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Abstract 

   This study is concerned with the investigation of suitability of the dual-mesh method for buoyancy driven flow 

inside a cylindrical annulus of concentric cylinders. The buoyant force in this type of flow is generated by the 

temperature difference between the inner and outer cylinders. The dual-mesh approach is a hybrid RANS-LES 

method in which a RANS and an LES are run simultaneously on two different grids. In this approach, a criterion 

is used to determine the locations at which each simulation is expected to perform better than the other. 

Consequently, at every location the less accurate simulation is forced and corrected towards the more accurate 

one. It is observed that the lengthscale resolution criterion of Ali et al. (2021) behaves satisfactorily in defining 

the regions where the LES is corrected towards the RANS and vice versa. Moreover, both quantitative and 

qualitative analyses of the results are presented in order to show that the dual-mesh method has the potential to 

yield results that are better than the results of the pure RANS and the pure coarse LES simulations. 

1. Introduction 

   The buoyant cylindrical annuli flow occurs in a number of engineering applications, one of which is the boiler 

penetration cavities of gas cooled nuclear power stations.  In these cavities, there are pipes that carry a fluid from 

and into the boiler. Since the inner pipes contain colder fluid, natural convection occurs in the cavities, and 

eventually stratifies which may be damaging to the outer cylindrical cavity casing. Other applications relevant to 

this flow include solar collectors and cooling of high-voltage cables.  

   The cylindrical annuli configuration found in most of the studies in the literature has only one inner cylinder. 

The buoyancy driven flow in the boundary layer of the inner cylinder forms a plume that rises or falls (depending 

on whether the inner cylinder is hotter or colder than the outer cylinder) and impinges on the outer cylinder. The 

term “cylindrical annuli flow” is more general than the term “coaxial cylinders flow”. The latter can be used for 

cases where the inner and outer cylinders have the same axis.  

   The study of Kuehn & Goldstein (1978) was one of the earliest studies of the annuli flow. Their experiments 

were conducted for a radius ratio (outer cylinder radius to inner cylinder radius) of 2.6 and over the 𝑅𝑎 = 2.2 ∗
102-7.7 ∗ 107 range (𝑅𝑎 is the Rayleigh number). It was found that at 𝑅𝑎 numbers of the order of 105, instabilities 

in the region of the plume arise, eventually developing into turbulence as 𝑅𝑎 is further increased.   

    Bishop (1988) and McLeod & Bishop (1989) examined experimentally the flow problem for a 𝑅𝑎 between 8 ∗
106 and 2 ∗ 109, expansion numbers between 0.25 − 1.0 and a radius ratio of 4.85. A correlation linking the heat 

transfer rate to all the studied parameters was proposed. The time series of the temperature at a point located 

approximately at the mid of the gap between the cylinders at the 0° position (see Fig. 1) was analysed. This 

analysis showed that for an expansion number (𝛽𝛥𝑇) of 0.25 (where 𝛥𝑇 is the temperature difference between 

the two cylinders), high amplitude and low frequency laminar oscillations occured for the 𝑅𝑎 numbers in the range 

of 107 and 108. On the other hand, for the 𝑅𝑎 ≈ 109 and 𝛽𝛥𝑇 ≈ 0.25 case, oscillations with lower amplitudes 

and a wider range of frequencies were observed, indicating a turbulent flow at the probed point. The time series 

of the temperature near the inner cylinder’s boundary layer showed that the boundary layer is laminar and features 

weak or no fluctuations for the lower Rayleigh numbers. However, for 𝑅𝑎 ≈ 109, strong fluctuations with low 

frequencies were observed to start at 120°, eventually leading to turbulent at the location of 0°. Furthermore, for 

all the Rayleigh numbers, increasing the expansion number was found to promote turbulence-transition. In 

summary, these studies were focused mainly on measuring the mean temperatures, temperature fluctuations and 

the average heat transfer rates over the cylinders and provided an explanation of the flow patterns for different 

values of the Rayleigh and expansion numbers.  
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   Char & Hsu (1998) studied the flow through coaxial cylinders at different Rayleigh numbers in the range 8.02 ∗
105-1.18 ∗ 109 for radius ratios ranging from 2.6 to 4.58 using two low-Reynolds RANS turbulence models. 

These models were the “linear eddy viscosity model” of Launder & Sharma (1974) and the “non-linear eddy 

viscosity model” of Craft et al. (1993). At the lowest 𝑅𝑎 number (which corresponds to a laminar flow), good 

predictions of the Nusselt number (𝑁𝑢) values along the two cylinders were obtained, despite the presence of an 

overprediction of 𝑁𝑢 at the point at which the plume impinges on the outer cylinder. On the other hand, for the 

higher 𝑅𝑎 values, the results of the radial temperature profiles showed that the non-linear model performs better 

than the linear model in the region of the rising plume. This is because at the downstream end of this region a 

flow impingement occurs and the Launder-Sharma model is known to overpredict the turbulence levels at 

locations of flow impingement (Craft et al., 1993). However, the non-linear model was designed to reduce the 

overprediction of the turbulence levels at regions of high strain rates. At the other radial lines, the accuracy of the 

temperature profiles returned by both the models was found to deteriorate as one moves away from the plume 

region where the models showed an overprediction of the temperature predictions. 

  Wall-resolved Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) such Wu et al. 2017a, Wu 
et al. 2017b, Wu et al. 2019, Benhamadouche et al. 2020 and Ahmed et al. 2020 are very expensive for high 
Reynolds and/or Rayleigh number flows as they require a very fine mesh in the near-wall regions in all three 

directions to resolve the turbulence structures. Nonetheless, Miki et al. (1993) used the LES approach to study 

annuli flow situations characterised by different radius ratios and different Rayleigh numbers the highest of which 

was 𝑅𝑎 = 1.18 ∗ 109. Their study concluded that the dissipation introduced by the subgrid-scale model has a 

strong dependence on the value of the Smagroinsky constant (𝐶𝑠). Using a 𝐶𝑠 value of 0.1 for the case with the 

highest 𝑅𝑎, reasonable predictions of the mean temperature profiles were obtained. However, some discrepancies 

in the prediction of the temperature fluctuations were observed. The need to use a low 𝐶𝑠 value was also confirmed 

by the successful LES study of Addad (2004), who simulated the 𝑅𝑎 = 1.18 ∗ 109 flow with STAR-CD using 

𝐶𝑠 = 0.04. Addad (2004) also assessed the performance of different RANS models by comparing their results to 

the LES data he produced. Another LES study in the literature is the one by Padilla & Silveira-Neto (2005), who 

studied the turbulence transition in an annuli with a radius ratio of 2 using the dynamic Smagorinsky model. 

   The study of Addad et al. (2006) sheds some light on two flow situations with high turbulence levels. One of 

these situations occurs in an annuli with a radius ratio of 3.37 and the other at the internal cylinder at 𝑅𝑎 = 2.38 ∗
1010. The turbulence levels in this flow are significantly larger than the ones in the 𝑅𝑎 = 1.18 ∗ 109 flow in an 

annuli with a radius ratio of 4.85. Indeed, the size of the buoyant plume in the former is greater than that in the 

latter. Large turbulence levels were also observed in a 𝑅𝑎 = 2.38 ∗ 1010 flow in the annuli of three internal 

cylinders.   

   Kenjereš & Hanjalić (1995) also examined the coaxial cylinders flow at different radius ratios and at Rayleigh 

numbers that correspond to both laminar and turbulent flows by solving a 𝑘 − 𝜀 − 𝜃2 system of equations in 

which low-Reynolds effects are taken into account. Results were compared to both experimental and LES data 

from the literature. The algebraic model of the turbulent heat flux was found to yield reasonable results in terms 

of flow pattern, agreement with heat transfer correlations, the mean temperature and its fluctuations.. The study 

also included some simulations of eccentric cylinders configurations. 

   Addad et al. (2015) performed a Quasi-Direct Numerical Simulation (QDNS) of the 𝑅𝑎 = 1.18 ∗ 109 flow in a 

coaxial cylinder configuration with a radius ratio of 4.85 using STARCCM+. This study was done using an 

unstructured polyhedral mesh that was locally refined in the active flow areas using an estimate of the Kolmogorov 

lengthscale from a precursor low-Reynolds 𝑘 − 𝜀 RANS computation.   Results of the time averaged temperature 

and its variance showed a good agreement with the experimental results of McLeod & Bishop (1989). This QDNS 

study produced detailed flow and thermal data that can be used to validate the first and second moments predicted 

by lower order models (e.g. Hybrid RANS-LES and RANS).   

   The current work aims to test the performance of a new hybrid RANS-LES method called “the dual-mesh 

approach” in predicting the coaxial cylinders flow. Hybrid RANS-LES is a class of turbulence modelling 

approaches whose development was motivated by the huge computational costs associated with wall-resolved 

LES. Resolving the flow structures in the viscosity affected regions close to the wall requires the mesh to be fine 

enough not only in the wall-normal direction (which is the requirement of a low-Reynolds RANS treatment) but 

also in the other directions. The basic idea of Hybrid RANS-LES methods is that in these methods, a RANS model 

is relied upon to handle the near-wall regions and the LES approach is used to resolve the relatively large 

turbulence structures away from the walls, see Revell et al. (2020) for further details. 

   The dual-mesh approach was developed by Xiao & Jenny (2012). Tunstall et al. (2017) later suggested a number 

of improvements to the approach. Furthermore, the dual-mesh idea was extended to problems involving heat 

transfer by Tunstall (2016). Ali et al. (2021) used the dual-mesh approach to simulate a buoyant square cavity 

flow and provided guidance on how the approach can be used to predict buoyancy driven flows. Dual-mesh-

related studies can also be found in Xiao et al. (2016), Lardeau et al. (2018), de Laage de Meux et al. (2015), 

Davidson (2019) and Nguyen et al. (2020). 



   The flow situation investigated here is the same as the one studied by Addad et al. (2015). The results of this 

work were validated against the available QDNS data. The fact that the benchmark data available for this test case 

is at a low Rayleigh number, makes it difficult to demonstrate significant computational savings by resorting to 

hybrid RANS-LES instead of the conventional LES. However, one of the aims of this study is to prove that the 

dual-mesh method can work successfully for this type of flow, with flow featuressuch as unsteadiness, transition 

to turbulence and the coexistence of turbulent and laminar zones in the flow domain. One also ought to take into 

account the automatic switching criterion for RANS corrections to LES and vice versa. Future studies can then 

focus on obtaining high fidelity data for annuli flows with high turbulence levels (such as the ones studied by 

Addad et al., 2006) and then use the dual-mesh approach to simulate these situations with a similar methodology 

to the one presented here. 

   This paper is organised as follows. Section 2 introduces the reader to the studied cylindrical annuli case. Section 

3 familiarizes the reader with the dual-mesh approach. This section also touches on the choices made here for the 

RANS and the LES modelling as well as the discretization techniques. The results obtained using the standalone 

and the hybrid simulations are discussed in detail in Section 4. Finally, Section 5 presents the conclusions of this 

study. 

2. The cylindrical annuli benchmark 
   The geometry of the coaxial cylinder configuration is shown in Fig. 1. It consists of two concentric inner and 

outer cylinders (with radiuses of 𝑅𝑖 and 𝑅0, respectively) separated by an annular gap of width 𝐿𝑟𝑒𝑓=𝑅0-𝑅𝑖, which 

is occupied by a fluid. The cylinders are assumed to be long enough to allow the flow to be homogeneous in the 

z-direction.   

   The inner cylinder was maintained at a constant temperature 𝑇ℎ higher than the constant temperature of the outer 

cylinder 𝑇𝑐. Periodic boundary conditions were used in the homogeneous z-direction which was set at a length of 

1.035 ∗ 𝐿𝑟𝑒𝑓  (following Addad et al., 2015). The temperature difference 𝛥𝑇 = 𝑇ℎ − 𝑇𝑐 and the fluid properties 

were set to represent a flow Rayleigh number (𝑅𝑎 =
𝑃𝑟𝑔𝛽𝛥𝑇𝐿𝑟𝑒𝑓

3

𝜈2
) of 1.18 ∗ 109 and the fluid Prandtl number (𝑃𝑟) 

of 0.688. The values of 𝑅0 and 𝑅𝑖 were chosen to give 
𝑅0

𝑅𝑖
= 4.85. 

   In this study, the coaxial cylinder flow was computed using coarse LES, unsteady RANS as well as dual-mesh 

hybrid RANS-LES simulations.  The RANS grid contained 120*240*1 cells (120 cells radially, 240 cells 

circumferentially and 1 cell in the z direction). The grid was uniform in the circumferential direction but was 

refined towards the cylinders in the radial direction using a hyperbolic tangent (tanh) stretching function. The 

radial grid spacing near the cylinders was set at 0.00044𝐿𝑟𝑒𝑓 . On the other hand, the LES grid had 80*116 *20 

cells, which were clustered towards the cylinders in the radial direction and towards the 0° position in the upper 

half of the geometry (to properly capture the rising plume). The node clustering in the radial direction was 

accomplished using the tanh stretching function of Pointwise by specifying cell sizes of 0.00044𝐿𝑟𝑒𝑓  and 

0.0104𝐿𝑟𝑒𝑓  near the inner and outer cylinders, respectively. This grid allows the LES to resolve the radial 

gradients near the inner cylinder but is too coarse to resolve them in the vicinity of the outer cylinder, see Fig. 2 

for mesh details.  

   Regarding the refinement of the LES mesh in the circumferential direction, the tanh stretching function was 

utilised to allow the grid to expand between the 0° and the 30° positions. The size of the circumferential grid 

spacing at 0° was 0.02597𝐿𝑟𝑒𝑓  near the outer cylinder (and 0.00536𝐿𝑟𝑒𝑓 near the inner cylinder1), whereas at 30° 

a circumferential spacing of 0.0824𝐿𝑟𝑒𝑓  near the outer cylinder (and 0. 01699𝐿𝑟𝑒𝑓  near the inner cylinder) was 

used. The number of cells in the circumferential direction in the region between 0° and 30° was specified as 18. 

On the other hand, between the 30° and 180° positions, the circumferential number of cells was chosen to be 40 

and the circumferential spacing of these cells was uniform (this spacing was set equal to 0.0824𝐿𝑟𝑒𝑓  and 

0. 01699𝐿𝑟𝑒𝑓  near the outer and inner cylinders, respectively). The grid was mirrored in a way that makes it 

symmetric between the left and the right halves of the geometry in the xy plane. The LES grid was made non-

uniform in the circumferential direction to allow the LES to capture the rising plume (which is relatively thin due 

to the low Rayleigh number) near the 0° location. However, the LES grid is too coarse in the tangential direction 

for the LES to properly resolve the turbulence structures near the outer cylinder at the positions between 30° and 

330°. The LES resolution in the z-direction was deliberately kept under resolved to utilise the dual-mesh approach.  

 
1 At a particular angular position, the circumferential grid spacing at the inner cylinder was calculated as 

𝑅𝑖

𝑅0
 times 

the circumferential spacing at the outer cylinder in order to obtain a high degree of mesh orthogonality. 



3. Methodology  

3.1. The dual-mesh approach  

3.1.1. An overview of the approach  
   The dual-mesh approach is based on running simultaneous unsteady RANS and coarse LES simulations of the 

flow of interest. Here coarse LES represents an LES that is run on a grid that is not fine enough to resolve the 

near-wall flow structures but is sufficiently fine to properly resolve the turbulence structures away from the walls. 

Thus, in the near wall regions the coarse LES is corrected by the RANS, whereas far from the walls the RANS is 

corrected by the coarse LES. 

   In order to correct the two simulations towards each other, the RANS quantities are compared to the time-

averaged LES quantities that are computed using an operation called the “Exponentially Weighted Averaging”: 

 

 

where 𝜙 is a time-dependent quantity which depends on the previous time levels (𝑡′). Here 𝑇𝑎𝑣𝑔  is an averaging 

time scale and 𝑡 represents the current time step values.  We use a first-order approximation in time for the 

averaged value as 

 

where 〈𝜙〉𝐸𝑊𝐴,𝑛 is the exponentially weighted average (EWA) of 𝜙 at the nth time step (or at the current level in 

time) and n-1 indicates the previous time step. The weighting factor 𝛼 equals 
1

1+
𝛥𝑡

𝑇𝑎𝑣𝑔

, where 𝛥𝑡 represents the 

time step size, see Ali et al. 2021 for further details on weighted averaging. Comparing the RANS quantities to 

time-averaged LES quantities is one of the main differences between the dual-mesh approach and the single-mesh 

hybrid approaches since in the latter the space filtered LES variables and the RANS variables are matched. This 

gives the dual-mesh approach the advantage that it avoids “the grey area problem”, which happens at locations 

where the solution transitions from “a RANS mode” to “an LES mode” in the early stages of separated shear 

layers with weak instabilities. These regions can feature a “grey area” characterized by low levels of both resolved 

and modelled turbulence (Mockett et al., 2015). 

   The LES velocity (𝑈𝑖) and temperature (�̅�) fields can be averaged using equation (2) to yield the averaged 

quantities 〈𝑈𝑖〉
𝐸𝑊𝐴 and 〈�̅�〉𝐸𝑊𝐴, respectively. These quantities can be used to define resolved LES velocity and 

temperature fluctuations using the following equations 

𝑢𝑖
′′ = 𝑈𝑖 − 〈𝑈𝑖〉

𝐸𝑊𝐴 

 

(3) 

𝑡′′ = �̅� − 〈�̅�〉𝐸𝑊𝐴 

 

(4) 

   The LES velocity and temperature fluctuations along with the subgrid-scale (sgs) turbulent kinetic energy (𝑘𝑠𝑔𝑠) 

and sgs temperature variance (𝑇′2𝑠𝑔𝑠
̅̅ ̅̅ ̅̅ ̅̅ ) can then be utilised to calculate the total LES EWA turbulent kinetic energy 

(𝑘𝐸𝑊𝐴) and total LES EWA temperature variance (𝛩𝐸𝑊𝐴) as  

𝑘𝐸𝑊𝐴 = 〈0.5 𝑢𝑖
′′ 𝑢𝑖

′′〉𝐸𝑊𝐴 + 𝑘𝑠𝑔𝑠
𝐸𝑊𝐴

 

 

(5) 

𝛩𝐸𝑊𝐴 = 〈(𝑡′′)2 + 𝑇′2𝑠𝑔𝑠
̅̅ ̅̅ ̅̅ ̅̅   〉𝐸𝑊𝐴 

 

(6) 

where 𝑘𝑠𝑔𝑠
𝐸𝑊𝐴 = 〈𝑘𝑠𝑔𝑠〉

𝐸𝑊𝐴. In the dual-mesh framework, in addition to making 〈𝑈𝑖〉
𝐸𝑊𝐴 and 〈�̅�〉𝐸𝑊𝐴 consistent 

with the RANS velocity (〈𝑈𝑖〉) and RANS temperature (〈𝑇〉), respectively, one also aims to make 𝑘𝐸𝑊𝐴 and 𝛩𝐸𝑊𝐴 

consistent with the RANS turbulent kinetic energy (𝑘𝑅) and the RANS temperature variance (𝛩𝑅 = 〈𝑇′
2〉), 

respectively.   

   The RANS-LES consistency is achieved by adding source terms known as the “drift terms” to the momentum, 

temperature and turbulence equations of the RANS and the LES. The turbulence equations with drift terms include 

the equations of the RANS model, the 𝑘𝑠𝑔𝑠 equation (which one needs to solve when using the one equation 𝑘 

〈𝜙〉𝐸𝑊𝐴(𝑡)

= ∫ 𝜙
𝑡

−∞

(𝑡′)
1

𝑇𝑎𝑣𝑔
𝑒𝑥𝑝 (−

(𝑡 − 𝑡′)

𝑇𝑎𝑣𝑔
)𝑑𝑡′ 

 

 

(1) 

〈𝜙〉𝐸𝑊𝐴,𝑛 = (1 − 𝛼)𝜙𝑛 + 𝛼〈𝜙〉𝐸𝑊𝐴,𝑛−1 (2) 



LES model) as well as the equations of the temperature variances 𝑇′
2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅  and 𝛩𝑅. In the regions where the LES is 

corrected towards the RANS (which are called “the RANS regions”), the drift terms in the RANS equations are 

deactivated, whereas the drift terms in the LES transport equations are active which act to modify the transported 

variables in a way that drives the LES EWA variables towards their RANS counterparts. On the other hand, at 

locations where the RANS is corrected towards the LES (known as “the LES regions”), the LES drift terms are 

inactive, whereas the forcing terms in the RANS equations dervies the RANS quantities towards their 

corresponding LES EWA quantities.  

3.1.2. Defining the RANS and the LES regions: 
   Previous dual-mesh studies in the literature utilize different methods for determining whether at a particular 

position, the RANS should drive the LES or vice versa. Xiao & Jenny (2012) specified a wall distance to separate 

the RANS and the LES regions. Later, Xiao et al. (2014) introduced an anisotropic definition of the integral 

lengthscale and used a lengthscale resolution criterion that compares the turbulence lengthscale in each direction 

with the grid size in the same direction. The LES regions were defined as the regions where the criterion indicates 

that the LES is well-resolved and the remaining locations were classified as the RANS regions. 

   Tunstall et al. (2017) defined a quantity called the LES zone weight (𝜎𝐿), which is equal to 1 in the LES regions 

but equals 0 in the RANS regions. Multiplying the LES drift terms by (1 − 𝜎𝐿) ensured that the drift terms were 

deactivated in the LES regions and only remained active in the RANS regions. On the other hand, the RANS drift 

terms were controlled by multiplying them by the factor (1 − 𝜎𝑅), where 𝜎𝑅 = 1 − 𝜎𝐿. The calculation of 𝜎𝐿 was 

based on the quantity 𝑅𝑒𝑦 =
√𝑘𝑅𝑦

𝜈
, which is less than 200 in the viscosity affected regions and increases beyond 

200 in the fully turbulent regions (see Andersson et al., 2011). 

𝜎𝐿 = 0.5 (1 +  𝑡𝑎𝑛ℎ (
𝑅𝑒𝑦 − 200

10
)) 

 

 

(7) 

   Equation (7) is intended to return a 𝜎𝐿 profile in which 𝜎𝐿 is 0 close to the walls but reaches to 1 in the fully 

turbulent region. Equation (7) was successfully used by Tunstall (2016) and Tunstall et al. (2017) to determine 

the RANS and the LES regions in channel, periodic hill and T-junction flow configurations. 

   By simulating a buoyant square cavity flow, Ali et al. (2021) found that extra care needs to be taken when 

choosing a 𝜎𝐿 determining criterion for dual-mesh simulations of buoyant flows. This is because the square cavity 

features not only turbulent flow regions but also laminar regions and regions with low turbulence levels (these 

features are also present in the cylindrical annuli flow, as will be explained later in section 4). Hence, 𝑅𝑒𝑦 

approaches 0 not only in the immediate wall vicinity but also in the laminar and the “weakly turbulent” regions. 

These regions include the core of the cavity and a significant part of the flow near the horizontal walls. Indeed, it 

has been observed that the equation (7) gives a 𝜎𝐿 behaviour in which 𝜎𝐿 is 0 in the core of the cavity. In addition, 

equation (7) was found to cause the region with 𝜎𝐿 = 0 near the horizontal walls to be thick. In cavities with 

perfectly conducting horizontal walls, the downstream ends of the horizontal walls feature the formation of an 

instability that causes a destabilization of the boundary layers near the vertical walls and enhances the turbulence 

levels in these boundary layers. Forcing the LES towards the RANS in a thick layer near the horizontal walls 

resulted in a significant damping of the LES instability, which caused the turbulence levels near the vertical walls 

to be low.  

   Another reason for avoiding a 𝜎𝐿 of 0 in laminar zones (such as the stratified and quasi-stagnant large core in 

the buoyant square cavity) is that in other than the classic Log-layer / viscous-sublayer interaction in isothermal 

boundary layer cases, the LES is often superior to the RANS in capturing intermittency and the destabilization of 

laminar zones by ejection of large-scale eddies. This effect is poorly modelled in RANS when closing triple 

moments and pressure-velocity correlations by turbulent diffusion of turbulence itself (a.k.a. turbulence transport 

terms and pressure diffusion in second moment closures). Thus, the RANS should be forced towards the LES in 

these regions.  

   For the computations, 𝜎𝐿 is estimated based on the ratio 
𝑘𝑠𝑔𝑠

𝐸𝑊𝐴

𝑘𝐸𝑊𝐴  as shown below.  

𝜎𝐿 =

{
 
 

 
 
1            𝑓𝑜𝑟 

   𝑘𝑠𝑔𝑠
𝐸𝑊𝐴

𝑘𝐸𝑊𝐴
≤ 0.2

0           𝑓𝑜𝑟 
   𝑘𝑠𝑔𝑠

𝐸𝑊𝐴

𝑘𝐸𝑊𝐴
> 0.2 

 

 

 

 

(8) 

This criterion was tested in the square cavity study reported of Ali et al. (2018) (see also Ali, 2020), and was found 

to lead to a sustainment of the turbulence levels and to give 𝜎𝐿 = 1 in the laminar regions. However, some clouds 

of cells with 𝜎𝐿 = 0 appeared within these LES regions. These cells are generally termed as “isolated cells” which 



are undesirable in a hybrid RANS-LES computation (Xiao et al., 2014). Additionally, the studies of Xiao et al. 

(2014) and Davidson (2009) revealed some weaknesses of using the ratio of the averaged sgs turbulent kinetic 

energy to the total turbulent kinetic energy as an indicator of the LES resolution.  

   The weaknesses of the criterion based on 
𝑘𝑠𝑔𝑠

𝐸𝑊𝐴

𝑘𝐸𝑊𝐴  encouraged Ali et al. (2021) to develop a criterion that 

considers the LES to be well-resolved wherever the grid size is smaller than the maximum of three different 

turbulence lengthscales. These scales need to be calculated a-priori from pure RANS simulation, before one runs 

the hybrid simulations as shown below 

𝜎𝐿 = {
 1      𝑓𝑜𝑟 𝛥 ≤ max (𝜓𝜆, 𝜓

𝐿𝑅𝑀
10

, 8𝐶𝑘𝑜𝑙𝑚𝜂) 

0     𝑓𝑜𝑟 𝛥 > max (𝜓𝜆, 𝜓
𝐿𝑅𝑀
10

, 8𝐶𝑘𝑜𝑙𝑚𝜂)

 

 

 

 

(9) 

where 𝛥, 𝐿𝑅𝑀, 𝜆 and 𝜂 are the filter width, integral, Taylor and Kolmogorov lengthscales, respectively (these 

lengthscales are damped close to the wall using the functions 𝜓 and 𝐶𝑘𝑜𝑙𝑚, which are defined later in (20) and 

(21)) using the following relationships 

𝛥 = (Δ𝑉)1/3 

 

(10) 

𝐿𝑅𝑀 =
𝑘𝑅𝑇𝑜𝑡𝑎𝑙

3/2

𝜀𝑅𝑇𝑜𝑡𝑎𝑙
 

 

(11) 

𝜆 = √
10𝜈𝑘𝑅𝑇𝑜𝑡𝑎𝑙
𝜀𝑅𝑇𝑜𝑡𝑎𝑙

 

 

 

(12) 

𝜂 = (
𝜈3

{𝜀𝑅}
)

1
4

 

 

 

 

(13) 

Here Δ𝑉 is the cell volume, { } represents quantities that are averaged using a simple unweighted long time-

averaging operation, 𝜀𝑅 is the modelled dissipation rate (obtained from the RANS dissipation equation) and 

𝑘𝑅𝑇𝑜𝑡𝑎𝑙 and  𝜀𝑅𝑇𝑜𝑡𝑎𝑙 represent the total kinetic energy and total dissipation rate of the fluctuating motions (which 

include both turbulent and mean flow related unsteady motions), respectively which are calculated as  

𝑘𝑅𝑇𝑜𝑡𝑎𝑙 = {𝑘𝑅} + 𝑘𝑅𝑅𝑒𝑠 
 

(14) 

𝜀𝑅𝑇𝑜𝑡𝑎𝑙 = {𝜀
𝑅} + 𝜀𝑅𝑅𝑒𝑠 (15) 

Where 𝑘𝑅𝑅𝑒𝑠 and 𝜀𝑅𝑅𝑒𝑠 are the RANS kinetic energy of the resolved unsteady motions and its dissipation rate, 

computed as 

𝑘𝑅𝑅𝑒𝑠 = 0.5 ∗ {𝑢𝑖
′′𝑅  𝑢𝑖

′′𝑅} 

 

(16) 

𝑢𝑖
′′𝑅 = 〈𝑈𝑖〉 − {〈𝑈𝑖〉} (17) 

𝜀𝑅𝑅𝑒𝑠 = 2𝜈{〈𝑆𝑖𝑗〉〈𝑆𝑖𝑗〉}  

(18) 

                   〈𝑆𝑖𝑗〉 = 0.5 (
𝜕〈𝑈𝑖〉

𝜕𝑥𝑗
+

𝜕〈𝑈𝑗〉

𝜕𝑥𝑖
)      

(19) 

Here 𝑢𝑖
′′𝑅 is the RANS resolved velocity fluctuation and 〈𝑆𝑖𝑗〉 is the RANS strain rate tensor. The third threshold 

8𝐶𝑘𝑜𝑙𝑚𝜂 in (9) is needed since the lengthscales 𝜓𝜆 and 𝜓
𝐿𝑅𝑀

10
 are not guaranteed to be large in all the laminar 

zones (even though they are based on 𝑘𝑅𝑇𝑜𝑡𝑎𝑙 and 𝜀𝑅𝑇𝑜𝑡𝑎𝑙 and not on {𝑘𝑅} and {𝜀𝑅}). On the other hand, 8𝐶𝑘𝑜𝑙𝑚𝜂 

is highly likely to become large in these zones (because of the low values of 𝜀𝑅) and thus serves to ensure that 𝜎𝐿 

equals 1 in these regions. The near-wall damping of the Kolmogorov lengthscales introduced by 𝐶𝑘𝑜𝑙𝑚 is necessary 

since in this region 8𝜂 becomes too large to represent the near-wall turbulence lengthscales. The definitions of 𝜓 

and 𝐶𝑘𝑜𝑙𝑚 read as 



𝜓 =
3

2
 ((1 − 𝛼3)𝜑 + 𝛼3

2

3
) 

 

 

(20) 

𝐶𝑘𝑜𝑙𝑚 = {
1                 𝑓𝑜𝑟 d ≥ 𝛥𝑚𝑎𝑥
0.3125        𝑓𝑜𝑟 d < 𝛥𝑚𝑎𝑥  

 
 

(21) 

where 𝜑 = 
  〈𝑣2〉

𝑘
 is the “wall-normal anisotropy”, 𝛼 is “the elliptic blending parameter” (these two quantities are 

solved for in the BL v2/k RANS model), 𝑑 is the wall distance and 𝛥𝑚𝑎𝑥  denotes the maximum local cell size. 

The use of a structured polar coarse LES grid here allows writing 𝛥𝑚𝑎𝑥  as max(𝛥𝑟 , 𝛥𝜃 , 𝛥𝑧), where 𝛥𝑟, 𝛥𝜃 and 𝛥𝑧 

are the cell sizes in the radial, tangential and axial directions, respectively. The value 0.3125 in (21) was chosen 

to make 8𝐶𝑘𝑜𝑙𝑚𝜂 equal to 2.5𝜂 close to the wall. This choice was inspired by Addad et al. (2015), who extracted 

the lengthscale 𝜂 from a precursor RANS simulation and designed a very suitable QDNS grid by locally matching 

the grid size in specific directions to 2.5𝜂. 

   The above lengthscale criterion was found to be less likely to cause isolated cells compared to the criterion in 

(8) and to perform satisfactorily for the square cavity flow. For further details about this new criterion, the reader 

is referred to Ali et al. (2021), where an explanation is provided for how the criterion was devised by taking into 

account some of the complex flow features that are commonly found in buoyant flows and by looking at the LES 

resolution criterions of Addad et al. (2008) and Uribe et al. (2010).  

3.1.3. Equations of the cylindrical annuli flow in the dual-mesh framework  

   In this section, the equations that govern the flow studied in this work are reported. In these equations, the drift 

terms of the dual-mesh approach are included. Details about how the drift terms act to enforce the RANS-LES 

consistency can be found in Xiao & Jenny (2012), Tunstall (2016) and Ali et al. (2021). It should be noted that 

the dual-mesh framework used here is the modified framework of Tunstall (2016) (see also Tunstall et al., 2017). 

However, the LES zone weight 𝜎𝐿 was estimated using the lengthscale resolution criterion developed in Ali et al. 

(2021). 

   The effects of the density’s dependence on temperature was modelled using the Boussinesq approximation. In 

this approximation, the density is taken to be variable in the gravity source term of the momentum equation but is 

assumed to be constant (equal to a value 𝜌𝑟𝑒𝑓) in the other terms of the momentum,  temperature and turbulence 

equations. Additionally, the variations of the other fluid properties are neglected.  

   The RANS and the LES momentum equations read, respectively as  

∂〈𝑈𝑖〉

∂𝑡
+ 〈𝑈𝑗〉

𝜕〈𝑈𝑖〉

𝜕𝑥𝑗
= −

1

𝜌𝑟𝑒𝑓

𝜕〈𝑝〉

𝜕𝑥𝑖
 

+
𝜕

𝜕𝑥𝑗
((𝜈 + 𝜈𝑡) (

𝜕〈𝑈𝑖〉

𝜕𝑥𝑗
))

+ (1 − 𝛽 (〈𝑇〉 − 𝑇𝑟𝑒𝑓)) 𝑔𝑖

+ 𝑄𝑖
𝑅 

 

 

 

 

 

(22) 

∂𝑈𝑖
∂𝑡

+ 𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= −
1

𝜌𝑟𝑒𝑓

𝜕𝑝

𝜕𝑥𝑖
 

+
𝜕

𝜕𝑥𝑗
((𝜈 + 𝜈𝑠𝑔𝑠) (

𝜕𝑈𝑖
𝜕𝑥𝑗

))

+ (1 − 𝛽 (𝑇 − 𝑇𝑟𝑒𝑓)) 𝑔𝑖 

+𝑄𝑖
𝐿,𝑢 + 𝑄𝑖

𝐿,𝑔 

 

 

 

 

 

(23) 

where the RANS and the LES quantities are represented by the angle brackets 〈 〉 and the overbar , 

respectively. 𝜌𝑟𝑒𝑓   and 𝑇𝑟𝑒𝑓 =
𝑇ℎ+𝑇𝑐

2
 are the reference density and reference temperature, respectively. 𝛽 =

1

𝑇𝑟𝑒𝑓
 

represents the thermal expansion coefficient. 𝜈𝑡 and 𝜈𝑠𝑔𝑠 are the RANS eddy viscosity and the sgs viscosity, 

respectively. 𝑝 and 𝑔𝑖 are the pressure and the gravity vector, respectively. The drift terms in the above equations 

read as 



𝑄𝑖
𝐿,𝑢 = (1 − 𝜎𝐿) (

〈𝑈𝑖〉 − 〈𝑈𝑖〉
𝐸𝑊𝐴

𝛾𝑙1
) 

 

 

(24) 

𝑄𝑖
𝐿,𝑔 = (1 − 𝜎𝐿) (

𝐺𝑖
𝛾𝑙2
) 

 

(25) 

𝐺𝑖 = (1 −
𝑘𝑠𝑔𝑠

𝐸𝑊𝐴

𝑘𝐸𝑊𝐴
)
𝑘𝑅 − 𝑘𝐸𝑊𝐴

𝑘𝑅 + 𝑘𝐸𝑊𝐴
(𝑈𝑖 − 〈𝑈𝑖〉

𝐸𝑊𝐴) 

 

 

 

 

(26) 

𝑄𝑖
𝑅 = 𝜎𝐿

〈𝑈𝑖〉
𝐸𝑊𝐴 − 〈𝑈𝑖〉

𝛾𝑟1
 

 

(27) 

where the timescales 𝛾𝑙1, 𝛾𝑙2 and 𝛾𝑟1 control the speed at which the solutions relax towards one another. The term 

𝑄𝑖
𝑅 forces the RANS velocity 〈𝑈𝑖〉 towards the LES EWA velocity 〈𝑈𝑖〉

𝐸𝑊𝐴 in the LES regions. On the other 

hand, in the RANS regions, the term 𝑄𝑖
𝐿,𝑢 acts to correct the LES EWA velocity towards the RANS velocity. 

Furthermore, in these regions, in order to drive the LES EWA total turbulent kinetic energy 𝑘𝐸𝑊𝐴 towards the 

RANS turbulent kinetic energy 𝑘𝑅, the resolved fluctuations of the LES velocity are modified using the term 𝑄𝑖
𝐿,𝑔 

and the modelled fluctuations are adjusted using a drift term 𝑄𝑘𝑠𝑔𝑠 in the 𝑘𝑠𝑔𝑠 equation, which reads as  

𝜕𝑘𝑠𝑔𝑠

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑘𝑠𝑔𝑠𝑈𝑗) = 2𝜈sgs𝑆𝑖𝑗

2
 

+
𝜕

𝜕𝑥𝑗
(𝜈𝑠𝑔𝑠

𝜕𝑘𝑠𝑔𝑠

𝜕𝑥𝑗
) −

𝐶𝜀𝑘𝑠𝑔𝑠
3/2

𝛥
+ 𝐺𝑘𝑠𝑔𝑠 + 𝑄

𝑘𝑠𝑔𝑠 

 

 

 

(28) 

𝜈𝑠𝑔𝑠 = 𝐶𝑘𝑘𝑠𝑔𝑠
1/2 𝛥

𝜅

𝐶𝛥
 (1 − 𝑦 𝑒𝑥𝑝 (−

𝑦+

𝐴+
)) 

 

(29) 

𝑆𝑖𝑗 = 0.5 (
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
) 

 

(30) 

𝑄𝑘𝑠𝑔𝑠 = (1 − 𝜎𝐿)
   𝑘𝑠𝑔𝑠

𝐸𝑊𝐴

𝑘𝐸𝑊𝐴
𝑘𝑅 − 𝑘𝐸𝑊𝐴

𝛾𝑟2
 

 

(31) 

where 𝑦 is the wall distance and 𝑦+ equals 
𝑦√(𝜏𝑤/𝜌)

𝜈
, in which √(𝜏𝑤/𝜌) represents the friction velocity. 𝐶𝜀, 

𝐶𝛥, 𝐴+, 𝐶𝑘 and 𝜅 are constants (see Table. 1). The buoyancy production term 𝐺𝑘𝑠𝑔𝑠 becomes simply 𝛽𝑔𝑖
𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠 
 
𝜕𝑇

𝜕𝑥𝑖
 

when using the standard gradient diffusion hypothesis to model the sgs heat flux, which is present in the exact 

formulation of 𝐺𝑘𝑠𝑔𝑠. 

𝐶𝜀  𝐶𝛥 𝐴+ 𝐶𝑘 𝜅 

1.048 0.158 26 0.094 0.41 

Table. 1. Constants of the “one equation k eddy viscosity model”. 

   The forcing of the turbulent kinetic energy of the RANS 𝑘𝑅 towards 𝑘𝐸𝑊𝐴 in the LES regions is done by 

modifying the term that represents the generation rate of 𝑘𝑅 in the turbulence equations of the RANS as    

𝑃𝑘 = 𝑃𝑘
𝑚𝑜𝑑𝑒𝑙 + 𝜎𝐿

𝑘𝐸𝑊𝐴 − 𝑘𝑅

𝛾𝑟2
 

 

(32) 

where 𝑃𝑘 and 𝑃𝑘
𝑚𝑜𝑑𝑒𝑙  are the modified and original generation rates, respectively. The relaxation time scales 

𝛾𝑙1, 𝛾𝑟1, 𝛾𝑙2 and 𝛾𝑟2 read as 



𝛾𝑙1 = 𝛾𝑟1 = 𝑚𝑎𝑥 (𝐶𝛾1
𝑘𝑅

𝜀𝑅
, 𝛥𝑡) 

 

(33) 

𝛾𝑙2 = 𝛾𝑟2 = 𝑚𝑎𝑥 (𝐶𝛾2
𝑘𝑅

𝜀𝑅
, 𝛥𝑡) 

 

 

(34) 

where 𝐶𝛾1 = 0.1, 𝐶𝛾2 = 0.01 and 𝜀𝑅 is the RANS prediction of the turbulence dissipation rate. 

   The temperature equations of the RANS and the LES read, respectively: 

𝜕〈𝑇〉

𝜕𝑡
+ 〈𝑈𝑗〉

𝜕〈𝑇〉

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
((

𝜈

𝑃𝑟
+
𝜈𝑡
𝑃𝑟𝑡
)
𝜕〈𝑇〉

𝜕𝑥𝑗
)

+ 𝑄〈𝑇〉 

 

 

(35) 

𝜕𝑇

𝜕𝑡
+ 𝑈𝑗

𝜕𝑇

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
((

𝜈

𝑃𝑟
+
𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠
)
𝜕𝑇

𝜕𝑥𝑗
)

+ 𝑄𝑇 

 

 

(36) 

where 𝑃𝑟𝑡 (the turbulent Prandtl number) and 𝑃𝑟𝑠𝑔𝑠  (the sgs Prandtl number) were set equal to 0.9 and 0.4, 

respectively. This lower value of 𝑃𝑟𝑠𝑔𝑠 was found to improve the stability of the flow in the inner cylinder’s 

boundary layer, which can become quite unstable because of the coarseness of the LES grid in the tangential 

direction. The stabilization results from the fact that lowering 𝑃𝑟𝑠𝑔𝑠 adds more diffusion to the temperature field 

and is thus equivalent to adding some upwind. The drift terms 𝑄〈𝑇〉 and 𝑄𝑇 read 

𝑄𝑇

= (1 − 𝜎𝐿)
〈𝑇〉 − 〈�̅�〉𝐸𝑊𝐴

𝛾𝑙3

+ (1 − 𝜎𝐿) (1 −
𝛩𝐸𝑊𝐴𝑠𝑔𝑠

𝛩𝐸𝑊𝐴
)
𝛩𝑅 − 𝛩𝐸𝑊𝐴

𝛩𝑅 + 𝛩𝐸𝑊𝐴
�̅� − 〈�̅�〉𝐸𝑊𝐴

2𝛾𝑙4
 

 

 

 

 

(37) 

𝛩𝐸𝑊𝐴𝑠𝑔𝑠 =   〈 𝑇′2𝑠𝑔𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅  〉𝐸𝑊𝐴 (38) 

𝛩𝑅 = 〈𝑇′
2〉 

 

 

(39) 

𝑄〈𝑇〉 = 𝜎𝐿
〈�̅�〉𝐸𝑊𝐴 − 〈𝑇〉

𝛾𝑟3
 (40) 

where 𝑄〈𝑇〉 forces the RANS temperature 〈𝑇〉 towards the LES EWA temperature, 〈�̅�〉𝐸𝑊𝐴 in the LES regions. 

The correction of the RANS temperature variance, 𝛩𝑅 towards the LES EWA total temperature variance, 𝛩𝐸𝑊𝐴 

in these regions is achieved using the term 𝑄〈𝑇
′2〉 in the transport equation of the RANS variance (see (41)). On 

the other hand, the first part of the term 𝑄𝑇 forces the LES EWA temperature towards the RANS temperature in 

the RANS regions. Moreover, in these regions, the LES EWA total temperature variance is corrected towards the 

RANS temperature variance by adjusting the resolved temperature fluctuations (using the second part of 𝑄𝑇) and 

by modifying the modelled fluctuations using a source term 𝑄𝑇
′2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅
 in the transport equation of the sgs temperature 

variance (see (42)). The equations of the RANS and the sgs temperature variances (〈𝑇′
2〉 and 𝑇′

2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅ ) read as 

𝜕〈𝑇′
2〉

𝜕𝑡
+ 〈𝑈𝑗〉

𝜕〈𝑇′
2〉

𝜕𝑥𝑗
= 2

𝜈𝑡
𝑃𝑟𝑡

𝜕〈𝑇〉

𝜕𝑥𝑖

𝜕〈𝑇〉

𝜕𝑥𝑖
 

−
1

𝑅𝑡

𝜀𝑅

𝑘𝑅
〈𝑇′

2〉 +
𝜕

𝜕𝑥𝑗
((

𝜈

𝑃𝑟
+
𝜈𝑡
𝑃𝑟𝑡
)
𝜕〈𝑇′

2〉

𝜕𝑥𝑗
)

+ 𝑄〈𝑇
′2〉 

 

 

 

 

 

(41) 



 

𝜕𝑇′
2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑡
+ 𝑈𝑗

𝜕𝑇′
2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
= 

2(
𝜈

𝑃𝑟
+
𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠
)
𝜕�̅�

𝜕𝑥𝑖

𝜕�̅�

𝜕𝑥𝑖
−
1

𝑃𝑟

𝜀𝐿

𝑘𝑠𝑔𝑠
𝑇′

2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅  

+
𝜕

𝜕𝑥𝑗
((

𝜈

𝑃𝑟
+
𝜈𝑠𝑔𝑠

𝑃𝑟𝑠𝑔𝑠
)
𝜕𝑇′

2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
) + 𝑄𝑇

′2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

 

 

 

 

 

(42) 

where 𝑅𝑡 (the ratio of the thermal timescale to the mechanical timescale) was set equal to 0.5 and 𝜀𝐿 is the total 

LES dissipation rate, which can be obtained using: 

𝜀𝐿 = 2𝜈𝑆𝑖𝑗̅̅̅̅  𝑆𝑖𝑗̅̅̅̅ + 2𝜈𝑠𝑔𝑠𝑆𝑖𝑗̅̅̅̅  𝑆𝑖𝑗̅̅̅̅  (43) 

   The drift terms in the temperature variance equations are defined as 

𝑄〈𝑇
′2〉 = 𝜎𝐿

𝛩𝐸𝑊𝐴 − 𝛩𝑅

𝛾𝑟4
 

(44) 

𝑄𝑇
′2
𝑠𝑔𝑠

̅̅ ̅̅ ̅̅ ̅̅ ̅
= (1 − 𝜎𝐿)

𝛩𝐸𝑊𝐴𝑠𝑔𝑠

𝛩𝐸𝑊𝐴
𝛩𝑅 − 𝛩𝐸𝑊𝐴

𝛾𝑙4
 

 

(45) 

   The relaxation time scales 𝛾𝑙3, 𝛾𝑟3, 𝛾𝑙4 and 𝛾𝑟4 are defined as 

𝛾𝑙3 = 𝛾𝑟3 = 𝑚𝑎𝑥 (𝑅𝑡𝐶𝛾1
𝑘𝑅

𝜀𝑅
, 𝛥𝑡) (46) 

𝛾𝑙4 = 𝛾𝑟4 = 𝑚𝑎𝑥 (𝑅𝑡𝐶𝛾2
𝑘𝑅

𝜀𝑅
, 𝛥𝑡) 

 

(47) 

3.2. Turbulence Models 

   The RANS and the LES models employed here were the BL v2/k model and the one equation k eddy viscosity 

model, respectively. Details about the models’ equations and the treatments of the buoyancy and drift terms that 

were used to enhance the stability of the RANS model can be found in Ali et al. (2021). Further details on the 

models can also be found in Billard & Laurence (2012), Fureby et al. (1997) and Yoshizawa & Horiuti (1985). 

3.3. Computational details 

   OpenFOAM 2.3.x was used to perform the simulations of this study. The dual-mesh simulations were performed 

using the same dual-mesh solver used in Ali et al. (2021), which was prepared by combining the dual-mesh code 

of Tunstall et al. (2017) with a buoyant solver in OpenFOAM called “buoyantBoussinesqPimpleFoam”. As the 

name suggests, this solver models the effects of the density variation on the flow using the Boussinesq 

approximation. The thermal part of the dual-mesh method and the buoyancy specific terms in the turbulence 

models were also coded previously in OpenFOAM while conducting the study in Ali et al. (2021). 

   For both the RANS and the LES, the temporal discretization utilized second-order accurate backwards 

differencing scheme. The Courant number was kept less than 1 using OpenFOAM’s adjustable time step option. 

For spatial discretization, the convection terms of the LES equations were handled using second-order central 

differencing. However, for the RANS, the second-order upwind scheme was used for the momentum equation, 

whereas the van Leer scheme of van Leer (1974) was employed for the remaining equations. The PISO algorithm 

(see Issa, 1986) was used to handle the pressure velocity coupling in both the RANS and the LES. The solver and 

the discretization procedures have been extensively tested and benchmarked over a variety of heat transfer and 

thermal hydraulics applications in the past, see Guleren et al. 2010, Han et al. 2012, Afgan et al. 2008, Abed & 

Afgan 2017, Abed & Afgan 2020, Abed et al. 2020a, Abed et al. 2020b, Abed et al. 2021 and Ali et al. 2021.   

 

 

4. Results 

   In all the results shown here, the velocity vector (𝑼), radius (𝑟) and temperature (𝑇) were nondimensionalized 

in the following manner 



 

where 𝑔 is the magnitude of the gravity vector and √𝑔𝛽𝛥𝑇𝐿𝑟𝑒𝑓  represents a buoyant velocity scale. When 

estimating the second moments of the unsteady RANS and the LES simulations, both the resolved and the 

modelled components of the moments were taken into account. An explanation of this calculation can be found 

in Sebilleau (2016). 

   The averaging period of the LES in the dual-mesh simulation (𝑇𝑎𝑣𝑔) was set to to 41 
𝐿𝑟𝑒𝑓

√𝑔𝛽𝛥𝑇𝐿𝑟𝑒𝑓

. This period was 

found to be long enough to yield smooth averaged fields; multiplying the averaging period by 2 had a almost no 

effects on the results.  

   Section 4.1 gives an overview of the results of the pure coarse LES and the pure unsteady RANS computations. 

In section 4.2, these results are discussed in more detail. In addition, the dual-mesh results obtained using the 

lengthscale criterion of equation (9) are also shown in section 4.2. 

4.1. Results obtained from the standalone simulations:   

   As mentioned in the introduction, a challenging feature of this flow is the presence of a turbulence transition. 

This transition isimpossible to capture with a standard LES on a coarse grid similar to the one used here. Indeed, 

the one equation k model yields a non-zero 𝑘𝑠𝑔𝑠 (and hence a non-zero 𝜈𝑠𝑔𝑠, which is calculated from 𝑘𝑠𝑔𝑠 using 

(29)) in the laminar boundary layer over the inner cylinder. The production term in equation (28), 2𝜈𝑠𝑔𝑠𝑆𝑖𝑗
2
 has a 

strain rate, which is relatively large near the inner cylinder’s boundary layer (innerCBL) because of its small 

thickness (the large velocity gradients can be observed for example from Fig. 18-Fig. 20). Since the constant 𝐶𝑘 

used in the 𝜈𝑠𝑔𝑠 calculation is non-zero near the inner cylinder, the large strain rate causes a large 𝑘𝑠𝑔𝑠 production 

term, which in turn causes a large 𝜈𝑠𝑔𝑠. This causes a significant dissipation of the instabilities in the boundary 

layer, triggered by the gravity waves in the stably stratified bottom half of the annuli. The damping of these 

instabilities by a large 𝜈𝑠𝑔𝑠 delays the transition to turbulence of the buoyant plume. This late transition can be 

seen from Fig. 11 (a). 

   The dynamic Smagorinsky model (see Germano, 1992 and Lilly, 1992) was used in an attempt to overcome the 

transition delay problem experienced when using the one equation k model. The benefit of the dynamic model is 

that the dynamic procedure of the model yields a zero Smagorinsky constant in the laminar boundary layer and in 

turn a zero 𝜈𝑠𝑔𝑠 (see Afgan 2007 and Kahil et al. 2019 for further details on the laminar to turbulent transition 

models for LES). However, the vanishing 𝜈𝑠𝑔𝑠 in the innerCBL was observed to cause significant numerical 

instabilities since in this region the grid is coarse in the tangential direction (except at the locations close to the 0° 

position). Indeed, when the dynamic Smagorinsky model was used in a dual-mesh simulation, solution divergence 

was encountered. For this reason, the dynamic model was abandoned.  

   An alternative approach to improve the prediction of the turbulence transition in a dual-mesh simulation is to 

use the one equation k model and lower 𝜈𝑠𝑔𝑠 in the innerCBL and the initial stages of the plume (these regions 

cover the transitional flow region) to a value that is relatively small but non-zero. This can be done by lowering 

the constant 𝐶𝑘 only in the cells where 𝜈𝑠𝑔𝑠 needs to be lowered and not altering its value at the remaining 

locations. A low value of 𝐶𝑘=0.0043 was found to be a suitable choice. However, instead of manually defining 

the region where 𝐶𝑘 = 0.0043 , an automatic identification procedure was used. This procedure was applied by 

first estimating the ratio 
{ksgs}

{kTotal} 
 (kTotal is the total turbulent kinetic energy, which includes a sgs contribution as 

well as a contribution from the resolved fluctuations) from the results of the pure coarse LES simulation in which 

𝐶𝑘was set to 0.094 everywhere. This ratio is relatively large at the cells in the innerCBL because of the large 𝑘𝑠𝑔𝑠 

and the small values of the resolved variances of the velocity components (the resolved instabilities are damped 

due to the high 𝜈𝑠𝑔𝑠). However, this ratio can also be significantly large near the outer cylinder if the grid is very 

coarse. One quantity that can be used with the ratio 
{ksgs}

{kTotal} 
 to distinguish the boundary layer over the inner 

cylinder from the outer cylinder’s boundary layer (outerCBL) is the LES zone weight (𝜎𝐿) that is based on the 

lengthscale criterion (see (9))2. In the innerCBL, 𝜎𝐿 = 1 (see Fig. 6) and 
{ksgs}

{kTotal} 
 is large, whereas near the active 

flow regions of the outerCBL 𝜎𝐿 = 0 and 
{ksgs}

{kTotal} 
 can be large or small depending on the grid resolution. 

Consequently, 𝐶𝑘 can be calculated as 

 
2 The behaviour of this criterion in the annuli flow is explained in section 4.2. 

𝐔 =
𝑼

√𝑔𝛽𝛥𝑇𝐿𝑟𝑒𝑓
, r =

(𝑟 − 𝑅𝑖)

(𝑅0 − 𝑅𝑖)
, T =

(𝑇 − 𝑇ℎ)

(𝑇𝑐 − 𝑇ℎ)
 

 

(48) 



𝐶𝑘 = {
 0.0043     𝑓𝑜𝑟 

{𝑘𝑠𝑔𝑠}

{𝑘𝑇𝑜𝑡𝑎𝑙} 
≥ 0.5 𝑎𝑛𝑑 𝜎𝐿 = 1 

0.094                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
                                         

 

 

 

(49) 

   The above equation can be used to calculate 𝐶𝑘 in the dual-mesh hybrid simulation. However, the hybrid 

simulation needs to be preceded by a coarse LES simulation for the purpose of calculating the 
{𝑘𝑠𝑔𝑠}

{𝑘𝑇𝑜𝑡𝑎𝑙} 
 ratio. A 

contour plot of 𝐶𝑘 estimated using (49) is shown in Fig. 5. It can be observed from this figure that (49) correctly 

gives 𝐶𝑘 = 0.0043 near the inner cylinder and in the initial stages of the plume (thus 𝐶𝑘 is lowered in the 

transitional flow areas), whereas in the remaining regions, the 𝐶𝑘 values are not lowered from their default value 

of 0.094.  

   In order to demonstrate that even with a good transition prediction the pure coarse LES cannot predict the flow 

near the outer cylinder correctly (due to the under-resolution of the grid in this region), a second coarse LES 

simulation was also run. In this simulation, the values of 𝐶𝑘 calculated using (49) were utilised when calculating 

𝜈𝑠𝑔𝑠 (using (29)) in order to obtain smaller values of 𝜈𝑠𝑔𝑠 near the inner cylinder compared to the 𝜈𝑠𝑔𝑠 values 

obtained in the previous coarse LES (with 𝐶𝑘 = 0.094 everywhere). An improved transition prediction can be 

observed from the contours of the instantaneous and mean velocity magnitudes taken from the coarse LESs with 

default and reduced 𝐶𝑘 values (Fig. 11 (a), Fig. 11 (b), Fig. 13 (a) and Fig. 13 (b)). The default 𝐶𝑘 simulation 

predicts a plume that is thinner than the one in the reduced 𝐶𝑘 simulation because the latter predicts an earlier 

transition, which allows the turbulence mixing to entrain more of the surrounding fluid into the plume. A 

quantitative comparison between the results of the two coarse LESs can be found in section 4.2. 

   A contour plot of the pure RANS mean velocity magnitude is presented in Fig. 13 (c). This simulation predicts 

a thin plume and a small thickness of the outerCBL. The thin plume prediction is an indication of insufficient 

turbulence levels. It can also be observed from the RANS turbulent kinetic energy contours (Fig. 14 (a)) that the 

RANS predicts a delayed transition compared to the reduced 𝐶𝑘 LES simulation, which features turbulent flow 

structures in the vicinity of the inner cylinder (see Fig. 11 (b)). Fig. 14 (b) shows the kinetic energy of the resolved 

unsteady motions in the RANS simulation. The non-zero values of this parameter in the plume region are caused 

by the fact that the plume motion is unsteady. This unsteadiness is apparent in the snapshot of the RANS velocity 

shown in Fig. 12 (a). 

   The flow streamlines predicted by the different simulations are shown in Fig. 15. These streamlines show that 

the plume rises from the inner cylinder, impinges on the outer cylinder and then flows along this cylinder. As the 

hot plume is flowing along the outer cylinder against the action of gravity, the plume starts to decelerate. The 

effect of the deceleration is more pronounced on the outer edge of the plume compared to the near-wall jet, which 

is able to penetrate deeper along the outer cylinder. This is because the outer edge of the plume experiences more 

mixing with the fluid outside of the boundary layers than the near-wall jet. It can be seen that the fluid that forms 

the descending plume after being significantly decelerated by gravity moves slowly to fill the place of the fluid 

entrained by the rising plume and the innerCBL. It can also be observed that the fluid in the region below the 

inner cylinder flows at a very low velocity into the innerCBL. Indeed, this region is almost stagnant, featuring a 

stable stratification and is almost laminar.    

4.2. Analysis of the dual-mesh results and a comparison with the results of the standalone 

simulations: 

   With Regards to the dual-mesh hybrid simulation, the criterion of Ali et al. (2021) was found to behave 

satisfactorily in defining the RANS and the LES regions. A contour plot of the LES zone weight (𝜎𝐿) estimated 

using this criterion is shown in Fig. 6. It can be observed that the RANS regions are mainly located in the vicinity 

of the outer cylinder. Furthermore, the criterion allows the flow field of the LES to develop without being forced 

towards the RANS in the innerCBL and in the plume region. These regions feature the formation of flow 

instabilities and modifying the LES fluctuations via the relaxation forcing in these regions can be dangerous as it 

can dampen these instabilities, which in turn might delay the occurrence of the turbulence transition. 

   The fact that the lengthscale resolution criterion causes the RANS to encounter a significant forcing towards the 

LES in the region with a strong RANS instability (in the plume region) leads to a destruction of the RANS 

instability, which makes the hybrid RANS simulation reach an almost steady-state, which can be observed from 

the instantaneous hybrid RANS velocity field shown in Fig. 12 (b). The steadiness of the RANS simulation 

facilitates setting up the dual-mesh simulation since in an unsteady RANS the averaging timescale (𝑇𝑎𝑣𝑔) of the 

LES is required to be much smaller than the RANS instability time scales as suggested by Xiao & Jenny (2012). 

A similar destruction of the RANS instability due to a significant forcing of the RANS was also observed in the 

study of Ali et al. (2021). 



   In order to explain the behaviour of the lengthscale criterion, contour plots of the different lengthscales in (9) 

are shown along with a number of radial profiles of the lengthscales and 𝜎𝐿 in Fig. 3, Fig. 4, Fig. 7 and Fig. 8. It 

can be observed from the profiles at 30⁰ and 60⁰ that the wall distance at which 𝜎𝐿 becomes 1 is determined by 

the location in the LES grid where 𝛥 becomes smaller than the largest lengthscale among the lengthscales 𝜓
𝐿𝑅𝑀

10
 

, 𝜓𝜆 and 8𝐶𝑘𝑜𝑙𝑚𝜂. Fig. 8 (c) shows that the lengthscale 8𝐶𝑘𝑜𝑙𝑚𝜂 becomes large in nearly all the laminar regions, 

which include the stratified region at the bottom of the annuli and the initial stages of the plume (the lengthscales 

were calculated from the results of the pure RANS, which predicts a delayed plume turbulence transition). Fig. 9 

shows the behaviour of the lengthscales 
𝜓

10

{𝑘𝑅}3/2

{𝜀𝑅}
 and 𝜓√

10𝜈{𝑘𝑅}

{𝜀𝑅}
, which are based on turbulence quantities unlike 

the lengthscales 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 (the contours of which are shown in Fig. 8), which are calculated from quantities 

that include contributions that result from both turbulence and mean flow unsteadiness. It can be observed that 

the RANS predicts 
𝜓

10

{𝑘𝑅}3/2

{𝜀𝑅}
 and 𝜓√

10𝜈{𝑘𝑅}

{𝜀𝑅}
 to be small in the region of the rising plume. If these lengthscales 

were used in the definition of the resolution criterion (equation (9)) instead of using 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆, 𝜎𝐿 would have 

become 0 at some locations within the plume region. On the other hand, in this region 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 are larger 

than the grid size and using these lengthscales in the resolution criterion makes 𝜎𝐿=1 in the entire region. Indeed, 

Fig. 3 (a) shows that at 0⁰, 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 are greater than 𝛥 except near the cylinders. However, the fact that 

8𝐶𝑘𝑜𝑙𝑚𝜂 even with the damping introduced by 𝐶𝑘𝑜𝑙𝑚 is significantly larger than 𝛥 in the vicinity of the inner 

cylinder makes 𝜎𝐿 equal to 1 in this region (the region where the damping introduced by 𝐶𝑘𝑜𝑙𝑚 is active in the 

immediate vicinity of the inner cylinder can be seen in Fig. 8 (c) and in the profiles of the lengthscales shown in 

Fig. 3). The definitions of the lengthscales in (9) thus successfully ensure 𝜎𝐿=1 at all the locations of the rising 

plume apart from the region near the outer cylinder.  

   The radial profiles of the lengthscales (Fig. 3) show that near the outer cylinder, the lengthscales 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 

increase smoothly in the wall-normal direction. On the contrary, the profiles of the undamped lengthscales 
𝐿𝑅𝑀

10
 

and 𝜆 (Fig. 4) feature relatively large gradients near the outer cylinder. Similar observations of this unsmooth 

near-wall behaviour of the undamped lengthscales have been reported by Uribe (2010) and Ali et al. (2021) and 

were the reasons why the authors introduced near-wall lengthscale damping in their resolution criterions.  

Furthermore, it can be seen that near the outer cylinder, 8𝜂 is too large to represent the lengthscale of the 

turbulence structures, whereas the damped lengthscale 8𝐶𝑘𝑜𝑙𝑚𝜂 gives a more reasonable estimation of the size of 

these structures. Another observation that can be made from Fig. 3 (b)-(d) is that the location outside of the near-

wall region of the outer cylinder where 8𝐶𝑘𝑜𝑙𝑚𝜂 intersects with the maximum of the lengthscales 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 

shifts closer to the outer cylinder as θ (the angular location) increases. This is caused by the decrease of the 

boundary layer thickness with increasing θ, which can be observed from the profiles of the velocity component in 

the tangential direction (Fig. 20). The large values of the Kolmogorov lengthscale outside of the boundary layer 

can be explained by the weak turbulence levels, which cause low values of  {𝜀𝑅} and hence large estimations of 

𝜂.  The profiles at 120⁰ (Fig. 3 (e)) suggest that 8𝐶𝑘𝑜𝑙𝑚𝜂 is greater than both 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 at most of the stagnant 

stratified region apart from the locations where 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 reach their highest values, which can also be seen 

from Fig. 8 (a) and Fig. 8 (b). 

   The pure RANS estimations of the “elliptic blending parameter” 𝛼 and the “wall-normal anisotropy” 
  〈𝑣2〉

𝑘
 are 

shown in Fig. 10. 𝛼 is significantly less than 1 not only close to the walls but also in the stratified region at the 

bottom. This means that the damping of the lengthscales 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 introduced by 𝜓 is active in the bottom 

region. This can be understood by looking at (20). The small values of 𝛼 and 
  〈𝑣2〉

𝑘
 allow 𝜓 to be less than 1. Note 

that 𝜓 was designed to introduce a lengthscale damping only near the wall and not in the laminar zones. However, 

the fact that 8𝐶𝑘𝑜𝑙𝑚𝜂 (which is large in nearly all the laminar zones) is introduced as a third argument in (9) 

prevents 𝜎𝐿  from becoming 0 in the laminar bottom region even when the lengthscales 𝜓
𝐿𝑅𝑀

10
 and 𝜓𝜆 are 

significantly reduced because of the presence of 𝜓 in their definitions.  

   Fig. 16- Fig. 21 show a comparison of the performance of the different simulations in predicting the mean 

vertical, horizontal and tangential velocities, mean temperature, total turbulent kinetic energy and the rms of the 

temperature fluctuations (based on the total temperature variance). Regarding the pure RANS results, the delay 

of the turbulence transition observed earlier from the velocity and turbulence energy contours is also evident from 

the temperature profiles shown in Fig. 16. The RANS overestimates the temperatures of the rising plume (this is 

evident in the 0⁰ temperature profile shown in Fig. 16 (a)) because the RANS underestimates the turbulence 

mixing that occurs between the hot plume and the surrounding colder fluid. This large overestimation of the 



temperatures of the rising plume causes an overestimation of the temperatures at the locations between 30⁰ and 

90⁰ (see Fig. 16 (b)-(d)). The velocity profiles (Fig. 18 (b), Fig. 18 (c), Fig. 19 and Fig. 20) reveal that the pure 

RANS underestimates the size of the outerCBL. The same observation of the thin outerCBL was made earlier 

from the RANS velocity contours (Fig. 13 (c)). 

   Regarding the predictions of the rms of the temperature (trms) (Fig. 17), the overprediction of the pure RANS 

temperature fluctuations at the 0⁰ location is caused by the transition delay and the underestimation of the 

turbulence mixing. This somewhat agrees with the observation of McLeod and Bishop (1988) who probed the 

temperature at 𝑟 = 0.5 in the 0⁰ position and found that situations with more turbulence levels correspond to 

smaller amplitudes of the temperature fluctuations. With regards to the trms predictions at the other locations, it 

can be observed that the pure RANS gives wrong predictions of the locations of the local peaks that occur in the 

QDNS data at about r≈ 0.49 and r≈ 0.625 in the 30⁰ and 60⁰ radial lines, respectively. These trms peaks are 

caused by the presence of local peaks in the profiles of the radial temperature gradient (the reason for this is that 

the temperature variance is produced by temperature gradients) that occur in the recirculating flow regions. Since 

the RANS underestimates the extent of these regions, it predicts the location of the temperature gradient’s local 

peaks to be closer to the wall of the outer cylinder than what the benchmark QDNS data shows. The total turbulent 

kinetic energy (TTKE) profiles (Fig. 21) show that at 0⁰, the RANS overestimates the levels of the velocity 

fluctuations in the plume central region (between 𝑟 ≈ 0.229 𝑎𝑛𝑑 𝑟 ≈ 0.649) but underestimates these levels near 

the two cylinders. At 30⁰ and 60⁰, the TTKE is underestimated in the entire boundary layer apart from the region 

near the outer cylinder at the 60⁰ location.  

   Results of the pure LES default 𝐶𝑘 simulation are similar to the pure RANS results in that the pure LES 

simulation exhibits an overprediction of the temperatures between 0⁰ and 60⁰ (however, the temperature 

overprediction of the pure LES default 𝐶𝑘 simulation is less severe than that of the pure RANS) and an 

overprediction of the 0⁰ trms. Furthermore, near the outer cylinder, there is a clear overprediction of the TTKE 

and the total temperature variance, which can be observed from the 30⁰ and 60⁰ profiles of the TTKE and the trms 
(Fig. 21 (b), Fig. 21 (c), Fig. 17 (b) and Fig. 17 (c), respectively). The tangential velocity profile at 30⁰ (Fig. 20 

(a)) features an underprediction of the boundary layer thickness, whereas the 60⁰ profile (Fig. 20 (b)) gives a 

reasonable estimation of the boundary layer thickness. The improvement in the prediction of the boundary layer 

thickness from 30⁰ to 60⁰ is likely to be due to an error cancellation in which the problem of the underprediction 

of the boundary layer thickness was cancelled by an overprediction of the wall-normal turbulence mixing of the 

momentum in the tangential direction. 

   Concerning the results of the pure LES reduced 𝐶𝑘 simulation; the prediction of the 0⁰ velocity profile (see Fig. 

18 (a)) is reasonable (despite the presence of a slight underprediction of the velocities between 𝑟 ≈ 0.6 𝑎𝑛𝑑 𝑟 ≈
1). At the angle of 30⁰, the pure LES reduced 𝐶𝑘 predictions show some deviation from the QDNS data (see Fig. 

18 (b), Fig. 19 (a) and Fig. 20 (a)) and at 60⁰ (see Fig. 18 (c), Fig. 19 (b) and Fig. 20 (b)) the deviation becomes 

much more pronounced as the LES overestimates the thicknesses of the descending flow region (the region with 

positive tangential velocity values near the outer cylinder) and the boundary layer. On the other hand, the hybrid 

simulations give much more accurate velocity profiles at both 30⁰ and 60⁰. The fact that in the hybrid framework 

the coarse LES is corrected towards the RANS in the near-wall region allows the LES to do a good job in capturing 

the outer edge of the boundary layer. Indeed, one of the motivations for using hybrid RANS-LES to simulate this 

flow and the flow reported in Ali et al. (2021) is that compared to the RANS approach, the LES is more capable 

of capturing the interaction of the large eddies at the outer edge of a turbulent boundary layer with the laminar 

regions far from the wall as these interactions are resolved in the LES unlike in the RANS, where they are 

completely modelled. However, admittedly, the hybrid method overpredicts the near-wall peaks of the 60⁰ 
velocity profiles. Nonetheless, it is difficult to obtain accurate predictions of all the near-wall locations as these 

locations are handled by the RANS. The streamlines estimated from the mean velocities of the pure LES reduced 

𝐶𝑘 and the hybrid RANS3 simulations (Fig. 15 (b) and Fig. 15 (d), respectively) show that the two simulations 

yield different predictions of the size of the recirculating flow regions, which agrees with what was observed from 

the velocity profiles.  

   With regards to the total turbulent kinetic energy (TTKE) results returned by the pure LES reduced 𝐶𝑘  simulation 

(Fig. 21), the 0⁰ predictions are in better agreement with the QDNS data near the inner cylinder compared to the 

predictions of the pure LES default 𝐶𝑘 simulation (due to the improved transition prediction in the former). At 

60⁰, the reduced 𝐶𝑘 simulation exhibits a significant overprediction of the TTKE. Additionally, the local TTKE 

peaks (which are located at 𝑟 ≈ 0.46 and 𝑟 ≈ 0.58 in the 30⁰ and 60⁰ positions, respectively in the QDNS profiles) 

are not well captured by the reduced 𝐶𝑘  simulation. On the other hand, forcing the coarse LES towards the RANS 

near the wall (i.e. using the dual-mesh approach) helps to reduce the problem of overpredicting the turbulence 

 
3 Since the mean velocities of the hybrid LES and the hybrid RANS simulations are consistent, it is expected that 

both simulations have similar mean velocity streamlines and hence only the hybrid RANS streamlines are shown 

here. 



levels and allows the LES to give a more accurate prediction of the locations of the local peaks of the TTKE 

(particularly at 60⁰). This is because the local peaks are related to the presence of the recirculation regions, whose 

size is well captured by the hybrid method (as observed earlier from the velocity profiles). 

   Regarding the mean temperature and trms profiles (Fig. 16 and Fig. 17, respectively), the profiles of the pure 

LES reduced 𝐶𝑘 and the hybrid simulations at 0⁰ are satisfactory. Even though at 30⁰ and 60⁰ the temperature 

profiles of these simulations seem to be in very good agreement with each other and with the QDNS data, the 

temperature gradient profiles shown in Fig. 22 reveal that the temperature results of the simulations are not 

identical. In particular, at 60⁰, the pure LES reduced 𝐶𝑘 simulation predicts the local peak that occurs in the profile 

of the hybrid method at r≈ 0.625 to be more shifted towards the inner cylinder. As explained previously, the local 

peaks in the temperature gradient profiles correspond to local peaks in the trms profiles. The fact that the hybrid 

simulations give more accurate predictions of the values and the locations of the trms local peaks at 30⁰ and 60⁰ 
compared to the pure LES reduced 𝐶𝑘 simulation means that the hybrid simulations are superior to the pure LES 

in capturing the temperature gradient’s local peaks. Another observation that can be made is that there is a good 

correspondence between the temperature gradient and the trms profiles in that at locations where the hybrid 

method gives a higher prediction of the temperature gradient than the pure LES reduced 𝐶𝑘 simulation, the hybrid 

trms is greater than the pure LES reduced 𝐶𝑘 trms and vice versa.  

   The overprediction of the trms and TTKE values of the hybrid and the pure LES reduced 𝐶𝑘 simulations near 

the inner cylinder is caused by the fact that the LES grid is deliberately made coarse in the tangential direction at 

most of the angular locations in order to prohibit the pure LES from accurately resolving the structures near the 

outer cylinder. This was done to allow this study to explore whether forcing the coarse LES towards the RANS 

close to the outer cylinder can improve the LES results. The fact that the Rayleigh number of the flow is low 

necessitated a significant coarsening of the grid near the outer cylinder. Coarsening the grid in the tangential 

direction near the outer cylinder resulted in large tangential grid spacings near the inner cylinder since a structured 

grid is used in this study. However, for high Rayleigh numbers, the grid does not have to be significantly coarse 

to be under-resolved close to the outer cylinder. Thus, one can design a grid that can resolve the innerCBL 

accurately and at the same time be under-resolved near the outer cylinder.  

5. Conclusions 

   In this work, the dual-mesh hybrid RANS-LES method was applied to the buoyant flow inside a cylindrical 

annuli enclosure. This was also accompanied by pure RANS and pure coarse LES studies of the flow. The areas 

that are characterized by an active flow in the enclosure include the boundary layer over the inner cylinder, the 

buoyant rising plume (which encounters a laminar-turbulent transition near the inner cylinder) and the turbulent 

boundary layer over the outer cylinder. The region that is located under the inner cylinder is stably stratified and 

oscillates slowly under the action of the gravity waves.    

   The one equation k LES model with its default coefficients was found to be unable to predict the turbulence 

transition. Similar observations were made about the Smagorinsky model by Miki et al. (1993) and Addad (2004), 

who obtained better results for the annuli flow by lowering the value of the Smagorinsky constant. In the present 

study, a better transition prediction was achieved by lowering the constant 𝐶𝑘 (which appears in the 𝑘𝑠𝑔𝑠 

equation’s production term) at the cells located in the inner cylinder’s boundary layer. This was done by running 

a precursor coarse LES simulation in which the default 𝐶𝑘 value was used in the entire domain. This was followed 

by using the formula in Error! Reference source not found. to identify the cells at which 𝐶𝑘 needs to be reduced. 

The reduced 𝐶𝑘 values were used in the hybrid LES part of the dual-mesh simulation and in a second pure coarse 

LES simulation. 

   The lengthscale resolution criterion of Ali et al. (2021) was used in the dual-mesh simulation for the purpose of 

automatically determining the locations where the LES simulation is forced towards the RANS and vice versa. 

An analysis of the behaviour of the different lengthscales used in the definition of this criterion in this flow was 

presented and can be considered complementary to the analysis that was conducted in Ali et al. (2021) for a 

buoyant square cavity flow. Additionally, the performance of the dual-mesh approach in predicting the annuli 

flow was shown to be in general superior to both the pure RANS and the pure coarse LES. This was done by 

validating the results of the different simulations by comparing their predictions of different quantities relevant to 

the flow and thermal fields against the QDNS data of Addad et al. (2015). Some qualitative analysis in the form 

of comparisons of flow contours and streamlines is also presented.  

   The focus of future studies should be on obtaining high fidelity data for cylindrical annuli flow situations with 

significant turbulence levels unlike the “weakly turbulent flow” examined here. Two particularly relevant cases 

are the coaxial cylinders flow at 𝑅𝑎 = 2.38 ∗ 1010 in an annuli with 𝑅0/𝑅𝑖 = 3.37 and the flow at 𝑅𝑎 = 2.38 ∗
1010 in an annuli with three internal cylinders. These cases can be found in the LES study of Addad et al. (2006). 

Acquiring high fidelity data for these flow situations is necessary to further assess the performance of the dual-

mesh method in predicting the cylindrical annuli flow. The results obtained in the present study and in Ali et al. 

(2021) are encouraging and suggest that the dual-mesh approach can be a good candidate for CFD simulations of 



buoyancy driven flows. These two studies also serve to further validate the heat transfer extension of the dual-

mesh method that was done by Tunstall (2016), who also tested it on a T-junction flow. 
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Fig. 1. A schematic of the geometry of the cylindrical annuli. 
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                                                     (c) 

Fig. 2. Front (xy) views of the (a) LES mesh (b) RANS mesh. In (c), an xz view of the LES mesh is shown. 
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Fig. 3. Plots showing the behaviour of the lengthscales 𝜓𝜆, 𝜓
𝐿𝑅𝑀

10
, 8𝜂 and 8𝐶𝑘𝑜𝑙𝑚𝜂 and the filter width 𝛥 

(estimated using √Δ𝑉
𝟑

) at radial lines that correspond to the angular locations of (a) 0° (b) 30° (c) 60° (d) 90° (e) 

120°. 



 

(a)                                                                         (b) 

Fig. 4. Plots showing the behaviour of the lengthscales 𝜆, 
𝐿𝑅𝑀

10
, 8𝜂 and 8𝐶𝑘𝑜𝑙𝑚𝜂 and the filter width 𝛥 (estimated 

using √Δ𝑉
𝟑

) at radial lines that correspond to the angular locations of (a) 30° (b) 60°. 

 

Fig. 5. A contour plot showing how 𝐶𝑘 behaves when it is evaluated using (49). 

 

Fig. 6. Contours of the LES zone weight (𝜎𝐿) from the dual-mesh simulation. 𝜎𝐿 was calculated using (9). 

 

 

 



 

Fig. 7. A plot showing the behaviour of the LES zone weight (𝜎𝐿) at radial lines that correspond to the angular 

locations of 0°, 30° and 60°. 
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Fig. 8. Contour plots showing the behaviour of the pure RANS estimations of the lengthscales (a) 𝜓
𝐿𝑅𝑀

10
 (b) 𝜓𝜆 

(c) 8𝐶𝑘𝑜𝑙𝑚𝜂. 
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Fig. 9. Contour plots showing the behaviour of the pure RANS estimations of the lengthscales (a) 𝜓
{𝑘𝑅}3/2

10{𝜀𝑅}
 (b) 

𝜓√
10𝜈{𝑘𝑅}

{𝜀𝑅}
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                                      (a)                                                                            (b) 

Fig. 10. Contour plots showing the behaviour of the pure RANS estimations of (a) the “elliptic blending 

parameter” 𝛼 (b) the “wall-normal anisotropy” 
  〈𝑣2〉

𝑘
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                                    (a)                                                                   (b) 

Fig. 11. Contour plots showing instantaneous snapshots of the velocity magnitude from the (a) pure LES default 

𝐶𝑘 simulation (b) pure LES reduced 𝐶𝑘 simulation. 

 



              

                                     (a)                                                                   (b) 

Fig. 12. Contour plots showing instantaneous snapshots of the velocity magnitude from the (a) pure RANS 

simulation (b) hybrid RANS simulation. 
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                                     (c)                                                                   (d) 

Fig. 13. Contours of the magnitude of the time averaged velocity from the (a) pure LES default 𝐶𝑘 simulation 

(b) pure LES reduced 𝐶𝑘 simulation (c) pure RANS simulation (d) hybrid RANS simulation. 

                               

                                      (a)                                                                     (b) 

Fig. 14. Contours of the pure RANS (a) time averaged modelled turbulent kinetic energy (b) kinetic energy of 

the resolved unsteady motions 𝒌𝑹𝑹𝒆𝒔, which can be calculated using (16).  



                    

                                     (a)                                                                      (b)  

                     

                                     (c)                                                                      (d) 

Fig. 15. Mean velocity streamlines predicted by the (a) pure LES default 𝐶𝑘 simulation (b) pure LES reduced 𝐶𝑘 

simulation (c) pure RANS simulation (d) hybrid RANS simulation. The streamlines are coloured by the 

magnitude of the mean velocity. 

 

 

 

 

 

 

 

 

 



 

(a)                                                                         (b) 

 

(c)                                                                         (d) 
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Fig. 16. Mean temperature profiles at radial lines that correspond to the angular locations of (a) 0° (b) 30° (c) 

60° (d) 90° (e) 120°. 



 

(a)                                                                         (b) 

 

(c) 

Fig. 17. Profiles of the r.m.s (“root-mean-square”) of the temperature fluctuations at radial lines that correspond 

to the angular locations of (a) 0° (b) 30° (c) 60°. 

 

 

 

 

 

 



 

(a)                                                                         (b) 

 

(c) 

Fig. 18. Profiles of the mean vertical velocity at radial lines that correspond to the angular locations of (a) 0° (b) 

30° (c) 60°. 

 

 

 

 

 

 

 

 

 

 



 

 

(a)                                                                         (b) 

Fig. 19. Profiles of the mean horizontal velocity at radial lines that correspond to the angular locations of (a) 30° 

(b) 60°. 

 

   

(a)                                                                         (b) 

Fig. 20. Profiles of the mean tangential velocity (the velocity component parallel to the wall) at radial lines that 

correspond to the angular locations of (a) 30° (b) 60°. 

 

 

 



    

(a)                                                                         (b) 

 

(c) 

Fig. 21. Profiles of the total turbulent kinetic energy at radial lines that correspond to the angular locations of (a) 

0° (b) 30° (c) 60°. 

 

(a)                                                                         (b) 

Fig. 22. Profiles of the radial mean temperature gradient at radial lines that correspond to the angular locations 

of (a) 30° (b) 60°. 

 

 


