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Abstract

Research topics, and the words used to describe them, rise and fall in popularity over time.

The fastest rising topics are typically called trends or bursts—recent examples in computer

science include deep learning, edge computing, and the internet of things. While individual

researchers typically experience trends as an increasing series of mentions by colleagues, pa-

pers, and funding opportunities, they can also be empirically measured by looking at the fre-

quency of terms in publications over time. When historical trends are measured this way and

plotted on a graph, they appear to obey a common life cycle. However, there is no schol-

arly agreement on how this life cycle should be modelled. Previous work compared the per-

formance of models using a handful of trends already known to the researchers. The small

sample size and potential for selection bias makes it difficult to draw any firm conclusions.

In this thesis, we combine automatic trend detection with mathematical modelling of trend

life cycles to investigate the dynamics of trends in science and innovation at scale. Our main

contributions are (a) a semi-automated pipeline to detect trends in large datasets of publica-

tions, (b) a comparison between two popular life cycle models on a dataset of automatically-

selected trends across the fields of computer science, particle physics, mental health, and

cancer research, (c) a demonstration that a random forest classifier can predict whether de-

tected trends in research will rise and fall in the future, and (d) an investigation of lead-lag

relationships between trends in papers, patents, and grants.

This thesis advances understanding of how big ideas in research emerge, grow, and decline,

and the temporal relationship between trends in research and innovation.
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Chapter 1

Introduction

Science is an activity undertaken by humans, and like any other human activity, it experi-

ences trends. We can all think of ideas that are currently trendy in our field of study. We

find ways to work them into paper abstracts and grant proposals. Students ask if they can

do their projects on them. Colleagues from other fields have heard of them. Eventually they

appear on the news, until, finally, even your parents ask—“Do you use Deep Learning?”

There is nothing new about the rise and fall of research trends. For example, if we look at

the frequency of the terms “Digital computer”, “Mainframe”, “Neural network”, “World

Wide Web”, and “Deep learning” in the Google Ngrams Books Corpus1, we see that most of

them share a common pattern—an exponential rise, a brief peak, and then a slower decline

(Figure 1.1).
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Figure 1.1: Selected computer science trends in the Google Books Ngrams Viewer. Shows

“Digital computer” (peaks in 1967), “Mainframe” (1987), “Neural network” (1995),

“World Wide Web” (1999), and “Deep Learning” (not yet peaked). The search was case

insensitive and included plurals. Series have been smoothed by a moving average.

This observation of a common pattern—a life cycle—is what originally inspired this thesis. If

trends in research behave in a similar way, it ought to be possible to detect them in datasets

based on their behaviour. Understanding how trends have behaved in the past also allows us

to make predictions about the future. For example, from Figure 1.1 we would expect “Deep

1https://books.google.com/ngrams
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learning” not to continue to rise forever, but instead to peak and then gradually decline as

new learning paradigms appear. This decline would not necessarily mean the term is no

longer used—digital computers, mainframes, and the World Wide Web are all now part of

the fabric of daily life—rather, the idea will cease to feel so new and interesting in research,

and will therefore be talked about less.

This thesis aims to explore how to automatically detect, model, and track trends in science

and innovation at scale. As will be seen in Chapter 2, we are not the first to notice the phe-

nomenon of trend life cycles. However, the novelty of this thesis is that it combines two

ideas: automatic trend detection in historical and current scientific literature, and mathe-

matical modelling of trend life cycles. This allows us to conduct more systematic studies,

which in turn opens up a number of scientometric applications, such as comparing average

trend parameters in different disciplines and searching for lead-lag relationships between pa-

pers and patents.

In terms of the scope of this thesis, we do not intend to go deeply into the philosophy or so-

ciology of science; asking instead “how” and “what”, rather than “why”. While other stud-

ies into trends in research make use of citation and co-authorship networks (He et al., 2009,

Salatino, 2019, Small, 2006), we would like to focus mainly on trend frequency in text data,

with the idea that this would allow our methods to be applied to datasets outside scientific

literature.

1.1 Motivation

Science, as measured in the number of publications per year, is growing. Bornmann and

Mutz (2015) found that the size of the online bibliography Web of Science was increasing at

a rate of 8% a year in 2010. This exponential rate of growth is visible in other bibliographies

of scientific literature, such as PubMed (see Figure 1.2). New methods of automatically de-

tecting research trends in large datasets could help researchers to make sense of the deluge

of papers being published in their fields, and identify promising new ideas.

Additionally, new trends in research can foreshadow technological development (Brooks,

1994, Järvenpää et al., 2011, Watts and Porter, 1997). Therefore, a better understanding of

trend life cycles and the temporal link between science and technology could have implica-

tions for investors, funding agencies, and science policymakers. This research is also timely,

due to the huge collections of scientific literature that are now available on the web. Twenty
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Figure 1.2: Number of articles indexed by PubMed over time (1996-2020). Data taken

from PubMed’s annual stats (NIH, 2021).

years ago, text mining research in this area was often limited to corpora of a few thousand

documents (Chen, 2006, Mane and Börner, 2004). Now it can take place with tens of mil-

lions of documents and their associated metadata.

1.2 Research hypothesis and questions

The main hypothesis of this thesis is that most research trends follow a predictable life cy-

cle in terms of their frequency over time in datasets of scientific literature, and that this life

cycle can be described by a mathematical model.

In order to test this hypothesis and to develop its applications, we aim to answer the follow-

ing research questions:

� RQ1: How can we detect research trends in time-ordered collections of documents?

� RQ2: Can we predict whether a given research idea will rise, fall, or plateau over a

given timescale?

� RQ3: Which model is more appropriate to describe trend life cycles?

� RQ4: Do trends in different scientific fields exhibit different behaviour?

� RQ5: What is the temporal relationship between trends in papers, patents, and grants?
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1.3 Research contributions

This thesis provides the following research contributions:

1. Adapts a burst detection method to identify research trends in a dataset of scientific

literature. We demonstrate this method on computer science abstracts.

2. Develops a machine learning method based on a random forest classifier to predict

whether a given trend will rise or fall in popularity in the future.

3. Compares two common mathematical models of trend life cycles by fitting them to a

set of semi-automatically generated trends in computer science, particle physics, men-

tal health, and cancer research.

4. Develops a method to establish the duration of a trend and uses it to calculate aver-

age trend durations in computer science, particle physics, mental health, and cancer

research.

5. Investigates the temporal relationship between trends in papers, grants, and patents,

and proposes a method based on mean squared error to measure the lag between data

series.

6. Presents a theory about the early evolution of emerging trends and links it to Gart-

ner’s hype cycle.

1.4 Rationale for submitting in journal format

This thesis is written in journal format with permission from the Department of Computer

Science. The decision to use this format was taken early in the Ph.D. when we realised that

the planned work for this thesis can be segmented into a set of papers that tell a coherent

story.

Three papers form the backbone of this thesis:

� Emma Tattershall, Goran Nenadic, and Robert Stevens. “Detecting Bursty Terms in

Computer Science Research”. Scientometrics 122, 681–699 (2020). This paper de-

scribes a trend detection methodology adapted from a technique in technical stock
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market analysis (RQ1). We apply the methodology to a dataset of 2.6 million com-

puter science abstracts, then use the results to train a machine learning algorithm to

predict whether recent trends will rise or fall in popularity in the future (RQ2).

� Emma Tattershall, Goran Nenadic, and Robert Stevens.“Modelling trend life cycles in

scientific research using the Logistic and Gompertz equations”. Accepted by Sciento-

metrics, 2021. The burst detection methodology in the above paper is applied to four

datasets in four different fields. We fit two candidate life cycle models and compare

the mean error (RQ3). We compare model parameters between fields (RQ4).

� Emma Tattershall, Goran Nenadic, and Robert Stevens. “Tracking the emergence of

ten computer science topics in papers, grants, and patents”. This study tracks the

early growth of ten computer science trends across patents, papers, and grants, in an

attempt to determine whether lead-lag relationships exist between any of the three

data sources. This helps to build a more complete picture of trends in the research

ecosystem (RQ5).

Submitting in journal format means that there will inevitably be some repeated material in

this thesis, particularly in Chapter 2, which covers prior work and background material.

1.5 Thesis structure

The rest of the thesis is structured as follows:

� Chapter 2 provides background material for this thesis. It discusses the data landscape

and terminology before moving on to cover prior work.

� Chapter 3 describes a trend detection algorithm inspired by a technique from stock

market analysis. This algorithm is applied to a set of computer science abstracts. A

classifier is trained on the results in order to predict whether recent trends will rise or

fall in popularity.

� Chapter 4 conducts research into trend life cycles. It applies the methodology from

Chapter 3 to four datasets across four different research fields. Two candidate life cy-

cle models are fitted to a set of 200 trends and the mean error compared.

� Chapter 5 is a set of case studies of emerging computer science trends from the last

decade. It tracks their early growth through papers, patents, and grants, and looks for
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lead-lag relationships between the different data sources.

� Chapter 6 summarises the findings of this thesis and discusses their limitations and

implications. It suggests further research work, then makes some concluding remarks.
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Chapter 2

Background

This thesis sits at the intersection of several fields; computer science, data science, sciento-

metrics, technological forecasting, and the philosophy of science. This is too broad to allow

for a systematic literature review. Instead, we summarise the existing literature with the aim

of giving the reader an overview of the work that already exists, and the dominant theories

in this field. We then talk about how the literature informs our thesis. Prior work is gath-

ered via reading existing literature reviews, searching Google Scholar and Web of Science,

reading papers cited by or citing known papers, and using www.connectedpapers.com to

discover semantically related research. Each of the papers included in Chapters 3, 4, and 5

also contain narrower literature reviews.

We divide this literature overview into four parts:

1. Scientific literature: The definition of scientific literature and available databases of

papers, patents, and grants.

2. Text mining: Text mining methods and the context of this thesis in the wider litera-

ture.

3. Trend detection: The definition and terminology of trend detection, followed by

methods, prior work, and evaluation.

4. Research trend life cycles: The philosophical background of trend life cycles in re-

search. This is followed by qualitative and quantitative trend life cycle models.

2.1 Scientific literature

In this thesis, scientific literature refers to everything that has been published in science.

This includes journal articles, conference proceedings, preprints, literature reviews, textbooks,

editorials, dissertations, monographs, grant proposals, and patents (Öchsner, 2013). Much

of this work exists online. Online bibliographic databases collect articles from multiple jour-

nals and conferences, displaying them in a searchable format to aid discovery by researchers
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(Borgman, 2007). There are also preprint servers such as ArXiv, which allow individual sci-

entists to share their work before it goes through peer review (Ginsparg, 2011).

Some databases make the data they hold available via bulk download services. In this sec-

tion, we describe the databases which do this and talk about the features of the data they

contain, as well as any access requirements. This may seem misplaced, coming before sec-

tions on related work. However, describing the most popular databases here avoids duplica-

tion when talking about studies that use, for example, PubMed or DBLP.

2.1.1 Databases of research publications, patents, and grants

Perhaps the most famous bibliographic database of research publications is PubMed. PubMed

was first released in 1996 to allow researchers to access the MEDLINE database of biomed-

ical literature. In 2021, it now indexes over 5,200 biomedical journals, containing a total of

32 million documents. For each document, PubMed stores the title, abstract, author, and

applicable MeSH keywords. MeSH, or Medical Subject Headings, is a controlled vocabu-

lary of over 27,000 life science terms, arranged in a treelike structure1. Figure 2.1 shows an

example. Documents in PubMed are assigned a number of MeSH keywords, allowing for

datasets focussed on a particular subfield to be gathered. The full PubMed bibliography can

be downloaded from the annual baseline page2.

While PubMed covers biomedicine, there are many other bibliographic databases. For ex-

ample, DBLP focusses on computer science. Like PubMed, it indexes a large number of

journals from across the field, although it only stores title and author information, not ab-

stracts or keywords. DBLP is considered to be reasonably comprehensive in its coverage of

computer science, with a high number of unique articles indexed (Cavacini, 2015). It can be

downloaded from the DBLP website3.

ArXiv is an open-access preprint server. Preprints are scientific papers published online be-

fore going through peer review. This is not always as an alternative to traditional publishing;

many preprints are also later reviewed and published via journals and conferences (Xie et al.,

2021). However, publishing work initially as a preprint allows researchers to reach a larger

audience, and to establish precedence on new discoveries immediately, without a wait for

peer review (Borgman, 2007). ArXiv, which was launched in 1991, was originally intended to

1https://www.nlm.nih.gov/bsd/indexfaq.html#keywords
2https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
3https://dblp.uni-trier.de
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Figure 2.1: Example tree view of MeSH keywords from https://meshb.nlm.nih.gov/

treeView. “Anatomy”, “Organisms”, “Diseases”, etc, are top-level keywords, each with a

hierarchy of lower-level keywords beneath. Each MeSH term has a code (e.g. C04.445.622)

which encodes the hierarchy.

facilitate the sharing of theoretical physics research. It has grown exponentially since then,

and now contains documents from other fields of physics, mathematics, computer science,

statistics, finance, and biology (Ginsparg, 2011, Xie et al., 2021). ArXiv has inspired smaller

spin-off preprint servers such as BioRxiv4, ChemRxiv5, and SocRxiv6, which host biology,

chemistry, and social science research respectively. The full ArXiv database is available via

its API7, and, importantly, articles are indexed under field categories such as “hep-th” (High

Energy Physics - Theory), allowing users to filter for articles from a specific subfield.

The three databases described above all aim to cover one particular field or group of fields.

Broader meta-databases that cover multiple fields also exist. For example, Semantic scholar

indexes articles from a number of sources, including PubMed and DBLP, with the aim of

providing searchable one-sentence summaries of articles (Ammar et al., 2018). However,

4https://www.biorxiv.org/
5https://chemrxiv.org/engage/chemrxiv/public-dashboard
6https://socopen.org/
7https://arxiv.org/help/api/index
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it also makes its dataset of abstracts and titles available to other researchers via its API8.

Some meta-databases are commercial products, such as Scopus and Web of Science (ab-

breviated WoS, formerly called ISI). Both of these cover multiple fields. However, full corpus

access to these meta-databases is limited. Bulk download of data from Scopus is only avail-

able via contract with their parent company Elsevier. WoS also does not allow bulk down-

loads of its entire corpus, but allows users to download the results of search queries, which is

useful for studies that look at a handful of specific topics or keywords.

There are also databases of patents. A patent is a record of invention. Once awarded, it

gives its holder rights over their invention and allows them to take legal action against any-

one who commercialises it without permission. There are limits on what can be patented—

an invention must be something that can be made or used, new, and inventive. Among

other things, scientific theories, mathematical models, and literary works cannot be patented9.

A patent document consists of a title, patent abstract, and a number of claims and dia-

grams. It also contains a list of citations that the patent applicant (or patent office) con-

siders to be relevant prior work (OECD, 2009). Like scientific journal and conference arti-

cles, patents can be found and read online. The largest patent offices are the United States’

USPTO, Europe’s EPO, and Japan’s JPO. Of these, only USPTO allows bulk data down-

load for free. Full text patents, along with diagrams and patent citations can be found on

their bulk data website10. EPO allows full corpus download as a product11. Patents are cat-

egorised according to the International Patent Classification system (IPC), or the Coopera-

tive Patent Classification system (CPC). Both systems have very similar top-level categories

(EPO, 2021, WIPO, 2021).

Governments distribute research funding via grants. Successful historical and current grant

proposals are available online. Grant proposals consist of a title, abstract, funded amount,

funding period, principal investigator and associated people, and associated organisations

(GTR, 2021). The UK’s Gateway to Research (GtR) website allows its full collection of cur-

rent and past grant proposals to be downloaded via its API12. In the US, the National Sci-

ence Foundation (NSF), which accounts for approximately 25% of research funding, is avail-

able for bulk download from 1959 onwards13.

8https://api.semanticscholar.org/
9https://www.gov.uk/patent-your-invention

10https://bulkdata.uspto.gov/
11https://www.epo.org/searching-for-patents/data/bulk-data-sets.html
12https://gtr.ukri.org/resources/api.html
13https://www.nsf.gov/awardsearch/download.jsp
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Table 2.1 gives an overview of some of the bibliographic databases of scientific literature

available on the web14. This list is not exhaustive, and may not be up to date at time of

reading, since the landscape of online data resources is constantly changing.

Table 2.1: Description of selected bibliographic databases

Name Fields Size (million

documents)

Available text Data access

ArXiv Primarily

physics and

mathematics

1.9 Title, abstract,

full text (PDF)

Available via API

DBLP Computer Sci-

ence

5.7 Title Available as bulk

download

WoS (ISI) Multiple fields 74.8 Title, abstract Search query

results can be

downloaded

Semantic

Scholar

Multiple fields 195.7 Title, abstract Available via API

Scopus Multiple fields 80.0 Title, abstract Commercial ac-

cess via contract

with Elsevier

PubMed Biomedicine >32.0 Title, abstract,

MeSH keywords

Available as bulk

download

GtR Multiple fields 0.1 Title, grant ab-

stract

Available via API

NSF Multiple fields 0.3 Title, abstract Available as bulk

download

USPTO Multiple fields 11.1 Title, patent ab-

stract, full text

Available as bulk

download

EPO Multiple fields Unknown Title, abstract,

full text

Data is available

as a product

14No figure is provided for the size of EPO. The front page of Espacenet, the EPO’s patent browser,

claims to index 130 million patent documents. However, according to the EPO’s own statistics hub, just 0.9

million patents were granted in the decade 2011-2020 (EPO, 2020).
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2.1.2 Features of a scientific abstract

As seen in Table 2.1, the abstracts of scientific papers are more widely available and acces-

sible than the full text of papers. Therefore, we will take this opportunity to discuss the fea-

tures of abstracts in more detail.

The abstract of a scientific paper serves to summarise the research conducted, as well as the

most important points and conclusions (IEEE, 2021). While they are now ubiquitous, ab-

stracts are a relatively recent development. The practice of regularly including abstracts in

scientific journals dates from the 1950s-1960s (Berkenkotter and Huckin, 1995). Abstracts

are typically written in language appropriate for the field, and should be self contained, with-

out abbreviations, footnotes, or mathematical equations (IEEE, 2021). They are typically

200-250 words in length (Andrade, 2011).

According to Tol (2001), abstracts have four main purposes. Firstly, they aid selection by

readers, helping them decide whether to read the paper. Secondly, they can act as a substi-

tution for the text, allowing a reader without the time or resources to read the entire paper

to glean the most important results. Thirdly, they aid in retrieval, highlighting keywords

which can be used to index the article. Finally, they support orientation, making it easier

for readers to orient themselves within the structure of the full text.

Some journals and conferences require structured abstracts to be submitted. In a struc-

tured abstract, 4-8 subheadings are used to structure the text—for example, Background,

Methods, Results, and Conclusions (Budgen et al., 2008, Takeo et al., 2005). Structured

abstracts tend to be longer and to score higher on readability metrics than non-structured

abstracts (Budgen et al., 2008, Kitchenham et al., 2008, Sharma and Harrison, 2006). They

are widespread in medical domains: Takeo et al. (2005) found that 62% of articles from a

sample drawn from thirty top medical journals used structured abstracts. However, they are

less common in computing and software engineering journals (Budgen et al., 2008, Kitchen-

ham et al., 2008).

An (imperfect) example abstract drawn from our own work is shown in Figure 2.2.
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Figure 2.2: Example abstract taken from Tattershall et al. (2021), showing background

information (blue), main findings (red), and conclusions (green).

2.2 Text mining

The majority of the world’s data is in the form of unstructured text data (Agrawal et al.,

2018, Cukier, 2010). This is text data, normally in the form of free text documents, which

does not have a defined schema (Gandomi and Haider, 2015). Text mining is the process of

extracting patterns or knowledge from unstructured text datasets (hwee Tan, 1999).

The task of detecting trends in large, time-ordered text datasets requires preprocessing data,

for example by removing stop words (words such as “the”, “from, “some”), regularising spe-

cial characters, and lemmatisation or stemming (regularising word morphology). It also falls

into a broader category of text mining tasks in extracting topical information from datasets.

In this subsection, we give an overview of related techniques sometimes used in trend detec-

tion methods—keyphrase extraction and topic modelling.

2.2.1 Keyphrase extraction

Keyphrase (or keyword, or keyterm) extraction is “the automatic selection of important, top-

ical phrases from the body of a document” (Turney, 2000). It can be split into supervised

26



and unsupervised methods depending on the datasets and approach used. Supervised meth-

ods take place on labelled training data, and treat the keyphrase extraction task as a clas-

sification problem. Generally speaking, features of each candidate keyphrase in the docu-

ment are extracted, then passed to a classifier which produces keyphrases. These can then

be compared to the labels of the training data (Sun et al., 2020). Features can include the

frequency of phrases (Witten et al., 1999), the position of the phrase within the document

(Jiang et al., 2009), linguistic features such as part of speech (POS) tags (Hulth, 2003),

context features such as surrounding words (Wang and Li, 2017), and external knowledge

such as Wikipedia articles (Wang and Li, 2017).

Unsupervised keyphrase detection takes place on unlabelled data. While supervised keyphrase

detection is generally thought to have superior accuracy (Sun et al., 2020), unsupervised

methods have access to a larger quantity and variety of data. A baseline method is TF-IDF,

which ranks phrases according to the formula:

TF-IDF = Tf× log2
N

1 + Df
(2.1)

where Tf is the frequency of the phrase across the entire corpus, N is the number of docu-

ments in the corpus, and Df is the document frequency, the number of documents in which

the phrase appears. Improvements on this baseline include KP-miner, which uses TF-IDF

along with a range of statistical features (El-Beltagy and Rafea, 2009, Sun et al., 2020), and

YAKE, which introduces additional features combined into a single metric (Campos et al.,

2018).

Graph-based methods of unsupervised keyphrase extraction also exist. These are generally

based on Google’s PageRank algorithm (Brin and Page, 1998). PageRank generates a graph

where each webpage is a node. If Page A includes a hyperlink to Page B, the graph adds

an edge pointing from A to B, treating it as a vote for B. The more votes a page receives,

the higher Google displays it in search results. The votes of higher-ranked pages are also

weighted higher than those of lower-ranked pages. The TextRank algorithm uses the prox-

imity of phrases within a document as votes: if two phrases are within a context window,

an edge connecting them is drawn on the graph. PageRank is then run on this network (Mi-

halcea and Tarau, 2004). SingleRnak is an improvement on this which incorporates edge

weights (Wan and Xiao, 2008). Topics can also be used as nodes instead of phrases, for ex-

ample in TopicRank, which first divides the document into topics using hierarchical agglom-

erative clustering (Bougouin et al., 2013).
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2.2.2 Topic modelling

While keyphrase extraction aims to discover important words within documents, topic mod-

elling attempts to discover hidden topics across a corpus. The central assumption of topic

models is that documents are made up of a mixture of hidden (or latent) topics, where a

topic is a set of associated words, such as [“tree”, “wood”, “conservation”, “litter”, “for-

est”, “park”] (Blei et al., 2003). Given a corpus of documents, a topic model will discover

the set of topics, the probability of each word belonging to each topic, and the topic mixture

of each document Vayansky and Kumar (2020).

One of the most frequently-used topic models is Latent Dirichlet Allocation (LDA) (Vayan-

sky and Kumar, 2020). LDA treats each document as an unordered bag of words and as-

sumes that the contents of the bag were generated by the hidden mixture of topics in the

document. To begin, a number of parameters are preset, including, importantly, the num-

ber of topics, k. LDA then randomly assigns each word in the vocabulary of the corpus to a

topic, then iteratively improves this assignment (Mark Steyvers, 2007).

A number of improvements to LDA exist, including the Correlated Topic Model (CTM),

which models relationships between topics (for example, a document containing a topic

labelled architecture might be more likely to contain another topic labelled churches, but

less likely to contain the topic dogs) (Blei and Lafferty, 2007). The Dynamic Topic Model

(DTM) attempts to track the evolution of topics across a dataset that spans a long period

of time (Blei and Lafferty, 2006). First, the dataset is split into a number of time steps. A

topic model is applied to find k topics in the documents of the first slice. Then, for sub-

sequent slices, topic models are used to find topics, such that the k topics in slice t evolve

directly from the k topics in slice t − 1 (Blei and Lafferty, 2006). This allows researchers to

explore how the words inside topics vary over time.

Topic modelling has been used for topic detection and topic evolution in scientific literature.

Griffiths and Steyvers (2004) applied LDA to the archives of the PNAS journal and reported

the results, showing some sample topics. They noted that some topics rose, while others fell.

Rosen-Zvi et al. (2004) conducted a similar analysis on a much larger dataset of research pa-

pers gathered from CiteSeer, with authorship added as a feature. He et al. (2009) attempted

to incorporate the citations of documents. Rather than simply adding the citation to the bag

of words for the document, they used the topics of the cited article to influence the topics of

the citing article.
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Topic modelling has a number of issues. Short texts can cause difficulties because the word

co-occurrence matrix becomes sparse (Hong and Davison, 2010). Some researchers alleviate

this by combining documents into longer ones, for example aggregating all documents by

the same author (Weng et al., 2010). Topic modelling can also suffer from order effects, in

that the topics generated change if the order of documents is changed, causing instability

(Agrawal et al., 2018).

2.3 Trend detection

2.3.1 Terminology

In a time-ordered dataset, some terms maintain a stable frequency over time (for example,

“#work” on Twitter). Others reoccur cyclically (e.g. “Tuesday”). However, some topics

and terms are highly time-dependent, exhibiting rapid and unexpected growth or decline. In

the literature, this third group are variously called “trends” (Tseng et al., 2009), “emerg-

ing topics” (AlSumait et al., 2008, Schubert et al., 2014), “emerging trends” (Chen, 2006),

“trending topics” (Kong et al., 2014), “hot topics” (Griffiths and Steyvers, 2004, Tseng

et al., 2009), “bursts”, (He and Parker, 2010), “bursty topics” (Takahashi et al., 2012), or

“bursty events” (Fung et al., 2005). While the terminology varies, the essential definition of

a trend, or burst, is that it is a term or group of terms that has undergone a rapid change in

frequency relative to some baseline level. For example:

“A trend on Twitter consists of one or more terms and a time period, such that the volume

of messages posted for the terms in the time period exceeds some expected level of activity.”

(Naaman et al. (2011))

“A keyword is identified as bursty when it is encountered at an unusually high rate in the

stream.” (Mathioudakis and Koudas (2010))

“A term can be defined as emerging if it frequently occurs in the specified time interval and

it was relatively rare in the past.” (Cataldi et al. (2010))

All of these definitions identify two factors:

1. That the term or topic appears frequently

2. That this is unusual compared to the term or topic’s past behaviour

In the literature, trend detection is usually applied to datasets of news articles (Collier, 2010,
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Takahashi et al., 2012), social media such as Twitter (Atefeh and Khreich, 2015, Cordeiro

and Gama, 2016), Sina Weibo (Long et al. (2011)), and scientific literature (He and Parker

(2010) etc.). Trend detection that takes place on news and social media is often called event

detection, due to the assumption that trends on these platforms are usually caused by ex-

ogenous events such as an earthquake or election (Cordeiro and Gama, 2016). It is also

sometimes called burst detection (He and Parker, 2010). In the literature, and in this the-

sis, these terms are used interchangeably.

2.3.2 Methods of trend detection

The task of trend detection was originally formalised by the Topic Detection and Tracking

(TDT) pilot study (Allan et al., 1998, Allan, 2002, Allan et al., 2000). Allan et al. divided

the problem into Retrospective Event Detection (RED), which is the task of discovering pre-

viously unidentified events in accumulated historical data, and New Event Detection (NED),

which is the task of discovering unidentified events in new data in an “on-line” or “real-

time” fashion. Additionally, they identified several subtasks, including Tracking, which is

classifying new documents as containing new events (Allan et al., 1998); First Story De-

tection (FSD), which is determining the first article to mention a new event (Allan et al.,

2000); and Story Link Detection (SLD), which is determining whether two articles concern

the same event (Allan, 2002).

Successors to Allan et al. generally follow the same initial steps—first splitting the dataset

into equal time steps, then preprocessing the data (by e.g. removing stopwords, stemming,

and lemmatising). After this, there are two main approaches, which we will call clustering-

first and burst detection-first. In clustering-first approaches, the dataset is first segmented

into topics using clustering algorithms or topic modelling such as LDA (Diao et al., 2012,

Takahashi et al., 2012). Documents in the dataset are then assigned to topics (or to no

topic) based on the cluster words they contain, then tracked over time. A method of burst

detection is applied to these time series to identify which topics are static, and which are

trends (e.g. Tseng et al. (2009)).

In burst detection-first approaches, this strategy is reversed. Burst detection is employed to

detect bursty terms within the dataset which are then either reported by the authors (Boy-

ack et al., 2004, Hoonlor et al., 2013), or clustered into topics (Chen, 2006, Ohniwa et al.,

2010). The advantage of this strategy is that the initial burst detection stage filters the vo-

cabulary, meaning that more relevant cluster words are selected and that computationally
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expensive methods of clustering (such as e.g. hierarchical agglomerative clustering based on

term co-occurrence (Chen et al., 2003)) can be used.

Figure 2.3 shows a diagram illustrating the typical steps in a trend detection pipeline. Below,

we summarise the different methods of burst detection in the literature.

Figure 2.3: The typical steps of a trend detection pipeline. The dataset is downloaded,

split into equal time steps, then processed, treating each document as a bag of words. A

trend detection algorithm is then applied and trending terms extracted. These can then

optionally be clustered into topics.

Simple methods

A burst can be very simply defined as any term whose frequency surpasses a threshold rela-
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tive to some previous time step. For example, Kong et al. (2014) described a Twitter hash-

tag as bursting if its frequency within a window surpassed max(C1 + δ, 1.5C1), where C1

is the frequency of the hashtag in the first minute it appears and δ is a threshold parame-

ter. The burst ends when the frequency of the hashtag once again falls below max(C1 +

δ, 1.5C1).

Another simple method of burst detection is to measure the change in frequency of a term

between two consecutive time steps. Terms can then be ranked, and the top n selected as

bursts. Ohniwa et al. (2010) applied this metric to MeSH terms in 13 million PubMed ar-

ticles, selecting the top 5% of quickest-rising terms. Among other methods, Tseng et al.

(2009) used a variation of this—the average percentage increase of a term between time

steps—to rank terms in Tweets. Naaman et al. (2011) applied a similar metric to Twitter

data in a periodic manner, detecting terms that appeared more often in a specific periodic

time step (e.g. Monday 11 am) than they do in all previous time steps (all previous Monday

11 am time steps).

Linear regression can be used to detect quick growth by fitting a line to the frequency of a

term over time. If the line has a steep gradient, then the term can be described as bursty.

For example, Tseng et al. (2009) used this method to calculate the frequency gradient for

terms in a dataset gathered from WoS.

QueueBurst, TopicSketch, and SigniTrend

A number of burst detection algorithms have been developed for use on real-time Twitter

data. All of these put emphasis on speed and scalability.

QueueBurst is an algorithm used by Mathioudakis and Koudas (2010) to detect bursty key-

words in real-time Twitter data. The exact mechanism behind the QueueBurst algorithm

was not stated explicitly, but once bursty terms had been detected, they were grouped ac-

cording to their co-occurrence in recent Tweets.

Xie et al. (2016) created a system for real-time trend detection called TopicSketch. Inspired

by physical systems, they took the current frequency of the Tweet as a kind of “velocity”,

and the discrete change in velocity as “acceleration”, where high acceleration indicated that

a keyword was bursting. While not truly analogous to physical acceleration, this functions as

an approximate measure of gradient.

In their Signitrend system, Schubert et al. (2014) describe a burstiness metric based on

moving averages. The calculate the “significance” of a word using:
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sig(x) =
x−maxEWMA,β√
var(EWMA) + β

(2.2)

where x is the term frequency, EWMA is the exponentially weighted moving average of

term frequency (a moving average which gives more weight to more recent data), var is vari-

ance, and β is a bias term intended to avoid dividing by zero. After calculating words with

high significance, Schubert et al. clustered them based on their co-occurrence in Tweets.

Wavelet analysis

Wavelet analysis involves decomposing a continuous signal into a set of wavelets, where a

wavelet is a quickly-vanishing oscillating function (Torrence and Compo, 1998). Unlike sine

and cosine functions which extend infinitely in time, wavelets are isolated signals.

Weng and Lee (2011) applied a discrete wavelet transformation (DWT) to words in Tweets.

Once transformed, they calculated the time at which each word peaked, then used cross-

correlation to calculate the lag between each pair of words. Weng at al. grouped words with

low lag between their peaks, with the idea that words that peak at the same time are likely

to be part of the same trend. Cordeiro (2012) applied a continuous wavelet transformation

(CWT) to hashtags within tweets, then reported the most bursty hashtags along with their

peak times.

Kleinberg’s burst detection

An important method of burst detection is Kleinberg’s algorithm (Kleinberg, 2002). Orig-

inally developed to detect bursts in steams of emails, Kleinberg’s algorithm assumes that

messages (or Tweets, or new research papers) are emitted by a two-state automaton. The

automaton has a non-bursty state, q0, and a bursty state, q1. When in q0, the gaps between

messages are distributed according to:

f0(x) = α0e
−α0x (2.3)

where x is the gap between message arrivals, and α0 is an unknown parameter that can be

thought of as the average rate of messages. When the automaton is in state q1, the gaps

between messages are distributed according to:

f1(x) = α1e
−α1x (2.4)
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The automaton can change states in between messages with probability p, or remain in the

same state with probability (1 − p). Kleinberg’s algorithm attempts to determine the op-

timal sequence of automaton states q that could have generated the observed sequence of

message gaps, x. It does this by minimising a cost function, c(q|x):

c(q|x) = b ln(
1− p

p
) +

n∑
t=1

(− ln(fit(xt)) (2.5)

where b is the number of state transitions in the sequence. The first term rewards sequences

with a small number of state transitions, while the second rewards sequences that closely fit

the observed data.

Kleinberg’s burst detection has been applied to Twitter data by Diao et al. (2012), Taka-

hashi et al. (2012), who both used it as part of a clustering-first approach. In scientific lit-

erature, Boyack et al. (2004) applied Kleinberg’s algorithm to find bursty gene names on

PubMed. Mane and Börner (2004) applied it titles, author-defined keywords, and MeSH

terms. Chen (2006) applied it to titles and abstracts on WoS, using it to highlight bursty

terms for a visualisation tool that allowed users to explore the changing co-citation net-

work for specific topics. Linnenluecke et al. (2020) applied Kleinberg’s burst detection to

the archives of the Accounting and Finance journal.

Moving Average Convergence/Divergence (MACD)

The price of a stock in a company can be plotted is often plotted on a temporal axis. If

the price of a stock suddenly rises, this may prompt investors to buy it in the hope that the

trend will continue. If it falls, investors may sell. A tool called Moving Average Convergence

Divergence (MACD) is sometimes used to detect sudden changes in stock price time series

(Appel, 2005). It can also be used to detect sudden changes in the frequency of a term over

time (He and Parker, 2010, Lu and Yang, 2012).

MACD relies on taking two exponentially weighted moving averages of the time series. One

moving average has a longer span (e.g. 26 time steps) while the other has a shorter span

(e.g. 12 time steps). When the time series is flat, the two moving averages are parallel.

When it changes direction, however, the shorter moving average responds more quickly,

causing the averages to cross. The distance between the moving averages is called the MACD

line, while a moving average of this line generates the “signal line”. When the distance be-

tween the MACD line and the signal line is positive, the price of the stock (or frequency of

the term) is accelerating upwards. When it is negative, the acceleration is downwards (Mur-
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phy, 1999). This can be used to generate buy and sell signals.

Figure 2.4: Example of MACD applied to stock price data. The top plot shows the two

exponential moving averages, while the bottom plot shows the MACD signal line. Image

taken from en.wikipedia.org/wiki/File:MACDpicwiki.gif

2.3.3 Trend detection in scientific literature

In this subsection, we talk in more detail about prior work on detecting trends specifically in

datasets of scientific literature. So far as we are aware, there are no review articles covering

this subject (although review articles of trend detection on Twitter exist, e.g. Atefeh and

Khreich (2015), Cordeiro and Gama (2016)). This is not a systematic review; instead, pa-

pers are gathered through Google Scholar searches for “burst detection”, “trend detection”

and snowballing from known papers.

One thing we found, when reading prior work, was that papers fell roughly into three groups.

For some, the focus is on methodology—the authors aimed to demonstrate a new or adapted

algorithm for clustering or burst detection. For example, Griffiths and Steyvers (2004) and

Steyvers et al. (2004) both demonstrated that LDA can be used to find topics in datasets

of research paper abstracts. Blei and Lafferty (2007) conducted a similar study with a cor-

related topic model (CTM). He and Parker (2010) focussed on burst detection, adapting

MACD to detect bursts in the MeSH terms of 19 million PubMed articles. They made a
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qualitative comparison to the results of Kleinberg’s burst detection applied to the same data.

A second group of papers were interested in creating visualisations to explore datasets of sci-

entific literature and used some form of trend detection to filter terms. For example, Boy-

ack et al. (2004) extracted gene and protein names in a dataset of abstracts, then used

Kleinberg’s algorithm to highlight the burstiest genes. They then mapped the association

of genes and papers based on co-occurrence. In a similar study, Mane and Börner (2004)

applied Kleinberg’s algorithm to find bursty terms in PNAS abstracts, then mapped the as-

sociation between the most bursty terms. Visualisations can also be released as tools; for

example, Chen (2006) developed CiteSpace, which is a publically-available visualisation tool

which takes a set of documents related to a topic and outputs a co-citation map. Chen used

Kleinberg’s algorithm to highlight bursty terms within the visualisation.

In the final group of papers, the main aim was to explore a specific field, such as compu-

tational linguistics (Anderson et al., 2012), natural language processing (Buitelaar et al.,

2014), spinal medicine (Sing et al., 2017), accounting (Linnenluecke et al., 2020), and emer-

gency medicine (Porturas and Taylor, 2021). Trend detection is used alongside other tech-

niques to highlight features of the data the authors think their readers will find interesting,

such as the hierarchy of topics in the field (Buitelaar et al., 2014) or epochs in the history of

the journal (Anderson et al., 2012). While Linnenluecke et al. (2020) used Kleinberg’s algo-

rithm, most of the algorithms used to detect bursts were simple metrics such as percentage

increase in topic frequency between time steps (Porturas and Taylor, 2021, Sing et al., 2017)

or absolute frequency in each year (Anderson et al., 2012).

Table 2.2: Table of prior work on trend detection in scientific literature. “Topic” column

gives topic representation, while “Burst” column gives the chosen method of burst detec-

tion

Study Database Features Topic Burst

detection

method

Clustering Evaluation

Griffiths

and

Steyvers

(2004)

PNAS

archives

Abstracts LDA

topics

Linear

regres-

sion

LDA N/A
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Steyvers

et al.

(2004)

CiteSeer Abstracts LDA

topics

N/A LDA N/A

Boyack

et al.

(2004)

Medline

search for

“melanoma”

Gene names

in title,

abstract,

and MeSH

terms

Single

gene

Kleinberg None Five experts

shown network

of bursty genes

Mane

and

Börner

(2004)

Highest

cited pa-

pers from

PNAS

Titles,

MeSH

terms,

author-

assigned

keywords

Single

term

Kleinberg None N/A

Chen

(2006)

Keyword

search on

WoS

Titles and

abstracts

Set of

keywords

Kleinberg Co-

citation

network

Two experts

asked for opin-

ion on visuali-

sation

Blei and

Lafferty

(2007)

Science

archives

Full text,

titles, and

abstracts

LDA

topics

N/A CTM N/A

He and

Parker

(2010)

PubMed MeSH

terms

Single

MeSH

term

MACD None Comparison

with prior work

and real world

events

Ohniwa

et al.

(2010)

PubMed MeSH

terms

Set of

MeSH

terms

Highest-

ranked

rise in

incidence

Co-

occurrence

in arti-

cles

N/A

Anderson

et al.

(2012)

ACL An-

thology

Full text,

titles, and

abstracts

LDA

topics

N/A LDA N/A
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Hoonlor

et al.

(2013)

ACM digital

library, IEEE

Xplore dig-

ital library,

NSF

Author-

assigned

keywords

Single

keyword

Incidence

in cur-

rent time

step

com-

pared to

historical

incidence

None N/A

Buitelaar

et al.

(2014)

Proceedings

of two con-

ferences

in Natural

Language

Processing

Abstracts Single

term

N/A Keyphrase

extrac-

tion

N/A

Sing

et al.

(2017)

Five spine

journals

Abstracts LDA

topics

Highest

ranked

rise in

relative

incidence

LDA N/A

Linnen-

luecke

et al.

(2020)

Accounting

and Finance

Title and

abstract

Set of

keywords

Kleinberg N/A N/A

Porturas

and

Taylor

(2021)

Six emer-

gency

medicine

journals

Abstracts LDA

topics

Highest

ranked

rise in

incidence

within

5 year

intervals

LDA N/A

38



Evaluation of trends

Not all prior studies on trend detection in scientific literature attempt to evaluate their trends.

In some cases, this is likely because the authors are attempting to explore a specific field—

they are showing what is within that field (Hoonlor et al., 2013, Linnenluecke et al., 2020).

Of the few studies which did attempt to evaluate the quality of their trends, two used ex-

pert evaluation (Boyack et al., 2004, Chen, 2006). In both cases, the authors produced a

visualisation—a map of the association between genes, proteins, and papers (Boyack et al.,

2004), and a network of keywords (Chen, 2006)—then sent their visualisation to experts

for feedback. Chen additionally sent a set of questions based on the visualisation, for ex-

ample: “Q3: Alvarez 1980 [arrow pointing to node]: did this thread end around mid-1990s?

(no highly cited papers published after 1995 as it appears)” (Figure 2.5 (a)). The experts

gave positive feedback and addressed the questions—for example, in the case of the question

above by explaining that the research thread had ended as a result of the discovery of the

Chicxulub impact crater. Boyack et al. also included a list of bursty genes and burst periods

(Figure 2.5 (b)) and reported positive feedback.

The only other study that attempted an evaluation of their trends was He and Parker (2010)’s

exploration of trends in MeSH keywords. Firstly, He and Parker used a burst detection algo-

rithm from another field that had already been validated on stock market data. Secondly,

they compared their results with those from Mane and Börner (2004) and Boyack et al.

(2004). Finally, they looked at how their trends coincided with real world events, noting,

for example, that their detection of a burst in the MeSH keyword “Sexually transmitted dis-

eases” occurred at a similar time to the discovery of antiretrovirals used to treat HIV. We

find this evaluation to be the most convincing of the three.

An issue in this field is the lack of any gold standard dataset with which to compare. We

speculate that it might be possible to compare bursty keywords detected in scientific litera-

ture from a specific field with terms from an ontology of topics from that field. An example

in computer science is the ACM Computing Classification System (ACM, 2012). This is an

ontology of computer science topics defined by the Association for Computing Machinery.

However, this presents a number of problems. Firstly, there is the issue of matching bursty

terms to the keywords used in whichever ontology is used, and how to deal with non-exact

or multiple matches. Secondly, ontologies such as these are not intended to capture trends,

but rather topics within the field. There is generally no information attached about the pe-

riod in which the topics were popular. Finally, ontologies are often updated infrequently; for
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Figure 2.5: (a) Chen (2006)’s visualisation of mass extinction research, which was sent to

a domain expert for evaluation (image taken from FIG. 7 (Chen, 2006)). (b) Boyack et al.

(2004)’s list of bursty gene names and their bursty periods, sent to five experts (image

taken from Figure 2 (Boyack et al., 2004))

example, the ACM Computing Classification System was last updated in 2012. This means

that more recent trends are unlikely to be included.
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2.4 Research trend life cycles

In Figure 1.1 in the Introduction, we showed several computer science topics and specu-

lated that each showed a similar pattern in terms of their frequency over time—exponential

growth, followed by a peak, then decline. We called this a life cycle.

The idea that trends in science go through a life cycle is not a new idea. It builds on philo-

sophical work such as Kuhn’s theory of paradigm shifts (Kuhn, 1962), Price’s observation of

S-shaped growth (Price, 1963), and Roger’s Diffusion of Innovations (Rogers, 1962). A life

cycle can be characterised as a series of stages (Blosch and Fenn, 2018, Shneider, 2009), or

as a parameterised mathematical model (Bettencourt et al., 2006, Ho et al., 2014). In this

section, we describe these theories and the quantitative work which has been done on them.

2.4.1 Philosophical background

Does science progress in an orderly manner, with new discoveries gradually accumulating

on top of old ones? Or does it go through periods of turmoil and revolutionary unrest, in

which old theories are discarded and new ones rapidly advance? This is the central question

of Thomas Kuhn’s The Structure of Scientific Revolutions (Kuhn, 1962).

Based on previous examples, such as the switch from Newtonian to quantum mechanics,

Kuhn hypothesised that science is something episodic, with periods of “normal science”, and

periods of revolutionary change. During normal science, the scientific community shares a

coherent set of assumptions and theories which explain observed phenomena. Kuhn called

this a paradigm. Over time, however, anomalies may be discovered which cannot be ex-

plained with the existing paradigm. If anomalies are not resolved, they accumulate, even-

tually leading the community to enter a “crisis”. During this crisis period, scientists begin

to question the assumptions of the old paradigm and put forwards new theories, leading to a

paradigm shift (Kuhn, 1962).

This idea of repeated surges of discoveries is also put forwards by Derek de Solla Price, in

his book, Little Science, Big Science (Price, 1963). Price observed that science as a whole—

Big Science—has been growing exponentially for two to three centuries, in terms of the

number of scientists, scientific journals, and publications. Price speculated that eventually

growth will slow, creating an S-curve shape—or perhaps a period of escalating S-curves,

as growth appears to plateau but becomes exponential again when a new idea is born. He
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pointed to a similar pattern in the discovery of the chemical elements, in which multiple

plateaus were followed by breakthroughs in which new discoveries came close together (Fig-

ure 2.6).

An S-curve is a cumulative model; on the y-axis there is a total count of something, such as

the number of publications. When transformed into non-cumulative space, an S-curve shows

an exponential rise, peak, and then a fall. S-curves have historically been used to describe

growth in many different fields, such as the growth of a tumour (Laird, 1964) or the popula-

tion of a species over time Knibbs (1926).

Figure 2.6: “Number of chemical elements known as a function of date”. Figure from

Price (1963). It shows a series of escalating S-curves as new elements are found in bursts,

followed by plateaus

The idea of S-shaped growth has also been applied to the growth of new products, for ex-

ample by Everett Rogers’ Diffusion of Innovations (Rogers, 1962). However, rather than fo-

cussing on the overall shape of the curve, Roger’s frames the life cycle of a product in terms

of the people who adopt it. He separated adopters of a new technology into five groups,

based on their position on a bell curve (Figure 2.7). Innovators (who make up 2.5% of the

population) are the first to adopt a new technology, followed by Early Adopters (13.5%),

Early Majority (34%), Late Majority (34%), and Laggards (16%). Rogers’ theorised that a

new innovation diffuses through these groups via a mixture of mass media and social con-

tact, with groups earlier on the bell curve being willing to experiment with the innovation at
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a lower threshold of exposure.

Figure 2.7: “Adopter categorization on the basis of innovativeness”; figure from Rogers

(1962), page 247. The distribution of adopters is shown on a bell curve in five seg-

ments based on standard deviation. In order, the segments are labelled Innovators, Early

Adopters, Early Majority, Late Majority, and Laggards.

From these three works, we can take the following points:

� Science progresses as a series of revolutions rather than as a linear accumulation of

discoveries (Kuhn, 1962)

� Science as a whole exhibits a form of S-shaped growth (Price, 1963)

� New ideas diffuse through a population via media channels and social contact (Rogers,

1962)

2.4.2 Trend life cycles as a series of stages

While Price (1963) was interested in science as a whole, the theory of S-shaped growth has

been applied to the growth of individual trends in scientific literature. Braun et al. (2000)

hypothesised that topics in fullerene research followed an S-curve, which they split into four

life cycle stages—birth, growth, maturity, and senility. Shneider (2009) expanded on these

stages, describing them in terms of the work that is done in each. For a new idea, we have

the following stages:

1. Birth: Scientists decide on the language that will be used to describe the new subject

matter.

2. Growth: With the language established, a toolbox of methods and techniques is de-

veloped.
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3. Maturity: The idea reaches maturity. The largest amount of research publications are

generated in this stage, as scientists apply the new methods to objects and phenom-

ena.

4. Development: No groundbreaking work is done, but new ways to present and pass on

the idea are created, along with applications and important revisions.

The Gartner hype cycle is a commercial consulting product based on a similar idea. The

hype cycle describes technologies as moving through a number of life cycle stages (Blosch

and Fenn, 2018):

1. Innovation Trigger: The hype cycle starts with a breakthrough, public demonstra-

tion, product launch, or some other event that generates press and industry interest in

a technological innovation.

2. Peak of Inflated Expectations: A wave of “buzz” builds and the expectations for

this new technology rise above the current reality of its capabilities. In some cases, an

investment bubble forms.

3. Trough of Disillusionment: Inevitably, impatience for results begins to replace the

original excitement about potential value. Problems with performance, slower-than-

expected adoption, and disillusionment set in.

4. Slope of Enlightenment: Some early adopters overcome the initial hurdles, begin to

experience benefits and recommit efforts to move forwards. Drawing on the experience

of the early adopters, understanding grows about where and how the technology can

be used to good effect, and just as importantly, where it brings little or no value.

5. Plateau of Productivity: With the real-world benefits of the technology demon-

strated and accepted, growing numbers of organisations feel comfortable with now

greatly-reduced levels of risk. A sharp uptick in adoption begins, and penetration ac-

celerates rapidly as a result of productive and useful value.

Figure 2.8 shows an example hype cycle from Blosch and Fenn (2018). The x-axis shows

time, while the y-axis shows “expectations”—a subjective measurement of the mood sur-

rounding a new technology. The curve rises to a peak, falls, and then gradually rises again.

A number of technologies have been placed on the curve—for example, in 2015 Gartner
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Figure 2.8: An example Gartner hype cycle taken from Blosch and Fenn (2018). It shows

Gartner’s life cycle stages, along with estimates of the positions of various technologies on

the life cycle curve.

believed that expectations of Smart Robotics were still increasing, with a final productive

plateau likely to be reached in 5-10 years.

The hype cycle is a qualitative model, based on observation rather than experiment. While

Gartner publishes the current life cycle stages of emerging technologies every year, these

are set by expert judgement (Blosch and Fenn, 2018). There is criticism that sometimes

these predictions do not match reality. Dedehayir and Steinert (2016) tracked technologies

in Gartner’s utility and energy sector reports between 2003-2009 and found a number of dis-

crepancies. Some technologies appeared in early reports but then disappeared in later ones

without progressing through the stages (for example Contact centers and Outage manage-

ment systems). Others stayed in the same stage for a protracted period of time (for example

Hydrogen economy). Additionally, according to Dedehayir and Steinert (2016), Gartner ex-

pects a typical technology to complete the hype cycle in 5-8 years, but extrapolating from

their own reports, the average hype cycle duration is approximately 22 years.
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2.4.3 Trend life cycles as mathematical functions

The theories presented above are broadly qualitative in nature. In this subsection, we talk

about quantitative attempts to model the life cycle of a topic using a mathematical func-

tion. The typical procedure used by these studies is to track the frequency of a known key-

word or search query in a dataset of scientific literature over time. A mathematical model

(or set of candidate models) is then fitted to this curve, and the error measured. This work-

flow is illustrated in Figure 2.9.

Figure 2.9: “Typical methodology workflow for a life cycle modelling paper”. Figure from

Tattershall et al. (2021). This figure also appears in Chapter 4.

Epidemic models

Rogers (1962) theorised that innovations diffuse through a population via media channels

and social contact. Diseases also spread through networks of contacts. This similarity has

inspired attempts to use the mathematics of epidemiology to model the spread of scientific

topics (Goffman and Newill, 1964).

In an epidemic model, the population is split into a number of groups—for example, Sus-

ceptible, Infected, and Recovered. A set of equations governs the rate at which individuals

move between states. In the classic SIR model, these equations are:

dS

dt
= Λ− βS

1

N
− µS (2.6)

dI

dt
= βS

1

N
− (γ + µ)I (2.7)

dR

dt
= γI − µR (2.8)

dN

dt
= Λ− µN (2.9)

where N is the size of the population, and Λ, λ, β, and µ are parameters corresponding to

features of the population (for example, β is the infection rate).
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Many variations of the SIR model exist. For instance, in the SIS model, recovery doesn’t

confer immunity, and recovered individuals are still susceptible (Hethcote, 1989). SEIR adds

a fourth state, Exposed, in which individuals are exposed but not yet infectious (Bettencourt

et al., 2006). These models can be applied to the spread of scientific topics by substituting

e.g. N as the size of the scientific community, and I as the number of authors currently

publishing on an idea (see Table 2.3).

Table 2.3: “Analogy between infectious disease and intellectual epidemics”; Table from

Goffman and Newill (1964).

Elements of the epidemic

process

Infectious disease outbreak Intellectual epidemic

Agent Infectious material Idea

Infective Case of disease Author of paper

Susceptible Person who will be infected

given effective contact

Reader of paper who

will be infected given

effective contact

Removal Death or immunity Death or loss of interest

Bettencourt et al. (2006) applied a range of epidemiological models to the spread of Feyn-

man diagrams through the post-World War 2 physics literature. They manually compiled

time series of authors publishing on the topic of Feynman diagrams over time through search-

ing correspondence, preprints, lecture notes, publications, and interviews. They trialled three

models: SIR, SEI, and SEIZ (where Z is a new class of ”sceptics”), and found that the SEIZ

model yielded the lowest mean absolute deviation on the data (Figure 2.10). In their follow-

up work, Bettencourt et al. (2008) repeated this process with literature searches for Cosmo-

logical inflation, Cosmic strings, Prions, H5N1 influenza, Carbon nanotubes, and Quantum

computing. In this case, they found that the SEIR model provided the best fit.

An issue with Bettencourt’s models is that they require a large number of parameters—nine

for SEIZ, plus four more for the initial t0 states of S, E, I, and Z (see Figure 2.11).

The Logistic, Gompertz, and Power law models

The Logistic equation is a classic model of population growth (Verhulst, 1845). It describes

a form of growth that is fully symmetric (see Figure 2.12 a)), and obeys the following equa-

tion:
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Figure 2.10: “The best fit solutions of the SEIZ model vs the data for the USA, Japan,

and the USSR”. Figure from Bettencourt et al. (2006). The three curves show that

Japanese and American authors adopted Feynman diagrams first, followed by authors from

the USSR.

y =
k

1 + e−r(t−b)
(2.10)

where y is the cumulative frequency of some variable (e.g. number of publications), t is

time, and k, r, and b are parameters.

The Gompertz model, by contrast, describes a form of asymmetric growth (see Figure 2.12

b)). Originally developed by an actuary, Benjamin Gompertz, the model was first fitted to

human mortality data between the ages of 20-60 (Gompertz, 1825). It showed that the risk

of death increased geometrically as age increased linearly.

Gompertz presented only the probability density function. The more familiar cumulative ver-

sion of the Gompertz model was stated later by Makeham (Makeham, 1873). This version

of Gompertz’s model is often referred to as the Gompertz-Makeham model, the Makeham-

Gompertz model, and, confusingly, the Gompertz model (Tjørve and Tjørve, 2017). There

are a number of re-parameterisations of the Gompertz-Makeham model, but one of the most

useful is:
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Figure 2.11: Parameters used in Bettencourt et. al’s population models. Figure from Bet-

tencourt et al. (2006).

.

y = ke−er(t−b)
(2.11)

Where y is the cumulative frequency of a variable, t is time, and k, r, and b are parameters

(Tjørve and Tjørve, 2017). In this cumulative model, the rate of growth is inversely propor-

tional to the current cumulative frequency. Therefore, as cumulative frequency increases,

growth slows, leading to an asymmetric curve. The peak growth rate occurs at 1
e , or 36.8%

of the eventual maximum cumulative frequency.

The Gompertz model in its cumulative form has been used to describe growth in a variety

of systems, such as the growth of dinosaurs (Cooper et al., 2008), birds (Ricklefs, 1968,

Tjorve et al., 2009), and tumours (Laird, 1964, Norton, 1988, Vaghi et al., 2020). Since

many factors control growth in complex systems, it does not have an exact biological mean-

ing, but in comparison to the Logistic model, the Gompertz model describes a system that

goes through more rapid early growth followed by slower later growth.

The power model is an alternative to the Logistic and Gompertz models. It is described by:

y = α+ βtγ (2.12)

where α, β, and γ are parameters. Depending on the value of γ, the power model can show

concave, linear, or convex growth. In all cases, there is no limit to growth, although, with

concave growth (0 < γ < 1), growth becomes very slow.

These models have all been fitted to datasets of scientific literature. Campani and Vaglio

(2014) used a search query to track the frequency of Organic Light Emitting Diodes (OLEDs)

in research papers from WoS and Scopus, and patents from EPO. They fitted the Logistic
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Figure 2.12: The Logistic and Gompertz models. Figure from Tattershall et al. (2021). a)

shows the cumulative frequency and growth rate of the Logistic model, while b) shows the

cumulative frequency and growth rate of the Gompertz model. This figure also appears in

Chapter 4.

model to their data but did not report the error. They commented that the symmetric Lo-

gistic model did not quite match their asymmetric data.

Ho et al. (2014) also used a search query to gather research papers related to Fuel cells

from WoS. They fitted the Logistic model to their data. Their main aim in doing this was to

predict when research into fuel cells would reach its midpoint (2018), and saturation (2027).

Egghe and Rao (1992) used 20 datasets gathered from another work. Their datasets were

quite varied, including, for example, the entire MEDLINE corpus, the archives of Smoking

and Health, and World Aluminium Abstracts. They fitted exponential, Logistic, Gompertz,

and power models to their datasets, finding that the power model and Gompertz model pro-

vided the best fit.

Adamuthe and Thampi (2019) used a set of search queries to track the frequency of six top-

ics (Mainframes, Minicomputers, Cluster computing, Grid computing, Autonomic comput-

ing, Cloud computing) on USPTO, EPO, IEEE, and Science Direct. They fitted the Logistic

and Gompertz models to the frequency of their topics over time, finding that the Gompertz

model produced lower error in 15 of 24 cases (6 topics, 4 datasets per topic).
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Table 2.4 summarises prior work. All of these studies used either keyword searches compiled

by the researchers or the size over time of more general datasets (in the case of Egghe and

Rao (1992)).

51



Table 2.4: Table of prior work in fitting mathematical models to trends in scientific litera-

ture.

Study Database Topics Models

tried

Preferred

model

Egghe and

Rao (1992)

20 datasets gathered

from another work

N/A Exponential,

Logistic,

Gompertz,

Power

model

Power

model and

Gompertz

Bettencourt

et al.

(2006)

Manual search of

physics literature,

correspondence, lec-

ture notes, etc.

Feynman dia-

grams

SIR, SEI,

SEIZ

SEIZ

Bettencourt

et al.

(2008)

SearchPlus (now-

retired scientific

search engine)

Cosmological in-

flation, Cosmic

strings, Prions,

H5N1 influenza,

Carbon nan-

otubes, and Quan-

tum computing

SEIR N/A

Campani

and Vaglio

(2014)

WoS OLEDs Logistic N/A

Ho et al.

(2014)

WoS Fuel cells Logistic N/A

Adamuthe

and Thampi

(2019)

USPTO, EPO, IEEE,

and Science Direct

Mainframes, Mini-

computers, Clus-

ter computing,

Grid computing,

Autonomic com-

puting, and Cloud

computing

Logistic and

Gompertz

Gompertz
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2.5 Chapter summary

In this section we analyse existing literature and set out our plan for this thesis.

2.5.1 Choice of data

Our choice of datasets will necessarily be constrained by availability. While other studies

use data from WoS (Campani and Vaglio, 2014, Chen, 2006, Ho et al., 2014), WoS only

provides datasets that are the result of specific keyword search queries. This makes it a

very useful resource for looking at a specific known trend, but means it is less useful for

trend discovery. PubMed, ArXiv, DBLP, NSF, Semantic Scholar, and USPTO allow for their

archives to be freely downloaded in XML format. XML documents are particularly conve-

nient to use since they are easily processed.

In general, titles and abstracts of scientific publications are available. DBLP only supplies

titles, but Semantic Scholar indexes DBLP and contains full abstracts of all papers (Ammar

et al., 2018). ArXiv also has full papers in PDF format. However, since the other datasets

do not supply full papers, and since specialist tools are required to extract content from

PDFs (Ramakrishnan et al., 2012), our intention in this thesis is to use abstracts and ti-

tles alone. This presents some challenges. Abstracts are short and may be missing important

topical information. However, the advantage of using abstracts is that we expect them to

contain trendy terms more densely than the full text of papers. In their article on how to

effectively increase the number of citations accrued by papers, Ale Ebrahim et al. (2013) ad-

vise that:

Using keywords is a vital part of abstract writing, because of the practice of re-

trieving information electronically: keywords act as the search term. Use key-

words that are specific, and that reflect what is essential about the paper. Put

yourself in the position of someone researching in your field: what would you

look for? Consider also whether you can use any of the current ‘buzzwords’.

Our assumption is also supported by Shah et al. (2003)’s comparative study of text mining

on abstracts vs full text, in which they found that while abstracts contained fewer total key-

words than full papers, they contained keywords at a much greater density. Therefore, while

we do lose some information, we believe that trends will be relatively well-represented by ab-

stracts, which often serve as an advert for the paper (Ale Ebrahim et al., 2013).
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2.5.2 Prior work on trend detection

In Section 2.3 we described the landscape of existing trend detection studies. Many of these

involve Twitter data (Atefeh and Khreich, 2015, Cordeiro and Gama, 2016). However, there

are substantial differences between Twitter data and data from scientific literature, which

limit the use of Twitter studies as prior work. These are:

� Number of time steps. Twitter data is available as a continuous stream. The meta-

data of each Tweet contains the exact time of publication, and while the volume of

Tweets fluctuates throughout the day due to time zones, it is still reasonable to split

a dataset of Tweets into daily or weekly time steps. By contrast, the metadata of

research publications tends to contain information about the year of publication. In

our experience, publication month is occasionally available, but this is not universal.

Therefore, while a year of Twitter data may yield 365 time steps, a year of data from

e.g. PubMed will contain only 1. Since there are only a limited number of years for

which data can be downloaded, this leads to much shorter data series.

� Dataset growth. Scientific literature is growing exponentially across multiple fields

(Bornmann and Mutz, 2015, Larsen and Ins, 2010). While Twitter has also experi-

enced massive growth (Statista, 2019), the datasets of Tweets generally used are of

short enough duration that dataset growth is not relevant. This means that datasets

of scientific literature have to be scaled in some way to account for this.

In prior work using data from scientific literature, we observe that a number of studies ap-

pear to be aimed at exploring the history and present state of a particular field (Anderson

et al., 2012, Buitelaar et al., 2014, Hoonlor et al., 2013, Linnenluecke et al., 2020, Porturas

and Taylor, 2021, Sing et al., 2017). These studies are characterised by their small sample

size and a tendency to use simple burst detection methods in an ad hoc way.

Larger studies tend to use Kleinberg’s burst detection (Chen, 2006, Mane and Börner, 2004)

or MACD (He and Parker, 2010). We were not able to find any study which applied wavelet

analysis to detect trends in scientific literature, perhaps because the aforementioned issues

with short time series would make it unfeasible. In choosing between Kleinberg’s burst de-

tection and MACD, therefore, we would prefer to use MACD, since He and Parker (2010)

made a comparative study of the two methods and found (albeit subjectively) that MACD

produced better bursts. MACD has also been tested on stock market data and found to pro-

duce higher returns than a baseline strategy (Chong and Ng, 2008).
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2.5.3 Prior work on research trend life cycles

We have discussed the various qualitative and quantitative models of trend life cycles. As

per RQ3, we would like to pursue a quantitative strategy, testing candidate mathematical

models on a dataset of research trends.

The models most often used by prior work on this topic are the Logistic model (Adamuthe

and Thampi, 2019, Campani and Vaglio, 2014, Egghe and Rao, 1992, Ho et al., 2014),

the Gompertz model (Adamuthe and Thampi, 2019, Egghe and Rao, 1992), and epidemic

models (Bettencourt et al., 2006, 2008). It would be our preference not to use an epidemic

model in this thesis because of the very large number of parameters required compared to

the Logistic and Gompertz models. A large number of parameters raises the prospect of

overfitting to the data; we would prefer to compare models with identical numbers of pa-

rameters. Additionally, parameters such as the number of scientists potentially susceptible to

an idea are impossible to sensibly estimate.

We believe that all prior work discussed in Section 2.4.3 shares an obvious problem, which is

the very small number of trends explored. When comparing models, this makes it difficult to

draw broad conclusions about which model is best, and to make any stronger inferences on

trend life cycles. Additionally, all of these studies used trends chosen by the authors based

on their observed characteristics, which raises the question of selection bias. Therefore, we

believe there is a gap in the literature for a much larger study using automatically detected

trends.

2.5.4 Plan for this thesis

Based on our analysis of prior work, our plan for this thesis was, firstly, to adapt MACD to

detect trends in the free text of scientific literature (see Chapter 3). To date, within this

field, MACD has only been applied to MeSH keywords on PubMed (He and Parker, 2010).

MACD could then be applied to datasets of abstracts across multiple fields (choosing data

based on availability) to create a dataset of trends. We then planned to fit the Logistic and

Gompertz models to the frequency of each trend over time and compare the fitting error to

determine which model is the most suitable (see Chapter 4). This would be the first large

scale study of its type and would tell us something important about science—how trends can

be expected to evolve over time.
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Chapter 3

Detecting bursty terms in computer

science research

3.1 Chapter overview

3.1.1 Thesis context

Previous studies into trend life cycles exclusively use trends known to the authors. This in-

troduces selection bias and means that studies tend to be small, using just a handful of

trends. To take a more systematic look at trend life cycles, we would like to first automat-

ically detect trends, then fit models to their observed life cycles.

This chapter tackles the first half of that plan. In it, we describe a trend detection algorithm

based on MACD, a technique from stock market analysis. MACD has been applied to scien-

tific literature before by He and Parker (2010), who used it to detect trends in MeSH key-

words on PubMed. However, we make an adaptation to their algorithm and apply to the free

text of titles and abstracts in a computer science-based dataset. The algorithm described in

this chapter is later used in Chapter 4.

This chapter answers the following research questions:

� RQ1: How can we detect research trends in time-ordered collections of documents?

� RQ2: Can we predict whether a given research idea will rise, fall, or plateau over a

given timescale?

The main content of this chapter is adapted from:

Emma Tattershall, Goran Nenadic, and Robert Stevens. ”Detecting Bursty Terms in Com-

puter Science Research”. Scientometrics 122, 681–699 (2020).
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3.1.2 Author’s contributions

Emma Tattershall designed the study, did the programming work, analysed the results, and

wrote the manuscript. Goran Nenadic and Robert Stevens provided continuous guidance and

support throughout all stages of this work, proofread and suggested edits for the manuscript,

and approved the final manuscript.

3.1.3 Abstract

Research topics rise and fall in popularity over time, some more swiftly than others. The

fastest rising topics are typically called bursts; for example “deep learning”, “internet of

things” and “big data”. Being able to automatically detect and track bursty terms in the

literature could give insight into how scientific thought evolves over time.

In this paper, we take a trend detection algorithm from stock market analysis and apply it

to over 30 years of computer science research abstracts, treating the prevalence of each

term in the dataset like the price of a stock. Unlike previous work in this domain, we use

the free text of abstracts and titles, resulting in a finer-grained analysis. We report a list of

bursty terms, and then use historical data to build a classifier to predict whether they will

rise or fall in popularity in the future, obtaining accuracy in the region of 80%. The pro-

posed methodology can be applied to any time-ordered collection of text to yield past and

present bursty terms and predict their probable fate.

3.2 Introduction

In 2012, a group of scientists from the University of Toronto built a convolutional neural

network (CNN) and applied it to a well-known image classification task. Their paper (Krizhevsky

et al., 2012) sparked a revolution in the field of deep learning; an explosion of popularity and

interest that is still continuing today. CNNs have since spread outwards from their original

domain and can be found in diverse fields, such as biomedicine (Chen et al., 2018) and as-

tronomy (Dambre et al., 2015).

If we were to imagine the trajectory of the phrase “convolutional neural network” in terms

of its popularity over time, we might imagine an exponential curve upwards. And indeed,

when we search for it in a large database of computer science abstracts (DBLP, 2021), that

is what we see [Fig. 3.1]. This behaviour—a sudden and sustained rise in popularity relative
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to some historical baseline level—is referred to as a burst in most of the literature (Klein-

berg, 2002).

Figure 3.1: Number of abstracts containing the term “Convolutional neural network(s)”

over time (1988-2017) in DBLP. While there were isolated mentions of CNNs in the 90s

and 00s, the topic underwent exponential growth in popularity beginning in the year 2012,

which continues to the present.

Being able to detect bursty terms automatically in scientific literature would have a number

of applications. Firstly, early detection might allow funding agencies and publishers to take

note of the most promising new ideas and channel new support that way. For newcomers

to a field and researchers in the sociology of science, automatically listing the hottest topics

over time would give an instant snapshot of the evolution of the field. Finally, compiling a

corpus of historical bursty terms over time might make it possible to characterise the life

cycles that new ideas go through as they develop.

In this paper, we explore a burst detection methodology that requires little tuning and can

be used on a large dataset. We build on work by He and Parker (2010), who used a tech-

nique from stock market analysis to detect bursty keywords in PubMed, a very large online

bibliography of biomedical citations.

This work has three main research objectives:

� To adapt an existing burst detection methodology to the free text of a large corpus of

computer science abstracts. To our knowledge, this is the first use of this method on

free text rather than a controlled vocabulary of keywords.

� To report a list of historical and current bursts in the computer science literature.
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� To predict the future prevalence of existing bursty terms using machine learning.

3.3 Background

3.3.1 Burst detection

The problem of tracking topics in time-ordered corpora was formalised by a DARPA-sponsored

initiative under the name Topic Detection and Tracking (TDT). Early research focused on

segmenting a corpus into topics, finding the first mention of each topic and then tracking

and plotting their popularity over time (Allan et al., 1998). As computer hardware improved,

it became common to use Latent Dirichlet Allocation (LDA) for this kind of topic modelling

(Blei et al., 2003). A typical method involves splitting the corpus into time steps, finding

topics in each chunk and then linking them together across time steps based on some mea-

sure of similarity (Griffiths and Steyvers, 2004, Mei and Zhai, 2005, Steyvers et al., 2004).

The prevalence of each topic can then be tracked over time and bursty periods identified.

However, this comes with a number of disadvantages, such as the lack of interpretability of

the results and the difficulty in coherently linking LDA topics together between subsequent

time-steps.

The opposite approach is to first identify the bursty terms in a dataset, and then cluster

them together into topics, using, for instance, Kleinberg (2002)’s burst detection algorithm.

Originally developed to detect topics in email chains, Kleinberg’s method assumes that terms

in documents are emitted by a two-state automaton. The automaton may spontaneously

transition from a non-bursty state to a bursty state, or vice versa. Variants of this have been

applied across several domains: Diao et al. (2012) and Mathioudakis and Koudas (2010)

used it to detect bursty topics in Twitter data, the latter in real time, while Fung et al.

(2005) and Takahashi et al. (2012) applied it to news streams.

However, when it comes to scientific literature, there are a few reasons why Kleinberg’s

method is a less natural fit. He and Parker (2010) point out that, unlike Tweets and news

articles, scientific papers tend to enter the world in batches, such as when a new edition of

a journal or the proceedings of a conference is published. This violates Kleinberg’s underly-

ing assumption that new items enter the dataset in a continuous fashion. It also forces us to

impose longer time steps, such as years rather than seconds. This causes a second problem:

the quantity of data available.
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While there are several large open-access corpora of scientific abstracts, such as PubMed

(biomedicine), arXiv (physics and computer science), Semantic Scholar (assorted) and DBLP

(computer science), all of them cover short intervals, relative to the size of the time steps.

Even in the best case scenario, we are likely to have less than a hundred years worth of us-

able data—which means approximately a hundred time steps. There has also been a vast

change in the underlying landscape over the span of the dataset, because science in gen-

eral (Bornmann and Mutz, 2015) and computer science in particular (Wu et al., 2018), have

both seen strong and sustained growth in the last century. By contrast, unless one collects

many years of Twitter data, the size and characteristics of the dataset do not change sub-

stantially over time.

Several burst detection methods from other domains have been proposed for use on scien-

tific documents. For instance, Stroup et al. (1989) take inspiration from epidemiology, and

Zhang and Shasha (2006) take inspiration from gamma rays. However, of particular interest

to us is He and Parker (2010)’s work that takes a popular technique from stock market anal-

ysis and applies it to PubMed data. This is an attractive idea: a great deal of work has been

done in analysing stocks, because some people are highly motivated to predict what prices

will do in later time steps.

3.3.2 Moving Average Convergence Divergence

The basic item in the toolkit of the stock market analyst is the moving average. While a

moving average necessarily lags behind real time data, it can smooth out random fluctua-

tions to reveal underlying trends. The simple moving average (SMA) of a time series is the

sum of its values in a set interval (called the span of the SMA), divided by the width of that

interval. More advanced methods use exponential moving averages (EMAs), which assign

more weight to more recent data.

For a given span, n, the exponential moving average of a time series, y(t), is (Investopedia,

2019):

EMA(ti) = EMA(ti−1) +
2

n+ 1
(y(ti)− EMA(ti−1)) (3.1)

Buy and sell signals for stocks can be generated by taking two EMAs with different spans

and seeing where they cross. The moving average with the longer span responds more slowly

to new data, so when there is a sudden change in the price of the stock, the shorter mov-
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ing average will cross it in an upwards or downwards direction (Murphy, 1999) [Fig. 3.2(b)].

Moving Average Convergence Divergence (MACD) takes this idea a step further (Appel,

2005). The long EMA is subtracted from the short EMA to give the MACD line. This

MACD line is then itself averaged, to create a fourth time series called the signal line [Fig.

3.2 (c)]. The difference between the MACD and signal lines is called the histogram of the

data, and can be thought of as an approximate measure of curve acceleration. When the

histogram is positive, the price of the stock is accelerating upwards. When it is negative, the

reverse is happening.

Figure 3.2: Illustration showing how moving averages can be used to detect changepoints.

(a) shows how the crossover of two simple moving averages, one with a span of 12 and

another with a span of 6, can generate a sell signal. (b) shows the same phenomenon, but

with exponential moving averages. (c) shows the MACD graph of the time-series; note how

the sell signal comes earlier than in (a) and (b).

Here we introduce these notions more formally. For two moving averages with spans n1 and

n2:
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MACD[n1, n2] = EMA[n1]− EMA[n2] (3.2)

The signal line is the MACD line, smoothed with an EMA with span n3;

Signal[n1, n2, n3] = EMA[n3](MACD[n1, n2]) (3.3)

And the histogram is:

Histogram[n1, n2, n3] = MACD[n1, n2]− Signal[n1, n2, n3] (3.4)

This is the technique that He and Parker (2010) applied to PubMed data between 1950-

2008. Instead of stock prices, they looked at the frequency of MeSH terms assigned to sci-

entific papers over time (MeSH terms, or Medical Subject Headings, are a hierarchically-

ordered taxonomy maintained by the National Library of Medicine (NLM, 2021)). Their

model was evaluated by comparing their detected bursts to real events; for instance, they

found that “Morphine” was a popular keyword during the Vietnam war, and “Sexually Trans-

mitted Diseases” was a popular keyword during the AIDS crisis. They also compared several

of their bursts to the results reported by Mane and Börner (2004) in a similar burst detec-

tion study. He and Parker found that both methods identified the same bursty periods for

the terms.

Using a controlled vocabulary rather than free text has advantages in that it ensures the

terms in the vocabulary will be meaningful, unique and free of spelling errors. However, a

controlled vocabulary will necessarily lag behind the forefront of scientific development be-

cause new terms can only be added after they have risen to prominance. Additionally, key-

words are not available for all datasets, limiting the scope of the method. For this reason,

we use the free text of abstracts and titles.

3.3.3 Prediction

As well as detecting historically bursty terms, we would like to be able to predict whether

they will become more or less prevalent in the future. Some related work has been done on

this task. Prabhakaran et al. (2016) took 2.4 million abstracts from Web of Science and

used an implementation of LDA to identify 500 topics. They then used a logistic regres-

sion classifier to predict whether their topics would rise or fall in popularity over subsequent

time steps, yielding an accuracy of 70%. Balili et al. (2017) looked at a slightly different
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task; they took 21.2 million PubMed abstracts, clustered their MeSH keywords based on

co-occurrence in article annotations and then trained a gradient-boosted trees classifier to

predict whether individual clusters would survive or dissolve. Finally, in their 2011 paper,

He and Parker took a database of approximately 100,000 Californian grant abstracts which

were pre-labelled with “project terms” (keywords from a defined vocabulary of biomedical

concepts (RePORT, 2018) that were automatically assigned to grant applications) (He and

Parker, 2011). They calculated the MACD and histogram values for each term, then used

various classifiers to predict whether the histogram itself would rise or fall in the future.

While this is not exactly the same as predicting whether term prevalence would increase,

their best classifier had an accuracy of 88%.

3.4 Materials and Method

The code used in this section can be found on GitHub at https://github.com/etattershall/

burst-detection

3.4.1 Dataset

We use a corpus gathered from DBLP, which is a large computer science bibliography hosted

by Trier University in Germany. DBLP is considered to be reasonably comprehensive in its

coverage of the field: Cavacini (2015) compared a number of bibliographies and found that

DBLP had the greatest number of unique computer science articles indexed. It is freely

available to download, either directly (DBLP, 2021), or via Semantic Scholar (Ammar et al.,

2018).

After downloading, cleaning, and filtering out foreign language abstracts, we had a dataset

of 2.6 million articles spanning the years 1988-2017. For each article, we combined title and

abstract to form a document, then used Python’s Natural Language Toolkit (NLTK) (Bird

et al., 2009) to tokenise, lemmatise and remove a short list of standard English stopwords.

From there, we read in the dataset year by year and formed a vocabulary of uni-, bi- and tri-

gram terms. We calculated the document frequency of each term in each year, which left

us with a 31 (year) × 4.1 million (term) matrix. We filtered again, removing the terms that

did not occur in more than 0.02% of abstracts for at least three consecutive years. This sub-

stantially reduced the amount of noise in the dataset from digitization errors and very rare

bi- and tri-gram terms. The final size of our vocabulary was approximately 70,000 terms.
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3.4.2 Normalisation

Over the 31 year span of the dataset, the number of documents published each year has

risen substantially [Fig. 3.3]. The mean length of titles has increased, while the mean length

of abstracts has fluctuated [Fig. 3.4]. This presents a problem; terms later in the dataset

will be more likely to be flagged as bursts because of the underlying increase of size of the

dataset. Therefore, we normalised the document frequency counts twice, first by dividing

the data for each year by the total number of documents in that year, and then dividing by

the mean number of tokens per document. This means that each element in the year-term

matrix can be viewed as a normalised measure of prevalence.

Figure 3.3: The number of documents added to DBLP per year (1988-2017). There is a

modest dip in 2017 because documents are often added to DBLP retroactively and back-

dated.

3.4.3 Applying MACD

The first parameter we chose was the length of the moving average spans, (n1, n2, n3). In

stock market analysis, it is common to use (12, 26, 9) months (Murphy, 1999). However,

our dataset has just 31 time steps, so moving averages of this length would leave us with

too little data with which to work. Therefore, after some experimentation, we used (6, 12, 3)

years.

He and Parker (2010) used the raw value of the histogram as their metric for burstiness.

However, when we attempted to apply it to our dataset, we discovered that there were some

issues with scale. Common terms, such as “data”, often showed large numerical shifts on
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Figure 3.4: Changes in DBLP title and abstract length over time. While the number of

characters in titles seems to increase linearly, the length of abstracts fluctuates.

the histogram that are still insignificant when compared to their historical baseline level.

Therefore, we introduced a scaling factor.

Initially, we experimented with using the mean or median value of each term’s historical

prevalence. However, this biased the metric in favour of new terms which did not exist in

the dataset before becoming popular. Then we tried the historical maximum, but found that

this produced variable results; the prevalence over time is not generally smooth, so anoma-

lous spikes occur frequently. Finally, we decided on the square root of the historical maxi-

mum since this produces more consistent results than the other metrics.

Therefore, for the prevalence p(w, t) of term w over time, we have:

Burstiness[n1, n2, n3](p(w, t)) =
histogram[n1, n2, n3](p(w, t))√

max(p(w, t))
(3.5)
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3.4.4 Predicting the future prevalence of terms using MACD features

In order to train a supervised classifier, we need to create a training set, (X,Y ), where X is

a matrix of terms and features and Y is a binary class indicating whether each term rose or

fell in prevalence after a number of years. First, we choose how far in the future we wanted

to predict (e.g. 3 years) and call this the prediction interval I. Then, for each year, yi, we:

1. Take the last 20 years of data (D(yi−20, yi)).

2. Apply our burst detection method to D(yi−20, yi). Select all terms above a burstiness

threshold.

3. Extract time series features such as the MACD and histogram values, the standard

deviation, min and max. This forms the X part of our dataset.

4. Take a smoothed value of term prevalence during yi+I and calculate whether it is

above or below prevalence during yi. This forms the Y part of our dataset.

5. Append X and Y onto the data for the previous year.

Both He and Parker (2011) and Balili et al. (2017) used a tree-based method to predict

whether their clusters or terms would rise or fall in popularity. We follow them, using a ran-

dom forest classifier, tested via 10-fold cross validation.
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Figure 3.5: The feature extraction process. For instance, for the year 2008, we take data

in the range 1998-2008 and extract features to form the X part of our dataset. We then

take the prevalence for each term during 2011 as our Y .
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Figure 3.6: Process diagram for the methodology
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3.5 Results and Discussion

3.5.1 Burst detection

As an initial evaluation, we applied the burst detection method to our dataset and sorted

the burstiness scores in descending order. Some terms with high burstiness were surprising,

such as “novel” and “state [of the] art”. However, when we plotted them on a graph over

time, we found that they have indeed become more popular over the span of the dataset

[Fig. 3.7].

Figure 3.7: The terms “novel” and “state [of the] art” have increased substantially in

popularity over the last thirty years.

Social media is another interesting example [Fig. 3.8]. “Social network” began to climb

in popularity around 1998, with a growth curve that mirrors “social media”, 5 years later.

“twitter” and “facebook” climb together, but “facebook” reaches a plateau earlier. We also

find some cases where the orthography of words has changed over time. For instance, “web

site”, peaked in 2001, then was gradually replaced by “website” [Fig. 3.9].

There are, however, some issues with the terms detected. For example, the top 30 bursty

terms over the span of the dataset are: deep, neural network, neural, convolutional, reserved,

right reserved, science bv right, bv right, bv right reserved, convolutional neural, convolu-

tional neural network, elsevier bv, deep learning, elsevier bv right, right, elsevier science bv,

science bv, elsevier science, spl, bv, elsevier, cnn, iot, learning, deep neural, deep neural net-

work, elsevier ltd, xml, internet thing, elsevier ltd right
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Figure 3.8: The prevalence of the terms “social network”, “social media”, “twitter” and

“facebook” over time.

This list contains terms that refer to the same idea, such as “convolutional neural” and

“convolutional neural network”. It also contains publishing artefacts such as “elsevier bv

right”. This is part of a copyright declaration that was often included at the end of ab-

stracts; e.g. “© 1999 Elsevier Science B.V. All rights reserved”. In order to remove these

and merge duplicates, we cluster the top 500 bursty terms based on their co-occurrence in

abstracts using SciPy’s hierarchical clustering algorithm (SciPy, 2019), then manually re-

move the clusters containing publishing artefacts. This leaves 114 clusters, which are dis-

played in Table 3.1.

Table 3.1: The 114 clusters of the burstiest terms, after copyright declarations had been

removed. A full list of clusters can be found in the supplementary material for this paper in

the file clusters.xlsx

journal economic, classifi-

cation number, economic

literature classification,

journal economic litera-

ture, literature classification

number, economic litera-

ture, literature classification

non orthogonal, multiple

access noma, non orthogo-

nal multiple, access noma,

orthogonal multiple, noma,

orthogonal multiple access

short term, term memory

lstm, long short, memory

lstm, term memory, short

term memory, long short

term, lstm
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available http github, com,

github com, http github

com, availability implemen-

tation, http github, github

cnn, convolutional neural,

convolutional, network cnn,

neural network cnn, convo-

lutional neural network

service oriented architec-

ture, soa, web service, ser-

vice oriented, oriented ar-

chitecture

network cnns, neural net-

work cnns, deep convolu-

tional, deep convolutional

neural, cnns

router, relay, throughput,

qos, wireless network, traf-

fic, ip, aware, packet, end

end

expression data, gene ex-

pression, protein, microar-

ray, gene, gene expression

data

wireless sensor, wireless,

node, sensor, sensor net-

work, wireless sensor net-

work

task, efficient, novel, paper

propose, network, proposed,

propose, different

fifth, 5g, 5g network, fifth

generation, generation 5g,

fifth generation 5g

mmwave, millimeter, wave

mmwave, millimeter wave,

millimeter wave mmwave

particle swarm, particle

swarm optimization, swarm,

swarm optimization

software defined, software

defined networking, sdn,

defined networking

cognitive radio network,

cognitive, cognitive radio,

primary user

smartphones, android, app,

smartphone, tablet, smart

phone, apps

massive, massive multiple

input, massive mimo, mas-

sive multiple

dnn, deep, deep learning,

deep neural network, deep

neural

iot, internet thing iot, in-

ternet thing, thing, thing

iot

show proposed, result show,

simulation result, simula-

tion

embedding, word embed-

dings, embeddings, word

embedding

recurrent neural network,

recurrent neural, recurrent

0point18 spl, mu cmos,

mu, spl mu cmos, spl, spl

mu

content, technology, ser-

vice, web, internet, online

wireless mesh network,

mesh network, wireless

mesh

network architecture, neural

network architecture

differentiated service, differ-

entiated, diffserv

business, electronic com-

merce, market, commerce

antenna, fading, fading

channel, mimo, channel

ad hoc network, hoc, ad,

hoc network, ad hoc

cmos, 0point18, mum,

0point18 mum, mum cmos

acm subject, acm subject

classification

cloud service, cloud, cloud

computing

deep learning method,

learning method

reinforcement, reinforce-

ment learning
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network rnn, rnn, neural

network rnn

deep learning model, learn-

ing model

learning, machine, machine

learning

convolutional network, con-

volution

facebook, twitter, social

medium

semantic web, ontology,

semantic

energy, efficiency, signifi-

cant

mobile ad hoc, mobile ad,

manet

peer network, peer peer

network

intranet, knowledge man-

agement

originality value, originality network trained, deep net-

work

gan, generative, adversarial state art method, art

method

virtual reality, virtual, vr

iot device, iot application xml document, xml data,

xml

lte, 3g, wimax, small cell

multicore, multi core, gpu portal, keywords, metadata streaming, poster, session

17point00 ieee, 17point00 analytics, data analytics warehouse, data warehouse

wearable device, wearable overlay, overlay network trained, train, training

cdma, turbo, space time representation learning smart grid, grid, smart

802point11, ieee, wlan learned, learns, learn neural, neural network

social, social network nfv, network function semantic segmentation

state, state art, art sub, baseline, sparse peer peer, p2p, peer

web 2point0, 2point0 convolutional layer data mining, mining

dataset, datasets soc, work present security, attack

uml, corba, java wsn, sensor node rfid, bluetooth

grid computing mobile, device remote sensing

site, web site word embedding big, big data

crowdsourcing loss function spl time, sup

deep feature mobile agent propose deep

autoencoder cross layer feature map

health care pre trained smart city

autonomic avc, h264 cnn model

key word sub spl sub sub

kinect ar iv drone

spark fog owl
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Figure 3.9: Changing word use over time as “web site” is replaced with “website”.

To investigate how bursty terms have developed over time, we sort the clusters by year,

based on when the bulk of the activity occurred, then manually choose a sample that is

fairly evenly spread over the span of the dataset. For each of the 52 chosen clusters, we

choose a single representative term, or a term and an acronym, such as [recurrent neural,

rnn] for [recurrent neural network, recurrent neural, recurrent, network rnn, rnn, neural net-

work rnn], then track the term over time and display it on a graph [Fig. 3.10].

In Fig. 3.10, we notice that many of the later bursts seem to involve deep learning in some

way. The earlier ones are more diverse. There are a number of different growth patterns.

“Security” undergoes a nearly linear increase, as does “dataset”. Others peak twice, such

as “neural networks” and “virtual reality”. This ties in neatly with what we know of the

history of these two ideas: the first consumer VR headsets were in the headlines in the 90s

(Kahaner, 1994), and a number of neural network breakthroughs happened in a similar time

period (Rumelhart et al., 1986). Some of the terms reach peak popularity, then persist, such

as “data mining” and “gene expression”. Others fall out of favour fairly swiftly, such as “in-

tranet” and “web 2.0”. We note that this does not mean that these concepts are no longer

used, only that these particular terms no longer find their way into titles and abstracts.
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Figure 3.10: A sample of the burstiest clusters over time, ordered approximately by the

date at which the bulk of their activity occurred. Note the different scales of the sub-

graphs.

74



3.5.2 Prediction

As described in Section 3.4.4, we aim to predict whether a given term will rise or fall in pop-

ularity after a time interval I. Since the classes (rise, fall) are unbalanced, we subsampled

the majority class, and trained a random forest classifier on the data. We chose the num-

ber of trees and the maximum depth by considering the training/testing error, then exper-

imented with a range of prediction intervals (1-5 years) and burstiness thresholds (0.0006-

0.0016).

The results are shown in Fig. 3.11, while the effect of the burstiness threshold on dataset

size is shown in more detail in Table 3.2.

Figure 3.11: Choosing a prediction interval. We vary the interval, I and measure the F1

score of the classifier (in terms of how often it correctly predicted whether terms would rise

or fall), for a number of different burstiness thresholds (see legend). What we find is that

optimal performance is reached when the prediction is made 3-4 years in the future. The

error bars represent standard deviation over 10 folds.

Increasing the burstiness threshold increases the performance of the classifier substantially.

However, thresholding this way comes at the cost of the amount of data available. At the

highest threshold, there are just over 3000 terms, some of which describe the same concept

(e.g. “convolutional neural”, “convolutional neural network”). The prediction interval also

matters. When we vary both parameters together, we see that performance is highest when

the prediction is made 3 years into the future.
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Table 3.2: The effect of changing the burstiness threshold on classifier accuracy. A predic-

tion interval of 3 was chosen and the error in each measurement is the standard deviation

of the ten folds.

Burst threshold Dataset size Accuracy F1

0.0006 56136 0.71 ± 0.01 0.72 ± 0.01

0.0008 25570 0.75 ± 0.01 0.75 ± 0.01

0.0010 12978 0.79 ± 0.01 0.79 ± 0.01

0.0012 7450 0.82 ± 0.01 0.82 ± 0.01

0.0014 4886 0.82 ± 0.02 0.83 ± 0.02

0.0016 3332 0.83 ± 0.02 0.84 ± 0.02

Prediction of term prevalence in 2020

To predict the future prevalence of the discovered bursty terms we chose parameters I = 3

and Bpred = 0.0012 and trained our classifier on data from 1988-2014. Given the results

in Table 3.2, we expect this classifier to achieve 81% accuracy. We then selected terms

that were above a significance threshold in 2017 and generated predictions of whether their

prevalence in abstracts will rise or fall in 2020. Table 3.3 shows the results.

Most machine learning terms are expected to rise, while some web, networking and social

media terms are expected to fall. Encouragingly, the only overlap between the two groups

was “5g” and “fifth generation” in the rising group, and “5g network” in the falling group.

3.5.3 Limitations

There are several limitations to this work:

� Using titles and abstracts only: While abstracts are much more accessible than the

full text of papers, they give us a somewhat limited view of scientific research. Terms

that have become less common in abstracts may have moved to the methods section

of papers, as they are seen as more mature technologies that can be used as tools—

e.g. “cloud computing”, “xml”, “java”. When abstracts alone are used, there is no

way to distinguish between these terms and ideas that have genuinely fallen out of use.

Additionally, in our experience abstracts do not always perfectly reflect the contents of

the paper they describe. Scientists who write abstracts are not ignorant of trends in

their fields, and may understandably use current bursty keywords such as e.g. machine
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Table 3.3: Predicting whether bursty computer science terms will rise or fall in popularity

in the future.

Terms

Predicted to be more

prevalent in abstracts in

2020

novel, state [of the] art, machine learning, big data, dataset,

http://github.com, neural, deep neural network, convolu-

tional neural network (cnn), convolution, recurrent neural

network , neural network architecture, deep learning model,

autoencoder, learn, train, training, adversarial, deep learning

method, long short term memory (lstm), pre-trained, word

embeddings, internet [of] things (iot), iot device, iot applica-

tion, sensor, wearable, cloud, fog, smart, vr, fifth generation

(5g), millimetre wave (mmwave), mu, spl, massive mimo,

software defined (networking) (sdn), end-to-end

Predicted to be less preva-

lent in abstracts in 2020

efficient, originality value, different, semantic web, ontology,

science, social media, social network, twitter, analytics, web

service, web site, service oriented, cloud computing, 5g net-

work, mobile, smartphone, tablet, android, app, network,

wireless mesh network, wireless sensor network, grid comput-

ing, node, electronic commerce, cognitive radio, manet, web

2.0, ad hoc network, peer [to] peer (p2p), parallel , differen-

tiated , packet, ip, relay, channel, cross layer, lte, xml, uml,

ion, h264, java, sup, cdma, kinect, expert system, microarray,

gene expression

learning in their abstracts, when in fact it is not an important part of their paper. We

hypothesise that this may serve to amplify peaks.

� Validation: It is not trivial to validate the list of bursty terms in Fig. 3.10. So far as

we are aware, there is no gold standard list of “hot topics” that covers the last thirty

years of computer science. The scope of the dataset is also quite large; validation by a

domain expert would be likely to have low coverage over the different sub-disciplines.

� Historical data: The burst detection method we have used requires a span of histor-

ical data to detect bursts. This means that it cannot effectively detect bursts in the

earliest years of the dataset.
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� The trade-off between accuracy and dataset size: We can have high accuracy (in

the region of 84%) at the cost of most of our data, by choosing a higher burstiness

threshold.

� Scientific progress can happen without warning: There is no way to predict the

future prevalence of terms that have not even appeared in our dataset. Some trends

grow swiftly and suddenly; see “big data”, “Kinect” and “smart grid”.

� Use of subjective judgement in selecting thresholds and parameters: In this pa-

per, parameters such as moving average spans and significance threshold are set by

observation of the data. An improvement would be to make this process more system-

atic, perhaps by having a group of participants choose parameter values independently

and then taking the average, or by incorporating methodologies from qualitative re-

search such as the PRISMA method (Page et al., 2021).

However, despite these limitations, this method has a number of strengths. It can be applied

to datasets for which the authors have little domain knowledge to create a snapshot of the

history of the field. It also has an obvious use to funding agencies and researchers exploring

the research landscape.

3.6 Conclusion

We have explored a stock market-inspired burst detection algorithm, and used it to find

bursty terms in over thirty years of computer science abstracts. These terms represent a

snapshot of computer science research over the years, from Java, e-commerce and peer-to-

peer networking, to fog computing, 5G, word embeddings and deep learning. We see terms

that have peaked twice, such as neural networks and virtual reality, and terms which have

experienced a linear increase in popularity, such as “novel”. Most interestingly though, we

find that many of our terms display a characteristic life cycle in their popularity over time,

and note that it shares some similarities with the famous Gartner hype cycle (Fenn and

Raskino, 2008). Our classifier, which is, to our knowledge, the first built using only bursty

terms, is able to predict whether terms will rise or fall in popularity with accuracy in the re-

gion of 80%.
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3.7 Appendix: Update to predictions from Section 3.5.2

The dataset used by this paper covered the period 1988-2017. Writing in 2021, we now have

access to data up to 2020, and can test the predictions made in Section 3.5.2, Table 3.3.

Of the 87 terms we made a prediction for, 38 were expected to become more prevalent in

abstracts in 2020 than they were in 2017, while 49 were expected to become less popular.

Using updated data from DBLP, we found that 86% of the terms were correctly predicted,

outperforming the tested accuracy of 81%. Of those predicted to become more prevalent,

82% were predicted correctly, while of those predicted to become less prevalent, 90% were

predicted correctly.

Correctly predicted to become more prevalent:

novel (+24%), state art (+6%), machine learning (+103%), dataset (+75%), github (+193%),

neural (+104%), deep neural network (+174%), convolutional neural network (+91%), con-

volution (+189%), recurrent neural network (+45%), neural network architecture (+133%),

deep learning model (+440%), autoencoder (+206%), learn (+74%), train (+104%), train-

ing (+96%), adversarial (+429%), deep learning method (+238%), long short term memory

(+152%), pre trained (+324%), word embeddings (+43%), internet thing (+29%), iot de-

vice (+106%), iot application (+41%), fog (+62%), smart (+9%), vr (+47%), fifth genera-

tion (+35%), millimeter wave (+31%), mu (+47%), end end (+21%)

Correctly predicted to become less prevalent:

originality value (-89%), semantic web (-56%), ontology (-38%), science (-4%), social medium

(-9%), social network (-30%), twitter (-21%), analytics (-16%), web service (-48%), web site

(-55%), service oriented (-51%), cloud computing (-34%), mobile (-23%), smartphone (-

23%), tablet (-48%), android (-35%), app (-11%), wireless mesh network (-47%), wireless

sensor network (-40%), grid computing (-62%), node (-7%), electronic commerce (-44%),

cognitive radio (-51%), manet (-54%), web 2point0 (-72%), ad hoc network (-45%), peer

todashpeer (-2%), parallel (-13%), differentiated (-4%), packet (-19%), ip (-29%), relay (-

30%), channel (-4%), cross layer (-22%), lte (-57%), xml (-57%), uml (-39%), h264 (-61%),

java (-34%), sup (-13%), cdma (-41%), expert system (-17%), microarray (-46%), gene ex-

pression (-15%)

Incorrectly predicted to become more prevalent:

big data (-24%), sensor (-7%), wearable (-2%), cloud (-10%), spl (-47%), massive mimo
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(-3%), sdn (-28%)

Incorrectly predicted to become less prevalent:

efficient (+2%), different (+9%), 5g network (+45%), network (+30%), ion (+15%)

Analysis of incorrectly classified terms

Perhaps most instructive are those cases which the classifier predicted incorrectly. In some

cases, such as “wearable”, and “sensor”, the swing is less than 10%, meaning that the preva-

lence of the term effectively remained the same. Others, such as “efficient”, “different”, and

“spl”, are stopwords or publishing artefacts, which, in retrospect, we realise ought to have

been filtered out of the original analysis. However, several terms do undergo large, unpre-

dicted swings, such as “big data”, “sdn” (as in software-defined networking”), “cloud”, and

“5g network”. To understand what happened, we display the prevalence of these terms over

time in Figure 3.12. From the figure, we can see that in the cases of the three terms pre-

dicted to rise, the prevalence was rising for the year 2016-2017, but fell relatively steeply

afterwards. It is unclear to us why the algorithm predicted the prevalence of “5g network” to

fall, given that it was rising steeply in 2017, and indeed continued to rise thereafter.

Figure 3.12: Prevalence of incorrectly predicted terms, showing “big data”, “sdn”,

“cloud”, and “5g network”. The red line highlights the data for 2017.
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Chapter 4

Modelling trend life cycles in scientific

research using the Logistic and Gompertz

equations

4.1 Chapter overview

4.1.1 Thesis context

This chapter is central to this thesis, tackling several of the core questions set out in Chap-

ter 1. In it, we conduct a large scale study of trend life cycles by first automatically detect-

ing trends in four different scientific fields using the method from Chapter 3, then compare

the mean error of two mathematical models fitted to the resulting trends. We find that most

trends share a similar trajectory in terms of popularity over time, and can be best described

using the asymmetric Gompertz model.

This chapter answers the following research questions:

� RQ3: Which model is more appropriate to describe trend life cycles?

� RQ4: Do trends in different scientific fields exhibit different behaviour?

The main content of this chapter is adapted from:

Emma Tattershall, Goran Nenadic, and Robert Stevens. ”Modelling trend life cycles in sci-

entific research using the Logistic and Gompertz equations”. Accepted by Scientometrics,

2021

4.1.2 Author’s contributions

Emma Tattershall designed the study, did the programming work, analysed the results, and

wrote the manuscript. Goran Nenadic and Robert Stevens provided continuous guidance and
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support throughout all stages of this work, proofread and suggested edits for the manuscript,

and approved the final manuscript.

4.1.3 Abstract

Scientific topics vary in popularity over time. In this paper, we model the life cycles of 200

trending topics by fitting the Logistic and Gompertz models to their frequency over time in

published abstracts. Unlike other work, the topics we use are algorithmically extracted from

large datasets of abstracts covering computer science, particle physics, cancer research, and

mental health. We find that the Gompertz model produces lower median error, leading us

to conclude that it is the more appropriate model. Since the Gompertz model is asymmet-

ric, with a steep rise followed a long tail, this implies that scientific topics follow a similar

trajectory. We also explore the case of double-peaking curves and find that in some cases,

topics will peak multiple times as interest resurges. Finally, when looking at the different sci-

entific disciplines, we find that the lifespan of topics is longer in some disciplines (e.g. cancer

research and mental health) than it is others, which may indicate differences in research pro-

cess and culture between these disciplines.

4.2 Introduction

In scientific research, it often seems as if a small number of topics occupy just about every

student, researcher, and funding body. A recent example in the field of computer science

is deep learning, which is the idea that a neural network with multiple layers outperforms

conventional machine learning methods. While deep learning is not a completely new idea

(Fukushima, 1980, LeCun et al., 1989), deep neural networks rose to widespread prominence

when they were applied to an image classification competition by Krizhevsky et al. (2012).

The rise in interest since 2012 has been steep—a search for “deep learning” in the com-

puter science bibliography DBLP (DBLP, 2021) yields 47 titles from 2011, but 10,368 from

2020. Using DBLP, we can also find other topics which behaved in a similar way (Fig. 4.1).

For example, ontologies rose very quickly in popularity before reaching a saturation point in

2006. The rise of cloud computing was even swifter, taking place between 2008-2015. Fi-

nally, neural networks peaked twice, once in the 1990s and then again in present times with

the advent of machine learning.

The three graphs in Fig. 4.1 share certain characteristics, such as exponential rises and
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Figure 4.1: The proportional popularity of the terms “ontologies”, “cloud”, and “neural

networks” in DBLP. Proportional popularity is the percentage of documents in a given year

that mention the term at least once.

peaks. This work aims to determine which mathematical model is the most appropriate for

modelling this behaviour. Being able to do this would be both interesting and useful, for sci-

entific research often foreshadows technological advancement. A mathematical model of the

trend life cycle would make it possible to predict how long a trend is likely to be popular for,

and how much publishing activity may result from it. This could aid researchers and funding

bodies in making decisions about research.

While various models for scientific growth have been proposed, there is as of yet no con-

sensus on which specific model should be used. In previous work researchers chose a num-

ber of known trends, searched for their frequency in one or more databases, then fitted their

candidate models to the resulting curves (Adamuthe and Thampi, 2019, Bettencourt et al.,

2006, Trappey and Wu, 2008). However, the weakness in these approaches lies in the small

number of trends used, and in the fact that they are manually chosen by the researchers,

which introduces the prospect of selection bias. This work differs in that we use a burst

detection algorithm to automatically select 200 emerging trends from four large datasets

of abstracts. We fit two candidate models to the publications-over-time trajectories of the

detected trends, then compare the error of the models to determine which one best fits

the data. We also consider the case of double-peaking trends such as neural networks, and

investigate whether this behaviour can be modelled via a superposition of curves. To our

knowledge this is the first study of its type to use trends that are automatically detected.
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4.3 Background

Attempts to model scientific growth date from as early as the 1930s. For example, Wilson

and Fred (1935) fitted a growth model to the frequency of publications on nitrogen fixa-

tion by plants (see Fig. 4.2) and used it to predict that almost 100 papers per year would be

published on the topic by 1960.

Figure 4.2: The number of publications per year on the topic of nitrogen-fixation by legu-

minous plants in the period 1860-1935. The solid line shows the best-fit s-curve model

fitted to the data. This figure was taken from Wilson and Fred (1935).

One of the key publications in the modern study of trend modelling is Bettencourt et al.

(2006). In this work the authors manually searched the post-World War 2 physics literature

for mentions of Feynman diagrams, then plotted the number of authors publishing on the

topic over time. They fitted several epidemiological models and compared the error. In their

follow-up work, Bettencourt et al. (2008) they repeated this process with literature searches

for cosmological inflation, cosmic strings, prions, H5N1 influenza, carbon nanotubes, and

quantum computing. They found that a SEIR epidemic model provided the best fit to the

data. SEIR splits the population of authors into four states (susceptible, exposed, infected,

recovered) and models the transition between states. The fact that it can be used to model

the number of authors publishing on a topic might imply that ideas grow and spread much

like viruses do. However, in comparison to other models, SEIR is complex, requiring five pa-

rameters to be fitted. One of the parameters, which here corresponds to the total population

of authors who might be susceptible to an idea, is particularly difficult to estimate.
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Alternative approaches make use of simpler models. Campani and Vaglio (2014) and Ho

et al. (2014) applied the Logistic model (a classical symmetrical S-curve growth model with

just three parameters) to publication-over-time counts for OLEDs and fuel cells respectively.

Both groups gathered their data via a keyword search in the scientific bibliography Web

of Science. They reported a reasonable level of fit, although Campani and Vaglio (2014)

commented that the symmetric Logistic model did not quite match their asymmetric data.

Trappey and Wu (2008) tackled the same problem with a slightly different dataset—the

sales volumes for a number of different electronic products. They fitted the Logistic, Gom-

pertz, and time-varying Logistic models to their data, and found that the time-varying Logis-

tic model gave the lowest error, followed by the asymmetric Gompertz model.

Egghe and Rao (1992) use 20 datasets gathered from another work. All of their datasets

span the period 1965-1987, and include e.g. MEDLINE, smoking and health, world alu-

minum abstracts. They fit exponential, Logistic, Gompertz, and power model curves to their

datasets, finding that the power model and Gompertz model are the best performers. The

other models do not fit very well. Young (1993) incorporates a larger sample of trends: 46

datasets gathered from correspondence with other authors. They fit nine different models.

An issue with this work is that the datasets are not described—it is not clear whether they

correspond to publication rates in science, industry, or something else entirely.

Perhaps the most similar work to ours is Adamuthe and Thampi (2019). They fit the Logis-

tic and Gompertz models to six time series gathered via keyword searches for mainframes,

minicomputers, cluster computing, grid computing, autonomic computing, and cloud com-

puting on four datasets (two patent datasets, IEEE, and Science Direct). They find that the

Gompertz model provides lower error in the majority of cases, although there was consider-

able variation between the results from the four datasets.

In most of the studies above, the typical procedure followed by researchers is to identify a

list of key terms, search for them in patent and/or scientific bibliographies, then fit one or

more models to the resulting time series and compare the error. The most common mod-

els used are the Logistic and Gompertz models. In this paper, we will gather a much larger

dataset of time series by detecting trends automatically from scientific literature. Otherwise,

we intend to follow the typical procedure shown in Fig. 4.3. The next subsections will deal

with the methodological hurdles this presents, such as the choice of datasets, how to detect

trends automatically, and the mathematical formulations of the growth curve models we will

be using.
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Figure 4.3: A typical methodology workflow for a technology life cycle modelling paper.

We follow the same workflow, except that that we use a trend detection algorithm in place

of the known key terms.

4.3.1 Dataset choice

For this work, we require one or more datasets of scientific texts. Ideally, these would be

large datasets that span decades, each focussed on a relatively narrow subject area so that

fine-grained trends can be revealed. They must also be freely available on the web, both for

ease of access and to make our work reproducible by others.

Happily, several such datasets exist in the form of bibliographies of abstracts. While scien-

tific abstracts contain less text than full papers, they have several advantages. Firstly, since

abstracts are used to summarise the content of papers, they contain important information

in a dense format. Secondly, unlike full papers, they are rarely hidden in PDFs that would

need to be decoded. Finally, many abstract repositories have free bulk download APIs to fa-

cilitate this kind of natural language research.

Among the largest abstract repositories on the web are PubMed (biomedical abstracts),

arXiv (abstracts and pre-prints from a range of subjects, most notably physics), and Seman-

tic scholar (a range of subjects, including computer science abstracts (Ammar et al., 2018)).

We chose to work with subsets of these three databases to form the four datasets described

in the list below, and in Table 4.1.

1. Computer Science: Semantic scholar abstracts which contain the DBLP tag in their

metadata.

2. Particle Physics: arXiv abstracts in the categories hep-ex, hep-lat, hep-ph and hep-

th.

3. Mental Health: PubMed abstracts tagged with the MeSH keyword “Mental Health”

or one of its sub-terms.
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4. Cancer: PubMed abstracts tagged with the MeSH keyword “Neoplasms” or one of its

sub-terms.

Table 4.1: Descriptions of all four datasets. Note that the last two are subsets of the

much larger PubMed abstract database.

Dataset source Discipline Span Years Number of documents

DBLP Computer Science 1988-2017 30 2.6 million

ArXiv Particle Physics 1994-2017 23 0.2 million

Pubmed Mental Health 1975-2017 42 0.7 million

Pubmed Cancer 1975-2017 42 1.9 million

The documents in each dataset consist of title, abstract, and year fields. To preprocess this

data, we combine title and abstract, then remove all punctuation (preserving acronyms),

convert letters to lowercase, and then lemmatize each word using NLTK’s WordNetLemma-

tizer (Bird et al., 2009).

4.3.2 Detecting trends automatically

Rotolo et al. (2015) define an emerging technology as having radical novelty, relatively fast

growth, coherence, prominent impact, uncertainty, and ambiguity. The easiest of these prop-

erties to measure is fast growth—in this case, a sudden change in the number of publica-

tions mentioning a term over a short span of years. The practice of detecting events like

these is called burst detection, and in text mining it has been used, for example, to clas-

sify emails as spam (Kleinberg, 2002) and to detect trends on Twitter (Mathioudakis and

Koudas, 2010) and in news streams (Takahashi et al., 2012).

Various forms of burst detection exist. For instance, Kleinberg (2002)’s popular method uses

a two-state automaton which transitions from a non-bursty to bursty state as the flow of

emails increases. However, applying burst detection methods meant for emails and news

streams to scientific literature is not straightforward because of the ways the domains dif-

fer. Kleinberg’s algorithm relies on the assumption that the size of the dataset remains sta-

ble over time. By contrast, scientific literature has undergone vast growth in the last few

decades.

A method previously applied to trend detection in scientific literature is based on Moving

Average Convergence-Divergence (MACD). MACD was originally developed for the stock
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market, and, when applied to price histories for stocks, gives quick assessments of whether

the price is trending up or down (Murphy, 1999). MACD makes use of two moving averages

of a time series, one with a long span (which is the number of datapoints used to create

the average) and one with a short span. When the trajectory of the time series changes, the

shorter moving average responds more quickly, causing the two moving averages to cross.

These intersections can be interpreted as buy/sell signals.

MACD was first applied to scientific literature by He and Parker (2010) who used it to de-

tect bursts in the MeSH keywords of PubMed papers. We adapted their method in our later

work, in which we demonstrated that it could be used to detect bursty terms in computer

science (Tattershall et al., 2020). We will also be using it in this work to detect trends in

our chosen datasets.

In order to apply MACD-based burst detection, we first create a vocabulary for each dataset.

This vocabulary contains all unique words in the full set of abstracts, along with phrases be-

tween 2-5 words. The least common terms are then excluded from the vocabulary to reduce

noise/conserve memory. For each remaining term in the vocabulary, we count the number of

documents it appears in each year. This creates a time series of document frequency/time

for each term. Since the total number of documents in each dataset has increased over the

years (see Fig. 4.4), we divide the data for each year by the number of documents in that

year.
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Figure 4.4: The number of documents per year in each of our four datasets. There is a

substantial increase in yearly publishing in the period 1975-2017. The dip in publishing

experienced in the very last year of the dataset occurs because publications are often back-

dated, so the data for these years is slightly incomplete.
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We then apply our algorithm to each time series to create a burstiness score for each term

(Tattershall et al., 2020). These terms are then clustered based on their co-occurrence in

documents (e.g. “internet of things” and “iot” are grouped as they often appear together).

At this point, we manually examine the most bursty clusters and remove publishing artefacts

such as “elsevier science bv right reserved”. We also split clusters where substantially dif-

ferent terms have been grouped together. Finally, we select the top 50 burstiest remaining

clusters in each dataset. This forms the set of 200 terms upon which we will test our mod-

els.

Further details of the term selection process can be found in Appendix 1.

4.3.3 The Logistic and Gompertz Models

For this part, we compare two relatively simple models, the Logistic and Gompertz curves.

The Logistic model was first introduced as a model of population growth by (Verhulst, 1845).

It is symmetric about its peak, and describes a form of growth that is initially exponential,

but slows as an upper limit is reached (Fig. 4.5 a). The mathematical formulation that ex-

plains the model and that we will be using is:

yL =
k

1 + e−r(t−b)
(4.1)

The curve is controlled by three parameters: r, which determines the width of the curve, k,

which determines the cumulative frequency at the upper limit, and b, which determines the

location of the peak on the x-axis.

The Gompertz model differs from the Logistic model in that it is asymmetric about its peak.

It assumes that the rate of growth is inversely proportional to the current cumulative fre-

quency, such that as cumulative frequency increases, growth slows. The peak—or point of

inflection on the cumulative frequency graph—occurs at 36.79% of the eventual maximum

cumulative frequency of the model (Fig. 4.5 b). The formulation of the Gompertz model

that we use is:

yG = ke−er(t−b)
(4.2)

We can calculate double-peaked variants of these two models using curve superposition.
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Figure 4.5: The Logistic and Gompertz models, visualised. The graphs on the left show

the cumulative frequency over time, while those on the right show the rate.

For example, a double-peaked Logistic model is represented by:

yL =
k1

1 + e−r1(t−b1)
+

k2

1 + e−r2(t−b2)
(4.3)

while a double-peaked Gompertz model is

yG = k1e
−er1(t−b1)

+ k2e
−er2(t−b2)

(4.4)

These equations have twice as many parameters as their single-peaked equivalents.

Since the parameter r corresponds to the width of the curve, we can use it to find a proxy

for trend duration. We follow Burg et al. (2017) by deriving the time period ∆t in which

the central 80% of documents are published (full derivations can be found in Appendix 2).

For the Logistic model this is:

∆tL =
ln(81)

r
(4.5)

The derivation is similar for the Gompertz model and yields the result:
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∆tG =
1

log(− log(0.9))− log(− log(0.1))
(4.6)

4.3.4 Curve fitting

In order to fit the Logistic and Gompertz models to the 200 trends, it is necessary to use a

curve fitting algorithm. A multitude of good software options are available to researchers,

such as Gnuplot (Williams et al., 2013), MATLAB (The MathWorks, 2022) and CurveExpert

(Hyams, 2010). Out of these, we decided to use LogLet Lab (Burg et al., 2017), a curve

fitting software optimised for use with S-curve models. While many other software may have

been equally appropriate, we chose LogLet Lab firstly because it is free and open source, and

secondly because it allows for easy fitting of double-peaked models with a single parameter

change.

LogLet Lab uses a sophisticated fitting algorithm based on Monte-Carlo annealing which we

have translated into Python for this project. It acts to minimise the root mean-squared error

when compared to the original time series. In the double-peaked case, this is the error of the

superposition of the two curves. Since initial constraints are required for the parameters r,

k, and b, we set these following Loglet Lab’s example (see Table 4.2).

Table 4.2: Initial constraints for the parameters r, k, and b, as used in Loglet Lab (Burg

et al., 2017)

Parameter Lower bound Higher bound

r 1/(8(max(t)−min(t))) 1/((max(t)−min(t)))

k max(y)/2n 4max(y)/n

b min(t) (max(t)−min(t))2−min(t)

After fitting, we scale each time series so that it scales between 0 and 1, then calculate the

mean-squared error between the time series and the Logistic and Gompertz models for each.

Scaling ensures that the error measurements are comparable across different trends.

4.3.5 Github repository

The code used in this section can be found on GitHub at https://github.com/etattershall/trend-

lifecycles.
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4.4 Results and Discussion

As described in the previous section, our burst detection method identifies 50 trends for each

of the four datasets. For illustration, the 10 burstiest terms for each discipline are shown in

Table 4.3.

We then calculate the popularity of each term over time, and use the Loglet Lab algorithm

to fit Logistic and Gompertz models to each time series. An example result for the term

”XML” is shown in Fig 4.6. In this case, we can see that both models fit the curve relatively

well, although they slightly overestimate the year at which XML’s popularity peaks.
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Figure 4.6: An example of the Logistic and Gompertz models fitted to the data for

”XML”.

In order to compare the models more quantitatively, we calculate the error of the Logistic

and Gompertz models for each time series, then compare the mean error across the dataset

(Table 4.4. We find that the Gompertz model produces a lower error than the Logistic model,

and an independent t-test tells us that this result is significant (p-value 0.0001). This im-

plies that publication activity on a trend tends to be asymmetric, with the bulk of work oc-

curring after the year in which publications peak.

4.4.1 Double-peaking trends

By inspection, we know that some of our trends experience multiple peaks. To investigate

this behaviour further we fit the double-peaked Gompertz equation (Equation 4.4) to each

of our trends, then compare the error with that produced by the single-peaked equation.
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Table 4.3: The top 10 burstiest historical and current trends detected in the four datasets.

A full list of clusters can be found in the GitHub repository for this paper in the file

200clusters.csv

Computer science

(DBLP)

Particle physics

(arXiv)

Mental health

(PubMed)

Cancer research

(PubMed)

1 Deep learning 125 GeV (mass of

the Higgs Boson)

Alcoholic Immuno-

histochemical

2 Neural network Pentaquark, Pen-

taquarks

Abeta, Amyloid

beta

Monoclonal anti-

body

3 Machine learning Wilkinson

microwave

anisotropy probe,

WMAP

Psycinfo Nuclear factor

KappaB, NF

Kappa B

4 Convolutional

neural network,

CNN

LHC run Dexamethasone,

DST

Polymerase chain

reaction, PCR

5 Java PAMELA

(PAMELA cos-

mic ray detector)

Human Immun-

odeficiency Virus,

HIV

Immune check-

point

6 Web Lattice gauge Database Tumor suppressor

gene, p53

7 XML Tensor scalar ratio Alzheimer’s dis-

ease

Beta catenin

8 Internet Brane, Branes Amitriptyline PD L1

9 Web service ATLAS Intravenous drug Interleukin, IL

10 Internet of things,

IoT

Horava Lifshitz,

Hovrava Lifshitz

Bupropion Oncogene
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Table 4.4: A statistical comparison of the error of the Logistic and Gompertz models

across the entire dataset.

Mean 95% CI Median Standard deviation

Logistic 0.029 [0.027, 0.031] 0.029 0.014

Gompertz 0.023 [0.021, 0.026] 0.019 0.017

We find that using the double-peaked equation reduces the error in 157 of 200 cases. This

is not unexpected, because the greater number of parameters in the double-peaked equation

allows it more easily overfit the data. However, the situation becomes more nuanced when

we look at individual trends. For example, in the case of “big data” (Fig. 4.7 a), the single-

peaked equation is still superior in terms of both subjective fit and error reduction. “Cloud”

(Fig. 4.7 b) is a more ambiguous example. Changing from single to double-peaked reduces

the error slightly, but without much impact on fit. Finally, in the last two examples, “inter-

net” and “recurrent” (Fig. 4.7 c and d), the double-peaked model is clearly superior. There-

fore, it is our opinion that the best way to detect double-peaked curves is through setting a

threshold of proportional error reduction at which a term is deemed to have multiple peaks.
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Figure 4.7: Comparison between the single- and double-peaked Gompertz models for four

computer science examples. The error of the models is shown in the legend of each graph.

94



4.4.2 Variation between different scientific disciplines

We are interested in learning whether trend duration differs between disciplines. In this sub-

section, we calculate trend duration using Equation 4.6, then compare the results for the 50

trends from each dataset (Table 4.5. Since the data is strongly skewed towards lower values

(see Fig. 4.8), we compare medians rather than means.

The median trend duration in particle physics and computer science appears to be about a

decade shorter than in mental health and cancer research. Using Mood’s median test, we

calculate the p-value of this difference to be 0.0001. There are smaller differences in trend

duration in particle physics and computer science, and between mental health and cancer

research, but these are not significant (p-values 0.55 and 0.84 respectively). This implies

that trends last, on average, for much longer in some disciplines than in others.

Table 4.5: The median time-span into which 80% of the publications on a given trend fall,

by dataset

Computer Science Particle Physics Mental Health Cancer

Median trend life-

time (years)

13.4 15.1 25.8 24.6
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Figure 4.8: Boxplots of the trend durations (as calculated using Equation 4.6) for the four

different datasets.

Finally, we investigate the relationship between peak year (the year in which the model pre-

dicts that the greatest number of documents will be published on a trend) and trend dura-

tion. Our hypothesis was that modern trends last are shorter lived, but to our surprise, this

95



is not true. When we plot the two variables against each other in Fig. 4.9, we find that the

trendline is positive in every discipline, indicating that trend durations have slightly increased

over time. There is, however, greater variation in trend lifespan for more recently peaking

trends.
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Figure 4.9: The relationship between the predicted peak year and the predicted duration

for each trend. The solid black line in each plot represents the regression line, while the

shaded area is the 95% confidence interval. The regression line has a positive slope for all

four disciplines, although the correllation is not strong.

4.4.3 Examples of trends and fitted models across all four disciplines

To illustrate the effectiveness of Gompertz curve for the task of modelling trend life cycles,

in this subsection we present the best-fitted Gompertz model for the 36 most bursty trends

in each discipline. These can be seen in Figs 4.10-4.13. In cases where the error reduction

gained by moving to the double-peaked equation is greater than a threshold (set empirically

to 0.005), we use that equation instead.

The fit is good in most cases, and the longer trend durations in the PubMed datasets are

clearly visible. We see many examples of double-peaked trends, such as “Higgs” and “neu-

trino oscillation” in particle physics, “depression” in mental health research, and “HR” (hor-

mone receptor) in cancer research. There are also rare cases in which there is almost no de-
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cline in publishing activity for decades after the peak, such as “Magnetic Resonance Imag-

ing” (MRI) and “Polymerase Chain Reaction” (PCR) in cancer research. Perhaps this be-

haviour is due to the fact that, after discovery, both MRI and PCR went on to become tools

that facilitated further research.

Regarding the limitations of the model, we see that it has some difficulty with publication

spikes that last for only one or two years. These are common in the particle physics dataset

(which is much smaller than the other three; see Table 4.1). Additionally, it has difficulty

modelling the rare cases where trends experience sudden drops in popularity, such as “beta-

catenin” in the cancer research dataset.

4.4.4 Overlap and granularity of trends

A limitation of this study is that in all four datasets, there is a level of overlap between the

terms used to describe trends. For example, in the DBLP dataset, we detected the trends

“web”, “web service”, and “world wide web”, and likewise “neural networks” and “convo-

lutional neural networks”. To an extent, it is interesting to include these overlapping terms

because they reveal some underlying patterns. For example, we can observe that the double

peak in “neural networks” is likely caused by the recent surge in deep learning topics. How-

ever, including multiple similar topics could act to effectively decrease the size and diversity

of our dataset, weakening our conclusions.

Additionally, there is a substantial difference in the granularity of terms. “Parallel” and “in-

ternet” are very large, top-level topics, while “smart grid” and “embeddings” are much smaller

topics. We suggest that in the future it might be possible to use a hierarchical ontology such

as the Computer Science Ontology (Salatino, Thanapalasingam, Mannocci, Osborne and

Motta, 2018) to automatically detect hierarchical relationships between terms.
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Figure 4.10: The Gompertz model fitted to trends in the computer science dataset. The

dashed line represents the model, while the solid line is the observed data for each trend.
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Figure 4.11: The Gompertz model fitted to trends in the particle physics dataset gathered

from arXiv. The dashed line represents the model, while the solid line is the observed data

for each trend.
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Figure 4.12: The Gompertz model fitted to trends in the mental health dataset. The

dashed line represents the model, while the solid line is the observed data for each trend.
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Figure 4.13: The Gompertz model fitted to trends in the cancer research dataset. The

dashed line represents the model, while the solid line is the observed data for each trend.
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4.5 Conclusion

We have fitted the Logistic and Gompertz models to 200 trends gathered from four sepa-

rate datasets of scientific abstracts. While both of these models have been used before, prior

work has not been on this scale and has relied upon manually-selected trends. We found

that the fit of the Gompertz model is superior, having lower error on average than the Logis-

tic model. Our results further support the view that the Gompertz model is applicable across

different scientific domains. This leads us to the conclusion that the growth of scientific in-

terest in a new idea is asymmetric, with the bulk of publications occurring after the year of

peak productivity. We also note double-peaked trends in the data, supporting the idea that

topics can go in and out of fashion. Finally, we calculated the median trend duration for four

different scientific disciplines and found that trends tend to be popular for shorter periods in

computer science and particle physics than in cancer and mental health research.
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4.6 Appendix 1: Term selection process

When selecting terms from our four datasets, we encountered challenges such as noisy data

and imperfect results from our clustering algorithm. In this appendix, we talk in more de-

tail about the challenges we faced, the decisions made, and the level of manual interven-

tion required. This process was not perfect—particularly in the level of subjectivity in setting

thresholds—but we believe it resulted in a reasonable list of trend clusters that are represen-

tative of trends in each of the four fields.

Figure 4.14 shows the main steps of our process. We will go through each step in the sub-

sections below.

Figure 4.14: Process diagram for choosing terms. CS=Computer Science, PP=Particle

Physics, MH=Mental Health, and C=Cancer.

1. Select terms above burstiness threshold

We begin by calculating the burstiness score of each term in each dataset, then selecting

terms above some burstiness threshold to be fed into the clustering algorithm. However,

what threshold should be set?

Ideally, a similar number of terms would be returned for each dataset. However, it was im-
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mediately obvious that the four different datasets differed substantially in this respect. Fig-

ure 4.15 shows the number of bursty terms above various possible burstiness thresholds for

each dataset. The clear outlier is the Particle Physics dataset, which has 1267 terms above

a burstiness threshold of 0.4, compared to 213 for the Computer Science dataset, 464 for

the Mental Health dataset, and 119 for the Cancer Research dataset. Therefore, in order to

have a relatively even spread of terms, we set a threshold of 0.55 for the Computer Science

dataset and 0.35 for the other three datasets.

Figure 4.15: Number of terms above burstiness threshold, by dataset

Step 2. Hierarchically cluster terms

In order to reduce term overlap, we applied scipy’s hierarchical clustering algorithm to the

group terms by their co-occurrence in abstracts and titles. After a series of experiments, we

chose to use distance-based clustering with a cophenetic distance of 7. We now acknowledge

that this threshold could have been set more systematically, perhaps by having several an-

notators independently choose a distance threshold and then taking the mean result. This

resulted in 123 Computer Science clusters, 89 Particle Physics clusters, 106 Mental Health

clusters, and 83 Cancer research clusters.

Step 3. Manually exclude noise clusters

From inspection, we noticed a number of issues with the clusters produced. Firstly, some

clusters were composed of publishing artefacts such as [“wiley periodical”, “wiley”, “peri-

odical inc”], while others were composed of latex math fragments [“le”, “greater equal”,

“le equal”], or common words which function effectively as stopwords in the context of the
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dataset [“case”, “report”, “patient”, “discussed”, “diagnosis”, “tumor”]. We decided that

these clusters should be manually removed. We also visually inspected the prevalence-over-

time of terms for each cluster in order to identify any subclusters which showed substantially

different behaviour. If it was deemed necessary, these were split into two separate clusters.

Finally, we chose cluster terms to describe each cluster. For the main cluster term, we chose

the burstiest term in the cluster, unless that term was highly ambiguous, in which case we

chose the first unambiguous term. E.g. for the cluster [“grid”, “smart grid”, “smart”], we

chose “smart grid” as the cluster term over “grid”, despite “grid”’s higher burstiness score.

If the cluster contained spelling variations of the cluster term (e.g. [“microarray”, “microar-

rays”]) or an acronym of the cluster term (e.g. [“convolutional neural network”, “cnn”]), the

spelling variation or acronym was selected as a secondary cluster term.

The cluster choice spreadsheet at https://github.com/etattershall/trend-lifecycles/

blob/master/cluster_choice.xlsx shows the decisions made to keep/exclude each clus-

ter and the reasoning behind each decision.

Step 4. Select clusters above threshold

The previous steps yielded 55 clusters from the Computer Science dataset, 74 clusters from

the Particle Physics dataset, 72 clusters from the Mental Health dataset, and 58 clusters

from the Cancer research dataset. We sorted the clusters by burstiness (using the most

bursty term in each cluster), then selected the top 50 clusters from each dataset. We chose

50 rather than 55, firstly, because it is a round number, and secondly, because the clusters

towards the bottom of each list tended to be smaller and more obscure (see cluster choice

file).
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4.7 Appendix 2: Derivation of trend duration

This section follows Burg et al. (2017)’s derivation of the Logistic curve’s span, then extends

it to find an equivalent span for the Gompertz curve. By span, or duration, we mean the

time taken for a curve to go from 10% of k (the maximum cumulative frequency) to 90% of

k. This time period covers the central 80% of activity.

The Logistic equation is:

yL =
k

1 + e−r(t−b)

We are searching for the points (t1, y1) where y1 is 0.1k and (t2, y2) where y2 is 0.9k.For y1:

y1 =
k

10
=

k

1 + e−r(t1−b)

10 = 1 + e−r(t1−b)

9 = e−r(t1−b) (4.7)

And for y2:

y2 =
9k

10
=

k

1 + e−r(t2−b)

10

9
= 1 + e−r(t2−b)

1

9
= e−r(t2−b) (4.8)

Combining Equations 4.7 and 4.8, we have:

9 ∗ 9 =
e−r(t1−b)

e−r(t2−b)

81 = e−r(t1−b)+r(t2−b)
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81 = er(t2−t1)

Therefore:

∆tL = t2 − t1 =
ln (81)

r
(4.9)

The derivation for the Gompertz curve is more complex, and while a result is included in

Burg et al. (2017), it does not match our calculation. We start with the Gompertz equation,

which is:

yG = ke−er(t−b)

y1 =
k

10
= ke−er(t1−b)

1

10
= e−er(t1−b)

ln (
1

10
) = −er(t1−b)

ln (− ln (
1

10
)) = r(t1 − b)

t1 =
ln (− ln ( 1

10))

r
+ b (4.10)

Likewise:

t2 =
ln (− ln ( 9

10))

r
+ b (4.11)

Therefore:

∆tG = t2 − t1 =
ln (− ln ( 9

10))− ln (− ln ( 1
10))

r
(4.12)
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Chapter 5

Tracking the emergence of ten computer

science topics in papers, grants, and patents

5.1 Chapter overview

5.1.1 Thesis context

In this chapter, we use the burst detection pipeline described in Chapter 3 to select ten case

studies of recent trends in computer science, namely deep neural networks, long short term

memory networks, autoencoders, generative adversarial networks, knowledge graphs, word

embeddings, cloud computing, the internet of things, blockchain, and crowdsourcing. We

track the early growth of these trends in datasets of papers, patents, and grants. Our aims

are, firstly, to explore the early growth stage of trends, and secondly, to determine whether

there exist lead-lag relationships between papers, patents, and grants.

This chapter answers the following research questions:

� RQ5: What is the temporal relationship between trends in papers, patents, and grants?

The main content of this chapter is in publishable format, but has not been submitted to a

journal at the time of writing.

5.1.2 Author’s contributions

Emma Tattershall designed the study, did the programming work, analysed the results, and

wrote the manuscript. Goran Nenadic and Robert Stevens provided continuous guidance and

support throughout all stages of this work, proofread and suggested edits for the manuscript,

and approved the final manuscript.
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5.1.3 Abstract

Ideas flow between universities, industry, and funding agencies through word-of-mouth, semi-

nars, conferences, publications, new software, new funding, and the media. What is the tem-

poral relationship between these entities? How long does it take for an idea that is popular

in scientific research (as seen through mentions in scientific papers) to find technological ap-

plications (as seen through mentions in patents)?

In this paper, we select ten emerging trends in computer science as case studies (deep neural

networks, long short term memory networks, autoencoders, generative adversarial networks,

knowledge graphs, word embeddings, cloud computing, the internet of things, blockchain,

and crowdsourcing) and track their frequency in datasets of research paper abstracts, patents,

and grants. We calculate the lag between each dataset, finding that for seven of ten trends,

patents lag behind papers (median=1.9 years), while for nine of ten trends, grants lag be-

hind papers (median=2.5 years). We also observe that some trends take more than a decade

to become popular after they first appear in research papers, and speculate that in these

cases, it was necessary to wait for technology to catch up before the idea could be fully de-

veloped.

5.2 Introduction

Innovation drives improvements in health, manufacturing, and ordinary life. Scientific re-

search supports innovation and plays a role in industrial development (Wang and Guan,

2010). However, the exact relationship between advances in science and technology inno-

vation is not clear-cut, with multiple competing theories. For example, the traditional linear

model posits that innovation begins with basic research, which leads to applied research,

which in turn leads to production and diffusion (Godin, 2006). However, the linear model

has been criticised for being too simplistic (Balconi et al., 2010) and has been replaced by

a general consensus that there is a more complex relationship, with science and technology

co-evolving (Breschi and Catalini, 2010).

Empirical studies of knowledge transfer between science and technology often focus on patent

citations (Finardi, 2011, Lo, 2009, Zhang et al., 2017). Submitted patents are required to

cite relevant prior work, and by calculating the average age of cited research papers, it is

possible to estimate a lag between research and technology. This can vary between fields—for

example, the average citation age was found to be approximately 8 years for nanotechnology
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patents (Zhang et al., 2017), and 10 years for genetic engineering patents (Lo, 2009).

However, we think that patent citations are likely to overestimate the lag between science

and technology. Patents may be based on very recent research but still cite foundational

references, leading to a high average citation age. Additionally, patent citations only give

half the story—we see how science drives technology, but not how technology drives science.

Therefore, in this paper we look at the general prevalence of specific topics in science and

technology, and ask the question: how long does it take for a popular topic in one domain to

become popular in the other?

To do this, we draw inspiration from Watts and Porter (1997)’s Technology Life Cycle Indi-

cators model, in which it is suggested that scientific papers can be used as a proxy for sci-

entific research, and patents for technological development. Focussing on computer science,

we gather large datasets of research paper abstracts, patents, and successful grant proposals,

then track the early growth of ten recent trends. We measure the lag between datasets and

compare our results to prior work.

Article highlights:

� We track the early growth of ten computer science trends in research paper abstracts,

patents, and successful grant proposals.

� In six cases, there is a clear lead-lag relationship between research papers and patents,

with trends first becoming popular in papers. In the other four, the situation is mixed.

When papers do lead, the lag is approximately 1-3 years.

� We notice that in some cases there is a long lead-time between the birth of a new idea

and it becoming popular. This leads us to propose that new ideas in computer science

often occur before they are technologically viable.

5.2.1 Background

In biomedicine, the process by which ideas move from basic research to population-level ap-

plications is called “translational science, “translational medicine”, or “bench-to-bedside”.

According to theory, medical research progresses through a number of stages: basic research,

applied research, Phase 1, 2, 3, and 4 clinical trials, and finally adoption by hospitals and

healthcare policy makers (Woolf, 2008). There is ambiguity about how long this process

takes; empirical studies often measure different things, making it difficult to directly compare
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them (Morris et al., 2011). However, the average time for a new idea to be translated into

clinical practice is commonly estimated at 17 years (Balas and Boren, 2000, Morris et al.,

2011).

There has been little focus on the concept of translational science in computer science re-

search (Abramson and Parashar, 2019). To our knowledge, there are no empirical studies

into the progression of computer science ideas from basic research to full population-level

adoption, similar to what is seen in translational medicine. However, authors have looked

into the lag relationship between research and commercialisation using paper and patent

counts (Bengisu and Nekhili, 2006, Järvenpää et al., 2011, Qi et al., 2018), and into the

lag relationship between funding and research using grant and paper counts (Hoonlor et al.,

2013, Shi et al., 2010). We will briefly describe the methods, data, and results of each study

below.

Bengisu and Nekhili (2006) looked at the relationship between research papers and patents.

They selected twenty technologies such as solar batteries for the automotive industry and

assistive devices for homes, designed search queries, and searched for them in research pa-

pers (Web of Science), and patents (Scirus search engine). After calculating the correlation

between the frequency of mentions of each technology in papers and patents, they found

that in most cases, paper and patent frequencies were correlated, with no observable lag.

Järvenpää et al. (2011) tracked the progress of three emerging technologies (Biodiesel, Laser

cladding, and Blue LEDs) through each stage of Watts and Porter (1997)’s Technology

Life Cycle Indicators. This was a comprehensive study—they used datasets of research pa-

pers (Science Citation Index), applied research papers (Compendex), patents (USPTO), and

English-language news (LexisNexis). They found that for each technology, a rise in the fre-

quency of research papers preceded a rise in the frequency of patents. Lag was calculated as

the time between the first appearance of each technology in the research paper dataset and

the patents dataset; 3 years for Biodiesel, 13 years for Laser cladding, and 13 years for Blue

LEDs.

Shi et al. (2010) looked at the temporal relationship between research papers and grant pro-

posals in computer science. They downloaded datasets of research paper abstracts (Web of

Science, formerly ISI) and grants (National Science Foundation), then used Latent Dirich-

let Allocation (LDA) to discover 150 topics. LDA topics differ from the handcrafted search

queries used in e.g. Bengisu and Nekhili (2006), but are instead sets of words belonging to

each topic with a given probability. For example, a topic manually labelled Neural networks
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contains the stemmed words: [“network”, “neural”, “train”, “weight”, “layer”, “artifice”,

“recur”, “hidden”, “ann”, “multilay”]. Shi et al. tracked the frequency of each topic in each

dataset, then used the cross-correlation coefficient to calculate lag between papers and grant

proposals. Overall, they found that for 33% of their topics papers preceded grants, while for

44% this pattern was reversed. The remainder were ambiguous.

Qi et al. (2018) also used LDA topics. They used a nanotechnology keyword search to col-

lect research paper abstracts (Web of Science) and patents (Derwent), then used LDA to

discover 50 topics. They manually sorted topics into four categories: patents and papers

both trending upwards (22%), both trending downwards (22%), patents trending up, pa-

pers trending down (6%), and papers trending up, patents trending down (50%). The au-

thors noted that patent and paper counts were not always in synch, but did not investigate

whether there was a lag between the two.

Hoonlor et al. (2013) looked at the temporal relationship between papers and grants for

computer science topics. They downloaded datasets of research papers (IEEE and ACM),

and grants (National Science Foundation), then tracked the behaviour of author-defined key-

words. In order to determine whether there was a lag between datasets, they calculated pe-

riods of high popularity for each topic, then measured the lag between the popularity of key-

words for each dataset. For example, if the keyword user interface became popular in 2006

in grants, then became popular in papers in 2010, Hoonlor et al. would report this as a 4

year lag. They found that topics tended to become popular in grants before they became

popular in papers; less than a third of new keywords became popular in research papers first.

Of the five studies (Table 5.1), two are based on search queries for technologies, two use

LDA, and one uses author-defined keywords. None of them cover all three of grants, papers,

and patents, although Järvenpää et al. (2011) does use datasets of applied research and

news articles in addition to patents and research papers. Both Shi et al. (2010) and Hoonlor

et al. (2013) look at the relationship between papers and grants for computer science, and

both find a somewhat mixed picture. However, both conclude that it is more common for

topics to become popular in grants before moving to papers. Regarding the relationship be-

tween papers and patents, Järvenpää et al. (2011) are the only ones to observe a clear lag,

with papers preceding patents.
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Table 5.1: Table of prior work on the temporal relationships between papers, patents, and

grants

Study Datasets Field Topics Lag calcula-

tion

Findings

Bengisu

and Nekhili

(2006)

Research pa-

pers, patents

N/A Search

queries

for 20

technolo-

gies

Correlation

coefficient

No lag

Shi et al.

(2010)

Research pa-

pers, grants

Computer

science

LDA

used to

find 150

topics

Cross-

correlation

coefficient

33% of topics rise

in papers first;

44% rise in grants

first

Järvenpää

et al.

(2011)

Research pa-

pers, applied

research pa-

pers, patents,

news

N/A Search

queries

for 3

technolo-

gies

Lag be-

tween first

occurrence

in each

dataset

In all cases,

the technology

first appeared

in papers be-

fore spreading to

patents

Hoonlor

et al.

(2013)

Research pa-

pers, grants

Computer

science

Author-

defined

keywords

Lag be-

tween pop-

ular periods

for keyword

in each

dataset

Keywords tended

to become pop-

ular in grants

first. In less than

a third of cases,

this pattern was

reversed

Qi et al.

(2018)

Research pa-

pers, patents

Nano-

technology

LDA

used to

find 50

topics

N/A N/A
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5.3 Methods

The main aim of this paper is to investigate whether lead-lag relationships exist between

research topics in papers, patents, and grants. In this section, we talk about the datasets

used, the choice of topics, and statistical measures of lag.

5.3.1 Datasets

We gathered a dataset of computer science research paper abstracts from Semantic Scholar.

Semantic Scholar is an AI-powered search engine that indexes articles from a number of

sources, including PubMed (biomedical articles), and DBLP (computer science articles). We

filtered for articles sourced from DBLP, extracting titles, abstracts, and publication years.

Of the major international patent offices, the USA’s USPTO is the largest and is regarded as

representative of global innovation patterns (Kim and Lee, 2015). Importantly, it also has a

free bulk download service, allowing users to download patents in various formats (USPTO,

2021). A patent document consists of a title, patent abstract, patent description, and a

number of claims and diagrams. It also contains a list of citations that the patent applicant

(or patent office) considers to be relevant prior work (OECD, 2009). Patents are categorised

according to the International Patent Classification system (IPC), or the Cooperative Patent

Classification system (CPC). Both of these classification systems have very similar top-level

categories (EPO, 2021, WIPO, 2021).

We downloaded USPTO’s collection of full-text patents between 2006-2020, extracting from

each record the title, patent abstract, patent description, and filing date. In order to reduce

the size of the data, we filtered patents based on their CPC/IPC classifications, keeping only

those that had at least one classification under the top-level categories “G” (Physics), “H”

(Electricity) and “Y” (New technological developments that do not fit into other categories).

For grants, we downloaded a dataset from the USA’s National Science Foundation (NSF).

The NSF funds approximately 25% of basic research in the USA, particularly focussing on

mathematics, computer science, and the social sciences (NSF, 2021). Of the NSF’s seven di-

rectorates, three were relevant to computer science: Computer and Information Systems and

Engineering (CISE), Engineering (ENG), and Mathematical and Physical Sciences (MPS).

We filtered for grants awarded by these directorates, extracting titles, grant proposal text,

funded amount ($), and date awarded.
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Table 5.2: Description of the three datasets. The “Dataset size” column gives the size of

the dataset in million documents.

Dataset

name

Source Span Dataset

size

Information extracted Filtering

Papers Semantic

scholar

1981-

2020

4.7m Title, abstract, publi-

cation date

DBLP papers only

Patents USPTO 2006-

2020

2.2m Title, abstract, de-

scription, filing date

Patent classi-

fications “G”

(physics), “H”

(electricity), and

“Y” (other)

Grants NSF 2006-

2020

0.1m Title, grant text,

award date, funded

amount ($)

Grants from CISE,

ENG, and MPS

only

Table 5.2 gives the characteristics of each dataset. Data was downloaded in March 2021.

It is worth noting that the dates used vary between datasets. Filing date is available for

patents, publication date for papers, and “date awarded” for grants. We expect the latter

two to be similar—the NSF expects grant peer review to take approximately 6 months1,

while publication lag for research publications is typically less than a year (Dong et al., 2006).

Therefore, overall, we expect the patents dataset to be shifted by 6-12 months, relative

to the other two datasets. Additionally, since patents are often not made public until 18

months have passed since they were filed, the volume of patents in the 2019-2020 period

is much lower than in previous years (see Figure 5.1).

5.3.2 Choice of topics

According to Rotolo et al. (2015), emerging topics are characterised by five properties: rad-

ical novelty, relatively fast growth, coherence, prominent impact, and uncertainty and ambi-

guity. Of these, the second, fast growth, is the easiest to directly measure.

To detect terms that have experienced a period of fast growth over their history, we apply a

burst detection algorithm from Tattershall et al. (2020) to the research papers dataset. We

use this dataset because it is the only one that is specific to computer science, so it is most

1https://www.nsf.gov/pubs/policydocs/pappg22_1/index.jsp
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Figure 5.1: Number of documents in each dataset per year. The rapid decrease in the size

of the patents dataset in 2019-2020 is caused by the 18 month confidentiality period for

patents. Papers and grants do not show a substantial decrease in 2020.

likely to return relevant terms. We use 1-4 n-grams as input to the burst detection algorithm

and selected the 1000 most bursty terms. These are then segmented into clusters based on

their co-occurrence in documents, creating 224 clusters. In order to narrow down the num-

ber of clusters to a set of case studies, we applied a set of criteria: that trends should be

“recent”—that is, that they are relatively rare in the dataset in 2006 and burst after this

point; that they reach a relatively high maximum frequency in the research papers dataset;

and that they can be unambiguously searched for in the more general-purpose grants and

patents datasets. We used the steps below:

1. Automatically exclude clusters in which every term has more than 20 mentions in

2006. This step left 50 clusters.

2. Manually inspect clusters and merge those that have been inappropriately segmented

into separate clusters by the clustering algorithm. This step was used to merge e.g.

[deep neural, deep neural network, dnns, dnn, network dnn, neural network dnn, deep

neural network dnn] and [deep, neural, neural network, deep learning, training, trained,

train, training data, deep network, network trained] into one large cluster. This left 43

clusters.

3. Manually remove noise clusters. This step was used to remove 4 clusters including

[achieves state, achieves state of the art], [github, github com, http github com, http

github, com], and two clusters of latex math notation. This left 39 clusters.
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4. Manually remove clusters in which almost all terms have more than 10 mentions in

2006. For example, in the cluster [android, smartphones, smartphone, app, apps], all

terms other than “apps” appear more than 10 times in 2006. Since “apps” is clearly

not a separate subtopic from the other terms in its cluster, this cluster is removed.

This left 26 clusters.

5. Remove clusters with fewer than 1000 mentions in the research paper dataset during

their peak year, or with burstiness lower than 0.5. This left 20 clusters.

6. Final manual assessment of cluster suitability. For pragmatic reasons, we manually ex-

cluded [smart grid, smart city] (due to confusion with e.g. “smart city management”),

[noma, orthogonal multiple] (due to confusion with the predecessor topic “orthogo-

nal multiple access”), [edge computing] (due to confusion with e.g. “cutting edge

computing”), and [fifth generation, 5g] (due to the use of fifth generation in multi-

ple other senses). We also eventually removed [deep reinforcement learning] as it is a

clear subtopic of deep neural networks, [big data], as it describes an exceptionally wide

and diverse topic, and [facebook, twitter, social media, tweet] as these social media

terms are used in the context of a new data domain, rather than a new technique or

technology. This left 10 clusters.

Initial experiments, however, made it clear that some of the terms used in the clusters are

ambiguous. For example, “cloud” (as in “cloud computing”) has a pre-existing meaning (in

a meteorological sense) which dominates early mentions of it in the dataset. This behaviour

is even more pronounced when searching for it in the more general patents dataset, as illus-

trated by Table 5.3. In order to choose unambiguous representative words from each cluster,

we used the Google Books Ngrams Corpus to identify terms with multiple senses. For ex-

ample, this led us to choose [lstm, long short term memory] as representative terms for the

cluster [lstm, long short term, long short, long short term memory, short term memory, term

memory, short term, memory lstm, term memory lstm, short term memory lstm, short, long].

The representative terms for each of the fourteen clusters are shown in Table 5.4.

5.3.3 Quantifying behaviour of papers, patents, and grants

We calculate the document frequency of each topic in each dataset. Search queries are

treated as “OR” statements—for example, a document containing either “deep neural” or

“deep network” causes the document frequency of the topic DNN to increment by 1. Ad-
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Table 5.3: This table shows the percentage of instances in which selected ambiguous

terms are used in their “correct” sense in the patents dataset, by year. “Correct” is de-

fined as matching the semantic meaning of the intended cluster (e.g. “cloud” as in Cloud

computing). We calculate each percentage by manually classifying a sample of random

examples from each year.

Term Percent correct

2008

Percent correct

2012

Percent correct

2016

Cloud 21% 92% 91%

Cloud computing 100% 100% 100%

Embeddings 0% 8% 98%

Word embeddings Insufficient data Insufficient data 100%

ditional instances of a search term in a document do not increase the document frequency.

This creates a number of data series for each term; an example is shown in Table 5.5.

For each topic, we report the first year in which more than twenty documents were published

and the peak publishing year. Twenty is chosen as an arbitrary threshold to illustrate the

beginning of widespread popularity. Since the data is noisy, these metrics are calculated after

smoothing the data with a moving average with span 3. When the peak comes in the last

year of the dataset, we report it as “≥2020” (or “≥2018” for patents).

As is often true in regression problems, there are multiple possible methods of calculating

lag between time series. For example, dynamic time warping, which acts to minimise the

distance between the two signals (Müller, 2007), and time-lagged cross correlation, which

involves repeatedly shifting time series against each other and calculating the correlation at

each point until a maximum value is reached. However, the issue with our time series is that

they are very short (15 data points), quite noisy, and do not universally display peaks which

can be compared. Therefore, in order to choose an algorithm, it is instructive to look at how

previous work on the topic has calculated lag between time series.

In their study of papers, patents, and news articles mentioning three chosen technologies,

Järvenpää et al. (2011) reported lag as the time between the first occurrence of each topic

in each dataset—i.e. if the first paper mentioning a topic is published in 2010, and the first

patent in 2014, the lag is reported as 4 years. This is a simple method, and appealing in

that respect. However, for many or our topics we observe a long period between the first

occurrence of topics and subsequent popularity, meaning this metric could be misleading.
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Table 5.4: The search queries used to identify documents related to each topic. If one or

more terms from any topic are mentioned in a document, the topic count is incremented by

one.

Topic title Search terms

DNN deep neural OR deep network

LSTM long short term memory OR lstm

Autoencoder autoencoder(s)

GAN generative adversarial

Embeddings word embeddings

IoT internet of thing(s)

Crowdsourcing crowdsourcing OR crowd sourcing OR crowd-

source OR crowdsourced

Knowledge graph knowledge graph

Blockchain blockchain(s)

Cloud computing cloud computing OR cloud service OR cloud en-

vironment

Hoonlor et al. (2013) used an equation taken from Lappas et al. (2009) to calculate periods

of high popularity for each of their keywords in datasets of papers and grants. The time be-

tween the beginning of the popular period in one dataset and the beginning of the popular

period in the other dataset was reported as the lag. For a keyword (w) at time step (t) the

popularity is calculated as:

Popularity(w, t) =
documents created during time t containing w

all documents containing w
(5.1)

This equation effectively functions as a measure of peak location, flagging the point at which

the term is at its highest prevalence. However, many of our topics have not yet peaked in ei-

ther papers or patents.

Bengisu and Nekhili (2006) and Shi et al. (2010) both use correlation between datasets.

While Bengisu et al. don’t specify the exact metric used, Shi et al. repeatedly shift one se-

ries along the t-axis, then calculate cross-correlation using the equation:

Correlationtopics1,s2(ϵ) =
∑
y

P̂ topic
s1 (t+ ϵ)P̂ topic

s2 (t) (5.2)
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Table 5.5: DNN document frequency and funding. These series are not cumulative, but

instead give the number of new documents (or new funding) mentioning the topic in each

year.

Year Papers Patents Grants Funding

(million $)

2006 1 0 0 0.0

2007 4 1 0 0.0

2008 6 2 0 0.0

2009 10 6 0 0.0

2010 19 1 0 0.0

2011 30 6 0 0.0

2012 62 16 2 1.1

2013 181 76 2 0.9

2014 492 157 4 1.9

2015 996 413 9 4.9

2016 1830 759 22 9.0

2017 3396 1514 51 18.9

2018 5958 1731 72 28.7

2019 8145 883 125 51.7

2020 9809 202 155 55.9

where s1, s2 are two data series, P̂ topic
corpus(t) is the normalised frequency of a topic in a cor-

pus in a given time step t, and ϵ is the number of time steps s2 has been shifted along the

x-axis, relative to s1. The value of ϵ at which maximum correlation is reached is the time

lag between the series.

However, after experimenting with this metric, we found that cross-correlation is unsuitable

for the short non-periodic data series we are using. To show why, we use an example from

our dataset. Figure 5.2 shows a noisy linear series (s1), with a second linear series that al-

most exactly mirrors it, other than a delay represented by zeroes. If the cross-correlation

metric was suitable, we would expect to see correlation reach a maximum at lag 3, when the

two time series are visually almost perfectly aligned. However, when we shift s2 along the

t-axis, we actually observe decreasing correlation as the higher values in the dataset are re-

moved due to the truncation of the series.
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Figure 5.2: Worked example of cross-correlation, showing that for short, non-periodic data

series, correlation actually decreases when the series reach alignment!

Therefore, we find that all three metrics used in earlier work are unsuitable for measuring lag

for our specific data. Instead, we use a metric related to time-lagged cross correlation. We

first logarithmically transform data (which is necessary because of the exponential growth of

topics), then repeatedly shift one data series along the x-axis, measuring mean squared error

at this point. Since the minimum of the error often falls between two values, we interpolate

with a cubic function, taking the lag at the minimum point (Figure 5.3).

Lags1,s2 = argmin
ϵ

MSE(s1(t), s2(t+ ϵ)) (5.3)

where s1, s2 are data series and ϵ is the shift along the t-axis.

For log calculations involving patents data, we exclude the last two years of data (2019 and

2020) since this data is incomplete, and add 0.5 years to the lag to account for the approxi-

mate 6 month difference between patent filing date and paper publication date/grant award

date.

5.3.4 Github repository

The code used in this section can be found on GitHub at https://github.com/etattershall/

emerging-topics.

121



Figure 5.3: Example of lag calculation using MSE. (a) shows the base document fre-

quency of DNN in the papers and patents datasets. (b) shows the MSE between papers

and patents when one series is shifted along the x-axis. The dot marks the minimum point,

at a lag of 1.56 years. (c) shows the same graph as (a), with the series aligned.

5.4 Results

We plot the document frequency of papers, patents, and grants on a logarithmic axis (Fig-

ures 5.4 and 5.5). Note that due to the scale, all topics show some random fluctuations in

the period where their frequency is low. Table 5.6 quantifies some of the behaviour seen in

the figures, showing for each dataset the first appearance of each topic, the first year it ap-

peared in more than 20 documents, and the peak publishing year.

5.4.1 Calculating lag between datasets

We calculate the lag between papers, patents, and grants using the method described in

Section 5.3.3, reporting the results in Table 5.7. Since the grants dataset is an order of mag-

nitude smaller than the other two datasets, we scale document counts for this dataset before

transforming logarithmically.

Based on the results in Table 5.7, we can make these two statements about our case studies:

� Patents lag slightly behind papers, with a median lag of 1.9 years (mean=1.7, stan-

dard deviation=1.1).

� Grants lag behind papers, with a median lag of 2.5 years (mean=2.1, standard devia-

tion=1.0).

The fact that patents tend to lag papers matches the conclusion of Järvenpää et al. (2011)’s
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Figure 5.4: Logarithmic document frequency of DNN, LSTM, Autoencoder, GAN, Em-

beddings, and IoT

study of three emerging technologies. It is, however, a mixed picture, with patents clearly

lagging papers for seven topics (DNN, LSTM, Autoencoder, GAN, Embeddings, IoT, Knowl-

edge graph, and ambiguous or no lag for three topics (Cloud computing and Blockchain)

and Crowdsourcing).

It is interesting to look at the differences between the topics in these three groups. In their

study of gene popularity on PubMed, Boyack et al. (2004) described three motive forces

behind topic emergence. These are:

1. Scientific discovery

2. Technological innovation
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Figure 5.5: Logarithmic document frequency of Crowdsourcing, Knowledge graph,

Blockchain, and Cloud computing

3. Exogenous events (e.g. an epidemic or government action)

The seven topics in which patents lag papers appear to fall into the first category, primarily

driven by events within academia. Of the three topics for which there is no substantial lag,

Cloud computing relies heavily on technology, and its sudden rise in popularity can be linked

to the falling costs of internet storage and data transfer (Arutyunov, 2012), placing it in the

second category. Blockchain, as we will see in section 5.4.4, was based on earlier research

into ledger technology, but popularised by the development of Bitcoin, a clear exogenous

event. Crowdsourcing, which is a term that describes the harnessing of public contributions

to achieve some larger work, was first coined as a play on “outsourcing” by WIRED maga-

zine (Howe, 2006), and can also be seen as exogenous.

Regarding grants, we find that for every topic other than Cloud computing, grants lag pa-

pers. This intuitively makes sense, since we are calculating topic prevalence based on the

words used by authors. Grants rarely invent new terminology, but rather respond to exist-

ing research work and the needs of society. The fact that grants appear to lag behind pa-

pers does not mean that grants don’t fund new research—for example, in the case of the

youngest topic, GANs, initial research work would have been funded through Ph.D. funding
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Table 5.6: Topic growth across datasets. ≥1 is the first year in which a topic appeared in

a dataset; ≥20 is the first year in which the topic appeared in 20 or more documents; and

Peak is the peak publishing year. Data is constrained by the limits of the datasets; 1981-

2020 for papers, 2006-2018 for patents, and 2006-2020 for grants.

Topic Papers Patents Grants

≥1 ≥20 Peak ≥1 ≥20 Peak ≥1 ≥3 Peak

DNN 1992 2010 ≥2020 2007 2012 ≥2018 2012 2013 ≥2020

LSTM 1997 2011 ≥2020 2011 2014 ≥2018 2017 2017 2019

Autoencoder 1990 2012 ≥2020 2009 2014 ≥2018 2013 2018 ≥2020

GAN 2014 2015 ≥2020 2016 2016 ≥2018 2017 2017 ≥2020

Embeddings 2010 2013 2019 2011 2016 ≥2018 2016 2018 2018

IoT 1997 2008 2019 2007 2010 2017 2008 2012 2019

Crowdsourcing 2006 2008 2017 2007 2008 2016 2009 2009 2016

Knowledge graph 1991 2012 ≥2020 2009 2013 2017 2014 2016 2019

Blockchain 2011 2013 ≥2020 2011 2012 ≥2018 2014 2014 2019

Cloud computing 1990 2007 2017 ≤2006 2007 2016 2008 2008 2015

and more general machine learning grants.

However, this observation puts us at odds with Hoonlor et al. (2013). When looking at the

relationship between computer science grants and papers in the period 1990-2010, Hoonlor

et al. found that in 66%-75% of cases, author-defined keywords became popular in grants

first. We aren’t sure what causes this discrepancy, although Hoonlor et al. seem to have

used subjectively broader topics than us—for example, they report the top 3 most trendy

keywords as Security, Data mining and Privacy. The time period of the dataset used could

also be a factor; we consider that the growth of the internet and online publishing may have

changed the situation, with grants no longer directing research to such a large degree. This

will require further research.

5.4.2 Funding per topic

Grants can range in value from a few thousand dollars to several million dollars. Since NSF

provides the funded amount for each grant, we are able to calculate the total amount of

funding awarded to each topic (Table 5.8). We find a wide range in funding between top-

ics, from Embeddings ($4.5 million awarded between 2006-2020) to Cloud computing ($792
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Table 5.7: Calculating lag between patents, papers, and grants. The lag shown is the de-

lay of the second dataset; for example, a lag of 2 indicates that patents/grants lag papers

by 2 years. A negative lag indicates that papers lag behind patents/grants. 0.5 years have

been added to each measurement of patents lag to account for the difference between date

filed (patents) and date published (papers).

Topic Lag between pa-

pers and patents

(years)

Lag between pa-

pers and grants

(years)

DNN 2.0 2.5

LSTM 2.4 3.0

Autoencoder 3.2 3.0

GAN 1.7 1.5

Embeddings 2.9 3.0

IoT 2.8 3.0

Crowdsourcing -0.1 0.7

Knowledge graph 1.8 2.5

Blockchain 0.3 1.8

Cloud computing 0.2 -0.1

million in the same period). The differences might relate to the higher cost of infrastructure

for some topics. However, these findings should be treated with caution since we deliberately

prioritised precision over recall when crafting search queries, meaning that some grants will

have been missed. Additionally, the NSF allocates only a portion of US funding, and differ-

ent funding agencies may prioritise different topics.

5.4.3 How long does it take for a topic to become popular?

In Table 5.6, we see that many of the topics show a long lead time between the first occur-

rence in papers (first column) and first year above twenty papers (second column). Six have

lead times of more than a decade: DNN (18 years), LSTM (14 years), Autoencoder (22

years), IoT (13 years), Knowledge graph (22 years), and Cloud computing (17 years).

What causes these topics to rise in popularity decades after they were first thought of? In

this subsection, we consider the history of some of these topics, looking at the events and

technological contexts in which they became popular.
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Table 5.8: Total NSF funding per topic awarded in the period 2006-2020

Topic Total funding (million $)

DNN 173.0

LSTM 8.9

Autoencoder 8.6

GAN 26.2

Embeddings 4.5

IoT 299.4

Crowdsourcing 195.4

Knowledge graph 20.9

Blockchain 31.3

Cloud computing 791.6

Three of these topics, DNN, LSTM and Autoencoder, involve neural networks. DNNs are

neural networks with multiple hidden layers of neurons; LSTMs are recurrent neural networks

used to process data; and autoencoders are neural networks used to efficiently encode an

input. All three topics undergo a rise in popularity in the period 2010-2012, after the suc-

cess of deep neural networks in several image recognition competitions (Cireşan et al., 2010,

Cireşan et al., 2012, Krizhevsky et al., 2012).

However, neural networks have a long history, starting with Rosenblatt’s Perceptron in 1958.

They have experienced periods of popularity and optimism, such as the 1980s, and periods

of relative obscurity, such as the 1990s and 2010s. Writing about why the successes of the

deep learning revolution were possible in 2010, and not earlier, Kurenkov (2020) cites three

factors: the development of GPUs that allowed neural networks to be trained orders of mag-

nitude faster; labelled datasets that were orders of magnitude larger; and more sensible ways

of initialising weights.

Of the remaining topics, IoT and Cloud computing both rely heavily on technology—IoT on

RFID tags, sensors, and microcontrollers; and Cloud computing on internet transfer speed

and data storage costs. According to Evans (2011), the modern Internet of Things was born

in 2008-2009, when for the first time there were more connected devices than people. This

matches what we see in our datasets, with a rise in papers and patents mentioning IoT in

the 2008-2011 period. Similarly, Cloud computing began to rise drastically in popularity in

2008. Arutyunov (2012) links this to the decreasing costs of storage and internet data ex-
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change, and the early involvement of Google, HP, Intel, and Yahoo!. The rise of the final

topic, Knowledge graphs, is a special case which we will talk about in the next section.

The long lead time between the birth of ideas and mainstream popularity is in some ways

reminiscent of the sleeping beauty/prince theory, which states that some important publica-

tions go unnoticed by the research community before being awakened by a prince—a much

later publication which cites their work (Teixeira et al., 2016). However, this is not precisely

the situation we see here. Many people saw the potential of multi-layer neural networks, the

internet of things, and cloud computing. These ideas were not so much waiting for a prince

as for new technology to be developed. Once the idea became technically viable, there were

multiple breakthroughs in a short space of time as multiple princes noticed and capitalised.

Our conclusion, therefore, is that ideas in computer science often occur before they are tech-

nologically viable. This means that the initial idea is followed by a period of low publication

rates while technology catches up. After this, there is a span of time where the idea is vi-

able, but few researchers have noticed. This is followed by one or more landmark publica-

tions (such as Krizhevsky et al. (2012)’s AlexNet paper for deep neural networks) or a land-

mark product (such as Microsoft Azure for cloud computing) that demonstrates the poten-

tial of the idea to the wider research community. This event is analogous to the “Innovation

Trigger” event that begins Gartner’s hype cycle (Blosch and Fenn, 2018). The hype cycle

describes how the community expectations of an emerging technology change over time.

Blosch and Fenn (2018) defines the Innovation Trigger as “A breakthrough, public demon-

stration, product launch or other event that generates press and industry interest in a tech-

nology innovation.” We propose that something similar exists in research and that the initial

sequence of events goes like this:

1. Initial idea: The first publication mentioning the new idea by name occurs.

2. Viability: Supporting technology develops enough to make the idea viable.

3. Innovation trigger: One or more landmark publications or products is released, demon-

strating the potential of the idea to the community and leading to an exponential rise

in publishing rates.

5.4.4 Limitations

This work has several limitations. Firstly, we use the papers dataset for topic discovery, then

apply the topics to the papers, patents, and grants datasets. We use the papers dataset be-
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cause it is the only dataset we have that is specific to computer science, meaning that burst

detection returns a more focussed set of bursts. However, this has the potential to bias the

study towards topics that are known to be popular in papers. Additionally, while the deci-

sion to exclude ambiguous terms from search queries allows us to look at the early growth

of trends without the signal being overpowered by noise, it means that some documents will

have been missed. This study also disproportionately uses data from the USA, particularly

regarding grants. It would be interesting for future work to look at how different countries

fund and conduct research.

However, the biggest limitation of this work is that we are dependent on terminology. Ter-

minology is an imperfect reflection of research work. When a new topic develops, there will

often be a period where the terminology isn’t clear, before the research community settles

on the language to use for their new topic (Shneider, 2009). Using a restricted set of terms

means that we miss some of this early development work. An example of this is Blockchain.

The modern concept of a blockchain was described in a white paper by (the presumably

pseudonymous) Nakamoto (2008), who later went on to launch Bitcoin. However, the tech-

nology and mathematics behind Blockchain builds on earlier research into Distributed Ledger

Technology (DLT). While Blockchain appears to rise precipitously in 2013/2014, it is actu-

ally a continuation of an earlier pattern (Figure 5.6 (a)).

There also exist situations where an existing research topic is rebranded—such as the re-

birth of neural networks as deep learning, and situations where one topic is in some way

closely related to another. An example of this is the relationship between Knowledge graph

and earlier research into ontologies. Both are representations of knowledge—ontologies de-

scribe types of entities and the relationships between them, while knowledge graphs contain

a collection of entities, properties, and types, connected in a graph structure. Knowledge

graphs are typically broader and less strict than ontologies, but the research areas are closely

related. We find it interesting that when Knowledge graph and Ontology are plotted on a

(non-logarithmic) graph in Figure 5.6, the fall in publications mentioning the latter is almost

perfectly mirrored by the rise in publications mentioning the former.

Future work could make use of authorship metadata to catch shifts in terminology as au-

thors stay within the same topic, but change the language used to describe it. Otherwise, it

might be done by looking at word co-occurrence in abstracts when topics are emerging, or

making use of terms such as “formerly” when they appear in abstracts.

129



Figure 5.6: Discussion of terminology evolution. (a) Shows the growth of Blockchain and

Distributed Ledger Technology (DLT) in the papers dataset, showing that prior research

into DLT preceded the advent of Blockchain. (b) Shows Knowledge graph and the term

“ontology” in the papers dataset.

5.5 Conclusion

We compared the growth of ten recent computer science topics in research papers, patents

and grants. We found that in seven cases, papers preceded patents, while in three cases the

situation was reversed or ambiguous. The median lag was 1.9 years; relatively short com-

pared to prior work. We also found that grants lagged slightly behind papers and patents.

The amount of funding awarded varies substantially between topics.

We also noticed that six topics exhibited long lead times between the initial idea and sub-

sequent popularity. Studying the history of these case studies suggests that many of these

promising ideas required further technological developments to happen before they became

viable. Finally, we note that a major limitation of this study is that it is unable to account

for the evolution of terminology; while some topics disappear from research paper abstracts

and patents, others are transformed.
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Chapter 6

Discussion

This thesis explored trend detection and trend life cycles in scientific literature, with a par-

ticular focus on computer science. In this chapter, we summarise our findings and talk about

how they relate to our original hypothesis and research questions. We discuss how this re-

lates to prior work, then move on to talk about the limitations of our findings and future

potential research opportunities.

6.1 Summary of results

This thesis has provided the following contributions:

1. We developed a burst detection pipeline that can be applied to any sufficiently large

dataset of time-ordered text data. This pipeline is semi-automated (the user only has

to set thresholds and remove clusters of publishing artefacts), and, importantly, does

not require much knowledge of the data to which it is applied, making it suitable for

data exploration across other disciplines. In Chapter 3, we demonstrated the pipeline

on computer science abstracts gathered from DBLP. In Chapter 4, we further applied

it to datasets of particle physics abstracts from ArXiv, and mental health and cancer

research abstracts from PubMed.

2. We developed a machine learning method based on a random forest classifier to pre-

dict whether a detected trend would rise or fall in popularity in the future. We tested

the classifier by repeatedly sampling historical data in a sliding window and reported

81% accuracy.

3. We fitted Logistic and Gompertz models to 200 automatically-detected trends in com-

puter science, particle physics, mental health, and cancer research, finding that the

Gompertz model produces lower mean squared error than the Logistic model. The dif-

ference in error between the models is significant (p-value 0.0001).

4. We derived an equation to determine the duration of a trend based on its fitted Gom-

pertz model. We calculated the median duration of trends in computer science (13.4
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years), particle physics (15.1 years), mental health (25.8 years), and cancer research

(24.6 years). We found that the difference in trend duration between computer science

and particle physics, and mental health and cancer research, was significant (p-value

0.0001).

5. We observed that some trends, such as neural networks and the internet, show double

peaks in terms of their frequency over time in research abstracts, implying that these

trends reoccur. We developed a method to detect this automatically via measurement

of mean squared error between single and double-peaked models.

6. We explored ten emerging trends in computer science and tracked their frequency over

time in datasets of papers, patents, and grants. We showed that previous methods

used to determine lag between datasets were not appropriate for the kind of short,

non-periodic data series we were using, and developed an alternative method of mea-

suring lag based on mean squared error.

7. We found that for seven of ten case studies, patents lagged at least a year behind

papers (median 1.9 years). For nine of ten case studies, grants lagged behind papers

(median 2.5 years).

8. Based on observed long lead-times between the first appearance of an emerging trend

and the beginning of its popularity, we theorised that new ideas in science often pre-

date technological viability.

6.2 Hypothesis and research questions

Our original hypothesis was that most research trends follow a predictable life cycle in terms

of their frequency over time in datasets of scientific literature and that this life cycle can be

described by a mathematical model.

The results in Chapter 4 support both clauses of this hypothesis. We showed that the Gom-

pertz model provides a good fit to the frequency of topics over time across four different

scientific disciplines, with over 100 examples in Figures 4.10-4.13. While there are limitations

to this result (discussed further in Section 6.3), some double-peaking trends, and edge cases

with higher error, we believe this broadly demonstrates that the majority of trends do obey a

predictable life cycle and that this life cycle can be described by a mathematical model.

RQ1: How can we detect research trends in time-ordered collections of documents?
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In Chapter 3, we demonstrated that MACD, a method originally developed to detect changes

in the price of stocks can be applied to the free text of scientific literature to highlight bursty

terms. In Chapter 4, we applied this method to four datasets, ranging from 0.2 to 2.6 mil-

lion documents, demonstrating that it yields reasonable results across time-ordered text

datasets at different scales.

RQ2: Can we predict whether a given research idea will rise, fall, or plateau over a given

timescale?

In Chapter 3, we showed that a method based on a random forest classifier can predict whether

trends in computer science research will rise, fall, or plateau in 3 years’ time with 81% accu-

racy. We additionally made predictions for 87 trends based on 2017 data, and revisited them

3 years later (Chapter 3 Appendix), finding that 86% of the predictions had been correct.

RQ3: Which model is more appropriate to describe trend life cycles?

In Chapter 4, we showed that the Gompertz mathematical model (with single- and double-

peaked variants) yielded lower average error than an equivalent Logistic model when fitted

to 200 trends across computer science, particle physics, mental health, and cancer research.

RQ4: Do trends in different scientific fields exhibit different behaviour?

In Chapter 4, we found that the duration of trends in different fields varied and that this

variation is statistically significant, with trends in computer science and particle physics be-

ing of shorter duration than trends in cancer research and mental health research.

RQ5: What is the temporal relationship between trends in papers, patents, and grants?

In Chapter 5, we found that for seven of ten case studies in computer science, patents lagged

at least a year behind papers (median 1.9 years). For nine of ten case studies, grants lagged

behind papers (median 2.5 years). In each case where there was an exponential rise in pa-

pers, this was matched by exponential rises in patents and grants; there were no cases where

papers rose in popularity while the other two datasets remained flat.

133



6.3 Limitations

It is important not to draw excessively broad conclusions where they are unsuitable. In this

section, we discuss the main limitations of this thesis.

Terminology evolution

In this thesis, we almost exclusively use text data alone, without incorporating scholarly

metadata such as authorship or citations. This was a deliberate decision, undertaken with

the idea that it would be 1) computationally inexpensive, allowing for quick operations on

large datasets, and 2) applicable to other datasets (such as e.g. job adverts, news archives).

However, it also acts as a limitation, since the terminology contained in the text of abstracts

and titles is an imperfect reflection of the research work that has been done. It is possible

for the language used by a trend to evolve over time—for example, in Chapter 5 we talk in

depth about the shift from “Distributed Ledger Technology” to “Blockchain”. Individual

words can become part of larger phrases that change their meaning—for example, “Internet”

and “Internet of Things”. Another issue with using text data is that in the early phase of

idea growth, the language used to describe the idea has often not been standardised, settled,

or even developed (Shneider, 2009).

Use of datasets to represent fields of science

The datasets used in this thesis—DBLP, ArXiv, PubMed, USPTO, and NSF—do not cover

all of science, or even all of their respective fields. While we can be reasonably confident

that DBLP covers a broad section of published computer science research due to a compar-

ative study by Cavacini (2015), no similar study has been made on ArXiv or PubMed. Addi-

tionally, these databases may fail to index interdisciplinary research which lies partly outside

their fields, as well as informal scientific literature such as software or lecture notes.

Small number of time steps in datasets

A major limitation of our datasets is that each of them has a limited date range. Since the

downloadable metadata of publications tends to include information about the year of pub-

lication, and not the month or day, a limited date range leads to a small number of time

steps. This limits the algorithms that can be used—for example, algorithms intended to de-

tect “blips” in data are not appropriate, because, as we have shown, after a major perturba-

tion, it can take years for the frequency of a term to return to its baseline level.
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Use of document frequency on the y-axis

In this thesis, we use the document frequency of terms within papers in a given time step

to represent the popularity of that term in that year. We do this because it can be directly

measured. However, the frequency of a term in papers is only one facet of its popularity. As

a useful counterexample, Gartner’s hype cycle uses an axis labelled “Expectations” (previ-

ously “Visibility”) to represent a qualitative judgement of a new technology’s “buzz” and

market adoption (Blosch and Fenn, 2018).

It may be that bursts in document frequency do not precisely match the recollections of sci-

entists about the timing of a trend. A useful example in the field of computer science is Ar-

tificial Intelligence (AI) research. According to Russell and Norvig (2010), AI research be-

gan in the mid-1950s, then went through a period of very high expectations between 1952-

1969. After this, cuts in funding led to a period that is generally called the first AI “winter”

(Howe, 2004). A second boom followed, along with another winter in the mid-1980s.

Figure 6.1 (a) shows the prevalence of the term “Artificial Intelligence” in published books

in the Google Books Ngrams corpus. The term grows slowly between 1955-1980, then more

quickly during the 1980s, with a peak coming around 1988-1989. After the peak, the rate

at which new books are published falls sharply. In recent times, fast growth begins again.

The approximate dates of the AI winters (1973-1980, 1999-1993) are overlaid on the graph1.

However, the first AI winter displays only as a slower rise in publication to the boom that

came later, while the second appears to have a delayed effect; publications continue to rise,

but then peak and fall rapidly. This highlights the lack of correlation between “expectations”—

which might be better expressed as some combination of publishing activity, media buzz,

and funding announcements—and document frequency.

Clustering thresholds and removal of publishing artefacts

In this thesis, we have manually set thresholds for burstiness and term significance, and set

clustering thresholds to control the aggressiveness of the hierarchical agglomerative cluster-

ing method used. The need to set these thresholds subjectively presents a major caveat to

the claim of automatic trend detection. Additionally, due to the noisy nature of the data,

we have often observed clusters of publishing artefacts such as “Elsevier Science All Rights

Reserved”. These copyright declarations fluctuate over time as publishing habits change,

1While these dates appear on the web in numerous articles about the AI winters, e.g. Schuchmann

(2019), Walch (2021), we haven’t been able to find an original source for them, and they might be apoc-

ryphal
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Figure 6.1: “Artificial Intelligence” in the Google Books Ngrams Viewer, 1950-2019. Cre-

ated using a case-insensitive search. The shaded areas show the approximate dates of ”win-

ters” in AI research. Left hand view is new documents per year entering the dataset; right

hand view is cumulative documents, showing an escalating S-curve trajectory.

meaning that they can be detected as bursts and need to be manually removed.

In future work, this decision-making process could be improved through the use of methods

from qualitative research. An example is the PRISMA method, which is used when creating

systematic reviews and meta analyses to make decisions about which studies should be in-

cluded in a transparent and systematic manner (Page et al., 2021, Tawfik et al., 2019). In

particular, point 16 on the PRISMA 2020 checklist would be useful (Page et al., 2021):

� 16a: Describe the results of the search and selection process, from the number of

records identified in the search to the number of studies included in the review, ide-

ally using a flow diagram.

� 16b: Cite studies that might appear to meet the inclusion criteria, but which were ex-

cluded, and explain why they were excluded.

When setting a threshold, inclusion and exclusion criteria could be pre-defined, and examples

of items which lie outside the threshold could be shown. Further, thresholds could also be

set via a committee, with several participants independently choosing a threshold based on

inclusion and exclusion criteria, then meeting to determine what threshold is most appropri-

ate.
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Evaluation of burst detection

An important limitation and a challenge of this thesis is the difficulty of evaluating our method

of burst detection. As described in Chapter 2.3.3, there exists no gold standard dataset

of scientific trends. This leads to prior work attempting some form of expert evaluation

(Boyack et al., 2004, Chen, 2006), comparing to the results of other prior work (He and

Parker, 2010), or using methods drawn from other fields where they can be evaluated (He

and Parker, 2010). We have followed He and Parker (2010)’s approach in using MACD, but

acknowledge that the situation is not ideal. However, there is an argument that if we are

using the typical definition of a burst—that it is a term or group of terms that has under-

gone a rapid change in frequency relative to some baseline level—then it is self-evidently

true that MACD detects mathematical bursts in data, and that if these are deficient in some

way, then it is due to the fact that the dataset or features used do not accurately capture

the growth of the trend.

6.4 Implications

With the caveats of the previous section in mind, here we talk about the wider implications

of our research findings, as well as their context in related work.

The asymmetric nature of scientific publishing habits

The Gompertz model, when used to describe the rate of something—such as the number of

new papers published per year—shows an exponential rise, a peak, and then a slower fall.

This peak occurs at 36.8% of the eventual maximum cumulative frequency of the model.

Put another way, by the year at which publications on a topic reach their peak, just 36.8%

of the papers that will eventually be published have been published. In the introduction, we

showed several current and historical trends in computer science in Figure 1.1. One trend on

the graph, “deep learning” had yet to peak. If deep learning is a typical trend, we can say

with some confidence that at least 63.2% of the publications that will ever mention deep

learning have yet to be published.

Duration of trends

In Chapter 4, we found that the median duration of a trend—which we defined as the time

span in which the central 80% of documents are published—is 13.4 years in computer sci-

ence, 15.1 years in particle physics, 25.8 years in mental health research, and 24.6 years
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in cancer research. While there is considerable variation within each field, this information

could be useful for researchers planning their careers or new projects, as well as universities

and government agencies making long-term funding decisions. A caveat, however, is that

some trends, such as neural networks, can re-emerge after a period of lower activity.

Relationship between research and innovation

In Chapter 5, we found that for seven of our ten case studies, patents lagged behind papers,

with a median overall lag of 1.9 years. However, it is intriguing to us how small this number

is, and also that for all the case studies papers and patents both showed an exponential rise

in frequency. This was not inevitable—it is possible to imagine a research idea that does not

have a practical use. In computer science, at least, it seems that ideas that first appear in

research very quickly find applications that allow them to be patented. Additionally, while

correlation is not causation, the short lag indicates to us that Breschi and Catalini (2010) is

correct in their conclusion that research and innovation co-evolve.

6.5 Future work

The study of research trend life cycles is an enjoyable topic for scientists to talk about, and

as such, there have been a lot of ideas for further work. Some of these are methodological—

we will discuss these first—while others are scientometric in nature.

Automatically placing topics onto a Gompertz curve

Every year, emerging technologies are placed onto a position on Gartner’s hype cycle by ex-

pert evaluation (Blosch and Fenn, 2018). It seems to us that it might be possible to create

a similar system with research trends, by fitting a Gompertz curve to their frequency over

time history. The results could then be disseminated, for example with a webapp using data

from several different fields.

Making use of ontologies to look at hierarchical trends

Of the ten case studies in Chapter 5, at least six—deep neural networks, long short term

memory networks, autoencoders, generative adversarial networks, and word embeddings—

are linked to neural networks. It might be useful to map trends to an ontology or hierar-

chical terminology so they can be looked at as part of a connected hierarchy. For example,

the ACM maintains a hierarchical terminology of computer science topics, with the ACM
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Computing Classification system (ACM, 2012), although it is infrequently updated, with

the most recent update occurring in 2012. Alternatively, there is the Computer Science On-

tology (CSO), which is an automatically generated taxonomy of computer science topics

(Salatino, Thanapalasingam, Mannocci, Osborne and Motta, 2018). Rather than creating

a mapping, it might also be possible to go in the opposite direction; first growing ontology

terms into topics based on co-occurrence within abstracts, then calculating the burstiness of

each topic.

Terminology evolution

We mentioned terminology evolution above as a limitation. However, it is also an oppor-

tunity for further work. We propose that it might be possible to use author and citation

metadata to track the changing terminology of topics over time. For a purely text-based ap-

proach, there are correlated topic models, which aim to align LDA topics between time steps

(Blei and Lafferty, 2007), and Kaluarachchi et al. (2010)’s Semantically Identical Temporally

Altering Concept (SITAC) algorithm, which aims to track changes in terminology based on

association rule mining.

Detection of emerging trends

This thesis has concentrated on detecting established trends and characterising their life

cycles. However, another interesting question is whether it is possible to detect emerging

trends in real time. This is a difficult problem, since, as seen in Chapter 5, the number of

mentions of a trend in its first years can be very small (< 10). This signal is dwarfed by the

hundreds of thousands of articles added to bibliographic databases every year.

Despite these hurdles, some interesting work has been done on emerging trend detection.

Salatino et al. (2017) demonstrated that emerging topics are often foreshadowed by unusual

patterns of co-occurrence between previously unrelated topics. They created a method called

AUGUR to detect these patterns using a clique percolation algorithm (Salatino, Osborne

and Motta, 2018). We wonder if this might be augmented by making use of grey scientific

literature such as scientific Tweets, Ph.D. adverts, research seminars, GitHub repositories,

and questions on e.g. https://stackoverflow.com/ in addition to abstracts.

Relationship between median citations and life cycle stage

It would be interesting to explore the relationship between median paper citations and life

cycle stage. Do papers published in the earliest stage of the life cycle receive the most cita-
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tions? Do papers published after the peak publishing year tend to have fewer citations than

those published before it? Citations are often used in other works as a rough metric of paper

impact (Aksnes et al., 2019, Hirsch, 2005), and can be important to researchers on a pro-

fessional level (Aksnes et al., 2019). However, it is well-known that average citation counts

differ in different fields (Marx and Bornmann, 2014, Radicchi et al., 2008), and that they

are highly time-dependent (Leydesdorff et al., 2016), which is why some citation metrics

take the field of study into account (Purkayastha et al., 2019), and why article citations are

measured after a set number of years after publication (Aksnes et al., 2019). Research into

citations as a function of life cycle stage would add to this picture, leading to greater under-

standing.
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6.6 Concluding remarks

In previous chapters, we have shown that it is possible to detect and track trends in research

by using automated methods applied on scientific literature. We have explored trends in

several fields and shown that they follow common life cycles which can be characterised by

mathematical models. We can predict whether trends will rise or fall with surprising accu-

racy.

This thesis grew out of an initial feasibility project on the topic of detecting trends in PubMed

data. I had previously worked with Twitter data and was familiar with the concept of trend-

ing topics from there: Goran Nenadic and I wondered whether something similar existed in

science. I downloaded 16 million PubMed abstracts and devised a very simple method of

trend detection based on TF-IDF. The results were fascinating. It was immediately obvious

that many of the top-ranked trends followed an almost-identical pattern—a swift exponential

rise, a peak, and then a fall.

This is a continuation of that work, and an attempt to tell a story about science. We found

that trends exist in scientific literature just as they do on Twitter. However, unlike Twit-

ter trends, trends in scientific literature can last for many decades. We found that trends

tend to obey an asymmetric life cycle, which means that in most cases, the majority of pub-

lications occur after the peak publishing year. Trends can also reoccur—for example, neural

networks—and trends in papers sometimes, but not always, precede trends in patents. Fi-

nally, we presented a theory that new ideas in computer science often occur before they are

technologically viable, which causes a long lead time as technology catches up.

This is only the start of the story, as the methods described here could be applied to a wide

range of datasets, and there are many opportunities for further work. The work presented

here sits at the intersection of philosophy of science, scientometrics, and innovation forecast-

ing, and may aid future studies into what drives science, how science is practiced, and how

science and innovation complement each other.
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AlSumait, L., Barbará, D. and Domeniconi, C. (2008). On-line lda: Adaptive topic models

for mining text streams with applications to topic detection and tracking, 2008 Eighth

IEEE International Conference on Data Mining, pp. 3–12.

142



Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey, D.,

Dunkelberger, J., Elgohary, A., Feldman, S., Ha, V., Kinney, R., Kohlmeier, S., Lo, K.,

Murray, T., Ooi, H.-H., Peters, M., Power, J., Skjonsberg, S., Wang, L. L., Wilhelm, C.,

Yuan, Z., van Zuylen, M. and Etzioni, O. (2018). Construction of the literature graph in

semantic scholar, NAACL.

URL: https://www.semanticscholar.org/paper/09e3cf5704bcb16e6657f6ceed70e93373a54618

Anderson, A., Jurafsky, D. and McFarland, D. A. (2012). Towards a computational history

of the ACL: 1980-2008, Proceedings of the ACL-2012 Special Workshop on Rediscovering

50 Years of Discoveries, Association for Computational Linguistics, Jeju Island, Korea,

pp. 13–21.

URL: https://aclanthology.org/W12-3202

Andrade, C. (2011). How to write a good abstract for a scientific paper or conference sub-

mission, Indian journal of psychiatry 53: 172–5.

Appel, G. (2005). Technical Analysis: Power Tools for Active Investors, FT Press.

Arutyunov, V. (2012). Cloud computing: Its history of development, modern state, and

future considerations, Scientific and Technical Information Processing 39.

Atefeh, F. and Khreich, W. (2015). A survey of techniques for event detection in twitter,

Comput. Intell. 31(1): 132–164.

URL: https://doi.org/10.1111/coin.12017

Balas, E. A. and Boren, S. A. (2000). Managing clinical knowledge for health care improve-

ment, Yearb. Med. Inform. (1): 65–70.

Balconi, M., Brusoni, S. and Orsenigo, L. (2010). In defence of the linear model: An essay,

Research Policy 39(1): 1–13.

URL: https://www.sciencedirect.com/science/article/pii/S0048733309001899

Balili, C., Segev, A. and Lee, U. (2017). Tracking and predicting the evolution of research

topics in scientific literature, 2017 IEEE International Conference on Big Data (Big Data),

pp. 1694–1697.

Bengisu, M. and Nekhili, R. (2006). Forecasting emerging technologies with the aid of sci-

ence and technology databases, Technological Forecasting and Social Change 73(7): 835–

844.

URL: https://www.sciencedirect.com/science/article/pii/S0040162505001393

143



Berkenkotter, C. and Huckin, T. (1995). Genre Knowledge in Disciplinary Communication:

Cognition/Culture/Power, Lawrence Erlbaum Associates.

Bettencourt, L., Cintrón-Arias, A., Kaiser, D. and Castillo-Chavez, C. (2006). The power of

a good idea: Quantitative modeling of the spread of ideas from epidemiological models,

Physica A: Statistical Mechanics and its Applications 364: 513–536.

Bettencourt, L. M. A., Kaiser, D. I., Kaur, J., Castillo-Chávez, C. and Wojick, D. E. (2008).
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