motion [Nowacki,

2013]. As a consequence of this, the material constants arising from the above discus-

sion are measured in an adiabatic state. This distinction is often minimal and can be

ignored for solid media, but it can be paramount when employing generalised elastic

theories for e.g. fluid media which will be done in this thesis, as will be explained

in detail in Chapter 3. The particular relations will become clear once thermo-elastic

effects are incorporated in Section 1.4.2.

Non-dimensionalisation

Again choosing a length-scale L̄ and a characteristic (wave) speed c̄□ (length per unit

time), we non-dimensionalise the relevant quantities appearing in our equations via

(u,x) =
(ū, x̄)

L̄ , t =
c̄□
L̄ t̄, (D,C,σ, λ, µ, E,K) =

(D̄, C̄, σ̄, λ̄, µ̄, Ē, K̄)

ρ̄0c̄2□
, (1.142)

which implies that∇ = L̄∇̄ noting that the bars have been dropped in non-dimensional

quantities.

Body waves in isotropic elastic solids

We next show that the Navier-Lamé equations (1.141) can be reduced to a set of two

separate wave equations giving rise to compressional and shear waves. We introduce
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the Helmholtz potentials ϕ,Φ such that (ϕ,Φ) = (ϕ̄, Φ̄)/L̄2 with

u = ∇ϕ+∇×Φ, ∇ ·Φ = 0 (1.143)

where the choice for the second condition is commonly used [Achenbach, 2012], and

the need for an extra condition is to ensure we obtain unique displacements (since e.g.

in 3D ϕ,Φ are four components, for the three components of the displacement vector

u). Direct substitution of (1.143) into (1.141) then gives

∇
{
(λ+ 2µ)∇2ϕ− ∂2ϕ

∂t2

}
+∇×

{
µ∇2Φ− ∂2Φ

∂t2

}
= 0, (1.144)

where we have used the identity (1.59) and the fact that ∇ · ∇ × u = 0. It is clear

that if we independently satisfy

(
λ̄+ 2µ̄

ρ̄0c̄2□

)
∇2ϕ =

∂2ϕ

∂t2
, (1.145a)

(
µ̄

ρ̄0c̄2□

)
∇2Φ =

∂2Φ

∂t2
, (1.145b)

the governing equation (1.144) is also automatically satisfied. In order for the dimen-

sions to agree, it is clear that the quantities in brackets must be a ratio of squares of

speeds, so we define the non-dimensional wave-speeds as (cL, cS) = (c̄L, c̄S)/c̄□ where

c̄L =

√
λ̄+ 2µ̄

ρ̄0
, (1.146a)

c̄S =

√
µ̄

ρ̄0
, (1.146b)

where the subscripts ‘L, S’ are for longitudinal and shear respectively. If we assume

time harmonicity of the dynamic fields with e−iωt (ω = L̄ω̄/c̄□) as we have been doing

throughout

{u, ϕ,Φ,σ, ε} = Re{{û, ϕ̂, Φ̂, σ̂, ε̂}(x, ω)e−iωt}, (1.147)

it is clear that the wave equations (1.145) reduce to two Helmholtz equations

(
∇2 + k2L

)
ϕ̂ = 0

(
∇2 + k2S

)
Φ̂ = 0 (1.148)

where the non-dimensional longitudinal and shear wavenumbers satisfy (kL, kS) =

L̄(k̄L, k̄S) where

k̄L =

√
ρ̄0ω̄2

λ̄+ 2µ̄
=
ω̄

c̄L
, and k̄S =

√
ρ̄0ω̄2

µ̄
=
ω̄

c̄S
. (1.149)
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By considering plane wave solutions to (1.148) using (1.143) it is easy to see that ϕ is

associated to ‘P’ waves (as with P̂ in ideal acoustics, and Θ̂1, Θ̂2 in TVA), whereas Φ

gives rise to ‘S’ waves (as with Ω̂ in TVA, which has no analogue in ideal acoustics). Let

us consider a hypothetical situation in which time harmonic, plane waves propagate in

the (x, y) plane of a linearly isotropic medium, with displacements being independent

of the z direction orthogonal to the plane (∂/∂z = 0). In this case (1.143) gives, noting

(1.147) and writing Φ̂ = (Φ̂x, Φ̂y, Φ̂z)

ûx =
∂ϕ̂

∂x
+
∂Φ̂z

∂y
, ûy =

∂ϕ̂

∂y
− ∂Φ̂z

∂x
, (1.150a)

ûz = −∂Φ̂x

∂y
+
∂Φ̂y

∂x
,

∂Φ̂x

∂x
+
∂Φ̂y

∂y
= 0, (1.150b)

where ϕ̂, Φ̂ must satisfy (1.149). We now note from (1.150a) that the ‘in-plane’ dis-

placements ûx, ûy only depend upon ϕ̂ and Φ̂z and correspondingly so do the stresses

σ̂11, σ̂22, σ̂12 (from (1.137)), whereas ûz and σ̂23 (σ̂13 = 0) are dependent only on Φ̂x,

Φ̂y (1.150b). Moreover, since ϕ̂, Φ̂x, Φ̂y, Φ̂z are each governed by a scalar-valued wave

equation (1.149) the motion in consideration can be interpreted as two separate (i.e.

uncoupled) wave propagation problems. One constitutes plane-strain motion where

the ‘in-plane’ displacements satisfy ûx, ûy ̸= 0, but the ‘out of plane’ displacement

vanishes ûz = ∂/∂z = 0 which concerns ‘P, SV’ waves, and an additional complemen-

tary situation in which ûz ̸= 0 but ûx = ûy = ∂/∂z = 0 which focuses on ‘SH’ waves.

More concretely, if we denote the displacement associated to either of these modes by

an amplitude vector A□ and propagation vector k□n such that

u = ℜ{A□ exp (ik□n · x− ωt)}, n = n1ex + n2ey, (1.151)

with (ex, ey, ez) representing unit vectors along the Cartesian axes, the three different

types of (body) waves satisfy

P Waves : A□ = AP , k□ = kL, AP · n = ‘non-zero constant’ (1.152a)

SV Waves : A□ = ASV , k□ = kS, ASV · n = 0, ASV = ez × n, (1.152b)

SH Waves : A□ = ASH , k□ = kS, ASH · n = 0, ASH = ez. (1.152c)

When ‘SH’ waves are incident on a boundary, it can be shown that the reflected

motion will also be in the form of ‘SH’ waves [Achenbach, 2012]. On the contrary
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when either ‘P’ or ‘SV’ waves are incident on a boundary, the reflected field will in

general be composed of both ‘P’ and ‘SV’ waves, leading to mode conversion. This is

also the case for TVA fluids, recall that in Section 1.3 we observed that an incident

‘P’ (dominated) wave Θ̂2 on a half-space in the (x, y) plane gives rise to a reflected SV

wave Ω̂ez (as well as a reflected thermal dominated mode Θ̂1).

In this thesis we will mainly restrict attention to 2D configurations, and hence it is

the ‘P-SV’ problem that is considered or ‘P-T-SV’ if we include ‘T’ for thermal modes

(as we saw in Section 1.3 for TVA fluids). In order to do so for solids however, we

must first include these effects in our constitutive model, which we briefly discuss in

Section 1.4.2 and analyse in more detail in Chapter 3.

As we will see throughout this thesis, under certain circumstances, combinations

of these body waves can give rise to surface waves that propagate along the interface

between two differing media which may be a fluid, a (different) solid or even a vacuum.

The latter gives rise to Rayleigh waves and their appearance is discussed in Section

1.5.3. Fluid-solid interfaces give rise to Scholte waves which will be analysed in detail

in Chapters 2, 4.

Boundary Conditions

The classical associated types of BCs to be satisfied in the boundaries of elastic media

are similar to those described for acoustic media in Section 1.2.1. Generally, assuming

the boundary of the (finite) elastic region is given by ∂D they can be summarized as

• Dirichlet BCs, where the displacement is prescribed, so that e.g. u = u0 on

∂D, where u0 is given. In the special case of u0 = 0 the boundary is said to be

clamped.

• Neumann BCs, where the traction vector ti = σijnj is prescribed on the boundary

with unit normal n, i.e. t = t0 on ∂D where t0 is known. Note from (1.137) that

these conditions are in fact on the spatial derivatives of u (and hence Neumann).

Traction-free BCs correspond to the particular case for which t0= 0.

Naturally, Robin BCs can also be formulated by e.g. considering an elastic bedding,

but these are considerably more rare and won’t be considered in this thesis. Finally,
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Figure 1.10: Schematic representation of the strain response to a creep recovery test.
(Left) A sudden loading of the material occurs at t0 and the stress remains constant
σ0 up until t1. (Right) The resulting strain of the sample as a consequence of the
constant stress loading. Of particular interest is the behaviour in the strain for t > t1
which cannot be predicted with an elastic theory.

in the particular case that two elastic solids are in perfect contact, it must be ensured

that continuity of displacement and traction are satisfied on the boundary.

1.4.2 Further physical dissipative effects

Having introduced the equations governing (isotropic) linearly elastic solids and its

associated types of wave motion, here we simply suggest with fewer details how these

equations are generalised with the consideration of further physical effects. Detailed

descriptions of the theory of viscoelasticity are given by Hunter [1976], Christensen

[2012], Bland [2016] whereas for thermoelasticity the author found the treatments in

Boley and Weiner [2012] and Nowacki [2013] very useful, although the original work

dates back to the classical paper from Biot [1956].

Viscoelasticity (VE)

Viscoelastic effects are often introduced in terms of one dimensional mechanical models

that can be interpreted as different arrangements of springs and dashpots, [Borcherdt,

2009, Bland, 2016]. This gives a clear intuitive understanding of the phenomena of

creep strain and stress relaxation which are the fundamental properties encountered

in viscoelastic media. Here we will simply give a brief physical explanation of these

terms before providing the general equation that will be used in order to capture these

effects in three dimensions.
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Figure 1.11: Schematic representation of the stress response to a stress relaxation test.
(Left) A particular material is strained at t0 and is held at that constant value ε0 over
time. (Right) Resulting stress to the constant applied strain. It is observed that the
stress required to keep the material at constant strain decreases over time from its
initial value σ0, from which the term stress relaxation originates.

Viscoelastic materials are often characterised through the nature of their response

to a ‘suddenly applied’ uniform distribution of stress or strain in a particular mode

of deformation. The former are commonly known as creep recovery tests which are

depicted in Figure 1.10, noting that depending on the material the ‘creeping’ behaviour

exhibited for t > t1 in the figure tends to a number which may or may not be zero.

On the other hand, in stress relaxation tests one observes the material’s behaviour

in stress to a constant applied strain, as illustrated in Figure 1.11. Mathematically,

this can be captured in terms of hereditary integrals which span over the past history

of the deformation thanks to Boltzmann’s superposition principle [Boltzmann, 1874]

which ultimately results in (1.137) being replaced by [Christensen, 2012]

σ̄ij(t̄) =

ˆ t̄

−∞
2µ̄(t̄− T̄)

∂eij(T̄)

∂T̄
dT̄+

(ˆ t̄

−∞
K̄(t̄− T̄)

∂εkk(T̄)

∂T̄
dT̄

)
δij, (1.153)

where we have introduced eij in order to denote the non-diagonal terms of the strain

tensor i.e. eij = εij−εkkδij/3. Equation (1.153) characterises linear, isothermal, homo-

geneous, isotropic, viscoelastic solids and we note that the key difference with (1.137) is

that the shear and bulk modulus are now in general functions of time and are referred

to as relaxation functions following the behaviour from Figure 1.11. Indeed, consider

a hypothetical (shear like) deformation in which e12 is the only non-zero component

of strain which follows a Heaviside step function e12 = H(t̄). Direct substitution into

(1.153) then yields (by the properties of the delta function) that σ̄12 = 2µ̄(t̄), so that

the associated stress component to this mode of deformation is precisely represented
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by 2µ̄(t̄) (from which the name ‘relaxation function’ arises). Naturally, as for linear

elastic media, it is also possible to represent strain in terms of stress giving rise to creep

functions which can be easily related to relaxation functions via Laplace transforms

[Hunter, 1976]. A formal description on how to obtain (1.153) from first principles

including the functional analytic assumptions is given in Christensen [2012].

Note that this theory is attributed to isothermal conditions which assume that

all deformations satisfy T̄ = T̄0 so that the energy balance equation is satisfied, al-

though technically the second law of thermodynamics gives further restrictions on the

type of time histories of the moduli [Christensen, 2012]. Assuming the moduli are

physical (such as those commonly found in experiments) this theory reduces to the

single (vectorial) equation of conservation of momentum which is obtained by simply

substituting (1.153) into (1.134). Despite the natural analytic complexities arising

from the time dependence in (1.153), under time harmonic conditions it is simple to

show that a decomposition equivalent to that of linear elasticity (which led to (1.148),

(1.149)) is possible, with the difference being that the elastic moduli become func-

tions of frequency i.e. µ̄(ω̄), λ̄(ω̄) as we will shown in Chapters 3, 4. In fact, this

observation leads to the elastic-viscoelastic correspondence principle for steady state

conditions, which allows the consideration of a viscoelastic problem as an elastic prob-

lem with complex valued (frequency dependent) material parameters provided certain

conditions are satisfied (see Bland [2016] for a detailed discussion on these conditions).

In practice, the frequency dependence of the moduli is often obtained by fit-

ting experimental results to a particular model (such as the Kelvin-Voigt or Maxwell

[Borcherdt, 2009]) with certain fixed parameters, both for homogeneous materials (e.g.

Favretto-Anrès [1996] who study synthetic resins) and more complex media such as

metamaterials (e.g. Fernández-Maŕın et al. [2019] for an aerogel-based metasurface).

Although this simple characterisation is often sufficient for many works and certainly

for ‘proof of concept’ style studies, the accuracy of some commonly used models is

restricted to certain frequency ranges outside of which important effects such as stress

relaxation or creep compliance become poorly approximated. In this thesis we shall

concentrate on accommodating both the effects of creep compliance and stress relax-

ation, with emphasis on the latter which is generally predominant in the low frequency

range [Liao and Wells, 2006].
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In Chapter 3 we shall discuss how to include these effects with more detail and in

Chapter 4 we will observe their possible impact on some canonical problems involving

slits and plates.

Thermoelasticity (TE)

Unlike the previously considered theory for viscoelasticity whose derivation is reliant

on thermodynamically isothermal conditions, here the coupling between the absolute

temperature T̄ and the solid’s deformation σ̄ is taken into account.

Together with our geometric linearity assumptions based on the small magnitudes

of deformation used in order to derive the linearly elastic theory, here it is assumed

that the temperature difference T̄ − T̄0 accompanying the deformation is also small i.e.

θ = (T̄ − T̄0)/T̄0 ≪ 1 (and of the same order as strain εij). Furthermore, the material

parameters both elastic (such as the moduli in Table 1.1) and thermal are assumed

to be independent of temperature and strain (this is a requirement for a linear theory

[Christensen and Naghdi, 1967]). The “point of departure” in comparison with the

adiabatic theory from Section 1.4.1 lies in the conservation of energy equation and

entropy production i.e. the first and second law of thermodynamics (equivalent to

what we saw in order to go from ideal acoustics to TVA in Sections 1.2.1, 1.2.2). By

expanding out the divergence term involving stress in the general energy equation (1.8),

writing it in terms of displacement and using the symmetries from (1.133) following

our linearity assumptions, the energy equation reduces to [Nowacki, 2013]

ρ̄0
∂Ē
∂t̄

= σ̄ij
∂εij
∂t̄

− ∂q̄i
∂x̄i

, (1.154)

whereas the second law of thermodynamics in this context is often written in terms

of the Clausius-Duhem inequality which under our assumptions may be written as28

[Christensen, 2012]

ρ̄0T̄
∂h̄

∂t̄
+
∂q̄i
∂x̄i

≥
(
q̄i
∂T̄

∂x̄i

)
/T̄ . (1.155)

Following Boley and Weiner [2012], at this stage it is useful to introduce the Helmholtz

28Note that in the case of TVA fluids, the equations of state are in agreement with the second law
[Pierce et al., 1981], so that this inequality need not be considered.
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free energy29 (per unit mass) Ψ̄

Ψ̄(εij, T̄ ) = Ē − T̄ h̄, (1.156)

so that on combining (1.154), (1.155) together with (1.156) we may finally arrive at

(in symbolic form)

(
σ̄ − ρ̄0

∂Ψ̄

∂ε

)
∂ε

∂t̄
−
(
∂Ψ̄

∂T̄
+ h̄

)
ρ̄0
∂T̄

∂t̄
− q̄ · ∇̄T̄

T̄
≥ 0, (1.157)

which must be satisfied for arbitrary deformations (within the implicit constraints of

our linearised theory). Considerations of specific types of deformations as described in

detail in e.g. Coleman and Noll [1963] give that for thermoelasticity we must in fact

have

σ̄ = ρ̄0
∂Ψ̄

∂ε
, and h̄ = −∂Ψ̄

∂T̄
, (1.158)

which together with Fourier’s law of heat conduction q̄i = −K̄∂T̄ /∂x̄i (as for TVA)

ensures that (1.157) is always satisfied (since K̄ > 0). It is therefore clear from (1.158)

that the remaining task is to obtain the functional form of Ψ̄ which can be done

by expanding it to second order around a constant state of no strain and constant

temperature i.e. Ψ̄(εij = 0, T̄ = T̄0). We do not do this explicitly here to avoid

repetition since it is discussed in detail in Section 3.2, but the key thing to note is that

this expansion is about an isothermal state. With this the Cauchy stress and entropy

(1.158) become

σ̄ij =
(
εkk − ᾱ(T̄ − T̄0)

)
K̄δij + 2µ̄

(
εij −

1

3
δijεkk

)
, (1.159a)

h̄ = h̄0 +
c̄v
T̄0

(T̄ − T̄0) +
ᾱK̄

ρ̄0
εkk, (1.159b)

where we note that the extra parameters in (1.159) namely ᾱ, c̄v previously defined

for fluids (1.19), (1.43) are defined under the current context equivalently as

c̄v = T̄0

(
∂h̄

∂T̄

)

ε=0

, ᾱ =

(
∂εkk
∂T̄

)

ε=0

. (1.160)

The energy equation (1.154) then reduces to the forced diffusion equation

K̄∇̄2θ − ρ̄0c̄v
∂θ

∂t̄
= ᾱK̄

∂εkk
∂t̄

, (1.161)

29The Helmholtz energy is the Legendre transformation of the internal energy Ē , in which tem-
perature replaces entropy as the independent variable. Note that equivalently it may be written in
terms of stress or entropy as given explicitly in Lubarda [2004].



1.4. MODELLING SOLIDS 69

similarly to what we observed for TVA (1.54). Equation (1.161) together with the

modified Navier-Lamé obtained when (1.159a) is substituted into the conservation of

momentum equation (1.134) constitute the governing equations for linear isotropic

(coupled) thermoelasticity. The decomposition will not be given here, but we will see

later that media governed by these equations support three types of wave motion, two

thermo-compressional fields and a shear wave which is independent of thermal effects

and purely real valued [Deresiewicz, 1957].

We finally want to show that care must be taken when directly comparing material

parameters from the current theory to those obtained earlier in (1.137). Given the

derivation above, if we now assume the deformations are adiabatic, by definition we

must have h̄ = h̄0, which from (1.159b) implies that

T̄ − T̄0 = − ᾱK̄T̄0
ρ̄0c̄v

εkk, (1.162)

and therefore the Cauchy stress tensor (1.159a) becomes (explicitly labelling the ther-

modynamic state of the elastic moduli)

σ̄ij =

{
K̄Iso

(
1 +

ᾱ2K̄IsoT̄0
ρ̄0c̄v

)}
εkkδij + 2µ̄Iso

(
εij −

1

3
δijεkk

)
. (1.163)

Direct comparison then with its adiabatic counterpart (1.137) (labelling its material

constants with a subscript ‘Adiab’ for distinction) gives that

K̄Adiab = K̄Iso

(
1 +

ᾱ2K̄IsoT̄0
ρ̄0c̄v

)
, and µ̄Adiab = µ̄Iso, (1.164)

and it is straightforward to show [Lubarda, 2004] that the quantity in brackets in

(1.164) is equal to the ratio of specific heats γ as we saw for fluids, which can deviate

significantly from unity, implying that K̄Adiab and K̄Iso may have very different values.

1.4.3 Towards Thermo-Visco-Elasticity (TVE)

Given the two extensions to the linear elasticity theory discussed above including

thermal and viscoelastic dissipative effects in each case, one may wonder about the

possibility to simultaneously include these two mechanisms of loss, giving rise to a

theory for linear thermo-visco-elasticity. This is discussed from first principles in

Chapter 3. Furthermore, below we explain how interest in Thermo-Visco-Elasticity

can arise by considering the interface of a TVA fluid with a general solid.
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Thermo-Visco-Acoustic (TVA) fluid

(A) Rigid medium with Thermal BC

(B) Visco-Elastic medium with Thermal BC

(C) Thermo-Elastic medium

(D) Thermo-Visco-Elastic medium

Figure 1.12: Hypothetical interface between a TVA fluid medium as described in
Section 1.2.2 (left) and a neighbouring solid medium (right). The letters (A)-(D)
represent different possible assumptions on the medium whose ‘pros and cons’ and
described in the text.

As explained in detail in Section 1.2.2, the derivation of the theory of thermo-visco-

acoustics (TVA) is based on (Newtonian) fluid media. A direct consequence of this

is that it will fail to characterize the wave propagation properties of solid materials

since the theory lacks fundamental elastic parameters such as the shear modulus which

are not generally present in (Newtonian) fluids. As we have seen, when a TVA fluid

is in direct contact with another medium, there will be an energy transfer due to

both mechanical and thermal means (1.87), (1.88b). If this neighbouring medium is a

solid, BCs can often be applied that capture most of the important effects and highly

simplify the problem. This was done for example in Section 1.3.2, where we assumed

the solid substrate was ‘rigid’ and the isothermal BC was applicable (based on the

argument just below (1.84)). Although this is a (very) good approximation for e.g.

standard air-metal interfaces, the same may not apply to heavier fluids (or lighter

solids). It is therefore useful to be able to have the analytical means to avoid these

kinds of simplifications. As we show below, this line of thought also gives rise to the

consideration of Thermo-Visco-Elasticity (TVE).

We next give some of the key advantages and disadvantages of different modelling

options to describe the behaviour of a solid neighbouring a TVA fluid, see Figure 1.12.

(A) Rigid medium with Thermal BC: Although convenient and very accurate for

many gases like air, ignoring the motion in the solid medium (i.e. the fluid-

structure interaction FSI) is too strong of an assumption for the type of media
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we want to consider in this thesis. An example for which this fails under standard

conditions is when the TVA fluid is water and the solid is e.g. steel, as we show30

explicitly in Section 2.2.

(B) Visco-Elastic medium with Thermal BC: In this case FSI effects are taken into

account and therefore this will allow to accurately model interfaces with much

smaller contrast/impedance. Furthermore, the inclusion of visco-elastic effects

implies that the dissipation of the medium due to viscosity is taken into account.

Nevertheless, as we have seen the motion in (visco) elastic media is uncoupled

from temperature, and therefore thermal dissipation within the solid medium

cannot be accounted for.

(C) Thermo-Elastic medium: This gives a much more accurate description of the

energy transfer and associated dissipation that can cover a very large range of

interfaces. Nevertheless, unlike in (B) losses due to viscosity are not taken into

account.

(D) Thermo-Visco-Elastic medium: With such media we would be able to resolve all

of the individual nuances of settings (A)-(C). Nevertheless, the issue we encounter

at this stage is that, to our surprise, these models have not been as developed as

the previously mentioned and general governing equations are not easily found

in the literature. We will therefore devote Chapter 3 to their study.

Furthermore, as we will show in Chapter 3, with a fully developed TVE theory for

continua, the TVA theory for fluids developed in Section 1.2.2 arises naturally as a

special case, which often allows us to avoid specifying the particular type of medium

in consideration prior to obtaining the solution to a given problem. For example, the

set-up from Figure 1.12 can be replaced by the more general setting of Figure 1.13,

which avoids any of the approximations described in (A)-(C) and also generalises (D)

to consider e.g. solid-fluid or solid-solid interfaces.

30Nevertheless, we will also show that under standard conditions thermal damping is usually neg-
ligible in underwater acoustics, which highly simplifies the problem.
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Thermo-Visco-Elastic (TVE)

Medium 1 Medium 2

Thermo-Visco-Elastic (TVE)

Figure 1.13: Possible generalisation of the set-up in Figure 1.12 with a fully developed
TVE theory. At the interface between the two TVE media the standard continuity
conditions (1.79)-(1.82) must be satisfied, which avoid any of the approximations in-
troduced with (A)-(C). Furthermore, as we will see, there is no need to define medium
1 as a TVA fluid, instead, this can be specified once the general solution is obtained.

1.5 Analysing dispersion relations

It is a common theme in this thesis (particularly in Chapters 2, 4) to analyse the be-

haviour of dispersion equations which are generally non-linear, complex valued equa-

tions relating wavenumber with frequency, and encapsulate all the properties of wave–

type solutions to a particular system. Due to the complexity of these expressions in

some instances, it is convenient to have a visualization tool in order to understand

the main features of the functions that lead to these equations such as the zeros that

represent the required roots, and the different types of singularities which are usually

in the form of poles and branch cuts.

1.5.1 Complex function visualisation

These functions are in general of the form f : C → C so that we would require a 4D vi-

sualisation, (or 2 3D visualisation for the real and imaginary parts). Instead, following

Wegert [2012] we choose a visualisation which assigns a particular (unique) HSV hue

to a corresponding complex valued argument, and is implemented in both matlab

and Mathematica. With this, we are effectively trying to get as much information as

we can by simply looking at the phase arg (f(z)), which is often enough to identify the

required behaviour. An illustration is given in Figure 1.14, where we show a first order

zero (z = 0) given by the identity map (left) and a single branch cut from a square
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Figure 1.14: Examples of phase portraits for the identity map in the complex plane
z → z (left), and the complex square root function z → √

z (right). In both plots we
are assuming the principal branch so that −π ≤ arg(z) < π and −π

2
≤ arg(

√
z), < π

2
.

The various colours indicate different values of the arguments: e.g. red corresponds
to a zero argument (real value), cyan corresponds to an argument of ±π and so on.

root function (right). Note that the particular branch definition (Riemann sheet) is

important for consistency between the colours, which has physical consequences.

1.5.2 Obtaining the roots

Throughout this thesis, the roots of the dispersion equations are generally calculated

using the matlab [version 9.8.0.556344 (R2017a) and onwards] command fsolve, which

finds the local zero of a function close to a given starting point specified by the user.

Generally there is a wide range of admissible values for the starting point which makes

it easy to assign for the user given some basic prior knowledge of the spectrum of the

equation in consideration, which is provided by the phase plots (as in Figure 1.14).

Note that although this simple method has proved to be successful in all situations

encountered in this work, particular care must be taken when two or more roots are

close to one another and in the presence of a root near a branch cut. It must also be

ensured that the general behaviour of the function away from the root is scaled such

that it is significantly greater from the specified tolerance, whose default value is given

by 10−6 (further details can be found by simply typing “help fsolve” on the matlab

command window).

We next focus our attention to a particular example consisting of the physically



74 CHAPTER 1. BACKGROUND

relevant Rayleigh dispersion equation.

1.5.3 Example: The elastic Rayleigh Dispersion Equation

In order to arrive at the Rayleigh dispersion equation (DE) we consider a two-dimensional

homogeneous semi-infinite linearly elastic medium occupying the half-space y ≤ 0,

where the boundary at y = 0 with unit normal ey is subject to a traction-free con-

dition. We assume the motion to be invariant in the z direction, so that we have a

plain-strain problem where all the wave motion occurs in the (x, y) plane and corre-

spondingly uz, ∂/∂z = 0. We will further assume time-harmonicity in the form (1.147)

so that the governing equations reduce to solving (1.148) which are both scalar valued

since due to our assumptions Φ̂ = Φ̂zez, and the associated (non-zero) displacements

are given by (1.150a). We therefore seek for travelling plane wave solutions of the form

ϕ̂ = P exp {γLy + ikx}, Φ̂z = S exp {γSy + ikx}, (1.165)

where

γL = (k2 − k2L)
1/2, γS = (k2 − k2S)

1/2, (1.166)

for some complex amplitudes P, S. In order to obtain a physical solution we must

ensure that the solutions decay as we move away from the boundary (y → −∞),

which given (1.165) implies that we should have Re{γL},Re{γS} ≥ 0 and this choice

will depend on the branch definitions of the square root functions appearing in (1.166),

which are further discussed below. Since the surface is free of tractions, on y = 0 we

have that t̂i = σ̂i2n2 = 0 which in turn implies that we must satisfy σ̂12 = σ̂22 = 0 on

y = 0, which results in

 2ikγLµ

(
2k2 − kS

2
)
µ

2k2µ− k2L(λ+ 2µ) −2ikγSµ


 .


 P

S


 =


 0

0


 , (1.167)

after using (1.137) recalling (1.133). Setting the determinant of the matrix to zero, the

condition for nontrivial solution gives (upon rewriting the elastic constant in terms of

wavenumbers using (1.149) and rearranging)

(2k2 − k2S)
2 − 4k2γLγS = 0, (1.168)

which is the well known Rayleigh DE. It is worth noting how our original problem

consisting of two PDE’s coupling through the BCs has now reduced to finding the
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roots k of a non-linear scalar valued equation, where we will use the simple root

finding technique outlined above in Section 1.5.2. However, in order to examine the

roots of (1.168) the branches γL, γS must be defined carefully. In order to illustrate

this, let us write the radicals (1.166) in the two following distinct forms

γL = i
√
k2L − k2, γS = i

√
k2S − k2, (1.169a)

γL =
√
i(k − kL)

√
−i(k + kL), γS =

√
i(k − kS)

√
−i(k + kS), (1.169b)

and consider the subsequent effects on (1.168). This is illustrated in Figure 1.15,

where we note that matlab uses the standard principal branch for the individual

square roots (as in the right of Figure 1.14). Due to the k → −k symmetry of the

complex k plane, it is sufficient to analyse the region corresponding to Re{k} ≥ 0.

The branch points corresponding to k = kL, kS (kS > kL) are denoted by the black

crosses, from which the branch cuts (dotted lines) emanate. In particular, we observe

that the region of the complex plane given by kL ≤ Re{k} ≤ kS, and Im{k} ≥ 0 is

completely different in the two cases. In terms of the zeros, we see in both cases the

presence of a real valued root kR say, slightly larger than kS i.e. satisfying kR > kS

(denoted by a black circle). In Figure 1.15b) however, we also see the presence of a

complex valued root closer to kL, which is not observed in Figure 1.15a) since the root

lies in the region of the complex plane where the resulting equation differs as a result

of our branch choice.

In order to further investigate this, it is useful to visualize the corresponding motion

of the elastic body under these two different solutions, which we obtain numerically

as explained above. Substituting (1.165) into (1.150a) then explicitly gives

 ûx

ûy


 =


 ikP eγLy+ikx + γSSe

γSy+ikx

γLP e
γLy+ikx − ikSeγSy+ikx


 , (1.170)

which are illustrated as heatmaps in Figure 1.16 (where we have let P = S = 1 in

(1.170)). We see that the motion for the real valued root Figure 1.16 a) is confined

to the boundary y = 0 and decays away in y < 0 as originally described by Rayleigh

[Rayleigh, 1896], whereas for the root in Figure 1.16 b) the energy seems to flow from

the boundary into the solid, with a decay along the x-direction but no decrease for

y ≪ 0. As a result, for the latter root we have Re{γS} < 0 and therefore does not meet

the criterion of physical causality, despite it nevertheless being a mathematical solution
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(a) Branches according to (1.169a).

(b) Branches following (1.169b).

Figure 1.15: Phase portraits for the Rayleigh Dispersion Equation (1.168) according to
the two different branch definitions, noting the k → −k symmetry. The superimposed
crosses (x) correspond to the branch points, the dotted lines (–) represent the branch
cuts, and the circles (◦) denote the zeros. We observe that for (b) an extra zero arises
which is not present in (a).
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(a) Classical real valued Rayleigh root confined to
y = 0 appearing in Figures 1.15 a),b).

(b) Auxiliary complex valued solution to the
Rayleigh DE observed in Figures 1.15 b) only.

Figure 1.16: Heatmaps for the displacement fields (1.170) for the Rayleigh DE, where
k is given by the two roots found on Figure (1.15) and the units are arbitrary.

to (1.168). These non-causal roots lying on the various Riemann sheets can play an

important role in more complex scattering problems, where the solutions are often

formulated as integrals in the complex plane and therefore extra care must be taken

in the choice of branches, see e.g. Harris [2001] for a general description and Schröder

and Scott Jr [2001], Harris and Achenbach [2002] for a particular case involving the

set-up described here but forced by a line source on the surface. It is further shown in

Schröder and Scott Jr [2001] that non-causal roots can be physically excited, although

under much more specific scenarios.

With regards to the dispersion equations analysed in this thesis, we shall mostly

be considering the influence of thermo-visco-elastic effects on well known physical

solutions to specific set-ups such as half-spaces (like here), slits and plates. As a

result, we must simply ensure that the choice of cuts obeys causality and is such that

our root of interest does not jump the given Riemann sheet of choice.



Chapter 2

Thermo-viscous damping of

acoustic waves in narrow channels:

A comparison of effects in air and

water

2.1 Introduction

This section consists of an application of the model presented in Section 1.2.2 to the

study of damping properties in a fluid-filled narrow channel for a number of different

physically relevant cases.

This work is included as a published copy of the paper Cotterill et al. [2018], in which

Erik Garćıa Neefjes is a co-author, together with Phil Cotterill, David Nigro, Ian David

Abrahams and William J. Parnell.

This paper provides quantitative answers to questions regarding visco-thermal prop-

agation in Newtonian fluids, with a focus on the differences in attenuation properties

between air and water. In the first part of this manuscript, we obtain dispersion rela-

tions arising in a thermo-viscous fluid filled rigid channel with different temperature

boundary conditions. In the isothermal case, we recover some well known solutions

78
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discussed by classical works such as Attenborough [1983], Stinson [1991] for an in-

finitely extending two-dimensional slit. Motivated by the study of the same problem

for higher density fluids such as water, we incorporate the compliance of the walls

by adding fluid structure interaction effects, and analyse the subsequent dispersion

relations. We show how this extra coupling between the fluid and the elastic solid can

result in a significant reduction in apparent phase speed as well as sound attenuation

compared to the rigid case.

Abrahams, Parnell and Cotterill conceived of and designed the outline of the study.

Cotterill and Nigro developed the initial theoretical aspects of the paper and initial

parameter studies. Garćıa Neefjes further developed the theoretical approach specif-

ically in order to better understand certain parameter regimes in the FSI problem

(part V from the paper in Section 2.2) and carried out extended parameters studies

as well as literature review. All authors contributed to the writing of the manuscript

and responded equally to the several queries and comments from the reviewers.

Section 2.2 consists of a copy of Cotterill et al. [2018], and we give some posterior

observations in the form of additional comments in Section 2.3. In most instances, it

has been intended to keep a consistent notation between the previous chapter and the

following manuscript. Nevertheless, there are some important changes which will be

introduced accordingly. Some of these include the fluid velocity v̄ ≡ ū , the coefficient

of thermal expansion α ≡ β, the ratio of specific heats γ ≡ A, and the adiabatic speed

of sound c̄A ≡ c̄0.

2.2 Published article: Cotterill, Nigro, Abrahams,

Garćıa-Neefjes & Parnell (2018)
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Recent work in the acoustic metamaterial literature has focused on the design of metasurfaces that

are capable of absorbing sound almost perfectly in narrow frequency ranges by coupling resonant

effects to visco-thermal damping within their microstructure. Understanding acoustic attenuation

mechanisms in narrow, viscous-fluid-filled channels is of fundamental importance in such applica-

tions. Motivated by recent work on acoustic propagation in narrow, air-filled channels, a theoretical

framework is presented that demonstrates the controlling mechanisms of acoustic propagation in

arbitrary Newtonian fluids, focusing on attenuation in air and water. For rigid-walled channels,

whose widths are on the order of Stokes’s boundary layer thickness, attenuation in air at 10 kHz can

be over 200 dB m�1; in water it is less than 37 dB m�1. However, in water, fluid-structure-interac-

tion effects can increase attenuation dramatically to over 77 dB m�1 for a steel-walled channel,

with a reduction in phase-speed approaching 70%. For rigid-walled channels, approximate analyti-

cal expressions for dispersion relations are presented that are in close agreement with exact solu-

tions over a broad range of frequencies, revealing explicitly the relationship between complex

phase-speed, frequency and channel width.
VC 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/1.5078528
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I. INTRODUCTION

Perforations in plates and structures have traditionally

been used as a sound manipulation tool (Estrada et al., 2008;

Leppington and Levine, 1973; Putra and Thompson, 2010)

with a significant breadth of work having been carried out

over the years, involving analytical, computational, and

experimental approaches. This research has been performed

mainly in order to study the influence of microstructure on

transmission and reflection of incident acoustic energy. In

recent years the term metasurface has been coined by the

metamaterials community, as a microstructured surface that

is capable of almost complete absorption of sound, usually

in a very narrowband manner with some of the microstruc-

ture proposed being quite exotic (Jim�enez et al., 2017;

Jim�enez et al., 2016). A classical related problem, still of

great importance and studied with significant interest, is the

problem of acoustic propagation through a screen with peri-

odic slits or channels (Christensen et al., 2008). The canoni-

cal problem of transmission through a single channel, slit, or

duct with rigid walls has been studied widely over the years

(Allard and Atalla, 2009; Gomperts and Kihlman, 1967;

Gompeters, 1964; Oldham and Zhao, 1993; Stinson and

Champoux, 1992; Wilson and Soroka, 1965). It is well-

known that resonances are set up within the channel,

associated with relations between the wavelength and the

length of the slit, save for what are known as end-correc-
tions. Although the term has not classically been employed,

more recently these resonances have been termed the Fabry-
Perot resonances, terminology that appears to have crossed

over from the electromagnetics community. Christensen

et al. (2008) provided a model for the emergence of such res-

onances associated with an inviscid fluid. As pointed out by

Ward et al. (2015), however, neglecting thermo-viscous

effects is a significant assumption, particularly at small

lengthscales and the latter authors showed that including

attenuation in-air results in the phase speed along a narrow

duct or channel being substantially reduced, even when the

channel width is an order of magnitude greater than the

boundary layer parameter �d� ¼
ffiffiffiffiffiffiffiffiffi
��=�x

p
. Here �� denotes

kinematic viscosity and �x is the radian frequency. In the pre-

sent analysis, we show that Stokes’s boundary layer thick-

ness �ds ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
2��=�x

p
� 9�d� is a better indicator than �d� of

the extent to which the channel-wall boundary layers disturb

the motion of the fluid; �d� underestimates, somewhat, the

true extent of the boundary layer.

More generally then, over the years it has been observed

that thermo-viscous boundary layer effects can have a signif-

icant impact upon the propagation of sound along narrow,

rigid-walled channels giving substantial acoustic absorption

within the audio frequency range in air. This phenomenon is

used routinely in the acoustics industry as a means to softena)Electronic mail: william.parnell@manchester.ac.uk
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boundaries and attenuate unwanted sound. Indeed, the propa-

gation of acoustic waves along channels, ducts, tubes, or slits

has been studied extensively over the years, with work dat-

ing back to the late nineteenth century. Helmholtz (1863)

studied the impact of viscosity and estimated the absorption

due to viscous effects. Kundt (1868) tested the theory experi-

mentally and noticed that absorption was higher than

expected, presumably due to thermal effects. Kirchhoff

(1868) introduced the general theory of thermo-visco acous-

tics based on the Navier-Stokes equations and the Fourier-

law of heat conduction for a perfect gas in a circular tube.

He also gave approximate expressions in the case of a wide
tube, i.e., when the radius is much larger than the viscous/

thermal boundary layer thickness. Rayleigh (1896) gave

approximate solutions for the narrow tube limit, i.e., when

the radius is much smaller than the viscous/thermal bound-

ary layer thickness and for the two-dimensional narrow

channel case. Zwikker and Kosten (1949) introduced an

approximate model for wide tubes that allowed for the deri-

vation of a simpler solution in which viscous and thermal

effects decoupled. Weston (1953), based on Kirchhoff’s

model, developed approximations for tubes of various diam-

eters (narrow, wide, and very wide). Tijdeman (1975)

rewrote Kirchhoff’s model in terms of non-dimensionalized

parameters, which allowed him to estimate the relative

importance of each term and to show that the two main fac-

tors involved are the reduced viscous wavenumber and the

reduced acoustic wavenumber. Bruneau et al. (1989) pre-

sented a general framework for a perfect gas in a bounded

domain; a general formula for the dispersion relation with a

no-slip boundary condition for the velocity and an isother-

mal boundary condition for the temperature is obtained and

applied to simple geometries. Stinson (1991) analyzed

Kirchhoff’s original model and showed that Zwikker and

Kosten’s solution is recovered in the appropriate limit. He

also extended Kirchhoff’s theory to tubes of arbitrary cross-

section. Beltman (1999a) provided an extensive literature

review on the various models and approximations developed

in thermo-viscous acoustics for a perfect gas. All those mod-

els were compared and their domain of validity was

assessed. Solutions for canonical problems for each approxi-

mate/exact model were also provided. In subsequent work,

this theory was then applied to a variety of engineering prob-

lems, such as the spherical resonator, the classic circular

tube, and a miniaturized acoustic transducer (Beltman,

1999b). The last model is of particular interest as it involved

a fluid-structure interaction problem.

It is clear that most, if not all, the literature above is

focused on a perfect gas. The study of thermo-viscous acous-

tic propagation in narrow water filled channels or slits
appears to be lacking although work has been done on the

viscous liquid-filled elastic tube, usually having relatively

thin walls. This area of research was initiated by Del Grosso

(1971) who considered multimode propagation in an inviscid

fluid-filled elastic tube. It has been followed up recently with

work that includes viscous effects, carried out in a number

of papers (Baik et al., 2010; Dokumaci, 2014; Elvira-Segura,

2000; Liangh and Scarton, 2002). We note, however, that

the frequency range considered in these works is generally

high since the studies are mainly associated with non-

destructive evaluation. The low frequency regime appears to

be unexplored territory.

The purpose of the analysis presented in this paper is

therefore two-fold, first to provide a general framework with

which to study thermo-viscous acoustic attenuation in nar-

row channels that is applicable to an arbitrary Newtonian

fluid. In particular, we wish to study the impact of thermo-

viscous effects upon dense fluids of low compressibility, for

which the perfect gas assumption is clearly inappropriate,

and to determine the extent to which boundary layer influen-

ces are felt throughout the channel both in air and in water.

Second, we wish to determine the conditions under which

viscous and thermal boundary effects may influence acoustic

propagation in water, when account is taken of the coupling

between water and a real (elastic) channel wall material. (A

pre-requisite to this study is the development of a theoretical

framework for a general Newtonian fluid.) In the present

study, we restrict our attention to the influence of thermo-

viscous effects upon the lowest order symmetric duct mode,

as only this mode would propagate along a narrow, rigid-

walled tube filled with an inviscid fluid; future studies will

consider higher-order modes.

In Sec. II we summarize the equations that arise when

Beltman’s analysis is extended to an arbitrary Newtonian fluid

by using the linearized, quasi-equilibrium equations of state for a

viscous fluid presented in Chapter 3 of Dunn et al. (2015),

thereby enabling the study of the impact of thermo-viscous

effects upon sound propagation in water. These equations are

then applied to study the propagation of sound in narrow rigid-

walled two-dimensional channels in Sec. III, where analytic

expressions are derived for the dispersion equations of natural

modes incorporating thermo-viscous effects. From this analysis,

we are able to determine the conditions under which thermo-

viscosity has a significant impact upon the propagation of guided

acoustic waves by examining the phase-speed and attenuation of

such waves along the channel for two different thermal boundary

conditions: insulating and conducting. In particular, we show

that the thermal expansion coefficient of the fluid has a signifi-

cant impact upon the relative influence of viscous and thermal

effects.

In Sec. IV we present results associated with propagation in

air and in water along rigid-walled channels, and consider the

different behavior of these two fluids. We show that their behav-

iors are captured by simple approximate analytic expressions for

the complex phase-speed that are valid up to the MHz frequency

range. We also compare our theoretical predictions to the in-air

measurements of Ward et al. (2015) and find that our results are

broadly consistent with their data, thereby confirming our analy-

sis, which should be valid for any simple (Newtonian) fluid.

Finally, in Sec. V, we consider acoustic coupling with compliant

boundaries. As is known this is particularly important in the

water-filled channel, unlike the air-filled case where all bound-

aries can, in general, be considered rigid. In particular, we show

that for narrow, water-filled channels that have widths of the

same order of magnitude as Stokes’s boundary layer thickness,

fluid-structure interaction has a dramatic impact upon the char-

acteristics of the fundamental acoustic mode of propagation.

Attenuation is increased by about 40 dB m–1 compared to the
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rigid-walled assumption and the phase speed is slowed by

almost 70%. We offer conclusions in Sec. VI.

Whilst variables and parameters employed herein are

defined in the text, where they are first encountered, a nota-

tion summary is provided in the Appendix for the conve-

nience of the reader.

II. GOVERNING EQUATIONS FOR THERMO-VISCOUS
ACOUSTICS

In this section, the equations governing linear thermo-

viscous acoustics are presented in non-dimensional form. By

combining these equations in the manner described by Beltman

(1999a), for time-harmonic propagation, the vorticity field is

shown to satisfy the Helmholtz equation and fractional tempera-

ture fluctuations of the fluid can be described by a pair of

Helmholtz equations. From these solutions the velocity and

pressure fields can be constructed. The study is restricted to two

dimensions, which is appropriate for the models of interest.

A. Thermo-viscous fluids

Below we state the linearized governing equations for

thermo-viscous fluids with dimensional variables and param-

eters having an over-bar and their non-dimensional counter-

parts being free of bars. In non-dimensional form then, these

equations are (see, e.g., Chapter 3 of Dunn et al., 2015)

@s

@t
þ $ � u ¼ 0; (1)

@u

@t
¼ �$pþ gr2uþ gþ g0ð Þ$ $ � uð Þ; (2)

@h
@t
� K

cp
r2h� b

cp

@p

@t
¼ 0; (3)

s ¼ p� b
cp

h; h ¼ 1

cp
bpþ hð Þ; (4)

where boldface symbols are used to denote vector quantities.

h denotes non-dimensionalized fluctuations of entropy per

unit mass, whilst p is the non-dimensional acoustic pressure.

They are defined by

p ¼ �p � �p0

�q0�c2
0

; h ¼
�T0

�c2
0

�h � �h0ð Þ: (5)

s and h are, respectively, the fractional fluctuations of den-

sity and temperature, i.e.,

s ¼ �q � �q0

�q0

; h ¼ �T � �T0ð Þ= �T0: (6)

In the above, �p; �q; �h, and �T denote, respectively, the fluctu-

ating (dimensional) pressure, density, entropy, and absolute

temperature of the fluid, with �p0; �q0; �h0, and �T 0 being their

equilibrium values (taken to be spatially invariant); �c0 is the

barotropic sound speed of the fluid. Other relations between

dimensional and non-dimensional variables are those for the

fluid particle velocity �u ¼ �c0u ¼ �c0 ðux; uy; 0Þ, Cartesian

variables ð�x; �yÞ ¼ �L ðx; yÞ where �L is a problem specific

length scale and time �t ¼ ð�L=�c0Þ t. Non-dimensional param-

eters are also introduced for convenience, in particular the

first, or shear, coefficient of viscosity: �g ¼ �q0�c0
�L g and sec-

ond coefficient of viscosity: �g0 ¼ �q0�c0
�L g0, noting that �g and

�g0 are related to the commonly used bulk viscosity, �gB,

through �gB ¼ �g0 þ ð2=3Þ�g. Furthermore, the thermodynamic

coefficients of conductivity �K, specific heat at constant pres-

sure �cp, and thermal expansion at constant pressure �b are

non-dimensionalized as follows:

K ¼
�T0

�K
�q0�c3

0
�L
; cp ¼

�T0

�c2
0

�cp; b ¼ �b �T0: (7)

Equation (2) is associated with a non-dimensional viscous

stress tensor, which, in index form, has an ijth component

(see, e.g., Chapter 41 of Feynman et al., 1965)

rij ¼ g
@ui

@xj
þ @uj

@xi

� �
þ g0dij

@uk

@xk
; (8)

where u1 � ux; u2 � uy; x1 � x; x2 � y, dij is the ijth com-

ponent of the Kronecker-delta tensor and we employ the

convention that repeated indices are summed over. The

dimensional stress is �rij ¼ �q0�c2
0rij.

B. Decomposition into vortex and
thermo-compression fields

Beltman (1999a) shows that the governing equations for

an ideal gas decouple into a vortex field, X, and two thermo-

compression fields, H1 and H2. We find this field description

to be valid in the more general case of an arbitrary Newtonian

fluid whose governing equations were described in the previous

section. The decomposition applied to an arbitrary Newtonian

fluid within the frequency domain is given next as well as the

relationships between X; H1; H2, and other variables.

Since the problem here is considered two-dimensional,

the vortex field can be written as X ¼ $� u ¼ k̂X, where k̂

indicates a unit vector pointing in the z-direction, and X is a

scalar function. X satisfies the diffusion equation

@X
@t
¼ gr2X; (9)

and is decoupled from the thermal and compression field-

variables. For harmonic excitation, Xðx;y; tÞ
¼ ~Xðx;y;xÞe�ixt, where x¼ �x �L=�c0 is the non-

dimensionalized frequency (or equivalently non-

dimensionalized acoustic wavenumber), and Eq. (9)

becomes the complex Helmholtz equation for ~X, i.e.,

r2 þ ix
g

� �
~X ¼ 0: (10)

In terms of dimensional parameters,

x
g
¼

�L
�d�

 !2

; (11)
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where �d� is the boundary layer parameter of Ward et al.
(2015) that was referred to in the Introduction.

Similarly, harmonic temperature fluctuations are written

as hðx; y; tÞ ¼ ~hðx; y;xÞe�ixt, where the following decompo-

sition is used for ~h:

~hðx; y;xÞ ¼ ~H1ðx; y;xÞ þ ~H2ðx; y;xÞ: (12)

~H1ðx; y;xÞ and ~H2ðx; y;xÞ each satisfy a Helmholtz equa-

tion, viz.,

ðr2 þ j2
1Þ ~H1 ¼ 0; ðr2 þ j2

2Þ ~H2 ¼ 0; (13)

where

j2
1 ¼ ix

1� ix fþACð Þ½ � þ S
2 1� ixfAð ÞC ;

j2
2 ¼ ix

1� ix fþACð Þ½ � � S
2 1� ixfAð ÞC ; (14)

with

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ix f�ACð Þ½ �2 � 4ix C A � 1ð Þ

q
;

A ¼ 1þ b2

cp
; C ¼ K

cp
; (15)

and f ¼ 2gþ g0 ¼ gB þ ð4=3Þg. C represents the non-

dimensionalized thermal diffusion coefficient. If in Eq. (14) and

the first of Eq. (15), A is replaced by the ratio of specific heats at

constant pressure and volume, the solution for an ideal gas is

recovered; see, for example, Stinson (1991) and Beltman (1999a).

It is readily shown for harmonic excitation, defining the

velocity uðx; y; tÞ ¼ ~uðx; y;xÞe�ixt, condensation sðx; y; tÞ
¼ ~sðx; y;xÞe�ixt and pressure pðx; y; tÞ ¼ ~pðx; y;xÞe�ixt,

that these harmonic variables can be defined in terms of
~X; ~H1 and ~H2 in the forms

ix~u¼ cp

2b
1� ix f�ACð Þ�S½ �$ ~H1

�
þ 1� ix f�ACð ÞþS½ �$ ~H2

�
þg$� k̂ ~X; (16)

~s ¼ cp

b
1þ i

ACj2
1

x

� �
~H1 þ 1þ i

ACj2
2

x

� �
~H2

� �
; (17)

~p ¼ cp

b
1þ i

Cj2
1

x

� �
~H1 þ 1þ i

Cj2
2

x

� �
~H2

� �
: (18)

Having summarized the governing equations and relations

between dependent field variables, we now move on to defin-

ing the problem of interest.

III. THERMO-VISCOUS ACOUSTIC PROPAGATION IN
NARROW CHANNELS WITH RIGID WALLS

In this section and with reference to Fig. 1, we examine

the behavior of the natural modes of propagation along an

infinitely-long parallel-sided channel, considering the impact of

frequency, and channel width in particular, upon phase-speed

and attenuation. The channel is aligned with the x-direction and

lies in j�yj � �L. Its width in the z-direction is considered to be

of infinite extent, and the motion of the fluid is considered to be

independent of �z. Hence, the problem is two dimensional, gov-

erned by the equations summarized in Sec. II.

We start by setting the characteristic length scale,
�L ¼ �L, i.e., equal to the half-width of the channel. Thus, in

non-dimensional coordinates, the channel lies in jyj � 1 and

is aligned along the x direction. Its walls are considered rigid

so that

~uðx; y ¼ 61;xÞ ¼ 0: (19)

Solutions are sought with the dependence eikx, where k may

be complex [with =ðkÞ 	 0] and its permissible values are

determined by the boundary conditions on the channel wall.

Here we concentrate upon natural modes possessing a sym-

metric pressure distribution about the centre-line of the chan-

nel. This case is of particular interest because, for an inviscid

fluid, only the lowest order symmetric mode is cut on at

channel widths and frequencies of interest; all other modes

are evanescent. For symmetric modes, we require ~pðx; y;xÞ
to be an even function of y. This requires ~s; ~h, and ~ux to be

even functions of y, whilst ~X and ~uy are odd. Hence our

basic k-space solutions for temperature and vorticity, which

we denote by ĥðk; y;xÞ ¼ Ĥ1ðk; y;xÞ þ Ĥ2ðk; y;xÞ, and

X̂ðk; y;xÞ, respectively, using the hat symbol to denote a k-

space function, take the forms

ĥðk;y;xÞ¼Bðk;xÞcoshðc1yÞþDðk;xÞcoshðc2yÞ; (20)

X̂ðk; y;xÞ ¼ Eðk;xÞsinhðayÞ; (21)

where c1¼ðk2�j2
1Þ

1=2;c2¼ðk2�j2
2Þ

1=2;a¼ðk2� ix=gÞ1=2
.

The functional forms of B, D, and E will clearly depend

upon the thermal properties of the channel walls. We now

consider two cases: thermally insulating walls and isother-

mal (perfectly conducting) walls.

In addition to Eq. (19), a thermally insulating channel
wall must also satisfy

@~h
@y

x; y ¼ 61;xð Þ ¼ 0; (22)

or its equivalent form in k-space. Imposing the boundary

conditions in Eqs. (19) and (22) upon the basic solutions

FIG. 1. Thermo-viscous acoustic propagation in a channel, running parallel

to the x axis and having rigid walls at y¼61.
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from Eqs. (20) and (21), noting Eq. (16), requires that for

natural modes of propagation along the channel, k must sat-

isfy the following dispersion equation:

k2tanhðaÞf 1� ixðf�ACÞ � S½ �c2tanhðc2Þ
� 1� ixðf�ACÞ þ S½ �c1tanhðc1Þ g
þ 2ac1c2S tanhðc1Þtanhðc2Þ ¼ 0: (23)

Temperature fluctuations vanish on a perfectly conduct-
ing channel wall whose temperature is maintained at the

equilibrium temperature of the fluid. Thus, the thermal

boundary condition for this case is

~hðx; y ¼ 61;xÞ ¼ 0; (24)

with the corresponding dispersion equation for symmetric
modes being

af 1� ixðf�ACÞ � S½ �c1tanhðc1Þ
� 1� ixðf�ACÞ þ S½ �c2tanhðc2Þg
þ 2k2S tanhðaÞ ¼ 0: (25)

A. The limit of zero thermal expansion

In Sec. IV below, we examine the numerical behavior of

the dispersion equation for typical values of the thermo-

viscous coefficients applicable to air and water. First, how-

ever, it is instructive to consider the limit of vanishingly

small thermal expansion, which is of particular relevance to

water.

It is clear from Eq. (4) that for a vanishingly small ther-

mal expansion coefficient, pressure and density variations

are decoupled from temperature fluctuations. That is as

b! 0,

s! p; h! h

cp
; (26)

and the acoustic (compressional) channel modes become

independent of thermal effects but may still be influenced by

the viscous boundary layer. In this limit, we see from Eq.

(15) that clearly A ¼ 1þ Oðb2Þ, and S ! 1� ixðf� CÞ
þOðb2Þ, whence Eqs. (23) and (25) acquire the following

common form:

Dvr ¼ k2tanhðaÞ � ac2tanhðc2Þ ¼ 0: (27)

Equation (27) is independent of c1 and hence j1, where in

the limit b! 0, j1 depends only upon thermal parameters

(and fluid density), indeed

j1 !
ffiffiffiffiffi
ix
C

r
1þ O b2

	 
� �
as b! 0; (28)

whilst

j2 !
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ixf
p 1þ O b2

	 
� �
as b! 0; (29)

which depends only upon viscous and acoustic parameters.

Furthermore, as b! 0, Eqs. (16) to (18) acquire the follow-

ing forms:

ix~u ! cp

b
1� ix f� Cð Þ½ �$ ~H2 þ g$� k~X; (30)

~s ! ~p ! cp

b
1� ix f� Cð Þ

1� ixf

� �
~H2: (31)

Clearly as b! 0; ~H2=b must remain bounded and ~H2 must

vanish, if the physical variables ~u; ~s and ~p are to remain

finite, whence from Eq. (12), ~h ! ~H1. Finally, using Eq.

(31) to eliminate ~H2 from Eq. (30), we see that

ix~u ! ð1� ixfÞ$~p þ g$� k ~X; (32)

which, if b is set to zero at the outset, follows directly from

Eqs. (1), (2), the first of Eq. (4), and the definition of X
[given just prior to Eq. (9)]. And we note that ~p now satisfies

r2 þ x2

1� ixf

� �
~p ¼ 0: (33)

In this limit, the visco-acoustic and thermal problems

appear to decouple completely, which of course cannot be the

case because viscous losses in the former problem cause ther-

mal heating of the fluid. This anomaly arises because non-

linear terms associated with viscous stresses were neglected in

the energy/heat equation [Eq. (3)]. In most circumstances, this

is perfectly acceptable, but in the limit b! 0, these non-

linear terms become the dominant source term of the heat

equation. Thus, in the limit b! 0, the visco-acoustic problem

can be solved without reference to thermal effects and the vis-

cous stresses from its solution lead to known, non-linear,

source terms in the thermal problem. We note, however, that

if non-linear effects are significant in the energy equation, it

may be necessary to revisit the form of the equations of state;

see, for example, Pierce (1978).

IV. IMPLEMENTATION FOR AIR AND WATER FILLED
CHANNELS

The theory is now implemented in the case of air and

water filled channels. Relevant parameters are listed in Table

I, taken from Dunn et al. (2015), and assumed independent

of frequency.

In Sec. IV A, we evaluate the phase speed and attenua-

tion of acoustic waves propagating along air-filled and

water-filled channels, by finding the lowest order roots of the

dispersion equations derived in Sec. III. The results are pre-

sented as a function of the channel width, �W ¼ 2 �L, relative

to Stokes’s boundary layer thickness, �ds, where the latter is

defined by

�ds ¼ 2p

ffiffiffiffiffiffi
2 ��

�x

r
; (34)

and �� , the kinematic viscosity, is related to the dynamic vis-

cosity, �g, through �� ¼ �g=�q0. The phase-speed values
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obtained for an air-filled channel are compared with the

experimental data of Ward et al. (2015), noting that these data

are parameterized against �d�= �W , rather than �ds= �W , where

�d� ¼
ffiffiffiffi
��

�x

r
� 0:11�ds: (35)

In Sec. IV B, we examine the fluid-particle-velocity pro-

file across the channel for various channel widths in order to

determine the extent to which the channel-wall boundary-

layer influences the motion of the fluid and hence the propa-

gation of acoustic waves.

A. Phase speed and attenuation

Given the root, k, for any one of the dispersion Eqs.

(23), (25), and (27), the complex non-dimensionalized

phase-speed, v, along the channel is given by

v ¼ �v

�c0

¼ x
k
: (36)

Roots for the dispersion equations were calculated using the

MATLAB [version 9.2.0.556344 (R2017a)] command fsolve,

which finds the local zero of a user-specified function close

to a given starting point.

Before presenting the results thereby obtained, we first

note that in air and water both xf and xC are very much less

than unity at frequencies up to the order of 1 GHz. Under

these circumstances, and provided x
 1, the following

approximate expressions for the (dimensionless) complex

phase-speed can be obtained from Eqs. (23) and (25):

vinsul �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh

1� iffiffiffi
2
p

d�

� �
1� iffiffiffi

2
p

d�

� �s
(37)

and

vcond �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh

1� iffiffiffi
2
p

d�

� �
1� iffiffiffi

2
p

d�

� �

1þA� 1ffiffiffiffiffi
Pr
p tanh

1� iffiffiffi
2
p

dh

� �
1� iffiffiffi

2
p

d�

� �
vuuuuuut ; (38)

where d� ¼ �d�=�L is Ward’s (Ward et al., 2015) viscous

boundary layer parameter, non-dimensionalized on the half-

width �L of the duct; dh ¼ �dh=�L is an equivalent thermal

boundary layer parameter with �dh defined as

�dh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�K

�q0 �x�cp

s
; (39)

and Pr is the Prandtl number, which is given by

Pr ¼ �g�cp

�K
¼

�d�
�dh

 !2

: (40)

The expression for vinsul is independent of all thermal

parameters and varies only with the dimensionless parameter
�L=�d� . However, vcond is additionally dependent upon Pr and

the dimensionless parameter A� 1 ¼ ð�b2 �T0�c2
0Þ=�cp, noting

that Eq. (38) recovers Stinson’s solution for an ideal gas

(Stinson, 1991) if A is replaced by the ratio of specific heats

at constant pressure and volume.

If the fundamental thermo-viscous parameters are fre-

quency independent, as assumed here, we see that in the cases

of thermally insulating and perfectly conducting channel-wall

boundary conditions, the functional frequency dependence of

their associated complex phase-speeds is contained entirely

within the expressions for the boundary layer parameters �d�
and �dh. Indeed, given the definition in Eq. (40) of Pr, it is suf-

ficient to specify just one of the boundary layer parameters

and the Prandtl number, which is frequency independent.

Although not illustrated herein, we find that for the

range of channel-widths under consideration, Eqs. (37) and

(38) are in almost exact agreement with values obtained

using the full dispersion equations at all frequencies up to at

least 1 MHz in air and 50 MHz in water. Furthermore, their

validity is not confined to air and water. Indeed, these

expressions are valid for any Newtonian fluid, provided the

conditions specified in their derivation are satisfied, namely,

xf
 1; xC 
 1; and x
 1.

Returning to the solutions of the exact dispersion equa-

tions, we note from Eqs. (37) and (38) that as �L; �W !1,

both vinsul and vcond tend to unity, which is equivalent to

k ! x. Thus, an appropriate method for finding their roots,

using fsolve, is to begin with a wide channel (we chose
�W ¼ 100�ds), and to start the root search from k¼x. We

then gradually reduce �W down to the desired value, using

the root found for the previous (larger) value of �W as a new

starting point for fsolve.

TABLE I. Thermo-viscous parameter values for water and air, taken from Dunn et al. (2015), noting that �b ¼ 1= �T 0 for an ideal gas.

Parameter Unit Symbol Water (10 �C) Air (27 �C)

Speed of sound m s�1 �c0 1490 343

Density kg m�3 �q0 1000 1.19

Dynamic shear viscosity kg m�1 s�1 �g 1.002� 10�3 1.846� 10�5

Dynamic bulk viscosity kg m�1 s�1 �gB 3.006� 10�3 1.108� 10�5

Thermal conductivity W m�1 K�1 �K 0.597 2.624� 10�2

Specific heat at constant pressure J kg�1 K�1 �cp 4192 1005

Ambient temperature K �T 0 283.16 300

Coefficient of thermal expansion K�1 �b 8.822� 10�5 1/300
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By way of example, Fig. 2 shows the resulting real
phase-speed and attenuation along an air-filled channel as a

function of �ds= �W . Here, real phase-speed is defined as <ðvÞ,
and the attenuation in dB/wavelength is 40pðki=krÞ log10ðeÞ,
where kr ¼ <ðkÞ and ki ¼ =ðkÞ. The curves for viscous only

and thermally insulating channel-wall boundary conditions

are identical, indicating that for a thermally insulating

boundary condition, the lowest order symmetric duct mode

is decoupled from thermal fluctuations as expected.

However, a different behavior is observed for the conducting

curve shown in Fig. 2, again as expected. We observe that

the results of Ward et al. (2015), indicted by the black

crosses of Fig. 2, lie in-between the two extreme thermal

boundary conditions of conducting and insulating channel

walls. Although not presented here, we find that the behavior

in air, illustrated in Fig. 2, is valid at all frequencies up to

the order of 1 MHz.

Figure 3 demonstrates the behavior of a water-filled

channel, which is found to be valid at all frequencies below

a maximum value approaching 50 MHz. The behavior of

water is very similar to that of air, except that for water, ther-

mal effects are seen to be negligible for both the thermally

conducting (isothermal) and insulating channel-wall bound-

ary conditions, primarily because of water’s low coefficient

of thermal expansion (as discussed previously). For water

this leads to the parameter A being very close to unity,

A � 1:001 in water, whilst in air A � 1:39. In addition, Pr

in water is about ten times greater than in air. Taken

together, these two factors lead to the second term in the

denominator of Eq. (38) being negligible for water, thereby

recovering Eq. (37).

In summary, we see that in water, thermal effects have a

negligible impact upon acoustic propagation along narrow

channels, and this is also true in air if the channel wall is

thermally insulating, which is perhaps not surprising as this

boundary condition is close to the adiabatic thermal condi-

tion expected in freely propagating acoustic waves.

However, in air, thermal effects are significant when the

channel wall is conducting. For the thermally insulating

channel wall boundary condition, the behavior of air and

water with respect to their dimensionless phase speed and

attenuation along the channel in dB/wavelength is essentially

identical when parameterized against the dimensionless

parameter �ds= �W . Note, however, that the attenuation along a

fixed distance, say 1 m, is much less in water than in air due

to the higher dimensional phase speed of water, leading to a

wavelength in water that is about five times greater than in

air. As an example in this case of rigid boundaries where the

channel width is of the order of the boundary layer thickness,

the attenuation in air at 10 kHz can be over 200 dB m�1,

whereas in water it is less than 37 dB m�1.

B. Fluid particle velocity profiles

Similar behavior to that discussed above is observed for

the fluid particle velocity profiles across the channel. Below,

we plot the x- and y-components of fluid particle velocity,

normalized so that uxðy ¼ 0Þ ¼ 1. For fluids such as air and

water, which are characterized by low viscous and diffusion

coefficients, we find that for both the insulating and isother-

mal channel-wall boundary conditions, uxðyÞ=uxð0Þ depends

only upon the non-dimensionalized viscous boundary layer

parameter d� ¼ �d�=�L; there is no dependence upon the ther-
mal properties of the fluid. For air, this is illustrated in the

upper plot of Fig. 4 for a channel-width of 10�ds. Both the

magnitude and the phase (the latter is not shown) of

uxðyÞ=uxð0Þ have the same values for all three channel wall

boundary conditions. The same behavior (not shown) is

observed in water.

For the y-component of fluid-particle velocity, we find

that in the case of a thermally insulating channel-wall, the

scaled parameter uyðyÞ=ðg uxð0ÞÞ depends upon only d� .
However, when the channel wall is perfectly conducting,

FIG. 2. (Color online) Phase speed and attenuation along an air-filled chan-

nel. The upper plot shows the phase speed relative to �c0. The lower plot

shows the attenuation along the channel. Different line styles indicate

channel-wall boundary conditions corresponding to Viscous only (red,

solid); Thermally insulating (cyan, dashed); Isothermal/conducting (blue,

dotted). The black crosses indicate the single slit measured data extracted

from Fig. 4 of Ward et al. (2015), and reproduced here by kind permission

of Professor Alastair Hibbins.

FIG. 3. (Color online) Phase speed and attenuation along a water-filled chan-

nel. The upper plot shows the phase speed relative to �c0. The lower plot

shows the attenuation along the channel. Line styles are as indicated in Fig. 2.
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uyðyÞ=ðg uxð0ÞÞ depends, in general, also upon the additional

parameters dh ¼ �dh=�L and A� 1 ¼ b2=cp, or alternatively

its behavior may be characterized in terms of d� , the Prandtl

number Pr, and b2=cp. For air, this behavior is illustrated in

the lower plot of Fig. 4 for a channel-width of 10�ds. We see

that whilst the viscous only and thermally insulating velocity

profiles are identical, the profile for a conducting wall is dif-

ferent, demonstrating the influence of thermal effects in this

case. Although not shown here, in water, the three thermal

boundary conditions have identical velocity profiles as a

result of water’s low coefficient of expansion.

In the absence of boundary layer effects, the y-compo-

nent of fluid particle velocity would be zero everywhere, and

the x-component would be constant across the channel; that

is ux would be independent of y. The red and blue, vertical,

dashed lines marked on the upper plot of Fig. 4 indicate,

respectively, the positions of the non-dimensionalized

boundary layer thickness parameters, �d�=�L and �ds=�L, rela-

tive to the channel walls on y ¼ 61. The black crosses show

Stokes’s solution for an oscillating pressure gradient within

a fluid-filled half-space lying above a rigid surface, under the

assumption that the boundary layers on the two walls of the

channel are well separated and hence non-interacting

(Batchelor, 2000). For this relatively wide channel, the fluid-

particle-velocity profile for ux is very similar to that of

Stokes’s half-space solution, and we observe that �ds is a sig-

nificantly better indicator than �d� , of the extent to which the

channel-wall boundary layers disturb the motion of the fluid.
�d� underestimates the true extent of the boundary layer but

as we have seen above it is a very useful parameter with

which to characterize the fluid’s behavior when it is influ-

enced by boundary layer effects.

Figure 5 shows the velocity profile for a much narrower

channel, �W ¼ �ds=2, in which the boundary layers on the two

walls are strongly interacting. Stokes’s solution for a fluid

half-space is no longer relevant; rather the velocity profile

resembles that of Poiseuille flow, as indicated by the red

crosses. Using �d�=�L as boundary layer thickness can be seen

in Fig. 5 to be severely underestimating this length.

The large difference in the magnitude of the y-compo-

nent of fluid particle velocity, which is observed in Figs. 4

and 5, arises mainly because the expression for

uyðyÞ=ðg uxð0ÞÞ contains a scaling factor of 1=d� .

V. FLUID-STRUCTURE INTERACTION EFFECTS

Until now, all boundaries have been considered rigid,

which is a sensible approximation in the air-filled channel

but not necessarily so in the case of a water-filled channel. In

order to investigate the effect of elastic boundaries, and in

particular their impact upon phase-speed and attenuation in

this case, let us consider a water-filled channel in an

undamped elastic medium of infinite extent; the only damp-

ing mechanism considered is the viscosity of the fluid. The

presence of semi-infinite elastic walls requires the consider-

ation of body waves, both compressional and shear, propa-

gating within the elastic material. Generally, this

necessitates the mathematical formulation of a physical

problem with some specified forcing, the solution of which

will be expressed in terms of integrals around branch-cuts

that are then associated with outgoing and incoming body

waves and additionally, a sum of the natural modes of propa-

gation in the waveguide. However, such an analysis is

beyond the scope of the present study; we are primarily con-

cerned with demonstrating the impact of an elastic boundary

on the natural modes of propagation within the water-filled

channel, and comparing this behavior to the idealized case

of a rigid boundary. In order to proceed here then we must

FIG. 4. (Color online) Magnitude of the fluid particle velocity across an air-

filled channel of width of 10 �ds. The upper plot shows the x-component of

the fluid particle velocity, and the lower plot shows the y-component; u is

normalized, independently for each boundary condition, such that

uxðy ¼ 0Þ ¼ 1. Line styles are as indicated in Fig. 2. On the upper plot: the

black crosses indicate Stokes solution for a fluid half-space; the blue-dashed

vertical lines indicate the position of Stokes’s boundary layer thickness,
�ds=�L, relative to the channel walls at y¼61; the red-dashed vertical lines

indicate the location of �d�=�L.

FIG. 5. (Color online) Magnitude of the fluid particle velocity across an air-

filled channel of width of �ds=2. The upper plot shows the x-component of

fluid-particle-velocity, and the lower plot shows the y-component; u is nor-

malized, independently for each boundary condition, such that

uxðy ¼ 0Þ ¼ 1. Line styles are as indicated in Fig. 2. On the upper plot: the

red crosses indicate the velocity profile for Poiseuille flow across a narrow

channel, the red-dashed vertical lines indicate the location of �d�=�L.
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merely ensure that the choice of branch cuts is consistent

with the requirements of causality. This is discussed further

below.

We shall neglect all thermal effects in this analysis since

as shown earlier these are negligible in the case of acoustic

propagation in water (due to the low value of the thermal

expansion coefficient). Recalling that as b! 0; s! p, the

(time-harmonic) fluid velocity here is therefore written com-

pactly in terms of the condensation and vorticity, i.e.,

~u ¼ �i

x
1� ixfð Þr~s þ gr� ~X

	 

; (41)

where ~s is governed by

r2 þ x2

1� ixf

� �
~s ¼ 0: (42)

The components of the total (time-harmonic) fluid stress ten-

sor are

~Rij¼ ~rij� ~pdij¼g
@~ui

@xj
þ@~uj

@xi

� �
�dij 1� ixg0ð Þ~s: (43)

Next, referring back to Fig. 1, instead of imposing the

rigid no-slip conditions [Eq. (19)] on the boundary, we now

suppose that the medium in jyj 	 1 is a linear isotropic elas-

tic medium of infinite extent. Using a consistent non-

dimensionalization scheme to that defined for the fluid with

time-harmonic dependence e�ixt, Navier’s equations of lin-

ear elasticity may be written as

ðkþ 2lÞ$~/ � l$� ~w þ x2qs ~w ¼ 0; (44)

where k is the Lam�e modulus and l the shear modulus, both

being non-dimensionalized on �q0�c2
0. Furthermore, qs

¼ �qs=�q0 denotes the non-dimensionalized solid density and

w ¼ ðwx;wy; 0Þ ¼ �w=�L is the non-dimensionalized elastic

displacement, with a tilde denoting its time-harmonic coun-

terpart. Furthermore, the following potentials have been

introduced, ~/ ¼ $ � ~w, and ~w ¼ $� ~w. As with the fluid

vorticity, the rotation vector ~w points in the z-direction and

may be written ~w ¼ k̂ ~w. The scalar potentials ~/ and ~w sat-

isfy the Helmholtz equations

ðr2 þ j2
pÞ~/ ¼ 0; (45)

ðr2 þ j2
s Þ~w ¼ 0; (46)

where jp and js are the non-dimensionalized compressional

and shear wavenumbers

jp ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qs

kþ 2l

r
¼ �x �L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qs

�k þ 2�l

s
;

js ¼ x
ffiffiffiffiffi
qs

l

r
¼ �x �L

ffiffiffiffiffi
�qs

�l

r
: (47)

The elastic displacement is written simply using Eq. (44) in

the form

~w ¼ � 1

x2qs

kþ 2lð Þ$~/ � l$� ~w
h i

; (48)

which is the analogous form, in terms of potentials, to the

fluid velocity expression in Eq. (41). Finally, the (time-har-

monic) elastic stress tensor is given by

~rij ¼ dijk~/ þ l
@ ~wi

@xj
þ @ ~wj

@xi

� �
: (49)

As with the case of a rigid-walled channel, we seek sol-

utions in k-space, which again we denote by the ^ symbol.

For the fluid-structure interaction problem, it is convenient

to relate the x- and k-space potentials of the elastic solid as

follows:

~/ x; y;wð Þ ¼
qs

kþ 2l
/̂ k; y;wð Þeikx;

~w x; y;wð Þ ¼
qs

l
ŵ k; y;wð Þeikx; (50)

with /̂ and ŵ satisfying

@2

@y2
� c2

p

 !
/̂ ¼ 0;

@2

@y2
� c2

s

 !
ŵ ¼ 0; (51)

where

cp ¼ ðk2 � j2
pÞ

1=2; cs ¼ ðk2 � j2
s Þ

1=2: (52)

The choice of cuts for cp and cs are discussed shortly. For the

fluid, we write

~s x; y;wð Þ ¼
1

1� ixf
ŝ k; y;wð Þeikx;

~X x; y;wð Þ ¼
1

g
X̂ k; y;wð Þeikx; (53)

with ŝ and X̂ satisfying

@2

@y2
� c2

2

 !
ŝ ¼ 0;

@2

@y2
� a2

 !
X̂ ¼ 0; (54)

where c2 ¼ ð k2 � x2=ð1� ixfÞ Þ1=2
and we recall that

a ¼ ðk2 � ix=gÞ1=2
.

A. The boundary value problem

Boundary conditions require continuity of displacement/

velocity at the fluid-solid interface and continuity of the trac-

tion components across the channel wall. In k-space, these

conditions require, for the velocity

@ŵ

@t
k;y¼61ð Þ¼�ixŵ k;y¼61ð Þ¼ û k;y¼61ð Þ; (55)

and for the traction

J. Acoust. Soc. Am. 144 (6), December 2018 Cotterill et al. 3429

88 CHAPTER 2. TVA DAMPING IN NARROW CHANNELS: AIR VS WATER



r̂yyðk; y ¼ 61Þ ¼ R̂yyðk; y ¼ 61Þ; (56)

r̂xyðk; y ¼ 61Þ ¼ R̂xyðk; y ¼ 61Þ; (57)

noting that ~wðx;y;xÞ¼ŵðk;y;xÞeikx; ~uðx;y;xÞ¼ûðk;y;xÞeikx

and similarly for the stress components.

By inserting Eqs. (50) and (53) into Eqs. (41), (43),

(48), and (49), as appropriate, and imposing the boundary

conditions from Eqs. (55)–(57), we obtain the following con-

straints upon our solutions at y¼61:

$ŝ þ $� X̂ ¼ � $/̂ � $� ŵ
� �

; (58)

x2

l
þ2ik2P

 !
ŝþ2kP@X̂

@y
¼ 2k2�j2

s

	 

/̂þ2ik

@ŵ
@y
; (59)

2kP @ŝ

@y
� x2

l
þ 2ik2P

 !
X̂ ¼ �2ik

@/̂
@y
þ 2k2 � j2

s

	 

ŵ;

(60)

where

P ¼ xg
l

� �
¼ �x�g

�l

� �
: (61)

Note that x2=lð¼ j2
s=qs ¼ �q0 �x2 �L

2
=�lÞ and P are mea-

sures of the fluid loading acting on the elastic wall, i.e., they are

measures of the fluid’s inertial and viscous forces relative to the

elastic stresses at the channel-wall. Clearly they are important

non-dimensional parameters that will influence significantly the

characteristics of our solution, although we note below that in

the air and water cases, as well as a wide range of other scenar-

ios P 
 1 and can be set to zero in order to simplify the disper-

sion relation. Other important non-dimensional parameters

(most of which have been defined previously) include

l¼ �l
�q0�c2

0

; g¼ �g
�q0�c0

�L
; qs ¼

�qs

�q0

; �¼ �g0

�g
; d� ¼

ffiffiffiffi
g
x

r
:

(62)

With these definitions, the other non-dimensional parameters

that arise can be written as

js ¼ x
ffiffiffiffiffi
qs

l

r
; jp ¼ js

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2t

2 1� tð Þ

s
; xf¼ 2þ �ð ÞlP;

(63)

where t denotes Poisson’s ratio.

B. Dispersion relations for symmetric modes in a
fluid-filled channel within an infinite elastic solid

As for the rigid-walled channel, only modes where s is

symmetric in y are considered here. In this problem (that is

independent of thermal effects), the k-space vorticity and

condensation then take the form

X̂ ¼ EsinhðayÞ; ŝ ¼ Fcoshðc2yÞ: (64)

For the solid, appropriate symmetric solutions to Eqs. (51)

and (52) are similarly given by

/̂ðk;y	1Þ¼Xe�cpðy�1Þ; /̂ðk;y��1Þ¼Xecpðyþ1Þ; (65)

ŵðk;y	1Þ¼Ye�csðy�1Þ; ŵðk;y��1Þ¼�Yecsðyþ1Þ; (66)

in which the square root functions of Eq. (52) are chosen

such that cp ! k and cs ! k as k !1, with the branch cuts

from jp and js taken in the upper-half plane and those from

�jp and �js taken in the lower-half plane. To be definitive

in the calculations below, the branch cuts are chosen to run

parallel to the imaginary axis from their respective branch

points.

The dispersion equation in k for the natural modes of

propagation is obtained by substituting the solution forms

from Eqs. (64)–(66) into the boundary conditions from Eqs.

(58)–(60), evaluated on y¼61. Requiring the determinant

of the resulting set of simultaneous equations, in the

unknown coefficients E, F, X, and Y, to be zero then leads to

the following dispersion equation:

Dve ¼
1

D1D2

(
Dvr D1 þ 4ik2P D2 2þ iPð Þ � j2

s

� �� �

þ j2
s

qs

n
2k2 2D2 1þ iPð Þ � j2

s

� �

�tanha� j2
s acp þ csc2tanhc2tanha
� �o

þ j4
s

q2
s

D2tanha

)
¼ 0; (67)

where D1 ¼ ð2k2 � j2
s Þ

2 � 4k2cscp ¼ 0 is Rayleigh’s disper-

sion equation for natural modes on the surface of a stress-

free elastic half-space, and D2 ¼ k2 � cscp is the dispersion

equation for the natural modes on the surface of a clamped

elastic half-space. Furthermore, Dvr is the dispersion equa-

tion [Eq. (27)] for the natural modes of propagation along a

rigid-walled channel filled with a viscous fluid in which ther-

mal effects are negligible. We note that in the limit of

l; qs !1 with l/qs¼ constant, Eq. (67) reduces to

Dvr ¼ 0.

C. Fluid structure interaction implementation for air
and water filled channels in steel

Let us now consider the implementation of the above in

the specific case of a fluid-filled channel in steel with density

�qs ¼ 7871 kg m�3, and compressional and shear wave-speed

�vp ¼ 6000 m s�1 and �vs ¼ 3000 m s�1, respectively. These

parameter values imply a shear modulus �l ¼ 70:839 GPa

and a Lam�e modulus �k ¼ 141:68 GPa.

For air- and water-filled channels, P 
 1 and may be

set to zero in Eq. (67). Furthermore, as discussed in Sec.

IV A, at frequencies and channel-widths of interest

xf
 1; x
 1, and we expect k ¼ OðxÞ. Thus,

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ix=g

p
¼ ð1� iÞ=

ffiffiffi
2
p

d� , which is independent of k,

and c2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2
p

, where jc2j 
 1. Under these conditions,

we find that the non-dimensional phase speed, v¼x/k, satis-

fies the following approximate dispersion equation:
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where ĉp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=v2

p

q
; ĉs¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=v2

s

p
; D̂1¼ð2�v2=v2

s Þ
2

�4ĉsĉp; D̂2¼1� ĉsĉp, with vp¼ �vp=�c0 and vs¼ �vs=�c0 being

the non-dimensional compressional and shear wave-speeds;

all of these parameters are independent of frequency.

It is clear from the above expression that the depen-

dence of phase speed upon frequency is somewhat more

complicated for an elastic-walled channel than it is for the

case of a rigid-walled channel, expressions for which are

provided in Eqs. (37) and (38).

1. Phase speed and attenuation

All the results presented in this section were obtained

from the full dispersion equation [Eq. (67)]. Figure 6 shows

results for phase speed and attenuation as a function of �ds= �W
along an air-filled channel in steel at 10 kHz, compared with

those for a rigid-walled channel, noting that thermal effects

have been neglected. Figure 7 reveals the behavior of a

water-filled channel. Also illustrated in the latter are the

phase speed and attenuation along a steel-walled channel

neglecting viscosity. The latter data were obtained from the

roots of the dispersion equation for an elastic-walled chan-

nel, filled with an inviscid fluid; these are derived from the

boundary conditions applicable to this case, namely,

r̂yyðk; y ¼ 61Þ ¼ R̂yyðk; y ¼ 61Þ; (69)

r̂xyðk; y ¼ 61Þ ¼ 0; (70)

�ixŵyðk; y ¼ 61Þ ¼ ûyðk; y ¼ 61Þ; (71)

in which viscosity is excluded by setting E ¼ g ¼ gB ¼ 0.

The dispersion equation, Dieðx; kÞ ¼ 0, is then readily

shown to be

Dieðx; kÞ ¼ qsc2tanhðc2Þ ð2k2 � j2
s Þ

2 � 4k2cscp

h i
þ j4

s cp ¼ 0; (72)

noting that if tanhðc2Þ were set to unity, Eq. (72) recovers

the dispersion equation for Scholte waves, i.e., the dispersion

equation for surface waves at the interface between elastic

and fluid half spaces (Rauch, 1980).

It is clear from Fig. 6 that for air, the natural-mode behav-

ior of the steel-walled channel is essentially indistinguishable

from that of a rigid-walled channel when thermal effects are

neglected, whereas in the case of a water-filled channel, these

behaviors are dramatically different as seen in Fig. 7. This is

due to the strong interaction between water and the steel wall,

which has the effect of slowing down the phase speed of the

natural mode and reducing its attenuation along the channel in

terms of dB/wavelength. The damping mechanism for the

mode is still that of dissipation within the viscous boundary

layer on the steel wall, as opposed to radiation loss through

the wall into the elastic material. This is apparent from the

inviscid curves of Fig. 7, which show that fluid structure inter-

action is the main cause of the dramatic reduction in phase

speed, but alone this mechanism gives no damping.

Although the attenuation in terms of dB/wavelength is

substantially smaller in water for the steel-walled channel

FIG. 6. (Color online) Phase speed and attenuation along an air-filled chan-

nel at 10 kHz. The upper plot shows the phase speed relative to �c0. The

lower plot shows the attenuation along the channel (dB/wavelength). In both

plots, the solid red curve indicates a rigid-walled channel, and the dashed

cyan curve is associated with a steel-walled channel. Thermal effects are

neglected.

FIG. 7. (Color online) Phase speed and attenuation along a water-filled

channel at 10 kHz. The upper plot shows the phase speed relative to �c0. The

lower plot shows the attenuation along the channel (dB/wavelength). In both

plots, the solid red curve indicates results for a water-filled rigid-walled

channel; the dashed cyan curve is associated with a water-filled steel-walled

channel. The dotted blue curve is associated with propagation in a steel-

walled water-filled channel where fluid viscosity is neglected. In all three

cases, thermal effects are neglected.
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than the rigid-walled case, the attenuation measured along a

fixed length of say 1 m is actually greatly increased due to the

large reduction in phase speed, which gives rise to a much

smaller wavelength. This is illustrated in Fig. 8, which com-

pares the attenuation at 10 kHz in dB m–1 along water-filled

rigid and elastic walled channels. For comparison, the attenua-

tion along an air-filled channel is also shown. We see that

taken together, fluid-structure interaction and viscosity lead to

a large increase in attenuation for the water-filled channel.

For completeness, Fig. 9 shows the behavior of a water-

filled steel-walled channel at 100 kHz. Unlike the rigid-walled

results discussed earlier, we see by comparison with Fig. 7

that the steel walled channel shows an additional frequency

dependence beyond that associated with the thickness of the

viscous boundary layer. This characteristic is illustrated fur-

ther in Fig. 10, which illustrates the variation in phase speed

and attenuation against non-dimensional frequency at a fixed

value of �ds= �W ¼ 1. Whilst the attenuation is fairly constant

across the range of values shown for x, the variation in phase

speed is considerable unlike the case of a rigid channel wall

for which both parameters would be constant.

2. Particle velocity profiles

Figures 11 and 12 compare fluid particle velocity pro-

files across a fluid-filled channel of width 10�ds for rigid and

steel walls, neglecting thermal effects. Figure 11, for air,

shows no discernable difference in the behavior of the two

wall types. The same is also true of the x-component of fluid

particle velocity when the channel is filled with water. This

is evident from the upper plot of Fig. 12. However, the lower

plot of Fig. 12 shows that, for a water-filled channel, replac-

ing the rigid wall with steel leads to a substantial change in

the behavior of the y-component of fluid particle velocity.

Indeed, for a steel-walled channel, juyj is so much greater

than that found for a rigid-walled channel that the plot of juyj
for the latter is only just observable at the bottom of the fig-

ure. Note that juyj =! 0 on the steel-walls. We observe that

whilst in an air-filled channel, the steel wall may be regarded

as rigid, this is not so when the channel is filled with water.

Similar behavior is seen for a much narrower channel as

illustrated in Fig. 13 for a water-filled channel of width �ds=2.

Although not shown, for an air-filled channel, there is again no

discernable difference between steel and rigid-walled channels.

Figure 14 shows the evolution of elastic-velocity with

distance �ys from the channel wall for the case of a water-

filled channel of width �ds=2, noting that the elastic-velocity

at the channel wall (�ys ¼ 0) matches that within the fluid of

FIG. 8. (Color online) Attenuation along air and water-filled channels at

10 kHz (dB m�1). Line styles indicate attenuation associated with propaga-

tion in a water-filled rigid-walled channel (solid red); a water-filled steel-

walled channel (dashed cyan); an air-filled rigid-walled channel with iso-

thermal boundary conditions (dotted blue); an air-filled rigid-walled channel

with insulating boundary conditions (dash-dotted green).

FIG. 9. (Color online) Phase speed and attenuation along a water-filled

channel at 100 kHz. The upper plot shows the phase speed relative to �c0.

The lower plot shows the attenuation along the channel (dB/wavelength). In

both plots, the solid red curve indicates results for a water-filled rigid-walled

channel; the dashed cyan curve is associated with a water-filled steel-walled

channel. The dotted blue curve is associated with propagation in a steel-

walled water-filled channel, where fluid viscosity is neglected. In all three

cases, thermal effects are neglected.

FIG. 10. (Color online) Phase speed and attenuation along a water filled

channel of fixed width �ds= �W ¼ 1 as a function of the non-dimensional fre-

quency x. The long-dashed cyan curves are associated with a water-filled

channel including viscosity. The short-dashed blue curves are associated

with a water-filled channel neglecting viscosity. The exterior elastic medium

is steel. Thermal effects are neglected.
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Fig. 13 at �y=�L ¼ 1. It is clear that the elastic-velocity decays

rapidly with increasing distance from the wall and hence the

elastic waves associated with this mode do not carry energy

away from the channel as surmised in Sec. V C 1.

It is perhaps worth considering in a little detail the

nature of the propagating wave in a water-filled elastic-

walled channel. For a semi-infinite elastic body, it is well

known since the work of Lord Rayleigh that waves confined

to its free surface can propagate without attenuation at a

speed slightly less than that of shear body waves. If an invis-

cid fluid occupies the space above the elastic body, then the

Rayleigh wave becomes leaky because its speed is greater

than the wave speed in the fluid (i.e., it is supersonic). That

is, energy is shed into acoustic waves above the solid, and

hence the wave becomes attenuating. However, there is

another wave at fluid/solid boundaries, called the Scholte

wave, which is subsonic in both media and propagates with-

out loss along the interface, decaying exponentially away

from the boundary into both fluid and solid domains. It is

found (Zhu et al., 2004) that Scholte waves are not easily

excited, as most of the energy is confined to the fluid region;

the higher the acoustic impedance of the fluid, the stronger

the Scholte wave becomes for a given forcing. Hence, for an

air-steel interface, one expects to see near the surface that

the Rayleigh waves dominate; they will leak energy slowly

FIG. 11. (Color online) Magnitude of fluid particle velocity across an air-

filled channel at 10 kHz for a channel width of 10�ds. The upper plot shows

the x-component of fluid-particle-velocity, and the lower plot shows the y-

component. u is normalized, independently for each boundary condition,

such that uxðy ¼ 0Þ ¼ 1. The solid-red curves indicate results associated

with a rigid-walled channel, and the dashed-cyan curves are for a steel-

walled channel. Thermal effects are neglected.

FIG. 12. (Color online) Magnitude of fluid particle velocity across a water-

filled channel at 10 kHz for a channel width of 10�ds. The upper plot shows

the x-component of fluid-particle-velocity, and the lower plot shows the y-

component. u is normalized, independently for each boundary condition,

such that uxðy ¼ 0Þ ¼ 1. The solid-red curves indicate results associated

with a rigid-walled channel, and the dashed-cyan curves are for a steel-

walled channel. Thermal effects are neglected.

FIG. 13. (Color online) Magnitude of fluid particle velocity across a water-filled

channel at 10 kHz for a channel width of �ds=2. The upper plot shows the x-com-

ponent of fluid-particle-velocity, and the lower plot shows the y-component. u is

normalized, independently for each boundary condition, such that

uxðy ¼ 0Þ ¼ 1. The solid-red curves indicate a rigid-walled channel, and the

dashed-cyan curves are for a steel-walled channel. Thermal effects are neglected.

FIG. 14. (Color online) Steel wall velocity external to a water-filled channel

at 10 kHz and �W ¼ �ds=2. The upper plot shows the x-component of particle-

velocity, and the lower plot shows the y-component. In these plots, �ys

denotes the dimensional distance from the channel wall within the solid.

The velocity u is normalized such that ux ¼ 1 at the center of the fluid-filled

channel. The solid-red curves indicate the real part of velocity, and the

dashed-cyan curves show the imaginary part. Thermal effects are neglected.
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and the Scholte waves will be negligible. For water and steel,

the Rayleigh waves will attenuate strongly due to radiation

loss and Scholte waves will be more strongly excited.

The situation can be expected to be somewhat similar for

water- or air-filled channels in steel; however, the leaky

Rayleigh waves in both cases cannot radiate acoustic energy due

to confinement and so will persist. However, the channel must

be wide enough to allow the shed acoustic waves to propagate,

or conversely, if the channel is too narrow, the coupled duct-

Rayleigh wave mode will be cut-off. A numerical examination

of the dispersion equation for the water-filled steel-walled chan-

nel indicates that at 10 kHz, the coupled duct-Rayleigh wave

mode is cut-off for channel widths less than about 35�ds; we can

then expect to find only a Scholte-type propagating wave mode

in the water-filled steel-walled channel. This is consistent with

results presented in Figs. 13 and 14 where most of the motion

(and hence energy) is confined to the fluid region. Note that the

presence of viscosity in the fluid means that the mode is attenuat-

ing along the channel, but otherwise it has little effect on the

phase speed of the mode, as already seen.

VI. CONCLUSIONS

A general framework has been presented with which one

can study the influence of thermal and viscous effects on acoustic

propagation in narrow channels or ducts filled with an arbitrary

Newtonian fluid. Of specific interest here was to put the experi-

mental results of Ward et al. (2015) on a formal theoretical foot-

ing and better understand their conclusions regarding the

influence of the boundary layer on the attenuation of acoustic

waves in channels. Furthermore, of great importance as regards

applications was to extend this analysis to the consideration of

thermo-visco acoustic propagation in water. The theoretical anal-

ysis presented indicates that it is Stokes’s boundary layer thick-

ness that gives a proper indication of the extent to which acoustic

propagation along narrow channels is influenced by thermal and

viscous boundary effects. The parameter �d� considered in the

work of Ward et al. (2015) is an underestimate of the extent of

the influence of the boundary layer and this therefore explains

the effect that was noted in the analysis of the experimental

results presented there. In the context of propagation in-air, it has

been demonstrated here that thermal effects can be significant in

a channel with thermally conducting walls, but they are negligi-

ble if the wall is thermally insulating. As should be expected, the

results presented in Ward et al. (2015) sit between these two ide-

alized cases. Turning to the context of acoustic propagation in

the channel when it is water filled, it has been shown here that

any associated thermal effects are always negligible thanks to the

extremely low coefficient of thermal expansion of water.

For rigid-walled channels, filled with low viscosity fluids

such as air and water, we find that the behavior of the lowest

order symmetric duct-mode is captured by simple analytic

expressions, one for each of the two channel-wall thermal

boundary conditions that were considered. These expressions,

valid up to at least 1 MHz in air and 50 MHz in water, demon-

strate explicitly that for the thermally insulating boundary con-

dition, the complex phase speed along the channel, v ¼ �v=�c0,

is independent of thermal effects. Indeed, it depends only upon

the channel’s width relative to the viscous boundary layer

parameter, �d�; that is, v depends only upon the dimensionless

parameter �L=�d� , with the latter containing all of the frequency

dependence of v. For the thermally conducting boundary con-

dition, we find that in addition to �L=�d� , v depends upon the

Prandtl number, Pr, and the dimensionless parameter,

A� 1 ¼ b2=cp ¼ ð�b
2 �T0�c2

0Þ=�cp; if
ffiffiffiffiffiffiffiffiffi
1=Pr

p
ðb2=cpÞ is small,

as is the case for water, thermal effects are negligible.

An important aspect that must be taken into account for

water-filled channels is the effect of the fluid-structure interaction

associated with the channel wall. Although for the in-air context

all boundaries can be considered as perfectly rigid, it is well

known that the in-water situation cannot be treated with such a

simplification. Attenuation of acoustic energy from the channel

is thereby achieved via both viscous and radiative mechanisms

(i.e., energy flux into the surrounding elastic medium). Only

modal solutions in the channel have been considered here, there-

fore the partition of this attenuated energy into viscous and radi-

ated parts was not discussed; there is a need to investigate this

when considering forced problems, and this shall be the focus of

future work. The latter shall also examine the cut-on of possible

coupled duct-Rayleigh wave modes, and the partition of energy

between this and the present Scholte-type channel mode.

For the present study of the lowest order symmetric duct

mode, we find that for a water-filled channel in steel, the

interaction between water and the steel-wall dramatically

reduces the phase speed of the mode, even when the water is

treated as inviscid. For example, in a channel whose width is

on the order of �ds, the phase speed reduces by approximately

70% at a frequency of 10 kHz. The introduction of viscosity

has little further impact upon phase speed, but when the

reduction in phase-speed arising from fluid-structure interac-

tion is combined with viscous losses due to boundary layer

effects, we find that the mode’s attenuation, in dB m–1, is

much greater than it would be for a rigid-walled channel.

For example, at 10 kHz and a channel width of order �ds, the

attenuation increases from about 37 dB m–1 in a rigid-walled

channel to over 77 dB m–1 in a steel-walled channel.

We close by commenting that although the main focus of

this study has been to investigate the differences between

thermo-viscous acoustic propagation in air and water-filled chan-

nels, the general theoretical framework presented here for arbi-

trary Newtonian fluids and elastic walls permits future study of

more general configurations. Further studies on higher order

modes can also be conducted although the study here of the lead-

ing order symmetric mode already indicates key, important dif-

ferences between the air-filled and water-filled scenarios.
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2.3 Additional comments

Here we provide some further observations that were not discussed in the paper above.

In order to avoid confusion, where possible the notation employed follows that of the

paper.

2.3.1 Acoustic admittance approximation for channels

Here we simply include some extra plots comparing some solutions obtained in the

first part of the above paper involving rigid boundaries. In particular, we want to

illustrate how the acoustic admittance approximation discussed in Section 1.3.2 can

be applied to the waveguide problem and directly compared to the results obtained

above, anticipating good approximations in the wide channel regions but less so in the

narrow channel regime. The approximate solution is discussed in detail in Bruneau

[2006] so we will simply provide a short justification.

In a similar way to the half-space problem which reduces to (1.127), (1.128) in the

purely acoustic case, for the slit in consideration here we must also solve the Helmholtz

equation (1.127) and instead apply (1.121) on y = ±1 which gives (recalling that

k = ω)

(
∇2 + ω2

)
p̃ = 0, (2.1a)

(
∂

∂y
+ iωB

)
p̃ = 0 on y = −1, (2.1b)

(
∂

∂y
− iωB

)
p̃ = 0 on y = 1, (2.1c)

noting that the admittance B = 1/Z generalised to an arbitrary incident profile men-

tioned earlier can be written as [Bruneau et al., 1987]

B = e
−iπ
4
√
ω

(
(A− 1)

√
C +

(
1− k2⊥

k2

)√
η

)
, (2.2)

where in this case k⊥ represents the y-component of the acoustic wavenumber, which

we shall find next. We seek separable solutions of the form1 p̃ = Y (y)eiℓx (where ℓ ∈ C)

1Note that ℓ has got the role of k in the paper above, and the extra notation must be included
since ‘pure’ acoustic propagation is not considered in the article. Instead k = k0 = ω here is the
freespace acoustic wavenumber which is clear from (2.1a).
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to arrive at the following eigenvalue problem

Y ′′(y)− (ℓ2 − ω2)Y (y) = 0, (2.3a)

Y ′(y = −1)− iωBY (y = −1) = 0, (2.3b)

Y ′(y = +1) + iωBY (y = +1) = 0, (2.3c)

whose general solution can be written, on defining χ2 = −(ℓ2 − ω2), as

Y (y) = A cos (χy) +B sin (χy), (2.4)

for constants A,B. Direct substitution of (2.4) onto (2.1b), (2.1c) leads to the system


 0 −iωB tan(χ) + χ

χ tan(χ) + iωB 0




A
B


 =


0

0


 . (2.5)

Non-trivial solutions to this BVP arise when the determinant of the matrix above

vanishes, which occurs whether

−iωB tan(χ) + χ = 0, or χ tan(χ) + iωB = 0, (2.6)

which are the dispersion relations of the anti-symmetric and symmetric modes respec-

tively and whose solutions encapsulate all the corresponding modes of propagation of

this set-up. Numerical solutions to these dispersion equations for general parameters

are given in Morse and Ingard [1986]. In this case nevertheless it is easy to see from

(2.2) given prior discussion and the fact that |k⊥/k| ≤ 1 that |B| ≪ 1 for frequencies

of interest, which allows for convenient asymptotic expansions. Namely for symmetric

modes (introducing a subscript “n” to distinguish between modes)

χn = nπ − iωB
nπ

for n > 0, and (2.7a)

χ0 =
√
−iωB for n = 0, (2.7b)

see e.g. Bruneau et al. [1987]. We can therefore write,

ℓ2n = ω2 − n2π2 + (2− δn0)iωB +O(B2),

=⇒ ℓn ≈ ω

√
1− n2π2

ω2
+

(2− δn0)iB
2
√

1− n2π2

ω2

, (2.8)
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where δn0 = 1 for n = 0 and is zero otherwise. From the leading order term in (2.7a),

we obtain that k2⊥ ≈ (nπ)2 so that the expression for the admittance (2.2) becomes

mode dependent, namely

Bn ≈ e
−iπ
4
√
ω

(
(A− 1)

√
C +

(
1−

(nπ
ω

)2)√
η

)
. (2.9)

Description of higher order modes is given in Bruneau et al. [1987], but we are only

interested in the fundamental plane wave mode, since the cut-off frequency in an

equivalent inviscid fluid-filled channel requires2 ω ≤ nπ, and the main frequencies and

channel widths of interest are such that ω < 1, so setting n = 0 in (2.9) and (2.8)

gives

ℓ0 ≈ ω +
1 + i

2

√
ω

2

(
(A− 1)

√
C +

√
η
)
, (2.10)

and hence, the associated pressure field due to this mode is

p̃ = cos (
√

−iωB0y)e
iℓ0x =

1

2

(
ei
√−iωB0y+iℓ0x + e−i

√−iωB0y+iℓ0x
)
, (2.11)

which shows the very slight y dependence. As given in the paper above, with (2.10) the

phase speed along the direction of the channel is generally obtained by v = Re{ω/ℓ}
and we measure the attenuation in dB/wavelength given by 40π log10(e) Im(ℓ) /Re(ℓ).

In Figure 2.1 we give comparisons of phase speed and attenuation for air between

the approximate solution just obtained via the admittance BC approach (2.10), the

low frequency approximation obtained in (38) of Section 2.2 as well as the numerical

solutions to the full (isothermal) dispersion relation (25) of the same article. As

discussed in the paper, the low frequency (LF) approximation for air is highly accurate

up until frequencies of up to 1 MHz above which the phase speed and especially

the attenuation starts deviating, as can be seen from the right of Figure 2.1. As

we expected, the acoustic admittance BC is excellent for wide channels, but remains

remarkably accurate for channel widths of the order of the boundary layer, particularly

the phase speed (real part). Both the simplicity and accuracy of this approach in

this regime make it a convenient modelling tool to incorporate losses. For example,

Molerón et al. [2016] used this model for the characterization of visco-thermal losses

in different types of various in-air acoustic metamaterials with complex geometries

and good agreement with experiments was found. For much narrower channels, the

2As can be seen by setting B = 0 in (2.8).
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Figure 2.1: Comparisons between phase speed and attenuation of the fundamen-
tal mode in a rigid (infinitely extending) air-filled channel as a function of (non-
dimensional) channel width (left) and frequency (right).

situation becomes more difficult to asses without further work because even the full

TVA solution seems to diverge from the experiments by Ward et al. [2015] illustrated

in Fig 2 of Section 2.2. Furthermore, the experimental data from Ward et al. [2015]

in this regime is also not reliable as can be seen explicitly from the large error bars in

FIG 4 of that work.

2.3.2 FSI effects for softer solid media

As we have been discussing (and is written explicitly in the above conclusions) when

doing in-air acoustics (most) solid boundaries may be considered perfectly rigid, in

contrast to the in-water case, which is explicitly illustrated in FIGs 6, 7 of Section

2.2. This can be illustrated by the difference in density ratio with the parameters used

above giving ρs ≈ 6614 for air–steel whereas for water–steel we obtain ρs = 7.871. We

thought it would be interesting to analyse the dependence of the behaviour obtained

on the particular properties of steel, which is very ‘acoustically hard’ even for water,

manifested by its shear wave speed (v̄s = 3000 m/s) being more than twice that of

the speed of sound in water (c̄0 = 1490 m/s). We therefore consider a contrasting

material consisting of a softer synthetic resin (PVC) analysed in Favretto-Anrès [1996]

which we consider to be elastic with parameters v̄p = 2268 m/s, v̄s = 1100 m/s and

ρ̄s = 1360 kg/m3, noting that the shear wave speed of the solid is now subsonic.
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Figure 2.2: Phase speed along wide, water-filled PVC channels at 10 kHz for various
dispersion equations discussed above. There is a significant reduction in phase speed
which was not observed with steel.

The results obtained for air are the same as those for steel in FIG 6 (of Section

2.2), as expected since ρs = 1142.9. However for water, we now have ρs = 1.36 and

the results (particularly the phase speed) are significantly different to those obtained

for water–steel and illustrated above in FIGs 7–14 (of Section 2.2). This is illustrated

explicitly in Figure 2.2, where we observe that unlike in all previous cases, the solution

does not get close to c̄0. In order to understand this, as it was done for the rigid case

where we saw that v̄ → c̄0, we must take the limit L̄ → ∞ in the relevant dispersion

equations, namely (68), (72) of Section 2.2. Since viscosity does not play an important

role for wide channels (which is clear from Figure 2.2), we choose to do it for (72) given

its simplicity, to obtain

ρs
√
k2 − ω2

[
(2k2 − κ2s)

2 − 4k2γsγp
]
+ κ4sγp = 0, (2.12)

which is the Scholte dispersion equation for surface waves at the interface between

ideal fluid–elastic half–spaces. Intuitively, we can see how the larger ρs becomes (with

the other quantities fixed), the closer k = ω becomes a solution to (2.12), which is

normally the case for air. It turned out that the same occurs for water–steel, but as we

have illustrated with Figure 2.2 this is certainly not the case when ρs → 1. Therefore,

in terms of extending the framework presented above for any elastic solid, it is the roots

of (2.12) which must dictate the initial point of our iterative solver, noting that we be-

lieve it is useful to address the mode consideration as the ‘coupled duct–Scholte mode’.

The analysis of this chapter has been focused around boundary losses within the

fluid at small length-scales, but the solids considered in the FSI section were modelled



2.3. ADDITIONAL COMMENTS 101

as perfectly elastic following Section 1.4.1 which is particularly relevant for hard solids

like steel. However, from a physical perspective as suggested in Section 1.4.2 we notice

that soft solid media can be particularly attenuating in many circumstances [Chen,

2000]. It is therefore of interest to be able to include such effects in order to asses the

overall differences with the results presented above. This will be considered further in

Chapter 4, but before this we will focus on the development of a theory for (coupled)

linear TVE.



Chapter 3

A framework for linear TVE

3.1 Introduction

This chapter is devoted to the development of a framework for linear thermo-visco-

elasticity (TVE), as suggested in Section 1.4.3. Starting from the conservation equa-

tions of continuum mechanics, the first half of the paper in Section 3.2 is centred

around the theoretical considerations and assumptions that are necessary in order to

ultimately obtain the relevant governing equations. Emphasis is put on the distinction

between time ‘locality’ and ‘non-locality’ and how the latter is generally necessary in

order to characterize both creep and stress relaxation (see Figures 1.10, 1.11). We show

how the resulting equations can be decomposed in the frequency domain in order to

yield three Helmholtz type equations for the two thermo-compressional wave potentials

and the shear wave potential, as in TVA. We then provide asymptotic approximations

that highly simplify the thermo-compressional wavenumbers, and show how TVA as

well as other more classical theories such as those presented in Section 1.4.2 can be

recovered from this general TVE formulation. In particular, we show how it becomes

possible to study thermo-viscous losses in fluids and solids simultaneously as depicted

in Figures 1.12, 1.13. The framework is then applied to a canonical scattering problem

consisting of plane wave forcing on two semi-infinite TVE half-spaces. The physical

results are mainly concerned with reflection and transmission on fluid-solid interfaces,

and results for air, water, steel and rubber are provided. For the latter, we show how

stress relaxation effects can be important.

102
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done by E Garćıa Neefjes under the supervision of AL Gower. Most of the code

involved in this piece of work is available at AL Gower (GitHub). The physical results

and parameter space studies were discussed extensively with D Nigro. Specific feedback

and general discussions with the remaining co-authors helped improve the paper to

the current standard. This work is intended to be submitted for publication shortly.

3.2 Article



A unified framework for linear thermo-visco-elastic wave

propagation including the effects of stress-relaxation.
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Abstract

Lossless wave propagation models for diverse continua, including fluids and solids, have severe
limitations in problems of practical interest. Even in linear problems, the additional complex-
ities that arise due to the incorporation of attenuating mechanisms are such that in practice,
they are often approximated or models are fitted to experimental data at fixed frequencies or
in narrow frequency ranges. Although often sufficient for good agreement with experiments on
given materials or in certain frequency ranges, the validity of the approximations (frequently
introduced in a rather ad-hoc manner) are rarely discussed extensively and the wider applica-
bility of such models is therefore not clear. With this as motivation, here we present a unified
framework for the study of wave propagation in linear thermo-visco-elastic (TVE) media. This
framework establishes that although the various limits taken from full TVE to more simple
theories that neglect specific effects are often useful, coupling these theories at boundaries can
be non-trivial. Furthermore it also established that developing an accurate description of ma-
terial behaviour in the time domain requires a careful evaluation of the frequency dependence
of material properties and how this is accommodated in models. This is especially the case for
polymeric materials.

Our starting point is the general theory of TVE. We then illustrate how common simpler the-
ories are derived via limits of that theory. In the general unified linear model, the incorporation
of creep and stress relaxation permits models for wave propagation in realistic time-dependent
scenarios via transform to the frequency domain. We discuss polymeric and soft materials in
particular, where such effects are often stronger and coupling between media can also arise more
easily given that the distinction between fluid and elastic behaviour is not always particularly
clear. The general framework is applied to the canonical problem of scattering from an interface
between two TVE halfspaces in perfect contact. To illustrate dominant effects and the efficacy
of the various approximations, we provide results for cases involving air, water, steel and rubber.
We illustrate the conversion of energy into different modes, taking into account all aspects of
transfer.

The incorporation of general frequency-dependent behaviour in the unified model means that
the theory can be used as a convenient starting point for more complex problems involving time
dependence. It can also be employed as the basis for the resonant behaviour of more complex
media such as metamaterials, where modelling the attenuation mechanisms accurately is critical

1
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in order to understand their realistic response over a broad range of frequencies. Finally the
framework is also a good foundation for materials discovery problems, where there is great
potential for new effects to be discovered.

1 Introduction

Even under small deformations, complex continua exhibit a variety of constitutive effects over a
broad range of frequencies, associated with their atomistic, molecular or mesoscopic properties. In
the field of continuum mechanics it has become common place to label a material either as fluid
or solid and even when viscoelastic, for reasons of model simplification, there is a tendency to
specify a medium as a viscoelastic fluid or viscoelastic solid. This matter is however made more
complex when considering wave propagation in the medium over a wide range of frequencies and
temperatures. Polymers are an exemplary example; they are fluid-like at low frequencies and solid-
like at high frequencies and they take on similar properties as a (reciprocal) function of temperature
[1, 2]. The shear modulus of a polymeric material can vary by several orders of magnitude after
transitioning through the glass-transition frequency/temperature [3, 4].

Whilst the concept of assigning specific material behaviour is understandable in order to limit
the number of parameters that have to be measured experimentally, it has led to unintended conse-
quences and in some cases to additional complexities. For example, even in the simple case when two
homogeneous continua couple at an interface one may consider one medium as an acoustic medium,
with the other as elastodynamic [5]. Whilst seemingly a straightforward modelling problem, this
is not always the case when there is strong coupling and the potential for loss, or when there are
more complicated effects close to interfaces, which can be neglected in free space but cannot be in
domains close to boundaries. In the context of thermo-visco-acoustics, effective boundary conditions
have been devised to simplify the problem [6] but when strong coupling occurs, this same approach
cannot be employed. What follows are then rather ad-hoc approaches and often questionnable
approximations, particularly with regard to modelling in the time domain.

In more complex, inhomogeneous media or metamaterials, the frequency dependence can often
be very strong due to inherent resonances associated with microstructure [7, 8]. These resonances are
often tuned to be strong at low frequencies, given that this is often the regime in which traditional
materials cannot yield dispersive effects. However the frequency dependence is tuned by resonator
size and geometry, and the material properties of the matrix medium.

Understanding the wave propagation characteristics of metamaterials is frequently achieved by
employing asymptotic theories, which rely on specific scalings of the material property contrast [9],
[10]. If this dependence changes with frequency then the entire theory underpinning these materials
could be described as unstable. And the kinds of materials involved in high contrast resonance are
precisely materials that would possess strong frequency dependence.

One may argue that experiments at fixed frequencies can be fitted to a theory with certain
fixed parameters, whether one considers a metamaterial or a simple, homogeneous medium. This
is certainly the case and this approach has been employed very successfully in the past [11, 12].
However one may reasonably ask what happens when we change frequency, or design a resonator in
the same matrix material to act at a different frequency, or even more reasonably what happens in
the time domain? In all of these cases, of crucial importance is the ability to model the material’s
behaviour properly in the frequency domain. It appears uncomfortable from both a practical and
scientific perspective to fit different parameters to the behaviour over a broad range of frequencies.
It is certainly more beneficial to bring forth a theoretical framework that can accommodate such
dependence. Kelvin-Voigt viscoelasticity has been used with some success, but this theory does not
accommodate stress relaxation, which is critically important in polymers, when they undergo their

2
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glass transition, considered in either frequency or temperature space. Although for most materials
this transition seems to occur in the lower frequency regime, one of the crucial aspects is that it
affects both the real and imaginary part of the particular modulus [13] whereas Kelvin-Voigt models
only capture the latter.

In the present article, we return to the fundamentals of linear continuum mechanics and present
a general, unified framework with which to model a variety of TVE materials of interest, with
the specific interest in modelling how they couple at interfaces. We discuss Kelvin-Voigt visco-
elasticity and the standard linear models that extend this to incorporate stress relaxation. The
same governing equations are used in any domain, without any need to identify the medium as a
fluid, solid, viscoelastic, or otherwise. Needless to say parameters are required, but this means that
a priori, all that is required is the identification of values that identify the medium as linear TVE,
thus allowing one to model a vast range of important materials.

Over time the scientific community has developed a range of terms for specific media, e.g. visco-
acoustic, viscoelastic, thermoelastic etc. where certain physical effects are neglected. These are
certainly useful and helpful because in many cases the neglected effects are not important. Here
we also provide the asymptotic framework with which one can switch between these theories. In
many cases it is straightforward and we simply set specific constants to zero, meaning that a lack
of coupling arises. However in some cases one must be careful in the manner by which the theory is
simplified, as we discuss.

In Section 2 we begin with the conservation equations of homogeneous TVE materials, and
describe local (in time) thermo-visco-elasticity before moving onto the more general non-local models
that incorporate stress relaxation. These models are defined in the frequency domain and we consider
Prony series that permit frequency dependence of material properties [14]. In Section 3 we go on to
describe useful and appropriate asymptotic limits of the theory of thermo-visco-elasticity. Section
4 covers the application of the various theories to the canonical problem of wave reflection from an
interface between two continua, with the effects of coupling being illustrated and in particular the
effects of relaxation on the frequency-dependent transmission and reflection. We close in Section 5
with conclusions.

The equations governing linear TVE wave propagation can be summarised as the following.

Solve three Helmholtz equations

∆ϑ+ k2ϑϑ = 0, ∆φ+ k2φφ = 0, ∆Φ+ k2ΦΦ = 0 (1.1)

where

k2θ = ic̃v(iω)
ρ0ω

K
, k2ϕ =

ρ0ω
2

λ̃(iω) + 2µ̃(iω)
, k2Φ =

ρ0ω
2

µ̃(iω)
, (1.2a)

Lϕ =
iωR̃3(iω)

K
, Lθ = − T0R̃3(iω)

λ̃(iω) + 2µ̃(iω)
. (1.2b)

with notation defined in Table 1 and where the dependence of the material properties on
the frequency ω is discussed throughout this paper, noting the non-local (in time) discussion
required to accommodate stress relaxation.

The frequency dependence of material properties, as discussed above, is particularly critical as
we shall discuss in much greater detail later in this paper. The framework set up here motivates a
need for improved measurements of the frequency dependence of material properties over a broad

3

106 CHAPTER 3. A FRAMEWORK FOR LINEAR TVE



regime. Indeed, the literature is scant on information with regard to the frequency dependence of
even the most simple properties such as shear modulus and frequently assumptions are made with
little justification, e.g. the apparent lack of frequency dependence of the bulk modulus or Poisson’s
ratio [15].

4
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Notation

Time derivative ◦̇ = ∂ ◦ /∂t
Gradient operator ∇◦ = ∂ ◦ /∂xi

Laplacian operator ∆◦ = ∇ · ∇◦
Tensor contraction A : B = AijBij

Matrix trace tr(◦)
Matrix transpose ◦T
Fourier component ◦̂ = ◦e−iωt

Complex conjugate ◦∗
Heaviside function H
Three-dimensional Identity tensor I

Average over wave period ⟨◦⟩ = ω
2π

∫ t+2π/ω

t
(◦) ds

Thermo-Visco-Elastic Parameters

Parameters Unit(s) Symbols and Definitions

Continuum’s displacement vector m u
Infinitesimal strain tensor – ε = (∇u+ (∇u)T )/2
Off-diagonal entries of the strain tensor – e = ε− tr(ε)I/3
Cauchy stress tensor per unit mass N/m2 σ
Off-diagonal entries of the stress tensor – s = σ − tr(σ)I/3
Linear and angular frequency Hz, rad /s f , ω ω = 2πf
Classical (isothermal) Lamé coefficients N/m2 µ, λ > 0
Elastic bulk modulus (isothermal) N/m2 K = λ+ 2µ/3
Bulk and shear viscosity N· s/m2 ηK , ηµ > 0, ηλ = ηK − 2ηµ/3
Viscosity parameter N· s/m2 ζ = 2ηµ + ηλ
Local in time complex Lamé quantities N/m2 λ̂ = λ− iωηλ, µ̂ = µ− iωηµ
Local in time complex bulk modulus N/m2 K̂ = K − iωηK
Thermal conductivity W/m·K K
Internal energy density per unit mass N·m/kg E
Total and ambient temperature K T, T0

Non-dimensional temperature variation – θ = (T − T0)/T0

Total and ambient mass density kg/m3 ρ, ρ0
Total and ambient entropy per unit mass N·m/(kg·K) h, h0

Specific heat at constant pressure/volume J/(kg·K) cp, cv ρ0(cp − cv) = α2KT0

Ratio of specific heats – γ = cp/cv
Adiabatic/isothermal acoustic speed of sound m/s cA, cIso cA =

√
γcIso

Coefficient of thermal expansion 1/K α
Volumetric heat supply per unit mass N·m/(kg·s) B
Body force per unit mass N/kg G
Fourier-Stokes heat flux vector N/(m·s) q
Total and ambient Helmholtz free energy per unit mass N·m/kg Ψ,Ψ0

Thermal parameter 1/ m2 Lϕ

Thermo-visco-elastic coupling quantity – Lθ

Thermo-compressional wave-potentials/wavenumbers m2, 1/ m φ, ϑ kφ, kϑ
Pressure/Shear wave-potentials/wavenumbers m2, 1/ m ϕ,Φ kϕ, kΦ
Temperature contributions 1/ m2 Tφ,Tϑ

Mechanical relaxation functions N/m2 R1,R2

Thermo-mechanical relaxation function N/(m2· K) R3

Specific heat relaxation function J/(m3·K2) R4

Energy flux vector per unit volume N/(m · s) J
Total TVE energy per unit volume N/m2 U
Energy dissipation per unit time/volume N/(m2· s) D

Table 1: Thermo-viscous parameters and other quantities that appear in the general TVE model. By
the “ambient” value of a quantity, we refer to its value prior to deformation, i.e. in the undeformed
configuration which we assume to be still.

5
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2 Modelling linear TVE media

2.1 Governing equations

Our starting point is the classical set of conservation laws of linear continuum mechanics: conserva-
tion of mass, momentum and energy, together with the Clausius-Duhem inequality [16]

ρ̇+ ρ∇ · u̇ = 0, (2.1a)

ρü = ∇ · σ + ρG, (2.1b)

ρĖ +∇ · q = σ : ε̇+ ρB, (2.1c)

ρT ḣ+∇ · q ≥ ρB +
q · ∇T

T
, (2.1d)

where notation is summarised in Table 1, and the symmetry of the Cauchy stress tensor σ = σT

arises due to conservation of angular momentum.

2.2 Local (in time) TVE

We assume that all constitutive models considered are local in space. We begin with the simplest
(local) dependence on time, where we introduce the Helmholtz free energy per unit mass [17]

Ψ(t) ≡ Ψ(ε(t), T (t)) = E(t)− T (t)h(t). (2.2)

Using this in (2.1c), (2.1d) yields

(
σ − ρ

∂Ψ

∂ε

)
ε̇−

(
∂Ψ

∂T
+ h

)
ρṪ − q · ∇T

T
≥ 0. (2.3)

We then adopt the approach of Coleman-Noll ([18]) and Liu ([19]) to yield further information;
since (2.3) must hold for arbitrary deformations, the imposition of specific deformations permits
conclusions to be deduced on functional form. A purely isothermal process (Ṫ = 0,∇T = 0) and a
process that involves no deformation but a change in uniform temperature, respectively, yields

σTE = ρ
∂Ψ

∂ε
, and h = −∂Ψ

∂T
, (2.4)

where the superscript “TE” refers to thermo-elastic. The conditions (2.4) are sufficient but not
necessary to satisfy (2.3): one can include an additional visco-elastic (VE) contribution to the
Cauchy stress, e.g. for isotropic media

σ = σTE + σVE = ρ
∂Ψ

∂ε
+ 2ηµε̇+

(
ηK − 2

3
ηµ

)
tr(ε̇)I, (2.5)

where the shear and bulk viscosities1 satisfy ηµ > 0, ηλ = ηK − 2ηµ/3 > 0 and hence (2.5) also
satisfies (2.3).

The introduction of σVE distinguishes the current local-in-time TVE models from the commonly
employed classical TE models. However, the absence of stress rate terms in (2.5) is a strong restric-
tion, since it fails to predict stress relaxation effects, which are important in many common materials

1These terms are defined in several ways throughout the literature, our choice of ηK as the bulk viscosity matches
the convention of the elastic bulk modulus.
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such as polymers [20]. Incorporating stress rates results in models that we refer to as non-local in
time, and this is the focus of Section 2.3. We first describe the thermal constitutive models and then
the associated equations that describe local-in-time TVE wave propagation.

We adopt Fourier’s law of heat conduction,

q = −K ∇T, (2.6)

where K > 0 is the thermal conductivity of the material, whose positivity ensures that the last
term in (2.3) is never negative. The form (2.6) is the simplest admissible choice, resulting in a
parabolic diffusion equation (2.8) for which the thermal wave-speed is infinite. Thermal waves with
finite velocity (e.g. Maxwell-Cattaneo heat waves) are obtained with a thermal relaxation time which
arises when taking into account the rate of heat flux vector in (2.6) [21], [22].

At this stage it only remains to determine the thermodynamically consistent form of Ψ. As
shown in Appendix A, for a (local) linear theory of TVE we obtain

σ = 2µε+ 2ηµε̇+ (λ tr(ε) + ηλ tr(ε̇)− αKT0θ)I, (2.7a)

h = h0 + cvθ +
αK

ρ0
tr(ε), (2.7b)

where θ = (T −T0)/T0 is the non-dimensional temperature difference, and K = λ+2µ/3 denotes the
(isothermal) elastic bulk modulus. Substituting (2.2), (2.5) and (2.7b) into (2.1c) yields the energy
equation

K ∆θ − ρ0cv θ̇ = αK tr(ε̇), (2.8)

where we have assumed no external heat supply such that B = 0. Note that viscous effects are not
explicit in (2.8) since they are quadratic in ε̇, and hence at this order the energy is analogous to
that of linear thermo-elasticity [17]. Finally for convenience we write

ρ0(γ − 1) =
α2KT0
cv

, (2.9)

where γ = cp/cv denotes the ratio of specific heats. Equation (2.9) is a classical conserved quantity
in thermo-elasticity (see Appendix A). It is useful in practice since for solids cv is difficult to measure
as opposed to cp. As we see shortly it plays an important role when considering the thermo-visco-
acoustic (TVA) limit.

2.2.1 Frequency domain decomposition for the local-in-time equations

Assume time-harmonic propagation of the form u(x, t) = Re {û(x)e−iωt}, θ(x, t) = Re {θ̂(x)e−iωt}
and define the complex valued Lamé parameters

λ̂ = λ− iωηλ and µ̂ = µ− iωηµ, (2.10)

so that upon defining σ(x, t) = Re {σ̂(x)e−iωt}, we can write

σ̂ =
(
λ̂∇ · û− αKT0θ̂

)
I + µ̂

(
∇û+ (∇û)T

)
. (2.11)

Substituting (2.11) in the conservation of momentum equation (2.1b) yields

(λ̂+ 2µ̂)∇ (∇ · û)− µ̂∇×∇× û+ ρ0ω
2û = αKT0∇θ̂, (2.12)
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which corresponds to Navier-Lamé with thermo-mechanical coupling as in classical linear TE.
Introducing the classical Helmholtz potentials ϕ,Φ in the form

û = ∇ϕ+∇×Φ, ∇ ·Φ = 0 (2.13)

and making use of Helmholtz’ theorem [23], allows us to deduce that the potentials satisfy

∆ϕ+ k2ϕϕ+ Lθ θ̂ = 0, (2.14a)

∆Φ+ k2ΦΦ = 0, (2.14b)

∆θ̂ + k2θ θ̂ + Lϕ∆ϕ = 0, (2.14c)

where

k2θ = icv
ρ0ω

K
, k2ϕ =

ρ0ω
2

λ̂+ 2µ̂
, k2Φ =

ρ0ω
2

µ̂
, (2.15)

and where we have defined Lϕ (with dimension m−2), and the non-dimensional thermo-mechanical
coupling parameter Lθ as

Lϕ =
iαKω

K
, and Lθ = − αT0K

λ̂+ 2µ̂
. (2.16)

In the limit αT0 → 0 the system (2.14) uncouples immediately. Moreover, it is the size of |Lθ| that
determines the importance of thermo-elastic coupling. In order to obtain a less restrictive theory, it
is often argued for many materials in common scenarios that |Lϕ| × (“characteristic length”)2 ≪ 1
so that the energy equation (2.14c) becomes uncoupled. The corresponding solution can then be fed
into (2.14a) to obtain a forced Helmholtz equation with a known source term. This approximation
is sometimes referred to as the theory of thermal stresses in order to distinguish it from fully coupled
thermo-elasticity [24].

To decouple the system completely substitute (2.14a) into (2.14c) to obtain

LO{ϕ} = 0, where LO = (∆+ (a− b))(∆ + (a+ b)) (2.17)

where

a =
1

2

(
k2θ + k2ϕ − LθLϕ

)
, and b =

√
a2 − k2ϕk

2
θ . (2.18)

The solution to (2.17) is thus equivalent to solving the pair of Helmholtz equations

∆ϑ+ k2ϑϑ = 0, (2.19a)

∆φ+ k2φφ = 0, (2.19b)

with
k2ϑ = a+ b, k2φ = a− b. (2.20)

Employing (2.14a), the two newly introduced potentials φ, ϑ are related to ϕ and θ̂ via the matrix
form2 (

ϕ

θ̂

)
=

(
1 1

Tφ Tϑ

)(
φ
ϑ

)
, (2.21)

2Due to the uniqueness of the solution to the linear PDE (2.17) being up to a constant, we may also write

ϕ = C1ϑ + C2φ, whence θ̂Lθ = C1(a − b − k2ϕ)φ + C2(a + b − k2ϕ)ϑ, for constants C1, C2 but here we choose

C1 = C2 = 1 to match the conventional approach.
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where

Tφ =
1

Lθ
(k2φ − k2ϕ), Tϑ =

1

Lθ
(k2ϑ − k2ϕ). (2.22)

As is well known therefore, the equations of motion for linear local-in-time TVE are thus governed
by the three Helmholtz equations (2.14b), (2.19a) and (2.19b) from which we can recover the tem-
perature and displacement fields through (2.13), and (2.21). These wave potentials consist of two
thermo-compressional potentials φ, ϑ and a shear potential Φ, the latter being indepedent of ther-
mal effects. They can be directly correlated to those of [25] as well as [26] (by taking the limit
of zero volume fraction of voids). Asymptotic approximations to (2.20), (2.22) and their validity
will be discussed in Section 2.4 but now we move on to incorporating the influence of stress relaxation.

2.3 Non-local (in time) TVE: the influence of stress relaxation

The local-in-time TVE constitutive model (2.7a) has no dependence on history, or equivalently as
it turns out, no information with regard to stress rates. Whilst the model as presented permits the
modelling of creep, it means that stress relaxation cannot be modelled. From a physical viewpoint,
this limits its applicability, especially for the diverse range of polymeric materials in which relax-
ation, or equivalently, strongly frequency-dependent material properties, is common. In order to
accommodate this effect and creep, we must take into consideration the kinematical and thermal
time histories, so that the Helmholtz free energy per unit mass now takes the form

Ψ ≡ Ψ(ε(τ)|tτ=−∞ , T (τ)|tτ=−∞). (2.23)

This makes the question of whether the Clausius-Duhem inequality (2.1d) is solved less trivial, even
for linear theories [27], [28]. Instead, for a linear isotropic medium, (2.7) become [27]

s =

∫ t

−∞
R1(t− T )ė(T ) dT , (2.24a)

tr (σ) =

∫ t

−∞
R2(t− T ) tr(ε̇(T )) dT − 3T0

∫ t

−∞
R3(t− T )θ̇(T ) dT , (2.24b)

ρ0h = ρ0h0 + T0

∫ t

−∞
R4(t− T )θ̇(T ) dT +

∫ t

−∞
R3(t− T ) tr(ε̇(T )) dT , (2.24c)

and the energy equation (2.8) is replaced by

K ∆θ =
∂

∂t

(
T0

∫ t

−∞
R4(t− T )θ̇(T ) dT +

∫ t

−∞
R3(t− T ) tr(ε̇(T )) dT

)
, (2.25)

where s and e are defined as

s = σ − 1

3
tr(σ)I, (2.26a)

e = ε− 1

3
tr(ε)I, (2.26b)

and the kernelsR1,R2,R3,R4 are relaxation functions3 containing the time varying thermo-mechanical
properties of the medium. Note that despite including thermal history in the present theory, gen-
eral thermodynamic consistency again requires Fourier’s law (2.6) to hold with a constant thermal
conductivity K , so that (2.25) remains parabolic.

3Here these functions are scalar valued since we are only considering isotropic deformations.
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Restrictions on Ri include causality, giving Ri(τ) = 0 for τ < 0 (where i =1−4) and choosing
a form such that all integrals in (2.24), (2.25) are convergent. Finally, the choice must satisfy the
dissipation inequality :

Λ ≥ 0, (2.27)

where Λ is detailed in Appendix C. Despite being frequently neglected, the requirement (2.27) is also
present in the analogue isothermal VE theory. For a particular choice of Ri, it can in principle be
checked whether (2.27) is satisfied (see Appendix C). We note that the thermodynamics of certain
widely used theories are often unclear, as in the case of Fung’s Quasilinear Viscoelasticity (QLV)
theory [29]. Unless otherwise stated, in the subsequent work we assume that we meet the necessary
requirements for equations (2.24)-(2.25) to apply.

In general it is non-trivial to determine the time-dependent form of the relaxation functions
for a given material. They are assumed to depend only on the background temperature (assumed
constant) T0 as any more general temperature dependence must involve non-linearities, which are
outside the scope of this paper. An exception is given by “thermo-rheologically simple” materials
[30], where the dependence of the material properties on temperature has a particularly appealing
structure that allows for description with a linear theory. The dependence of these properties
on temperature can be associated with a shift of the behaviour at a base constant temperature
which is commonly known as the “time-temperature superposition”. The particular shift function
can in general be found experimentally but a very common empirical shift function is that of the
Williams–Landel–Ferry [20].

Having established a sufficiently general constitutive framework with which to model materials
with time-dependent material properties we now discuss how this can be described in the frequency
domain.

2.3.1 Frequency domain decomposition for the non-local equations

Assume now that the fields are time-harmonic, of the form

{u, θ,σ, s, ε, e}(x, t) = Re {{û, θ̂, σ̂, ŝ, ε̂, ê}(x)e−iωt}. (2.28)

and for convenience we decompose all relaxation functions as

Ri(t) = Ri
′ + Ri(t), s.t. R(t) → 0 as t→ ∞, (2.29)

for i = 1, 2, 3, 4. We can then substitute (2.28) with (2.29) into (2.24) to obtain

ŝ = 2µ̃(iω)ê, (2.30a)

tr(σ̂) = 3(K̃(iω) tr(ε̂)− T0R̃3(iω)θ̂), (2.30b)

on defining

µ̃(iω) =
1

2

(
R′

1 − iω

∫ ∞

0

R1(V)eiωV dV
)
, (2.31a)

K̃(iω) =
1

3

(
R′

2 − iω

∫ ∞

0

R2(V)eiωV dV
)
, (2.31b)

R̃3(iω) = R′
3 − iω

∫ ∞

0

R3(V)eiωV dV, (2.31c)
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which respectively correspond to the complex shear modulus, the three-dimensional complex bulk
modulus, and the complex modulus associated with the coefficient of thermo-mechanical coupling.
From (2.31a), (2.31b) it follows that we can define the generalized first Lamé modulus, Poisson’s
ratio and Young’s modulus, respectively as [15]

λ̃(iω) = K̃(iω)− 2

3
µ̃(iω), ν̃(iω) =

3K̃(iω)− 2µ̃(iω)

6K̃(iω) + 2µ̃(iω)
, Ẽ(iω) =

9K̃(iω)µ̃(iω)

3K̃(iω) + µ̃(iω)
. (2.32)

Finally, using (2.31c) the energy balance equation (2.25) becomes

K ∆θ̂ + iω
(
T0R̃4(iω)θ̂ + R̃3(iω) tr(ε̂)

)
= 0, (2.33)

where we defined the complex modulus

R̃4(iω) = R′
4 − iω

∫ ∞

0

R4(V)eiωV dV. (2.34)

In fact, by direct comparison with the energy equation commonly used in linear thermo-elasticity
(e.g. (1.12.22) in [17]) we observe that this quantity can be interpreted as a specific heat at constant
strain/volume per unit volume, which in the setting of TVE with temperature history allows for
frequency dependency, i.e.

R̃4(iω) =
ρ0
T0
c̃v(iω). (2.35)

Hence, the associated Cauchy stress in the frequency domain becomes

σ̂TVE = 2µ̃(iω)ê+ (K̃(iω) tr(ε̂)− T0R̃3(iω)θ̂)I (2.36)

= 2µ̃(iω)ε̂+ (λ̃(iω) tr(ε̂)− T0R̃3(iω)θ̂)I. (2.37)

The associated energy and momentum equations reduce to

K ∆θ̂ + iωρ0c̃v(iω)θ̂ + iωR̃3(iω)∇ · û = 0, (2.38a)

(λ̃(iω) + 2µ̃(iω))∇ (∇ · û)− µ̃(iω)∇×∇× û− T0R̃3(iω)∇θ̂ + ρ0ω
2û = 0. (2.38b)

Conveniently, equations (2.36)-(2.38b) have the same structure as (2.10)-(2.12), (2.14), for a fixed
frequency ω. Now however, rich frequency dependent behaviour can be accommodated by the
incorporation of the relaxation functions.

The equivalent form however means that the decomposition of Section 2.2.1 remains valid so
that the fields remain solutions of the decoupled Helmholtz equations (2.14b), (2.19a) and (2.19b),
as in the local case, with the only change (but a critical one) being that now the relevant quantities
appearing in the wavenumbers have a more general frequency dependence:

k2θ = ic̃v(iω)
ρ0ω

K
, k2ϕ =

ρ0ω
2

λ̃(iω) + 2µ̃(iω)
, k2Φ =

ρ0ω
2

µ̃(iω)
, (2.39a)

Lϕ =
iωR̃3(iω)

K
, Lθ = − T0R̃3(iω)

λ̃(iω) + 2µ̃(iω)
. (2.39b)

As in the local case, the displacement and temperatures are given respectively by appropriate com-
binations of the potentials:

ûTVE = ∇(ϑ+ φ) +∇×Φ, (2.40a)

θ̂TVE =
1

Lθ
(a− b− k2ϕ)φ+

1

Lθ
(a+ b− k2ϕ)ϑ. (2.40b)
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Note, in particular, that the more general frequency dependence of the TVE coupling parameter
Lθ shows that certain materials may exhibit significant thermal coupling only for certain frequency
ranges.

2.3.2 Form of relaxation functions

Stress relaxation tests aim to investigate the viscoelastic properties of a given sample of material
via specific loading modes, e.g. shear, uniaxial or bi-axial compression, etc. A general expression
for relaxation functions is the so-called Prony series [14], which takes the form

R(t) =

(
R∞ +

N∑

n=1

Rne
−t/tr

)
H(t) (2.41)

where H(◦) denotes the Heaviside function and tn are characteristic relaxation times of the medium
in question. R∞ is the associated long-term modulus, resulting from the limit t → ∞, whilst
R0 = R∞+

∑N
n=1 Rn is the instantaneous modulus. In practice modes of deformation or propagation

are chosen that can isolate the dependence of relaxation functions so that they can be measured
experimentally [31]. A common scenario for the purposes of modelling is to assume a single relaxation
time:

R(t) =
(
R∞ + (R0 −R∞)e−t/tr

)
H(t), (2.42)

where in practice the relaxation time is obtained by fitting the model to the relaxation test data
[14]. Following (2.31), (2.34), in the frequency domain (2.42) becomes

R(iω) = R∞ − (R0 −R∞)
iωtr

1− iωtr
, (2.43)

and it is apparent from (2.43) that, in the low frequency (long time, or rubbery) and high frequency
(short time, or glassy) limits, R∞ and R0 are respectively obtained (see Figure 1). When separating
(2.43) into real and imaginary parts, the “loss tangent” may be defined which is frequently used
in order to characterize viscoelastic losses under steady state oscillatory conditions and associated
experimental data [32]. In practice, the ratio R0/R∞ can be very large, up to several orders of
magnitude, see e.g. [4] for the shear modulus of an unfilled crosslinked rubber material.

Temperature can play a very important role in the behaviour of the moduli [1], [3]. Linear TVE
theory allows only for dependence of the mechanical properties on the background temperature T0
as is the case in an isothermal theory. Stress relaxation tests as described above are associated with
specific modes of deformation and, therefore, the corresponding data obtained provides, e.g. the
time-dependent Young’s modulus (e.g. R(t) in (2.42)) under uniaxial compression or tension. On
the other hand, several other experimental methods are used to approximate the shear modulus,
e.g. [3]. As a result, one would expect that for an isotropic medium these 2 independent constants
are sufficient to describe the continuum in consideration. It turns out that this is often not the case
due to the required accuracy of the experiments, and tests involving primarily volumetric effects
are necessary (see [15]). This is particularly evidenced for nearly incompressible elastic materials,
and a method to determine K̃(iω) was presented in [33], where it is assumed that bulk loss is a
constant fraction of the loss in shear. This assumption led to good agreement with the observed
experimental results, for polyethylene (PE) and Plexiglass (PMMA) the bulk loss (Im{K̃}/Re{K̃})
represents 20% of the shear loss, whereas in polystyrene the bulk loss was calculated to be around
0.1%. Nevertheless, to this day, data for bulk losses in general materials remains difficult to find, as
discussed in [34].
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Figure 1: An example of prototype, single relaxation time, scalar relaxation function time-domain
behaviour (left) given by (2.42), and its frequency domain counterpart (right) from (2.43).

The frequency dependence of the specific heat and thermo-mechanical coupling term in (2.31c)
and (2.34) are reported even less, and these quantities are usually considered static, although re-
laxation type phenomena of the specific heat has been observed, e.g. [35]. This discussion for VE
behaviour together with the thermal properties illustrates the intricacies involved in the correct
determination of many of the quantities appearing in a TVE model. As a result, in studies seeking
more qualitative results over a wider range of materials, common simplifications are made. In [36]
it is argued that in most instances VE effects are mainly related to the isochoric part of the defor-
mation and therefore if we write the Cauchy stress (2.36) in terms of the isochoric and deviatoric
parts we have (noting (2.26a))

σ̂ = 2µ̃(iω)ê+ (K tr(ε)− T0R̃3(iω)θ̂)I (2.44)

where K becomes a real valued constant from which the value of λ̃(iω) follows through (2.32). In [2]
it is instead assumed that the Young’s modulus takes the form (2.43), whilst the Poisson’s ratio is
kept constant. In turn this implies that the shear modulus also takes the form (2.43). The magnitude
of the variation in the specific heat is such that it will be assumed constant.

2.3.3 Relaxation function interpretation of local TVE

The local TVE model discussed in Section 2.2 can be thought of as a special case from that of Section
2.3 where the kinematical and thermal time histories represented by R1,R2,R3,R4 in (2.24) are
described by Heaviside and delta functions. In the frequency domain, this simply results in the
choice

λ̃(iω) = λ− iωηλ, µ̃(iω) = µ− iωηµ, c̃v(iω) = cv, R̃3(iω) = αK, (2.45)

in (2.36)-(2.38b) to arrive at the local TVE theory. In the time domain, the instantaneous local
viscous effects are represented by delta functions such that e.g. for the shear modulus

R1(t) = 2(µH(t) + ηµδ(t)), (2.46)

as can be checked from (2.31a), and similarly for the bulk modulus. The time domain representation
for the shear modulus (2.46) shows how relaxation effects as discussed in Section 2.3.2 are clearly
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not captured with local TVE. In the frequency domain the real part remains constant whereas
the imaginary part becomes unbounded as the frequency increases. For this reason Local TVE
is in general not suitable in studies beyond single frequency analyses. Given that in general we
are interested in wave propagation in materials over rather general frequencies this is significantly
restrictive.

Next we consider asymptotic limits under which thermo-compressional coupling can be signif-
icantly simplified in the context of the general TVE theory, before moving onto specific physical
limits in the next Section.

2.4 Asymptotic approximations for thermo-compressional coupling

We simplify the decoupled thermo-compressional wavenumbers a± b in (2.20), and the temperature
field (2.40b). Asymptotic analysis illustrates that kφ is a quasi-acoustic wavenumber, whilst kϑ is a
quasi-thermal wavenumber. Similar expressions for 1D TVE waves are given in [28], Section 6.3.

We start by assuming that the (viscous) pressure wavenumber is much smaller than the bulk
thermal wavenumber, and thus introduce the following small parameter:

δ =
k2ϕ
k2θ

=
−iωK

cv(iω)(λ̃(iω) + 2µ̃(iω))
≪ 1 (2.47)

and we assume that

|δ| ≪
∣∣∣∣
LϕLθ
k2θ

∣∣∣∣ . (2.48)

These assumptions4 hold true over vast ranges of frequencies and materials of interest, including
solids, liquids and gases. The inequality in (2.48) is equivalent to ωK ≪ cvK(γ − 1) which for
a given a material can be a useful upper bound on the admissible frequency of the forthcoming
expansions. Based on the discussion in Section 2.3.2, we will neglect thermal histories and thus
write

c̃v(iω) = cv, R̃3(iω) = αK. (2.49)

Expanding in δ then,

b = ±1

2

[
k2θ − LθLϕ −

k4θ + k2θLθLϕ
k2θ − LθLϕ

δ − 2k6θLθLϕ
(k2θ − LθLϕ)3

δ2 +O(δ3)

]
,

where the sign chosen depends on the complex argument of the term within the square-root, and
the chosen branch cut. Depending on this choice we will have either a± b = k2φ and a∓ b = k2ϑ, with
k2φ and k2ϑ shown below:

k2φ =
k4θ

k2θ − LθLϕ
δ +

k6θLθLϕ
(k2θ − LθLϕ)3

δ2 +O(δ3), (2.50a)

k2ϑ = k2θ − LθLϕ −
k2θLθLϕ
k2θ − LθLϕ

δ +O(δ2). (2.50b)

4Alternatively, this can be achieved by simply assuming |a2| ≪ |k2ϕk2θ | which also holds true in most cases but this

approach is avoided since its physical interpretation is not as straightforward.
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Figure 2: Maximum relative errors for the asymptotic expansions (2.50) for a frequency range of
10kHz to 10MHz and material parameters from Table 4. For Rubber 2, the shear modulus is
described by the single Prony term relaxation function (2.43) where the frequencies cover both the
rubber and glassy phase.

Similarly, we can now expand the temperature contributions (a ± b − k2ϕ)/Lθ given in (2.22). We
find

Tφ =
1

Lθ
(k2φ − k2ϕ) =

k2θLϕ
k2θ − LθLϕ

δ +
k6θLϕ

(k2θ − LθLϕ)
3 δ

2 +O(δ3), (2.51a)

Tϑ =
1

Lθ
(k2ϑ − k2ϕ) =

k2θ − LθLϕ
Lθ

− k4θ
k2θ − LθLϕ

δ +O(δ2), (2.51b)

so that Tφ (Tϑ) is the temperature contribution corresponding to the mode with wavenumber kφ
(kϑ). An illustration of the accuracy of the expansions for the thermo-compressional wavenum-
bers for different materials is given in Figure 2. Similar results were obtained for the temperature
contributions (2.51) but have not been included here.

3 Limits to theories that neglect specific physical effects

A plethora of approximate thermo-visco-elastic theories exist that neglect certain physical effects.
Here we describe such theories in terms of parameter limits of the general TVE theory described
above, noting that we have already described how local TVE is recovered from non-local TVE in
Section 2.3.3 via the choice of specific relaxation functional forms. More generally, it is important to
understand how significant the neglected terms are when the full TVE is compared with the simpler
theories. The efficacy of the various limits is thus studied with regard to a canonical problems
involved half-spaces in Section 4.

Figure 3 summarises the various limits taken from the TVE theory in the frequency domain,
starting from the current general framework, where various effects can be switched off and on to yield
various commonly used theories. Other relevant dissipative theories concerning thermal relaxation
in solids and those involving molecular relaxation effects in the acoustics of gases are not included
since these require further modelling considerations, (see e.g. Section 2.4 in [6]).
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Elasticity

Acoustics

Local Thermal effects

Local Viscous effects

Non-Local Viscous effects

§3.2

§2.3.3

§3.1

§3.3

Figure 3: Representation of various elasto/acoustic dissipative theories, where the arrows indicate
various limits that can be taken to arrive at other (more restrictive) theories.

3.1 Thermo-visco-acoustic (TVA) fluids

Starting with the local TVE theory described in Section 2.2 and taking the standard limit of zero
shear modulus,

µ→ 0, (3.1)

leads to the widely used model for Thermo-visco-acoustics (local in time) [37], [6]. In this regime
the thermodynamic identity (2.9) becomes

γ − 1 =
α2T0c

2
Iso

cv
, where c2Iso =

λIso
ρ0

, (3.2)

since in the limit KIso → λIso. The subscript “Iso” in the definition of the isothermal sound speed
cIso is chosen to emphasize that these quantities are defined at a state of constant temperature5

(see e.g. (78) in [34]). Note that here the Lamé parameters are isothermal by definition (λ ≡ λIso)
since the Helmholtz free energy is expanded from a state of constant temperature T0 and zero strain
(see (A.1) in Appendix A). With (3.1) the thermo-mechanical coupling constant Lθ (2.16) can be
approximated by

Lθ ≈ −αT0, (3.3)

5This distinction is often ignored for liquids and solids since it is not as important (see e.g. Section 1.9.2 of [37]),
but is paramount for gases.
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since for frequencies of interest we have ωηλ, ωηµ ≪ λ. Furthermore, with (3.1) and (3.2) the
quantities (2.15) and (2.16) become

k2θ =
iρ0ωcp
γK

, k2ϕ → ρ0ω
2

ρ0c2Iso − iωζ
, k2Φ → iρ0ω

ηµ
, (3.4a)

Lϕ → iρ0ωαc
2
Iso

K
, Lθ → − αρ0c

2
IsoT0

ρ0c2Iso − iωζ
, (3.4b)

with ζ = ηλ + 2ηµ and given that cv = cp/γ. With (3.4) and in the limit µ→ 0, the linear operator
(2.17) becomes

LO → LTVA = (ρ0c
2
A − iωζγ)K ∇4 + iω[ρ20c

2
Acp − iωρ0(cpζ + K γ)]∇2 + iρ20cpω

3, (3.5)

where we have made use of (3.2) in terms of the adiabatic speed of sound cA as is common in
acoustics with the relation c2A = γc2Iso. The operator (3.5) is identical to that in (2.70) of [6] for TVA
when the latter is written in the frequency domain and in the absence of any sources. This confirms
that the local TVE theory recovers TVA but says nothing about the decomposition (in particular
the connection between wave potentials) which, as we saw in (2.21), is unique up to a constant. For
completeness we match the potentials to those by [5] in Appendix D.

3.2 Non-local Visco-elasticity (VE)

Starting with the general non-local TVE theory described above and taking the limit of zero thermo-
mechanical coupling6, that is

R̃3(iω) → 0, (3.6)

in (2.36), (2.38), results in
σ̂VE = 2µ̃(iω)ε̂+ λ̃(iω) tr(ε̂)I, (3.7)

as well as
(
∆+

iωρ0c̃v(iω)

K

)
θ̂VE = 0, (3.8a)

(λ̃(iω) + 2µ̃(iω))∇ (∇ · û)− µ̃(iω)∇×∇× û+ ρ0ω
2û = 0. (3.8b)

These are the governing equations for visco-elasticity, including stress relaxation. It is apparent in
(3.8) that there is no longer coupling between kinematic and thermal effects, and hence the wave
potentials directly give

ûVE = ∇ϕ+∇×Φ, (3.9)

where
(
∆+

ρ0ω
2

λ̃(iω) + 2µ̃(iω)

)
ϕ = 0, (3.10a)

(
∆+

ρ0ω
2

µ̃(iω)

)
Φ = 0, (3.10b)

6In the local TVE case we simply take the limit of zero thermal expansion coefficient, that is αT0 → 0.
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recalling that the Lamé parameters in (3.10) are isothermal7 Nevertheless, in practice it is important
to understand the effect of this limit on the decomposition that leads to the corresponding TVE
wave potentials. It is clear that the shear wave potential remains unchanged in the limit (since it is
independent of thermal effects). The situation for the thermo-compressional fields is slightly more
subtle. Direct substitution of (3.6) into (2.14b), (2.19a) and (2.19b) with (2.39) leads to

φ→ A1ϕ, ϑ→ A2θ
VE, since a−b→ ρ0ω

2

λ̃(iω) + 2µ̃(iω)
= k2ϕ, a+b→ iωρ0c̃v(iω)

K
= k2θ , (3.11)

for some constants A1,A2 arising due to the uniqueness of the linear PDE solution being up to
a constant. However, direct comparison between the curl free components of the TVE and VE
displacements (2.40a), (3.9) implies A1 = 1 and ϑ → 0 which restricts the form of A2 but this
is not sufficient to determine it explicitly. Therefore, in order to find this constant we consider
the effect of the limit (3.6) on the TVE temperature (2.40b). We obtain Tφ → 0, which gives
θTVE → (k2θ − k2ϕ)A2θ

VE/Lθ (after using the second equation of (3.11)) so that in order to recover
the VE solution we must choose

A2 =
Lθ

k2θ − k2ϕ
=

iT0R̃3(iω)K

ρ0ω(cv(iω)(λ̃(iω) + 2µ̃(iω)) + iωK
, (3.12)

from which it is clear that in the limit both θTVE → θVE and ϑ → 0 as required. Furthermore,
(local) visco–acoustic Newtonian fluids (e.g. [39]) can also be described by (3.8)-(3.10) by further
letting µ → 0 so that µ(ω) = −iωηµ which gives a convenient way to model viscous fluids such as
water [40, 41].

3.3 Thermo-elasticity (TE)

The final simplified theory is the case when viscous dissipation is neglected, leading to the theory
of linear thermo-elasticity. In the frequency domain this can be thought of as the local TVE model
presented in Section 2.2 with real-valued Lamé parameters. Indeed let

λ̃(iω) = λ, µ̃(iω) = µ, c̃v(iω) = cv, R̃3(iω) = αK, (3.13)

and substitute (3.13) in (2.36) and (2.38) so that we obtain the corresponding equations for time-
harmonic thermo-elasticity [17]

σ̂TE = 2µε̂+ (λ tr(ε̂)− αKT0θ̂)I, (3.14a)

K ∆θ̂ + iωρ0cv θ̂ + iωαK∇ · û = 0, (3.14b)

(λ+ 2µ)∇ (∇ · û)− µ∇×∇× û− αKT0∇θ̂ + ρ0ω
2û = 0. (3.14c)

The structure of (3.14b), (3.14c) allows for the same decomposition

ûTE = ∇(ϑ+ φ) +∇×Φ (3.15)

where the wave potentials must still satisfy (2.14b), (2.19a) and (2.19b) with simplified TVE pa-
rameters in (2.15), (2.16) becoming real valued and frequency independent, i.e.

k2ϕ =
ρ0ω

2

λ+ 2µ
, k2Φ =

ρ0ω
2

µ
, Lθ = − T0αK

λ+ 2µ
, (3.16)

whereas k2θ , Lϕ remain unchanged.

7For the particular relations with the corresponding adiabatic moduli, see e.g. [38].
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4 Two TVE half spaces in perfect contact

As a means to put into practice the framework that we have presented above, we next consider a
forced boundary value problem (BVP) consisting of two TVE half-spaces. In the absence of thermal
effects (using the theory presented in Section 3.2) a detailed analysis for this problem is given in
[42], who generalized the work pioneered by [43] to include attenuation in reflection/transmission
problems for ultrasonics. More recent work has included the presence of voids [44] or thermal
relaxation [45], but only for a single traction free half-space, presumably because their goal was to
understand loss mechanisms for solids.

Here we are interested in interactions between different TVE media when in contact and in
particular those that are deemed as “fluid” and “solid”. With two half spaces we can illustrate the
advantages of the general TVE model, the limits discussed in Section 3, as well as the importance
of stress relaxation effects presented in Section 2.3 as opposed to the local TVE version in Section
2.2, which is a common “go to” theory when experiments are performed at specific frequencies.

4.1 Problem formulation

We consider a plane-strain problem consisting of two distinct TVE half spaces in perfect contact at
an interface along y = 0, see Figure 4. All of the quantities have been non-dimensionalised following
Appendix F.1, and relevant dimensional parameters are distinguished by an overbar.

TVE Medium 1

y

x

ψ

TVE Medium 2

φIφR

ϑR

ΦR

φT

ϑT

ΦT

Figure 4: Schematic representation of the configuration of the problem of two welded semi-infinite
TVE media. An incident P-dominated bulk mode impinging on the interface of the two distinct
TVE domains gives rise to three reflected modes and three transmitted modes.

We choose the forcing to be a pressure-dominated plane wave

φI = e−ikφ1
(x cosψ+y sinψ), ψ ∈ (0, π), (4.1)

where ψ is the angle of incidence (measured anticlockwise from y = 0), and we assume Re kφ1 ≥ 0
and Im kφ1 ≥ 0.
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This incoming energy will be converted into reflected/transmitted thermo-compressional and
shear modes. Given the translational invariance of the problem in the x-direction, each potential
will depend on x through e−ikφ1x cosψ, and therefore we write

φR = Rφe
ikφ1

sinψye−ikφ1
x cosψ, φT = Tφe

−idφT
ye−ikφ1

x cosψ, (4.2a)

ϑR = Rϑe
idϑR

ye−ikφ1
x cosψ, ϑT = Tϑe

−idϑT
ye−ikφ1

x cosψ, (4.2b)

ΦR = ezRΦe
idΦR

ye−ikφ1
x cosψ, ΦT = ezTΦe

−idΦT
ye−ikφ1

x cosψ, (4.2c)

where the potentials φR, ϑR, and ΦR are defined in the upper half space y ≥ 0, while the potentials
φT, ϑT, and ΦT are defined in the lower half space y ≤ 0. We use subscripts R/T to denote
reflected/transmitted respectively. In the above we introduced the notation

dφT
= i
√

−(k2φ2
− k2φ1

cos2 ψ), dϑR
= i
√

−(k2ϑ1
− k2φ1

cos2 ψ), dϑT = i
√

−(k2ϑ2
− k2φ1

cos2 ψ),

dΦR = i
√

−(k2Φ1
− k2φ1

cos2 ψ), dΦT = i
√
−(k2Φ2

− k2φ1
cos2 ψ). (4.3)

With (4.3), when using the standard branch cut for the square root along the negative real line we
have

Im dφT
, Im dϑR

, Im dϑT
, Im dΦR

, Im dΦT
≥ 0, (4.4)

which guarantees that each of the potentials in (4.2) are bounded within their respective halfspaces.
To completely determine the potentials (4.2) we use the boundary conditions representing con-

tinuity of traction, displacement, temperature, and temperature flux, across y = 0, 8

σ̂1ey = σ̂2ey, û1 = û2 (4.5a)

θ̂1 = θ̂2, K1∇θ̂1 · ey = K2∇θ̂2 · ey, (4.5b)

where σ̂1 and σ̂2 are the stress tensors in the upper (1) and lower (2) media respectively, while u1

and u2 are the displacements in media 1 and 2.
Substituting (4.2) into (4.5), using (2.36) and (2.40), leads to the following six equations




a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 0 0
a61 a62 a63 a64 0 0







Rφ
Tφ
Rϑ
Tϑ
RΦ

TΦ




=




a11
−a21
−a31
a41

−a51
a61



. (4.6)

To calculate the entries aij we provide a Mathematica notebook as supplementary material [46].
The above can be used to uniquely determine the six amplitudes Rφ, Tφ, Rϑ, Tϑ, RΦ, and TΦ.

4.2 The VE-VE limit

In the limit of no thermal coupling we let α1, α2 → 0 (and hence kφ1 → kϕ1 , kφ2 → kϕ2 and Tφ1 ,
Tφ2 → 0) in (4.6) as discussed in Section 3.2. From this we conclude that Rϑ, Tϑ → 0 and the
scattering system reduces to




a11 a12 a15 a16
a21 a22 a25 a26
a31 a32 a35 a36
a41 a42 a45 a46







Rφ
Tφ
RΦ

TΦ


 =




a11
−a21
−a31
a41


 , (4.7)

8Where in component form we have σ̂1ey = ((σ̂1)xy , (σ̂1)yy , (σ̂1)zy).
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where the limit of α1, α2 → 0 should be taken for each of the aij . For normal incidence, ψ = π/2
we obtain the classical solutions

Rφ =
−kϕ1

(λ̃1 + 2µ̃1) + kϕ2
(λ̃2 + 2µ̃2)

kϕ1
(λ̃1 + 2µ̃1) + kϕ2

(λ̃2 + 2µ̃2)
=
ρ̄2c̄ϕ2 − ρ̄1c̄ϕ1

ρ̄2c̄ϕ2 + ρ̄1c̄ϕ1

, (4.8a)

Tφ =
2k2ϕ1

(λ̃1 + 2µ̃1)

kϕ2
[kϕ1

(λ̃1 + 2µ̃1) + kϕ2
(λ̃2 + 2µ̃2)]

=
2ρ̄1c̄ϕ2

ρ̄2c̄ϕ2
+ ρ̄1c̄ϕ1

, (4.8b)

where we have introduced the free space compressional wave speed in each medium through the
relation c̄ϕ = ω̄/k̄ϕ. The well-known equations (4.8) give a clear interpretation of the role of the
mechanical impedance ρ̄c̄ϕ when it comes to reflection/transmission, see e.g. §1.4. in [47] (for
elasticity). We next discuss the more subtle aspect of the partition of energy at the interface.

4.3 Energy partitioning at the interface

Consider the energy flux through the boundary y = 0. The average energy flux vectors are defined
in (E.2), and since for this problem we have two distinct media, we write9

⟨J⟩ =
{

⟨J1⟩ = 1
2 Re{σ1u̇

∗
1 + θ1K1∇θ∗1} for y ≥ 0,

⟨J2⟩ = 1
2 Re{σ2u̇

∗
2 + θ2K2∇θ∗2} for y < 0.

(4.9)

If the boundary conditions (4.5) have been correctly enforced, we expect to have

⟨J1⟩ · ey = ⟨J2⟩ · ey at y = 0, (4.10)

meaning that the normal component of the mean energy flux (or power per unit area averaged over
a period) is continuous across the boundary y = 0. We show in Appendix E how (4.10) can be
written in terms of energy ratios for reflected, transmitted and interacting modes as

ERφ
+ ERϑ

+ ERΦ
+ EIRIR

+ EIRRR
+ ETφ

+ ETϑ
+ ETΦ

+ EITTT
= 1. (4.11)

After solving for all the relevant wave potentials, the above can be used as a check to ensure
both numerical accuracy and algebraic correctness. We have noted that the presence of ‘crossed
terms’ (Appendix E.1) represented by interaction coefficients EIR, EIT in (4.11) has been repeatedly
ignored in the literature without justification e.g. [45], [44]. We find (not shown) that despite
their contribution being small at lower frequencies, their importance in the energy balance equation
becomes essential at higher frequencies, and it should therefore be emphasized under what conditions
it is a valid approximation to ignore them. Further details can be found in [42] (in the absence of
thermal coupling).

4.4 Numerical results and discussion

We now present some illustrations of numerical solutions of the general system (4.6) for specific
pairs of TVE materials. All results were checked to accurately satisfy the energy flux balance (4.11).
We thus demonstrate when thermal or viscous effects are important for these examples, and in
particular we can illustrate the effect of stress relaxation. We do this by comparing solutions from
the general TVE-TVE case in (4.6) with the solutions of VE-VE (4.7), which ignores thermal effects,

9Where the product between the Cauchy stress and velocity is written in component form as σ1u̇∗
1 = (σ1)ij(u̇1)∗j

where we sum over j.
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the TVA-rigid solutions (F.7), which consider no transmission, and other variations specified in Table
2.

We use typical values for air, water, steel and rubber as summarized in Table 4. The large
parameter space involved allows for an incredibly wide range of materials to be considered. Here we
only consider a small fraction of this space, but hope that this work enables further exploration in
the future. In particular we stress that the general TVE framework allows general materials to be
considered and no distinction to be required between fluids or solids, etc. which frequently hampers
progress via the necessary use of distinct notation for each medium.

Acronym TVA–Local TVE VA–Local VE
TVA–
Rigid

A–
Rigid

TVE–
TVA

VE–
VA

TVA–
TVE

Equation (4.6) with (4.12) (4.7) with (4.12)
(F.6)
with
(F.7)

(F.6)
with
(F.11)

(4.6)
with
(4.13)

(4.7)
with
(4.13)

(4.6)
with
(4.15)

Table 2: Specific equations corresponding to the various acronyms used in the results and discussion
of Section 4.4.

4.4.1 TVA - Local TVE: Thermo-visco-elastic effects and fluid-strucure interaction

In this first instance we restrict the material parameters of medium 1 to those of air/water whereas
for medium 2 we will concentrate on steel/rubber. Both air and water have many applications, while
investigating steel and rubber means we are considering both soft and hard solids.

We first investigate the use of TVA in medium 1 (or local TVE with µ1 = 0) and local TVE in
medium 2 such that the complex moduli appearing in (4.6) are given by

µ̃1(iω) = −iωηµ1, λ̃1(iω) = λ1 − iωηλ1, µ̃2(iω) = µ2 − iωηµ2, λ̃2(iω) = λ2 − iωηλ2, (4.12)

as discussed in Sections 2.3.3, 3.1. For some of these parameters, it is difficult to find numerical
values in the literature, take for example ηλ2 [34]. In these cases, we attempt to use reasonable
values based on similar materials. The viscoelastic parameters for steel are taken from Table 6.2.2.
in [42].

Air-Solid interface. Thermal effects are known to be important in air, as we can clearly see in
Figure 5a, where various reflection coefficients are compared. This is evidenced by the value of
thermo-mechanical coupling term for air (3.3) given by |Lθ| ≈ 1 due to air’s high thermal expansion
coefficient. The pressure dominated reflection coefficient Rφ (responsible for most of the energy) is
clearly different for a system which does not include thermal effects in air, such as VA-VE. This is
especially true at higher frequencies, in agreement with [5] for narrow slits. Here thermal effects for
air are less pronounced for lower frequencies, as shown in Figure 5b for f = 10 kHz. The reflected
shear wave is no longer excited and |Rφ|’s minimum moves closer to the grazing angle of incidence
ψ = 0. This behaviour is due to viscous and thermal boundary layer effects near the interface, and
can be described through an analytical expression for the specific admittance, where the influence of
frequency and angle of incidence become apparent, see e.g. Section 3.2.1 in [6]. Naturally, the solution
to the A-Rigid configuration in the absence of any losses gives Rφ = 1 everywhere, independently of
the incident frequency, see (F.11).

Note that neither thermal nor viscous effects are important in medium 2, as using the rigid
boundary conditions, TVA-rigid, accurately recovers the reflection coefficient of TVA-TVE.

For all of these parameters we obtained almost identical results when swapping rubber for steel,
noting that for air-steel the small discrepancy between TVA-rigid and TVA-TVE observed near
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grazing in Figure 5b disappears. The overall excellent agreement is because in both cases there is
little transmission into the solid. The same cannot be said of a water-solid interface as we now
describe.

Water-Solid interface. As the mechanical impedance of water is closer to the impedance of most
solids, more mechanical energy will be transmitted into the solid giving rise to FSI effects. This is
apparent from Figures 5c, 5d where the TVA-rigid solutions no longer agree with the TVA-TVE
system. On the other hand, in contrast to air, thermal effects are no longer particularly important,
indicated by the fact that TVA-TVE and VA-VE solutions are almost the same. This is due to the
smaller thermal coupling for water |Lθ| ≈ 0.078. We observe that the |Rφ| behaviour for water-
Rubber 2 is indistinguishable at low and high frequencies, resembling the purely elastic solutions
((4.7) with ηµ1, ηµ2, ηλ1, ηλ2 = 0) which are independent of frequency. The same can be said for
the transmitted modes. Nevertheless, we will observe shortly how this behaviour can change when
stress relaxation is considered.

For water-steel the frequency dependence is nevertheless apparent. In the TVA-TVE solutions,
boundary layer effects are visible near grazing incidence at higher frequencies (Figure 5c), in contrast
to the lower frequency regime, where |Rφ| remains very close to one as seen in Figure 5d. The TVA-
Rigid solutions greatly overestimate these effects near ψ = 0 at both frequencies. As opposed to
the in-air case, reflected boundary layer shear waves into the water were not found i.e. |RΦ| ≈ 0 in
each case and hence not included in the figures. The other notable frequency-dependent feature for
water-steel is the emergence of a significant reduction in amplitude at high frequencies for a narrow
range of angles of incidence around the interval (π/4, 3π/8). This phenomenon was first observed
experimentally in the 1960s for water-aluminum and it was noticed that it disagreed with predictions
of elastic reflection–refraction theory. It has been discussed by several authors since including [43],
[25], [42] where the latter reference provides a detailed explanation under a VA-VE model. Under
the framework presented in this work, we have extended their model to include thermal losses in
both media, although as we can observe these are not manifested in the solutions when compared
to the isothermal solution. Finally, we note that the |Rφ| behaviour for ψ ∈ (3π/8, π/2) in Figures
5c and 5d is elastic and independent of frequency, and the two distinct features in this region are a
consequence of the transmitted SV and P waves in the lower half-space being induced respectively
(not shown).

4.4.2 Influence of stress relaxation

We now explore the effect of stress relaxation in the solid. Little discussion is found on stress relax-
ation times for metals in the literature since in most instances they are nearly undamped materials
e.g. [13], so here we focus on results for rubbery media following the values in Table 4.

Rubber-Air interface. We first investigate a TVE-TVA interface, where the incident energy arises
from the solid. Following the discussion in Section 2.3.2, we assume that the relaxation is purely
in shear and is governed by a single-term Prony series, with the bulk modulus being a real valued
constant such that

µ̃1(iω) = µ∞1 − (µ01 − µ∞1)
iωtr

1− iωtr
, λ̃1(iω) = K1 −

2

3
µ̃1(iω), (4.13)

µ̃2(iω) = −iωηµ2, λ̃2(iω) = λ2 − iωηλ2. (4.14)

As discussed in Section 2.3.2, the relevant non-dimensional parameter to investigate the different
regions of the modulus is ωtr. For a given material, the relaxation time is fixed and it scales the
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(a) Air-Rubber 2 f = 10 MHz. (b) Air-Rubber 2 f = 10 kHz

(c) Water-Rubber 1/Steel f = 10 MHz (d) Water-Rubber 1/Steel f = 10 kHz

Figure 5: Magnitude of the reflection coefficients as predicted by the different systems in Table 2
with the material constants used shown in Table 4. The results cover different fluid-solid interfaces
for both higher (f = 10MHz) and lower (f = 10kHz) frequencies, and the x-axis shows the angle of
incidence ψ.
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resulting frequency behaviour. Here we choose three distinct values, namely ωtr = 0.063, 1.005, 62.83
corresponding to the rubbery, transition and glassy regions of the shear modulus, as shown explicitly
in Table 3.

For Rubber 1 in Table 4, it was found that Rφ ≈ −1, independently of ψ, ωtr. This is due to the
fact that for Rubber 1 K1 ≫ |µ̃1(iω)| at all frequencies since this material is nearly incompressible,
and hence the associated Poisson’s ratio remains very close to 1/2 in each case. Nevertheless, for
Rubber 2 the situation is much different, as shown in Figure 6. In the rubbery region ωtr = 0.063,
the incident angle dependence on reflection remains small but this changes in the transition region
and especially in the glassy region. For ωtr = 62.83 we observe that the reflected SV wave gets
excited with a global maximum near ψ = π/4 where the amplitude RΦ becomes almost 50% of that
of the incident wave. Despite the smaller ratio µ01/µ∞1 of Rubber 2 compared to Rubber 1, its
higher magnitude implies that it becomes more compressible and the Poisson’s ratio reduces (see
Table 3) which in turn excites the reflected shear wave, e.g. for ωtr = 1.005, we have |ν̃(iω)| = 0.425.
Since these solutions are mainly influenced by the Poisson’s ratio, for a practical realization it is
the frequency dependence ν̃(iω) that should be studied more in depth, see e.g. [15] for an extensive
review.

ωtr

Modulus ¯̃µ Rubber 1/Rubber 2 ν̃ Rubber 1/Rubber 2

0.062 3.38× 105 − 6.07× 105i/2.1× 107 − 1.7× 107i 0.4999 + 0.00018i/0.489 + 0.008i

1.005 5.2× 106 − 4.85× 106i/1.6× 108 − 1.4× 108i 0.498 + 0.00142i/0.42 + 0.06i

62.83 9.99× 106 − 1.54× 105i/2.99× 108 − 4.4× 106i 0.497 + 0.00004i/0.36 + 0.0018i

Table 3: Shear modulus and Poisson’s ratio values according to the SLSM, the values of ωtr have
been chosen to cover the rubbery, transition and glassy regions.

For both rubbers the thermo-mechanical coupling is small such that Lθ = O(10−2), and therefore
equivalent results are obtained when using the VE-VE system (4.7). Again due to the mechanical
impedance mismatch, transmission into the air is negligible. In fact, these results obtained for air in
the lower medium had excellent agreement with the associated problem of a single TVE half-space
with traction free and isothermal/adiabatic boundary conditions. Although not included in this
report, these simpler solutions showcase explicitly the role of ν described above (see e.g. §5.6 in [47]
in the absence of losses).

Fluid-Rubber interface. In the second example, we want to investigate whether stress relaxation
effects in rubber can still alter the reflection/transmission pattern when the incident energy comes
from the fluid, so we return to a fluid-solid TVA-TVE interface such that

µ̃1(iω) = −iωηµ1, λ̃1(iω) = λ1−iωηλ1, µ̃2(iω) = µ∞2−(µ02−µ∞2)
iωtr

1− iωtr
, λ̃2(iω) = K2−

2

3
µ̃2(iω).

(4.15)
In the case of air-rubber (1 & 2), for each value of ωtr the reflected modes behave as discussed with
the local TVE model in Figures 5a, 5b and the transmission into the rubber is negligible. Although
as we observed in Figure 5c, energy gets transmitted into the solid in a water-Rubber 1 interface, the
frequency variation of the shear modulus according to the SLSM did not manifest in any results that
deviated much from the Local TVE case. This occurs due to the high Poisson’s ratio of Rubber 1,
as discussed above for the rubber-air interface. For water-Rubber 2 however, significant differences
in |Rφ|, |Tφ|, |TΦ| do arise.
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Figure 6: Reflection coefficients for a Rubber2-air interface in the rubbery, transition and glassy
regions of the shear modulus according to the SLSM. The material constants used are shown in
Table 4.

It is often of interest in application to avoid any acoustic reflection in the incident medium, which
requires impedance matching with the neighbouring medium. Since for these materials thermal cou-
pling was found to be unimportant, (4.8) can be used to tune Rubber 2 in order to impedance
match it with the water for a particular value of frequency. As an illustration, following this prin-
ciple we simply tune the density of Rubber 2 (ρ̄2 : 2300 → 1588 kg/m3) in order to impedance
match it with water in the glassy region represented by ωtr = 62.83, as shown in Figure 7. For
the reflected/transmitted P waves, the differences between ωtr increase monotonically as ψ moves
from grazing to normal incidence, where the maximum difference occurs. A 10% variation in the
magnitude of the reflected amplitude was found between the glassy and rubbery regions. Similar
values for this variation yield for the transmitted shear wave, where the maximum difference occurs
near ψ = π/4.
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Figure 7: Reflection/Transmission of a water-Rubber 2 interface according to (4.6), where the density
of material 2 has been adapted to impedance match with µ0 in the glassy region.

TVE Parameter Values

Parameter Unit Symbol Air Water Steel Rubber 1/2

Elastic
Background density kg/m3 ρ0 1.19 1000 7932 1522/2300
Bulk modulus (isothermal) Pa K 100.72×103 2.2×109 1.57×1011 1.7×109/109

Shear modulus Pa µ0 0 0 7.83×1010 107/ 3×108

Relaxed Shear modulus (for SLSM) Pa µ∞ - - - 3×105/2×107

Local Viscous
Dynamic shear viscosity Pa·s ηµ 1.8×10−5 10−3 15 10−2/ 10−2

Dynamic bulk viscosity Pa·s ηK 1.1×10−5 3×10−3 10−8 10−2/ 10−2

Thermal
Thermal conductivity W/m·K K 0.026 0.597 30 2
Specific heat at constant pressure J/kg·K cp 1005 4181.6 500 1300
Ambient temperature K T0 300 300 300 300
Coefficient of thermal expansion 1/K α 1/300 2.6×10−4 1.7×10−5 2.5×10−4

Ratio of specific heats - γ 1.39 1.01 1.0003 1.008

Table 4: Thermo-viscous parameter values for air, water, steel and rubber employed in the several
plots of Section 4. Air is taken from [37] and Water from engineeringtoolbox. The VE values for
Steel are taken from Table 6.2.2. in [42], which follow from experiments. The high value of ηµ
arises from ‘fitting’ a KV model to the imaginary part of the shear modulus which comes from
measurements at 10MHz. The values of rubber are based on the ranges provided in [48].

5 Conclusions

Understanding how to model and exploit loss mechanisms in complex materials is important in
many applications and increasingly so in the areas of composite media and metamaterials science.
Here we have presented a general unified framework, permitting the incorporation of both creep
and relaxation via time non-locality, with which one can study linear wave propagation in thermo-
visco-elastic media. We illustrated the framework with the configuration of two semi-infinite half-
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spaces in perfect contact, with plane compressional-wave incidence on the interface that separates
the media. We used this example to compare solutions when incorporating viscosity and thermal
effects. For fluid-solid interfaces we noted the important role of the incident frequency and angle
on the contribution to visco-thermal effects as well as visco-elastic attenuation within the solid. For
the latter we emphasized the differences induced when the shear modulus includes stress relaxation,
as opposed to the local-in-time counterpart where the real part of the modulus remains fixed.

There are many advantages to the unified framework presented here, but three are key. Firstly, it
provides a mechanism to study canonical wave propagation problems when there is coupling between
different media, and specifically between what are classically perceived as fluid and solid. As we have
shown this distinction is often clear away from boundaries but is less clear close to such interfaces.
A unified framework allows such modelling to be carried out once and for all, without the need to
develop separate models for each, as is often done [49, 5]. To help illustrate the connection between
the framework and other well-known models for dissipation, such as thermo-visco-acoustics in fluids,
or visco-elasticity, we have demonstrated how to take the appropriate limits to recover these special
cases from our framework.

The second key advantage is the potential use of the framework to understand fully time-
dependent problems. It is common for wave propagation problems to be studied at single frequencies,
which is sufficient in its own right, but if a viscoelastic model is employed, one must be confident
that this model is capable of representing the behaviour across a broad range of frequencies, espe-
cially if one wishes to subsequently use this model in the time domain, given that a time domain
signal will encompass a vast range of frequency content in general. It is often seen as standard
practice to employ simple Kelvin-Voigt models to account for viscoelasticity, with “parameters that
are frequency dependent” [12, 50]. Whilst this may be sufficient to model the material response at
fixed frequencies, it is not sufficient to be employed in the time domain.

The third advantage of the unified framework that incorporates stress relaxation and creep is
that one can then employ these models to understand and describe wave propagation in polymeric
media. Such materials have the behaviour as illustrated throughout this paper, with a specific fre-
quency at which maximum loss occurs, also related to a temperature, know as the glass-transition.
This behaviour is particularly important to accommodate when polymers are employed in the meta-
material context since the design of metamaterials focuses on internal resonance and therefore one
may wish to design this resonance with knowledge of this transition in mind, either to increase or
decrease inherent attenuation in the material.

We anticipate that the presented framework can now be employed on various problems of interest.
In particular it can be used to unify the approach to the problem described in [5] and this will
therefore now be extended in Chapter 4 in order to study fluid-filled slits and fluid-loaded plates,
when the “solid” in both cases is soft and therefore can couple strongly to the fluid.
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Appendices

A Local isotropic TVE stress-strain relations

We first begin by assuming that the free energy Ψ can be written as a function of the strain ε and
temperature T . Then the form of the stress (2.5) suggests the strain energy can be written explicitly
as a series expansion, at about ε = 0 and T = T0, up to second order in ε, and T . This leads to

ρ0Ψ(ε, T ) = ρ0

(
Ψ|ε=0,T=T0

+
∂Ψ

∂ε

∣∣∣∣
0,T0

: ε+
∂Ψ

∂T

∣∣∣∣
0,T0

(T − T0) +
1

2!
ε :

∂2Ψ

∂ε∂ε

∣∣∣∣
0,T0

: ε (A.1)

+
∂2Ψ

∂T 2

∣∣∣∣
0,T0

(T − T0)
2

2!
+ 2

(T − T0)

2!

∂2Ψ

∂ε∂T

∣∣∣∣
0,T0

: ε

)
,
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where we have assumed that ε, (T − T0)/T0 ≪ 1 and both are of the same order.
If we further assume isotropy, we can reach

ρ0
∂Ψ

∂ε

∣∣∣∣
0,T0

: ε = a0 tr ε,
∂2Ψ

∂T 2

∣∣∣∣
0,T0

= − cv
T0
, (A.2a)

ρ0ε :
∂2Ψ

∂ε∂ε

∣∣∣∣
0,T0

: ε = λ(tr ε)2 + 2µ tr(ε2), (A.2b)

ρ0
∂2Ψ

∂ε∂T

∣∣∣∣
0,T0

: ε = −αK tr ε, (A.2c)

where K =
(
λ+ 2µ

3

)
, and the material constants µ, λ, cv, α, a0 have conveniently been chosen to fit

standard conventions. Using (2.4), and (A.2) we may rewrite (A.1) as

ρ0Ψ(ε, T ) = ρ0(E0 − T0h0 − h0(T − T0)−
cv
2T0

(T − T0)
2) + a0 tr ε (A.3)

+
1

2

(
λ(tr ε)2 + 2µ tr(ε2)

)
− αK(T − T0) tr(ε).

From the above, (2.4), and (2.5) it follows that the Cauchy stress tensor and entropy are of the form

σ = a0I + λ tr(ε)I + 2µε− αK(T − T0)I + 2ηµε̇+

(
ηK − 2ηµ

3

)
I tr(ε̇), (A.4a)

h = h0 +
cv
T0

(T − T0) +
αK

ρ0
tr ε. (A.4b)

We can let a0 = 0 since we are not considering any form of pre-stress.
By comparing with (2.7), we can now identify: λ and µ as the (isothermal) Lamé coefficients,

cv = T0(∂h/∂T )ε=0 as the specific heat at constant deformation (see e.g. Article 1.12 in [17]), and
α as the coefficient of volumetric thermal expansion10 α = (∂ tr(ε)/∂T )ε=0.

Equivalent theories for TVE can be derived similarly, in particular if (2.2) is replaced with the Gibbs
energy, the specific entropy can be written in terms of stress as (see e.g. [38] equation (34))

h = h0 +
α

3ρ0
trσ + cpθ, (A.5)

where similarly cp = T0(∂h/∂T )σ=0 is defined as the specific heat at constant deformation of the
solid in consideration.

When tr(ε̇) can be neglected in (A.4a), then we can write (A.4b) in terms of stress to obtain

h = h0 + cvθ +
α

3ρ0

(
trσ + 3αK(T − T0)

)
, (A.6)

which can be directly equated with (A.5) in order to obtain the identity (2.9).

10Note that for an isotropic material, this term is three times the coefficient of linear thermal expansion, which is
also commonly found in the thermodynamic literature.
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B The local energy-conservation-dissipation corollary

As we have seen above, the Cauchy stress, and the conservation of momentum and energy equations
under our local TVE framework can be written as

ρ0
∂u̇

∂t
= ∇ · σ, (B.1a)

σ = 2µε+ 2ηµε̇+ (λ tr(ε) + ηλ tr(ε̇)− αKT0θ)I, (B.1b)

K ∆θ − ρ0cv θ̇ = αK tr(ε̇), (B.1c)

We will use these equations to illustrate the mechanisms of energy dissipation. The first step is to
take the inner product of both sides of (B.1a) with ∇u̇ to reach

∇ · (σu̇) = 1

2

d

dt
(ρ0|u̇|2) + σ : ∇u̇, (B.2)

where we define the contraction A : B = AijBij .
For convenience, let us write the (isotropic) TVE Cauchy stress tensor (B.1b) as

σTVE = σVE + σTH, (B.3)

where
σVE = 2µε+ 2ηµε̇+ (λ tr ε+ ηλ tr ε̇)I, σTH = −αKT0θI. (B.4)

Using (B.3) and (B.4) in (B.2) leads to

∇ · (σTVEu̇) =
1

2

d

dt
(ρ0|u̇|2)− αKT0θ tr(ε̇) + σVE : ∇u̇ . (B.5)

Next we multiply both sides of the energy equation (B.1c) by T0θ to obtain

T0

(
K ∇ · (θ∇θ)− K ∇θ · ∇θ − ρ0cv

2
θ̇2
)
= αKT0θ tr(ε̇) (B.6)

Then we can substitute the left hand-side of (B.6) into (B.5) to reach

∇ · (σTVEu̇+ T0θK ∇θ) = 1

2

d

dt

(
ρ0|u̇|2 + ρ0T0cvθ

2
)
+ T0K |∇θ|2 + σVE : ∇u̇. (B.7)

Finally we use (B.4) to rewrite

σVE : ∇u̇ =
d

dt

(
µ|ε|2 + λ

2
(tr ε)2

)
+ 2ηµ|ε̇|2 + ηλ (tr ε̇)

2
, (B.8)

and hence (B.7) becomes

∇ · J+
1

2
U̇ = −D, (B.9)

where

J = −(σTVEu̇+ T0θK ∇θ), D = T0K |∇θ|2 + 2ηµ|ε̇|2 + ηλ (tr ε̇)
2

(B.10a)

U = ρ0|u̇|2 + ρ0T0cvθ
2 + 2µ|ε|2 + λ(tr ε)2, (B.10b)

are the energy flux vector, energy dissipation and total TVE energy respectively. Note that D ≥ 0,
so that a non-zero temperature gradient and strain rate always dissipates energy. Similar results are
given for VE in [42, p. 20] and for TE in [51].
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C The dissipation inequality for non-local TVE

As we have seen in Section 2.3, the expressions for the stress-strain relationships as well as en-
tropy and Fourier’s heat law of conduction are determined such that they are consistent with the
overall conservation of energy equation and the Clausius- Duhem inequality. Despite this, we must
still ensure that the resulting dissipation inequality is always satisfied which restricts our choice of
relaxation functions. We must have

Λ ≥ 0, (C.1)

where in the isotropic case Λ is given by

Λ = −1

2

∫ t

−∞

∫ t

−∞

∂

∂t
R1(t− T , t− U)∂ε(T )

∂T
∂ε(U)
∂U dT dU

− 1

6

∫ t

−∞

∫ t

−∞

∂

∂t
R2(t− T , t− U)∂ tr(ε(T ))

∂T
∂ tr(ε(U))

∂U dT dU (C.2)

+ T0

∫ t

−∞

∫ t

−∞

∂

∂t
R3(t− T , t− U)∂ tr(ε(T ))

∂T
∂θ(U)
∂U dT dU

+
T 2
0

2

∫ t

−∞

∫ t

−∞

∂

∂t
R4(t− T , t− U)∂θ(T )

∂T
∂θ(U)
∂U dT dU .

We note that in (C.2) the relaxation functions appear with 2 arguments, as opposed to the governing
equations (2.24), (2.25). The relation is given byRi(t−T , 0) = Ri(t−T ). This is a result of Leibnitz’s
rule for the time derivative of the free energy in the derivation. Moreover, in order to verify (C.1)
from relaxation functions appearing in (2.24), (2.25) we must therefore have Ri(T ,U) = Ri(T +U).

D TVA wave potentials

In Section 3.1 we showed how how the classical TVA theory for fluids is recovered from the local TVE
model by taking the limit of zero shear modulus [5]. For completeness, we show here how the TVE
potentials are linked to those used in [5]. We commence by summarizing the (frequency domain)
dimensional decomposition of the TVA theory used under the current TVE notation (note that the
TVA theory is written in terms of velocity, whereas here we write it in terms of displacement) (see
equations (13)-(14) of [5])

(
∇2 +

ρ0ω

ηµ

)
Ω = 0, ∇× (−iωu) = Ω, (D.1a)

(
∇2 + κ21

)
Θ1 = 0, κ21 = iω

ρ20c
2
Acp − iωρ0(cpζ + γK ) + S

2(ρ0c2A − iωζγ)K
, (D.1b)

(
∇2 + κ22

)
Θ2 = 0, κ22 = iω

ρ20c
2
Acp − iωρ0(cpζ + γK )− S

2(ρ0c2A − iωζγ)K
, (D.1c)

S =
√
[ρ20c

2
Acp − iωρ0(cpζ − γK )]2 − 4iωρ30c

2
AcpK (γ − 1), (D.1d)

from which the temperature and displacement can be obtained respectively by

T0θ
TVA = Θ1 +Θ2, (D.2a)

ρ0ω
2uTVA =

cp
2αT0c2A

∇{M(ω)Θ1 +N(ω)Θ2}+ ηµ∇×Ω, (D.2b)
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where

M(ω) = ρ0c
2
A − iω

(
ζ − γK

cp

)
− S
ρ0cp

, N(ω) = ρ0c
2
A − iω

(
ζ − γK

cp

)
+

S
ρ0cp

. (D.3)

The divergence free component potential of the Helmholtz decomposition for TVE (2.13), satisfying
(2.14b), where in the limit the corresponding wavenumber is given by the last of (3.4a) can be
substituted in the curl of (D.2b) to give (note that in order to be able to this we require that
uTVE → uTVA as µ→ 0)

Φ → ηµ
ρ0ω2

Ω, as µ→ 0. (D.4)

From (3.5)
a− b→ κ22, a+ b→ κ21 as µ→ 0. (D.5)

It therefore only remains to find the scaling between the TVE thermo-compressional fields {φ, ϑ}
and those of TVA {Θ1,Θ2}. If we take the divergence of (D.2b) with (2.13), (2.21) we can then use
the respectives PDEs (2.19) with their limiting values (D.5) to arrive at

ϑ→ cpM(ω)

2ρ0ω2T0c2Aα
Θ1, φ→ cpN(ω)

2ρ0ω2T0c2Aα
Θ2 as µ→ 0. (D.6)

Alternatively, (D.6) can also be obtained by considering the µ → 0 limit on θTVE from the second
of (2.21) and equating it to (D.2a).

E Energy ratios for TVE scattering

It is useful to represent the intensity of a given time-harmonic wave as an average of J (B.10a) over
the wave period (2π/ω) which can be written as

⟨J⟩ = ω

2π

∫ t+2π/ω

t

J ds. (E.1)

Given the corollary in Appendix B, it follows that

⟨J⟩ = −1

2
Re{σu̇∗ + θK ∇θ∗}, (E.2)

denotes the average energy flux (per unit area) due to both the mechanical power and the heat
flux, see [51]. In particular, note that this is an extension to the widely used definition presented
in [47] (page 34) for isothermal elasticity. Nevertheless, we have noted that several works doing
coupled thermo-elasticity do not seem to take into account the thermal flux term e.g. (61) in [44],
(60) in [45]. To arrive at (E.2) we have used the result that for two general time harmonic signals
F = F0e

−i(ωt+γ1) f = f0e
−i(ωt+γ2), (γ1, γ2 represent arbitrary phase shifts) we have

⟨Re{F} × Re{f}⟩ = 1

2
Re{Ff∗}, (E.3)

where asterisk ∗ denotes complex conjugate. As we have seen, the displacement, Cauchy stress and
temperature are linear combinations of {φ, ϑ,Φ} and we can therefore decompose ⟨J⟩ accordingly.
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E.1 Interface between 2 TVE media: Continuity of normal mean energy
flux

The continuity boundary conditions at the interface between the two TVE media imply (4.10). The
TVE-TVE set-up (4.2) implies that in medium 1 we have an incident P dominated wave as well as
reflected P, SV and T waves, so we write

⟨J1J1J1⟩ = ⟨J1J1J1
NI⟩+ ⟨J1J1J1

IRR⟩+ ⟨J1J1J1
IRI⟩, (E.4)

where ⟨J1J1J1
NI⟩, ⟨J1J1J1

IRR⟩, ⟨J1J1J1
IRI⟩ denote the contribution to the power due to “Non-Interacting”,

“Interacting Reflected” and “Interacting between Reflected and Incident” modes respectively. These
are specifically given by

⟨J1J1J1
NI⟩ = ⟨JJJφI⟩+ ⟨JJJφR⟩+ ⟨JJJϑR⟩+ ⟨JJJΦR⟩, (E.5a)

⟨J1J1J1
IRR⟩ = ⟨JJJφRϑR

⟩+ ⟨JJJϑRφR
⟩+ ⟨JJJφRΦR

⟩+ ⟨JJJΦRφR
⟩+ ⟨JJJϑRΦR

⟩+ ⟨JJJΦRϑR
⟩, (E.5b)

⟨J1J1J1
IRI⟩ = ⟨JJJφIφR

⟩+ ⟨JJJφRφI
⟩+ ⟨JJJφIϑR

⟩+ ⟨JJJϑRφI
⟩+ ⟨JJJφIΦR

⟩+ ⟨JJJΦRφI
⟩, (E.5c)

where the subscripts indicate the mode(s) contributing to (E.2). For NI terms e.g. ⟨JJJφI⟩ in (E.5a)
we must compute the stress, velocity, temperature and temperature gradient due to the incident P
wave φI. In the case of interacting terms we have e.g.

⟨JJJφRϑR
⟩ = −1

2
Re{σφR

u̇∗
ϑR

+ θφR
K ∇θ∗ϑR

}, (E.6)

so that we need the stress and temperature due to φR, and the velocity and temperature gradient
due to ϑR. Note that the order of the subscripts is important since it indicates whether the mode is
contributing towards the stress or velocity (and temperature or temperature gradient) in each case.
Recall that the temperature is independent of the shear wave motion, that is θΦ = 0.

The situation in the lower half-space is simpler, since there is no incident and as a result there is no
interaction between the transmitted and incident mode i.e. ⟨J2J2J2

ITI⟩ = 0, so that

⟨J2J2J2⟩ = ⟨J2J2J2
NI⟩+ ⟨J2J2J2

ITT⟩. (E.7)

The “Non-Interacting” and “Interacting Transmitted” terms are given by

⟨J2J2J2
NI⟩ = ⟨JJJφT

⟩+ ⟨JJJϑT
⟩+ ⟨JJJΦT

⟩, (E.8a)

⟨J2J2J2
ITT⟩ = ⟨JJJφTϑT

⟩+ ⟨JJJϑTφT
⟩+ ⟨JJJφTΦT

⟩+ ⟨JJJΦTφT
⟩+ ⟨JJJϑTΦT

⟩+ ⟨JJJΦTϑT
⟩. (E.8b)

We can now substitute (E.5a), (E.8a) into (4.10) to obtain

(⟨JJJφI
⟩+ ⟨JJJφR

⟩+ ⟨JJJϑR
⟩+ ⟨JJJΦR

⟩+ ⟨J1J1J1
IRR⟩+ ⟨J1J1J1

IRI⟩) · ey = (⟨J2J2J2
NI⟩+ ⟨J2J2J2

ITT⟩) · ey, (E.9)

which by defining the energy ratios for the reflected modes ER and interaction-reflected coefficients
EIR

ERφ = −⟨JJJφR
⟩ · ey

⟨JJJφI⟩ · ey
, ERϑ

= −⟨JJJϑR
⟩ · ey

⟨JJJφI⟩ · ey
, ERΦ = −⟨JJJΦR

⟩ · ey
⟨JJJφI⟩ · ey

, (E.10a)

EIRRR
= −⟨JJJIRR⟩ · ey

⟨JJJφI⟩ · ey
, EIRIR

= −⟨JJJIRI⟩ · ey
⟨JJJφI⟩ · ey

, (E.10b)
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as well as the transmission coefficients ET and interaction-transmitted coefficients EIT

ETφ
=

⟨JJJφR
⟩ · ey

⟨JJJφI
⟩ · ey

, ETϑ
=

⟨JJJϑR
⟩ · ey

⟨JJJφI
⟩ · ey

, ETΦ
=

⟨JJJΦR
⟩ · ey

⟨JJJφI
⟩ · ey

, (E.11a)

EITTT
=

⟨JJJITT⟩ · ey
⟨JJJφI

⟩ · ey
. (E.11b)

With (E.10), (E.11) we can finally rewrite (E.9) as

ERφ + ERϑ
+ ERΦ + EIRIR + EIRRR + ETφ + ETϑ

+ ETΦ + EITTT = 1, (E.12)

which gives a total of 25 different terms. In the absence of thermal coupling, the number of terms
reduces to 13 and (E.12) reduces to (5.4.58) in [42]. See Section 5.4.6. of the same reference for
further useful details including analytical expressions for some of the coefficients in (E.10), (E.11).

F Section 4 further details

F.1 Non-dimensionalisation

For the numerical implementation it is convenient to re-write the dimensional equations with non-
dimensional quantities. We choose to non-dimensionalise with respect to the thermo-elastic quan-
tities from (the top) medium 1. In particular, we choose c1 to denote the (adiabatic) longitudinal
speed of sound of the upper material in the lossless case, i.e. c21 = (λ1 + 2µ1)/ρ1. In order to dis-
tinguish between dimensional/non-dimensional quantities here, we write all dimensional quantities
with an overbar.

∇ = ℓ̄∇, ω =
ℓ̄

c̄1
ω̄, {u1,x} =

1

ℓ̄
{ū1, x̄}, {ϕ1, φ1, ϑ1,Φ1} =

1

ℓ̄2
{ϕ̄1, φ̄1, ϑ̄1, Φ̄1},

K1 =
T̄1K̄1

ρ̄1c̄31ℓ̄
, cv1 =

T̄1
c̄21
c̄v1, α1 = ᾱ1T̄1, {ηλ1, ηµ1} =

1

ρ̄1c̄1ℓ̄
{η̄λ1, η̄µ1},

{λ̃1, µ̃1, K̃1,σ1} =
1

ρ̄1c̄21
{¯̃λ1, ¯̃µ1,

¯̃K1, σ̄1}, {k2θ1, k2ϕ1
, k2Φ1

, Lϕ1} = ℓ̄2{k̄2θ1, k̄2ϕ1, k̄2Φ1, L̄ϕ1},

k2θ1 =
iωcv1
K1

, k2ϕ1
=

ω2

λ̃1 + 2µ̃1

, k2Φ1
=
ω2

µ̃1
, Lϕ1 =

iα1ωK1

K1
, Lθ1 = − α1K1

λ̃1 + 2µ̃1

.

And similarly, in material 2 we use the same scalings as in material 1, hence we obtain

u2 =
1

ℓ̄
ū2, {ϕ2, φ2, ϑ2,Φ2} =

1

ℓ̄2
{ϕ̄2, φ̄2, ϑ̄2, Φ̄2}

K2 =
T̄1K̄2

ρ̄1c̄31ℓ̄
, cv2 =

T̄1
c̄21
c̄v2, α2 = ᾱ2T̄1, {ηλ2, ηµ2} =

1

ρ̄1c̄1ℓ̄
{η̄λ2, η̄µ2}

{λ̃2, µ̃2, K̃2,σ2} =
1

ρ̄1c̄21
{¯̃λ2, ¯̃µ2,

¯̃K2, σ̄2}, {k2θ2, k2ϕ2
, k2Φ2

, Lϕ2} = ℓ̄2{k̄2θ2, k̄2ϕ2, k̄2Φ2, L̄ϕ2},

k2θ2 = i
ωcv2
K2

(
ρ̄2
ρ̄1

)
, k2ϕ2

=
ω2

λ̃2 + 2µ̃2

(
ρ̄2
ρ̄1

)
, k2Φ2

=
ω2

µ̃2

(
ρ̄2
ρ̄1

)
, Lϕ2 =

iα2ωK2

K2
, Lθ2 = − α2K2

λ̃2 + 2µ̃2

(
T̄2
T̄1

)
,

where we have T̄2/T̄1 = 1 due to continuity of temperature across the boundary.
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F.2 TVE-TVE scattering system

Open access to this Mathematica file is given in [46].

F.3 VE-VE scattering system

In Section 3.2 we learned how to recover the theory of isothermal visco-elasticity (VE) from that of
TVE. For completeness purposes, we next formulate the scattering problem in Section 4 for such
media. This problem is well discussed in the VE literature, see e.g. [42] Section 5.3. Equations
(4.1)-(4.5) are replaced by

ϕI = e−ikϕ1
(x cosψ+y sinψ), ψ ∈ [0, π], (F.1)

ϕR = Rϕe
ikϕ1

sinψye−ikϕ1
x cosψ, ϕT = Tϕe

−idΦT
ye−ikϕ1

x cosψ, (F.2a)

ΦR = ezRΦe
idΦR

ye−ikϕ1
x cosψ, ΦT = ezTΦe

−idΦT
ye−ikϕ1

x cosψ, (F.2b)

where Im dΦT , Im dΦR , Im dΦT ≥ 0 is ensured with

dΦT
= i
√

−(k2Φ2
− k2Φ1

cos2 ψ), dΦR
= i
√

−(k2Φ1
− k2Φ1

cos2 ψ), dΦT
= i
√
−(k2Φ2

− k2Φ1
cos2 ψ).

(F.3)

The BCs reduce to

σ̂VE
1 ey = σ̂VE

2 ey, ûVE
1 = ûVE

2 , (F.4a)

which have to hold on y = 0. The application of (F.4a) will determine the unique four constants
{Rϕ, Tϕ, RΦ, TΦ}, see equation (5.3.21) [42] for details.

F.4 TVA-Rigid scattering problem

In Section 3.1 we discussed how local TVE yields the classical TVA theory for fluids in the limit of
vanishing shear modulus, so we let µ→ 0. For a thermo-viscous fluid in contact with a rigid interface
at y = 0, we impose no-slip and for the temperature field an isothermal boundary condition, that is

−iωu = 0 and θ = 0, (F.5a)

on y = 0, noting that we have dropped the subscript since here we are only considering motion on
y ≥ 0. Following (4.2) our fields are given by

φ = e−ikφx cosψ
(
e−ikφy sinψ +Rφe

ikφy sinψ
)

(F.6a)

ϑ = Rϑe
−ikφx cosψ+idϑy, (F.6b)

Φ = RΦe
−ikφx cosψ+idΦy, (F.6c)

with dϑ = i
√

−(k2ϑ − k2φ cos
2 ψ), dΦ = i

√
−(k2Φ − k2φ cos

2 ψ) which ensures Im dϑ, Im dΦ ≥ 0. Substi-

tution of (F.6) into the governing equations (2.14b), (2.19) and using (2.13), (2.14a) for the boundary
conditions (F.5), we obtain exact expressions




Rφ
Rϑ
RΦ


 =




− cos2 ψ+B(F+G)
cos2 ψ−B(F−G)
−2 sinψF

cos2 ψ−B(F−G)
kφ
dϑ

sin 2ψ
cos2 ψ−B(F−G)


 , (F.7)
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where

B =

√
k2Φ
k2φ

− cos2 ψ, F =
dϑTφ

kφ(Tϑ − Tφ)
, G =

Tϑ sinψ

Tϑ − Tφ
. (F.8)

Following (E.12) with the current potentials (F.6), it is clear that the energy balance in this case
reduces to

ERφ
+ ERϑ

+ ERΦ
+ EIRIR

+ EIRRR
= 1, (F.9)

which are defined in (E.10) and we must use the current potentials (F.6).
The visco-acoustic VA solution can be directly obtained from (F.7), (F.8) by letting Tφ → 0

which results in F → 0 and G → sinψ so that (F.7) becomes




Rφ
Rϑ
RΦ


→




− cos2 ψ+B sinψ
cos2 ψ+B sinψ

0
sin 2ψ

cos2 ψ+B sinψ


 , (F.10)

Finally, for the purely acoustic solution in the absence of any losses, we must further let ηµ → 0,
which results in B → ∞, obtaining only the trivial solution




Rφ
Rϑ
RΦ


→




1
0
0


 . (F.11)
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3.3 Additional comments

3.3.1 Recovering the TVA–rigid slit dispersion equations

As we have discussed above, one of the advantages of the TVE framework is the fact

that the TVA theory for fluids simply arises as a special case when considering the

vanishing shear modulus limit (to the local theory). As an additional illustration,

here we show how the dispersion equations (23), (25) from Section 2.2 for (symmetric)

natural modes along a rigid channel filled with a TVA fluid are recovered under the

TVE framework presented in the preceding section. Additionally, we will use the

resulting equations in order to test the asymptotic expansions derived in Section 3.2.

Suppose we consider a time-harmonic, plane-strain, local TVE medium occupying

an infinitely extending semi-infinite channel parametrized by −∞ < x < ∞ and

|y| ≤ 1 such that Φ = Φez with clamped boundaries, so that

û = 0 on y = ±1, (3.1)

and we will consider both isothermal and adiabatic thermal boundary conditions, so

that as we have seen

θ̂ = 0 or
∂θ̂

∂y
= 0 on y = ±1. (3.2)

We seek solutions with horizontal particle displacement ûx being symmetric around

y = 0, such that the TVE potentials obeying (2.14b), (2.19) in Section 3.2 take the

form 



φ = A cosh (γφy)e
ikx γφ =

√
k2 − k2φ,

ϑ = B cosh (γϑy)e
ikx γϑ =

√
k2 − k2ϑ,

Φ = C sinh (γΦy)e
ikx γΦ =

√
k2 − k2Φ,

(3.3)

and direct substitution of (3.3) into (3.1) and (the first of) (3.2) gives (recalling that

û = ∇(φ+ ϑ) +∇×Φ and θ̂ = Tφφ+ Tϑϑ) the simultaneous equations




ik cosh(γφ) ik cosh(γϑ) γΦ cosh(γΦ)

γφ sinh(γφ) γϑ sinh(γϑ) −ik sinh(γΦ)

cosh(γφ)Tφ cosh(γϑ)Tϑ 0


 .




A

B

C


 =




0

0

0


 , (3.4)
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whose non-trivial solutions are obtained by letting the determinant of the matrix

vanish, which after rearranging reduces to

γΦ {Tϑγφ tanh (γφ)− Tφγϑ tanh (γϑ)} − k2 tanh (γΦ)(Tϑ − Tφ) = 0. (3.5)

In the adiabatic case, only the bottom equation of (3.4) is replaced by γφ sinh(γφ)TφA+

γϑ sinh(γϑ)TϑB = 0 which results in the dispersion relation

k2 tanh (γΦ) {γφ tanh (γφ)Tφ − γϑ tanh (γϑ)Tϑ}+γϑγφγΦ tanh (γϑ) tanh (γφ)(Tϑ−Tφ) = 0.

(3.6)

Furthermore, in the absence of coupling with thermal effect so that α → 0 which

implies Tφ → 0, both (3.5), (3.6) reduce to

k2 tanh (γΦ)− γϕγΦ tanh (γϕ) = 0, (3.7)

which can also be seen by simply setting B = 0 in (3.4). We now note that (3.5), (3.6)

and (3.7) have got the identical functional form to (25), (23) and (27) in Section 2.2.

Furthermore, it is straightforward to check by expanding Tφ,Tϑ using (2.15), (2.16)

and (2.22) in Section 3.2 that, as µ→ 0 the equations become identical.

Finally, we use (3.5), (3.6) in order to test the asymptotic expansions (2.50), (2.51)

in Section 3.2 to simplify the thermo–compressional coupling of the wavenumbers

kφ, kϑ and temperature contributions Tφ,Tϑ. Figure 3.1 illustrates the associated

results at 10 kHz when the TVE medium is air, following the values in Table A.1.

From the absolute error plots, it is clear that the consideration of higher order terms

of δ results in more accurate answers, as expected from the results for air in Figure 2 in

Section 3.2. We do not provide the approximate equations to (3.5), (3.6) at each order

here since despite simpler, the resulting equations give no particular useful insights.

Nevertheless, if we further assume low frequencies such that ω = O(δ) then at this

order with µ = 0, we found that (3.5), (3.6) can be written in the form of (38), (37)

in Section 2.2 which as discussed there are of great use in order to understand the

importance of viscous and thermal effects on these modes.
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Figure 3.1: Full solutions and asymptotic approximations to (3.5), (3.6) according to
the expansions (2.50), (2.51) in Section 3.2 at 10 kHz. The TVE medium chosen is air
following values in Table A.1, which implies that µ = 0 and (3.5), (3.6) reduce to (23),
(25) in Section 3.2. The physical results are equivalent to those in FIG 2 of Section
2.2.



Chapter 4

FSI, stress relaxation and boundary

layer effects in slits and plates

4.1 Introduction

This chapter consists of an application of the framework developed in Chapter 3 to

some canonical problems involving FSI and the role of losses in the form of boundary

layers in the fluid-solid interfaces together with intrinsic material loss due to viscoelas-

tic effects. In particular, we will continue the analysis from Section 2.2 following the

comments in Section 2.3.2 and show how this problem is in fact related to the problem

of wave propagation in fluid-loaded plates.

The initial idea of this paper was developed between E Garćıa Neefjes and D

Nigro. RC Assier helped with initial suggestions regarding the transition of roots

in the complex plane. The paper was fully written by E Garćıa Neefjes, who also

developed the numerical implementation and obtained the final results after useful

discussions with the remaining co-authors. This work is intended to be submitted for

publication simultaneously with that of Section 3.2. This piece of work is presented

here as an extended paper, which we note might be a bit lengthy for certain journals

so the final structure of the paper is yet to be fully discussed. We hope to obtain

experimental results in order to further validate some of the discoveries presented in

this paper.
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Stress relaxation and boundary layer effects in fluid-filled

visco-elastic slits and fluid-loaded visco-elastic plates
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1Department of Mathematics, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK

2Thales United Kingdom, 350 Longwater Avenue Green Park, Reading RG2 6GF, UK

February 21, 2022

Abstract

In this paper, we theoretically analyse wave propagation in two canonical problems of in-
terest: fluid-filled visco-elastic slits and fluid-loaded visco-elastic plates. We show that these
two configurations can be studied under the same pair of dispersion equations with the aid
of the framework developed in [1] (the paper in Chapter 3). These two problems are further
interrelated, since in the short wavelength limit (relative to the slit/plate width) the respective
modes are governed by the same dispersion equation, commonly known as the Scholte–Stoneley
equation. It is the Scholte-type modes which are mainly analyzed in this paper. Despite the
theory being valid for any Newtonian fluid, the results are applied to water. Both ‘hard’ and
‘soft’ solids are compared, with emphasis put on the importance of viscoelastic effects, partic-
ularly when stress relaxation is considered. Two main recent works are discussed extensively,
namely [2] (the paper in Chapter 2) for the slits and [3] for the loaded plates, both of which do
not incorporate viscoelastic mechanisms. We show how the consideration of viscoelasticity can
extend the results discussed therein, and explain the circumstances under which they arise.

1 Introduction

In a previous study [2], acoustic propagation in water-filled steel slits was analysed in detail. The
paper was focused around the importance of boundary layer attenuation in the fluid region as the
slits become narrow, partly motivated by some experimental data in [4] for air. It was found that
although the presence of fluid viscosity is necessary in order to describe the attenuation of the mode
along the slit, in order to capture the large reduction in phase speed as the width decreases, it is
key to capture the fluid-structure interaction (FSI) effects, as is well known in underwater acoustics.
On the other hand, for air–filled slits FSI may be ignored in most instances, even for considerably
soft media such as rubbers [1], but instead thermal dissipative effects should be taken into account
[5, 6] as opposed to water under standard circumstances [7].

One of the main objectives of this paper is to extend the analysis in [2] by considering soft solid
slits and in particular by taking into account viscoelastic losses. Following the discussion above,
in order to exploit these mechanisms for fluid-filled slits, it is required to have FSI and therefore
only results for water are discussed (although the theory is applicable to any Newtonian fluid). The
fluid-solid half–space which has been widely studied under many circumstances [8, 9, 10, 11], is
considered first since it constitutes the geometrical limit as the channel width increases (relative to

1
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the wavelength of the transverse wave in the in the fluid). This configuration gives rise to two well
known main families of interface wave solutions corresponding to Leaky–Rayleigh (LR) and Stoneley–
Scholte (Sc) modes. Unlike the LR [12], the Sc mode propagates for any fluid-solid interface and
in particular is the only propagating mode for water–soft interfaces [11] which we will consider.
The Sc phase speed is reduced significantly for ‘soft’ fluid-solid interfaces [3] as opposed to ‘hard’
fluid-solid interfaces where the Sc phase speed is approximately equal to the speed of sound in the
fluid. The influence of viscoelasticity on this mode for water–soft media (synthetic resins) is studied
theoretically and experimentally in a series of papers [10, 13, 14] with the objective of using Sc waves
to characterise the properties of the ocean’s sedimentary bottom.

In the current work, we bring special attention to the importance of viscoelastic stress relaxation
in the phase-speed and attenuation of the Sc mode (and body waves) and the corresponding regimes
where these effects become important. Under the standard linear solid model (SLSM) used here,
the key dimensionless parameter in the frequency domain is the Deborah number ωtr where ω is the
angular frequency and tr the single relaxation time of the material in consideration [1]. Although
the relaxation times of soft materials can vary over several orders of magnitude (e.g. [15]), the
frequencies involved in the majority of reported studies are such that ωtr ≫ 1 which we presume is
the reason for the lack of stress relaxation analyses in the form presented in this paper. Despite this,
we believe the regime considered here remains of high interest since these effects are clearly visible
in experiments [16] and the importance of stress relaxation is often reported in the literature [3, 17].

Another important part of this paper is devoted to the study of (viscous) fluid-loaded viscoelastic
plates. Despite perhaps seemingly unrelated to the fluid–filled slits, the dispersion equations (DEs)
are in fact identical in both problems thanks to the generality of the media considered [1]. Early
work on fluid-loaded plates [18, 19] identified that the presence of the liquid causes the standard
plate Lamb wave solutions to become leaky (as for Rayleigh modes in the half–space) and another
two solutions arise which are not present in the absence of the fluid. These solutions are in fact
Scholte-like interface waves which become coupled in the plate region as the thicknesses decreases,
and in order to distinguish them from their half–space counterpart we define them as ‘coupled plate–
Scholte’ modes [3]. Many works have been focused around the consequences of attenuation due to
fluid viscosity [20, 21, 22, 23] on the modes of fluid-loaded plates. Nevertheless, the majority of these
studies have been based around ‘hard’ interfaces, presumably since this is the regime most common
in sensing and non-destructive applications. Very recently, the authors in [3] considered water-loaded
acrylic plates which is a ‘soft’ interface, and illustrated the significant differences that arise in the
phase speed of the coupled plate–Sc with respect to standard metal interfaces. In particular, they
justified and experimentally demonstrated the dispersive behaviour of the symmetric coupled plate–
Scholte mode which had previously only been characterized for soft films at very high frequencies
[24]. Although not provided in their analysis, it is remarked in the experimental verification of [3]
the importance of viscoelastic properties of soft media, and in particular the importance of stress
relaxation under particular frequency ranges. In this paper, we contribute to this study by taking
into account these dissipative mechanisms in order to assess their influence (and that of boundary
layers) in both the symmetric and anti–symmetric coupled plate–Scholte modes for a very wide
range of plate thicknesses (and frequencies).

In Section 2, we briefly introduce the visco-elastic (VE) formulation that we will employ through-
out this work which allows us to simultaneously consider (visco)elastic solid and visco-acoustic fluid
media as explained in [1]. We discuss two classical models to capture the frequency dependence of
the elastic moduli, namely the Kelvin-Voigt model (KVM) and the SLSM. These two models will
be compared repeatedly in this work. In Section 3 we analyse the single interface configuration
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consisting of two half–space VE media in perfect contact. By seeking interface solutions to this
set-up we derive the Stoneley DE, from which the Scholte and Rayleigh DEs can be obtained by
considering the inviscid fluid and zero density limits respectively. The Stoneley and Scholte DEs
give rise to Sc and LR waves which we discuss in detail. Since our fluid of interest is water, we study
‘hard’ and ‘soft’ interfaces (definitions are provided) by considering material parameters associated
to steel and PVC. For the soft case, we analyse in detail the additional behaviour that arises when
the SLSM is employed.

In Section 4 we consider the double interface configuration, with the finite width medium con-
stituting the slit/plate. We show how generalised DEs for symmetric/anti–symmetric modes valid
for both configurations can be obtained. These equations recover more common forms found in the
literature when certain effects are neglected such as the fluid’s viscosity, which is illustrated. In the
short wavelength-limit the general DEs reduce to the half–space Stoneley DE considered in Section
3, which is used as the initial value of the recursive root finding technique. For the slits, we show how
the softness of the solid, together with viscoelastic damping gives rise to rather different results to
those presented for water-filled steel slits in [2]. For plates, both the symmetric/anti–symmetric cou-
pled plate-Scholte modes are considered, and we observe the dispersive behaviour for the symmetric
mode for soft plates reported recently in [3]. We extend the theoretical analysis in [3] by including
the effect of boundary layer attenuation (which is minimal) as well as viscoelastic damping in the
solid which we show can be very important, especially near the glass transition of the moduli. The
presence of a global maximum of the attenuation as a function of plate thickness for the symmetric
mode is highlighted. We finish with conclusions in Section 5.

2 Governing equations for linear, isotropic VE continua

We assume that the media under consideration are linear, isotropic and further we make the ap-
proximation that all deformations are isothermal, so that thermo–mechanical coupling need not be
taken into account. Consequently, the energy balance equation is automatically satisfied, so that
the focus is to solve the linearised equation of motion, namely

∇ · σ̂ = ρ0
∂2û

∂t2
, (2.1)

where ρ0 denotes the constant mass density, û = {ûx, ûy, ûz} the continuum’s displacement vector,
∇ is the vectorial gradient operator and σ̂ is the Cauchy stress tensor which must capture all the
required properties of the media we want to consider. Hereditary integrals give a general way to
express the VE constitutive behaviour of the medium (e.g. [25], Chapter 1)

σ̂ =

∫ t

−∞
2µ̂(t− T )

∂ê(T )

∂T dT +

(∫ t

−∞
K̂(t− T ) tr

(
∂ε̂(T )

∂T

)
dT
)
I, (2.2)

where ε̂ = (∇û + (∇û)T )/2 is the linearised strain tensor, tr (·) the trace operator, I the identity
tensor and ê = ε̂−tr (ε̂)I/3 represents the off–diagonal terms of the strain tensor. Further, µ̂(t), K̂(t)
are time–dependent (visco) elastic moduli, which must be identically zero for t < 0 to obey causality
and are such that the integrals in (2.2) are convergent. In this paper we will be considering time-
harmonic disturbances, so that all the fields satisfy

{û, σ̂, ε̂, ê}(x, t) = Re {{u,σ, ε, e}(x)e−iωt}, (2.3)
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which when substituted in (2.2), (2.1) and factoring out the common term give respectively

σ = 2µ(ω)e+K(ω) tr(ε)I, (2.4a)

(K(ω)+
4

3
µ(ω))∇ (∇ · u)− µ(ω)∇×∇× u+ ρ0ω

2u = 0, (2.4b)

where µ(ω),K(ω) are scaled Fourier transforms of the original moduli [1]. On adopting the Helmholtz
decomposition

u = ∇ϕ+∇×Φ, (2.5)

with ∇ ·Φ = 0, the compressional and shear wave potentials ϕ,Φ must respectively satisfy

(
∆+ k2ϕ

)
ϕ = 0, k2ϕ(ω) =

ρ0ω
2

K(ω) + 4
3µ(ω)

, (2.6a)

(
∆+ k2Φ

)
Φ = 0, k2Φ(ω) =

ρ0ω
2

µ(ω)
, (2.6b)

recalling that the material parameters appearing in the compressional/shear wavenumbers kϕ, kΦ in
(2.6) are isothermal, which is particularly important to consider for viscous gases such as air (since
the isothermal bulk modulus can differ significantly from the corresponding more common adiabatic
modulus) [1]. Given the shear and bulk moduli present in (2.6), we can define the generalized first
Lamé coefficient, Poisson’s ratio and Young’s modulus respectively as [26]

λ(ω) = K(ω)− 2

3
µ(ω), ν(ω) =

3K(ω)− 2µ(ω)

6K(ω) + 2µ(ω)
, E(ω) =

9K(ω)µ(ω)

3K(ω) + µ(ω)
. (2.7)

There exist plenty of models to capture the frequency dependence of these moduli which are appro-
priate in particular circumstances (e.g. [27]), but in this work we focus on the Kelvin–Voigt Model
(KVM) (which we also refer to as local VE) and the Standard Linear Solid Model (SLSM), which
are discussed extensively in [1] starting from their time domain behaviour. For a given modulus
M(ω) we have

(KVM) M(ω) = M0 − iωηM, (2.8a)

(SLSM) M(ω) = M∞ − (M0 −M∞)
iωtr

1− iωtr
=

M∞ +M0(ωtr)
2

1 + (ωtr)2
− i

(M0 −M∞)ωtr
1 + (ωtr)2

. (2.8b)

In the KVM, the real part (M0) is fixed and the (attenuative) imaginary part known as the loss mod-
ulus is characterized by ωηM where ηM is a constant viscosity coefficient. In the SLSM, M∞,M0

correspond to the long-term and instantaneous moduli and tr represents the (single) relaxation time
of the material. The Deborah number ωtr in (2.8b), relates the characteristic time of the prob-
lem (1/ω) with the relaxation time of the material in consideration. The moduli further satisfy
M∞ ≤ M0, with the equality implying the medium is perfectly elastic. We note that for ωtr ≫ 1,
M → M0 and conversely for ωtr ≪ 1, M → M∞ and therefore higher frequencies correspond to
the glassy (stiffer) phase of the materials and lower frequencies to a rubbery (softer) phase. The loss
modulus has a global maximum at ωtr = 1 which defines the glass transition region, and therefore
it is in the vicinity of this region where the majority of intrinsic VE losses are manifested.

Visco–acoustic (Newtonian) fluids can also be described by (2.4)-(2.6) with µ(ω) = −iωηµ, where
ηµ > 0 is the kinematic viscosity [1, 21, 23], so that the square of the shear wavenumber becomes

purely imaginary, i.e. k2Φ = i/δ2ν where δν =
√
ηµ/ρ0ω is a boundary layer parameter related to the

common Stokes’ boundary layer thickness by δs = 2π
√
2δν .
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3 Single interface: Two VE half–spaces in perfect contact

We first seek interface waves associated with the configuration of VE–VE half–spaces separated by
an interface at y = 0, as seen on the left of Figure 1. From the resulting DEs we can determine
the Leaky Rayleigh and Scholte-Stoneley modes and analyse some of their key properties. As we
will observe in the next section, the understanding of the half–space will facilitate the study of the
double interface configuration (right of Figure 1).

y

x
Medium 1

y

x

Medium 2

Medium 2

L̄

L̄

Medium 1

Medium 2

Figure 1: Schematic representations of the 2D geometric configurations considered in this paper,
noting that all media are infinitely extending in the x-direction. Left: Two semi-infinite VE continua
as considered in Section 3 (single interface). Right: A VE medium of width W̄ = 2L̄ bounded by
two semi-infinite VE media as considered in Section 4 (double interface).

3.1 The Stoneley, Rayleigh and Scholte Dispersion Equations

In Section 2 all the relevant equations were given in dimensional form. It will be convenient in the
subsequent analysis to have a notational distinction between dimensional/non–dimensional quanti-
ties and therefore from here onwards we will introduce an over–bar ·̄ to all dimensional quantities.
We seek potential solutions to the governing equations (2.4) that decay away from the boundary
in each half–space, since interface waves can be represented as a linear combination of these four
waves:

ϕ̄1 = P̄1e
−γ̄ϕ1

ȳ+ik̄x̄, ϕ̄2 = P̄2e
γ̄ϕ2

ȳ+ik̄x̄, (3.1a)

Φ̄1 = S̄1e
−γ̄Φ1

ȳ+ik̄x̄, Φ̄2 = S̄2e
γ̄Φ2

ȳ+ik̄x̄, (3.1b)

where

γ̄ϕ1
= (k̄2 − k̄2ϕ1

)1/2, γ̄ϕ2
= (k̄2 − k̄2ϕ2

)1/2, γ̄Φ1
= (k̄2 − k̄2Φ1

)1/2, γ̄Φ2
= (k̄2 − k̄2Φ2

)1/2, (3.2)

for some complex amplitudes P̄1, P̄2, S̄1, S̄2. We must ensure that the choice of the various branch
cuts of the square root functions in (3.2) is consistent with causality, which is further discussed
below. At the interface between the two media, the solutions must satisfy continuity of traction and
displacement boundary conditions (BCs), that is on ȳ = 0,

σ̄1
yy = σ̄2

yy, σ̄1
xy = σ̄2

xy, ū1 = ū2. (3.3)

Substitution of (3.1) into (3.3) then leads to the VE Stoneley DE, that is

D̄St = c̄4[(ρ̄1 − ρ̄2)
2−(ρ̄2A1 + ρ̄1A2)(ρ̄2B1 + ρ̄1B2)]

+ 2c̄2Q̄(−ρ̄2A1B1 + ρ̄1A2B2 − ρ̄1 + ρ̄2) + Q̄2(A1B1 − 1)(A2B2 − 1) = 0,
(3.4)
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which for a purely elastic-elastic interface takes the form as in Stoneley’s original paper [28], (as
expected prior to the specification of the frequency dependence of the elastic moduli due to the
correspondence principle for elasticity see e.g. [27]) with

c̄ =
ω̄

k̄
, {A1, A2, B1, B2} =

1

k̄
{γ̄ϕ1 , γ̄ϕ2 , γ̄Φ1 , γ̄Φ2} Q̄ = 2(ρ̄1c̄

2
Φ1

− ρ̄2c̄
2
Φ2

), (3.5)

where c̄Φ = ω̄/k̄Φ in each medium. If we let the density of the upper medium vanish, i.e. ρ̄1 → 0 in
(3.4), after some manipulation using (3.5) we obtain the Rayleigh DE, namely

D̄Ra = (2k̄2 − k̄2Φ2
)2 − 4k̄2γ̄ϕ2

γ̄Φ2
= 0, (3.6)

which governs the ubiquitous Rayleigh waves, originally described in [29] for elastic media. Alter-
natively, in the inviscid fluid limit µ̄1(ω) → 0, it follows that k̄2Φ1

→ ∞ and hence γ̄Φ1
, B1 → ∞

whereas Q̄ → −2ρ̄2c̄
2
Φ2

so that (3.4) becomes

D̄Sc = D̄Ra +
γ̄ϕ2

k̄4Φ2

γ̄ϕ1
ρs

= 0, with ρs =
ρ̄2
ρ̄1
, (3.7)

which is the common Scholte DE (also referred to as Scholte–Stoneley DE [3]). As we will discuss
shortly, in general (3.7) and (3.4) admit two families of interface wave solutions, namely Leaky
Rayleigh and Scholte waves. Direct observation of (3.7) illustrates the role of the density ratio ρs,
when ρs ≫ 1 i.e. for “hard” interfaces, the fluid-loading term will have negligible influence and
therefore the behaviour of D̄Sc can be seen as a small perturbation to D̄Ra. Nevertheless, for softer
interfaces such that ρs ≈ 1 significantly different behaviour of the spectrum can be expected.

Naturally, due to the symmetry of the configuration, (3.6) and (3.7) can also be recovered by
taking the limits ρ̄2 → 0, µ̄2(ω) → 0 respectively (and interchanging the subscripts ‘1’ and ‘2’ in the
subsequent equations). Despite the interest of this work being on losses in fluid–solid configurations,
this symmetry property makes the use of the general VE–VE configuration convenient, which will
become apparent in Section 4 where we will be able to consider two physically different problems
under the same set of DEs.

The roots of (3.4), (3.6), (3.7) and the various DEs studied in Section 4 are calculated using the
MATLAB [version 9.8.0.1380330 (R2020a)] command fsolve, which finds the local zero of a function
close to a given starting point specified by the user. This initial value will differ depending on the
mode under consideration, as we will specify below.

Throughout the paper, the several square root functions (3.2) are chosen such that, as |k̄| → ∞
γ̄ϕ1

, γ̄ϕ2
, γ̄Φ1

, γ̄Φ2
→ k̄, with the branch cuts from k̄ϕ1

, k̄ϕ2
, k̄Φ1

, k̄Φ2
taken in the upper half–plane

and those from −k̄ϕ1
,−k̄ϕ2

,−k̄Φ1
,−k̄Φ2

taken in the lower half–plane. The branch cuts are chosen to
run with fixed real parts (i.e. parallel to the imaginary axis) from the respective branch points. We
note that in order to analyse all roots of these equations, in principle it is necessary to consider all
possible combinations of Riemann sheets giving e.g. 24 for (3.4), 23 for (3.7) and 22 for (3.6), see e.g.
[12, 30, 31]. In this work, we are concerned with the influence of VE effects on the well established
roots of these equations, so we simply need to make sure the obtained solutions are causal and do
not jump Riemann sheets. On top of this, we ensure they behave as expected in the absence of any
form dissipation.
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In what follows, the roots of the DEs will be plotted in terms of non-dimensional phase speed
and attenuation, which are given by

Phase Speed =
v̄

c̄□
=

Re{c̄}
c̄□

=
ω̄

Re{k̄}c̄□
, (3.8a)

Attenuation (dB/wavelength) = 40π
Im{k̄}
Re{k̄} log10(e), (3.8b)

where c̄□ represents a particular sound velocity which we assume constant. In particular c̄0 denotes
the speed of sound of water, and c̄s is the lossless shear wave speed of sound in a certain solid
material (from Table 1 water gives c̄0 = 1490 m/s, steel c̄s = 3000 m/s, and PVC c̄s = 1100 m/s).

3.2 Material parameters: hard/soft solids

We have seen above that different limits of the density ratio ρs can give some insights on the
importance of certain terms in the various DEs above. Generally, knowing whether a given fluid-solid
pair is hard/soft is intuitive although in some instances this can lead to ambiguity, as recently noticed
in [3], which is focused on the Scholte mode solution to (3.7). Indeed, a common definition is whether
the material parameters are such that Re{k̄ϕ} < Re{k̄Φ} ≤ Re{k̄F} or Re{k̄ϕ} ≤ Re{k̄F} < Re{k̄Φ}
which correspond to hard or soft respectively, as in e.g. [11]. Note that since we are fixing materials
1/2 to be fluid/solid respectively (for definition purposes) we have written k̄F ≡ k̄ϕ1

for the visco-
acoustic wavenumber, and k̄ϕ ≡ k̄ϕ2 , k̄Φ ≡ k̄Φ2 corresponding to the standard pressure and shear
VE wavenumbers. Nevertheless, in some instances the definition implied by the inequalities can be
inaccurate e.g. it is shown in [3] by considering the transition between Re{k̄Φ}, and Re{k̄F} that
the Scholte mode’s phase speed remains constant (which should not be the case when transitioning
between a ‘hard’ and ‘soft’ solid). For this reason, in their work a hard interface is defined as one
where the Scholte velocity is approximately equal to the speed of sound in the fluid, and conversely
a soft interface is one where the Scholte velocity is notably less than the speed of sound in the
fluid. This definition is more physically precise in their context, whereas the former indicated by the
inequalities above is motivated by the complex plane spectrum. In [9] the same idea is discussed in
terms of acoustic impedance of the fluid/solid pair.

VE Parameter Values (Kelvin–Voigt Model)

Parameter Unit Symbol Water Steel PVC

Background density kg/m3 ρ0 1000 7871 1360
Shear modulus GPa µ0 – 70.84 1.65
Young’s modulus GPa E0 – 188.904 4.431
Bulk modulus (isothermal) GPa K0 2.22 188.9 4.8
Dynamic shear viscosity Pa·s ηµ 10−3 2×10−5 10−1

Dynamic bulk viscosity Pa·s ηK 3×10−3 10−8 10−2

Table 1: Parameter values used for water, steel and PVC employed here, taken from [32], [2] and
[10] respectively, assumed to be independent of frequency. The PVC values are only applicable for
local VE (KVM); the values for the stress relaxation discussion are given in Sections 3.3.3, 4.3.3 and
4.4.3.

Our primary physical interest here is in water–solid interfaces, so that in most of what follows
medium 1 in (3.1) is fixed by the parameters of water, which are given in Table 1. For a given fluid,
the behaviour of the interface modes can be greatly influenced by the (visco-)elastic properties of
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the solid, which we explore below. As is done in several works (e.g. [11]) in order to illustrate this,
we will concentrate on two solids of opposing nature, namely steel and PVC whose values are also
shown in Table 1. As we will showcase below, when compared to water these values correspond to
hard/soft materials respectively (for both definitions presented above). Furthermore, in order to
aid our study of the effect for the hard–soft transition on the relevant modes, we will make use of
a linear continuous transition in all Material 2 parameters (listed in Table 1) through a function
f : [0, 1] → Rn s.t.

f(τ) = [Steel](1− τ) + [PVC](τ) 0 ≤ τ ≤ 1. (3.9)

With regards to the frequency dependence of the VE moduli in the solid, we commence by considering
the KVM in Sections 3.3.1, 3.3.2 following (2.8a) for both the shear and bulk moduli, characterized
by the viscosity coefficients ηµ, ηK respectively. Consequently, the SLSM from (2.8a) is employed in
Section 3.3.3, with further details provided there.

3.3 Modes at the interface of 2 semi-infinite half–spaces

Having defined the relevant equations to our physical set–up and material parameters in consider-
ation, we now focus our attention to the solutions of the Stoneley DE (3.4), that can give rise to
Leaky–Rayleigh and Stoneley–Scholte modes, which are considered individually next.

3.3.1 The Leaky–Rayleigh (LR) Mode

We denote the LR mode solutions to (3.4), (3.7) by k̄LR = ω̄/c̄LR. It is well established that the LR
wave propagates slightly slower than the associated solid’s shear body wave, marginally faster than
the ordinary Rayleigh wave and attenuates in the direction of propagation due to part of the energy
being shed into acoustic waves (radiated) into the fluid [9]. In most instances, this leakage is a con-
sequence of the LR being supersonic (Re{k̄LR} < Re{k̄F}). In fact, this was believed to be necessary
for its existence (see e.g. [11]) prior to the work of [12], who showed the existence of subsonic leakage
(although in a very small region) by careful analysis of the complex plane spectrum. Nevertheless,
in most circumstances the LR cannot propagate and the inequality (Re{k̄Φ} < Re{k̄LR} ≤ Re{k̄F})
usually holds. In realistic conditions, the LR mode is also subject to extra attenuating mechanism,
namely that of visco-thermal boundary layer effects in the fluid, as well as the VE damping within
the solid. In [21] it was explicitly found that viscous effects dominate over heat conduction effects
(especially for water) based on the original work [7], who first concluded that the effect of viscosity
can be neglected for fluids with Reynolds number larger than 2500. We will showcase the differences
by comparing solutions to the general Stoneley DE (3.4) with the inviscid fluid equivalent solution
(3.7). Nevertheless, the inclusion of fluid viscosity becomes paramount in narrow regions, as we
discuss in Section 4.3.

Given the parameters in Table 1 and the discussion above, we note that for a water-PVC interface
(τ = 1 in (3.9)) the LR cannot be supported, since the shear wave is highly subsonic (Re{k̄F} <
Re{k̄Φ}), whereas for water-Steel (τ = 0 in (3.9)) the mode will exist. Starting from τ = 0, as we
transition through increasing τ we observe the LR root becomes increasingly attenuative (per unit
metre), until it reaches the subsonic region. A detailed analysis of the transition from the existence
of the LR in the complex plane was provided in [12] via an isotropic gold-silver alloy with variable
content in contact with water.

In order to numerically obtain the LR root using fsolve, as initial guess we simply choose a real
value that is slightly slower than the solid’s shear wave speed. Indeed, we obtain that the LR mode
solution to (3.4) for Steel at 10 kHz gives k̄LR = 22.41+0.24i m−1, whereas forMτ=0.9 (the artificial
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material corresponding to τ = 0.9 in (3.9)), k̄LR = 31.51 + 2.266i m−1, whose associated (normal-
ized) horizontal particle displacements Re{ux} are given in Figure 2 a),b),d), all of which have been
normalized such that ux(y = x = 0) = 1. We observe that the motion (and hence energy) of the
LR is radiated as a pressure wave in the fluid propagating in the direction of the Rayleigh angle
θRa = arctan{Re(iγ̄ϕ1

)/Re(k̄LR)} which is measured anti-clockwise from x = 0 (see Fig 2a)). For
instance, water–steel gives θRa = 57.88◦, whereas for water–Mτ=0.9 = 41.83◦. From the expanded
Fig 2b) we observe the boundary layer region in the fluid, which we remark is very thin (at 10 kHz
we have approximately δ̄ν ≈ 4 µm). As with the traditional Rayleigh mode, the motion within the
solid half-space is very localized near the boundary. The dissipation for increasing x parallel to y = 0
is very apparent for Mτ=0.9, where the motion in the solid in Fig 2d) cannot be appreciated due to
the higher magnitude of the mode along the positive y direction (fluid region), as indicated by the
colour bar.

When performing the same calculations as above but with the Scholte DE (3.7) (i.e. considering
the inviscid fluit limit) we obtain very accurate answers for the phase speed and attenuation for both
materials, despite the boundary layer effects observed for ux naturally not being captured since in
this case we are allowing the fluid to slip in the horizontal direction. On the other hand, the (VE)
pure Rayleigh DE (3.6) in the absence of fluid predicts the phase velocity fairly accurately but fails
to predict the attenuation1, as shown in Fig 2c), from which we can conclude that energy radiation
is indeed the predominant effect contributing to the attenuation of this mode, with boundary layers
and the solid’s VE damping playing a much smaller role, which would be inconsequential in most
practical scenarios. Furthermore, in Fig 2c) we can also observe the small dispersion of the LR mode
for Mτ=0.9 which we also found to be the case for steel, and tested it up to MHz frequencies.

3.3.2 The Scholte–Stoneley (Sc) Mode

We denote the Sc mode solutions to (3.4), (3.7) by k̄Sc = ω̄/c̄Sc. The Stoneley-Scholte mode is an
acoustic surface wave whose velocity is subsonic and slower than the bulk waves of the solid (i.e.
Re{k̄ϕ},Re{k̄Φ},Re{k̄F} ≤ Re{k̄Sc}) and, when neglecting the viscoelastic effects of both liquid and
solid, it travels unattenuated along the interface and decays exponentially away from it. Unlike the
LR case above, it is present for all fluid-solid interfaces, although its behaviour is highly influenced
by the material properties in question, as pointed out in [3]. Following Section 3.2, for a fixed fluid
(in our case water), soft solids yield deeper penetration depths of the Sc mode and are therefore more
convenient for applications [11]. With regards to losses in the fluid region, Stoneley-Scholte modes
can be attenuated through two mechanisms, namely through leakage (viscous boundary layer) of
shear/vortical waves from the interface into the fluid, and through the longitudinal bulk waves in
the viscous fluid. Nevertheless, for the latter to be noticeable the frequencies must be very high,
and in general for both mechanisms to become important the viscosity of these fluids must be fairly
high (e.g. in the experiments of [23] glycerol and honey are used). Indeed, [33], [8] concluded that
for low viscosity fluids (including water), the effects on the Sc mode are such that it can generally
be ignored. The VE effects within softer solids were studied theoretically and experimentally by
Favretto-Anrès [10], [13] who found weak dispersion in the lower frequency range for synthetic resins
in contact with water.

In this case, for the starting point for our DE solver, we choose a real valued k̄ whose real
part is greater than max(Re{k̄F},Re{k̄Φ}). We obtain that the Sc solution to (3.4) for Steel at 10

1Particularly for Mτ=0.9, which is in accordance with the observation noted just below (3.7) regarding the role of
the density ratio ρs.

9

156 CHAPTER 4. FSI AND LOSSES IN SLITS AND LOADED PLATES



θRa

Figure 2: Heatmaps a), b), d) illustrate the dimensionless horizontal particle displacement Re{ux}
of the Leaky-Rayleigh mode from (3.4) at 10 kHz for water–steel (a), (b) and water–Mτ=0.9 (d).
(b) corresponds to the same calculation as (a) but near the boundary (as indicated by the small
dotted lines) and all three plots have been normalized such that ux(y = x = 0) = 1. In c) we give
comparisons (in phase speed/attenuation) between the LR solutions obtained by different DEs for
water–Mτ=0.9, noting the two different y scales represented by black/red.
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kHz gives k̄Sc = 42.163 + 1.3 × 10−4i m−1 (noting that k̄F = 42.149 + 2.5 × 10−6i m−1), for PVC
k̄Sc = 70.86+0.0012i m−1 whereas for Mτ=0.9 we obtained k̄Sc = 43.82+0.001i m−1. The difference
in the real parts of these roots is remarkable, showing that this PVC is also soft according to the
definition in [3], as discussed in Section 3.2. Illustrations of these roots are given in Figure 3. Unlike
the case with the LR above, we can now observe the ‘trapped’ nature of the mode (especially in Fig
3a)) propagating parallel to the y = 0 interface. We nevertheless observe the aforementioned large
differences in penetration depths between steel and PVC. With steel Fig 3d), the decay length in
the water is long and the overall behaviour near the boundary resembles that of a longitudinal wave
in the fluid at grazing incidence, whereas for PVC we observe much more motion distributed into
the solid, and much shorter decay lengths in the fluid as seen in Fig 3a). Given the roots this can
also be easily seen analytically by simply assessing the real part of the various square root functions
(3.2) appearing in (3.1). Similar qualitative results in terms of energies are explicitly given in [10]
and [3]. From Fig 3b) we can observe how the smaller acoustic impedance mismatch between water
and PVC also results in a weaker boundary layer effect compared to that for water-steel (as shown
for the LR in Fig 2b)).

As for the LR case, from Fig 3c) we again observe that the Scholte DE gives very accurate
approximations (with respect to the more general Stoneley DE (3.4)) to both the phase speed
and attenuation of the Sc mode. Note, however the much smaller attenuation observed for this
mode since (unlike for the LR) in an ideal fluid–solid interface there is no dissipative mechanism
and the root becomes purely real. In Fig 3c) we do not see dispersion in the phase speed of the
Sc mode for water–PVC, and we find (not shown) that the same occurs for steel and Mτ=0.9 up
to MHz frequencies. Furthermore, so far we have only been considering local VE such that e.g.
Im{µ̄(ω̄)} = −iω̄η̄µ (in both the fluid and solid, for a constant η̄µ) and therefore the larger ω̄η̄µ, the
higher values of dissipation, with the real part remaining constant. For the fluid this is an accurate
model since in this work we are focused on water [34], but this is not generally the case for softer
solid media, particularly due to the importance of stress relaxation effects [1]. These are the main
topic of discussion in the next section.

3.3.3 Additional frequency dependence: Influence of stress relaxation

As aforementioned, VE effects on the Sc mode for water–synthetic resins were analysed in [10], [13].
Despite the model used corresponding to a Kelvin–Voigt type model (for fixed frequency), they
made acoustical measurements to obtain attenuation coefficients that can be related to viscosity via
non-linear functions of frequency. In particular this means that in their case e.g. η̄µ ≡ η̄µ(ω̄) (simi-
larly with the bulk viscosity) which becomes a function that must be calculated at each individual
frequency and is therefore not constant as in (2.8a). Furthermore, in their experiments they found
the body wave speeds to be almost constant in the range 100 kHz–5 MHz, but they extended this
range to cover lower frequencies in their study, so that the sound speeds (and hence the real part of
the elastic moduli) are assumed constant in a wide range of frequencies ranging from 20 kHz–1 MHz.
Despite these strong assumptions, they obtained accurate predictions of the Sc mode in a number
of different scenarios that were confirmed experimentally. In particular, they found low frequency
(10− 60 kHz) dispersion in the water–PVC interface which were not captured with the KVM with
the parameters from Table 1, see Fig 3c).

In what follows, from a theoretical standpoint we want to include the frequency dependence of
the bulk speeds of sound and draw particular attention to the effect of stress relaxation, which is
generally most noticeable at lower frequencies [16]. Coincidentally, the importance of these effects
were recently pointed out in [3], who noticed their appearance by experimentally extracting values
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Figure 3: Heatmaps a), b), d) illustrate the dimensionless horizontal particle displacement Re{ux}
of the Scholte-Stoneley mode from (3.4) at 10 kHz for water–PVC (a), (b) and water–Steel (d). (b)
corresponds to the same calculation as (a) but near the boundary (as indicated by the small dotted
lines) and all three plots have been normalised such that ux(y = x = 0) = 1. In c) we compare the
phase speed and attenuation predicted by the (exact) Stoneley DE (3.4) and the Scholte approxi-
mation (3.7) for the water–PVC case, noting the two different y scales represented by black/red.
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of the Young’s modulus for acrylic using coupled Scholte modes (which we discuss in Section 4.4).
Although an analysis of stress relaxation effects is not considered in [3], it is shown that for a given
fluid, the Sc mode is almost independent of the solid’s Poisson ratio. More generally, weak frequency
dependence of Poisson ratio in VE materials is often found in experiments [35]. We will therefore
proceed by keeping ν2 constant and letting the frequency dependence of the Young’s modulus Ē2(ω)
obey the SLSM (2.8b), that is, Material 2 satisfies

ν2(ω) = ν2, Ē2(ω) = Ē∞ − (Ē0 − Ē∞)
iωtr

1− iωtr
, (3.10)

noting that this assumption implies that the solid’s shear modulus µ̄2(ω) also satisfies the SLSM
with the same relaxation time, and moduli µ̄0, µ̄∞ (see e.g. [36]). Prony series have shown to be
very useful to model the relaxation behaviour of a wide number of VE materials [37]. With (3.10)
we are employing the simplest case of Prony series by accommodating a single relaxation time t̄r,
which in practice is obtained by fitting the model to data from relaxation tests. Nevertheless, as
discussed in [1], it is important to stress that for all real materials, a careful broadband experimental
characterization will showcase frequency dependence in all material properties and ought to be taken
into account for material-specific studies. Since we do not have easily accessible experimental data,
here we will proceed with this assumption and analyze the behaviour resulting from different values
of the relevant parameters. We want to observe how the phase speed/attenuation of the modes of
propagation can vary according to these parameters and relate the results to those obtained above
with local VE.

In Figure 4, we illustrate these effects by plotting the phase speed/attenuation for a particular
example with parameters for Material 2

a) Ē0/Ē∞ = 1.12, ν2 = 0.346 b) ν2 = 0.346, ωtr ∈ [0.01, 50] with 10 kHz, (3.11)

together with those for water (Material 1) in Table 1, where we have based the parameters around the
PVC sample from Table 1 and assumed that they correspond to the rubbery phase of the material,
such that Ē∞ = 4.43 GPa. In Fig 4a) we observe the phase speed and attenuation as a function of
the relaxation time covering the range ωtr ∈ [0.01, 50]. We note an expected increase in velocity as
the material transitions from rubbery to glassy, as well as a notable global maximum in attenuation
close to ωtr = 1 (although not exactly due to the square root of the elastic moduli appearing in
the wavenumbers). In order to obtain the value of this maximum with the KVM used above at 10
kHz, the shear viscosity coefficient of PVC in Table 1 would become as large as η̄µ2

= 1500 Pa·s,
illustrating the large differences between the SLSM and KV formulations. In Fig 4b) we provide
the maximum phase speed difference (which given our parameters from (3.11) is given by max
∆v̄ = v̄ωtr=50 − v̄ωtr=0.01) as well as the maximum value of attenuation for different ratios Ē0/Ē∞.
As expected, as this ratio increases the effects observed in Fig 4a) become largely enhanced, noting
the larger difference in the attenuation maximum between the body waves and the Sc solution.

These preliminary results illustrate the importance of the Deborah number and equivalently the
frequency of operation and approximate relaxation time of the material in question which can cover
several orders of magnitude e.g. for polyurethane (PU) it can vary between 10− 103 (sec) [38], and
therefore these effects would only be noticeable at extremely low frequencies. At higher frequencies
(due to the small dispersion of the Sc mode in this regime, e.g. Fig 3c), [13]) for fixed material
parameters, the behaviour resembles the situation in Fig 4a) with the x axis scaled accordingly.

So far we have only discussed these effects for the Sc mode (and body waves) since, as we saw
above the PVC material from Table 1 could not support LR modes when in contact with water.
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a) b)

Figure 4: a) Relative phase speed/attenuation of the body and Sc modes following the SLSM at
varying relaxation times. b) Maximum phase speed difference and maximum attenuation of the
body and Sc modes following the SLSM for increasing values of the ratio Ē0/Ē∞. Parameters are
specified in (3.11). Note that the maximum attenuation in a) does not occur exactly at ωtr = 1,
since the wavenumber is proportional to the square root of the moduli satisfying the SLSM.

Since this value is now being used as the rubbery phase of the Young’s modulus, for a sufficiently
large glassy phase (Ē0) the LR should also become a solution. We illustrate this in Figure 5 with
Ē0/Ē∞ = 4.06, where we give a wider range of relaxation times in the glassy phase of the material,
namely ωtr ∈ [50, 5000]. The increase in phase speed is therefore almost unnoticeable, nevertheless
we can clearly see the decrease in attenuation for the various modes at higher relaxation times. As
we saw in Fig 2c) for Mτ=0.9, the LR mode has a much higher attenuation due to energy radiation,
so a separate scale is given in Fig 5 (on the right, in cyan) to represent its decrease. From a prac-
tical perspective, this also shows that stress relaxation effects can be noticed far away from glass
transition, especially the larger the ratio Ē0/Ē∞ becomes.

It is worth remarking that the dispersive behaviour illustrated in Figures 4, 5 and discussed above
requires a viscoelastic model that captures stress relaxation such as the SLSM employed here, as
opposed to e.g. the standard KVM discussed earlier. Naturally, by using measurements to develop
a frequency dissipation coefficient η̄µ(ω̄) as employed in [13] (rather than the constant η̄µ in the
standard KVM), the attenuative properties can be accurately predicted, however it cannot capture
the changes in phase speed observed in the top figures of Fig 4a),b). Therefore, if the frequencies
are sufficiently high this becomes a good approximation as seen from the top of Figure 5, but care
must be taken in the lower frequency range, as discussed in e.g. [3] and [16].
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Figure 5: Relative phase speed/attenuation of various modes for the ratio Ē0/Ē∞ = 4.06 covering
the larger range ωtr ∈ [50, 5000] representing the stiffer phase of the material. The magenta y axis
in the lower plot corresponds to the magenta curve only (i.e. the LR Mode from DE (3.4)).

4 Double interface: VE waveguides/plates bounded by semi-
infinite VE continua

Having analysed the acoustic surface mode solutions to the initial single interface configuration
consisting of two semi-infinite half–spaces in 2D, we next consider an additional parallel interface
separated from the first interface by a distance of W̄ = 2L̄, as shown in the right of Figure 1. Our
framework will conveniently allow us to study the dissipative mechanisms in two physically different
problems under the same set of dispersion equations, namely fluid-filled channels within VE solids
and fluid-loaded VE plates; analysed in Sections 4.3, 4.4 respectively. The relevant DEs are discussed
shortly, but it will be convenient to first non–dimensionalise the problem.

4.1 Non-dimensionalisation

Unlike in the case of a single interface, in the current geometry there is a clear length scale dictated
by the finite dimension of Material 1. It is therefore convenient to non–dimensionalise the relevant
equations via

∆ = L̄2∆̄ ω =
L̄ω̄

c̄□
, {um,x} =

1

L̄
{ūm, x̄}, {σm, λm, µm, Em,Q} =

1

ρ̄1c̄2□
{σ̄m, λ̄m, µ̄m, Ēm, Q̄},

ρs =
ρ̄2
ρ̄1
, {k, kϕm , kΦm , γϕm , γΦm} = L̄{k̄, k̄ϕm , k̄Φm , γ̄Φm , γ̄ϕm}, {c, cϕm , cΦm} =

1

c̄□
{c̄, c̄ϕm , c̄Φm},

tr = c̄□t̄r/L̄, {ϕm,Φm} =
1

L̄2
{ϕ̄m, Φ̄m}, {ηµm

, ηKm
} =

1

ρ̄1c̄□L̄
{η̄µm

, η̄Km
},

where m = 1, 2. The (constant) sound speed (c̄□) will be chosen accordingly in Sections 4.3, 4.4.
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4.2 The generalised dispersion equations

We set up the 2D coordinate system such that the x direction is aligned with the interfaces and
y = 0 lies in the middle of Medium 1, and we therefore must ensure that the continuity of traction
and displacement boundary conditions (3.3) are satisfied at y = ±1. By exploiting the symmetry
of the configuration about y = 0, the general 8x8 system arising from the continuity BCs on each
interface can be split into two independent 4x4 systems (see e.g. [18]). Indeed, symmetric modes
require u1x, ϕ1 to be even functions of y whereas u1y, Φ1 must be odd functions of y, therefore the
potentials in (2.5) are given by

ϕ1 = P1S cosh (γϕ1
y)eikx, ϕ2(x, y) =

{
P2Se

γϕ2
(y+1)+ikx, y ≤ −1

P2Se
−γϕ2

(y−1)+ikx, y ≥ 1
, (4.1a)

Φ1 = S1S sinh (γΦ1y)e
ikx, Φ2(x, y) =

{
S2Se

γΦ2 (y+1)+ikx, y ≤ −1

S2Se
−γΦ2

(y−1)+ikx, y ≥ 1
, (4.1b)

for some complex valued amplitudes P1S,P2S,S1S,S2S. Given (4.1), it can be shown that symmetric
modes are given by solutions to

c4
(
(1− ρs)

2 tanh (γΦ1
)−A1ρs tanh (γϕ1

) (B2 tanh (γΦ1
) +B1ρs)−A2B2 tanh (γΦ1

)−A2B1ρs
)

+ 2c2Q (−ρsA1B1 tanh (γϕ1) + (A2B2 − 1 + ρs) tanh (γΦ1))

+Q2 (A1B1 tanh (γϕ1
)− tanh (γΦ1

)) (A2B2 − 1) = 0,
(4.2)

which was derived in Mathematica, recalling that the quantities A1, A2, B1, B2,Q are defined in
(3.5) (and noting the non-dimensionalisation above). Conversely, anti–symmetric modes require u1x,
ϕ1 to be odd functions of y and u1y, Φ1 to be even, such that

ϕ1 = P1A sinh (γϕ1
y)eikx, ϕ2(x, y) =

{
−P2Ae

γϕ2
(y+1)+ikx, y ≤ −1

P2Ae
−γϕ2

(y−1)+ikx, y ≥ 1
, (4.3a)

Φ1 = S1A cosh (γΦ1y)e
ikx, Φ2(x, y) =

{
S2Ae

γΦ2 (y+1)+ikx, y ≤ −1

S2Ae
−γΦ2

(y−1)+ikx, y ≥ 1
, (4.3b)

for complex valued amplitudes P1A,P2A,S1A,S2A. Similarly, given (4.3) it can be shown that
anti–symmetric modes are given by solutions to

c4
(
(1− ρs)

2 tanh (γϕ1
)−B1ρs tanh (γΦ1

) (A2 tanh (γϕ1
) +A1ρs)−A2B2 tanh (γϕ1

)−A1B2ρs
)

+ 2c2Q (−ρsA1B1 tanh (γΦ1
) + (A2B2 − 1 + ρs) tanh (γϕ1

))

+Q2 (A1B1 tanh (γΦ1
)− tanh (γϕ1

)) (A2B2 − 1) = 0,
(4.4)

and it is straightforward to check that in the short–wavelength limit γϕ1
, γΦ1

≫ 1 both (4.2), (4.4)
recover the Stoneley DE (3.4) (since in this limit there is no distinction between symmetric and
anti–symmetric motion). This natural geometric consequence will allow us to use the knowledge of
the two semi–infinite half–space configuration discussed in Section 3 in order to obtain the initial
behaviour within the slit/plate. Having obtained the general dispersion equations for natural modes
of interest (4.2), (4.4), we will next focus on the analysis of the two distinct limits of physical interest
here.
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4.3 Fluid–filled channels within semi–infinite VE solids

As aforementioned, the effects of visco-thermal boundary layers and FSI in narrow water/air–filled
slits were examined in [2]. In the FSI analysis, the discussion was focused on steel, which given the
discussion above constitutes a hard solid when in contact with water (for air, in all cases FSI effects
were negligible). In this section, we explore the differences arising when soft VE media are instead
considered.

Following [2], the analysis below is focused only on the lowest order symmetric mode, so that
here we will only be considering the roots of (4.2). The rationale employed in [2] was that this
was sensible since for an inviscid fluid with rigid BCs it is the only propagating mode at our region
of interest; namely thin channel widths/low frequencies. Of course, FSI effects arising from the
consideration of solid VE media in contact with water are such that the rigid BC does not apply,
and the current situation is far from this idealized scenario, especially for soft media. Nevertheless,
the main objective of this section is to extend the results presented in [2] by including the effects
of VE losses within the (infinite) solid bounding the fluid, together with the previously considered
boundary layer effects.

As we will see shortly, the mode in consideration is in fact strongly related to the Sc mode from
Section 3.3.2, which becomes coupled in the slit region as the thickness decreases (with respect to the
transverse wavelength). For this reason we are essentially studying the ‘coupled duct–Scholte mode’
including viscosity. On the other hand, unlike for the half–space, geometrical confinement implies
that LR waves cannot radiate energy away from the interfaces and hence propagate plane-wave like
with little attenuation along the channel. Therefore, as opposed to the coupled duct–Scholte mode,
they are only expected to propagate in sufficiently wide channels.

Given the non–dimesionalisation in Section 4.1, in this Section we let c̄□ ≡ c̄0 = 1490 m/s i.e. we
choose the adiabatic speed of sound in water at 10 degrees Celsius and ρ̄1 = 1000 kg/m3 (following
Table 1). With regards to the choice of VE frequency dependence, we will follow a similar structure
to Section 3 for the single interface: first we assume the KVM for the solid according to Table 1,
and then we consider the SLSM in Section 4.3.3.

4.3.1 Phase speed and attenuation

In order to find the roots of (4.2) using fsolve, we make use of an iterative numerical scheme, whose
starting point is dictated by the solutions to the Stoneley DE (3.4), corresponding to the wide
channel limit, as noted just below (4.4). We subsequently gradually reduce the channel widths up to
the values of interest, by using the root found for the prior larger value of W̄ as a new starting point
for fsolve. In Figure 6 we observe the phase speed/attenuation as a function of channel width in
terms of δ̄s/W̄ at 10 kHz for a) water–steel and b) water–PVC. We directly observe the difference in
phase speed between the hard/soft solids at wide channel widths. In particular, the mode in water–
PVC is highly subsonic, as we observed in Fig 3c) for the half–space Sc mode. More generally, it
is clear that FSI effects in both materials dramatically reduce the phase speed along the channel as
opposed to the rigid case. For further comparisons we give additional curves that neglect particular
physical effects. In particular, for the inviscid fluid we assume medium 1 is s.t. µ1(ω) → 0, implying
that k2Φ1

→ ∞ and hence γΦ1
, B1 → ∞ whereas Q → −2ρsc

2
Φ2

and (4.2) simplifies to

tanh(γϕ1)
[
(2k2 − k2Φ2

)2 − 4k2γϕ2γΦ2

]
+
γϕ2

k4Φ2

γϕ1
ρs

= 0, (4.5)

noting the similarity with the limit taken to lead from the Stoneley DE (3.4) to the Scholte DE (3.7)
in the half–space configuration. Equation (4.5) is identical to equation (72) in [2] except here in

17

164 CHAPTER 4. FSI AND LOSSES IN SLITS AND LOADED PLATES



a) b)

Figure 6: Phase Speed/Attenuation at 10 kHz for water–filled channels of decreasing width within:
a) Steel, and b) PVC, according to the KVM with material properties in Table 1. In particular, we
note the large difference in the initial value of the phase speed between a) and b) which is dictated
by the Stoneley DE (3.4).

the parameters for medium 2 we are including frequency dependence (except for the green curves in
Figures 6, 7 where we further let ηµ2 , ηK2 ≡ 0 in the solid.). Nevertheless, these VE effects in either
solid are not directly observable from Fig 6, and the attenuation is indeed due to the boundary layers
in water. Note that this is expected for steel at these frequencies due to its negligible viscosity, but
less so for PVC (Table 1). When performing similar calculations at higher frequencies, we find that
the phase speed values for most (fixed) channel widths become larger, whilst the attenuation remains
fairly constant. This is shown explicitly for water–PVC in Figure 7a) for the particular case when
δ̄s/W̄ = 0.5, noting that a similar frequency dependence is obtained for steel in [2]. Dispersion in
attenuation can nevertheless be seen when a higher coefficient of viscosity is employed, as illustrated
in Figure 7b) where we used η̄µ2

= 10 Pa·s, although it has no effect on the relative phase speed.
Finally, following our initial discussion above, we can only observe the coupled LR–duct mode for
water–steel at 10 kHz up to δ̄s/W̄ ≈ 0.03; for thinner channels it becomes cut-off (not shown).

4.3.2 Displacement fields

The particle motion of the mode under consideration for a water–steel interface was studied in
detail in [2]. Here we simply want to illustrate whether any significant changes occur when steel
is replaced by a softer medium. In Figure 8 we give direct comparisons between steel/PVC of the
horizontal displacement Re{ux} for a wide channel, represented by W̄ = 70δ̄s. The behaviour in
the fluid region, Fig 8a),b) is rather similar between the two interfaces, noting that the boundary
layer region is well approximated by Stokes’s boundary layer δ̄s/L̄. Nevertheless, in Fig 8a) we also
observe a slight decay from the boundary region towards the centre of the channel for PVC which
is not observed in steel. We observe (not shown) that this feature becomes increasingly noticeable
at wider channel widths. This is nevertheless expected, since as the channel width becomes larger,
the solution begins to resemble that of the half–space Sc mode localized in each boundary, and as
we observed above the decay length in the fluid is much longer for hard solids (Fig 3d)) than it is
for softer media (Fig 3a)). On the other hand, in the solid region Fig 8c), we see a large difference
between the motion in PVC and steel, with the displacement of the former being more than an
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a) b)

Figure 7: Relative phase speed/attenuation at fixed channel width δ̄s/W̄ = 0.5 for increasing fre-
quency in a water–filled PVC channel following the KVM for: a) Shear PVC viscosity coefficient
ηµ2 from Table 1, b) Larger shear PVC viscosity coefficient. In a) we observe dispersion in phase
speed, but not in attenuation, whereas in b) we observe an additional VE frequency dependence in
attenuation.

order of magnitude larger than the latter at the interface y = ±1. Nevertheless, this motion still
decays rapidly within the solid which is expected since we observed in Figure 6b) that there was
no damping due to radiation loss in the form of elastic waves through the interfaces into the solid.
At narrower channel widths (not shown) the motion at the interface with the solid region becomes
increasingly reduced, although the difference between hard/solid can still be appreciated.

4.3.3 Additional frequency dependence: Influence of stress relaxation

As was done for the half–space, we now want to see whether the inclusion of stress relaxation effects
via the SLSM in the “host” solid medium can alter the phase speed/attenuation of the Sc–duct
mode in consideration. We observed in Figure 7 how when employing the KVM with sufficiently
high viscosity coefficient, the attenuation increases (unboundedly) with ω, but this has no effect
on the corresponding relative phase speed. We will follow the assumptions from Section 3.3.3 and
assume a constant Poisson’s ratio and let the Young’s modulus (of Medium 2) obey the SLSM
as in (3.10), noting that under the current non-dimensionalization the relaxation time is given by
tr = c̄0t̄r/L̄.

For the illustrations, again we assume that the rubbery phase of the PVC material corresponds to
the value given in Table 1, so that Ē∞ = 4.43 GPa. In Figure 9 we give the phase speed/attenuation
at various frequencies and channel widths as a function of relaxation time tr, chosen in each case
so that the range ωtr ∈ [0.01, 50] is covered, and therefore the glass transition of the material is
showcased. The qualitative behaviour is therefore very similar within Figures 9a)–d), where we note
the increasing phase speeds as the material becomes glassier, and the global maximum attenuation
near ωtr = 1, as we saw in Figure 4a) for the half–space. Nevertheless, in this case there are
significant changes in the relevant values when the main parameters vary, following what we saw in
Figures 6, 7. That is, with higher frequencies (smaller channel widths) we observe overall higher
values in phase speed, and the effect of the fluid’s viscosity becomes particularly relevant at narrower
channel widths. Furthermore, as we observed for the half–space in Figure 4b), the larger the ratio
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b)a)

c)

Figure 8: Real part of the horizontal displacement fields Re{ux(x = 0, y)} for the lowest order
symmetric mode propagating in a viscous water–filled channel at 10 kHz within steel/PVC, for a
channel width of W̄ = 70δ̄s. a) represents the fluid region 0 ≤ ȳ ≤ L̄, b) the fluid behaviour near
the boundary, and c) the solid region L̄ ≤ ȳ ≤ 25L̄. In each case the plots have been normalized
such that ux(y = x = 0) = 1.

Ē0/Ē∞ gets, the larger the maximum phase speed variation and maximum attenuation becomes.
In Figure 10 we give similar plots to those in Figs 6, 7 for various fixed relaxation times. In

Figure 10a) the chosen tr are such that ωtr = 0.1, 1, 50 at the initial value of frequency, so that at
this (initial) frequency we are covering the rubbery/glassy phases and glass transition. As a result,
we observe how as frequency increases the attenuation of the initially rubbery phase (tr = 100)
undergoes glass transition, whereas naturally in the two other cases (tr = 1000, 50000) an increase
of frequency results in a reduction of attenuation (per wavelength). From Figure 10b) we observe
how the initial phase speed is higher in the glassy phase, and particularly how with ωtr fixed, VE
relaxation effects together with boundary layers can lead to a significant increase in attenuation
(compared to e.g. Fig 6b)). Note that the small decrease in attenuation observed for wide channels
in Fig 10b) occurs since we are plotting attenuation per wavelength (following (3.8b)) and is therefore
caused due to the sharp decrease in phase speed observed in this region. Moreover, it is physically
useful to also have an idea of this quantity along a fixed distance. In Figure 11 we plot attenuation per
unit metre (given by 20 Im(k̄) log10(e)) as a function of channel width, and give differences between
the viscous/inviscid fluid cases from (4.2), (4.5) respectively at different values of the Deborah
number. In particular, we observe how for narrower slits, the large reduction in phase speed observed
above results in shorter wavelengths and consequently higher attenuation per unit metre.
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a) b)

Figure 9: Relative phase speed/attenuation in a water–filled PVC slit obeying the SLSM, as a
function of non-dimensional relaxation time tr for various channel widths and frequencies. The red–
dashed curve represents viscous water given by (4.2), whereas the black curve is for inviscid water
and is therefore a solution to (4.5). In all cases we have Ē0/Ē∞ = 1.58, and the relaxation times
chosen cover the range ωtr ∈ [0.01, 50].
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a) b)

Figure 10: Relative phase speed/attenuation in a (viscous) water–filled PVC slit obeying the SLSM,
with Ē0/Ē∞ = 1.58: a) as a function of frequency for a fixed channel width of δ̄s/W̄ = 0.5, b) as a
function of channel width with dimensional frequency 10 kHz. In each case the relaxation times have
been chosen to represent the differences between the glassy/rubbery phases of the solid medium,
noting the differences in attenuation in a) for the smaller relaxation times as the frequency increases.

Figure 11: Attenuation per unit metre in a water–filled PVC slit obeying the SLSM, with Ē0/Ē∞ =
1.58. In each case the relaxation times have been chosen to represent the differences between the
glassy/rubbery phases of the solid medium. Viscous (Visc.) fluid solutions are obtained from (4.2),
whereas the inviscid (Inv.) fluid solutions are from (4.5).
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4.4 Limit B): VE plates loaded with viscous fluids

We now want to explore the reciprocal situation to that above. Medium 1 in the right of Figure 1
corresponds to a solid and Medium 2 becomes a fluid (water), so that we have fluid-loaded plates.
Much like for the half–space, in certain scenarios (hard interfaces) the fluid loading simply acts as
a small perturbation to the traditional Lamb DEs for natural modes on a plate in vacuum (i.e.
stress–free). In these cases the consideration of fluid loading causes the (pure) Lamb mode solutions
to become leaky as some of their energy gets shed via radiation of acoustic waves in the fluid, and
therefore the resulting modes are commonly addressed as ‘Leaky–Lamb’ modes in the literature,
which have been widely studied including the effect of boundary layer losses e.g. [20, 22, 39].

However, the presence of Material 2 (here a fluid) gives rise to an additional set of solutions
of a similar nature to the half–space Scholte–Stoneley addressed in Section 3.3.2. Naturally, the
difference here is that for thin plates (compared to wavelength) these Sc type surface modes become
interacting within the plate region and form two coupled interface modes, which are therefore the
symmetric/anti–symmetric ‘coupled plate–Scholte’ modes, which we will refer to as ‘coupled–Scholte’
for brevity following [3]. For hard fluid–plate interfaces, the symmetric mode is often ignored since
it is non–dispersive and lies on top of the sound line, and therefore the term ‘quasi–Scholte’ mode
is often found in the literature to refer only to the anti–symmetric (e.g. [23]). The situation is
nevertheless very different for soft interfaces, and in particular the symmetric coupled Sc can become
highly dispersive, deviating from the Sc and fluid velocities, as recently confirmed experimentally in
[3].

Following the same structure that we have employed in the preceding sections, here we want to
emphasise the extra physical insights that our framework provides for the behaviour of coupled Sc
modes. That is, the effects of the viscous boundary layers on either side of the plate as well as the
VE of the plate itself, particularly when stress relaxation is considered.

Given the non–dimensionalisation in Section 4.1, in this limit we let c̄□ ≡ c̄s i.e. we choose the
lossless shear speed of sound in each solid material as appropriate (for steel c̄s = 3000 m/s, and
for PVC c̄s = 1100 m/s) and similarly for the mass density (for steel ρ̄1 = 7871 kg/m3, and for
PVC ρ̄1 = 1360 kg/m3). With regards to the choice of VE frequency dependence, we will follow a
similar structure to what was done in the preceding sections: first we assume the KVM for the solid
according to Table 1, and then we consider the SLSM in Section 4.4.3.

4.4.1 Phase speed and attenuation

By the equivalence of the DEs in consideration, in order to find the roots of (4.2), (4.4) using fsolve,
we can make use of the same iterative procedure used for the slit, as explained in Section 4.3.1 so
that the initial value in the thick plate limit relies on the roots of (3.4). As we have been doing
thus far, in order to study the influence of the fluid viscosity, it is convenient to consider the inviscid
limit such that µ2(ω) → 0, from which it follows that k2Φ2

→ ∞ and hence γΦ2
, B2 → ∞ whereas

Q → 2c2Φ1
so that (4.2), (4.4) become

[(
2k2 − k2Φ1

)2
coth (γϕ1

)− 4k2γϕ1
γΦ1

coth (γΦ1
)
]
+ ρs

γϕ1k
4
Φ1

γϕ2

= 0, (4.6a)

[(
2k2 − k2Φ1

)2
tanh (γϕ1

)− 4k2γϕ1
γΦ1

tanh (γΦ1
)
]
+ ρs

γϕ1
k4Φ1

γϕ2

= 0. (4.6b)

for symmetric and anti–symmetric modes respectively, which we will both be considering in this
section. From (4.6), we observe explicitly that the terms in square brackets correspond to the
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classical Lamb DEs for modes on a free plate (in the absence of any loading ρs = 0), where the
VE effects are captured through the frequency varying material parameters. The role of the density
ratio ρs is analogous to (3.7) for the half–space. For ρs ≪ 1 we can see why (4.6) can be treated as
a small perturbation to the stress–free Lamb DEs [40], nevertheless as the fluid density approaches
that of the solid ρs → 1, the similarities between the spectra can disappear completely [39].

In Figure 12 we give the relative phase speed/attenuation as a function of the plate thickness in
terms of δ̄s/W̄ at 10 kHz for water–steel (a), and water–PVC (b). In both cases we observe how in the
thin plate limit (low frequency) the anti–symmetric mode tends to zero, whereas the symmetric mode
tends to the fluid’s sound speed. Conversely in the thick plate limit (high frequency) the two curves
converge to the Stoneley–Scholte value. These observations are in agreement with the analysis in
[18] and the dispersion curves in [3]. In terms of attenuation, we first notice the significantly smaller
magnitude compared to those in the slit e.g. Figure 6, which is expected, since here the boundary
layers are located on either side exterior to the plate, and are therefore never interacting (which is
the regime with major viscous losses as observed in the preceding section). It is also apparent from
the low attenuation values that VE effects with the values given in Table 1 have a negligible impact.
Given this, we nevertheless observe how the viscous boundary layer increases the attenuation of the
anti–symmetric mode as the plate becomes very thin in both cases. Interestingly, this effect does not
occur for the symmetric mode but instead we can observe a local maximum for water–PVC Figure
12b) around δ̄s/W̄ ≈ 10−3 which occurs close to (but not exactly) the inflection point observed in
the mode’s phase speed, but is not observed for steel since the symmetric mode remains constant
Figure 12a). In order to further analyse the dispersion of these modes, in Figure 13 we give an
equivalent plot but instead at 100 kHz (so that the non-dimensional frequency ω is increased by
an order of magnitude) and superimpose some of the relevant results from Figure 12. We observe
how this results in the separation of the phase speeds (between the symmetric and anti–symmetric
modes) at thinner plate thicknesses and correspondingly so does the maximum attenuation of the
viscous symmetric mode for PVC in Fig 13b) which also increases slightly in magnitude. In general
we observe that the inviscid fluid solutions obtained from (4.6) have an excellent agreement in
phase speed with the full viscous solutions, but naturally cannot predict the attenuation due to the
boundary layers.

4.4.2 Displacement fields

The energy density associated with the coupled Sc mode for hard/soft plates of various thicknesses
was analysed respectively in [23, 3], so here we will focus on the mode’s displacement fields. In
Figure 14 we show heatmaps of (the real part of) the horizontal/vertical particle displacements
fields for the symmetric coupled Sc mode in a PVC plate (Table 1) loaded with water at 10 kHz for
a plate thickness of δ̄s/W̄ = 10−3 (see Figure 12b) for reference). From the colorbars we note that
the predominant motion is actually parallel to the interface (Figure 14a)) with significant motion
coupled in both the plate and near the interface in the fluid. The anti–symmetric mode is given in
Figure 15, noting that in this case the magnitude of the motion is much more distributed in both
directions with the predominant motion in the plate being perpendicular to the interface, which is
expected due to the ‘bending’ nature of the anti–symmetric mode.

In Figure 16 we give direct comparisons of (the absolute value of) the particle displacements
from Figs 14, 15 for y ≥ 0 evaluated at x = 0 together with the equivalent results of a steel
water-loaded plate. From Fig 16a) we first observe how indeed for the symmetric mode the parallel
(to the interface) particle displacement is dominant over the perpendicular. For PVC we observe
a fast decay within the fluid region, whereas the situation is very different for water–steel, where
the majority of the motion (hence energy) lies in the fluid region with no decay observed. This
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Figure 12: Relative phase speed/attenuation at 10 kHz for coupled Sc modes in water-loaded VE
solid plates of decreasing width for: a) Steel, and b) PVC, whose material properties are in Table 1.
The initial values (thick plate limit) are dictated by the Stoneley DE (3.4) and therefore the initial
phase speeds are equivalent to those in Figure 6 (noting the change in non-dimensionalisation).

situation is in agreement with the half–space observations e.g. Figure 3, where we essentially have
compressional waves at grazing incidence in the fluid region travelling at the sound speed (Fig 12a)),
with little coupling in the plate region. A fairly similar situation is observed for the anti–symmetric
mode Fig 16b) in water–PVC, noting the more rapid decay of the motion, whereas for water–steel
we again observe a significantly larger magnitude of the horizontal particle displacement in the fluid
region, although its decay is nevertheless noticed, in agreement with [23]. Note that the apparent
discontinuities for ux at the plate interface ȳ = L̄ are simply due to the extremely thin boundary
layer regions (as in Fig 8a)) with the chosen parameters (δ̄s/W̄ = 10−3 at 10 kHz) which make them
not visible at the provided y scale.

4.4.3 Influence of stress relaxation

Finally, we want to pay attention to the effect of stress relaxation on the soft plate and observe
the corresponding effects on the phase speed/attenuation of the coupled Scholte mode. As we have
done in Sections 3.3.3, 4.3.3 we proceed by letting the Young’s modulus of the plate E1(ω) follow
the SLSM whilst its Poisson’s ratio ν1 remains constant, as in (3.10) (with subscripts in the moduli
interchanged from ‘2’ to ‘1’) noting that tr = c̄st̄r/L̄. In the illustrations below we also let Ē∞ = 4.43
GPa so that the rubbery phase limit of the PVC material corresponds to the (fixed) value from Table
1 (as we have did for the slits in Section 4.3.3).

In Figure 17 we give the phase speed/attenuation of the symmetric and anti–symmetric coupled
Sc mode as a function of plate thickness (as in Fig 12) with fixed Deborah numbers ωtr = 0.1, 1, 50
so that we cover the rubbery and glassy phases, as well as glass transition. Furthermore, in this
figure we have chosen a moderate value of the ratio Ē0/Ē∞ = 1.58, see Figure 4b). For the anti–

25

172 CHAPTER 4. FSI AND LOSSES IN SLITS AND LOADED PLATES



Figure 13: Relative phase speed/attenuation at 100 kHz for coupled Sc modes in water-loaded VE
solid plates of decreasing width for: a) Steel, and b) PVC, whose material properties are in Table
1. The curves in grey correspond to the Sym/A-Sym Coupled Sc mode for viscous water at 10 kHz,
as in Figure 12. For clarity purposes, the inset figures in attenuation only contain the grey curves.
Except for the Sym mode in a), strong dispersion in phase speed is noted for most plate thicknesses
in both media.

Figure 14: Real part of the displacement fields for the symmetric coupled Sc mode propagating
in a PVC plate immersed in water at 10 kHz, for a plate thickness of δ̄s/W̄ = 10−3 with values
from Table 1. a) represents the horizontal particle displacement Re{ux(x, y)}, and b) the vertical
displacement Re{uy(x, y)}. The plots have been normalized such that ux(y = x = 0) = 1, and
different lengthscales are used for the x and y directions with the black lines representing the plate
boundaries. The difference in the values of the colorbar show that the predominant motion is parallel
to the interface.
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Figure 15: Real part of the displacement fields for the anti–symmetric coupled Sc mode propagating
in a PVC plate immersed in water at 10 kHz , for a plate thickness of δ̄s/W̄ = 10−3 with values
from Table 1. a) represents the horizontal particle displacement Re{ux(x, y)}, and b) the vertical
displacement Re{uy(x, y)}. The plots have been normalized such that uy(y = x = 0) = 1, and
different lengthscales are used for the x and y directions with the black lines representing the plate
boundaries.

a) b)

Figure 16: Comparisons between the magnitude of the components of the displacement fields of
steel/PVC plates loaded with water at at 10 kHz for the sym. coupled Sc mode (a), and the anti–
sym. coupled Sc mode (b) normalized in each case s.t. the displacement at the center of the plate
is 1. The plate thickness is δ̄s/W̄ = 10−3 with values from Table 1. The apparent discontinuities
for ux at the plate interface y = 1 are simply due to the thinness of the boundary layer region with
the large y scale employed.
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symmetric mode (Figure 17a)) we observe how the initial phase speed values dictated by the Stoneley
DE (3.4) become higher when the material is in the glassy phase, which then tend to zero in the
thin plate limit following the observations in Figure 12. In terms of attenuation, we first observe the
remarkably higher values for ωtr = 0.1, 1 (at all plate widths) when compared to the KVM results
from Figure 12. For the anti–symmetric mode (Figure 17a)) we observe that the attenuation (per
wavelength) approaches non-zero values (except for ωtr ≫ 1) in the thin plate limit. With regards
to the symmetric mode (Figure 17b)) we first note that the initial behaviour in both phase speed
and attenuation is identical to that of the anti–symmetric mode following our discussion above. As
the plate width decreases, the mode first enters the dispersive region and continues to asymptote
towards the fluid’s phase speed v̄/c̄s = 1.35 following the observations from Figure 12. When it
comes to the attenuation, the global maximum discussed above become significantly enhanced in
the dispersive region (particularly for ωtr ≈ 1), after which it monotonically decreases towards zero
as the root approaches the fluid’s (constant) bulk mode.

To our surprise, we have not been able to find discussions about this feature in the existing
literature. It is worth stressing that this global maximum for the symmetric coupled Sc only arises
when the mode’s phase speed is dispersive which (for a fixed fluid) requires soft media, so that
ρs ≈ 1. For this reason we did not observe it for water-loaded steel plates in Figure 12a), which is
where most of the literature has been centred [3]. Some further tests (not shown) confirmed that
the inclusion of fluid viscosity has little influence on the presence of this maximum, so that solutions
to (4.6) (corresponding to ηµ2

= 0) accurately capture this global maximum (as expected given the
little magnitude of boundary layer attenuation in Figure 12). We believe this phenomenon may
be related to a critical point in the mode’s group velocity, but this is yet to confirm with further
analysis.
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a) b)

Figure 17: Relative phase speed/attenuation at 10 kHz for coupled Sc modes in water-loaded VE
PVC plates of decreasing width according to the SLSM with Ē0/Ē∞ = 1.58, whilst keeping the
Deborah number fixed (and in all cases c̄s = 1100 m/s). The fluid is assumed to be viscous so
that all the curves correspond to roots of (4.2) and (4.4). In a) we only show the anti–symmetric
mode for a very wide range of plate widths, whereas in b) we also include the symmetric mode for
plate thicknesses in the region of interest. In particular, we note the enhancement of the global
attenuation maxima for the symmetric mode which subsequently tends to zero as the mode becomes
non-dispersive.
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5 Conclusions

This paper has been focused around the influence of viscosity in some of the principal modes of
propagation in two physical systems, namely fluid-filled slits embedded in infinite viscoelastic solids,
and fluid-loaded viscoelastic plates, where the fluid considered is water. These two settings are
connected by the fact that the respective waves in the short wavelength limit (with respect to
channel/plate width) are governed by the same dispersion equation, namely the Scholte-Stoneley
DE which was therefore analysed in detail first. Furthermore, the direct correspondence between the
governing equations for visco-acoustic fluids and (visco)elasticity discussed in [1] is used in order to
obtain generalised dispersion relations for symmetric and anti–symmetric modes that can govern the
two specific set-ups of interest when taking the appropriate limits, which is a particularly convenient
detail of this study.

For fluid–filled channels, the results are presented as an extension of an earlier work by some of
the present authors, namely [2]. We firstly show how the consideration of soft media requires paying
more attention to the way the roots are initially found, as a result of the Scholte mode’s phase
speed reduction (from the fluid sound line) in water-(soft) solid interfaces. We then emphasise how
viscoelastic mechanisms in the solid can affect the overall attenuation at different frequencies and
channel widths, for both the commonly used Kelvin-Voigt model (KVM) and the standard linear
solid model (SLSM), which incorporates stress relaxation. It has been shown how stress relaxation
can greatly affect the phase speed and attenuation of the mode, and in particular the ability to damp
energy if the mode can be excited around the glass transition of the material which is characterized
by a Deborah number of one, i.e. ωtr = 1.

For water-loaded viscoelastic plates, much of the work in this article has been inspired by the
recent study [3], which we refer to multiple times in this paper. Utilizing the same root finding
technique as for the channels, where the initial value is based on the Scholte-Stoneley DE behaviour,
the dispersion of the phase speed of both the symmetric and anti–symmetric modes as a function
of plate thickness is analysed, as well the associated displacement fields. We originally observe
very little dissipation compared to the slit case as a result of the boundary layers being localized
on the exterior sides of the plate and therefore never interacting regardless of the thinness of the
plate. Nevertheless, the presence of a global maximum in the attenuation of the symmetric coupled
Scholte mode is noticed for the soft solid only, indicating that it is closely linked to the dispersion in
phase speed, which is not observed for hard water-solid interfaces. To the knowledge of the authors
this feature has not yet been reported in the literature, and therefore we believe that it requires
further analysis in order to give truly physical explanation, but some early observations are noticed.
The attenuation increases significantly for both modes when stress relaxation is included in the
soft plate, and in the thin-plate limit the attenuation of anti–symmetric modes tends to constant
non-zero values for each ωtr, whereas the dissipation of the symmetric mode becomes zero as soon
as the phase speed becomes constant. Nevertheless, the global maximum in attenuation observed
previously is largely enhanced, particularly around glass transition. It is believed that this global
maximum should be able to be demonstrated experimentally following the work in [3] and perhaps
even be interesting to the non-destructive testing community for possible applications.

More generally, we find that although the widely used KVM (even with varying viscosity coef-
ficient to match experimental results) can accurately predict the loss at particular frequencies as
shown in e.g. [13], with such models the dispersion of the real parts of these elastic moduli (and
hence phase speed of the associated modes) cannot be captured. We show this can be crucially
important, particularly at frequencies near glass transition. We further note that the SLSM used
here to capture stress relaxation, namely Prony series with a single relaxation time, is the simplest
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model that captures long time solid-like ‘glassy’ behavior and generally, the VE behavior of poly-
mers is much more complex [41, 16]. Furthermore, the relaxation results are based around a PVC
sample with Ē∞ = 4.43 GPa, such that the half-space Scholte mode propagates at a phase speed
approximately 60% of that of water and is therefore considered soft in this context, especially when
compared to the steel sample analysed here, for which the Scholte mode propagates essentially at
the speed of sound of water. Nevertheless, the amplitude ratio Ē0/Ē∞ is well known to become
particularly large for significantly softer media, although in terms of practicality this is offset by the
fact that in this regime the Scholte mode is likely to be much more difficult to excite. These results
motivate the need for further experimental results in the frequencies of interest in order to be able
to make sure under which conditions these mechanisms can be exploited as well as relevant data for
relaxation times short/large range moduli which we hope to obtain soon.
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Chapter 5

Conclusions and further work

Summary

This thesis has been focused around the modelling of viscous and thermal dissipative

effects in the propagation of linear acoustic and elastic waves in a number of different

physical set-ups consisting of (homogeneous) continua ranging from fluids in the form

of gases and liquids like air and water, to hard solids such as metals, to softer solid

media such as rubbery materials and plastics.

Our first contribution to the existing literature (Chapter 2) is centred around a

canonical problem consisting of the propagation of natural modes in a single fluid-

filled slit, where the focus lies on viscous and thermal losses through boundary layers

and in particular the differences when the slit is occupied by air or water. For the

in-air problem, we are able to give a fundamental theoretical footing to some experi-

mental realisations from Ward et al. [2015], and in particular show that the boundary

layer parameter used therein is an underestimate to the true extent of this region and

Stokes’s boundary layer parameter is a better estimate. This result helps explain the

unexpected observation discussed in Ward et al. [2015] with regards to the specific

channel widths at which losses become dominant. For the in-water problem, we find

thermal dissipation to be negligible (at the temperatures considered in this study) as a

result of its low thermal expansion coefficient, but illustrated the importance of fluid-

structure interaction (FSI) when the slits are within standard hard materials such as

steel. We believe the magnitude of the reduction in phase speed for decreasing channel
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widths is of physical significance, but we note that the dissipation nevertheless is still

only due to the boundary layers since the steel considered is perfectly elastic so that it

cannot dissipate energy and further although it causes the energy to be redistributed

along the slit, there is no radiation loss into the solid (as expected since even for wa-

ter, steel is highly supersonic). The possibility to analyse some of these extra physical

mechanisms resulted in motivation for the authors to consider softer solid media. As

outlined in Section 2.3, early results showed that even with the purely elastic model

considered in the paper, the obtained behaviour was so different than for hard solids,

that we acknowledged that the extension of the parameter space into softer solid me-

dia needed a more in-depth discussion, especially if we want to discuss visco-elastic

effects. This discussion is continued further in Chapter 4, nevertheless prior to the

development of this chapter, we realised that it could be beneficial to devote some

time to generalising the theories that we had employed so far, which eventually led to

Chapter 3.

In Chapter 3 we focus on the development of a framework for thermo-visco-elastic

(TVE) continua. It is noted that previous related works have either used approxi-

mate ‘local’ TVE theories (that do not include stress relaxation) such as Deschamps

and Cheng [1989] for specific problems, or conversely stated general equations without

providing detail into how these can be applied to dynamic problems of physical inter-

est [Christensen and Naghdi, 1967]. In this paper, we focus on developing a theory

that is readily available for wave-propagation type problems. The resulting three free-

space modes propagating in this media are analysed in detail, and in particular we

provide useful approximations to the thermo-compressional wavenumbers that highly

simplify the original expressions which are tested for solids and fluids. Furthermore,

the simple connection between TVE and TVA as well as other physically relevant the-

ories is demonstrated. In particular, we are able to show that with our framework a

general TVA fluid-solid boundary as in Figure 1.12 can indeed be generalised to that

of Figure 1.13, which allows us to consider the reflection/transmission of many more

media under the same equations. This is done specifically for two TVE half-spaces

under incident plane wave forcing, and results involving materials as diverse as air,

water, steel and rubber are given. In particular, some results from Borcherdt [2009]
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for water-steel are extended to include the presence of thermal effects, although they

are shown to be negligible as for the slits in Chapter 2. The extra dispersive properties

upon reflection/transmission provided by stress relaxation are discussed for hypothet-

ical rubbery-type media.

Finally, Chapter 4 is devoted to an analysis of viscous dissipation of some of the

principal modes of propagation in two different physical set-ups involving fluid-solid

interfaces: water-filled slits within semi-infinite viscoelastic solids and water-loaded

viscoelastic plates. Using our previously developed framework, we show that the equiv-

alence between the equations governing linear viscoelastic solids and visco-acoustic

fluids nevertheless implies that these two systems can in fact be governed by the same

dispersion equations (for symmetric/anti-symmetric modes), which then become tai-

lored to each particular problem when specific limits of the material parameters are

considered. Furthermore, for slits/plates much larger than the characteristic mode’s

wavelength, the associated dispersion in these two physically different problems be-

comes governed by the same equation, namely the Scholte-Stoneley DE for fluid-solid

half-spaces. The first part of the paper is therefore devoted to the study of this canon-

ical problem, where both Scholte-Stoneley and Leaky-Rayleigh modes are analysed in

detail. In terms of material parameters, the fluid considered is water whereas results

for both steel and PVC are provided with the intention to cover both hard and soft

solids, and in particular illustrate the effect of their intrinsic differences on the prop-

erties of the respective modes. Viscoelastic losses are initially modelled with a KVM,

and consequently with the SLSM which allows us to bring special attention to the

influence of stress relaxation.

The discussion for the fluid-filled slits set-up is given as an extension of Cotterill

et al. [2018] provided in Section 2.2, taking into account the further comments from

Section 2.3. It is shown how the significant reduction of the Scholte mode’s phase

speed for soft solid-water interfaces requires paying more attention to the initial value

used in the root finding algorithm, as opposed to hard solids for which the the Scholte

mode propagates essentially at the speed of sound. The dispersion on phase speed and

attenuation is discussed thoroughly and the extra possibilities for wave manipulation

resulting from operating near glass transition ωtr = 1 are noted.
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Conveniently, we are able to use the same root finding technique to the problem of

water-loaded plates. The dispersion of both symmetric and anti-symmetric modes is

discussed as a function of relative plate thickness. In particular, we observe that the

symmetric coupled plate-Scholte mode becomes dispersive in soft solids, as opposed

to hard solids such as metals for which the mode propagates at the constant sound

speed. Coincidentally, we note the dispersion of the symmetric coupled plate-Scholte

mode was studied (in the absence of dissipation) in the very recent work Staples

et al. [2021], and verified experimentally. We make use of our framework in order

to observe whether any notable consequences may arise when losses are taken into

account. Although the viscosity due to the fluid is minimal due to the boundary

layers being located in the regions exterior to the plate (as opposed to the fluid-filled

slits), we show that viscoelastic losses in the soft plate can be significant, especially

when the SLSM is employed and it is operated around glass transition. In particular,

our calculations predict a global maximum in the attenuation (as a function of plate

thickness) of the symmetric coupled plate-Scholte mode in the dispersive region which

we believe may be of physical interest, but needs further investigations which we hope

we may conduct in the near future.

Future work

There are several possible extensions that can be conducted as followups to the work

that has been presented in this thesis, some of which have been pointed out in the

conclusions to the separate papers provided in each chapter.

A straightforward extension to our setting for the slit/plate analysis in Chapters 2,

4 would be to replace the unboundedness of the exterior medium by instead applying

periodicity conditions, so that the canonical problem considered in this thesis would

constitute the unit cell of an infinite array of slits/plates. This naturally introduces an

extra lengthscale in the problem, and can give rise to additional interesting physical

effects, see e.g. Brandão et al. [2020]. It would be of high interest to further under-

stand the partition of energy between the Scholte-type modes that have mainly been

considered here (for both the slits and plates), and the presence of other modes such as

Leaky Lamb modes in the case of water-loaded hard plates, and in particular how these
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change depending on the type of solid medium and the plate/slit thickness. Analyti-

cally, this requires the consideration of the forced-type scattering problem where the

governing equations become inhomogeneous and significantly more complex to solve,

generally requiring specific techniques. Additional experimental realisations are nec-

essary in order to validate many of the novel results introduced here for both coupled

duct-Scholte and coupled plate-Scholte modes.

The problems proposed in this thesis have only involved planar geometries and

therefore have been described with Cartesian coordinates, but the extension to other

(separable) geometries is direct, since as we have seen the governing equations for

linear TVE reduce down to three Helmholtz equations which couple in the boundaries

only via expressions involving standard linear operators. We would particularly like

to apply the theory to problems involving resonances in elastic systems, in order to

be able to assess the impact of thermal and viscoelastic damping in the resonant

frequencies and associated amplitudes. A key step for this would be to analyse the

possibilities to implement the method of matched asymptotic expansions to particular

problems in this generalised setting.

It would be of extreme utility to obtain more realistic data about relaxation times

of common viscoelastic materials, and general frequency characterization in order to be

able to better understand the parameter space (in both temperature and frequency) in

which stress relaxation could be particularly exploited and under what circumstances.

Analysis on how these effects are manifested in the time domain is also needed and

would be highly beneficial. It would also be useful to identify particular media for

which both thermal and viscous effects are important since we often found that highly

thermoelastic materials (such as certain metals) often dissipate little energy due to

viscosity, whereas for standard temperatures viscoelastic media often dissipate little

energy due to thermal damping (as we found for many polymers). On the other hand

for fluids we observed that “light” media such as gases which have strong thermal

coupling do not generally need FSI considerations (as we have seen here for air),

whereas liquids for which FSI is important in standard interfaces can be described

accurately without thermal effects (as we have seen for water-metal interfaces). More

generally, it is clear that the large parameter space involved in the TVE model allows

for the consideration of a very wide range of media, and we hope some of the results
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in this thesis will motivate fellow researchers into conducting some of these studies.



Bibliography

J Achenbach. Wave propagation in elastic solids. Elsevier, 2012.

AL Gower (GitHub). Linear thermo-visco-elasticity. URL https://github.com/

arturgower/LinearThermoViscoElasticity.

K Attenborough. Acoustical characteristics of rigid fibrous absorbents and granular

materials. the Journal of the Acoustical Society of America, 73(3):785–799, 1983.

WM Beltman. Viscothermal wave propagation including acousto-elastic interaction,

part i: theory. Journal of Sound and Vibration, 227(3):555–586, 1999.

LL Beranek. Acoustic impedance of porous materials. The Journal of the Acoustical

Society of America, 13(3):248–260, 1942.

MA Biot. Thermoelasticity and irreversible thermodynamics. Journal of Applied

Physics, 27(3):240–253, 1956.

DR Bland. The theory of linear viscoelasticity. Courier Dover Publications, 2016.

BA Boley and JH Weiner. Theory of thermal stresses. Courier Corporation, 2012.

L Boltzmann. Zur theorie der Elastischen Nachwirkung. Sitzungsberichte Kaiserliche

Akademie Wissenhaft Wien Mathematische-Naturwissenhaft, (70):275–306, 1874.

RD Borcherdt. Energy and plane waves in linear viscoelastic media. Journal of Geo-

physical Research, 78(14):2442–2453, 1973.

RD Borcherdt. Viscoelastic waves in layered media. Cambridge University Press, 2009.

R Bossart, N Joly, and M Bruneau. Hybrid numerical and analytical solutions for

acoustic boundary problems in thermo-viscous fluids. Journal of Sound and Vibra-

tion, 263(1):69–84, 2003.

187

https://github.com/arturgower/LinearThermoViscoElasticity
https://github.com/arturgower/LinearThermoViscoElasticity


188 BIBLIOGRAPHY

R Brandão, JR Holley, and O Schnitzer. Boundary-layer effects on electromagnetic

and acoustic extraordinary transmission through narrow slits. Proceedings of the

Royal Society A, 476(2242):20200444, 2020.

AM Bruneau, M Bruneau, PH Herzog, and J Kergomard. Boundary layer attenuation

of higher order modes in waveguides. Journal of Sound and Vibration, 119(1):15–27,

1987.

M Bruneau. Fundamentals of acoustics. ISTE Ltd., London, 2006.

M Bruneau, PH Herzog, J Kergomard, and JD Polack. General formulation of the

dispersion equation in bounded visco-thermal fluid, and application to some simple

geometries. Wave Motion, 11(5):441–451, 1989.

T Chen. Determining a Prony series for a viscoelastic material from time varying

strain data, 21p. NASA, 2000.

RM Christensen. Theory of viscoelasticity: an introduction. Elsevier, 2012.

RM Christensen and PM Naghdi. Linear non-isothermal viscoelastic solids. Acta

Mechanica, 3(1):1–12, 1967.

BD Coleman and W Noll. The thermodynamics of elastic materials with heat con-

duction and viscosity. Archive for Rational Mechanics and Analysis, 13(1):167–178,

1963.

PA Cotterill, D Nigro, ID Abrahams, E Garćıa Neefjes, and WJ Parnell. Thermo-
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Appendix A

TVA physical constants for air and

water

For completeness and in order to facilitate reproducibility, here we simply list the

air/water TVA material parameters employed in some of the figures from Chapter 1.

TVA Parameters

Parameter Unit Symbol Water (10◦C) Air (27◦C)
Adiabatic speed of sound m/s c̄A 1490 343

Density kg/m3 ρ̄0 1000 1.19
Dynamic shear viscosity kg/m·s η̄ 1.002×10−3 1.846×10−5

Dynamic bulk viscosity kg/m·s η̄K 3.006×10−3 1.108×10−5

Thermal conductivity W/m·K K̄ 0.597 2.624×10−2

Specific heat at constant pressure J/kg·K c̄p 4192 1005
Ambient temperature K T̄0 283.16 300

Coefficient of thermal expansion 1/K ᾱ 8.822×10−5 1/300

Table A.1: Thermo-viscous parameters (assumed to be independent of frequency) for
both air and water, as taken from Section 2.2 taken from various sources.
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