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γ̇ Shear Rate Tensor 1/s

λs Slip Length m

κ Friction Coefficient
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λs Slip Length m

µ Dynamic Viscosity Pas

ν Kinematic Viscosity m2/s

ρ Density kg/m3

ρ0 Reference Density kg/m3

τ Shear Stress N/m2

τy Yield Stress N/m2

τ Shear Stress Tensor N/m2

Acronyms

BC Boundary Conditions

DBC Dynamic Boundary Condition

mDBC Modified Dynamic Boundary Condition

MLS Moving Least Squares Method

MPS Moving Particles Semi-Implicit Method

PIV Particle Image Velocimetry

SPH Smoothed Particle Hydrodynamics

WCSPH Weakly Compressible Smoothed Particle Hydrodynam-
ics

13



List of Published Works

The work presented in this thesis has led to the following publications:

In peer-reviewed journals:

English A, Dominguez JM, Vacondio R, Crespo AJC, Stansby PK, Lind SJ, Chiap-

poni L, Gomez-Gesteira M. 2020. Modified dynamic boundary conditions (mDBC)

for general purpose smoothed particle hydrodynamics (SPH): application to tank

sloshing, dam break and fish pass problems. To be submitted to the special issue

on “Latest Developments and Application of SPH using DualSPHysics” in Compu-

tational Particle Mechanics.

Conference Papers:

English A, Stansby PK, Lind SJ. 2018. Introduction of partial slip boundary con-

ditions to Smoothed Particle Hydrodynamics. In: Proceedings of the 13th Interna-

tional SPHERIC Workshop, Galway, Ireland

English A, Domı́nguez JM, Vacondio R, Crespo AJC, Stansby PK, Lind SJ, Gómez-
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Abstract

Design of Low Residue Packs by Smoothed Particle
Hydrodynamics

A thesis submitted for the degree of Doctor of Philosophy at the University
of Manchester

By Aaron English
2020

Many Unilever products, principally gels and sauces, leave a residue in the con-
tainer when ‘empty’ due to the interaction of the product with the interior pack-
aging surface. This is a free surface and boundary problem. Smoothed particle
hydrodynamics (SPH) is well suited for free surface flows in complex geometries
but accurate representation of solid surfaces requires fundamental development. A
robust but approximate boundary condition for general complex shapes, known as
the dynamic boundary condition, is widely used but has underlying physical and
theoretical weaknesses, limiting accuracy. This has been improved in this project
by extrapolating properties from the flow domain, to fixed boundary particles to
maintain the robustness of the dynamic boundary condition while removing its
physical and theoretical limitations; this has become known as the modified dy-
namic boundary condition. However conventional boundary conditions are no slip
but many flow problems in the process industries incur partial slip, with a small
flow velocity on the solid surface. Formulations in SPH have been developed for the
first time which has been possible with the ‘modified’ dynamic boundary condition.
This has been progressed with application to parallel flows, Couette and Poiseuille,
for which new analytical solutions have been developed to enable validation. The
important rheometer case, used for quantifying particularly non-Newtonian fluid
properties, has also been studied, comparing with limited available experimental
data. The groundwork for generalisation to complex shapes, including no slip and
partial slip, has thus been laid. The aim of a versatile simulation tool with free sur-
faces has been demonstrated for diverse applications, the standard dam break with
violent impact on a column and the new fish pass problem comprising a complex
channel flow with transverse weirs and gates. New experimental data for pouring
from a beaker has been simulated but have shown that limitations for small flow
depths of the order of particle size need to be addressed when the beaker is almost
empty. The modified dynamic boundary condition with density extrapolation and
zero velocity solid boundary particles (or with velocity of the body if moving) is
now available in the open source DualSPHysics code which can run efficiently on
CPUs and GPUs.
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Chapter 1

Introduction

1.1 Motivation

Unilever (2020a) is a large British-Dutch company that produces over 400 brands

of products including: personal care products (Lynx, Dove, Tresemmé); detergents

(Comfort, Surf); ice creams (Ben & Jerry’s, Wall’s), and sauces (Coleman’s, Hell-

mann’s). It is estimated that seven in every ten homes worldwide contains a product

produced by Unilever, and globally their products are used by over two billion peo-

ple each day. Closer to home it is estimated that 98% of British homes use a

Unilever product.

With such a large range of popular products available, used by so many consumers,

comes a lot of packaging and potential for waste product to be left inside the

packaging after it has been thrown away. This is a problem as consumers will be

less likely to buy a product if they think a large amount of what they have bought

will be throw away. To tackle this Unilever have been coming up with ways to

reduce the waste left inside packaging. For example Hellmann’s Mayonnaise came

up with a new squeezable bottle design that gets more Mayo out with a solution

that ”doesn’t involve whacking it, slicing the top off, or scraping the remnants out

with a spoon” (Unilever (2015)). It’s estimated that this new design reduced the

amount of leftover mayo in a bottle from 13% to 3%.

By 2025 Unilever aim to ensure that all their plastic packaging will be reusable, re-

cyclable or decomposable and that 25% of the plastic used will come from recycled

plastic content. They recently added a further aim to halve the amount of plastic

used in their packaging. Unilever consumer research has found that a third of con-

sumers are now buying brands based on their social and environmental impact, and
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over 50% of consumers are more likely to buy a product that is sustainably pro-

duced (Unilever (2020b)). To this aim they have started testing reusable packaging

for selected brands here in the UK. It is important therefore for Unilever to know

how much product will be left inside this packaging, and packaging in general, and

if there are way to reduce the amount.

What would be useful is a tool that can be used to investigate if a new pack design

will be better than the previous in terms of filling rates and through the use of the

product to reduce residue. Residue left inside packs is the amount of product left

inside when the pack is thrown away. In order to reduce the amount of residue three

options were identified as possible solutions: sacrificial layers; surface treatments,

and the redesign of the fluid in the pack. Computational tools can assist in assessing

the efficiency of each of these approaches.

� The idea of a sacrificial layer is that a small amount of product will be left

inside the pack when it is thrown away, this is what currently happens. This

could be improved upon by finding exactly how much fluid is left inside a

pack at the end of the packs life and trying to minimise it by modifying the

shapes of the packs. Ng et al. (2013) showed how this could be done using

a moving particle semi-implicit method. This approach however could prove

difficult for non-Newtonian fluids that may stick to a surface no matter the

shape.

� Redesigning the fluids inside would have the hope of allowing the fluid to more

freely flow out of the pack and therefore reduce the amount left behind. A

computational tool could predict flows of new products in advance if they are

well characterised and make suggestions to viscosity for example to improve

flow rate. However the design of the products is more complex than just

changing the viscosity. Consumer opinion on attributes such as taste or smell

or how well it creates bubbles also effects the design of a fluid. These are a

beyond the scope of this thesis and more suited to a chemical science project.

� Surface treatments would involve changing the material of the packs, or treat-

ing them in some way, in order to allow the fluid to more easily flow over them.

This option would involve building a working model for the current packs and

then using different boundary conditions to try and reduce the amount of

residue. At a macro-level this requires the use of a general slip boundary con-

dition, known as partial slip. An example of a technique that already works

is that of LiquiGlide (2020) in which the inside of bottles are given a special

slip coating that allows fluid to flow out the bottle with ease.
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The outcomes of this research will be valuable for diverse applications, e.g. indus-

trial strainers in the chemical, petroleum and pharmaceutical industries, filtering

or straining out unwanted impurities from fluids present in products like medical

syrups, and in blood flow and nano-fluid applications.

1.2 Project Aim

The aim of this project is to deliver a toolbox for the virtual design and evaluation of

product-pack combinations of Newtonian and Non-Newtonian fluids. This toolbox

should be able to recreate current packaging designs incorporating the physical

parameters of the fluid of interest. The designs may be modified in order to increase

the flow out of the packaging in ways that would not be possible in real world

manufacture due to time and cost restraints. The best way to deliver this toolbox

will be with a computational fluid dynamics (CFD) method. The CFD method

chosen should be capable of modelling all of the different physical elements of the

problem. Classical grid based CFD methods have been used in the past to simulate

the flow out of bottles and containers, for example Geiger et al. (2012), Mer et al.

(2018), Chihara et al. (2009) and Nishio et al. (2019). In each of these examples a

two phase model as required by the mixing of liquid and gas. However, there are

some examples of flows where the air and water phases do not mix and a single

phase approach can be uses instead. Examples of this are found in Sun et al.

(2011) and Ng et al. (2013) who both use the particle based moving particle semi-

implicit method. In order to simulate these kinds of problems with a grid based

method would require complex and expensive re-meshing or the volume of fluid

(VOF) approach with a fixed mesh and an air phase which would increase the

computational cost. A Lagrangian based approach avoid these problems.

The smoothed particle hydrodynamics (SPH) method would be a good candidate

due to its ability to model free surface flows such as in Gomez-Gesteira et al. (2009)

or Violeau and Rogers (2016). The method has also be used in the past to model

different physics that could be useful such as deformable boundaries in Nasar et al.

(2016), and non-Newtonian flows in Fourtakas and Rogers (2016) and Xenakis et al.

(2015). SPH is a Lagrangian particle based method which models a fluid flow by

following particles that are free to move around the entire domain. This ability

to track particle movement is very attractive as it would give good visualization

of fluid flow out of packaging. SPH also conserves mass exactly as each particle

carries a constant mass. This conservation of mass would give a good description

of the amount of product left after use, simply by counting particles. SPH will be

the method used in the toolbox and will be based on the open source SPH solver
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DualSPHysics (Crespo et al. (2015)) due to its parallel written code and ability to

run on GPUs allowing for fast calculations. Further justification for the use of SPH

will be provided in Chapter 3.

1.2.1 Objectives

The main objective of this work is to present a SPH tool based on DualSPHysics

that is capable of modelling the emptying of packaging and containers. This tool

should then be able to test new and modified designs to investigate the effect of the

residue left behind.

Of the three avenues identified above, surface treatments are the most suitable

option as it aims to reduce the amount of residue without incorporating a sacrificial

layer that would be wasteful and adds cost. It also allows for changes to the design

of packaging to aid in the flow of the contained product. This approach would

involve exploring partial slip boundary conditions and their implementation in the

SPH method in order to improve current packaging designs.

The objectives of this thesis are:

� Assess current approaches to bottle and package emptying

� Review present partial slip boundary conditions and their application

� Assess available boundary conditions for SPH

� Develop boundary conditions for SPH to enable accurate implementation of

no slip, slip and partial slip boundary conditions

� Apply new boundary conditions to various applications including standard

SPH applications (dam break, sloshing tank) and pouring flows

� Make the new formulations available for general use with complex geometries

through the open source code DualSPHysics

1.3 Layout of this Thesis

The thesis will be organised as follows:

Chapter 2 will review the literature on: the experimental and numerical work on

emptying bottles; partial slip boundary conditions and the slip length, and Non-
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Newtonian fluid models and their uses for fluids such as food stuffs and body care

essentials.

Chapter 3 covers the methodology of the SPH method, how it is applied to fluid

dynamics and how it will be used in this project.

Chapter 4 will introduce two new boundary conditions. These new conditions will

be validated using analytical solutions.

Chapter 5 includes results of pouring experiments conducted to provide data to

help validate the SPH model.

Chapter 6 will present the use of the new boundary conditions for complex test

cases including pouring with comparisons with available experimental results.

Chapter 7 concludes the findings and results of the thesis.

The thesis also includes some useful results as appendices and a collection of refer-

ences used to support this work.
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Chapter 2

Literature Review

2.1 Introduction

The focus of this project is to look at modelling packaging and containers and the

processes of emptying and filling of said containers in order to reduce the amount of

waste produced. Of the three suggested courses of action: sacrificial layers; surface

treatments, and redesign of fluids, applying a surface treatment to the inside of

the containers to increase the flow rate is the approach of choice for this thesis.

Before a surface treatment can be applied what first needs to be understood is

the current state of play in the area of packaging and numerical simulation. The

current advances in trying to reduce the amount of waste in packaging also needs

to be investigated.

In order to do this, this Chapter will review the literature in these areas. First

experimental and numerical studies of the emptying and filling of bottles will be

investigated, this will then lead to the use of partial slip boundary conditions to

increase flow rate. Finally a brief review of Non-Newtonian fluid models will be

presented along with previous uses to model fluids of interest to this project.

2.2 Emptying of Containers

Much of the early research looking into the emptying of containers looked at mea-

suring the emptying time and what changes could be made to reduce this. Many

authors also looked at the bubbles that often appear when emptying closed con-

tainers and the effects these have on the flow. Many of the earlier papers were
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experimental in approach with more numerical and CFD related papers appearing

more recently.

2.2.1 Experimental methods

Whalley (Whalley (1987), Whalley (1991)) conducted experiments measuring the

filling and emptying times of bottles of different shapes and sizes. The experiments

consisted of submerging bottle in tanks of water and measuring the time take to fill,

and emptying the same bottle by holding them upside down and letting the water

drain into the tank and again measuring the time taken. These times were used

to calculate a dimensionless number C called the flooding coefficient. The flooding

coefficient is given by

C =

(
ρ

1/4
g + ρ

1/4
f

)
[(ρg − ρf )gD]1/4

(
4V

πD2t

)1/2

, (2.1)

where ρg and ρf are the gas and fluid densities, D is the internal diameter of the

bottle neck, g is the acceleration due to gravity, V is the bottle volume and t is the

emptying or filling time. The flooding coefficient was used to find a link between

”flooding” and ”slugging” as the bottles were filled and emptied. It is interesting to

note that the flooding coefficient can be re-arranged to contain the Froude number

Fr by writing it as

C =

(
ρ

1/4
g + ρ

1/4
f

)
[(ρg − ρf )]1/4

(
4Fr

πD2t

)1/2

(2.2)

The Froude number defined as

Fr =
U√
gL

(2.3)

for a length scale L and velocity U is the ratio of inertial to gravitational forces.

Larger Froude numbers, Fr > 1 indicates fast moving or super-critical flow, and

small Froude numbers, Fr < 1 slower moving or sub-critical flows. A larger Froude

number leads to a larger flooding coefficient.

When a bottle is emptied or filled it can experience three states. The first is

counter-current flow where there is a continuous exchange of gas and fluid and the

two do not mix, this would occur when pouring a bottle of water and there is a

gap between the water surface and the rim of the neck to allow air in. Flooding

is the limit of counter-current flow (Whalley (1987)), this occurs when the bottle

is tipped further and there is no longer a gap between the water surface and the

bottle rim. Air bubbles into the bottle but there is a continuous flow of water out

of the bottle. Slugging occurs when the bottle is tipped further still, close to upside
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down. At this point large air bubbles enter the bottle and as they do the water flow

out is stopped until the bubble passes the neck. These bubbles give the familiar

glugging sound as they enter the bottle (Clanet and Searby (2004)).

When emptying a bottle, counter-current flow and flooding will be much faster

than slugging as in these cases the fluid in the bottle is always exiting the bottle.

However, when a bottle starts slugging, the flow out of the bottle is stopped when

the air bubble enters stopping the overall emptying process. This can be useful to

know when washing milk bottles or drinks bottles for example, as emptying bottles

will be faster if they do not enter the slugging phase. It is likely possible to transfer

from slugging to counter-current flows in some situations by shaking and spinning

the bottle to form a small whirlpool type effect inside the bottle. When the bottle

is held upside down and the bottom of the whirlpool reaches the bottleneck air is

sucked up the middle and counter-current flow is achieved.

Whalley (1991) found that bottle with larger values of C are less likely to flood and

therefore have shorter emptying times, this can be seen in Equation (2.1) where a

smaller value of t would lead to a larger value of C. This is consistent with respect to

the Froude number, as the larger flooding coefficient and therefore Froude number

indicates that the fluid is flowing faster out of the bottle. Whalley looked at the

effects of bottle inclination and extensions to the neck of the bottles on the emptying

and filling times, and found that inclining the bottle decreased the filling times of

the bottles. Whalley concluded that the empting and filling of bottles was controlled

by flooding when done in the manner of these experiments.

Tehrani et al. (1992), Schmidt and Kubie (1995) and Clanet and Searby (2004) all

looked at the multiphase flow of an idealised bottle being emptied. An idealised

bottle is considered to be a closed cylinder of liquid with a hole at the bottom for

the fluid to drain through. Schmidt and Kubie (1995) looked at the emptying times

of bottles of different diameters and heights as well as different diameter drainage

holes. They noted that glugging happened but only when the water level in the tank

was a sufficient distance from the top and bottom of the bottle. When the water

level was close to the top of the cylinder glugging did not occur as the space was too

small for it to develop. Once the water level got close enough to the bottom of the

cylinder the outlet became ”self-venting”. They found that the average discharge

velocity was independent of the water depth and height of cylinder but increased

with the diameters of both the cylinder or the outlet.

Tehrani et al. (1992) measured pressure oscillations in the air inside a partially

filled sealed tank as water was drained through a vertical tube from the centre of
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the bottom of the tank. They described the flow as a repeated cycle of air and

water exchange in four steps

1. liquid from the tank falls down the tube lowering the pressure inside the tank

2. once the pressure in the tank drops low enough the water flow stops and a

bubble forms at the bottom of the tube

3. the bubble rises up the tube and enters the tank which re-pressurizes back to

atmospheric pressure

4. the water in the tank falls back into and down the tube

The experimental results were compared to a theoretical model developed by solving

the governing PDEs of the above four stages using a fourth order Runge-Kutta

scheme. In the first step the PDEs were solved for the velocity of the fluid and the

pressure in the tank, once the fluid velocity reached a critical value the theoretical

models solves for the velocity of the rising bubble. Once the bubble reached the

top of the tube the method changed to solve for the change in pressure in the tank

followed by the velocity of the liquid falling back into the tube. The process then

repeats itself. A comparison of the experimental to the theoretical results showed

good agreement for the pressure vs time inside the tank. All the changes in pressure

are captured in the experimental and theoretical results. The authors found that

the period of the cycle of air and water exchange increased during the emptying

process, as the water level in the tank dropped, due to the larger air volume in

the tank allowing for more water to drain before the pressure drop formed a new

bubble. The number of cycles required to drain the tank did not change when

different diameter tubes were used for the drainage. The long bubbles that formed

in these experiments are examples of a slug flow.

Clanet and Searby (2004) looked at both the drainage time and period of pressure

oscillations in idealized bottles of different heights, diameters and with different

diameter openings at the bottom. The results found for the drainage time and

oscillations agreed with the results of the previous two works. They also tested

fluid with different viscosities and found that the period of oscillations was not

sensitive to the fluids viscosity. However, when testing a fluid other than air for

the surrounding fluid they found that if the second phase is incompressible that

glugging did not occur. This was done by creating a liquid egg timer with an upper

cylinder filled with water and a bottom cylinder filled with a less dense oil with

a hole allowing flow between the two cylinders. When the water was allowed to

27



flow through the hole a continuous exchange of oil and water occurred without any

pressure oscillations, a counter-current flow. When the experiment was repeated

with the same set up but with air in place of the oil the glugging again occurred.

They concluded that the glugging was due to the compressibility of the air.

2.2.2 Numerical methods

Geiger et al. (2012) used a volume of fluid method using the code OpenFOAM to

model the drainage of bottle and measure the time to fully empty. They conducted

some experiments measuring the emptying time of bottle similar to those of Whalley

(1987) and compared these results to the numerical model for validation. Then sim-

ulation results were then also compared to the results fo Whalley (1991) and Clanet

and Searby (2004). The emptying times of the numerical bottle matches the exper-

imental times very well for both of the bottle shapes considered. This was true for

both bottle held upside down and inclined at a 45o angle. The pressures measured

in the bottles also matched the experiment reasonably well. The numerical model

was used to look at the effects of increasing the diameter of the bottle neck and

different angles of inclination on the emptying times. It was found that increasing

the bottle neck diameter helps to decrease the bottle filling time. When the neck

diameter was in the region of 10 − 20mm the glugging oscillations were observed,

but increasing the diameter towards 30mm leads to a counter-current flow, further

decreasing the emptying time. It was also found that inclining the bottles decreased

the emptying times of the smaller diameter bottles as the glugging flow transferred

to a counter-current flow, however the emptying time of the larger diameter bottle

increased when inclined due to the flow starting to glug. They concluded that CFD

can be a useful optimisation tool for the bottle emptying process. This can lead to

reduced emptying times for applications where this is of importance such as bottle

washing.

Mer et al. (2018) used the emptying of ideal bottles as a test case to compared three

bubbly flow models in the finite volume code NEPTUNE CFD. The three bubble

models investigated were the Large Interface Model (LIM), the Generalized Large

Interface Model (GLIM) and the Generalized Two-Phase Flow Model (GENTOP)

referred to in the paper as the Large Bubble Model. The results of the computa-

tional models were compared to experimental results of the drainage of idealised

bottles using a similar design of that of Clanet and Searby (2004) and Schmidt and

Kubie (1995). When the air phase was modelled as a compressible fluid they found

that pressure oscillations measured in the bottle matched the experimental data

well. This was true of all three models compared. When comparing the shape of
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the bubble formed in the simulation to photos of the experiment they found that

the LIM approach failed to predict the breakup of the bubbles. The other two

methods predicted this much closer and performed comparably well to each other.

Either of these two methods would then be good to use for these types of bubbly

flow.

While designing a new aluminium bottle to be used as a plastic alternative in

Japan, Chihara et al. (2009) looked at consumer satisfaction levels when drinking

from bottles with different neck diameters. They surveyed 120 adults on the ease

fo drinking from bottles with three different neck diameters. After identifying the

preferred neck diameter of 33mm they used bottle inclination angles to develop

a CFD model of the bottles. The inclination angle was measured as the angle a

consumer hold the bottle when drinking for each the bottle sizes. Using a finite

element based volume of fluid they measured the flow rates out of bottles for a range

of inclination angles including those measured from consumers. This was repeated

for each size of bottle. The average flow rates were then compared to the survey

data with an aim of finding a correlation between average flow rate and consumer

satisfaction. They found that when drinking from a bottle with a less favourable

neck diameter the consumer will drink using a different angle so to better match the

flow rate experienced from the more favourable. When drinking from a bottle with

a 38mm neck the consumer would tilt the bottle less so the average flow rate was

reduced to a value closer to that of the 33mm at a larger angle. It was concluded

that average flow rate out of a bottle can be used to indicate consumer satisfaction

when drinking from the bottle.

Sun et al. (2011) simulated pouring from a 2D cup using a single phase moving

particle semi-implicit (MPS) method. They started by modifying the boundary

condition to a SPH style approach to improve their no-slip boundary velocity. The

new method involved treating the first layer of boundary particles as fluid in the

particle interactions, the velocity and position however was controlled by the move-

ment of the boundary. The MPS code using then new boundary condition was

validated using a dam break simulation which showed good agreement to experi-

mental data for the motion of the leading edge of the flow. They noted that the new

boundary condition helped give a closer result than standard MPS. The model was

then used to simulate the pouring of liquid from a 2D cup with width 120mm and

height 190mm filled to a depth of 160mm tilted to an angle of 90o. Taking advan-

tage of the particle nature of the MPS method, fluid particles were given number

in the order they left the cup and flowed over the rim. This order was then used to

colour the particles. Returning the particles to their original position but retaining
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the colouring bands of colour can be seen that indicate the order that fluid leaves

the cup. The colour bands showed that the fluid close to the lip of the cup flowed

in U shaped bands and that the last fluid particles to leave the cup were those in

the corner of the cup underneath the pouring lip. The mass flow rate out of the cup

was measured using η = Nout/Nall where N is the number particles total (all) or

that have been poured out of the cup (out). Parameters such as the position of the

centre of rotation, viscosity and rotation speed were changed to see any difference

in the mass flow rate. They found that moving the centre of rotation up or down

did not change the mass flow rate but moving the centre of rotation closer to the

pouring lip increases the mass flow rate. Also more fluid is able to pour out of the

cup at any angle when a lower rotation speed is used.

Ng et al. (2013) also used the MPS method, this time to simulate the draining of

open topped tanks. Since the top of the tanks were open to the air, the second air

phase did not need to be modelled and single phase model could be used instead.

They measured the draining time of 2D tanks of water with different shaped bot-

toms, the aim to see which if these shapes allowed for faster drainage. The shapes

of the tanks were defined using the equation

S1(h) = ±0.5(αhn + S2) (2.4)

for n = 0, 0.5, 1, 2. S1 is the width of the tank for given height h for 0 < h < 0.1

and S2 = 0.2 is the width of the outlet. The α parameter is a scaling term that

ensures each tank holds the same volume. They found that the tanks with the

larger value of n drain much faster than the tanks with the lower values. Plotting

the velocity vectors on the particles, after a short time they found that for larger

value of n all the fluid particles close to the outlet were moving downwards with

the bulk of the flow. However, for smaller values of n the fluid particles close to

the outlet, but not directly above it, were pointing more towards the centre of the

tank and the particles had a lower magnitude velocity. Taking advantage of the

particle nature of the method, and colouring the particles by the order they left the

outlet, it was shown that for lower values of n U shaped bands of particle appeared

spreading out from the outlet. For n = 0 this meant that particles close to the

bottom corners of the tank were some of the last particles that would drain out.

As the values of n increases the U shaped bands flatten out showing that for these

types of tanks the fluid drained in layers from the bottom of the tank to the top.

The authors concluded that this result could be useful for industry applications

where drainage times are big factors to production and cost, such as drainage of

chemical tanks.

30



Nishio et al. (2019) used a volume of fluid approach in STAR-CCM+ to simulate

fluid pouring out a drinks can. They simulated a can filled with water rotating

at a constant angular velocity. Numerical results for the free surface can then be

visually compared to photos of experiments of the same set up. The comparison

showed good agreement between the CFD model and the experiment. Aluminium

powder was suspended in the water of the experiment to show particle movement,

with longer paths of aluminium particles indicating faster moving regions of fluid.

This was shown to be similar to the velocity field of the fluid in the computational

result. The paper then moves on to look at the effect of condensation forming

on the outside of the can on the contact angle and wettability of the surface of

the can. They found that condensation increases the contact angle and therefore

the wettability allowing fluid to spread across the surface easier. Repeating the

numerical simulation using the larger contact angle for the condensation covered

can they found the flow would dribble down the side of the can when poured. The

flow out of the dry can would detach from the can as it was being poured with no

dribble present. This was again compared to photos the experimental pour of a

condensation covered can showing a good visual agreement.

2.2.3 Increasing flow rate out of bottles

All of the work so far has looked at studying how fluid leaves a container and how

changes to the boundary shape effects the flow. However there is a way to leave

the container shape unaltered and instead apply a slippery coating to the inside

that allows for more fluid to flow out. An example is the method of LiquiGlide

(2020) which aims to get more fluid out of a bottle. The inside of bottles are

coated in a textured hydrophobic (water hating) material which is then covered in

a hydrophobic fluid which stick together. This combined surface repels the product

placed in side the bottle allowing it to flow out more easily. This method has

been tested for a number of different fluids including ketchup, mayonnaise, laundry

detergent and paint with each showing a large decrease in the amount of residue

left inside the bottle. The process is based on the work of Smith et al. (2013) and

Anand et al. (2012) who created a method of coating a boundary in a hydrophobic

material that increases surface slip.

For a flow over this kind of surface the no-slip boundary condition no longer ap-

plies due to the small amount of fluid slip at the boundary surface. A partial slip

boundary condition is needed instead.
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2.3 Partial Slip Boundary Conditions

The classic boundary condition in CFD is the no-slip and no-penetration Dirichlet

type boundary condition. It states that the fluid next to a solid boundary cannot

slip along the boundary and cannot enter the boundary. Fluid at the boundary

must therefore satisfy the condition

u · t = 0 u · n = 0, (2.5)

where n is the unit normal to the boundary pointing into the fluid, and t is a unit

vector tangent to the boundary.

In a flow with partial slip boundary conditions, the fluid near the boundary also

satisfies a Dirichlet condition where the fluid is allowed to move with a small ve-

locity called the partial slip velocity uslip. The fluid also obeys the no-penetration

condition so no fluid can enter the boundary. Fluid near a partial slip boundary

therefore satisfies

u · t = uslip u · n = 0, (2.6)

where the partial slip velocity is given by the equation

uslip = λs[∇u + (∇u)T ] · n, (2.7)

where the quantity λs is called the slip length (Lauga et al. (2005)). Equation (2.7)

comes from Navier (1823), and later Maxwell (1879), as ’the velocity tangent to the

surface is proportional to the rate of strain at the surface’ (Lauga et al. (2005)).

Lauga et al also suggest that ’Alternatively, the right-hand side of this boundary

condition, when multiplied by the shear viscosity of the liquid, states that the

tangential component of the surface velocity is proportional to the surface shear

stress’.The slip length can be thought of as the depth into the boundary at which

no-slip is attained if the velocity profile is linearly extrapolated into the boundary.

A graphical representation of the slip length can be seen in Figure 2.1. Setting the

slip length to zero result in the partial slip velocity becoming zero and the no-slip

condition is recovered.

2.3.1 Effects of Partial Slip

An easy way to see the effect of partial slip is to look at the Poiseuille flow. Ferrás

et al. (2012) derived analytical solutions for Poiseuille and Couette flow for New-

tonian and non-Newtonian fluids with partial slip boundary conditions. For a

Poiseuille flow driven by a body force F in the x direction defined between two
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plates at z = ±l and kinematic viscosity ν the no-slip velocity profile is given

by

u(z) =
F

2ν

(
l2 − z2

)
. (2.8)

The partial slip version is given by

u(z) =
F

2ν

(
l2 + 2λsl − z2

)
, (2.9)

where λs is the slip length. Clearly the addition of partial slip at the boundaries

increases the velocity of the flow, this can be seen in Figure 2.2 where examples

of different sized slip lengths can be seen. It can also be seen that setting the slip

length to zero recovers the no-slip result.

2.3.2 Examples of Partial Slip Flows

There have been a number of studies of partial slip flows involving hydrophobic

surfaces, for example Lauga and Stone (2003). A surface is defined to be hydropho-

bic if the contact angle, θ, between the surface and the leading edge of a water

droplet on the surface is greater than 90o. The contact angle can be described as

a function of the surface tensions γ between the solid (S), liquid (L) and gas (G)

phases present through Young’s equation (Bonn et al. (2009))

cos(θ) =
γSG − γSL

γLG
. (2.10)

The larger the contact angle between the solid and fluid phases, the more hydropho-

bic the surface is. This then lowers the friction between the solid and liquid phases

(Martines et al. (2005)). If the contact angle becomes large enough, the water

droplets form balls that roll across the solid surface when tilted through even small

inclinations. This phenomenon can be seen in nature on the leaves of the Lotus

plant for example. This is known, aptly, as the Lotus effect and allows the plant to

self clean. As the balls of water roll over the surface of the leaf they pick up dirt

and dust and remove them along their way (Ma and Hill (2006)).

Anand et al. (2012) and Smith et al. (2013) developed a hydrophobic surface that

was shown to be very effective at allowing fluid to flow across the surface. The

surface was formed of a rough textured hydrophobic surface that was submerged in

a hydrophobic lubricating fluid layer. The lubricating layer makes the overall surface

hydrophobic, and as both the surface material and lubricant are hydrophobic they

stick to each other. The surface is also said be self-healing as any scratches formed

in the surface are filled in by the lubricating layer. This technique of constructing
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Figure 2.1: Graphical representation of the slip length λs for a two dimensional
linear flow field.

Figure 2.2: Plot of Poiseuille velocity profiles with no-slip and partial slip boundary
conditions with increasing sized slip length.
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a hydrophobic surface was then used in the company LiquiGlide (2020) to coat the

inside of bottles and increase the amount of liquid that can be discharged . The main

advantage for the LiquiGlide coating is its durability which is an area of concern for

hydrophobic surfaces. Any scratches of imperfections in the surface can cause it to

loose its hydrophobicity. This issue was tackled by Brown and Bhushan (2015) and

Brown and Bhushan (2016) who developed a different method to create a durable

hydrophobic surface. The surface was created by layering hydrophobic polymer on

a smooth plastic surface in a textured manner. When tested, water flowed over the

surface with ease and the surface even showed signs of being “Shampoo-phobic”,

allowing shampoo to slip over the surface. However the surface developed lost its

hydrophobic nature after a while.

Partial slip has also been seen to play a role in flows of polymer melts. Both Black

(2000) and Denn (2001) discuss the instabilities present in the extrusion processes

of polymer melts. As the polymer is extruded and begins to cool, it will occasionally

stick to the sides of the extrusion die and fold over its self. This instability is know

as shark skin due to its rough scaly appearance. It was found that by using a surface

over which the polymer can more easily slip the magnitude of the instability was

reduced and even eliminated completely in some cases. This shows that partial slip

can play an important roll in the extrusion of polymer melts.

2.3.3 Slip Length

In the partial slip condition, Equation (2.7) the slip length λs is a quantity with

dimensions of length. In most Newtonian cases the slip length is a few nanometers

to a few micrometers in length (Lauga et al. (2005)), hence it is normally only

considered in flows of that length scale and the standard no-slip condition is used

for macro-scale flows. The review of Denn (2001) on the extrusions of polymer melts

references flows with slip lengths of several hundred to over a thousand micrometers.

Though the process of LiquiGlide (2020) shows large amount of fluid slip near the

boundaries, the slip lengths were not stated.

The slip length controls the magnitude of the partial slip condition, but due to its

size it can be difficult to measure. Experiments have found that it changes with

may different material properties and so could depend on many things. One simple

approach for a Newtonian fluid is the observation that the tangential force per unit

area exerted on the solid by the fluid is proportional to the partial slip velocity uslip,

that is

σxy = κuslip, (2.11)
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where κ is the friction coefficient of the surface. This is then combined with the

bulk Newtonian fluid constitutive equation

σxy = µ
∂u

∂y
, (2.12)

where µ is the dynamic viscosity of the liquid, giving the relation

uslip =
σxy
κ

=
µ

κ

∂u

∂y
. (2.13)

Then using the partial slip condition it is found that (De Gennes (2002))

λs =
µ

κ
, (2.14)

For simple fluids the slip length is very small (De Gennes (2002)) however there are

a number of cases where the slip length can be large. For example flow of polymer

melts and flows over hydrophobic surfaces.

2.3.4 Slip Length Measurements

Due to the size of a slip length it can be difficult to measure. However there does

exist a number methods to do this with varying degrees of accuracy. Methods

can be split into two groups of direct and indirect techniques, Lauga et al. (2005).

Direct techniques include micro-particle image velocimetry on total internal reflec-

tion fluorescence (Lauga et al. (2005)), the accuracy of these techniques has been

gradually improving with the most accurate in the range of a 10nm. Other direct

methods include near field laser velocimetry, nuclear magnetic resonance (NMR)

imaging and different forms of particle tracking, Sochi (2011). The more indirect

methods include measuring hydrodynamic forces with a Colloid probe atomic force

microscope or with surface force apparatus, torque measurements with a rheometer

and pressure drop analysis where pressure and flow rate are measured in a channel.

The most accurate of these methods can achieve measurements with accuracies of

1− 2nm.

Malm and Waigh have had a lot of success in measuring the slip lengths in a

number of different fluids including toothpaste, shampoo and soap using a technique

called optical coherence tomography velocimetry (OCTV) ( investigated in Malm

(2015), Malm and Waigh (2014), Malm et al. (2014), Malm et al. (2015) and Harvey

and Waigh (2011)). With this method a sample of fluid is place in a rheometer

comprising of two flat circular disks, the top disk is then rotated at a set velocity

and the bottom disk held stationary. A laser beam is aimed through the sample
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into a detector on the other side. Doppler shifting in the light spectrum then allows

accurate velocity measurements through the sample. Using the velocity data, slip

lengths are then found. Malm et al. (2015) noted that the same liquid can exhibit

different slip lengths on different materials. A sample of soap was placed into a

rheometer with a glass lower plate and a perspex upper plate, with a larger amount

of slip occurring on the perspex plate. This shows that partial slip not only depend

on the fluid but also on the boundary.

Slip lengths for non-Newtonian flows can be much larger than those of Newtonian

flows. In the review by Denn (2001) observations of slip lengths of up to hundreds

or in some cases thousands of micrometers are possible for polymer melts. However

these slip lengths only appear after a yield stress has been exceeded, until this point

lower slip lengths are reported and even sometimes no slip at all. In all cases the

boundary surface had been made up of either fluoropolymers or polished silica, each

experiment being with a different polymer melt.

2.3.5 Partial Slip used in Computational Methods

In CFD a number of different techniques have been employed to model flows with

a partial slip condition. Due to the small size of the slip length a lot of work has

been done using Molecular Dynamics (MD). MD is a particle based method used

to model flows on a molecular scale where the intermolecular forces play a role. For

a particle i surrounded by particles j Newton’s second law is written as

mi
d2ri
dt2

=
∑
j

Fij, (2.15)

where Fij are the intermolecular forces between particle i and particle j. Fij takes

the form Lauga et al. (2005)

Fij = −∇iVij. (2.16)

Vij is the interaction potential and takes the form of a Lennard-Jones two-body

potential Lauga et al. (2005)

Vij = ε

[(
σ

rij

)12

− cij
(
σ

rij

)6
]
, (2.17)

where ε is an energy scale, σ is the atomic size of the particles, rij is the distance

between particles and cij are constants that describe the intermolecular attraction.

The cij are tuned to approximate the interactions between two fluid molecules (cFF )

and between fluid and solid molecules (cFS).
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Barrat and Bocquet (1999) used MD to simulate the formation of a water droplet on

a smooth surface that was initially wetted. The initial conditions for the simulation

were a “fluid slab” held between two plates. The simulation is left to form a fluid

droplet and the contact angle was measured via the approximation to Young’s

equation

cos(θ) = −1
2ρScFS
ρF cFF

, (2.18)

where ρS and ρF are the densities of the solid and fluid respectively (Barrat and

Bocquet (1999), Lauga et al. (2005)). It was found that changing the value of cFS

results in a change in the contact angle, with cFS = 1.0 resulting in θ = 90o and

cFS = 0.5 giving a contact angle of θ = 140o, resulting in a hydrophobic surface.

The same set up was then used to model Couette and Poiseuille flows with the

different values of cFS. Comparing their results to analytical solutions they found

that large slip effects occur at surface with higher contact angles.

Cottin-Bizonne et al. (2004) also looked at flows passed hydrophobic surfaces using

MD, but this time grooved roughened surfaces were considered. The rough surface

was filled with fluid and the effects of pressure were investigated on the wetting

behaviour of the surface for different values of cFS. For high pressures and high

values of cFS, for example cFS = 0.8, for a “normal surface” the surface stays

wetted and so the fluid stays in the grooves where it started. For lower pressures

and lower values of cFS, for example cFS = 0.5 corresponding to a contact angle

of θ = 137o, the surface de-wets and the fluid in the groove starts to rise up out

of the groove. In a simulation of a Couette flow they found that for the “normal”

surfaces with a lower contact angle the presence of the surface roughness decreased

the slip length of the flow, but for the higher contact angle hydrophobic surface the

slip length of the flow increased.

The Lattice Boltzmann Method (LBM) is mesoscopic particle based method that

has been used to simulate flows involving partial slip. LBM, like MD, also uses

forces between particles to calculate flow properties. However the particles used

in LBM are much larger than their MD counterparts allowing for larger length

and times scale to be simulate. Harting et al. (2006) presented an approach of

using a multi-phase LBM to investigate slip in hydrophobic micro-channels. By

linking the fluid-wall interaction strength to the constant angle that form between

a fluid droplet and a solid surface, they were able to hydrophobic interactions. They

found that a thin layer of fluid close to the boundary would develop a lower density

leading to the bulk fluid slipping over the top. This mesoscopic layer then lead to a

macroscopic partial slip flow with the size of the slip length linked to the thickness
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of this layer through. The slip length was then given by

λs =

(
ρbulk
ρl
− 1

)
δ,

where δ is the thickness of the layer and ρbulk and ρl are the densities of the bulk

fluid and the layer respectively. Their investigation reproduced results from MD

showing that the slip length is independent of flow velocity. They conclude that

their method was an improvement over the existing MD simulations as the LBM is

able to simulate the larger length and time scales that MD could not.

Yan-Yan et al. (2008) also used the LBM to model Couette flows with partial slip

at the boundary. The also found that a thin layer of fluid near the boundary

becomes less dense and the bulk of the fluid slips of glides over this layer. They

then investigated how the slip length changes when the strength of the fluid-fluid

and fluid-solid particle interactions are varied. The results showed that the slip

length increased with the strength of attraction for both fluid-fluid and fluid-solid

interactions. The effect of viscosity on the slip length was also investigated revealing

that the slip length increase with the fluid viscosity.

In both of these LBM examples the slip length is not directly used by the method,

instead analytical partial slip solutions are fitted to the results and the slip length

found using this. The bulk of the fluid slips over a thin layer of less dense fluid,

the fluid in this thin layer experiences no-slip at the boundary however the overall

effect is of apparent partial slip.

Renardy et al. (2001) used a finite difference volume of fluid method to model the

spreading of a fluid droplet on a smooth surface. They used a partial slip condition

in the region near the contact angle between the liquid and air phases. This is a

natural application in which to find partial slip, as if the no-slip condition is strictly

applied then the droplet would not spread. The contact line including the partial

slip condition moves faster than the same line on the no-slip surface. This is to

be expected as there is a force helping to spread the droplet when partial slip is

present. However the no-slip condition applied was not perfect as the algorithm

used introduced a slip on the scale of the mesh.

When investigating instabilities in the extrusion of polymer melts, Black (2000)

found that fluid slip can sometimes have a stabilizing effect. However sometimes

depending of the velocity of the extrusion, slip can have a destabilizing effect. The

instability investigated was called “shark skin” or waves forming on the surface of

the polymer melt that occur if the extrusion process exceeds a critical flow rate.
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The instability looks like the corrugations on a straw and reduces the usefulness

and marketability of the extruded polymer. Through a method called Chebyshev

Collocation, he found that at low velocities an increased amount of slip destabilizes

the flow. But for large slip coefficients the critical flow rate becomes constant and

increasing the amount of slip stabilizes the flow.

2.3.6 SPH

Looking at the above range of methods it is clear that partial slip is a technique used

by a number of CFD methods. The majority of the studies that use partial slip are

micro or meso-scopic particle methods like MD and LBM, this likely to be due to

the small scales at which partial slip is normally observed at. However it has been

shown that it can be used for macroscopic flows by Cottin-Bizonne et al. (2004),

and surfaces such as those of LiquiGlide give insight into how effective it can be

in real world applications. MD excels in simulating flows at the micro-scale due to

each particle representing individual atoms or molecules. LBM can simulate flows

at larger length and times scales while still incorporating the molecular interactions

between fluids and hydrophobic surfaces seen by MD, as by Harting et al. (2006).

However, as the size of the lattices increases to cover more macro-scale flows, LBM

struggles to fly resolve the correct flow profile close to the wall when this region is

thinner than a single lattice spacing, Harting et al. (2010). At this length scale the

molecular details used by the smaller scale LBM can no longer be taken into account.

It could however bridge the gap between MD and a more macro-scale method such

as SPH that cannot take into account any of the molecular forces.

The SPH method was previously identified as a good candidate for this project

due to its ability to model non-Newtonian flows, free-surface flows and deformable

boundaries. Compared to MD, SPH is more suited to this project as MD is limited

by its small length scales. SPH would need far fewer particles to model bottle

pouring than MD. As for the LBM, it is based in the discrete Boltzmann equation

and not the Navier-Stokes equations like SPH. The Navier-Stokes equations give

a better description of fluid mechanics at the macro-scale than the Boltzmann

equation. As will be shown in the following, true partial slip has not yet been

implemented in the SPH method, opening a new avenue of research. Hence SPH is

the preferred method and will be used for this project.

State-of-the-art no-slip SPH boundary conditions SPH boundary condi-

tions in general are an interesting and complex subject, and have been highlighted

as one of the grand challenges of SPH by SPHERIC (Vacondio et al. (2020)), the

international SPH community. Boundary conditions in SPH can be split into three
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main groups: repulsive forces; boundary integral methods, and fictitious particle

methods. The first type of boundary conditions are some of the earliest adopted

SPH boundary conditions, for example Monaghan (1994) and Monaghan and Kajtar

(2009). Using this approach the boundary is formed of a single layer of fixed par-

ticles, these boundary particles then produce a repulsive force through a Lennard-

Jones type interaction with fluid particles. Apart from this force, the boundary

particles have no other effect on the fluid particles. The force felt by the fluid

particle from the boundary is dependent on the distance between the fluid particle

and the surrounding boundary particles. The force is set to zero is the distance is

greater than the initial inter-particle distance and grows as the fluid particle gets

closer to the boundary. This repulsive force stop the fluid particles going through

the boundary, thus creating a no-penetration condition. This approach alone is not

enough however to give a no-slip boundary condition at the boundary. When no-

slip is required, the boundary particles are then included in the calculation of the

viscous terms of the fluid particles as suggested by Monaghan (1994). While this

method does create a no-penetration condition, the kernel supports of fluid particles

near the boundary become truncated leading to errors in calculation.

The second type are the semi-analytical boundary or boundary integral conditions

that have been used by Ferrand et al. (2013) and Mayrhofer et al. (2015). Using this

process the conservation of momentum and mass equations evaluated for fluid par-

ticles can be slip up into contributions from fluid and from boundary. The method

uses re-normalisation of the discrete SPH operators to compensate for the incom-

plete kernels of fluid particles near boundaries. By splitting the boundary up into

line segments, the boundary contribution can be calculated by corrected boundary

integrals using the normals to the boundary segments. The fluid particles close

to the boundary feel an extra repulsive force from the boundary segments, thus

ensuring no-penetration. The re-normalisation precess helps to over come the trun-

cated kernel issue of the previous method. This method does however struggle with

complex shaped geometries, especially in 3D. The method is also computationally

expensive due to the added calculation of boundary integrals required.

The third type uses fictitious particles to fill the solid region beyond the fluid domain

thus completing the kernel of fluid particles with boundary particles when close to

a boundary. This type of method can be further split into dummy particle methods

and mirroring methods. Examples of dummy particle methods include the dynamic

boundary condition of Dalrymple and Knio (2001), and the methods of Adami et al.

(2012) and Marrone et al. (2011). These methods fill the boundary region with

fixed particles that complete the kernel of fluid particles close to the boundary.
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The no penetration and no-slip conditions are provided by the properties of the

boundary particles including density and velocity that are updated along side the

fluid particles. Complex shaped geometries can be constructed simply by forming

the boundaries out of multiple layers of boundary particles. A big advantage of these

methods is their simplicity while still giving good approximations to the no-slip and

no penetration conditions.

The mirroring method also fill the boundary region with particles, but unlike the

dummy particle methods these particles are not fixed and change each time step.

The method of Colagrossi and Landrini (2003), often called mirror boundaries, re-

flect fluid particle close to a boundary across the boundary, forming mirror images of

the fluid particles. The kernel of fluid particles close to the boundary are completed

by these mirror images that have the same density and pressure as the original.

No-slip and no penetration can be defined by reversing the velocity direction of the

mirror particles. This method however does struggle with complex shaped bound-

aries. This was solved by the multiple boundary tangent method of Yildiz et al.

(2009). This method creates a number of tangent lines to the boundary and uses

these as the planes through which to mirror. This however requires knowledge of

the boundary normals and tangents which can be difficult in 3D.

For this thesis the dummy particle type methods are the most appropriate as they

are able to create complex shaped geometrics and are simple to use compared to the

other methods. As far as has been seen in the literature the partial slip boundary

condition described above has not yet been used in SPH.

Partial slip in SPH There have not been many references found in the SPH

literature referring to partial slip at the boundary. Shen et al. (2000) mentioned

a ’partial slip’ condition for the modelling of river ice dynamics. This boundary

condition is used when river ice is grounded and so is dragging along the bottom

of the river. The SPH boundary technique used was that of mirror particles, with

the tangential velocity of the mirror particles set equal to that of the fluid. This

boundary condition is a free slip boundary condition and not a partial slip condition

as suggested.

Cao and Li (2017) modelled the resistance to slippage of fresh concrete flowing over a

solid boundary. The test geometry was an L-shaped channel with the vertical section

filled with concrete and contained at the bottom with a gate. Like for a dam break

simulation the gate is opened and the concrete is allowed to flow along the horizontal

section of the channel. After the gate was opened, they measured the distance that

the concrete flowed down the channel and compared it to experimental results, for
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three different concrete samples, with good agreement between the numerical and

experimental results. Each of the different concrete mixes had different levels of

water content which was show to effect the amount of slippage, with more slippage

occurring for higher water content mixes. The boundary conditions used for the

SPH model were the Lennard-Jones like repulsive forces used by Monaghan (1994)

with a slippage resistance at the boundary described by

τs = ηsv + τsy, (2.19)

where τs is the slippage resistance stress at the boundary, ηs is the plastic viscosity

of slippage, τsy is the yield stress of slippage and v is the velocity in the direction

of flow down the channel. To highlight the effect of slippage at the boundary they

ran the SPH simulations again without the slippage resistance. The results showed

that the flows with lower water content gave unphysical results in the absence

of slippage resistance. For these simulations the simulated concrete flowed much

further than was seen in the experiments. While this condition does involve slip

at the boundary, it is not of the form that was described previously, and it is not

clear if the particles at the boundary are given a velocity or if the slip is controlled

though the Lennard-Jones potential like in Molecular Dynamics.

2.4 Non-Newtonian fluids

The Newtonian fluid is any fluid in which the shear stress and shear rate of the

fluid share a linear relationship given by

τ = µγ̇, (2.20)

where τ is the shear stress, γ̇ is the shear rate and µ is the dynamic viscosity of the

fluid. The dynamic viscosity is constant and can be found at the gradient of the

line found when plotting the shear stress against the shear rate. Examples of fluids

that can be described in this way include water, sugar syrups, carbonated drinks,

oils, milk and most honeys (Ojediran and Raji (2010)).

If a fluid does not have this linear relationship between the shear stress and the

shear rate then the fluid can be said to be non-Newtonian. Some examples of

different non-Newtonian fluid models will be described below and plots of their

curves included in Figure 2.3. A large number of Unilever type fluids have been

described using non-Newtonian models in the literature such as Mayonnaises, sauces

and shampoos.
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2.4.1 Examples of non-Newtonian fluids

Figure 2.3: Plots of shear stress versus shear rate for a number of different non-
Newtonian fluid models.

Bingham plastic model If a fluid does not flow when not under external stresses

then there exists a yield stress under which it will flow. If the fluid exhibits a yield

stress but otherwise acts as Newtonian fluid, the fluid is called a Bingham plastic

fluid (Bingham (1922)). This type of fluid is described by the equation

τ = τy + µγ̇, (2.21)

where τy is the yield stress of the fluid. If the applied shear stress is lower than

the yield stress then the fluid acts as a solid and does not flow, however once the

yield stress is reached then the fluid flows in the same was a Newtonian fluid. The

Bingham model is shown in Figure 2.3 as the solid red line.

Power law model The viscosity of some fluids change as the applied shear rate

increases, either increasing or decreasing. These types of fluids are called shear

thickening and shear thinning respectively. The simplest approach to model these

types of is through a model called the power law model which is described by the

equation

τ = Kγ̇n, (2.22)
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where K is the consistency index with units Pasn and n is dimensionless the power

law index. The power law index controls how close the fluid is to Newtonian, when

n > 1 the fluid is shear thickening and when n < 1 the fluid is shear thinning.

n = 1 recovers the Newtonian fluid. The values of K and n for a fluid can be found

by plotting shear stress against shear rate on a log − log scale. A straight line is

formed whose intercept with the y axis is log(K) and whose gradient is n. The shear

thickening and shear thinning fluids are shown in Figure 2.3 by the solid green and

black lines respectively. Examples of shear thickening fluids are rare but include

solutions of corn starch or very thick custard. Examples of shear thinning fluids

are more common and most non-Newtonian foods exhibit shear thinning behaviour

such as salad dressings or ice creams (Joyner (2019)).

Hershel-Buckley model If a power law fluid also exhibits a yield stress then the

fluid can be described as a Herschel-Buckley fluid (Herschel (1924)). The equation

to describe the relationship between shear stress and shear rate is given by

τ = τy +Kγ̇n, (2.23)

where τy is the yield stress. For this type of fluid, after the yield stress has been

reached, the fluid can shear thin or thicken in the same way as a power law fluid.

A shear thinning Herschel-Buckley fluid is shown in Figure 2.3 by the dashed blue

line. Mayonnaises and mustard are examples of Hershel-Buckley fluids (Joyner

(2019)).

Casson model Another example of a fluid model that can be used to model shear

thinning or shear thickening fluids is the Casson model (Casson (1959)). For a fluid

with a yield stress the Casson model is given by

√
τ = K0 +K

√
γ̇, (2.24)

where K0 is the square root of the yield stress and K is the square root of the

Casson viscosity. When the square root of shear stress is plotted against the square

root of shear rate a straight line is formed which has gradient K and intersects the

y axis at K0. If the fluid does not have a yield stress then K0 is equal to zero.

Plots for the unyielded and yielded Casson models are shown in Figure 2.3 by the

dashed black and green lines respectively. The Casson model has been adopted as

the official method of the International Office of Cocoa and Chocolate for modelling

the flow behaviour of chocolate (Ojediran and Raji (2010)).
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Cross and Carreau models The cross and Carreau models are two similar

models for shear thinning fluids. The Carreau model has been used by King and

Lind (2019) to match to rheometer data of a sample of shampoo for example. The

Cross model for the apparent dynamic viscosity is given by

µapp = µinf +
µ0 − µinf

1 + (αcγ̇)m
, (2.25)

and the Carreau model by

µapp = µinf +
µ0 − µinf[

1 + (λcγ̇)2]N , (2.26)

where µ0 is the zero shear viscosity, µinf infinite shear viscosity, αc and λc are time

constants related to the relaxation time of the fluids and m and N are dimensionless

constants. Both the Cross and Carreau models have been used to describe the shear

dependence of aqueous solutions of pectins or gums such as locust gum (Ojediran

and Raji (2010)).

2.4.2 Non-Newtonian Flows in SPH

Non-Newtonian flows have previously been modelled by a number of authors using

SPH including Shao and Lo (2003), Ellero and Tanner (2005), Fang et al. (2006), Fan

et al. (2010), Xenakis et al. (2015) and Fourtakas and Rogers (2016) have modelled

non-Newtonian flows for example. Shao and Lo (2003) used an incompressible SPH

model to simulate Newtonian and non-Newtonian dam breaks using both Bingham

and Cross models for the non-Newtonian behaviour. The Newtonian results were

compared with experimental data and to results of a VOF simulation with good

agreement to the experiment for the location of the leading edge of the toe of the

dam break. A comparison of the shape of the column of water at different time

instants showed good agreement with the shape of the free surface produced by the

VOF model. The non-Newtonian models were tested using a dam break type mud

flow and also compared to experimental results showing good agreement for the

surface profiles at different times.

Ellero and Tanner (2005) and Fang et al. (2006) used weakly compressible SPH

to simulate transient viscoelastic flows. Ellero and Tanner (2005) focussed on

Poiseuille flow using first a Newtonian fluid and then Oldroyd-B and Upper convec-

tive Maxwell models for the viscoelastic properties. Comparison of the SPH result

to the transient analytical solution showed good agreement for both the shape of

the velocity profiles ans the evolution of the maximum velocity for both the New-

tonian an Oldroyd-B fluids. The agreement for the Maxwell fluid was not as good
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for small times, but as the flow progressed in time the agreement got closer. Fang

et al. (2006) focussed on transient free surface flows, also using a Oldroyd-B model

for the viscoelastic fluid. The authors included an artificial stress term in the SPH

momentum equation to overcome a tensile stress instability. The test case used was

of a fluid drop falling on a rigid flat plate with attention given to the change in

width of the droplet during the impact. Without the artificial stress term the water

droplet displays non-physical fracturing when impacting the plate. Comparing the

change in width of SPH droplet to results from a finite difference model showed

good agreement, for both the Newtonian and Oldroyd-B droplets, when the artifi-

cial stress term is included. By changing the parameter of the viscoelastic model

the SPH was able to capture the bouncing effect seen in viscoelastic free surface

flows.

Fan et al. (2010) used weakly compressible SPH to simulate moulding flows of

non-Newtonian fluids with viscosity described using a power law. The model was

first validated using Poiseuille flows for Newtonian and power law fluids showing

good agreement to the analytical solutions. The model was then used to simulate

the moulding flow fo a power law fluid pressed through a die, comparing three

equations of state for the pressure in the fluid. The three methods used were the

weakly compressible fluid (WCF) method, often used in SPH for Newtonian flow,

the Tait model, and the model of Sun, Song and Yan (SSY). The shape of the fluid

as it is pressed through the die shows agreement between the Tait and SSY models

but not for the WCF model. The authors concluded that the Tait and SSY models

were more realistic for these types of flows but did require more computational

time to use. Xenakis et al. (2015) developed a non-Newtonian incompressible SPH

formulation that was validated through a number of bench mark test cases. The

first test case considered was a Poiseuille flow using a bilinear model, an exponential

model and a cross model for the viscous terms with close to first order convergence to

the analytical solution. The model was then used to simulate a dam break of a water

and clay mixture using both Herschel-Buckley and power law models for the viscous

terms. The results showed good visual agreement with results from previous studies

modelled using the weakly compressible SPH formulation, highlighting the ability

of the method to reproduce results but with a smoothed pressure field characteristic

of incompressible SPH. Later moulding flows were modelled using two geometries,

including that of Fan et al. (2010), again highlighting the smooth pressure field

compared to weakly compressible SPH and discussing the importance of particle

shifting to achieve a good particle distribution.
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Fourtakas and Rogers (2016) used the Herschel-Buckley-Papanastiou (HBP) (Pa-

panastasiou (1987)) model to simulate scouring of sediment beds subject to dam

breaks. This was done using the weakly compressible formulation SPH and accel-

erated using a GPU. First a water droplet was dropped on a flat plate to see the

effect of shifting, it was seen that the use of shifting greatly improved the particle

distribution avoiding unphysical voids. Next the sediment phase of the simulation

was tested to validate the yield stress approach for the sediment by modelling a sed-

iment damn break. The HBP model was used to smooth out the stress discontinuity

in the standard Herschel-Buckley model. The modification due to Papanastasiou

(1987) is given by

τ = τy [1− exp(−mγ̇)] +Kγ̇n, (2.27)

where the parameter m controls the stress growth below the yield stress. The

article then moved on to model a 2-D and 3-D two-phase erodible dam break. The

dam breaks showed good agreement to previous numerical and experimental results

capturing the scouring effect of the water phase on the sediment phase.

2.5 Summary

The aim of this project is to develop a tool that can be used to reduce the amount

of waste left inside packaging through a modelling method. Design of the shape of

the packaging and the effects of this on the flow using CFD have been explored and

well covered by grid based methods for multiphase flows. The particle based studies

highlighted their advantage of being able to model just the fluid phases when air

and fluid exchange is not important.

Coating the inside of the packaging with a partial slip coating provides an alternative

approach that has not been as well investigated for macro-scale flows. The current

modelling methods of MD and LBM focus on the meso-scopic details of the flows.

SPH can bridge the gap applying partial slip flows to macro-scale and complex

geometries. Partial slip is unexplored in SPH and gives the potential for range of

different applications in the longer term, that would be beyond reach of MD and

LBM.

In order to develop a partial slip boundary condition in SPH a new no-slip boundary

condition is required. These new boundary conditions can build upon existing

dummy particle type methods that are well suited to creating complex geometries,

are inexpensive to use and have been used in a wide range of applications.
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Chapter 3

Smoothed Particle Hydrodynamics

3.1 Introduction

Smoothed particle hydrodynamics (SPH) is a particle based Lagrangian interpola-

tion method, first developed by Gingold and Monaghan (1977) and Lucy (1977),

that can be used for modelling fluid flow. SPH was first developed to simulate

astrophysics applications such as star formation. Since then a number of additions

have been made including viscosity models and various boundary conditions to al-

low it to simulate fluid flows. In SPH the fluid domain is split up into small packets

of fluid of constant mass, each with its own physical properties such as pressure

and velocity. Unlike a traditional grid based CFD methods, these fluid packets

or particles are able to move around the fluid domain according to the governing

equations. Due to its particle nature it is well suited to problems involving free sur-

faces and large deformations. Grid based method require a complex re-meshing for

flows with large deformations or inclusion of a second air phase for flows involving

a free surface. These abilities have made SPH very attractive for many engineering

applications including coastal defences (Zhang et al. (2018)), fish pass (Novak et al.

(2019)), and fibre manufacture processes (Huntley et al. (2020)). The aim of the

following chapter is to introduce the reader to the weakly compressible (WC) SPH

method that will be used in this project.

3.2 Interpolation process

The SPH method uses a two step interpolation process. The first step involves

the continuous approximation of a function by an integral. This starts with the

convolution of a function φ(x, t) and the Dirac δ function defined on the domain
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Ω:

φ(x, t) = (φ ∗ δ)(x, t) =

∫
Ω

φ(x′, t)δ(x− x′)dΩ, (3.1)

where x′ is any other point in the domain. The Dirac δ function can then be

approximated through a smoothing kernel W (x− x′) defined on a domain Ωh of

radius 2h where h is called the smoothing length

φ(x, t) ≈
∫

Ωh

φ(x′, t)W (x− x′)dΩh. (3.2)

Violeau (2012) recommend that the interpolation possess the properties∫
Ωh

W (x− x′)dΩh = 1, (3.3)

known as the zeroth order moment, and∫
Ωh

(x− x′)W (x− x′)dΩh = 0, (3.4)

called the first order moment.

Using a discrete approximation the integral in equation (3.2) can be split up into

Riemann sums evaluated at a central particle with position xi, approximating the

function further:

φ(xi, t) ≈
∑
j

φ(xj, t)W (xi − xj)Vj, (3.5)

where Vj is the volume of the associated particle j. Setting Vj = mj/ρj the expres-

sion becomes

φ(xi, t) ≈
∑
j

mj

ρj
φ(xj, t)W (xi − xj). (3.6)

The zeroth order moment, equation (3.3), in discrete form gives the condition∑
j

mj

ρj
W (xi − xj) = 1, (3.7)

that the kernel should also satisfy (Gomez-Gesteira et al. (2009))

3.2.1 The SPH Kernel

As well as being an approximation for the Dirac δ function and have the property

described in equation (3.7), the kernel function should ideally have a few other

features. The kernel should have compact support such that it is non zero on a

small domain and zero everywhere else, the compactness is needed for the sparsity
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of the discrete equations (Belytschko et al. (1998)). The kernel should also be

positive and symmetric inside the support domain and monotonically decreasing

towards the edge of the support (Gomez-Gesteira et al. (2009)). The kernel should

also be at least once differentiable on Ωh, so that gradients can later be evaluated.

An example of the shape of a kernel can be found in Figure 3.1.

Figure 3.1: Example of a smoothing kernel. The kernel should have its largest value
in the centre and monotonically decrease as the radius increases.

Examples of Kernels A kernel function can be written in the form

W (xi − xj) =
α

hn
f

(
xi − xj
h

)
, (3.8)

where f is the function that describes the kernel and α is a normalisation constant

that depends on the kernel and the number of dimensions which ensures that the

area under the curve f is equal to 1. Using the substitution

q =
x− x′

h
=

r

h
, (3.9)

α can be found for each kernel through

α =
hn∫

Ωh
f(q)dΩh

. (3.10)

There are a number of different kernels in use in the literature, a few examples of

which will be given here in non-dimensional form along with their normalisation

constants.
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Figure 3.2: Plots of f(q) vs q for Wendland, Cubic spline and Gaussian kernels.

Gaussian Kernel One of the earliest kernels used in SPH is the Gaussian ker-

nel

fG = e−q
2

, (3.11)

and has normalization constants

αG =
1

πn/2hn
, (3.12)

given by Goffin (2013), where n is the number of dimensions. The Gaussian ker-

nel is the original kernel that was used by Monaghan. It has compact support on

an infinite radius so in theory the computational domain around a particle can be

extended without increasing the smoothing length, however in practice the contri-

bution of a particle more that 4h away from centre is negligible. Since the Gaussian

kernel is based on an exponential, it only tends to zero outside of the domain and

never actually reaches it. The plot of the Gaussian kernel is found in Figure 3.2 as

the red dotted line.

Polynomial Splines A group of kernels that follow the criteria set are the poly-

nomial splines. These are piecewise polynomial functions that are constructed to

be positive, decreasing and piecewise smooth in the domain and zero everywhere
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else. Examples include the Cubic spline which is given by the equation

f3 =


1− 3

2
q2 + 3

4
q3 0 ≤ q ≤ 1

1
4
(2− q)3 1 < q ≤ 2

0 2 < q,

(3.13)

with normalization constants for 1-D, 2-D and 3-D respectively Goffin (2013)

α =
1

h
, α =

15

7πh2
, α =

3

2πh3
. (3.14)

The plot of the cubic kernel is found in Figure 3.2 as the black dashed line.

Wendland kernel Wendland (1995) developed a family of polynomial splines

which can be used as SPH kernels. The most popular of these is the quintic version

that is often simply referred to as the Wendland kernel. The kernel is defined by

the function

fW (q) =

(1− q
2
)4(1 + 2q) 0 ≤ q ≤ 2

0 2 < q,
(3.15)

with normalization constants in 1-D, 2-D and 3-D respectively Goffin (2013)

α =
3

4h
, α =

7

4πh2
, α =

21

16πh3
. (3.16)

The plot of the Wendland kernel is found in Figure 3.2 as the solid blue line.

Using the kernel function f , the derivative or gradient of the kernel can be found

through

∇W (xi − xj) =
α

hn+1
f ′(q), (3.17)

The gradients of the above three kernels are given by the following equations:

Gaussian

fG = −2qe−q
2

. (3.18)

Cubic spline

f3 =


−3q + 9

4
q2 0 ≤ q ≤ 1

−3
4
(2− q)2 1 < q ≤ 2

0 2 < q

(3.19)

Wendland

fW (q) =

−5q(1− q
2
)3 0 ≤ q ≤ 2

0 2 < q
(3.20)
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For the remainder of the work in this thesis the Wendland kernel will be the kernel

of choice unless otherwise stated.

3.2.2 Gradients and Divergences

Using the gradient functions above, operators such as the gradient and divergence

can also be expressed in discrete SPH form. Through a similar process as for the

function φ, the gradient of the scalar function g evaluated at xi can be written

as

∇g(xi, t) ≈
∑
j

mj

ρj
gj∇Wij, (3.21)

where Wij = W (xi − xj) and gj = f(xj, t).

The divergence of a vector quantity d can be written as

∇ · d(xi, t) ≈
∑
j

mj

ρj
dj · ∇Wij. (3.22)

However, these do not correctly approximate constant functions when particles are

irregularly spaced as is often the case during a simulation. This can be seen by

using the function g = 1 in Equation (3.21)

∇1 =
∑
j

mj

ρj
1∇Wij 6= 0, (3.23)

since the mass, density and kernel gradient are all non zero at points in the kernel

radius.

In order to obtain accurate gradient and divergence operators other approxima-

tions need to be used. Violeau (2012) showed that this is accomplished by taking

advantage of the identities

∇g = ρk∇
(
g

ρk

)
+

g

ρk
∇ρk

∇ · d = ρk∇ ·
(

d

ρk

)
+

d

ρk
· ∇
(
ρk
)
, (3.24)

and

∇g =
1

ρk
∇(ρkg)− g

ρk
∇ρk

∇ · d =
1

ρk
∇ ·
(
ρkd
)
− d

ρk
· ∇
(
ρk
)
, (3.25)

for any real k. Applying the definitions of the SPH gradient and divergence from
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equations (3.21) and (3.22) to the right hand side of the above identities gives a

number of SPH gradient and divergence operators. To help identify these operators

in the following, operators derived using Equation (3.24) will be referred to as oper-

ators of type (I) and operators derived from Equation (3.25) as type (II). However,

in many cases consistency is preferred with type (II) operators used everywhere.

This is the case with DualSPHysics and will be the case for gradient and divergence

approximations used in this thesis.

Setting k = 0 in Equation (3.24) gives

∇g =
∑
j

mj

ρj
(gi + gj)∇Wij

∇ · d =
∑
j

mj

ρj
(di + dj) · ∇Wij, (3.26)

and setting k = 1 gives

∇g =
∑
j

mj

(
gi
ρ2
i

+
gj
ρ2
j

)
∇Wij

∇ · d =
∑
j

mj

(
di
ρ2
i

+
dj
ρ2
j

)
· ∇Wij. (3.27)

Similarly setting k = 0 in Equation (3.25) gives

∇g = −
∑
j

mj

ρj
(gi − gj)∇Wij

∇ · d = −
∑
j

mj

ρj
(di − dj) · ∇Wij, (3.28)

and setting k = 1 gives

∇g = − 1

ρi

∑
j

mj (gi − gj)∇Wij

∇ · d = − 1

ρi

∑
j

mj (di − dj) · ∇Wij. (3.29)

It can be noted that the operators of type (II) correctly approximate the gradient

and divergence of constant functions due to the presence of the minus sign. The

operators of type (I) do not. These operators are still important and useful however,

as due to their asymmetry they the conserve total momentum of the system (Violeau

(2012)). It is preferable for some applications to use gradient operators of type (I)
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and divergence operators of type (II). Mayrhofer (2014) showed that the gradient

operator of type (I) with k = 1 and the divergence operator of type (II) with k = 1

are skew-adjoint and therefore conserve energy exactly when used together. The

book by Violeau (Violeau (2012)) also shows that for any k that gradients of type

(I) and divergences of type (II) and visa versa are skew-adjoint.

3.3 Errors in SPH

When a function is approximated by the SPH interpolation a small amount of error

is introduced. Considering again Equations (3.2) (3.3) (3.4) which are written again

in 1D

φ(x) ≈ φ(x)SPH =

∫
Ωh

φ(x′)W (x− x′)dΩh (3.30)∫
Ωh

W (x− x′)dΩh = 1 (3.31)∫
Ωh

(x− x′)W (x− x′)dΩh = 0. (3.32)

The size of the error can be found by evaluating a Taylor series expansion of the

function φ(x) around x gives

φ(x′) = φ(x) + (x′ − x)
dφ(x)

dx
+O

(
(x′ − x)2

)
. (3.33)

Combining this with the SPH approximation it can be seen that

φ(x)SPH = φ(x)

∫
Ωh

W (x− x′)dΩh

+
dφ(x)

dx

∫
Ωh

(x′ − x)W (x− x′)dΩh +O
(
(x′ − x)2

)
. (3.34)

Taking advantage of the symmetry of the kernel functions, Equations (3.31) and

(3.32) can be used giving

φ(x)SPH = φ(x) +O
(
(x′ − x)2

)
. (3.35)

The smoothing length h is generally of the same order (x′ − x) meaning that

φ(x)SPH = φ(x) +O
(
h2
)
. (3.36)

Thus the leading order error in the SPH approximation is h2. SPH is therefore

often referred to as second order accurate in space.
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However Quinlan et al. (2006) found that this is not quite true, and that the error

in SPH also depends on the ratio of particle spacing dp to smoothing length, called

the discretisation error, as well as the particle disorder. For a uniform particle

distribution Quinlan et al. found that the total error is second order in h and order

β + 2 in the ratio of particle spacing to smoothing length dp/h. The integer β

is the boundary smoothness of the kernel, defined as the largest integer such that

all derivatives of the kernel up to and including the βth are zero at the edge of

the kernel support. This means that by reducing the ratio dp/h while holding h

constant the overall error will eventually be controlled by the smoothing error of

order h2. This makes sense as more particles will included in the approximation as

this happens and the discretisation tends to the continuous approximation. On the

other hand, if holding the ratio constant and decrease the smoothing length will

lead to the error becoming dominated by the discretisation error of order (dp/h)β+2.

Thus to get true idea of the rate of convergence a SPH simulation both the ratio of

particle spacing to smoothing length and the smoothing length need to decreased

together.

In order to find the order of convergence of an SPH simulation a convergence study

of error versus particle spacing needs to be conducted. For this thesis the error of a

property u compared to the analytical or theoretical solution U will be found using

the L2 norm given by

L2 =
1

N

√√√√ N∑
i

(U − u)2

U2
. (3.37)

3.4 Fluid Dynamics equations

Using the above knowledge of gradient and divergence operators, the SPH method

can now applied to the equations of motion for a fluid flow, the Navier-Stokes

equations. For a weakly-compressible flow the Navier-Stokes equations are given by

the conservation of mass
dρ

dt
+ ρ∇ · u = 0, (3.38)

and the conservation of momentum

du

dt
= −1

ρ
∇P +

1

ρ
∇ · τ + f , (3.39)

where ρ is the density of the fluid, u is the fluid velocity, P is the pressure, τ is the

stress tensor and f is the acceleration due to body forces such as gravity. Pressure
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is found using an equation of state, such as the Tait equation of state

P =
c2

0ρ0

γ

[(
ρ

ρ0

)γ
− 1

]
, (3.40)

where ρ0 is the reference density in the fluid, c0 is the speed of sound and γ is a

fluid specific parameter normally taken for water to be γ = 7.

3.4.1 SPH Conservation of mass

Rearranging the conservation of mass equation (3.38) for the material derivative

gives
dρ

dt
= −ρ∇ · u. (3.41)

Applying the divergence operator in Equation (3.29) gives

dρi
dt

=
∑
j

mjuij · ∇Wij, (3.42)

where uij = ui − uj. This equation is then used to update the density gradient of

the fluid particles in the flow domain.

An alternative approximation for the density can be found using the SPH discreti-

sation for a scalar quantity, Equation (3.6)

ρi =
∑
j

mj

ρj
ρjWij =

∑
j

mjWij. (3.43)

This approach however is not widely used as near free-surfaces or boundaries the

kernel support will be truncated leading to poor results.

These equations for the conservation of momentum are for a weakly-compressible

fluid, and assumed in this thesis. The density of the particles is allowed to change

by up to 1%, this is done by using a numerical speed of sound chosen to be ten times

the maximum flow velocity, c0 = 10× umax (Violeau and Rogers (2016))

3.4.2 SPH Conservation of Momentum

Inviscid Flow Looking first at the inviscid case, the conservation of momentum

is given by the equation
du

dt
= −1

ρ
∇P + f . (3.44)
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Using the gradient from Equation (3.26) the pressure gradient is given by

∇Pi =
∑
j

mj

ρj
(Pi + Pj)∇Wij, (3.45)

this then gives the conservation of momentum equation as(
du

dt

)
i

= −
∑
j

mj

(
Pi + Pj
ρjρi

)
∇Wij + fi. (3.46)

Once an appropriate viscosity model has been chosen, these equations can then be

used to update the acceleration of the fluid particles.

3.4.3 Viscous terms

The shear stress tensor in the conservation of momentum equation controls the

viscous dissipation forces. For a Newtonian incompressible fluid it simplifies to

1

ρ
∇ · τ = ν∇2u. (3.47)

The Laplacian term ∇2 = ∇ · ∇ is evaluated using the gradient and divergence

operators described above would involve using the second derivative of the kernel

function W ′′
ij. While the kernel functions are chosen so that the sign of the first

derivative is guaranteed Violeau (2012) found that this cannot be said for the the

second derivative. Monaghan, J. (1992) also states that ”The second derivative of

the kernel is also sensitive to particle disorder”. Another option would be to find the

divergence of the gradient using only the first derivatives, but this would require a

second summation that would be computationally expensive. Luckily two methods

have been developed for Newtonian flows that overcome these issues.

Artificial Viscosity The first approach is the artificial viscosity model of Mon-

aghan, J. (1992). The viscous terms are given by

Πij =


−αcijµij

ρij
uij · rij < 0

0 uij · rij > 0
, (3.48)

where

µij =
huij · rij
|rij|2 + η2

. (3.49)

η is a small number used to avoid singularities and is usually of the form η2 = 0.01h2,

cij = (ci + cj)/2 is the average speed of sound, and ρij = (ρi + ρj)/2 is the average

density. α is the artificial viscous term used to introduce the correct amount of
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dissipation, it normally take values in the range [0, 1].

According to Morris and Monaghan (1997) the Reynolds number associated with a

flow using this viscosity treatment is given by

Re =
8V L

αch
. (3.50)

Using the definition for the standard Reynolds number Re = V L/ν Morris and

Monaghan (1997) showed that the artificial viscosity is related to the kinematic

viscosity through

ν =
αch

8
. (3.51)

Including the artificial viscosity terms, the momentum equation (3.46) becomes(
du

dt

)
i

= −
∑
j

mj

(
Pi + Pj
ρjρi

+ Πij

)
∇Wij + fi. (3.52)

The artificial viscosity method was first used to stabilize the computation of flows,

especially near shocks, and was not meant to be used to model a physical viscosity

Basa et al. (2008).

Laminar Viscosity The second approach is the so called laminar viscosity method

developed as an analogue of physical viscosity. Laminar viscosity was first developed

by Morris et al. (1997) as an improvement over the artificial viscosity treatment.

Laminar viscosity approximates the Laplacian terms in the momentum equation

through a first order SPH gradient and then a first order finite difference. This

method avoids the troublesome second derivative of the kernel and the costly dou-

ble sum that would otherwise occur. In this work the formulation of Lo and Shao

(2002) is used, it is written as

ν∇2ui =
∑
j

mj

(
4νrij · ∇Wij

(ρi + ρj)(r2
ij + η2)

)
uij. (3.53)

In this case the momentum equation becomes

dui
dt

= −
∑
j

mj

(
Pi + Pj
ρjρi

)
∇Wij +

∑
j

mj

(
4νrij · ∇Wij

(ρi + ρj)(r2
ij + η2)

)
uij + fi. (3.54)

The laminar viscosity method is an improvement over artificial viscosity as it can

be used to directly represent physical viscosity.
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Non-Newtonian SPH For a non-Newtonian fluid there are two approaches to

evaluate the viscous forces. The first is to use the laminar viscosity operator of

Morris et al. (1997)(
1

ρ
∇ · τ

)
i

= −
∑
j

(
mj(νi + νj)rij · ∇Wij

ρj(r2
ij + η2)

)
uij. (3.55)

This approach uses the viscosities of each of the particles which need to be calculated

in advance using a non-Newtonian viscosity model.

The second approach uses a SPH gradient operator directly on the shear stresses

(for example Fourtakas and Rogers (2016))(
1

ρ
∇ · τ

)
i

=
∑
j

mj

(
τ i + τ j
ρiρj

)
· ∇Wij. (3.56)

This method requires the knowledge of the shear stresses at each particle. The

shear stress is found through

τ = µappγ̇, (3.57)

where µapp is the apparent dynamic viscosity found using a non-Newtonian viscosity

model, and γ̇ is the shear rate given by

γ̇ =
[
∇u + (∇u)T

]
. (3.58)

This then requires the velocity gradients to be evaluated at each particle, this can

be done through either an SPH sum

(∇u)i =
∑
j

mj

ρj
(ui − uj)∇Wij (3.59)

or a finite difference approach

(∇u)i =
uijrij
|rij|2

(3.60)

the latter of which being the faster option.

3.5 SPH Improvements

Weakly compressible SPH can suffer from noisy pressure fields and non-uniform

particle distributions after a simulation has progressed. The methods developed to

combat these issues are described below.
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3.5.1 Kernel corrections and density filters

In some cases for example near free surfaces or boundaries the kernel support of a

particle can be incomplete. This incomplete kernel can cause errors in the solution.

Considering Equation (3.34), an incomplete kernel would lead to integrals that do

not satisfy the zeroth and first order moments in Equations (3.31) and (3.32). These

integrals would then introduce zeroth and first order errors to the continuous inter-

polation. This can be corrected using a kernel correction that acts to renormalise

the kernel and give a better interpolation.

Shepard filter One example is the Shepard filter (described in Gomez-Gesteira

et al. (2009) for example) which corrects the kernel through

W Shep
ij =

Wij∑
j
mj
ρj
Wij

. (3.61)

This method is quick and simple to use as it only requires summing over the sur-

rounding particles. It is however only zeroth order consistent meaning it can only

accurately reproduce constant functions. Bilotta et al. (2011) noted that while the

Shepard filter can give a lower minimum error than standard SPH, it can also give

a higher maximum error for non-uniform fields.

The Shepard filter can be used to help smooth out a noisy density field. It is used

after an interaction loop to re-assign density to particles through

ρShepi =
∑
j

mjW
Shep
ij . (3.62)

Gomez-Gesteira et al. (2009) recommends that this correction should only be used

every m(=20-50) time steps in order to avoid non physical smoothing of the flow.

MLS kernel Another kernel correction method corrects the kernel using a Moving

least squares (MLS) approach and has been use by Colagrossi and Landrini (2003)

for example. The corrected kernel takes the form in 2D

WMLS
ij = [β0 + β1xij + β2yij]Wij, (3.63)

where

β =

β0

β1

β2

 = A−1

1

0

0

 , (3.64)
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A =


∑

jWij

∑
j xijWij

∑
j yijWij∑

j xijWij

∑
j x

2
ijWij

∑
j xijyijWij∑

j yijWij

∑
j xijyijWij

∑
j y

2
ijWij

 . (3.65)

The MLS kernel correction is more complicated and expensive than the Shepard

kernel as it involves inverting the matrix A for each particle. It is however first

order consistent meaning it can exactly reproduce linear functions.

The MLS kernel can also be used to smooth out the density field in the same way

as the Shepard filter

ρMLS
i =

∑
j

mjW
MLS
ij . (3.66)

This correction should also only be used every m(=20-50) time steps as recom-

mended by Gomez-Gesteira et al. (2009).

Both of these kernel corrections can be used in ways other than as density filter,

for example in boundary conditions as will be seen later.

3.5.2 Density diffusion

As the density of the particles is updated and allowed to change at each time step,

oscillations of the fluid density and therefore pressure are know to occur in weakly

compressible SPH. One method used to combat the noise in the pressure field is to

include a density diffusion term in the continuity equation. In the original approach

of Molteni and Colagrossi (2009) the diffusion term takes the form

Di = δhc0

∑
j

mj

ρj
ψij · ∇Wij, (3.67)

where ψij is given by

ψMC
ij = 2 (ρj − ρi)

xij
||xij||

. (3.68)

This diffusion term is added onto the end of the continuity equation in a similar

way to artificial viscosity in the momentum equation. The δ term controls the

magnitude of the diffusion applied, for the paper of Molteni and Colagrossi (2009)

a value of less than δ = 0.1 is used. Using this density diffusion term helps to reduce

spurious oscillations in the density and therefore pressure field of a flow without the

use of a filtering method.

Antuono et al. (2010) developed a higher order correction for the density diffusion

term following on from the work of Molteni and Colagrossi. Their higher order
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method replaces the ψ function of Molteni and Colagrossi with the following

ψAij =

(
ρj − ρi −

1

2

(
〈∇ρ〉MLS

j + 〈∇ρ〉MLS
i

)
· xij

)
xij
||xij||

, (3.69)

where 〈∇ρ〉MLS is a renormalised density gradient evaluated using an MLS correc-

tion. This approach has benefits over the original method of Molteni and Colagrossi

as the MLS corrected terms ensure consistency near the free surface. This advantage

is highlighted in cases such still water where a method without the MLS correction

the fluid particles near the free surface tend to diffuse upwards in an un-physical

manner. With the MLS correction this does not happen.

Fourtakas et al. (2019) developed a new version of the density diffusion term, this

time using the same approach as Molteni and Colagrossi but replacing the particle

density used in the original with the dynamic density. The dynamic density is given

by

ρD = ρT − ρH , (3.70)

where the superscripts D, T and H denote the dynamic, total and hydrostatic

densities respectively. In Fourtakas et al. the ψ function takes the form

ψFij = 2
(
ρDji
) xij
||xij||

= 2
(
ρTji − ρHij

) xij
||xij||

. (3.71)

The hydrostatic density is found using the hydrostatic pressure as

ρHij = ρ0

 γ

√
PH
ij + 1

CB
− 1

 , (3.72)

where PH
ij = ρ0gzij is the difference in hydrostatic pressure between the two par-

ticles, CB = c2
0ρ0/γ and γ = 7. The method of Fourtakas et al. also ensures con-

sistency near free surfaces and stops un-physical diffusion of the fluid, but avoids

the use of the MLS correction and therefore the matrix inversion needed for every

particle. However, as the method includes acceleration due to gravity it can only

be used for gravity driven flows. When gravity is not present the methods reverts

back to the original approach of Molteni and Colagrossi (2009).

In this thesis the approaches of Molteni and Colagrossi (2009) and Fourtakas et al.

(2019) will be used
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3.5.3 Shifting

As the SPH particles are Lagrangian and a free to move they can sometimes clump

together. This then causes errors in the simulation and in some cases can cause

the simulation to crash. To combat this Lind et al. (2012) developed a technique of

moving particles a small distance to avoid this clumping, called shifting. Once fluid

particles have been advanced in time they are shifted so to create a more uniform

particle distribution. The magnitude and direction in which a particle is shifted is

controlled by Fick’s law and shifts the particles from areas of high concentration to

areas of low concentration.

J = −D′∇C, (3.73)

where J is the flux, C is the particle concentration and D′ is the diffusion coefficient.

This flux is proportional to a fluid particle’s velocity meaning a shifting velocity,

and therefore a shifting distance, can be found for the fluid particle. The shifting

distance for a particle i is defined as

δrs = −D∇C, (3.74)

where D is the shifting coefficient which has absorbed the diffusion coefficient D′

and the constant of proportionality between (3.73) and (3.74). Lind et al. (2012)

suggest that the diffusion coefficient takes a value of

D =
0.5h2

∆t
. (3.75)

In SPH form the concentration gradient at each particle can be found using

∇Ci =
∑
j

mj

ρj
∇Wij. (3.76)

Lind et al. (2012) found that in some cases clumping still occurred, and so they

incorporated a repulsive force from Monaghan to further reduce the clumping

∇Ci =
∑
j

mj

ρj
(1 + fij)∇Wij, (3.77)

where the repulsive force is given by

fij = R

(
Wij

W (dp)

)n
, (3.78)

taking suggested values of R = 0.2 and n = 4. Skillen et al. (2013) suggest a
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alternative equation for the shifting coefficient

D = Ah||u||i∆t. (3.79)

In this equation A is a dimensionless constant that is ”independent of the problem

set-up and discretisation” (Skillen et al. (2013)), and a value of A = 2 is suggested.

This Skillen form for the shifting coefficient will be used in this thesis. Care needs to

be taken when using shifting when simulating violent free surface flow that the shift-

ing distance does not exceed the smoothing length. This would shift the particles

too far causing errors. A limit on the shifting distance is therefore set as

|δrs| ≤ 0.2h. (3.80)

3.6 DualSPHysics

DualSPHysics Crespo et al. (2015) is an accurate, highly optimized open-source SPH

code developed jointly by the University of Vigo, the University of Manchester,

the University of Parma, the University of Lisbon, the Polytechnic University of

Barcelona and the New Jersey Institute of Technology. The code is written in C++

and CUDA to allow simulations to be run on both CPUs and NVIDIA GPUs.

The CPU code is written in parallel using OpenMP allowing for simulations to be

run quickly. The GPU version contains all the same features as the CPU version,

and allows for simulations to be run much quicker than the CPU version on single

desktops fitted with GPUs.

The work in this thesis was completed using v5.0 of the code with a few modifi-

cations. In the following some of the features of the code will be described and

summarized.

3.6.1 Formulation

Version v5.0 of DualSPHysics uses a combination of Equation (3.42) for the con-

servation of mass and Equation (3.46) for the conservation of momentum.

dρi
dt

=
∑
j

mjuij · ∇Wij, (3.81)

(
du

dt

)
i

= −
∑
j

mj

(
Pi + Pj
ρjρi

)
∇Wij + fi. (3.82)
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3.6.2 Time Stepping

The time stepping scheme used in this work is the symplectic predictor corrector

scheme Leimkuhler and Matthews (2015) as it is included in the DualSPHysics code.

During the predictor step the acceleration Fi and density gradient Di are found at

each particle. The predicted particle position, velocity and density are then found

at the middle of the time step

r
n+1/2
i = rni +

∆t

2
uni (3.83)

u
n+1/2
i = uni +

∆t

2
Fn
i (3.84)

ρ
n+1/2
i = ρni +

∆t

2
Dn
i . (3.85)

During the corrector step the intermediate acceleration is used to find the corrected

velocity and position

un+1
i = uni + ∆tF

n+1/2
i (3.86)

rn+1
i = r

n+1/2
i + ∆t

(
uni + un+1

i

)
2

. (3.87)

The corrected density is then found according to Parshikov et al. (2000) as

ρni = ρni +
2− εn+1/2

i

2 + ε
n+1/2
i

(3.88)

ε
n+1/2
i = −

(
D
n+1/2
i

ρ
n+1/2
i

)
∆t. (3.89)

3.6.3 Time Step Size

In the DualSPHysics code a variable time step is used. The time step used is defined

by

∆t = CFLmin (∆t1,∆t2) , (3.90)

where

∆t1 = min
i

([
h

|fi|

]1/2
)
, (3.91)

∆t2 = min
i

(
h/

[
cs + max

j

∣∣∣∣huij · rij
r2
ij

∣∣∣∣]) , (3.92)

where fi is the force per unit mass of the particle i. The smallest of these time

steps is found and then multiplied by the Courant-Friedrich-Levy (CFL) number

to give the final time step, with a typical range of 0.1 − 0.5. If a non-Newtonian
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model is used a third time step is introduced involving the non-Newtonian dynamic

viscosity µ

∆t3 =
h2

maxi(µi)
. (3.93)

In this case the time step is found as the minimum of the three calculated time

steps

∆t = CFLmin (∆t1,∆t2,∆t3) . (3.94)

3.7 Boundary Conditions

3.7.1 Solid Boundaries

There are three main approaches to implementing solid boundary conditions in

SPH. The first is through repulsive forces such as those used in Monaghan (1994)

and Monaghan and Kajtar (2009) in which fluid particles feel a repulsive force from

boundary particles when they get close to a boundary. The second type are the

semi-analytical boundary conditions by Ferrand et al. (2013). The third type uses

particles to fill the solid region beyond the fluid domain thus completing the kernel

of fluid particles with boundary particles when close to a boundary. Three widely

used boundary conditions of the third types will be the focus of the following section.

As justified in the literature review these are more directly relevant to the types

of flows of interest in this thesis, as well as the development of the new boundary

conditions that will be presented in the next Chapter. These boundary conditions

are the Dynamic Boundary Conditions of Dalrymple and Knio (2001), and the

methods of Adami et al. (2012) and Marrone et al. (2011).

3.7.1.1 Dynamic Boundary Particles

The first approach the Dynamic Boundary Condition (DBC) was first introduced by

Dalrymple and Knio (2001) and later studied by Crespo et al. (2007). To implement

the boundary condition layers of boundary particles are created in the solid outside

the fluid domain, these particles then complete the kernel of fluid particles close

to the boundary. The density, and therefore pressure, of the boundary particles

is updated in the same way as the surrounding fluid particles using the density

gradient, Equation (3.42). The velocity and position however are updated according

to boundary movement, so for a stationary boundary the particles have zero velocity.

This results in a zeroth order consistent boundary condition. The approach makes it

very easy to create complex shaped boundaries by creating extra layers of boundary

particles to fill in gaps of irregular solid shapes. DBC is also the standard boundary

condition used in the DualSPHysics code (Crespo et al. (2015)).
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3.7.1.2 Adami et al.

The second approach is that of Adami et al. (2012). Again layers of boundary

particles are placed outside the fluid domain to provide the kernel support of a

nearby fluid particle. However in the approach of Adami the boundary particles

are given pressure, density and velocity data extrapolated from the fluid. During

each time step a sum of the surrounding fluid particle pressure and velocities is

calculated and corrected using a Shepard filter. Due to the use of the Shepard

filter, the Adami boundary condition is zeroth order consistent.

The velocity of a boundary particle b is found by summing around the boundary

particle using

ũb =

∑
j∈fluid ujWbj∑
j∈fluidWbj

, (3.95)

and the pressure of the boundary particle is found using

pb =

∑
j∈fluid pjWbj + (g − aw) ·

∑
j∈fluid ρjrbjWij∑

j∈fluidWbj

, (3.96)

where aw is the acceleration of the wall. The boundary particle is then assigned the

calculated pressure and the velocity is given by

ub = 2Uw − ũb, (3.97)

where Uw is the physical velocity of the boundary, if the boundary is not moving

then this is zero. The density of the boundary particle is found using the pressure

and rearranging the equation of state

ρb = ρ0

(
pb

γ

ρ0c2
0

+ 1

)1/γ

. (3.98)

The velocities, pressures and densities found are then used in the conservation of

momentum equation for fluid particles close to the boundary.

3.7.1.3 Marrone et al.

The third method is that of Marrone et al. (2011). In this method the boundary

interface is represented by particles, and the normals to the boundary calculated at

these particle locations. Boundary particles are then created along these normals

pointing away from the fluid in layers with the first layer half a particle spacing

from the boundary interface. These layers of particles are the used as the boundary

particles. Each boundary particle b is then given a unique ghost node g that is
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mirrored into the fluid across the boundary interface in the direction of the normal.

Fluid properties such as pressure and velocity are found at these ghost nodes and

extrapolated back to boundary particle.

The velocity and pressure are found at the ghost node by summing over the sur-

rounding fluid particles, this summation is corrected using an MLS kernel, ensuring

a first order consistent boundary condition .

ug =
∑
j

mj

ρj
ujW

MLS
gj , (3.99)

and the pressure is given by

pg =
∑
j

mj

ρj
pjW

MLS
gj . (3.100)

The boundary particles are then given the velocities and pressures given by

ub = 2Uw − ug, (3.101)

where Uw is the physical velocity of the boundary, and

pb = pg + 2dρg · nout, (3.102)

where d is the distance between the ghost node and the physical boundary, and nout

is the normal to the physical boundary pointing out of the fluid. The densities of the

boundary particles are again found by using the equation of state. The velocities

and pressures found are then used in both the conservation of mass and momentum

equations of the fluid particles close to the boundary.

3.7.2 Open Boundaries

Another type of boundary condition is the open boundary condition. These occur

where fluid may flow out of or into a region of interest. For many flow such are

Poiseuille flow or Couette flow a periodic boundary condition will work very well.

In this case as a fluid particle leaves one side of a fluid domain, it is transported so

that it re-enters on the other side of the domain. Ghost versions of particles close

to the open boundaries are generated and moved to the other end of the domain in

to form a buffer zone outside the open boundary and complete the kernel support

of the fluid particles close to the open boundary. These ghost particles have the

same properties as the real fluid particles.
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However for some more complex cases such as flow past a cylinder periodic condi-

tions are not appropriate as the flow into one side of the domain will be different

to the flow leaving the other end. For these kinds of flows inlet-outlet boundaries

need to be used.

3.7.2.1 Inlet-Outlet boundaries

Tafuni et al. (2018) developed an inlet-outlet boundary condition in DualSPHysics.

A buffer zone is defined next to an open boundary and filled with buffer particles.

These buffer particles help to complete the kernel support of fluid particles close

to the open boundary. If a buffer particle flows into the fluid domain it becomes

a fluid particle and is treated as such, and if a fluid particle enters a buffer zone

it becomes a buffer particle and follows the laws of the buffer zone. New buffer

particles are created as particles enter the fluid domain and can be deleted if they

leave the computational domain through the other side of the buffer zone.

Physical properties in the buffer zone such as density and velocity can either be

assigned values or extrapolated from the fluid domain. When extrapolation is used

each buffer particle is assigned a ghost node that has been mirrored across the open

boundary into the fluid domain in a similar fashion to Marrone et al. (2011). At

this ghost node corrected kernel and kernel gradient sums are calculated for the

density and velocity using a method by Liu and Liu (2006) that ensures first order

kernel and particle consistency. The corrected sum and gradient for a function f at

the ghost node g are given by

fg =

∣∣∣∣∣
∑

j VjfjWgj

∑
j Vj(xj − xg)Wgj∑

j Vjfj∇βWgj

∑
j Vj(xj − xg)∇βWgj

∣∣∣∣∣∣∣∣∣∣
∑

j Vjf(x)Wgj

∑
j Vj(xj − xg)Wgj∑

j Vjf(x)∇βWgj

∑
j Vj(xj − xg)∇βWgj

∣∣∣∣∣
, (3.103)

and

fg,β =

∣∣∣∣∣
∑

j VjWgj

∑
j VjfjWgj∑

j Vj∇βWgj

∑
j Vjfj∇βWgj

∣∣∣∣∣∣∣∣∣∣
∑

j VjWgj

∑
j Vj(xj − xg)Wgj∑

j Vj∇βWgj

∑
j Vj(xj − xg)∇βWgj

∣∣∣∣∣
, (3.104)

where β represents the chose derivative (eg. x, y or z). The value given to the

buffer particle b is then found through

fb = fk + (rb − rg) · ∇̃fk, (3.105)
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where ∇̃fk is the corrected gradient of f calculated at the ghost node.

3.8 Summary

In this Chapter the Weakly Compressible SPH method has been introduced. The

formulation used in the SPH solver DualSPHysics that will be used in this thesis

have also be presented along with the state-of-the-art improvements of the SPH

method. The details of three widely used and effective SPH boundary conditions,

and of an inlet-outlet boundary condition have been described. Using this knowl-

edge two new boundary conditions will be presented in Chapter 4.
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Chapter 4

New Boundary Conditions

In this Chapter two new boundary conditions developed during this PhD are pre-

sented. The first is the Modified Dynamic Boundary Condition (MDBC) which is

an improvement over the existing DBC method used in DualSPHysics. The sec-

ond is a partial slip boundary condition that can be used for small fluid slip near

solid boundaries. In each section the new methods of the boundary conditions are

presented and tested and validated using benchmark and analytical solutions.

4.1 Modified Dynamic Boundary Condition

The current method included in the DualSPHysics code is the DBC method. Using

the DBC method it is very easy to create complex shaped geometries, for example

the work of Altomare et al. (2014) who recreated sea breakwaters made of a large

number of individual blocks. DBC are very robust and has been used for a wide

range of applications. However there are a number of drawbacks that can limit

application of the method. The density and pressure of boundary particles can be

noisy resulting in noisy density in the fluid close to the boundary. Another drawback

is a non-physical gap that appears between the fluid and boundary when previously

unsubmerged boundary becomes submerged as shown by Domı́nguez et al. (2015).

In order to obtain surface pressure measurements numerical pressure probes must

be placed a short distance of the order of h inside the fluid domain rather than at

the real location on the boundary. These drawbacks are shown in Figure 4.1. In

order to combat these issues the new approach MDBC has been developed.
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Figure 4.1: Example fo a sloshing tank coloured by pressure highlighting the draw-
backs of the DBC method including a noisy pressure field in the boundary and
fluid close to the boundary (left) and the presence of a gap between the fluid and
boundary particles (right).

Figure 4.2: Examples of ghost node locations and support kernels around them.
(a) Ghost node locations for boundary particles in a flat boundary at three depths
into the boundary, the ghost nodes positions are found by mirroring the boundary
particle across the boundary surface (b) the fluid particles included in the sum-
mation around the ghost node (c) Ghost node locations for boundary particles in
boundary corner, the ghost node positions are found by mirroring the boundary
particle through the corner of the boundary surface (d) the fluid particles included
in the summation around the ghost node.
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4.1.1 Method

The method of MDBC is similar to that of Tafuni et al. (2018) for the open bound-

aries, but applied to solid boundaries. The first step is to create ghost nodes for each

boundary particle that are mirrored across the boundary surface into the fluid in

the same way as Marrone et al. (2011), as shown in Figure 4.2. Fluid properties are

then found at the ghost node and extrapolated back to the boundary particle.

4.1.1.1 Density

In 2D the density of the boundary particle is found using a Taylor series between

the boundary particle b and the ghost node g

ρb = ρg + (xb − xg, yb − yg) · (∂ρg/∂x, ∂ρg/∂y). (4.1)

This requires the use of corrected kernel sum and kernel gradient functions at the

ghost node due to the truncated kernel near the boundary. To find these functions

the method of Liu and Liu (2006) is applied. This requires the use of a second

Taylor series expansion around the ghost node. For a general function f the Taylor

series takes the form

f(x) = fg + (x− xg)
∂fg
∂x

+ (y − yg)
∂fg
∂y

+ ... (4.2)

Ignoring the higher order derivatives and multiplying by the kernel and its deriva-

tives and then integrating over the fluid domain three equations are formed∫
f(x)Wdx = fg

∫
Wdx +

∂fg
∂x

∫
(x− xg)Wdx +

∂fg
∂y

∫
(y − yg)Wdx (4.3)∫

f(x)
∂W

∂x
dx = fg

∫
∂W

∂x
dx +

∂fg
∂x

∫
(x− xg)

∂W

∂x
dx +

∂fg
∂y

∫
(y − yg)

∂W

∂x
dx

(4.4)∫
f(x)

∂W

∂y
dx = fg

∫
∂W

∂y
dx +

∂fg
∂x

∫
(x− xg)

∂W

∂y
dx +

∂fg
∂y

∫
(y − yg)

∂W

∂y
dx.

(4.5)
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In SPH form these equations become

∑
j

VjfjWgj = fg
∑
j

VjWgj +
∂fg
∂x

∑
j

(xj − xg)VjWgj +
∂fg
∂y

∑
j

Vj(yj − yg)Wgj

(4.6)∑
j

Vjfj
∂Wgj

∂x
= fg

∑
j

Vj
∂Wgj

∂x
+
∂fg
∂x

∑
j

(xj − xg)Vj
∂Wgj

∂x
+
∂fg
∂y

∑
j

Vj(yj − yg)
∂Wgj

∂x

(4.7)∑
j

Vjfj
∂Wgj

∂y
= fg

∑
j

Vj
∂Wgj

∂y
+
∂fg
∂x

∑
j

(xj − xg)Vj
∂Wgj

∂y
+
∂fg
∂y

∑
j

Vj(yj − yg)
∂Wgj

∂y
,

(4.8)

where the j particles are the fluid particles surrounding the ghost node. This then

forms a linear system of 3 equations in the 3 unknowns fg, ∂fg/∂x and ∂fg/∂y.

Writing this as a linear system of the form Ax = b the following is obtained
∑

j VjWgj

∑
j(xj − xg)VjWgj

∑
j Vj(yj − yg)Wgj∑

j Vj
∂Wgj

∂x

∑
j(xj − xg)Vj

∂Wgj

∂x

∑
j Vj(yj − yg)

∂Wgj

∂x∑
j Vj

∂Wgj

∂y

∑
j(xj − xg)Vj

∂Wgj

∂y

∑
j Vj(yj − yg)

∂Wgj

∂y


 fg

∂fg/∂x

∂fg/∂y

 =


∑

j VjfjWgj∑
j Vjfj

∂Wgj

∂x∑
j Vjfj

∂Wgj

∂y

 .
(4.9)

This can be solved by inverting the matrix. The values of fg, ∂fg/∂x and ∂fg/∂y

are then given by

fg =

det



∑

j VjfjWgj

∑
j(xj − xg)VjWgj

∑
j Vj(yj − yg)Wgj∑

j Vjfj
∂Wgj

∂x

∑
j(xj − xg)Vj

∂Wgj

∂x

∑
j Vj(yj − yg)

∂Wgj

∂x∑
j Vjfj

∂Wgj

∂y

∑
j(xj − xg)Vj

∂Wgj

∂y

∑
j Vj(yj − yg)

∂Wgj

∂y




det



∑

j VjWgj

∑
j(xj − xg)VjWgj

∑
j Vj(yj − yg)Wgj∑

j Vj
∂Wgj

∂x

∑
j(xj − xg)Vj

∂Wgj

∂x

∑
j Vj(yj − yg)

∂Wgj

∂x∑
j Vj

∂Wgj

∂y

∑
j(xj − xg)Vj

∂Wgj

∂y

∑
j Vj(yj − yg)

∂Wgj

∂y




, (4.10)

∂fg/∂x =

det



∑

j VjWgj

∑
j VjfjWgj

∑
j Vj(yj − yg)Wgj∑

j Vj
∂Wgj

∂x

∑
j Vjfj

∂Wgj

∂x

∑
j Vj(yj − yg)

∂Wgj

∂x∑
j Vj

∂Wgj

∂y

∑
j Vjfj

∂Wgj

∂y

∑
j Vj(yj − yg)

∂Wgj

∂y




det



∑

j VjWgj

∑
j(xj − xg)VjWgj

∑
j Vj(yj − yg)Wgj∑

j Vj
∂Wgj

∂x

∑
j(xj − xg)Vj

∂Wgj

∂x

∑
j Vj(yj − yg)

∂Wgj

∂x∑
j Vj

∂Wgj

∂y

∑
j(xj − xg)Vj

∂Wgj

∂y

∑
j Vj(yj − yg)

∂Wgj

∂y



,

(4.11)
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∂fg/∂y =

det



∑

j VjWgj

∑
j(xj − xg)VjWgj

∑
j VjfjWgj∑

j Vj
∂Wgj

∂x

∑
j(xj − xg)Vj

∂Wgj

∂x

∑
j Vjfj

∂Wgj

∂x∑
j Vj

∂Wgj

∂y

∑
j(xj − xg)Vj

∂Wgj

∂y

∑
j Vjfj

∂Wgj

∂y




det



∑

j VjWgj

∑
j(xj − xg)VjWgj

∑
j Vj(yj − yg)Wgj∑

j Vj
∂Wgj

∂x

∑
j(xj − xg)Vj

∂Wgj

∂x

∑
j Vj(yj − yg)

∂Wgj

∂x∑
j Vj

∂Wgj

∂y

∑
j(xj − xg)Vj

∂Wgj

∂y

∑
j Vj(yj − yg)

∂Wgj

∂y



, (4.12)

where the denominator in each of the equations is the determinant of the matrix in

Equation (4.9). Substituting the density ρ for the function f , these corrected sums

and gradients can be used in the Taylor series in Equation (4.1). Similar expressions

have been extended to 3D.

Using this approach ensures both first order kernel consistency and particle consis-

tency (Liu and Liu (2006)). However, if the matrix in Equation (4.9) is singular,

which may happen when there are few fluid particles close to the ghost node, then

the denominators in the above equations would become zero. In this case the density

at the ghost node is calculated through

ρg =

∑
j VjρjWgj∑
j VjWgj

, (4.13)

and the boundary particle is given this density. The pressure of the boundary

particles is then found using the equation of state.

This density extrapolation method can be used while setting the velocity to zero as

was done for the original DBC, however some cases may need a more accurate no-slip

condition. For these cases a further velocity extrapolation can also be used.

4.1.1.2 Velocity

The velocity extrapolation process for no-slip is much simpler. The velocity at the

ghost node is found through

ug =

∑
j VjujWgj∑
j VjWgj

. (4.14)

The boundary particle velocity is updated via

ub = 2uw − ug, (4.15)

where uw is the velocity of the boundary if it is moving. This velocity extrapolation

is zeroth order consistent, similar to the method of Adami et al. (2012).
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4.1.1.3 Implementation

The normals are generated for each of the boundary particles at the beginning

of a simulation. During the creation of the geometry in DualSPHysics both the

boundary particles and the boundary interface (the black lines in Figure 4.2) are

created. The normals are then defined as the vector pointing from the boundary

particle to the nearest point on the boundary interface line, the normal distance

is then doubled to define the ghost node. Alternatively, the normals for blocks of

boundary particles can be defined when the geometry is created, such as for flat

boundaries seen in Poiseuille and Couette flows. If the boundary is set to move

during the simulation the new normals are computed at the start of each time

step by applying the same movement to the normals as is applied to the boundary

particle (e.g. rotation or translation). This ensures the normal still points from the

boundary particle to its ghost node.

In each time step the MDBC method should be used at the start of the step before

any fluid interactions. When used with the predictor corrector scheme currently

implemented in DualSPHysics, MDBC is calculated before the predictor step only.

This avoids needing to redefine the location of ghost nodes twice during each time

step as well as the associated matrix inversions. The error with respect to time

step will however be reduced to first order compared to the second order time step

scheme used for the fluid.

4.1.2 Results

In this section a number of test cases will be used for validation of the MDBC

method.

4.1.2.1 Still Water

The first test case used is the still water test case with a wedge. A 2D still water

tank with dimensions of 2.4 Ö 1.2m encloses a triangle shaped wedge of height

0.24m in the bottom centre of the tank. The initial water height is H=0.5m. The

simulation is run for 4 seconds of physical time for three particle spacings, the

numerical parameters of the simulations are displayed in Table 4.1. This test case

while looking simple can be challenging due to the corners created by the wedge.

The MDBC approach used was for the density extrapolation only, since the velocity

in the fluid is zero. Shifting is not used for this test case as the movement of particles

in still water would increase errors in the kinetic energy.

The final instant is shown in Figure 4.3 for the two finer resolutions, dp = 0.02m
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Figure 4.3: Pressure field in still water tank comparing DBC (left) and MDBC
(right) for two particle spacings dp = 0.02m (top) and dp = 0.01m (bottom).

Figure 4.4: Pressure field in still water tank comparing DBC (left) and MDBC
(right) for particle spacing dp = 0.01m zooming in on the corner of the tank to
better see the pressure in the boundary.
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Figure 4.5: Plots of normalised pressure versus normalised depth in still water tank
comparing DBC (left) and MDBC (right) for two particle spacings dp = 0.02m
(top) and dp = 0.01m (bottom).

Figure 4.6: Plots of kinetic energy of fluid particles in still water tank versus time
for two particle spacings dp = 0.02m (left) and dp = 0.01m (right). The energy
of the fluid with DBC boundaries is shown using the blue line and with MDBC
boundaries using the red.
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Table 4.1: Table of numerical parameter for still water simulations

dp (m) h/dp α (Artificial) δ (Molteni) Shifting CFL
0.04 2 0.01 0.1 OFF 0.2
0.02 2 0.01 0.1 OFF 0.2
0.01 2 0.01 0.1 OFF 0.2

(top) and dp = 0.01m (bottom), showing the fluid and boundary particles coloured

by pressure with DBC on the left and MDBC on the right. Both methods show

generally good results for the pressure field in the fluid, but closer inspection shows

that the cases using MDBC have much smoother pressure field in the boundary for

both the flat surfaces and the corners. Figure 4.4 provides a close-up into the corners

of the case with dp = 0.01m, where the improvement is more noticeable. This

shows that mirroring technique helps to better represent the boundary conditions

for support of fluid particles.

Figure 4.5 shows the pressure of each fluid particle normalised using the hydrostatic

pressure (ρgH) versus the height of the particle normalised by the initial water

height (H) at the final time instant (4s). The left hand side shows the result using

DBC and the right using MDBC, the top row has particle spacing dp = 0.02m

and the bottom dp = 0.01m. In both resolutions the DBC result shows noise

in the pressure field near the bottom of the tank, this noise is minimised in the

MDBC results. Therefore MDBC shows better hydrostatic pressure behaviour than

DBC.

As well as the hydrostatic pressure behaviour, the kinetic energy of the fluid parti-

cles, which should be zero, can also be investigated. Figure 4.6 shows a time series

of the total kinetic energy of all the fluid particles (note that a log scale is used).

The left hand plot shows the time series with a particle spacing of dp = 0.02m and

the right dp = 0.01m with the DBC result shown in blue and the MDBC result in

red . As the kinetic energy of the particle with the MDBC boundary is smaller in

both resolutions, it is clear that when using MDBC the movement of the particles

is much lower than when using the original DBC.

4.1.2.2 Sloshing Tank

The second test case is the SPHERIC Benchmark Test Case #10, consisting of

a sloshing tank of 0.9Ö0.508m with an initial water level H=0.093m as shown in

Figure 4.7. This is a challenging example with a moving boundary and free surface.

The numerical pressures are obtained using DBC and M-DBC and compared with

the experimental values detected at Sensor 1.
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Figure 4.7: Set up of sloshing tank test case according to SPHERIC benchmark
test case #10 including the location of sensor 1 and the initial water depth.

Two simulations with different resolutions are simulated and the numerical parame-

ters used are displayed in Table 4.2. For these simulations the MDBC method used

is again extrapolating the density only. Shifting is not used for this highly transient

flow case.

Table 4.2: Table of numerical parameter for sloshing tank simulations

dp (m) h/dp α (Artificial) δ (Molteni) Shifting CFL
0.004 2 0.01 0.1 OFF 0.2
0.002 2 0.01 0.1 OFF 0.2

The instant t=2.47s of the simulation is shown in Figure 4.8, this is the time when

the fluid first impacts the left wall and Sensor 1. The left column shows the result

with DBC and the right MDBC, with the top row showing the coarser resolution and

the bottom row the finer. The colour of the particles corresponds to their pressure

values. Figure 4.9 shows more in more detail the pressure field of the particles with

DBC (left) and MDBC (right) with dp = 0.002m. Two improvements can be easily

seen using MDBC: i) values of pressure of the boundary particles in the walls using

MDBC are smoother than the ones shown in DBC and ii) the gap between the fluid

and the boundary is much smaller, so that the spurious gap is avoided with MDBC.

This is a very important result since the computation of pressure values at Sensor

1 with DBC provides representative results only if the numerical pressure gauge is

moved to take into account the size of the gap between the fluid and the boundary.

The work of Domı́nguez et al. (2015) estimated the size of the gap as the value of

the smoothing length h.
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Figure 4.8: Time instant of sloshing tank at 2.47s showing the first wave impacting
the wall with sensor 1 with particles coloured by pressure. Comparing DBC (left)
and MDBC (right) for two particle spacings dp = 0.004m (top) and dp = 0.002m
(bottom).

Figure 4.9: Time instant of sloshing tank at 2.47s showing the first wave impacting
the wall with sensor 1 with particles coloured by pressure, close up on the side wall
being impacted. Comparing DBC (left) and MDBC (right) for particle spacing
dp = 0.002m.
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The experimental pressure (black line) is compared with numerical results in Figure

4.10. The SPH results are from the simulations using the finer resolution. In the

first row the blue line shows the SPH result using DBC with the pressure probe on

the boundary surface. The results are invalid since the large gap keeps fluid away

from the wall. The second row shows the numerical pressure (green line) using DBC

with pressure gauge moved +h into the fluid, so the results are much better and

the agreement with experimental data. Using MDBC reduces the size of the gap,

allowing pressure to be computed at the exact location of the experimental gauge.

With MDBC a very good result is obtained, shown by the red line in the bottom

panel with a good agreement with the experimental data.

Computational Cost The run times for the sloshing tank test case on a GPU

for both DBC and MDBC with particle spacing dp=0.002m are shown in Table 4.3,

along with a ratio of the run times showing the increased computational cost of

MDBC on selection of hardware.

Table 4.3: Table of run times of sloshing tank with particle spacing dp=0.002m
using different hardware.

Hardware DBC(s) MDBC(s) MDBC/DBC
CPU i7-6700K 7350 8191 1.11

Tesla K40 811 967 1.19
Ge Force RTX 2080 Ti 625 681 1.09

Tesla V100 376 430 1.14
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Figure 4.10: Plots of SPH pressure at sensor 1 versus experimental data (black line).
Top plot (blue) shows pressure using DBC with pressure probe located on boundary
surface. Middle plot (green) shows pressure with DBC with pressure probe placed
one smoothing length distance into the fluid. Bottom (red) shows pressure with
MDBC with pressure probe located on the boundary surface.
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4.1.2.3 Couette and Poiseuille Flow

So far the test cases investigated have used the density extrapolation only. To test

the improved no-slip condition flows that are more sensitive to boundary velocity

need to be investigated. To this end Couette and Poiseuille flows will be simulated.

These are 2D channel flows with analytical solutions for the velocity at different

times.

The channel used for the Couette flow is 1m in width with the bottom boundary

at z = 0m and the top boundary at z = 1m. The flow is set up without gravity

and the bottom boundary is fixed, the flow is driven by the top boundary moving

with velocity 1ms−1. The numerical parameters of the simulations are displayed

in Table 4.4. Periodic boundary conditions are used at the ends of the channel.

Shifting is included for these test cases to avoid particle clumping and instability

leading to simulation failure, as highlighted by Basa et al. (2008).

Table 4.4: Table of numerical parameters for Couette flow simulations

dp (m) h/dp ν (Laminar) δ (Molteni) Shifting CFL
0.05 1.25 0.1 0.1 ON 0.1
0.04 1.75 0.1 0.1 ON 0.1
0.02 2.25 0.1 0.1 ON 0.1
0.01 2.75 0.1 0.1 ON 0.1
0.005 3.25 0.1 0.1 ON 0.1

The analytical solution for this Couette flow is given by

u(z) = Umaxz = z. (4.16)

The Reynolds number of the this flow is Re = 10. The fluid starts initially at

rest and the boundary starts at its maximum velocity, the total simulation time

is 5 seconds in which time the fluid accelerates to steady state. It is worth there-

fore looking at the comparison of the SPH result to the time dependent analytical

solution given by

u(z, t) = z + 2
∞∑
n=1

(−1)n

nπ
e−λ

2
nνt sin(λnz), (4.17)

where λn = nπ for n = 1, 2, ... given by Emin Erdoǧan (2002).

Figure 4.11 shows the comparison of SPH to analytical solution for the flow velocity.

The DBC result is shown in the left column and the MDBC result on the right both
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Figure 4.11: Plots of SPH data versus analytical solutions for time dependent Cou-
ette flow for two particle spacing dp = 0.04m (top) and dp = 0.01m (bottom) and
boundary methods DBC (left) and MDBC (right), all h/dp ratios are 1.25.

Figure 4.12: Convergence study of Couette flow.
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for two particle spacings, dp = 0.04m on the top row and dp = 0.01m on the bottom

row all with a h/dp ratio of 1.25. Comparing the DBC and MDBC results, MDBC

shows a small improvement in agreement to the analytical solution for early times,

at 1 second the dp = 0.04m MDBC velocity is closer to the analytical result than

DBC. Figure 4.12 shows a convergence study for the Couette flow plotting L2 error

in velocity versus particle spacing. It can be seen that both the DBC (blue) and

MDBC (red) cases converge with rate of convergence of 0.53 and 0.45 respectively.

The error in the MDBC velocity is overall lower for each of the particle spacings

chosen, which is to be expected.

The channel used for the Poiseuille flow has walls placed at z = ±0.5m giving a

total channel width of 1m. There is no gravity and both walls are fixed, flow is

driven by a body force with acceleration F = 0.8ms−2. The numerical parameters

of the simulations are displayed in Table 4.5. To allow fluid to enter on one side

after leaving the other periodic boundary conditions are again used at the ends of

the channel.

Table 4.5: Table of numerical parameters for Poiseuille flow simulations

dp (m) h/dp ν (Laminar) δ (Molteni) Shifting CFL
0.05 1.25 0.1 0.1 ON 0.1
0.04 1.75 0.1 0.1 ON 0.1
0.02 2.25 0.1 0.1 ON 0.1
0.01 2.75 0.1 0.1 ON 0.1
0.005 3.25 0.1 0.1 ON 0.1

The analytical velocity for the Poiseuille flow is given by

u(z) =
F

2ν

(
0.52 − z2

)
. (4.18)

With the values for kinematic viscosity and the body force, the maximum velocity of

the flow is Umax = 1ms−1. The Reynolds number for this flow is therefore Re = 10.

The fluid initially starts at rest and accelerates up to steady state in 5 seconds of

physical time, so it is interesting to look at how the SPH result matches to the time

dependent Poiseuille velocity given by

u(z, t) =
F

2ν

(
0.52 − z2

)
+
∞∑
n=0

F

(
16(−1)n0.52

(2n+ 1)3π3ν

)
e−λ

2
nνt cos(λnz), (4.19)

where λn = (2n+ 1)π for n = 0, 1, 2, ... given by Emin Erdoǧan (2002).

A comparison of the SPH particle velocities and the analytical solutions are shown
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Figure 4.13: Plots of SPH data versus analytical solutions for time dependent
Poiseuille flow for two particle spacing dp = 0.04m (top) and dp = 0.01m (bot-
tom) and boundary methods DBC (left) and MDBC (right),all with h/dp ratio of
1.25.

Figure 4.14: Convergence study of Poiseuille flow.
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in Figure 4.13 for two particle spacings, dp = 0.04m on the top row and dp = 0.01m

on the bottom row, and the two boundary conditions, DBC on the left and MDBC

on the right all with a h/dp ratio of 1.25. Comparing the DBC and MDBC results

it is clear to see that the MDBC result agrees much closer to the analytical solution

for all times. The DBC result actually moves away from the analytical solution

as the time increases due to its less accurate no-slip condition. The DBC result

does get better as the resolution is increased but it should be noted that the coarse

resolution MDBC result gives closer agreement than the finer resolution DBC result.

A convergence study is shown in Figure 4.14 plotting the L2 error in velocity against

particle spacing. As can be seen from the plot both the DBC and MDBC cases

converge with convergence rates of 0.64 and 0.51 respectively. The error in the

MDBC is much lower than the error in DBC, which is to be expected, and close to

an order of magnitude lower for the coarser particle spacings.

4.1.3 Summary

The new boundary condition, MDBC, presented shows a big improvement over

the original DBC method. The still water test case shows that the new approach

of density extrapolation gives a much smoother density and pressure fields in the

boundary, even for more complex shaped geometries such as the wedge at the bot-

tom of the tank. This smoother boundary pressure leads to a reduced amount of

kinetic energy in the fluid particles and a closer approximation to the hydrostatic

pressure in the fluid. The sloshing tank case shows that the method works well with

moving boundaries and free-surfaces. The reduction in the gap between boundary

and fluid particles allows for more realistic pressure result on solid structures with

out needing to place pressure probes a distance away from the boundary. The veloc-

ity extrapolation shows a big improvement in accuracy in creating no-slip boundary

conditions. The agreement with analytical solutions for Poiseuille and Couette flow

is improved and the error in velocity is much reduced.
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4.2 Partial Slip Boundary Conditions

As was shown in the review of the literature, partial slip boundary conditions have

not yet been used in SPH. In this section the formulation and validation of a SPH

partial slip boundary condition are presented.

4.2.1 Method and implementation

In their paper on boundary conditions, Macia et al. (2011) studied the theory of

SPH boundary treatments including antisymmetric extensions or mirroring method

of which MDBC is an example. The MDBC interpolated boundary velocity is a

mirror image of the velocity at the respective ghost nodes located in the fluid. They

suggest that the velocity in the fluid close to a boundary located at z = 0 with fluid

above can be described by the equation

u(z) = UB + a1z + a2z
2 + · · · (4.20)

for some ai and boundary velocity UB. The velocity in the boundary would then

be given by

u(z) = 2UB − u(z+) (4.21)

where u(z+) is the velocity at the positive version of the z coordinate. This results

in a net velocity at the boundary surface of UB as

u(0) = 2UB − (UB + 0) = UB

. A graphical representation of this can be seen in Figure 4.15 (c) for a moving

boundary with velocity UB and (a) for a fixed boundary. For a partial slip flow,

while the boundary is fixed, the overall effect is for the fluid to move over the

boundary at a small velocity uslip. Following the ideas of Macia et al. (2011),

the velocity in the fluid close to a partial slipping boundary would then be given

by

u(z) = uslip + a1z + a2z
2 + · · ·, (4.22)

and the velocity in the boundary would then be given by

u(z) = 2uslip − u(z+). (4.23)

Figure 4.15 (b) shows a graphical representation of this, with an overall velocity of

uslip at the boundary surface.

More generally, if a partial slip boundary is moving with velocity UB then the overall
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Figure 4.15: Flow profile close to a boundary (blue), and the extrapolated flow
profile from a mirroring type boundary treatment (red) for: (a) no-slip flow with
fixed boundary; (b) partial slip flow with partial slip velocity Uslip; (c) no-slip flow
with moving boundary with velocity UB

effect can be combined into one velocity UB+ = UB+uslip which can then be used as

in Equations (4.20) & (4.21). Writing this out in full vector notation, the velocity

of a particle b moving partial slip boundary is given by

ub = 2UB + 2uslip −UBC , (4.24)

where uBC is the no-slip velocity from the boundary condition used.

From the theory, the partial slip velocity is given by

uslip = λs

[
∇u + (∇u)T

]
· n, (4.25)

where λs is the slip length, u = [u, v, w]T is the velocity of the fluid and n is the

unit normal to the boundary pointing into the fluid. Expanding out the gradient
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operators, the partial slip velocity can be seen to be given by

uslip = λs

 2∂u
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 . (4.26)

It is clear from the entries in the vector of (4.26) that the velocity gradient needs

to be found at the boundary surface. Defining the boundary surface to be located

half a particle spacing away from the first layer of boundary particles, as shown in

Figure 4.16 the velocity gradients are evaluated at a ghost node X on the boundary

surface. The location of the ghost node is found using the boundary normal and

the distance to the boundary surface. The velocity gradient ∂u/∂z for example is

found through the equation(
∂u

∂z

)
X

= −
∑
j

mj

ρj

(UB − uj)(zX − zj)
rXj

dWXj

drXj
, (4.27)

where UB is the velocity of the solid boundary and the j particles included in

the summation include both the surrounding fluid and boundary particles. Since

both the surrounding fluid and boundary particles are included in the summation

the kernel is complete and no kernel corrections are used. If the boundary is not

moving then UB = 0. Once the partial slip velocity has been evaluated it can be

used in Equation (4.24) for the boundary particle velocity.

If the boundary particles are arranged in a Cartesian grid as shown in Figure 4.16,

it is possible for more than one boundary particle to share a ghost node X. For

example, the three boundary particles in the dashed box behind the ghost node on

the boundary surface would be updated with the same partial slip velocity as they

each would all share the same ghost node.

For the work that follows the base no-slip boundary condition is the MDBC method

described above. During each time step, the partial slip velocity should be calcu-

lated and the boundary particles updated after the no-slip boundary condition has

been calculated but before any fluid particle interactions.
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Figure 4.16: Particles included in partial slip velocity gradient summation around
the point X. Each of the boundary particles in the dashed box will mirror to this
point and receive the same partial slip velocity.

4.2.2 Results

To test the partial slip condition a number of test cases will be simulated.

4.2.2.1 Poiseuille Flow

Newtonian Poiseuille Flow First a Poiseuille flow with a Newtonian fluid will

be used to test a number of slip lengths. The Poiseuille flow is an ideal test case

to test partial slip as for even a small slip length the overall velocity of the flow

is increased and known. The analytical solution for a partial slip Poiseuille flow

driven by a body force with acceleration F with boundaries located at z = ±l is

given by

u(z) =
F

2ν

(
l2 + 2λsl − z2

)
, (4.28)

where ν is the kinematic viscosity and λs is the slip length . For the cases considered

here l = 0.5m. The flows are started from rest and the fluid accelerated using the

body force over 5 seconds of physical time. The time dependent solution can then

also be looked at, this is given by

u(z, t) =
F

2ν

(
l2 + 2λsl − z2

)
+
∞∑
n=0

(
16(−1)nFl2

(2n+ 1)3π3ν

)
e−λ

2
nνt cos(λny) (4.29)

+
∞∑
n=0

(
8λsFl

(2n+ 1)2π2ν

)
e−λ

2
nνt,
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where

λn =
(2n+ 1)π

2l
n = 0, 1, 2, ...∞. (4.30)

A derivation of this equation is included in the appendices. Setting the slip length

in these equations to zero recovers the no-slip versions

Four slip lengths will be tested: λs = 0 (no-slip); λs = 0.005m; λs = 0.01m, and

λs = 0.02m. Five particle spacings will be used and the numerical parameters

used for each particle spacing are displayed in Table 4.6. The maximum velocity of

the no-slip flow is Umax = 1ms−1 resulting in a Reynolds number of Re = 10. The

three non zero partial slip lengths result in maximum velocities of Umax = 1.02ms−1,

Umax = 1.04ms−1 and Umax = 1.08ms−1 with corresponding increases in Reynolds

number. Shifting is also included for these test cases to avoid particle clumping and

instability leading to simulation failure, as highlighted by Basa et al. (2008).

Table 4.6: Table of numerical parameter for Newtonian Poiseuille flow simulations
with no-slip and partial slip boundary conditions

dp (m) h/dp ν (Laminar) δ (Molteni) Shifting CFL
0.05 1.25 0.1 0.1 ON 0.1
0.04 1.75 0.1 0.1 ON 0.1
0.02 2.25 0.1 0.1 ON 0.1
0.01 2.75 0.1 0.1 ON 0.1
0.005 3.25 0.1 0.1 ON 0.1

The first slip length used is λs = 0, which corresponds to no-slip. Plots of the SPH

velocity profiles compared to the analytical solution for different times are shown for

two particle spacings in Figure 4.17. The plot shows that there is good agreement

between the SPH data and the analytical result for both particle spacings at the

three times shown, these times are 1 and 2 seconds from the start and steady state

at 5 seconds. The finer resolution result shows a closer agreement as it does not

over predict the steady state velocity as much as the coarser resolution. This is to

be expected as this is the same result as seen in the previous section for no-slip

MDBC.

Figures 4.18, 4.19 and 4.20 shows the SPH velocity profiles compared to the analyt-

ical solution for different times for slip lengths λs = 0.005, λs = 0.01 and λs = 0.02

respectively. Each plot shows two particle spacings of dp = 0.04 with a h/dp ratio of

1.25 and dp = 0.01 with a h/dp ratio of 2.25. Overall each of the results shows good

agreement with the analytical result. Looking at the two smaller slip lengths, the

coarser resolution tends to over-predict the velocity while the finer resolution gives

closer agreement. As the slip length increases the velocity the agreement between
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Figure 4.17: Poiseuille flow profile with no-slip boundary conditions compared to
analytical solution for particle spacings dp = 0.04 (left) and dp = 0.01 (right).

the SPH result and the analytical solution gets worse. This can be seen clearly

in the plots for λs = 0.02 where the coarse resolution under-predicts the velocity

for the smaller times and the finer resolution under-predicts the velocity for all the

times shown. A likely cause is that the partial slip velocity is being under predicted

at the boundary, leading to the overall velocity of the flow also being under pre-

dicted. The affects the finer resolution more since the no-slip result for this particle

spacing was much closer to the analytical result. The only difference between the

no-slip flow and a partial slip flow is the increased velocity at the boundary. Adding

an under predicted partial slip velocity to a good no-slip condition results in an un-

der prediction of the flow velocity. The coarser resolutions are less affected as they

already over predict the no-slip velocity, and so this combined with an under pre-

dicted partial slip velocity by luck results in a closer result. This under prediction

is more obvious for larger slip lengths as the velocity increase, controlled by the slip

length, is larger. To get a closer approximation of the partial slip velocity a more

accurate approximation of the velocity gradients will be needed.

This can be further seen when looking at convergence plots for the flows. Figure

4.21 shows a convergence study for the partial slip Poiseuille flows plotting L2

error in velocity against particle spacing. For this convergence study the ratio of

smoothing length to particle spacing, h/dp, was increased as the particle spacing

was decreased according to Quinlan et al. (2006). In Figure 4.21 the red squares

and line correspond to the no-slip Poiseuille flow from the previous section, and
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Figure 4.18: Poiseuille flow profile with partial slip boundary conditions λs = 0.005
compared to analytical solution for particle spacings dp = 0.04 (left) and dp = 0.01
(right).

Figure 4.19: Poiseuille flow profile with partial slip boundary conditions λs = 0.01
compared to analytical solution for particle spacings dp = 0.04 (left) and dp = 0.01
(right).
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Figure 4.20: Poiseuille flow profile with partial slip boundary conditions λs = 0.02
compared to analytical solution for particle spacings dp = 0.04 (left) and dp = 0.01
(right).

converges with rate 0.51. The blue triangles, green square and black X’s then show

the error for the partial slip flows with slip lengths of λs = 0.005, λs = 0.01, and

λs = 0.02 with the matching coloured lines showing the trend of convergence. The

λs = 0.005 and λs = 0.01 converge with rates 0.35 and 0.24 respectively. The

λs = 0.02 case however does not converge, and the two finer resolutions failed

with the h/dp ratios stated in Table 4.6, these were rerun with larger ratios finally

running with ratios of 3.25 and 6.25 respectively.

To test if the error introduced is from the velocity gradient calculation method or an

error introduced from the zeroth order MDBC velocity interpolation, the cases were

rerun with the first order consistent Marrone et al. (2011) boundary treatment based

on an MLS interpolation. The errors for the Marrone boundary runs are shown in

4.22 with the same colours and shapes used as for MDBC. As can be seen the same

issue occurs with the first order consistent method, and the finer resolution with

the larger slip length also fail unless the much larger h/dp ratios were used. It is

clear therefore that a more accurate approach for the velocity gradient calculation

needs to be used to ensure accurate results.
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Figure 4.21: Convergence studies for partial slip Poiseuille flows

Figure 4.22: Convergence studies for partial slip Poiseuille flows
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Non-Newtonian Poiseuille Flow The second test case will also be a Poiseuille

flow but with a non-Newtonian fluid. Since many of Unilever type fluids show

non-Newtonian behaviour it is important to see how both MDBC and the partial

slip boundary conditions work with non-Newtonian flows. Here a shear thinning

power law Poiseuille flow with walls at z = ±l(= 0.5m) is simulated with no-slip

and partial slip boundaries. The fluid stars at rest and is accelerated by a body

force with acceleration of F = 0.1ms−2 in the x direction. Table 4.7 displays the

numerical parameter used for this flow including the power law index n and the

consistency index K.

Table 4.7: Table of numerical parameter for non-Newtonian Poiseuille flow simula-
tions with no-slip and partial slip boundary conditions

dp (m) h/dp K n δ (Molteni) Shifting λs(m) CFL
0.04 2.25 100 0.9 0.1 ON NS 0 0.1
0.02 2.25 100 0.9 0.1 ON NS 0 0.1
0.01 2.25 100 0.9 0.1 ON NS 0 0.1
0.04 2.25 100 0.9 0.1 ON PS 0.01 0.1
0.02 2.25 100 0.9 0.1 ON PS 0.01 0.1
0.01 2.25 100 0.9 0.1 ON PS 0.01 0.1

The analytical solution for a non-Newtonian Poiseuille flow with partial slip bound-

ary conditions is given by

u(z) =
n

n+ 1

(
ρF

K

)1/n(
l(n+1)/n − 2(n+ 1)λsl

1/n

n
− z(n+1)/n

)
, (4.31)

where setting the slip length to zero recovers the no-slip solution, as found in Ferrás

et al. (2012).

Figures 4.23 and 4.24 show the flow profiles of the SPH data compared to the

analytical solutions for the no-slip and partial slip flows respectively. The plots show

that the SPH data tend to under predict the analytical solution and the agreement

between the getting closer as the partial spacing reduces. The under prediction of

the flow velocity is much larger in the partial slip flow. Looking at the partial slip

flow, focussing on the boundaries and the partial slip velocity, it can be seen that

none of the resolutions accurately predict the partial slip velocity. The two larger

particle spacings under predict and the finest one over predicts. This shows that

to accurately calculate the partial slip velocity a more accurate velocity gradient

calculation is needed, especially for non-Newtonian flows. However the current

method still gives approximate agreement. Figure 4.25 shows a convergence study

for each of the flows, plotting L2 error in velocity against particle spacing. The
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Figure 4.23: Non-Newtonian Poiseuille profile with no-slip boundary conditions
showing comparison between analytical solution and SPH data for three resolutions,
units in m and ms−1.

Figure 4.24: Non-Newtonian Poiseuille profile with partial slip boundary conditions
showing comparison between analytical solution and SPH data for three resolutions,
units in m and ms−1.
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Figure 4.25: Non-Newtonian Poiseuille flow convergence study where NS indicate
no-slip flow and PS partial slip with slip length λs = 0.01m.

error in both flows gets smaller as the particle spacing is reduced, which is to be

expected from the flow profiles. The larger rate of convergence of the partial slip

flow is due to the larger under prediction of the flow velocity for the larger particle

spacing flows. While only one slip length and one non-Newtonian fluid have been

investigated, this test case is encouraging showing that both MDBC and partial slip

can work with non-Newtonian flows.

4.2.2.2 3D Rheometer

The final test case is a numerical flat plate rheometer that has the same design

as the one used in Malm (2015). This test case is considered as it is real example

of a partial slip flow, the rheometer having been used to experimentally measure

partial slip in a number of fluids. The real rheometer consists of two flat plates

with fluid sandwiched in the middle, the plates are 3cm in radius and held 500 µm

apart, a sketch of the rheometer is shown in Figure 4.26. The bottom plate remains

stationary while the top plate spins applying a shear rate to the fluid.

Figure 4.26: Sketch of the rheometer used by Malm (2015).
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Figure 4.27: Dynamic viscosity of DNA solution (left) and two power law curves
used to match the viscosity overlaid on the same plot (right), produced using data
extracted from plots in Malm (2015).

Of the many fluid tested in the rheometer, the one with the most complete data

that could be reproduced numerically, and displaying slip at the boundaries, was

of a DNA solution with concentration of 5mg/mol. With an applied shear rate

of 100s−1 the viscosity was measured to be 0.056Pas and the density of the fluid

was approximately 1000kgm−3. The average speed of the top plate was 25mms−1

resulting in a Reynolds number of around Re = 0.223 (Malm (2015)). Malm mea-

sured the rheology of the DNA sample, from which the above viscosity was found.

Using this data a non-Newtonian model could be fitted to the data, as in Figure

4.27. The DNA solution is shear thinning and the viscosity can be fitted with two

power law models depending on the shear rate, as shown in the right of Figure 4.27.

However due to very restrictive non-Newtonian viscosity time step and the very

large number of particles required to simulate the rheometer in 3 dimensions, this

simulation was not possible.

Instead a scaled down Newtonian approximation of the rheometer was simulated

instead with comparisons made at steady state when behaviour is predominately

Newtonian. The numerical rheometer had a radius of 1mm, a depth of 500 µm and

the top plate spins at a speed of 100rads−1. The particle spacing used was 5×10−5

resulting in 26000 particles and the simulation was run for 0.3s of physical time.

The rest of the numerical parameters used are displayed in Table 4.8. Shifting

is not used for this test case as it was found not to be needed due to the short

time of simulation required to reach steady state. The simulation was run twice,

Table 4.8: Table of numerical parameters for Rheometer flow

dp (m) h/dp ν (Laminar) δ (Molteni) Shifting CFL
5× 10−5 1.75 0.000056 0.1 OFF 0.1

once with a no-slip bottom plate and again with a partial slip bottom plate with
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slip length λs = 1.5 × 10−5m calculated using data extracted from Malm (2015).

Since the section of rheometer being simulated would have had fluid outside this

domain, this was represented by boundary particles to prevent ejection outside the

computational domain as the top plate spins.

To ensure that changing the size of the rheometer and measuring the velocity at a

different radius would still give a comparable result, the velocity was measured at

three radii in the flow. For each radius measured the velocity was normalised by the

top plate velocity at that radius and the depth normalised by the total rheometer

depth. This same normalisation is used by Malm (2015). The results are plotted

in Figure 4.28 and they show good agreement with each other. This shows that

the numerical result should be comparable to the experimental one at the chosen

radius.

The normalised velocity profile for SPH rheometer with a partial slip plate is plotted

alongside the Malm data in Figure 4.29. The SPH data shows good agreement

with the Malm data, especially near the bottom partial slip boundary. The two

sets of data diverge slightly towards the middle of the flow which could be use

to the simplifications made for the numerical model not fully capturing some non-

Newtonian effects. The SPH data again shows good agreement near the top rotating

boundary where the no-slip condition is known to be well captured by MDBC.

4.2.3 Summary

In this section a new SPH partial slip boundary condition has been presented and

validated in two and three dimensions using analytical solutions and experimental

data. While the method shows good agreement to analytical solutions for small

slip lengths, errors in the flow velocity tend to increase with the size of the slip

length. This was caused by an under prediction of the partial slip velocity coming

from an under prediction of the velocity gradient. This result could be improved

with a higher order velocity gradient calculation. The partial slip condition, and

the base MDBC no-slip condition, were shown to be accurate for a non-Newtonian

flow showing good agreement with analytical solutions. When compared to a real

example of a 3D partial slip flow, a rheometer used to measure slip lengths, the

method showed good agreement with experimental readings despite constraining

the model to be Newtonian.
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Figure 4.28: Normalised velocity profiles for SPH numerical rheometer with no-slip
bottom plate measured at three radii, units are in meters.

Figure 4.29: Normalised Rheometer velocity profile comparing SPH results with
partial slip bottom plate (Red) to data extracted from Malm (2015)(Black).
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Chapter 5

Pouring Experiments

All CFD methods need some form of validation to show that they capture the

physics of different types of problems. To do this for problems involving the pouring

of fluids from containers experimental data is required. The aim of this chapter

therefore is to describe and present the results of the experiments completed to

validate numerical results for this project. The outcome of the experiments will be

the measurement of the mass of fluid poured from two types of container for two

different fluids. A range of pouring angles will be used and the mass of fluid left in

the container after the pouring process will be found.

5.1 Experimental set up

The experiments took place at Unilever R & D in Port Sunlight with the experi-

mental set up described as follows, with diagrams of the set up included in Figures

5.1 and 5.2. A test vessel filled with fluid is placed on the rotating arm of a pouring

rig and held in place by a brace screwed down on top of the vessel. The vessels

tested include a plastic beaker filled with 500ml of fluid; and a square based plastic

bottle filled with 600ml of fluid, a photo of the vessels is shown in Figure 5.3. A

volume of 500ml was chosen for the beaker as it did not completely fill the beaker,

and when the beaker was poured it was done so over the back edge so not to use

the spout. The bottle was filled to 600ml as is was close to the top of the bottle but

not completely full. This avoids the issue of the surrounding air causing the bottle

to glug when it is poured. The bottle itself was chosen for it’s wide neck, that aids

in the prevention of glugging, and it’s square base that should be easier to replicate

in the CFD model.
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Figure 5.1: Diagram of the experiment set up. The bottle is held in place between
the rotation arm base and bottle brace. The whole arm is rotated clockwise around
the centre of rotation to the angle set using the angle selection wheel.

Figure 5.2: Diagram of the experiment set up after the bottle has been rotated and
the fluid poured out of the bottle into the catchment vessel. After a pre-set time
the bottle returns to its start position.
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Figure 5.3: The vessels to be tested in the pouring rig. A plastic beaker to be filled
to the 500ml line, and a square based plastic bottle to be filled to the 600ml line.

The angle of rotation is set using a selection wheel with increments of 2 degrees,

and the rotational speed and hold time are programmed into the rig’s control box.

For all test cases a speed setting or 2.5 is used, this corresponds to a rotational

speed of 2.91 RPM according to the user manual, or 17.46 deg/s. The hold time is

the time that the test vessel is held at the desired angle after initial rotation before

returning to the starting position, the hold times used for these experiments are

stated blow for each case.

Once all the settings have been selected the pouring rig rotates the arm clockwise,

and the fluid is poured out of the test vessel into an awaiting catchment vessel to

the side of the rig. After the required hold time has been reached the arm rotates

anti-clockwise back to its starting position.

5.1.1 Fluids Tested

Two fluids were tested using this set up and using both containers. The fluids

tested were tap water taken from taps in the lab and a 0.4% solution of Carbopol,

an example of a shear thinning fluid. Carbopol is a water soluble polymer that is

often used as a thickener in industry. Two 10l solutions were mixed by diluting a 4%

solution to the required concentration followed by adding a basic solution of sodium
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Figure 5.4: Carbopol sample 1: Plot of shear rate vs dynamic viscosity on a log log
scale

Figure 5.5: Carbopol sample 2: Plot of shear rate vs dynamic viscosity on a log log
scale
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hydroxide to raise the pH to a reading of 5.3. Increasing the pH of the solution

acts to thicken the solution to an acceptable level. Samples of the two formulations

were taken and the shear rate, shear stress and dynamic viscosity of the samples

were measured using a pot and bob rheometer. The measurements were taken at

two temperatures of 23oC and 28oC as these cover the temperature range measured

in the lab used for the pouring. The measurements for shear rate vs viscosity are

plotted in Figures 5.4 and 5.5. As Carbopol is a shear thinning fluid, the effective

dynamic viscosity µeff takes the form

µeff = Kγ̇n−1, (5.1)

where K is the flow consistency index and n is the flow behaviour index. From the

data plotted in Figures 5.4 and 5.4 the values for K and n can be found for each of

the samples, these are found in Table 5.1.

Table 5.1: Table of temperatures and flow consistency and flow behaviour indexes
from Carbopol rheometer measurements

Carbopol sample 1 Carbopol sample 2
Temp K n− 1 n Temp K n− 1 n

23 4.6514 −0.705 0.295 23 5.0780 −0.711 0.289
28 4.3720 −0.710 0.290 28 4.8630 −0.716 0.284

The lab in which the pours took place was not temperature controlled but during the

Carbopol pouring had a temperature ranging between 25.5oC and 26.8oC measured

at 1 hour intervals, which is within the range of the rheometer measurements. Since

the values of K and n do not change a large amount across the temperature range,

a numerical model can then use the median of the two rheometer readings for each

of the samples. For Carbopol sample 1 the values will then be taken as K = 4.5117

and n = 0.2925 and for Carbopol sample 2 K = 4.9705 and n = 0.2865. All of

the pours using the bottle were done using the Carbopol from the sample 1 and

the pours using the beaker from sample 2. After each pour the leftover Carbopol

was emptied into a third bucket and not reused due to air bubbles forming in the

fluid. Due to the high viscosity of the Carbopol when sat in the bucket these air

bubbles took a long time to rise to the surface and so every effort was made to

avoid aeration of the Carbopol. After letting the Carbopol sit in the lab overnight

the majority of the bubbles would have disappeared allowing for leftover Carbopol

to be re-used the following day.
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5.1.2 Method

For each individual pour a number of masses were measured in order to find out

how much fluid is poured from a container and how much is left over. The following

measurements were taken:

� TVBD (Test vessel before decant) this is the mass of the test vessel when it

is empty

� TVAD (Test vessel after decant) this is the mass of the test vessel when it has

been filled with the test fluid, before pouring

� MJBD (Measuring jug before decant) the mass of a measuring jug used to

decant the test fluid before decanting

� MJAD (Measuring jug after decant) the mass of a measuring jug used to

decant the test fluid after decanting

� CVBP (Catchment vessel before pouring) the mass of the tub used to catch

the poured fluid before pouring

� CVAP (Catchment vessel after pouring) the mass of the tub used to catch the

poured fluid after pouring

� TVAP (Test vessel after pouring) mass off the test vessel after the test fluid

has been poured

Using the masses TVBD, TVAD, MJBD and MJAD the mass of fluid inside the test

vessel can be found, and similarly the mass poured can be found using the masses

CVBP, CVAP, TVAD and TVAP. the mass of fluid left in the bottle is then found

as the difference between the start mass and the end mass.

For the water cases both the bottle and beaker were filled using a measuring jug

before pouring. After the pour and final mass measurements the remaining fluid

was poured away and the containers dried where possible before refilling for the

next pour. For the Carbopol cases both the beaker and the bottle were filled using

60ml syringes to reduce spillage between the 10l buckets and the containers to be

tested and to reduce aeration of the Carbopol in the bottle and beaker. After each

pour the remaining Carbopol was poured into a separate bucket and the containers

washed with water and dried as much as possible. The beaker was dried with paper

towels, the bottle was left upside down to drain before the inside of the neck and

shoulder of the bottle dried with paper towel.
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5.2 Results

In the following sections the masses found are recorded in tables for each of the

fluids and test vessels.

5.2.1 Experimental Error

Due to a issue with the pouring rig, during the pouring involving water the pouring

rig would sometimes over rotate the pouring arm beyond the desired angle, however

when this happened the angle selection wheel would also continue to rotate and give

the reading of the final angle attained when it returned to its starting position. The

magnitude of error varied from pour to pour with the final angle being between 2 and

22 degrees above the desired angle. In some cases the pouring arm would rotate 180

degrees thus holding the test vessel upside down and remain there until the rig was

turned off and the arm manually rotated back to its start position. This explains

the random order or angles used in the tables for water. Before the experiments

using the Carbopol were done, the angle selection wheel was tightened fixing this

issue. The issue was found to be a loose nut on the angle selection wheel which

after being tightened allowed for the selected angle to be reached as required.

The measurement error in the experiments were ±1o for the angle selection and

±0.01g for the mass. The large error in the angle was due to the angle selection

wheel having increments of 2o. The window used to select the angle also did not

have an accurate selection indicator that may have introduced further error in the

angle selected, this can be seen in Figure 5.6.

Figure 5.6: Close up image of the angle selection wheel and window.
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5.2.2 Water results

The results for pouring using water are organised as follows: Table 5.2 shows the

mass and angle measurements for water poured from a plastic beaker filled to the

500ml line and the data is plotted in Figure 5.7; Table 5.3 shows the mass and angle

measurements for water poured from a plastic bottle filled to the 600ml line and

the data is plotted in Figures 5.8 and 5.9. The data for the bottle is split between

two plots so that all the data can be clearly shown, the first plot shows angles below

100 degrees and the second above 100 degrees.

Table 5.2: Table of mass measurements, percentage mass left, pouring angles and
hold times (T) for pouring of water from a plastic beaker

# Start mass(g) Poured mass(g) Remainder % left Angle(deg) T(s)

1 499.95 489.75 10.21 2.04 90 1
2 500.13 480.34 19.75 3.95 90 1
3 500.87 477.81 23.07 4.60 88 1
4 500.39 464.21 36.18 7.23 86 1
5 500.59 500.20 0.40 0.08 96 1
6 497.82 497.41 0.41 0.08 92 1
7 499.07 476.48 22.59 4.53 88 1
8 494.77 485.70 9.07 1.83 90 1
9 500.50 498.86 1.64 0.33 92 1
10 500.00 491.47 8.53 1.71 90 1
11 495.77 495.48 0.29 0.06 96 1
12 503.84 503.41 0.43 0.09 96 1
13 502.77 502.47 0.30 0.06 100 1
14 494.78 443.67 51.11 10.33 84 1
15 499.57 490.03 9.54 1.91 90 1
16 498.63 490.75 7.88 1.58 90 1
17 498.96 463.04 35.92 7.20 86 1
18 496.92 487.71 9.21 1.85 90 1

Plotting the data highlights a number of outlying data points: one point for the

beaker pours with 90 degree pour angle, and two points for the bottle pours with

pour angles or 94 and 112 degrees respectively. These irregularities are likely down

to the over rotation issue seen with the pouring rig. After selecting the angle and

setting the arm to rotate the angle selection wheel would stick during the rotation

and causing the arm to over rotate somewhere between 2 and 22 degrees. The arm

would then stop and hold for the prescribed time before rotating back to its start

position. The angle selection wheel would then indicate the final angle reached,

however there could have been an error in this value resulting in the outlying data

points. For example the mass of the beaker outlier matches more closely with the
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Table 5.3: Table of mass measurements, percentage mass left, pouring angles and
hold times (T) for pouring of water from a plastic bottle

# Start mass(g) Poured mass(g) Remainder % left Angle(deg) T(s)

1 603.13 340.51 262.63 43.54 92 3
2 600.67 388.81 211.86 35.27 94 3
3 599.90 287.80 312.10 52.03 90 3
4 604.15 186.63 417.52 69.11 86 3
5 603.70 238.03 365.67 60.57 88 3
6 601.49 289.67 311.82 51.84 90 3
7 603.23 257.16 346.07 57.37 94 3
8 602.05 438.27 163.78 27.20 96 3
9 601.83 438.65 163.19 27.11 96 3
10 601.62 289.36 312.26 51.90 90 3
11 600.00 287.39 312.08 52.01 90 3
12 602.76 188.92 413.84 68.66 86 3
13 604.64 136.66 467.98 77.40 84 3
14 604.85 239.96 364.89 60.33 88 3
15 602.92 387.05 215.87 35.80 94 3
16 597.86 593.40 4.46 0.75 118 10
17 600.60 593.33 7.26 1.21 116 10
18 600.77 584.44 16.33 2.72 112 10
19 603.36 599.93 3.44 0.57 120 10
20 603.62 598.36 5.26 0.87 116 10
21 601.03 592.91 8.12 1.35 114 10
22 603.70 598.31 5.39 0.89 116 10
23 605.85 596.20 9.66 4.59 110 10
24 601.67 594.45 7.23 1.20 114 10
25 602.64 590.98 11.66 1.93 108 10
26 602.16 597.55 4.61 0.77 118 10
27 605.12 599.45 5.66 0.94 116 10
28 604.05 599.84 4.21 0.70 118 10
29 601.53 595.23 6.29 1.05 116 10
30 602.71 595.96 6.75 1.12 114 10
31 604.21 600.50 3.71 0.61 118 10
32 605.72 601.68 4.04 0.67 120 10
33 600.90 597.21 3.68 0.61 120 10
34 599.12 595.76 3.36 0.56 122 10
35 602.25 599.60 2.65 0.44 122 10
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Figure 5.7: Plot showing the mass of water remaining in the beaker after pouring
with error bars

Figure 5.8: Plot showing the mass of water remaining in the bottle after pouring
for small angles less than 100 degrees with error bars
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pouring angle of 88 degrees than 90, so the final pouring was likely closer to 88 than

to 90.

From the results it can be seen that a larger pouring angle results in less fluid

remaining in the container after the pouring has finished. This is to be expected.

For beaker angles over 90o result in the beaker being close to empty after the pouring

has finished with only a few droplets of water remaining. The bottle however never

fully empties, this is due to a small amount of liquid getting trapped in the shoulder

of the bottle towards the end of the pouring. A larger pouring angle could over

come this but could result in the bottle glugging which is not desired.

Figure 5.9: Plot showing the mass of water remaining in the bottle after pouring
for large angles over 100 degrees with error bars

5.2.3 Carbopol results

The results for pouring using the Carbopol are organised as follows: Table 5.4

shows the mass and angle measurements for Carbopol poured from a plastic beaker

filled to the 500ml line and the data is plotted in Figure 5.10; Table 5.5 shows the

mass and angle measurements for Carbopol poured from a plastic bottle filled to

the 600ml line and the data is plotted in Figure 5.11. Plotting the data shows no

outlying data points, an improvement over the pours involving water. This was

achieved after finding out that the angle selection wheel could be tightened and

thus avoiding the over rotation issue. The wheel was re-tightened each time the

angle was changed to ensure the correct pouring angle was attained.
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Figure 5.10: Plot showing the mass of Carbopol remaining in the beaker after
pouring with error bars

Figure 5.11: Plot showing the mass of Carbopol remaining in the bottle after pour-
ing with error bars
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Table 5.4: Table of mass measurements, percentage mass left, pouring angles and
hold times (T) for pouring of Carbopol from a plastic beaker

# Start mass(g) Poured mass(g) Remainder % left Angle(deg) T(s)

1 502.10 410.23 91.88 18.30 88 2
2 504.41 412.42 92.00 18.24 88 2
3 505.71 414.84 90.72 17.94 88 2
4 503.60 410.47 93.04 18.47 88 2
5 507.17 412.99 94.19 18.57 88 2
6 498.45 421.84 76.61 15.37 90 2
7 503.71 426.79 76.92 15.27 90 2
8 501.86 425.41 76.46 15.23 90 2
9 500.32 428.31 72.02 14.39 90 2
10 498.76 425.06 73.71 14.78 90 2
11 501.16 436.21 64.96 12.96 92 2
12 501.91 438.57 63.35 12.62 92 2
13 499.26 433.76 65.50 13.12 92 2
14 500.23 436.04 64.20 12.83 92 2
15 500.22 437.69 62.54 12.50 92 2

The results follow the trend of larger pouring angle resulting in less fluid remaining

in the container after the pouring is finished, which is to be expected. Neither the

beaker nor the bottle fully emptied for the pouring angle chosen, even when rotated

beyond the horizontal. The beaker could be emptied further if a larger pouring angle

was used or the hold time increased above the 2 seconds used. However due to the

high viscosity at low shear rates this will likely a long time. Close to the start of the

pouring a large mass of the fluid will be moving together causing high shear near

the container surface and thus a lowering of the viscosity. But when the fluid layer

gets thinner as the test vessel is held in place, the viscosity will increase again and

the amount of fluid that can flow out of the vessel will decrease. The bottle could

also have been emptied further by using larger angles or hold times. However the

bottle will also suffer from some fluid being frapped in the shoulder of the bottle.

Unfortunately due to the limited supply of Carbopol further tests could not be

performed to investigate larger angles and hold times.
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Table 5.5: Table of mass measurements, percentage mass left, pouring angles and
hold times (T) for pouring of Carbopol from a plastic bottle

# Start mass(g) Poured mass(g) Remainder % left Angle(deg) T(s)

1 602.58 189.90 412.69 68.49 90 6
2 600.09 186.44 413.66 68.93 90 6
3 607.77 193.53 414.25 68.16 90 6
4 610.17 196.85 413.32 67.74 90 6
5 604.48 189.47 415.02 68.66 90 6
6 600.57 186.55 414.03 68.94 90 6
7 606.75 292.52 314.23 51.79 94 6
8 606.65 289.74 316.92 52.24 94 6
9 605.23 289.69 315.34 52.12 94 6
10 603.23 287.53 315.70 52.33 94 6
11 602.42 286.42 316.01 52.46 94 6
12 603.86 286.56 317.31 52.55 94 6
13 607.84 341.92 265.92 43.75 96 6
14 605.63 339.99 265.65 43.86 96 6
15 605.28 339.79 265.49 43.86 96 6
16 607.06 344.31 262.75 43.28 96 6
17 614.64 349.81 264.83 43.09 96 6
18 609.48 344.93 264.55 43.31 96 6
19 606.41 429.56 176.85 29.16 100 6
20 607.62 429.98 177.65 29.24 100 6
21 604.64 426.79 177.86 29.42 100 6
22 607.99 429.36 178.64 29.38 100 6
23 608.70 431.26 177.44 29.15 100 6
24 604.01 427.35 176.67 29.25 100 6
25 616.63 503.14 113.49 18.40 104 6
26 617.88 506.48 111.41 18.03 104 6
27 613.63 499.99 113.65 18.52 104 6
28 612.14 498.60 113.55 18.55 104 6
29 622.67 509.07 113.60 18.24 104 6
30 615.59 502.05 113.54 18.44 104 6
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5.3 Summary

In this Chapter the experimental method and results of pouring flows involving two

fluids and two test container shapes have been presented. The results of remaining

mass vs pouring angle have been plotted and any anomalous results highlighted, and

the reasons for them explained. As expected the results show that larger pouring

angles results in less fluid remaining in the test container. For cases involving water

neither the beaker nor the bottle could be fully emptied with only a small number

of droplets remaining in the beaker. The bottle could not be fully emptied due

to fluid being trapped in the shoulder section of the bottle, and larger angles that

would have been needed to overcome this possibly resulting in undesired glugging.

The cases involving Carbopol also did not fully empty, possibly due to pouring

angles and hold times not being large enough to do so. However a limited supply

of Carbopol restricted further pouring. The rheology of two samples of Carbopol

have been analysed and the data required to model the non-Newtonian behaviour

extracted. Using this data a non-Newtonian SPH model can be tested and validated

for the use of pouring flows, however due to the computational expensive of Non-

Newtonian models in SPH this can not be presented in this thesis.
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Chapter 6

Complex Applications

In this Chapter the MDBC method will be further tested using three more complex

applications than was included in Chapter 4, with comparisons to experimental

results.

6.1 3D Dam Break

The first test case is a 3D dam break over a cuboid obstacle, this is SPHERIC

Benchmark test case #2 with comparison to the experimental data of Kleefsman

et al. (2005). The simulation set-up is shown in Figure 6.1 showing a column

of fluid that falls under gravity before impacting the obstacle at the opposite end

of the tank. The fluid depths are measured at the points H1 − 4. When the fluid

impacts the obstacle the pressure is measured at the pressure gauges P1−8 shown in

Figure 6.2. This is an interesting test case as it allows testing of the model to predict

accurate free surface elevations and pressure measurements of fluid impacting on a

structure. The simulation is run for 6 seconds of physical time with the numerical

parameters displayed in Table 6.1. The MDBC approach used for this example is

for density extrapolation only. Shifting is not used for this test case of a highly

transient flow.

Table 6.1: Table of numerical parameter for 3D dam break simulations.

dp (m) h/dp α (Artificial) δ (Fourtakas) Shifting CFL
0.02 2 0.05 0.1 OFF 0.2
0.01 2 0.05 0.1 OFF 0.2

A time instant at t = 0.8s is shown in Figure 6.3 comparing the DBC result on the

top and MDBC result on the bottom. There is a clear difference in the flow over
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Figure 6.1: Initial set up of 3D damn break with obstacle showing locations of
surface elevation measurements H1− 4.

Figure 6.2: Location of the pressure measurement points P1 − 8 on the surface of
the obstacle.
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the top of the obstacle between the boundary conditions. The gap created by DBC

can also be seen along the sides of the top image in front of the original location of

the water column.

Figure 6.3: Instant of dam break after impact with obstacle at t = 0.8s with DBC
on the top and MDBC on the bottom. Particles coloured by pressure.

Figure 6.4 shows plots of the surface elevation versus times at three of the mea-

surement points: H2; H3 and H4. The result for both resolutions using MDBC

are shown along with the finer resolution DBC result, these are both compared to

the experimental data. Measurement point H4 is located in the initial column of

fluid, both the DBC and MDBC surface elevations show good agreement with the

experimental results with MDBC giving a closer agreement. This is also true for

the measurements at location H3 which is around half way between the initial water

column and the obstacle. The MDBC measurements also show good agreement with

experiment at location H2, in front of the obstacle, the DBC result however shows a

large spike in surface elevation at around the time of impact before returning down

and following the experimental result again.

Figure 6.5 shows plots of pressure versus time measured at pressure gauges P2,

located on the front of the obstacle, and P5, located on the top face close to the

corner. The MDBC measurement at P2 is again close to the experiment and gen-

erally closer than the DBC result. A closer look at the peak pressures measured at

P2, shown in the middle plot, show that DBC greatly under predicts the peak pres-

sure, where as MDBC gives good agreement. It should be noted that the numerical
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Figure 6.4: Plots of surface elevation versus time measured at locations H4 (top),
H3 (middle) and H2 (bottom) for the two MDBC resolutions and the finer DBC
resolution compared to experimental result.
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Figure 6.5: Plots of surface elevation versus time measured at locations P2 (top
and middle) and P5 (bottom) for the two MDBC resolutions and the finer DBC
resolution compared to experimental result. The middle plot shows a close up view
of the pressure at P2 between 0.2s and 1.2s during the impact of the water on the
obstacle.
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pressure probe used for the DBC measurements was placed a distance h away from

the boundary to allow for this measurement to be taken. At P5 the finer resolution

MDBC and DBC results show good agreement with the experiment. The coarser

resolution MDBC however shows some large fluctuations in the pressure that are

not seen for the finer resolution.

Computational Cost The run times for the sloshing tank test case on a GPU

for both DBC and MDBC with particle spacing dp=0.002m are shown in Table 6.2,

along with a ratio of the run times showing the increased computational cost of

MDBC on selection of hardware.

Table 6.2: Table of run times of 3D Dam Break using different hardware.

Hardware dp(m) DBC(s) MDBC(s) MDBC/DBC
CPU i7-6700K 0.02 9998 12442 1.24

Tesla K40 0.02 624 768 1.23
Ge Force RTX 2080 Ti 0.02 224 252 1.12

Tesla V100 0.02 171 190 1.11

Tesla K40 0.01 7366 8700 1.18
Ge Force RTX 2080 Ti 0.01 1406 1586 1.13

Tesla V100 0.01 1050 1180 1.12

This test case demonstrates that SPH with MDBC can predict highly transient free

surface flow and pressures quite accurately.

6.2 Fish Pass

The second test case is a numerical fish pass with comparisons to data from exper-

iments run at the University of Parma. A diagram of the numerical fish pass used

in shown in Figure 6.6.

The fish pass comprises of a 300mm wide channel tilted at a 4.43o angle split into

four 625mm long pools separated by 20mm thick walls. Each wall includes a gate

of height 75mm and width 80mm in one of the bottom corners and a weir of height

177mm (from the bottom of the wall) and width 80mm in the opposite top corner.

The orientation of the gates and weirs swaps between each wall as shown in Figure

6.6. The walls can be changed so that they include only gates, only weirs or both

gates and weirs. By changing the set up of the walls and the flow rate into the

fish pass, the flow through the gates and the weirs can be studied. During the

experiments the water depth in each pool was measured in the centre of each pool,

measuring from the top of the weir in wall no.3. Table 6.3 shows the flow rates,
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Figure 6.6: Diagram of the numerical fish pass showing the locations of the walls
and the gates and weirs. The numbering system used for the pools and walls is also
shown.

pool depths and wall set ups of interest to the current work, where H(in) is the

water depth in the most upstream pool.

Table 6.3: Table of flow rate, pool depths and baffle set ups for fish pass simulations.
Water heights measured from the top of weir no.3.

Q# Q (l/s) Set up H(in)(mm) H(p1)(mm) H(p2)(mm) H(p3)(mm)
Q1 1.7 Gate Only 3.9 -10.4 -24.9 -37.2
Q2 2.45 Gate Only 46.2 15.9 -15.7 -44.9

Q3 2.267 Weir Only 166 115 63 13
Q4 1.963 Weir Only 160 109 57 7
Q5 1.634 Weir Only 154 103 51 1

Q6 6.0 Gate & Weir 169.9 117.9 78.0 38.4

The SPH fish pass uses the inlet-outlet boundary condition in the upstream and

downstream pools as shown in Figure 6.6 to deal with the flow into and out of the

fish pass. The water depths in each pool were set to the experimental values from

Table 6.3, with H(in) used for the inlet and H(p3) for the outlet. The inlet and

outlet zones were prescribed an accelerated linear velocity across the depth of the

pool, according to the water depth and flow rate in the inlet and outlet pools. Each

simulation was run for 10 seconds of physical time reaching a steady state, and the

numerical parameters used are displayed in Table 6.4. For most of the flow rates

only the two coarsest resolutions were used with the exception of Q2 in which a

third particle spacing was run. In the results the DBC method is compared to the

density only extrapolation MDBC method. Shifting is included for these test cases
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to aid the particle distribution and avoid clumping, although the overall effect was

minimal .

Table 6.4: Table of numerical parameter for fish pass simulations

dp (m) h/dp α (Artificial) δ (Fourtakas) Shifting CFL
0.01 1.3 0.001 0.1 ON 0.2
0.005 1.3 0.001 0.1 ON 0.2
0.0025 1.3 0.001 0.1 ON 0.2

(Q2 only)

Gate only flows - For the gate only flows, denoted by Q1 and Q2 in Table 6.3,

the water levels are very low and so the water flows through only the gates. An

example of the flow showing particle velocity at the end of the 10 seconds is shown

in Figure 6.7 for flow rate Q2 with a particle spacing of dp = 0.005m. The depths

in pools 1 and 2 and the flows rates through gates 2 and 3 were measured during

the simulation and compared to the experimental result, theses results are shown

in Figures 6.8 and 6.9 for flow rate Q2, all plots averaged using a moving mean over

an interval of 15 values to smooth out the result.

Figure 6.7: Fish pass flow through gates only for flow rate Q2 and particle spacing
dp = 0.01m, fluid particles coloured by velocity magnitude.

For flow rate Q2, three particle spacings were simulated comparing the DBC and

MDBC boundary conditions. Figure 6.8 shows the SPH water depths measured in

pools 1 and 2 compared to the experimental data. The blue lines correspond to a

particle spacing of dp = 0.01m, red to dp = 0.005m and green to dp = 0.0025m, for

each particle spacing the darker coloured line is using DBC and the lighter MDBC.
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The water levels in pool 1 get closer to the experimental depth as the particle

spacing is refined, once the flow has reached steady state there is little difference

between the DBC and MDBC results for each resolutions. The water levels in pool

2 get larger as the particle spacing is decreased with the closest result coming from

the dp = 0.01m MDBC simulation. It should be noted however that the difference

in depth between the dp = 0.005m result and the experiment is around 1dp and the

difference for dp = 0.0025m around 2dp, so overall still a reasonable result.

The flow rates measured through gates 2 and 3 are plotted in Figure 6.9. These

plots show that both the DBC and MDBC flows give good agreement to the ex-

perimental result for all three resolutions once the flow reaches steady state. The

results for flow rate Q1 are similar to those shown for Q2 with flow rates giving

overall good agreement and the pool depths having a difference of around 1− 2dp

from the experimental readings. The plots produced for flow rate Q1 are included

in Appendix B.
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Figure 6.8: Plot showing water depths in pools 1 and 2 for flow rate Q2 for three particle spacings: dp = 0.01m (blue); dp = 0.005m
(red), and dp = 0.0025m (green). DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.
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Figure 6.9: Plot showing flow rates through gates 2 and 3 for flow rate Q2 for three particle spacings: dp = 0.01m (blue); dp = 0.005m
(red), and dp = 0.0025m (green). DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.
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Weir only flows - For the weir only flows, denoted by Q3, Q4 and Q5 in Table

6.3, the gates in the walls are blocked and so the water can flow over the weirs only.

An example of the flow showing particle velocity at the end of the 10 seconds is

shown in Figure 6.10 for flow rate Q3 with a particle spacing of dp = 0.005m. The

depths in pools 1 and 2 and the flows rates over weirs 2 and 3 were measured during

the simulation and compared to the experimental result, theses results are shown

in Figures 6.11 and 6.12 for flow rate Q3, all plots averaged using a moving mean

over an interval of 15 values to smooth out the result.

Figure 6.10: Fish pass flow over weirs only for flow rate Q3 and particle spacing
dp = 0.01m, fluid particles coloured by velocity magnitude.

For flow rate Q3 two particle spacings were used. The water depths measured in

pools 1 and 2 are plotted in Figure 6.11 for the two particle spacings and boundary

conditions. The blue lines show results with dp = 0.01m and red lines dp = 0.005m

with darker colours for DBC and lighter colours for MDBC. The water depths show

good agreement within 1dp of the experimental measurement in both pools for

both particle spacings. For each particle spacing the MDBC result shows a closer

agreement to the experiment, and the coarser resolution shows a closer agreement

than the finer resolution.
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Figure 6.11: Plot showing water depths in pools 1 and 2 for flow rate Q3 for three particle spacings: dp = 0.01m (blue), and dp = 0.005m
(red). DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.
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Figure 6.12: Plot showing flow rates over weirs 2 and 3 for flow rate Q3 for three particle spacings: dp = 0.01m (blue), and dp = 0.005m
(red). DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.
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Figure 6.12 shows the flow rates over weirs 2 and 3 for the two particle spacings

and boundary conditions used. The result show good agreement at steady state

when MDBC is used but worse agreement with DBC. A finer resolution also gives a

better result. The reason for the larger under predictions when using DBC despite

a good prediction for the water depth in the pools immediately upstream from the

weirs is due to the gap that form close to the boundary when using DBC. This

can be seen in Figure 6.13, which shows the fluid particles flowing over weir 2 at

the end of the simulation and the initial particle arrangement for a particle spacing

dp=0.01. The middle panel shows the initial particle arrangement in green with the

boundary particle in black and the black lines show the boundary surface. Looking

at the blue DBC particle after 10 seconds (left) a gap can be seen between the fluid

and the top of the weir that is not present with MDBC (right). When using the

DualSPHysics measure tool to measure the flow rate over the weir this gap causes

issues since some of the points used for the measure tool will be located in this gap

and giving a false lower flows rate reading. The plots produced for flow rates Q4

and Q5 are included in Appendix B.

Figure 6.13: Fluid particles flowing over weir for dp = 0.01m. Initial particle
arrangement (green, centre), DBC after 10 seconds (blue, left), MDBC after 10
seconds (red, right) and the boundary particle forming the wall and weir (black).
The black lines show the real boundary surface.
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PIV measurements - The final fish pass flow is flow rate Q6, for this case the

water level is quite high and the water is able to flow through both the gates and the

weirs. An example of the flow showing particle velocity at the end of the 10 seconds

is shown in Figure 6.14 for flow rate Q2 with a particle spacing of dp = 0.005m.

For this flow rate PIV measurements were taken of the flow velocity along 5 planes

in pool 2, the locations of the PIV planes are shown in 6.15. The more interesting

measurements are the readings taken in planes 1 and 2 that run the length of the

pool, these show the velocity of the water as it travels over a weir and then down

and through the following gate and vice versa. Figures 6.16 and 6.17 show the com-

parison between the PIV measurements and the SPH velocities in the same plane

with dp = 0.01m.

Figure 6.14: Fish pass flow through gates and weirs for flow rate Q6 and particle
spacing dp = 0.01m, fluid particles coloured by velocity magnitude.

PIV plane 1 runs up the right hand side of pool 2 when viewed from above, the

flow enters the pool through a gate and exits over a weir. The PIV plot in Figure

6.16 shows that as the fluid enters through the gate the flow spreads out slightly

and follows the bottom of the pool before curving upwards close to the next wall

and finally flowing over the weir. The thick red lines show more clearly the overall

flow directions through the pool. Both the DBC and MDBC velocity fields show

the fluid flowing through the gate and following the path of the bottom of the pool

before curving upwards near the wall and over the weir. They do not however

capture the spread near the gate. These flow paths are also seen in the velocity

fields of the finer resolution fish pass.
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Figure 6.15: Planes showing where the PIV data measurements were taken in pool
2. Left shows the heights of the planes and their location in the pool, right shows
a birds eye view of pool 2 and the PIV planes.

On the other side of the pool, PIV plane 2 shows the flow over the upstream

weir downwards towards the bottom of the pool and out through the gate. Again

thick red arrows have been added to Figure 6.17 to better show the overall flow

direction. In this case the MDBC results follows the PIV path much closer with the

flow travelling down from the weir towards the bottom of the pool before exiting

through the down-stream gate. The DBC velocity field however spreads out more

after the water flowing over the weir enter the pool. The flow exiting through the

gate also comes from more directions around the gate as can be seen by the red

arrows in the top of Figure 6.17. The closer agreement for MDBC is not seen when

the resolution is increased however. In this case the flow, which can be seen in

Figure 6.14, does not flow downwards towards the bottom of the pool, but instead

staying close to the surface. The DBC result for this finer resolution also follows

this pattern. The PIV plots for these planes are included in Appendix B.
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Figure 6.16: Comparison of velocity vectors in pool 2 plane 1 for DBC (top), PIV
(middle) and MDBC (bottom) with particle spacing dp = 0.01m. The thick red
lines show the overall directions of the flow

138



Figure 6.17: Comparison of velocity vectors in pool 2 plane 2 for DBC (top), PIV
(middle) and MDBC (bottom) with particle spacing dp = 0.01m. The thick red
lines show the overall directions of the flow
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The Reynolds numbers for these fish pass flows are in the region Re = O(10000−
25000) depending on the flow set up, with the set up for the PIV simulations having

a Reynolds number Re = 22471. A Reynolds numbers of this magnitude indicate

that the flow is turbulent. Since the SPH formulation used in this thesis does not

include a turbulence model, much of the turbulent physics in the real flow will not

be being captured in these simulations.

The MDBC approach used for these flows involved the density interpolation only.

The velocities of the boundary particles were set to zero at all times, in the same

way as for the original DBC. Including the velocity interpolation would give the

boundary particles a negative velocity, with respect to the overall flow, slowing

down the fluid close to the boundaries. For the gate and weir only cases it is

expected that this would reduce the flow rates through the gates and weirs due the

layers of slower moving fluid in these regions. For the PIV flow which includes both

the gates and weirs, it is possible that the slower moving fluid going over the weir

could help to better capture the flow plunging down into the pool that currently

is not captured by the finer resolution simulations. It is possible that the speed of

the layer of the fluid going over the weir close to the boundary is preventing the

expected downward flow.

This test case shows that MDBC can be used for flows with complex shaped bound-

aries and work well with inlet outlet boundaries in DualSPHysics. Overall the

results showed good agreement with the experimental data with MDBC giving bet-

ter agreement for flows over the weirs due to the removal of the DBC boundary

gap.
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6.3 Pouring Flows

The final test case is pouring water from rotating cylinders, the aim being to create

numerical models of the experiments presented in Chapter 5. To begin with the

density only extrapolation MDBC method will be used to simulate water being

poured from the measuring jug using DualSPHysics. Two particle spacings are used

with the numerical parameters displayed in Table 6.5. For each resolution seven

final pouring angles were simulated each rotating at the same speed for longer and

longer times. The numerical jug is then held stationary for 1 second before rotating

back towards its initial position. The pouring angles and rotation times modelled

are shown in Table 6.6. Each simulation was run for 8 seconds of physical time,

long enough for the jug to rotate to the desired angle, stop there and rotate back

enough so that the fluid has stopped flowing out of the jug. Shifting is included for

these test cases to aid the particle distribution and avoid clumping.

Table 6.5: Table of numerical parameter for Pouring flow simulations

dp (m) h/dp ν (Laminar) δ (Fourtakas) Shifting CFL
0.0025 1.25 1× 10−6 0.1 ON 0.1
0.001 1.75 1× 10−6 0.1 ON 0.1

Table 6.6: Table of pouring angles and times and speeds of rotation

Angle (degrees) Angular Speed (degrees/s) Rotation time (s) Hold time (s)
84 17.46 4.811 1
86 17.46 4.926 1
88 17.46 5.040 1
90 17.46 5.155 1
92 17.46 5.269 1
94 17.46 5.384 1
96 17.46 5.498 1

During the experiments videos of the pouring process were captured using a GoPro

style camera and instants of the pouring process are compared to the SPH pour

with dp=0.001 in Figure 6.18. The SPH shows a good visual agreement with the

photos for the instants in time shown. The free surface of the SPH pour shows

more break up than the smooth stream seen in the experiment, however there is no

surface tension included in the model to keep free surface particle together. This

could also be improved by using a third smaller particle spacing.
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Figure 6.18: Comparison of experiment and SPH pouring at three points during the
pouring process using particle spacing of dp = 0.001m. The final pouring angle was
88o. Experiment pictures taken from a video captured using a GoPro style camera.
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The jug was filled with enough particles for the total mass of fluid in the jug to

be 500g, the same mass of water used in the experiments. For dp = 0.0025m this

resulted in 32000 fluid particles and 500000 fluid particles for dp = 0.001m. At the

end of the simulation the particles left inside the jug were counted and multiplied

by mass of a fluid particle to find the total mass remaining.

The remaining mass of fluid is shown in Table 6.7 and plotted in Figure 6.19 compar-

ing to the masses from the experiment. The two SPH result show good agreement

with each other with less than 2g difference between the two particle spacings in

the mass left in the jug at the end of the pour. The results however do not show

agreement with the experimental result except by following a similar shaped curve,

as can be seen in Figure 6.19.

For smaller pouring angles (84o − 88o) the jug has not rotated far enough to be

held horizontal, so it is not expected that the jug will fully empty at these angles.

However the SPH results greatly over predict the mass of the fluid left in the jug.

As the angle of rotation increases the magnitude of the over prediction is reduced.

For the larger angles, where the jug has rotated beyond the horizontal, the SPH

still over predicts and never gets close to fully empty until the 94o and 96o pours.

After checking the manufacturer of the jug, VWR (2020), it was found that the

Table 6.7: Table of masses and number of particles remaining in the SPH jugs.

Angle Parts left Mass remaining Parts left Mass remaining
(degrees) (dp=0.0025) (g) (dp=0.001) (g)

84 4554 71.16 69791 69.79
86 3265 51.02 49824 49.82
88 2108 32.94 31930 31.93
90 1111 17.36 16475 16.48
92 434 6.78 5201 5.20
94 155 2.42 1233 1.23
96 62 0.97 631 0.63

jug was made of a plastic called Polypropylene (PP). PP has been shown to be

hydrophobic, for example Brown and Bhushan (2016), so it is possible that there is

an amount of slip at the boundary surface. This however would not account for the

over predictions seen for the smaller pouring angles, and the amount of slip would

likely be very small. Another possibility could be that the angles in the experiment

are wrong and the true pouring angles are 2o larger than what was measured by

the pouring rig used. Looking at the data plotted in Figure 6.19, the SPH points

match reasonably well with the experimental data of the pouring angles 2o smaller

then prescribed. This is possible given the over rotation issue and angle selection
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wheel issues that were experienced during the experiments. In order to test this,

the experiment would need to be repeated and the final pouring angle checked in a

second way not relying on the angle selection wheel.

Figure 6.19: Comparison of SPH and experimental data for pouring angle versus
mass of fluid remaining in the measuring jug.

Despite the discrepancy between the experimental measurements and the SPH re-

sult shown in Figure 6.19 the results show that the SPH method is capable of

modelling the pouring process of Newtonian fluids. The snapshots of the SPH flow

shown in Figure 6.19 look realistic, resembling the the flows in the experiments. The

close agreement between the two particle spacing used is also encouraging. SPH is

therefore capable of simulating these kinds of pouring flows, and suitable for their

study.

Current Problems In order to test the possible partial slip idea for the jug, it

would be useful to rerun the pouring simulations using the MDBC method with

the velocity extrapolation. However there is an issue here of fluid particles leaking

through the boundaries. This can be seen on the left of Figure 6.20 where some

fluid particles can be seen to have leaked out of the boundaries of the jug as it

is being rotated. For reference, the density only approach is shown on the right

for the same flow. The current view is that by changing the boundary velocity,

energy has been introduced into the divergence of velocity used for the density

gradient calculations. Similar issues have previously been discussed by De Leffe

et al. (2011), where a solution was proposed involving not using the no-slip velocity

in the conservation of mass to avoid this energy introduction. The approach to De
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Leffe et al. has been attempted in an effort to resolve the issue with some success

for sloshing tanks, however the issue has still not been remedied for these pouring

type flows.

Figure 6.20: Instants of the pouring simulation using MDBC with velocity ex-
trapolation (left) and density extrapolation only (right) showing the issues of fluid
particle leaking through the boundaries when the velocity extrapolation is used.

This means that the partial slip boundary condition can not yet be used for this

test case as it requires the use of the MDBC velocity extrapolation. Also flows of

Carbopol out of the jug, that would have involved non-Newtonian models, could not

be simulated due to the high viscosity at low shear and the strict non-Newtonian

viscous time step resulting in extremely long run times. The results however do show

that SPH with MDBC based on density extrapolation only are robust and can be

used to qualitatively model pouring types flows. If the full velocity extrapolation

had worked for these flows, it is expected that the velocity of the fluid particles

close to the boundaries would be reduced. It would be possible for more particles
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to stay stuck to the boundary as the no-slip condition would slow them down. The

number of particles left in the vessels at the end of the pouring sequence could be

higher than presented for the density only extrapolation. Including the partial slip

boundaries would be expected to reduce the number of particles left inside as the

fluid close to the boundary would be able to move with the slip velocity.

6.4 Summary

In this chapter three complex test cases have been simulated using MDBC. The

3D dam break and fish pass test cases show that MDBC can be used to model free

surface flows involving complex shaped geometries with good levels of accuracy.

Using MDBC the gap near boundaries is reduced allowing impact pressures of the

dam break hitting an obstacle can be measured at the true probe location on the

boundary, rather than projecting the pressure probe into the fluid. The reduction

in the gap also allows for more accurate simulations of flows over obstacles such as

the weirs in the fish pass.

The final test case showed, despite current problems with velocity extrapolation,

that SPH with MDBC can be used to qualitatively model pouring type flows of

interest to Unilever.
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Chapter 7

Conclusions & Future Work

In this chapter the conclusions of this thesis are presented and some recommenda-

tions for futures work suggested.

7.1 Conclusions

Boundary conditions at solid surfaces have been a major limitation in SPH, and as

such are regarded as one the grand challenges of the method. Accurate and high or-

der formulations are available but are difficult to apply for complex shapes which is

an intended strength of SPH. The robust boundary condition for general complex

shapes, known as the dynamic boundary condition, has underlying physical and

theoretical weaknesses, limiting accuracy. A new method has been developed based

on the existing dynamic boundary condition philosophy with an improved den-

sity extrapolation technique combining the ghost node mirroring of Marrone et al.

(2011) and the extrapolation method of Tafuni et al. (2018) to maintain the robust-

ness of the dynamic boundary condition while removing physical and theoretical

limitations; this has become known as the modified dynamic boundary condition.

This has been implemented in the widely used open source code DualSPHysics with

small additional computational cost.

Traditional boundary conditions are the no slip or free slip boundary conditions, but

many physical problems exhibit partial slip an intermediate between the two with a

small flow velocity on the solid surface. Formulations in SPH have been developed

for the first time which has been possible with the modified dynamic boundary con-

dition. This has been progressed with application to parallel flows with analytical

solutions, Couette and Poiseuille flows, for which new analytical solutions have been

147



developed to enable validation. The important rheometer case, used for quantifying

particularly non-Newtonian fluid properties, has also been studied, comparing with

limited available experimental data. The groundwork for generalisation to complex

shapes, including no-slip and partial slip, has been laid.

The key aim of a versatile simulation tool with free surfaces should be demonstrated.

This has been achieved for diverse applications, the standard dam break with violent

impact on a column and the new fish pass problem comprising a complex channel

flow with transverse weirs and gates. New experimental data for pouring from a

beaker has been simulated.

The modified dynamic boundary condition with density extrapolation and zero

velocity solid boundary particles (or with velocity of the body if moving) is now

available in the open source DualSPHysics code which can run efficiently on both

CPUs and GPUs.

7.2 Future Work

Currently the MDBC method with density extrapolation works for a wide range

of test cases, and the velocity extrapolation is working for parallel flows. The

partial slip boundary condition implemented using MDBC also works for parallel

flows, including an example of a power law Poiseuille flow. Future avenues of study

following on from this PhD can be summarised as:

1. Correct the no-slip velocity extrapolation of MDBC for non parallel flows

2. Generalise this condition to partial slip flows

3. Include general non-Newtonian formulations with partial slip boundaries

4. Generalise the above to work with two-phase flows

5. Generalise for use with deformable boundary
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Appendix A

Poiseuille Flow Transient Solution with
Partial Slip

Consider a Poiseuille flow in a channel of length L with walls at y = l and y = −l.
The Navier-Stokes equations for this flow can be reduced to the PDE

∂u

∂t
= −1

ρ

dp

dx
+ ν

∂2u

∂y2
+ Fx (A.1)

subject to the initial and boundary conditions

u (± l, t) = uslip(±l, t) (A.2)

u(y, 0) = 0 (A.3)

using the partial slip boundary Lauga et al. (2005),

uslip = b
(
∇u + (∇u)T

)
· n (A.4)

where n is the normal facing into the liquid and b is the slip length at the walls.

As t→∞ the Poiseuille flow tends to the steady state, which is the solution of the
PDE

∂2u

∂y2
=

1

µ

(
dp

dx
− ρFx

)
=

1

µ
G(x) (A.5)

subject to boundary condition (A.2).

Integrating with respect to y the velocity and velocity gradient are found as

∂u

∂y
=

1

µ
G(x)y + A (A.6)

u =
1

2µ
G(x)y2 + Ay +B. (A.7)

The boundary condition (A.2) is applies in order to find the values of the constants
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A and B

u(l) =
1

2µ
G(x)l2 + Al +B = uslip(l) (A.8)

u(−l) =
1

2µ
G(x)l2 − Al +B = uslip(−l). (A.9)

Adding these together gives

uslip(l) + uslip(−l) =
1

µ
G(x)l2 + 2B (A.10)

which yields

B = − 1

2µ
G(x)l2 +

uslip(l) + uslip(−l)
2

. (A.11)

Subtracting (A.9) from (A.8) and noting that l 6= 0 it can be seen that

A = 0. (A.12)

Hence the velocity profile takes the form

u(y) = − 1

2µ
G(x)

(
l2 − y2

)
+
uslip(l) + uslip(−l)

2
. (A.13)

Using the partial slip velocity given by (A.4) and evaluating the velocity gradient
terms, uslip is given by

uslip = b

[
2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂y

+ ∂v
∂x

2∂u
∂x

]
· n. (A.14)

For the upper boundary n =
[
0 −1

]T
, and so

uslip =

[
−b∂u

∂y

0

]
(A.15)

thus the velocity in the x direction is then given by

uslip(l) = −b∂u
∂y

= −b 1

µ
G(x)l. (A.16)

Similarly, for the lower boundaryn =
[
0 1

]T
and so

uslip =

[
b∂u
∂y

0

]
(A.17)

and the velocity in the x direction is then given by

uslip(−l) = b
∂u

∂y
= b

1

µ
G(x)(−l). (A.18)
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Hence the value of the slip velocity on both boundaries is equal to

uslip(±l) = uslip = −bl 1
µ
G(x). (A.19)

Substituting this into (A.13) the steady state equation is found as

u(y) = − 1

2µ
G(x)

(
l2 + 2bl − y2

)
(A.20)

or again using the quantity uslip

u(y) = − 1

2µ
G(x)

(
l2 − y2

)
+ uslip (A.21)

which can also be written as

u(y)

− (1/2µ)G(x)l2
= 1− y2

l2
+

uslip
− (1/2µ)G(x)l2

. (A.22)

The unsteady form of the equation can be written in the form

u(y, t)

− (1/2µ)G(x)l2
= 1− y2

l2
+

uslip(t)

− (1/2µ)G(x)l2
− f(y, t) (A.23)

where f(y, t) is a function satisfying the equation

∂f

∂t
= ν

∂2u

∂y2
(A.24)

subject to the initial and boundary conditions

f (± l, t) = 0 (A.25)

f(y, 0) = 1− y2

l2
(A.26)

In order to use the separation of variable method the substitution

f(y, t) = Y (y)T (t) (A.27)

is used in equation (A.24) to get

Y (y)T ′(t) = νY ′′(y)T (t) (A.28)

which rearranges to give
T ′(t)

νT (t)
=
Y ′′(y)

Y (y)
. (A.29)

Since the left hand side of equation (A.29) is a function in t only and the right
hand side is a function in y only, they can only be equal is they are also equal to a
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constant function, −λ2, say. The equation is then written as

T ′(t)

νT (t)
= −λ2 =

Y ′′(y)

Y (y)
(A.30)

which leads to the two equations

T ′(t) + λ2νT (t) = 0 (A.31)

Y ′′(y) + λ2Y (y) = 0. (A.32)

From (A.31) it is seen that T (t) has the form

T (t) = αe−λ
2νt (A.33)

and from (A.32) that Y (y) has the form

Y (y) = β sin(λy) + γ cos(λy). (A.34)

From the boundary condition, (A.25), on f we see that

f(± l, t) = Y (± l)T (t) = 0 (A.35)

T (t) 6= 0 therefore

Y (l) = β sin(λl) + γ cos(λl) = 0 (A.36)

Y (−l) = β sin(−λl) + γ cos(−λl)
= −β sin(λl) + γ cos(λl) = 0. (A.37)

Subtracting (A.36) from (A.37) gives

2β sin(λl) = 0 (A.38)

and so β = 0, which means
γ cos(λl) = 0 (A.39)

Since a non zero solution is sought

cos(λl) = 0 (A.40)

which means that

λn =
(2n+ 1)π

2l
n = 0, 1, 2, ...∞. (A.41)

Combining this with (A.27), (A.33) and (A.34) it is seen that

f(y, t) =
∞∑
n=0

αne
−λ2nνt cos(λny) (A.42)

where αn is the combination of the α in (A.33) and the γ in (A.39) and the λn is
given by (A.41).
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The values of the αn can be found using the second condition on f(y, t), that is

f(y, 0) =
∞∑
n=0

αne
0 cos(λny) = 1− y2

l2
. (A.43)

In order to take advantage of the orthogonality properties of the cos function, both
sides are multiplied by cos(λnl) and integrated with respect to y across the depth
of the channel to find

∞∑
n=0

αn

∫ l

−l
cos2(λny)dy =

∫ l

−l

(
1− y2

l2

)
cos(λny)dy. (A.44)

The orthogonality of cos gives the expression

αn =
1

l

∫ l

−l

(
1− y2

l2

)
cos(λny)dy (A.45)

All of the other terms in the summation become 0 due to the other orthogonality
property of cos.

In order to get the value of the αn integration by parts is used twice, first by setting
the reduction formulae as

v = 1− y2

l2
w′ = cos(λny) (A.46)

v′ = −2y

l2
w =

1

λn
sin(λny) (A.47)

which transforms (A.45) into

αn =
1

l

{[(
1− y2

l2

)
1

λn
sin(λny)

]l
−l

+

∫ l

−l

2y

l2λn
sin(λny)dy

}
. (A.48)

For the second integration the reduction formulae are

v =
2y

l2
w′ =

1

λn
sin(λny) (A.49)

v′ =
2

l2
w = − 1

λ2
n

cos(λny) (A.50)

(A.48) then gives

αn =
1

l

{[(
1− y2

l2

)
1

λn
sin(λny)

]l
−l

+

[(
− 2y

l2λ2
n

)
cos(λny)

]l
−l

+

∫ l

−l

2

l2λ2
n

cos(λny)dy

}
.

(A.51)
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Evaluating the final integral gives

αn =
1

l

{[(
1− y2

l2

)
1

λn
sin(λny)

]l
−l

+

[(
− 2y

l2λ2
n

)
cos(λny)

]l
−l

+

[(
2

l2λ3
n

)
cos(λny)

]l
−l

}
.

(A.52)
This then reduces down to

αn =
32(−1)n

(2n+ 1)3π3
. (A.53)

Substituting this back into the unsteady state equation (A.23) and using the sum-
mation form for f(y, t) we get

u(y, t)

− (1/2µ)G(x)l2
= 1− y2

l2
−
∞∑
n=0

(
32(−1)n

(2n+ 1)3π3

)
e−λ

2
nνt cos(λny) +

uslip(t)

− (1/2µ)G(x)l2

(A.54)
which rearranges to give

u(y, t) = − 1

2µ
G(x)

(
l2 − y2

)
+
∞∑
n=0

G(x)

(
16(−1)nl2

(2n+ 1)3π3µ

)
e−λ

2
nνt cos(λny) + uslip(t)

(A.55)
with

λn =
(2n+ 1)π

2l
n = 0, 1, 2, ...∞ (A.56)

All that is left to do know is find the time-dependent partial slip velocity. Previously
it was shown that

uslip(l, t) = uslip(−l, t) = −b∂u
∂y

(l, t). (A.57)

First finding the velocity gradient of Equation (A.55) it is seen that

∂u

∂y
(y, t) =

G(x)y

µ
−
∞∑
n=0

G(x)
(2n+ 1)π

2l

(
16(−1)nl2

(2n+ 1)3π3µ

)
e−λ

2
nνt sin(λny) (A.58)

=
G(x)y

µ
−
∞∑
n=0

G(x)

(
8(−1)nl

(2n+ 1)2π2µ

)
e−λ

2
nνt sin(λny) (A.59)

Then substituting y = ±l the partial slip velocity is given by

uslip(t) = −G(x)bl

µ
+
∞∑
n=0

G(x)

(
8bl

(2n+ 1)2π2µ

)
e−λ

2
nνt (A.60)

And so finally the equation for the unsteady Poiseuille flow with partial slip can be
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written as

u(y, t) =− 1

2µ
G(x)

(
l2 + 2bl − y2

)
+
∞∑
n=0

G(x)

(
16(−1)nl2

(2n+ 1)3π3µ

)
e−λ

2
nνt cos(λny) (A.61)

+
∞∑
n=0

G(x)

(
8bl

(2n+ 1)2π2µ

)
e−λ

2
nνt

Note that if the standard no-slip condition was imposed on the boundary then
simply setting b = 0 would recover the unsteady plane Poiseuille flow equation

u(y, t) = − 1

2µ
G(x)

(
l2 − y2

)
+
∞∑
n=0

G(x)

(
16(−1)nl2

(2n+ 1)3π3µ

)
e−λ

2
nνt cos(λny) (A.62)
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Appendix B

Further Fish Pass Results

In this Appendix further results from the fish pass test case are presented.

Figure B.1 shows the depths in pools 1 and 2 for flow rate Q1 for two particle
spacings. dp=0.01m are shown in blue and dp=0.005m in red, the darker shade
represent DBC results and the lighter shades MDBC.

Figure B.2 shows the flow rates through gates 2 and 3 for flow rate Q1 for two
particle spacings. dp=0.01m are shown in blue and dp=0.005m in red, the darker
shade represent DBC results and the lighter shades MDBC.

Figure B.3 shows the depths in pools 1 and 2 for flow rate Q4 for two particle
spacings. dp=0.01m are shown in blue and dp=0.005m in red, the darker shade
represent DBC results and the lighter shades MDBC.

Figure B.4 shows the flow rates through gates 2 and 3 for flow rate Q4 for two
particle spacings. dp=0.01m are shown in blue and dp=0.005m in red, the darker
shade represent DBC results and the lighter shades MDBC.

Figure B.5 shows the depths in pools 1 and 2 for flow rate Q5 for two particle
spacings. dp=0.01m are shown in blue and dp=0.005m in red, the darker shade
represent DBC results and the lighter shades MDBC.

Figure B.6 shows the flow rates through gates 2 and 3 for flow rate Q5 for two
particle spacings. dp=0.01m are shown in blue and dp=0.005m in red, the darker
shade represent DBC results and the lighter shades MDBC.

Figures B.7 and B.8 show the comparison of the SPH result to PIV velocity data
measured in planes 1 and 2 respectively. The top blue plots show the DBC result,
bottom red shows MDBC and the middle black shows the PIV measurement.
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Figure B.1: Plot showing water depths in pools 1 and 2 for flow rate Q1 for two particle spacings: dp=0.01m (blue), and dp=0.005m
(red). DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.
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Figure B.2: Plot showing flow rates through gates 2 and 3 for flow rate Q1 for two particle spacings: dp=0.01m (blue)and dp=0.005m
(red). DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.
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Figure B.3: Plot showing water depths in pools 1 and 2 for flow rate Q4 for two particle spacings: dp=0.01m (blue), and dp=0.005m
(red). DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.
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Figure B.4: Plot showing flow rates over weirs 2 and 3 for flow rate Q4 for two particle spacings: dp=0.01m (blue), and dp=0.005m (red).
DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.

160



Figure B.5: Plot showing water depths in pools 1 and 2 for flow rate Q5 for two particle spacings: dp=0.01m (blue), and dp=0.005m
(red). DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.
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Figure B.6: Plot showing flow rates over weirs 2 and 3 for flow rate Q5 for two particle spacings: dp=0.01m (blue), and dp=0.005m (red).
DBC (darker shades) and MDBC (lighter shades), results are averaged using a moving mean.
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Figure B.7: Comparison of velocity vectors in pool 2 plane 1 for DBC (top), PIV
(middle) and MDBC (bottom) with particle spacing dp = 0.005m
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Figure B.8: Comparison of velocity vectors in pool 2 plane 2 for DBC (top), PIV
(middle) and MDBC (bottom) with particle spacing dp = 0.005m
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source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH).
Computer Physics Communications, 187:204–216, 2015. ISSN 00104655. doi:
10.1016/j.cpc.2014.10.004.

166



A. J. C. Crespo, M. Gomez-Gesteira, and R. A. Dalrymple. Boundary conditions
generated by dynamic particles in SPH methods. Computers, Materials and
Continua, 2007. ISSN 15462218. doi: 10.3970/cmc.2007.005.173.

R. A. Dalrymple and O. Knio. SPH modelling of water waves. In Coastal Dynamics
2001, pages 779–787, 2001. ISBN 0784405662. doi: 10.1061/40566(260)80.

P. G. De Gennes. On fluid/wall slippage. Langmuir, 18(9):3413–3414, 2002.
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