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Abstract

The next-generation of radio facilities will produce huge volumes of data and the use

of deep learning methods seems inevitable. However, in general these models produce

overconfident predictions and provide no uncertainty estimates. In this work we use

variational inference (VI) as an approximation to Bayesian inference and present the first

application of a VI-based approach to morphological classification of radio galaxies, us-

ing a binary FRI/FRII classification. We show how posterior uncertainties on model pre-

dictions can be recovered and find that on average model uncertainty is correlated with

the degree of belief of the human classifiers who curated the data set. Additionally, to

reduce the computational and storage cost of these models at deployment, we test model

pruning strategies and find that a Fisher information based metric allows for a higher

proportion of the fully-connected layer weights of the network to be pruned, by up to

60%, compared to a SNR-based metric without compromising on model performance.

We find that model uncertainty is reduced for both pruning methods. Finally, we show

that our model experiences a cold posterior effect and examine whether this effect is due

to model misspecification. We observe no difference in model performance on testing a

hypothesis for mitigating this effect and conclude that model misspecification is not the

major contributing factor to the cold posterior effect observed in our work.
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Chapter 1

Introduction

1.1 Radio Galaxies

Radio galaxies are a sub-class of AGN, which along with radio-loud quasars are clas-

sified as radio-loud AGN. These galaxies are characterised by large scale jets and lobes

which can extend up to mega-parsec distances from the central black hole and are ob-

served in the radio spectrum. These jets emit synchrotron radiation due to the presence

of highly relativistic electrons that interact with magnetic fields. Synchrotron emission

has a steeply falling spectrum, with a spectral index of α ∼ −0.7, thus these galaxies

have a higher flux density at low frequencies.

1.2 Radio Galaxy Classification

1.2.1 The Original Dichotomy

Fanaroff & Riley (1974) studied 57 sources in the 3CR catalogue and proposed a classifi-

cation of extended radio sources based on the ratio of the distance between the highest

surface brightness regions on either side of the galaxy to the total extent of the radio

source, RFR. Based on a threshold ratio of 0.5, the galaxies were classified into two classes

as follows: if RFR < 0.5, the source was classified into Class I (FRI; edge-darkened),

and if RFR > 0.5 it was classified into Class II (FRII; edge-brightened), see Figure 1.1.

Additionally, the two classes were also distinguishable on the basis of a threshold radio

luminosity, L178 MHz = 2× 1025 W Hz−1 sr−1, such that most of the FRIs were found to

exist below this threshold and FRIIs above it. Thus it was concluded that there exists
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FIGURE 1.1: Different morphologies of radio galaxies, as presented in Hardcastle & Croston
(2020). Starting clock-wise from the top-left corner: FRI source 3C 31, FRII source 3C 98,
Wide-Angle Tail (WAT) source 3C 465, Narrow-Angle Tail (NAT) source NGC 6109, Double-

Double source 3C219, core-restarting radio galaxy 3C 315.

a correlation between the positions of regions of high/low brightness emission and lu-

minosity. However, even in the original samples, these luminosity boundaries were not

very sharp.

Based on our current understanding of jet dynamics, the differences in FRI/FRII mor-

phology can be explained on the basis of their relativistic jets: FRIs have jets that are ini-

tially relativistic, but get disrupted at a short distance from the central BH and decelerate

on kpc scales, hence they are also known as edge-darkened or centrally brightened, whereas

FRIIs have relativistic jets that extend out to the lobes and terminate in hotspots due to

internal shock, hence they are also known as edge-brightened (Bicknell, 1995; Laing & Bri-

dle, 2014). However, there is still a continuing debate about the exact interplay between

extrinsic effects, such as the interaction between the jet and the environment, and intrin-

sic effects, such as differences in central engines and accretion modes, that give rise to the

different morphologies.
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1.2.2 Extensions to the original classification

Over the years, several other morphologies have been observed, some of which are de-

scribed in this section, see Figure 1.1 for examples of these galaxies.

Bent-Tail sources: Bent-tail sources are thought to be produced due to the movement

of galaxies through the intra-cluster medium (ICM) in clusters of galaxies, with cluster

winds bending the tails at an angle (Rudnick & Owen, 1976). Depending on the degree at

which the tails bend, bent-tail sources are further classified into Wide-Angle Tails (WATs)

and Narrow-Angle Tails (NATs).

Using VLA observations, O’Dea & Owen (1985) studied 57 sources in galaxy struc-

tures and observed 41 NATs, 9 WATs and 7 sources with complex morphologies that

could not be classified as NAT/WAT. Out of the 41 NATs, some were single-tailed sources

whereas others were twin-jet structures, classified on the basis of how the jet transitioned.

While some jets transitioned into broad diffuse tails, others were observed to expand

gradually and were predicted to merge into a single tail. It was also found that some jets

were brighter near the core and others had high luminosity jets with gaps in emission

near the core. Out of the 41 NAT sources, 11 were observed to have large scale curva-

ture in their tails. Among the 9 WAT sources, some structures were associated with cD

galaxies (galaxies in the centers of clusters). Complex morphologies included single and

twin-jet sources, with extremely distorted jets and diffuse lobes, and physically interact-

ing twin-jet sources. Thus we can see how even within a classification, there may be

significant variation.

Hybrid Sources: Gopal-Krishna & Wiita (2000) introduced a new class of radio sources,

‘HYbrid MOrphology Radio Sources’ (HYMORS), which exhibited FRI-like morphology

in one lobe, and FRII-like in the other. This led them to hypothesise that perhaps the

FR dichotomy arises because of the way in which jets interact with the environment of

the host galaxy, rather than a difference in central jet engines. More recently, Harwood

et al. (2020) performed detailed spectral study of five hybrid sources and showed that

these objects have spectral features of FRII objects and that hybrid morphology could be

explained based on orientation alone.

Double-Double Sources: Schoenmakers et al. (2000) presented 4 double-double sources
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and defined them as two radio sources with edge-brightened morphology with a com-

mon center. Kaiser et al. (2000) proposed that the inner jets may be due to a re-started

AGN. Double-Double sources are now thought to be re-starting FR II galaxies, and thus

important for understanding the life-cycles of radio-loud AGN (Mahatma et al., 2020).

FR Type 0: These are sources with no extented emission (Baldi et al., 2015). Although

Hardcastle & Croston (2020) discourage the inclusion of FR0s as a ’morphological’ class

since they are compact extensions of the FRI class of sources, we include them here for

completeness. Cheng & An (2018) studied 14 FR Type 0 radio galaxies using VLBI higher

resolution images. It was found that these sources have a compact structure and could be

a mixed population comprising of GHz-peaked spectrum (GPS), evolved compact steep-

spectrum (CSS) and a mix of CSOs (compact symmetric objects) and MSOs (medium-

sized symmetric objects). In addition to that, Garofalo & Singh (2019) also studied the

FR0 class of active galaxies, which had similar properties to that of FRIs, except that the

ratio of the core to total emission was 30 times higher in FR0s. It was predicted that if

sufficient fuel exists, FR0s could evolve into FRIs.

1.2.3 Current state of observational data

More recently, Mingo et al. (2019) conducted the largest morphological investigation of

extended radio loud AGN using the LOFAR Two-Meter Sky Survey (LoTSS) and stud-

ied 5805 sources. Notably they found that a significant number of low-luminosity FRII

sources, which are referred to as ’FRII-lows’, with luminosities that were 3 orders of mag-

nitude below the traditional FRI/FRII threshold luminosity L ∼ 1025 W Hz−1, see Fig-

ure 1.2. Thus, it was concluded that the luminosity break discovered by Fanaroff & Riley

(1974) does not predict the class of the radio galaxy. This was attributed to the difference

in the sensitivity of the two surveys and also its relationship to redshift, since FRII-lows

are rare in the local universe.

FRII-lows: Two theories were proposed and tested to explain the existence of FRII-low

galaxies : (i) Some FRII-lows may be an older population of FRIIs, which have started

fading (Shabala et al., 2008; Hardcastle, 2018). Through the LoTSS observations, it was

found that some FRII-lows have higher spectral indices compared to FRIIs at a higher lu-

minosity, but that many FRII-lows also exist within the same range as FRII-highs. Thus,
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FIGURE 1.2: Luminosity at 150 MHz vs Physical Size of FRI and FRII galaxies from Mingo
et al. (2019). Many FRIs and FRIIs can be found beyond their traditional luminosity threshold

predicted by Fanaroff & Riley (1974).

this could not be the only explanation. (ii) FRIIs exist mostly in low density environ-

ments, which allows the jets to remain undisrupted. FRII-lows in the LoTSS sample were

found to exist in host galaxies with lower luminosities, and were also found to have

fainter hosts than FRIs at similar luminosities.

It was also found that populations of both FRIs and FRIIs are heterogeneous, includ-

ing NATs, WATs and double-double sources. FRII-lows were also found to have a hetero-

geneous population, including bent-tail sources.

Correlation between radio and optical luminosities: Ledlow & Owen (1996) studied the

relationship between host galaxy luminosity in the optical and radio luminosity using the

Owen-Ledlow diagram for the FRI/FRII division as it was originally defined by Fanaroff

& Riley (1974) and found that they are approximately related as Lradio ∝ L2
optical However,

later works showed that this does not entirely hold true (Gendre et al., 2013; Mingo et al.,

2019). For instance, Mingo et al. (2019) found FRI and FRIIs sources across a range of

optical luminosities.
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1.2.4 Theories to explain different radio loud AGN populations

While so far we have discussed a morphological classification of radio galaxies, in this

section we also consider a more fundamental dichotomy of radio galaxies based on ex-

citation modes defined using optical spectral lines. Based on the relative intensity of

high and low excitation lines, radio galaxies are also classified as: High-Excitation Ra-

dio Galaxies (HERGs) and Low-Excitation Radio Galaxies (LERGs). These populations

are thought to be associate with two different feedback pathways in AGN and are influ-

enced by factors such as fuelling mechanisms, host galaxy properties and environmental

influences, among others. They are thus important for understanding the role of radio-

loud AGN in galaxy evolution.

Although there does not exist a one-to-one mapping between morphological classes

and excitation modes, it has been suggested that most FRIs are LERGs, whereas FRIIs will

comprise of both HERGs and LERGs (Mingo et al., 2019; Hardcastle & Croston, 2020).

On accretion modes and fuelling

The two excitation modes have distinct accretion rates, as shown by Best & Heckman

(2012): LHERG ∼ 0.1 Ledd and LLERG ∼ 0.01 Ledd, where Ledd is the Eddington luminos-

ity, which is the luminosity at which the gravitational force and radiation force balance

out. Thus, HERGs are also known as radiatively efficient, whereas LERGs are known as

radiatively inefficient.

LERGs are also known as hot mode, since they are believed to be fuelled by accretion of

hot gas from the intergalatic medium (IGM) , whereas HERGs are known as cold mode and

believed to be fuelled by cold gas supplied by recent mergers or interactions. However,

at a given radio luminosity, FR morphology is thought to be independent of accretion

modes (Gendre et al., 2013)

On host galaxy properties and environment

Best & Heckman (2012) found that LERGs are found in more massive galaxies that have

large BH mass; whereas HERGs reside in host galaxies that have lower stellar mass and

lower BH mass at a similar radio power. Since most FRIs are LERGs, we expect to find

them in higher mass host galaxies.
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Using the Owen-Ledlow diagram to study the distribution of radio galaxies and in-

cluding the dust properties of the two FR classes, Saripalli (2012) found a connection

between host galaxy properties and the conditions that give rise to the FR dichotomy.

FRIs were found to be hosted by higher mass elliptical galaxies; whereas interactions and

mergers in low mass ellipticals were proposed to cause FRII morphology. Since most

HERGs are FRIIs, we also find HERGs in environments where there are more mergers

and interactions. This is broadly consistent with the finding that the host galaxies of

HERGs are bluer than that of LERGs, which means that they have a higher star forma-

tion rate than LERGs (Janssen et al., 2012; Best & Heckman, 2012). However Miraghaei &

Best (2017) also compared FRI LERGs and FRII LERGs and found that FRIs were hosted

by smaller galaxies with high stellar mass to BH ratios compared to FRIIs.

Links between environment and excitation modes have also been established: HERGs

are found in low density/poorer environments, whereas LERGs are found in a range of

cluster environments (Gendre et al., 2013; Ineson et al., 2015). This is consistent with the

finding that FRIs are predominantly located in high density environments (Gendre et al.,

2013) where it is thought that the high density environment disrupts the jets, as described

in Section 1.2.1, whereas FRII LERGs are found in richer environments than FRI LERGs

(Hardcastle, 2004).

On evolution, particle content

HERGs and LERGs also have different redshift evolution at fixed radio luminosities (Best

& Heckman, 2012). While HERGs evolve strongly at all radio luminosities, LERGs evolve

weakly or do not evolve at all.

It has also been shown that HERGs and LERGs cannot be distinguished on the basis

of the particles in their lobes and hence the contents of lobes are not related to excitation

modes; whereas it was also shown that FRIs and FRIIs have different plasma conditions,

which was attributed to the presence of more proton content in FRIs than FRIIs (Croston

et al., 2018).

From the preceding discussion it should be evident that although the original FR classi-

fication has been used for more than four decades, it is still unclear exactly how it maps

to the physical and/or environmental properties of the galaxies themselves. Intrinsic



1.3. Machine Learning Approaches to Radio Galaxy Classification 21

and environmental effects are often difficult to disentangle using radio luminosity alone

as systematic differences in particle content, environmental effects and radiative losses

make radio luminosity an unreliable proxy for jet power (Croston et al., 2018). Hence the

use of morphology for inferring the environmental impact on radio galaxy populations is

therefore important for gaining a better physical understanding of the FR dichotomy, and

of the full morphological diversity of the population. It is hoped that the new generation

of radio surveys, with improved resolution and sensitivity, will play a key part in finally

answering this question.

1.3 Machine Learning Approaches to Radio Galaxy Classifica-

tion

The upcoming radio telescopes such as the Square Kilometre Array and its precursors

which are already operational are expected to detect millions of radio sources, making

classification via visual inspection impossible within a reasonable time frame. The Rapid

ASKAP continuum survey (McConnell et al., 2020) has already detected three million

extended sources and the upcoming Evolutionary Map of the Universe (EMU) survey

is expected to detect 70 million radio sources. The large data volumes have led to the

increased use of automated detection and classification tools. In the past decade, the

field of Deep Learning (DL) has also revived due to the availability of large labelled data

sets and advances in GPU-accelerated computing. This has led to the adoption of deep

learning techniques for radio galaxy classification. In this section we review previous

works that have been done with radio galaxy data using machine learning and discuss

the challenges associated with the application of these algorithms to catalogues of radio

galaxies. In the next chapter we describe deep learning models and how they learn from

data in detail.

Aniyan & Thorat (2017) were the first to examine deep learning for morphological

classification of radio galaxies. They used Convolutional Neural Networks (CNNs), a

type of deep learning model used with grid-like data such as images, for classifying

sources into FRI, FRII, and bent-tail sources. Following that, Wu et al. (2018) developed

ClaRAN, an end-to-end pipeline for source identification and classification using Faster

Region-based CNN. A combination of localisation and recognition networks were used
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to find regions of interest in a given field of view and morphology was determined based

on the number of components and peaks in that region. It was also found that a tech-

nique known as transfer learning could significantly improve model performance (Pratt

et al., 1993).

Transfer learning involves using weights trained on a different data set to initialise

(and possibly freeze) another model’s weights. This method works especially well when

only used for the initial layers of a network because these layers learn similar features

such as lines and edges, irrespective of the data set being used. While Wu et al. (2018)

transferred weights of the first five layers from a VGG-16 model, a deep neural network

with 16 layers and 138 million parameters, trained on the ImageNet data set and found

that it improved their model performance, Tang et al. (2019) made use of cross-survey

transfer learning to test whether weights inherited from models trained on one radio

survey could be used as a starting point for training the same model on another survey.

It was found that using a higher resolution survey data such as FIRST can improve the

performance of a model being trained on lower resolution survey data such as NVSS but

transfer learning in the opposite direction did not perform as well.

Several machine learning algorithms including logistic regression, random forests

and CNNs were examined by Alger et al. (2018) for cross-matching galaxy hosts in in-

frared to their radio counterpart. It was found that training models for cross-identification

using citizen science data from Radio Galaxy Zoo was equivalent to training models on

cross-identifications made by experts. However, it was noted that their methods did not

outperform classifications made by the nearest neighbour algorithm. Since the data set

mostly contained unresolved sources, it was suggest that it may be more useful to use the

nearest neighbour algorithm if most of the sources are unresolved. A similar observation

was made by Wu et al. (2018), who note that classifying compact sources does not benefit

from using CNNs. Therefore, one must be careful before applying complicated neural

network architectures to problems that can more easily be solved by other, more simpler

learning algorithms.

Lukic et al. (2019) also compared several variations of Capsule Networks (Sabour
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et al., 2017) to CNNs. A capsule network consists of multiple capsules (groups of neu-

rons) that represent the instantiation parameters (such location, position, scale and ori-

entation) of the feature in an image. These instantiation parameters are learned and cap-

sules in multiple layers of the network are connected through a routing protocol to help

preserve the relative positions of each feature in the image. A CNN on the other hand

learns the features of an image, but not their relative positions. It was found that CNNs

outperformed capsule networks on radio galaxy data. Thus, it was concluded that pre-

serving the relative location of features is not necessary and may be detrimental for clas-

sification. This is again an example where a simpler CNN architecture was found to work

better than a more complicated architecture. It was also found that FRIIs were less accu-

rately classified by their model than FRI or unresolved sources. However, in this case

their sample also had fewer FRIIs than other sources.

In a step toward interpretability of deep learning models for radio galaxy classifica-

tion, Bowles et al. (2021) used attention-gated CNNs to generate attention maps. These

maps showed what regions of the images were being used by the model to make clas-

sifications. The results showed that attention-gated CNNs focus on similar areas in the

image that a human would use to distinguish between FRI/FRII: for FRIs the model fo-

cused at the central regions of the images, whereas for FRIIs the model focused on the

outer regions of the images which contained lobes. Notably, the attention-gated model

could achieve comparable accuracy to standard CNNs while using 50% fewer parame-

ters.

Standard CNNs are equivariant to translation only, which means that any translation

of the input features will result in an equal translation in the output feature map. This

property is achieved by weight sharing and it ensures that features such as lines, edges,

and motifs can be detected anywhere in the image. Scaife & Porter (2021) showed how

group equivariant CNNs (G-CNNs) which make the model equivariant to translation,

rotation and refection could be applied to radio galaxy data. G-CNNs are a more gener-

alised form of CNNs that preserve group equivariance through the convolutional layers

that contain groups of symmetry transforms. In particular, they used Steerable G-CNNs

that describe E(2)-equivariant convolutions. The Euclidean group E(2) is the group of

isometries of the plane R2 that contains translations, rotations and reflections. Cyclical
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and dihedral subgroups of the E(2) group were considered. It was also shown that classi-

fication performance for the best performing D16 model, which contains a set of discrete

rotations in multiples of 2π/16 and reflections around x = 0, could be improved by using

Monte Carlo (MC) Dropout. MC dropout, which is an approximate Bayesian technique,

was also used to quantify epistemic uncertainty in the classifications.

Challenges: Applying deep learning to radio astronomy comes with unique chal-

lenges. Unlike the application of DL to large data sets such as MNIST, which contains ∼

70,000 images, and ImageNet, which contains 14 million images, there is a dearth of la-

belled data in radio astronomy. For example, the MiraBest data set used in this work has

∼ 1200 images only. This creates the need to augment pre-existing data sets. A possible

solution for the lack of labelled data was given by Bastien et al. (2021), who used struc-

tured variational inference (VI) to simulate populations of radio galaxies. Structured VI

consists of a variational autoencoder (VAE) which learns representations of input data

in a low dimensional latent space. These representations are the parameters of a prob-

ability distribution. The distribution is then sampled by a decoder to generate a new

data sample. The VAE is trained to minimise the reconstruction loss which measures the

difference between the input sample and the generated image. Any biases associated

with small data sets are also propagated to the larger augmented data sets using which

DL models are trained. We also note that, while all other works using the data set we

have used apply some form of augmentation, in this work we do not use any data aug-

mentation and study how a variational inference based Bayesian neural network (BNN)

performs with small data sets.

Another challenge is that of artefacts, misclassifed objects and ambiguity arising from

how the morphologies in these data sets are defined. If we compare images in Figure 1.1

to the images in our data set in Figure 4.1, we can see how different the ML data set

looks from the canonical radio galaxy images shown in Figure 1.1. While BNNs cannot

remove any of these effects, they can give an estimation of how uncertain the model is

in its prediction. When properly calibrated, these uncertainty estimates can serve as a

diagnostic tool to mitigate these effects.

With the exception of Scaife & Porter (2021), no published work in radio galaxy clas-

sification has currently looked at model uncertainty. As we shall see in the following

chapters, using a VI-based BNN allows us to identify galaxies that have artefacts, or may
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be misclassified. However, there are some examples for which we found that the model

confidently makes predictions that are wrong. In this case, we found the input galaxies

to be ambiguously defined.

The thesis is organised as follows: in Chapter 2 we describe neural networks and

how they are trained using data. We discuss challenges associated with training neural

networks, such as regularisation, and discuss the limitations of these models. In Chap-

ter 3, we present the Bayes by Backprop algorithm, which is a variational inference-based

Bayesian neural network (Blundell et al., 2015). This algorithm forms the basis of the

models used in this work. We also show some preliminary experiments with MNIST

and present a weight pruning method to see how these work when there is plenty of

data. In Chapter 4 we apply the techniques described to a data set of radio galaxies and

analyse the results. Finally in Chapter 5, we present some considerations for improving

variational inference for radio galaxy classification.
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Chapter 2

Neural Networks

2.1 Introduction

While a single layer neural network was first proposed by Rosenblatt in 1958, it took

several decades for these models to achieve state-of-the-art accuracy. The recent success

of neural networks can be attributed to big data and leveraging GPUs for parallel com-

putation. In a computer vision competition, Krizhevsky et al. (2012) showed that deep

convolutional neural networks could outperform the next best entry by ∼ 10%. Neural

network models now find application in a wide range of tasks such as object detection,

natural language processing, image generation and reconstruction. In astronomy, deep

learning has been used for tasks such as classifying pulsar candidates (Wang et al., 2019),

diagnosing radio telescopes (Mesarcik et al., 2020) and classifying glitches in LIGO data

(George et al., 2018) among many others. In this chapter we will discuss the how neural

networks models are trained using data in the context of supervised learning where we

have a set of input and output data pairs.

2.2 The Artificial Neuron

The artificial neuron is a mathematical model inspired by biological neurons. Each neu-

ron calculates a weighted sum of its real-valued inputs and applies an activation function

to produce an output. The weight values determine the importance of a particular input

for producing the output. The activation function assigns an activation value to the neu-

ron, which determines the threshold that will switch it on. This function may be linear or
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non-linear. The activation value is analogous to the action potential that causes biological

neurons to fire in the brain. An additional bias term may be added to allow the threshold

values of individual neurons to be shifted. An example of such a neuron is shown in Fig-

ure 2.1. Networks constructed using multiple neurons arranged in various architectures

are known as Artificial Neural Networks (ANNs) or Neural Networks (NNs).

Using a linear threshold activation function with a single neuron results in a simple

binary classifier known as the perceptron algorithm (Rosenblatt, 1958). It is also referred

to as a single-layer neural network because the inputs are directly connected to the output

layer neuron through a set of weights. However, these single-layer networks are only able

to learn outputs that are linearly separable. For instance, while the perceptron algorithm

can learn Boolean functions such as AND, OR and NOT, it cannot learn the XOR function.

The single-layer model can be extended by introducing multiple layers in the net-

work, but in order to take advantage of the multi-layered architecture to learn complex

functions, we use non-linear activation functions (Rumelhart et al., 1986).

The neurons across multiple layers may be connected such that information only

flows forward through the neurons, resulting in a Feed-Forward Neural Network. Alter-

natively, the neurons may be connected in a cyclic fashion, resulting in a class of networks

known as Recurrent Neural Networks (RNNs) which can be used with time-domain data

(Naul et al., 2018). In this work we will focus on feed-forward neural networks and look

closely at the two types of feedforward NNs widely used for classification: Multi-layer

Perceptrons (Section 2.3) and Convolutional Neural Networks (Section 2.10).

2.3 Multi-Layer Perceptrons

A multi-layer perceptron consists of several neurons arranged in a layered architecture.

All the neurons in adjacent layers are connected to each other, which is why these net-

works are also known as fully-connected neural networks (FCNN). Connections between

neurons of adjacent layers are parameterised by point-estimates of weights, which quan-

tify the importance of the connection for the final output of the network. A MLP archi-

tecture consists of three types of layers:

1. Input Layer: The first layer of the network, which is known as the input layer, takes

in the pre-processed data and passes it to the next layer. For example, if the input
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FIGURE 2.1: The artificial neuron: A single unit of a neural network

data is a set of greyscale images, for a fully-connected NN the input layer will be a

flattened array of pixels. For a CNN, it will be a 2D array of pixels.

2. Hidden Layer: One or more hidden layers are used to model complex relationships

between the input and the output. The number of hidden layers determines the

complexity of the solution that can be modelled. We define the depth of a neural

network by the number of hidden layers. One of the reasons for the recent success

of neural networks is due to the strides in computational capabilities that allow deep

neural networks to be trained with large data sets.

3. Output Layer: The output layer makes classifications by passing its outputs through

a Softmax function. This normalises the outputs to give a prediction score between

(0, 1). Each neuron in the output layer corresponds to one of the predefined classes

that we want to classify our data into.

Hornik et al. (1989) showed that multi-layer feed forward neural networks can be con-

sidered as a type of universal function approximator. The layered architecture allows

these models to approximate the underlying data distribution by learning non-linear fea-

ture representations. These representations become more abstract as the depth of the

network increases, which helps the model distinguish between features that are essential

for classification such regions of emission in the image of a galaxy and ignore irrelevant

information such as background noise.
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FIGURE 2.2: A fully-connected neural network

Figure 2.2 shows a multi-layer perceptron with two inputs, 2 hidden layers with 4

neurons each and an output layer with 2 neurons. We use the notation wl
jk to describe the

weight from the kth neuron in the (l − 1)th layer to the jth neuron in the (l)th layer. For

example, the connection between the last neuron of the third layer and the last neuron in

the output layer in the figure will be denoted as w24. Each neuron in a layer has a bias

value bl
j. This simple neural network has a total of 44 learnable parameters: 32 weights

and 12 biases. The optimal values of these weights and biases are learned from data.

2.4 Learning from Data

The data set for a supervised learning problem consists of a set of example input-output

pairs (xi, yi), where each input has a corresponding label or class. For instance, for a

radio galaxy classification problem, the image of the galaxy will be the input and its

classification into FRI or FRII will be the label. We divide the data set into three parts to

facilitate learning and measure the performance of our trained model:

1. Training Set: During training, the learning algorithm uses a subset of the data

set called the training set to fit the model to the data. This subset should ideally

be representative of the different types of classes in the entire data set. It should

also be class-balanced i.e., each class should have equal representation in the data
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set. However, this is not always possible, for instance there are very few hybrid

radio sources compared to FRI/FRII sources and we must use suitable performance

metrics to evaluate models trained using imbalanced data sets.

2. Validation Set: A portion of the training set, known as the validation set, is used for

choosing the optimal hyper-parameters of the network, such as the learning rate, ε,

and weight decay coefficient, α, which are not learnable parameters of the network.

3. Test Set: The remaining part of the data set is reserved for testing the generalisation

performance of the network. This is known as the test set and the network does not

see this data at any point during training. After a model has been trained, we

calculate the percentage of incorrectly classified samples by comparing the output

of the network to the labels in the test set. This is known as the test error.

We assume that the data set, which is described by the empirical distribution p̂data(x, y),

is constructed by taking samples from an underlying data generating process defined by

the joint distribution pdata(x, y), which is unknown to us. We assume that the samples

are independently and identically distributed (i.i.d.), which allows us to use the training

set to learn about the test set (Goodfellow et al., 2016).

In supervised learning, the goal is to learn a mapping from the inputs to a set of

predefined output classes. The hidden layers of the neural network perform a set of

non-linear transformations on the input via activation functions (Section 2.5), which help

the model learn complex functions. In what is known as a forward pass, the network

produces an output ŷ by passing the inputs through the hidden layers. The output is

compared with the ground truth labels y. The model parameters are then updated using

gradient descent based optimisers (Section 2.8) such that the difference between ŷ and

y, as measured by a loss function (Section 2.6), is minimised. For example, if a model

predicts that a galaxy is an FRI during the intial stages of training, but its label is FRII,

the calculated loss will be high and the network parameters will be updated to minimise

this loss.

During training, the algorithm iterates over the entire training set multiple times

which we can set by defining the number of epochs. An epoch involves a forward pass,

backpropagation of errors (Section 2.7) and optimisation of network parameters. The

network will see the entire training data set once during an epoch. The batch size refers
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to the number of data samples used by the optimisation algorithm to compute the gradi-

ents and update the model parameters. Within each epoch, we train using mini-batches

of data with Nbatch samples.

A mini-batch is constructed by dividing the data set into M partitions which are ran-

domly sampled from the training set. Typical values of batch size include Nbatch =

{16, 32, 64, 128}, though recently it has been shown that smaller batch sizes between

Nbatch = 2 and Nbatch = 32 give better performance (Masters & Luschi, 2018). Mini-

batches are used because: (i) it requires a lot of memory to train entire data sets at once,

and the GPUs used to train large networks with big data sets have insufficient memory;

(ii) it has been found that using mini-batches allows the optimiser to perform better than

batch gradient descent (batch size = entire data set) and pure stochastic gradient descent

(batch size = 1). If gradients are calculated for the whole data set, the algorithm could

get stuck in a saddle point. Conversely, if we compute the gradients after every single

data point, the gradients would become very stochastic and the algorithm could keep

oscillating in the loss landscape without finding a local minima; (iii) smaller batch sizes

give better generalization performance.

In the following sections we will go through all the elements of the training process

described above in detail.

2.5 Activation Functions

In order to learn complex relationships between the inputs and output classes, we need

to introduce non-linearities in our network.

In each layer we perform an affine transformation of the input vector to produce an

output vector, a, using the learnable parameters of the network (weights and biases).

We then apply an element-wise activation function, f , which introduces non-linearities

into the network to produce the output of the hidden layer, h. For the first layer of the

network with input x, the output is given by:

h(1) = f (W(1)Tx + b(1)) = f (a(1)), (2.1)
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FIGURE 2.3: ReLU activation function visualised for a set of arbitrary input values between
[-10,10]

where W(1) is the matrix of weights, b(1) is the bias vector, and h(1) is the output of the

layer, which is also called a feature vector.

A deep neural network has several such hidden layers, which take the output of the

previous layer as input:

h(n) = f (W(n)Th(n−1) + b(n)) = f (a(n)). (2.2)

In recent years, the Rectified Linear Unit (ReLU) has emerged as the most robust

activation function for training MLPs and CNNs. ReLU is a piece-wise linear function

which is zero for negative-valued input and equal to the input for positive-valued input.

It can be expressed as:

f (z) = max{0, z}, (2.3)

see Figure 2.3. It is robust to the pitfalls of previously used activation functions such as

the sigmoid:

f (z) =
1

(1 + exp(−z))
(2.4)

and tanh:

f (z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

(2.5)

functions, which are prone to the problem of vanishing-gradients caused by saturated

units (Hochreiter, 1991; Hochreiter et al., 2001).

For a classification problem, the output of the final layer gives a pseudo-probability

for each output class by applying the Softmax function. This function acts as a squashing
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function that normalises any real valued input from (−∞, ∞) to a value between (0, 1)

such that the sum of outputs for all the neurons in the last layer add up to 1:

softmax(xi) =
exp(xi)

∑n
j=1 exp(xj)

, (2.6)

where n is the number of units in the last layer. The outputs of the Softmax function

should be interpreted as prediction scores rather than true probabilities that represent

uncertainty in the output. The argmax function is applied to the Softmax outputs in

order to get the model’s predictions, ŷ. This function returns a 1 for the class with the

highest prediction score and returns 0 for all the others.

2.6 Loss Functions

The network learns the optimal values of the model parameters by minimising a loss

function which quantifies the difference between the model’s predictions, ŷ, and the

ground truth labels, y. Most of the loss functions used with neural networks are based

on the principle of maximum likelihood, which is described below, following Goodfellow

et al. (2016).

According to the principle of maximum likelihood, we can find the optimal parame-

ters of the network by finding the parameters, θ∗, that maximise the conditional proba-

bility, pmodel(yi|xi; θ). The maximum likelihood estimator of θ is given by:

θ∗ = arg max
θ

n

∏
i=1

pmodel(yi|xi; θ). (2.7)

To make the numerical computation stable, we solve an equivalent optimization prob-

lem by taking the logarithm:

θ∗ = arg max
θ

n

∑
i=1

log pmodel(yi|xi; θ). (2.8)

Equation 2.8 is equivalent to the minimising the Kullback–Leibler (KL) divergence

between the empirical data distribution, p̂data(x, y), and the model, pmodel(yi|xi; θ):

DKL( p̂data, pmodel) = Ex,y∼ p̂data [log p̂data(x, y)− log pmodel(yi|xi; θ)]. (2.9)
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While training the model, we only need to minimise the terms that are a function of

the model. Thus, we can minimise the KL divergence by minimising the negative log-

likelihood:

J(θ) = −Ex,y∼ p̂data log pmodel(yi|xi; θ), (2.10)

which we denote as the loss function, J(θ). This is often also referred to as the cost

function.

We can calculate this expectation by taking an average over all the training samples:

J(θ) =
1
n

n

∑
i=1
− log pmodel(yi|xi; θ). (2.11)

Equation 2.8 is also equivalent to minimisation of the cross entropy between the pre-

dicted output, ŷ, and the actual output, y. We can understand cross-entropy from an

information theoretic perspective as follows:

An event with a very high probability contains less information,

I = − log p(x). (2.12)

We define the entropy of an event as the average amount of information inherent in it:

H(p) = Ex∼p[I]. (2.13)

We can then define the cross entropy as a measure of the dissimilarity between two prob-

ability distributions p and q over the same set of events x:

H(p, q) = Ex∼p[− log q(x)], (2.14)

which is similar to Equation 3.14.

In supervised ML, if y is the ground truth and ŷ is the predicted label, the cross en-

tropy loss for a binary classfication problem is given by:

L(y, ŷ) = −y log ŷ− (1− y) log(1− ŷ). (2.15)
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For a multi-class classification problem, we can calculate the cross entropy using the

Softmax outputs, see Equation 2.6, for each class as follows:

loss =
n

∑
i=1
− log(softmax)i. (2.16)

Note on terminology: In practical implementation, deep learning libraries such as

PyTorch allow us to calculate this loss in two ways:

1. Negative log likelihood (NLL) loss function: NLL loss takes log likelihoods as input

and outputs a sum. It is used in conjunction with the log softmax activation function

to calculate Equation 2.16.

2. Cross Entropy (CE) loss function: The CE loss calculates the negative log of its

inputs and then calculates a sum. This combines the functionality of the log softmax

and negative log likelihood functions and is used in conjunction with the softmax

activation function.

Using the operations described in the previous sections, we summarise the operations

in a forward pass in Algorithm 1.

Algorithm 1 Forward Pass (Goodfellow et al., 2016)

Require: Network depth, l
Require: W(i), i ∈ 1, ..., l, weight matrices
Require: b(i), i ∈ 1, ..., l, bias vectors
Require: (x, y), input and target output pairs

h(0) = x
for k = 1,....l do

a(k) = W(k)h(k−1) + bk . Calculate weighted sum of input and bias
h(k) = f (a(k)) . Calculate output of layer k by applying non-linear activation

function
end for
ŷ = h(l) . Output of last layer gives the predicted output
J(θ) = 1

N ∑i L(ŷ(i), y(i)) . Calculate the loss function

2.7 Backpropagation of Errors

In order to decide how to update the network parameters to minimise the loss function,

we need a measure of the rate of change of the loss function with respect to each pa-

rameter in the network. For a single parameter of the network, say weight wjk, this can
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be calculated using a partial derivative: ∂L(ŷ,y)
∂wjk

. However, for calculating the gradient of

millions of parameters in a neural network we need an efficient and scalable algorithm.

The back-propagation algorithm (Rumelhart et al., 1986), which is also referred to as

backprop, is used to compute the gradient of the loss function with respect to the network

parameters, ∇θ J(θ), efficiently. Backprop makes use of the chain rule of calculus to com-

pute the layer-wise gradients of the weighted input for a fixed input-output pair, (xi, yi),

starting from the last layer to propagate the error in the predicted output backwards

through the previous layers.

The following steps are performed in the backprop algorithm (Goodfellow et al.,

2016):

1. Calculate the gradient of the loss function with respect to the output of the final

layer: g = ∇ŷ J.

2. Convert this gradient to a function of the input a(k) (weighted sum + bias) of the

previous layer by doing an element wise multiplication of the calculated gradient

with the derivative of the activations of the previous layer f (a(k)):

∇a(k) J = g� f
′
(a(k))

3. Calculate the gradient with respect to the weights and biases: ∇b(k) J = g and

∇w(k) J = gh(k−1)T

4. Propagate the gradient with respect to the previous layer’s activations.

2.8 Optimisation Algorithms

Optimisation is the process of finding the arguments of a function that minimise or max-

imise it. An optimisation scheme called gradient descent is used to update the network

parameters using the calculated gradients to train neural networks. It involves iterative

evaluation of the cost function for different values of network parameters to find the min-

imum of the cost function. The network parameters are updated by taking a step towards

the negative gradient. A good optimiser should be able to train the model to generalise

well to unseen data and it should be able to converge in a reasonable amount of time.
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FIGURE 2.4: Learning curves for a MLP model trained using SGD with momentum: Training
and validation loss curves for a MLP trained with SGD (ε = 10−3, α = 0.9) using the cross-
entropy loss function. The training loss converges to a small value and the validation loss
reaches a minimum at epoch = 94, after which it starts increasing. This is a sign that the
model is overfitting to the data. The gap between the two curves suggests that there is some

scope for improvement in the learning process.

In this section we discuss the two most widely used optimisation algorithms for training

neural networks: (1) Stochastic Gradient Descent (SGD), and its variant with momentum

(2) Adam.

2.8.1 SGD

In practical implementation of neural networks, instead of calculating gradients of the

loss function for the entire training set, we calculate the gradient, g, of Equation 2.11 for

each minibatch with Nbatch samples:

g = ∇J(θ) =
1

Nbatch
∑

i
L(ŷ(i), y(i)). (2.17)

This is also known as Mini-batch SGD. We then update the parameters, θ, of the network

as follows:

θ ← θ − εg. (2.18)

The learning rate, ε, defines the amount by which the parameters will change based

on the calculated gradient i.e., the step size in the loss landscape. It is a hyper-parameter

of the network and needs to be tuned using the validation set.
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SGD as described above is often slow to converge. In order to accelerate optimisation,

the concept of momentum is often used (Polyak, 1964). The SGD with momentum algo-

rithm is shown in Algorithm 2. In this case, the parameter update depends not only on

the gradients calculated for the current mini-batch, but it also takes into account previous

gradients which are accumulated in a velocity vector and weighted in an exponentially

decaying fashion. We calculate the velocity, v,

v← αv− εg, (2.19)

and then perform parameter updates as follows:

θ ← θ + v. (2.20)

The decay coefficient, α, is a hyperparameter of the network that determines the rate

of decay of previous gradients. The momentum term allows the optimiser to navigate

through a steep descent quickly by adding up contributions of the previous gradients

along the direction of steepest descent. It also controls the oscillation near a minima. Qian

(1999) showed that the momentum parameter can be interpreted as a particle moving

through viscous drag under a conservative force field in Newtonian dynamics. Instead

of moving with a constant step size, the accumulated gradients increase the velocity of

the particle where the loss surface is steep and the drag dampens the oscillation of the

particle near a minima. Figure 2.4 shows learning curves for a model trained using SGD

with momentum.

Algorithm 2 Minibatch Stochastic Gradient Descent with momentum Goodfellow et al.
(2016)
Require: Learning rate ε, momentum parameter α
Require: Initial parameter vector θ

initial velocity vector v
while θ not converged or stopping criterion not met do

Sample minibatch of size m {x(1), ..., x(m)} with targets y(i)

g← 1
m ∑i∇L(ŷ(i), y(i)) . compute gradient estimate

v← αv− εg . compute velocity estimate
θ← θ+ v . Update parameters

end while
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2.8.2 Adam

The Adam algorithm (Kingma & Ba, 2014) makes use of an adaptive learning rate. It

uses the first and second moments of the gradient to update the parameters. These mo-

ments are estimated using exponentially moving averages (EMAs) of the gradient and

the square of the gradient, respectively. The decay rates of these EMAs are controlled

by hyperparameters β1 and β2. Adam also corrects for the bias introduced in these esti-

mates at the start of training due to initialisation of the moments with zeros. The steps of

optimisation are shown in Algorithm 3.

Algorithm 3 Adam, (Kingma & Ba, 2014)

Require: Learning rate ε
Require: Exponential decay rates for moment estimates β1, β2 ∈ [0, 1)
Require: initial parameter vector θ

initialise first moment vector s0 ← 0
initialise second moment vector r0 ← 0
initialise time step t = 0
small constant for numerical stability δ
while θ not converged or stopping criterion not met do

t← t + 1 . update time step
Sample minibatch of size m {x(1), ..., x(m)} with targets y(i)

g← 1
m ∑i∇L(ŷ(i), y(i)) . compute gradient estimate

s← β1s + (1− β1)g . compute biased first moment estimate
r← β2r + (1− β2)g2 . compute biased second raw moment estimate
ŝ← s

1−βt
1

. compute bias-corrected first moment estimate
r̂← r

1−βt
2

. compute bias-corrected second raw moment estimate

∆θ = −ε ŝ√
r̂+δ

. Compute update
θ← θ+ ∆θ . Update parameters

end while

2.9 Regularisation

The goal of supervised learning is to learn from the training data in such a way that the

model is able to generalise well to unseen data, to gain some insight about the true data

generating distribution, pdata(x, y), from the trained model, pmodel(x, y). If the model

does not have enough capacity (depth and hidden units) to learn complex functions, it

will not learn anything from the training data, i.e. it will underfit to the training data

(high bias and low variance). The problem of underfitting can be easily solved by in-

creasing the model capacity. On the other hand, if the model is very deep and has a
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FIGURE 2.5: Validation loss curves showing overfitting: Validation loss curves for a MLP
trained with SGD using two different values of the learning rate (ε = 10−2, 10−3) and α = 0.9
using the cross-entropy loss function. In both cases, the model overfits to the data. The effect

of the learning rate can also be seen.

lot of hidden units, it is very easy for a neural network to start memorising the training

data rather than learning patterns that will generalise to unseen data because the num-

ber of parameters in the network is far greater than the data samples (low bias and high

variance). To prevent overfitting, there is a need to develop regularisation strategies that

penalise the model and put constraints on its complexity. Overfitting can also be reduced

by increasing the number of training samples, however this not always possible due to

limited availability of data.

To check if the model is overfitting, we can monitor the validation loss curve. If at any

point during training the validation loss has reached a minimum and starts increasing

again, it is a sign that the model has started overfitting to the training data. An example

is shown in Figure 2.5.

One way to reduce the complexity of the model is to encourage the model to learn

smaller values of weights by penalising large values of weights. We describe two such

methods which are known as L2 and L1 regularisation, in addition to some other com-

monly used regularisation methods.

1. L2 /Weight Decay Regularisation: We add a term proportional to the sum of the

squared weights to the loss function:

Ĵ(w) = J(w) + λ ∑ w2. (2.21)
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The hyperparameter λ is used to control the weight of the penalty term. (Krogh &

Hertz, 1991)

2. L1 Regularisation: We add a term proportional to the sum of the absolute value of

the weights to the loss function.

Ĵ(w) = J(w) + λ ∑ |w|. (2.22)

L1 regularisation introduces sparsity in the network (weight values become zero).

3. Early Stopping: Early stopping is a cheap and efficient way to prevent the model

from overfitting. It involves defining a criterion to monitor overfitting, using which

the training algorithm is stopped automatically. One simple way to achieve this is

to store the model parameters that correspond to the lowest validation error during

training, rather than saving the model at the end of training. More complicated

early stopping criteria may also be used (Prechelt, 1998).

4. Dropout: Dropout reduces the dependence of the model on particular neurons and

connections. During training, we randomly set input and hidden units to zero ac-

cording to a predefined probability p. This probability also needs to be tuned as

a hyperparameter and different values of p can be chosen for different layers. It

can be shown that dropout is equivalent to training an ensemble of models (Hinton

et al., 2012; Srivastava et al., 2014).

In practice, a combination of these regularisation schemes is used.

2.10 Convolutional Neural Networks

In traditional Computer Vision, predefined filters or kernels are used to detect specific

features in an image, followed by a classification algorithm for object detection. For ex-

ample, the Canny and Sobel filters may be used for edge detection. LeCun & Bengio

(1998) proposed Convolutional Neural Networks (CNNs) to automate the feature detec-

tion process by creating feature extractors which learn the values of the kernels.

CNNs are able to exploit the hierarchical structure of data with grid-like topology,

such as 1D signals, 2D images and 3D volumetric data such as multi-channel images and
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have now become the predominant neural network architecture used with images. Since

our aim is to classify images of radio galaxies, we focus our discussion on images.

One of the key advantages of using CNNs over MLPs for image classification is that

weight sharing allows the extracted features to be equivariant to translation. This sig-

nificantly reduces the number of learnable parameters of the network and allows these

networks to scale well to high resolution images. In case of an MLP, each pixel of the im-

age is considered an input value, whereas for a CNN a few kernels with shared weights

can extract multiple features from the whole image. For example, a 28x28 greyscale im-

age with 784 input values fed into a fully-connected layer with a 100 units contains 78,400

weights. If we use a similar input with a CNN with convolutional kernel of size 5x5, the

number of weights will be (28*28)*(5*5) = 17,500. Thus, we can see that for m inputs and

n outputs, for a MLP the number of operations will be m× n, while for a CNN it will be

m× k. See Table 2.2 and Table 2.3 for a comparison of the number of learnable parame-

ters for a practical classification task. Shared weights also allow for some variability in

the image preprocessing related to normalisation and centering.

In addition to the layers described in Section 2.3, we introduce two more layers to

describe CNNs:

1. Convolutional Layers: The foundation of a CNN architecture is the convolutional

layer, which performs a convolution between an input, I, and a kernel, K, to pro-

duce a feature map. The kernel consists of a set of learnable weights arranged in a

2D array. The kernel size is kept much smaller than the input size so that it can be

applied to multiple overlapping regions of the image. This allows a particular fea-

ture to be learned from all regions in the image that contain it. Figure 2.6 illustrates

a 2D convolution operation with a fixed kernel. In practice, convolutional layers

perform the convolution operation on their inputs with multiple kernels to extract

multiple features maps at the same location.

We can express a 2D discrete convolution operation between the input, I, and filter,

K, as follows:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j− n). (2.23)
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In most deep learning libraries, the convolution operation is calculated using a

cross-correlation, though it retains the same name:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n). (2.24)

The convolution operation performs a linear transformation of the input. The val-

ues in a feature map are then passed through a non-linear activation function such

as ReLU (Section 2.5).

2. Pooling Layers: The pooling layers are used perform local aggregation of features

in a neighbourhood. Pooling effectively downsamples the feature maps to a lower

resolution and makes the network invariant to small local distortions in the input.

A max-pooling scheme which outputs the maximum value in the pooling kernel’s

receptive field is commonly used in CNNs. An example of max-pooling for a 2D

feature map is shown in Figure 2.7 .

Two other parameters are used to control the shape of the output:

• Stride, S: The stride defines the amount by which a kernel will shift before perform-

ing the next convolution operation.

• Padding, P: The input volume may be padded with zeros to control the output

dimension, as shown in Figure 2.6.

For an input volume with dimensions W1 × H1 × D1, the convolution operation re-

quires the following hyperparameters: number of kernels, K; kernel size, F; stride, S; and

zero-padding, P, to produce an output volume of dimensions W2 × H2 × D2 where:

• W2 = (W1 − F + 2P)/S− 1

• H2 = (H1 − F + 2P)/S− 1

• D2 = K

The architecture of a typical CNN consists of several successive convolution and pool-

ing layers to extract features from data. The initial layers extract low-level features such

as lines and edges, which are then combined by the later layers to detect complex features
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FIGURE 2.6: 2D convolution operation with 3x3 kernel

FIGURE 2.7: A 2x2 maxpooling operation

such as motifs and objects. Fully-connected layers are then used to make classifications

using the extracted features.

An example of a CNN architecture known as LeNet-5 is shown in Figure 2.8. LeNet-

5 was designed for handwritten digits and recognition of machine-printed characters

(Lecun et al., 1998).

2.11 Classification experiments with MNIST

In this section, we use the MNIST dataset (LeCun & Cortes, 2010) to show how the con-

cepts discussed in this chapter are implemented in practice and establish the baseline

performance metrics for non-Bayesian models for MNIST. We use the specifications of

the MLP architecture described in Blundell et al. (2015) and additionally implement the

LeNet-5 CNN architecture to establish a baseline for Bayesian-CNN experiments.
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FIGURE 2.8: LeNet-5 Architecture (Lecun et al., 1998)

FIGURE 2.9: 25 randomly selected samples from the MNIST data set

Although we use the same architecture as Blundell et al. (2015), there are some dif-

ferences in our implementation: (1) We use the Adam optimiser, whereas they use SGD.

(2) They only use dropout for regularisation. We additionally use early stopping and

implement weight decay with a very small decay factor (α = 10−5).

2.11.1 Data set and Image Preprocessing

The MNIST data set consists of 28x28 greyscale images of handwritten digits from 0-9.

Of the 70, 000 images in the data set, we use 50, 000 for the training set, 10, 000 for the

validation set and 10, 000 images are reserved for the test set. The images are normalised

using the mean and standard deviation values computed for all the images in the MNIST

data set (µ = 0.1307, σ = 0.3081) to accelerate convergence (LeCun et al., 2012). Some

examples from the dataset are shown in Figure 2.9.
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TABLE 2.1: CNN Architecture: LeNet-5. Stride = 1 is used for all the convolutional and max
pooling layers.

Operation Kernel Channels Padding
Convolution 5 x 5 6 1
ReLU
Max Pooling 2 x 2
Convolution 5 x 5 16 1
ReLU
Max Pooling 2 x 2
Fully-Connected 120
ReLU
Fully-Connected 84
ReLU
Dropout, p = 0.5
Fully-Connected 2
Log Softmax

2.11.2 Network Summary

1. MLP: We use a MLP with 2 fully-connected hidden layers with 800 units each and

an output layer with 10 units, one for each of the digits. The weights are initialised

using random values drawn from a normal distribution with µ = 0 and σ = 0.01.

The bias values are initialised with a constant value of 0. The hidden units use ReLU

activations and log softmax activation is used for the output layer. Equation 2.16.

We additionally use dropout with p = 0.2 before the input layer and p = 0.5 before

both the hidden layers

2. LeNet: We use a LeNet-5 style architecture as shown in Table 2.1, with a dropout

layer with p = 0.5 before the last hidden layer.

2.11.3 Training

We use mini-batches of size 128 and train the models for 200 epochs. The negative log

likelihood function is used to compute the loss. For both the architectures we use the

Adam optimiser with learning rate ε = 5e − 5 and weight decay with α = 1e − 5 to

optimise the parameters of the networks. These values were found by manual hyperpa-

rameter tuning. We also use an early stopping criterion based on validation error.



2.11. Classification experiments with MNIST 47

TABLE 2.2: Classification error on MNIST using MLP

Method #Parameters Test Error
no dropout 1,276,810 1.80%

20% + 50% dropout 1,276,810 1.30%

(A) Validation loss for MLP trained on MNIST (B) Validation error for MLP trained on MNIST

FIGURE 2.10: Validation curves for MLP trained on MNIST

2.11.4 Results

The results of our experiments with MLP are shown in Table 2.2. We find that there

is a significant improvement in the performance of the network when dropout is im-

plemented. The validation loss curves shown in Figure 2.10a give us some insight into

the difference in training the model with and without dropout. For the model without

dropout, we observe that around the 25th epoch the model reaches minimum validation

loss and begins increasing after that. This is a classic sign of overfitting. We note that

this overfitting happens after an extensive hyperparameter search and with two regular-

isation schemes (weight decay and early stopping) already implemented. From the val-

idation error curves in Figure 2.10b we observe that even though learning with dropout

happens at a slightly lower rate than without dropout, the validation error is smaller after

the initial few epochs.

For the LeNet-5 architecture, we find that the models trained with and without dropout

perform comparably as shown in Table 2.3. However, we must keep in mind that the

training set for this experiment is large with 50,000 samples, and the similarity in perfor-

mance might not translate to models trained with smaller datasets such as our catalogue

of radio galaxies. Validation loss curves are shown in Figure 2.11a. A very slight overfit-

ting effect can be seen for the model trained without dropout, though the validation error
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TABLE 2.3: Classification error on MNIST using LeNet

Method #Parameters Test Error
no dropout 61,706 1.09%

50% dropout 61,706 1.11%

(A) Validation loss for MLP trained on LeNet (B) Validation error for LeNet trained on MNIST

FIGURE 2.11: Validation curves for LeNet-5 trained on MNIST

curves in Figure 2.11b are mostly overlapping. We also note that the learning curves of

LeNet are smoother than that of the MLP.

2.12 Limitations of standard neural networks

Guo et al. (2017a) showed that even though modern deep learning models achieve state-

of-the-art accuracy, these models are not well-calibrated i.e., there is an increasing gap

between their accuracy and confidence, and these models are often over-confident in

their predictions.

In addition to that, we have seen how neural networks produce deterministic out-

puts using maximum likelihood estimate of the parameters, which do not tell us any-

thing about how uncertain the model is in its prediction. For scientific applications, and

for radio galaxy classification specifically, if we want use the catalogues generated by

deep learning models for research, we need to quantify the uncertainties in their outputs,

which is difficult to do with deterministic parameters.

The results in the previous section also show that even with a lot of regularisation,

the neural network models can overfit. These limitations of standard neural networks

form the basis of our motivation for exploring Bayesian Neural Networks (Chapter 3) for

classifying radio galaxies.
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Chapter 3

Bayesian Deep Learning

Quantifying the confidence with which each object is assigned to a particular classifi-

cation is crucial for understanding the propagation of uncertainties within astrophysi-

cal analysis of data classified using deep learning approaches. To provide uncertainties

on model outputs, we need probabilistic methods such as Bayesian (and approximately

Bayesian) neural networks (MacKay, 1992a,b). When properly calibrated, the uncertainty

estimates from probabilistic methods can serve as a diagnostic tool to mitigate the effect

of increasingly distant data points and out-of-distribution examples. This is particularly

important for detecting new objects in future radio astronomy surveys. However, with

the exception of Scaife & Porter (2021), to date there has been little work done on under-

standing the degree of confidence with which CNN models predict the class of individual

radio galaxies. In this chapter we discuss how variational inference can be used to ap-

proximate Bayesian inference in neural networks using the Bayes By Backprop algorithm.

3.1 Bayesian Inference

To set up the problem of Bayesian inference, we consider a set of observations, x, and a

set of hypotheses, z. For instance, z could be the parameters of a neural network model.

Bayesian modelling involves making a priori assumptions about the hypotheses of a

model and computing a posterior distribution based on the prior distribution and the

likelihood of the observed data. The prior distribution represents our beliefs about the

hypotheses before any data has been observed. As the model sees more data, the poste-

rior is updated using the Bayes rule. The posterior probability distribution, p(z|x), can
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then be used to make predictions about new data. Bayes rule gives us:

p(z|x) = p(z, x)
p(x)

=
p(x|z) p(z)

p(x)
, (3.1)

where p(x|z) is the likelihood of the data given the hypothesis and quantifies how well the

hypothesis fits to the data; p(z) is the prior distribution; and the denominator, which is

called the evidence, is the marginalised probability of the observations.

To compute the evidence, we need a solution to the following integral:

p(x) =
∫

p(z, x)dz =
∫

p(x|z) p(z)dz, (3.2)

which is obtained by integrating over all possible values of z. This integral is often in-

tractable either because there is no closed form solution available or the computation is

exponential in time because it requires evaluating the integral for all possible values of z,

which is very high dimensional. This in turn makes the posterior, p(z|x), intractable.

Several techniques have been developed to perform approximate inference, includ-

ing Markov Chain Monte Carlo (MCMC) methods and Variational Inference (VI), which

are those most commonly used. MCMC algorithms allow us to sample from the exact

posterior, but they do not scale well to large models such as deep neural networks (Blei

et al., 2016). In this work we focus on VI and show how it is applied to neural network

models.

3.2 Variational Inference

Variational inference was developed as a method to approximate densities that are diffi-

cult to compute directly (Peterson, 1987; Jordan et al., 1999; Wainwright & Jordan, 2008).

In fact, the first application of VI to a specific class of models was done for neural net-

works (Peterson, 1987; Hinton & van Camp, 1993).

In variational inference we define a parameterised probability distribution, q(z), as a

variational approximation to the true posterior. The family of probability distributions,

D, defines the complexity of the solution that can be modelled. For instance, a family of

Gaussians,

f (x; µ, σ2) =
1

σ
√

2π
e
−(x−µ)2

2σ2 , (3.3)
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parameterised by mean µ and variance σ2 may be defined. The goal of VI is to find the

selection of parameters which most closely approximates the exact posterior. The differ-

ence between the variational posterior, q(z), and the exact posterior, p(z|x), is typically

measured by the KL divergence (Kullback & Leibler, 1951). Therefore, to find the opti-

mal variational density from the family of densities, we solve the following optimisation

problem:

q∗(z) = arg min
q∈D

KL(q(z)||p(z|x)). (3.4)

If we expand above equation using the formula for KL divergence:

KL[a(x)||b(x)] =
∫

a(x) log
a(x)
b(x)

dx, (3.5)

we get:

q∗(z) = arg min
q∈D

∫
q(z) log

q(z)
p(z|x) dz

= arg min
q∈D

∫
q(z) log q(z)dz−

∫
q(z) log p(z|x)dz

= arg min
q∈D

Eq(z)[log q(z)]−Eq(z)[log p(z|x)]

= arg min
q∈D

Eq(z)[log q(z)]−Eq(z)[log p(z, x)] + log p(x), (3.6)

where the expectation value is calculated according to:

Eb(x)[a(x)] =
∫

a(x)b(x)dx. (3.7)

We see the dependence of minimising the KL divergence on the intractable integral

p(x) in Equation 3.6. Therefore, to find the optimal variational density q∗(z), we only

minimise the above equation up to an additive constant:

q∗(z) = arg min
q∈D

Eq(z)[log q(z)]−Eq(z)[log p(z, x)]. (3.8)

Minimising the above function is equivalent to maximising the following objective

function, which is formulated in the literature as the Evidence Lower Bound (ELBO) or
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variational free energy (Saul et al., 1996; Neal & Hinton, 1998):

ELBO(q) = Eq(z) log p(z, x)−Eq(z)[log q(z)] (3.9)

= Eq(z) log p(x|z) + Eq(z) log p(z)−Eq(z)[log q(z)] (3.10)

= Eq(z) log p(x|z)−KL(q(z)||p(z)). (3.11)

The name ELBO stems from the fact that the log evidence is bounded by this function

such that: log p(x) ≥ ELBO. Equation 3.11 will be further scrutinised in the context of

neural networks in the following sections.

Thus, we see how variational inference reduces Bayesian inference to an optimisation

problem, which can then be solved by optimisation algorithms such as SGD and Adam

(Section 2.8).

3.3 Variational Inference for Neural Networks

The notion of "noisy weights" that can adapt during training was first proposed by Hin-

ton & van Camp (1993) to reduce the amount of information in network weights and

prevent overfitting in neural networks. Graves (2011) developed a stochastic variational

inference (SVI) method by applying stochastic gradient descent to VI using biased esti-

mates of gradients. SVI allows VI to scale to large data sets by taking advantage of mini-

batching (Section 2.4). Various choices of standard prior and posterior distributions such

as the Delta function, Gaussian and Laplace distributions were also considered. Blundell

et al. (2015) built on this work and proposed the Bayes by Backprop algorithm, which com-

bines stochastic VI with the reparameterization trick (Kingma et al., 2015) to overcome

the problems encountered while using backpropagation with SVI. Using this algorithm,

we can calculate unbiased estimates of the gradients and use any tractable probability

distribution to represent uncertainties in the weights.

In the equations described in the following sections, we only refer to the weights, w,

of the network for simplicity, though the equations are applicable to the biases as well.
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3.3.1 Deriving the Cost Function

We posit a family of distributions with parameters, θ, over the network parameters to

define a variational approximation to the posterior, q(w|θ). Following the derivation

described in the previous section, we find a member of the family that is closest to the

true Bayesian posterior, P(w|D), by minimising the following objective function:

θ∗ = arg min
θ

KL[q(w|θ)||P(w|D)], (3.12)

where D denotes the training data. Using the formula for KL divergence given in Equa-

tion 3.5,

θ∗ = arg min
θ

∫
q(w|θ) log

q(w|θ)
P(w|D)

dw

= arg min
θ

∫
q(w|θ) log

q(w|θ)
P(w)P(D|w)

dw

= arg min
θ

∫
q(w|θ)[log q(w|θ)− log P(w)− log P(D|w)]dw (3.13)

= arg min
θ

∫
q(w|θ)[log

q(w|θ)
P(w)

dw−
∫

q(w|θ) log P(D|w)]dw

= arg min
θ

KL[q(w|θ)|P(w)]−Eq(w|θ)[log P(D|w)]. (3.14)

Thus, we arrive at the cost function in Equation 3.14. This is composed of two com-

ponents: the first term is a complexity cost which depends on the prior over the weights,

P(w), and the second is a likelihood cost which depends on the data and describes how

well the model fits to the data. The cost function also has a minimum description length

interpretation according to which the best model is the one that minimises the cost of de-

scribing the model and the misfit between the model and the data to a receiver (Hinton

& van Camp, 1993; Graves, 2011).

More practically, the cost function used by Blundell et al. (2015) is given by Equa-

tion 3.13, which can be simplified as follows:

F (D, θ) =
∫

q(w|θ)[log q(w|θ)− log P(w)− log P(D|w)]dw (3.15)

=
∫

q(w|θ) f (w, θ)dw (3.16)

= Eq(w|θ)[ f (w, θ)]. (3.17)
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The cost, F , is an expectation of the function f (w, θ) with respect to the variational

posterior, q(w|θ). Minimising this cost is also computationally intractable. Consequently,

the authors employ the reparameterization trick to obtain unbiased estimates of the cost

function and its gradients.

3.3.2 Differentiating the Cost Function

In order to optimise the cost function, we need to calculate its gradient with respect to

the variational parameters, θ. To makeF (D, θ) differentiable, the authors first employ the

reparameterization trick to calculate samples from the variational posterior, q(w|θ), that

are differentiable and then use Monte Carlo estimates of the gradients to approximate the

cost function.

Reparameterization trick

A variation of this method was developed to be used with stochastic hidden units in vari-

ational autoencoders and was adopted by Blundell for the weights of a network (Kingma

& Welling, 2013; Kingma et al., 2015) .

The reparameterization trick makes use of the change of variables technique to map

between probability densities of random variables. We sample a random deviate from

a known probability distribution and map it to a sample from the variational posterior

through a differentiable deterministic function. This allows us to reparameterize samples

from the variational posterior:

w ∼ q(w|θ), (3.18)

through a differentiable deterministic function:

w = t(ε, θ), (3.19)

where ε is a random deviate sampled from the distribution ε ∼ q(ε), such that:

q(w|θ)dw = q(ε)dε. (3.20)
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We then estimate the cost function by taking Monte Carlo samples from the varia-

tional posterior:

w(i) ∼ q(w(i)|θ) (3.21)

such that Equation 3.15 becomes:

F(D, θ) ≈
n

∑
i=1

log q(w(i)|θ)− log P(w(i))− log P(D|w(i)). (3.22)

In the following sections, each term of the cost function is discussed in detail: (i)

variational approximation to the posterior, log q(w(i)|θ) ; (ii) the prior, log p(w(i)) ; and

(iii) the likelihood, log P(D|w(i)).

Monte Carlo sampling is used to approximate sums and integrals that cannot be com-

puted exactly by applying the following steps:

(i) Write the sum (integral), S, as an expectation over a probability distribution, p(x):

S =
∫

p(x) f (x)dx = Ep(x)[ f (x)], (3.23)

(ii) Approximate S by drawing n samples from p(x) and calculate an empirical average:

Ŝ =
1
n

n

∑
i=1

f (x). (3.24)

Mini-Batching

To take advantage of mini-batch optimisation for Bayes by Backprop, we need to use a

weighted complexity cost (Graves, 2011). This is because the likelihood is calculated for

each mini-batch and then summed up for each epoch, whereas the complexity cost which

involves calculating the prior and posterior over the entire network should be calculated

only once per epoch.

The simplest weighting factor we could use is M = Nbatches and the cost function for

the ith mini-batch in Equation 3.22 becomes:

Fi(Di, θ) =
1
M

KL[q(w|θ]||P(w)]−Eq(w|θ)[log P(Di|w)]. (3.25)
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Several published results have reported a cold posterior effect which involves further

down-weighting of the complexity cost. This effect is discussed in detail in Chapter 5.

Gradients

Blundell showed by proof that reparameterizing samples from the variational posterior

makes the cost function, F (D, θ), differentiable:

∂

∂θ
Eq(w|θ)[ f (w, θ)] =

∂

∂θ

∫
f (w, θ)q(w|θ)dw (3.26)

=
∂

∂θ

∫
f (w, θ)q(ε)dε (3.27)

=
∫

∂ f (w, θ)

∂θ
q(ε)dε (3.28)

= Eq(ε)
∂ f (w, θ)

∂θ
(3.29)

= Eq(ε)[
∂ f (w, θ)

∂w
∂w
∂θ

+
∂ f (w, θ)

∂θ
]. (3.30)

Thus, the derivative of an expectation can be written as the expectation of a deriva-

tive, which makes the cost function differentiable using the standard backpropagation

algorithms implemented for neural networks.

3.3.3 Variational Posteriors

The reparameterization trick allows us to use a variety of family densities for the varia-

tional distribution. Kingma & Welling (2013) give some examples of q(w|θ) for which the

reparameterization trick can be applied:

1. Any tractable family of densities such as the Exponential, Logistic, Cauchy distri-

butions.

2. Any location-scale family such as Gaussian, Laplace, Uniform densities can be used

with the function: t(.) = location + scale · ε.

To illustrate this we can consider the case where the variational posterior q(w|θ) is

parameterised by a family of Gaussians. In this case, the variational parameters will

be θ = (µ, ρ), where the standard deviation σ is parameterised as log(1 + exp(ρ)) so

that it remains positive. To get a posterior sample, w, of the weight from the variational

posterior:
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1. Sample ε from a unitary Gaussian: ε ∼ N (0, 1)

2. Map ε to a Gaussian distribution N (µ, σ) through the function:

t(ε, µ, ρ) = w = µ + ε. log(1 + exp(ρ)), (3.31)

i.e., scale the random deviate by the standard deviation and shift it by the mean of

the variational posterior.

We can then calculate the gradient of the cost function with respect to the variational

parameters θ = (µ, ρ):

∆µ =
∂ f (w, θ)

∂w
∂w
∂µ

+
∂ f (w, θ)

∂µ
(3.32)

=
∂ f (w, θ)

∂w
+

∂ f (w, θ)

∂µ
, (3.33)

and

∆ρ =
∂ f (w, θ)

∂w
∂w
∂ρ

+
∂ f (w, θ)

∂ρ
(3.34)

=
∂ f (w, θ)

∂w
ε

1 + exp(−ε)
+

∂ f (w, θ)

∂ρ
, (3.35)

where ∂w
∂µ and ∂w

∂ρ are calculated for the function t(ε, µ, ρ). The variational parameters can

then be updated using the standard optimisation algorithms that are used with neural

networks:

µ← µ− α∆µ (3.36)

ρ← ρ− α∆ρ. (3.37)

3.3.4 Priors

Priors reflect our beliefs about the distribution of weights before the model has seen any

data. The simplest prior we could use is a Gaussian prior:

P(w) = ∏
j
N (wj|0, σ), (3.38)
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which is often the default prior used with Bayesian NNs. We discuss the implications of

choosing a simple prior such as this in Chapter 5.

Blundell suggest the use of a spike-and-slab-like Gaussian Mixture Model (GMM)

prior defined over all the j weights in the network, to allow for a wide range of weight

values to be learned:

P(w) = ∏
j

πN (wj|0, σ1) + (1− π)N (wj|0, σ2) (3.39)

log P(w) = ∑
j

log(πN (wj|0, σ1) + (1− π)N (wj|0, σ2), (3.40)

where σ1 > σ2 and σ2 << 1. The weight of each component in the mixture is defined by

π. These parameters are chosen by comparing the model performance on the validation

set, like the hyperparameters of the network.

Some regularisation techniques used with point-estimate neural networks have theo-

retical justifications using Bayesian inference. For instance, it can be shown that Maximum

a Posteriori (MAP) estimation of NNs with some priors is equivalent to regularisation

(Jospin et al., 2020). For example, using a Gaussian prior over the weights is equivalent

to weight decay regularisation, whereas using a Laplace prior induces L1 regularisation

(Section 2.9):

wMAP = arg max
w

log P(D|w) + log P(w). (3.41)

Gal & Ghahramani (2015) showed that dropout can also be considered an approxima-

tion to variational inference, where the variational family is a Bernoulli distribution.

3.3.5 Likelihood

The likelihood can be calculated using the negative log likelihood loss descibed in Equa-

tion 2.16.

3.3.6 Bayesian Convolutional Neural Networks

We extend the Bayes by Backprop algorithm for CNNs by sampling the weights from

a variational distribution defined over the shared weights of the convolutional kernels.

This is followed by fully-connected layers that have weights with a variational distri-

bution defined over them. Our implementation differs from that for Bayesian CNNs
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proposed by Shridhar et al. (2019), where the activations of each convolutional layer are

sampled instead of the weights to accelerate convergence.

3.3.7 Posterior Predictive Distribution

After the variational posterior distribution has been learned by optimising the ELBO

function, we can use it to predict the labels of new observations, D∗, using the poste-

rior predictive distribution, q(D∗|D). The variational posterior distribution conditioned

on training data D, q(w|D), can be used to calculate this distribution by integrating out

the variational parameters:

q(D∗|D) =
∫

q(D∗, w|D)dw (3.42)

=
∫

q(D∗|w, D)q(w|D)dw (3.43)

=
∫

q(D∗|w)q(w|D)dw, (3.44)

where q(D∗|w, D) = p(D∗|w) because for a given w, all data is conditionally independent

(i.i.d. assumptions). From Equation 3.44, we can see how the posterior predictive distri-

bution is an average of all possible variational parameters weighted by their posterior

probability.

The posterior predictive distribution can be estimated using MC samples as follows:

1. Sample variational parameters from the variational posterior distribution: w(i) ∼

q(w|D).

2. Sample prediction D∗(i) from q(D∗|w(i)).

3. Repeat steps 1 and 2 to construct an approximation to q(D∗|D) using N samples:

q(D∗|D) = Eq(w|D)q(D∗|w) (3.45)

= Ew(i)∼q(w|D)q(D∗|w(i)) (3.46)

≈ 1
N

N

∑
i=1

q(D∗|w(i)) (3.47)

Thus using BBB allows us to construct an approximate posterior predictive distribu-

tion, which can then be used to estimate uncertainties (Section 4.2).
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3.4 Network Pruning

Variational inference based neural networks have several advantages over non-Bayesian

NNs; however, for a typical variational posterior such as the Gaussian distribution, the

number of parameters in the network double compared to a non-Bayesian model with

the same architecture because both the mean and standard deviation values need to be

learned. This increases the computational and memory overhead at test time and during

deployment. Thus, there is a need to develop network pruning approaches, using which

we can remove the parameters that contain less information. Several authors have also

considered pruning to improve the generalisation performance of the network (LeCun

et al., 1990). Many of the pruning methods that have been developed can also be applied

to non-Bayesian NNs, but in this section we discuss a Signal-to-Noise (SNR) based prun-

ing criterion which can be applied naturally to models trained with Gaussian variational

densities (Graves, 2011; Blundell et al., 2015).

We calculate the SNR of a model weight as follows:

SNR = |µ|/σ, (3.48)

where µ and σ are the values of the variational parameters after a model has been trained.

In practice, we use the SNR values in dB:

SNRdB = 10 log10 SNR. (3.49)

Based on a threshold value between (0, 1), the weights of the network with the lowest

SNR values are removed. The effect of removing these parameters is measured by re-

calculating the test error using the pruned model.

While the SNR-based method may seem very simple, it allows for a large proportion

of weights to be removed for some models. We also consider an alternative pruning

approach based on Fisher information in Chapter 5.
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3.5 Experiments with MNIST

We use the MNIST data set and apply the training: validation: test split and image pre-

processing as described in Section 2.11.1. We use the same architecture for the BBB model

as Blundell, but our implementation differs in the following ways: (i) We reparameterize

σ = exp(ρ) instead of σ = log(1 + exp ρ) as they have done. (ii) We use a simple weight-

ing scheme for the complexity cost where M = Nbatches (Equation 3.25), whereas they

have used a more complicated weighting scheme. No posterior initialisation values were

specified by Blundell; however, we note that we found the posterior initialisations to

have a significant effect on model convergence and performance. The values are chosen

like a hyperparameter using the validation set.

3.5.1 Network Summary

The MLP architecture as described in the previous chapter is used (Section 2.11), without

any dropout. For the Bayesian MLP, we consider two different priors:

1. Gaussian prior: The following values were considered:

• σ = {1, exp(−1), exp(−2)}

2. Gaussian Mixture Model (GMM) prior: The following values were considered, as

suggested by Blundell:

• σ1 = {exp(0), exp(−1), exp(−2)}

• σ2 = {exp(−6), exp(−7), exp(−8)}

• π = {1/4, 1/2, 3/4}

The results discussed are for the best model found through the validation set, specifi-

cations of which are given below.

1. Prior Specification:

• Gaussian Prior, µ = 0, σ = exp(−1)

• Gaussian Mixture Model Prior, {3/4, exp(−1), exp(−7)}

2. Posterior Initialisation
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TABLE 3.1: Classification error on MNIST using BBB

Method #Parameters Test Error
Gaussian Prior 1,276,810 x 2 1.95± 0.08%

GMM Prior 1,276,810 x 2 1.91± 0.06%

• wmu and bmu are initialised from the uniform distribution U(−0.1, 0.1)

• wrho and brho are initialised from the uniform distribution U(−5,−4), which

corresponds to σ values being initialised from U(0.0067, 0.0183)

3. Likelihood: The Negative Log Likelihood loss, see Equation 2.16, is used to calcu-

late the log likelihood.

3.5.2 Training

The SGD with momentum optimiser is used with an initial learning rate ε = 10−4 and

momentum α = 0.9. In addition, a learning rate scheduler is used that reduces the

learning rate by 95% if the negative log likelihood does not improve for four consecu-

tive epochs. Here we have not considered the total loss as a criterion for reducing the

learning rate because we found it necessary to prevent the model from overfitting. An

early stopping criterion based on validation accuracy is used.

Minibatches of size 128 are used. We train the Gaussian prior model for 300 epochs

and the GMM prior model for 600 epochs.

The validation metrics are evaluated like test metrics. The model with the best val-

idation accuracy up to that point in training is used to calculate the validation loss and

error. This is contrast to how we used the validation set for the non-Bayesian NN, where

the model corresponding to the active epoch is used to evaluate the validation metrics.

We found this approach more useful for finding the optimal hyperparameters and de-

bugging as this makes the metrics less stochastic.

3.5.3 Results

Classification

The results of our classification experiments with the Bayes by Backprop algorithm on

MNIST are shown in Table 3.1. The test error is calculated by making 20 forward passes

through the trained network to obtain the mean and standard deviation values.
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We find that the models trained with Gaussian and GMM priors perform comparably.

However, in the following section on weight pruning we will see how the GMM priors

allow for a higher proportion of weights to be removed.

For the model trained with a Gaussian prior, the test error is comparable to the value

achieved by Blundell (1.99%). However, for the model trained with a GMM prior, we

report a higher value of the test error than Blundell (1.34%). This discrepancy could be

due to the differences in our implementation. We also note that other implementations of

BBB have also found it difficult to achieve the same performance as reported by Blundell.

BBB is able to classify the test set within 0.2% of the Non-Bayesian MLP model trained

without dropout (Table 2.2); while providing uncertainties in its prediction.

Figure 3.1 shows the training loss curves for the model trained with a GMM prior. We

see how the total loss is composed of two components: the likelihood cost and the com-

plexity cost (Equation 3.25). The model optimises for the likelihood cost quickly, which

can be been by the convergence in the likelihood cost plot. After that, the model contin-

ues to optimise for the complexity cost, which converges around the 500th epoch. The

corresponding validation loss curves are shown in Figure 3.2. The steps in the graph are

due to the difference in how the validation loop is evaluated, as explained in the previous

sub-section. We note that even though the training likelihood has reached a minimum

very early during training, the optimisation of the complexity cost has an effect on the

validation likelihood at a later stage during training as well. The total validation loss

values converge after around 350 epochs, which suggests that the incremental improve-

ment in the training after that epoch does not have a significant effect on the validation

performance.

In Figure 3.3, the evolution of the density of variational parameter µ, i.e., the mean of

the network weights, is shown for the model trained with a Gaussian prior. At epoch = 0,

we can see the density of has a uniform shape, as specified by the posterior initialisation.

As training progresses, the network learns smaller weight values.

SNR based Weight Pruning

For a given threshold, k, our implementation of SNR-based pruning involves the follow-

ing steps:
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FIGURE 3.1: Training Loss Curves for BBB on MNIST using a GMM Prior: The plot on the
left shows the total loss which is composed of two components: the likelihood cost and the

complexity cost, which are shown on the right.

FIGURE 3.2: Validation Loss Curves for BBB on MNIST using a GMM Prior. The steps in the
plots are due to the difference in how we have evaluated the validation metrics for Bayesian

and non-Bayesian models.
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FIGURE 3.3: Evolution of the density of variational parameters µ i.e., the mean of the
weights, for a model trained with a Gaussian prior.

(A) Evolution of SNR density for the model trained
with a Gaussian prior.

(B) Evolution of SNR density for the model trained
with a GMM prior.

FIGURE 3.4: Evolution of SNR density

1. Calculate the SNR in dB according to Equation 3.49 and sort the SNR values in

ascending order.

2. Calculate SNR threshold by extracting the index of the SNR value corresponding

to: j ∗ t, where j is the number of weights in the network.

3. Remove all weights with SNR values below the SNR value calculated for the given

threshold

4. Calculate test error by making 20 forward passes through the network.

In order to build intuition about SNR-based pruning, we plot the density of SNR val-

ues and show how the density evolves during training in Figure 3.4a for a model trained

with a Gaussian prior and in Figure 3.4b for a model trained with a GMM prior. We note

that at epoch = 0, density for both the models looks similar. The proportion of weights
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FIGURE 3.5: Test error for different pruning thresholds for models trained with Gaussian
and GMM priors. Using a GMM prior allows for a higher proportion of weights to be re-
moved (up to 70%) without affecting the model performance. The standard deviation values
corresponding to the test errors are very small, which is why the markers have collapsed into

a blob on the plot.

with higher SNR reduces as a function of epoch. This could mean that: (i) smaller values

of the mean, µ, of the weights are being learned, which is good for reducing the complex-

ity of the model (ii) values of ρ corresponding to higher standard deviation values are

being learned, which could be interpreted as the model learning which weights are less

important.

The choice of prior directly influences the shape of the SNR density and the propor-

tion of weights that can be pruned without affecting model performance. The test error

for different pruning thresholds for both the models is shown in Figure 3.5. For a single

Gaussian prior, we find that up to 40% of the weights can be pruned, whereas for a GMM

model 70 % of the weights can be removed.

We observe two well-separated peaks in the SNR density for the GMM prior, see

Figure 3.6b. The pruning threshold of 70% corresponds to removing the peak with the

low SNR values. Pruning the weights penalizes test performance more for the model

trained with a single Gaussian prior since there exists a higher proportion of weights

with higher SNR, as shown in Figure 3.6a. Our analysis of pruning results is consistent

with the results of Blundell, who note that a model trained with a GMM prior allows

a wide range of weight values to be learned, most of which can be successfully pruned

without affecting the model performance.
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(A) For the model trained with a Gaussian prior. (B) For the model trained with a GMM prior.

FIGURE 3.6: SNR density with pruning thresholds
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Chapter 4

Bayesian Classification of Radio

Galaxies

4.1 MiraBest Data Set

The MiraBest data set (Porter, 2020) consists of 1256 images of radio galaxies pre-processed

to be used specifically for deep learning tasks. The data set was constructed using the

sample selection and classification described in Miraghaei & Best (2017), who made use

of the parent galaxy sample from Best & Heckman (2012) and presented a sample of 18286

radio-loud active galactic nuclei (AGN). Optical data from data release 7 of Sloan Digi-

tal Sky Survey (SDSS DR7; Abazajian et al., 2009) was cross-matched with NRAO VLA

Sky Survey (NVSS; Condon et al., 1998) and Faint Images of the Radio Sky at Twenty-

Centimeters (FIRST; Becker et al., 1995) radio surveys using the techniques described in

Best et al. (2005) and Donoso et al. (2009). The radio surveys were conducted at 1.4 GHz.

A lower redshift cut of z > 0.03 was applied because of the large angular size of nearby

sources. Only those objects were considered that were within the SDSS ‘main galaxy’ or

‘luminous red galaxy’ samples. A 40 mJy flux density cut-off was applied so that there

would be sufficient SNR in any extended structures for morphological classification.

Parent galaxies were selected such that their radio counterparts had an active galactic

nucleus (AGN) host rather than emission dominated by star formation. A combination of

three methods was used to distinguish radio loud AGN from SF galaxies (Best & Heck-

man, 2012). The first method used the 4000 Å break strength and radio luminosity to

stellar mass ratio (Lrad/M), since both of these factors are affected by the star formation
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rate of the galaxy. Radio-loud AGN are separable on the plane of D4000 vs Lrad/M since

they have higher values of Lrad. Upto 83% of the sources in the parent sample could be

classified using this method. The second method was based on emission line diagnostics

since radio loud AGN and SF galaxies have different ionising radiation. Upto 30% of the

sample was classifiable using this method. The third method made use of the Hα emis-

sion line luminosity and radio luminosity since radio loud AGN are expected to have

higher Lrad to Hα ratio. Upto 80% of the sample was classifiable using this method. The

final classification was done by examining all of the 27 possible classes generated by the

results of these three methods. To enable classification of sources based on morphology,

sources with multiple components in either of the radio catalogues were considered.

The morphological classification was done by visual inspection at three levels: (i) The

sources were first classified as FRI/FRII based on the original classification scheme of

Fanaroff & Riley (1974). Additionally, 35 Hybrid sources were identified as sources having

FRI-like morphology on one side and FRII-like on the other. Of the 1329 extended sources

inspected, 40 were determined to be unclassifiable. (ii) Each source was then flagged as

’Confident’ or ’Uncertain’ to represent the degree of belief in the human classification.

(iii) Some of the sources which did not fit exactly into the standard FRI/FRII dichotomy

were given additional tags to identify their sub-type. These sub-types include 53 Wide

Angle Tail (WAT), 9 Head Tail (HT) and 5 Double-Double (DD) sources. To represent

these three levels of classification, each source was given a three digit identifier as shown

in Table 4.1.

To construct the machine learning data set, several pre-processing steps were applied

to the data following the approach described in Aniyan & Thorat (2017) and Tang et al.

(2019):

1. In order to minimise the background noise in the images, all pixels below the 3 σ

level of the background noise were set to 0. This threshold was chosen because

among the classifiers trained by Aniyan & Thorat (2017) on images with 2 σ, 3 σ,

and 5 σ cut-offs, 3 σ performed most well.

2. The images were clipped to 150× 150 pixels, centered on the source.

3. All pixels outside the largest angular size of the radio galaxy were set to zero.
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4. The images were normalised as follows:

Output = 255
Input− Inputmin

Inputmax − Inputmin
, (4.1)

where Input refers to the input image, Inputmin and Inputmax are the minimum and

maximum pixel values in the input image, and Output is the image after normali-

sation.

To ensure the integrity of the ML data set, the following 73 objects out of the 1329

extended sources identified in the catalogue were not included: (i) 40 unclassifiable ob-

jects; (ii) 28 objects with extent greater than the chosen image size of 150× 150 pixels (iii)

4 objects which were found in overlapping regions of the FIRST survey (iv) 1 object in

category 103 (FRI Confident Diffuse). Since this was the only instance of this category, it

would not have been possible for the test set to be representative of the training set. The

composition of the final data set is shown in Table 4.2. We do not include the sub-types

in this table as we have not considered their classification.

In this work, we use the MiraBest Confident subset to train the BBB models. Examples

of FRI and FRII galaxies from the MiraBest confident data set are shown in Figure 4.1.

Additionally, we use 49 samples from the MiraBest Uncertain subset to test the trained

model’s ability to correctly represent epistemic uncertainty, since these samples can be

considered as being drawn from the same data generating distribution as the MiraBest

Confident samples, but have a lower degree of belief in their classification. We also use 30

samples from the MiraBest Hybrid class to test the model’s ability to quantify aleatoric

uncertainty. The MiraBest Hybrid samples are a separate class of objects that was not

included in the training and therefore might be denoted as being out-of-distribution by

some measures; however, given that they are still a sub-population of the over-all radio

galaxy population, and that they are defined as amalgams of the two classes used to train

the model, they could also be considered to be in-distribution. Consequently, in this work

we treat the MiraBest Hybrid test sample as being in-distribution. We note that there may

be components of either type of uncertainty in the Uncertain and Hybrid samples, this is

discussed in Section 4.5.3.

We note that all the previous work published using this data set uses some form of

data augmentation, whereas we do not use any data augmentation. This allows us to
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TABLE 4.1: Three digit identifiers for sources in Miraghaei & Best (2017).

Digit 1 Digit 2 Digit 3
1: FRI 0: Confident 0: Standard
2: FRII 1: Uncertain 1: Double Double
3: Hybrid 2: Wide Angle Tail
4: Unclassifiable 3: Diffuse

4: Head Tail

TABLE 4.2: MiraBest Class-wise Composition

Class Confidence No.

FRI
Confident 397
Uncertain 194

FRII
Confident 436
Uncertain 195

Hybrid
Confident 19
Uncertain 15

(A) Examples of FRI galaxies from the MiraBest confident subset

(B) Examples of FRII galaxies from the MiraBest confident subset

FIGURE 4.1: MiraBest Confident data set

study the application of BBB on small data sets.
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4.2 Uncertainty Quantification

We can broadly divide the sources of uncertainty in the predictions of neural network

models into two categories: epistemic and aleatoric. Epistemic uncertainty quantifies

how uncertain the model is in its predictions and this can be reduced with more data.

Aleatoric uncertainty on the other hand represents the uncertainty inherent in the data

and cannot be reduced. Uncertainty inherent in the input data along with model uncer-

tainty is propagated to the output, which gives us predictive uncertainty (Abdar et al.,

2021). BBB allows us to capture model uncertainty by defining distributions over model

parameters.

Using Monte Carlo samples obtained from the posterior predictive distribution, we

obtain N Softmax probabilities for each class c in the data set. Adapting Equation 3.47 for

our supervised classification setting, we can recover N class-wise Softmax probabilities

as follows:

q(y|x, D) =
1
N

N

∑
i=1

q(y = c|x, w(i)), (4.2)

where (x, y) are samples from the test set and D is the training data. Using these sam-

ples, we can quantify the uncertainties in the predictions using the metrics defined in the

following subsections.

4.2.1 Predictive Entropy

The predictive entropy has combined contributions from both epistemic and aleatoric

uncertainties. It is a measure of the average amount of information inherent in the distri-

bution and is defined as:

H(y|x, D) = −∑
c

q(y = c|x, w) log q(y = c|x, w), (4.3)

and can be approximated using MC samples as (Gal, 2016):

H(y|x, D) = −∑
c

(
1
N

N

∑
i=1

q(y = c|x, w(i))

)
log

(
1
N

N

∑
i=1

q(y = c|x, w(i))

)
. (4.4)

We use the natural logarithm for all the equations described in this section. The en-

tropy thus attains a maximum value of∼ 0.693 when the predictive entropy is maximum
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and a minimum value close to zero.

4.2.2 Mutual Information

We use mutual information to quantify epistemic uncertainty. Mutual information is

closely related to the entropy and can be calculated as follows:

I(y, w|x, D) = H(y|x, D)−Eq(w|D)[H(y|x, w)], (4.5)

which can be approximated as (Gal, 2016):

I(y, w|x, D) = −∑
c

(
1
N

N

∑
i=1

q(y = c|x, w(i))

)
log

(
1
N

N

∑
i=1

q(y = c|x, w(i))

)

+
1
N ∑

c,N
q(y = c|x, w(i)) log q(y = c|x, w(i)). (4.6)

4.2.3 Entropy of a single pass

We use the entropy of a single pass to capture aleatoric uncertainty associated with the

data (Mukhoti et al., 2021):

H(y|x, D) = −∑
c

q(y = c|x, w(i)) log q(y = c|x, w(i)). (4.7)

4.2.4 Overlap Index

We define two overlap indices: η1, to quantify how much the distributions of predicted

Softmax values for the two classes overlap; and η2, to quantify how much the distribu-

tions of logits for the two classes overlap. A higher degree of overlap indicates a higher

level of predictive uncertainty. The overlap parameters have contributions from both

epistemic and aleatoric uncertainties.

Logits are the unnormalised outputs of the network, i.e., the outputs of the final layer

before the Softmax function is applied. A distribution of logit values can be obtained in

a manner similar to how MC samples of the Softmax distribution are obtained.

We calculate a distribution free overlap index as follows (Pastore & Calcagnì, 2019;

Scaife & Porter, 2021):
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1. For each class, estimate local density at location z using a Gaussian kernel density

estimator:

fc1(z) =
1
N

N

∑
i=1

1
β
√

2π
e−(z−cN

1 )2/2β2
, (4.8)

fc2(z) =
1
N

N

∑
i=1

1
β
√

2π
e−(z−cN

2 )2/2β2
, (4.9)

where β = 0.1 and c1, c2 are the softmax/logit values of the two classes in the data

set.

2. Calculate overlap index, η, using the local densities:

η =
Mz

∑
i=1

min[ fc1(zi), fc2(zi)] δz , (4.10)

where Mz defines the step size of z such that {zi}Mz
i=1 ranges from zero to one in Mz

steps.

4.3 The cold posterior effect

It is observed that in order to get good predictive performance from Bayesian neural

networks, the Bayesian posterior has to be down-weighted or tempered. This is known

as the cold posterior effect and it has been observed by several authors (Zhang et al., 2019;

Osawa et al., 2019; Ashukha et al., 2020; Wenzel et al., 2020). To temper the posterior, we

use a weighting factor, T, in the cost function:

Fi(Di, θ) =
T
M

KL[q(w|θ]||P(w)]−Eq(w|θ)[log P(Di|w)], (4.11)

where T ≤ 1 is the temperature. We also report this effect in our experiments with radio

galaxies, see Figure 5.1, and discuss this effect further in Chapter 5.

4.4 Experiments with MiraBest

The MiraBest data set has a predefined training: test split. We further divide the training

data into a ratio of 80:20 to create training and validation sets. The final split contains 584
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TABLE 4.3: CNN architecture: MiraBest. Stride = 1 is used for all the convolutional and max
pooling layers

Operation Kernel Channels Padding
Convolution 5 x 5 6 1
ReLU
Max Pooling 2 x 2
Convolution 5 x 5 16 1
ReLU
Max Pooling 2 x 2
Convolution 5 x 5 26 1
ReLU
Max Pooling 2 x 2
Convolution 5 x 5 32 1
ReLU
Max Pooling 2 x 2
Fully-Connected 120
ReLU
Fully-Connected 84
ReLU
Fully-Connected 2
Log Softmax

training samples, 145 validation samples and 104 test samples.

4.4.1 Network Summary

The architecture used to classify MiraBest data set using BBB is shown in Table 4.3. We

have added two additional convolutional layers to the LeNet-5 architecture.

The prior and posterior specifications are given below:

1. Prior Specification:

• Gaussian Prior, σ = 0.1

• Gaussian Mixture Model Prior, {3/4, 1, 9. 10−4}

2. Posterior Initialisation

• wmu and bmu are initialised from the uniform distribution U(−0.1, 0.1)

• wrho and brho are initialised from the uniform distribution U(−5,−4)

4.4.2 Training

All the models are trained for 500 epochs, with minibatches of size 50. We train the mod-

els using the Adam optimiser with a learning rate of 5.10−5. A learning rate scheduler
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is implemented which reduces the learning rate by 95 % if the validation likelihood cost

does not improve for four consecutive epochs.

We found it necessary to temper our posterior in order to get a good performance

from the Bayesian NN, without which the accuracy remains around 50%. We tempered

the posterior for a range of temperature values, T, between [10−5, 1) and chose the largest

value of T for which the accuracy was improved significantly. Thus, for all the experi-

ments we use T = 10−2 in Equation 4.11.

4.4.3 Uncertainty Quantification

For calculating MC samples from the Softmax and logit-space distributions, we calculate

N = 200 samples (Equation 4.2).

The distribution-free parameter indices, η1 and η2, are calculated using Mz = 100 in

Equation 4.10.

The MiraBest Uncertain data set samples contain 25 FRI and 24 FRII type galaxies.

The Hybrid data set contains labels that indicate the confidence of the human classifier.

Of the 30 samples in the data set, 17 are classified as Confident, while the remaining 13

are classified as Uncertain.

4.4.4 Alternative Prior

Laplace priors are used to induce sparsity in the network. We consider a Laplace prior

and a Laplace Mixture Model prior with the following specifications:

1. Prior Specification:

• Laplace Prior, b = 1

• Laplace Mixture Model Prior, {0.75, 1, 10−3}

We note that in case of this prior, we find the optimal model performance for a different

initial learning rate of 10−4. We used the same posterior initialisations as described for

the Gaussian priors.

4.5 Results and Discussion
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TABLE 4.4: Classification error on MiraBest using Bayesian-CNN

Method #Parameters Test Error
Gaussian Prior 464,888 14.11± 2.56%

GMM Prior 464,888 12.80± 2.60%

FIGURE 4.2: Training Loss Curves for BBB on MiraBest using a GMM Prior: The plots show
the total loss, the likelihood cost and the complexity cost, in order.

FIGURE 4.3: Validation Loss Curves for BBB on MiraBest using a GMM Prior: The plots
show the total loss, the likelihood cost and the complexity cost, in order.

4.5.1 BBB Classifier Performance

The results of our classification experiments are shown in Table 4.4. The mean and stan-

dard deviation values of the test error are calculated by taking 100 samples from the pos-

terior predictive distribution. Using the model trained with a GMM prior, we get a test

error of 12.80± 2.60%. The standard deviation values indicate the model’s confidence in

its prediction, and the large values can be attributed to the limited availability of training

and test data. Bowles et al. (2021) who augment the MiraBest confident samples by 72

times, report a test error of 8%, whereas Scaife & Porter (2021) who use random rotations

of the same data set as a function of epochs to augment the data, report a test error of

5.95± 1.37% with a LeNet-5 style CNN with Monte Carlo dropout and 3.43± 1.29% us-

ing D16 group-equivariant CNNs with Monte Carlo dropout. We again emphasise that

the test error values we report are without any data augmentation.

The training and validation loss curves are shown in Figure 4.2 and Figure 4.3, re-

spectively.
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(A) (B) (C) (D)

FIGURE 4.4: Examples of samples correctly classified with high predictive confidence. Top:
softmax values for 200 forward passes through the trained model. Bottom: input data im-

ages.

4.5.2 Pruning Results

We use the methodology outlined in Section 3.5.3, with one major difference to adapt

SNR-based pruning for a convolutional Bayesian NN: only the fully-connected layer

weights of the model are pruned, instead of all the weights of the network. This is be-

cause the convolutional layer weights are shared weights, see Section 2.10, and removing

even a small fraction may result in disastrous consequences for model performance. The

fully-connected layers still make up ∼ 85% of the total weights of the network, so prun-

ing methods are worth considering for convolutional BBB.

For the model trained on the MiraBest data set with a GMM prior, we find that up

to 40% of the fully-connected layer weights can be pruned without a significant change

in performance. The test error as a function of pruning threshold is shown in Figure 5.2,

along with the results of alternative pruning methods based on Fisher information, which

will be discussed in more detail in Section 5.2.1.

4.5.3 Uncertainty Quantification Results and Population Study

We first look at some specific examples of uncertainty quantification in the MiraBest Con-

fident data set to build intuition about the uncertainty metrics used. We then study the

uncertainties for the population of sources in MiraBest Confident, Uncertain and Hybrid

data sets to see how well the trained model has captured the different types of uncertain-

ties associated with these samples, see Figure 4.7 for an overview.
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(A) (B) (C) (D)

FIGURE 4.5: Samples with the highest entropy, mutual information, and high predictive
uncertainty. Top: softmax values for 200 forward passes through the trained model. Bottom:

input data images.

TABLE 4.5: Predictive entropy (PE), mutual information (MI) and overlap indices for Soft-
max (η1) and logit-space (η2) for samples incorrectly classified with low confidence shown in

Figure 4.5.

Sample PE MI η1 η2
A 0.64 0.20 0.56 0.13
B 0.67 0.14 0.70 0.11
C 0.64 0.16 0.54 0.13
D 0.68 0.28 0.74 0.16

We show some examples of galaxies that have been correctly classified with high

confidence in Figure 4.4. These galaxies correspond to typical FRI/FRII classifications,

and the predictive entropy and mutual information for all the samples shown is very low

(< 0.01 nats) for all samples except sample A, for which the predictive entropy is 0.04

nats and mutual information is 0.01 nats. The overlap indices η1 and η2 are << 10−5,

which indicates that there is virtually no overlap, as can be seen in the distribution of

Softmax probabilities.

We then consider galaxies for which the model uncertainty as well as the predictive

uncertainty is high, as shown in Figure 4.5. These galaxies have the highest predictive

entropy among the test samples of MiraBest confident data set and large values of over-

lap indices in both the softmax and logit space. These samples also have high mutual

information, which indicates that the model’s confidence in its classification is very low.

The values of uncertainty metrics corresponding to these samples are shown in Table 4.5.

Finally in Figure 4.6, four examples where the model has incorrectly classified the

test samples with high confidence are shown along with their softmax distributions. We
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(A) (B) (C) (D)

FIGURE 4.6: Samples that have been incorrectly classified with high predictive confidence.
Top: softmax values for 200 forward passes through the trained model. Bottom: input data

images.

can see that the galaxies either deviate from the typical FRI/FRII classification or their

labels are somewhat ambiguous. For the galaxy shown in Figure 4.6a the model is able to

identify the galaxy as an FRII, even when it has been mislabelled as an FRI in the dataset.

The galaxy in Figure 4.6b has additional bright components at the edge along with bright

components near the center. The model places high confidence on this galaxy being an

FRII, but it is labelled FRI. In Figure 4.6c, we see a similar galaxy, which has been labelled

an FRII and the model incorrectly classifies it as an FRI. Figure 4.6d shows a galaxy which

has one bright component near its edge. The model’s confidence in classifying this as an

FRI can be attributed to a number of examples of FRI galaxies in the MiraBest Confident

data set with a single bright component near the center. Since the underlying CNN ar-

chitecture is equivariant to translation, the model could have learned to represent this

feature as belonging to FRIs.

The predictive entropy and mutual information corresponding to these samples is

shown in Table 4.6. In case of samples A and D, the predictive entropy is higher than that

for samples B and C, while mutual information is similar for all the samples. This indi-

cates that the uncertainty in prediction in relatively high for samples A and D, whereas

the model’s confidence in its prediction is high for all of these samples. Thus, in cases

B and C, the bias introduced by the ambiguity in the definition of FRI and FRII and the

ambiguity in the labels gives rise to uncertainty metrics that can be misleading.



4.5. Results and Discussion 81

TABLE 4.6: Predictive entropy (PE), mutual information (MI) and overlap indices for Softmax
(η1) and logit-space (η2) for samples incorrectly classified with high confidence shown in

Figure 4.6.

Sample PE MI η1 η2
A 0.30 0.06 < 0.01 < 0.01
B 0.17 0.03 0.04 < 0.01
C 0.10 0.01 0.01 < 0.01
D 0.47 0.01 < 0.01 < 0.01

Analysis of Uncertainty Estimates on MiraBest Uncertain

We test the trained model’s ability to capture epistemic uncertainty by calculating un-

certainty metrics for the MiraBest Uncertain samples using the model trained on the

MiraBest confident samples. This is done by loading in the saved model weights and

making N = 200 forward passes through the model with the MiraBest Uncertain sam-

ples as test inputs. We use boxplots to study the distribution of uncertainty metrics. Some

examples of boxplots can be seen in Figure 4.7a. The box shows the interquartile range of

the distribution and the whiskers (grey bars) indicate the total extent of the distribution.

The outliers (if any) are indicated using diamonds. The horizontal line inside the box

indicates the median of the distribution. The values of uncertainty metrics are reported

in nats, which is the natural unit of information. The uncertainty metrics thus attain a

maximum value of 0.693 nats, when the entropy is maximum and a minimum value

close to zero.

Predictive Uncertainty: We find that the predictive uncertainty is consistent with the

degree of belief in the human classification, see Figure 4.7a, with uncertain samples being

classified with a higher entropy than the confident samples. In Figure 4.8a we observe

that the median values of the predictive entropy distribution are higher for both FRI and

FRII classes in the MiraBest Uncertain data set and the interquartile range is also larger.

The distribution is shifted toward higher values of predictive entropy, which indicates

that a larger number of galaxies are being classified with higher predictive entropy. We

note that even though the training set contains∼ 7% more FRIIs than FRIs, the predictive

entropy distribution is slightly more spread out for FRIIs and has a higher median value.

Epistemic Uncertainty: The distribution of mutual information is shown in Figure 4.7b.

The mutual information is also higher for samples from the MiraBest Uncertain set. This

indicates a higher epistemic uncertainty in classifying these samples, which is consistent
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(A) (B) (C)

FIGURE 4.7: Distributions of uncertainty metrics for MiraBest Confident (MBFR_Conf), Un-
certain (MBFR_Uncert) and Hybrid (MBHybrid) data sets.

(A) (B) (C)

FIGURE 4.8: Class-wise distributions of uncertainty metrics for MiraBest Confident and
MiraBest Uncertain data sets.

with how the data sets are defined. We also find that FRIIs have a higher degree of

epistemic uncertainty than FRIs, see Figure 4.8b.

Aleatoric Uncertainty: Using the entropy of a single pass as a measure of aleatoric un-

certainty, we see in Figure 4.8c that (i) for FRI type galaxies, the distribution of aleatoric

uncertainty is very similar for the Confident and Uncertain subsets, and only the median

value has shifted to a higher value by a small amount; (ii) for FRII type galaxies, the

distribution is more spread out and it has a higher median value by ∼0.2 nats. These

observations indicate that there is higher aleatoric uncertainty associated with FRII type

galaxies. This could be due to the nature of images in the Uncertain subset where some

FRIIs may be incorrectly labelled, i.e. the labels act as a source of noise that is inherent in

the data set.

Analysis of Uncertainty Estimates on MiraBest Hybrid

We use the MiraBest Hybrid samples to test the model’s ability to capture aleatoric uncer-

tainty. This is done by loading in the saved model weights and making N = 200 forward

passes through the model with the MiraBest Hybrid samples as test inputs.
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(A) (B) (C)

FIGURE 4.9: Class-wise distributions of uncertainty metrics for MiraBest Hybrid data set.

(A) (B) (C)

FIGURE 4.10: Morphology-wise distributions of uncertainty metrics for the MiraBest data
set.

Predictive Uncertainty: The median predictive entropy of the Hybrid samples is higher

than the MiraBest confident samples by 0.4 nats, as shown in Figure 4.7a. This indicates

that there is a high degree of predictive uncertainty associated with the hybrid samples.

This is expected as: (i) the training set does not contain any hybrid samples (ii) the hybrid

samples represent a kind of noise at the source generating the data. In Figure 4.9a, we see

the contributions of the sub-classes of the Hybrid set. The median values of the predictive

entropy of the confident sub-set are higher than that of the uncertain sub-set, however

the interquartile range is larger in case of the uncertain samples. We can also see form

Figure 4.10a that the hybrid samples have higher uncertainty than FRI and FRII sources

combined across the confident and uncertain samples.

Epistemic Uncertainty: In Figure 4.7b we see that the median value for the distribution of

mutual information for the hybrid samples is close to the upper quartile of the MiraBest

Confident subset. The high degree of epistemic uncertainty could be because the model

did not see any hybrid samples during training. We also note that among the sub-classes

of the Hybrid data set, the confidently classified samples have higher epistemic uncer-

tainty than the uncertainly classified samples, as shown in Figure 4.9b. This could be

because the uncertain samples are more like FRI/FRII galaxies that the model has seen

during training, which could have been the reason they were classified as Uncertain by
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(A) (B)

FIGURE 4.11: Distributions of overlap indices for the logit-space (logits_eta) and Softmax
probability (softmax_eta) distributions for MiraBest Confident, Uncertain and Hybrid data

sets.

a human classifier in the first place. The mutual information is also higher for the hy-

brid samples compared to the FRI and FRII samples combined across the confident and

uncertain samples, see Figure 4.10b.

Aleatoric Uncertainty: The distribution of the entropy of a single pass has a higher me-

dian value and larger interquartile range, Figure 4.7c. While the plot shows that Hybrid

samples have higher aleatoric uncertainty on average, in Figure 4.9c we can see how the

aleatoric uncertainty is distributed among the classes in the hybrid samples. The confi-

dently classified samples contribute a higher proportion to the total aleatoric uncertainty.

The interquartile range is the largest, spanning almost the entire range of the entropy

function between (0, 0.693] nats. From Figure 4.10c we can see that the aleatoric uncer-

tainty is higher for the hybrid samples compared to the FRI and FRII samples combined

across the confident and uncertain samples.

Analysis of Uncertainty Estimates: Logits vs Softmax

In Figure 4.11 we show the distribution of Softmax and logit-space overlap indices η1 and

η2. We can see the effect of the non-linear mapping between logit-space, Figure 4.11a, and

Softmax-space, Figure 4.11b, on the uncertainty estimates for each subset of the MiraBest

data set: for all the data sets, the Softmax overlap index distribution is broader than of

logit-space, and it has more outliers towards higher values of the overlap index. We

also note the difference in the scale of y-axis on both the plots. For the Softmax index

distributions, the values span the whole range of η from zero to one, whereas for the
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TABLE 4.7: Classification error on MiraBest Confident using Bayesian-CNN with Laplace
priors

Method #Parameters Test Error
Laplace Prior 464,888 11.39± 2.14%
LMM Prior 464,888 12.00± 2.26%

logit-space overlap index, the values are less than 0.5. This gives us some insight into the

’squashing’ operation of Softmax. Softmax probability scores alone can be misleading,

which is one of the reasons why deterministic neural networks provide overconfident

classifications.

4.5.4 Laplacian priors

The test errors for a model trained with a Laplace prior and a Laplace Mixture prior are

shown in Table 4.7. We find that the classification performance is better than that for

a Gaussian prior and the GMM prior, see Table 4.4 for comparison. This suggests that

learning may benefit from sparser weights.

4.5.5 Discussion

In general we find that the method used in this work can correctly represent uncertainty

in radio galaxy classification, and that this uncertainty is consistent with how human

classifiers defined the MiraBest Confident, Uncertain and Hybrid qualifications. While

we do not learn any new astrophysics from this, the methodology used in this work gives

us learned posteriors. These posteriors can be used as a prior in future applications of

Bayesian deep learning to radio galaxy classification.

While differences in performance are often used to choose a preferred model, how-

ever it is also the case that more accurate point-wise models make overconfident predic-

tions (e.g. Nguyen et al., 2014). In particular this effect has been shown to lead to mis-

calibrated uncertainty in predictions, especially for data samples that are less similar to

canonical examples of a class (Guo et al., 2017b; Hein et al., 2018). While previous works

using the MiraBest dataset have achieved better classification accuracy on radio galaxy

data, the methodology used in this work gives us uncertainty estimates through learned

posteriors. Thus there is a trade-off between standard models, which are somewhat more
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accurate, and our variational inference based Bayesian neural network, which is reason-

ably accurate while giving more reliable posteriors and therefore potentially more scien-

tifically useful.
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Chapter 5

Considerations for Improved

Variational Inference

In this chapter, we present two considerations for improving variational inference as de-

scribed in the previous chapters: (i) We examine the cold posterior effect and test a hy-

pothesis for mitigating it. (ii) We consider an alternative pruning approach based on

Fisher information and compare it to SNR-based pruning. We also examine the effect of

pruning on uncertainty estimates.

5.1 The cold posterior effect

The cold posterior effect is shown in Figure 5.1 for our model trained on radio galax-

ies. We modified our cost function to down-weight the posterior in Equation 4.11 using

a temperature term, T, and reported in the previous chapter that all experiments were

performed using T = 10−2. In Figure 5.1 we can see the effect of T on the test accuracy,

and why we found it necessary to temper the posterior. These results suggests that some

component of the Bayesian framework in the context of neural networks is misspecified

and it becomes difficult to justify using a Bayesian approach to these models, whilst arti-

ficially reducing the effect of the components that make the learning Bayesian in the first

place.

Finding an explanation for the cold posterior effect is an active area of research and

several hypotheses have been proposed to explain this effect (Wenzel et al., 2020): use of
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FIGURE 5.1: The cold posterior effect for a model trained with MiraBest Confident data set

uninformative priors, such as the standard Gaussian, which may lead to prior misspec-

ification (Fortuin, 2021); model misspecification; data augmentation or data set curation

issues which lead to likelihood misspecification (Aitchison, 2020; Nabarro et al., 2021).

In this section we examine whether the cold posterior effect in our results is due to

model misspecification by optimising the model with a modified cost function, follow-

ing the work of Masegosa (2019). The cost function is modified such that it minimises

a second-order PAC-Bayesian bound on the cross entropy (CE) loss. We call this new

objective function a ’masegosa posterior’.

5.1.1 Masegosa Posteriors

Generalised Variational Inference using PAC Bayes

PAC theory has its roots in Statistical Learning Theory and was first described in Valiant

(1984) as a method for evaluating learnability, i.e. how well a machine learns hypothe-

ses given a set of examples. It has now evolved into a formalised mathematical theory

used to give statistical guarantees on the performance of machine learning algorithms by

placing bounds on their generalisation performance.

According to the PAC theory, we can obtain an approximately correct upper bound on

the generalisation performance, as measured by test loss for example, which holds true

with an arbitrarily high probability as more data is collected, hence the name "Probably

Approximately Correct". With high probability:

L(θ) ≤ L̂(θ) + ε(δ, D), (5.1)
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where δ is a confidence parameter that defines the probability that a sample in the train-

ing set is misleading, and ε(δ, Dtrain) is an upper bound on the generalisation gap, which

is the difference between the theoretical loss, L(θ), and the empirical loss, L̂(θ).

PAC started out as is a frequentist framework, but was soon combined with Bayesian

principles. McAllester (1999) presented PAC-Bayesian inequalities which combine PAC-

learning with Bayesian principles, which provide guarantees on the performance of gen-

eralised Bayesian algorithms. These algorithms are referred to as generalised because the

PAC-Bayes framework has similar components to the Bayesian framework: a prior, π, de-

fined over a set of hypotheses, θ ∈ Θ, and a posterior, ρ, which is updated using Bayes-

rule style updates using samples from a data generating distribution, ν(x). But these

bounds hold true for all choices of priors, whereas there is no guarantee on performance

in Bayesian inference if the data set is not generated from the prior distribution i.e. if the

prior assumptions are incorrect. The bounds also hold true for all choices of posteriors,

so in principle we can have model-free learning. Traditionally, most of the PAC-Bayes

bounds are only applicable to bounded loss functions. This makes it difficult to apply

them to the unbounded loss functions which are typically used to train neural networks,

however more recent works have introduced PAC Bayes bounds for unbounded losses

as well (e.g. Alquier et al., 2016; Germain et al., 2016; Shalaeva et al., 2020). See Guedj

(2019) for an overview of the PAC-Bayesian framework.

Learning in the PAC-Bayesian framework happens such that an optimal value of ρ∗ is

found that minimises the KL divergence between ν(x) and the posterior predictive disti-

bution given by Eρ[p(x|θ)]. Minimising this KL divergence is equivalent to minimising

the cross entropy (CE) function,

ρ∗ = arg min
ρ

CE(ρ), (5.2)

which is the expected log loss of the posterior predictive distribution, p(x|θ), with respect

to the data generating distribution, ν(x):

CE(ρ) = Eν(x)[− log Eρ(θ)[p(x|θ)]]. (5.3)
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Thus, by minimising this CE function, we can find the optimal ρ∗. This cross entropy loss

is bounded by the expected log loss of the posterior predictive distribution as:

CE(ρ) ≤ Eρ(θ)[L(θ)]. (5.4)

This is an example of what is known as an ’oracle’ bound, since this inequality depends

on the unknown data generating distribution, ν(x). It is also an example of a first-order

Jensen inequality, which gives a linear bound such that:

Eν(x)[− log Eρ(θ)[p(x|θ)]] ≤ Eρ(θ)[Eν(x)[− log p(x|θ)]], (5.5)

which is an expansion of the terms given in Equation 5.4.

Germain et al. (2016) derived a first order PAC-Bayes bound for unbounded losses:

CE(ρ) ≤ Eρ(θ)[L(θ)] ≤ Eρ(θ)[L̂(θ, D)] +
KL(ρ, π)

c1
+ c2, (5.6)

where c1 and c2 are constants. In the same work, Germain et al. (2016) also showed

that under i.i.d. assumptions, the Bayesian posterior, p(θ|D), minimises this PAC-Bayes

bound over the expected log loss, Eρ(θ)[L(θ)], which bounds the cross-entropy loss.

Since variational inference is an approximation to the Bayesian marginal likelihood,

we can use these bounds to optimise VI-based Bayesian NNs. By applying these bounds

we deviate from the variational inference as defined in the Bayesian paradigm and move

towards a more generalised variational inference algorithm.

The Variance Term

Masegosa (2019) showed that the Bayesian posterior minimises a PAC-Bayes bound over

the CE loss only when the model is perfectly specified. When the model is misspecified,

the minimum of the CE loss is not equal to minimum of the expected log loss, and thus

optimising the Bayesian posterior does not give an optimal learning strategy. Since this

is more often the case, they propose an alternative posterior by introducing a variance

term that measures the variance of the posterior predictive distribution. They define a
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second-order oracle and Jensen bound, which is given as:

CE(ρ) ≤ Eρ(θ)[L(θ)]−V(ρ), (5.7)

where

V(ρ) = Eν(x)

[
1

2maxθ p(x|θ)2 Eρ(θ)[(p(x|θ)− p(x))2]

]
(5.8)

is the variance term.

Since the true data generating distribution ν(x) is not known, the authors place an

upper bound on Equation 5.7 using a second-order PAC-Bayes bound:

CE(ρ) ≤ Eρ(θ)[L(θ]−V(ρ) ≤ Eρ(θ)[L̂(θ, D)]− V̂(ρ, D) +
KL(ρ, π)

c1
+ c2, (5.9)

where L̂(θ, D) and V̂(ρ, D) are the empirical loss and variance term, respectively.

This alternative posterior is compatible with VI and we can modify our cost function

to test the hypothesis that the cold posterior effect observed in our work is due to model

misspecification. Instead of optimising the ELBO function in Equation 3.14, we optimise

the following function:

arg min
θ

KL[q(w|θ)|P(w)]−Eq(w|θ)[log P(D|w)]− V̂(q|D). (5.10)

The empirical variance term, V̂, can be numerically calculated as follows:

V̂(w, w ′, D) = exp(2 log P(D|w)− 2mD)− exp(log P(D|w) + log P(D|w ′)− 2mD),

(5.11)

where w, w ′ are samples from the variational posterior, q(w|θ), D is the training data

and mD is given as:

mD = max
w

log P(D|w). (5.12)

Results

The results of training our model with and without the variance term for T = 1 are shown

in Table 5.1. We find that there is no significant improvement in the model performance

with the variance term. The mean test error improves only by ∼ 2%. This suggests that
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TABLE 5.1: Classification error on MiraBest using with variance term for temperature T = 1

Method T Test Error
without variance term 1 48.30± 1.89%

with variance term 1 46.60± 2.78%

model misspecification is not the primary cause of the cold posterior effect observed in

our work.

5.2 Alternative pruning approaches

In this section, we discuss an alternative pruning approach based on Fisher information.

We compare the performance of our BBB model trained on radio galaxies for different

pruning methods and analyse the effect of pruning on uncertainty estimates.

We use the method described in Tu et al. (2016) for deterministic neural networks

to prune our Bayesian NN trained on radio galaxy data. The Fisher information matrix

(FIM) for a particular parameter of the network θ indicates how relevant the parameter

is for producing the output of the network. The empirical FIM for a parameter θ can be

calculated as follows:

F(θ) = Ey

[(
∂ log L

∂θ

)(
∂ log L

∂θ

)T
]

, (5.13)

where L is the loss function. For our model this loss is the ELBO function, see Equa-

tion 3.11, whereas Tu et al. (2016) have used the log likelihood loss function. Using

the Adam optimiser (Kingma & Ba, 2014) to train the models allows us to use the bias-

corrected second raw moment estimate of the gradient to approximate the FIM diagonal.

This is the value r̂ in Algorithm 3.

5.2.1 Fisher information method

The results of our pruning experiments are shown in Figure 5.2. As also observed by Tu

et al. (2016), pruning the weights based on Fisher information alone does not allow for

a large number of parameters to be pruned effectively because many values in the FIM

diagonal are close to zero. We find this to be true for our model as well and that only

∼10% of the fully-connected layers can be pruned using Fisher information alone, see

Figure 5.2.
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FIGURE 5.2: Comparison of model performance for different pruning methods based on:
SNR, Fisher information, a combination of magnitude and Fisher information.

To remedy this, the authors suggest combining Fisher pruning with magnitude-based

pruning, where magnitude refers to the absolute value of the weights. Following their ap-

proach, we define a parameter, r, to determine the proportion of weights that are pruned

by either of these methods: to prune P parameters from the network, we perform the

following steps in order: (i) remove the P(1 − r) weights with the lowest magnitude;

(ii) remove the P r parameters with the lowest FIM values. The parameter r is between

(0, 1) and is tuned like a hyper-parameter. We get an optimal pruning performance with

r = 0.3. We find that up to 60% of the fully-connected layer weights can be pruned

using this method, which is a 20% larger volume of weights than those pruned by the

SNR-based method discussed in Section 4.5.2.

5.2.2 Analysis of Uncertainty Estimates for different pruning methods

The effect of pruning on uncertainty quantification is shown in Figure 5.3 for the MiraBest

Confident data set. We plot uncertainty metrics for the two pruning methods discussed

in this work: (i) based on SNR, with 40% pruning, and (ii) based on magnitude combined

with Fisher information, with 60% pruning, and compare it to the metrics obtained for

the unpruned model. From Figure 5.3a, we note that the distributions of predictive un-

certainty for both the pruning methods have shifted towards lower values of entropy,

with slightly smaller median values. A similar trend can be seen for epistemic uncer-

tainty from the mutual information plot in Figure 5.3b and for aleatoric uncertainty in
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(A) (B) (C)

FIGURE 5.3: Distributions of uncertainty metrics for different pruning methods for the
MiraBest Confident data set.

(A) (B) (C)

FIGURE 5.4: Class-wise distributions of uncertainty metrics for different pruning methods
for the MiraBest Confident data set.

Figure 5.3c. However, we observe that there are a few outliers for both epistemic and

aleatoric uncertainties.

In Figure 5.4, we can see how these uncertainties are distributed among the FRI and

FRII samples in the data set. From Figure 5.4a, we note that SNR pruning causes the

interquartile range of the predictive uncertainty distribution to shift to lower values of

entropy for FRIIs by a large amount compared to the unpruned distribution, by ∼ 0.3

nats. A similar effect can be seen for Fisher-based pruning but the range shifts by a

smaller amount. In case of FRIs, the opposite effect is seen i.e., the distributions become

more spread out.

The epistemic uncertainty distributions also experience a similar effect, as shown in

Figure 5.4b. These observations indicate that there is more epistemic uncertainty asso-

ciated with the FRII samples, which may be improved by removing parameters that are

noisy and contain less information. And removing the source of epistemic uncertainty

also improves the predictive uncertainty.

Figure 5.4c indicates that pruning does not have a large effect on the aleatoric uncer-

tainty distributions for FRIs. We note that the aleatoric uncertainty reduces significantly

for FRIIs, which is unexpected and requires further examination. While the metric we
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have used to estimate aleatoric uncertainty is adopted from Mukhoti et al. (2021), we

note that they use it in addition to several other metrics to disentangle epistemic and

aleatoric uncertainty for deterministic neural networks. Future work in this area could

look at a different method for estimating aleatoric uncertainty.
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Chapter 6

Conclusions and Future Work

In this work we have presented the first application of a variational inference based ap-

proach to morphological classification of radio galaxies, using a binary FRI/FRII classi-

fication. Using a Bayesian Convolutional Neural Network based on the Bayes by Back-

prop (BBB) algorithm, we showed that posterior uncertainties on the predictions of the

model can be estimated by making a variational approximation to the posterior proba-

bility distribution over the model parameters. We also showed how this method over-

comes the limitations of standard neural networks, which produce deterministic outputs

using maximum likelihood estimates and are overconfident in their predictions due to

the squashing nature of the Softmax function. This was also verified by comparing the

logit-space uncertainties with Softmax uncertainties.

We showed that using a BBB model allows the test samples in the MiraBest Confident

data set to be classified with an error of 12.80± 2.60% using a Gausssian Mixture Model

(GMM) prior. We note that this is a larger error value than that obtained by other neural

network based models trained on this data set, but emphasise that other works have

used data augmentation to increase the size of the data set, whereas we have only used

the original samples. This allowed us to study the use of VI-based neural networks on

small data sets as well.

We also found that a model trained with a Laplace prior performs better than a Gaus-

sian prior in terms of mean test error by ∼ 3%, and better than a GMM model prior by

∼ 1%, whereas the test error for a model trained with a Laplace Mixture Model prior

also performs slightly better than the Gaussian priors, although not as well as a single

Laplace prior. This suggests that learning may benefit from sparser weights. However,
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the uncertainties associated with all the mean test error values are∼ 2% which means we

cannot conclusively say which prior is better. We note that this work uses relatively sim-

ple priors and future extensions of this work will look more closely at prior specification

and whether more informative priors can help learning.

The analysis of different components of uncertainties indicates that model uncertainty

is correlated with the degree of belief of the human classifiers who originally created the

morphological classification in the MiraBest data set. We find that a model trained on

confidently classified radio galaxies is able to reliably estimate its confidence in predic-

tions when presented with radio galaxies that have been classified with a lower degree of

confidence. Notably, all measures of uncertainty are higher for the uncertainly classified

samples. The model also made predictions with higher uncertainty for a sample of hy-

brid radio galaxies, which was expected as these samples were not present in the data set

the model was trained on, but contained FRI/FRII like components nevertheless. Look-

ing more closely at the class-wise distributions of uncertainties, we found that FRIIs are

associated with a higher degree of uncertainty. Among the classes of the hybrid samples,

we found that the uncertainty values are higher for the confidently classified samples

compared to the uncertainly classified hybrid samples. This could be because the uncer-

tain samples are more like the FRI/FRII samples the model was trained on, which is why

the human classifiers were uncertain in their classification as a hybrid.

We also explored different weight pruning approaches with the motivation of reduc-

ing the storage and computation cost of these models at deployment. We find that using a

SNR based method using posterior means and variances allows the fully-connected lay-

ers of the model to be pruned by up to 40%, but a method that combines Fisher informa-

tion with weight magnitudes allows an even higher proportion of weights to be pruned,

by up to 60%, without compromising the model performance. These two methods are

based on fundamentally different methodologies: while SNR pruning takes into account

noisy weights that are either too small in magnitude or have large posterior variances,

the Fisher-information based method removes parameters based on their contribution to

the gradients. If a parameter has smaller FIM values, this indicates that the gradients of

the parameter did not change much during training. This means that the parameter con-

tained less information and was less relevant to produce the output of the model. Thus

one method may be better than the other in specific applications. We note here that since
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our data set is small, the SNR metrics may be more noisy because model uncertainty was

not able to be greatly reduced due to the limited availability of data. The effect of remov-

ing some of these noisy weights can also be seen on the uncertainty metrics. We found

that while an unpruned model classified FRIIs with higher uncertainty, this is reduced

when the model is pruned up to its threshold limit for both SNR and Fisher based met-

rics, but there is more improvement in case of SNR-based pruning. Future work in this

area could make a comparison of these methods with augmented data to verify whether

one method should be preferred over the other. Another possible extension could be

re-training a pruned model to test whether pruning improves the generalisation perfor-

mance of a network.

Finally, we considered the cold posterior effect and its implications for using Bayesian

deep learning with radio galaxy data in future. We showed that our model required

posterior tempering during training in order to have good predictive performance. While

a model trained with an un-tempered posterior with T = 1 had a test error of 48.30±

1.89%, reducing the temperature to T = 10−2 allowed a model trained with a GMM prior

to achieve 12.80± 2.60% test error. This is a significant difference in performance and calls

into question the validity of the application of Bayesian principles to neural networks.

We considered the hypothesis that model misspecification may be causing the cold

posterior effect and tested it by retraining our model with a modified cost function that

has an additional variance term to account for the disagreement or variability in the pos-

terior predictive distribution. This variance term comes from PAC-Bayesian theory which

is used to place bounds on the generalisation performance of a learning algorithm. The

modified cost function is a loose PAC-Bayes bound over the cross-entropy loss and leads

to a new, generalised variational inference learning algorithm. However, we find that

the model performance does not improve significantly when trained with the variance

term and the mean test error only improves by ∼ 2%. Thus we conclude that model

misspecification is not the major contributing factor to the cold posterior effect observed

in our work. Further examination of this effect is required in order to find the compo-

nent of Bayesian learning that is misspecified. Future studies in this area will investigate

other hypotheses such as prior misspecification or data set curation issues. More specif-

ically, the effect of data augmentation can be examined to test whether the model needs

to over-count evidence via the tempered posterior in order to compensate for the limited
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availability of data.

In this work we have considered a binary classification of morphology, but a diverse

and complex population of galaxies exist in the radio universe. Understanding how pop-

ulations of radio galaxies are distributed gives us insight into the effect of extrinsic and

intrinsic factors that may have led to the morphologies, which in turn help shape our un-

derstanding of radio-loud AGN, their excitation and accretion modes, how they evolve

and their relationship with their host galaxies and environments. Deep learning will play

an important role in extracting scientific value from the next-generation of radio facilities.

Understanding how neural network models propagate uncertainties will be crucial for

deploying these models and a lot of work still needs to be done in this area.
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