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Abstract

The aim of this thesis is to explore and quantify properties associated with Multi-State Clinical

Prediction Modelling.

We use simulations to infer knowledge regarding causal assumptions in competing risks sce-

narios (a subset of Multi-State Models) and time-dependent measures of model calibration. The

causal assessment involves the investigation of multiple real-world scenarios where confound-

ing factors may interfere with the standard way of measuring the effects of a treatment on an

event-of-interest and a competing event. This is important in the field of Multi-State Models

as the inaccurate interpretation of an effect on a competing event can lead to misconceptions

in the causes of the event-of-interest.

Further simulations are performed to analyse how traditional methods of assessing the

Calibration-in-the-Large of a Clinical Prediction Model can be affected by the censoring of

patients over time, in particular when this censoring is caused by a competing event related

to the variable of interest. To combat this, we use the Inverse Probability of Censoring to

weight patients based on their likelihood to still be present in the data at a certain time, to

re-align the measurements with reality and avoid bias due any underlying relationship between

the competing event and the attributes of a patient.

This knowledge feeds into the design and implementation of metrics to assess other aspects

of model validity, namely accuracy, discrimination and calibration, in a Multi-State Clinical

Prediction Model. The Brier Score is extended to account for multiple outcomes, and the c-

statistic is replaced by the Polytomous Discriminatory Index. Both of these extended measures

are adjusted to fit into the scales of their traditional counterparts. We also extend the measures

of calibration (i.e. Intercept and Slope), and encode further information into these metrics

by also analysing the traditionally held assumption of that state predictions are completely

independent. All of these methods are augmented with the information garnered from the

previous simulations to ensure that bias due to censoring is accounted for.

Data from the Salford Kidney Study and the West of Scotland Electronic Renal Patient

Record are used to develop and validate our own clinical prediction model. This model can

predict a Chronic Kidney Disease patient’s journey through Renal Replacement Therapy and

on to Death, and through the application of our validity metrics, we can be confident that it

can be accurate and effective in its predictions.
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Introduction

In the current era of large datasets and complex data, the ability to utilise this information

in pertinent ways is becoming more and more important. With this, the medical world is no

different to any other scientific or technological field. The ability to focus data and funnel it

towards a key goal is crucial. With that in mind, we must therefore develop not only the tools

to create such avenues of advancement, but also the metrics with which to measure them.

Clinical Prediction modelling takes advantage of the world’s medical datasets to guide clin-

icians to make accurate predictions for their patients. These models can be designed using a

wide array of methodologies of all shapes and sizes and by essentially comparing patients to

similar ones who have come before, we can make educated data-driven decisions about their

futures.

Since human lives are transitive and ever changing, it makes sense to use a methodology that

is also transitive. Multi-State Models analyse how long patients remain in discrete states. By

combining this analysis with the field of prediction modelling, we are able to provide predictions

of how long patients are likely to remain in a given state, and forecast their pathways through

these systems.

The application of such models to specific clinical fields can assist in their uptake, and

fields where clinical prediction models may be less utilised can benefit greatly from these novel

approaches. The field of Nephrology concerns patients suffering from kidney disease (both acute

and chronic) and therefore includes the diagnosis and prognosis of Chronic Kidney Disease

patients and the prescription of their medical treatments such as Renal Replacement Therapy.

This thesis aims to unite these three topics to discuss the methodologies involved in creating

a Multi-State Clinical Prediction Model for use in Chronic Kidney Disease patients on their

journey towards and through Renal Replacement Therapy.

Chapter 1 consists of an overview of the current literature in these three key fields and

discusses core concepts in each of them such as the design of a Clinical Prediction model, the

statistical modelling involved in Multi-State Modelling and the factors of most importance when

predicting Chronic Kidney Disease outcomes.

Chapter 2 dives into pragmatic approaches to measuring treatment effects. Particularly

when Competing Risks and confounding effects are involved. Competing Risks are a subdivi-

sion of Multi-State Models and occur much more often in the real-world than in Randomised

Controlled Trials. This is a simulation study investigating how Competing Risks can interfere

with otherwise simple measurements.

Chapter 3 conducts another simulation study focusing on metrics involved in assessing the
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calibration of a Clinical Prediction Model. In particular it compares the current best approaches

to measuring calibration in time-to-event data where patients may be censored before having

the event in question.

Chapter 4 builds on the simulation by applying similar adjustments to some other metrics

for Clinical Prediction Models and extends these to a Multi-State Model framework by utilising

similar work devoted to multinomial outcomes.

Chapter 5 culminates by developing and validating a Multi-State Clinical Prediction Model

using two large datasets in disjoint populations. It predicts the outcomes for Chronic Kidney

Disease patients, and their probability, over time, of commencing Renal Replacement Therapy

and/or dying.

The thesis includes several appendices which augment the knowledge of the main text’s

chapters by providing supplementary material with additional discussions and in-depth inves-

tigations of some of the smaller topics.



Chapter 1

Literature Report

1.1 Introduction

This Chapter aims to discuss three themes central to the current research project:

� Prognostic Research

� Mult-State Models

� Chronic Kidney Disease

Section 1.2 discusses prognostic research from a general standpoint. The PROGRESS Series

[1]–[2] classified prognostic research into four main categories, however the main focus of this

Project has been the third of these, Prognostic Model Research[3] as it is the most relevant to

the overarching project.

Section 1.3 will discuss Competing Risks (CRs) and Multi-State Models (MSMs), which are

extensions of survival analysis. In ordinary survival analysis, patients can be in only one of two

states, alive or dead (or their analogues), these extensions can include multiple death states

(CR) and/or multiple living states (MSM) giving a more granular and in-depth assessment of

a patients journey.

The final section, Section 1.4 will discuss methods of modality of Renal Replacement Ther-

apy (RRT). RRT consists of three treatment methods designed to replace the functionality of

the natural kidneys in patients.

1.2 Clinical Prediction Models

The idea of prognosis dates back to ancient Greece with the work of Hippocrates [4] and is

derived from the Greek for “know before” meaning to forecast the future. Within the sphere of

healthcare, it is defined as the risk of future health outcomes in patients, particularly patients

with a certain disease or health condition. Prognosis allows clinicians to provide patients with

a prediction of how their disease will progress and is usually given as a probability of having

an event in a prespecified number of years. For example, QRISK3 [5] provides a probability
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that a patient will have a heart attack or stroke in the next 10 years. Prognostic research

encompasses any work which enhances the field of prognosis, whether through methodological

advancements, field-specific prognostic modelling or educational material designed to improve

general knowledge of prognosis. Prognostic models come under the wider umbrella of predictive

models which also includes diagnostic models; because of this most of the keys points in the

field or prognostic modelling can be applied to diagnostic models with little to no change.

Prognosis allows clinicians to evaluate the natural history of a patient (i.e. the course of a

patient’s future without any intervention) in order to establish the effect of screening for asymp-

tomatic diseases (such as with mammograms [1]). Prognosis research can be used to develop

new definitions of diseases, whether a redefinition of an existing disease (such as the extension to

the definition of myocardial infarction to include non-fatal events [6]) or a previously unknown

sub-type of a disease (such as Brugada syndrome as a type of cardiovascular disease [7])

In general, prognosis research can be broken down into four main categories, with three

subcategories [8]:

� Type I: Fundamental prognosis research [1]

� Type II: Prognostic factor research [9]

� Type III: Prognostic model research [3]

– Model development [10]

– Model validation [11]

– Model impact evaluation [12]

� Type IV: Stratified Medicine [2]

For a particular outcome, prognostic research will usually progress through these types, begin-

ning with papers designed to evaluate overall prognosis within a whole population and then

focusing in on more specificity and granularity towards individualised, causal predictions.

The model development and validation will usually occur in the same paper [13], [14].

studies into all three of the subcategories of prognostic model research should be completed

before a model is used in clinical practice [15], although this does not always occur [3]. External

validation is considered by some to be more important than the actual derivation of the model

as it demonstrates generalisability of the model [16], whereas a model on it’s own may be highly

susceptible to overfitting [17].

1.2.1 Types I & IV

4. P 22 – a brief explanation of fundamental prognostic research and stratified medicine should

be included
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Fundamental Prognosis Research

Fundamental Prognosis Research is concerned with analysing the progress of a disease in the

general population such as the overall survival rate of a disease [1]. This usually includes the

application of standard care and can include a general level of stratification, such as investi-

gations into the rate of survival in different countries (which can then be an indicator of how

successful different healthcare regimes have been on disease progression). It is the building

blocks needed to demonstrate evidence and a need for further research into specific areas.

A rather important aspect of fundamental prognosis research is that it allows other re-

searchers to better understand the shape and scale of the progress of a disease. As well as

providing insight into the average progress of a disease, it can also provide details of outliers

and how the rates and differences are spread throughout a population, as well as indicators to

what could be effecting the outcomes [18].

As the name suggests, this is a very broad area of research and encompasses many types

of study that can be considered prognosis research, but that don’t nicely fit into the other

categories. It has also become a very prominent area in recent years with the analysis of the

spread and survivability of COVID-19 being included in this category of research [19], and even

the continuous updates of numbers of deaths in each country is a part of this field and the

dashboards derived from them [20, 21].

Stratified Medicine

Once clinical prediction models have been created (through the techniques described below),

they can be used to estimate which types of patients will have the highest risk of an outcome.

This can inform clinical practice since those patients who are at high risk will benefit more from

preventative treatment than those with low risk of an outcome [2]. This idea of using prognostic

indicators to decide which patients should get a treatment is called Stratified Medicine.

In the UK, a common use of stratified medicine is through the use of the QRISK3 clinical

prediction model [5], where clinicians are recommended to prescribe statins to prevent car-

diovascular events for patients whose risk of an event in the next ten years is over 10% [22].

This also incorporates the decisions of which types of statin to prescribe depending on certain

comorbidities due to the need to avoid certain interactions.

The actual research involved in stratified medicine is focusing on finding those areas where

this kind of approach produces the most utility for patients and investigating which factors

have the greatest effect on patient outcomes. It can also include analysing where treatments

have different effects on patients depending on their characteristics, such as mutations causing

medicines to work better [23] or worse [24] in certain conditions.

Causality

Causality is the study of which factors or covariates cause certain outcomes to occur [25]. This

is the primary focus of studies such as randomised clinical trials, which attempt to establish

whether changing a treatment. These can also be used when establishing the effectiveness of a

clinical prediction model (see section 1.2.5).
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The study of prognosis research is primarily concerned with prediction and not with aeti-

ological research, that is investigating which covariates are considered to be causal. Clinical

prediction research can lead to a deeper understanding of causality and aspects of this research

can be used to confirm or refute the presence of causal relationships between covariates and

outcomes, but is not intrinsic to this research.

Causal relationships often have to be taken into account when studying prediction as knowl-

edge about what covariates can effect an outcome, can provide a guide on which covariates we

should consider as part of our clinical prediction research. For example, we know that smoking

status has causal relationships with many outcomes including a variety of cancers and vascular

disease [26] and so it has become a key measurement taken in most research, including clinical

prediction.

A side effect of how causal relationships can be studied within clinical modelling (in general)

is that we can uncover covariates known as confounders. These are variables which have an

effect on the outcome being measured, and which also has a relationship with the predictor

being measured [27], see figure 1.1. When trying to establish a causal relationship between

two variables (e.g. a predictor and an outcome), it is important to ensure that there isn’t

another (possibly hidden) relationship which may be causing the actual effect that is being

observed. For example, older people tend to be more likely to be given prescriptions for certain

medications. Since there is likely a relationship between age and propensity of medication use,

then the age of the patient should always be taken into consideration when assessing the use of

these medications and their effect on outcomes, especially in an observational setting.

Figure 1.1: X has an effect on Z, Y has an effect on X and Z, therefore Y is a confounding
factor on the relationship between X and Z

1.2.2 Prognostic Factor Research

The aim of prognostic factor research (Type II) is to discover which factors are associated with

disease progression. This allows for the general attribution of relationships between predictors

and clinical outcomes.

Prognostic factor research can give researchers and clinicians an idea of which patient factors
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are important when assessing a disease. It is vital to the development of clinical predictive

models as without an idea of what covariates are associated with an outcome, we cannot figure

out which variables will useful for a prediction model.

For example, in the development of the NPI [28], it was known that cancer tumour grade is

a prognostic factor in cancer patients as a higher grade correlates with a higher mortality. Note

that the word correlate in the previous sentence. A recurring theme of statistics is the idea that

correlation does not imply causation. Margarine consumption is correlated with divorce rates,

Nicolas Cage films are correlated with pool drownings and chicken consumption is correlated

with oil imports [29], but it is clear in all of these cases that there is no causal relationship

between the variables. Predictive (and therefore prognostic) factor research is not aimed at

discovering causal relationships, but merely uncovering correlations [12]. These factors may

indeed be causal, but this is not a requirement [9]. In neonatal case, the Apgar Score is simple

quick-to-use CPM for the health of a newborn [12]. In the Apgar score, skin colour (Blue all

over, Blue at extremities or no cyanosis) is used as a prognostic factor, but it is not causal.

Counter to the idea that prognostic factors aren’t always causal, they can also be confound-

ing factors for the event they predict. Thus prognostic factors should be taken into account

when planning clinical trials as if they are wildly misbalanced across the arms (or not accounted

for in some other manner), they can cause biases in the results [9]. Sometimes these factors are

so strong that adjusting the results of a clinical trial by the factor can affect, or even reverse

the interpretation of the results [30]. If a prognostic factor is causal, then by directly affect-

ing the factor, it can causally affect the outcome. By discovering new prognostic factors, and

investigating their causality, we can potentially open the door to new directions of attack for

treatments.

Some prognostic factors might only elicit a response for patients on treatment (such as

metabolic effect removing a drug from the patient’s system faster) and give no response to

those without treatment [2]. For example, CYP2C9 and VKORC1 genotypes have an influence

on patients being treated with warfarin, but have no effect on a patient’s risk of stroke without

treatment [31], [32]. This is called a differential response.

A positive result from aBRCA2 test can be an indicator of a risk of breast cancer amongst

women [33]. If two women, one young and one old, both test positive for the gene, the young

woman would likely be advised to have a mastectomy, whereas the older woman would not.

This is because the younger woman is of higher risk of dying from breast cancer (even though

breast cancer has not been diagnosed) than the older woman [31]. This indicates that, although

the prognosis of the two patients would be similar, there are other factors, such as age and risk

of other disease/cause of death, that need to be taken into account. The younger woman would

have a greater decrease in relative risk of death than the older woman.

A prospective study by Fliser at al [34] found that Fibroblast Growth Factor 23 (FGF23)

plasma concentrations was a prognostic factor for the progression of CKD. Haemoglobin A1c,

levels should be routinely measured in patients with diabetes as it is a prognostic factor for vas-

cular events [35]. The Systemic Lupus International Collaborating Clinics (SLICC)/American

College of Rheumatology (ACR) Damage Index (SDI) is used to measure the level of perma-

nent damage in a patient with Systemic Lupus Erythematosus(SLE) [36]. Even though this is
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a derived measure, rather than an explicit one, it is still a prognostic factor for cardiovascular

related deaths [37]. Different ethnic groups can have vastly different prognosis in regards to

cardiovascular disease[38], [39] and so ethnicity (and family history) are prognostic factors for

most clinical events. These are all examples of prognostic factors from a wide variety of clinical

sources.

It is unfortunate that, as discovered by Riley et al, only 35.5% of prognostic factor studies

in paediatric oncology actually reported the size of the effect of the prognostic factor they

reported on. This means that very little information can be drawn from these studies. It is

also important that prognostic factor research papers consider and report on the implications of

the factor they assess such as healthcare costs. These kinds of implications are rarely assessed,

especially when compared to drugs or interventions [9].

1.2.3 Model Development

Prognostic factors can be combined into a prognostic model, which is a much more specific

measurement of the effect of a factor on an outcome [3] and they are deigned to augment the

job of a clinician; and not to completely replace them [12]. Diagnostic prediction model can be

used to indicate whether a patient is likely to need further testing to establish the presence of

a disease [13], [14]. Prognostic prediction models can be used to decide on further treatment

for that patient, whether as a member of a certain risk group, or under a stratified medicine

approach [13], [14]. Outcomes being assessed in a prediction model should be directly relevant

to the patient (such as mortality) or have a direct causal relationship with something that is

[12]. There is a trend of researchers focusing on areas of improvement that are of less significance

to the patient than it is to a physician [40]. For example, older patient’s might prefer to have

an improved quality of life than an increase in life expectancy, and thus models should be

developed to account for this.

Clinical predictive models can take a variety of forms, such as logistic regression, cox mod-

els or some kind of machine learning. Regardless of the specific model type being used, there

are certain universal truths than should be held up during model development which will be

discussed here. The size of the dataset being used is of vital importance as it can combat over-

fitting of the data, but so is choosing which prognostic factors to be included in the final model.

This section will discuss various ideas that researchers need to account for when developing a

model from any source and can be applied to any model type.

By considering a multivariable approach to prediction models (as opposed to a univariable

one), researchers can consider different combinations of prognostic factors, usually referred to

as potential predictors [9]. These can include factors where a direct relationship with the

disease can be clearly seen, such as tumour size in the prediction of cancer mortality [28],

or ones which could have a more general effect on overall health, such as socio-economic and

ethnicity variables [41]. By ignoring any previous assumptions about a correlation between

these potential predictors and the outcome of interest, we can cast a wider net in our analysis

allowing us to catch relationships that might have otherwise been lost [42]. Prediction models

should take into account as many prognostic factors as possible. Demographic data should also

be included as these are often found to be confounding factors, variables such as ethnicity and
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social deprivation risk exacerbating the existing inequality between groups [43].

This section will highlight some of the important factors involved in model development.

Population Size

When developing a predictive model, the size of the dataset being used in an important con-

sideration. A typical “rule of thumb” is to have at least 10 events for every potential predictor

[44], [45], know as the Events-per-Variable (EPV). Recently, this number has been superseded

by a methods to evaluate a specific required sample size [46] based on Events-per-Predictor

(EPP), where categorical variables are transformed into dummy variables prior to calculation

(therefore number of predictors is higher than the number of variables). These predictions use

the R2 value of a model (or the expected R2 value if the model is novel) and are designed to

satisfy specific criteria related to model quality. If there aren’t enough events to satisfy these

criteria, then some potential predictors should be eliminated before any formal analysis takes

place (for example using clinical knowledge) [47]. For the purposes of accurate validation, it

is also recommended that this development dataset contain at least 100 events (regardless of

number of potential predictors) [15], [48], [49]

A systematic review by Counsell et al [50] found that out of eighty-three prognostic models

for acute stroke, less than 50% of them had more than 10 EPV. Having a low EPV can lead to

overfitting of the model which is a concern associated with having a small data set. Overfitting

leads to a worse prediction when the model is used on a new population which essentially makes

the model useless [10]. However, just because a dataset is large does not imply that it will be a

good dataset if the quality of the data is lacking [15]. Having a large amount of data can lead

to predictors being considered statistically significant when in reality they only add a small

amount of information to the model [15]. The size of the effect of a predictor should therefore

be taken into account in the final model and, if beneficial, some predictors can be dropped at

the final stage.

Large datasets can be used for both development and validation if an effective subset is

chosen. This subset should not be random or data driven and should be decided before data

analysis is begun [15]. Randomly splitting a dataset set into a training set (for development)

and a testing set (for internal validation) can result in optimistic results in the validation

process in the testing set. This is due to the random nature of the splitting causing the two

populations to be too exchangeable, which is similar to the logic behind the splitting of patients

in a Randomised Control Trial (RCT). Splitting the population by a specific characteristic

(such as geographic location or time period) can result in a better internal validation [11],

[51]. Derivation of the QRISK2 Score [52] (known later as QRISK2-2008) randomly assigned

two thirds of practices to the derivation dataset and the remainder to the validation dataset.

This model was further externally validated [53], and its most modern incarnation, QRISK3,

performed the external validation in the same paper [5] The Nottingham Prognostic Index

(NPI) was trained on the first 500 patients admitted to Nottingham City Hospital after the

study began [28] and later validated on the next 320 patients to be admitted [54], this validation

was not performed at the same time as the initial development and is thus an external validation.

If a sufficient amount of data is available and it has been taken from multiple sources
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(practices, clinics or studies), then it should be clustered to account for heterogeneity across

sources [55]. It is important that any sources of potential variability are identified (such as

heterogeneity between centres) as this can have an impact on the results of any analysis [1],

[15]. Heterogeneity is particularly high when using multiple countries as a source of data [56] or

if a potential predictor is of a subjective nature, which leads to discrepancies between assessors

[57]. Overlooking of this clustering can lead to incorrect inferences [55]. The generalisability of

the sources of data should also be considered in the development of a model. For example, the

inclusion and exclusion criteria of an RCT can greatly reduce generalisability if used as a data

source [12].

Model Selection

A prediction model researcher needs to select clinically relevant potential predictors for use in

the development of the model [10]. Once chosen, researchers need to be very specific about how

these variables are treated. Any adjustments from the raw data should be reported in detail [13],

[14]. Potential predictors with high levels of missingness should be excludes as this missingness

can introduce bias [10]. One key fact that many experts agree on is that categorisation of

continuous predictors should be avoided [30] as it retains much more predictive information.

The cut-points of these categorisations lead to artificial jumps in the outcome risk [47]. It is also

worth noting that cut-points are often either arbitrarily decided or data-driven with the latter

leading to overfitting [47]. If categorisation is performed, clear rationale should be provided

with an acknowledgement that this will reduce performance [16], [58]. When applying a model

to a new population, extrapolation of a model should be avoided [59] and so to aid in this,

the ranges of continuous variables, and the considered values of categorical variables should be

reported [16]. this is especially true for age. QRISK2 was derived in a population ranging from

35 to 74 years of ages and so should not have been applied to patients out of this range [43].

This ranges was later extended with the updated version [60] and currently can be applied to

patients aged 25-84 [5].

When building a prediction model, we begin with a certain pool of potential predictors and

try to establish which to include in the final model [47]. With k candidate variables, we have

2k possible choices which can get unwieldy even for low values of k, with only 10 predictors (a

very reasonable number), there are over 1,000 combinations. This doesn’t include interactions

or non-linear components which increases this number even more. Therefore, model-building

techniques are important for anybody attempting to build an accurate prediction model. It is

currently undecided what the “best” way to select predictors in a multivariable model is or even

if it exists [47]. One method that researchers use to decide on which predictors to include is to

analyse each potential predictor individually for a correlation with the outcome in a univariable

analysis and keeping those which are considered to have a statistically significant correlation.

The general consensus amongst researchers is that predictors should not be excluded in this way

[10]. Univariable analysis does not account for any dependencies between potential predictors

and so any cross correlations that exists between them can cause a bias in the results since the

‘best’ values are not adjusted by the other values. This can result in variables being included

that are not optimal, for example two variables are that highly correlated with each other may
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be included, when a better model could only have one of them, which also results in a simpler

model. Despite its clear weaknesses, many prognostic studies still use univariable analysis to

build their models [61].

The NPI predictive model includes lymph-node stage, tumour size and pathological grade to

identify patients with a poor prognosis with much better discrimination that would be possible

if only one of these factors were used in isolation [28]. The development of the model began

with nine potential predictors, of which three were considered to be statistically significant

in a Cox model [62] and so were included in the final model which was simplified to I =

0.2× size (in cm) + stage + grade.

Backwards elimination (BE) involves starting with all potential predictors in the model and

removing ones which do not reach a certain level of statistical significant (for example, 5%)

one at a time until all remaining variables are significant. Forward selection begins with no

variables and adds one a a time based on similar criteria. Under either of these methods, a

lower significance level will exclude more variables [10]. Backward elimination of variables is

preferable over forward selection as users are less likely to end up in local minima and is more

likely to produce robust models because it considers the effect of all variables initially and thus

helps to avoid collinearity [63]. A variant of these techniques is to use the Akaike Information

Criteria (AIC) rather than statistical significance. This method avoids the comparison to p-

values and so is often preferable to build robust models [64]. For this method, to establish which

predictors should be removed at each step, the model is re-built with each of the predictors

individually removed, and the AIC is calculated. The model with the lowest AIC is chosen

to be the new model and the process is repeated. This process is repeated until the removal

of a predictor would increase the AIC (i.e. make the model’s fit worse). This same technique

can be applied to a forward selection style model or, if the computing power is available, a

backward-forward elimination technique were predictors are added or removed at each stage.

The advantage of this method is that it avoids local minima better by trying more combinations.

It is also important to assess non-linearity relationships between variables and outcomes to

ensure the relationship is accurately modelled. This can be done using standard transformations

(e.g. logarithms, squaring) or using fractional polynomials [65]. Interactions between terms also

need to be checked for the same reasons, and when interactions are strong, it may be useful

to completely stratify by a factor, rather than including as a covariate in the model. Strong

interactions can be an indicator for a differential response amongst populations and so should

be investigated directly [2]. If a predictor is expensive or invasive, it may be better to include a

less significant predictor which is easier to come by [12]. A limiting factor for some prognostic

models is that the prognostic factors they measure are not readily available or are not used in

routine care [3]. The measurement (or lack thereof) can also be an indicator of patient health

and so researchers need to be aware of these causal links when analysing measurements [66],

this is similar to the idea of data being not missing at random as discussed below.

When dealing with time-to-event data, it is often not the case that the effect of a variable

is constant over time. The assumption of the näıve Cox Model [62] is that the effects don’t

change over time (whether linear or not), however much like alternative methods, such as the

Royston-Parmar model, the Cox model has been extended to take these time dependencies into
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account [67].

QRISK2 checked for non-linearity amongst continuous potential predictors using fractional

polynomials as well as certain interaction terms (in particular interactions with age) [43], [65].

Where an interaction in factors is identified in a study, this can be a useful indicator of a

differential response and should be investigated further [2]. If a predictor is expensive or invasive

to measure, it might be better to include a less significant predictor which is easier to come by

[12]. A limiting factor for some prognostic models is that the prognostic factors they measure

are not readily available or are not used in routine care [3]. Sometimes, the measures may be

partly known and partly unmeasured as is the case with missing data.

Missing Data

During development of any model, researchers should assess the level of missingness within their

data and investigate what kind of missingness is present [68]. Missing data is usually classified

in three ways:

� Missing Completely At Random (MCAR) - Whether a piece of data is missing is

purely by chance and is not linked to any other factor (whether measured or unmeasured).

If data is MCAR, then the distribution of the missing values will be approximately the

same as those that are present.

� Missing At Random (MAR) - There is an underlying link between whether a piece

of data is missing, and other factors, however, we have measurements for all of the other

factors. For example, we measure both X & Y, and we know that Y is more likely to be

missing when X is high. Missing values will thus follow a different distribution pattern

than those that are measured, however we can often estimate this based on the data that

is available.

� Missing Not At Random (MNAR) - There is an underlying link, as with MAR,

however, the variables that cause the missingness are not measured within our data and

thus we cannot easily produce an effective model for the missing data.

If it is believed that the data is MCAR, then the use of complete case analysis (only patients

for whom every item of data is available) can be justified, alternatively if only when a small

percentage of patients (< 5%) do not have all available data, it can also be acceptable [69].

However if this is not the case, it could vastly reduce the power of the results due to the

lower number of patients in the population and if the assumption of MCAR is incorrect, it can

induce a bias in results [10]. Usually, however, data will be missing due to some underlying

relationship. This relationship may be due to measured or unmeasured confounders. If the

confounder is measured, then the data is MAR, if it is unmeasured, then the data is MNAR,

or it may be a combination of the two, in which case it would still be considered MNAR. Using

causal graphs can assist researchers in determining which type is present by investigating the

causal relationships at play [70]. A causal graph, presented as a Directed Acyclic Graph (DAG)

allows researchers to determine which variables might have an effect on the others [71], [72].

These are usually designed with a vast amount of clinical knowledge to influence the choices of



1.2. CLINICAL PREDICTION MODELS 33

Figure 1.2: Examples of Missing Data Causal Mechanisms. The left shows data that is MAR,
missingness is influenced by Y and the right shows data that is MNAR, missingness is influenced
by U , an unmeasured variable

connections. The missingness of a variable can also be included as a node on a causal graph [73].

Each variable is represented by a node, and the direction of causation between two variables is

an arrow. In Figure 1.2, X has a causal effect on Y and U has a causal effect on X, where U

is an unmeasured variable.

Just as with regular causal systems, researchers need to determine what mechanisms could

cause the data to be missing before filling it in with estimates. This can be done through a

method called Multiple Imputation (MI), where the missing data is estimated multiple times

with an element of random-ness each time[74]. Analysis is performed on each of the datasets

in turn, and the results are aggregated [68]. There are many ways to perform MI, the most

commonly used is called MICE, which stands for Multiple Imputation Chained Equations,

where the missing data are initially estimated, and then re-estimated iteratively [31]. If the

causality of missingness is linked to a survival related variable, it is recommended to include

the Nelson-Aalen estimate of survival (see section 1.3.1) [75].

During development of the NPI, only 387 of the 500 patients were included in the study due

to missing data in the other 113 [28], however QRISK2 did use multiple imputation methods to

deal with the missing data [43]. In a review of CKD predictive models by Collins et al[16], out

of eleven models, four conducted complete case analysis only and only two conducted multiple

imputations on the missing data. The remaining five studies did not mention missing data at

all. Small data sets, inappropriate handling of missing data and lack of validation are common

issues in prediction model development [13], [14].

Presentation

It is often difficult to convey information developed through scientific research, particularly to

non-scientists [76]. The field of clinical prediction modelling is no different. To quell these

problems, Bonnett et al [77] created an informative guide to presenting prognostic research to

clinicians.

Once developed, prognostic models can be used to create risk groups for a population. Risk

groups should be defined by clinical knowledge rather than statistical criteria [11]. Grouping
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patients into risk groups is not as accurate as using the specific model to provide an estimated

risk [3], but can often be more easily understood by users or the model. The original develop-

ment paper for NPI,patients were classified into three risk groups, Low (I < 3.4), Medium (3.4

< I < 5.4) and High (I > 5.4). The follow-up paper extended these groups to be: Very Good

(I < 3), Good (3 < I < 4), Moderate (4 < I < 5), Poor(5 < I <6) and Very Poor (I > 6) with

annual percentage mortality rates of 1.5, 3.5, 6, 20 and 32 respectively.

Models can be simplified to provide a point scoring system [31], which often requires the

removal of less significant covariates, and the rounding of model parameter estimates. The

advantage of this is that models can be easily implemented, which can be necessary when time

is of the essence, such as in emergency situations [31], [78] . These simplified models can often

be transformed into a graphical chart to be even more intuitive.

As well as predictive models, more subjective methods of assessing a patients life expectancy

have been proposed, such as Moss et al[79] who suggested the physician asks themselves “Would

I be surprised if this patient dies in the next year?” to identify high mortality amongst dialysis

patients. However these types of prediction should be used with caution as they are dependent

on the physician in question and are thus subjective analyses and if used as a potential predictor

in a model, would be highly susceptible to clustering effects.

A very small number of developed models are currently routinely used in clinical practice[16],

however their use is becoming more common, with more and more healthcare providers recom-

mending their use?[13], [14]. This current lack of clinical implementation may be due to a lack

of standardisation and inadequate reporting. The Transparent Reporting of a multivariable

prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement [13], [14] was de-

veloped in an attempt to combat this inconsistency. It is described as “a guideline specifically

designed for the reporting of studies developing or validating a multivariable prediction model,

whether for diagnostic or prognostic purposes” [13], [14].

As acknowledged in the QRISK2 development paper [43], as new technologies arise (such as

eHealth Records (EHRs)and genomic measurements), it is important to update existing models

with added information. Models should be constantly updated and re-validated as populations

and ambient health effects change over time [3]. Clinicians and researchers should be wary

of models becoming outdated [80]. Healthcare systems and lifestyles change over time, and

so models developed and externally validated in an outdated population will drift [81] and so

should be updated regularly, as with QRISK [43] and it’s follow-up implementations [5], [60] or

automatically with a dynamic model [82].

Prime Examples

Since QRISK2 has been developed in association with Egton Medical Information System

(EMIS), there is the ability to automatically apply a QRISK2 measurement to all patients

in EMIS and thus produce a list ordered by risk score to establish which patients are most

likely to suffer a cardiovascular event in the next 10-years and to which patients resources can

be prioritised [43]. Because of this, during development, it was estimated that QRISK2 would

be generalisable to around 80% of practices in the UK although they acknowledged that the

model should still undergo external validation [43]. Derivation of QRISK2 was not done on
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patients with a history of cardiovascular disease and so it cannot be applied to them. It was

acknowledged in the original QRISK2 development paper that it would require updating, which

now happens annually with more up-to-date data [83], and eventually called for an overhaul

with QRISK3 @ [5].

The systematic review by Counsell et al [50] investigating acute stroke found that only four

of the eighty-three clinical prediction models met their 8 key quality criteria. Models were

assessed on the following:

� Externally Validated

� Adequate inception cohort (i.e. large enough EPV)

� Less than 10% loss to follow-up

� Prospective data collection

� Valid and reliable outcome

� Age as a candidate predictor

� Severity of condition as a candidate predictor

� Use of stepwise regression

None of the four models which satisfied the last seven criteria had been externally validated,

and thus none of the models satisfied all eight criteria. Over 150 different predictors were

considered across the review with most of them only occurring in only one or two of the modes.

Of the 18 variables that were assessed in at least five models, only three were significant in

more than 80% of the relevant models. This demonstrates a lack of cohesion between research

groups with a disregard for previously developed models and a preference for researchers to use

available data sources to develop new models rather than update existing ones [3], [11].

In their systematic review of CPMs in CKD, Collins et al [16] assessed ten study papers. In

this review, they identified 97 potential predictors that were considered across the ten studies,

with 58 of them only being considered in a single study with a median of four potential predictors

per study and only six of the studies justified their choice of potential predictors. Only three

of these studies reported the age range of the patients involved and only two studies assessed

linearity in the predictors. A review of 47 papers by Mallett at al [84] found that the reporting

of prediction model development in cancer was very poor in all measures. Another review of 71

papers by Bouwmeester et al [85] found that even the reporting of prediction model development

in high-impact medical journals was incredibly poor.

1.2.4 Model Validation

Creating a clinically useful model is not as simple as just using some available data to develop a

model, despite what a lot of researchers seem to believe [86]. To quote Steyerberg et al [3]: “To

be useful for clinicians a prognostic model needs to provide validated and accurate predictions

and to improve patient outcomes and cost-effectiveness of care”. This means that, although
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a model might appear to be useful, its effectiveness is only relevant to the population it was

developed in.

There are two main types of validation, internal and external. Internal validation uses the

same dataset as the model was developed in, whereas external validation uses a novel dataset

and is often done as a follow-up project and usually incites a second paper (possibly by a new

team of researchers). There are various methods for internal validation which will be discussed

in this section as well as the advantages that external validations possess over internal ones.

The validity of a model can be measured in various ways which can usually be classified as

either a discriminatory measure, a calibration measure or an overall accuracy measure and all

measurements can be applied to both internal and external datasets.

The external validation of a prognostic model is considered by some to be more important

than its development as it demonstrates the generalisability of the model, without which, a

prediction model is essentially useless [3]. Because of this, the TRIPOD guidelines strongly

recommends researchers to perform an external validation on their models, whether as part of

the initial development paper or a subsequent one [13], [14]. This also means that unvalidated

models should not be used in clinical practice [11], [87]. Despite this, they are often accepted

as they are without being rigorously tested [87]. This means that clinicians should be wary

when using predictions from models that are yet to be externally validated [12], however,

even models which perform moderately under external validation are likely to be better than

a subjective assessment [51]. Unfortunately, external validation studies are scarce, especially

when compared to development studies [11], [88]. Hopefully, the ability to access big datasets

such as EHR or Individual Participant Data (IPD) will allow external validation studies to

blossom in the coming years [15]. For example, the QRESEARCH database, which was used

to create the QRISK and QKIDNEY scores database contains 24 million patients from 1300

general practices[89]. The database contains longitudinal, demographic and mortality data on

the individual patient level as well as many other factors that can be used for clinical prediction

[43].

Discrimination

Discrimination is the ability of the model to separate out patients who are more likely to have

an event from those that are less likely [11], [90], [91].

The D-statistic is a common measure of discrimination for time-to-event data. To find the

D-statistic, we split the validation dataset into two at the median value for the prognostic index.

The D-statistic is then the log hazard ratio between these two groups [15]. A higher D-statistic

indicate greater discrimination [15].

The c-statistic is the probability that if we choose two patients at random, one who had

the outcome and one who did not, the patient who had the event will have been predicted a

higher risk than the patient who did not have the event [15]. When extended to time-to-event

data, this translates to patients with higher scores having the event earlier [31]. For binary

outcomes, it is known as the area under the Receiver Operating Characteristic (ROC) [15], [87].

Higher values of the c-statistics implies better discrimination [43]. The c-statistic is between 0

and 1 with 1 indicating perfect discrimination and 0.5 indicating that the model is no better
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than chance, and therefore non-informative [15]. If in the binary outcome case, a c-statistic

is between 0 and 0.5, the results from the model can be reversed to provide a model with a

1− c c-statistic (e.g. if a model has a c-statistics of 0.25, by reversing the outcome, you create a

model with a theoretical c-statistic of 0.75, however this new model would have to be externally

validated). The c-statistic has been criticised for its inability to detect meaningful differences

[92] and is commonly between 0.6 and 0.85 for prognostic models [12].

The Framingham Score, which is used to predict risk of cardiovascular event, was found to

have a c-statistic of around 0.70 [93]. Fraccaro et al [94] conducted a study using a large EHR

dataset(n = 178, 399) to validate seven models that predict the onset of CKD and found that

all seven had a c-statistics of around 0.9 indicating high levels of discrimination.

Calibration

Calibration is the ability of a model to accurately predict the number of events in a group of

patients (e.g. among patients who are predicted a 10% chance of having an event, 10% of them

should have the event)[11], [90], [91]. The simplest way to assess calibration in a binary case

is through an E/O calculation. The E/O calculation is simply the ratio between the average

Expected probability within a population (or sub-population), and the proportion of patients

who had the event, i.e Expected divided by Observed. In a perfect model, the E/O would be

exactly 1 [15], if the E/O is above 1, then the model is, on average, over-predicting since this

implies that average Expected is greater than the actually Observed events; similarly, if E/O is

less than 1, then our model is under-predicting.

A more nuanced (but näıve) method to assess calibration is to group patients at tenths

of predicted risks by their predicted (or expected) risk and plotting the average expected risk

against the observed outcome within that group (i.e. the percentage of patients in that grouping

who had the event)[11], [15]. A line-of-best-fit can be added to this plot which demonstrates

the calibration of the model.

If the model is perfectly calibrated, then the points should all lie on the direct diagonal

(Observed = Expected), and thus the line of best fit should have an intercept of 0 and a slope

of 1 [15]. These measures are known simply as the Calibration Intercept and the Calibration

Slope. We would usually derive the intercept with the slope fixed at 1, and then fix the intercept

to this value and estimate the slope. In this case, the intercept is usually referred to as the

Calibration-in-the-Large (CITL). If the CITL is below 0, then the model is systematically over-

predicting patient outcomes, if it is above 0, then the model is systematically under-predicting

patient outcomes. The Calibration Slope is below 1, then then some of the predictions are too

extreme, whereas if it is more than 1, the predictions are too modest.

The most widely used method of calibration assessment, takes this idea and rather than

grouping results, we perform a logistic regression on the Observed vs Expected results. It is

important to note that this is applied to the raw data, and so no grouping occurs. This logistic

regression gives us an intercept and slope measurement, which are similarly interpreted, but

are no longer dependent on the size of subgroups we choose to plot [8]. We can also still plot

this as a line-of-best-fit through the grouped calibration plot, however it will now be curved as

a logistic curve, rather than a straight line.
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Further methods to assess calibration are through the use of graphical calibration curves

and the integrated calibration index (ICI) as per the recent work of Austin et al [95], wherein

they apply a hazard regression model (such as an Royston Parmer model as discussed in 1.3.1)

to the predicted probabilities and assess the outcome of the calibration model to establish the

quality of a model graphically.

It should be borne in mind that summarising validation statistics is not always adequate

and that assessing the validation of a model on different subgroups is more beneficial [15]. The

calibration slope of all three versions of QRISK2 were assessed in male/female subgroups and

ranged between 0.92-0.95 for men and women which indicates a very good calibration in both

groups [31]. However, the Framingham Score has an E/O of 1.03 over an entire population, but

in women aged between 40 to 64, it over-predicts and in women aged 70-74, it under-predicts

[31].

Internal Validation

Internal validation used to assess the levels of overfitting, optimism and miscalibration of a

model[13], [14]. Internal Validation is the application of the above methods to a population

derived from the development population, in contrast to External Validation, which uses a

different population. The ability to translate a model into a new population is called its gener-

alisability. Because it uses the development data set, internal validation provides no information

on the generalisability of a model, but merely indicates how well the model is calibrated for

and discriminates in the development population. Although poor internal performance can

imply poor generalisability, good internal performance does not imply good generalisability.

Models can often be overfit, meaning they perform better on the data for which they have been

developed than on external data [87].

Three common methods for performing internal validation are sample splitting, bootstrap-

ping and cross-validation.

Cross-validation involves randomly splitting the dataset into m subsets (e.g. in 10-fold cross-

validation, you have 10 subsets) and then developing a model on m−1 sets and then validating

it on the other set. This is repeated m times, once for each data set, giving m new models

which can be compared to the model produced from the entire dataset.

When bootstrapping, if we have a population of size n, we randomly select (with replace-

ment) n patients from the population and validate on this new population. This is repeated

a prespecified number of times (e.g. 1000 times) to give validation measures. Model optimism

can also be estimated by taking the difference between the performance of the model in the

bootstrapped datasets and the performance in the original development set [87].

The final method used for validation is sample-splitting where model developers randomly

split their population into two subsets, a training set and a testing set, usually in a 2:1 ratio. The

training set is used to develop the actual model which can then be validated against the testing

set. Both cross-validation and bootstrapping provide sets of values for each of the validation

measures we are using which can be aggregated to provide robust estimates (e.g. means and

confidence intervals). These estimates would only be relevant to an external population which

is extremely similar to the development dataset.
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Bootstrapping techniques are considered to be an effective and efficient method for internally

validating a dataset against the current population(as opposed to cross-validation or split-

sample methods) [87]. Bootstrapping provides a nearly unbiased estimate of the effect of the

predictive accuracy of a model [90], it can provide a shrinkage factor to partially re-calibrate

a model to improve performance [87]. However, bootstrapping does not change the underlying

population and so is not quite thorough enough and so external validation is still more important

to the usability of the model than internal validation [96], unless the target population is similar

enough to the development population.

External Validation

It is preferable that a model undergo External Validation before its use in the real world [3].

It is expected that models will perform worse in external validation than internal validation.

However, if the performance is significantly worse, this may render the model essentially useless

[87]. Different settings, both geographic and temporal can cause poor performance in external

validation, for example, models developed in primary care are different from those developed

in secondary care due to the higher rate of more severe conditions in secondary care[97].

When applying a model to a new dataset, it is important to compare the populations of

the derivation dataset and the new dataset to ensure compatibility of the model[87]. This is

done through a comparison of the case mix of a population. The case mix is the defined as the

distribution of all of the potential predictor variables and the outcome variables (including those

which do not make it into the final model) [12]. If these are similar between two populations,

then we can assume the populations as a whole are relatively similar. Models will be more

applicable to a new population if the case mixes of the two populations are similar [12]. Applying

a prediction model to a similar population can improve the chances of the model fitting the

dataset well, but this will reduce the applicability of the model to other populations in the

future and might cause unwarranted confidence in the predictive abilities of the model.

High heterogeneity in the development population is an advantage as low heterogeneity leads

to low discrimination (if patients are similar, their prognosis would also be similar) which can

therefore reduce the generalisability of the model [15]. It would be difficult to ascertain how

often this happens as external validation studies which results in poor performance are rarely

published [98], [99]. If performance is not consistent across populations then users should be

made aware of this and might even be advised to use a different model in certain cases [15].

Validating models developed in one setting in another setting is useful, but is expected to

produce less than ideal validation statistics (discrimination and calibration) [15].

If, during external validation, a model does not reach a high enough standard of calibration,

but has good discriminative ability, it is more useful to recalibrate the model (possibly by

introducing a multiplicative factor) than to develop an entirely new model. By doing this,

we are using the data from both the original development, and the new recalibration dataset,

whereas if we were to abandon the old model, we would only be using a single dataset of data

[100].

The recalibrated model may need to be revalidated in another population [12]. In a regres-

sion based model, recalibration may involve simply adjusting the coefficients of the model to
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achieve a calibration slope closer to 1 [12]. If simple recalibration is not possible, updating the

model in other ways is preferable over creating a new one and there are many techniques which

can combine the original model with the new dataset [101]. However a model is updated, the

new model should always be re-assessed for external validity [12].

Model development often takes precedence over model validation as a primary goal of re-

search and most models don’t make it out of the development stage of research [3]. It would be

more productive for the field of prognostic models (and the specific fields for which the models

are relevant) if there was a concerted effort to validate models more often rather than constantly

developing new ones addressing the same questions [3]. This drive for “novelty” can lead to an

influx of models which do not perform significantly better than each other and, ironically, cause

a mass stagnation [102]. A large exception would be in developing methodologically driven

models, which answer new questions.

Unfortunately, external validation studies will often be abandoned if poor performance is

found, an idea that perforates the entirety of science through the hesitation to publish insignif-

icant findings and a lack of replication studies [98]. Once an external validation study has been

abandoned, researchers will then likely develop an entirely new model from their datasets and

not publish the poor validation results. This means that rather than having a developed and

validated model (which was the original intention of the project), we now have two unvalidated

models for the same (or similar) outcome. This might cause another team to try and validate

the original model (or the new model), leading to the same issue ad infinitum.

Prime Examples

During the original development, Hippisley-Cox et al used sample splitting techniques for the

internal validation [43] and compared the performance of QRISK2 with the modified Framing-

ham Score [103]. For this internal validation, patients were deemed as “High Risk” if they were

predicted a 10-year risk of cardiovascular event of > 20 for each score separately. They then

compared patients who were considered High Risk under one measure and not under the other

to determine how a change in model usage (e.g. from Framingham to QRISK2) would impact

patients. Overall, of the patients in the QRISK2 High Risk set, 23.3 of them had an event

over the 10 year observation period and in the Framingham High Risk set, 16.6 had an event,

indicating an underestimation by the modified Framingham compared to an overestimation by

QRISK2. Amongst the two groups of reclassified patients, those in the QRISK2 High Risk

set had an annual incidence rate of 30.6 and 35.2 for men and women,respectively. This is in

contrast to the Framingham High risk set which had 25.7 and 26.4. This indicates that, at the

20 threshold, QRISK2 identified a more at risk population than Framingham did.

In 2012, Collins et al externally validated three versions of QRISK2 (from 2008, 2010 and

2011)[43], [60]. They used the The Health Improvement Network (THIN) cohort and each

patient was given a predicted risk score based on the three QRISK2 equations as well as a

fourth score based on a modification of the Framingham score [[103]; #97; #98].The regular

Framingham Score calculates a risk for coronary heart attack and a risk for stroke separately, the

modified score sums these values together and applies specific multiplicative effects depending

on patient characteristics. Since the two risk scores are not necessarily independent this can
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result in a higher than 100% risk for some patients. When this analysis was performed, QRISK2-

2011 was the current version of QRISK, it has now been updated to QRISK3 [5]. When the

QRISK2 model was developed, the National Institute for Health and Clinical Excellence (NICE)

recommendations were to use the modified Framingham Score to assess a patient’s coronary

risk, however by the time the external validation was done, NICE recommended that physicians

choose between Framingham and QRISK2 when performing this assessment based on their own

experience with the two models [31].

Multiple imputation was used by Collins et al[31] to deal with missing data for the THIN

cohort[104]. Amongst patients in the THIN cohort, the modified Framingham score over-

predicted for most patients giving a very shallow calibration slope [31]. Most patients QRISK2-

2011 scores were very similar to their QRISK2-2008 and QRISK2-2010 scores with almost all

of them having their updated scores being within 3% of the older versions [31]. However in

the internal validation, the calibration and discrimination were only summarised across all

176 practices which ignored potentially large heterogeneity in the population from practice to

practice [15], [43].

A similar thing occurred in the external validation which ignored between-practice hetero-

geneity (I2 = 80.9)[15], [31]. The external validation paper reported a 95% confidence interval

for the c-statistic of 0.826 to 0.833 using data across 364 practices. However due to this between-

practice heterogeneity, if the process were repeated with a new practice, we would predict it

having a 95% confidence interval of 0.76 to 0.88. The conclusion of the external validation paper

was for NICE to recommend that healthcare professionals abandon the Framingham score in

favour of the QRISK2-2011 model, or at the very least to use a recalibrated version of the Fram-

ingham score[31]. Due to the improved predictive ability of the QRISK and QRISK2 scores

and the results by Collins et al, the recommendation by NICE to use the modified Framingham

Score was withdrawn in 2014 and clinicians are now advised to use the most recent version of

the QRISK score available [31], [83] [5], [105].

For the validation study of NPI [54], it was assessed prospectively in a group of 320 patients

at the same hospital as used for the development [28]. All 707 patients (387 original and 320

new) in the NPI validation study [54] were assessed by the same pathologist and under the

care of the same surgeon as the development study [28]. As well as the three factors in the

NPI model [28], the validation study also collected data on menopause status and Oestrogen

Receptor (ER) as these were close to significant in the original study (Z > 1.5, p < 0.134). It

is demonstrated graphically in the NPI validation study [54] that the risk groups produced in

the original study are viable in the new population. The Cox analysis [62] was also re-run on

the original 387 patients as more follow-up time was now available and the resulting coefficients

were similar to the original study indicating the original model performs well in the extended

dataset. This allowed Todd et al [54] to update the NPI risk groups to include five groups

rather than the original three which allows for better stratification as mentioned earlier.

Fraccaro et al [94] performed an external validation of multiple models designed to predict

the onset of CKD. It was described as “The first comprehensive head-to-head comparison study

of multiple CKD prediction models on a large independent population” [94]. Five of the models

assessed needed to be recalibrated to suit the population of Salford, UK. QKidney [106], which
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was developed in the UK performed the best.

The model developed by Bleeker et al [87] to predict cause in febrile children failed dur-

ing external validation. The ineffectiveness of Bleeker’s model was confirmed by refitting a

multivariable model to the new dataset which provided significantly different estimates for the

coefficients. This was, however, useful as some of the predictors were still considered to have

an effect on the outcome prediction, just at different magnitudes from the original, which im-

plies that they can be useful as potential predictors in future models. These results stand as a

testament to the necessity of external validation [87].

1.2.5 Impact Evaluation

As predictive models are considered to be health technologies, once they been developed and

validated with good performance metrics, their usefulness in the real world will need to be

assessed [3].This is done through an impact study. Although models with near perfect dis-

crimination and calibration may not need an impact study to evaluate their usefulness [12].

From a health economics standpoint, it is useless to implement a model which costs more for

the healthcare service than the current standard unless the improvements to population health

are substantial. Impact studies should always be performed before a model gets used in clin-

ical practice as they assess a models robustness and generalisability more thoroughly than an

external validation [15], [87].

The impact of a prognostic model can be assessed in a manner similar to that of an RCT

where some patients are provided treatment based on decisions made from a prognostic model

and the control arm receives the best alternative treatment [3], [12]. Impact studies can be

performed as a before and after comparison which may be simpler to implement, but can be

sensitive to ambient changes in the clinical environment [107], [108].

Randomisation in an impact trial can happen at the patient, doctor or centre level. Higher

levels (centres) are preferable over lower ones (patients) as this lowers the likelihood of cross

contamination of the intervention (such as a single doctor treating patients on both arms of a

study, or two doctors in the same centre discussing results)[109]. The intervention of an impact

study can be an assistive or a decisive approach [12]. Assistive approaches provide the clinician

with the patients risk score as indicated by the model and allows the clinician to use his or

her own judgment on how to proceed with treatment. Decisive approaches explicitly tells the

clinician what decision should be made based on the model (e.g. whether or not to prescribe

statins). The STarTBack trial [110] was an impact study which compared the use of stratified

care with traditional best care on patients with lower back pain. The results showed that the

stratified care reduced the risk of disability and lowered the cost of care compared to the control

arm. The NPI is widely cited and used, however its impact has hardly been assessed [3], [28].

1.3 Competing Risks & Multi-State Models

Many diseases are measured in stages of progression or as types or variants. Often, patients

can switch from one of these stages to another whilst they are being studied. If being in a

different stage of the disease is believed to affect the way that the patient’s condition behaves
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then it is important to account for this when modelling a disease. The simplest way is to have

the disease stage/type as a covariate and ensure that it is updated accurately. However, if it is

believed that a disease behaves wildly differently when at different stages, then this might not

be feasible, especially if the stage can interact with other covariates. The solution to this is to

use MSMs to map patients progression through the different stages of the disease [111], where

each stage is modelled as a state in the MSM.

1.3.1 Traditional Survival Analysis

From survival analysis, a hazard function is a measure of the intensity of moving from one state

to another (whether that is from alive to death, functioning to non-functioning or something

more complicated as in an MSM). If we have T be the random variable defining the time of the

event (or transition), then a hazard function is usually defined as [112], [113]

λ(t) = − d

dt
logS(t) = lim

∆t→0

Prob (T ≤ t+∆T |T ≥ t)

∆t

where S is the survival function, or cumulative probability of having remained in the current

state from time t = 0. An alternative way of writing this is

S(t) = exp

(
−
∫ t

0

λ(u) du

)
We can simplify this equation to S(t) = exp (Λ(t)) if we defined the cumulative hazard function,

Λ(t), to be

Λ(t) =

∫ t

0

λ(u) du

Two other useful definitions from survival analysis are the probability density function, f , and

the cumulative distribution function, F which are much more familiar to statisticians and are

related to the previously defined functions by:

f(t) =
λ(t)

S(t)
F (t) = 1− S(t)

A function that is useful in estimating the survival of a population is the Kaplan-Meier estimate,

it is a non-parametrics, empirical estimate of survival and is defined as:

Ŝ(t) =
∏

j: tj≤t

(
1− dj

nj

)

In this definition, tj is the jth event time, nj is the number of patients still at risk at time tj

(i.e those event-free at time this time) and dj is the number of patients who had an event at

time tj . Kaplan-Meier estimates assume independence between the event we are modelling and

censoring [113]. See figure 1.3 for a typical K-M plot for two populations:
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Figure 1.3: Example plot of Kaplan-Meier estimator for two populations

There are many different kinds of statistical models that can be used to produce clinical

prediction models based on the type of data and the shape of the desired output. Many models

rely on regression techniques to produce their estimates and these can usually be rearranged

into a linear relations of the form:

Y = β0 + β1Z1 + β2Z2 + ...+ βmZm = βTZ+ ϵ

where the βs are the coefficients found from the data and the Zs are the covariates of

predictors. The first coefficient, β0 is known as the intercept term and gives an idea of the

average amongst the population (if the other covariates have been standardised). The final

term here, ϵ is the error term or the residual, when measured across every patient, this error

term should follow a Normal distribution and have its standard deviation be as small as possible,

ϵ ∼ N(0, σ). The ϵ term will be omitted from further equations, unless required.

The predictors above do not have to be directly from the raw data and can be derived in some

way from the data (including via other regression models), and the predicted value here can be

transformed by a link functions, usually called g to the actual expected outcome. By choosing

the correct transformations and link functions and repeatedly applying these regression, we

can form a simple machine learning model [114]. For example, a logistic model uses the logit

function as a link function as seen below:

logit(p|Z) = log

(
p

1− p

)
= β0 + β1Z1 + β2Z2 + ...+ βmZm

The logit function can then be undone to provide a probability that an outcome occurs, such

as the probability of a specific prognosis.
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Within the realm of survival analysis, we have an extra dimension to include in our calcu-

lations, time, and this includes the fact that some patients are not observed after certain dates

(i.e censoring). To combat this additional dimension, the most common form of regression in

survival analysis, the Cox model [62] avoids estimating the intercept altogether and produces

proportional hazard estimates for each covariate. Intercept values (i.e. the baseline hazard

function) can be estimated for the Cox model using various techniques such as the Breslow es-

timator [115]. The predicted values from the model are positioned within the hazard function,

described above and give an idea of how a covariate increases or decreases the hazard of an

event:

λ(t|Z) = λ0(t) exp (β1Z1 + β2Z2 + ...+ βmZm)

Notice that the intercept has, essentially been swallowed up by the λ0(t) term, which is known

as the baseline hazard. This baseline hazard function is not estimated within the Cox modelling

regression method and is assumed to be the same for all patients (subject to stratification).

This means that estimated values are relative to one another and therefore absolute estimates

are not possible with the Cox Model. These relative estimates, written in their exponentiated

form, exp(βjZj) are known as hazard ratios and are used extensively in clinical trials to compare

two groups [116].

To provide any absolute estimates of hazard functions, we need to extend the Cox model

and a reliable method to do this is with the Royston-Parmar Regression technique [67]. This

method estimates the hazard ratios in much the same way as the Cox model does, but in the

same process, also uses restricted cubic splines on x = log(t) [117] to estimate the log of the

cumulative baseline hazard function, or the log-log of the baseline Survival function;

log(− log(S0(t|Z))) = log(Λ0(t|Z)) = γ0 + γ1x+ γ2ν1(x) + ...+ γm+1νm(x)

where the pieces of the the cubic spline are defined as

νj(x) = (x− kj)
3
+ − ηj(x− kmin)

3
+ − (1− ηj)(x− kmax)

3
+

Each of the kj are the knots used to define the ranges where each cubic piece operates, the

models are designed to be cubic between each of these knots and the ηj are defined to restrict

the function to be linear outside of the range (below the first knot and above the final knot).

ηj =
kmax − kj
kmax − kmin

We can also deviate from the proportional hazard requirement by defining the γ terms to be

dependent on covariates; this is, of course, done via a linear model and demonstrates an extra

layer of regression required to form such models:

γj(Z) = γj1Z1 + γj2Z2 + ...+ γjmZm
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1.3.2 Competing Risks

A Competing Risk (CR) can be thought of simply as survival analysis where a cause of death,

D ∈ 1, ...,K is also observed [113]. When patients are recovering from a disease, more than

one event can play a role, but often one event is of more interest than the other [113]. This

competing event can also prevent the event-of-interest from occurring. For example, if we are

modelling discharge from hospital after surgery (event-of-interest), patients can also die whilst

in hospital (competing event) which prevents the former from happening.

Figure 1.4: Examples of a simple Competing Risks Scenario

Depending on clinical context, non-administrative right censoring can be modelled as a

competing risk [118] because censoring times are not always independent of event times [113].

If healthier patients are less likely to use medical services, then they are more likely to be lost

to follow-up meaning a negative correlation with event time and vice versa if a less healthy

person is more likely to leave a study (e.g. they become too ill to continue in the study).

If the competing event and event-of-interest are not independent, then this can cause bias

in the Kaplan-Meier estimator [113]. Issues can arise with the naive Kaplan-Meier approach

in CR, wherein the probability of having the events sum to more than 100%, even though the

events can not occur together [113].

We can adjust the previous definition for a hazard function to become a cause-specific hazard

function as:

λk(t) lim
∆t→0

Prob (T ≤ t+∆T, D = k |T ≥ t)

∆t

where k is the event we are assessing. Cause specific hazard (CSH) estimates may be found by

treating the data as simple survival data and the competing events as a censoring event [118].

By adding all of the individual CSH, we get a total hazard across all competing events. If the

events were all different causes of death, for example, this would be the total hazard of death,

regardless of cause.

In order to translate these into an event-free Survival probability (or marginal survival

probability), we perform the same calculation as above, using this total hazard

S(t) = Prob(T > t) = exp

−

∫
t

0

K∑
k=1

λk(u) du


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In traditional survival analysis, the probability of having the event, is simply F (t) = 1− S(t),

however since failures can occur from different events, we now have to take this into account

by utilising an event specific failure:

Fk(t) =

∫ t

0

S(u)λk(u) du

This is called the Cumulative Incidence Function (CIF). This can be broken down as the

probability of surviving until time u, S(u) and then the instantaneous probability of the event

occurring at that time, λk(u). We integrate this over all the possible event times on the range

(0, t]. The CIF for a transition depends on all the other transition intensities through the S(u)

component of the integrand [118].

Ordinarily, a cdf, F , grows from 0 to 1 as the probability of having had an event increases over

time. This assumes that eventually all patients will have the event (and thus limt→∞ F (t) = 1).

However, when dealing with the CIF, patients who have one event are precluded from having

any other event and therefore the assumption that all patients will have an event-of-interest

does not hold. For this reason, the CIF is bounded within the range [0, 1) and never reaches 1

and is thus known as a sub distribution [31].

Where we defined the hazard function earlier as the derivative of the log survival, we can

define the subdistribution hazard similarly:

λ(t) = − d

dt
log (1− F (t)) hk(t) = − d

dt
log (1− Fk(t))

Fine & Gray [119] developed a method analogous to the Cox proportional hazards model

for these subdistributions. The Proportional Subdistribution Hazards method (PSH) calculates

the hazard ratios for events occurring based on the CIF, Fk [31], and subdistribution hazard

where the Cox model uses the cumulative distribution function, F [31] and the cause-specific

hazard.

h̃k(t|Z) = h̃k0(t) exp
(
βT
kZ
)

In this context, patients who have the competing event remain in the risk set for having the

event-of-interest (and can be considered to be event-free “forever”), whereas in the CSH, they

do not remain in the risk set.

An example of using a CR model in the real world involves mortality after an Acute Myocar-

dial Infarction(AMI) [118]. Patients could either have a sudden Cardiovascular Disease (CVD)

related death, a non-sudden CVD related death or a non-CVD related death (i.e. death from

other causes). Using age and gender as covariates for a simple CSH Cox model [120], HRs can

were calculated for each cause of death distinctly, and for an All-Cause hazard.

Having a more prognostic attitude towards medicine, as opposed to a diagnostic one, could

help to reduce wasted expenditure under a CR scenario. For example, a patient with high

blood pressure automatically has a lower risk of death from prostate cancer (because they are

more likely to die from CVD) than a similar patient with normal blood pressure and so the

first patient would gain less from a prostatectomy [33].
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1.3.3 Multi-State Models

Just as CRs are an extension of survival analysis, Multi-State Models are an extension of CRs

[113]. However, not all MSMs contain CRs. Figure 1.5 shows two examples of MSM systems,

where the first models a progressive disease, which does not contain any CRs, and the second

is known as an Illness-Death model and is one of the simplest MSMs.

Figure 1.5: Two examples of Multi-State Models with three states.

An absorbing state is a state which has no transitions coming out of it (such as death or

discharge), a state which is not absorbing is called transient [112]. States where a patient can

begin are call initial states. Not all transient states are initial states, but all initial states must

be are transient.

A CRs scenario is therefore a type of MSM where there is only a single initial state and

multiple absorbing states which a patient can transition into [112], [118]. In a traditional

survival analysis study, we may model patients moving to a different state as merely updating a

covariate associated with that patient. However, this assumes that the underlying mechanism

causing patients to move on is the same (e.g. in a Cox Model, the baseline hazard is the same).

In a complex system, this is often not the case. MSMs can be used to model this scenario if we

believe that the different states of the condition have an inconsistent effect on the outcome.

A multistate process is defined as a mapping X : T → K with T = (0,∞) is the time and

a finite state space K = {1, ..., k}. The transition probabilities which we defined earlier, for

transitioning to death from different causes, can now be extended to depend on the state that

they are leaving, and the time we are estimating from.

Pij(s, t) = P (X(t) = j|X(s) = i, Ht)

where Ht is the history of X for a given patient. We have to introduce the starting time,

s in the above, as patients will not always enter a state at time t = 0. We could adopt this

notation for CRs with:

Fk(t) = P1k(0, t) P1k(s, t) =
Fk(t)

Fk(s)

This means we can also define the transition specific hazard function:

λij(t) = lim
∆t→0

Pij(t, t+∆t)

∆t

which has the same meaning as with CRs. It is the hazard of moving between states at time

(i.e. from state i to j).
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With this definition, we can give a mathematical definition of an absorbing state. h ∈ K

is an absorbing state iff λhj(t) = 0 ∀t ∈ (0,∞), j ∈ K. Even in transient states, some

transition intensities will be 0 for all t, implying that a transition can never occur, such as in

the right hand model of Figure 1.5. If all transitions in a model are one-way, then it is called a

unidirectional model, if one or more can be reversed, then it is called a reversible MSM [112].

Figure 1.6 shows a reversible Illness-Death model, similar to the one in Figure 1.5, but patients

can move from Illness to Healthy.

Figure 1.6: Example of an MSM with a reversible transition

Multi-state models can be split into two approaches. The non-homogeneous Markov ap-

proach assumes that t = 0 is when the patient enters the study and that time is tracked

continuously across transitions. The Semi-Markov approach resets the time to t = 0 each time

a new state is entered [55]. Clinical knowledge should be used to decide which method to use,

and if a state is considered to be medically transformative (such as a transplant), then the

Semi-Markov approach can be justified [121], however it may be useful to include a covariate to

indicate how long a patient has been in other states. The Markov and Semi-Markov approaches

are commonly referred to as “clock-forward” and “clock-reset” approaches respectively.

Although SLICC Damage Index (SDI) [122] could be considered to be a continuous or

categorical variable, Bruce at al [37] used the fact that SDI is permanently increasing to model

an MSM with the integer-valued SDI as an indicator of a patients state (grouping all patients

with SDI > 5 into a single state for simplicity). see Figure 1.7 Since SDI is a representation

of permanent damage, this model is unidirectional MSM. Their model used Cox regression to

model a distinct hazard function for each of their transitions.

Figure 1.7: The progressive SDI model used by Bruce et al, 2015

It must be noted that it is not always possible to know the exact time of a transition

leading to interval censoring (e.g. patient is in state A at t = 10 but is in state B at t =
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20)[123]. This model developed by Bruce at al assumed that patients can transition from the

state SDI = n to the state SDI = n + 1,but there is no mention of patients being able to skip

over states (e.g. straight from SDI = 1 to SDI = 3) which could potentially happen often where

a patient is only assessed once a year. Without these extra transitions, there would need to be

an assumption that patients who appear to skip out steps actually move through them between

check ups which implies some sort of interval censoring[37].

Most MSM models can be broken down into a collection of Illness-Death models (with ad-

ditional CRs depending on the shape of the model), which is why it is so common in examples

[112]. In a non-reversible Illness-Death Model, we can define the transition probabilities de-

pending on the three transition intensities, λij [112], [113]. For these derivations, we will use

the convention as in the matrix above, where Alive is state 1, Illness is state 2 and Death is

state 3.

P11(s, t) = exp

(
−
∫ t

s

λ12(u) + λ13(u) du

)
P22(s, t) = exp

(
−
∫ t

s

λ23(u) du

)
P12(s, t) =

∫ t

s

P11(s, u)λ12(u)P22(u, t) du

P23(s, t) =

∫ t

s

P22(s, u)λ23(u) du

P 1
13(s, t) =

∫ t

s

P11(s, u)λ13(u) du

P 2
13(s, t) =

∫ t

s

P12(s, u)P23(u, t) du

P13(s, t) = P 1
13(s, t) + P 2

13(s, t)

Notice that in the model, there are two distinct pathways that a patient can travel to move

from Alive to Death. We can track these mathematically, where P 1
13 estimates patients going

directly to Death, and P 2
13 estimates patients going via Illness. We can then combine them into

a single probability.

Similar to an earlier example, in P12, we have the probability of staying in the Healthy state

from s to u, multiplied by the hazard of transitioning at time u and then by the probability of

staying in the Illness state, from u to t integrated over all of u between s and t, this is quite an

intuitive definition.

If we include reversibility in an Illness-Death model, we need to take this into account

as a Competing Risk when a patient is in the Illness state. We would need to include the

probability of moving from Illness to Healthy and adjust the definition of staying in the Illness

state. However, the above formula only includes the probability of a patient remaining in a

state between given time points, and does not account for patients returning to that state

between time s and t. This leads to an iterative definition, where n is the number of times a
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patient has left the former state:

P 0
11(s, t) = exp

(
−
∫ t

s

λ12(u) + λ13(u) du

)
P 0
22(s, t) = exp

(
−
∫ t

s

λ23(u) + λ32(u) du

)
P 0
12(s, t) =

∫ t

s

P 0
11(s, u)λ12(u)P

0
22(u, t) du

P 0
21(s, t) =

∫ t

s

P 0
22(s, u)λ21(u)P

0
11(u, t) du

Pn
12(s, t) =

∫ t

s

Pn
11(s, u)λ12(u)P

0
22(u, t) du

Pn
21(s, t) =

∫ t

s

Pn
22(s, u)λ21(u)P

0
11(u, t) du

Pn
11(s, t) =

∫ t

s

Pn−1
12 (s, u)P 1

21(u, t) du

Pn
22(s, t) =

∫ t

s

Pn−1
21 (s, u)P 1

12(u, t) du

P11(s, t) =

∞∑
n=1

Pn
11(s, t)

P22(s, t) =

∞∑
n=1

Pn
22(s, t)

P12(s, t) =

∞∑
n=1

Pn
12(s, t)

P21(s, t) =

∞∑
n=1

Pn
21(s, t)

For convenience, the superscripts on the right of the equations always add to the superscripts

on the left. This iterative definition and infinite summation is why reversible MSMs become

much more complicated than a simple mono-directional MSM.

Another common model involves having two conditions, A & B, which may or may not be

independent [112]. A simple way to model these two stages is as four states, shown on the

left of Figure 1.8, where once both conditions are established, they are in State “A & B.” If,

however, the order of developing A and B is important, then the state “A & B” can be split

into two states: “A then B” and “B then A,” as in the right model of 1.8
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Figure 1.8: Two constructions of an A & B Model

Liquet et al [55] developed a Multi-State frailty model of patients developing a Ventilator-

Associated Pneumonia infection (VAP), being discharged or dying. They found that there

was significant heterogeneity in the development of VAP and in discharge, but not significant

heterogeneity in dying with or without VAP and discharge with VAP. This demonstrates that

clustering can occur in some transitions but not in others and provides evidence that frailty

should also be included in a large scale study. This study concluded that VAP is frequent in

Intensive Care Units (ICUs) and is associated with an increase in ICU mortality, length of stay

and cost [55].

Anwar and Mahmoud [111] developed a stochastic model which treated CKD progression

as a series of states in an MSM with three state being dependent on the Glomerular Filtration

Rate (GFR) of the kidneys (mild, moderate and severe reduction) and End-Stage Renal Disease

(ESRD) being the fourth stage and death being the final, absorbing state. They used this model

to estimate survival probability, see Figure 1.9. Their model combined the hazards from the

“non-dead” states into a larger stochastic hazard to predict patient transitions from Alive to

Death.

CRs and MSMs are versatile mechanics which can be used to great advantage of researchers

if done properly. By mapping the journey through the system of every patient in a population,

detailed predictions can be made for future patients. By using modelling methods such as

the R-P method which provides absolute probabilities, clinicians can provide patients with the

probability of them having a particular event, as well as the probability of them being in a

given state at a certain time in the future. MSMs can become very complicated very quickly,

and even something as simple as adding reversibility to a transition increases the convolutions

that can occur.
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Figure 1.9: The progressive CKD model used by Anwar et al, 2014

1.4 Chronic Kidney Disease

Chronic diseases, especially non-communicable ones, have now become the major cause of

morbidity and mortality around the world [124]. In particular, Chronic Kidney Disease (CKD)

is a global health concern [16] and is thus a major burden on healthcare utilisation worldwide

[125]. This is unsurprising given that, in the UK, 7,411 patients commenced RRT in 2004 alone

which equates to a rate of 115 per million people [126]. Part of this prevalence is believed

to be increasing due to increased incidences of diabetes [16] which contribute 26.9% of new

RRT diagnosis in the UK in 2014 [126]. In 2013, the NHS spent 2% of its budget on kidney

replacement therapy [16], [127] and in 2008, 5.9% of the Medicare expenditure was spent on

managing patients with End-Stage Renal Disease (ESRD) [16], [128]. The progression of CKD

amongst sufferers is believed to be homogeneous with respect to time [111], meaning that it

increases continuously at steady rate.

CKD treatment typically consists of either palliative care or a type of RRT. In the real

world, it is difficult to make decisions on RRT for patients suffering from ESRD since, as with

any disease, there is a lot of variability in the individuals [40]. This variability is particularly

prominent amongst older patients, which leads to variation in treatment methods from different

physicians [129]. Because of this, it is important to identify, as early as possible, patients who

are likely to progress from CKD to ESRD [16]. Tamura et al [40] provides a framework for

deciding which RRT patients should receive based on three factors: life expectancy, risks and

benefits of competing treatment strategies and patient preference. This framework does not

require precision, but rather a general idea of whether a patient is above or below average

(median). These three factors allows for three key choices to be made for the patient: choice

of dialysis modality (i.e. HD vs PD), choice of vascular access for HD, and whether or not to

be referred for kidney transplantation.

Transferring from one dialysis modality to the other initially increases burden on patients

and, for the first few weeks, has a higher mortality rate [130]. Before beginning HD, patients
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and physicians must decide on the vascular access method which is basically how the HD will be

administered. There are three main methods of vascular access: CVCs, AVFs and AVGs [40].

In the US, 80% of patients who are given HD, begin it with a CVC [131]. CVCs are usually

used as a temporary placement until a more permanent fistula or graft can be given to the

patient [40]. However, it can take time for AVF and AVG patency to occur and so their effects

are not immediate. Current guidelines recommend using AVFs over AVGs as the method of

permanent access which are both preferred over the temporary access provided by CVC, unless

HD is predicted to be only a short-term treatment (i.e. because of expected kidney transplant or

extremely high expected mortality) [132]. It is clear that these mortality estimates of patients

are currently wildly incorrect as it has been found that two-thirds of deceased patients who had

undergone AVF placement had died before it was even used [133].

It is suggested that PD gives an early benefit over HD using CVC due to the high infection

rates caused by CVC. However, this benefit might be balanced out by the higher risk of modality

failure and a common need to transfer to HD later, which merely pushes the higher CVC risk

back [134]. In recent years, It has been observed that survival amongst patients given PD has

increased to levels similar to HD [135], although this is likely biased due to the difference in

patient’s selected for the each modality [40].

Kidney Transplants are often hard to come by as there can be difficulties in finding compat-

ible donors [136]. Living donors provide a better prognosis for recipients than deceased ones,

but even deceased-donor transplantation implies a 48-82% decrease in mortality compared to

remaining on dialysis [137], [138]. For each patient, donors can be classified as being from a

Standard Criteria Donor (SCD) or an Expanded Criteria Donor (ECD) list [139]. An ECD is,

as the name implies, a much broader list of patients than appear on an SCD. Using an ECD

comes with a shorter time on the waiting list for a transplant, but a higher risk of allograft loss

and so a decision must be made about a patient of whether they are at higher risk of mortality

if they remain on the waiting list for a longer period of time, or whether the risk of an unsuc-

cessful transplant is worth it [40]. As with transferring between dialysis modalities, there is

an extremely high increase in risk for the first two weeks after transplantation (compared with

staying on dialysis), this risk reduces until 7-8 months after transplantation, where the cumula-

tive mortality of both options becomes equivalent, and afterwards is lower for the transplanted

patients [40]. It is worth noting that there is no upper age limit on kidney transplantation [40]

and it has actually been found that kidney transplantation was cost-effective amongst patients

over 6530. This makes sense as, for patient’s over 65, the average time spent on the waiting list

for a new kidney is 7-8 months [40].

In the UK in 2014, 71.8% of RRT patients had begun with HD, 20.0% were given PD, 8.2%

were lined up to receive a kidney transplant [126]. Of the patients who were initially assigned to

received HD in 2009, 54.4% had died by 2014 and 34.4% of those still alive had been transferred

to a different modality, PD had a lower mortality rate, 35.1%, but a higher transfer rate, 75.3%

[126]. Although these numbers do not account for the differences between the patients these

two modalities were given to, it shows that there are major differences between modalities and

that transitioning between treatments is common. These differences between modalities and the

prevalence of transitions line up quite well with the idea of using an MSM as a representation
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for this process.

1.5 Conclusion

This chapter has introduced the key concepts that will be built upon through this thesis. The

main three topics that have been discussed are Clinical Prediction Models (CPMs), Multi-State

Models (MSMs) and Chronic Kidney Disease (CKD).

It is clear from this work that CPMs require many steps to justify and that researchers need

to focus more on the validation of existing models when they are available, and less on the

development of novel ones. This, of course, is a problem that perpetuates within many of the

modern scientific fields [98].

MSMs provide a robust and mathematical way to analyse movement through complicated

clinical pathways. They improve upon the methods developed within survival analysis by

including the addition of transient states and multiple end-points. This can allow researchers

to visualise a more in-depth perspective on patients journeys through their illnesses.

The application of MSMs to CPMs is not common with the literature as it currently stands.

While each of these two fields have been studied in depth in their own right, the overlap and

intersection remains relatively desolate. It is clear that there are many gaps in this area of

literature and this thesis aims to address several of them.

As discussed in this chapter, when creating a clinical prediction model, there are various

stages that a model must go through before it is useable to demonstrate it’s clinical utility.

Two key steps in this process are the development and validation step. While there is a wealth

of advice on developing and validating clinical prediction models in general, as well as more

specific work in particular models, there is very little on how to develop and validate a multi-

state clinical prediction model.

For example, there are currently no established and standardised methods for assessing

the quality of an MSCPM at the point of validation; whereas there are multiple metrics to

establish many measurements for other specific CPM techniques. This idea is explored further

in Chapters 3 and 4, wherein our aim is to build from commonly used metrics in traditional

survival analysis based models to design collapsible extensions.

Further to this, the specific application of multi-state models to chronic kidney disease is

not common, and the currently existing models were developed with sub-optimal techniques

such as the use of multinomial analysis rather than a structured multi-state model (such as the

model developed by Grams et al [140]) or the use of arbitrary cut-off points to turn a continuous

variable into a series of states (such as the model developed by Begun et al [141]). These models

are discussed further in Chapter 5, where we develop our own MSCPM, which utilises much

more optimal techniques for MSCPM development and validation.
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Abstract

Background

Analysis of competing risks is commonly achieved through a cause specific or a subdistribution

framework using Cox or Fine & Gray models, respectively. The estimation of treatment effects

in observational data is prone to unmeasured confounding which causes bias. There has been

limited research into such biases in a competing risks framework.

Methods

We designed simulations to examine bias in the estimated treatment effect under Cox and

Fine & Gray models with unmeasured confounding present. We varied the strength of the

unmeasured confounding (i.e. the unmeasured variable’s effect on the probability of treatment

and both outcome events) in different scenarios.
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Results

In both the Cox and Fine & Gray models, correlation between the unmeasured confounder

and the probability of treatment created biases in the same direction (upward/downward) as

the effect of the unmeasured confounder on the event-of-interest. The association between

correlation and bias is reversed if the unmeasured confounder affects the competing event.

These effects are reversed for the bias on the treatment effect of the competing event and are

amplified when there are uneven treatment arms.

Conclusion

The effect of unmeasured confounding on an event-of-interest or a competing event should not be

overlooked in observational studies as strong correlations can lead to bias in treatment effect es-

timates and therefore cause inaccurate results to lead to false conclusions. This is true for cause

specific perspective, but more so for a subdistribution perspective. This can have ramifications

if real-world treatment decisions rely on conclusions from these biased results. Graphical visual-

isation to aid in understanding the systems involved and potential confounders/events leading

to sensitivity analyses that assumes unmeasured confounders exists should be performed to

assess the robustness of results.

Supplementary Material

Supplementary Material is available in Appendices A & B.

2.1 Background

Well-designed observation studies permit researchers to assess treatment effects when randomi-

sation is not feasible. This may be due to cost, suspected non-equipoise treatments or any

number of other reasons [142]. While observational studies minimise these issues by being

cheaper to run and avoiding randomisation (which, although unknown at the time, may pre-

scribe patients to worse treatments), they are potentially subject to issues such as unmeasured

confounding and increased possibility of competing risks (where multiple clinically relevant

events occur). Although these issues can arise in any study, Randomised Controlled Trials

(RCTs) attempt to mitigate these effects by using randomisation of treatment and strict inclu-

sion/exclusion criteria. However, the estimated treatment effects from RCTs are of potentially

limited generalisability, accessibility and implementability [143].

A confounder is a variable that is a common cause of both treatment and outcome. For

example, a patient with a high Body Mass Index (BMI) is more likely to be prescribed statins

[5], but are also more likely to suffer a cardiovascular event. These treatment decisions can

be affected by variables that are not routinely collected (such as childhood socio-economic

status or the severity of a comorbidity [144]. Therefore, if these variables are omitted form

(or unavailable for) the analysis of treatment effects in observational studies, then they can

bias inferences [145]. As well as having a direct effect on the event-of-interest, confounders

(along with other covariates) can also have further reaching effects on a patient’s health by
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changing the chances of having a competing event. Patients who are more likely to have a

competing event are less likely to have an event-of-interest, which can affect inferences from

studies ignoring the competing event. In the above BMI example, a high BMI can also increase

a patient’s likelihood of developing (and thus dying from) cancer [146].

The issue of confounding in observational studies has been researched previously [147]–[148],

where it has been consistently shown that unmeasured confounding is likely to occur within

these natural datasets and that there is poor reporting of this, even after the introduction of

the The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)

Guidelines [149], [150]. Hence, it is widely recognised that sensitivity analyses are vital within

the observational setting [151]. However these previous studies do not extend this work into a

competing risk setting, meaning research in this space is lacking [152], particularly where the

presence of a competing event can affect the rate of occurrence of the event-of-interest. These

issues will commonly occur in elderly and comorbid patients where treatment decisions are

more complex. As the elderly population grows, the clinical community needs to understand

the optimal way to treat patients with complex conditions; here, causal relationships between

treatment and outcome need to account for competing events appropriately.

The most common way of analysing data that contains competing events is using a cause

specific perspective, as in the Cox methodology [153], where competing events are considered

as censoring events and analysis focuses solely on the event-of-interest. The alternative is to

assume a subdistributional perspective, as in the Fine & Gray methodology [119], where patients

who have competing events remain in the risk set forever.

The aim of this paper is to study the bias induced by the presence of unmeasured con-

founding on treatment effect estimates in the competing risks framework. We investigated how

unmeasured confounding affects the apparent effect of treatment under the Fine & Gray and

the Cox methodologies and how these estimates differ from their true value. To accomplish

this, we used simulations to generate synthetic time-to-event-data and then model under both

perspectives. Both the Cox and Fine & Gray models provide hazard ratios to describe the

effects of a covariate. A binary covariate will represent a treatment and the coefficients found

by the model will be the estimate of interest.

2.2 Methods

We considered a simulation scenario in which our population can experience two events; one of

which is the event-of-interest (Event 1), the other is a competing event (Event 2). We model

a single unmeasured confounding covariate, U ∼ N(0, 1) and a binary treatment indicator, Z.

We varied how much U and Z affect the probability distribution of the two events as well as how

they are correlated. For example, Z could represent whether a patient is prescribed statins, U

could be their BMI, the event-of-interest could be cardiovascular disease related mortality and

a competing event could be cancer-related mortality. We followed best practice for conducting

and reporting simulations studies [154].

The data-generating mechanism defined two cause-specific hazard functions (one for each

event), where the baseline hazard for event 1 was k times that of event 2, see Fig. 2.1. We
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Figure 2.1: Transition State Diagram showing potential patient pathways

assumed a baseline hazard that was either constant (exponential distributed failure times), lin-

early increasing (Weibull distributed failure times) or biologically plausible [155]. The hazards

used were thus:

λ1(t|U,Z) = keβ1U+γ1Zλ0(t) (2.1)

λ2(t|U,Z) = keβ2U+γ2Zλ0(t) (2.2)

λ0(t)


1 Exponential

2t Weibull

exp
(
−18 + 7.3t− 11.5t0.5 log(t) + 9.5t0.5

)
Plausible

(2.3)

In the above equations, β and γ are the effects of the confounding covariate and the treatment

effect respectively with the subscripts representing which event they are affecting. These two

hazard functions entirely describe how a population will behave [156].

Figure 2.2: Plot of the baseline hazards used as part of this simulation study

We simulated populations of 10,000 patients to ensure small confidence intervals around

our treatment effect estimates in each simulation. Each simulated population had a distinct

value for β and γ. In order to simulate the confounding of U and Z, we generated these values
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such that Corr(U,Z) = ρ and P (Z = 1) = π [157]. Population end times and type of event

were generated using the relevant hazard functions. The full process for the simulations can

be found in Appendix B. Due to the methods used to generate the populations, the possible

values for ρ are bounded by the choice of π such that when π = 0.5, |ρ| <= 0.797 and when

π = 0.1 (or π = 0.9), |ρ| <= 0.57. The relationship between the parameters can be seen in

the Directed Acyclic Graph (DAG) shown in Fig. 2.3, where T is the event time and δ is the

event type indicator (1 for event-of-interest and 2 for competing event). From this, we also

Figure 2.3: Directed Acyclic Graph showing the relationship between some of the parameters

explicitly calculated what we would expect the true subdistribution treatment effects, Γ1 and

Γ2, to be in these conditions [158] (See Appendix A). It’s worth noting that the values of Γ

will depend on the current value of ρ since they are calculated using the expected distribution

of end-times. However, it has been shown [156], [159] that, due to the relationship between

the Cause-Specific Hazard (CSH) and the Subdistribution Hazard (SH), only one proportional

hazards assumption can be true. Therefore the “true” values of the Γ will be misspecified and

represent a least false parameter (which itself is an estimate of the time-dependent truth) [158].

We used the simulated data to estimate the treatment effects under the Cox and Fine &

Gray regression methods. We specify that U is unmeasured and so it wasn’t included in the

analysis models. As discussed earlier, the Cox model defines the risk set at time t to be all

patients who have not had any event by time t, whereas the Fine & Gray defines it to be those

who have not had the event-of-interest (or competing event) by time t.

For our models, for the events, i = 1, 2, we therefore defined the CSH function estimate, λ̂i,

and the SH function estimate, ĥi, to be

λ̂i(t|Z) = λ̂i0(t)e
γ̂iZ ĥi(t|Z) = ĥi0(t)e

Γ̂iZ

Where λ̂i0(t) and ĥi0(t) are the baseline hazard and baseline subdistribution hazard function

estimates for the entire population (i.e. no stratification), and γ̂i and Γ̂i are the estimated

treatment effects. From these estimates, we also extracted the estimate of the subdistribution

treatment effect in a hypothetical RCT, where ρ = 0 and π = 0.5 to give Γ̂10 and Γ̂20. To

investigate how the correlation between U and Z affects the treatment effect estimate, we
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compared the explicitly prescribed or calculated values with the simulated estimates. Three

performance measures for both events, along with appropriate 95% confidence intervals, were

calculated for each set of parameters:

� θRCT,i = E
[
Γ̂i − Γ̂i0

]
˜ The average difference between the SH treatment effect estimate

from an idealised, hypothetical RCT situation.

� θExp,i = E
[
Γ̂i − Γi

]
˜ The average bias of the SH treatment effect estimate from the

explicitly calculated value.

� θCSH,i = E [γ̂i − γi] ˜ The average bias of the CSH treatment effect estimate from the

predefined treatment effect.

As mentioned above, the value of Γ will depend on the current value of ρ and so the estimation of

the explicit bias will be a measure of the total bias induced on our estimate of the subdistribution

treatment effect in those specific set of parameters. We also evaluate the bias compared to an

idealised RCT to see how much of this bias could be mitigated if we were to perform an RCT

to assess the effectiveness of the hypothetical treatment. Finally, we found the explicit bias

in the cause specific treatment effect to again see the total bias applied to this measure. We

did not compared the CSH bias to an idealised RCT as we believed that this could easily be

inferred from the CSH explicit results, whereas this information wouldn’t be as obvious in the

SH treatment effect due to the existence of a relationship between Γ and ρ.

Eight Scenarios were simulated based on real-world situations. In each scenario, ρ varied

across 5 different values ranging from 0 to their maximum possible value (0.797 for all Scenarios

apart from Scenario 5, where it is 0.57, due to the bounds imposed by the values of π). One

other parameter (different for different scenarios) varied across 3 different values, and all other

parameters were fixed as detailed in Table 1. Each simulation was run 100 times and the

performance measures were each pooled to provide small confidence intervals. This gives a

total of 1,500 simulations for each of the 8 scenarios. Descriptions of the different scenarios are

given below:

1. No Effect. To investigate whether treatment with no true effect (γ1 = γ2 = 0) can

have an “artificial” treatment effect induced on them in the analysis models through the

confounding effect on the event-of-interest. β1 varied between -1, 0 and 1.

2. Positive Effect. To investigate whether treatment effects can be reversed when the treat-

ment is beneficial for both the event-of-interest and the competing event (γ1 = γ2 = −1).

β1 varied between -1, 0 and 1.

3. Differential Effect. To investigate how treatment effect estimates react when the effect is

different for the event-of-interest (γ1 = −1) and the competing event (γ2 = 1). β1 varied

between -1, 0 and 1.

4. Competing confounder. To investigate whether treatments with no true effect (γ1 = γ2 =

0) can have an “artificial” treatment effect induced on them by the effect of a confounded

variable on the competing event only (β1 = 0). β2 varied between -1, 0 and 1.
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5. Uneven Arms. To investigate how having uneven arms on a treatment in the population

can have an effect on the treatment effect estimate (γ1 = −1, γ2 = 0). π varied between
1/10,

1/2 and 9/10.

6. Uneven Events. To investigate how events with different frequencies can induce a bias on

the treatment effect, despite no treatment effect being present (γ1 = γ2 = 0). k varied

between 1/2,
1/2 and 2.

7. Weibull Distribution. To investigate whether a linearly increasing baseline hazard function

affects the results found in Scenario 1. β1 varied between -1, 0 and 1.

8. Plausible Distribution. To investigate whether a biologically plausible baseline hazard

function affects the results found in Scenario 1. β1 varied between -1, 0 and 1.

Table 2.1: Details of parameters for each Scenario

Sc ρ Baseline γ1 γ2 β1 β2 π k

1 0.00 0.20 0.40 0.60 0.80 Constant 0 0 -1 0 1 0 1/2 1

2 0.00 0.20 0.40 0.60 0.80 Constant -1 -1 -1 0 1 0 1/2 1

3 0.00 0.20 0.40 0.60 0.80 Constant -1 1 1 0 1 0 1/2 1

4 0.00 0.20 0.40 0.60 0.80 Constant 0 0 0 1 0 1 1/2 1

5 0.00 0.14 0.29 0.42 0.57 Constant 0 0 1 0 1/10
1/2

9/10 1

6 0.00 0.20 0.40 0.60 0.80 Constant 0 0 1 0 1/2
1/2 1 2

7 0.00 0.20 0.40 0.60 0.80 Weibull 0 0 -1 0 1 0 1/2 1

8 0.00 0.20 0.40 0.60 0.80 Plausible 0 0 -1 0 1 0 1/2 1

2.3 Results

The first row of Fig. 3 shows the results for Scenario 1 (No Effect). When β1 = β2 = 0 (the green

line), correlation between U and Z doesn’t imbue any bias on the treatment effect estimate for

either event under any of the three measures, since all of the subdistribution treatment effects

(estimated, calculated and hypothetical RCT) are approximately zero. When β1 > 0, there

is a strong positive association between correlation (ρ) and the RCT and CSH biases for the

event-of-interest and a negative association for the RCT bias for the competing event. Similarly,

these associations are reversed when β1 < 0. There was no effect on θCSH for the competing

event in this Scenario regardless of ρ or β1. These results are similar to those found in Scenario

2 (Positive Effect) and Scenario 3 (Negative Effect) shown in Figs. 4 and 5. However, in both

of these Scenarios, there is an overall positive shift in θCSH when β1 ̸= 0.

The magnitude of θExp is greatly reduced and is the reverse of the other associations when

β1 ̸= 0 in Scenario 1 for the event-of-interest and when β1 > 0 it stays extremely small for

low values of ρ, and becomes negative for large ρ for the competing event. In Scenario 2, θExp

behaves similarly to Scenario 1 for both events when β1 < 0 and the event-of-interest, but for

the competing event, when β1 > 0, the θExp is much tighter to 0. The competing event data

for θExp in Scenario 3 is similar to Scenario 2 with β1 > 0 shifted downwards, but the event-of-

interest has a near constant level of bias regardless of ρ, apart from in the case when β1 < 0,

the bias switches direction. In Scenario 4 (Competing confounder), as would be expected, the
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Figure 2.4: How changes in ρ affect bias in Scenario 1 - No Effect

Figure 2.5: How changes in ρ affect bias in Scenario 2 - Positive Effect

results for the event-of-interest and the results for the competing event are swapped from those

of Scenario 1 as shown in Fig. 6. Scenario 5 (Uneven Arms) portrays a bias similar to Scenario

1 where β1 = 1, however, the magnitude of the RCT and CSH bias is increased when π ̸= 0.5

as shown in Fig. 7.

The parameters for Scenario 6 (Uneven Events) were similar to the parameters for Scenario

1 (No Effect), when β1 = 1. This also reflects in the results in Fig. 8 which look similar to

the results for this set of parameters in Scenario 1. This bias is largely unaffected by the value

of k. The results of Scenario 7 (Weibull Distribution) and Scenario 8 (Plausible Distribution)

were nearly identical to those of Scenario 1 as shown in Figs. 9 and 10. As per our original

hypotheses, Scenario 1 demonstrated that it is possible to induce a treatment effect when one

isn’t present through confounding effects on all biases, apart from the competing event CSH.

In Scenario 2, with high enough correlation, the CSH event-of-interest bias could be greater

than 1, meaning that the raw CSH treatment effect was close to 0, despite an actual treatment

effect of -1, similarly large positive biases in the SH imply a treatment with no benefit and/or

detrimental effect, despite the true treatment being beneficial for both events. This finding is

similar for Scenario 3 with large biases changing the direction of the treatment effect (beneficial

vs detrimental).
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Figure 2.6: How changes in ρ affect bias in Scenario 3 - Differential Effect

Figure 2.7: How changes in ρ affect bias in Scenario 4 - Competing confounder

Scenario 4 demonstrated that even without a treatment effect and with no confounding

effect on the event-of-interest, a treatment effect can be induced on the SH methodology, which

can imply a beneficial/detrimental treatment, depending on whether the confounder was detri-

mental/beneficial. Fortunately, it does not induce an effect on the CSH treatment effect for the

event-of-interest. Scenarios 5 and 6 investigated other population level effects; differences in

the size of the treatment arms and differences in the magnitude of the hazards of the events.

Scenario 5 demonstrated that having uneven treatment arms can exacerbate the bias induced

on both the θRCT and θCSH for both events and Scenario 6 showed that the different baseline

hazards had little effect on the levels of bias in the results. This finding was supported by the

additional findings of Scenarios 7 and 8, which showed that the underlying hazard functions

did not affect the treatment effect biases compared to a constant hazard.

2.4 Discussion

This is the first paper to investigate the issue of unmeasured confounding on a treatment effect

in a competing risks scenario. Herein, we have demonstrated that regardless of the actual effect

of a treatment on a population that is susceptible to competing risks, bias can be induced by
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Figure 2.8: How changes in ρ affect bias in Scenario 5 - Uneven Arms

Figure 2.9: How changes in ρ affect bias in Scenario 6 - Uneven Events

the presence of unmeasured confounding. This bias is largely determined by the strength of the

confounding relationship with the treatment decision and size of confounding effect on both the

event-of-interest and any competing events. This effect is present regardless of any difference

in event rates between the events being investigated and is also exacerbated by misbalances in

the number of patients who received treatment and the number of patients who did not.

Our study has shown how different the case would be if a similar population (without

inclusion/exclusion criteria) were put through an RCT and how the correlation between an

unmeasured confounder and the treatment is removed, as would be the case in a pragmatic

RCT. By combining the biases from an RCT and the explicitly calculated treatment effect, we

can also use these results to infer how much of the bias found here is from omitted variable

bias [160] and how much is explicitly due to the correlation between the covariates. Omitted

variable bias occurs when a missing covariate has an effect on the outcome, but is not correlated

with the treatment (and so is not a true confounder). It can occur even if the omitted variable

is initially evenly distributed between the two treatment arms because, as patients on one arm

have events earlier than the other, the distributions of the omitted variable drift apart. This

makes up some of the bias caused by unmeasured confounding, but not all of it. For example,

in Scenario 3 (Differential Effect), the treatment lowered the hazard of the event-of-interest,
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Figure 2.10: How changes in ρ affect bias in 7 - Weibull Distribution

Figure 2.11: How changes in ρ affect bias in Scenario 8 - Plausible Distribution

but increased the hazard of the competing event; with a median level of correlation (ρ = 0.4),

the event-of-interest bias from the RCT when there is a negative confounding effect (β1 < 0)

is -0.628 and the bias from the explicit estimate is 0.295 and therefore, the amount of bias due

purely to the correlation between the unmeasured confounder and the treatment is actually -

0.923. In this instance, some of the omitted variable bias is actually mitigating the bias from the

correlation; if we have two biasing effects that can potentially cancel each other out, we could

encounter a Type III error [161] which is very difficult to prove and can cause huge problems

for reproducibility (if you eliminate a single source of bias, your results will be farther from the

truth).

Our simulations indicate that a higher (lower) value of β1 and a lower (higher) value of

β2 will produce a higher (lower) bias in the event-of-interest. These two biasing effects could

cancel out to produce a situation similar to above. In our scenarios, we saw that, even when

a treatment has no effect on the event-of-interest or a competing event (i.e. the treatment is

a placebo), both a cause specific treatment effect and a subdistribution treatment effect can

be found. This also implies that the biasing effect of unmeasured confounders (both omitted

variable and correlation bias) can result in researchers reaching incorrect conclusions about how

a treatment affects a population in multiple ways. We could have a treatment that is beneficial
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for the prevention of both types of event, but due to the effects of an unmeasured confounder, it

could be found to have a detrimental effect (for one or both) on patients from a subdistribution

perspective.

Our investigation augments Lin et al’s study into unmeasured confounding in a Cox model

[145] by extending their conclusion (that bias is in the same direction as the confounder’s effect

and dependent on its strength) into a competing risks framework (i.e. by considering the Fine

& Gray model as well) and demonstrating that this effect is reversed when there is confounding

with the competing event. Lin et al. [145] also highlight the problems of omitted variable bias,

which comes from further misspecification of the model; this finding was observed in our results

as described above for Scenario 3.

The results from Scenario 7 (Weibull Distribution) and Scenario 8 (Plausible Distribution)

are almost identical to those of Scenario 1 (No Effect) which implies that, by assuming both

hazard functions in question are the same, we can assume they are both constant for simplicity.

Since both the Cox and Fine & Gray models are ambiguous to underlying hazard functions and

treatment effects are estimated without consideration for the baseline hazard function, it makes

intuitive sense that the results would be identical regardless of what underlying functions were

used to generate our data. This makes calculation of the explicit subdistribution treatment

effect much simpler for future researchers.

Thompson et al. used the paradox that smoking reduces melanoma risk to motivate simula-

tions similar to ours, which demonstrated how the exclusion of competing risks, when assessing

confounding, can lead to unintuitive, mis-specified and possibly dangerous conclusions [162].

They hypothesised that the association found elsewhere [163] may be caused by bias due to

ignoring competing events and used Monte Carlo simulations to provide examples of scenar-

ios where these results would be possible. They demonstrated how a competing event could

cause incorrect conclusions when that competing event is ignored - a conclusion we also con-

firm through the existence of bias induced on the Cox modelled treatment effect even with no

correlation between the unmeasured confounder and treatment (i.e. θCSH,1 ̸= 0 in Scenarios 2

& 3). Thompson’s team began with a situation where there may be a bias due to a competing

event and reverse-engineered a scenario to find the potential sources of bias, whereas our study

explored different scenarios and investigated the biased results they potentially produced.

Groenwold et al. [164] proposed methods to perform simulations to evaluate how much

unmeasured confounding would be necessary for a true effect to be null given that an effect

has been found in the data. Their methods can easily be applied to any metric in clinical

studies (such as the different hazard ratios estimated here). Currently, epidemiologists will

instigate methods such as DAGs, see Fig. 2.3, to visualise where unmeasured confounding may

be a problem in analysis [165] and statisticians who deal with such models will use transition

diagrams, see Fig. 2.1, to visualise potential patient pathways [113]. Using these two visualisa-

tion techniques in parallel will allow researchers to anticipate these issues, successfully plan to

combat them (through changes to protocol or sensitivity analysis, etc. . . . ) and/or implement

simulations to seek hidden sources of bias (using the methods of Groenwold [164] and Thomp-

son [162]) or to adjust their findings by assuming biases similar to those demonstrated in our

paper exist in their work.
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The work presented here could be extended to include more complicated designs such as more

competing events, more covariates and differing hazard functions. However, the intention of

this paper was to provide a simple dissection of specific scenarios that allow for generalisation

to clinical work. The main limitation of this work, to use of the same hazard functions for

both events in each of our scenarios, was a pragmatic decision made to reduce computation

time. The next largest limitation was the lack of censoring events, and was chosen to simplify

interpretation of the model. This situation is unlikely to happen in the real world. However,

since both the Cox and the Fine & Gray modelling techniques are robust to any underlying

baseline hazard and independent censoring of patients [166], these simplifications should not

have had a detrimental effect on the bias estimates given in this paper. This perspective on

censoring is similar to the view of Lesko et al. [167] in that censoring would provide less clarity

of the presented results.

2.5 Conclusion

This paper has demonstrated that unmeasured confounding in observational studies can have an

effect on the accuracy of outcomes for both a Cox and a Fine & Gray model. We have added to

the literature by incorporating the effect of confounding on a competing event as well as on the

event-of-interest simultaneously. The effect of confounding is present and reversed compared to

that of confounding on the event-of-interest. This makes intuitive sense as a negative effect on

a competing event has a similar effect at the population level as a positive effect on the event-

of-interest (and vice versa). This should not be overlooked, even when dealing with populations

where the potential for competing events is much smaller than potential for the event-of-interest

and is especially true when the two arms of a study are unequal. Therefore, we recommend that

research with the potential to suffer from these issues be accompanied by sensitivity analyses

investigating potential unmeasured confounding using established epidemiological techniques

applied to any competing events as well as the event-of-interest. In short, unmeasured variables

can cause problems with research, but by being knowledgeable about what we don’t know, we

can make inferences despite this missing data.
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Chapter 3

Using Inverse-Probability-of-

Censoring-Weights to Estimate

Calibration-in-the-Large for

Time-to-Event Models

MA Barrowman, A Pate, GP Martin, CJM Sammut-Powell, M Sperrin

Abstract

Introduction

A key component of the development of a prediction model/algorithm is the assessment of its

calibration through means of validation (internal and external). For time-to-event models, this

assessment is complicated in three ways:

� Calibration can be assessed at multiple time points,

� When Cox modelling has been used, there exists no “intercept” for a model to be assessed

on

� Censoring occurs within the data, and this may or may not be correlated with the event-

of-interest

We choose to focus on analysing methods of overcoming the third of these problems using Inverse

Probability of Censoring Weighting (IPCW), which can also combat the other two problems.

Methods

We used simulations to generate time-to-event data with censoring, where censoring can be

correlated or not with the event-of-interest. We then applied a pre-calibrated prediction models

71
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(including flawed ones) to the data and assessed the calibrations of these models under different

methods:

� Kaplan-Meier Method (KM), the KM curve is used as a comparator to the model predic-

tions

� Logistic Regression with IPCW Weighting (LW) and without it (LU)

� Pseudo-Observations with IPCW (PW) and without it (PO), where the calibration is

assessed using the pseudo-observations of the model data.

These simulations were aggregating and analysed to compare Bias and Coverage of each of

these methods.

Results

The LU and PO Methods had increasing absolute Bias over time, regardless of whether the

model was perfectly calibrated or not. At certain time points and in some scenarios, the PW

method provided no bias, but rarely supplied an adequate level of coverage and was inconsistent

over time. However, the LW Method consistently provided almost no Bias, and high coverage

in all scenarios.

Discussion

The use of the IPCW, in combination with logisitic regression, when assessing calibration-in-

the-large for time-to-event data provides the least biased method of assessment. This is in line

with other work in this area that has shown similar results for calculation of the Brier Score

and c-statistic.

Supplementary Material

Supplementary Material is available in Appendix C.

3.1 Introduction

Clinical prediction models (CPMs) are statistical models/algorithms that aim to predict the

presence (diagnostic) or future occurrence (prognostic) of an event of interest, conditional on

a set of predictor variables. Before they can be implemented in practice, CPMs must be

robustly validated. Alongside assessment of overall performance (e.g. R2 or the Brier Score)

and discrimination (how well models discern between different patients), a fundamental test

of a model’s predictive performance is calibration; that is, the agreement between observed

and predicted outcomes. This requires that among individuals with p% risk of an event, p%

actually have the event across the full risk range [168]. The simplest assessment of calibration is

the calibration-in-the-large, which tests for agreement in mean calibration (the weakest form of

calibration) [169]. With continuous or binary outcomes, such a test is straight-forward: it can be

translated to a test for a zero intercept in a regression model with an appropriately transformed
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linear predictor as an offset, and no other predictors. More complicated measurements of

calibration can also be assessed to describe how calibration changes across the risk range, such

as calibration slope (see Appendix C).

In the case of time-to-event models, however, estimation of calibration is complicated in

three ways. First, in the context of time-to-event models, one assesses the agreement between

the observed and the estimated probability of the event occurring within a specified duration of

time. Thus, calibration can be computed at multiple time-points, and one must decide which

time-points to evaluate (and how to integrate over them [95]). The choice and combination of

time-points determines what we mean by calibration; this is problem-specific and not the focus

of this paper. Calibration can also be integrated over time using the martingale residuals [170];

however we focus on the case where calibration at a specific time point is of interest (e.g. as is

common in clinical decision support).

Second, when a Cox proportional hazard model is used to fit the CPM, the baseline hazard

function (and hence baseline survival) is not estimated per se [171]. The lack of baseline

hazard can be overcome provided sufficient information concerning the baseline survival curve

is available (although this is rarely the case as seen in QRISK [52], ASCVD [172] and ASSIGN

[173]). Once this is established, estimated survival probabilities are available.

Third, censoring needs to be handled in an appropriate way and this is the focus of this paper.

Censoring is commonly overcome by using Kaplan-Meier estimates [52], [171], but the censoring

assumptions required for the Kaplan-Meier estimate are stronger than those required for the

Cox proportional hazard model: the former requiring unconditional independence (random

censoring), the latter requiring independence conditional on covariates only. This is a problem

because when miscalibration is found using this approach, it is not clear whether this is genuine

miscalibration or a consequence of the different censoring assumptions. Royston [174], [175] has

proposed the comparison of KM curves within risk groups, which alleviates the strength of the

independence assumption required for the censoring handling to be comparable between the

Cox model and the KM curves (since the KM curves now only assume independent censoring

within risk group). In these papers a fractional polynomial approach to estimating the baseline

survival function (and thus being able to share it efficiently) is also provided. However, this

does not allow calculations of the overall calibration of the model, which is of primary interest

here.

QRISK used the overall KM approach in the 2007 paper [52] demonstrating adequate cali-

bration (6.34% predicted vs 6.25% observed in women and 8.86% predicted vs 8.88% observed in

men), but miscalibration in the QRISK3 update [5] (4.7% predicted v 5.8% observed in women

and 6.4% predicted vs 7.5% observed in men ). This may be because, as follow-up extends, the

dependence of censoring on the covariates increases (QRISK had 12 years follow-up, QRISK3

had 18).

Royston [174] also presented an alternative approach for calibration at external validation,

which utilises the approach of pseudo-observations, as described by Perme and Anderson [176]

to overcome the censoring issue and produce observed probabilities at individual level. However,

this assumes that censoring is independent of covariates. A solution to this problem is to apply

a weighting to uncensored patients based on their probability of being censored according to a
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model that accounts for covariates. The Inverse Probability of Censoring Weighting (IPCW)

relaxes the assumption that patients who were censored are identical to those that remain at

risk and replaces it with the assumption that they are exchangeable conditional on the measured

covariates. The weighting inflates the patients who were similar to the censored population to

account for those patients who are no longer available at a given time.

Gerds & Schumacher [177] have thoroughly investigated the requirements and advantages of

applying an IPCW to a performance measure for modelling using the Brier score as an example

and demonstrating the efficacy of its use, which was augmented by Spitoni et al [178] who

demonstrated that any proper scoring rule can be improved by the use of the IPCW. This work

has been extended by Han et al [179] and Liu et al [180] who demonstrated one can also apply

IPCW to the c-statistic (a measure of discrimination).

In this paper we present an approach to assessing the calibration intercept (calibration-

in-the-large) and calibration slope in time-to-event models based on estimating the censoring

distribution, and reweighting observations by the inverse of the censoring probability. We

compare simulation results from using this weighted estimate to an unweighted estimate within

various commonly used methods of calibration assessment.

3.2 Methods

3.2.1 Aims

The aim of this simulation study is to investigate the bias induced by applying different methods

of assessing model calibration to data that is susceptible to censoring and to compare it to

the bias when this data has been adjusted by the Inverse Probability of Censoring Weighting

(IPCW).

3.2.2 Data Generating Method

We simulated populations of patients with survival and censoring times, and took the observed

event time as the minimum of these two values along with an event indicator of whether this

was the survival or censoring time [154]. Each population was simulated with three parameters:

β, γ and η, which defined the proportional hazards coefficients for the survival and censoring

distributions and the baseline hazard function, respectively.

Patients were generated with a single covariate Z ∼ N(0, 1) from which, we then generated a

survival time, T and a censoring time, C. Survival times were simulated with a baseline hazard

λ0(t) = tη (i.e. Weibull), and a proportional hazard of eβZ . This allows the simulation of a

constant baseline hazard (η = 0) as well as an increasing (η = 1/2) and decreasing (η = − 1/2)

hazard function Censoring times were simulated with a constant baseline hazard, λC,0(t) = 1

and a proportional hazard of eγZ . Therefore, the hazard functions can be expressed in full as:

λ(t) = eβZtη λC(t) = eγZ
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This combines to give a simulated survival function, S as

S(t|Z = z) = exp

(
−eβZtη+1

η + 1

)
and a simulated censoring function, Sc as

Sc(t|Z = z) = exp
(
−eγZt

)
Once the survival and censoring times were generated, the event time, X = min(T,C), and

the event indicator, δ = I(T = X), were generated. In practice, only Z, X and δ would be

observed.

During each simulation, we varied the parameters to take all the values,

� γ = {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}

� β = {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}

� η = {− 1/2, 0,
1/2}.

For each combination of parameters, we generated N = 100 populations of n = 10, 000 patients

(a high number of patients was chosen to improve precision of our estimates)

3.2.3 Prediction Models

For each population, we used three distinct prediction models for survival. FP was chosen to

exactly model the Data Generating Mechanism (DGM) to emulate a perfectly specified model:

FP (t|Z = z) = 1− exp

(
−eβZtη+1

η + 1

)
From this, we also derived a prediction model that would systematically over-estimate the

prediction model, FO, and one which would systematically under-estimate the prediction, FU .

These are defined as:

FU (t|Z = z) = logit−1 (logit (FP (t|z)− 0.2))

FO(t|Z = z) = logit−1 (logit (FP (t|z) + 0.2))

These prediction models were used to generate an estimate of the Expected probability that

a given patient, with covariate z, will have an event at the given time. The value of 0.2 was

chosen to provide a reasonably noticeable amount of under-/over-prediction.

3.2.4 The IPCW

In order to apply the IPCW, we need to calculate a censoring prediction model. For our

purposes, we will again use a perfectly specified censoring distribution, G, to be derived directly

from the DGM:
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G(t|Z = z) = 1− exp
(
−eγZt

)
This is used to calculate an IPCW for all non-censored patients at the last time they were

observed (t for patients who have not had an event, and Xi for patients who have had the

event), This is defined as:

ω(t|z) = 1

1−G(min(t,Xi)|z)

Due to the sensitive nature of this propensity weighting over time, the IPCW is capped at a

value of 10 [181], this capping should only effect around 2% of simulated patients.

3.2.5 Calibration Measurements

The prediction models were assessed at 100 time points, evenly distributed between the 25th and

75th percentile of observed event times, X. At each of these time points, we compare Observed

outcomes (O) with the Expected outcomes (E) of the prediction models based on four choices

of methodology [8], [52], [174], [175], [182] to produce measures for the calibration-in-the-large

� Kaplan-Meier (KM) - A Kaplan-Meier estimate of survival is estimated from the data

and the value of the KM curve at the current time is taken to be the average Observed

number of events within the population. The measure is the ratio of the Observed to the

mean Expected number of events.

� Logistic Unweighted (LU) - Logistic regression is performed on the non-censored popula-

tion to predict the binary Observed value using the logit(E) value as an offset and the

Intercept of the regression is the estimate of calibration-in-the-large.

� Logistic Weighted (LW) - As above, but the logistic regression is performed using the

IPCW as a weighting for each non-censored patient.

� Pseudo-Observations (PO) - The contribution of each patient (including censored pa-

tients) to the overall Observed value is calculated by removing them from the population

and aggregating the difference. Regression is performed with the complimentary log-log

function as a link function and the log cumulative hazard as an offset with the Intercept

representing the estimate of calibration-in-the-large.

� Pseudo-Observations Weighted (PW) - As the PO method above, but the logistic regres-

sion is performed using the IPCW as a weighting in the same vein as the LW method.

The KMmethod is centred around 1 for well performing models, whereas the others are centered

around 0, so we subtract 1 from the results of the KM method to centre it around the same

value. Although this won’t necessarily bring the KM estimate to the same scale, it will still

allow for it to be compared to the others as it will still demonstrate when the KM measure is

incorrect, show in which direction it is biased and give a magnitude relative to the confidence

interval of how strong that bias is.
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3.2.6 Estimands

For each set of parameters and methodology, our estimand at time, t, measured in simulation

i = 1, ..., N is θi(t), the set of estimates of the calibration-in-the-large for the FP , FU and FO

models in order. Therefore our underlying truth for all time points is

θ = (0, 0.2,−0.2)

From this, we can also define our upper and lower bound for a 95% confidence interval as

the vectors θi,L(t) and θi,U (t).

3.2.7 Performance Measures

The measures we will take as performance measures are the Bias, the Empirical Standard Error

(EmpSE) and the Coverage (Cov). We will also estimate the MCMC Standard Error of each

of these estimates in order to calculate a 95% confidence interval

Table 3.1: Performance Measures to be taken at each time point

Performance

Measure

Estimation SE

Bias θ̂(t) = 1
N

∑N
i=1 θi(t)− θ θ̂SE(t) =

√
1

N(N−1)

∑N
i=1

(
θi(t)− θ̂(t)

)2

EmpSE Ê(t) =

√
1

N−1

∑N
i=1

(
θi(t)− θ̂(t)

)2

ÊSE(t) =
Ê(t)√
2(N−1)

Coverage Ĉ(t) = 1
N

∑N
i=1 I (θi,L(t) ≤ θ ≤ θi,U (t)) ĈSE(t) =

Ĉ(t)(1−Ĉ(t))
N

The bias provide a measures of how close our estimate is to the true value as per our

data generating mechanisms. The coverage will demonstrate how often our confidence intervals

surrounding our estimate actually include this true value. The Empirical Standard Error will

show us how precise our estimates are.

3.2.8 Software

All analysis was done in R 3.6.3 [183] using the various tidyverse packages [184], Kaplan-

Meier estimates were found using the survival package [185]. Code to evaluate the pseudo-

observations were taken from the pseudo R package [186], and adapted into C++ code using the

Rcpp package [187] for faster implementation. The results app was developed using shiny[188].

The code used for this simulation study is available on Github and the results can be seen here

3.3 Results

Here, we present a subset of results with the full set of outputs available in the Calculator App.

The estimates are presented with time on the x-axis and the y-axis showing the performance

measure, stratified by model across facets and method of analysis by colour. We will investigate

the Bias, EmpSE and Coverage for the scenarios where β = 1 and η = 1/2 are fixed and γ varies

https://github.com/MyKo101/IPCW-Logistic
https://michael-barrowman.shinyapps.io/IPCW_Calibrations/?_ga=2.129261196.1072091615.1588464259-38998367.1584541320
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through -1, 0 and 1. These represent when the event and censoring are positively correlated

(γ = β = 1), negatively correlated (γ = −β = −1) and when the covariate has no effect on the

censoring distribution (γ = 0)

3.3.1 No correlation

Figure 3.1: Bias for Over-estimating, Perfect and Under-estimating models across all four methods in

the ‘No correlation’ scenario, when β = 1, γ = 0 and η = 1/2. 95% Confidence Intervals are included

in the plot.

When γ = 0, we can see in figure 3.1 that the Bias is moving away from 0 for the LU and for

the KM. For PO, it stays quite close to zero, but only touches for the Perfect model. For the

PW method, the bias increases in magnitude over time for all models. The LW Method consis-

tently provides an unbiased measurement of the model calibration regardless of the underlying

accuracy of the model.

The small confidence intervals surrounding the Bias estimates above demonstrate that these

results are consistent, which is exemplified by the small values found in figure 3.2. These results

are also consistent across the three models.

The large biases above, also lead to inaccurate estimations at the simulation level with very

low coverage of the true value, as demonstrated in figure 3.3. The LW Method once again is

extremely close to the expected coverage of 95%, with PO matching similarly for the Perfect

model.
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Figure 3.2: EmpSE for Over-estimating, Perfect and Under-estimating models across all four methods

in the ‘No correlation’ scenario, when β = 1, γ = 0 and η = 1/2. 95% Confidence Intervals are included

in the plot.

3.3.2 Positive correlation

Figure 3.4: Bias for Over-estimating, Perfect and Under-estimating models across all four methods

in the ‘Positive correlation’ scenario, when β = 1, γ = 1 and η = 1/2. 95% Confidence Intervals are

included in the plot.

When γ = 1, we can in figure 3.4 see that the Biases for PO and LU, are once again very large

with LU consistently over-estimating and PO and PW consistently under-estimating. KM

touches 0 for the Perfect model, but not for the other two. LW is close to 0, but still has some

small amount of positive bias. Some of the values shown here are quite extreme (as high as

+0.5 bias and low as -0.7 bias).
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Figure 3.3: Coverage for Over-estimating, Perfect and Under-estimating models across all four methods

in the ‘No correlation’ scenario, when β = 1, γ = 0 and η = 1/2. 95% Confidence Intervals are included

in the plot.

Figure 3.5: EmpSE for Over-estimating, Perfect and Under-estimating models across all four methods

in the ‘Positive correlation’ scenario, when β = 1, γ = 1 and η = 1/2. 95% Confidence Intervals are

included in the plot.

There is a larger EmpSE overall in this scenario than in the No correlation scenario, as seen

in 3.5, with the PW method having the largest values for EmpSE showing a relatively high

inconsistency across simulations, which may be expected with such a high magnitude of bias in

these results.
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Figure 3.6: Coverage for Over-estimating, Perfect and Under-estimating models across all four methods

in the ‘Positive correlation’ scenario, when β = 1, γ = 1 and η = 1/2. 95% Confidence Intervals are

included in the plot.

However, there is an reduced level of coverage, even for the LW Method as shown shown in

figure 3.6, with almost 0 coverage for non-LW methods.

3.3.3 Negative correlation

Figure 3.7: Bias for Over-estimating, Perfect and Under-estimating models across all four methods in

the ‘Negative correlation’ scenario, when β = 1, γ = −1 and η = 1/2. 95% Confidence Intervals are

included in the plot.

When γ = −1, we see can in figures 3.7 and 3.8, the results are similar in that LW remains

close to 0 for all of the models, with the PW method crossing 0 at different points for the three

models.
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Figure 3.8: EmpSE for Over-estimating, Perfect and Under-estimating models across all four methods

in the ‘Negative correlation’ scenario, when β = 1, γ = −1 and η = 1/2. 95% Confidence Intervals are

included in the plot.

For the Negative correlation scenario, figure 3.8 shows us that the least consistent results

can be found in the LW and PO methods as these are the highest across all three models,

however the results still appear similar across the three models.

Figure 3.9: Coverage for Over-estimating, Perfect and Under-estimating models across all four methods

in the ‘Negative correlation’ scenario, when β = 1, γ = −1 and η = 1/2. 95% Confidence Intervals are

included in the plot.

The data shown in figure 3.9 demonstrates that the LW Method is again achieving high

coverage, which dwindles only slightly over time. The PW spikes at the points where it crosses

0 in the bias plot above.
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3.4 Discussion

This study has shown that using IPCW in combination with logistic regression can lead to un-

biased estimates of calibration-in-the-large for survival models. Other methods that have been

previously proposed, including Kaplan-Meier estimates and pseudo-observations, resulted in bi-

ased estimates of calibration-in-the-large, especially when the event and censoring distributions

were correlated, even once the pseudo-observations method is adjusted by the IPCW.

Calibration is an important component of assessing the predictive performance of any pre-

diction model. While methods of assessing calibration have been well-studied in CPMs for

continuous or binary outcomes [8], [168], [189], methods in the context of time-to-event CPMs

have received less attention. In practice, it is common to see time-to-event CPMs being de-

veloped using the Cox proportional hazards models, with calibration assessments made by

comparing the predicted survival estimates with observed Kaplan-Meier estimates, such as in

the validation of the QRISK model [52]. However, these two approaches make different assump-

tions regarding censoring, which leads to the bias in calibration-in-the-large that was observed

in our simulations. Specifically, our simulations show that, even for a perfectly specified model,

the Kaplan-Meier estimate of calibration-in-the-large is biased, especially as follow-up time

increases. Hence, this method should be avoided since it makes it impossible to differentiate

genuine miscalibration, from artificial miscalibration induced through violations of assumptions

surrounding censoring.

In contrast, we found that estimates of calibration-in-the-large at a given time for time-

to-event CPMs should be based on the logistic regression IPCW method in the presence of

right-censored survival data in the validation cohort. The use of IPCWs removed bias and

provided suitable coverage in the majority of simulation scenarios we considered. It should be

noted that this high level of coverage, may be due to there being wider confidence intervals in

the LO & LW methods as these are only applied to the uncensored patients remaining in the

population at each given time point, which may also lead to a loss of information if censoring

is particularly high. However, the low-levels of bias and EmpSE demonstrate that, even with

the wider confidence intervals the results are still viable.

This supports previous research in this space, which has shown the validity of applying

an IPCW to estimate Brier score and c-statistics in time-to-event models [177]–[180]. To our

knowledge, no previous study has looked at the use of IPCW in the context of calibration

assessment. Advantageously, using IPCW only assumes that censoring and event distributions

are exchangeable conditional on the measured covariates.

We note that previous studies have proposed graphical methods of assessing calibration

through smoothed calibration curves [95], which could be considered alongside the methods de-

scribed here. Such smoothed calibration curves are produced by regressing the log-hazard of the

outcome as a (smooth) function of the complementary log-log transformation of the predicted

outcome probability at a set time, which can be summarised using an integrated calibration

index [95]. Combining numeric summaries of calibration-in-the-large and calibration slope,

with graphical calibration assessments would create a strong form of calibration assessment for

time-to-event CPMs [169].

Importantly, another key issue with assessing calibration of time-to-event CPMs is that one
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needs absolute estimates of survival probabilities. Given that many time-to-event CPMs are

based on the Cox proportional hazards model, this is not (usually) reported. While this was

not the focus of the current paper, metrics of strong calibration, upon independent validation,

do require the baseline survival function to be reported [171]. This is also the case when using

the IPCW method. For this reason, developing time-to-event CPMs based on parametric or

flexible parametric models is usually more appropriate than Cox proportional hazard models

[67].

Some limitations should be noted when interpreting the results of this study. Firstly, we

only investigated the methods within a simulation study. This is required so we could evaluate

bias of each method in estimating calibration-in-the-large.

Secondly, throughout the simulations, the model used to calculate the IPCWs was perfectly

specified. In practice, one would not know the “true” censoring distribution, and so care would

need to be taken in specifying the IPCW model in order to derive accurate weights. This

would involve using well-known and standardised model derivation techniques (such as model

selection, etc...) to ensure that the censoring model used to calculate the IPCWs is as accurate

as possible.

Further studies could be use to assess the use of the graphical methods mentioned above in

comparison to those studied here, or to investigate the effect that higher censoring rates might

have on the results. This is prescient since LW & LO methods are applied only to the non-

censored patients and thus a high censoring rate could lead to a large change in these results,

and have the effect of massively widening the confidence intervals.

In conclusion, this paper has shown, through a comprehensive simulation study, that only the

IPCW method produced unbiased estimates of calibration-in-the-large for time-to-event CPMs

when there is censoring within the validation set. The commonly applied use of Kaplan-Meier

estimates was highly biased in most scenarios. These results suggest that the calibration-in-

the-large at a given time of a time-to-event CPM should be evaluated by fitting a weighted

logistic regression model to the observed binary event indicator at that time, with the linear

predictor of the model as an offset; the weights should be estimated using the IPCW method.
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Abstract

Introduction

Multi-State Clinical Prediction Models (MSCPMs) can provide a multi-dimensional estimate

of patint outcomes over time. However, there currently does not exist any viable or robust

manner in which to validate these models.

Methods

We combine current methods of assessing multinomial outcomes and the Inverse Probability

of Censoring Weighting, which adjusts patient populations for time-dependent outcomes where

censoring is present. We provide methods of investigating the overall Accuracy, Calibration and

Discrimination of an MSCPM and provide insights into their interpretation. These extensions

are:

� Accuracy - The Multiple Outcome Brier Score

� Discrimination - The Polytomous Discriminatory Index

� Calibration - Multinomial Calibration Intercept, Matched Slope and Unmatched Slope.

85
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Measurements can be taken at any time through the use of the ICPW, and we provide methods

of standardising these measures to be on the same scale as the traditional metrics that they are

extensions of.

Results

We applied these methods to an MSCPM developed in Chronic Kidney Disease, and compare

them to the traditional metrics, which are designed for a two-state system (as in traditional

survival analysis). Results show that the new metrics line up with the traditional ones and

provide an overall summary.

Discussion

The results of applying our novel methods line up well with the traditional methods and demon-

strate that they are viable summary statistics for assessing the performance of an MSCPM. They

can be compared directly regardless of the shape of or number of states in the model, including

to traditionally developed time-to-event models.

Supplementary Material

Supplementary Material is available in Appendix D.

4.1 Introduction

Clinical Prediction Models (CPMs) provide individualised risk of a patient’s outcome [8], based

on that patient’s set of predictor variables. These predictions will often be in the form of a risk

score or probability, but can also be expressed as expected values if the outcome is continuous.

However, using traditional modelling techniques, these CPMs will only predict a single outcome.

There are an increasing number of clinical applications where predicting the risks of a multi-

dimensional outcome is of interest, this can be through a multinomial prediction where time is

fixed or as a sequence of outcomes over time. For example, in Chronic Kidney Disease, there

is an interest in being able to predict the probability of receiving RRT prior to death. To this

end, Multi-state Clinical Prediction models (MS-CPMs) provide the framework in which to do

this.

Once a CPM has been developed, it is important to assess how well the model actually

performs [168]. This process is called Model Validation and involves comparing the predictions

produced by the model to the actual outcomes experienced by patients. It is expected that

the development of a CPM will be accompanied by the validation of the model on the same

dataset it was developed in (internal validation), using either bootstrapping or cross-validation

to account for optimism in the developed model [17]. Models can also be validated on a novel

dataset (external validation), which is used to assess the generalisability and transportability

of the model [190].

During validation, there are different aspects of model performance that we can assess

and these are measured using specific metrics, for example, to assess the overall Accuracy
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of a model, we may use the Brier Score [191] . In the field of clinical prediction modelling,

the Discrimination of a model gives a measure of how well the model differentiates between

patients (e.g. those who have had the outcome versus those who have not) and the Calibration

gives a measure of how close the individual predicted values are to the outcomes. The current

metrics that are commonly used have been designed and extended to work in a variety of model

development frameworks. However, these measures have not been applied to a multi-state

context and thus would need to account for the sequence of outcomes over time as well as for

the censoring of patients (as common occurs in survival data). This paper aims to provide

use-able extensions to current performance metrics to be used when validating MS-CPMs. It

is essential that these extensions are directly comparable with current metrics (to allow for

quicker adoption), that they reduce to the current metric in relevant simple cases and that they

appropriately account for the censoring of patients.

Currently, the most common way to validate an MS-CPMs is by applying traditional meth-

ods to compare across two states at a given time and then aggregating the results in an arbitrary

manner. Other methodologists have extended existing metrics to multinomial outcomes [192],

which do not contain a time-based component; to simple competing risks scenarios [193], which

do not contain transient states; or to time dependent outcomes [194]; which do not have mul-

tiple states. Spitoni et al [178] developed methods to apply the Brier Score (or any proper

score functions) to a multi-state setting and so a simplified and specific version of their work

is described in this paper. We also combine these ideas to apply an extension of the c-statistic

(which measures discrimination) and an extension of the logistic intercept and slope (which

measure calibration) to the multi-state context.

The aim of this chapter is to develop metrics to evaluate the predictive performance of a

Multi-State CPM, building upon traditional metrics (and extensions thereof) where appropri-

ate. In Section 4.2, we will introduce a motivating example and dataset. In Section 4.3 we will

define the traditional metrics used for assessing accuracy, calibration and discrimination and

how they can be applied to a time-to-event model and how we can account for censoring in

these metrics. In Section 4.4 we will build on these metrics and extend them into a Multi-State

framework and then apply all these methods to our motivating example in Section 4.5

4.2 Motivating Data Set

Throughout this paper we will use a model developed in Chronic Kidney Disease (CKD) pa-

tients to assess their progression onto Renal Replacement Therapy (RRT) and/or Death. For

illustration, we develop an MS-CPM for this context using data from the Salford Kidney Study

(SKS) and then externally validated it using data from the West of Scotland (see Table 4.1).

This mimics the process taken to develop such a model for clinical use (as in Chapter 5).The

original model predicts the probability that a patient has begun RRT and/or died after their

first recorded eGFR below 60 ml/min/1.73m2, by any time in the future (reliable up to 10

years). For the purposes of this paper, we will take a “snapshot” of the predictions at the

5 year time point, however these methods can work at any time point, and by assessing at

multiple time-points, users are able to create a smooth estimate for these values and assess how
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Table 4.1: Population demographics, continuous displayed as median (Inter-Quartile Range), and

Categorical/Comorbidity data as number (percent) range and number missing are also included

Variable median (IQR) or n (%) range missing (%)

Age 69.000 ( 17.000) [ 11.000, 98.000] 0 ( 0.00%)

eGFR 35.398 ( 20.565) [ 1.199, 59.994] 0 ( 0.00%)

eGFR Rate -0.932 ( 21.897) [ -28.636, 50.653] 0 ( 0.00%)

SBP 144.000 ( 30.000) [ 82.000, 258.000] 6345 ( 82.31%)

DBP 77.000 ( 17.000) [ 35.000, 128.000] 6345 ( 82.31%)

BMI 28.081 ( 6.811) [ 17.073, 52.403] 7491 ( 97.17%)

Albumin 37.000 ( 6.000) [ 7.000, 53.000] 3134 ( 40.65%)

Calcium 2.410 ( 0.160) [ 1.455, 3.400] 4513 ( 58.54%)

Haemoglobin 116.000 ( 29.000) [ 7.100, 208.000] 3557 ( 46.14%)

Phosphate 1.160 ( 0.320) [ 0.320, 4.370] 4510 ( 58.50%)

uPCR 0.062 ( 0.177) [ 0.001, 1.943] 7170 ( 93.01%)

uPCR Rate 0.004 ( 0.905) [-176.200, 952.812] 7495 ( 97.22%)

Gender: 0 ( 0.00%)

Male 3885 (50.40%)

Female 3824 (49.60%)

Ethnicity: 7009 ( 90.92%)

White 679 ( 8.81%)

Asian 12 ( 0.16%)

Black 7 ( 0.09%)

Other 2 ( 0.03%)

Smoking Status: 7709 (100.00%)

Former 0 ( 0.00%)

Non-Smoker 0 ( 0.00%)

Smoker 0 ( 0.00%)

Former (More than 3Y) 0 ( 0.00%)

Diagnosis Group: 6640 ( 86.13%)

Systemic diseases affecting the kidney 316 ( 4.10%)

Glomerular disease 278 ( 3.61%)

Tubulointerstitial disease 173 ( 2.24%)

Miscellaneous renal disorders 198 ( 2.57%)

Familial / hereditary nephropathies 104 ( 1.35%)

Comorbidities:

CCF 408 ( 5.29%) 0 ( 0.00%)

COPD 0 ( 0.00%) 7709 (100.00%)

CVA 186 ( 2.41%) 0 ( 0.00%)

DM 1535 (19.91%) 0 ( 0.00%)

HT 3114 (40.39%) 0 ( 0.00%)

IHD 863 (11.19%) 0 ( 0.00%)

LD 0 ( 0.00%) 7709 (100.00%)

MI 556 ( 7.21%) 0 ( 0.00%)

PVA 376 ( 4.88%) 0 ( 0.00%)

ST 0 ( 0.00%) 7709 (100.00%)

the measures may change over time (i.e drift). The predictions and metrics applied to them

will depend on the population distribution at the 5-year snapshot, which can be seen in Table

4.2. For brevity, this table uses acronyms for the comorbidities which can be seen below:

� CCF - Congestive Cardiac Failure

� COPD - Chronic Obstructive Pulmonary Disease

� CVA - Prior Cerebrovascular Accident

� DM - Diabetes

� HT - Hypertension

� IHD - Ischemic Heart Disease



4.3. CURRENT APPROACHES AND PRELIMINARIES 89

Table 4.2: Distribution of patients in Population at 5 years including number of times each transition

occured

State Pop Prop ->RRT ->Death ->Cens

CKD 4,391 67.81% 742 1,427 1,144

RRT 458 7.07% 199 85

Death 1,626 25.11%

Figure 4.1: Layout of the MSM used in the motivating model

� LD - Chronic Liver Disease

� MI - Prior Myocardial Infarction

� PVA - Peripheral Vascular Disease

� ST - Prior Solid Tumour

The Three-State model used in our example is designed as an Illness-Death Model [113], this

is one of the simplest MSM designs and has the key advantage over a traditional model that

they can predict whether a patient is in or has visited the transient state before reaching the

absorbing state (i.e. patient who became ill before dying or who started RRT before dying), see

figure 4.1. It is important to note that the shape of this model is used for illustrative purposes

only and the methods described in this paper can be used for any shape of MS-CPM For the

purposes of this paper, we will not discern between whether a patient in the Death state has

visited RRT or not, and so our model has K = 3 states. If we were to differentiate between

these two, then the “Death” state would essentially be split in two, and so the model would

have four states to describe the four pathways a patient can take (and so K = 4).

We will calculate the Multi-State Model Extension metrics for the model developed here,

as well as the defined confidence intervals around these estimates.

4.3 Current Approaches and Preliminaries

In this section, we describe three commonly used performance metrics for assessing the perfor-

mance of a traditional survival clinical prediction model and the conventions and notation used

throughout this paper. These metrics assess the Accuracy, Discrimination and Calibration of

the models being validated. Accuracy is an overall measurement of how well the model predicts

the outcomes in the patients. Discrimination assesses how well the model discerns between pa-

tients; in a two-state model this is a comparison of patients with and without the outcome, and

should assign a higher value to those that experience the outcome. Calibration is the agreement

between the observed outcomes and the predicted risks across the full risk-range.
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We are applying cross-sectional metrics at a set time point within the setting of a time-

to-event model and so we need to account for the censoring of patients and therefore, each

uncensored patient at a given time t will be weighted as per the Inverse Probability of Censoring

Weighting (IPCW) [195]. This allows the uncensored patient population to be representative

of the entire patient population.

4.3.1 Baseline Models

To assess the performance of a model, we must compare the values produced by the performance

metrics to those of two baseline models; a random or non-informative model and a perfect model.

A Non-Informative (NI-)model assigns the same probability to all patients to be in any state

regardless of covariates and is akin to using the average prevalence in the entire population to

define your model. For example, in a Two-State model with an event that occurs in 10% of

patients, all patients are predicted to have a 10% chance of having the event. For many metrics,

models can be compared to an NI-model to assess whether the model is in fact “better than

random.”

A Perfect (P-)model is one which successfully assigns a 100% probability to all patients,

and the predictions are correct; this is the ideal case and is therefore the standard that most

models aim for.

The metrics produced by these baseline models will often depend on the prevalence of

each state and/or the number of states. These values can be used as comparators to provide

contextual information regarding the strength of model performance. These baselines metrics

for the NI-model and the P-model will be referred to as the NI-level and P-level for the metric.

4.3.2 Notation

Throughout this paper, we will use consistent notation which is shown here for reference and to

avoid repetition in definitions. The common notations are defined below: Other notation will

be define as they are introduced.

4.3.3 Patient Weighting

At a given time after the index date, some patients in our validation data set will be censored

and so our performance metrics must adjust for this. Therefore, all patients will be subject to

IPCW, which applies a higher weighting to patients who are more likely to be censored. This

process is assumed to be conditionally independent of the Multi-State process, given a patient’s

covariates [178].

To calculate this weight, first we need to estimate an individual patient’s probability of not

being censored at the current time point, G(t|Z), where Z is the patient’s covariate characteris-

tics and t is the current time point. This is done in our validation cohort using a Cox regression

which provides estimated hazard ratios for each of the covariates β̂ taking the time of censoring

as the event-of-interest. Absolute predictions are then calculated using the Breslow estimate of
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Table 4.3: Common Notation used throughout this paper

Notation Meaning
N(t) or N Number of (non-censored) patients in a population at time t

K Number of states predicted by the model
P k
i (t) or P

k
i Predicted probability of whether patient i was in state k at time t

P !k
i (t) or P !k

i Predicted probability of whether patient i was not in state k at time t, i.e. P k
i +

P !k
i = 1

Pi(t) or Pi If K ̸= 2, vector of predicted probabilities for patient i at time t, Pi =
(P 1

i , P
2
i , ..., P

K
i )

If K = 2, then Pi = P 2
i (i.e. predicted probability of the second state at time t)

P k(t) or P k The vector of the predicted probabilities of being in state k for the whole popula-
tion at time t

P (t) or P If K ̸= 2, a N ×K matrix of predicted probabilities for each state & individual at
time t
If K = 2, a vector of the predicted probabilities of being in state 2 for the whole
population at time t

Ok
i (t) or O

k
i Binary indicator for whether patient i was in state k at time t

O
!k(t)
i or O!k

i Binary indicator for whether patient i was not in state k at time t, i.e Ok
i +O!k=1

i

Oi(t) or Oi If K ̸= 2, vector of outcomes for patient i at time t, Oi = (O1
i , O

2
i , ..., O

K
i )

If K = 2, then Oi = O2
i (i.e. observation of patient in the second state at time t

Ok(t) or Ok The vector of observed outcomes of being in state k for the whole population at
time t

O(t) or O If K ̸= 2, a N ×K matrix of observed proportions for each state & individual at
time t
If K = 2, a vector of the observed proportions for state 2 for the whole population
at time t

Qk(t) or Qk The weighted proportion of the population in state k at time t
Q(t) or Q The vector of weighted proportions of the population in all states at time t, Q =

(Q1, Q2, ..., QK)
ωi(t) or ωi Weighting given to patient i at time t
ω(t) or ω The vector of weights given to entire population at time t

Nω(t) or Nω Weighted size of population at time t, Nω =
∑N

i=1 ωi

Nk(t) or Nk Weighted size of state k at time t, Nk =
∑

i∈Ak
ωi
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the cumulative baseline hazard function, Λ̂0. The estimate, Ĝ, is then given by

Ĝ(t|Z) = exp
(
−eβZΛ̂0(t)

)
For a given patient, i, with a maximum observed time of Ti, we will define δi = 0 if the patient

was censored and δi = 1 if the patient moved to an absorbing state (e.g. died) and zi to be that

patient’s set of covariates.

We can therefore define the IPCW for patient i at time t to be:

ωi(t) =
I(Ti ≤ ti, δi = 1)

Ĝ(Ti|zi)
+

I(Ti > ti)

Ĝ(ti|Zi)

By applying this weight to all patients included at each time point under analysis, we can be

confident that our measurements are robust to right-censored data, subject to the assumptions

made in their definition.

The metrics defined below (including those traditionally defined elsewhere) have been cor-

rected for the effect of censoring by applying the IPCW, ωi(t) to each patient as a multiplicative

weight.

4.3.4 Accuracy - Brier Score

For these metrics, we will be considering predictive performance of the models at specific time

point( t = 5 years in our CKD example), and so we simplify notation by removing the references

to time given above, for example ωi = ωi(5 years).

The Brier Score is used to assess the overall accuracy of predictions, which assigns a score

to each observation dependent on the predicted probability and the outcome. It then averages

these scores across the entire population. The Brier Score, adjusted for IPCW, for a single

outcome model for a single patient is given by:

BSi = ωi (Pi −Oi)
2

And for the entire population, we take the weighted average given by the following [191]

BS =
1

Nω

N∑
i=1

BSi =
1

Nω

N∑
i=1

ωi (Pi −Oi)
2

A lower Brier score implies a more accurate model (since the Predictions and the Obser-

vations will be closer to one another). The P-level of the BS measure is 0 and the NI-level is

Q(1−Q).

In order to standardise the Brier Score, we can rescale it by dividing by the NI-level and

subtracting it from 1 to give the adjusted Brier Score (aBS):

aBS = 1− BS

Q(1−Q)

The aBS brings the NI-level to 0 and the P-level to 1 and so a higher value for the aBS implies

a model accurate model. One thing to note is that it is possible to get negative values for the
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aBS if a model performs worse than a non-informative model; however in practice this model

would essentially be unusable as it is (although still useful if predictions were reversed).

We can use the values of BSi to calculate a standard deviation and thus build a confidence

interval surrounding our overall BS estimate by use of the relevant z-score and assuming the

underlying distribution of possible BS scores follow a Normal distribution [196], [197]. This

population-based BS confidence interval can be converted into a confidence interval for the aBS

using the above formula.

4.3.5 Discrimination - c-statistic

The c-statistic [198] is the most common method to assess the discriminative ability of a pre-

diction model. In a traditional model, at a single time point (cross-sectional or not), this can

be interpreted as the probability that two patients, chosen at random from the two outcome

groups, will be correctly discriminated. Here, correct discrimination means that the patient who

had the event was predicted to have a high probability of having the event than the patient

who did not have the event.

c = Prob (Pi < Pj | Oi = 0 & Oj = 1)

This can be estimated empirically by averaging over all pairs of patients where one is selected

from each state:

ĉ =
1

N1N2

∑
i∈A1

∑
j∈A2

ωiωjC2(Pi, Pj)

where

C2(a, b) =


1 a < b

0 a > b

1
2 a = b

In practice, it will be very rare for two predicted probabilities to be exactly equal, but this

case is needed to account for the NI-model and produce the NI-level of 0.5, we also have a

P-level of 1 regardless of the prevalence of the two states.

We can calculate the variance, therefore the standard error confidence intervals, around this

estimate for ĉ by using the method as described by DeLong et al [199], [200]:

var (ĉ) =
1

N1
S1 +

1

N2
S2

where S1 and S2 are given by the following:

S1 =
1

N1 − 1

∑
i∈A1

(V1(i)− ĉ)
2

S2 =
1

N2 − 1

∑
j∈A2

(V2(j)− ĉ)
2

and V1 and V2 are:
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V1(i) =
1

N2

∑
j∈A2

ωiωjC2(Pi, Pj) V2(j) =
1

N1

∑
i∈A1

ωiωjC2(Pi, Pj)

4.3.6 Calibration - Intercept and Slope

In a traditional model, the Calibration Intercept is a measure of Calibration-in-the-Large, or

overall calibration across the entire population [11]. Calibration slope indicates how well the

model predicts across different prediction values. These metrics can be measured using logistic

regression on the probability of the outcome using the logit of the prediction as the predictor

in the regression:

E [logit (O)] = α+ βlogit (P )

The estimates of these coefficients, α̂ and β̂ are found using a weighted binomial logistic re-

gression, with weights ωi. The intercept, α̂, can provide a measure of any systemic over- or

under-prediction of the outcome within the model. The slope, β̂, provides a measure of how

well the model performs across the population, rather than simply an average of the population

(as α̂ is). It is advised that the intercept is calculated on its own first using logit(P ) as an offset

(without a predictor, i.e. fixing β = 1) and then the slope is calculated using α̂ as an offset [8];

however, for simplicity and consistency with the MSM metric we have chosen to model them

both together.

As the predicted values of an NI-Model would be the same for all patients, a directly

calculated NI-model would not converge, however the limit of such a model (as the individual

predictions tend to equality) would give NI-levels for the Intercept equal to prevalence (Q)

and slope equal to 0 (since every subgroup has the same predicted value). For a P-model, the

Intercept would be 0 and the slope would be 1.

These metrics, intercept and slope, are usually described with an interpretation depending

on the fit and whether the P-level (0 and 1, respectively) is within the confidence interval and,

if not, which direction the miscalibration lies. If the calibration intercept is considered to be

above or below the P-Level, then it indicates that the model is systemically under- or over-

predicting the results, respectively. Similarly, a calibration slope that is below or above the

P-Level is interpreted to mean that the model had predictions that were too extreme or too

moderate across the prediction spectrum [190].

4.4 Extension to Multi-State Models

4.4.1 Trivial Extensions

As well as the extension methods described in this paper, each of the traditional performance

metrics described above can be applied to a MS-CPM with trivial extension. These require

the predictions and outcomes to be reduced to a model with only two states which allows the

traditional performance metrics to be directly applied.

The first method, One-Vs-All, is based on whether a patient is in each state or not at a
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given time. For each state, we take the current state as the outcome state and collapse all other

states into a single “not-” state. For example, when analysing the CKD state, we collapse RRT

and Death into a single “not-CKD” state. This gives us a metric for each state in the model.

The second method, Pairwise, compares across pairs of states by ignoring predictions unre-

lated to them at a given time. For each pair of states, we exclude patients not in one of the two

states and normalise the two predicted probabilities so that they sum to 1. For example, when

assessing CKD vs RRT, we exclude all patients in the Death state, take our outcome state as

RRT and divide the predicted probability of being in RRT by the predicted probability of being

in either CKD or RRT (i.e. probability of being in RRT given that they are in either RRT or

CKD). This gives us a metric for each pair of states in the model.

The third method, Transition-wise, compares patients undergoing a specific transition. We

take the subset of patients who were eligible for a transition and classify those who underwent

the transition as being in the outcome state and compare them to those that didn’t undergo the

transition (by the given time). In our example, when looking at the RRT to Death transition,

we would take the subset of all patients who underwent the CKD to RRT transition (i.e. those

eligible for the RRT to Death transition) and compare those who transitioned to Death with

those who remained in the RRT state.

Note that the subset of patients in the second and third methods are not always equivalent.

When analysing RRT to Death or RRT vs Death, the patients in the RRT state are the same,

but the patients in the Death state are different (RRT vs Death includes those that went directly

from CKD to Death). The predicted probabilities are similarly different.

However, the above collapsing methods are a simplistic representation of the MS-CPM, and

it would be more informative to consider the performance of the different state-transitions. To

achieve this, we here propose novel extensions to each performance metric, using the methods

outlined in section 1.3 as the foundation. Throughout, we consider the evaluation of predictive

performance at a single follow-up time (e.g. t=5 years in our CKD example). As such, we base

our methodological development on the methods designed for multinomial outcomes [201] , and

here we are going to use a similar idea for validating a multi-state model. The key novelty is

that we combine ideas from validation measures of time to event, such as IPCW to those for

multinomial models/outcomes .

4.4.2 Accuracy - Multiple Outcome Brier Score

Brier’s original definition of the Brier Score [191] was designed to assess predictions of multino-

mial outcomes, particularly in weather forecasting. By adapting this model and applying the

time-dependent IPCW to each individual, their Multiple Outcome Brier Score can be calculated

as:

BSi,K = ωi

(
K∑

k=1

(
P k
i −Ok

i

)2)
We then take an average to find the overall BS:
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BSK =
1

Nω

N∑
i=1

BSi,K =
1

Nω

N∑
i=1

K∑
k=1

ωi

(
P k
i −Ok

i

)2
This version of the Brier Score is a generalisation of the traditional Brier Score, which can be

applied to multiple outcomes and accounts for patient censoring. Similar to the traditional

Brier Score, a lower value implies a more accurate model. If the two Brier Score measures are

applied to a Two-State Model, then the generalised BS above is twice that of the traditional

BS, (BSK = 2BS), this is because the traditional metric looks at only the outcome state, but

the extended method sums over both states, which will score identically.

For this metric, the P-level is 0 and, similar to the traditional metric, the NI-Level is∑K
k=1 Qk(1−Qk); because of this, we would need to apply an adjustment similar to the tradi-

tional Brier Score:

aBS = 1− BSK∑K
k=1 Qk(1−Qk)

Note that due to the relationship between BS and BS2, the doubling that occurs cancels out

between the numerator and denominator and so this adjustment works on the same scale as

the previously defined aBS (and thus is given the same name).

As with the traditional BS metric, each patient will have their own BSK measurement and

so we can find the population-based confidence interval for the BSK by using the standard

deviation of these values. This can once again be converted into a confidence interval for the

aBS.

4.4.3 Discrimination - Polytomous Discriminatory Index

Intuitively, the extension of the c-statistic would be the probability that K patients, chosen

randomly from each of the outcome groups, will be correctly discriminated. In this case, what

it is to be correctly discriminated needs to be defined. The Polytomous Discriminatory Index

(PDI) provides a definition for this discrimination [193]. We define a K-tuple of patients as

an ordered set of K patients where one patients is from each of the outcomes. A K-tuple of

patients is well discriminated for a state k if the patient in state k was predicted to have the

highest probability of being in state k compared to the others in the K-tuple. If we let patients

ij be a patient in state j, then the PDI for state k in that K-tuple can be given as:

Ck
K(i1, i2, ..., ik, ..., iK) =


1 P k

ik
> max

(
Pij : j ̸= k

)
0 P k

ik
< max

(
Pij : j ̸= k

)
1
m P k

ik
= max

(
Pij : j ̸= k

)
, m =

∣∣∣{j : P k
ij
= P k

ik

}∣∣∣
This definition also includes the caveat that if there are ties for the maximum predicted

probability by assigning 1/m when that occurs, where m is the number of patient (including ik

tying for highest probability). We can see that if K=2, this collapses to C2 defined previously

for the two states involved.
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For a K-tuple of patients, we also define their combined IPCW as the product of their

individual IPCWs. This allows us to define a PDI for a K-tuple in a given state.

PDIkK(i1, i2, ..., iK) =

 K∏
j=1

ωij

Ck
K(i1, i2, ..., iK)

This allows us to define average weighted PDI for a K-tuple of patients as:

PDIK(i1, i2, ..., iK) =
1

K

K∑
k=1

PDIkK(i1, i2, ..., iK)

Or, we can summarise by finding the average PDI for a given state across the whole popu-

lation:

PDIkK =

(
1∏K

k=1 Nk

) ∑
i1∈A1

∑
i2∈A2

...
∑

iK∈AK

PDIkK(i1, i2, ..., iK)

These averages can be averaged again to get an overall measure of PDI:

PDIK =
1

K

K∑
k=1

PDIkK

=

(
1∏K

k=1 Nk

) ∑
i1∈A1

∑
i2∈A2

...
∑

iK∈AK

PDIK(i1, i2, ..., iK)

Similar to the c-statistic, the P-model would score a PDI of 1, however the NI-model would

achieve a PDI of 1/K . Therefore, we need to adjust this PDI to correct the scaling to be that

of he common c-statistic:

ĉ = (PDIK)
logK(2)

Since this new measure is on the same scale as the c-statistic, we can just refer to it as such.

As with the c-statistic, we can use an extended variant of DeLong’s method for calculating

the variance (and thus standard error and confidence intervals)

var(ĉ) =

K∑
k=1

1

Nk
Sk

Where Sk are defined as:

Sk =
1

Nk − 1

∑
ik∈Ak

(Vk(ik)− PDIK)
2

and Vk(ik) can be thought of as the PDI for an individual in a given state, i.e. the average of

all PDIkk values that contain that individual

Vk(ik) =
1

Nk

∑
i1∈A1

...
∑

ik−1∈Ak−1

∑
ik+1∈Ak+1

...
∑

iK∈AK

PDIkK (i1, ..., ik, ..., iK)
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Computational Limitations

One major drawback of the PDI is that for large datasets and/or with many states, it can be

computationally intensive. Therefore, an estimated PDI can be found by taking a sample of

the K-tuples. To ensure robustness against censoring, each K-tuple should be drawn into th

sample with probability inverse to the IPCW of that sample, where the IPCW of a K-tuple is

calculated above as the probability of its elements. This is equivalent to drawing patients from

each outcome with probability ωj/Nω
. In this case, the calculations of the PDI remain similar,

but each patient would be reset with a ωj = 1 (as the weighting has already been applied during

sampling). This would also allow for an empirical estimate of a confidence interval.

4.4.4 Calibration - Multinomial Intercept, Matched and Unmatched

Slopes

Since the traditional calibration metrics described above use a binomial logistic regression, it

seems logical that the multi-dimensional extension for a multi-state models uses a multinomial

logistic regression to provide parallel interpretation [192]. Unlike the other measures, we must

choose a state to be our base-state, k = 1, this is usually the most populous initial state;

however this choice is arbitrary and clinical reasoning may lead to a more logical choice.It is

important to note that the values of β found below will depend on the choice of base-state,

e.g. β3,k will be different if we choose the first versus the second state (or any other states in

the model). It is common to cycle through the different choices of base-state prior to check

whether the conclusions are similar regardless of the choice. We then estimate the following

series of regressions for all k > 1:

E

[
log

(
Ok

O1

)]
= αk + β2,klog

(
P 2

P 1

)
+ ...+ βK,klog

(
PK

P 1

)
Once again, using ωi as weights for each patient during the regression process. This process

estimates the α and β to provide a (K−1) length vector of intercept terms, α̂ = {α̂2, α̂3, ..., α̂K}
and a (K − 1)× (K − 1) dimension matrix of slope terms, β̂ with subscripts running from 2 to

K in both dimensions.

The baseline models produce values similar to those found in the traditional calibration

intercept and slope metrics, but directly extended to a multi-dimensional space. The P-Level

for the Intercept would therefore be the zero-vector of length (K − 1) and the Slope would

be the Identity matrix for (K − 1) dimensions. The NI-Level for the Intercept would be the

prevalence (without the first state), {Q2, Q3, ..., QK}, and the Slope would be the zero-matrix

for (K − 1) dimensions.

Software packages that can produce multinomial logistic regression [202] can also automat-

ically produce confidence intervals surrounding these estimates.

As discussed earlier, traditional calibration measures are often associated with an interpre-

tation depending on whether the model over- or under-predicts or has predictions that are too

extreme or too moderate. Because of this, the multinomial extensions of these metrics cannot

be aggregated to a single value (as with the other performance metric extensions), since doing
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so would lose a lot of information. Instead, we discuss their interpretations of different elements

of the Intercept vector and Slope matrix

The Intercept vector can be interpreted to have an element for every state except the default

one. Therefore in our example, the first element of the Intercept vector is associated with the

RRT state (state 2) and the second element is the Death state (state 3). Similarly, the Slope

matrix has its rows and columns associated with these states (in the same order).

Intercept values below 0 imply that the associated state is over-predicted by the model, and

values above 0 imply the state is under-predicted. By summing the entire Intercept vector, we

can get a feel for how well the default state is calibrated. If the sum is below 0 (implying that on

aggregate all other states are over-predicted) it implies that the default state is under-predicted,

and vice versa.

The Matched-Slope, or the diagonal of the Slope matrix can be thought of as a vector with

a single state associated with it (since the row-state and the column-state are the same state).

If the values in the Matched-Slope are below 1, it implies that the predictions for that state are

too moderate and if they are above 1, it implies that they are too extreme.

The Unmatched-Slope allows us to assess the Assumption of Independence of Irrelevant

Alternatives (IIA) [203]. This assumes the predictions of one state is removed, the ratio of

the observations in the other states will stay the same. More specifically, when dealing with

a row/column state pair it means that we have found a correlation between the predictions of

the row-state and the observations of the column-state. This implies that if the row-state were

removed from our model and we were to re-standardise the other predictions, the predictions

from the column-state would differ more than would be expected if we only relied on the

information from the Matched-Slope.

If the Unmatched-Slope for the row/column-state pair is less than 0, then the removal of

the row-state implies that the predictions from the new model would more over-predict the

column-state compared to the original model. For complicated models, this kind of measure

can provide insight into which states could potentially be dropped if they have a strong effect

on other state’s predictions. This is especially true if these changes to the predictions could

potentially counteract the over/under-prediction found in the Matched-Slope.

4.5 Application to Real-World Data

4.5.1 Accuracy

Due to the prevalence of the different states in our population, the NI-levels for each the trivial

extensions, and indeed the Multi-State version of the Brier Score would be different. These

NI-levels can be seen 4.4, and in order for the Brier Score to be considered better than Non-

Informative, it would have to be lower than these values. Fortunately, due to the correction

applied to the aBS, the NI-level and P-level are 0 and 1 respectively, regardless of population.

Amongst the Pairwise, One-Vs-All and Transition based Brier Scores, the lowest (best) score

is the RRT vs All score of 0.025, which translates to an adjusted Brier Score of 0.774. However,

the highest adjusted Brier Score is 0.818 for the CKD vs All transition. The MSM has an aBS

of 0.802 indicating a very strong discrimination level.
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Table 4.4: NI-level for the different populations Brier Scores

One Vs All

CKD vs ALL Death vs All RRT vs All

0.245 0.167 0.056

Pairwise

CKD vs Death CKD vs RRT RRT vs Death

0.197 0.086 0.171

Trainsition

CKD to Death CKD to RRT RRT to Death

0.185 0.124 0.211

MSM

0.472

Table 4.5: Measures of Accuracy for the Trivial extensions and Multi-State Model method with 95%

Confidence Intervals shown

One Vs All
CKD vs All Death vs All RRT vs All

Brier Score 0.089 (0.077, 0.101) 0.073 (0.059, 0.086) 0.025 (0.022, 0.029)

aBS 0.818 (0.844, 0.793) 0.782 (0.822, 0.742) 0.774 (0.805, 0.742)

Pairwise
CKD vs Death CKD vs RRT RRT vs Death

Brier Score 0.133 (0.120, 0.146) 0.034 (0.028, 0.040) 0.075 (0.065, 0.086)

aBS 0.662 (0.695, 0.630) 0.801 (0.834, 0.767) 0.780 (0.811, 0.750)

Transition
CKD to Death CKD to RRT RRT to Death

Brier Score 0.093 (0.078, 0.107) 0.053 (0.045, 0.061) 0.095 (0.085, 0.104)

aBS 0.750 (0.790, 0.711) 0.785 (0.817, 0.752) 0.776 (0.798, 0.753)

MSM
Brier Score 0.094 (0.067, 0.120)

aBS 0.802 (0.858, 0.745)
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Table 4.6: Measures of Discrimination for the Trivial extensions and Multi-State Model method with

95% Confidence Intervals shown

One Vs All
CKD vs All Death vs All RRT vs All

c-statistic 0.689 (0.677, 0.701) 0.673 (0.659, 0.686) 0.625 (0.622, 0.629)

Pairwise
CKD vs Death CKD vs RRT RRT vs Death

c-statistic 0.733 (0.720, 0.746) 0.704 (0.688, 0.740) 0.675 (0.665, 0.686)

Transition
CKD to Death CKD to RRT RRT to Death

c-statistic 0.693 (0.678, 0.707) 0.701 (0.683, 0.730) 0.695 (0.685, 0.704)

MSM
c-statistic 0.702 (0.658, 0.745)

PDI 0.614 (0.595, 0.636)

The two sets of Confidence Intervals are roughly consistent, which demonstrates that the

population-based values are suitable for use when estimating the standard errors for these

metrics.

4.5.2 Discrimination

For the c-statistic, the NI-level is 0.5 and P-level is 1, however for the PDI in the three state

model, the NI-level is 0.333 and P-level is 1, which is why we adjust the PDI to coincide with the

c-statistic. The CKD vs Death comparison achieves the highest c-statistic with 0.733, however

the MSM score is still significant with a PDI of 0.614 against an NI-level of 0.333, which converts

to a c-statistic of 0.702. The calculated confidence interval for the PDI (and thus the overall

MSM c-statistic) are very narrow. This would be due to the large number of comparisons being

made (the product of the population of all states involved).

4.5.3 Calibration

The P-level for the Intercept is 0, or a vector of 0’s (of the same length as the number of

states). Several of the estimates for the intercept were significantly different from 0 at the 5%

level (i.e. their confidence interval did not include 0). Death vs All was significantly above 0

and RRT vs All was significantly below 0, indicating under- and over-predictive behaviours,

respectively. RRT vs Death was not significantly different from 0, but the other two Pairwise

values were under-predictive, and all of the Transition measures of the c-statistic were over-

predictive. In the MSM results, both the Intercept values were statistically below 0 meaning

that our predictions were over-predicting both of these states, which indicates that the CKD

state was being under-predicted by our model.

For the Calibration Slope, we would ideally have a P-level of 1 for the traditional Slope, and

a 2x2 identity matrix for the MSM extension. The Slope for the RRT vs All group was slightly

above 1 indicating that the model’s predictions are grouped too tightly and should be spread

out within the prediction range.

For the CKD vs Death Pairwise comparison, the Slope of 0.881 is statistically significantly
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Table 4.7: Measures of Intercept for the Trivial extensions and Multi-State Model method with 95%

Confidence Intervals shown

One Vs All
CKD vs All Death vs All RRT vs All

Intercept 0.004 (-0.011, 0.019) 0.048 ( 0.023, 0.073) -0.062 (-0.079,-0.045)

Slope 0.993 ( 0.957, 1.028) 1.011 ( 0.986, 1.035) 1.034 ( 1.013, 1.056)

Pairwise
CKD vs Death CKD vs RRT RRT vs Death

Intercept 0.051 ( 0.030, 0.071) 0.029 ( 0.015, 0.043) -0.032 (-0.033,-0.030)

Slope 0.881 ( 0.863, 0.898) 1.013 ( 1.008, 1.018) 0.953 ( 0.918, 0.988)

Transition
CKD to Death CKD to RRT RRT to Death

Intercept -0.029 (-0.057,-0.001) -0.040 (-0.065,-0.016) -0.032 (-0.033,-0.030)

Slope 1.018 ( 0.974, 1.062) 0.940 ( 0.924, 0.957) 0.958 ( 0.942, 0.975)

MSM

Intercept

[
−0.033
−0.036

]([
−0.061
−0.048

]
,

[
−0.005
−0.024

])
Slope

[
1.110 −0.073
−0.046 1.118

]([
1.086 −0.085
−0.062 1.113

]
,

[
1.134 −0.061
−0.030 1.123

])

lower than 0 and indicates that the predictions are too sparse and would need to be gathered

inwards, this is reflected in figure 4.2 where the CKD vs Death curve in the middle plot is

visibly different to the diagonal dotted line, which represents perfect calibration.

Figure 4.2: Calibration plot for the three trivial extensions, One Vs All, Pairwise and Transition

For the 2x2 matrix produced for the MSM extension, the Matched-Slope is statistically above

1 for the Death state (the second value on the diagonal 2), this indicates that the predictions

of the Death state are slightly too moderate to match the observed data, and would need to

be spread slightly to match. The Unmatched-Slope (those taken from the off-diagonal) are

all significantly below 0, meaning that the model does not strictly follow the independence of

irrelevant alternatives assumption and therefore the removal of one of the states does have a

small effect on the others.
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4.6 Discussion

Model Validation is an important step in assessing how generalisable and transportable a clinical

prediction model will be to a new population. In this paper, we have extended the current meth-

ods of model validation to a Multi-State framework. The extensions have included adapting

methods that were previously focused on single outcome cross-sectional models to incorporate

multiple outcome states and account for censoring. R code to calculate the metrics is available

in Appendix D. These extensions and their relevant adjustments have been normalised to allow

for their predictive ability to be understandable at the same scale regardless of the number of

states and prevalence within a population. This can allow researchers to directly compare the

predictive ability of more complicated models to simpler ones.

The results from applying our validation metrics to our model show consistency with trivial

extensions (where traditional metrics are applied to sub-sections of the model), which adds to

their robustness.

For the Brier Score, the extension is a natural one, relying on the original multinomial defi-

nition and also provides an updated version, the aBS, which sets the level of a Non-informative

(also known as a Random Model) to be 0 with a Perfect model scoring 1. Models that are worse

than a Non-Informative model, score less than 0. Although not useful for direct application,

models that score in this negative range can be used to inform other models or by simply alter-

ing their outcomes (e.g. by swapping states), a new model can be developed (which would have

to undergo a similar validation process). This standardisation can also be useful in non-MSM

situations, when there is a need to compare populations with different prevalences. The results

from our model demonstrate consistency between the extensions to the traditional

The Discrimination, which is traditionally most commonly measured using the c-statistic

has various ways of being extended, most of which have been studied by Van Calster et al [193].

We chose to use their Polytomous Discriminatory Index, as it was the most robust one and

provided a reasonable level for a Non-Informative model. It was also simple to standardise to

the same scale as the more well-known c-statistic.

The Calibration measurements provided more complexity in their extensions as the concept

of a Calibration Intercept and Calibration Slope have been well studied elsewhere [192], [204],

the effect of inter-state dependency has not. The Intercept provides an understanding of how

over- or under-predicted a state is within a population, and thus also provides an idea of how

under- or over- predicted the “default” state is. The Matched-Slope (i.e. the diagonals of the

Slope matrix) is interpretable similar to the standard Calibration Slope as it provides an idea

of how moderate predictions are compared to the observations and could be used to adjust a

model if required.

The Unmatched-Slope provides an indication of how well the model satisfies the assumption

of irrelevant alternatives (IIA). If the IIA had held for the Unmatched-Slope, it would imply that

the removal of the one state, for example, RRT, would simply normalise the other predictions

(of the CKD and Death states) to have the same ratio, but so that they sum to 1. However, the

value in the RRT row and Death column (top right of our results) is negative and statistically

different from 0. The breaking of this assumption implies that the removal of the RRT state

would increase the values of the predictions in the Death state compared to those in the CKD
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state, therefore:

E [P (Death| !RRT)]
E [P (CKD| !RRT)]

>
O [P (Death)]

O [P (CKD)]

The value in the bottom-left of the Calibration Slope Matrix is also negative and so the

same interpretation happens for the values of the RRT predictions if Death were removed as a

state. Since these two values are statistically close, however, this implies that the removal of

CKD would have little effect on the ratio of the predictions for RRT with Death.

One limitation of the extensions provided is that they are applied at individual snapshots

of time, and thus would need to be calculated as such. Future work could involve adapting

these methods to be applicable towards a smoothed curve over time. For example, currently

the PDI would be recalculated for the entire population at a given time-point, a smoothed

measure would “update” the PDI when an event has occurred as populations move through

time. It would also be important to adapt multi-nomial methods of re-calibration, such as those

developed by Hoorde et al [192], [204], to a multi-state framework as described here.

The metrics extended herein do not encompass the entire literature of available metrics

which had the potential to be extended into the MSM field. The three metrics used were

chosen partly due to popularity within the clinical literature and how easy they are to interpret

(which are incidentally not unrelated measures themselves). For example, to measure the

discrimination of a model, we could have chosen to extend the D-statistic [69] through methods

similar to the above for the c-statistic, however the interpretation of such a metric and what

is considered ‘good’ would be difficult to establish (whereas this has been studied prior for

the PDI). Alternatively, we could have extended the psuedo-observation method (as discussed

in Chapter 3) to assess model calibration. However this would be computationally much more

intensive than the logistic regression method and is intrinsically more complicated to implement.

The results from such a model would be interpreted similar to those of a logistic regression based

method and so could be cause for further study. The authors highly encourage the extension

and establishment of other metrics to measure these (and other factors associated with model

quality), as other metrics may be more appropriate depending on the model being assessed and

the clinical utility of such a model.

Although some of the methods demonstrated here were developed by others in categorical

outcome data [191], [193]; we are the first to apply them to a Multi-State scenario. This

included the application of the IPCW to account for a time-trend and censoring and providing

suitable adjustments to allow for cross-comparisons, regardless of the number of states. Before

this work, it was previously un-assessable whether the additional information (e.g. prediction

of Death alone or Death from multiple causes) came at a cost to model performance.
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Abstract

Background

Clinical Prediction Models (CPMs) provide individualised predictions for patient outcomes.

Traditionally, these models provide predictions for single outcomes, however in many circum-

stances, the ability to predict a multi-dimensional outcome with a single model can be advanta-

geous. Many CPMs have been developed to predict the risk of different outcomes in individuals

following chronic kidney disease (CKD) onset, but few allow the ability to predict the risk of

patients transitioning onto renal replacement therapy (RRT) as well as death. For example, the

risk of having a transplant within 1 year following dialysis, or the risk of remaining on dialysis

until death. Multi-state models provide the vehicle to make such predictions, but have not been

used within the CKD context.
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Objective

Our objective was to develop a Multi-State Clinical Prediction Model (MSCPM), which can

be used to predict patient progression through three states, untreated CKD (CKD), Renal

Replacement Therapy (RRT) and Death (Dead).

Methods

We developed our model using tertiary care data from the Salford Kidney Study (SKS) as our

development data set and secondary care data from the West of Scotland (SERPR) dataset as

our external validation set. State transition were modelled using the Royston-Parmer regression

technique and combined to create a single model. Model performance was assessed for accuracy,

discrimination and calibration using methods both internally and externally. The model was

then used to create an online calculator.

Results

Age was a strong predictor of mortality and outcomes were highly dependent on primary renal

diagnosis. Models performed well in both the internal and external validation with a Brier

Score of 0.67/0.62 (internal/external, respectively), c-statistic of 0.83/0.81 and an averaged

calibration intercept of 0.00/0.00 and slope diagonal of 1.34/1.53 (indicating under-prediction

of all non-untreated CKD states for more extreme values).

Discussion

Our CPM provides clinicians and patients with multi-dimensional predictions across different

outcome states and any time point. This implies that users of these models can get more

information about their potential future without a loss to the model’s calibration nor its dis-

criminative ability.

Supplementary Material

Supplementary Material is available in Appendix F.

5.1 Introduction

A clinical prediction model (CPM) is a tool which provides patients and clinicians with a

measure of how likely a patient is to suffer a specific clinical event, more specifically, a prognostic

model allows the prediction of future events [3]. CPMs use data from previous patients to

estimate the outcomes of an individual patient. Prognostic models can be used in clinical

practice to influence treatment decisions.

Within Chronic Kidney Disease (CKD), prognostic models have been developed to predict

mortality [205]–[206], End-Stage Renal Disease [207], the commencements of Renal Replacement

Therapy (RRT) [208], [209]–[210] or mortality after beginning dialysis [211]–[212]. Some previ-

ous models have used the commencement of RRT as a proxy for CKD Stage V [213]–[214], while
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others have investigated the occurrence of cardiovascular events within CKD patients[215]–

[216]. Reviews by Grams & Coresh [217], Tangri et al [218] and Ramspek et al [219], which

explored the different aspects of assessing risk amongst CKD or RRT patients, found that the

current landscape of CKD prediction models is lacking from both a methodological and clinical

perspective [13], [85].

Methodologically, the majority of existing CKD prediction models fail to account for com-

peting events [220], [206], [221], have high risks of bias [205], [207], [209] or are otherwise flawed

compared to modern clinical prediction standards [3], [13]. These can have large implications

if these models were to be used in clinical practice as, for example, patients could be given a

predicted probability of RRT, which has not been adjusted for the probability of death and is

thus, in fact a probability of RRT, assuming you don’t die (a very different value if you have a

high risk of death).

In 2013, Begun et al [141] developed a multi-State model for assessing population-level

progression through the severity stages of CKD (III-V), RRT and/or death, which can be used

to provide a broad statement regarding a patient’s future. In 2014, Allen et al [222] applied a

similar model to liver transplant recipients and their progression through the stages of CKD

with a focus on the predictions of measured vs estimated glomerular filtration rate (mGFR vs

eGFR). In 2017, Kulkarni et al [210] developed an MSM focusing on the categories of Calculated

Panel Reactive Antibodies and kidney transplant and/or death.

Most recently, in 2018, Grams et al [140] developed a multinomial clinical prediction model

for CKD patients which focused on the occurrence of RRT and/or cardiovascular events. As

of the publication of this paper, this is the only currently existing CPMs of this kind for CKD

patients.

However, the first three of these existing models (Begun, Allen and Kulkarni) categorise

continuous variables to define their states at specific cut-offs and this has been shown to be

inefficient when modelling [30] and none of these models have undergone any validation process,

whether internal or external [11].

It is also important to note that although these models can be used to predict patient

outcomes, they were not designed to produce individualised patient predictions as is a key aspect

of a clinical prediction model; they were designed to assess the methodological advantages of

MSMs in this medical field, to describe the prevalence of over time of different CKD stages

and to produce population level predictions for patients with different levels of panel-reactive

antibodies [10].

The fourth model (Grams), is presented as a Multi-State Model and the transitions involved

were studied and defined, however the underlying statistical model is two multinomial logistic

models analysed at 2 and 4 years, which assumes homogeneity of transition times. Two down-

sides to the implementation of this model are that it can only produce predictions at those

predefined time points and that it is unable to estimate duration of time on dialysis.

Therefore, our aim is to develop a MSCPM - we do this by modelling patient pathways

through a Multi-State Model by choosing transition points which can be exactly identified and

include states which produce a clinical difference in patient characteristics. Our modelling

techniques allow for individual predictions of multi-dimensional outcomes at any time point .
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The models produced by this process will then be validated, both internally and externally, to

compare their results and demonstrate the transportability of the clinical prediction models.

5.2 Methods

We report our work in line with the TRIPOD guidelines for development and validation of

clinical prediction models [13], [14].

5.2.1 Data Sources

The models were developed using data from the Salford Kidney Study (SKS) cohort of pa-

tients (previously named the CRISIS cohort), established in the Department of Renal Medicine,

Salford Royal NHS Foundation Trust (SRFT). The SKS is a large longitudinal CKD cohort

recruiting CKD patients since 2002. This cohort collects detailed annualised phenotypic and

laboratory data, and plasma, serum and whole blood stored at -80°C for biomarker and geno-

typic analyses. Recruitment of patients into SKS has been described in multiple previous studies

[223], [224] and these have included a CKD progression prognostic factor study and to evidence

the increased risk of cardiovascular events in diabetic kidney patients. In brief, any patient

referred to Salford renal service (catchment population 1.5 million) who is 18 years or over

and has an eGFR measurement of less than 60ml/min/1.73m2 (calculated using the CKD-EPI

formula [225]) was approached to be consented for the study participation.

At baseline, the data, including demographics, comorbidities, physical parameters, lab re-

sults and primary renal diagnosis are recorded in the database. Patients undergo an annual

study visit and any changes to these parameters are captured. All data except blood results

are collected via questionnaire by a dedicated team of research nurses. Blood results (baseline

and annualised), first RRT modality and mortality outcome data are directly transferred to the

database from Salford’s Integrated Record [226]. eGFR, uPCR, comorbidity and blood results

were measured longitudinally throughout a patient’s time within the cohort.

Due to limitations in our data, we were agnostic to how long since patients were diagnosed

with CKD. Therefore, we defined a patient’s start date for our model as their first date after

consent at which their eGFR was recorded to be below 60ml/min/1.73m2. Some patients

consented with an eGFR that was already below 60, and some entered our study later when

their eGFR was measured to be below 60. This implies that our models includes both patient

who have recently been diagnosed with CKD eGFR ⪅ 60 and those that have been suffering

with CKD for an arbitrary amount of time. This timelessness of the model means it can be

applied to any patient prior to commencement of RRT at any time after their initial CKD

diagnosis, be that immediately or 10 years later.

All patients registered in the database between October 2002 and December 2016 with

available data were included in this study. As this is a retrospective convenience sample, no

sample size calculations were performed prior to recruitment. However, we were able to use

the given sample size to calculate the maximum number of predictors for each transition as

per Riley, et al [46], which permitted us to use 30 predictors for each transition in the Three-

State Model, although permitted number of variables were significantly lower in the Five-State
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Model and thus this model would be susceptible to overfitting. All patients were followed-up

within SKS until the end-points of RRT, death or loss to follow-up or were censored at their

last interaction with the healthcare system prior to December 2017. Date of death for patients

who commenced RRT was also included in the SKS database.

For external validation of the model, we extracted an independent cohort from the West of

Scotland Electronic Renal Patient Record (SERPR). Our extract of SERPR contains all patients

known to the Glasgow and Forth Valley renal service who had an eGFR measure of less than

60ml/min/1.73m2 between January 2006 and January 2016. This cohort has been previously

used in Chronic Kidney Disease Prognosis consortium studies investigating outcomes in patients

with CKD [227] and a similar cohort has been used for the analysis of skin tumours amongst

renal transplant patients. Use of anonymised data from this database has been approved by the

West of Scotland Ethics Committee for use of NHS Greater Glasgow and Clyde ‘Safe Haven’

data for research.

Both the internal and external validation cohort were used as part of the multinational

validation cohort used by Grams et al in their multinomial CPM discussed above [140]. In

SERPR, start dates were calculated to be the first time point where the following conditions

were met:

� eGFR is measured at less than 60

� There is at least one prior eGFR measurement

� Patient is 18 or over

The second requirement was implemented to avoid a bias in the eGFR Rate. eGFR Rate is

a measure of the change in eGFR over time and is calculated as the difference between the

most recent two eGFR measurements divided by the time between them. For patients who

entered the system with an eGFR < 60, their eGFR Rate would be unavailable (i.e. missing).

Otherwise, patient eGFRs would have to drop to below 60 and thus eGFR Rate would be

negative. In addition, to avoid Acute Kidney Incident events, we also filtered measurements of

eGFR Rate that were more extreme than 1.5x those found in the SKS population.

5.2.2 Model Design

Three separate models were developed, so we could determine a clinically viable model while

maintaining model parsimony as much as possible: a Two-State, Three-State and Five-State

model, each building on the previous models’ complexity (see figure 5.1). The Two-State model

was a traditional survival analysis where a single event (death) is considered. The Three-State

model expanded on this, by splitting the Alive state into transient states of (untreated) CKD

and (first) RRT; patients can therefore transition from CKD to Death or CKD to RRT, and

then onto RRT to Death. The Five-State model stratifies the RRT state into HD, PD and

Tx and allows similar transitions into and out of the RRT states; however, the transition from

Tx to Death was not considered as it was anticipated a priori that there would be insuffi-

cient patients undergoing this transition and that the process of undergoing a transplant would

be medically transformative and so it would be inappropriate to assume shared parameters
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Figure 5.1: Diagram of the three models, the states being modelled and relevant transitions

before and after the transition (i.e. Tx was modelled as a second absorbing state). Missing

data was handled using multiple imputation [75] using times for all events as imputation co-

variates. Variables considered as covariates were demographics (sex, age, smoking status and

alcohol consumption), comorbidities (congestive cardiac failure (CCF), chronic obstructive pul-

monary disease (COPD), prior cerebrovascular accident (CVA), hypertension (HT), diabetes

mellitus (DM), ischemic heart disease (IHD), chronic liver disease (LD), prior myocardial in-

farction (MI), peripheral vascular disease (PVD) and slid tumour (ST)), physical parameters

(BMI, blood pressure), blood results (haemoglobin, albumin, corrected calcium and phosphate

measures), urine protein creatinine ratio (uPCR) and primary renal diagnosis (grouped as per

ERA-EDTA classifications [228]). From these variables, uPCR and eGFR Rate of change were

also derived [229], [230] as well as their log transforms and log(Age) and Age2. For each transi-

tion, Backwards-forwards stepwise methods were used to minimise the AIC, allowing different

variables to be used for each transition. Variables were also assessed for their adherence to the

proportional hazards assumption by calculating their Schoenfeld residual [231], [232], for those

that fail the test of proportionality, we include a time trend in their hazard estimate.

5.2.3 Other Considerations

Data was recorded in a time-updated manner, however all variables were measured at baseline

to emulate the real-world application of the model (i.e. future prediction of states and not

covariates). Race was also assessed in the populations, but due to high heterogeneity, as most

patients were white, it was omitted as a potential predictor from the models.

Intermediate states (RRT or modality) were considered to be medically transformative, and

so a semi-markov (clock reset) method for analysis was considered to be well justified [233].

Each transition was modelled under a proportional hazards assumption using the Royston-

Parmar technique [67] to estimate coefficients for each covariate and a restricted cubic spline

(on the log-time scale) for the baseline cumulative hazard, see Section E.1. The hazards for
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each transition can be combined to produce estimates for the probability of a patient being in

any state at any time [113], see Section E.2.

All missing data were assumed to be missing at random and so were multiply imputed using

chained equations with the Nelson-Aalen estimators for each relevant transition as predictors

[75] in the MICE model. Some variables (smoking status and histories of COPD, LD and ST)

were present in the SKS (development) dataset, but were completely missing in the SERPR

extract (validation) and so these were multiply imputed from the development dataset [234] by

attaching each of the imputed SERPR dataset to the SKS dataset and re-imputing once for

each of the imputed datasets.

For variable selection, we stacked the imputed datasets together to create a larger, pseudo-

population [235] and performed backwards-forwards selection based on minimising the AIC at

each step. We included the γ time trends for each covariate in these steps if the covariate

was also present. This was repeated for each transition and for different numbers of evenly

spaced knots in modelling the form of the cubic spline hazard, m={0,1,2,3,4,5}. This allowed

for different transitions to use different sets of variables and numbers of knots in the final

model. Some combinations of variables resulted in models that were intractable and so these

models were excluded. Once a set of variables were chosen, the R-P model was applied to

each imputed dataset individually and the resulting coefficients and cubic spline parameters

were aggregated across imputations using Rubin’s Rules [236]. This gave a model fully defined

by smooth cubic splines representing the individualised cause-specific cumulative hazard for

each transition, which can be smoothly derived to estimate an individuals cause-specific hazard

function.

5.2.4 Validation

Each of the three models were internally validated in the development dataset using bootstrap-

ping to adjust for optimism and then further externally validated in the validation dataset

extracted from SERPR [237]. The bootstrapping method was also used for both validations

to adjust the results for optimism and to produce confidence intervals around the performance

metric estimates. To assess the performance in low eGFR patients, the models were also vali-

dated in subsets of the SKS and SERPR where patients had an eGFR < 30/ml/min/1.73m2.

Model accuracy was assessed using the Brier Score, discrimination was assessed using the

c-statistic and the calibration was assessed using the multi-dimensional intercept and slope-

matrix, as described in Chapter 4. These measures were taken at One-Year, Two-Years and

Five-Years after the patient’s start dates, and therefore are equivalent to validation measures

at that point in time after a prediction has been applied.

Further details of how the models were developed and validated is discussed in the Supple-

mentary materials in appendix F.

5.2.5 Example

Once the models have been developed, we will apply them to three example patients to demon-

strate their use and applicability to the general population. We will provide a direct clinical
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Table 5.1: Details of the Example Patients

Vars Patient 1 Patient 2 Patient 3
Age 20 40 66
Gender Female Male Female
Smoking Status Non-Smoker Smoker Non-Smoker
BP 144/101 160/90 140/80
Albumin 39 40 40
Correct Calcium 2.3 3.0 2.6
Haemoglobin 150 100 14
Phosphate 0.68 2.00 0.86
eGFR 42 10 51
eGFR Previous 50 (one week ago) 30 (one year ago) 70 (one week ago)
uPCR 0.30 0.20 0.01
uPCR Previous 0.80 (one month ago) 1.20 (one year ago) 0.06 (one week ago)
Primary Diagnosis Glomerulonephritis Tubular Necrosis Diabetes
Comorbities COPDa DMd

LDb COPDa

STc HTe

a
Chronic obstructive pulmonary disease

b
Liver Disease

c
Solid Tumour

d
Diabetes Mellitus

e
Hypertension

estimation of these patient outcomes based on years of nephrological experience and compare

this with the results presented by our clinical prediction model.

We have chosen three (synthetic) patients to use as examples of the use of our model. Their

details can be seen in table 5.1. Our three example patients cover a broad range of ages and

other covariates. A clinically guided prediction for these patients would assume that Patient

1 has a high chance of proceeding as normal (with little need for RRT), Patient 2 would be

recommended to start RRT soon and Patient 3 would be predicted to have a high risk of

mortality with or without RRT.

5.2.6 Calculator

As part of this work, we have also produced an online calculator to allow patients and clinicians

to easily estimate outcomes without worrying about the mathematics involved.

All analysis was done in R 3.6.2 [183] using the various tidyverse packages [184], as well

as the mice [238], flexsurv [239], nnet [202] and furrr [240] packages. The calculator was

produced using the shiny package [188].
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5.3 Results

5.3.1 Data Sources

There were 2,981 patients in the SKS dataset and 7,709 patients in the SERPR dataset. As

seen in table 5.2, the Age of the populations had a mean of 64.4 and 65.9 respectively with

a very broad range. Due to the inclusion criteria, eGFR were capped at a maximum of 60,

and was consistent across populations; however, the rate of change for eGFR was much wider

in the SERPR patients than in the SKS, and it was decreasing much faster, on average ( -25

vs 0) . The uPCR measures are presented in our results as g/mmol, rather than the more

conventional g/mol, this is to better present results and coefficients of varying magnitudes.

Levels of missingness were much higher in the SERPR dataset in most continuous variables.
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Table 5.2: Population demographics, continuous displayed as median (Inter-Quartile Range), and Categorical/Comorbidity data as number (percent) range

and number missing are also included

SKS SERPR

Variable median (IQR) or n (%) range missing (%) median (IQR) or n (%) range missing (%)

Age 67.000 ( 19.000) [ 20.000, 94.000] 0 ( 0.00%) 69.000 ( 17.000) [ 11.000, 98.000] 0 ( 0.00%)

eGFR 28.612 ( 22.387) [ 3.578, 59.966] 0 ( 0.00%) 35.398 ( 20.565) [ 1.199, 59.994] 0 ( 0.00%)

eGFR Rate -0.037 ( 0.294) [ -19.107, 33.782] 1278 ( 42.87%) -0.932 ( 21.897) [ -28.636, 50.653] 0 ( 0.00%)

SBP 139.000 ( 29.000) [ 77.000, 220.000] 50 ( 1.68%) 144.000 ( 30.000) [ 82.000, 258.000] 6345 ( 82.31%)

DBP 75.000 ( 14.000) [ 36.000, 159.000] 52 ( 1.74%) 77.000 ( 17.000) [ 35.000, 128.000] 6345 ( 82.31%)

BMI 27.993 ( 7.842) [ 13.182, 61.467] 572 ( 19.19%) 28.081 ( 6.811) [ 17.073, 52.403] 7491 ( 97.17%)

Albumin 43.000 ( 5.000) [ 12.000, 52.000] 60 ( 2.01%) 37.000 ( 6.000) [ 7.000, 53.000] 3134 ( 40.65%)

Calcium 2.300 ( 0.180) [ 1.210, 3.660] 68 ( 2.28%) 2.410 ( 0.160) [ 1.455, 3.400] 4513 ( 58.54%)

Haemoglobin 122.000 ( 23.000) [ 61.000, 195.000] 72 ( 2.42%) 116.000 ( 29.000) [ 7.100, 208.000] 3557 ( 46.14%)

Phosphate 1.120 ( 0.320) [ 0.430, 3.710] 87 ( 2.92%) 1.160 ( 0.320) [ 0.320, 4.370] 4510 ( 58.50%)

uPCR 0.035 ( 0.103) [ 0.001, 2.025] 245 ( 8.22%) 0.062 ( 0.177) [ 0.001, 1.943] 7170 ( 93.01%)

uPCR Rate -0.008 ( 0.188) [ -70.727, 28.199] 1777 ( 59.61%) 0.004 ( 0.905) [-176.200, 952.812] 7495 ( 97.22%)

Gender: 0 ( 0.00%) 0 ( 0.00%)

Male 1865 (62.56%) 3885 (50.40%)

Female 1116 (37.44%) 3824 (49.60%)

Ethnicity: 0 ( 0.00%) 7009 ( 90.92%)

White 2875 (96.44%) 679 ( 8.81%)

Asian 75 ( 2.52%) 12 ( 0.16%)

Black 21 ( 0.70%) 7 ( 0.09%)

Other 10 ( 0.34%) 2 ( 0.03%)

Smoking Status: 42 ( 1.41%) 7709 (100.00%)

Former 1535 (51.49%) 0 ( 0.00%)

Non-Smoker 979 (32.84%) 0 ( 0.00%)

Smoker 379 (12.71%) 0 ( 0.00%)

Former (More than

3Y)

46 ( 1.54%) 0 ( 0.00%)

Diagnosis Group: 567 ( 19.02%) 6640 ( 86.13%)
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Table 5.2: Population demographics, continuous displayed as median (Inter-Quartile Range), and Categorical/Comorbidity data as number (percent) range

and number missing are also included (continued)

SKS SERPR

Variable median (IQR) or n (%) range missing (%) median (IQR) or n (%) range missing (%)

Systemic diseases af-

fecting the kidney

1304 (43.74%) 316 ( 4.10%)

Glomerular disease 442 (14.83%) 278 ( 3.61%)

Tubulointerstitial dis-

ease

268 ( 8.99%) 173 ( 2.24%)

Miscellaneous renal

disorders

227 ( 7.61%) 198 ( 2.57%)

Familial / hereditary

nephropathies

173 ( 5.80%) 104 ( 1.35%)

Comorbidities:

CCF 2414 (81.09%) 4 ( 0.13%) 408 ( 5.29%) 0 ( 0.00%)

COPD 2411 (80.99%) 4 ( 0.13%) 0 ( 0.00%) 7709 (100.00%)

CVA 2727 (91.60%) 4 ( 0.13%) 186 ( 2.41%) 0 ( 0.00%)

DM 992 (33.32%) 4 ( 0.13%) 1535 (19.91%) 0 ( 0.00%)

HT 2546 (91.48%) 198 ( 6.64%) 3114 (40.39%) 0 ( 0.00%)

IHD 2393 (80.38%) 4 ( 0.13%) 863 (11.19%) 0 ( 0.00%)

LD 2891 (97.11%) 4 ( 0.13%) 0 ( 0.00%) 7709 (100.00%)

MI 2492 (83.71%) 4 ( 0.13%) 556 ( 7.21%) 0 ( 0.00%)

PVA 2485 (83.47%) 4 ( 0.13%) 376 ( 4.88%) 0 ( 0.00%)

ST 2570 (86.33%) 4 ( 0.13%) 0 ( 0.00%) 7709 (100.00%)
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Table 5.3: Event times for the two populations presented as Number of Events, Median, Inter-Quartile

Range and Max

Transition SKS SERPR
Model From To n median IQR max n median IQR max

Two Alive Dead 1,427 4.0 y 4.3 y 15.0 y 3,010 4.8 y 3.3 y 10.1 y

Three CKD Dead 1,125 3.5 y 4.2 y 15.0 y 2,568 4.7 y 3.3 y 10.1 y

RRT 680 2.5 y 3.4 y 14.2 y 1,125 3.8 y 3.9 y 10.1 y

RRT Dead 302 2.2 y 3.3 y 13.5 y 442 1.6 y 2.5 y 9.2 y

Five CKD Dead 1,125 3.5 y 4.2 y 15.0 y 2,568 4.7 y 3.3 y 10.1 y

HD 344 2.6 y 3.5 y 14.2 y 882 3.7 y 3.8 y 10.1 y

PD 229 2.0 y 2.9 y 12.9 y 149 3.5 y 4.1 y 9.5 y

Tx 107 3.2 y 2.7 y 12.1 y 94 5.0 y 4.4 y 9.8 y

HD Dead 185 2.1 y 3.3 y 11.8 y 394 1.6 y 2.5 y 9.2 y

PD Dead 107 2.4 y 3.2 y 11.8 y 47 2.1 y 2.3 y 8.5 y

Table 5.2 also shows a breakdown of the categorical variables across the populations. In

the development population, crude proportions of males were numerically higher than females

whereas in the validation population the proportions are much more matched (62.6% male vs

50.4% male). Most patients were white in the SKS dataset, and ethnicity has extremely high

missingness in SERPR, which also contributed to its omission from the model.

Overall, there were high levels of comorbidities within the SKS population, but these levels

were much lower in the SERPR population.

The median date for the date of death was 3.9 years in the SKS population and 4.9 years

in the SERPR population. The median date for transition to RRT was 2.2 years and 1.5 years

(in SKS and SERPR respectively). In SKS, transitions to HD happened 6 months later than

PD, and in SERPR it was 3.6 months. The Maximum follow-up time in SKS was 15.0 years

and in SERPR it was 10.1 years. This information can be seen in table 5.3.

5.3.2 Development

Here we present the proportional hazards for the Three-State Model in 5.4. The full model

description, including non-proportional hazards and baseline hazards can be found in the Sup-

plementary Materials in appendix F. Older patients are predicted to be likely to transition to

RRT. Increased rates of decline of eGFR were associated with the transition from CKD to RRT.

Female patients are predicted to be more likely to remain in the CKD state than Males, or to

remain in the RRT state once there. Smokers were predicted as more likely than Non-/Former

Smokers to undergo any transition, apart from CKD to Tx. Blood results had associations with

all transitions in some way, and disease aetiology were strongly associated with the transitions

giving a wide range of predictions.

5.3.3 Validation

Table 5.5 shows the results from the internal validation in the Three-State Model at different

time points and as an average over all time points upto 10-years from start-date. Both the

discrimination and overall accuracy performances were strong with c-statistics ranging from
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Table 5.4: Porportional Hazards for each transition in the Three-State Model

Var CKD to Dead CKD to RRT RRT to Dead

constant term

const -4.007 (-15.263, 7.250) 1.292 (-1.654, 4.237) -5.927 ( -9.851, -2.002)

Age

Age -0.016 ( -0.067, 0.035) 0.064 ( 0.052, 0.075)

log(Age) -2.064 (-2.370, -1.758)

eGFR

eGFR -0.067 ( -0.116, -0.019) -0.552 (-0.640, -0.465) 0.011 ( -0.001, 0.023)

log(eGFR Rate) 0.044 ( -0.118, 0.207) 0.260 (-0.023, 0.542)

uPCR

uPCR 1.403 ( 0.530, 2.275)

Measures

Albumin -0.188 ( -0.332, -0.044) -0.025 (-0.059, 0.008) -0.038 ( -0.061, -0.016)

Corrected Calcium 2.383 ( -0.720, 5.486)

DBP 0.005 ( -0.001, 0.010)

Haemoglobin -0.013 ( -0.018, -0.008) -0.007 (-0.013, -0.000)

Phosphate 1.856 ( 0.124, 3.587) 0.483 (-0.050, 1.016)

SBP 0.008 ( 0.004, 0.012)

Gender (vs Male)

Female -0.562 ( -1.656, 0.532) -0.277 (-0.444, -0.110)

Smoking Status (vs Former)

Former (3y+) -3.016 ( -8.708, 2.676) -132.164 (-265.921, 31.593)

Non-Smoker -0.611 ( -1.851, 0.630) -0.186 ( -5.373, 5.001)

Smoker 0.331 ( -1.164, 1.827) -2.492 ( -9.124, 4.139)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary

nephropathies

-1.246 ( -5.193, 2.702) 0.011 (-0.498, 0.521) -0.958 ( -4.616, 2.700)

Glomerular disease 0.170 ( -1.526, 1.866) -0.097 (-0.595, 0.401) 0.336 ( -1.809, 2.481)

Miscellaneous renal

disorders

1.404 ( -0.472, 3.280) -0.796 (-1.702, 0.109) 1.668 ( -1.167, 4.502)

Tubulointerstitial dis-

ease

0.271 ( -2.109, 2.650) -0.605 (-1.157, -0.053) 1.572 ( -0.972, 4.116)

Comorbidity

CCF -1.758 ( -2.844, -0.673) -2.840 ( -6.378, 0.698)

COPD -0.289 ( -0.431, -0.147)

CVA -0.072 ( -0.253, 0.109)

DM 0.135 ( 0.003, 0.267) 0.208 ( -0.075, 0.490)

IHD 0.108 ( -0.035, 0.251)

MI -1.385 ( -2.510, -0.260)

PVD -0.929 ( -2.048, 0.191)

ST -1.331 ( -2.553, -0.110) -0.312 ( -0.636, 0.012)
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Table 5.5: Internal Validation of the Three-State Model, results presented as Estimate (95% CI, where

possible)

Measure eGFR One Year Two Year Five Year Average

Brier < 30 0.74 ( 0.74, 0.75) 0.68 ( 0.68, 0.69) 0.64 ( 0.64, 0.65) 0.67 ( 0.67, 0.68)

< 60 0.75 ( 0.74, 0.75) 0.73 ( 0.73, 0.73) 0.68 ( 0.67, 0.68) 0.68 ( 0.67, 0.68)

c-statistic < 30 0.79 ( 0.72, 0.85) 0.79 ( 0.79, 0.79) 0.78 ( 0.78, 0.78) 0.78 ( 0.71, 0.86)

< 60 0.93 ( 0.93, 0.93) 0.83 ( 0.82, 0.83) 0.72 ( 0.72, 0.72) 0.76 ( 0.73, 0.78)

Intercept < 30

-0.04 (-0.05,-0.04)

-0.06 (-0.07,-0.06)

-0.05 (-0.07,-0.03)

-0.04 (-0.06,-0.03)

-0.04 (-0.06,-0.02)

-0.05 (-0.06,-0.04)

-0.06 (-0.07,-0.06)

-0.04 (-0.04,-0.04)

-0.05 (-0.06,-0.04)

-0.04 (-0.05,-0.03)

-0.05 (-0.07,-0.03)

-0.04 (-0.05,-0.04)

< 60

0.00 ( 0.00, 0.01)

0.00 (-0.02, 0.03)

0.02 ( 0.02, 0.02)

-0.00 (-0.00,-0.00)

0.02 ( 0.02, 0.02)

-0.01 (-0.02,-0.00)

0.00 (-0.03, 0.04)

-0.01 (-0.03, 0.02)

-0.00 (-0.03, 0.02)

0.00 ( 0.00, 0.01)

0.02 (-0.00, 0.04)

0.02 (-0.03, 0.07)

Slope < 30

1.15, 0.10, 0.02

0.04, 1.08, 0.02

0.03, 0.05, 1.11

1.04, 0.02, 0.05

-0.03, 1.10, 0.00

0.01, 0.03, 1.05

1.13, 0.03, 0.02

-0.06, 1.13, 0.05

-0.06, 0.03, 1.08

1.10,-0.02, 0.05

0.01, 1.07, 0.07

0.13,-0.02, 1.12

< 60

0.95, 0.07, 0.01

0.05, 1.00,-0.00

-0.04,-0.02, 1.01

1.01, 0.05,-0.09

0.04, 0.97, 0.01

-0.09, 0.06, 0.97

0.91,-0.05,-0.01

0.03, 0.92,-0.06

0.09, 0.03, 0.99

1.02,-0.01, 0.06

-0.03, 0.97, 0.00

-0.04, 0.03, 0.92

0.72 − 0.93 in the overall (<60 eGFR) population and 0.78 − 0.79 in the <30 eGFR sub-

population and a Brier Score ranging from 0.68 − 0.75 in the overall (<60 eGFR) population

and 0.64− 0.74 in the <30 eGFR sub-population.

Table 5.6 shows the results from the external validation in the Three-State Model at different

time points and as an average over all time points upto 8-years from start-date (as longer times

were not available for all states). As with the internal validation, both the discrimination

and overall accuracy performances were strong. In the overall (<60 eGFR) population, the

c-statistics ranges from 0.72− 0.77 in the <30 eGFR sub-population it ranges from 0.64− 0.73.

Meanwhile, the Brier Score ranges from 0.63− 0.72 in the overall (<60 eGFR) population and

0.61− 0.70 in the <30 eGFR sub-population.

The calibration intercept results for the overall (<60 eGFR) population in the internal

validation (als in Table 5.5) are all very close to 0, as expected. However, values in the <30

eGFR sub-population were significantly below 0, indicating that, for the RRT, RRT to Death

and CKD to Death states, the model appears to systematically under-predict results and over-

predict the CKD state. Similarly, for the overall (<60 eGFR) population, the calibration slope

are close to 1 for most values at early time points, but at the five-year time point, the metric

for the RRT state is significantly below 1, indicating a possible loss of predictive power over

time. The calibration slope for the <30 eGFR sub-population were all significantly above 1,

inidicating that, for the RRT, RRT to Death and CKD to Death states, the spread of the

expected values were more condensed than was observed.

5.3.4 Example

The example patients seen in Table 5.1 were passed through our Three-State prediction model

and the results for all time-points are shown in figure 5.2. The prognosis for all three patients

were very different. Patient 1 (20 year old) had a very high probability of survival, with only an

16% chance of mortality by year 10 and 0% chance of commencing RRT. Patient 2 (40 year old)

was predicted almost 90% chance of starting RRT, and over 70% chance of dying overall (either

with or without RR). Patient 3 (66 year old) had a fast acceleration towards high mortality,
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Table 5.6: External Validation of the Three-State Model, results presented as Estimate (95% CI, where

possible)

Measure eGFR One Year Two Year Five Year Average

Brier < 30 0.69 ( 0.68, 0.69) 0.70 ( 0.69, 0.70) 0.61 ( 0.60, 0.61) 0.62 ( 0.62, 0.63)

< 60 0.68 ( 0.67, 0.68) 0.72 ( 0.71, 0.72) 0.65 ( 0.64, 0.65) 0.63 ( 0.62, 0.63)

c-statistic < 30 0.64 ( 0.62, 0.65) 0.65 ( 0.61, 0.68) 0.73 ( 0.71, 0.74) 0.68 ( 0.67, 0.70)

< 60 0.74 ( 0.73, 0.75) 0.77 ( 0.76, 0.78) 0.72 ( 0.71, 0.72) 0.75 ( 0.71, 0.79)

Intercept < 30

-0.21 (-0.22,-0.20)

-0.21 (-0.22,-0.19)

-0.21 (-0.28,-0.14)

-0.20 (-0.23,-0.17)

-0.21 (-0.23,-0.19)

-0.21 (-0.25,-0.17)

-0.21 (-0.21,-0.20)

-0.21 (-0.21,-0.20)

-0.19 (-0.20,-0.19)

-0.19 (-0.19,-0.19)

-0.22 (-0.23,-0.21)

-0.18 (-0.26,-0.11)

< 60

-0.11 (-0.11,-0.11)

-0.09 (-0.11,-0.07)

-0.13 (-0.14,-0.12)

-0.09 (-0.10,-0.09)

-0.11 (-0.15,-0.07)

-0.11 (-0.12,-0.11)

-0.10 (-0.11,-0.09)

-0.09 (-0.09,-0.09)

-0.09 (-0.16,-0.03)

-0.12 (-0.14,-0.09)

-0.09 (-0.10,-0.09)

-0.10 (-0.12,-0.08)

Slope < 30

1.36, 0.02,-0.03

-0.15, 1.28,-0.03

0.05,-0.09, 1.15

1.19,-0.03,-0.05

-0.03, 1.28,-0.07

-0.10, 0.05, 1.25

1.28,-0.01,-0.06

-0.08, 1.23,-0.11

-0.11,-0.01, 1.26

1.31,-0.01,-0.01

-0.02, 1.23,-0.16

-0.06,-0.06, 1.29

< 60

1.29, 0.01,-0.08

0.06, 1.19, 0.05

-0.04, 0.09, 1.22

1.27, 0.00, 0.00

-0.05, 1.13,-0.05

0.02, 0.05, 1.16

1.20, 0.01,-0.02

0.07, 1.22, 0.03

0.04,-0.03, 1.24

1.24,-0.03, 0.07

0.00, 1.25, 0.00

-0.09, 0.03, 1.20

after 1 year from the recorded measurements, they had more than 50% chance of dying, and

after 2 years that probability rises to over 85% with no chance of RRT.

5.3.5 Calculator

The calculator is available online here:

https://michael-barrowman.shinyapps.io/MSCPM_for_CKD_Patients/.

5.4 Discussion

We have used data provided by SKS to develop a Multi-State Clinical Prediction Model and

then validated this model within the SKS and SERPR datasets. Within our Models, the cause

of a patient’s renal disease had the widest effect on patient outcomes meaning that outcomes are

highly dependent on ERA-EDTA classification [228] of the diagnosis. Most groupings resulted

in a lowered hazard of death and an increased hazard of RRT compared to the baseline of

Systemic diseases.

The application of a Multi-state clinical prediction model to this field is novel and gives a

powerful tool for providing individualised predictions of different outcomes at a wide range of

time points. The model performed well under the scrutiny of validation and thus it can be

considered to be reliable to predict state probabilities for patient’s futures. It can also be used

to estimate an expected amount of time that a patient will be on RRT. The general inclusion

criteria for the development dataset, and the wide range of patient ages and measurements

allows for the model to be applied to a broad spectrum of patients.

Although the inclusion criteria for SKS were broad, the demographics of the local area

resulted in homogeneity of ethnicity, which may create a limitation to the applicability of our

model to non-white patients, however the contribution of ethnicity to health is intertwined with

deprivation level[241] and the high levels of deprivation in the catchment area of this cohort

should account for this[242]. The Renal Department at SRFT is a tertiary care facility for CKD

https://michael-barrowman.shinyapps.io/MSCPM_for_CKD_Patients/
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Figure 5.2: Results of Example Patients
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sufferers and is well renowned for its capabilities of care meaning that it is likely to attract less-

healthy patients from a wider catchment area, making the cohort of patients in the development

population in worse condition than the general population of CKD patients.

There were also high levels of missingness in the eGFR and uPCR rates of changes would

also produce a bias, due to these measures likely being missing not at random. The derivation

of the validation dataset ensured that all patients had an eGFR Rate measurement; this was

done to avoid data missing not at random (only negative or missing data would be available as

patient’s eGFR dropped to less than 60), however deriving data in this way could itself induce

a survivor bias in the start date used for patients.

The R-P models used require the assumption that the log cumulative hazard function follow

a cubic spline, however this is a very weak assumption and is assumed to be reasonable in most

situations [67] and therefore we did not assess the viability of the cubic spline model. We have

avoided the need for the requirements of the proportional hazards assumption by introducing

time trends in the estimation of the hazard functions. This adds complexity to the model, but

permits more dynamic and accurate predictions

Compared to the apparent internal validation, the model performance during the external

validation was worse for all metrics. However, these results were still relatively strong which

implies that the model has the potential to be transportable to a new population without much

alterations being required. Due to the differences in the healthcare systems of England and

Scotland, it can be appreciated that despite the populations being similar, their care would be

different enough to emphasise a larger difference between our populations than that shown in

our (relatively homogeneous) populations.

A key limitation of this model is that it was developed in a relatively small sample size

(2,981 patients), and thus the number of patients undergoing each transition is minimal (with

only 302 patients undergoing the RRT to Dead transition). Models with this weakness can

often be overfit to the data they were developed in. Ordinarily, predictive models would be

assessed for shrinkage and penalised appropriately if a model is overfit, however existing methods

of developing shrinkage factors are not designed for MSMs and the development of a novel

shrinkage factor is out of the scope of this study. It is thus reassuring that the external validation

performed relatively well indicating that, with the application of suitable recalibration methods,

the model could potentially be transferred to a new population and still perform well.

It is unfortunate that the performance metrics that were used to assess the calibration of the

model, namely the calibration slope matrix and the calibration intercept vector (see Chapter

4 for more details), do not easily lend themselves to a graphical method. These metrics are

extensions of the traditional calibration slope and intercept, respectively, which were originally

graphical in nature. These original metrics were two-dimensional as they were applied to only

two states (e.g. Alive vs Dead), but as the models here are applied to a four-dimensional space,

it would not be feasible to visualise.

Our paper has clearly demonstrated the accuracy of such a model. It has the potential

to be used as a medical tool to predict CKD patient outcomes when they are diagnosed with

CKD, or at a later point on their journey. Although non-causal, predictions about patients

propensity of survival can help to guide medical decisions, for example if a patient is predicted
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to have a high probability of death after transitioning onto RRT, but a low probability of death

without it, the patient may be better to stay off RRT. Alternatively, patients may find that

they are predicted a high probability of survival if RRT is started sooner rather than later and

so treatment can be guided to begin sooner. However, further research would be needed to

establish the effectiveness and efficacy of this use in clinical practice [243] by comparing it to

standard care and establishing whether the use of our model improves patient outcomes.

All three models produced for this work performed reasonably well in terms of accuracy,

calibration and discrimination when applied internally and externally. This shows directly that

the models are viable candidates for use in populations similar to both our development and our

validation datasets, although further research would likely be needed to confirm their suitability

such as a clinical utility assessment and perhaps further validation after recalibration.



Chapter 6

Conclusion

The key concept that this thesis aimed to address was how researchers can combine the structure

of a Multi-State Model (MSM) into the field of clinical prediction modelling. Within these top-

ics, we assessed currently available methods and provided recommendations for researchers who

wish to produce a Multi-State Clinical Prediction Model (MSCPM) or to use an MSM within

their research. After assessing the currently available methods, we provided novel performance

metrics which can be applied to an MSCPM which are comparable to generally known metrics.

By the end of the thesis, we had produced a feasible MSCPM for use in Chronic Kidney Disease

(CKD) patients, as well as provided an assessment of how well this model performed under the

new metrics.

The thesis can be split into 4 overarching parts

1. The Introduction, Chapter 1, which focuses on the current literature and describes the

landscape before the start of this thesis project.

2. The Simulation Studies, Chapters 2 & 3, which provides a deeper analysis of some of

the current techniques used within research by justifying certain techniques through the

use of simulation studies.

3. The Modelling, Chapters 4 & 5, during which we focus on extending the current methods

for model assessment and then apply these techniques to a novel model.

4. The Conclusion, Chapter 6, the final assessment of the thesis as a whole.

The Introduction and Conclusion are designed to act as book-ends surrounding the core of

the work and the novel ideas are contained in these central four chapters. We will look at these

two middle parts, The Simulation Studies and The Modelling, in turn and provide insight into

their ramifications on academia in the following sections.

6.1 The Simulation Studies

Prior to this thesis, there was a gap in the literature at the intersection of competing risks

analysis and causal inference. Although some authors had touched upon these topics together,

123
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the effect that one has on the other had not been explicitly defined. When assessing the effect

of a treatment (or any covariate), researchers have many options at their disposal, which largely

depend on their circumstances.

When working within survival analysis, the most common method, by far, is the Cox Pro-

portional Hazards method. This method produces an effect estimate without estimating the

underlying baseline hazard and so it’s simplicity is it’s primary asset. However, in many cir-

cumstances, it fails to account for any competing risks that the patients may undergo. In 1999,

Fine & Gray [119] wrote of a new method that accounted for these competing risks. The pro-

portional subdistribution hazard provides effect estimates that are simple to understand in the

same vein as the Cox model, but which measure the effect accounting for these competing risks.

Through simulation studies, Chapter 2 demonstrated that these confounders should always

be accounted for, regardless of how strong the relationship between the confounder and ei-

ther the event-of-interest or any competing events that may be present within the population.

Without accounting for these biasing effects, the resulting estimates will be biased away from

the true values. It also presented the work by other authors, such as Groenwold et al [164] as

reasonable method of mediation of these effects.

The second simulation study of this thesis emphasises the need to account for time-dependent

censoring during the assessment of calibration within clinical prediction models. The standard

recommendation for this is to use the Logistic-Regression technique, however Chapter 3 demon-

strated that this method is näıve to the effects that censoring has on a population.

Through the use of the Inverse-Probability-of-Censoring-Weights (IPCW), this näıve method

can be augmented and improved to have a greater accuracy and provide assessments that are

closer to the underlying truth. The effect that this Chapter will have on the literature is to

bring the study of the calibration slope metric, in the context of the IPCW, upto similar levels

as other metrics such as the Brier Score (assessed by Spitoni et al [178]) and the c-statistic

(assessed by Han et al [179]); both of which agree with our results that it is far better to use

the IPCW when validating models with a time-dependent aspect.

6.2 The Modelling

The following two chapters fill in the largest gap of the literature which aims to answer the core

question:

How can we integrate Multi-State Models into Clinical Prediction Modelling?

As discussed in other sections of this thesis, Traditional Survival Analysis (TSA) covers

the case where patients are in one of two states (usually referred to as Alive or Dead, but

not always). The application of this statistical methodology to clinical prediction models is

widespread and thus the design and implementation of methods to assess the quality of these

models has, for the most part, become standard practice, although as discussed in Chapter 3

is far from perfect or complete.

Prior to this thesis, researchers who wished to assess the quality of a Multi-State (or Com-

peting Risks) Clinical Prediction model would have to apply the TSA methods in creative ways.
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The simplest of which was to compare only two states directly (and repeat for many combina-

tions of states), or to compare each state against all others. These trivial extension methods

are discussed in Chapter 4. However, they are simplistic and often do not give a full description

of what is happening in terms of model performance.

The three most common measures that clinical prediction modellers focus on when assessing

the quality of a model are the accuracy, the discrimination and the calibration of the model,

and for these measures, the most common metrics are the Brier Score, the c-statistic and the

calibration intercept/slope. The purpose of Chapter 4 was to extend these metrics formally

and to provide researchers with a rigourous set of metrics which can easily be applied to any

MSCPM.

For each of the metrics described above, the extensions were done in two ways, which

take into account the two facets which may set Multi-State Modelling apart from more simple

modelling. The first of these being that there are multiple states for a patient to occupy and

the second being that changes can occur at different times. Other researchers have accounted

for these individually, but never in combination. What’s more, these extensions were done in

such a way that they can easily collapse back into their original formulae if either component

(additional states or time-varying) are removed.

During the process of providing these extensions, the calibration slope also provided an

additional level of insight which is not present/relevant when only two states are used. This

information is how well the data satisfies the Assumption of Independence of Irrelevant Alter-

natives. These values can help to inform whether a state can/should be removed from a model

without it affecting the predictions of the other states.

Following on from the design of these performance metrics, a set of MSCPMs were con-

structed with an example dataset within the field of Chronic Kidney Disease (as discussed

more thoroughly in Chapter 1. The models aimed to assess the patient’s journey through

Renal Replacement Therapy, with each model doing so at a different level of granularity.

The first was a simple two-state model, which was produced using methods similar to that

of traditional survival analysis. The hazard of moving from the Alive state to the Death state

was modelled using the Royston-Parmar modelling, an extension of the Cox Model, which

also produces a baseline hazard using restricted cubic splines. This allows absolute predicted

probabilities of transition to be produced for any arbitrary time point (within the reasonable

range of the data, 10 years).

The other two models, extended from traditional survival analysis by modelling how patients

move within the ‘Alive’ state, from being CKD sufferers to undergoing RRT and how they move

onto death differently from those two states. It can be seen from the analysis in Chapter 5,

that patients transitions from CKD to Death are very different from how they move from RRT

to Death. However, these models are, of course, subject to bias in which patients undergo RRT

and thus should not be thought of as causal effects. The final model takes the second model

a step further by splitting RRT into three sub-states: Haemodialysis (HD), Peritoneal Dialysis

(PD) and Kidney Transplant (Tx).

As described, these models underwent the rigourous quality assessment throughout Chapters

4 and 5 and Appendix F. These assessments included internal and external validation, which
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demonstrated that the models were of reasonable quality and are thus viable candidates for

progression into further study to allow them to be integrated into a healthcare setting. These

models are relatively easy to apply to patients and are transparent in the way in which states

relate to eachother. This gives a distinct advantage over models which use methods such as

machine learning, where most of the calculations involved are unknown to the end-users.

6.3 Impact

As has been made clear throughout the individual conclusion sections in this these, the studies

performed here can have large effects on other researchers work and can influence decisions

made in both an academic and a clinical setting.

The work of Chapter 2 should be used by those undertaking an observational study to assess

the impact of a treatment in instances where confounders may be present, particularly when

that treatment is to be given to those who may be at risk of multiple causes of death. The

results is that it can allow the researcher to mitigate estimates to account for the difference

between the effectiveness and efficaciousness of a treatment. By following the recommendations

of Groenwold [164], researchers can use these simulations to provide an empirical adjustment

of their results, similar to the adjustment applied by clinical prediction model researchers when

adjusting for optimism.

The work of Chapter 3 is essential when assessing calibration slope in models which have

a time-dependent nature and also brings attention to the short-comings of ignoring this factor

for other metrics also. Without accounting for these changes, calibration slope can drift from

the underlying truth over time as the uncensored population drifts away from the original pop-

ulation. These drifts are ordinarily accounted for during the development of clinical prediction

models, but are neglected when it comes to their validation. This means that although a model

can appear to be well calibrated, over time, the accuracy of that calibration can wane.

Chapters 4 and 5 have contributed to the literature by providing essential definitions to be

used when assessing the validity of multi-state models. It is the hopes of this author that having

these metrics developed will demonstrate to other authors and researchers that systems such as

multi-state models can be a useful and powerful technique when predicting patient outcomes.

These chapters provide the formal definitions as well as justification for those definitions and

their application to a real data to emphasise this. In addition the actual model developed during

these chapters has been validated both internally and externally and shown to be a reasonably

performing model which has the potential to be moved onto the next steps of model assessment

to establish its viability in the real world.

6.4 Limitations

As with any simulation study, limitations lie in the assumptions that were made. For example,

in the simulation study of Chapter 2, we made a broad assumption that the time to event data

followed that of a standard hazard function, with proportional hazards; however, in reality, it

is likely that the covariates would change over time. It was also a pragmatic approach to use
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the same underlying hazard function for the two events, as opposed to the more complicated

scenario wherein these events would have little in common.

Further, we did not model any measured confounders, apart from the treatment effect that

was being estimated. For most real-world cases, there would be many covariates involved in

this kind of assessment, and many of these covariates would be inter-correlated, even with any

unmeasured confounding variables that are present. There is also the likelihood that some

variables would have an effect on one event and not the other. We also chose to only model a

single competing event, whereas, again, in reality, the populations that these theories would be

applied to, could be susceptible to multiple competing events.

Similar limitations regarding our initial assumptions on the modelling scenario apply to the

simulation study for Chapter 3. The main advantage of using simulation studies for this kind of

work is that we know and understand the truth that is being simulated, and thus can explicitly

see how and where our models differ, but in reality this would not be the case and so one would

have to be careful not to ‘over-correct’ an already accurate model by incorrectly deriving the

IPCW. It is also noteworthy that we did not include graphical methods for the assessment,

which can also be used for the assessment of calibration intercept and slope using an integrated

calibration index [95].

6.5 Future projects

Throughout the process of producing this thesis, there were a few avenues of study that were

explored, but never came to fruition, along with several other ideas that were not feasible or

within the scope of study, but that would improve the field in ways that this thesis has not quite

covered. These projects have the potential to be useful and effective future pieces of research

that could serve academia well, but were unable to fit into this thesis due to time/resource

constraints.

One such project was a formal assessment via a scoping review (in the vein of Ng et al

[244]) of the state of play of MSCPMs. A scoping review is a type of review where the reviewer

does not necessarily have a specific question in mind, but seeks to assess the current literature

on a specific topic [245] . Throughout the process of this thesis, many articles related to

MSCPMs were sought and analysed. A scoping review would require a more formal search

pattern and structure than a standard literature review (as per Chapter 1, and it would have

a focus on articles which developed or validated an MSCPM, rather than those that discussed

the methodology surrounding them.

As mentioned in Chapter 3, it would also be an effective piece of research to investigate the

use of graphical methods which can assess model calibration. The simulations in this chapter

investigated certain specific methods of assessing calibration intercept (and slope), those being

the method of Kaplan-Meier, Logistic Regression and Pseudo-Observations. However, other

methods, such as the Integrated Calibration Index (ICI) by Austin et al [95], could have been

applied to such simulations, but would have been computationally too intensive for the scope

of this chapter. Future research could be established to compare the ICI with the methods

analysed herein. Further to this, we did not study the effects that particularly high levels of
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censoring had on the simulated populations and this would be a useful piece of research to ensure

that the weighted logistic regression method was applicable to a highly censored population.

Many of the MSCPMs found during this avenue of research were used as examples within

other areas of the thesis, however these were not rigourously studied. Future research into the

prevalence of such models would be beneficial to the field and could provide a useful analysis and

criticism of the usage of MSCPMs. This would include describing how well guidelines (such

as TRIPOD [13]) are adhered to, how many of these models have been through the formal

stages of validation (whether internal and/or external) and how different models approach the

methodological gaps that have been filled by this thesis. Work in this area could improve the

reach of MSCPMs by making clear where they have already been used and where there are

current gaps and act as a catalogue of the landscape at the time of publication. This would

draw attention to fields where MSCPMs are lacking, and provide easy access and information

to models that require validation.

Another avenue of study that would be beneficial for future researchers is the assessment

of missing values within an MSM. For the creation of our MSCPM, we used the Multivariate

Imputation for Chained Equations (MICE) as described by van Buuren & Oudshoorn [246]

and its extension for survival analysis by White & Royston [75]. For this, we simply used

the survival curve of all relevant transitions in order to impute missing values for any given

patient. A key question during this process was whether using all transitional data was the

most optimal method. Basic simulations were conducted, however these were not done with

enough rigour in constructing realistic missingness patterns and MSM shapes to result in a

finished piece of work. There will likely be a more efficient manner to re-create missing values

(whether through MICE or another method specific to MSMs). Alternatively, a formal study

of missingness patterns within MSMs could reveal the opposite, that the methods of White &

Royston are, in fact, the best option when data is unavailable.

Ordinarily, once a model has been developed and validated, if the validation results were

slightly off from perfect or the model mis-specified for a given population, it is possible to apply

corrections to these models. Especially common is the corrections undergone by recalibrating

a model in anticipation of its application. This is usually done by applying a linear adjustment

to the predictions (on the logit scale) to bring the calibration intercept and slope to the perfect

values of 1 and 0, respectively. The calibration metrics of Chapter 4 could be extended to include

methods to re-calibrate a model that is mis-specified. This could be as simple as multiplying the

predicted values by a matrix derived from the calibration results (a matrix which may or may

not be time-dependent). This could vastly improve the currently available models and make

their application much more likely in the real world. The ability to re-calibrate such models

means they can potentially be applied to a much wider grouping of patients with a much more

diverse demographic, and even to specilise the model to different sub-populations as needed,

although these, of course, come at the cost of precision of predicting based on smaller samples

of patients. Given the performance of the models developed in Chapter 5, it would be beneficial

to these models if they were recalibrated using such methods to improve, say, their calibration

within the <30 eGFR sub-population in the external data.

Another aspect of adjusting a model to fit a novel population is the inclusion of a shrinkage
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factor. In traditional survival analysis, this would come in the form of a value which acts as

a simple multiplier on the regression coefficients. This shrinkage factor helps to reduce any

bias caused by overfitting of the model in the development data and sample sizes or number

of predictors are often chosen to reduce the effect of a shrinkage factor. A methodology for

calculating and applying a shrinkage factor to an MSM could be developed to improve utility

in this field.

The development of the model in Chapter 5 used multiple packages within the R ecosystem,

and there are a few packages that specialise in the use of multi-state modelling (e.g. the msm

package [247] or the mstate package[248] are some of the most popular). However, as with

many pieces of open source software, their utility was limited and did not cohere with the goals

of this thesis. Many pieces of R code were specially written for this thesis, including the code

within Appendix D, as well as the model building and derivation of the transition equations

for the model and the combination of these equations into a viable predictive model. This

code in combination has the potential to become a package in and of itself if generalised and

documented appropriately. Again, as with much of these pieces of future work, this would bring

the concept of MSCPMs to a wider audience by making it easier for researchers (particularly

those without coding or statistical experience) to plug their numbers into a simple to use piece

of software and produce an effective tool for clinical prediction.

The final piece of further work that would expand on this thesis would be to apply the model

developed in Chapter 5 to the real-world. This would traditionally be done through some sort

of impact study (as discussed in Chapter 1), wherein patients are randomly assigned to have

the model applied to them or not. The knowledge of their predictions would guide treatment

decisions and thereby affect their healthcare outcomes, which could then be compared to the

control arm to see whether any improvement was detected. By performing an impact study of

this model, it’s viability in the real-world can be truly assessed to see whether it provides an

overall benefit to clinicians and patients, and, thus, see whether it would be useful to proceed

further in rolling it out to patients across the country. This could be performed following

on from work on re-calibrating an MSCPM (as discussed above) to produce an even better

predictive model.
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Appendix A

Simulation Details

The populations used in these simulations are generated such that Corr (U,Z) = ρ and P (Z = 1) =

π. These baseline populations are then acted on by the event-of-interest and competing event

hazard functions. These are combined into the cumulative hazard function. These are defined

as follows:

λ1(t|U,Z) = keβ1U+γ1Zλ0(t)λ2(t|U,Z) = keβ2U+γ2Zλ0(t)

Λ(t|U,Z) =

∫ t

0

λ1(s|U,Z) + λ2(s|U,Z) ds

Let ϕ and Φ be the pdf and cdf of for the standard Normal distribution respectively and I be

the identity function. The process for generating the covariates and outcome data for a patient

is given in Table A.1.

Table A.1: Table showing the steps taken to generate each simulated population

Step Variable Calculation Description

1 x0 x0 = Φ−1 (π) This is the value of x ∼ N(0, 1) such that P (x < x0) = π

2 r r =
ρ
√

π(1−π)

ϕ(x0)
This is used to ensure Corr(U,Z) = ρ

3 Y1 Y1i ∼ N(0, 1) Generate 10,000 random normal numbers

4 Y2 Y2i ∼ N (0, 1) Generate 10,000 random normal numbers

5 U Ui = Y1ir + Y2i

√
1− r2 This defined U ∼ N(0, 1) such that Corr(U, Y1) = r

6 Z Zi = I (Φ (Y1i) < π) This defined Z such that P (Z = 1) = π

7 λ2 (1) λ1i (t) = λ1 (t|Ui, Zi) Define an array of hazard functions

8 λ2 (t) λ2i (t) = λ2 (t|Ui, Zi) Define an array of hazard functions

9 Λ (t) Λi (t) = Λ (t|Ui, |Zi) Define an array of cumulative hazard functions

10 S (t) Si (t) = exp (−Λi (t)) Define an array of Survival functions

11 V1 V1i ∼ Unif (0, 1) Generate 10,000 random uniform numbers

12 V2 V2i ∼ Unif (0, 1) Generate 10,000 random uniform numbers

13 T Ti = S−1
i (V1i) Solve (numerically or explicitly depending on λ0)

14 δ δi = 1 + I
(
V2 >

λ1i(Ti)
λ1i(Ti)+λ2i(Ti)

)
Generate which event occurs

due to the square root in Step 5, we restrain |r| < 1. This coupled with the definition of r

in Step 2 means that the values of ρ and π are limited by each other such that:
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∣∣∣∣∣ρ
√
π (1− π)

ϕ (x0)

∣∣∣∣∣ < 1

Therefore, we have bounds on ρ dependent on π:

|ρ| < ϕ (x0)√
π (1− π)

Since x0 is dependent on π, ϕ(x0) is also dependent on π and can be approximated by

ϕ (x0) ≈
8

5
π (1− π)

And thus the bound on ρ can be approximated by:

|ρ| < 8

5

√
π (1− π)

This provides us with the bounds discussed in the main text.



Appendix B

Mathematics of Subdistribution

Hazards

Due to the relationship between the cause specific hazard functions and the subdistribution

hazard functions they cannot both satisfy the proportional hazards assumption. We have

defined CSH functions to be proportional and so the SH functions are not. In order to find the

“true” SH treatment effect for the event-of-interest, we have to find the least false parameter

[158]. to do this, we must solve the following equation for b(Γ1) = 0:

b (Γ1) =

∫ ∞

0

(1− F1 (t|Z = 0)) f1 (t|Z = 1)− eΓ1 (1− F1 (t|Z = 1)) f1 (t|Z = 0)

(1− π) (1− F1 (t|Z = 0)) + πeΓ1 (1− F1 (t|Z = 1))
dt

where f1 and F1 are the pdf and cdf of the subdistribution for the event-of-interest. These are

defined as

f1(t|Z) = λ1(t|Z)S(t|Z)

F1(t|Z) =

∫ t

0

f1(u|Z) du

In populations where only a single event occurs, these are the same as the pdf and cdf of the

distribution for the event. We have previously defined our hazard functions as (with kj = k if

j = 1 and 1 otherwise)

λj(t|U,Z) = kje
βjU+γjZλ0(t)
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and s to find λj(t|Z), we need to eliminate U from our equation by finding the expectation of

U given Z.

E
[
eβU |Z = 0

]
= E

[
eβU |Y1 < x0

]
= E

[
eβ
(
rY1 +

√
1− r2Y2

)
|Y1 < x0

]
= E

[
eY2
]β√1−r2 × E

[
eY1 |Y1 < x0

]βr
=
(
e

1
2

)β√1−r2

×
(∫ x0

−∞
ey
(

ϕ (y)

Φ (x0)

)
dy

)βr

=
e

β
√

1−r2

2

1− π
×
(∫ x0

−∞
eyϕ (y) dy

)βr

=
e

β
√

1−r2

2

1− π
× eβr2

(∫ x0

−∞

1√
τ
e−

1
2 (y−1)2 dy

)βr

=
e

β
2 (r+

√
1−r2)

1− π
×
(∫ x0−1

−∞

1√
τ
e−

1
2w

2

dw

)βr

E
[
eβU |Z = 0

]
=

e
β
2 (r+

√
1−r2)(Φ(x0−1))βr

1− π

Walking through each step:

1. We defined Z from Y1 and so we can substitute Z = 0 with Y1 < x0 (See Appendix A).

2. We defined U based on Y1 and Y2 so we can substitute this formula in (See Appendix A).

3. The expectation of a product is the product of the expectations so this can be split.

Similarly, powers are taken out of the expectation. Y1 and Y2 are independent so is

dropped fro the left-hand expectations.

4. First expectation follows since Y2 ∼ N(0, 1). The second is the expectation of a truncated

Normal distribution.

5. By definition, Φ(x0) = 1− π, so we can replace and bring it out of the integral.

6. Substituting the formula for ϕ(y) (Normal pdf). Note that τ is used rather than 2π to

avoid notation confusion. The powers of e are combined and simplified (using completing

the square) and the constant is taken out of the integral.

7. Substituting w = y − 1 inside the integral and not forgetting to change the limit.

8. The formula under the integration is again the Normal pdf, so we can evaluate the Normal

cdf.
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Similarly, for Z = 1, we swap the less than sign in the first line and evaluate the integral on a

different range:

E
[
eβU |Z = 0

]
= E

[
eβU |Y1 < x0

]
= E

[
eβ
(
rY1 +

√
1− r2Y2

)
|Y1 < x0

]
= E

[
eY2
]β√1−r2 × E

[
eY1 |Y1 < x0

]βr
=
(
e

1
2

)β√1−r2

×
(∫ ∞

x0

ey
(

ϕ (y)

Φ (x0)

)
dy

)βr

=
e

β
√

1−r2

2

1− π
×
(∫ ∞

x0

eyϕ (y) dy

)βr

=
e

β
√

1−r2

2

1− π
× eβr2

(∫ ∞

x0

1√
τ
e−

1
2 (y−1)2 dy

)βr

=
e

β
2 (r+

√
1−r2)

1− π
×
(∫ ∞

x0−1

1√
τ
e−

1
2w

2

dw

)βr

E
[
eβU |Z = 0

]
=

e
β
2 (r+

√
1−r2)(1−Φ(x0−1))βr

1− π

By defining π1 = 1− Φ(x0 − 1), these can be combined to be:

E
[
eβU |Z = z

]
=
(
e

β
2 (r+

√
1−r2)

)( (zπ1 + (1− z) (1− π1))
βr

zπ + (1− z) (1− π)

)
λ0(t)

This can then be used to produce a formula for Λ(t|Z) and then S(t|Z). From λ1(t|Z) and

S(t|Z), we can find f1(t|Z) and F1(t|Z) using the above equations and thus Γ1 can be found.

This process can be repeated to find Γ2 by exchanging f1 and F1 for f2 and F2 and evaluation

similarly.
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Appendix C

Assessment of Calibration Slope

within the IPCW analysis

C.1 Introduction

The main purpose of this paper was to assess the evaluation of calibration-in-the-large at differ-

ent time points in a time-to-event clinical prediction model. Along with calibration-in-the-large,

various methods of calibration can also produce measures of calibration slope. Calibration slope

provides an insight into how well the model predicts outcomes across the range of predictions.

In an ideal model, the calibration slope would be 1. This implies that across the spectrum

of possible predictions, the results match these prediction. If the calibration slope is below 1,

then this implies that the predictions are too extreme and that the range of possible predictions

would need to be tightened. If the calibration slope is greater than 1, then this implies that the

predictions are too conservative and would need to be broadened to match the observations.

This can be seen in Figure C.1, where the Expected values on the < 1 plot cover a broader range

of values than the Observed, and so the predicted values would need to be condensed more to

match the outcomes better (as well as adjusting for the calibration-in-the-large intercept value).

Similarly, in the > 1 plot, the Expected values cover a narrower range of values compared to

the Observed values and so predictions would need to be exaggerated to match the outcomes.

In reality, the ranges of predicted values would likely cover the most of the range from 0 to 1

and the outcome for each individual patient is binary. However the density of the predictions and

outcomes would differ depending on this slope and so the inference of condensing or exaggerating

the results is translatable.

C.2 Methods

The Logistic Weighted, Logistic Unweighted and Pseudo-Observation methods described in the

main text can provide estimates of the calibration slope. For each of these methods, we first

estimate the calibration-in-the-large as above, using a predictor as an offset, then we use this

estimate as an offset to predict the calibration slope (without an intercept term). That is we
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Figure C.1: Examples of low slope, perfect slope and high slope, showing the range of values

first use the appropriate methods to find α̂, where ϵ is small

O = α̂+ I(E) + ϵα

Then we fix α̂ to estimate β̂ below

O = β̂E + offset (α̂) + ϵβ

As the main focus of this work is to assess the effect of these methods on the calibration-

in-the-large in different models, we did not use different models than those used in the main

body. Thus the slope of the three models under analysis did not change and so the expected

values for these would all be 1.

C.3 Results

Results are presented similar to the main text for the same three scenarios. The full set of

results is also available on the Calculator App. As discussed in the main text, the estimates are

presented with time on the x-axis and the y-axis showing the performance measure, stratified

by model across facets and method of analysis by colour. We will investigate the Bias, EmpSE

and Coverage for the scenarios where β = 1 and η = 1/2 are fixed and γ varies through -1,

0 and 1. These represent when the event and censoring are positively correlated (γ = β = 1),

negatively correlated (γ = −β = −1) and when the covariate has no effect on the censoring

distribution (γ = 0)

C.3.1 No Correlation

We can see from Figure C.2 that the slope for the PO measure for Bias is very large when

the model does not perfectly predict the outcome and the direction of this miscalibration is

dependent on whether the model Over- or Under-predicts. The LU method has a consistent
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Figure C.2: Bias for Over-estimating, Perfect and Under-Estimating models across all four methods

when β = 1, γ = 0 and η = 1/2. 95% Confidence Intervals are included in the plot.

positive bias, growing over time, regardless of which model is being analysed.

With no correlation between the covariate and the censoring, Figure C.4 shows that the

EmpSE consistently increased over time, with more variability in the results for Under-Predicting

model than for the Over-Predicting model. Similarly, Coverage dropped over time in all models

with the Under-Predicting model dropping more significantly. The final graph in Figure C.4

shows that the Coverage for the Pseudo-Observation is lower than for the other two at the first

time point and continues to steadily drop.

C.3.2 Positive Correlation

When there is a positive correlation between the covariate and the censoring of patients, we

can see from Figure C.5 that the PO measurements start with a large amount of negative bias,

although Figure C.6 shows relative consistency in this bias.

The LW method has the smallest amount of overall bias out of the three measures, however

because all methods suffer a large amount of absolute bias, the coverage is lower than expected

at almost all time point, see Figure C.7.

C.3.3 Negative Correlation

With a negative correlation, the PO method has a positive bias in the early time points of

the simulations, see Figure C.8, but then reverses and has a negative bias by the end of the

simulations. This causes a peak and trough effect in the Coverage, particularly strongly in the

Under-Predicting Model, see Figure C.10.

The EmpSE for all methods once again increases over time, Figure C.9, and LW consistently

under predicts with very low coverage throughout.
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Figure C.3: EmpSE for Over-estimating, Perfect and Under-Estimating models across all four methods

when β = 1, γ = 0 and η = 1/2. 95% Confidence Intervals are included in the plot.

Figure C.4: Coverage for Over-estimating, Perfect and Under-Estimating models across all four meth-

ods when β = 1, γ = 0 and η = 1/2. 95% Confidence Intervals are included in the plot.
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Figure C.5: Bias for Over-estimating, Perfect and Under-Estimating models across all four methods

when β = 1, γ = 1 and η = 1/2. 95% Confidence Intervals are included in the plot.

Figure C.6: EmpSE for Over-estimating, Perfect and Under-Estimating models across all four methods

when β = 1, γ = 1 and η = 1/2. 95% Confidence Intervals are included in the plot.
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Figure C.7: Coverage for Over-estimating, Perfect and Under-Estimating models across all four meth-

ods when β = 1, γ = 1 and η = 1/2. 95% Confidence Intervals are included in the plot.

Figure C.8: Bias for Over-estimating, Perfect and Under-Estimating models across all four methods

when β = 1, γ = −1 and η = 1/2. 95% Confidence Intervals are included in the plot.
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Figure C.9: EmpSE for Over-estimating, Perfect and Under-Estimating models across all four methods

when β = 1, γ = −1 and η = 1/2. 95% Confidence Intervals are included in the plot.

Figure C.10: Coverage for Over-estimating, Perfect and Under-Estimating models across all four

methods when β = 1, γ = −1 and η = 1/2. 95% Confidence Intervals are included in the plot.
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C.4 Discussion

As in the main text, see Chapter 3, we can see that the LW method provides the lowest overall

bias compared to the other two methods of assessing Calibration. Unlike the measurements of

Calibration-in-the-Large, it is still relatively inconsistent and so there will need to be further

study to establish whether a better and more consistent method of measuring Calibration Slope

in time-to-event studies is possible.
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MSCPM Performance Metrics R

Code

This Supplementary Material contains R functions to calculate the novel performance metrics

described in the main chapter. All of these functions take five arguments:

� states - A character vector of states indicating the current observed state of each patient.

� predictions - A matrix of predictions, where each row represents a patient and each

column represents a state. This matrix must have column names that match the states.

� IPCW - A vector of IPCW estimates for each patient at the current time point.

� cens name - A character vector for which value(s) in states indicates a patient has been

censored.

� level - A value to indicate what level of confidence interval should be calculated.

All three of these functions call Check data(), which is defined first in this supplementary

material. This function simply checks that the data (states, predictions and IPCW) are of

the right dimensions and have the right names. The only package required to run the code is

the nnet [202] package.

D.1 Check Function

This function checks whether the dimensions of the data are acceptable. It will throw an error

if not.

Check_data <- function(state,predictions,IPCW,cens_name){

N <- length(states)

states[states %in% cens_name] <- "..censored"
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states_list <- setdiff(unique(states),"..censored")

K <- length(states_list)

if(N != nrow(predictions) | N != length(IPCW))

stop("Incompatible number of patients")

if(K != ncol(predictions))

stop("Incompatible number of states")

}

D.2 Brier Score

The function to calculate the Brier Score is called Get Brier(). It returns a matrix with 1

row for the BS results, and 1 row for the aBS results. The columns correspond to the actual

estimate, the lower bound and the upper bound for the confidence interval.

Get_Brier <- function(states, predictions, IPCW, cens_name, level=0.95){

Check_data(states,predictions,IPCW,cens_name)

states[states %in% cens_name] <- "..censored"

states_list <- setdiff(unique(states),"..censored")

K <- length(states_list)

predictions <- predictions[states %in% states_list,]

IPCW <- IPCW[states %in% states_list]

states <- states[states %in% states_list]

observed <- predictions*0

for(ik in 1:K)

observed[,ik] <- 1*(states == colnames(observed)[ik])

BS_i <- rowSums((predictions - observed)^2)

BS <- weighted.mean(x = BS_i,w = IPCW)

names(BS) <- "Est"

BS_se <- sd(BS_i)/sqrt(length(BS_i))

BS <- BS + c(0,-1,1)*qnorm(level)*BS_se
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names(BS) <- c("Est","lower","upper")

Q <- vapply(X = states_list,

FUN = function(x) weighted.mean(states == x,w=IPCW),

FUN.VALUE = numeric(1))

aBS <- 1-BS/sum(Q*(1-Q))

names(aBS) <- c("Est","upper","lower")

aBS <- aBS[c("Est","lower","upper")]

rbind(BS,aBS)

}

D.3 PDI

The function to calculate the PDI is called Get PDI(). It returns a matrix where the first K rows

represent each state, and the final row is the total PDI. Each column represents the Estimate,

the lower bound and the upper bound. We also follow it with a simple function to convert a

PDI into a c-statistic.

Get_PDI <- function(states,predictions,IPCW,cens_name,level=0.95){

Check_data(states,predictions,IPCW,cens_name)

states[states %in% cens_name] <- "..censored"

states_list <- setdiff(unique(states),"..censored")

K <- length(states_list)

N <- length(states)

IPCW_split <- split(IPCW,states)

IPCW_split <- IPCW_split[states_list]

N_k <- vapply(IPCW_split,sum,numeric(1))

V_i <- vector("list",K)

names(V_i) <- states_list

for(iK in 1:K){

c_state <- state_list[[iK]]

c_state_probs <- predictions[states == c_state,c_state]

V_ij <- matrix(nrow=length(c_state_probs),ncol=K-1)
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for(ij in 1:(K-1)){

jK <- setdiff(1:K,iK)[ij]

n_state <- state_list[[jK]]

n_state_probs <- predictions[states == n_state,c_state]

n_state_IPCW <- IPCW_split[[n_state]]

V_ij[,ij] <- vapply(X = c_state_probs,

FUN = function(x)

weighted.mean(x=x > n_state_probs,

w=n_state_IPCW),

FUN.VALUE = numeric(1))

}

V_i[[c_state]] <- apply(V_ij,1,prod)

}

PDI_k <- mapply(weighted.mean,

x = V_i,

w = IPCW_split)

S_k <- mapply(

function(V,N){

(1/(N-1))*sum((V-PDI)^2)

},

V = V_i,

N = N_k

)

se <- sqrt(S_k/N_k)

se_total <- sqrt(sum(se^2))

PDI <- mean(PDI_k)

res <- matrix(ncol=3,nrow=K+1)

rownames(res) <- c(names(PDI_k),"Total")

colnames(res) <- c("Est","lower","upper")

res[1:K,"Est"] <- PDI_k

res[1:K,"lower"] <- PDI_k - qnorm(level)*se

res[1:K,"upper"] <- PDI_k + qnorm(level)*se

res["Total","Est"] <- PDI

res["Total",c("lower","upper")] <- PDI + c(-1,1)*qnorm(level)*se_total
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res

}

D.4 Multinomial Calibration

The function to calculate the Multi-state extension of the Calibration Intercept and Slope is

called Get Calib() and takes an additional argument, base state to indicate which of the

states should be set as the base state for the others to be compared to. The function returns a

list with two elements, Intercept and Slope. The Intercept component is a matrix with 1 row

for each of the non-base states and a column for the Estimate, and the lower and upper bounds

for the confidence interval. The Slope component is an array with the first two dimensions

representing the non-base states and the last dimension consisting of the Estimate and the lower

and upper bounds.

Get_Calib <- function(states,predictions,IPCW,cens_name,level=0.95,base_state){

require(nnet)

Check_data(states,predictions,IPCW,cens_name)

states[states %in% cens_name] <- "..censored"

states_list <- setdiff(unique(states),"..censored")

K <- length(states_list)

non_base_states <- setdiff(state_list,base_state)

calib_data <- as.data.frame(predictions)

calib_data$..state <- factor(states,levels=c(base_state,non_base_states))

calib_data$..IPCW <- IPCW

calib_data <- calib_data[states %in% states_list,]

calib_data[,1:K] <- log(calib_data[,1:K])

calib_data[,1:K] <- calib_data[,1:K] - calib_data[,base_state]

calib_data[[base_state]] <- NULL

frm <- as.formula(

paste0("..state ~ ",

paste0(non_base_states,

collapse="+")

)

)
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mod <- nnet::multinom(frm,data=calib_data,weights=..IPCW,trace=F)

coefs <- coefficients(mod)

se <- summary(mod)$standard.errors

Intercept_se <- se[non_base_states,"(Intercept)"]

z <- qnorm(level)

Intercept <- matrix(nrow=K-1,ncol=3)

colnames(Intercept) <- c("Est","lower","upper")

rownames(Intercept) <- non_base_states

Intercept[,"Est"] <- coefs[non_base_states,"(Intercept)"]

Intercept[,"lower"] <- Intercept[,"Est"] - z*Intercept_se

Intercept[,"upper"] <- Intercept[,"Est"] + z*Intercept_se

Slope <- array(dim=c(K-1,K-1,3),

dimnames = list(non_base_states,

non_base_states,

c("Est","lower","upper")))

Slope_se <- se[non_base_states,non_base_states]

Slope[,,"Est"] <- coefs[non_base_states,non_base_states]

Slope[,,"lower"] <- Slope[,,"Est"] - z*Slope_se

Slope[,,"upper"] <- Slope[,,"Est"] + z*Slope_se

list(Intercept = Intercept,

Slope = Slope)

}



Appendix E

MSCPM Model Statistical

Analysis

E.1 RP-Model

Results shown and in the main text include coefficients for both the proportional hazards

(where the effect of a variable does not change over time) and time-dependent coefficients. The

models were derived using a Royston-Parmer Model [67]. In it’s simplest form, this model is

an extension of the Cox Model, which includes the derivation of the underlying baseline hazard

as a restricted cubic spline on the log-scale. However, this method of modelling also allows

for variables which do not satisfy the proportional hazards assumption to be included as time-

dependent covariates. For the CPM, we modelled each transition as an R-P Model, to establish

a smooth hazard function from one state to another.

Firstly, we remember that the following hold, where λ is the hazard function, Λ is the

cumulative hazard function and S is the probability of survival in a state at a given time:

λ(t|Z) =
d

dt
Λ(t|Z)

S(t|Z) = exp(−Λ(t|Z))

And the R-P Model gives a smooth estimate for S(t|X):

log(− log(S(t|Z)) = s(log(t); γ, Z)

Where s is the restricted cubic spline. This restricted cubic spline is defined to have m ≥ 0

internal knots, where k1, k2, ..., km are the locations of the knots (on the log-scale). We also

have two boundary knots, kmin and kmax. With x = log(t), we have:

s(x; γ, Z) = γ0(Z) + γ1(Z)x+ γ2(Z)v31(x) + ...+ γm+1(Z)v3m(x)
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We further define vnj (x) for j > 1:

vnj (x) = (x− kj)
n
+ − λj(x− kmin)

n
+ + (1− λj)(x− kmax)

n
+

where

λj =
kmax − kj

kmax − kmin

and note that, for n ̸= 0:
d

dx
vnj (x) = nvn−1

j (x)

The γ functions are simply

γj(Z) = γj0 + γj1Z1 + γj2Z2 + ...

Where each Zi represents a patient covariate and therefore the γji is the coefficient for that

covariate associated with that piece of the cubic spline.

This combines to give the following formula for Λ:

Λ(t|Z) = exp (s(log(t); γ, Z))

and therefore:

λ(t|Z) =
1

t
Λ(t|Z)

d

dx
s(log(t); γ, Z)

where
d

dx
s(x; γ, Z) = γ1(Z) + 3γ2(Z)v21(x) + ...+ 3γm+1(Z)v2m(x)

E.2 Multi-State Modelling

If we number the states in the models as Alive/CKD = 1, Death = 2, HD = 3, PD = 4, Tx =

5 and RRT = 6, as in Figure 5.1, then we can subscript the hazard function of the transition

from state i to j as λij(t|Z), derived using the R-P Model in Section E.1.

We can then establish the following probabilities for our models using knowledge from

Chapter 1, where Pi(t) is the probability that a patient is in state i at time t, and Si(s, t) is

the probability that a patient who was in state i at time s has remained in state i by time t.

Since all patient start in state 1, the equivalency is P1(t) = S1(0, t).

E.2.1 Two-State Model

P1(t) = exp

(
−
∫ t

0

λ12(u) du

)
P2(t) =

∫ t

0

P1(u)λ12(u) du
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E.2.2 Three-State Model

P1(t) = exp

(
−
∫ t

0

λ12(u) + λ16(u) du

)
S6(s, t) = exp

(
−
∫ t

s

λ62(u) du

)
P6(t) =

∫ t

0

P1(u)λ16(u)S6(u, t) du

P2(t) =

∫ t

0

P1(u)λ12(u) du+

∫ t

0

P1(u)λ16(u) (1− S6(u, t)) du

E.2.3 Five-State Model

P1(t) = exp

(
−
∫ t

0

λ12(u) + λ13(u) + λ14(u) + λ15(u) du

)
S3(s, t) = exp

(
−
∫ t

s

λ32(u) du

)
S4(s, t) = exp

(
−
∫ t

s

λ42(u) du

)
P3(t) =

∫ t

0

P1(u)λ13(u)S3(u, t) du

P4(t) =

∫ t

0

P1(u)λ14(u)S4(u, t) du

P5(t) =

∫ t

0

P1(u)λ15(u) du

P2(t) =

∫ t

0

P1(u)λ12(u) du+

∫ t

0

P1(u)λ13(u) (1− S3(u, t)) du+

∫ t

0

P1(u)λ14(u) (1− S4(u, t)) du

E.3 Validation Metrics

For validation purposes, we consider Death and Death after RRT/HD/PD to be distinct states

meaning that for the Three-State model, we have K = 4 pathways a patient can take and

for the Five-State model, we have K = 7. To compare across models, we combined states

together to collapse down to simpler versions. We collapsed the Three-State model to a two-

state structure by combining the CKD and RRT states into an Alive state. We collapsed the

Five-State model to a three-state structure by combining the HD, PD and Tx into an RRT

state and then further down to a two-state structure as with the Three-State model. We will

report performance measures at 360 days (approx. 1-year), 720 days (approx. 2-years) and

1800 days (approx. 5-years). As well as presenting the performance measures over time.

The performance metrics were chosen from those defined in chapter 4.

The overall accuracy of each model was assessed using the MSM adjusted Brier Score, which

is a proper score function [249] assigning 0 to a non-informative model and 1 to a perfect model,
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with negative numbers implying the model performs worse than assuming every patient’s state

predictions are the same as the overall prevalence within the population.

The discrimination of each model was assessed using the MSM extension to the c-statistic

[193]. The c-statistic is a score between 0 and 1 with higher scores suggesting a better model

and a c-statistic of 0.5 suggesting the model performs no better than a non-informative model.

The calibration of each model was assessed using MSM multinomial logistic regression

(MLR) [192] which extends the logistic regression to three or more mutually exclusive out-

comes [8]. This produces an intercept vector of length K − 1 and a Slope-matrix of dimension

(K − 1) × (K − 1). As with the traditional calibration intercept for a well performing model,

the MLR intercept values should all be as close to 0 as possible. The traditional calibration

slope should be as close to 1 as possible and so the multi-state extension of the slope, the

Slope-matrix should be as close to the identity matrix (I) as possible.



Appendix F

MSCPM Model Full Results

This Appendix shows the full results from the model described in Chapter 5. Here, we go

through the results of the Two- and Five-State Models which were not discussed in Chapter 5,

as well as extra results for the time-dependent covariates for the Three-State Model.

F.1 Two State Model

Table F.1 shows the proportional hazard ratios for the transitions in the Two-State Model.

Older patients have a higher hazard towards death, low and decreasing eGFR increased hazard

as did a history of diabetes. Patients with a primary renal diagnosis included in the ERA-EDTA

[228] definition of Systemic diseases affecting the kidney had the highest likelihood of death.
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Table F.1: Porportional Hazards for each transition in the Two-State Model

Var Alive to Dead

constant term

const -9.072 (-20.273, 2.129)

Age

Age -0.009 ( -0.056, 0.038)

eGFR

eGFR -0.066 ( -0.112, -0.020)

log(eGFR Rate) 0.052 ( -0.078, 0.181)

Measures

Albumin -0.172 ( -0.322, -0.023)

Corrected Calcium 2.630 ( -0.203, 5.463)

DBP 0.004 ( -0.000, 0.009)

Haemoglobin -0.011 ( -0.015, -0.007)

Phosphate 1.884 ( 0.222, 3.546)

Gender (vs Male)

Female -0.168 ( -0.287, -0.048)

Smoking Status (vs Former)

Former (3y+) -4.541 (-10.174, 1.091)

Non-Smoker -0.648 ( -1.868, 0.572)

Smoker 0.405 ( -0.981, 1.791)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary nephropathies 0.027 ( -3.640, 3.695)

Glomerular disease 0.291 ( -1.476, 2.058)

Miscellaneous renal disorders 1.382 ( -0.364, 3.127)

Tubulointerstitial disease 0.632 ( -1.508, 2.773)

Comorbidity

CCF -1.471 ( -2.511, -0.431)

COPD -0.201 ( -0.328, -0.075)

CVA -0.102 ( -0.265, 0.060)

DM -0.175 ( -1.205, 0.855)

IHD 0.551 ( -0.572, 1.674)

LD 3.044 ( -0.517, 6.606)

MI -1.732 ( -2.856, -0.607)

PVD -1.072 ( -2.134, -0.010)

ST -1.098 ( -2.256, 0.061)

The values for the γ coefficients can be seen in Table F.2. These combine together to form

an individualised cubic spline for the hazard.
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Table F.2: Time-Dependent γ Values for each transition in the Two-State Model

Var Alive to Dead

Time dependent (γ1)

constant term

const 1.545 ( 0.107, 2.982)

Age

Age 0.008 ( 0.003, 0.014)

eGFR

eGFR 0.007 ( 0.001, 0.012)

Measures

Albumin 0.016 ( -0.003, 0.035)

Corrected Calcium -0.309 ( -0.677, 0.059)

Phosphate -0.199 ( -0.409, 0.011)

Smoking Status (vs Former)

Former (3y+) 0.521 ( -0.185, 1.227)

Non-Smoker 0.055 ( -0.099, 0.210)

Smoker -0.005 ( -0.181, 0.172)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary nephropathies -0.056 ( -0.516, 0.403)

Glomerular disease -0.087 ( -0.314, 0.141)

Miscellaneous renal disorders -0.202 ( -0.425, 0.020)

Tubulointerstitial disease -0.135 ( -0.400, 0.130)

Comorbidity

CCF 0.143 ( 0.008, 0.277)

DM 0.042 ( -0.091, 0.174)

IHD -0.062 ( -0.206, 0.082)

LD -0.421 ( -0.877, 0.036)

MI 0.202 ( 0.057, 0.347)

PVD 0.110 ( -0.026, 0.247)

ST 0.101 ( -0.048, 0.250)

Table F.3 shows the results from the internal validation in the Two-State Model. Calibration

Intercept is close to 0, implying the model is well calibrated overall with a high c-statistic and

Brier Score. Calibration Slope above 1 implies that the model under-estimates outcomes.

Table F.3: Internal Validation of the Two-State Model, results presented as Estimate (95% CI, where

possible)

Measure eGFR One Year Two Year Five Year Average

Brier < 30 0.63 ( 0.62, 0.63) 0.69 ( 0.69, 0.69) 0.66 ( 0.66, 0.67) 0.63 ( 0.62, 0.63)

< 60 0.71 ( 0.71, 0.72) 0.68 ( 0.68, 0.69) 0.66 ( 0.66, 0.66) 0.63 ( 0.63, 0.64)

c-statistic < 30 0.82 ( 0.82, 0.82) 0.85 ( 0.84, 0.85) 0.81 ( 0.81, 0.81) 0.81 ( 0.81, 0.82)

< 60 0.84 ( 0.84, 0.84) 0.83 ( 0.82, 0.83) 0.83 ( 0.82, 0.83) 0.81 ( 0.81, 0.81)

Intercept < 30 0.01 ( 0.00, 0.01) 0.01 ( 0.00, 0.01) -0.02 (-0.02, -0.01) -0.00 (-0.01, -0.00)

< 60 -0.02 (-0.02, -0.02) 0.00 ( 0.00, 0.01) 0.00 ( 0.00, 0.01) -0.00 (-0.00, -0.00)

Slope < 30 1.33 1.46 1.26 1.48

< 60 1.23 1.25 1.30 1.51

Table F.4 shows the results from the external validation in the Two-State Model, which

shows similar results to the internal validation with slightly impaired performance, which is to

be expected in an external validation.
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Table F.4: External Validation of the Two-State Model, results presented as Estimate (95% CI, where

possible)

Measure eGFR One Year Two Year Five Year Average

Brier < 30 0.64 ( 0.63, 0.64) 0.57 ( 0.56, 0.57) 0.57 ( 0.56, 0.58) 0.56 ( 0.56, 0.57)

< 60 0.67 ( 0.66, 0.67) 0.64 ( 0.63, 0.64) 0.57 ( 0.56, 0.57) 0.57 ( 0.56, 0.57)

c-statistic < 30 0.81 ( 0.81, 0.82) 0.81 ( 0.80, 0.81) 0.80 ( 0.79, 0.80) 0.78 ( 0.78, 0.78)

< 60 0.81 ( 0.81, 0.81) 0.80 ( 0.80, 0.81) 0.78 ( 0.78, 0.79) 0.78 ( 0.78, 0.78)

Intercept < 30 -0.00 (-0.00, 0.00) 0.02 ( 0.01, 0.02) 0.00 ( 0.00, 0.01) -0.00 (-0.00, 0.00)

< 60 0.02 ( 0.01, 0.02) -0.05 (-0.05, -0.04) 0.01 ( 0.01, 0.02) -0.00 (-0.00, 0.00)

Slope < 30 1.29 1.25 1.72 2.21

< 60 1.37 1.37 2.05 1.88

F.2 Three State Model
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Table F.5: Time-Dependent γ Values for each transition in the Three-State Model

Var CKD to Dead CKD to RRT RRT to Dead

Time dependent (γ1)

constant term

const 0.840 ( -0.633, 2.314) 1.503 ( 1.235, 1.771) 0.975 ( 0.169, 1.781)

Age

Age 0.010 ( 0.003, 0.016)

eGFR

eGFR 0.007 ( 0.001, 0.013) 0.058 ( 0.048, 0.069)

Measures

Albumin 0.019 ( 0.000, 0.037)

Corrected Calcium -0.276 ( -0.687, 0.135)

Phosphate -0.186 ( -0.410, 0.038)

Gender (vs Male)

Female 0.045 ( -0.097, 0.186)

Smoking Status (vs Former)

Former (3y+) 0.355 ( -0.371, 1.082) 218.624 ( -63.849, 501.097)

Non-Smoker 0.055 ( -0.104, 0.214) 0.081 ( -1.117, 1.280)

Smoker 0.003 ( -0.191, 0.197) 0.668 ( -0.848, 2.184)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary nephropathies 0.110 ( -0.400, 0.619) 0.061 ( -0.407, 0.528)

Glomerular disease -0.069 ( -0.289, 0.151) -0.111 ( -0.388, 0.166)

Miscellaneous renal disorders -0.211 ( -0.450, 0.028) -0.218 ( -0.589, 0.153)

Tubulointerstitial disease -0.092 ( -0.388, 0.205) -0.242 ( -0.576, 0.092)

Comorbidity

CCF 0.180 ( 0.038, 0.322) 0.574 ( -0.098, 1.246)
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Table F.5: Time-Dependent γ Values for each transition in the Three-State Model (continued)

Var CKD to Dead CKD to RRT RRT to Dead

MI 0.147 ( 0.001, 0.294)

PVD 0.091 ( -0.054, 0.237)

ST 0.135 ( -0.024, 0.294)

Time dependent (γ2)

constant term

const 0.086 ( 0.064, 0.108) 0.282 ( 0.039, 0.526)

uPCR

uPCR 0.021 ( 0.007, 0.034)

Smoking Status (vs Former)

Former (3y+) 14.103 ( -4.279, 32.486)

Non-Smoker 0.046 ( -0.136, 0.228)

Smoker 0.029 ( -0.168, 0.227)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary nephropathies -0.039 (-0.057, -0.020)

Glomerular disease 0.001 (-0.012, 0.013)

Miscellaneous renal disorders -0.005 (-0.028, 0.017)

Tubulointerstitial disease -0.006 (-0.021, 0.010)

Time dependent (γ3)

constant term

const -1.057 ( -2.054, -0.061)

Time dependent (γ4)

constant term

const 1.627 ( -0.039, 3.292)

Time dependent (γ5)
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Table F.5: Time-Dependent γ Values for each transition in the Three-State Model (continued)

Var CKD to Dead CKD to RRT RRT to Dead

constant term

const -1.914 ( -4.170, 0.343)

Smoking Status (vs Former)

Former (3y+) -18.897 ( -47.605, 9.811)

Non-Smoker -0.305 ( -1.955, 1.344)

Smoker -0.248 ( -1.805, 1.310)

Time dependent (γ6)

constant term

const 1.132 ( -0.556, 2.819)

Smoking Status (vs Former)

Former (3y+) 9.830 ( -8.812, 28.471)

Non-Smoker 0.306 ( -1.587, 2.198)

Smoker 0.337 ( -1.432, 2.106)

Comorbidity

CCF 0.076 ( 0.006, 0.146)
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Table F.5 shows the γ values for the transitions from CKD to Dead, CKD to RRT and RRT

to Dead. The proportional hazards and validation results for the Three-State Model can be

found in Chapter 5.

F.3 Five State Model

Tables F.6, F.7, F.8 and F.9 show the proportional hazard ratios and the γ coefficients for the

transitions in the Five-State Model.

Table F.6: Porportional Hazards for each transition in the Five-State Model part a

Var CKD to Tx HD to Dead PD to Dead

constant term

const -27.179 (-41.330, -13.028) -12.812 (-23.706, -1.918) -36.779 (-66.159, -7.399)

Age

Age -0.151 ( -0.224, -0.078) 0.055 ( 0.036, 0.073)

log(Age) 3.100 ( -0.063, 6.262) 2.177 ( -0.175, 4.529)

eGFR

eGFR -0.157 ( -0.203, -0.111) 0.011 ( -0.004, 0.026)

uPCR

uPCR -0.586 ( -1.385, 0.214)

Measures

Albumin -0.040 ( -0.082, 0.002) -0.044 ( -0.094, 0.007)

Corrected Calcium 0.868 ( -0.424, 2.161)

Haemoglobin -0.022 ( -0.038, -0.007)

Phosphate 0.348 ( -0.420, 1.117)

Smoking Status (vs Former)

Former (3y+) -5.780 (-14.562, 3.002) -2.232 (-77.015, 72.551) -0.465 ( -4.707, 3.777)

Non-Smoker -0.070 ( -3.585, 3.445) 1.204 ( -3.963, 6.371) 0.509 ( -0.709, 1.727)

Smoker -3.003 ( -8.785, 2.778) -3.057 ( -8.727, 2.613) 0.567 ( -0.752, 1.885)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary nephropathies -0.207 ( -1.412, 0.999) -2.191 ( -9.592, 5.210) -0.267 ( -1.065, 0.532)

Glomerular disease 0.681 ( -0.299, 1.661) -0.467 ( -2.134, 1.200) -0.374 ( -1.050, 0.301)

Miscellaneous renal disorders -0.619 ( -3.318, 2.080) -0.029 ( -2.096, 2.038) 1.088 ( -0.106, 2.281)

Tubulointerstitial disease -0.621 ( -1.819, 0.576) -0.613 ( -3.174, 1.948) 0.555 ( -0.247, 1.356)

Comorbidity

CCF -1.732 ( -8.015, 4.550)

COPD 0.783 ( 0.035, 1.530) 0.283 ( -0.107, 0.673)

CVA 23.203 ( -3.512, 49.918)

DM 0.587 ( 0.075, 1.098)

HT -0.772 ( -2.007, 0.462)

IHD 8.348 ( -6.144, 22.840)

MI 1.894 ( -0.095, 3.883) -4.755 ( -9.291, -0.219)

PVD -0.363 ( -0.761, 0.035)

ST -0.247 ( -0.645, 0.151)

Table F.7: Porportional Hazards for each transition in the Five-State Model part b

Var CKD to Dead CKD to HD CKD to PD

constant term

const -7.064 (-10.609, -3.518) -6.210 (-9.773, -2.648) -4.706 (-11.528, 2.116)
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Table F.7: Porportional Hazards for each transition in the Five-State Model part b (continued)

Var CKD to Dead CKD to HD CKD to PD

Age

Age -0.015 ( -0.065, 0.035) -0.035 (-0.045, -0.026)

Age2 -0.001 (-0.001, -0.000)

log(Age) -1.553 ( -2.600, -0.506)

eGFR

eGFR -0.071 ( -0.120, -0.022) -0.626 (-0.742, -0.510) -0.546 ( -0.715, -0.377)

log(eGFR Rate) 0.505 ( -0.207, 1.217)

uPCR

log(uPCR Rate) 0.726 ( -0.444, 1.897)

uPCR 1.342 ( 0.536, 2.149) 0.825 ( -0.745, 2.395)

uPCR Rate -0.044 ( -0.139, 0.051)

Measures

Albumin -0.048 ( -0.065, -0.031) -0.053 (-0.085, -0.022) -0.023 ( -0.084, 0.038)

Corrected Calcium 0.360 ( -0.081, 0.800)

Haemoglobin -0.012 ( -0.016, -0.007)

Phosphate 2.085 ( 0.317, 3.854) 0.517 (-0.094, 1.128) 1.064 ( 0.033, 2.095)

SBP 0.006 ( 0.001, 0.011) 0.013 ( 0.005, 0.022)

Gender (vs Male)

Female -0.225 ( -0.359, -0.091) -0.347 (-0.590, -0.104)

Smoking Status (vs Former)

Former (3y+) -0.258 ( -0.922, 0.407) -0.368 (-1.230, 0.493) -0.386 ( -1.540, 0.768)

Non-Smoker -0.180 ( -0.326, -0.034) -0.190 (-0.450, 0.070) -0.038 ( -0.383, 0.307)

Smoker 0.354 ( 0.160, 0.548) 0.257 (-0.060, 0.573) 0.427 ( 0.046, 0.807)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary nephropathies -0.404 ( -0.825, 0.017) -3.618 (-6.932, -0.304) 0.087 ( -8.414, 8.589)

Glomerular disease -0.352 ( -0.584, -0.119) -0.760 (-2.889, 1.370) 2.126 ( -3.392, 7.643)

Miscellaneous renal disorders -0.229 ( -0.476, 0.017) -0.209 (-3.630, 3.213) 6.568 ( -0.361, 13.496)

Tubulointerstitial disease -0.424 ( -0.697, -0.151) -1.157 (-3.716, 1.401) 5.554 ( -0.575, 11.682)

Comorbidity

CCF -0.364 ( -0.503, -0.226)

COPD -0.284 ( -0.426, -0.143)

DM 0.120 ( -0.011, 0.251)

MI -1.714 ( -2.780, -0.648)

PVD -0.234 ( -0.377, -0.092)

ST -0.290 ( -0.446, -0.134) -0.445 (-0.770, -0.120)
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Table F.8: Time-Dependent γ Values for each transition in the Five-State Model part a

Var CKD to Tx HD to Dead PD to Dead

Time dependent (γ1)

constant term

const 1.547 ( 0.540, 2.553) 0.727 ( -0.002, 1.457) 8.631 ( 1.998, 15.265)

Smoking Status (vs Former)

Former (3y+) 0.864 ( -0.293, 2.020) -0.183 (-13.681, 13.315)

Non-Smoker -0.009 ( -0.472, 0.454) -0.277 ( -1.256, 0.702)

Smoker 0.319 ( -0.441, 1.080) 0.753 ( -0.320, 1.826)

Comorbidity

CCF 0.366 ( -0.888, 1.620)

CVA -5.462 (-11.477, 0.554)

IHD -2.100 ( -5.441, 1.241)

MI 0.984 ( 0.087, 1.881)

Time dependent (γ2)

constant term

const -0.674 ( -1.237, -0.111) 0.395 ( 0.053, 0.737) 1.162 ( 0.352, 1.971)

Comorbidity

CVA -0.355 ( -0.907, 0.196)

IHD -0.493 ( -0.932, -0.055)

Time dependent (γ3)

constant term

const 1.081 ( 0.344, 1.818) -1.574 ( -3.117, -0.032) -1.611 ( -3.344, 0.121)

eGFR

eGFR -0.004 ( -0.007, -0.001)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary nephropathies -0.144 ( -0.252, -0.035) 1.758 ( -5.355, 8.871)

Glomerular disease 0.037 ( -0.042, 0.116) 0.267 ( -1.389, 1.923)

Miscellaneous renal disorders 0.064 ( -0.153, 0.282) 0.763 ( -1.368, 2.894)

Tubulointerstitial disease -0.030 ( -0.111, 0.050) -5.412 (-15.642, 4.819)

Time dependent (γ4)

constant term

const 3.087 ( 0.179, 5.994) 2.644 ( -0.790, 6.077)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)
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Table F.8: Time-Dependent γ Values for each transition in the Five-State Model part a(continued)

Var CKD to Tx HD to Dead PD to Dead

Familial / hereditary nephropathies -6.645 (-24.740, 11.451)

Glomerular disease -2.286 ( -7.150, 2.579)

Miscellaneous renal disorders -4.262 (-11.574, 3.051)

Tubulointerstitial disease 18.529 (-15.551, 52.609)

Comorbidity

MI 0.054 ( -0.005, 0.112)

Time dependent (γ5)

constant term

const -3.577 ( -7.134, -0.021) -7.683 (-16.560, 1.193)

Smoking Status (vs Former)

Former (3y+) 7.548 ( -0.830, 15.927)

Non-Smoker 0.755 ( -0.857, 2.366)

Smoker -0.085 ( -1.699, 1.530)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary nephropathies 8.753 (-10.491, 27.998)

Glomerular disease 5.130 ( -2.078, 12.338)

Miscellaneous renal disorders 8.176 ( -4.221, 20.574)

Tubulointerstitial disease -26.816 (-73.441, 19.808)

Comorbidity

CCF -1.796 ( -5.061, 1.469)

IHD 6.534 ( -0.283, 13.352)

Time dependent (γ6)

constant term

const 2.102 ( -0.215, 4.420) 6.833 ( -3.221, 16.886)

Age

log(Age) -0.079 ( -0.177, 0.020)

Smoking Status (vs Former)

Former (3y+) -0.147 ( -1.371, 1.077) -10.486 (-22.059, 1.087)

Non-Smoker -0.026 ( -0.133, 0.082) -1.005 ( -3.209, 1.199)

Smoker 0.091 ( -0.025, 0.207) 0.140 ( -2.067, 2.346)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / hereditary nephropathies -4.062 (-13.538, 5.413)
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Table F.8: Time-Dependent γ Values for each transition in the Five-State Model part a(continued)

Var CKD to Tx HD to Dead PD to Dead

Glomerular disease -3.652 ( -8.701, 1.398)

Miscellaneous renal disorders -5.414 (-14.068, 3.239)

Tubulointerstitial disease 15.910 (-10.320, 42.139)

Comorbidity

CCF 2.565 ( -1.886, 7.017)

CVA 0.314 ( -0.629, 1.257)

IHD -7.802 (-16.654, 1.051)
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Table F.9: Time-Dependent γ Values for each transition in the Five-State Model part b

Var CKD to Dead CKD to HD CKD to PD

Time dependent (γ1)

constant term

const 1.262 ( 0.839, 1.686) 1.450 ( 0.892, 2.009) 1.597 ( 1.006, 2.188)

Age

Age 0.009 ( 0.003, 0.016)

eGFR

eGFR 0.008 ( 0.001, 0.014) 0.068 ( 0.054, 0.082) 0.056 ( 0.035, 0.077)

Measures

Phosphate -0.216 ( -0.440, 0.009)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / heredi-

tary nephropathies

0.619 ( 0.165, 1.073) 0.052 ( -1.524, 1.628)

Glomerular disease 0.066 (-0.213, 0.344) -0.419 ( -1.433, 0.595)

Miscellaneous renal

disorders

-0.023 (-0.468, 0.421) -1.499 ( -2.686, -0.312)

Tubulointerstitial

disease

0.097 (-0.232, 0.427) -1.129 ( -2.238, -0.019)

Comorbidity

MI 0.196 ( 0.057, 0.335)

Time dependent (γ2)

constant term

const -0.041 (-0.191, 0.109) 0.055 ( 0.001, 0.109)

Measures

Phosphate 0.026 ( -0.002, 0.054)

Primary Renal Diagnosis (vs Systemic diseases affecting the kidney)

Familial / heredi-

tary nephropathies

-0.024 ( -0.137, 0.088)

Glomerular disease -0.025 ( -0.092, 0.042)

Miscellaneous renal

disorders

-0.101 ( -0.191, -0.011)

Tubulointerstitial

disease

-0.074 ( -0.148, -0.000)
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Table F.9: Time-Dependent γ Values for each transition in the Five-State Model part b(continued)

Var CKD to Dead CKD to HD CKD to PD

Time dependent (γ3)

constant term

const 0.179 (-0.004, 0.362)

uPCR

uPCR 0.030 ( 0.002, 0.058)



F.3. FIVE STATE MODEL 169

Tables F.10 and F.12 shows the results from the internal validation in the Five-State Model.

Table F.10 and F.12 shows the results from the external validation in the Five-State Model.

Table F.10: External Validation of the Five-State Model, results presented as Estimate (95% CI)

eGFR Measure One Year Two Year Five Year Average

< 30 Brier 0.70 ( 0.70, 0.71) 0.72 ( 0.71, 0.72) 0.64 ( 0.64, 0.65) 0.63 ( 0.63, 0.64)

< 60 Brier 0.73 ( 0.72, 0.73) 0.71 ( 0.70, 0.71) 0.67 ( 0.67, 0.68) 0.64 ( 0.64, 0.65)

< 30 c-statistic 0.85 ( 0.85, 0.85) 0.85 ( 0.84, 0.85) 0.82 ( 0.82, 0.82) 0.82 ( 0.81, 0.82)

< 60 c-statistic 0.85 ( 0.85, 0.85) 0.83 ( 0.82, 0.83) 0.82 ( 0.82, 0.82) 0.81 ( 0.81, 0.82)

< 30 Intercept

-0.01 (-0.01, -0.01)

-0.02 (-0.02, -0.01)

-0.02 (-0.02, -0.01)

0.04 ( 0.03, 0.04)

0.00 ( 0.00, 0.00)

-0.01 (-0.01, -0.00)

0.01 ( 0.00, 0.01)

-0.01 (-0.02, -0.01)

-0.01 (-0.02, -0.01)

-0.02 (-0.03, -0.02)

-0.01 (-0.01, -0.00)

0.01 ( 0.00, 0.01)

0.00 ( 0.00, 0.01)

-0.00 (-0.01, -0.00)

-0.02 (-0.03, -0.02)

0.01 ( 0.01, 0.02)

0.00 (-0.00, 0.00)

0.00 (-0.00, 0.00)

-0.00 (-0.00, 0.00)

-0.00 (-0.01, -0.00)

0.00 (-0.00, 0.00)

-0.00 (-0.00, 0.00)

-0.00 (-0.01, -0.00)

0.00 (-0.00, 0.00)

< 60 Intercept

0.02 ( 0.01, 0.02)

-0.01 (-0.01, -0.00)

0.02 ( 0.01, 0.02)

-0.02 (-0.03, -0.02)

0.03 ( 0.02, 0.03)

0.01 ( 0.01, 0.01)

0.02 ( 0.02, 0.03)

-0.02 (-0.02, -0.01)

-0.02 (-0.02, -0.01)

-0.00 (-0.00, -0.00)

0.02 ( 0.02, 0.02)

-0.01 (-0.01, -0.00)

0.03 ( 0.02, 0.03)

0.00 ( 0.00, 0.01)

-0.02 (-0.02, -0.01)

-0.00 (-0.01, -0.00)

-0.00 (-0.00, 0.00)

0.02 ( 0.01, 0.02)

0.00 (-0.00, 0.00)

-0.00 (-0.00, -0.00)

0.00 (-0.00, 0.00)

0.00 (-0.00, 0.00)

-0.00 (-0.00, -0.00)

-0.00 (-0.00, 0.00)

Table F.11: Internal Validation of the Five-State Model, results presented as Estimate (95% CI)

eGFR Measure One Year Two Year Five Year Average

< 30 Brier 0.74 ( 0.74, 0.75) 0.72 ( 0.72, 0.72) 0.67 ( 0.66, 0.67) 0.69 ( 0.69, 0.69)

< 60 Brier 0.76 ( 0.75, 0.76) 0.71 ( 0.71, 0.72) 0.65 ( 0.65, 0.66) 0.68 ( 0.68, 0.69)

< 30 c-statistic 0.88 ( 0.88, 0.88) 0.86 ( 0.85, 0.86) 0.83 ( 0.83, 0.84) 0.84 ( 0.84, 0.84)

< 60 c-statistic 0.88 ( 0.87, 0.88) 0.87 ( 0.87, 0.87) 0.86 ( 0.86, 0.86) 0.84 ( 0.84, 0.85)

< 30 Intercept

0.00 (-0.00, 0.00)

-0.01 (-0.01, -0.01)

-0.01 (-0.01, -0.01)

0.01 ( 0.00, 0.01)

-0.00 (-0.00, 0.00)

-0.01 (-0.01, -0.00)

0.01 ( 0.00, 0.01)

0.01 ( 0.01, 0.01)

-0.00 (-0.00, 0.00)

-0.00 (-0.00, -0.00)

0.00 ( 0.00, 0.01)

0.00 ( 0.00, 0.00)

-0.01 (-0.01, -0.00)

-0.00 (-0.01, -0.00)

-0.01 (-0.01, -0.00)

-0.04 (-0.05, -0.04)

0.01 ( 0.00, 0.01)

-0.00 (-0.00, -0.00)

0.00 (-0.00, 0.00)

0.00 (-0.00, 0.00)

-0.00 (-0.00, 0.00)

-0.00 (-0.00, 0.00)

-0.00 (-0.00, 0.00)

0.00 ( 0.00, 0.01)

< 60 Intercept

-0.02 (-0.02, -0.02)

0.00 ( 0.00, 0.01)

-0.00 (-0.01, -0.00)

-0.00 (-0.01, -0.00)

0.01 ( 0.01, 0.01)

0.00 ( 0.00, 0.00)

0.00 ( 0.00, 0.00)

0.00 ( 0.00, 0.00)

-0.01 (-0.02, -0.01)

-0.02 (-0.02, -0.01)

-0.00 (-0.00, -0.00)

-0.00 (-0.00, -0.00)

-0.00 (-0.00, 0.00)

0.00 ( 0.00, 0.01)

-0.00 (-0.00, 0.00)

-0.01 (-0.01, -0.01)

-0.01 (-0.01, -0.01)

-0.00 (-0.00, -0.00)

-0.00 (-0.01, -0.00)

0.00 ( 0.00, 0.00)

0.00 (-0.00, 0.00)

-0.00 (-0.00, 0.00)

0.00 (-0.00, 0.00)

-0.00 (-0.00, 0.00)
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Table F.12: External Validation of the Five-State Model, Calibration Slope results presented as Esti-

mate only

eGFR One Year Two Year

< 30

1.16, 0.02, -0.00, -0.01, 0.00, 0.06

-0.03, 1.08, -0.00, -0.00, 0.04, -0.04

-0.05, -0.02, 1.18, -0.04, -0.05, 0.02

-0.01, -0.04, -0.06, 1.17, 0.00, -0.00

-0.01, -0.02, 0.00, -0.01, 1.14, -0.04

0.03, -0.00, -0.03, 0.00, 0.01, 1.23

1.25, 0.02, 0.01, 0.02, -0.07, 0.02

0.00, 1.39, 0.08, -0.03, 0.02, 0.05

-0.01, -0.01, 1.26, 0.04, -0.04, 0.03

-0.00, -0.00, -0.10, 1.21, -0.04, 0.02

-0.02, -0.02, 0.02, -0.08, 1.20, -0.00

-0.04, 0.00, -0.05, 0.02, -0.06, 1.44

< 60

1.31, 0.02, 0.05, -0.00, -0.01, -0.00

0.02, 1.16, 0.04, 0.01, 0.04, -0.03

0.04, 0.01, 1.08, 0.01, 0.01, -0.04

-0.04, -0.04, -0.01, 1.08, -0.00, -0.00

-0.02, 0.04, -0.03, -0.03, 1.27, -0.00

-0.01, 0.02, 0.03, -0.02, 0.07, 1.16

1.39, -0.04, 0.00, -0.00, 0.01, -0.01

-0.06, 1.31, 0.03, 0.00, 0.02, -0.06

0.00, -0.02, 1.14, 0.01, -0.04, 0.04

0.01, -0.02, 0.00, 1.37, -0.03, 0.00

0.04, -0.02, -0.00, -0.01, 1.34, 0.02

-0.02, 0.02, -0.03, -0.02, -0.01, 1.32

Five Year Average

< 30

1.45, -0.04, 0.06, -0.07, 0.00, 0.04

-0.01, 1.31, 0.04, 0.01, -0.01, 0.03

0.01, 0.06, 1.50, 0.01, 0.02, -0.00

-0.01, 0.00, 0.08, 1.56, 0.02, 0.01

-0.09, 0.01, -0.02, -0.06, 1.47, -0.00

-0.03, 0.04, 0.07, 0.08, 0.01, 1.35

1.46, 0.01, -0.00, 0.00, -0.01, 0.00

0.01, 1.46, 0.01, 0.00, -0.00, -0.00

-0.00, 0.00, 1.54, -0.01, 0.00, -0.00

0.00, -0.02, 0.00, 1.51, -0.00, 0.01

-0.01, 0.00, 0.00, -0.00, 1.47, -0.00

0.00, -0.00, -0.00, -0.00, -0.01, 1.47

< 60

1.32, 0.04, -0.04, -0.01, -0.02, 0.03

-0.06, 1.21, 0.01, 0.00, -0.06, -0.01

0.01, -0.08, 1.70, 0.04, -0.03, -0.05

-0.01, 0.03, -0.02, 1.35, -0.02, 0.02

-0.05, -0.03, 0.03, -0.04, 1.43, 0.07

0.01, 0.04, -0.04, -0.01, -0.00, 1.28

1.49, -0.00, -0.00, -0.00, -0.01, 0.01

-0.01, 1.45, -0.00, 0.00, 0.00, -0.00

0.00, -0.00, 1.44, 0.01, -0.00, -0.01

0.00, -0.00, 0.01, 1.47, -0.00, 0.00

-0.00, -0.00, -0.00, 0.00, 1.47, 0.01

0.00, -0.00, -0.00, -0.00, 0.00, 1.44
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Table F.13: Internal Validation of the Five-State Model, Calibration Slope results presented as Esti-

mate only

eGFR One Year Two Year

< 30

1.14, -0.01, 0.00, 0.02, 0.00, 0.01

-0.00, 1.09, -0.05, -0.01, 0.01, 0.00

-0.04, 0.06, 1.22, 0.02, 0.03, 0.00

-0.06, 0.02, 0.01, 1.25, 0.00, -0.02

-0.02, 0.03, 0.02, -0.02, 1.13, 0.00

0.05, -0.04, -0.06, -0.02, -0.00, 1.30

1.42, -0.05, 0.03, -0.01, -0.05, 0.00

0.02, 1.12, 0.03, -0.01, 0.03, -0.00

0.01, -0.01, 1.22, -0.00, 0.00, 0.04

-0.03, 0.00, -0.05, 1.21, -0.01, 0.00

-0.02, -0.03, -0.00, -0.01, 1.39, -0.00

-0.03, 0.04, 0.04, -0.00, 0.03, 1.15

< 60

1.07, 0.03, 0.02, 0.02, 0.01, -0.00

0.00, 1.18, 0.01, 0.00, -0.06, 0.01

0.01, 0.00, 1.03, 0.00, -0.05, 0.00

-0.04, -0.03, -0.03, 1.11, 0.01, -0.03

0.00, -0.03, -0.02, -0.02, 1.15, 0.01

0.02, -0.01, 0.00, -0.00, -0.01, 1.11

1.14, -0.02, 0.04, 0.02, 0.00, -0.09

-0.01, 1.10, 0.00, -0.07, -0.01, -0.00

-0.03, 0.02, 1.12, 0.03, 0.00, -0.04

0.00, 0.02, -0.03, 1.11, -0.02, 0.01

-0.00, -0.06, -0.05, 0.02, 1.11, -0.03

0.07, -0.01, -0.03, 0.02, 0.04, 1.18

Five Year Average

< 30

1.22, -0.00, 0.05, -0.00, -0.05, 0.05

-0.04, 1.11, -0.01, 0.03, 0.04, 0.03

0.02, -0.03, 1.24, -0.03, -0.03, 0.01

0.02, -0.03, -0.00, 1.20, -0.05, 0.01

0.00, 0.08, -0.00, 0.01, 1.25, -0.06

0.01, -0.00, -0.00, 0.03, -0.05, 1.14

1.28, 0.00, -0.00, 0.01, 0.00, 0.00

0.00, 1.28, 0.00, 0.00, -0.00, 0.01

0.00, 0.01, 1.25, 0.00, -0.00, 0.00

-0.00, 0.00, 0.00, 1.28, -0.00, 0.00

-0.00, 0.00, -0.00, 0.01, 1.26, -0.00

-0.00, 0.01, 0.00, -0.00, -0.00, 1.31

< 60

1.27, 0.02, 0.02, -0.03, 0.04, -0.06

-0.00, 1.20, -0.00, 0.00, 0.04, -0.00

-0.03, -0.02, 1.22, 0.02, 0.05, 0.03

0.00, -0.02, -0.01, 1.30, -0.00, 0.04

0.00, -0.05, 0.00, -0.05, 1.31, 0.01

-0.01, -0.04, -0.05, 0.02, -0.00, 1.19

1.31, 0.01, -0.00, 0.00, 0.00, 0.00

-0.00, 1.29, -0.00, 0.00, -0.00, 0.00

-0.00, 0.00, 1.30, -0.00, -0.00, -0.00

0.00, -0.00, -0.00, 1.28, 0.00, -0.01

0.00, 0.00, 0.00, 0.00, 1.27, -0.01

0.01, -0.00, -0.00, -0.00, 0.00, 1.28
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