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Abstract

The non-Newtonian rheology of polymer solutions makes it challenging to understand the

pore-scale behaviour of polymer solutions in porous media, and therefore, it also presents

challenges to upscale their pore-scale properties to the Darcy scale. An analytical and

numerical approach are adopted in the thesis to evaluate the effect of non-Newtonian

rheology on polymeric fluid flow in porous media. In an analytical approach, Darcy vis-

cosity is upscaled from pore-scale shear viscosity using the Bundle-of-Capillaries model

modified with a pore-correction coefficient and a fluid-correction coefficient. This ap-

proach is based on an exact analytical solution derived in the present work for the flow

of non-Newtonian fluids described by a shear stress-dependent Meter model and a vis-

coelastic Phan-Thien-Tanner model. An OpenFOAM-based method has been developed

for numerically simulating single-phase and two-phase flow in 2D and 3D porous media,

involving Meter model fluids to gain pore-scale insight. The results suggest that the

effective viscosity and Reynolds numbers defined in this work correctly describe non-

Newtonian fluid flow as laminar, turbulent, and transition flow. Pore-scale single-phase

simulation in 2D and 3D porous media indicates that the fluid’s Darcy viscosity is asso-

ciated with the fluid’s viscosity in the active mobile zone of porous media only. The vis-

coelastic fluid flow simulation shows elastic instability at low Reynolds number flow in a

2D and 3D porous medium. The volume-of-fluid method-based two-phase simulation in-

dicates that pore-scale micro-heterogeneity and wettability govern non-Newtonian fluid

flow front stability while displacing Newtonian fluid. Simulations based on the Euler-

Lagrangian approach (discrete particle modelling) show that nanoparticle transport in

porous media exhibits non-Fickian behaviour due to heterogeneity-dependent confine-

ment. The generalised Newtonian fluid equation proposed for shear thickening fluids

captures all typical shear thickening fluid regimes and can be used to do single-phase

simulations.
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Chapter 1

Introduction

This thesis examines the flow of non-Newtonian fluids (shear thinning, shear thicken-

ing, and viscoelastic) through porous media using analytical and numerical simulation

approaches. This thesis is written in an alternative format, consisting of five articles in

a journal format. Each chapter (article) examines a specific goal in detail. The thesis

covers a broad range of non-Newtonian fluid flow aspects within porous media, including

single-phase flow, two-phase flow, and nanoparticle dispersion within non-Newtonian flu-

ids and porous media. In summary, Chapter 2 provides an exact analytical solution, sim-

ilar to the Hagen-Poiseuille equation, for an inelastic Meter model fluid flowing through

a circular capillary. Chapter 3 describes the proposed generalised non-Newtonian fluid

equations that accurately capture the complex rheology of typical shear thickening fluids

and their usefulness in performing single-phase numerical simulations through porous

media. The method to upscale pore-scale properties of inelastic and viscoelastic non-

Newtonian fluids to the Darcy scale is proposed in Chapter 4. The effect of the pore-scale

heterogeneity and wettability of porous media on viscous fingering during the two-phase

flow of an inelastic non-Newtonian fluid displacing oil is discussed in Chapter 5. In

Chapter 6, the Euler-Lagrangian simulation approach is used to evaluate the migration

and dispersion of nanoparticles (suspended in an inelastic Meter fluid) in heterogeneous

porous media. Finally, Chapter 7 presents the summary and future work.
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1.1 Motivation

Almost all the natural materials that surround us are porous. Porous media are solid

materials with void spaces, complex pore geometry, and interconnected networks [64,

218]. The void spaces of the porous medium are always filled with fluids, i.e. either

with gases or liquids. Although fluid transport in a porous medium occurs at the pore

scale, the fluid flow measurements are performed at a length scale several orders of

magnitude larger than the void space of the porous medium [25]. This macroscopic

measurement usually fails to depict the microscopic displacement of the fluid and its

interaction with complex geometry. Thus, upscaling pore-scale property to macroscale

is essential to describe flow behaviour in a porous medium correctly [184]. If the fluid

has non-Newtonian properties, modelling and upscaling become challenging.

The addition of solutes (e.g. polymers or colloidal/non-colloidal particles) in the solvent

gives the fluid non-Newtonian characteristics. Non-Newtonian fluids can have shear

thinning, shear thickening, or viscoelastic properties [21, 22]. Polymers are macro-

molecules with repetitive structural units of a mesoscopic length scale (10−100 nm)

[21, 155, 200]. The bond interaction between polymers can form a complex struc-

ture with a high molecular weight of up to thousands of g/mol. The flow-induced

evolution of molecular structure (i.e. orientation and stretching) along a streamline

governs polymeric non-Newtonian fluids’ rheological properties [21, 39, 155, 200]. In

addition to the shear-thinning characteristics, the stress caused by local deformation

and the rearrangement of the microstructure in the fluid element endows certain poly-

meric fluids with viscoelastic properties [52, 165]. Colloidal or non-colloidal particles

based non-Newtonian fluids show shear thickening properties after the critical value of

shear stress [28, 31, 214]. These distinct properties of shear-thinning, shear-thickening

and viscoelastic fluids have been utilised in many industrial, consumer and commercial

settings [14, 21, 184, 196, 214, 218, 221]. The shear-thinning (drop-in viscosity at high

shear) and shear thickening (increase in viscosity at high shear) features of these flu-

ids are specifically of engineering interest [21, 200]. The normal stress of viscoelastic

non-Newtonian fluids that induces the rod climbing effect (i.e. the Weissenberg effect)

has also been utilised in many industrial applications [39]. For example, xanthan gum

and polyacrylamide polymer mixed in water have been used extensively for enhanced
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oil recovery and subsurface remediation [32, 145, 200, 207, 238]. These polymeric liq-

uids show non-Newtonian shear-thinning or viscoelastic characteristics, depending on

polymer concentration, temperature, salinity and hardness of the liquid [32, 33, 200].

The challenging aspect of rheology is developing a physically realistic mathematical

model that predicts the non-Newtonian fluid’s flow behaviour in complex geometry.

Several constitutive equations [8, 21, 39, 43, 78, 134, 214] and numerical schemes [7, 8,

53, 54, 56, 75, 162, 163] have been developed to model rheology and fluid flow through

void spaces. Most of the generalised Newtonian fluid models (e.g. power-law [21],

Carreau [222], Cross [43], and Meter [134]) or viscoelastic fluid models (e.g. Maxwell,

Oldroyd-B, Giesekus, and Phan–Thien—Tanner) [8, 20] that describe the rheology of

inelastic and viscoelastic non-Newtonian fluids are empirical. Thus, each model has its

own limitations and cannot be universally applied to all types of non-Newtonian fluids

[20]. Most shear thinning and viscoelastic fluids show an S-shaped type of viscosity

curve over a range of shear values (see Fig 1.1a).

On the contrary, modelling the rheology of shear thickening fluid is much more complex,

as it shows Newtonian, shear thinning, shear thickening, and extreme shear-thinning

regimes with an increase in shear values (see Fig 1.1b) [78]. An equation that describes

all shear thickening fluid regimes and can be used for pore-scale fluid flow simulation

is absent in the literature. The complex behaviour of shear thinning and shear thick-

ening non-Newtonian fluids in complex pore-space geometry makes modelling their flow

behaviour challenging.

Figure 1.1: a) Typical S-shaped viscosity curve of a shear thinning non-Newtonian
fluids b) typical viscosity curve of a shear thickening non-Newtonian fluids. Note: figure

not to the scale.

The flow of non-Newtonian fluids (shear thinning, shear thickening or viscoelastic)

through a circular tube/capillary has applications in the engineering field [21, 184, 196].
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Many theories and models for Newtonian fluids have been developed based on the Hagen-

Poseuille equation, such as the Lucas-Washburn equation [123, 215] (the commercial

tensiometer uses it to measure surface tension), the capillary bundle model [184], and

the pore-network models [198]. However, the exact analytical solution is not available

in the literature for a) fluids that show S-shaped shear-dependent viscosity variations

(e.g. Carreau, Cross, and Meter models, Fig 1.1a) and b) shear thickening fluids (Fig

1.1b). The lack of an analytical solution makes it difficult to define the flow’s effective

viscosity and Reynolds number. The analytical solution is specifically crucial to upscale

pore-scale properties to Darcy’s scale [184].

The continuity and momentum equations govern the pore-scale flow properties of the

fluid in porous media, whereas Darcy’s law governs the Darcy scale properties of the

fluid transport in porous media. Upscaling non-Newtonian rheology from pore-scale to

Darcy scale requires a correct way to estimate the shift factor. The empirical shift factor

relates the steady shear-dependent viscosity of non-Newtonian fluids to the Darcy vis-

cosity in porous media. [18, 65, 177, 200, 226]. The reported values of the empirical shift

factor cover three orders of magnitude, depending on the considered fluid-medium con-

figurations [18, 194, 200]. This variation creates a challenge in upscaling non-Newtonian

rheology from pore-scale to Darcy scale.

Most of the recent work in the literature is focused on evaluating the relationship between

shift factor and physical properties of porous media and non-Newtonian fluids [18, 65,

177, 200, 226]. Both analytical [65], and numerical approaches (e.g., [18]) have been used

to identify a correlation between shift factor and various physical parameters of fluids

and porous media. The power-law model has been historically used to upscale pore-

scale properties to Darcy’s scale and to conduct pore-scale direct numerical simulations

[184, 196, 200]. Although the power-law model does not capture the Newtonian regime

of non-Newtonian fluids at low and high shear rates (see Fig. 1.1) [21], most numerical

simulations of the flow of polymer solutions through porous media were carried out using

a power-law model [196, 200]. Thus, to numerically and analytically upscale pore-scale

properties to Darcy’s scale, there is a need for a rheological model that: a) captures the

S-shaped rheology of a typical non-Newtonian fluid; b) has an analytical solution; c) can

numerically simulate the flow of a non-Newtonian fluid through heterogeneous porous

media.
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Upscaling pore-scale properties require correct evaluation of a non-Newtonian fluid flow

behaviour at the pore scale. This can be done by simulating non-Newtonian fluid flow

through 3D porous media. The Meter model captures the S-shaped rheology of shear-

thinning fluids [134]. Viscoelastic linear Phan-Thien-Tanner (PTT) has an analytical

solution for flow through the tube [147]. Thus, it will be helpful to simulate Meter model

fluid and PTT fluid through porous media for upscaling pore-scale properties. However,

no attempts have been made to simulate inelastic shear stress-dependent Meter model

fluid, inelastic shear thickening fluid, or viscoelastic linear Phan-Thien-Tanner fluid flow

through realistic 3D porous media due to the complexity of solving the momentum

equation coupled with the continuity equation. The present thesis has made an attempt

to derive an analytical solution and simulates a single-phase flow of shear thinning,

shear thickening, and viscoelastic fluid through porous media. The properly averaged

values obtained after simulations could be considered as an upscaled value linked to

single-phase Darcy’s law [170].

Fluid flow in a subsurface porous medium is a multiphase flow. Upscaling multiphase

flow from pore-scale to Darcy’s scale requires realistic modelling of the dynamic be-

haviour of each phase and its interaction amongst different phases and solid boundaries

of heterogeneous porous media. A two-phase pore-scale simulation would be a helpful

first step towards understanding multiphase flow behaviours of non-Newtonian fluids in

heterogeneous porous media. An Euler-Euler or Euler-Lagrangian simulation approach

can be adopted to study two-phase flow in porous media. In light of its use in oil

recovery and soil remediation, this thesis looked at: a) the two-phase transport of a

non-Newtonian fluid that displaces oil using the Euler-Euler method; and b) the disper-

sion of nanoparticles suspended in a non-Newtonian fluid using the Euler-Lagrangian

method.

Understanding the pore-scale two-phase displacement of non-Newtonian fluid displacing

Newtonian fluid such as oil or non-aqueous phase liquid (NAPL) contaminants is of

paramount importance for enhanced oil recovery and soil remediation, respectively [145,

200, 207, 238]. Most of the previous studies on pore-scale two-phase flow involving non-

Newtonian fluid were carried out in a simple homogeneous porous medium [9, 56, 70, 95,

137, 145]. This geometry is highly unlikely to account for the microscopic heterogeneity

and true complexity observed in porous media. Only a few studies [56, 59, 152, 212, 220]

considered the effects of micro-heterogeneity on polymeric fluid-induced oil displacement.
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The pore size in porous media can vary by up to two orders of magnitude, which leads

to spatial variation of viscosity and velocity in porous media over several orders of

magnitude. This spatial change in viscosity and velocity in pore space and capillarity

governs flow stability and fingering. Wettability, the ability of polymer solutions to

adhere to porous materials in the presence of other fluids, affects the displacement of

non-Newtonian fluids on a pore scale [25]. No attempt has yet been made to numerically

evaluate the effect of micro-heterogeneity and wettability on viscous fingering during

non-Newtonian fluid’s two-phase displacement.

Nanoparticles mixed with polymer solutions have been used to enhance oil recovery and

soil treatment because they change the properties of liquids [14, 60, 89, 93, 164, 239].

Spatial heterogeneity of porous media, non-Newtonian behavior of polymer solutions

and Brownian motion of nanoparticles influence pore-scale transport and dispersion of

nanoparticles in porous materials. The dispersion of nanoparticles in porous materials is

of considerable importance because it makes many regions of the porous medium acces-

sible to the injected polymer [218]. By tracking the movement of individual particles on

the pore scale, the microscopic mass transport can be upscaled to the macroscale [15].

The transport of nanoparticles is a 3D phenomenon, but previous experimental moni-

toring of nanoparticles in porous media was still performed in 2D (i.e. no z-direction)

[15, 141, 160, 171, 218]. Therefore, the dispersion of nanoparticles in the transverse

direction could not be truly evaluated. In addition, no attempt has yet been made to

simulate the transport of nanoparticles within non-Newtonian fluid and 3D heteroge-

neous porous media, such as sandstone, and to use particle tracking to determine the

coefficients of longitudinal and transverse dispersion.

1.2 Objectives

This thesis addresses the issues mentioned above through the following objectives:

1. Derive an analytical solution for the radial velocity profile and volumetric flow rate

of the steady-state laminar flow of Meter model fluid through a circular geometry.

2. Formulate a generalised Newtonian fluid equation that describes the rheology of

typical shear thickening fluid.
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3. Develop and validate a computational framework that simulates the flow of non-

Newtonian fluids described using the proposed shear thickening fluid equation,

the Meter model equation and the viscoelastic Phan-Thien-Tanner equation in

heterogeneous 2D and 3D porous media.

4. Upscale pore-scale rheological properties of inelastic Meter model fluid and vis-

coelastic linear Phan-Thien-Tanner fluid to macroscopic Darcy scale.

5. Determine how microscale heterogeneity and wettability of the porous medium

govern the stability of inelastic polymeric fluid flow even for favourable viscosity

ratios.

6. Develop an Euler-Lagrangian framework that simulates the transport of nanopar-

ticles in non-Newtonian fluids and 3D porous media incorporating particle-fluid,

particle-particle, particle-wall interactions and Brownian motion.

7. Determine the transverse and longitudinal dispersion coefficients by tracking nanopar-

ticles in 3D space.

1.3 Thesis outline

The topics mentioned in the objectives are addressed in five separate manuscripts. Four

manuscripts (Chapters 2-5) are published, and one manuscript (Chapter 6) is submitted

to peer-reviewed journals at the time of submission of the thesis. The OpenFOAM C++

library [98, 99] was used and modified to perform numerical simulations.

The paper [190] published in Rheologica Acta is presented in Chapter 2, which ad-

dresses objective 1 of the thesis. The literature extensively uses shear rate-dependent

models such as power-law, Carreau and Cross to describe the inelastic rheology of non-

Newtonian fluids [21, 39, 196, 198]. On the contrary, the Meter model [134] describes

viscosity as a function of shear stress and captures S-shaped rheology (i.e. a Newtonian

plateau at low and high shear stress and a slope at intermediate shear stress) of most

shear-thinning fluids well as a purely shear-thickening regime of shear thickening fluids

(see Fig 1.1a). An equation similar to the Hagen-Poiseuille equation for non-Newtonian

fluids was absent in the literature, except for power-law [21, 39], the Elis model [130]

and the linear PTT model [147] fluids. Thus, we derived an analytical solution for the
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flow of Meter model fluid in a circular capillary. This helped correctly describe the

Reynolds number for non-Newtonian fluid flow and characterised the non-Newtonian

fluid’s laminar, transition and turbulent flow. The radial velocity profile estimated us-

ing the analytical solution of the Meter model agrees with the experimental observations

of xanthan gum fluid flow in a microcapillary (diameter 320 µm) by Campagnolo et al.

[34] and of polyacrylamide fluid flow in a tube (diameter 0.1 m) by Escudier et al. [69].

The Meter model described in Chapter 2 helped develop a rheological model for shear

thickening fluid as described in Chapter 3. The analytical solution of the Meter model

could help develop a bundle-of-capillary model for non-Newtonian fluid as described in

Chapter 4 for upscaling pore-scale properties to Darcy’s scale.

The paper [191] published in the Journal of Molecular Liquids is presented in Chapter 3.

This chapter addresses objective 2 of the thesis. Typical shear thickening non-Newtonian

fluids show complex viscosity behaviour as shown in Fig 1.1b. The shear stress dependent

Meter model equation (presented in Chapter 2) was modified to describe the typical vis-

cosity curve of shear thickening fluids. Empirical equations are proposed to describe the

relative free volume-dependent viscosity, the shear stress-dependent viscosity, the shear

rate-dependent viscosity and the dimensionless Péclet number-dependent relative viscos-

ity of shear thickening fluids adopting Doolittle’s free volume theory approach [62]. The

proposed formulae predict all rheologically different behaving Newtonian, intermediate

shear thinning, shear thickening and extreme shear-thinning regimes of shear-thickening

fluids. The pimpleFoam solver of the OpenFOAM C++ library was modified to incor-

porate the proposed shear thickening fluid model and simulate the single phase flow of

shear thickening fluid in 2D porous media. The proposed formulae have been validated

against the experimental rheological data of various shear thickening fluids over a range

of pH, volume fraction, electrolyte concentration, temperature and magnetic field. The

results suggest that the predicted threshold material parameters of shear thickening flu-

ids help to quantitatively evaluate the effect of varying physicochemical conditions on the

rheology of shear thickening fluids. The simulated flow of a shear thickening fluid, mod-

elled using the proposed shear rate-dependent equation, showed a bimodal distribution

of pore-scale shear rate, shear viscosity and velocity in a 2D staggered porous medium.

The pimpleFoam solver modified for shear thickening fluid was utilised in Chapter 4,

Chapter 5 and Chapter 6 to simulate the single-phase flow and two-phase flow involving

inelastic Meter model fluids. Grid dependent convergence of the simulation carried out
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using a modified pimpleFoam solver is presented in Appendix A.

The paper [189] published in the Chemical Engineering Science journal is presented in

Chapter 4. This chapter addresses objectives 3 and 4 of the thesis. Spatiotemporal

variations of velocity and viscosity in pore-space create a challenge to upscale pore-

scale flow to the Darcy scale [18]. Meter model and its analytical solution (described

in chapter 2) were used to develop a bundle-of-capillary model to upscale pore-scale

flow to Darcy scale. The bundle-of-capillaries model with a pore-correction coefficient

and fluid-correction coefficient was developed to upscale pore-scale rheological proper-

ties to the Darcy scale based on the analytical solution of the Meter model (inelastic

fluid) and the linear Phan-Thien-Tanner (viscoelastic fluid) model. The pore-correction

coefficient and fluid-correction coefficient take into account pore-scale variation due to

pore-geometry and fluid rheology, respectively. The pimpleFoam solver modified for

shear thickening fluid (described in chapter 3) was utilised for Meter model fluid flow

simulation, whereas, the RheoTool developed by [163] was utilised to simulate the vis-

coelastic Phan-Thien-Tanner model fluid flow. The flow of Meter model fluid and linear

Phan-Thien-Tanner fluid in 2D and 3D porous media is simulated using the OpenFOAM

C++ library and validated using the experimental observations of Galindo-Rosales et

al. [80]. The results depict that the viscoelastic linear Phan-Thien-Tanner model shows

viscoelastic instability at low Reynolds number flow. A similar viscoelastic instability

was also observed during the simulation of linear PTT flow in a heterogeneous sandstone

porous medium in 3D. The results showed that immobile and mobile zones in porous

media affect rheology. Thus, Darcy’s viscosity, estimated using Darcy’s law, is associated

with the fluid’s viscosity in the mobile zone of a heterogeneous porous medium. This

result implies that the heterogeneity of porous media significantly affects the pore-scale

and Darcy-scale single-phase flow of non-Newtonian fluid. As subsurface flow is largely

multi-phase flow, the Meter model was used to conduct a two-phase flow simulation

involving non-Newtonian fluid to evaluate the effect of pore-scale heterogeneity on a)

two-phase displacement in chapter 5 and b) the dispersion of nanoparticles suspended

in non-Newtonian fluid in longitudinal and transverse directions in chapter 6.

The paper [188] published in the Journal of Non-Newtonian Fluid Mechanics is pre-

sented in Chapter 5. This chapter deals with objective 5 of the thesis. The applicability

of the Meter model described in Chapter 2 and 4 is extended to simulate two-phase

flow of a non-Newtonian fluid using the interFoam solver of OpenFOAM. The impact
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of micro-heterogeneity on non-Newtonian two-phase flow is the focus of Chapter 5. The

direct numerical simulation of non-Newtonian fluids (modelled using the shear stress-

dependent Meter model) displacing oil in 3D Mt. Simon sandstone and 2D heteroge-

neous porous media were considered over a range of wettabilities (strong imbibition to

strong drainage), capillary numbers and viscosity ratios. This result suggests that the

heterogeneity of the porous medium can potentially lead to an unstable fluid flow front

(even after the use of polymer). Therefore, along with capillary number and viscosity

ratio, heterogeneity is the governing factor for controlling viscous and capillary finger-

ing, and it is crucial to account for the microscale heterogeneity of porous media to

design polymer solution injection. The addition of nanoparticles can modify the physic-

ochemical properties of polymeric non-Newtonian fluids, which might help recover more

oil from the subsurface. First, however, it is essential to understand how nanoparticles

suspended in non-Newtonian fluid access the pores through diffusion and dispersion in a

heterogeneous porous medium. Thus, to evaluate the effect of heterogeneity on nanopar-

ticle dispersion in porous media, two-phase simulations involving nanoparticles and an

inelastic Meter model fluid were carried out in Chapter 6.

The paper submitted to the Physical Review E is presented in Chapter 6. This chap-

ter focuses on objectives 6 and 7 of the thesis. The applicability of the Meter model

(described in Chapter 2 and 4) is extended to simulate the flow of nanoparticles sus-

pended in an inelastic Meter model fluid. In this work, an Euler-Lagrangian method

is adopted to simulate the flow of nanoparticles and inelastic non-Newtonian fluids in a

simple convergent and divergent microchannel, 2D homogeneous porous media, and 3D

heterogeneous Mt. Simon sandstone over a range of injection rates. The results indicate

that the spatial heterogeneity of the porous medium forms a shear stress gradient in the

pore space, which controls the temporal and spatial position and migration of nanopar-

ticles in porous media. The velocity distribution of nanoparticles in the porous medium

is non-Gaussian, leading to the nanoparticle dispersion’s non-Fickian behaviour. Due

to pore space confinement, nanoparticles’ long-time mean square displacement exhibits

nonlinear behaviour.

In Chapter 7, the important findings of this thesis are summarised. In addition, possible

next steps for this research are suggested.



Chapter 2

Effective viscosity and Reynolds

number of non-Newtonian fluids

using Meter model

This chapter is published in the ‘Rheologica Acta’. Supplementary information of the

published article is added to the main text of the chapter.

Authors: T. Shende, V. J. Niasar, and M. Babaei. Effective viscosity and Reynolds

number of non-newtonian fluids using Meter model. Rheologica Acta, 60 (1):11–21, 2021.
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2.1 Introduction

The laminar flow of a non-Newtonian fluid (described using a generalised Newtonian

fluid model) through a circular capillary/tube has broader engineering application (e.g.

polymer fluid flow through pipes in an industrial settings [21], capillary bundle model

of a porous medium [184], pore-Network model [198]). Amongst generalised Newtonian

fluid models [223], Cross [43], Carreau [222], Carreau-Yasuda [222], Meter [133, 134, 184,

207–209], and Steller-Ivako model [201] can predict S-shaped rheological properties (i.e.

constant viscosity at low and high shear values and decreasing viscosity at intermediate

shear values) of many shear-thinning fluids (see Fig 2.1).

Figure 2.1: Typical S-shaped type behaviour of a shear thinning non-Newtonian
fluids.[Note: figure not to the scale]

Many attempts have been made by many investigators to obtain an analytical solution

for the flow of non-Newtonian fluid through a circular tube. Matsuhisa et al. [130]

derived an analytical solution for the laminar flow of a fluid obeying the shear stress-

dependent Ellis model. Meter and Bird [134] proposed the analytical solution for the

flow of shear stress-dependent Meter model fluid in a circular capillary if η∞
η0

is very

small. Here, η0 and η∞ are zero and infinite shear viscosity, respectively. Although

Sochi [197] and Kim [109] proposed an analytical solutions for Carreau and Cross fluid

flow through a circular tube and Peralta [156, 157] proposed analytical solution for flow

over a free-draining vertical plate, the exact analytical solution is absent for estimation

of the radial velocity profile, average velocity and volumetric flow rate of fluid flow in a

circular tube/micro-capillary obeying the Cross, Carreau, Meter, or Steller-Ivako model.



The University of Manchester 28

The Reynolds number of non-Newtonian fluids in a circular tube/capillary is commonly

defined using the viscosity of the fluid at the wall [69, 109], the zero-shear viscosity [75],

or the Metzner and Reeds equation [135]. The shear viscosity of non-Newtonian fluids

vary along the radial direction in a fully developed circular capillary. Thus, zero shear

viscosity, or the viscosity of the fluid at the wall, is not the representative viscosity or

the effective viscosity of fluid flow. The Metzner and Reeds’ equation is applicable to

purely power-law fluids.

The effective viscosity of the fluid is analogous to the average velocity of the fluid. Both

velocity and viscosity vary spatially during fluid flow in the circular capillary. Thus,

similar to the average velocity value, the effective viscosity value is a single representative

viscosity value for fluid flow under a given set of conditions. Sadowski and Bird [183]

defined the effective viscosity of the Ellis model fluid, as in Eq. 2.1, based on the exact

analytical solution for the flow of the Ellis model fluid in the circular capillary:

1

ηeff
=

1

η0

1 +
4

α+ 3

(
τw
τ 1
2

)α−1
 (2.1)

here ηeff is the effective viscosity of the fluid, η0 is the zero shear viscosity, α is an ex-

ponent, τ 1
2

is the critical shear stress parameter, and τw is the wall shear stress. The

effective viscosity helps to define the Reynolds number and Darcy’s friction factor. Fur-

ther, effective viscosity helps to upscale shear viscosity from pore-scale to Darcy scale

[17, 63, 65, 183, 184] during polymeric fluid flow in the porous medium. Effective vis-

cosity and the exact analytical solution are useful in developing pore-network models

for the flow of non-Newtonian fluids in porous media [198]. The pore-network model

for non-Newtonian fluids has wider engineering and industrial applications, e.g. it helps

understand the complex interaction of non-Newtonian fluids with tortuous and hetero-

geneous porous media at pore-scale. Effective viscosity is usually used in a porous media

community to describe the flow at Darcy’s scale [65, 184]. However, the present work de-

termines effective viscosity based on an exact analytical solution for non-Newtonian fluid

flow through a circular capillary and correlates it with the Hagen-Poiseuille equation.

A formulation to define the effective viscosity (ηeff) of non-Newtonian fluids (having S-

shape type rheology) for a given flow condition using measurable parameters is absent

in the literature. The absence of an analytical solution to estimate the average velocity
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of Cross and Carreau fluid makes correlating the Reynolds number with Darcy’s friction

factor arduous.

To address the above discrepancy, we obtain an exact analytical solution for the flow of

a Meter model fluid through a circular geometry. The analytical solution of the Meter

model (MM) helps to define the effective viscosity, Reynolds number, and friction factor

of non-Newtonian fluid flow using measurable parameters.

2.2 Mathematical Formulation

The Cauchy’s momentum equation describes momentum transfer in any continuum. The

state of stress at any point in the continuum (i.e. normal stresses, σn, and shear stresses,

τ) is defined using Cauchy’s stress tensor (σ). For an incompressible fluid, a divergence

of Cauchy’s stress tensor is ∇·σ = −∇P +∇·τ , where ∇P is the pressure gradient and

τ is the deviatoric stress tensor. The constitutive equation of generalised Newtonian

fluid (GNF) defines viscosity of the fluid as a non-linear function of second invariant of

either rate-of-deformation tensor (i.e. τ = 2 η(γ̇)D) [22] or deviatoric stress tensor (i.e.

τ = 2 η(τ)D) [130, 134, 159, 201]. Here, D = 1
2 γ̇ = 1

2(∇u + (∇u)T ), the magnitude

of shear-rate is |γ̇| =

√
γ̇ : γ̇

2
[22], the magnitude of shear stress is |τ | =

√
τ : τ

2
[134],

and u is the velocity vector. The constitutive equations for commonly used shear rate-

dependent and shear stress-dependent GNF models are given in Table 2.1.

The intermolecular and inter-particle interactions in the fluid generate stresses (i.e. nor-

mal and shear stresses). These stresses govern the flow properties of non-Newtonian

fluids, including the viscosity of fluids. Thus, the stress-based model shall be adopted to

describe the physics behind non-Newtonian fluid flow through void spaces. Meter [134]

proposed his model in 1964 to describe the S-shape type rheology of a non-Newtonian

fluid. The Meter model is a modified version of the Ellis model [20], Reiner-Philippoff

model [161, 173] which were independently proposed in 1927, 1930, 1935 respectively;

thus, it could also be renamed as the ‘truncated Ellis-Reiner-Philippoff model’.

The Meter model (Eq. 2.2) gives the viscosity of a non-Newtonian fluid in terms of shear

stress as follows [134]
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Table 2.1: Empirical model for time independent non-Newtonian fluids

Model No. of Equation
parameters

Power-law [148] 2 η = mγ̇n−1

Cross [43] 4 η = η∞ +
(η0 − η∞)

1 + C γ̇n

Carreau [222] 4 η = η∞ + (η0 − η∞)
(

1 + (K γ̇)
2
)n−1

2

Carreau-Yasuda [222] 5 η = η∞ + (η0 − η∞) (1 + (K γ̇)
a
)

n−1
a

Bingham [19] 2 τ = τB0 + ηB0 γ̇
Herschel-Bulkley [90] 3 τ = τH0 +mγ̇n

Casson [23] 3
√

(τ) =
√

(τC0 ) +
√

(ηC γ̇)

Reiner-Philippoff [161,
173]

3 η = η∞ +
η0 − η∞

1 +

(
τ

τ0

)2

Ellis [130] 3 η =
η0

1 +

(
τ

τ 1
2

)(αE−1)

Meter [134] 4 η = η∞ +
η0 − η∞

1 +

(
τ

τm

)(α−1)

Steller and Ivako [201] 4 η = η0 e

(
− δ τn

1 + αs τn

)

η = η∞ +
η0 − η∞

1 +

(
τ

τm

)α−1 (2.2)

here, η [Pa·s] is the shear viscosity at a given shear stress (τ); η0 [Pa·s] is the viscosity

at the zero shear stress (i.e. zero shear viscosity); η∞ [Pa·s] is the viscosity at the

infinite shear stress (i.e. infinite shear viscosity); τm [Pa] is the critical shear stress of

the non-Newtonian fluid at which viscosity of the solution drops to η0+η∞
2 ; α is the shear

stress-dependent exponent of a Meter model. η0, η∞, and τm are measurable quantities

of the non-Newtonian fluid. Here we slightly modify the denotation of the Meter model

by replacing α−1 with S. Where, S is the shear stress-dependent exponent of the Meter

model (MM). The characteristic time (λ) of the MM (Eq. 2.3) is the time at which the

fluid transition from Newtonian behaviour (zero shear viscosity) to shear thinning or

shear thickening behaviour (i.e. at τm) occurs.

λ =
η0 + η∞

2 τm
(2.3)
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The shear rate of MM is

γ̇ =
τ

η∞ + η0−η∞

1+

(
τ

τm

)S

(2.4)

We note that Eq. 2.4 applies to the Newtonian fluid (if η0 = η∞, S = 1, τm = 1),

shear-thinning fluid (if η0 > η∞, S > 0, τm > 0), and shear-thickening fluid (if η0 < η∞,

S > 0, τm > 0).

2.2.1 Analytical solution

Adopting the Hagen-Poiseuille framework, the analytical solution is derived for a fully de-

veloped, incompressible, isothermal, laminar, steady, unidirectional flow of shear stress-

dependent time-independent non-Newtonian fluid through a circular tube of radius (R)

under constant pressure gradient of
(
dP
dx

)
.

The shear rate γ̇(r) along radial direction r is defined as,

γ̇(r) =
τ

η
, (2.5)

Substituting Eq. 2.2 in Eq. 2.5, we obtain

γ̇(r) =
τ

η∞ +
η0 − η∞

1 +

(
τ

τm

)S

, (2.6)

The shear rate γ̇(r) in terms of velocity u(r) along radial position r is as defined in Eq.

2.7,

γ̇(r) = −du(r)

dr
, (2.7)

The shear stress (τ) in a circular tube under a constant pressure gradient of dP
dx in the

x-direction is as defined in Eq. 2.8,

τ = −dP
dx

r

2
, (2.8)



The University of Manchester 32

Now, substituting Eq. 2.7 and Eq. 2.8 in Eq. 2.6 we obtain,

− du(r)

dr
=

(−dP
dx

r
2)

η∞ +
η0 − η∞

1 +

(
−dP
dx

r

2 τm

)S

, (2.9)

The velocity profile along the radial direction can be obtained as follows by integrating

Eq. 2.9,

u(r) =
dP

dx

r2

4 η0 η∞

(
η0 + (η∞ − η0) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

r

2 τm

)S
))

+ Constant,

(2.10)

here, 2F1 is the hypergeometric function as defined in Eq. 2.17. At the wall of a circular

tube, i.e. at r = R, by imposing the no-slip boundary condition, u(R) = 0, Eq. 2.10

becomes,

Constant = − dP

dx

R2

4 η0 η∞

(
η0 + (η∞ − η0) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

R

2 τm

)S
))

,

(2.11)

Substituting Eq. 2.11 in Eq. 2.10, we obtain velocity profile in a circular tube for the

Meter model fluid as,

u(r) = −dP
dx

1

4 η0 η∞

R2

(
η0 + (η∞ − η0) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

R

2 τm

)S
))

− r2

(
η0 + (η∞ − η0) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

r

2 τm

)S
)),

(2.12)
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The maximum velocity of the Meter model fluid in a circular tube will be at the center

of the tube. On substituting r = 0 in Eq 2.12, we obtain maximum velocity as follows

Umax = −dP
dx

R2

4 η0 η∞

(
η0 + (η∞ − η0) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

R

2 τm

)S
))

,

(2.13)

Considering Q as the volumetric flow rate, the average velocity in a circular tube is given

by

Uavg =
Q

πR2
=

1

πR2

∫ R

0
2π r u(r) dr, (2.14)

Substituting Eq. 2.12 in Eq. 2.14, and integration and simplification, we obtain average

velocity during flow of a non-Newtonian Meter model fluid as,

Uavg = −dP
dx

R2

8 η0 η∞

(η∞ − η0) 3F2

(
1,

2

S
,

4

S
;
S + 2

S
,
S + 4

S
;−η∞

η0

(
−dP
dx

R

2 τm

)S
)

+ 2 (η0 − η∞) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

R

2 τm

)S
)

− η0

,
(2.15)

The analytical solution to estimate the volumetric flow rate (Q) of fluid in a circular

tube/micro-capillary obeying the Meter model is given as

Q = −dP
dx

π R4

8 η0 η∞

(η∞ − η0) 3F2

(
1,

2

S
,

4

S
;
S + 2

S
,
S + 4

S
;−η∞

η0

(
−dP
dx

R

2 τm

)S
)

+ 2 (η0 − η∞) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

R

2 τm

)S
)

− η0

,
(2.16)



The University of Manchester 34

here, the hypergeometric function 2F1(a, b; c; z) is defined as in the Eq. 2.17 and the

hypergeometric function 3F2(a, b, c; d, e; z) is defined as in the Eq. 2.18

2F1(a, b; c; z) =

∞∑
n=1

(a)n (b)n z
n

(c)n n!
, (2.17)

3F2(a, b, c; d, e; z) =

∞∑
n=1

(a)n (b)n (c)n z
n

(d)n (e)n n!
, (2.18)

The hypergeom function of MATLAB was used to solve a generalised hypergeometric

function of the analytical solution of the Meter model. The solution of the generalised

hypergeometric function 2F1(a, b; c; z) and 3F2(a, b, c; d, e; z) are series as in Eq. 2.19

and 2.20 which converge for |z| < 1 [16]. Since, all parameters of hypergeometric func-

tion of the Meter model are constant values, the series of the generalised hypergeometric

function of the Meter model can be solved using hypergeom function of MATLAB with-

out error over a range of pressure gradient, radius and Meter model parameters.

2F1(a, b; c; z) =

∞∑
n=1

(a)n (b)n z
n

(c)n n!

= 1 +
a b z

c
+
a (a+ 1) b (b+ 1) z2

c(c+ 1) 2!
+
a(a+ 1) (a+ 2) b (b+ 1) (b+ 2) z3

c (c+ 1) (c+ 2) 3!
+ ...,

(2.19)

3F2(a, b, c; d, e; z) =
∞∑
n=1

(a)n (b)n (c)n z
n

(d)n (e)n n!

= 1 +
a b c z

d e
+
a (a+ 1) b (b+ 1) c (c+ 1) z2

d(d+ 1) e(e+ 1) 2!
+

a(a+ 1) (a+ 2) b (b+ 1) (b+ 2) c (c+ 1) (c+ 2) z3

d (d+ 1) (d+ 2) e (e+ 1) (e+ 2) 3!
+ ....,

(2.20)

2.2.2 Analytical solution for existing rheological model

Table 2.2 lists the criteria for converting Meter model to Reiner-Philippoff model and

Ellis model. The Table 2.2 suggests that the Meter model captures the properties of
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existing shear stress-dependent rheological models.

Table 2.2: Criteria for converting Meter model (Eq. 2.2) to existing shear stress-
dependent rheological model

Rheological
model

Conversion criteria Equation

Newtonian η0 = η∞, S = 1, τm = 1 η

Reiner-
Philippoff

S = 2, τm = τ0 η = η∞ +
η0 − η∞

1 +

(
τ

τ0

)2

Ellis η∞ = 0, S = α− 1, τm = τ 1
2

η =
η0

1 +

(
τ

τ 1
2

)(α−1)

The analytical solution for Newtonian fluid and Reiner-Philippoff model fluid can be

derived using the analytical solution of the Meter model.

2.2.2.1 Hagen-Poiseuille equation

The Meter model converts to Newtonian fluid case on substituting η0 = η∞, S = 1,

τm = 1 in Eq. 2.2. Thus, the shear viscosity of the fluid becomes

η = η∞ (2.21)

On substituting η0 = η∞ in Eq. 2.12 and Eq. 2.16, we obtain radial velocity profile

(u(r)) and volumetric flow rate (Q) for a Newtonian fluid as,

u(r) = −dP
dx

1

4 η

(
R2 − r2

)
, (2.22)

Q =
π R4

8 η

dP

dx
(2.23)

Eq. 2.22 and Eq. 2.23 are Hagen-Poiseuille equations for radial velocity profile and

volumetric flow rate derived from the analytical solution of the Meter model.
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2.2.2.2 Reiner-Philippoff model

The analytical solution for Reiner-Philippoff model fluid through a circular capillary

can be obtained by replacing S = 2 and τm = τ0 in the analytical solution of the Meter

model. Thus, the radial velocity profile u(r) and a volumetric flow rate (Q) of the

Reiner-Philippoff model will be as given in the Eq. 2.24 and Eq. 2.25, respectively,

u(r) = −dP
dx

1

4 η0 η∞

R2

(
η0 + (η∞ − η0) 2F1

(
1, 1; 2;−η∞

η0

(
−dP
dx

R

2 τ0

)2
))

− r2

(
η0 + (η∞ − η0) 2F1

(
1, 1; 2;−η∞

η0

(
−dP
dx

r

2 τ0

)2
)),

(2.24)

Q = −dP
dx

π R4

8 η0 η∞

(η∞ − η0) 3F2

(
1, 1, 2; 2, 3;−η∞

η0

(
−dP
dx

R

2 τ0

)2
)

+ 2 (η0 − η∞) 2F1

(
1, 1; 2;−η∞

η0

(
−dP
dx

R

2 τ0

)2
)

− η0

,
(2.25)

2.2.3 Effective viscosity of Meter model fluid

On equating Eq. 2.16 with Hagen-Poiseuille equation (Q = π R4

8 η
dP
dx ) and substituting

dP
dx

R
2 = τw in Eq. 2.16, we obtain an equation for an effective viscosity (ηeff) of fluid in

terms of wall shear stress (τw) as follows,
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1

ηeff
=

1

η0 η∞

(η∞ − η0) 3F2

(
1,

2

S
,

4

S
;
S + 2

S
,
S + 4

S
;−η∞

η0

(
τw
τm

)S
)

+ 2 (η0 − η∞) 2F1

(
1,
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(2.26)

Eq. 2.26 helps determine the effective viscosity (ηeff) of a non-Newtonian fluid from

measurable parameters η0, η∞, τm, S, τw, R and dP
dx . On comparing Eq. 2.16 with

Darcy’s law (Qdarcy = k A
η

dP
dx ), we obtain an effective viscosity value as given in Eq. 2.26

and permeability (k) of the porous medium as (k =
r2eff
8 ). Here reff is the hydraulic radius

of a porous medium. Thus, the effective viscosity determined using Eq. 2.26 could be

advantageous in determining the Darcy scale flow rate and velocity of a non-Newtonian

fluid in a porous medium.

We observed that the effective viscosity value obtained using Eq. 2.26 consistently

appears at a distance of (0.8R) from the centre of a capillary for all experimental flow

data utilised in the present work. This suggests that the value of effective viscosity is

equal to the viscosity value at a distance of β R from the centre of the tube, where

0 < β < 1. Thus, the approximate effective viscosity of the MM fluid for a given flow

condition will be as in Eq. 2.27

ηeff = η∞ +
η0 − η∞

1 +

(
β R

2 τm

dP

dx

)S
(2.27)

Here, β = 0.8 for flow through a circular geometry. We note that different geometric

shape will have different β value. Eq. 2.27 is an easy-to-use equation for estimation of

the effective viscosity of the fluid for a given fluid flow condition compared to Eq. 2.26.

The advanced mathematical tool is required to estimate effective viscosity value using

Eq. 2.26 due to the presence of hypergeometric function in the equation. We obtain

a semi-analytical solution for the flow rate of MM fluid by substituting Eq. 2.27 in

Hagen-Poiseuille equation as,
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Q =
dP

dx

π R4

8

η∞ +
η0 − η∞

1 +

(
β R

2 τm

dP

dx

)S


(2.28)

We define the effective Reynolds number (Reeff) of MM fluid as

Reeff =
2 ρUavgR

ηeff
(2.29)

The Darcy’s friction factor (fD) during any type of a fluid flow is fD = dP
dx

4R
ρU2

avg
. We

obtain effective friction factor (feff) for laminar flow of MM fluid (Eq. 2.30) by sub-

stituting the MM analytical solution for average velocity (Eq. 2.15) in Darcy’s friction

factor equation.

feff =
256

ρR3
(
dP
dx

) η2eff =
128

ρR2 τw
η2eff (2.30)

2.3 Results and Discussion

2.3.1 Meter model for shear thinning and shear thickening fluids

Fig 2.2 shows a statistically good fit of experimental and MM predicted (Eq. 2.2)

viscosity-shear stress and shear rate-shear stress data of a shear-thinning fluid (xanthan

gum fluid of [34] over a range of concentration, polyacrylamide (PAA) fluid of [69])

and a shear-thickening fluid (cornstarch fluid in a glycerol-water mixture of [30]). The

model parameters are estimated using Excel-Solver methods that use the GRG nonlinear

algorithm [107]. Fig. 2.2 shows that cornstarch fluid has a shear-thinning region at lower

shear stresses and high shear stresses. The literature reports similar behaviour for most

of shear thickening fluids; thus, an application of MM for shear thickening fluids should

be restricted to the shear thickening region of the viscosity-shear stress curve.

The material parameters of MM (Table 2.3) imply that the zero shear viscosity (η0) and

critical shear stress (τm) increases exponentially and the shear-thinning property of xan-

than gum fluid (i.e. exponent S) increases linearly with an increase in the concentration
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Figure 2.2: (a) Shear viscosity as a function of shear stress (Eq. 2.2), (b) shear
rate as a function of shear stress (Eq. 2.4) modelled using MM. An experimental
rheological data of xanthan gum (XG) fluid over range of concentration (3 g/L, 1 g/L,
0.25 g/L, water) [34]; 0.125% polyacrylamide (PAA) fluid [69], cornstarch (CS) fluid
having volume fraction of 0.45 [30] modelled using MM. Continuous line shows MM
predications. The material parameters of MM are given Table 2.3. The root means

square error (RMSE) range from 3.4×10−3 to 1.6×10−1.

Table 2.3: MM parameters of [30, 34, 69]

Shear thinning fluid shear thickening fluid
Parameter Xanthan gum (XG) concentration (g/L) [34] PAA [69] Cornstarch (CS) [30]

3 g/L 1 g/L 0.25 g/L 0 0.125% ϕ = 0.45

η0 [Pa.s] 1.2 0.08 0.01 0.000896 0.2257 1.8
η∞ [Pa.s] 0.000896 0.000896 0.000896 0.000896 0.000896 46
τm [Pa] 1.1 0.105 0.028 1 0.24 100

S 1.87 1.11 0.75 1 1.124 1.1
λ [s] 0.546 0.385 0.195 0.47 0.24

of the xanthan gum fluid. This implies that MM helps to quantitatively correlate the

effect of physico-chemical parameters (e.g. XG concentration in the present case) on the

rheology of shear thinning and shear thickening fluids using measurable parameters.

2.3.2 The factor β

To determine β over a range of pressure gradient, radius and Meter model parameters,

we substitute Eq. 2.27 in Eq. 2.26 and solve the resultant equation for β. Fig 2.3 shows

that the factor β values ranged from 0.73 to 0.82 over a range of pressure-gradient,

radius and Meter model parameters. The average value of the β = 0.8 suggests that

an effective viscosity of the fluid measured at a distance of 0.8R from the centre of the

capillary can be considered as an approximate effective viscosity of the fluid.
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Figure 2.3: The factor β over a range of a pressure gradient, radius and Meter model
parameters. V1, V2, and V3 represents viscosity of the 3g/L, 1 g/L and 0.25 g/L
xanthan gum fluid, respectively, as given in the Table 2.3. P1 = 102 Pa/m, P2=104

Pa/m and P3 = 106 Pa/m.

2.3.3 Validation of the analytical solution of the Meter model

a) Flow-through a micro-capillary

An experimental velocity profile of [34] gave a good fit with the analytical solution

of the MM for radial velocity profile (Eq. 2.12) at the pressure gradients of 92,000

Pa/m, 16,500 Pa/m, 4,900 Pa/m and 2,000 Pa/m during flow of 3 g/L, 1 g/L, 0.25 g/L

xanthan gum fluid and water (0.4 % milk), respectively (see Fig. 2.4a). Moreover, the

analytical (Eq. 2.16) and semi-analytical (Eq. 2.28) solutions of the MM for flow rate

could correctly determine the experimental flow rate of 30 µL/min through a circular

microfluidic channel of radius 160 µm. Fig. 2.4b suggests that the viscosity profile

of the non-Newtonian shear-thinning fluid is bell-shaped in a circular geometry. The

viscosity increases gradually near the wall and drastically in the central region of the

micro-capillary. The effective viscosity estimated using Eq. 2.26 and Eq. 2.27, for flow

of a 3 g/L, 1 g/L and 0.25 g/L xanthan gum fluid through a micro-capillary is 0.041

Pa.s, 0.0075 Pa.s and 0.0022 Pa.s, respectively. We note that the analytical solution

of the Meter model fluids is applicable for shear thickening fluids and needs validation

using experimental data.

b) Flow-through a tube
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Figure 2.4: Comparison of experimental [34] and MM analytical solution predicated
by Eq. 2.12, (a) radial velocity profile, and (b) radial viscosity profile during flow of
a xanthan gum (XG) through a circular micro-capillary (radius 160 µm) over a range
of XG concentrations. The material parameters of MM are given Table 2.3. The root

means square error (RMSE) range from 3.4×10−4 to 6.3×10−2.

Figure 2.5: Comparison of experimental [69] and MM analytical solution predicated
by Eq. 2.12, (a) radial velocity profile, and (b) radial viscosity profile during flow of
a 0.125% polyacrylamide (PAA) fluid through a circular tube (radius 0.05 m) over a
range of Reynolds numbers. The material parameters of MM are given Table 2.3. The
root means square error (RMSE) range from 3.4×10−4 to 8.5×10−3 for Reeff < 1620.
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Table 2.4: Validation of the analytical solution of MM for flow through a circular
tube

Experimental observation [69] MM Estimate

Reexpt
dP
dx Uexpt ηw fD ηeff Q UAvg Reeff feff

(Pa/m) (m/s) (Pa.s) (Pa.s) (m3/s) (m/s)
676 38.5 0.256 0.0376 0.1135 0.0467 0.002 0.2578 552 0.1158
1620 51 0.447 0.0276 0.0510 0.0358 0.0035 0.448 1241 0.0516
5020 70 0.939 0.0187 0.0159 0.0262 0.0065 0.8339 3178 0.0201
42900 109 3.36 0.0078 0.0019 0.0156 0.0172 2.184 14007 0.0046

Escudier et al. [69] measured the radial velocity profile of 0.125% polyacrylamide (PAA)

fluid flow in a circular tube (radius 5 cm) over a range of Reynolds numbers (Reexpt),

wherein the authors defined Reynolds numbers (Reexpt) using shear viscosity at the wall

of the pipe. Fig 2.5a depicts that the analytical solution of the MM for the velocity

profile (Eq. 2.12) could correctly predict the experimentally observed radial velocity

profile at Reexpt = 676 and Reexpt = 1620. The analytical solution of MM is restricted

to laminar flow and Fig 2.5a suggests that at Reexpt = 5020 PAA flow is in transition

phase and at Reexpt = 42900 is in turbulent phase. Fig 2.5b shows that the shape of the

viscosity profile becomes more acute at the centre of the circular tube with an increase

in Reynolds number or pressure gradient.

The effective Reynolds number (Reeff) values calculated using Eq. 2.29 are drastically

different from Reexpt estimated by [69] (see Table 2.4). The analytical solution of the MM

could correctly estimate the velocity profile, flow rate, average velocity and friction factor

within the error range (± 5%), when Reeff of PAA is less than 1241 (at dP
dx < 51 Pa/m).

On the contrary, when Reeff was 3178 (at dP
dx = 70 Pa/m) and 14007 (at dP

dx = 109 Pa/m),

flow becomes turbulent, and velocity profile could not be matched with the experimental

data. This result suggests that the Reynolds number determined using Eq. 2.29 gives

comparable results to the Reynolds number of a Newtonian fluid in a circular tube.

Thus, it is convenient to define a non-Newtonian fluid flow as (i) laminar if Reeff < 2300,

(ii) turbulent if Reeff > 2900, and (iii) transition zone if 2300 < Reeff < 2900.

As given in Table 2.4, the friction factor of the MM determined using Eq. 2.30 and

the experimental friction factor (fD) determined using Darcy’s law give approximately

same result for a laminar flow (Reeff < 1241). As expected for the turbulent flow,

the friction factor estimate has a difference of 26% at dP
dx = 70 Pa/m and 142% at

dP
dx = 109 Pa/m. For a Newtonian fluid, the relationship between the Reynolds number

and the friction factor for laminar flow through a circular tube is given as Re = 64
fD

.
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The same relationship applies to the non-Newtonian fluid described by the MM. The

Reeff estimated using Eq. 2.29 is equivalent to the Reynolds number estimated using

Reeff = 64
fD

, if an experimental error of up to 5% is taken into account for laminar flow

of [69].

2.3.4 The effective friction factor

A simple algebraic formula for the effective friction factor as a function of pressure

gradient, radius and Meter model parameters (η∞, η0, τm, S), as presented in Eq. 2.31,

can be obtained on substituting Eq. 2.27 in Eq. 2.30. This is a semi-analytical formula

for the effective friction factor of the Meter model fluid.

feff =
256

ρR3
(
dP
dx

)
η∞ +

η0 − η∞

1 +

(
0.8R

2 τm

dP

dx

)S


2

(2.31)

Fig 2.6 shows that the effective friction factor estimated using Eq. 2.30 closely matches

with the feff estimated using Eq. 2.31 over a range of xanthan gum concentrations. Fig

2.6 also shows a non-linear relationship between the pressure gradient and the effective

friction factor. An increase in the radius of the circular capillary/pipe decreases the

friction factor. Moreover, increase in the polymeric concentration of xanthan gum fluid

shows increase in feff over a range of pressure gradients and radii. The results suggest

that the Eq. 2.31 can be utilised to determine feff of a non-Newtonian fluid using

measurable parameters (i.e. radius, pressure gradient, and Meter model parameters).

2.3.5 Radial viscosity variation

We determined radial viscosity variation (%) during flow of an MM fluid through a

circular tube/micro-capillary using Eq. 2.32.

Radial viscosity variation (%) =
(ηcenter − ηw)

ηcenter
× 100, (2.32)

here, ηcenter and ηw is the viscosity at the centre and wall of a circular tube, respectively.

The variation of viscosity along the radial direction in a circular tube/capillary depends
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Figure 2.6: The effective friction factor as a function of pressure gradient over a range
of radii (5 µm to 0.5 m) and xanthan gum (XG) concentrations. (a) XG: 3 g/L, (b) XG:
1 g/L, and (c) XG: 0.25 g/L. Symbols show feff estimated using Eq. 2.30 and continuous
solid lines show feff estimated using Eq. 2.31 for radius (R) of capillary/tube. Meter

model parameters are given in Table 2.3.

on radius and pressure gradient, i.e. on the shear stress. Fig. 2.7a shows estimated

radial viscosity variation (%) at a various pressure gradients (1 Pa/m to 108 Pa/m)

and a radius (0.05 µm – 500 mm) during XG-3 g/L fluid flow of [34] in a circular

tube/capillary. Similarly, Fig. 2.7b elucidates radial viscosity variation (%) at various

Reynolds number (10−9 to 107) and pressure gradient (10−1 − 106 Pa/m).

It appears from Fig. 2.7a that for each radius, there exists a critical pressure gradient

value below which the viscosity variation is insignificant. If radial viscosity variation of

10−1% is considered as an insignificant variation, then 106 Pa/m, 105 Pa/m, 104 Pa/m,

103 Pa/m, 102 Pa/m, 101 Pa/m will be the critical/threshold pressure gradient values
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Figure 2.7: (a) Effect of pressure gradient and radius (R) on the radial viscosity
variation (%) during flow of a xanthan gum (XG, 3 g/L) fluid of [34] in a circular cap-
illary/tube, (b) effect of Reynolds number and pressure gradient on the radial viscosity
variation (%) during flow of a xanthan gum (XG, 3 g/L) fluid of [34] in a circular cap-

illary/tube.

for capillaries of radius 0.05 µm, 0.5 µm, 5 µm, 50 µm, 500 µm, and 5 mm, respectively.

Below these thresholds the viscosity variation could be considered as insignificant or

effectively constant. The choice of viscosity variation as “an insignificant” might depend

on the viscosity at a zero shear stress (η0), and effect of the viscosity variation on the

output of work. Fig. 2.7a also suggests that with an increase in the radius of a capillary,

magnitude of the critical pressure gradient decreases.

Similarly, Fig. 2.7b shows that, for each pressure gradient, there exists a critical

Reynolds number below which the viscosity variation is insignificant. Fig. 2.7b shows

that if the pressure gradient of the XG-3 g/L fluid through a circular tube/micro-

capillary is lower than 100 Pa/m and Reynolds number is below 0.001, the radial viscosity

variation is insignificant. Overall, Fig. 2.7 illustrates that if applied pressure gradient or

Reynolds number are below their threshold/critical values, the non-Newtonian fluid flow

can be modelled as a Newtonian fluid with a zero shear stress viscosity as its constant

viscosity. This means that the fluid flow through a capillary can be modelled using the

Hagen-Poiseuille equation.

2.4 Conclusions

The Meter model was validated against experimental rheological data of cornstarch fluid,

polyacrylamide fluid and xanthan gum fluid. The analytical solution of the MM was
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validated against the experimentally measured velocity profile during the flow of non-

Newtonian fluids (xanthan gum and polyacrylamide) through a circular micro-capillary

of radius 160 µm and a circular tube of radius 0.05 m. An easy-to-use semi-analytical

solution (similar to the Hagen-Posseuille equation) is formulated for the computation of

an effective viscosity and a flow rate. The effective Reynolds number estimated using the

formulation presented in this work helps to correctly characterise fluid flow in laminar,

turbulent and transition flow. The Darcy’s friction factor computed using the formu-

lation given in the current work, and the experimental friction factor gave equivalent

results for laminar flow. Finally, this work suggests that there exists a threshold pres-

sure gradient for a given radius and a critical effective Reynolds number below which the

radial viscosity variation is insignificant, and it will be convenient to assume a constant

viscosity for such flows.

The method proposed in the present work to compute effective viscosity, average ve-

locity, radial velocity profile, flow rate, effective Reynolds number, and effective friction

factor using measurable flow parameters will help to understand the behaviour of non-

Newtonian fluids comprehensively. In the future, we will apply the proposed model

for the flow of non-Newtonian fluids in heterogeneous porous media using OpenFOAM

and the pore-Network model and compare our results to similar recent publications, for

example, [228].



Chapter 3

An empirical equation for shear

viscosity of shear thickening fluids

This chapter is published in the ‘Journal of Molecular Liquids’

Authors: T. Shende, V. J. Niasar, and M. Babaei. An empirical equation for shear

viscosity of shear thickening fluids. Journal of Molecular Liquids, 325:115220, 2021.
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3.1 Introduction

The suspension shear-thickening behaviour (i.e. increase in the shear viscosity with

an increase in the shear stress/rate showed by colloidal/non-colloidal suspension) [193]

has wide applications starting from cement [47], woven fabrics [114], chocolates [74],

cornstarch [72] to ceramics [214]. The shear-thickening fluids are excellent for a shock-

absorption due to their high elastic modulus and high dissipation energy [87, 214]. Smart

materials are being developed, such as magnetorheological shear thickening fluids [221],

which act as actuating fluids to maintain variable flow rate or force transfer scenario in

many engineering applications such as artificial joints and breaks [87, 182].

Mixing colloidal particles or polymers (i.e. solutes) in a solvent (e.g. water) leads to

an increase in the viscosity of the solution, and a further increase in the concentration

of solute/colloids makes the fluid behave like a non-Newtonian fluid. At lower stress,

shear thickening fluids show Newtonian behaviour [214]. The fluid shows shear-thinning

characteristics once critical stress exceeded, i.e. the viscosity of the fluid drops with

an increase in stress. The fluid can flow under weak stress and still be able to behave

like a gel at rest. The viscosity of the fluid suddenly rises once it reaches critical stress

at higher stresses [214]. This behaviour of a fluid is defined as shear thickening, which

mostly depends on the properties of solutes and colloids (shape and size of molecules,

volume fraction, etc.) and solvents (viscosity, deformation, etc.) [31, 87, 143, 214].

Figure 3.1 shows the typical rheological behaviour of a shear thickening fluid under

varying shear stress or shear rate. The typical shear thickening behavior can also be

observed at low temperatures ( i.e. temperature > −40°C) [38].

Interparticle and intermolecular contact forces and hydrodynamic forces significantly

contribute towards shear thickening of the suspension in the fluid [40, 118, 129, 143,

205, 229]. The external or internal forces in solution cause displacement of suspended

colloid particles/solute. The force transmits from one colloid particle/solute molecule

to the neighbouring colloid particle/solute molecule through the intervening fluid. The

hydrodynamic interaction between colloid particles/solute and solvent disturb the local

flow field of all colloids particles/solute molecules [223, 229]. We note that the inter-

vening fluid (solvent) acts as a lubricant between neighbouring colloids particles/so-

lutes [31, 193]. Hydrophobic or hydrophilic properties of the colloidal particles/polymer
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Figure 3.1: Typical rheological behaviour of a shear thickening fluid under varying
relative free volume or shear stress or shear rate. (a) Shear rate - stress relationship, and
(b) viscosity as a function of shear stress or shear rate. Typical shear thickening fluid
shows Newtonian, shear thinning, shear thickening and second shear thinning regimes.

We note that the image is representative and not to scale.

molecules along with hydrodynamic interaction between colloid/solute and solvent de-

termines the relative motion of the particles and effectiveness of the solvent to act as

a lubricant. The electrostatics [103, 233] and van der Waals forces play a significant

role in maintaining the viscosity of the solution [87, 143, 193]. Interparticle forces are

dominant at lower stresses; on the contrary, hydrodynamic forces play a vital role at

high stresses. Alteration of particles’ surface chemistry, ionic strength, shape, and size

affect the interparticle or intermolecular forces, thus the viscosity of the solution. The

shear induced particle migration and shear banding also affect the shear thinning or

thickening of the fluid [72].

Although many empirical models have been developed to characterise the shear thin-

ning behaviour of non-Newtonian fluids [223], a single equation which could completely

characterise the rheological behaviour of shear thickening fluids (see Fig. 3.1) is mea-

gre. Previously, Gopalakrishnan and Zukoski [83] proposed an empirical equation for

the shear viscosity based on thermodynamics and hydrodynamic interaction of shear

thickening fluids. The constitutive relation proposed by Wyart and Cates [219] for
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shear thickening suspension is a well accepted constitutive model for shear thickening

suspension. Galindo-Rosales et al. [78, 79] developed shear rate-dependent branch of

equations based on Cross model [43] to capture first shear thinning, shear thickening and

second shear thinning region of shear thickening fluids. Recently, Steller and Iwko [201]

proposed an empirical shear stress-dependent and shear-rate dependent model for the

non-Newtonian fluids based on the free volume theory. The Steller-Iwko multi-model

rheological equation [201] captures the complicated viscosity curve of non-Newtonian

fluids. Steller-Iwko [201] modified an empirical equation developed by Doolittle [62]

to relate viscosity of the fluid with shear stress and shear rate. Free volume theory

proposed by [62] is being extensively used to explain temperature-dependent viscosity

variations observed in amorphous polymers and glass-forming liquids. Williams-Landel-

Ferry (WLF) equation [217] developed based on the free volume theory of Doolittle

[62] has been employed to model time temperature-dependent rheology of polymeric

solutions (e.g. polystyrene melts [150], supra-macromolecular polymers [26]).

Free volume theory assumes that the viscosity of the fluid depends on the free space

available for molecules to move in a total volume. The relative free-space available for

molecules or particles depends on the stresses generated in the fluids [62]. Adopting the

Doolittle approach, the interlink between relative free space, viscosity, and stress can

be established to empirically define viscosity as a function of the relative free volume of

shear thickening fluids.

The absence of a single rheological equation, which could characterise all regimes of

shear thickening fluids (see Fig 3.1) and could be utilised for the pore-scale fluid flow

numerical simulation, motivated us to develop an empirical equation based on the free

volume theory that models rheological characteristics of shear thickening fluids using

measurable parameters and identifies threshold parameters of shear thickening fluids. We

propose an empirical equation that relates the shear viscosity of a shear thickening fluid

with a relative free volume. The proposed free volume-based equation is then utilised

to develop a shear stress-dependent rheological equation and a shear rate-dependent

rheological equation for shear thickening fluids. The proposed equations are validated

against experimental data. Further, we simulate the flow of shear thickening fluid, using

the proposed equation, through a 2D micromodel of a porous medium.
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3.2 Mathematical Formulations

The shear viscosity of non-Newtonian fluids can be defined using a constitutive equation

of generalised Newtonian fluids (GNF) [21, 22]. The shear stress-dependent viscosity

functions (η(τ)) define viscosity as a function of the magnitude of deviatoric stress tensor

(i.e. τ = 2 η(τ)D) [130, 134, 159, 201]. The shear rate-dependent viscosity function

(η(γ̇)) defines viscosity as a function of second invariant of rate-of-deformation tensor

(i.e. τ = 2 η(γ̇)D) [21, 22]. Here, the magnitude of shear stress is |τ | =

√
τ : τ

2
[134],

the magnitude of shear-rate is |γ̇| =

√
γ̇ : γ̇

2
[22], D = 1

2 γ̇ = 1
2(∇u + (∇u)T ), and u

is the velocity vector. Most of the GNF model equations are empirical equations and

have their limitations [21, 22]. Amongst commonly used GNF equations (i.e. power-law,

Bingham, Herschel–Bulkley, Carreau, Cross [21, 22]) in the literature, Cross equation

[43] is considered to be deduced from a physical basis (i.e. the rate kinetics of rupture

and formation of linkage between the particles of the polymers) [43, 78, 79]

The shear stress-dependent Meter model equation (Eq. 3.1, Eq. 2.2 of Chapter 2)

[134, 190] is a logistic equation that describes the S-shape type curve (i.e. Newtonian

plateau at high and low shear values and slope at intermediate shear values) of many

shear-thinning fluids.

η = η∞ +
η0 − η∞

1 +

(
τ

τp

)α−1 (3.1)

here, η [Pa·s] is the shear viscosity; η0 [Pa·s] is the zero shear viscosity of the Newtonian

region of fluid; η∞ [Pa·s] is the infinite shear viscosity. α is a Meter model exponent

which represents the slope. τp is the threshold shear stress at which viscosity value is

η0+η∞
2 .

We modified the equation proposed by Meter as follows that captures the typical viscosity

curve of the shear thickening fluid over a range of shear stress values (see Fig 3.1).

We note that the proposed equation follows a similar type of approach as adopted by

Galindo-Rosales et al. [78, 79],



The University of Manchester 52

η = ηmin +
η0 − ηmin

1 +

(
τ

τp

)ms
+

(ηmax − ηmin)

(
τ

τd1

)ns

(
1 +

(
τ

τd2

)ns
)Ss

, (3.2)

here, η [Pa·s] is the shear viscosity; η0 [Pa·s] is the zero shear viscosity of the Newtonian

region of fluid (region 1); ηmin [Pa·s] is the minimum viscosity of the intermediate

shear thinning region (region 2) of fluid (i.e. minimum shear viscosity); ηmax [Pa·s]

is the maximum viscosity of the shear thickening region of fluid (i.e. maximum shear

viscosity). ms is an exponent which represents the slope of the intermediate shear

thinning region of fluid (region 2). ns is an exponent which represents the slope of

the shear thickening region of fluid; Ss is an exponent which represents the slope of

the extreme shear thinning region of fluid (region 4). τp [Pa] is the shear stress at

which the viscosity of the solution drops to η0+ηmin

2 in the intermediate shear thinning

region (region 2). τd1 [Pa] and τd2 [Pa] are shear stresses at which the viscosity of the

solution drops to intermediate values between ηmin and ηmax in the shear thickening

region (region 3). The viscosity at τd1 is ηmin +
η0 − ηmin

1 +
(
τd1
τP

)ms
+

(ηmax − ηmin)(
1 +

(
τd1
τd2

)ns
)Ss

and

the viscosity at τd2 is ηmin +
η0 − ηmin

1 +
(
τd2
τP

)ms
+

(ηmax − ηmin)
(
τd2
τd1

)ns

2Ss
. Fig. 3.1b shows the

rheological material parameters of the shear stress-dependent viscosity.

3.3 Free-Volume Theory

Most of the non-Newtonian fluid solutions are a mixture of solute or colloidal particles

(e.g. cornstarch, xanthan-gum) in a solvent (e.g. water). Note that colloids (e.g. sil-

ica nano-particles) are phase separated and insoluble molecules in the solution, whereas

solute (e.g. polymers) dissolve in the solvent. The small molecular size of the solvent

in the solution helps the solvent to act as a lubricant between solute/colloid molecules

of larger size. The shear thinning or shear thickening behaviour observed in the non-

Newtonian fluid depend highly on the thickness of the solvent’s lubricant layer between

solute/colloid particles molecules [27, 31, 214]. Interaction between solute or colloid

molecules is relatively frictionless (i.e. in equilibrium ) at lower stress [214], and this

may be the reason for Newtonian behaviour at a lower shear rate or shear stress (as in
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Region 1, Fig 3.1). An increase in the stress decreases frictionless interaction between

solute/colloids molecules [129, 193, 214]; and the solvent effectively acts as a lubricant be-

tween solute/colloids molecules. The solvent, being a lubricant, resists direct interaction

between solute/colloids molecules. The viscous nature of the solvent streamlines solute/-

colloids molecules and increases the efficient transport of a solute/colloids in the solvent

[143, 214]. The flow of a solvent is mostly laminar between solute/colloids molecules.

This causes a drop in the viscosity of a solution with an increase in shear stress (see

Region 2 in Fig 3.1). The effectiveness of a solvent to act as a lubricant ceases at suf-

ficiently higher shear stresses. Coagulation of solute/colloids molecules forms a hydro

cluster [27, 31, 36, 143, 214] in the solution due to direct contact between solute/colloids

molecules. The viscosity of the fluid increases abruptly at high stresses due to the larger

size of the coagulated hydro cluster (see Region 3 in Fig 3.1). However, at very high

shear stresses direct contact between coagulated solute/colloids molecules breaks [77].

This leads to smaller size hydro clusters and separated solute/colloids molecules which

decrease the viscosity of the solution (see Region 4 in Fig 3.1). The viscosity of the fluid

could also decrease due to rupture or erosion of the hydro-clusters or particles. The

presence of artefact in the suspension may lead to the slipping of the particles if the

colloidal suspension is solid-like. This may cause shear thinning at high shear values.

We note that hydrodynamic and interparticle (intermolecular) interactions between so-

lute/colloids and solvent strongly affect the relative free volume of solute/colloids and

solvent and, in turn, viscosity of the solution is changed.

Macleod (1923) [124] was first to postulate that the viscosity of a fluid is influenced by

the free space available for molecules to move in a total volume. He suggested that the

crowding of more molecules in a small space will increase the viscosity of the fluid as

it will increase the cohesive force between molecules and decrease the required time for

molecules to move out of contact. The free space theory proposed by Macleod was further

developed by Doolittle [62] in which he defined free-space in a liquid as space arises due

to the liquid’s total thermal expansion without phase change. Doolittle defined relative

free space as in Eq. 3.3,

Vf
V0

=
V − V0
V0

(3.3)
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Where
Vf

V0
is a relative free space for a single substance; Vf is a volume of free space per

gram at any temperature; V0 is a volume of one gram of liquid extrapolated to absolute

zero temperature without change of phase; V is a volume of one gram of liquid at any

temperature. Doolittle [62] proposed an empirical equation to relate the viscosity of the

solution with the free volume space as in Eq. 3.4,

η = Ae

(
B

Vf/V0

)
(3.4)

Here, A and B are material constants for a single substance. Although Doolittle vali-

dated Eq. 3.4 for the temperature-dependent decrease in viscosity of a Newtonian fluid,

he noted that pressure and temperature could change relative free space in the liquid.

Although Doolittle equation (i.e. Eq. 3.4) can not define the rheology of shear thicken-

ing fluids, we could extend the free volume theory of Doolittle to model the rheology of

non-Newtonian fluids, specifically shear thickening fluids.

3.3.1 Relative free-volume dependent viscosity

Extending Doolittle free volume theory [62], we propose an empirical equation (Eq. 3.5)

that relates the relative free volume (f) with the shear viscosity (η) of shear thickening

fluids. We assume that (a) relative free volume of the solution changes due to hydrody-

namic and inter molecular (or particle) forces; (b) fluid flow and deformation, thermal

variation, external and internal pressure, molecular movement due to chemical reactions

generate these hydrodynamic and inter molecular (or particle) forces in a solution; (c)

the change in relative free volume is proportional to the local stresses (shear, normal,

or thermal); (d) Vf is the free volume at any stress, V0 is the volume of liquid at a zero

stress and absolute zero temperature without phase change, V is the volume of liquid

at any stress, and the relative free volume is f = V−V0
V0

=
Vf

V0
. Eq. 3.5 has the following

form similar to Eq. 3.2:

η = ηmin +
η0 − ηmin

1 +

(
f

fp

)mf
+

(ηmax − ηmin)

(
f

fd1

)nf

(
1 +

(
f

fd2

)nf
)Sf

(3.5)
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here, fp is a relative free volume of the fluid at which viscosity of the solution drops to

η0+ηmin

2 in the intermediate shear thinning region (region 2); mf is an exponent which

represents the slope of the intermediate shear thinning region of fluid (region 2). nf

is an exponent which represents the slope of the shear thickening region of fluid; Sf is

an exponent which represents the slope of the extreme shear thinning region of fluid

(region 4). fd1 and fd2 are relative free volumes of fluid at which the viscosity of the

solution drops to an intermediate value between ηmin and ηmax in the shear thickening

region (region 3). The viscosity at fd1 is ηmin +
η0 − ηmin

1 +

(
fd1
fp

)mf
+

(ηmax − ηmin)(
1 +

(
fd1
fd2

)nf
)Sf

and

the viscosity at fd2 is ηmin +
η0 − ηmin

1 +

(
fd2
fp

)mf
+

(ηmax − ηmin)
(
fd2
fd1

)nf

2Sf
. Fig. 3.1b shows

the rheological material parameters of a relative free volume-dependent viscosity.

3.3.2 Shear stress-dependent viscosity

The relative free volume in the liquid depends on the mobility of the molecules [201] (i.e.

colloids or solutes and solvents). The size and shape of molecules, interaction amongst

fluid molecules, spatial arrangement and intermolecular forces between molecules, and

nature of bulk fluid flow determines the rheology of the fluid [31, 129, 143, 214]. An

interaction amongst molecules (i.e. colloids, solute, solvent etc.) during fluid flow,

thermal changes, and external/internal pressure generate stresses in the liquid. The

relative free space in the liquid changes under the influence of these stresses. We propose

a non-linear empirical relationship between stresses in the liquid with a relative free

volume as in Eq. 3.6,

f =

(
τ

τ0

)m

(3.6)

Here, τ0 [Pa] and m are material constants of the fluid. By substituting Eq. 3.6 in

Eq. 3.5, we obtain the shear stress-dependent rheological model (Eq. 3.2) for a shear

thickening fluid. The shear rate of the fluid will be as in Eq. 3.7
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γ̇ =
τηmin +

η0 − ηmin

1 +

(
τ

τp

)ms
+

(ηmax − ηmin)

(
τ

τd1

)ns

(
1 +

(
τ

τd2

)ns
)Ss


(3.7)

here, τp = τ0 (fp)
1
m , τd1 = τ0 (fd1)

1
m , τd2 = τ0 (fd2)

1
m , ms = m (mf ), and ns = m (nf ).

3.3.3 Shear rate-dependent viscosity

We note that the deformation of fluid under stress alter the relative free volume of

the fluid. We propose a non-linear [223] empirical relationship between shear rate and

relative free volume as in Eq. 3.8

f =

(
γ̇

γ̇0

)n

, (3.8)

here, γ̇0 [s−1] and n are material constants of the fluid. By substituting Eq. 3.8 in Eq. 3.5,

we obtain a shear rate-dependent rheological model (Eq. 3.9) for shear thickening fluids,

η = ηmin +
η0 − ηmin

1 +

(
γ̇

γ̇p

)mr
+

(ηmax − ηmin)

(
γ̇

γ̇d1

)nr

(
1 +

(
γ̇

γ̇d2

)nr
)Sr

, (3.9)

here, γ̇p = γ̇0 (fp)
1
n , γ̇d1 = γ̇0 (fd1)

1
n , γ̇d2 = γ̇0 (fd2)

1
n , mr = n (mf ), and nr = n (nf );

γ̇p [s−1] is a shear rate at which the viscosity of the solution drops to η0+ηmin

2 in the

intermediate shear thinning region (region 2). mr is an exponent which represents the

slope of the intermediate shear thinning region of fluid (region 2). nr is an exponent

which represents the slope of the shear thickening region of fluid; Sr is an exponent

which represents the slope of the extreme shear thinning region of fluid (region 4). γ̇d1

[s−1] and γ̇d2 [s−1] are shear rate at which the viscosity of the solution drops to an

intermediate values between ηmin and ηmax in the shear thickening region (region 3).

The viscosity at γ̇d1 is ηmin +
η0 − ηmin

1 +

(
γ̇d1
γ̇p

)mr
+

(ηmax − ηmin)(
1 +

(
γ̇d1
γ̇d2

)nr
)Sr

and the viscosity at γ̇d2
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is ηmin +
η0 − ηmin

1 +

(
γ̇d2
γ̇p

)mr
+

(ηmax − ηmin)
(
γ̇d2
γ̇d1

)nr

2Sr
. Fig. 3.1b shows rheological material

parameters of a shear rate-dependent viscosity.

3.3.4 Péclet number-dependent relative viscosity

Stokes-Einstein-Sutherland equation (Eq. 3.10) defines diffusivity (D) of the molecules/-

particles with a thermal energy kBT in a solvent of viscosity ηs [136, 211] as

D =
kB T

6π ηs a
(3.10)

where, kB [J/K] is the Boltzmann’s constant, T [K] is the absolute temperature, a

[m] is the radius of the molecules/particles. Péclet number (Pe), also known as the

dimensionless shear rate [136], relates the magnitude of thermal motion of molecules

with a motion caused by shear. Péclet number as defined in Eq. 3.11 quantifies the

strength of the shear force compared to the Brownian forces in the fluid [136],

Pe =
γ̇
D
a2

=
6π ηs γ̇ a

3

kB T
(3.11)

We obtain the dimensionless Péclet number-dependent relative viscosity of the shear

thickening fluid (Eq. 3.12) by diving Eq. 3.9 over ηs and substituting Eq. 3.11 for the

shear rate in Eq. 3.9,

η

ηs
=
ηmin

ηs
+

η0
ηs

− ηmin

ηs

1 +

(
Pe

Pep

)mr
+

(
ηmax

ηs
− ηmin

ηs

) (
Pe

Ped1

)nr

(
1 +

(
Pe

Ped2

)nr
)Sr

(3.12)

here, Pep is a Péclet number at which the relative viscosity of the solution drops to

1
2(η0ηs + ηmin

ηs
) in the intermediate shear thinning region (region 2). Ped1 and Ped2 are

Péclet number at which the relative viscosity of the solution drops to an intermediate

values between
ηmin

ηs
and

ηmax

ηs
in the shear thickening region (region 3). Pe << 1

shows domination of the Brownian motion in the fluid while Pe >> 1 suggests that

the microstructure is distorted by flow forces [28, 136]. Thus, the arrangement of the



The University of Manchester 58

molecules is highly dependent on Péclet number and by that the viscosity of the fluid

[28].

3.3.5 Conversion to an existing model

Eq. 3.2 converts to the shear stress-dependent Meter model (Eq. 3.1, Eq. 2.2 of Chapter

2) [134, 190] by substituting η∞ = ηmin = ηmax and ms = α− 1. Similarly, Eq. 3.9 con-

verts to the shear rate-dependent Cross model equation [43] (Eq. 3.13), by substituting

η∞ = ηmin = ηmax and ( 1
γ̇p

)mr = C.

η = η∞ +
η0 − η∞

1 + C γ̇mr
(3.13)

This suggests that the free-volume theory based equations proposed in the present work

capture the properties of existing shear stress-dependent (Meter model) and shear rate-

dependent rheological models (Cross model). Thus, a free-volume theory based equation

could be utilised to model the purely shear-thinning rheology of the polymeric fluid along

with the rheology of the colloidal suspensions.

3.3.6 Numerical simulation

3.3.6.1 Governing equation for a shear rate-dependent rheological model

The laminar flow of an incompressible, single-phase shear thickening fluid through a void

space is defined using governing continuity equation (Eq. 3.14) and momentum equation

(Eq. 3.15):

∇ · u = 0, (3.14)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + ∇ · τ + f , (3.15)

here, P is the pressure, f is any external body force, u is the velocity vector, t is the

time, and τ is the stress tensor as defined in Eq. 3.16



The University of Manchester 59

τ = η(γ̇) (∇u + (∇u)T ), (3.16)

where η(γ̇) is the shear viscosity of a shear thickening fluid, which is a function of shear

rate. The magnitude of the rate of strain tensor for shear-dominated flow is as follows,

γ̇ =

√
γ̇ : γ̇

2
=

√
2D : D, (3.17)

here, γ̇ = (∇u + (∇u)T ) and D = 1
2 γ̇

The shear viscosity (η(γ̇)) of a shear rate-dependent model is as defined in Eq. 3.9.

3.3.6.2 Numerical domain, boundary condition and solver

We utilised finite volume method based OpenFOAM C++ libraries [84, 99] for solv-

ing Eq. 3.14 and Eq. 3.15 in conjunction with a shear rate-dependent model equation

(Eq. 3.9). We simulated the flow of a shear thickening fluid through a 2D circular stag-

gered micromodel porous medium over a range of constant injection velocity (10−7 m/s

- 0.1 m/s). The constant injection velocity was applied at the right boundary. The

numerical domain had a uniform velocity of zero at the beginning of the simulation.

The no-slip condition was deployed at the boundary wall of the micromodel. The snap-

pyHexMesh module and blockMesh module of OpenFOAM were employed to generate

a fine hexagonal mesh in a porous medium domain.

The PIMPLE algorithm with nOuterCorrectors of 5 was employed to maintain the

stability and accuracy of a shear thickening fluid flow simulations. The Gauss linear

uncorrected scheme of OpenFOAM was employed to discretise the Laplacian term of

governing equations. Gauss linear scheme was used to discretise the gradient term and

the divergence term. The Gauss linear scheme uses standard finite volume Gaussian

integration. The time scheme of the momentum equation was discretised using the

second-order implicit backward method. SmoothSolver with a Gauss-Seidel smoother

was used to determine the velocity profile and Generalised Geometric-Algebraic Multi

Grid (GAMG) solver with diagonal incomplete-Cholesky (symmetric) smoother was em-

ployed to estimate the pressure field. The Courant number was maintained below 0.1
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using time-step of 10−6 s. The convergence criteria were set to 10−6 for both the velocity

and pressure fields. We used Paraview 5.7.0 software to visualise and post process the

shear thickening fluid flow simulation data.

3.4 Results and Discussion

3.4.1 Validation of the shear-stress dependent equation

We utilised a rheological data of Cwalina et al. [48] and Laun [111] to validate the

proposed shear stress-dependent model (Eq. 3.2). Cwalina et al. [48] investigated shear

stress-dependent rheological characteristics of silica nanoparticles (diameter 520 nm)

plus cubic aluminosilicate zeolites dispersed in a polyethylene glycol suspending fluid

at colloidal volume fraction (ϕ) of 0.445, 0.518 and 0.507. Laun [111] scrutinized the

shear stress-dependent viscosity of a styrene-ethyl-acrylate-copolymer-latex of diameter

250 nm dispersed in the water over a range of pH and NaCl concentration. We used

Excel Solver-GRG nonlinear algorithm [107] to determine the material parameters of

the proposed rheological equations. The estimated material parameters of the shear

thickening fluids of [48] and [111] are as given in Table 3.1.

Fig 3.2 and Fig 3.3 show good fit of the viscosity-shear stress data using Eq. 3.2 and shear

rate-shear stress data using Eq. 3.7 with experimental measurements of Cwalina et al.

[48] (ϕ: 0.445 - 0.518) and Laun [111] (pH: 5.1 - 7; NaCl Conc.: 0 - 1.14 g/L). The root

means square error (RMSE) of Eq. 3.2 and Eq. 3.7 with respect to the experimental data

ranged from 5.4×10−4 to 1.6×10−2 in Fig 3.2 and Fig 3.3, respectively, which suggest

statistically good fits of the shear stress-dependent equation with the experiment.

Eq. 3.2 could capture the Newtonian, shear thinning and shear thickening region of the

silica nanoparticles based shear thickening fluid of [48] at ϕ of 0.445. At ϕ = 0.507,

Eq. 3.2 could capture the shear thinning, shear thickening and extreme shear thinning

at high shear values (see Fig 3.2a and 3.2b) of the shear thickening fluid of [48]. Fig 3.3

shows that Eq. 3.2 correctly depicts the effects of the pH and NaCl concentration on

the rheological behaviour of the styrene-ethyl-acrylate-copolymer-latex fluid. Charge

on the particle and degree of dissociation change due to pH variation in the solution.

The addition of NaCl-salt in the solution increases total ion concentration in the fluid.
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Figure 3.2: An experimental rheological data of a silica nanoparticles and cubic
aluminosilicate zeolites -based shear thickening fluid of [48] over a range of volume
fraction (ϕ) modelled using a proposed shear stress-dependent model. (a) shear viscosity
as a function of shear stress modelled using shear stress-dependent equation (Eq. 3.2),
and (b) shear rate as a function of shear stress modelled using shear stress dependent

equation (Eq. 3.7). The material parameters are given in Table 3.1.
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Table 3.1: Estimated material parameters for shear thickening silica nanoparticles-
cubic aluminosilicate zeolites based fluid of [48] over range of volume fraction and shear
thickening styrene-ethylacrylatecopolymer latex fluid of [111] over a range of pH and

NaCl concentration.

Parameter Volume fraction (ϕ) [48] pH of solution [111] NaCl conc (g/L) [111]
0.445 0.507 0.518 5.1 5.7 6.2 7 0 0.287 1.14

η0 [Pa·s] 1 3 5.4 0.787 11.84 83.408 200 120.2 50 0.2
ηmin [Pa·s] 0.42 1 1 0.034 0.034 0.034 0.034 0.034 0.034 0.034
ηmax [Pa·s] 2 12 4 0.72 0.260 0.170 0.09 0.15 0.23 0.52
τp [Pa] 0.1 0.024 0.026 0.05 0.033 0.029 0.04 0.02 0.02 0.304
τd1 [Pa] 815 44 490 604.6 2567 6700 12847 8398 3476 1120
τd2 [Pa] 393 146 445 939 3629 10196 21474 14000 3041 4621

ms 1.37 0.5 1 1.344 2.02 2.3 2.1 2 1.9 2.845
ns 1.4 1.04 1.29 1.389 1.462 1.354 1.3 1.804 1.172 0.969
Ss 1 1.85 1 1.261 1.194 1.255 1.004 1.347 0.9 2.005

These parameters strongly affect the intermolecular interactions (due to van der Waals

and electrostatic forces) between colloids and solvents. The relative free volume in the

solution changes due to the combined effect of these intermolecular interactions and hy-

drodynamic forces. Table 3.1 shows a decrease in ηmax and an increase in η0, τd1 and τd2

with an increase in the pH. On the contrary, Table 3.1 reports an increase in ηmax and a

decrease in τd1 and τd2 with an increase in the electrolyte (NaCl) concentration. We note

that the proposed model predicted Newtonian viscosity (η0) of [111] shear thickening

fluid solution, which would not have been possible to identify by observation of the rhe-

ological data or graph. The predicted minimum shear-thinning viscosity (ηmin) of 0.034

Pa·s over a range of pH, and NaCl concentrations of [111] indicate that varying hydrogen

concentrations and ionic strength did not significantly affect the ηmin of a latex fluid.

This suggests that the proposed rheological equation helps to quantitatively correlate

the rheological behaviour of the shear thickening fluid under varying physiochemical

conditions.

3.4.2 Validation of the shear-rate dependent equation

We utilised rheological data of Kalman et al. [102], Maus et al. [131] and Zhang et

al. [232] to validate the proposed shear rate-dependent model (Eq. 3.9). Kalman et

al. [102] investigated shear rate-dependent rheological characteristics of monodisperse

polymethylmethacrylate (PMMA) particles dispersed in polyethylene glycol fluid at

colloidal volume fraction (ϕ) of 0.40, 0.45, 0.48 and 0.49. Maus et al. [131] measured

shear viscosity of the α, ω-Mg carboxylato-polyisoprene (MCPI) in decahydronaphtha-

lene over a range of temperature (25 ◦C, 30 ◦C, 35 ◦C). Zhang et al. [232] scrutinized the
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Figure 3.3: The experimental rheological data of styrene-ethyl-acrylate-copolymer-
latex based shear thickening fluid of [111] over a range of pH and NaCl concentrations
modelled using proposed shear stress-dependent model. (a) shear viscosity as a func-
tion of shear stress modelled using shear stress-dependent equation (Eq. 3.2), and (b)
shear rate as a function of shear stress modelled using shear stress dependent equation

(Eq. 3.7). The material parameters are given Table 3.1.
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Figure 3.4: Shear viscosity of monodisprsed polymethylmethacrylate (PMMA) par-
ticles based shear thickening fluid of [102] over a range of volume fraction (ϕ) modelled
using the proposed shear rate-dependent equation (Eq. 3.9). The material parameters

are given Table 3.2.

Table 3.2: Estimated material parameters for the shear thickening PMMA particles-
based fluid of [102] over a range of volume fraction, the MCPI fluid of [131] over a range
of temperature, and the carbonyl iron and silica particles-based fluids of [232] over a

range of magnetic field

Parameter Volume fraction (ϕ) [102] Temperature (◦C) [131] Magnetic field (kA/m) [232]
0.49 0.48 0.45 0.40 25 30 35 0 100 200 300

η0 [Pa·s] 437 143 292 146 477 239 140 20 300 500 800
ηmin [Pa·s] 8.34 2.3 1 0.60 10 10 10 1.5 2.0 10 11
ηmax [Pa·s] 293 42 10 1.82 1770 520 213 25 29 32 45
γ̇p [s−1] 0.00146 0.0044 0.0028 0.0065 0.9 1.8 5 2.2 0.7 1.8 1.5
γ̇d1 [s−1] 0.3 1.8 4 10 3 5.5 11 961 522 415 420
γ̇d2 [s−1] 0.3 1.82 3.61 10 7.8 11 18.52 1095 557 467 442

mr 1.1 1.1 1 1.1 2.1 1.9 1.5 0.9 0.82 1.3 1.3
nr 10.6 8.88 4.27 2.04 1.46 1.24 1.59 6.46 7.09 5.31 7.69
Sr 1.01 1.03 1.03 1.07 1.95 1.42 1.49 1.43 1.13 1.21 1.16

shear rate-dependent viscosity of a carbonyl iron particles of 5 µm mean size and fumed

silica particles dispersed in ethylene glycol over a range of magnetic field (kA/m). The

estimated material parameters of the shear thickening fluids of [102], [131], and [232] are

as given in Table 3.2.

Fig 3.4, Fig 3.5 and Fig 3.6 show good fit of the viscosity-shear rate data using Eq. 3.9

with experimental measurements of Kalman et al. [102] (ϕ: 0.4 - 0.49), Maus et al.

(Temp: 25-35 ◦C) [131], and Zhang et al. [232] (Magnetic field: 0 - 300 kA/m). The root

means square error (RMSE) of Eq. 3.9 with respect to the experimental data is ranged
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Figure 3.5: Shear viscosity of α, ω-Mg carboxylato-polyisoprene (MCPI)-based shear
thickening fluid of [131] over a range of temperatures modelled using the proposed shear

rate-dependent equation (Eq. 3.9). The material parameters are given Table 3.2.

from 2×10−1 to 3×101 in Fig 3.4, Fig 3.5, and Fig 3.6 respectively, which suggests a

statistically good fit of the shear rate-dependent equation with experiments.

Fig 3.4 illustrates that the Eq. 3.9 can encompass all four regions (Newtonian, inter-

mediate shear thinning, shear thickening, and extreme shear thinning) of the PMMA

shear thickening fluid over a range of ϕ values. On the contrary, as depicted in Fig 3.5,

intermediate shear-thinning region is absent in the rheological data of [131]. Yet, Eq. 3.9

is able to correctly capture Newtonian followed by shear thickening and extreme shear-

thinning regions of the fluid over a range of temperature values. Further, Table 3.2

shows a constant minimum viscosity (ηmin) of the fluid at high shear rate values in

the extreme shear thinning region. This suggests that ηmin also represents the lowest

limiting viscosity value of the extreme shear thinning region.

An increase in the ϕ of the particles in the solution increased ηmin and ηmax, and de-

creased γ̇d1 and γ̇d2 (see Table 3.2) of [102]. We note that γ̇d1 and γ̇d2 have approximately

same values for given ϕ values of [102]. The slope (mr) of the intermediate shear thin-

ning region of [102] has same value of 1.1 over a range of ϕ, except for ϕ=0.45. These

results suggest that the shear rate-dependent rheological model helps predict threshold
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Figure 3.6: Shear viscosity of carbonyl iron particles and fumed silica particles-based
magnetorheological shear thickening fluid of [232] over a range magnetic field modelled
using the proposed shear rate-dependent equation (Eq. 3.9). The material parameters

are given in Table 3.2.

shear rate values (γ̇p, γ̇d1, and γ̇d2). As predicted, the rheological parameters of [131]

show a decrease in η0, ηmax, mr and an increase in γ̇d1, γ̇d2, nr with an increase in the

temperature of the shear thickening fluid. We note that an increase in the temperature

generates thermal stresses, which change the relative free volume in the solution. This

leads to a decrease in the viscosity of the solution with an increase in the temperature.

An increase in exposure of the magnetic field (0 - 300 kA/m) to the shear thickening

fluid of [232] increased η0, ηmin, ηmax and decreased γ̇d1 and γ̇d2 (see Table 3.2 and

Fig 3.6). The shear-rate dependent model (Eq. 3.9) could estimate ηmin of the fluid.

These results suggest that the shear stress-dependent equation (Eq. 3.2) and the shear

rate dependent equation (Eq. 3.9) capture highly non-linear rheological characteristics

of the shear thickening fluid and predict threshold measurable parameters of shear thick-

ening fluids such as threshold shear stress/rate.

3.4.3 Validation of the Péclet number-dependent equation

Fig 3.7 shows a perfect fit of the experimentally determined Péclet number-dependent

relative viscosity of the superball silica fluid of [181] with Eq. 3.12. The material
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Figure 3.7: Comparison of the experimentally measured Péclet number-dependent
relative viscosity of the superball silica at volume fraction of (a) ϕ = 0.24, and (b)
ϕ = 0.28 of [181] with a proposed Péclet Number-dependent equation (Eq. 3.12).

Table 3.3: Estimated material parameters for a shear thickening superball silica fluid
of [181] over a range of volume fraction

Parameters Volume fraction (ϕ) [181]
0.24 0.28

η0
ηs

1.98 2.6

ηmin

ηs
1.96 2.53

ηmax

ηs
2.02 2.72

Pep 800 700
Ped1 4 × 104 1.8 × 104

Ped2 4.1 × 104 2.1 × 104

mr 2 1.5
nr 1.5 1.1
Sr 1.01 1.03

parameters are given in Table 3.3. Pe in Fig 3.7 corresponds to the shear rate of 100

s−1 to 103 s−1. We note that Pe takes into account the size of the particle (see Eq.

3.11). The observed shear thickening behaviour of the fluid at Pe > 103 suggests a

strong dependence of shear thickening on changes in the microstructural arrangement.

The Pep, Ped1, Ped2 values obtained using Eq. 3.12 could be considered as a threshold

Pe which helps to modulate shear thinning and shear thickening behaviours in non-

Newtonian fluid.

3.4.4 Pore-scale flow simulation

We simulated the flow of a PMMA particles-based fluid of [102] over a range of constant

injection velocity (10−7 m/s - 0.1 m/s) in a circular staggered porous medium (domain

size: 4.2 mm × 2.4 mm, circle diameter: 262 µm, pore-throat size: 162 µm, channel
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depth: 120 µm, porosity: 0.7, see Fig 3.8). The material parameters of PMMA fluid

used for simulation are as given in the Table 3.2.

Fig 3.8 shows spatial distribution along with the frequency of the shear rate, shear

viscosity and velocity in the 2D porous medium. Fig 3.8d,e,f indicate that the field of

shear rate, viscosity and velocity is non-uniformly distributed in the porous medium

domain. The bi-modal distribution in Fig 3.8a,d suggest that the shear rate profile at

the micromodel boundary is different from the central part of the micromodel. The first

tall peak in the fig 3.8d is the shear rate distribution in the central part, and a small

peak at high shear values is the shear rate distribution at the boundary. Similar to the

shear rate profile, the bi-modal distribution observed in the shear viscosity profile in

Fig 3.8e indicate variations in the distribution of viscosities in the central region and

boundary region of the porous medium. Fig 3.8c imply that the PMMA fluid has higher

velocity along the flow direction; further, there exists a no-flow region with a velocity

lower than 10−5 m/s before and after circular blocks of the porous medium.

The average shear rate, the average shear viscosity, and the average velocity of the

fluid flow in the porous medium for each simulation over a range of injection velocity

are estimated using ‘integrate variable’ filter of the Paraview 5.7.0 software. Fig 3.9a

compare the average shear rate of the porous medium with an average viscosity of the

porous medium over a range of volume fraction and injection rate. Fig 3.9a depict shear

thickening behaviour of the fluid in the porous medium similar to the rheological data.

Note that the average values of shear rate and shear viscosity of the porous medium do

not overlap with a rheological data of the PMMA fluid measured using a rheometer (i.e.

as in Fig 3.4).

Fig 3.9b shows the non-linear relationship between average velocity and pressure gradi-

ent during the flow of PMMA based shear thickening fluid in the 2D staggered porous

medium. Further, we can deduce from Fig 3.9b that an increase in the volume fraction

of the particles in the fluid increases the pressure requirements. The results of direct

numerical simulation indicate that the proposed shear rate-dependent rheological model

for shear thickening fluid can be utilised to gain pore-scale insight into shear thickening

fluid flow. In the future, we will use the proposed rheological model to numerically sim-

ulate two-phase shear thickening fluid flow using the volume of fluid method, specifically
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Figure 3.8: Spatial distribution of a) shear rate (b) shear viscosity (c) velocity and
frequency of d) shear rate e) shear viscosity f) velocity in the porous medium domain

during PMMA fluid (ϕ = 0.45) flow at a constant injection velocity of 0.1 m/s.

Figure 3.9: (a) Average shear viscosity - average shear rate, and (b) average velocity
- pressure gradient over a range of volume fraction (ϕ) obtained after simulated flow of
PMAA shear thickening fluid of [102] through the 2D staggered porous medium over a

range of constant injection rates.

to understand the shear thickening fluid flow behaviour while displacing Newtonian fluid

at pore-scale.

3.5 Conclusions

The free volume theory proposed by Doolittle is protracted for a shear thickening fluid.

An empirical formula is proposed to relate the shear viscosity of shear thickening fluid
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with a relative free volume of the fluid. The stresses generated in the fluid due to in-

termolecular forces, hydrodynamic forces, and thermal variation cause a change in the

relative free volume. The non-linear relationship between stresses and the relative free

volume is used to develop a shear stress-dependent rheological equation for shear thick-

ening fluids which captures different behaviours such as Newtonian, intermediate shear

thinning, shear thickening, and the extreme shear-thinning regime of a shear thickening

fluid. An equation for the shear rate-dependent viscosity is also formulated using a non-

linear relationship between the shear rate and the relative free volume. The proposed

formulations convert to the existing Meter model and Cross model. We note that the

proposed rheological model equations are empirical generalised Newtonian fluid (GNF)

models similar to power-law, Carreau, Cross, Meter models.

The perfect fit of the experimental data of various shear thickening fluids (silica nanopar-

ticles, latex, PMMA particles, MCPI, carbonyl iron particles based shear thickening

fluid) with the shear stress-dependent equation and the shear rate-dependent equation

over a range of physicochemical properties (volume fraction, pH, NaCl concentration,

temperature, magnetic field) suggests that the proposed rheological formulations could

be used to evaluate the rheological characteristics of the shear thickening fluid using

measurable parameters. The nine material parameters of the proposed formulation help

to quantitatively analyse the effect of varying physicochemical conditions on the rheology

of shear thickening fluids. The proposed equation predicts critical viscosity parameters

of shear thickening fluids such as η0, ηmin, ηmax. The threshold shear stress param-

eters (τ0, τp, τd1, τd2), the threshold shear rate parameters (γ̇0, γ̇p, γ̇d1, γ̇d2) and the

threshold Péclet number parameters (Pep, Ped1, Ped2) of the proposed equations are

parameters that modulate the effective transmutation of rheological characteristics (i.e.

from Newtonian to shear-thinning, followed by shear-thickening regime).

Numerical simulations of PMMA-based fluid (modelled using a shear rate-dependent

equation) flow through a 2D circular staggered porous medium show that the proposed

shear rate dependent equation can be employed for conducting shear thickening fluid flow

studies. We observed shear thinning, shear thickening, followed by again shear thinning

of the PMMA-based fluid flow in a 2D porous medium. The shear rate, shear viscosity,

and velocity in a 2D porous medium have a bimodal distribution, which indicates that

the flow behaviour of the shear thickening fluid at the boundary of the porous medium

is different than in the central part of the porous medium. We will extend this work
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to a) upscale the pore-scale shear viscosity of the shear thickening fluid to a continuum

scale and b) simulate two phase shear thickening fluid flow in porous media..



Chapter 4

Upscaling non-Newtonian

rheological fluid properties from

pore-scale to Darcy’s scale

This chapter is published in the ‘Chemical Engineering Science’.

Authors: T. Shende, V. Niasar, and M. Babaei. Upscaling non-Newtonian rheolog-
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4.1 Introduction

Polymeric fluid flow in a porous medium is of significant importance in many engineer-

ing applications such as enhanced oil recovery. Most polymer solutions employed for the

enhanced oil recovery applications show non-Newtonian behaviour [21, 184, 200, 220].

The commonly used non-Newtonian fluids (i.e. xanthan gum [155, 199] and polyacry-

lamide solution [52, 106]) for oil recovery show viscoelastic properties. The rheology of

non-Newtonian fluids can be studied considering non-Newtonian fluid as a generalised

Newtonian fluid (e.g. power-law, Bingham, Cross, Carreau, Elis, Meter model etc.,

see section 2.2 of Chapter 2) or viscoelastic fluid (e.g. Maxwell, Oldroyd-B, Giesekus,

Phan-Thien-Tanner model etc.) [8, 20]. These models are derived based on an empirical

approach with many simplified assumptions; thus, each model has its own limitations

and cannot universally be applied to all types of non-Newtonian fluids [20].

The flow of polymeric solution in rheometer is remarkably different from that of the

flow in porous media. The reason could be [1] (i) the porous medium has complex

geometry compared to rheometers; (ii) the presence of many expansion and contraction

in the porous medium expose polymer to the various amount of shear stress [200]; (iii)

mechanical retention and adsorption of the polymer change the geometry of the porous

medium. To describe polymeric fluid behaviour in a porous medium, apparent viscosity

or Darcy viscosity is a commonly used terms in the literature [1, 18, 58, 178, 200]. Darcy

viscosity (ηdarcy) is defined using Darcy’s law as [21, 177, 184],

ηdarcy =
Ak

Q

dP

dx
=

k

Udarcy

dP

dx
(4.1)

here, A [m2] is the cross-section area of the porous medium, k [m2] is the intrinsic per-

meability, Q [m3/s] is the volumetric flow rate, and Udarcy [m/s] is the Darcy velocity,

dP
dx [Pa/m] is the pressure gradient. The Darcy viscosity is generally measured by per-

forming core flood experiments [200]. Darcy viscosity of the polymeric fluid in a porous

medium depends on non-Newtonian rheology (measured using rheometer), inaccessible

pore volume, degradation of the polymer due to mechanical or chemical forces, adsorp-

tion of polymer on a pore surface, elastic stretching of polymeric molecules [59, 106].

Thus, the values of shear viscosity and Darcy viscosity for same non-Newtonian fluid

show shift in the viscosity profile [18, 58, 158, 184, 196].



The University of Manchester 74

4.1.1 The shift factor

The analytical solution of fluid flow in a circular capillary for the power-law model (η =

mγ̇n) is used in a bundle of capillary model along with the Blake-Kozeny equation to

determine hydraulic radius (Rh), Darcy viscosity (ηdarcy), and Darcy shear rate (γ̇darcy)

of the porous medium as [194],

Rh =

√
8kψ

ϕ
(4.2)

ηdarcy =

(
3n+ 1

4n

) 1
n−1

(
Rh

2m

dP

dx

)1/n

(4.3)

γ̇darcy = 4

(
3n+ 1

4n

) 1
n−1

(
Udarcy√
8 k ψ ϕ

)
(4.4)

here, η [Pa·s] is the shear viscosity, γ̇ [s−1] is the shear rate, ψ is the tortuosity, ϕ is the

porosity, m and n are model parameters of power-law fluid. The correlation between

Darcy shear rate and Darcy velocity is defined using shift factor (α) as [18, 58, 177, 184,

206],

γ̇darcy = α
Udarcy√
k ϕ

(4.5)

here,
√
k ϕ is the microscopic characteristic pore length [184]. The empirical shift factors

are introduced in the definition of the porous medium’s shear rate in order to fit the

Darcy viscosity (ηdarcy) to the shear viscosity (η) [231].

Balhoff and Thompson [17] developed a macroscopic model to study the effect of fluid

rheology and bed morphology on the flow of Ellis model fluids based on a pore-network

model. Berg and Wunnik [18] carried out pore-scale simulation in sandstone rock and

pointed out the shortcoming of Cannella or Blake–Kozeny equation for correlating shear

rate with the Darcy viscosity using empirical shift factor (α). Zami-Pierre et al. [227]

studied the effect of the depletion layer at pore-boundary on quantification of the Darcy

viscosity. Pore network modelling has been used to study the effect of shift factor on

in-situ rheology in the porous medium [121, 196].
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Rodŕıguez de Castro and Agnaou [58] numerically studied the effect of shear rheol-

ogy model (power-law, Carreau model and Herschel-Bulkley model), pore size distribu-

tion, and geometrical variability on Darcy shear rate and Darcy velocity in the porous

medium. Rodrıguez de Castro and Radilla [177] proposed a framework to relate the shear

viscosity of Carreau model fluids with the Darcy viscosity in fractured porous medium.

But, the authors neglected the low-shear-viscosity plateau of the Carreau model in the

formulations for Darcy viscosity, given that only moderate and high shear rates were

involved in their experiments. Zhang et al. proposed a correlation for α for the flow

of the Cross model fluid in a rough fracture and showed that α depends on geometric

tortuosity [231]. Zamani et al. [225] showed that α is a function of the porous medium

properties (i.e. coordination number, tortuosity, aspect ratio) and rheology of the fluid.

The significance of the shift factor is established for non-Newtonian fluid flow in the

porous medium [18, 58, 65, 177, 194, 200, 226, 227, 231]. We note that the values of α

vary three orders of magnitude in literature [18, 58, 194].

The oversimplified approach to estimate the shear rate (e.g. avoiding pore-size distri-

bution and effect of non-circular cross-sections [225]) and neglecting heterogeneity of

porous medium in these models make the estimation of Darcy viscosity and Darcy shear

rate of non-Newtonian fluids inconsistent.

Majority of the fluids in porous medium flow at low shear values. The power-law model

fails to describe Newtonian behaviour (i.e. constant viscosity plateau) of polymeric

solution at low-shear values. Ellis model gives extremely low viscosity values at a high

shear rate [130, 198]. Carreau [21], Carreau-Yasuda [222], Cross [43], Meter [134] models

correctly depicts S-shape type shear thinning behaviour (i.e. Newtonian plateau at low as

well as high shear values and decreasing viscosity at intermediate shear values) of many

polymeric solutions [177, 196]. Thus, equations to determine macroscopic (i.e. upscaled)

Darcy viscosity, Darcy shear rate, Darcy shear stress using measurable parameters and

without the shift factor (α) are needed for the flow of a generalised Newtonian fluid and

viscoelastic fluid in a porous medium.

The flow of polymeric fluids through simple geometry (such as a periodic array of cylin-

ders, disorder porous medium) is previously studied by numerically simulating gener-

alised Newtonian fluid (i.e power-law, Carreau, Cross model etc.) and viscoelastic fluid

(i.e. FENE, PTT, Oldroyd-B etc.) [4, 6, 39, 42, 51–53, 68, 71, 82, 108, 119, 127, 140, 154,
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172, 174, 178, 202, 220, 227, 228, 235]. The experiments, as well as numerical results,

have shown viscoelastic instability at low Reynolds number for non-Newtonian fluid flows

in porous media [32, 33, 51, 54–59, 67, 80, 106]. However, numerical simulation stud-

ies of Meter model fluid (GNF) and Phan-Thien-Tanner model fluid (viscoelastic) flow

through a heterogeneous porous medium such as sandstone is absent in the literature.

4.1.2 Present study

To address the above discrepancies, we propose a tortuous Bundle-of-Capillaries model

for the flow of non-Newtonian fluids described by the Meter model and the Phan-Thien-

Tanner model in Section 4.3. The proposed Bundle-of-Capillaries model (hereafter re-

ferred to as BCM) for non-Newtonian fluids takes into account the geometric variabil-

ity of the porous medium, the pore-size distribution, and the S-shape type rheological

behaviour (using the Meter model) and viscoelastic behaviour (using the linear Phan-

Thien-Tanner model) of non-Newtonian fluids. We derive upscaled Darcy viscosity,

effective Darcy shear rate, effective Darcy shear stress, effective Reynolds number and

effective Péclet number from pore-scale shear viscosity. We validate the proposed method

using experimental data from the literature and pore-scale direct numerical simulations

in Section 4.5.2 and 4.5.3, respectively. We also numerically simulate the flow of shear

stress-dependent Meter model fluids and viscoelastic linear Phan-Thien-Tanner (PTT)

model fluids in a heterogeneous porous medium using OpenFOAM and validate the

numerical simulation approach using experimental microfluidic observations in Section

4.5.3.1. Section 4.5.3.2 compares results obtained by direct numerical simulation with

the BCM approach and shows that the BCM captures the contribution of viscosity in

the active flow of the polymeric fluid in the pore-space of porous media.

4.2 Mathematical formulation

4.2.1 Governing equations

The continuity equation (Eq. 4.6), momentum equation (Eq. 4.7) and constitutive

equation of fluids describe single-phase, incompressible, laminar flow of non-Newtonian

fluids through void space [21].
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∇ · u = 0 (4.6)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + ∇ · τ (4.7)

here, P [Pa] is the pressure, t [s] is the time, u is the velocity vector, and τ is the

stress tensor. The constitutive equation of the stress tensor of non-Newtonian fluid can

be defined considering polymeric fluid as a generalised Newtonian fluid (i.e. power-

law, Bingham, Cross, Carreau, Meter model etc.) or viscoelastic fluid (i.e. Oldroyd-B,

Giesekus, FENE, PTT etc.) [8, 21]. We note that these constitutive equations of non-

Newtonian fluids have been developed based on an empirical approach with simplified

assumptions, thus, they have their own limitations [20, 22]. The Meter model (gener-

alised Newtonian fluid) [134] and linear Phan-Thien–Tanner model (viscoelastic fluid)

[204] have an analytical solutions for laminar flow through a circular geometry [147, 190].

We used above model in the present work as analytical solutions [147, 190] helped us

develop bundle of capillary model for non-Newtonian fluids as described in section 4.3.

4.2.1.1 Meter model

The constitutive equation of a shear stress-dependent generalised Newtonian fluid as

described in the section 2.2 of Chapter 2 is [130, 134, 190]

τ = 2 η(τ)D = η(τ) (∇u + (∇u)T ) (4.8)

Where η(τ) is the shear viscosity of the fluid, which is a function of shear stress. The

magnitude of the rate of strain tensor and stress tensor for shear-dominated flow is as

follows [22, 130, 134]

γ̇ =

√
γ̇ : γ̇

2
=

√
2D : D (4.9)

τ =

√
τ : τ

2
=

√
η γ̇ : η γ̇

2
= η

√
(γ̇ : γ̇)

2
= η

√
(2D : D) (4.10)
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here, γ̇ = (∇u + (∇u)T ) and D = 1
2 γ̇

We define S-shape type non-Newtonian rheology of the polymeric solution using shear

stress-dependent Meter model (Eq. 4.11 and Eq. 2.2 of Chapter 2) [134, 190],

η = η∞ +
η0 − η∞

1 +

(
τ

τm

)S
(4.11)

where, η [Pa·s] is the shear viscosity at given shear stress (τ); η0 [Pa·s] is the zero shear

viscosity; η∞ [Pa·s] is an infinite shear viscosity; τm [Pa] is the shear stress of a non-

Newtonian fluid at which the viscosity of the solution drops to η0+η∞
2 ; S is the shear

stress-dependent exponent of Meter model which represent the slope of shear thinning or

shear thickening fluid. The characteristic time λ [s] of Meter model fluid is λ = η0+η∞
2 τm

.

If η0 = η∞, Meter model converts to Newtonian fluid. The Meter model represents a

shear thinning fluid (if η0 > η∞), and shear thickening fluid (if η0 < η∞). The analytical

solution for radial velocity profile (u(r)) and average velocity (U) of a fluid flow obeying

Meter model equation in a circular geometry of radius (R) at pressure gradient of dP
dx

are derived in section 2.2.1 of chapter 2 and as given in Eq. 4.12 and 4.13, respectively

[190].

u(r) = −dP
dx

1

4 η0 η∞

R2

(
η0 + (η∞ − η0) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

R

2 τm

)S
))

− r2

(
η0 + (η∞ − η0) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

r

2 τm

)S
)),

(4.12)

U = −dP
dx

R2

8 ηeff
(4.13)

Here, ηeff (Eq 4.14, Eq. 2.26 of Chapter 2) is the effective viscosity of the fluid for a

given set of fluid flow condition [190].
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1

ηeff
=

1

η0 η∞

(η∞ − η0) 3F2

(
1,

2

S
,

4

S
;
S + 2

S
,
S + 4

S
;−η∞

η0

(
−dP
dx

r

2 τm

)S
)

+ 2 (η0 − η∞) 2F1

(
1,

2

S
;
S + 2

S
;−η∞

η0

(
−dP
dx

r

2 τm

)S
)

− η0

,
(4.14)

where, 2F1(a, b; c; z) and 3F2(a, b, c; d, e; z) are the hypergeometric function. The hypergeom

function of MATLAB can be utilised to solve hypergeometric function, which is compu-

tationally expensive. Thus, Shende et al., [190] proposed computationally inexpensive

Eq. 4.15 in section 2.2.3 of chapter 2 to determine the approximate effective viscosity

of the Meter model fluid flow.

ηeff = η∞ +
η0 − η∞

1 +

(
0.8R

2 τm

dP

dx

)S
(4.15)

Shende et al. [190] in section 2.2.3 of chapter 2 have shown that effective viscosity helps

to estimate the Reynolds number of non-Newtonian fluid through a circular geometry

correctly.

4.2.1.2 Linear Phan-Thien and Tanner (PTT) model

The constitutive equations of the affine version of the linear PTT viscoelastic model

proposed by Phan-Thien and Tanner are [45, 51, 147, 163, 204]

f(tr(τ )) · τ + λ

(
∂τ

∂t
+ u ·∇τ − τ · ∇u− (∇u)T · τ

)
= ηp(∇u + (∇u)T ) (4.16)

here, λ is the relaxation time, ηp is the polymeric fluid contribution to the zero shear

viscosity (η0). Here, η0 = ηp + ηs and ηs is the solvent viscosity [45]. τ is the polymeric

extra-stress tensor. The stress invariants function f(tr(τ )) in above equation for PTT

follows linear form as given in Eq. 4.17 [147, 204],
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f(tr(τ )) =

[
1 +

ε λ

ηp
tr(τ )

]
(4.17)

The constant parameter ε (0 ≤ ε ≤ 1) represents the extensional properties [45] of the

viscoelastic fluid.

Oliveira and Pinho [147] derived an exact analytical solution for radial velocity profile

(Eq. 4.18) and average velocity (Eq. 4.19) for linear PTT model fluid flow through a

circular pipe.

u(r) = −dP
dx

(
R2 − r2

)
4 ηp

1 +

ε λ2
(
dP

dx

)2

4 η2p

(
R2 + r2

)
 (4.18)

U = −dP
dx

R2

8 ηp

1 +

ε λ2R2

(
dP

dx

)2

3 η2p

 (4.19)

Similar to the approach adopted by [183, 190] and in section 2.2.3 of chapter 2, on

equating Eq. 4.19 with Hagen–Poiseuille equation, we obtain the effective viscosity

(ηeff) of linear PTT fluid flow as,

1

ηeff
=

1

ηp

(
1 +

ε λ2R2
(
dP
dx

)2
3 η2p

)
(4.20)

4.3 Bundle-of-Capillaries model (BCM) for non-Newtonian

fluids

We assume that N number of tortuous capillaries of varying radii and length L are kept

in parallel in a porous medium of size (d × d × L), here, a cross-sectional area of the

medium is A = d2 . The bundle of circular capillaries consists of a set of different radii

and each radius (ri) appearing Ni times in a porous medium. The relative frequency

(ni) of a radius (ri) in a bundle of capillaries is ni = Ni∑
Ni

and
∑

ni = 1. Thus, porosity

(ϕ) of the porous medium will be,
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ϕ =
Vv
V

=

∑
ni π r

2
i

d2
, (4.21)

where, Vv is the volume of voids, and V is the total volume. We note that due to the

heterogeneous nature, pore-size distribution of the porous medium cannot always be

defined using a single probability density function (e.g. log-normal distribution, Weibull

distribution etc.). Thus, we have not defined pore-size distribution using any functional

form.

4.3.1 Pore-correction coefficient (βp)

We note that the micro-capillaries in the porous medium follow tortuous paths [178] and

the non-circular cross-sectional area of a single micro-capillary varies along its path. To

account for this variation, we define hydraulic radius (rh,N) of a single micro-capillary

during the flow of Newtonian fluid as rh,N = βp r, where, βp is the pore-correction

coefficient of a micro-capillary and r [m] is the inscribed pore radius. Adopting Hagen-

Poiseuille equation, we define the average pore velocity (UN) of a Newtonian fluid in a

bundle of micro-capillaries in parallel as,

UN =
∑

ni ui =
1

8µ

dP

dx

∑
ni (βp ri)

2, (4.22)

here, ui [m/s] is the average velocity of fluid in a micro-capillary of radius ri, and µ

[Pa·s] is the Newtonian viscosity. The tortuosity (ψ) of the porous medium is ψ =
Lg

Ls
,

where, Lg is the average flow path of a porous medium and Ls is the straight line length

[81]. Thus, the average velocity of a Newtonian fluid (i.e. Darcy velocity) in the porous

medium will be,

UN,D = ϕ
UN

ψ
=

ϕ

8µψ

dP

dx

∑
ni (βp ri)

2, (4.23)

Equating Eq. 4.23 with Darcy’s law (UN,D = k
µ

dP
dx ) gives the intrinsic permeability (k)

as,
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k =
ϕ

8ψ

∑
ni (βp ri)

2 (4.24)

Eq. 4.24 suggests that βp of the porous medium can be determined using measurable

parameters (i.e. permeability (k), porosity (ϕ), and the pore-size distribution). We

note that in the parallel bundle of micro-capillaries, flow through large pore dominates

[24, 117]. On the contrary, in reality, the small pores in porous medium control the total

flow. The pore-correction coefficient (βp), which is an averaging parameter of the pore

radius, helps balance this variation.

4.3.2 Fluid-correction coefficient (βf)

Many non-Newtonian fluids used in industries are polymer solutions. Thus, they are

susceptible to adsorption, pore-clogging and deposition in the pore spaces [227]. Ad-

sorption of polymer on the surface of a micro-capillary alters the pore-geometry of the

micro-capillary. Also, the elastic properties of non-Newtonian fluids stretch or con-

tract polymeric molecules in the pore space [94, 106]. This creates additional resis-

tance to the non-Newtonian fluid flow through tortuous micro-capillaries. Thus, we

define the hydraulic radius of micro-capillary for the flow of non-Newtonian fluids as

rh,NN = βf rh,N = βf βp r, where, βf is the fluid-correction coefficient of micro-capillary

due to fluid rheology during non-Newtonian fluid flow.

The analytical solution for average velocity (uNN) of a non-Newtonian fluid in a micro-

capillary of the hydraulic radius (rh, NN) is,

uNN =
(βf βp r)

2

8 ηeff

dP

dx
, (4.25)

here, ηeff for Meter model fluid will be as in Eq 4.26 and ηeff for linear PTT viscoelastic

model fluid will be as in Eq. 4.27,

ηeff = η∞ +
η0 − η∞

1 +

(
0.8 (βf βp r)

2 τm

dP

dx

)S
(4.26)
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1

ηeff
=

1

ηp

(
1 +

ε λ2 (βf βp r)
2
(
dP
dx

)2
3 η2p

)
(4.27)

Note that ηeff is a function of the radius of micro-capillary, thus, an average pore velocity

of non-Newtonian fluids (UNN) in a bundle of parallel capillaries is,

UNN =
1

8

dP

dx

∑ ni (βf βp ri)
2

ηeff,i
, (4.28)

The average velocity (i.e. Darcy velocity) of non-Newtonian fluids in a tortuous porous

medium will be,

UNN,D = ϕ
UNN

ψ
=

ϕ

8ψ

dP

dx

∑ ni (βf βp ri)
2

ηeff,i
, (4.29)

On equating Eq. 4.1 with Eq. 4.29, we get hydraulic conductivity or conductance (K)

of a porous medium as,

K =
k

ηdarcy
=

ϕ

8ψ

∑ ni (βf βp ri)
2

ηeff,i
(4.30)

Substituting Eq. 4.24 in Eq. 4.30, we obtain the non-Newtonian fluid’s upscaled Darcy

viscosity as follow,

ηdarcy =

∑
ni (βp ri)

2∑ ni (βf βp ri)
2

ηeff,i

(4.31)

The volumetric flow rate (QNN,D) of the non-Newtonian fluid in a porous medium is,

QNN,D = d2 UNN,D =
d2 ϕ

8ψ

dP

dx

∑ ni (βf βp ri)
2

ηeff,i
, (4.32)

We obtain the volumetric flow rate of the non-Newtonian fluid in terms of the pore

radius by substituting Eq. 4.21 in Eq. 4.32
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QNN,D =
1

8ψ

dP

dx

∑ ni (βf βp ri)
2

ηeff,i

∑
ni π r

2
i (4.33)

Eq. 4.29 and Eq 4.33 suggest that the βf can be determined using measurable parameters

(i.e. Darcy’s flow rate/velocity, pore-size distribution, porosity, tortuosity, and model

parameters of a non-Newtonian fluid).

4.3.3 Effective (upscaled) parameters

Effective viscosity of the fluid is the representative viscosity (i.e. upscaled viscosity)

for a given set of flow conditions in a circular capillary [190]. Similarly, effective shear

rate and effective shear stress are representative values (i.e. upscaled Darcy values) for

a given set of flow conditions in a porous medium, which take into account pore-size

distribution and pore-scale variability. We define the effective shear stress (τeff) in the

porous medium during the non-Newtonian fluid flow as,

τeff =
∑

ni τi =
1

2

dP

dx

∑
ni (βf βp ri), (4.34)

Here, τi is the wall shear stress in the micro-capillary of radius ri. Similarly, the effective

shear rate (γ̇eff) in the porous medium is defined as in Eq. 4.35,

γ̇eff =
∑

ni
τi
ηeff,i

=
1

2

dP

dx

∑ ni (βf βp ri)

ηeff,i
(4.35)

The Reynolds number of the porous medium is generally defined using particle diameter

[151, 184]. It is highly unlikely to correctly define the particle diameter of porous media

such as rocks. Furthermore, Reynolds number of fluid flow in a porous medium is a

pore-scale property which must be defined using the geometry of the pore-space. Thus,

adopting Shende et al. [190] approach, we define the effective Reynolds number (Reeff)

and the effective Péclet number (Peeff) of a fluid flow in a porous medium as in Eq. 4.36

and Eq. 4.37, respectively,

Reeff =
∑

ni Rei = 2 ρ
∑ ni ui (βf βp ri)

ψ ηeff,i
(4.36)
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Peeff =
∑

ni Pei =
∑ ni ui (βf βp ri)

ψDm
(4.37)

Here, Rei and Pei are the Reynolds number and Péclet number of the flow in micro-

capillary of radius ri, respectively. Dm [m2/s] is the coefficient of molecular diffusion.

We note that Eq. 4.34, 4.35, 4.36, and 4.37 can be used to estimate upscaled effective

Darcy shear stress, effective Darcy shear rate, effective Reynolds number and effective

Péclet number of the Newtonian fluid, respectively, by equating ηeff,i = µ and βf = 1.

We note that the effective parameters defined above take into account the pore-scale

variation in these values due to variation in the pore-size in the porous medium, thus,

these values could be considered as representative values (i.e. upscaled values) for a

given set of conditions.

4.4 Numerical approach

We simulated the flow of non-Newtonian fluid modelled using Meter model and viscoelas-

tic linear PTT model through void spaces using finite volume method based OpenFOAM

C++ libraries [99] and compared the results with a bundle-of-capillary model (BCM)

for non-Newtonian fluids. The volume-averaged values over a porous medium domain

obtained after numerical simulation are considered as upscaled value for comparison to

the Darcy scale.

4.4.1 Meter model

To implement Meter model in OpenFOAM, we convert the Meter model in terms of

shear rate by substituting τ = ηm γ̇ in Eq. 4.11, where ηm =
η0 + η∞

2
is the viscosity

of the fluid at τm. This leads to a corresponding change in the exponent of the Meter

model to S−1. The Meter model will be as in Eq. 4.38,

η = η∞ +
η0 − η∞

1 +

(
η0 + η∞

2 τm
γ̇

)S−1 (4.38)
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Similar to the procedure adopted in section 3.3.6 of chapter 3 to simulate the single

phase flow of a shear thickening fluid, the continuity equation (Eq. 4.6), momentum

equation (Eq. 4.7) along with Meter model equation (Eq 4.38) was solved using Open-

FOAM 7. We used the PIMPLE (i.e. merged PISO-SIMPLE) algorithm of OpenFOAM

to solve the pressure-velocity coupling with 8 nOuterCorrectors and to increase the

accuracy of the results [142]. The Semi-Implicit Method for Pressure-linked equation

(SIMPLE) algorithm [153] can calculate only steady-state solutions, on the contrary,

Pressure-Implicit Splitting Operator (PISO) algorithm takes into account velocity cor-

rection term which was neglected in SIMPLE algorithm [92, 142]. Readers are refers

to the [76, 92, 142, 153] for more details on SIMPLE, PISO and PIMPLE algorithms.

The second-order implicit backward method was used to discretise the time scheme of

the governing equations. The gradient term and divergence term were discretised us-

ing Gauss linear scheme of OpenFOAM, which uses standard finite volume Gaussian

integration. The Gauss linear uncorrected scheme of OpenFOAM was employed to dis-

cretise the Laplacian term of governing equations. The system of equations obtained

after discretisation was solved using iterative matrix solvers. We computed the pressure

field using Generalised Geometric-Algebraic Multi Grid (GAMG) solver with diagonal

incomplete-Cholesky (symmetric) smoother. The velocity profile was determined using

smoothSolver of OpenFOAM with a Gauss-Seidel smoother. We applied the convergence

criteria of 10−6 for pressure and velocity field. The time-step of 10−7 s was applied to

maintain a Courant number (C) below 0.01 during the simulation. The Courant number

is defined as C = u∆t
∆x , where, ∆t is the time step and ∆x is the length interval. The

magnitude of shear rate and shear stress in flow field was determined using Eq. 4.9 and

Eq. 4.10, respectively.

4.4.2 Linear Phan-Thien-Tanner model

We used RheoTool [162], which is implemented in the OpenFOAM, to simulate linear

PTT fluid flow. RheoTool uses the Semi-Implicit Method for Pressure-linked equation

(SIMPLEC) algorithm for pressure-velocity coupling [163]. Pimenta and Alves [163]

developed a new method for stress-velocity coupling which is second-order accurate and

implemented in the RheoTool [162]. We used preconditioned conjugate gradient solver to

estimate the pressure and velocity field, whereas, preconditioned (bi-) conjugate gradient

(PBiCG) solver was utilised to estimate the stress field. The Gauss linear corrected
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scheme was used to discretise the Laplacian term and Gauss linear scheme to discretise

the gradient and the divergence term of governing equations. Convergent and Universally

Bounded Interpolation Scheme for the Treatment of Advection (CUBISTA) scheme was

used for the convective term [7, 162, 163] of the governing equation. Readers are referred

to [162, 163] for detailed information on available methods to solve linear PTT model

using RheoTool.

4.4.3 Numerical domain and boundary conditions

We conducted three sets of numerical experiments. In the first set, we used microfluidic

experimental data of Galindo-Rosales et al. [80] to validate the numerical simulation

approach adopted in the present work. In the second set, we simulated the Meter model

fluid flow through a 2D porous medium (Fig 4.1c) over a pressure gradient range and

compared it with a BCM. In the third set, we simulated Newtonian fluid, Meter model

fluid, and linear PTT fluid flow through heterogeneous Mt. Simon sandstone (Fig 4.1e)

and compared them with BCM. Fig 4.1 shows the porous medium domain’s geometry

along with pore-size distribution and boundary conditions. We applied wall boundary

condition at the top, bottom, front, back and solid surface of 3D domain with no-slip

velocity and zero fixed flux pressure. The right boundary had total pressure and zero

flux corrected velocity boundary conditions.

To validate the numerical simulation approach adopted in the present work for the flow

of Meter model fluid and linear PTT fluid in a porous medium, we used experimental

data of Galindo-Rosales et al. [80]. Similar to Galindo-Rosales et al. experiments, we

simulated flow of polyacrylamide (PAA, 50 ppm) fluid through symmetric micro-channel

(Fig 4.1a.) in 3D over a range of Deborah numbers (0.01 - 5). We applied a constant

injection rate boundary condition at the inlet (left boundary). Readers are referred to

[80] for more details on experiments. Similar to [80], we defined Deborah number as

De = λU
l , where, λ is the longest relaxation time and l is the characteristic length scale.

In the second set of numerical experiments, we simulated the flow of the 0.50% PAA

fluid of [151] modelled using Meter model through a 2D porous medium (ϕ = 0.38) over

a range of pressure gradient values (102 - 108 Pa/m). We applied a constant pressure

gradient at the left boundary (inlet) of the 2D porous medium (Fig. 4.1c).
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Figure 4.1: (a) Symmetric micro-channel with 20 repetitive elements of [80] (b) with
size : L1 = 106 µm, L2 = 32 µm, W1 = 108 µm, W2 = 40 µm, H = 103 µm, (c)
2D porous medium of size 726 µm × 440 µm, (d) pore-size distribution of 2D porous
medium, (e) segmented Mt. Simon sandstone of size 842.8 µm × 842.8 µm × 842.8
µm, and (f) pore-size distribution of Mt. Simon sandstone. Fluid flows from left to
right. No-slip condition at solid surfaces and boundaries (except at inlet and outlet).

In the third set, we simulated the flow of Newtonian fluid (water, µ = 0.001 Pa·s) and

50 ppm PAA fluid of [80] modelled using Meter model and linear PTT model through

heterogeneous Mt. Simon sandstone (ϕ = 0.24) of [110] in 3D. We applied constant

injection velocity at the left boundary of Mt. Simon sandstone.

4.4.4 Image processing and visualisation

We used Fiji ImageJ software [185] to process images and Paraview 5.7.0 software to

visualise and post-process the fluid flow profile data. We used micro-CT scan data of

Mt. Simon sandstone of Kohanpur et al. [110] which is available at the Digital Rock

portal [166]. The details of the micro-CT scan of Mt. Simon sandstone (original size

3.363 mm3) is given in Kohanpur et al. [110]. The voxel size of the segmented micro-

CT sample is 2.8 µm. We took a subsample of size 301×301×301 voxel (i.e. 842.8

µm × 842.8 µm × 842.8 µm) from original Mt. Simson sandstone for present work

to minimise computational expenses. The pore-spaces from images were extracted and

saved in the required stereolithography (STL) format using the ‘3D Viewer’ plugin [185]
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of imageJ. The mesh in the pore-space of the extracted STL file was generated using

snappyHexMesh module of OpenFOAM. We determined the pore-size distribution and

porosity of the porous medium using the method proposed by Rabbani and Salehi [167].

We computed the fluid flow rate at the right boundary of the porous medium using the

SurfaceFlow filter of the Paraview, which integrates the fluid’s velocity over the surface

at the outlet. We computed average velocity through the porous medium by dividing

the estimated flow rate by the total cross-section area of the porous medium at the

outlet boundary. We used the “Integrate variable” filter of Paraview to estimate pore-

scale volume-averaged velocity, shear rate, shear stress, and viscosity over the porous

medium domain. These volume-averaged values can be considered as upscaled values.

We simulated the flow of water through porous medium using OpenFOAM to determine

the intrinsic permeability of the porous medium (using Eq. k = UN µ
dP
dx

).

4.4.5 Assumptions and limitations

The Meter model is an empirical equation that gives the best fit of shear viscosity-

shear stress data. These data are measured using a rheometer and are susceptible to

measurement errors. The Meter model equation does not consider viscoelasticity (e.g.

relaxation time, normal stress, and shear modulus) of the fluids. The linear PTT model

defines the extra stress tensor of the fluid flow theoretically. For instance, the relaxation

time of non-Newtonian fluid varies with the applied stress; however, the linear PTT

model considers the longest relaxation time in its formulations. The viscoelastic fluid

flow simulation modelled using PTT has numerical stability issues. We have used the

both-side-diffusion technique implemented in RheoTool to address the stability issue in

PTT fluid flow simulations. The readers are referred to [37], which compares differ-

ent approaches available in the literature to stabilize viscoelastic fluid flow simulation.

Readers are also referred to [8, 21, 162, 163] for detailed information on the assumption

and limitation of GNF and viscoelastic fluid flow simulations. Although these models

are developed based on certain assumptions and have limitations, they provide certain

understandings about the fluid dynamics of non-Newtonian fluids.
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Figure 4.2: Comparison of experimental radial velocity profile of [69] with analytical
solution of Meter model (Eq. 4.12) and linear Phan-Thien-Tanner (Eq. 4.18) during
flow of a 0.125% polyacrylamide (PAA) fluid through a circular tube (radius 0.05 m)
[Meter model parameters: η0 = 0.2257 Pa·s, η∞ = 0.000896 Pa·s, τm= 0.2381 Pa, S =

1.2 [190]; linear PTT model parameters: ηp = 0.2257 Pa·s, λ = 0.47 s, ε = 0.65]

4.5 Results and discussion

4.5.1 Analytical solutions

Fig. 4.2 shows that an experimental velocity profile of Escudier et al. (2005) [69]

gave a good fit with the analytical solution of MM (Eq. 4.12) and linear PTT (Eq.

4.18) models for radial velocity profile at the pressure gradients of 37.5 Pa/m during

the flow of 0.125% polyacrylamide through the pipe of radius 5 cm. We note that the

rheological parameters of the Phan-Thien-Tanner model were absent in the [69] work;

thus, we considered zero-shear viscosity (η0) of PAA as polymer viscosity of the linear

PTT ηp = 0.2257. The characteristic time of Meter model [190] (i.e. λ = η0+η∞
2 τm

= 0.47

s) was considered as the longest relaxation time of PAA fluid. The ε parameter of linear

PTT model was considered as the fitting parameter for velocity profile. ε value of 0.65

gave a good fit with an experimentally observed velocity profile of [69] as shown in Fig

4.2.

These results imply that the Meter model parameters and the Meter model’s analytical

solution for velocity profile can be utilised to determine the unknown parameters of the

linear PTT model. Thus, we have adopted the same approach to determine linear PTT

model parameters from Meter model parameters of PAA fluid in the subsequent work.
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4.5.2 Validation of BCM using experimental observation

We utilised experimental data of 0.5% Separan AP30 (polyacrylamide, PAA) fluid flow

in a packed bed of glass beads [151] to validate the Bundle-of-Capillaries model (BCM)

for non-Newtonian fluids approach proposed in the present work. Fig. 4.3a shows a

perfect fit of shear viscosity data of [151] with the Meter model (Eq. 4.11). The Meter

model parameters and linear PTT model parameters are given in the description of the

Fig. 4.3. Linear PTT parameters were determined using Meter model parameters and

comparing the MM and linear PTT model’s analytical solution described in Section

4.5.1. Due to the absence of the packed beds pore-size distribution and tortuosity data

in [151], we utilised the sand-pack pore-size distribution of [121] as shown in Fig 4.3b and

sand-pack tortuosity value of 1.4 [120] in the present work. We computed βp = 11.56 of

the sand-pack using Eq. 4.24 and adopting permeability value (k = 3.57 × 10−9 m2) of

[151] packed bed. The estimated βf = 0.79 for Meter model fluid and βf = 0.75 for linear

PTT model implies that the non-Newtonian fluid alters geometry of the pore-structure

due to either adsorption, deposition of polymers/colloidal suspension, pore blockage or

viscoelastic instability. We note that the βp and βf are pore-scale parameters which

take into account the pore-scale variability due to geometry of the pore space and fluid

rheology, thus, different porous medium and fluids will have different β values.

Fig. 4.3c and Fig. 4.3d depict that the Darcy velocity estimated using Eq. 4.29 and

Darcy viscosity estimated using Eq. 4.31 in the packed bed match closely with the ex-

perimentally measured data of Park et al. [151]. Furthermore, Fig. 4.3e depicts a good

fit of the experimentally measured shear viscosity - shear stress data (measured using

rheometer) [151] with the Darcy viscosity-effective shear stress estimated using BCM

(Eq. 4.31 and Eq. 4.34). Likewise, Fig. 4.3f shows a good match of the experimental

shear rate-shear stress with an effective Darcy shear rate-effective Darcy shear stress

estimated using Eq 4.34 and Eq 4.35 of BCM respectively. These results are an im-

provement to the reported methods in literature (e.g.. [59, 121, 151, 176, 177]) wherein

the shift factor α was applied to match the shear rate-dependent viscosity measured

using rheometer with the Darcy viscosity in a porous medium. The mismatch observed

in the previous works was due to the simplified assumption of a Bundle-of-Capillaries

model based Carman–Kozeny equation that does not consider the pore-size distribution
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Figure 4.3: (a) Experimental shear viscosity-shear stress of 0.5% Separan AP30 fluid
of [151] modelled using Meter model (MM, Eq. 4.11), (b) sandpack network pore size
distribution of [121], (c) experimentally measured Darcy velocity as a function of pres-
sure gradient [151] compared with velocity estimated using Eq. 4.29, (d) experimental
Darcy viscosity compared with Darcy viscosity estimated using Eq. 4.31, (e) experimen-
tal shear viscosity as a function of shear stress (measured using rheometer) compared
with Darcy viscosity and effective shear rate estimated using Eq. 4.31 and Eq. 4.35,
and (f) experimental shear rate as a function of shear stress (measured using rheometer)
compared with the effective shear rate and effective shear stress estimated using Eq.
4.34 and Eq. 4.35. BCM-MM: Bundle-of-capillary model for Meter model fluid; BCM-
PTT: Bundle-of-capillary model for linear Phan–Thien—Tanner model fluid. Meter
model parameters: η0 = 4.35 Pa·s, η∞ = 0.001 Pa·s, τm= 0.718 Pa, S = 1.471; linear

PTT model parameters: ηp = 4.35 Pa·s, λ = 3 s, ε = 0.6.

and alteration in the effective pore radius due to polymeric adsorption, desorption and

viscoelasticity.

The analytical solution of linear PTT model derived by [147] does not consider the

contribution of solvent viscosity. This could be the reason for the slight deviation of

linear PTT based BCM estimate from the experimental observations, as shown in Fig.

4.3. However, Meter model based BCM estimate closely matches with experimental

observations.

Fig. 4.4 compares effective Reynolds number estimated using Eq. 4.36 with the volu-

metric flow rate of MM fluid and linear PTT fluid in a porous medium estimated using
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Figure 4.4: Effective Reynolds number (Reeff) estimated using BCM (Eq. 4.36) over
a range of experimentally observed flow-rate values of [151] during flow of 0.5% PAA

fluid through a packed bed.

Eq. 4.33. Fig. 4.4 implies that even though the effective Reynolds number of the non-

Newtonian fluid is lower than 1.67, the volumetric flow rate is non-linearly dependent

on the effective Reynolds number. This non-linearity is due to the elasticity of non-

Newtonian fluids [59, 94, 106]. The proposed BCM correctly captures changes observed

during non-Newtonian fluids’ flow due to elasticity through βf.

Park et al. [151] estimated Reynolds number based on particle diameter ranged from

6 × 10−5 to 0.93 for packed bed, on the contrary effective Reynolds number estimated

using Eq 4.36 of BCM for the same experimental data ranged from 7.2 × 10−5 to 1.67

(Fig. 4.4). Park et al.’s Reynolds number is based on representative particle diameter;

on the contrary, BCM based Reynolds number is an average Reynolds number of the

fluid in capillaries. This suggests that Reeff estimated using BCM is representative Reeff

for non-Newtonian fluids in porous media compared to the Re formulation developed

based on the particle diameter. Rodŕıguez de Castro and Radilla [176] experimentally

observed similar non-linear relationship between Reeff and volumetric flow rate for non-

Darcy flow of xanthan gum fluids in the fractured granite and the Vosges sandstone.
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4.5.3 Direct numerical simulation (DNS)

4.5.3.1 Validation of numerical simulations

Galindo-Rosales et al. experimental measurements [80], during the flow of shear-thinning

50 ppm polyacrylamide (PAA) fluid in symmetric micro-channel, were used to validate

the numerical simulation approach adopted in the present work for the flow of Meter

model fluids and linear PTT model fluid in the porous medium. Fig. 4.5a shows a

statistically good fit of experimental shear viscosity data of [80] with the Meter model

(Eq. 4.11). The Meter model parameters and linear PTT parameters are given in the

description of Fig. 4.5. The characteristic time of the Meter model (0.054 s) was similar

to the relaxation time measured by Galindo-Rasales et al. using capillary break-up

extensional rheometer (CaBER). The parameter ε was determined using an analytical

solution of linear PTT and Meter model.

We adopted a 3D simulation domain similar to Galindo-Rosales et al. [80] (see Fig.

4.1a,b). The fine mesh with over 10 million mesh points was generated using snap-

pyHexMesh in the microchannel domain. We applied a constant injection rate at the

inlet and allowed the flow to reach statistically steady-state. Fig. 4.5b shows that ex-

perimentally observed pressure gradient-Deborah number closely matches the numerical

simulations of the Meter model and linear PTT model. However, the Meter model’s

streamline could not match the experimental observation of Galindo-Rosales et al. (see

Fig. 4.5). Linear PTT model takes into account the elasticity of the fluid; thus, Fig. 4.5

depicts that streamlines reported by Galindo-Rosales closely match with streamlines of

linear PTT model simulations for similar fluid flow conditions. Similar to experimental

observation, simulation using linear PTT model shows vortex formation even at lower

Deborah numbers. The vortex size increased at the corner with an increase in Deborah

number (see Fig 4.5f,g,h).

The linear PTT fluid simulation showed chaotic unsteady flow during the initial few

seconds with drastic variations in the shape and size of the vortex. However, after a

critical time linear PTT fluid reached a a statistically-steady state with a relatively

same vortex pattern (i.e. viscoelastic instability) at the corner. Movie clip 1 of the

supporting information (SI) of the published article [189] shows this transition of chaotic

viscoelastic instability from unsteady state to statistically-steady state instability using
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Figure 4.5: Comparison of the streamline data obtained after numerical simulation of
the flow of 50 ppm PAA fluid (modelled using Meter model and linear PTT model) in
symmetric microchannel geometry with the experimental streamline data reported by
Galindo-Rasales et al. [80] over a range of Deborah numbers. (a) Shear viscosity - shear
stress (50 ppm PAA solution, Meter model parameter: η0 = 0.11 Pa·s, η∞ = 0.0014
Pa·s, τm = 1.07 Pa, S = 1.2); linear PTT model parameters: ηp = 0.11 Pa·s, ηs = 0.001
Pa·s, λ = 0.054 s, ε = 0.3, ζ = 0.02. (b) Comparison of experimentally observed pres-
sure gradient as a function of Deborah numbers with numerical simulation of PAA fluid
modelled using Meter model and linear PTT model. (c,d,e) Experimentally observed
streamline snapshot of Galindo-Rosales et al [80]. (f,g,h) Streamlines of the flow ob-
tained after linear PTT model numerical simulations. (i,j,k) Streamline of the flow
obtained after MM model numerical simulations. (l,m) Velocity profile and magnitude

of stress profile at De = 0.25 during linear PTT model fluid.

velocity vector glyphs for linear PTT fluid flow at De of 0.25. Fig. 4.5l,m show the

profile of velocity and magnitude of stress at the micro-channel centre over a simulation

domain. Fig. 4.5l,m depict that velocity and magnitude of stress at the throat are much

larger than the other regions of the micro-channel domain.

These results imply that the linear PTT model gives a more accurate description of

pore-scale fluid flow behaviour than the Meter model. However, the average values of

the stress, shear rate, velocity, and pressure gradient in the linear PTT model and Meter

model’s simulation domain are comparable, with slight variation.
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Figure 4.6: The boxplot of the viscosity as a function of shear stress during flow of
Meter model fluid through 2D porous medium. The boxplot statistics is compared with
the values obtained using BCM approach (Eq. 4.31) and experimental shear viscosity

values (measured using rheometer). red plus signs indicate outlier values.

4.5.3.2 Polymeric fluid flow in a 2D porous medium

Fig 4.1c shows a pore structure of the 2D micro-porous medium of size 726 µm × 440

µm [139]. The pore size distribution (Fig 4.1d) and the porosity of 38% are as shown

in Fig 4.1d. We simulated the flow of 0.5% PAA fluid of [151] modelled using the

Meter model over a range of pressure gradient values (1.38×102 - 1.38×108 Pa/m). The

intrinsic permeability of the 2D porous medium estimated using simulation was 1.32

×10−12 m2. We estimated tortuosity of 1.04 for a 2D porous medium by measuring

the length of streamlines. We obtained βp of 0.5215 for the 2D porous medium using

pore-size distribution values as given in Fig 4.1d. The BCM-MM approach gave the

same volumetric flow rate as obtained using direct numerical simulations over a range

of pressure gradient values at the βf = 1.

Fig. 4.6 depicts the boxplot statistics observed for the distribution of viscosity values in

the 2D porous medium over a range of shear stress values. It also compares the mean

viscosity obtained using simulations with a viscosity estimated using BCM approach

(Eq. 4.31) and the experimental shear viscosity (measured using rheometer). The

experimental shear viscosity of PAA of [151] for a given shear value was estimated using

the Meter model. The figure shows many outlier viscosity values (marked in red plus

sign) at higher shear values. These values represent the fluid’s viscosity in the immobile
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Figure 4.7: (a) Immobile zone (marked in a black colour) and velocity profile in a
mobile zone (marked in red - white - blue colour) at a pressure gradient of 138 MPa/m,
and (b) average viscosity in the total porous medium domain, immobile (stagnant)

zone, and mobile zone obtained using BCM and DNS.

(stagnant) zones, which do not contribute to the fluid’s active flow in the porous medium.

It also shows that average viscosity values lie in the upper outlier region of the boxplot.

To explore further, similar to the approach adopted by de Anna et al. [57], we define the

immobile zone (or stagnant zone) as the pore space region which has pore-velocity two

orders of magnitude lower compared to the average pore-velocity in the porous medium

domain and rest of the pore-space region as the mobile zone. We segmented the porous

medium domain in the high pore-velocity mobile zone and low pore-velocity immobile

(stagnant) zone, as shown in Fig 4.7a. We observed that the immobile zone was 14%

of the porous medium domain over a range of pressure gradients (1.38 ×102 Pa/m,

1.38 ×104 Pa/m, 1.38 ×106 Pa/m, and 1.38 ×108 Pa/m). Fig 4.7 depicts that most

immobile zones are either dead-end of the pore-spaces or perpendicular to the applied

pressure gradient and active fluid flow direction. Fig 4.7b shows a comparison of the

average viscosity of the fluid in the porous medium domain, its mobile zone, its immobile

stagnant zone (obtained after numerical simulation) and the Darcy viscosity (estimated

using BCM approach) over a range of pressure gradients. These results show that the

average viscosity of the fluid in the immobile zone is very high compared to the mobile

zone. Moreover, the viscosity of the fluid in the mobile zones closely matches with the

Darcy viscosity of the fluid in the porous medium estimated using a BCM approach.

These results imply that the Darcy viscosity of the fluid represents the viscosity of a

fluid in the mobile zone of porous medium only.

4.5.3.3 Flow in Mt. Simon sandstone

To explore the effectiveness of the Bundle-of-Capillaries model for non-Newtonian fluids,

we simulated the flow of water, and 50 ppm PAA fluid of [80], modelled using Meter
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Table 4.1: OpenFOAM simulation based estimated parameters during flow of New-
tonian (water) and 50 ppm PAA fluid through Mt. Simon sandstone.

Parameter Water 50 ppm PAA
MM PTT

Average velocity (m/s) 1.47×10−4 1.47×10−4 1.47×10−4

Pressure gradient (MPa/m) 0.035 0.52 0.5
Intrinsic permeability (m2) 4.2×10−12 - -

model and linear PTT model, through Mt. Simon sandstone at a constant injection rate

of 10−4 m/s. Fig. 4.1e shows a segmented 3D subsample of Mt. Simon sandstone utilised

in the present work. In total 12,112,242 mesh point was generated in the pore-space of

Mt. Simon sandstone’s subsample using snappyHexMesh module of OpenFOAM. We

determined pore-size distribution (Fig. 4.1f) and porosity of (24 ± 4 %) of the Mt. Simon

sandstone. The porosity of 24% and the degree of anisotropy of 0.255 determined using

‘BoneJ’ plugin of ImageJ suggests that the sandstone subsample is heterogeneous. The

average length of streamlines of fluid flow in the Mt. Simon sandstone was 0.001089 m,

which gave tortuosity of 1.29.

Table 4.1 shows the estimated average velocity, pressure gradient, and permeability dur-

ing the flow of water, MM fluid, and linear PTT fluid through Mt. Simon sandstone.

The intrinsic permeability of 4.2×10−12 m2 estimated in the present work using Open-

FOAM simulation is close to the permeability of 3.8×10−12 to 4.15×10−12 m2 estimated

by Kohanpur et al. [110] using the lattice-Boltzmann method, pore-network method and

direct numerical simulations for the subsample of Mt. Simon sandstone. The computed

parameters given in the Table 4.1 are close to the field scale values [18].

Fig 4.8 shows the comparison of velocity fields and streamlines in 3D during the fully

developed steady-state flow of water, PAA fluid modelled using Meter model and linear

PTT model in Mt. Simon sandstone at a constant injection rate of 10−4 m/s. Fig 4.8

depicts that the flow paths adopted by Water and PAA fluid modelled using Meter model

are similar, on the contrary, the flow path adopted by PAA fluid modelled using linear

PTT model shows slight deviation compared to Meter model at same injection rate.

This slight deviation in the flow path is due to visco-elasticity of the PAA fluid, which

linear PTT could capture. Formation of the vortex in the pore-spaces was observed

during the PAA fluid flow modelled using linear PTT model at an applied injection

rate of 10−4 m/s. However, we did not observe vortex formation during the flow of

water and PAA fluid modelled using Meter model. This implies that the variation of
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Figure 4.8: Comparison of the streamline and velocity fields in the Mt. Simon sand-
stone during the flow of (a) water, and 50 ppm PAA fluid of [80] model using (b) Meter
model (MM), and (c) linear PTT model. (d) Relative frequency of velocity, and (e)
relative frequency of shear stress over 12 million mesh points of Mt. Simon sandstone.

pore-space geometry (i.e. converging or diverging) in the heterogeneous Mt. Simon

sandstone influences the flow path of a single-phase flow of PAA fluid even if the flow is

predominantly laminar. Note that distribution of velocity values over 12 million points

in the Mt. simon sandstone’s pore-space are similar for Water, MM fluid and linear

PTT fluid, due to the same injection rate (see Fig 4.8d).

The relative frequency distribution of velocity profile (Fig 4.8d) of the PAA fluid in the

porous medium follows a similar trend as observed by de Anna et al. [52] during the

flow of viscoelastic fluid through random porous medium. Although a same injection

flow rate was applied at inlet during the flow of water and the PAA fluid, the distinct

variations in the stress field exist in an Mt. Simon sandstone for water and PAA fluid

(Fig 4.8e) flow. Berg and Wunnik [18] observed a similar trend for the shear rate field

during Newtonian fluid (water) flow through Berea sandstone.

4.5.3.4 Comparison of BCM approach with DNS

Table 4.2 compares the estimated values using direct numerical simulation and BCM

approach during the flow of PAA fluid through Mt. Simon sandstone. We obtained
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Table 4.2: Comparison of DNS and BCM estimated parameters during flow of a
PAA fluid, modelled using Meter model and linear PTT model, through Mt. Simon

sandstone.

Parameter BCM DNS
MM PTT MM PTT

βf 1.17 1.286 - -
Average velocity (m/s) 1.47×10−4 1.47×10−4 1.47×10−4 1.47×10−4

Average viscosity (Pa·s) 0.0143 0.0143 0.058 0.0361
Average stress (Pa) 2.98 3.28 2.01 1.44

βp of 0.4018 for Mt. Simon sandstone using pore-size distribution values as given in

Fig 4.1f, porosity of 24%, tortuosity of 1.3 and intrinsic permeability of 4.2×10−12 m2.

The βf parameters as given in the Table 4.2 gave volumetric flow rate of 1.6648×10−12

m3/s at the outlet similar to the volumetric flow rate obtained using direct numerical

simulations of PAA fluid modelled using Meter model and linear PTT model.

Table 4.2 shows that the estimated values for average viscosity, average shear rate and

average stress using BCM are different from those obtained using direct numerical sim-

ulations. Since viscosity, shear rate and stress values are distributed in the Mt. Simon

sandstone; the average values estimated using DNS may not be representative values for

Darcy scale flow as described in Section 4.5.3.2. Thus, effective shear rate, effective shear

stress and Darcy viscosity estimated using BCM could be considered the representative

values for Mt. Simon sandstone. We note that the average shear stress values of BCM

are relatively close to the values estimated using DNS.

The Mt. Simon sandstone’s viscosity values vary from 0.009 to 0.11 Pa·s with an average

value of 0.058 Pa·s during Meter model fluid flow. On the contrary, Darcy viscosity

estimated using BCM is 0.0143 Pa·s. To examine the reason for this drastic variation,

we segmented flow zone into the mobile and immobile zone as described in section 4.5.3.2.

We obtained mean viscosity of 0.014 Pa·s and 0.09 Pa·s in the mobile zone and immobile

(stagnant) zone in the Mt. Simon sandstone. 25% of the volume was an immobile zone

in the Mt. Simon sandstone. The average viscosity in the mobile zone closely matches

with the Darcy viscosity estimated using BCM. These results further strengthen that

the Darcy viscosity is the non-Newtonian fluid’s viscosity in the active mobile zone of

the porous medium.
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4.6 Conclusions

We defined the pore-correction coefficient βp of a micro-capillary during Newtonian

fluid flow and the fluid-correction coefficient βf for correcting the pore geometry of

micro-capillary due to fluid rheology during non-Newtonian fluid flow. The proposed

model takes into account the effect of variations in the geometric properties of a porous

medium and the effects of non-Newtonian fluids on the hydraulic conductivity of the fluid

in porous media. The proposed BCM formulations for upscaled Darcy viscosity, effective

Darcy shear rate, and effective Darcy shear stress do not depend on the empirical shift

factor (α). Most of the recent works (e.g. [18, 225, 227]) were focused on identifying

the relationship between α with pore-morphology and fluid rheology. The BCM model

approach differentiates between the effects of pore structure (using βp) and fluid rheology

(using βf) on the behaviour of the fluid flow in a porous medium. While α is an empirical

fitting parameter that is being used to correct the Darcy shear rate value of the porous

medium, βp and βf are directly related to the physical parameters, i.e. pore morphology,

of a porous medium, respectively.

We have also shown that the shear viscosity in the rheometer and the Darcy viscosity in

porous media under given shear values are similar. The effective Reynolds number formu-

lation proposed in the present work represents the Reynolds number of non-Newtonian

fluids flowing in the porous medium compared to the Reynolds number proposed based

on particle diameters and Blake-Kozeny equations.

Moreover, we simulated non-Newtonian fluid flow (modelled using the shear stress-

dependent Meter model and linear Phan-Thien Tanner model) through a porous medium

using the finite volume method based OpenFOAM C++ libraries. We have shown that

the Phan-Thien Tanner model gives a more accurate pore-scale description of the fluid

flow than the Meter model. However, the upscaled values of both the Meter model and

the linear PTT model are comparable.

The flow fields of viscosity and shear stress obtained after direct numerical simulation of

the flow of polymeric PAA fluid and Newtonian fluid show that the pore space geometry

of the porous medium affects the fluid flow behaviour. The volume-averaged shear rate,

average shear stress, and average velocity obtained after direct numerical simulation

closely match the proposed Bundle-of-Capillaries for the non-Newtonian fluids approach
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developed for the Meter model and linear PTT viscoelastic model. However, the porous

medium’s immobile and mobile zones affect rheology, so that the Darcy viscosity of the

fluid is associated with the viscosity of the fluid in the active mobile zone of the porous

medium only.

Direct numerical simulation is computationally expensive and, consequently, cannot be

directly applied to field scale applications, e.g. enhanced oil recovery. The upscaled

macroscopic parameters using the BCM approach could be used for Darcy scale sim-

ulation. This will be our future interest. Another line of research is two-phase flow

modelling at the pore scale using the Meter model and experimental microfluidic data

[66], and differentiate the impact of different flow zones on upscaled viscosity from the

pore scale.



Chapter 5

Pore-scale simulation of viscous

instability for non-Newtonian

two-phase flow in porous media

This chapter is published in the ‘Journal of Non-Newtonian Fluid Mechanics’

Authors: T. Shende, V. Niasar, and M. Babaei. Pore-scale simulation of viscous insta-

bility for non-Newtonian two-phase flow in porous media. Journal of Non-Newtonian

Fluid Mechanics, 296:104628, 2021.
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5.1 Introduction

Immiscible multiphase flow in porous media involving polymeric solutions has many

applications specifically for enhanced oil recovery [200, 209, 210], and remediation of

subsurface non-aqueous phase liquid (NAPL) contaminants [210, 238]. Polymeric solu-

tions, which have non-Newtonian rheology, is commonly utilised to displace NAPL or

crude oil in the subsurface. The heterogeneity of the porous medium and the shear-

dependent rheology of non-Newtonian fluids make the multiphase flow more complex.

The effectiveness of polymeric solutions to displace oil depends on the physical and chem-

ical parameters of oil, polymeric solutions and subsurface materials that vary spatially

with time [145]. Although core-flood experiments on larger samples have been used

to study polymeric macroscopic sweep efficiency [200], these experiments can hardly

be used to gain pore-scale insights on the microscopic displacement of invading and

displacing fluids.

Wettability, which is the fluid’s ability to adhere to the solid surface in the presence

of another fluid, is one of the key factors in two-phase flow dynamics in the porous

medium. The contact angle (θ) between the fluid-fluid interface and the solid surface

determines which fluid (displaced or displacing) has a tendency to adhere to the solid

surface. For example, in a porous medium wetted by water (θ < 90◦), the polymer

fluid will adhere to the solid surface, while in a porous medium wetted by oil (θ > 90◦),

the oil will adhere to the solid surface. Although fluid-fluid interactions during multi-

phase flow are influenced by the wettability of the solid surface [234], less attention is

paid to the multiphase flow involving non-Newtonian fluids. Hatzignatiou et al. [88]

conducted a polymer flood experiment on water and oil-wet Bentheim and Berea sand-

stone. They suggested that rock wettability strongly affects the polymer retention in

the porous medium and influences the polymer front velocity. The authors postulated

that the physical adsorption of polymer to the rock surface causes entrapment of poly-

mer in the sandstone as they observed higher polymer retention in the water-wet Berea

sandstone compared to the oil-wet Berea sandstone. Broseta et al. [29] reported re-

duction in the polymer adsorption in an oil-wet micromodel compared to a water-wet

one. Jamaloei and Kharrat [96] reported that the displacement front’s stability during

polymer flooding depends on pore-morphology and wettability in a porous medium. Us-

ing magnetic resonance imaging technique, Romero-Zerón et al. [180] investigated the
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effects of wettability in water-wet and oil-wet rocks and reported higher oil recovery

in strongly water-wet rocks using partially hydrolyzed polyacrylamide solution. Ameli

et al. [9] observed that salinity reduces the efficiency of oil recovery during polymer

flooding, and the water-wet system gives favourable oil recovery compared to the oil-wet

system. Eslami and Taghavi [70] demonstrated that the wettability affects the viscous

fingering pattern formations and flow efficiency of the displacement using two-phase

microfluidic experiments wherein Newtonian fluid was used to displace non-Newtonian

fluid in a rectangular Hele-Shaw cell. Li et al. [116] visualised oil saturation in the

oil-wet and water-wet rocks using magnetic resonance imaging and suggested that the

polymer stripping mechanism dominates in an oil-wet rock.

Meybodi et al. [137] experimentally examined the effect of microscopic heterogeneity

on West Paydar crude oil-recovery using polymeric partially hydrolyzed polyacrylamide

fluid. They found that water-wet and mixed wet porous medium could recover higher

oil compared to oil-wet porous medium in most of the experiments; however, they also

reported that the effects of micro-heterogeneity and porous medium’s wettability on

polymeric fluid-based oil recovery are case dependent [137]. Rodŕıguez de Castro et

al. [59] studied the effect of xanthan gum concentration (0 - 2000 ppm) on silicon

oil-displacement over a range of capillary numbers and mobility ratios in a heteroge-

neous hydrophilic 2D micromodel of porosity 60% and pore size distribution of 29 -

160 µm. The authors reported an increase in oil recovery with an increase in polymer

concentration; however, they observed heterogeneity dependent viscous fingers in the

2D micromodel porous medium during polymer flooding over a range of xanthan gum

concentration [59]. De et al. [56] experimentally investigated two-phase displacement

of silicon oil using xanthan gum, hydrolyzed polyacrylamide (HPAM) solution and vis-

coelastic surfactant fluid in a hydrophilic pillared (regularly arranged) micro-channel of

porosity 75%. They reported the highest oil recovery using viscoelastic surfactant and

HPAM compared to xanthan gum solution over a capillary number range. They sug-

gested that the micro-sweep mechanism plays a vital role in non-Newtonian fluid-based

oil displacement in the porous medium. Similarly, Nillson et al. [145] found that visco-

elastic fluid and shear-thickening nanoparticle fluid displace more oil compared to the

shear-thinning fluids. Parasa et al. [152], using confocal microscopy visualised HPAM

polymer displacing oil in a 3D porous micromodel of porosity 45% and suggested that

a non-Newtonian fluid’s elastic turbulence leads to the additional oil recovery during
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polymer flooding. The recent studies of oil recovery with the aids of microfluidic ex-

periments suggested micro-sweep of oil by polymeric solutions play a crucial role during

polymeric flooding [41, 56, 91, 138].

Although pore-scale wettability alteration simulation studies for the flow of Newtonian

two-phase flow using Lattice Boltzmann [5] and Volume-of-fluids methods [12] are avail-

able in the literature, wettability effects on pore-scale non-Newtonian two-phase flow

have not been carefully studied. Shi and Tang [192] carried out a two-phase flow sim-

ulation of a Newtonian fluid displacing a power-law fluid using the Lattice Boltzmann

method in a porous medium composed of staggered square blocks. This study was car-

ried out using power-law fluids, ignoring the Newtonian plateau at low shear values.

Based on numerical simulation, Zhang and Yue [230] reported that visco-elasticity, the

flow field, and the stress field determine the sweeping of an oil present in the dead-end

by polymeric solutions. Zhong et al. [236] conducted two-phase simulations using the

volume-of-fluid method in OpenFOAM to study the effects of elasticity on oil recov-

ery. They concluded that elasticity of the non-Newtonian fluid enlarges sweep area and

increases displacement efficiency. Using the same approach, Zhong et al. [237] investi-

gated the effect of non-Newtonian fluid (based on the cross model) on the displacement

of oil and reported that the polymeric solutions increase displacement efficiency by 8-

20%. Tsakiroglou [210] developed an inverse modelling numerical scheme to determine

macroscopic flow parameters for two-phase flow where non-wetting shear-thinning fluid

(modelled using Meter model) displaced Newtonian fluid in a porous medium and vali-

dated the same using unsteady two-phase experiments conducted on the pore-network.

5.1.1 This study

Most of the studies reported above were carried out in simple homogeneous porous

media; it is unlikely that such geometries will take into account micro-heterogeneity and

true complexities as observed realistically. Pore-scale micro-heterogeneity significantly

affects the microscopic displacement of fluid in the porous medium. Only a few studies

[56, 59, 152, 212, 220] considered the effects of micro-heterogeneity on polymeric fluid-

induced oil displacement. The pore size in the real and heterogeneous porous medium

can vary by up to 2 orders of magnitude; thus, the pore-scale velocity and viscosity

in the porous medium also vary significantly. This spatial variation of viscosity and
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velocity in the pore-spaces and capillarity governs the flow’s stability. Thus, the main

objective of this work is to determine how microscale heterogeneity and wettability of

the porous medium govern the stability of polymeric fluid flow, even for favourable

viscosity ratios where the flow is stable. For this purpose, we utilise the volume-of-

fluid based ‘interFoam’ solver of OpenFOAM for two-phase flow involving shear-stress

dependent Meter model fluids. The Meter model captures S-shaped rheology (i.e. power-

law behaviour at intermediate shear values and Newtonian plateau at low and high shear

values) of most of the shear thinning and shear thickening polymeric non-Newtonian

fluids [190].

We validate the numerical approach adopted in the present work for the two-phase flow

of the Meter model fluid using microfluidic experimental observation of air displacing

non-Newtonian fluid in the Hele-Shaw cell. We study the effects of wettability alteration

on the displacement behaviour of oil and a polymeric non-Newtonian fluid (polyacry-

lamide) over a range of porosities (with different heterogeneity levels), capillary numbers,

polymer concentrations, and viscosity ratios in 2D and 3D porous media. The results

substantiate that the complex interplay between pores’ geometry, rheology of the fluid,

and capillary force regulates the stability of the two-phase fluid transport.

5.2 Numerical simulation

The Volume-of-Fluid (VoF) method, implemented in OpenFOAM [98] using interFoam

solver, is used to simulate immiscible and incompressible two-phase fluid flow in a porous

medium involving non-Newtonian fluids. The details of the VoF method implemented

in OpenFOAM for two-phase flow displacement can be found at [13, 144, 168, 169, 203,

237]. The shear viscosity (η) of the polymeric non-Newtonian fluid is defined using the

shear stress-dependent Meter model (Eq. 5.1 also defined at Eq. 2.2 of Chapter 2)

[134, 189, 190],

η = η∞ +
η0 − η∞

1 +

(
τ

τm

)S
(5.1)

where, η0 [Pa·s], η∞ [Pa·s] and τm [Pa] are the zero-shear viscosity, the infinite shear

viscosity, and the critical shear stress of the non-Newtonian fluid at which viscosity of
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the fluid drops to η0+η∞
2 , respectively. S is the shear stress-dependent exponent of Meter

model, which represent slope [189, 190]. The characteristic time (i.e. longest relaxation

time, λ) of the non-Newtonian fluid is λ = η0+η∞
2 τm

[134, 190]. For carrying out numerical

simulation, Meter model is written as a function of shear rate as described in [189] and

section 4.4.1 of chapter 4. This is obtained by substituting τ = ηm γ̇ in Eq. 5.1, where

ηm = η0+η∞
2 is the viscosity of the fluid at τm. The exponent of Meter model changes

to S−1:

η = η∞ +
η0 − η∞

1 +

(
η0 + η∞

2 τm
γ̇

)S−1 (5.2)

5.2.1 Numerical scheme and the solver

Similar to the procedure adopted in section 3.3.6 of chapter 3 and section 4.4.1 of chap-

ter 4 to simulate the single phase flow of a shear thickening fluid and Meter model

fluid, we used the PIMPLE (i.e. merged PISO-SIMPLE) algorithm for coupling of pres-

sure and velocity [142]. Patankar et al. [153] proposed the Semi-Implicit Method for

Pressure-linked equation (SIMPLE) algorithm to estimate steady-state solution, how-

ever, SIMPLE algorithm neglect the velocity correction term. The Pressure-Implicit

Splitting Operator (PISO) algorithm proposed by [92] consider the velocity correction

term. We refer to [76, 92, 142, 153] for details on PIMPLE, SIMPLE, and PISO al-

gorithms. The second-order implicit backward method was used to discretise the time

scheme of the governing equations. The gradient term and the divergence term were

discretised using a Gauss linear scheme. The Gauss linear uncorrected scheme was em-

ployed to discretise the Laplacian term of governing equations. The pressure field and

velocity field were solved using a GAMG solver and smoothSolver of the OpenFOAM.

The convergence criterion of 10−7 was implemented for pressure and velocity fields. The

average time-step was adjustable between 10−5 - 10−6 s to have a Courant number below

0.5. The Courant number is C = u∆t
∆x , here, ∆t is the time step and ∆x is the length

interval.
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5.2.2 Initial and boundary conditions

Three sets of two-phase numerical simulations were conducted in the present work.

• Simulation of two-phase flow in square Hele-Shaw cell to validate the model against

the experimental data of [216] for air displacing a non-Newtonian polymeric solu-

tion (500 ppm polyisobutylene mixed in mineral oil) in a partially saturated square

Hele-Shaw cell at a constant pressure.

• Simulation of two-phase flow in three-dimensional Mt. Simon sandstone of [110]

(described in section 4.4.3 of chapter 4 ) to study the effect of wettability on

two-phase flow dynamics.

• Simulation of two-phase flow in homogeneous and heterogeneous polydisperse two-

dimensional porous media.

SnappyHexMesh utility of OpenFOAM was used to generate meshes on the porous

media domain. No-slip boundary conditions were applied to the walls. For the first set

of experiment, Hele-Shaw cell (square geometry of 150 mm length and gap spacing of

100 µm, porosity (ϕ) = 1) was partially saturated with 500 ppm polyisobutylene (PIB)

fluid at the centre with a volume of 100 µL (diameter of 0.025 m). Air was injected with

a constant injection pressure at the centre and allowed to flow along the radial direction.

The inlet has an inner diameter of 2.4 mm. We note that White and Ward [216] used

a plastic shim to keep the desired spacing between two plates. We could not identify

the geometry and exact location of the plastic shim in the experimental Hele-Shaw cell.

Furthermore, an initial drop of PIB fluid placed at the centre of the Hele-Shaw fluid by

[216] has slightly deviated from the centre; thus, PIB fluid was not uniformly distributed

around the centre. Thus, the present simulation is not a replica of the experimental work

of [216] as we could not implement the plastic shim spacer geometry and exact spatial

saturation of PIB solution in the simulation setup. We modelled shear stress-dependent

rheology of 500 ppm polyisobutylene mixed in mineral oil (PIB) using the Meter model

(see Fig 5.1 and Table 5.1). We considered density of PIB as ρ = 920 kg/m3. The

interfacial tension (IFT) and contact angle between PIB and air were considered as 0.03

N/m and 60◦ due to the absence of the same in the work of [216]. The viscosity and

density of air were taken as 1.81 × 10−5 Pa·s and 1.225 kg/m3, respectively.
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Table 5.1: The Meter model parameters of Separan AP30 fluid of [151] and poly-
isobutylene mixed in mineral oil (PIB) of [216] used for the numerical experiments.

Parameter Separan AP30 concentration PIB
0.50% 0.05% 500 ppm

η0 [Pa·s] 4.350 0.260 0.055
η∞ [Pa·s] 0.001 0.001 0.033
τm [Pa] 0.718 0.339 0.079

S 1.471 1.190 3.8
λ [s] 3.030 0.384 0.9

Figure 5.1: Experimental shear viscosity-shear stress of 0.5% and 0.05% Separan
AP30 fluid of [151] and PIB solution of [216] modelled using Meter model (MM) Eq.

5.1.

For the second and the third sets of numerical experiments, the domain was fully satu-

rated with a silicon oil. Inlet injection velocity and constant pressure with zero gradients

were applied to the porous medium domain’s left and right boundary. Polyacrylamide

solution (Seperan AP30 fluid, see Table 5.1 for Meter model parameter and Fig 5.1) of

Park et al. [151, 189] was injected into the 3D domain of Mt. Simon sandstone [110, 189],

and 2D domain of porous medium saturated with silicon oil (density: 970 kg/m3, dy-

namic viscosity: 0.02 Pa·s). The details of 2D and 3D porous media domains used for

simulations are given in Figure 5.2 and Table 5.2. The interfacial tension between the

polyacrylamide solution and silicon oil is 0.029 N/m [59]. We used ParaView 5.7.0 [3]

to post-process the simulation data. Table 5.2 shows an average computation time for

each simulation for the 2D and 3D domains along with the number of mesh points in the

domain. We used 32 CPU cores in parallel and 16 CPU cores in parallel for the 3D and

2D simulations, respectively. Each CPU cores had a memory of 4GB. The simulations

were computationally expensive as the number of grid points were larger than 3 million,
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Figure 5.2: Geometry of (a) segmented Mt. Simon sandstone of size 842.8 µm ×
842.8µm × 842.8µm (as described in section 4.4.3 of chapter 4 ), (b) heterogeneous
2D porous medium having duel-porosity, (c) homogeneous 2D porous medium having
porosity 55%, (d) heterogeneous 2D porous medium having porosity 40%, and (e)
heterogeneous 2D porous medium having porosity 50%. No-slip condition at solid

surfaces and boundaries (except at inlet and outlet).

and the time-step was between 10−5 to 10−6s.

Table 5.2: Type of porous medium domains and computation time for the second and
third numerical experiments.

Type Porosity
(ϕ)

Domain size Pore size dis-
tribution

Mesh
points

CPU
time
(hrs)

Mt. Simon Sand-
stone (3D)

0.24 842.8 µm × 842.8
µm × 842.8 µm

5-120 µm 12,112,247 1176

Homogeneous (2D) 0.55 25 mm × 12 mm 350 µm 4,319,174 168
Heterogeneous (2D) 0.54 25 mm × 15 mm 30 - 710 µm 3,319,743 336
Heterogeneous (2D) 0.50 25 mm × 15 mm 8.1 - 685 µm 3,800,823 168
Heterogeneous (2D) 0.40 25 mm × 15 mm 6.6 - 418 µm 3,079,048 672
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5.2.3 Capillary number, viscosity ratio and Weissenberg number

The capillary number is the ratio of viscous forces to the surface tension forces. Most of

the literature uses the Darcy velocity of the injected fluid [12, 49, 169] instead of pore-

scale velocity to estimate the Capillary number of a Newtonian fluid flow. The use of

Darcy velocity to estimate Capillary number is widespread due to two reasons. Firstly, it

is easy to measure experimentally compared to the pore velocity. Secondly, macroscopic

properties of fluid flow in a porous medium are easy to analyse using Darcy’s law for

all practical purpose. However, since the interaction between capillary force and viscous

forces during two-phase flow occurs at pore-scale. The capillary number must always

be determined using pore-scale fluid flow properties (i.e., velocity, viscosity, interfacial

tension) to ensure that the capillary number represents the actual ratio between viscous

forces and capillary forces.

In the present work, the capillary number (CaN) of a two-phase Newtonian fluid displac-

ing Newtonian fluid flow is estimated using CaN =
Ui ηi
σ

[112, 168]. The viscosity ratio

(MN) for two-phase Newtonian fluids displacement is defined using MN =
ηd
ηi

[112, 168].

Here, ηi [Pa·s] is the viscosity of the invading fluid, ηd [Pa·s] is the viscosity of the

displaced fluid, Ui [m/s] is the invading fluid’s average velocity in the porous medium

domain, σ [N/m] is the interfacial tension between invading fluid and displaced fluid.

The shear viscosity of the non-Newtonian fluid in a porous medium varies spatially, thus,

we define capillary number (CaNN) of non-Newtonian fluid displacing Newtonian fluid as

CaNN =
Ui ηeff
σ

, and the viscosity ratio (MNN) using MNN =
ηd
ηeff

[56, 122, 145, 187, 238].

Here, ηeff [Pa·s] is the effective viscosity of the non-Newtonian fluid for a given set of

flow conditions [189, 190].

The Weissenberg number (Wi) is the ratio of the elastic forces to the viscous forces. Wi

for the flow of non-Newtonian fluid through confined space is defined as the product

of the longest relaxation time (λ) of the polymeric solution and the shear rate (i.e.

Wi = λ γ̇) [33, 145, 165]. The shear rate of the fluid flow in a porous medium depends

on the pore-morphology and fluid rheology, and varies significantly in the porous medium

domain. Thus, we defined Weissenberg number (Wi) for the flow of polymeric solution

in the porous medium as [32, 33, 105, 145],
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Wi = λ γ̇avg (5.3)

here, γ̇avg is the volume-averaged shear rate over a porous medium domain saturated

with non-Newtonian fluids. We estimated the volume-averaged velocity (Uavg), volume-

averaged effective viscosity (ηeff), volume-averaged shear rate (γ̇avg) of the fluid flow in

a porous medium by integrating the pore-scale velocity value (U), viscosity value (η),

shear rate value (γ̇), respectively, over a pore-space filled with a non-Newtonian fluid

(VP ) in the porous medium domain during two-phase flow. The representative upscaled

value of the fluid properties for a given set of fluid flow condition in a porous medium

depends on the pore-scale variation of the property. We have shown in the subsequent

section that volume-averaged value can be used as a representative upscaled value of the

pore-scale fluid-flow phenomenon.

5.3 Results and discussion

5.3.1 Convergence of numerical simulation

The grid convergence analyses were performed on different grid resolutions (50,000 -

500,000) using the same numerical scheme as given in section 5.2.2. The grid convergence

was performed on a subsample (see Figure 5.3) of a porous medium having a porosity

of 54% at an injection rate of 0.01 m/s and time-step of 10−5 s. Figure 5.3 shows a

comparison of average velocity and average viscosity of the polymeric fluid in a saturated

domain as a percentage of the high resolution case for each grid size considered. Figure

5.3 shows an insignificant difference in the average velocity and viscosity after grid

density 30 cells/µm2. The Courant number was higher than 1 for a grid size lower

than 20 cells/µm2. Although computationally expensive, all simulations were carried

out with a grid density higher than 50 cells/µm2 to maintain convergence and accuracy.

This resolution provided at-least 50 cells in the smallest pore-throat of the heterogeneous

porous medium. Appendix A presents more details on the grid-dependent convergence

of numerical simulations.
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Figure 5.3: Average velocity and average viscosity for each grid density. The error
shows percentage of the average value attained compared to the zero-grid spacing val-
ues determined using Richard extrapolation as described in Appendix A. The average
velocity and average viscosity values approach an asymptotic zero-grid spacing value

with increase in grid density.

5.3.2 Validation of two-phase numerical modelling

Figure 5.4 shows that the flow paths adopted by a PIB-air interface in the numerical

simulation and the Hele-Shaw experiment of [216] are not identical at the injection

pressure of 6.9 kPa. This difference in the flow paths is expected due to the difference

in the outlet boundary condition of [216] experiment and boundary condition adopted

in the simulations described in Section 5.2.2. We note that the PIB fluid location in the

Hele-Shaw cell was not uniformly distributed around the inlet during experiment and

it was partially deviated from the center as shown by the inner dotted line in Figure

5.4(b). Moreover, fluid material parameters (i.e. interfacial tension, density and contact

angle) used in the simulation may not be the same as in the experiments of [216].

Although the interface flow paths of numerical simulation and experiments are not iden-

tical, the fluid-fluid interface instability pattern is similar. The branches of the fingers

formed during the simulation and the experiment follow the similar pattern. The fin-

gers are formed either by tip splitting or side branching. The thinner fingers with side

branches and smooth sides can also be observed in the simulations and the experiment.

These results indicate that the Volume of Fluid method based two-phase simulation in-

volving non-Newtonian fluid can be modelled using shear stress-dependent Meter model

equation.
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Figure 5.4: Comparison of (a) the two-phase simulation of air displacing a non-
Newtonian fluid (PIB polymeric fluid modelled using Meter model) in a partially filled
radial Hele-Shaw cell, against (b) an experimental observation of White and Ward [216]
at inlet pressure of 6900 Pa. Blue and red indicate air and PIB polymeric solution,

respectively.

5.3.3 Pore-scale variation of velocity and viscosity

To quantify the variability of the flow of injected fluid within a heterogeneous porous

medium (porosity 40%) at an injection rate of 0.01 m/s, we calculated probability den-

sity functions (PDF) of the velocity components along the longitudinal and transverse

direction, velocity magnitude, and viscosity as shown in Figure 5.5. Similar to the ex-

perimental observation of [49] for Newtonian fluid, Figure 5.5c shows exponential decay

of velocity magnitude of non-Newtonian fluid. Although flow along the transverse is

symmetric about UT = 0, the distribution is non-Gaussian and decays exponentially.

Similarly, flow along longitudinal direction UL shows non-Gaussian distribution with ex-

ponential decay. The viscosity of the injected fluid also shows the non-Gaussian distribu-

tion. These results imply that flow in the heterogeneous porous medium is non-random

and geometry of pore-space governs the distribution of velocity and viscosity.

The probability density function of velocity magnitude could fit into the Beta distribu-

tion function. The mean and standard deviation of the velocity magnitude, estimated

using the Beta distribution function, were 3× 10−2 m/s and 4.1× 10−2 m/s. These

results are consistent with a volume-average velocity (2.97×10−2 m/s) obtained after

integrating the velocity magnitude value over a porous medium domain saturated with

injected fluid. Similarly, PDF of viscosity value could fit into Gamma distribution func-

tion with a mean of 0.6 Pa·s and standard deviation of 0.165 Pa·s, and these values also

agree with volume-averaged viscosity value of 0.61 Pa·s. To take into pore-scale vari-

ability in the porous medium, we will report volume-averaged values and the standard

deviation of velocity, viscosity, shear rate in the subsequent sections.
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Figure 5.5: Probability density function (PDF) of (a) velocity component in longi-
tudinal direction (UL, m/s), (b) velocity component in transverse direction (UT , m/s),
(c) velocity magnitude (Umag, m/s), and (d) viscosity (η, Pa·s) of injected fluid in the
porous medium with porosity 40%. The data is over the domain saturated with in-
jected fluid. Blue line indicates data of PAA fluid and red line indicate data of water.
Black and green line in (c) indicate Beta distribution function fitting for PAA fluid and
water, respectively. black line in (d) indicate Gamma function fitting with viscosity

data. Injection rate is 0.01 m/s.

5.3.4 Mt. Simon sandstone

We simulated the flow of 0.5% PAA polymeric solution displacing silicon oil through Mt.

Simon sandstone in the water-wet (θ = 30◦), intermediate-wet (θ = 90◦) and oil-wet

(θ = 120◦) conditions. Table 5.3 shows average velocity, effective viscosity, the average

shear rate of 0.5% PAA solution flow in the Mt. Simon sandstone and corresponding

Ca, M and Wi in water-wet, intermediate-wet and oil-wet domain. The ηeff of polymeric

solution at an injection rate of 10−3 m/s was on average 0.82 Pa·s over a range of contact

angles, thus, the estimated Ca on average was 4.19 ×10−2. Generally, for estimation

of Ca of polymeric fluid flow, the polymeric solution’s zero-shear viscosity has been

extensively used in the literature [200]. The estimated value of Ca using zero-shear
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viscosity is 2.19 ×10−1 which is one order of magnitude greater than values gives in

Table 5.3. We note that the Ca, M and Wi estimated in the present work could be

considered as representative values for a given set of fluid flow conditions as these values

are determined from direct numerical simulations data instead of unrealistic viscosity

values (i.e. zero-shear viscosity) for given fluid flow conditions.

Table 5.3: Capillary number (Ca), viscosity ratio (M), Weissenberg number (Wi) of
PAA-polymeric fluid flow in 3D Mt. Simon sandstone

θ Uavg ηeff γ̇avg Ca M Wi
(m/s) (Pa·s) (s−1)

30◦ 1.3 ×10−3 0.8 161 3.59 ×10−2 2.5 × 10−2 487
90◦ 1.5 ×10−3 0.82 153 4.24 ×10−2 2.44 × 10−2 463
120◦ 1.64 ×10−3 0.83 104 4.75 ×10−2 2.38 × 10−2 315

The PAA polymeric solution saturations (Figure 5.6a,b,c) and simulation movie clip

(Clip 1 of the Supporting Information of the published article [188]) over a range of

contact angle indicate that the flow path adopted by polymeric solution in water-wet,

intermediate-wet and oil-wet porous medium are different. The oil saturation profiles

(Figure 5.6d,e,f) and PAA-oil interface profiles (Figure 5.6g,h,i) in the Mt. Simon sand-

stone indicate that an increase in the contact angles increases the distribution of small

trapped oil fragments in the sandstone. The surface area of the PAA-oil interface at

a breakthrough was 5.57× 10−7 m2, 7.76× 10−7 m2, and 1.51× 10−6 m2, at θ = 30◦,

θ = 90◦, and θ = 120◦, respectively. Figure 5.6j shows 25.71%, 32.44%, and 34.5% re-

maining oil saturation at breakthrough after injection of 0.5% PAA polymeric solution

(injection rate at inlet of 10−3 m/s) in water-wet (θ = 30◦), intermediate-wet (θ = 90◦)

and oil-wet (θ = 120◦) Mt. Simon sandstone of [110], respectively.

Figure 5.6k shows the pressure gradients during the simulation as a function of oil-

saturation at a constant inlet injection rate of 10−3 m/s in the Mt. Simon sandstone.

These results imply that oil-wet condition requires higher pressure compared to water-

wet condition to displace oil from heterogeneous Mt. Simon sandstone. Furthermore, as

the oil saturation decreases with time, the pressure required to maintain the constant

flow rate increases. The simulation of PAA-solution displacing silicon oil suggests that

the water-wet condition is favourable for oil recovery compared to the intermediate-wet

or oil-wet conditions. We note that we did not observe a stable fluid flow front in Mt.

Simon sandstone at the capillary number of 2.83 × 10−2. Even though PAA polymeric

solution with significantly high viscosity value, (i.e. with much lower viscosity ratio) was
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Figure 5.6: Effect of contact angle on the remaining oil saturation in Mt. Simon
sandstone. Figure (a,b,c) show the distribution of polyacrylamide (PAA) fluid satura-
tion at different contact angles, (d,e,f) silicone oil saturation profiles, and (g,h,i) profile
of PAA-oil interface profiles. (j) Remaining oil saturation at breakthrough. (k) Pres-
sure gradient as a function of oil saturation (pressure gradient is the pressure difference

between inlet and outlet of Mt. Simon sandstone). Injection rate is 10−3 m/s.

used to displace silicon oil, we observed fingers during fluid flow (Figure 5.6a,b,c and

simulation movie clip 1 in the SI of the published article [188]). We note that fingers

in Mt. Simon sandstone are more visible in simulation movie clip 1 of the SI of the

published article [188] as compared to the Figure 5.6a,b,c. These fingers were mostly

governed by the heterogeneity of the Mt. Simon sandstone.
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Table 5.4: Capillary number (Ca) and viscosity ratio (M) of 2D homogeneous and
heterogeneous porous medium.

Porous medium Injection fluid Uavg ηeff Ca M
(m/s) (Pa·s)

ϕ : 0.40 Water 0.048 ± 0.101 0.001 1.65×10−3 20
0.5% PAA 0.030 ± 0.041 0.61 ± 0.17 6.22×10−1 3.3× 10−2

ϕ : 0.50 Water 0.031 ± 0.054 0.001 1.07×10−3 20
0.5% PAA 0.019 ± 0.022 0.76 ± 0.17 4.87×10−1 2.63× 10−2

ϕ : 0.55 Water 0.017 ± 0.022 0.001 5.80×10−4 20
0.5% PAA 0.014 ± 0.008 0.53 ± 0.066 2.47×10−1 3.78× 10−2

ϕ : 0.54 Water 0.033 ± 0.030 0.001 1.15×10−3 20
0.5% PAA 0.019 ± 0.016 0.64 ± 0.23 4.12×10−1 3.12× 10−2

5.3.5 Effect of heterogeneity

To explore whether heterogeneity of the porous medium affects the stability of polymeric

fluid flow front and oil recovery, we simulated the two-phase flow of 0.5% PAA-polymeric

solution displacing silicon oil and water displacing silicon oil in a homogeneous (ϕ : 0.55)

and heterogeneous (ϕ : 0.40, 0.50, 0.54) porous media domain as shown in Figure 5.7

at the constant injection rate of 0.01 m/s at inlet and contact angle of 30◦. Although

the injection rate of water and 0.5% PAA polymer was 0.01 m/s during simulation,

the average velocity of the injected fluid in the porous medium was higher and varied

depending on the porous medium’s heterogeneity (see Table 5.4). Average velocity in

the porous medium increased with a decrease in the porosity. The capillary number of

PAA fluid injection is two orders of magnitude greater than water injection.

Figure 5.7a to d depicts that water injection at an injection rate of 0.01 m/s shows

fingers in the porous medium and the fluid front follows preferential flow paths. The

width of the fingers in the homogeneous porous medium is much larger than those in

the heterogeneous porous medium. Moreover, the width of the fingers becomes thinner

with a decrease in the porosity.

The homogeneous or orderly porous medium (circular staggered), as in Figure 5.7e,

shows a stable polymeric fluid flow front at an injection rate of 0.01 m/s. On the

contrary, the disorderly or heterogeneous porous medium shows instability in the fluid

flow front (Figure 5.7f and g) at the same injection rate. The oil-saturation profiles

(Figure 5.7f and g) of heterogeneous porous media show that the fragments of residual

oil are present in the porous media.
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Figure 5.7d and h show fluid flow front of water and PAA fluid in heterogeneous porous

medium with two porosities. The upper portion of a porous medium had a porosity of

57% (PSD: 75 µm - 710 µm) and the bottom portion had a porosity of 50% (PSD: 30 µm

- 520 µm) with an overall porosity of 54%. Figure 5.7d shows that the length of finger

in the upper portion is much larger than in the bottom portion of the medium. Water

prefers to flow through areas having higher porosity as compared to low porosity area.

On the contrary, polymeric fluid shows a stable fluid flow front in both areas of a porous

medium. The fluid flow front of a high porosity area could reach breakthrough early as

compared to the fluid flow front in a low porosity area. These results indicate that the

porosity variation of the porous medium influences the fluid flow front and preferential

path. The remaining oil saturation at breakthrough in a two-porosity porous medium

is comparable with the remaining oil saturation in the porous medium with a porosity

of 50% at same injection rate. The spatial location of smaller and larger throats in the

porous medium governs the porous medium’s fingering. Figure 5.7f,g have small throats

in between the larger throats, on the contrary, such small throats in between the larger

throats are not available in Figure 5.7h. These results imply that fingering in Figure 5.7f

and g (visible more in movie clip 2 of the published article [188]) is due to the presence

of smaller throats in between the larger throats. The pressure required to displace fluid

through smaller throats is much higher than the larger throats/pores. The injected fluid

prefers to move through larger throats first and creates an imbalance at the fluid-fluid

interface. This leads to an instability at the fluid-fluid interface and fingers appear as

the polymeric injected fluid advances towards the outlet.

In water-wet porous media and at the high injection rate, we observed that the silicon oil

detaches itself from the porous medium surface, moves into the pore-space centre, and

surrounds itself with a polymeric solution (see simulation movie clip 2 in the supporting

information of the published article [188]). These small and larger fragments of silicon

oil then move along with the polymeric solution toward the outlet. The path of these

small oil fragments depends on the pore size and morphology of the porous medium.

Oil fragments prefer to move through pores that have large sizes. We note that the

mechanism mentioned above helps to recover residual oil using polymeric solutions even

after the early breakthrough of a polymeric solution and viscous fingering at a high

injection rate.



The University of Manchester 121

Figure 5.7: Effect of heterogeneity on oil recovery during water injection and 0.5%
polyacrylamide injection in the 2D porous medium. Figure (a,b,c,d) show distribution
of water (in yellow) and silicon oil (in blue) saturation, and (e,f,g,h) distribution of
polyacrylamide (PAA) (red) and silicon oil (in blue) saturation at breakthrough over a
range of porosity (40%, 50%, 55%, 54%) and heterogeneity. (i) Pressure gradient as a
function of oil saturation (pressure gradient is the pressure difference between inlet and
outlet). (j) Remaining oil saturation (%) as a function of porosity at the breakthrough.

θ is 30◦, constant injection rate at inlet is 10−2 m/s.

5.3.6 Effect of contact angle and PAA concentration

The effect of viscosity ratio at a constant injection velocity of 10−2 m/s on oil displace-

ment was investigated by injecting polymeric fluid, having a PAA concentration of 0,

0.05%, 0.5% in water, in a silicon oil-saturated 2D porous medium of porosity 40% as

shown in Figure 5.8a. Similarly, effect of viscosity ratio at a constant injection veloc-

ity of 10−3 m/s on oil displacement was evaluated over a range of contact angles in a

dual-porosity medium as shown in Figure 5.8b. The numerical experiment was carried

out by keeping the static contact angle of the fluid interface with the solid surface at

30◦, 90◦, 120◦ which represents porous media flow from strong imbibition to strong

drainage. The viscosity ratio for a displacement experiment with water, PAA-0.05%,

PAA-0.5% were 20, 0.22, 0.032, respectively, over a range of contact angles. Similarly,

the capillary number for a displacement was 2.13×10−3, 1.16×10−1, 6×10−1 for water,

PAA-0.05%, PAA-0.5%, respectively. The Weissenberg number of the fluid flow was

higher than 150. Although the injection rate at the inlet was constant (i.e. 10−2 m/s),

the viscosity ratio decreased, and the capillary number increased with an increase in the
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Figure 5.8: Effect of contact angle and PAA concentration on oil recovery during
water injection and polyacrylamide injection in a 2D porous medium, (a) porosity 40%
at an inlet injection rate of 10−2 m/s, (b) dual porosity, 54% at inlet injection rate of
10−3 m/s. Figure shows distribution of water (in yellow) and silicon oil (in blue) and

polyacrylamide (PAA) (red) at breakthrough.

PAA-concentration. These results indicate that the balance of capillary forces and vis-

cous forces in a porous medium varies with variations in the rheology of non-Newtonian

fluids.

Figure 5.8a depicts that an increasing concentration of the polymeric solution increases

the oil recovery for the ϕ = 40% porous medium. The fluid flow front of water shows
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fingers at the capillary number of 2.13× 10−3, on the contrary, a more stable fluid front

(but still with some fingers) can be observed after the addition of PAA-polymeric solution

to water. The addition of PAA to water decreased the viscosity ratio and increased the

capillary number by 2 to 3 orders of magnitude. Figure 5.8 shows that an increase in the

static contact angle decreases the oil recovery over a range of PAA-concentrations. At

oil-wet condition (θ > 120◦), many regions with trapped oil in the polymeric solution

were observed in the porous medium. On the contrary, a minimal amount of oil was

trapped in the polymeric solution under the water-wet and intermediate-wet conditions

(< 90◦). The average velocity of water in the 2D porous medium was six times (i.e.

6.12×10−2 m/s) of the inlet injection velocity (10−2 m/s), whereas the average velocity

of the polymeric solution ranged from 3.07×10−2 to 3.9×10−3 m/s over a range of contact

angle and PAA concentration. Figure 5.8b shows that the addition of a PAA in water

increased the oil recovery over a range of contact angles in the dual-porosity medium at

capillary number of 7.5×10−2 and injection rate of 10−3 m/s. Figure 5.8b shows a stable

fluid flow front with PAA fluid over a range of contact angles. On the contrary, water

shows fingers in the upper portion of the porous medium over a range of contact angles.

Water could not flow through the bottom portion of the porous medium. We note that

the flow paths adopted by water and polymeric solutions in the porous medium vary

with the contact angle.

The difference between the behaviours of PAA solutions for 40% and dual-porosity media

shows the importance of taking into account the heterogeneity at pore scale even for the

stable polymeric solutions. Previous work on the continuum scale proposed that the

macro-sweep is the primary oil recovery mechanism using the polymeric solution and

the micro-sweep plays an insignificant role [200].

5.3.7 Macroscopic representation of the two-phase flow

The macroscopic parameters of fluid flow in a porous medium under steady-state condi-

tions, defined using Darcy’s law, depend on the upscalling accuracy over a representative

elementary volume [25]. q = −K
η (∇P ). It should be noted that “q” is a volume-averaged

fluid flow parameter and does not represent the actual velocity; ∇P is defined over a

distance of representative elementary volume (REV), and intrinsic permeability (k) is
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a pore-structure property. Darcy’s law is extended for multiphase flow involving non-

Newtonian fluid as q = −krpK
ηeff

(∇P ), ηeff is Darcy’s viscosity, krp is the relative perme-

ability of phase p which is a function of saturation. The amount by which other phases

in the pore space restrict the flow is referred to as relative permeability. It is inherently

assumed that each phase flows in its own network, and the flow of other phases does

not affect it. The impact of the displacement process, displacement history, and viscous

stress at fluid-fluid interfaces are ignored during the macroscopic representation of the

multiphase flow. This is especially important when fluid flow involves non-Newtonian

fluids in porous media. Furthermore, a microscopic fluid configuration in a porous

medium is governed by microscopic capillary forces; thus, a steady-state assumption is

never achieved [25]. Multiphase flow in porous media is a dynamic process and multi-

parameter dependent, which creates a challenge to relating pore-scale flow properties

to the macroscopic scale, as it is not evident how to average microscopic flow proper-

ties to the Darcy’s scale [25, 170]. Note that macroscopic parameters such as relative

permeability, pressure gradient, capillary pressure, and saturation are measured at the

boundary of the porous medium during core-flood experiments. The complex behaviour

of non-Newtonian fluids creates further challenges to upscale pore-scale multiphase prop-

erties to Darcy’s scale. Thus, in future, we will conduct a two-phase simulation of the

inelastic Meter model fluid and the viscoelastic Phan-Thien and Tanner fluid displacing

oil to develop a method to upscale pore-scale multiphase properties to Darcy’s scale.

5.4 Conclusion

We used a volume-of-fluid-based method to simulate the two-phase flow of non-Newtonian

fluid in porous media. To describe the polymeric solution’s rheology, we implemented

a shear-stress dependent Meter model in the ‘interfoam’ solver of OpenFOAM. The

Meter model-based simulation of Newtonian fluid displacing non-Newtonian fluid in a

partially saturated Hele-Shaw cell was compared with a Hele-Shaw experiment of White

and Ward [216] for validation. The pattern of the instability of the fluid-fluid inter-

face (i.e. tip-splitting and side branching fingers) observed in the simulation, and the

experiments of the White and Ward [216] were similar.

We simulated the displacement of oil by polymeric solution over a range of wettabil-

ity conditions, heterogeneity, capillary number, and viscosity ratio. The present work
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suggests that the heterogeneity of the porous medium governed the fingering during

polymeric fluid-oil two phase fluid flow. Increasing the capillary number and viscosity

ratio increases the oil recovery over a range of wetting conditions (i.e. strong imbibition

to strong drainage). Heterogeneity of the porous medium leads to an unstable fluid flow

front (even after use of polymer). This suggests that along with capillary number and

viscosity ratio, heterogeneity is the governing factor for controlling viscous and capillary

fingering.

Viscoelasticity plays a vital role in the displacement of a polymeric solution. The Weis-

senberg number (Wi) of more than 140 in the porous medium implies that the micro-

sweep of the oil by the polymeric solution depends on the visco-elasticity of the polymeric

solution. These results agree with reported experimental observations [56]. In the future,

we will study the effect of the wettability of the porous medium and the visco-elasticity

of the polymeric solution on the micro-sweep of oil using microfluidic experiments and

two-phase simulation using the linear Phan–Thien—Tanner model.
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6.1 Introduction

The migration and dispersion of nanoparticles in porous media are of considerable im-

portance in many commercial, industrial, and natural systems [14, 60, 93]. The addition

of nanoparticles in the polymer solution improves the liquid’s optical, electrical and me-

chanical properties [164]. Therefore, it has been widely used in various biological and

industrial applications. For example, the use of nanoparticles to improve oil recovery

has shown promising results for its application in the field [89, 239]. Nanoparticles in

polymeric solution improve the wetting properties of pore surfaces [2], modify viscosity,

reduce surface tension [146], control mobility, and has the potential to act as a cata-

lyst [2]. Furthermore, pore accessibility is an essential factor for nanoparticle transport

in heterogeneous porous media, mainly in applications where nanoparticles are used as

catalysts or property modifiers, e.g., soil remediation. However, the fate and transport

of nanoparticles within polymeric solutions at the pore scale are still not fully under-

stood due to the Brownian motion of nanoparticles and the non-Newtonian rheology of

polymeric fluids.

Understanding the nanoparticle transport in porous materials is challenging due to mul-

tiple reasons. (a) The complex geometry of porous media, viz. voids accessibility, spatial

structure, and connectivity, governs nanoparticles’ mobility in porous media [218]. (b)

Sizes of particles and pores affect the nanoparticles’ dispersion [93, 186, 218]. (c) Confine-

ment in disordered porous media results in a non-Gaussian distribution of nanoparticle

displacements [14]. (d) Spatial and temporal variations in the fluid flow path regu-

late the longitudinal and transverse displacement of nanoparticles. (e) The polymeric

fluid’s non-Newtonian shear-dependent rheology influences the migration and dispersion

of nanoparticles in porous media [61, 93].

Advection and diffusion control the dispersion of nanoparticles in heterogeneous porous

media. Few studies in the literature have evaluated the dispersion of nanoparticles in the

longitudinal and transverse directions in a porous medium by tracking the movement of

nanoparticles of non-Newtonian fluids. Scholz et al. observed a non-linear increase in the

dispersion coefficient of nanoparticles (size, 3 µm ) mixed in the polyacrylamide solution

flowing in a square periodic array with a channel width of 500 µm using particle tracking

velocimetry [186]. They discovered that as the Weissenberg number increases, the dis-

persion coefficient increases nonlinearly. Babayekhorasani et al. [14] demonstrated that
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the long-time dispersion of nanoparticles in a disordered porous medium is independent

of polymer rheology. They suggested that fluid rheology-dependent velocity fluctuation

could be suppressed by random mixing in a heterogeneous porous medium compared

to an ordered porous medium. In another work, Babayekhorasani et al. [15] reported

that an increase in the confinement of porous medium decreases the diffusive mobility

of nanoparticles in both Newtonian and non-Newtonian fluids due to hydrodynamic in-

teractions. In addition, they observed that the diffusive mobility of nanoparticles in

polymeric solutions is also controlled by adsorption-desorption-based depletion interac-

tion. The pore-scale trajectories of nanoparticle motion tracked by Jacob et al. [93]

showed that the elastic turbulence-based velocity fluctuations in hydrolysed polyacry-

lamide are higher in ordered porous media than they are in disordered porous media.

Using microfluidic experiments, Maitri et al. [126] found that particle focusing depends

on the Weissenberg number in the ordered porous medium; however, nanoparticles could

not follow the focusing of nanoparticles in a disordered porous medium. Thus, they

suggested that a simplified structure may not always give a realistic overview of mass

transport phenomena in a complex porous medium [126].

6.1.1 This study

Tracking the motion of individual particles at the pore-scale helps upscale the micro-

scopic mass transport mechanisms to the macroscopic transport properties. This helps

explain the pore-scale mass transport mechanism and provides representative macro-

scopic transport properties in porous media. Although particle tracking in Newtonian

fluids and 2D porous media has been extensively studied [141, 160, 171, 218], there

are limited studies on nanoparticle transport in non-Newtonian fluids and a 3D porous

medium.

Previous research on nanoparticle tracking was primarily carried out at a significantly

small domain in 2D due to instrumental limitations [14, 93, 115, 186]. An exception

to this is the work of [15]. Furthermore, the porosity considered in these studies was

considerably larger than the natural porous medium. The porous medium’s heterogene-

ity strongly affects the nanoparticle transport of non-Newtonian fluids. Therefore, we
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simulated nanoparticle transport of a non-Newtonian fluid flowing through a converging-

diverging microchannel in 3D, a homogeneous ordered 2D porous medium, and Mt. Si-

mon sandstone in 3D over a range of injection rates. The objectives of the present work

include:

• developing an Euler-Lagrangian framework to simulate nanoparticle transport

within non-Newtonian fluid and 3D porous media incorporating particle-fluid,

particle-particle, particle-wall interactions, and Brownian motion;

• evaluating pore-accessibility of nanoparticles in a heterogeneous domain;

• determining dispersion coefficient along transverse and longitudinal direction over

a range of fluid injection rates and porous media geometries.

6.2 Governing equations

To investigate nanoparticle transport in a polymeric non-Newtonian fluid, we use the

Euler-Lagrangian approach. In this approach, nanoparticles are treated as suspended

in the solution. We solve the governing equations of the inelastic Meter model fluid.

The nanoparticle motions are predicted based on the previously calculated flow field

and Newton’s second law at each time step. We use the OpenFOAM C++ library to

perform Euler-Lagrangian based particle-fluid simulations.

6.2.1 Eulerian frame

We describe the single-phase, laminar flow of non-Newtonian fluids using continuity (Eq.

6.1) and momentum (Eq. 6.2) equations,

∇ · uf = 0 (6.1)

ρf

(
∂uf

∂t
+ uf · ∇uf

)
= −∇P + ∇ · τ − Sp (6.2)
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where ρf [kg/m3] is the density of fluid, uf [m/s] is the velocity vector of fluid phase,

P [Pa] is the pressure, t [s] is the time, τ [Pa] is the fluid stress tensor and Sp is the

additional source term that considers the effect of particle forces on the fluid motion at

each time step. The constitutive equation of the inelastic stress-dependent Meter model

(see section 2.2 and Eq. 2.2 of Chapter 2) is defined as, [134, 189, 190]

τ = 2 η(τ)D = η(τ) (∇uf + (∇uf)
T ) (6.3)

We used the Meter model (Eq. 6.4 and Eq. 2.2 of Chapter 2) in the present work that

describe the S-shaped rheology of most of the shear thinning and shear thickening fluids.

[134, 189, 190],

η = η∞ +
η0 − η∞

1 +

(
τ

τm

)S
, (6.4)

where η [Pa·s] is the shear viscosity at a given shear stress, η0 [Pa·s] is the zero-shear

viscosity, η∞ [Pa·s] is an infinite shear viscosity, τm [Pa] is the critical shear stress

parameter, and S is an exponent representing slope.

6.2.2 Lagrangian frame

Particles interact with each other, with the wall, and with the surrounding fluid while

migrating in the porous medium. The Discrete Element Model (DEM) can be used to

solve the governing equations of particle motion [73, 85, 97] in porous media. Newton’s

second law governs the motion of the particle in the Lagrangian framework (Eq. 6.5)

[44, 73, 85]

mp
dup

dt
= F = (FC + FF) (6.5)

where mp [kg] is the particle mass, up [m/s] is the particle velocity, F is the total forces

acting on particles, FC is the contact forces acting on the particles due to interparticle

interaction or particle-wall interactions and FF is the particle-fluid interaction forces
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acting on particles. Readers are referred to [73] for details on the implementation of

DEM in OpenFOAM.

6.2.2.1 Particle-fluid interaction

Several particle-fluid interaction forces can act on the particle during particle migration

in the fluid [128]. In the present work, we defined particle-fluid forces as follow,

FF = FD + FG,B + FP + FB (6.6)

where FD ,FG,B ,FP ,FB are drag force, combined gravity and buoyancy force, pressure

force, and Brownian motion forces acting on the particle, respectively. The drag force

(FD) acting on the particle is given by

FD =
3Cd Repmp η (uf − up)

4 ρp d2p
(6.7)

where Cd is the drag coefficient, Rep is the particle Reynolds number, ρp [kg/m3] is the

density of the particle, dp [m] is the diameter of the particle. The Reynolds number of

particles in the flow is below 10 in the present work, thus, Cd Rep = 24

[
1 +

Re
2
3
p

6

]
[73].

The combined buoyancy and gravity forces (FG,B) due to gravity g [m/s2] and the force

act on the particle due to local pressure gradient (FP) are estimated using Eq. 6.8 and

Eq. 6.9, respectively [73],

FG,B = mp g

(
1 − ρf

ρp

)
(6.8)

FP =
π d3p

6
∆P (6.9)

Due to their nanoscopic size, nanoparticles are expected to exhibit Brownian motion.

This strongly affects the dispersion of nanoparticles in a porous medium. Thus, we

implemented the Brownian force (FB) as a Gaussian white noise random process as

given in Eq 6.10 and in line with the work of Lee and Ahmadi [113],
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FB = ξi

 π

∆t
δij

216 ν kB T

π2 d5p ρfCc

(
ρp
ρf

)2


1
2

, (6.10)

where ξi is the Gaussian random number with zero mean and unit variance, ∆t is the

time step, δij is the Kronecker delta function, kB [J/K] is the Boltzmann constant, T [K]

is the temperature, ν [m2/s] is the kinematic viscosity, and Cc is the Stokes-Cunningham

slip correction, which is a function of the molecular mean free path (λm), given as

Cc = 1 +
2λm
dp

1.257 + 0.4e

1.1dp
2λm

 (6.11)

Note that the time-step (∆t ) is assumed to be larger than a successive collision of

the particles [35, 86]. However, the time step associated with a significant particle

displacement change due to interaction and external force is substantially smaller. For

more details, readers are referred to [35, 86].

6.2.2.2 Particle contact forces

We used a simple spring-slider-dashpot model implemented in OpenFOAM to determine

contact forces due to particle collisions. The dashpot represents viscous dissipation,

whereas the spring represents elastic deformation. This model uses the Hertzian contact

theory [44]. Readers are referred to [44, 46, 73, 132, 149] for a detailed description of

particle contact forces. In summary, the force Fp,ij acting during collision between two

particles i and j are divided into normal (Fn,ij) and tangential (Ft,ij) components and

are given as

Fp,ij = Fn,ij + Ft,ij =
(
knδ

b
n + γnνn

)
+ (ktδt + γtνt) , (6.12)

where kn and kt are stiffness coefficients in the normal and tangential directions of

particles, δn and δt are normal and tangential displacements due to particle-particle

interactions, b = 1.5 is a collision constant, γn and γt are normal and tangential viscous

damping constants, and νn and νt are the relative velocities between particles in normal



The University of Manchester 133

and tangential directions. Similarly, the force Fw,i acting during a collision between

particle i and wall w are decomposed into normal Fn,wi and tangential Ft,wi parts.

These forces are calculated as

Fw,i = Fn,wi + Ft,wi =
(
knwδ

b
nw + γnwνnw

)
+ (ktwδtw + γtwνtw) (6.13)

where knw and ktw are stiffness coefficients in the normal and tangential direction of

particles-wall interaction, δnw and δtw are normal and tangential displacements due to

particle-wall interactions, γnw and γtw are normal and tangential viscous damping con-

stants for particle-wall interactions, and νnw and νtw are the relative velocities between

particle and wall in normal and tangential directions. The total force acting on the

particle due to particle-particle and particle-wall interaction will be as

FC = (Fp,ij + Fw,i) (6.14)

6.2.3 Numerical scheme and the solver

The DPMFoam solver is a discrete particle modelling solver of OpenFOAM, designed

to couple Eulerian and Lagrangian frames. A detailed description of the DPMFoam is

presented in [73]. We modified the DPMFoam solver of OpenFOAM to implement the

Meter model. For simulating an inelastic Meter model fluid, we used a backward scheme

to discretize the time, a Gauss linear upwind to discretize the divergence, a Gauss linear

scheme to discretize the gradient, and a Gauss-linear corrected scheme to discretize the

Laplacian term. The PIMPLE algorithm, as described in section 4.4.1 of chapter 4, was

used for pressure-velocity coupling [76, 142]. We used the Euler scheme to integrate

the velocity during a Lagrangian particle transport. The computationally expensive

simulations were run in parallel at the University of Manchester’s high-performance

computing cluster facility.

6.2.4 Numerical domain and boundary conditions

We simulated nanoparticles transport (dp of 400 nm) in a 2D homogeneous porous

medium having porosity of 70% as described in section 3.4.4 of chapter 3, in a 3D



The University of Manchester 134

converging-diverging microchannel having 20 repetitive elements, and in a 3D Mt. Si-

mon sandstone of [110] having a porosity of 24%, as shown in Figure 6.1 and described

in section 4.4.3 of chapter 4. The pore-size of a microchannel, homogeneous medium

and sandstone ranged from 32-108 µm, 150 µm, 2-100 µm, respectively. The volume

fraction of the nanoparticles was lower than 0.005 during all simulations, which implies

that the system is dilute and particle interaction was limited. Therefore, the jamming

of the particles was unlikely. The degree of anisotropy of sandstone is 0.255, whereas

microchannel and homogeneous 2D porous medium are isotropic, indicating sandstone

is highly heterogeneous. No-slip velocity and zero fixed flux pressure boundary condi-

tions were applied at front, back, top, bottom, and solid surfaces of a 3D domain. Zero

flux corrected velocity and total pressure boundary conditions were applied to the right

boundary (outlet) of the porous medium domain. The constant injection velocity bound-

ary condition was applied at the inlet (left boundary) of the porous medium. We injected

500 (unless otherwise noted) polystyrene nanoparticles per second for one second at the

inlet (left boundary) during numerical experiments. The polystyrene nanoparticle had

a density of 1050 kg/m3, a Young modulus of 1.25× 109 N/m2, and a Poisson’s ratio

of 0.33. For Brownian motion force calculation, we kept the polymeric solution at 300

K and the mean free path of the particle in the polymeric solution as 1× 10−9 m. We

investigated the transport of nanoparticles in a 0.125% polyacrylamide (PAA) fluid hav-

ing a density of 1300 kg/m3. The Meter model parameters of PAA are η0 = 2.1 Pa·s,

η∞ = 0.001 Pa·s, τm = 0.3 Pa, and S = 1.8. We simulated the flow of a polymeric

non-Newtonian fluid and a Newtonian fluid (η = 2.1 Pa·s) over a range of injection rates

(10−5 - 10−2 m/s). The Courant number was maintained below 0.9 during all numerical

simulations. The Courant number C = u∆t
∆x , where ∆t is the time step and ∆x is a

length interval. A fine mesh of more than 3 million mesh points were generated in the

pore-space of porous medium using snappyHexMesh module of OpenFOAM.

6.3 Nanoparticles trajectories analysis

The mean square displacement (MSD) of nanoparticles as a function of a lag time (t′)

in a porous medium was determined by using Eq 6.15 [218],

MSD(t′) = ⟨r(t′)2⟩ = ⟨(r(t+ t′) − r(t′))2⟩ (6.15)
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Figure 6.1: Geometry of (a) symmetric converging-diverging micro-channel with 20
repetitive elements (3D) (described in section 4.4.3 of chapter 4 )), (b) homogeneous
ordered porous medium (2D), and (c) Mt. Simon sandstone (3D) (as described in
section 4.4.3 of chapter 4 )). Red indicates pore spaces. Fluid flows from left to right.

where r(t) is the position of nanoparticles in a porous medium at time t, ⟨ ⟩ is an

ensemble or time-averaged value. The MSD was fitted to ⟨r(t′)2⟩ = 2DL,T t
′ to determine

dispersion coefficient [195]. In addition, using particles velocity data, we calculated the

longitudinal (DL, along flow direction) or the transverse (DT, normal to flow direction)

dispersion coefficients using Eq. 6.16 [93, 125].

DL,T =
1

2

dσ2L,T
dt2

=

∫
CL,T(t′) dt′ (6.16)

where σ2L,T(t) is the second moment of the particle displacement in a longitudinal or

a transverse direction and CL,T(t′) is the autocorelation of velocity vx,y(t′), given by

CL,T(t′) = ⟨(vx,y(t+ t′) − ⟨vx,y⟩) (vx,y(t) − ⟨vx,y⟩)⟩. vx,y(t) and vx,y(t+ t′) are the longi-

tudinal or transverse velocity of a particle at the start of trajectory and a lag time t′,

respectively; and ⟨vx,y⟩ is the average velocity of particles over all time and trajectories

[93, 125]. The Stokes-Einstein equation was used to determine the molecular diffusion

coefficient of spherical nanoparticles in a non-Newtonian fluid [195],
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DSE =
kB T

3π η0 dp
(6.17)

where DSE [m2/s] is the Stokes-Einstein based molecular diffusion coefficient. The dis-

persion coefficient was normalised by a Stokes-Einstein diffusion coefficient (DSE). We

define the relative variation in the rate of advection and diffusion using Péclet number

(Pe), the relative variation of inertial forces and viscous forces using Reynolds number

(Re), following,

Pe =
Uavg δL

DSE
(6.18)

Re =
ρf Uavg δL

ηeff
(6.19)

Here, Uavg [m/s] is the average pore-scale velocity of the fluid, ηeff [Pa.s] is the effective

viscosity of the fluid flow and δL [m] is the characteristic length scale. The velocity,

viscosity, shear rate, and pore size vary spatially in the porous medium; thus, to estimate

the representative dimensionless number of the fluid flow in a porous medium, we use

volume-averaged values of velocity, viscosity and shear rate. We integrate the pore-scale

velocity, shear rate, and viscosity over a pore-space filled with polymeric non-Newtonian

fluids to determine the volume-averaged velocity (Uavg), volume-averaged shear rate

(γ̇avg) and volume-averaged effective viscosity (ηeff) [189].

6.4 Results and discussion

6.4.1 Homogeneous porous medium

Tracking nanoparticle transport in 3D provides a realistic insight into its transport

compared to 2D. Therefore, we simulated the flow of nanoparticles in Newtonian and

non-Newtonian fluids and in 3D converging-diverging microchannels over a range of

Pe (106 - 108). Fig 6.2 shows nanoparticle transport behaviour in Newtonian and

non-Newtonian fluids at a Pe of 2.48 × 106. Although fluid flow velocity is low (i.e.

10−4 m/s), nanoparticles show channelised motion along a flow direction with time in
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both Newtonian and non-Newtonian fluids. We observed that the spatial distribution

of nanoparticles after 2 seconds is relatively concentrated or crowded compared to the

spatial distribution at 5 seconds and 10 seconds in both Newtonian and non-Newtonian

fluids. This is expected as there is axial dispersion even in straight channels. This also

suggests that converging-diverging geometry influenced the dispersion of nanoparticles.

The velocity of the nanoparticles depended on the spatial location of the particles. Par-

ticles at the centre had a high velocity, whereas particles near the boundaries had a

much lower velocity. Fig 6.2c,d,e,f,g shows a spatial profile of the velocity, shear stress,

and viscosity of the non-Newtonian fluid and Newtonian fluid at the centre of the micro-

channel. Fig 6.2e and f depict that shear stress at the corner and centre of the channel

is minimum in both Newtonian and non-Newtonian fluids. This spatial distribution of

shear stress imparts resistance to the transport of nanoparticles in those regions, which

slows down the velocity of nanoparticles trapped at the corner. Fig 6.2e and f shows

that shear stress at the centre of the micro-channel is minimum, and the gradient of

shear stress initially increases and then decreases spatially from the centre towards the

outer boundaries in both converging and diverging regions of the micro-channel. This

spatial distribution of shear stress in fluid flow governs the location of nanoparticles dur-

ing their transport. Fig 6.2h and i shows that most nanoparticles avoided the regions

with lower shear stress, i.e., the centre of the micro-channel. Therefore, most nanopar-

ticles were mostly channelised towards an equilibrium position, i.e. in the region with

maximum shear stress. This result agrees with the channelisation of nanoparticles in

a non-Newtonian fluid reported by [50, 179, 213, 224]. Fig 6.2e and f show distinct

differences in shear stress distributions between the non-Newtonian fluid and the New-

tonian fluid due to spatial variation of viscosity in a non-Newtonian fluid (see Fig 6.2g).

The slight spatiotemporal variation in nanoparticle distribution in Newtonian and non-

Newtonian fluids at the same Pe is due to these viscosity variations.

Fig 6.3 shows the spatial distribution of nanoparticles at dimensionless time 2, 4 and 7

in Newtonian and non-Newtonian fluids in the 2D homogeneous porous medium at Pe of

1.13×106. These results indicate that nanoparticles follow a similar type of channelised

flow path and spatiotemporal distribution of nanoparticles in both Newtonian and non-

Newtonian fluids. The slight variation of the resident concentration of nanoparticles (Fig

6.3i) in both Newtonian and non-Newtonian fluids is due to the shear-thinning property

of a non-Newtonian fluid. Fig 6.3j shows an overlap of the mean square displacement
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Figure 6.2: Spatial distribution of nanoparticles at dimensionless time 12 in
converging-diverging micro-channel a) with non-Newtonian fluid b) Newtonian fluid at
Pe = 2.48×106. Spatial distribution of (c,d) velocity, (e,f) shear stress, and (g) viscosity
at the middle section of the micro-channel. The spatial distribution of nanoparticles at

section x-x h) non-Newtonian fluid i) Newtonian fluid.

(MSD) profile along the longitudinal and transverse directions for both Newtonian and

non-Newtonian fluids. These results imply that the transport of nanoparticles in an

inelastic non-Newtonian fluid follows a similar type of nanoparticle transport behaviour

as in a Newtonian fluid in a homogeneous porous medium.

We note that we were not able to fit the analytical solution of the advection-dispersion

equation (Fickian transport) in Fig 6.3i to estimate the dispersion coefficient. This result

indicates that nanoparticles follow non-Fickian transport due to pore-scale confinement-

dependent non-linearity in Newtonian and non-Newtonian fluids. Thus, the MSD method,

as described in Section 3, was used to determine the dispersion coefficient.

6.4.2 Mt. Simon sandstone

Fig 6.4 depicts the spatial distribution of nanoparticles at dimensionless time of 6 and 45

in Newtonian and non-Newtonian fluids at Pe of 1.26×106 along with spatial distribu-

tion of shear stress gradient in the Mt. Simon sandstone. At Pe of 1.26×106, the spatial
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Figure 6.3: Spatial distribution of nanoparticles at dimensionless time (T) (a,e) 2 (b,f)
4 (c,g) 7, and (d,h) normalised velocity of fluid in 2D homogeneous porous medium in
Newtonian (N) and non-Newtonian (NN) fluids. i) Normalised resident concentration
of nanoparticles as a function of dimensionless time. (j) Mean square displacement
(MSD) along longitudinal direction and transverse direction in homogeneous 2D porous

medium in Newtonian (N) and non-Newtonian (NN) fluids (Pe = 1.13 × 106).

distribution of nanoparticles is scattered (Fig 6.4a, b); on the contrary, due to the chan-

nelled migration of nanoparticles, this scattered distribution was not observed at higher

Pe (i.e. 1.26×107 and 1.26×108). Furthermore, there are drastic spatial variations of

shear stress gradient values in sandstone for Newtonian and non-Newtonian fluids (Fig

6.4c,f). Fig 6.4g shows that shear stress distributions in Newtonian and non-Newtonian

fluid at same Pe are drastically different. Similarly, gradient of shear stress in Newto-

nian and non-Newtonian also show significant difference in its distribution. The shear

stress gradient governs the spatiotemporal distribution of nanoparticles in Newtonian

and non-Newtonian fluids. Moreover, we observed that 11%, 13%, 18%, 22% , 25% and

27% of pore-space for non-Newtonian fluid and 11%, 13.2%, 17.5%, 20% , 22% and 23%

of pore-space for Newtonian fluid was immobile/stagnant (fluid velocity in immobile

regions was 3 orders of magnitude lower than the average velocity) at Pe of 6.28×105,
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Figure 6.4: Spatial distribution of nanoparticles in Mt. Simon sandstone at nor-
malised time (T ) 6 and 45 and spatial distribution of shear stress gradient at Péclet
number 1.26 × 106 in Newtonian and non-Newtonian fluids. (g,h) Histogram of distri-
bution of shear stress and shear stress gradient in Newtonian (N) and non-Newtonian

(NN) fluids. Size of nanoparticles in the images were enlarged for visibility.

1.26×106, 6.28×106, 2.51×107, 6.28×107 and 1.26×108 respectively. This results indi-

cate that channelised fluid transport at Pe higher than 107 in the heterogeneous porous

medium leads to a more stagnant region in non-Newtonian fluid than the Newtonian

fluid. The migration of nanoparticles in the stagnant zone, due to lower shear stress in

those regions, are not observed. Although the pore size (i.e > 3 µm) was much larger

than the nanoparticle size (i.e. 0.4 µm ), pore accessibility was mostly governed by

gradient of shear stress and pore geometry.

We evaluated nanoparticle dispersion using the mean-square displacement and velocity

autocorrelation function approach [11, 14, 15, 93, 186]. Fig 6.5 shows that mean square
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Figure 6.5: Mean square displacement (MSD) along (a) longitudinal direction, (b)
transverse direction, and (c) normalised longitudinal and transverse dispersion coeffi-
cient over a range of Péclet number in Newtonian (N) and non-Newtonian (NN) fluids

and Mt. Simon sandstone.

displacement (MSD) is a non-linear function of lag-time along longitudinal and trans-

verse directions in the Mt. Simon sandstone over a range of Péclet number. Fig 6.5

indicates that the pattern of long-time MSD curves at lower Pe of 105 deviates from

the MSD curves of 107 and 108. This deviation indicates that nanoparticle migration at

lower Pe is different from migration at high Pe. The shear stress in the porous medium

at low Pe will be much lower than at high Pe. Furthermore, high viscosity at fluid’s

low-velocity creates more resistance for the fluid as well as for nanoparticles to migrate

in the porous medium. The geometry and shear stress gradient-dependent resistance

govern the nanoparticle flow path in the porous medium, which in turn, govern the

longitudinal and transverse dispersion.

Fig 6.5c shows that DL and DT of Newtonian and non-Newtonian fluids increases linearly

with increase in Pe. However, DL and DT of Newtonian fluid is consistently higher than
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non-Newtonian fluid. Two-sample statistical T-test had a p-value of 0.23-0.62 for Pe less

than 107, indicating an insignificant difference in dispersion coefficient for Newtonian

and non-Newtonian fluid at Pe < 107. The p-value of 0.007-0.04 at Pe higher than

107 indicate a significant difference in dispersion coefficient in a Newtonian and non-

Newtonian fluid. The long-time MSD at Pe higher than 107 in Fig 6.5a,b shows the

significant difference in the MSD curve for Newtonian and non-Newtonian fluid. This

considerable difference arises due to spatiotemporal difference in shear stress distribution

in Newtonian and non-Newtonian fluids (see Fig 6.4).

Fig 6.6a,b,c show the distribution of the velocities of nanoparticles in longitudinal and

transverse directions, normalised by the average velocity of all nanoparticles in the con-

sidered domains. The distribution of velocity along the longitudinal direction is skewed

non-Gaussian with an exponential stretching in the positive direction. Although veloc-

ity distributions of nanoparticles along a transverse Y and Z direction do not overlap,

both are symmetric about zero velocity and non-Gaussian. Nanoparticles along the lon-

gitudinal direction are channelised along the flow direction, and thus, it has a skewed

profile along the positive direction. Whereas, in transverse directions, distributions are

non-Gaussian and symmetric. These results are similar to those of [14, 15, 93].

Fig 6.6d and e show the normalised autocorrelation function (VACF) over a range of

Pe in a non-Newtonian fluid. We normalised lag time using
t Vavg

δL
. The longitudinal

velocity auto-correlation function indicates a positive correlation over the range of Pe,

whereas the transverse velocity auto-correlation function indicates no significant auto-

correlation. Since fluid injection velocity is relatively high, advection plays the dominant

role in nanoparticle migration, and most nanoparticles move along the flow directions.

This leads to a positive correlation along longitudinal directions.

We determined the dispersion coefficient along the longitudinal and transverse direc-

tions by fitting a linear-part of the MSD curve to 2DL,T t
′. We compared dispersion

computed using MSD with a long-time dispersion coefficient estimated using a velocity

auto-correlation function (VACF). We obtained a similar dispersion coefficient using the

MSD method and a VACF with a difference of less than 10%. Fig 6.6f depicts disper-

sion coefficients over a range of Reynolds numbers estimated using the VACF method

for non-Newtonian fluids and is comparable with the values estimated using the MSD

method (Fig 6.5c).
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Figure 6.6: Probability density function (PDF) of nanoparticle velocity along (a)
longitudinal X-direction, (b) transverse Y-direction, and (c) transverse Z-direction in
a Mt. Simon sandstone. Velocity of particle is normalised by average velocity of the
nanoparticle in that direction. Normalised velocity auto-correlation function along (d)
longitudinal direction (VACFL), (e) transverse direction (VACFT). (f) Normalised
longitudinal and transverse dispersion coefficient over a range of Reynolds number in

non-Newtonian (NN) fluids and a Mt. Simon sandstone.

6.4.3 Effect of Brownian motion and nanoparticle concentrations

We injected 500 nanoparticles for 1 second in Mt. Simon sandstone over a range of Pe

with and without Brownian force. Fig 6.7a,b shows spatial distribution of nanoparticles

at normalised time of 60 and Pe of 1.26 × 106. The normalised resident concentration

of nanoparticles (Fig 6.7c) in sandstone indicates that more than 58% of the nanopar-

ticles are still trapped in the sandstone due to the absence of Brownian force. These

results imply that the nanoparticles’ Brownian motion helps migrate nanoparticles from

the confined region to the fluid flow region. Furthermore, the Brownian motion of

nanoparticles in the heterogeneous porous medium influences pore-accessibility. The

mean square displacement of nanoparticles with Brownian force is much larger than

nanoparticles without Brownian force (see Fig 6.7d). Fig 6.8 shows that the dispersion

of nanoparticles (DL, DT) with Brownian force in the heterogeneous porous medium is
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Figure 6.7: Spatial distribution of nanoparticles in Mt. Simon sandstone at nor-
malised time of 60, (a) with and (b) without Brownian force. (c) Normalised resident
concentration of nanoparticles as a function of dimensionless time. (d) Mean square
displacement (MSD) along longitudinal direction and transverse direction with and

without Brownian force in non-Newtonian fluid (Pe = 1.26 × 106).

1-2 orders of magnitude larger than the dispersion of nanoparticles without Brownian

force over a range of Pe.

To evaluate the effect of nanoparticle concentration on dispersion, we injected 1000,

5000, and 10000 nanoparticles per second along with non-Newtonian fluid into Mt.

Simon sandstone over a range of Pe. Fig 6.8a shows insignificant variation in DL over a

range of Pe and nanoparticle concentrations. However, Fig 6.8b indicates a significant

increase in DT with an increase in nanoparticle concentration at Pe higher than 107.

Contrary to the earlier experimental observation of [14, 15, 93], we did not observe the

collapse of normalised dispersion coefficients on the single master curve over a range of Pe

and porous medium geometries. These results imply that the gradient of shear stress af-

fects the dispersion coefficient in three-dimensional space. Furthermore, although earlier

experimental works [14, 15, 93] were carried out in 3D, the measurement of nanoparticle
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Figure 6.8: Effect of nanoparticles concentration and Brownian force (BF) on nor-
malised dispersion coefficient along (a) longitudinal direction and (b) transverse di-
rection in non-Newtonian (NN) fluid and Mt. Simon Simon sandstone. Each symbol

represent number of nanoparticles injected per second.

displacement was carried out in 2D. Thus, the measurement of nanoparticle displacement

in transverse z -direction was missing.

6.5 Conclusion

We have shown that the Euler-Lagrangian approach can be adopted to study nanopar-

ticle transport and dispersion in an inelastic non-Newtonian fluid (described by the

Meter model fluid) and heterogeneous porous media in 3D. Measurements of nanopar-

ticle transport in 3D provide insights into nanoparticle dispersion in the longitudinal as

well as the transverse direction. The gradient of shear stress formed in the pore-space

of the porous medium dictates the transport behaviour, migration, pore-accessibility,

and spatial distribution of nanoparticles in the porous medium. Nanoparticles adopt

different flow paths in the porous medium at different Péclet numbers due to the porous

medium’s pore-scale spatial heterogeneity. The lower shear stress of the fluid in the

stagnant zone creates resistance for nanoparticles to access pores in stagnant zones in

heterogeneous porous media. The Brownian motion of nanoparticles increases the dis-

persion of nanoparticles in longitudinal and transverse directions.

Most non-Newtonian fluids are viscoelastic. Previous studies have shown that viscoelas-

tic fluids exhibit elastic turbulence with low Reynolds number flows. Therefore, in

the future, we will develop the Euler-Lagrangian method to simulate the transport of
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nanoparticles in a non-Newtonian viscoelastic fluid modelled using the Phan-Thien-

Tanner fluid model. This will help to understand the effect of pore-scale viscoelasticity

on the dispersion of nanoparticles in 3D heterogeneous porous media.



Chapter 7

Summary and Future Work

The flow of fluid in a porous medium occurs on the scale of the pores. However, fluid

flow measurements are made on a scale several orders of magnitude larger than the size

of the pores, and that too, in an abstract way. Thus, upscaling fluid flow phenomena

across different length scales (pore-scale to Darcy-scale to reservoir-scale) is necessary

to design proper strategies for enhanced oil recovery and subsurface soil remediation. In

addition, the fluid can show Newtonian or non-Newtonian (shear thinning, shear thick-

ening, viscoelastic) behaviour depending on the presence of solutes (polymers, colloids)

in a solvent, temperature, and molecular structural arrangement of the solute and sol-

vent. Thus, the objective of the thesis is to develop a framework that can be used to

upscale pore-scale non-Newtonian fluid flow to the Darcy scale based on an analytical

and numerical approach. The major outcome of the thesis is as follows:

Most of the polymeric fluids used for enhanced oil recovery show an S-shape type of

rheology. Upscaling non-Newtonian fluid flow from pore-scale to the Darcy scale was

challenging due to the absence of an exact analytical solution through a circular capillary

for these fluids. The exact analytical solution derived for the flow of a polymeric fluid

(represented using the Meter model) in a circular capillary helped upscale pore-scale

non-Newtonian fluid properties to the Darcy scale and determine effective viscosity and

the Reynolds number.

The pore-correction and fluid-correction coefficient based capillary bundle model (BCM)

for inelastic (Meter model) and viscoelastic (linear Phan-Thien-Tanner) non-Newtonian

fluids could correctly upscale pore-scale flow to the Darcy scale. The pore-correction

147
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coefficient considers variation in flow due to pore-geometry, and fluid-correction con-

siders variation in fluid flow due to fluid rheology. Thus, the formulation proposed

using BCM directly relates Darcy scale fluid flow properties (viscosity, shear rate, shear

stress, velocity, and Reynolds number) to physical parameters (pore-morphology and

fluid rheology).

The OpenFOAM-based direct numerical simulation using the inelastic Meter and vis-

coelastic linear Phan-Thien-Tanner (PTT) models was carried out in 2D and 3D het-

erogeneous porous media. The results showed that the upscaled parameters determined

using the Meter model and the PTT model were similar. However, the viscoelastic PTT

model gives a more realistic pore-scale description of non-Newtonian fluid flow com-

pared to the Meter model. The mobile and immobile zones strongly affect pore-scale

non-Newtonian fluid flow, and Darcy’s viscosity represents viscosity in the active mobile

zone of a porous medium.

OpenFOAM based two-phase simulations of non-Newtonian fluid displacing oil were car-

ried out using the Meter model to study micro-heterogeneity and wettability-dependent

stability of fluid flow in 2D and 3D porous media. The velocity and viscosity in the

heterogeneous porous media were Beta and Gamma distributed, respectively. These

spatial variations of velocity and viscosity and capillary/viscous forces controlled the

stability of the two-phase fluid flow. Even after using a polymeric fluid with a higher

viscosity value than the displaced oil, the heterogeneity of the porous medium leads to

an unstable fluid flow front.

The Euler-Lagrangian approach developed for tracking spatio-temporal nanoparticle

transport within the non-Newtonian and porous medium in 3D helps determine nanopar-

ticles’ dispersion in a longitudinal and transverse direction. The gradient of shear-stress

that forms in an enclosed portions of a porous medium’s pores and throats regulates the

behaviour, migration, pore-accessibility and spatial distribution of nanoparticles. Fur-

thermore, the observed non-Fickian behaviour of nanoparticle dispersion is related to

the non-Gaussian distribution of particle migrations due to rheology and heterogeneity-

dependent confinement.

The generalised Newtonian fluid model proposed for shear thickening fluid captures all

regimes of typical shear thickening fluid and can be used to carry out single-phase simu-

lations. The proposed equation predicts critical viscosity parameters of shear thickening
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fluids such as η0, ηmin, ηmax. The threshold shear stress parameters (τ0, τp, τd1, τd2),

the threshold shear rate parameters (γ̇0, γ̇p, γ̇d1, γ̇d2) and the threshold Péclet number

parameters (Pep, Ped1, Ped2) of the proposed equations are parameters that modulate

the effective transmutation of rheological characteristics (i.e. from Newtonian to shear-

thinning, followed by a shear-thickening regime).

7.1 Future Work

This thesis provides a framework for upscaling non-Newtonian properties to the Darcy

scale. But, there are many aspects that need careful consideration and improvement in

the future. Some fundamental issues that can be considered are as follows:

1. The addition of nanoparticles or colloids imparts shear-thickening characteristics

to some fluids. The shear thickening fluids have enormous potential to enhance

oil recovery. However, previous studies on shear thickening fluids were carried

out using the power-law model, which does not capture the complex behaviour of

actual shear thickening fluids. Therefore, the GNF model proposed in chapter 3

can be used through the volume-of-fluid method of multiphase simulation to gain

insight into the multiphase behaviour of the shear thickening fluid at the pore scale

in porous media.

To perform this investigation, an equation (Eq. 3.9) proposed in Chapter 3 for the

shear-rate dependent viscosity of shear thickening fluids, can be implemented in

the interFoam solver of OpenFOAM (Chapter 5). The effect of volume-fraction,

wettability alteration, and heterogeneity of porous media on the displacement of

Newtonian fluid (oil) when using shear thickening fluid can be investigated over

a range of porosity, heterogeneity, and pressure gradient. The results can then

be compared with the displacement of oil using shear-thinning fluid (e.g., as in

Chapter 5). Along with a pore-scale evaluation of the two-phase displacement of

shear thickening fluids, the above simulations will also help determine macroscopic

parameters (i.e., relative permeability and capillary pressure) and their relation-

ship with pore-scale displacement regimes. The hysteresis and energy dissipation

during fluid-fluid displacements in porous media are due to an irreversible ther-

modynamic process, the memory of two-phase flow, and loss/imbalance of energy
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[186]. The energy calculation for hysteresis in porous media is largely neglected

in the literature. These simulations will help determine the spatial distribution of

shear stress in porous media, which could help study the effects of the disorder of

porous media on hysteresis involving shear thickening fluids.

2. The exact analytical solution could not be developed for the shear thickening fluid

equation proposed in the present work. However, it would be possible to derive

an analytical solution for the flow of shear thickening fluid through a circular cap-

illary under certain limited conditions. For example, if we substitute ηmin = 0

and η0 = 0 in Eq. 3.2 of chapter 3, we can derive an analytical solution for shear

thickening fluid flow using the resulting equation and by following the procedure

given in section 2.2.1 of Chapter 2. The analytical solution of shear thicken-

ing fluid can be implemented in a bundle-of-capillary model (BCM) proposed in

chapter 4 for upscaling pore-scale properties of shear thickening fluids to Darcy’s

scale. Direct numerical simulation is computationally expensive and cannot be

directly applied to field-scale applications, e.g. enhanced oil recovery. However,

the upscaled macroscopic parameters using the BCM approach could be used for

Darcy/reservoir scale simulation.

3. Most shear-thinning fluids exhibit viscoelasticity, which strongly affects the pore-

scale displacement of non-Newtonian fluids and Newtonian fluids such as oil. In

addition, wettability varies with space in subsurface porous media; therefore, more

research is needed to understand how the interplay between wettability and vis-

coelasticity affects the two-phase displacement of non-Newtonian fluid using mi-

crofluidic experiments and viscoelastic PTT model-based numerical simulations.

However, using the PTT model for two-phase simulation is challenging due to

numerical stability issues.

The OpenFOAM based RheoTool developed by [163] can be modified to perform

two-phase simulations of viscoelastic Phan-Thien-Tanner fluid displacing oil over a

range of wettability conditions. The hydrophobic and hydrophilic disordered glass

micromodel can be fabricated to perform two-phase experiments of viscoelastic

fluid displacing oil over a range of injection rates. Pore-scale displacement can

be imaged using optical methods [59, 104] to determine pore-scale capillary pres-

sure, static and dynamic contact angle, fluid-fluid interface curvature, Haines jump
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instability and its effect on global displacement. These results, along with rheo-

logical parameters (relaxation time, storage and loss modulus etc.), can be used

to validate two-phase simulations involving viscoelastic non-Newtonian fluids.

4. Direct numerical simulations are computationally expensive and thus cannot be

used to study fluid flow behaviour on a larger scale. The exact analytic solution

of the Meter model (chapter 2), on the other hand, has recently been used by

[10] to develop a pore-network model [100, 101] to study the pore-scale fluid flow

behaviour of shear-thinning fluid over a larger domain. Adopting a similar pro-

cedure [10], a pore-network model for viscoelastic PTT can be developed using

an analytical solution of PTT fluid (i.e., Eq. 4.18 and Eq. 4.19 of chapter 4).

Viscoelastic fluid flow using a pore-network model is not adequately studied in the

literature, specifically if the porous medium is heterogeneous. A viscoelastic PTT

fluid-based pore-network model can be used to identify the optimal flow conditions

for viscoelastic fluid flow in real applications such as enhanced oil recovery.



Appendix A

Examination of the spatial (grid)

convergence of simulations

The method proposed by Roache was adopted to evaluate the quality of the grid

convergence [175]. In summary, the order of convergence (p) was estimated using

p = ln( f3−f2
f2−f1

)/ ln(h), where, h is the grid refinement ratio, f are the values of evalu-

ated parameter at each grids. The Richardson extrapolation at h=0 was estimated

using fh=0 = f1 + f1−f2
hp−1 . The grid convergence index (GCI) at each refinement level was

determined using GCI = Fs e
hp−1 , where Fs = 1.25 is factor of safety and e = f1−f2

f1
is error

between two grids. The asymptotic range of convergence was examined using
GCI2,3

hp GCI1,2
.

The grid convergence study was performed on different grid resolutions (50,000 – 5,00,000)

on a subsample of porous medium having a porosity of 54% (Figure A.1). To evaluate

grid convergence of the numerical scheme described in the thesis for the single-phase flow

of Meter model fluids (Chapter 4, section 4.4), a single-phase flow of shear thickening

fluids (Chapter 3, section 3.3.6), and a two-phase flow of Meter model fluids (Chapter

5, section 5.2.1), we injected non-Newtonian fluid at an injection rate of 10−4 m/s and

a time-step of 10−6 s. The convergence of velocity and viscosity was evaluated. Table

A.1 shows the order of convergence (p), Richard extrapolation of velocity and viscosity

values at zero-grid spacing values, the grid convergence index (GCI), and the asymptotic

range of convergence for average velocity and average viscosity values. The error (%)

in Fig A.1 shows the percentage of the average value attained for velocity and viscosity
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Table A.1: Spatial grid-dependent convergence of the simulations

Meter model (MM) Shear thickening fluid Two-phase model
Parameter Uavg ηavg Uavg ηavg Uavg ηavg

(m/s) (Pa·s) (m/s) (Pa·s) (m/s) (Pa·s)
p 1.26 1.18 1.07 1.13 1.2 1.3
f0 1.73 × 10−4 0.73 1.73 × 10−4 274 1.73 × 10−4 0.73

GCI1,2 0.035 2.89 0.13 2.87 0.04 3.56
GCI2,3 0.053 4.02 0.18 3.89 0.061 5.82

Asymptotic 1 0.98 1 1.01 1 1.02

Figure A.1: Average velocities and average viscosity for each grid density. The error
shows the percentage of the average value attained compared to the Richard extrapo-
lation (i.e. highest grid resolution). [MM: Meter model, STF: shear thickening fluid.]

at each grid density compared to the average value at the zero-grid spacing values es-

timated using Richard extrapolation (i.e. at the highest grid resolution). This result

indicates that average velocity and viscosity values approach an asymptotic zero-grid

spacing value as the grid density increases. Figure A.1 shows an insignificant difference

in the average velocity and viscosity after grid density 30 cells/µm2. The Courant num-

ber was higher than 1 for a grid size lower than 20 cells/µm2. Although computationally

expensive, all simulations were carried out with a grid density higher than 50 cells/µm2

to maintain convergence and accuracy. This resolution provided at-least 50 cells in the

smallest pore-throat of the heterogeneous porous medium.
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[177] A. Rodŕıguez de Castro and G. Radilla. Flow of yield stress and Carreau fluids

through rough-walled rock fractures: Prediction and experiments. Water Re-

sources Research, 53(7):6197–6217, 2017.
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