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The impacts of climate change on agriculture1

in sub-Saharan Africa: a spatial panel data2

approach3

4

“everything is related to everything else, but near things are more related5

than distant things” Tobler (1970, p. 236) - Tobler’s first law of Geography6

Abstract7

This paper reports estimates of the economic impact of changes in weather vari-8

ables on sub-Saharan African pearl millet yield based on panel data for 1970 - 2016.9

We control for spatial effects in all the components of our exposure-response function,10

plus a lag in time of the covariates through spatio-temporal econometrics techniques.11

Our results indicate own-location weather variables have significant contemporane-12

ous impacts on millet yield. Specifically, we find that vapor pressure deficit, wet day13

frequency and temperature are important determinants of millet yield. In addition,14

accounting for spatial and temporal spillovers exacerbates and attenuates wet day15

cumulative effect, respectively, and local crop production is affected by neighboring16

countries’ production. The results are robust to several sensitivity checks, includ-17

ing accounting for adaptation using long-term averages, and are consistent across18

country-income groups. We also use our estimates to forecast how crop production19

would respond to climate change in the mid-future.20

Keywords: Agriculture, precipitation, spatial econometrics, sub-Saharan Africa,21

temperature, vapor pressure deficit22

1 Introduction23

Given the consensus of a shift in earth’s climatic status by the end of this century24

(IPCC, 2018), there are national, regional, and international concerns about the impacts25

of climate change on agriculture in the short-, medium-, and long-run. These concerns26

have led to a surge in empirical investigations into the nexus between climate change27
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and agriculture. Most of the pioneering works in this respect are focused on the United28

States.1 However, developing regions, such as sub-Saharan Africa (SSA), are more vul-29

nerable to climatic shifts because of the agriculture-dependent structure of the economy,30

poverty, credit constraint, dearth of adaptive technology, and the rain-fed character of31

farm products (Allen et al., 2014). Burke et al. (2015b) differ in these respects by at-32

tributing the cause of economic loss emanating from climate change to the already hot33

condition of developing regions (including SSA). Whichever is the case, it is important34

to provide estimates of the impacts of climate change in these regions to aid policymak-35

ers comprehend the potential effects of climate variability, as well as to support them in36

making relevant decisions that will either alleviate its magnitude or stimulate adaptation.37

One area that has not been explored in the SSA climate change-agriculture is how38

spatial influences affect crop production in a country. For example, spatial correlations39

occur due to incidental commonalities and agro-climatic conditions or geographical char-40

acteristics (Miao et al., 2015; Di Falco and Chavas, 2009). Moreover, significant spatial41

correlations arise due to the use of gridded weather datasets generated via extrapolation42

means (Auffhammer et al., 2013; Baylis et al., 2011). The impact of these spatial influ-43

ences has not been addressed in previous studies focusing on climate change and Africa.44

Although Ward et al. (2013); Schlenker and Lobell (2010) make an attempt to correct45

for spatial correlation among the error terms, none use formal spatial panel methodology.46

This study intends to show evidence that adjusting for these potential spatial influences47

will affect the impact analysis of weather fluctuations on crop yield in sub-Saharan Africa.48

This paper contributes to the existing literature on the SSA climate change-agriculture49

nexus in three major forms: methodology, weather measures and dataset.50

In terms of methodology, we use a spatio-temporal panel data model to control for the51

effect of space and time. Specifically, our technique includes spatial lags of the dependent52

variable and regressors with errors clustered at location level to control for the possibility53

of spatial correlation of yields, weather measures and idiosyncratic shocks, respectively.54

Besides, temporal lags of the regressors are added since the effect of weather shocks may55

persist over time, a concept labeled in the literature as the delayed effects of weather56

shocks (see Hsiang (2016), for example). The importance of using such sophisticated tools57

is to disentangle local effects (impacts from own units) from spillover effects (impacts58

from neighboring units) (see e.g., Harari and Ferrara, 2018). Focusing on agricultural59

economics, Baylis et al. (2011) examine the importance of spatial influences in agricultural60

production by modifying the climate impact work of Schlenker et al. (2006) to account61

for spatial interactions. They find that estimates from spatial models differ from their62

non-spatial counterparts.63

1See Mendelsohn and Neumann (1999) for a review of these earlier works. Recent empirical studies
on the impact of climate change on the US economy include Yu et al. (2021); Rudebusch (2019); Hsiang
et al. (2017), among others.
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Part of the methodological contribution is to disentangle the effects of weather fluc-64

tuations on yields across country-level income class. Following Burke et al. (2015b); Dell65

et al. (2012), we examine whether the effect of weather shocks on crop yield is dissimilar66

across countries by country-income group, as well as whether the spatial and temporal67

effects are driven by spatial and temporal lags.68

The empirical analysis is applied to pearl millet because of its economic importance.69

Millet is a major cereal for SSA and essential for food security (see e.g., Eriksson et al.,70

2018). Previous research has shown that millet possesses inherent properties that make71

it a good choice for adapting to climate change. For example, Wang et al. (2018) explain72

that the millet crop’s nutritional requirements are minimal and require no fertilizer or73

irrigation, as it can adapt to various soil types. Moreover, it has good disease and pest74

resistant traits that reduce its proneness to disease and pests (Manners and van Etten,75

2018; Goron and Raizada, 2015). The above properties are the basis for our choice of76

millet.77

Our second contribution is in terms of the weather measures we use. We use wet78

day frequency rather than precipitation, which is the conventional rainfall measure. Wet79

day frequency is significant because it captures better the dynamics in within-growing80

season rainfall. Fishman (2016); Carleton and Hsiang (2016), for example, show that81

the impact of rainfall on economic activity in the same location will be similar for two82

different periods if their aggregate values are same; however, these impacts may differ83

significantly if the spread over time is considered. Another contribution of this work is the84

introduction of a new weather measure, vapor pressure deficit (VPD), into SSA studies.85

The inclusion of VPD is important to crop physiology as it denotes drought sensitivity of86

crops (Urban et al., 2015; Lobell et al., 2013; Roberts et al., 2012).87

Our third contribution is regarding the geo-biophysical and temporal details, which88

are elaborated in turn. Whereas prior SSA panel studies use weather data averaged at89

country level, this study uses weather observations from each country’s main production90

area (MPA, hereafter). This improvement is significant given that agricultural production91

does not occur in all parts of a country. If areas where most of the agricultural production92

takes place have farming-friendly weather, then aggregating with or averaging over hotter93

(or colder) areas would result in estimates that rise (or fall) when the total or mean94

weather measure increases. Furthermore, such spatial averaging can attenuate significant95

nonlinearities (Auffhammer and Schlenker, 2014).96

Still on the geo-biophysical and temporal details, the growing season used here is97

specific to each country. The use of country-specific growing season is important because,98

unlike previous SSA studies that assume a uniform growing season across countries, we99

recognize that growing seasons differ across countries. For example, whereas the growing100

season for millet is November to June in Botswana (a country in the southern part of the101

region), it is July to November in Mauritania (a country in the North-Western part).102
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Lastly, this paper contributes to the existing literature on the SSA climate change-103

agriculture nexus by using the most recent millet yield and weather dataset (2016).2104

The updated dataset can be appreciated in light of noticeable rise in food insecurity and105

adverse weather shocks in the region over the last decade (FAO, IFAD, UNICEF, WFP106

& WHO, 2018). Although our analysis focuses on millet due to its economic importance,107

we, however, extended the analysis to other cereal crops. The results are available on108

requests from the authors.109

Our empirical results provide evidence of a significant contemporaneous relationship110

between weather shocks and millet yield in SSA. Specifically, an increase in temperature111

and VPD is associated with yield loss, respectively. On the other hand, an increase in112

wet day frequency improves output. Further, the introduction of spatial and temporal113

lags only affects wet day frequency. However, local yield levels are affected by the millet114

yield production in neighboring regions. We also find that the effect of temperature115

on millet yield differs between poor and rich SSA countries, with poor countries at the116

receiving end of the adverse effects of weather shocks. We find no such differential effect117

for wet day frequency. Lastly, future projections of weather changes from an ensemble of118

climate models when integrated into our estimated model indicate that, for a temperature119

increase of 2.3oC in the region, millet yield will go down by an additional 20% if all other120

aspects of the state of the world persist to 2070.121

Our work can be fitted into three branches of literature. First, this study relates to a122

new wave of overview papers (e.g., Hsiang, 2016; Dell et al., 2014) and recent empirical123

studies (e.g., Emediegwu, 2021; Harari and Ferrara, 2018; Burke et al., 2015b; Dell et al.,124

2012) that outline the importance of identifying the influence of past or neighbors’ me-125

teorological events. The argument is that the use of time-series identification of weather126

shocks necessitates accounting for these ripple/delayed effects in space and time so that a127

local transient impact is not misrepresented as a persistent response. These effects are not128

captured by a standard panel data model since it models a contemporaneous relationship129

with units of observations assumed to be spatially independent (Baltagi, 2011).130

Regarding spatial effects, Kumar (2011) argues that the values of agricultural variables131

are, in reality, also defined by conditions in neighboring countries. For example, agricul-132

tural activities in a location can benefit from rainfall in neighboring locations if they133

share rivers, tributaries and dams, as evidenced in Zouabi and Peridy (2015). Moreover,134

the error terms could be serially correlated, which may bias the true variance-covariance135

matrix; hence standard inference procedures are invalid and robust methods must be used136

(Baltagi, 2011). Similarly, Dell et al. (2014) are of the view that neglecting such signifi-137

cant spillovers in a standard panel analysis could bias the resultant estimates, therefore138

accounting for such spillovers could be of first-order importance (see also, Nijkamp and139

Poot (2004)). Such spatial dependence can be captured econometrically via spatial panel140

2Previous SSA studies such as Blanc (2012); Schlenker and Lobell (2010) use data up to 2002.
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data models, as done in this paper.3141

Second is the literature on climate change and crop yield in SSA. To further this liter-142

ature, we employ a more disaggregated approach by identifying where these productions143

occur and isolating the weather components that matter for millet development in each144

location.145

Finally, our paper relates to a sparse literature that considers the effect of water146

stress or drought on crop yield. Previous studies like Urban et al. (2015); Lobell et al.147

(2013); Roberts et al. (2012) have investigated these effects on maize yield in the United148

States. We add to their evidence by assessing these impacts on SSA millet yield because149

millet crops are more resistant to drought and water stress than maize (Wang et al.,150

2018; Manners and van Etten, 2018). This difference is appreciated if we consider that151

countries in SSA are already prone to warming, and investing in drought-resistant crops152

may be one policy response to climate change.153

The rest of the paper is structured as follows. Some spatial concepts and processes are154

considered in the next section. Section 3 describes the data and specifies the estimation155

model. The main and robustness results are discussed in Section 4, climatic projections156

in Section 5, and finally, Section 6 summarizes the paper with some policy implications.157

2 Spatial processes and mechanisms158

Following the methodological contributions of Cliff and Ord (1973, 1981), spatial159

models became popular in specialized fields such as regional science, urban and real estate160

economics, economic geography, and related fields.4 Further works by Anselin (2001);161

Polsky (2004); Baylis et al. (2011) popularize the application of spatial econometrics162

in standard fields of economics, such as development, agricultural and environmental163

economics.5 It is important to state that the use of spatial models is necessitated if164

there are reasons to think that a location’s agricultural production may be affected by165

its neighbor’s activities.166

Spatial interactions can occur in one or a combination of the following: error terms,167

regressors and dependent variables. For our analysis, we will be interested in all spatial168

interactions for a couple of reasons. First, we suspect the errors to be spatially correlated169

based on Miao et al. (2015); Di Falco and Chavas (2009), who give us reasons to be-170

lieve that crop yields across countries can be spatially correlated in their disturbances if171

they share similar soil or geographic attributes. Carleton et al. (2020); Auffhammer and172

Schlenker (2014) also posit that such dependence could result from confounding variation173

3Spatial panels, according to Elhorst (2003), refer to georeferenced point data over time of geograph-
ical units or (although less common) economic agents.

4See reviews in these fields from Paelinck and Klaassen (1979); Cliff and Ord (1981).
5Recent applications of spatial models in development and agricultural economics include Lim et al.

(2021); Leiva et al. (2020); Ho et al. (2018).
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in omitted climatic measures such as wind speed, solar irradiation, etc.174

Second, Auffhammer et al. (2013) show that there exists significant spatial correlation175

of weather measures because of the underlying data generating process and the extrapola-176

tion methods employed in generating gridded weather datasets.6 They further assert that177

spatial correlation of the regressors is problematic since most models cannot completely178

and correctly account for all relevant weather variables. In the same vein, Harari and179

Ferrara (2018) believe that the use of gridded weather dataset can introduce significant180

cross-grid spillovers. Also, certain natural/climatic occurrences could impact bordering181

countries. Hossain and Ahsan (2018) find that greater amount of rainfall in neighboring182

units has adverse effect on own-unit economic outcomes because patches of rainfall span183

several geographic units.184

Moreover, rainfall could be channeled through rivers, tributaries and dams to impact185

positively or negatively (in the advent of flooding or drought) on agricultural activities186

in neighboring countries. For example, Frenken (1997) reveals that the Zambezi river7187

entering Zambia from Angola in the north has an annual discharge of 18km3, doubling188

the volume needed to irrigate Angola. Hence, the amount of rainfall in the Zambezi basin189

affects the volume of water in the basin and, therefore, the water available to crops in the190

tributaries: Angola, Botswana, Malawi, Mozambique, Namibia, Tanzania, Zimbabwe and191

Zambia. In a similar twist, Zouabi and Peridy (2015) find that groundwater positively192

affects agricultural production for irrigated crops with interesting spillover effects with193

neighboring regions in Tunisia. A further climatic occurrence that travels spatially is194

related to temperature. There is evidence that heat travels horizontally from low to high195

latitudes due to pressure differences stemming from temperature disparities (Budyko,196

1969).197

Lastly, Hsiang (2016) reveals that crop yields could be displaced across space following198

meteorological events. In essence, weather conditions can affect economic activities in199

neighboring countries via price, trade (market) or conflict (Harari and Ferrara, 2018;200

Dell et al., 2014). For example, using panel data of over 20 years and from 271 districts,201

Kumar (2011) estimates the spatial effect of climate change on farm-level net revenue202

in India. The study finds a significant spatial autocorrelation between the dependent203

variables. More recently, Lim et al. (2021) find that farmers can adapt to changing204

environments due to interacting and learning from other farmers.205

Given the preceding reasons, the standard model ought to be the general nesting206

spatial (GNS) model because it controls for spatial interactions in all the components207

of a dose-response function (see Table F2 in the Appendix for a brief description of the208

6The use of gridded weather datasets has been popularized due to paucity of weather stations,
especially in developing regions. There are two basic methods of obtaining gridded weather datasets:
spatial extrapolation and data assimilation (see, Auffhammer et al. (2013) for better insight).

7The Zambezi basin ranks as the fourth largest basin in Africa, following Congo, Nile and Niger
basins
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several types of spatial models). However, Elhorst (2014) provides two reasons why this209

model is seldom used in applied research. One is the unavailability of a formal proof to210

obtain conditions under which the parameters are identified, hence GNS suffers from the211

well-known Manski reflection problem. The second reason is the problem of overfitting.212

Elhorst, on the other hand, argues that the parameters of the other specific spatial models,213

such as the spatial Durbin model (SDM), are identifiable and free from the problem of214

overfitting. Consequently, we follow Harari and Ferrara (2018) and Hossain and Ahsan215

(2018) by controlling for spatial correlation in the regressors and dependent variable using216

the spatial Durbin model (SDM) and accounting for spatial dependence in the residuals217

via clustering standard errors by MPAs.218

According to Gibbons and Overman (2012), OLS provides consistent estimates of219

the parameters if the spatial correlation occurs only through the exogenous attributes220

(spatial lag of X (SLX) model); unbiased but inefficient estimates if the error terms are221

spatially correlated (spatial error model (SEM)); biased and inconsistent estimates in the222

presence of spatial dependencies in the dependent variable (spatial autoregressive (SAR)223

model). However, Lee and Yu (2010) prove that bias-corrected maximum likelihood (ML)224

estimation provides efficient estimators for all spatial models.8 Consequently, we employ225

Lee and Yu’s (2010) bias-corrected ML estimation strategy to estimate our model.226

3 Data and model specification227

3.1 Data description and sources228

We use annual panel data from 1970 to 2016 for various millet-producing countries229

in SSA.9 See Table F1 and Figure F1 of the Appendix for list of countries and locations,230

respectively.231

Yield data232

Data for our dependent variable, country-level millet average yield (ton/ha), come233

from FAOSTAT database (http://www.fao.org/faostat/en/). The Food and Agri-234

culture Organization (FAO) obtained these figures from various sources: governments235

through national publications and FAO questionnaires (both paper and electronic); un-236

official sources; national and international agencies or organizations. The original data237

from FAO online database are expressed in hectogram per hectare (hg/ha), but to keep238

with the standard unit in agricultural economics, we convert them to ton/ha by dividing239

the observations by 10000.240

8The bias is a creation of the incidental parameter problem, which is briefly discussed in the Ap-
pendix, subsection B.

9For robustness and computational reasons, only countries with complete dataset are used because
spatial panel models can only be estimated for balanced panel data.
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Weather data241

Our main variables of interest are average temperature (TEMP), wet day fre-242

quency (WDF) and vapor pressure deficit (VPD). The first two datasets are243

sourced from CRU TS v4.02, a dataset developed by the Climate Research Unit (CRU)244

of the University of East Anglia. This dataset (released 18th November 2018) provides245

gridded time series data for several monthly weather measures, including average tem-246

perature and wet day count for all land areas in the world (excluding Antarctica) at 0.5o
247

resolution (approx. 56 km × 56 km across the equator) for the period January 1901 to248

December 2017.10
249

Although average temperature is appropriate for our work, agronomists have shown250

that crop development depends on cumulative heat exposure. Hence the use of degree251

units - cooling degree units (CDU), growing degree units (GDU) and killing degree units252

(KDU) - tends to be more appealing to climate scientists (Auffhammer and Schlenker,253

2014; Lobell et al., 2011; Schlenker and Roberts, 2009). Degree unit (or day) calculates254

cumulative exposure to heat and is a better predictor of climate change impact than255

average temperature. GDU and KDU are the two complementary measures popularly256

used in agronomic studies, and of these two, the consensus among researchers is that257

KDU is a better predictor of climate change.11,12 However, we are incapable of using it258

in this current study due to scanty KDU observations or little exposure to temperatures259

above 30 - 32oC in our data (see, Figure F2 of the Appendix).13 For example, less260

than 1 percent of our millet data - a heat-tolerant cereal crop - reached the maximum261

10See Harris et al. (2014) for a complete description of the dataset.
11This appeal, perhaps, comes from the econometric ability to capture possible nonlinear impacts of

extreme heat using KDU.
12Formally, GDU is defined

GDU =
∑
d

DU(td)

where DU(td) =


0 if t ≤ κlow
t− κlow if κlow < t ≤ κhigh
κhigh − κlow if κhigh < t

where td is average daily temperature in day d, κlow, baseline temperature, but κhigh is the temperature
ceiling beyond which crops are hurt. In the same vein,

KDU =
∑
d

DU(td)

where DU(td) =

{
0 if t ≤ κhigh
t− κhigh if κhigh < t

13Earlier works by Miao et al. (2015); Lobell et al. (2011); Schlenker and Roberts (2009) volleyed
harmful temperature for most cereals between 29oC and 32oC. However, they admitted that the bad
temperature might be higher for climate-resilient crops like millet.
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Note: The blue vertical lines show that the growing season for Millet MPA in Benin is from
March (3rd month) to November (11th month). Precipitation is in mm/month.

Figure 1: Benin (Millet) MPA Monthly Precipitation for Two Years (1999 & 2003)

temperature. It is obvious, at sight, that most MPAs have very low numbers of KDU262

observations14. The scanty observations of KDU in the region are unsurprising given there263

is less variation in the tropics than in temperate regions from where the use of degree units264

was generated and mainly utilized (Auffhammer and Schlenker, 2014; Guiteras, 2009).15
265

Consequently, in the absence of KDU observations, the second-best alternative is to use266

average temperature. One drawback of averaging temperature over time is that it masks267

nonlinearities; nevertheless, these can be recovered by the inclusion of a quadratic term268

which is the convention in the literature (Schlenker and Roberts, 2009).269

The wet day frequency (or count) (WDF) dataset, likewise sourced from CRU TS270

v4.02, provides gridded time series data on the counts of days per month where pre-271

cipitation is above 0.1mm for all land areas in the world (excluding Antarctica) at 0.5o
272

resolution for the period January 1901 to December 2017. Recent works like Lobell and273

Asseng (2017); Fishman (2016) have found WDF to be more relevant in predicting yield274

changes than the conventional aggregate precipitation used in existing SSA literature.275

For example, Figure 1 shows a country (Benin) with the same aggregate rainfall over276

the same growing season for millet (March - September) for two years but with differing277

distribution. Given the above example, Fishman (2016) argues that rainfall will produce278

14This occurrence may first seem counter-intuitive given the hot nature of SSA; however, following
works by the World Bank and FAO, Auffhammer and Schlenker (2014) affirm that developing countries
(including SSA) have soils and climate that are conducive for agriculture.

15This may be why existing SSA studies use average temperature instead of degree units. An exception
is Lobell et al. (2011), who use growing and harmful degree days to estimate the impact of weather on
maize trials in SSA. However, Lobell et al. (2011) focused on areas where maize trials were done, which
for most parts, are not where actual crop production takes place.
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the same impact if modeled with the aggregate value but different effects for both years279

when distributional properties are taken into account. Furthermore, for optimal growth280

and development, water needs must be sustained over a period. For example, Brouwer281

et al. (1988) show that millet requires at least an assured precipitation of 450-650 mm282

annually. Using total rainfall does not account for when the rainfall occurs, which WDF283

remedies.284

To our knowledge, vapor pressure deficit (VPD) is a new weather measure that we285

introduce into the empirical literature of climate change impacts in SSA.16 VPD (in286

Kilopascal, kPa) drives water loss from plants via evapotranspiration. In essence, it is287

associated with daily temperature, cloud cover and precipitation; thus, it is a significant288

determinant of crop yields, as it measures the drought sensitivity of plants. Given the289

several weather measures related to VPD, it follows that it can impact crop yields in290

different directions. On the one hand, high VPD may reduce yields by increasing the291

water requirements of crops (Lobell et al., 2013). On the other hand, high VPD can292

also benefit plants since it is associated with less cloud cover allowing for much solar293

radiation, a sine qua non for crop growth via photosynthesis (Roberts et al., 2012). In294

sum, the overriding effect will be determined by the moisture content of the soil.17 The295

VPD data were obtained from the TerraClimate monthly dataset of climate and climatic296

water balance for global terrestrial surfaces at a 0.05o spatial resolution (approx. 4 km297

× 4 km across the equator).18
298

We exploit this grid feature of our datasets to obtain historical weather observations of299

millet MPAs in all countries in our sample, thus weather data are unique to each MPA.300

We achieve this by taking a simple average of all the grid cells overlaying the MPAs.301

To account for heteroskedasticity, we weigh the weather data by the proportion of area302

harvested for each crop relative to the country’s total land area. The choice of main303

producing area (MPA) for each country was based on information from the country’s304

Ministry of Agriculture database, FAO (2018), and Monfreda et al. (2008), with the305

length of growing seasons taken from the various reports of FAO Global Information306

and Early Warning System (GIEWS)19 and HarvestChoice (2018) (see, Table F1 of the307

Appendix for list of millet MPAs in each country, as well as the different growing seasons).308

One important observation from Figure F1 in the Appendix is the location of most MPAs309

- proximity to borders - making our assessment of spatial interactions relevant.310

It is essential to state that each area is the largest producer (in tonnes) of millet311

crop in a country. Where there is more than one producing area in a country, we follow312

16Also known as vapor pressure demand, thus indicating plant’s water demand, while precipitation is
likened to the supply side.

17It is equally important to state that previous studies such as Lobell et al. (2013) have found VPD to
be a better predictor of cumulative evaporative demand than KDU, especially during the hottest months
of the growing season.

18See, Abatzoglou et al. (2018) for dataset description
19http://www.fao.org/giews/en/
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Table 1: Summary Statistics of Dataset for Millet Yield Model

Variables Mean SD Min Max

Millet Yield
(ton/ha)

0.714 0.360 0.04 1.951

Average Temp (oC) 24.9 3.74 15.8 31.5
Average WDF 11.51 5.20 0.03 23.60
Average VPD
(kPa)

1.286 0.619 0.392 3.307

Note: SD denotes standard deviation. All variables (except millet yield) are calculated over
growing season. Observations = 1457; Countries = 31; Years = 47.

the advice of Moore et al. (2017) by choosing the area with the highest production of313

the associated cereal. Moreover, we admit that we cannot discountenance the possibility314

of a shift of main production areas over the period covered (1970-2016). Whereas we315

do not have any empirical proof to justify the non-occurrence of such displacements,316

several annual bulletins from FAO GIEWS do not indicate shift of MPAs over the period317

considered.318

Countries in SSA are divided between North and South of the equator, as shown in319

Figure F1 of the Appendix; therefore, countries in the region do not experience similar320

seasons. The alternative favored in the literature (e.g., Dell et al., 2014) is growing seasons321

(the period from planting to harvesting). The use of growing season provides spatially322

disaggregated estimates that measure weather impacts during periods that are germane323

to plant growths. Growing seasons differ among countries: for example, although Nigeria324

and South Africa grow millet, they have different growing seasons. Ergo this study defines325

growing seasons by country (see Table F1 in the Appendix for a list of the growing seasons326

per country). This is the first SSA study to use such specific growing seasons as prior327

SSA studies use a generalized form of growing season across countries. It is important328

to note that in the event of more than one growing season, the primary growing season329

is selected.20 Table 1 presents the summary statistics of the data used in this study,330

whereas Figure 2 shows a substantial variation in weather measures across the MPAs.331

20Although there is evidence of change in planting season in some years, such changes are short-term
(in response to weather events) rather than long-term (in response to climate). Our choice can, therefore,
be likened to the modal growing season for each crop in the period under review.
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Figure 2: Spatial Variation of Average Weather Measures (1970 - 2016)

3.2 Model specification332

Our dependent variable is country-specific millet average yield (tons/ha), yct, in coun-333

try c and year t. Our baseline model contains weather measures specific to the MPA,334

their spatial and temporal lags, and the lag of the endogenous variable in space. The335

model is specified as336

Yt = WYtγ + Ctβ +WCtϑ+Rtω + ρ+ εt (1)

where Yt is an N × 1 vector of (log of) millet yield observations in the cross-section of337

N countries at time t ; Ct are N ×K matrix of climatic variables; εt is an N × 1 vector338

of unobservable random variables capturing the (idiosyncratic) errors. The time trend339

matrix Rt includes linear and squared terms to capture overall technological progress; ρ340

is an N × 1 vector of country-level fixed effects which capture the influence of any unob-341

served, time-invariant country and agro-ecological zones (AEZ) features. The inclusion342

of the fixed effects implies that our estimates are identified from within-MPA variation343

in own weather measures and neighbor’s from its long-term mean. In spatial economet-344

ric terms, W is an N ×N matrix of spatial weights (or connectivity)21, WY represents345

spatially autocorrelated outcomes, while WC represents spatial autocorrelation of the co-346

variates (weather measures). In terms of parameter notations, β, ω, γ and ϑ are vectors347

of parameters to be estimated, the last two being spatial parameters.22
348

The weather variables C in equation (1) includes average temperature (TEMP),349

wet day frequency (WDF) and vapor pressure deficit (VPD) over growing season350

by MPA; the squared terms to capture the nonlinear effects of these weather variables on351

21These weights can be different based on the spatial processes underlying the research.
22The introduction of spatially lagged variables makes our model specification similar to Baylis et al.

(2011), except for the choice of location, agricultural outcome, weather variables, and spatial weights.
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crop yield; temporal lags and monthly deviation in temperature to account for variability352

in temperature. Monthly deviation in temperature is calculated as the ratio of the353

standard deviation to the mean. Besides, we checked the effect of an alternative method,354

monthly maximum minus monthly minimum temperature, and find no significant differ-355

ence.356

We do not include the squared and temporal lag terms of VPD as we do not find any357

evidential reason to do so. Moreover, we do not include other controls for the following358

reasons. First, important edaphic factors such as soil quality are fixed over time and359

cannot be distinguished from country-specific effects.23 Hsiang (2016) and Dell et al.360

(2014) further argue that the addition of more controls will not necessarily move the361

climate change impact estimate closer to its true value if the controls (such as GDP362

and institutional measures) are outcomes of climate. Rather, such addition will induce363

an “over-controlling problem”. Consequently, the standard practice in climate change364

applied studies using panel data is to exclude other time-varying controls.24
365

In general, certain challenges confront the causal relationship in this setting. For a366

given MPA, meteorological conditions tend to trend throughout a growing season. Since367

crop output also trends, such temporal dependence may confound the estimated effect368

of weather fluctuations of millet yields with other determinants of crop outputs that are369

evolving gradually. Besides, several weather variables are strongly correlated, and these370

correlations can confound causal relationship if important weather variables are omitted.371

These potential challenges are addressed in this study by including time trend, country372

fixed effects, and several weather measures in the equation. Addressing these confounding373

challenges enables us to isolate the effect of random variation across our selected weather374

variables.375

Concerning the choice of spatial weights, there is no unanimity in the literature on376

the most appropriate or a “one-fits-all” spatial weight (Anselin, 2001). In selecting spatial377

weights, we follow Ho et al. (2018) and Kumar (2011) in using inverse distance spatial378

weights matrix in the analysis with cutoff at 910 km. In essence, we assign the value 1379

to MPAs within the cutoff distance from the centroid of the MPA of interest and 0 to380

others. The choice of the cutoff ensures that every MPA has at least one neighbor. It is381

important to note that LeSage and Pace (2009) emphasize that the true W is generally382

unknown, therefore, to further our analysis, we use a couple of other spatial weights383

23Deschênes and Greenstone (2007); Schlenker et al. (2005) show that the effect of weather fluctuations
on irrigated areas differs from nonirrigated areas. While we recognize that irrigation can be an important
determinant of crop yield, we are limited by the lack of comprehensive irrigation data for SSA. Moreover,
agriculture in SSA is mostly rain-fed with evidence of low capacity for crop management such as irrigation
(FAO, IFAD, UNICEF, WFP & WHO, 2018; Dingkuhn et al., 2006).

24This conventional practice is evidenced in empirical studies like Hsiang and Meng (2015); Schlenker
and Lobell (2010) (agricultural production); Emediegwu (2021); Deschênes and Greenstone (2011) (mor-
tality); Kalkuhl and Wenz (2020); Dell et al. (2012) (economic growth), and Hsiang et al. (2013, 2011)
(conflict).

13



matrix to check for robustness of results. Specifically, we re-estimate the model using384

4-nearest and spatial weights based on the prevailing economic network. To create these385

weights matrices, we construct shapefiles from the ArcGIS 10.3 software.25 Thereafter,386

we cascade the shapefile into Anselin et al. (2006) GeoDa 1.10 software to create any387

spatial weights matrix of our choice.26 For ease of interpretation, spatial matrices based388

on inverse distance are usually not row-normalized (Anselin, 1988): however, we row-389

normalize other spatial weight matrices used in our robustness analysis. More explanation390

on spatial weight matrices can be found in the Appendix, Section A.391

Our baseline specification corrects for spatial interactions in the dependent and in-392

dependent variables via spatial weight matrices, resulting in a so-called spatial Durbin393

model (SDM) (Elhorst, 2014). Spatially-dependent errors are accounted for through clus-394

tering at MPA level. We present the likelihood of the SDM in Section B of the Appendix.395

Following Elhorst (2014) and Anselin et al. (2008), we implement maximum likelihood396

estimation (MLE) using a package in R developed by Millo and Piras (2012), known as397

splm to estimate the attendant spatial models.27 However, for comparative purposes,398

we will be contrasting estimates from our baseline spatial model with those from a non-399

spatial (NS, hereafter) model by excluding the spatial effects mentioned above, that is,400

by estimating equation (1) with γ and ϑ in equation (1) set to zero.401

In addition to the baseline estimation, we employ different strategies to (1) ascer-402

tain the robustness of our estimates, and (2) account for adaptation possibilities. For403

sensitivity analysis, we re-estimate equation (1) with alternative time trends; more time404

lags; exclusion of outlier country; different spatial weight. We also use long differences405

approach developed in Burke and Emerick (2016) and flexible long differences approach406

by Yu et al. (2021) to check whether or not SSA countries adapted to changing climate407

within our sample period.28
408

4 Results and discussion409

4.1 Baseline estimates410

Let us begin by looking at the broad outline of the results in Table 2. The existence411

of spatial dependence in our model specification is ascertained via the classical Lagrange412

multiplier (LM) test by Anselin (1988) and its robust version developed in Anselin et al.413

(1996). The results in Table 2 show that the LM test and robustness are significant at414

25The ArcGIS is a geographic information system (GIS) for working with maps and geographic infor-
mation developed by the Environmental Systems Research Institute (ESRI).

26GeoDa is a free software program developed by Anselin and his team that acts as an introduction
to spatial analysis.

27We use the spml command in R package “splm” with options for robust inferential statistics, bias
correction and spatial diagnostics.

28Thanks to an anonymous referee that directed us to these approaches.
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5% level, indicating the presence of neglected spatial effects in our model specification.415

By way of comparison, Table 2 shows that the non-spatial (NS) specifications’ coeffi-416

cient estimates have the same sign and statistical significance as the SDM for all weather417

measures. Generally, the signs of the weather estimates follow a priori expectations and418

are statistically significant in both models. The estimates on temperature and WDF are419

shown to be negatively and positively related to yield, respectively. In contrast, the es-420

timate on temperature deviation is insignificant in all the models, which is unsurprising421

given the small within variation in temperature over the growing period. Temperatures422

in the tropics exhibit similar values across growing season resulting in little within varia-423

tion in temperature (Auffhammer and Schlenker, 2014; Guiteras, 2009), thereby leading424

to insignificant estimates. The squared term for WDF is negative and significant across425

specifications, whereas the quadratic term for temperature is positive and significant in426

all models, ergo reflecting the nonlinear relationship between weather changes and crop427

outputs.428

VPD is significantly and negatively related to millet yield signifying that millet yield429

can be affected by water loss from the crops. Besides, the time trend and its squared430

term are positive, as expected, showing technological and agronomic progress over time.431

4.1.1 Spatial lag effects432

Caution must be exercised in an attempt to compare the estimates from spatial mod-433

els (SDM, for example) to non-spatial models (NS), as the coefficients from the spatial434

models do not represent marginal effects, unlike its non-spatial companion. In terms435

of interpretation, the estimates of NS models represent direct and total effects, as NS436

models do not produce spillover effects by construction. Hence, using point estimates to437

inform comparative or inferential judgments tend to be erroneous (Elhorst, 2014). On438

the other hand, the (non)existence of spatial spillovers in an SDM should be ascertained439

from the estimated indirect effects of the regressors, rather than the coefficient estimates440

(and standard errors) of the spatially lagged regressors. Said differently, the statistical441

significance of the estimated coefficient of a spatially lagged explanatory variable can dif-442

fer from its estimated indirect effect. To achieve this aim, we use the impacts command443

in R package “splm” to derive the direct, spillover (indirect) and total effects and report444

them in Table 3.29
445

The existence of spatial interactions has vital economic implications. Any change in446

spatially lagged variables has both direct and indirect consequences to which we now447

focus attention. Whereas the estimates of NS models represent direct and total effects,448

the estimates of the SDM can be split into direct and indirect effects. Table 3 shows that449

the direct effects of the spatial specification differ from those of the NS specification. For450

29In the face of significant spillovers, it is expected that the direct effects of the explanatory variables
differ from their estimated coefficients.
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Table 2: Model Comparison of the Estimation Results of Millet Yield (Yield
is in log)

NS SDM

TEMP -0.2034***

(0.0904)
-0.2177***

(0.0521)
WDF 0.0227***

(0.0023)
0.0201***

(0.0016)
VPD -0.2704***

(0.1082)
-0.1968***

(0.0311)
TEMPsq 0.0107***

(0.0036)
0.0035**

(0.0016)
WDFsq -0.0031***

(0.0009)
-0.0007***

(0.0002)
TEMP. dev. -0.0131

(0.0101)
-0.0071
(0.0065)

Time trend 0.0114***

(0.0031)
0.0144***

(0.0033)
Time trend squared 0.0001***

(0.0000)
0.0001***

(0.0000)
W*TEMP -0.0086

(0.0092)
W*WDF 0.0063**

(0.0026)
W*VPD 0.0083

(0.0112)
W*TEMPsq -0.0021

(0.0033)
W*WDFsq 0.0004

(0.0051)
TEMPt-1 -0.0028*

(0.0014)
-0.0020
(0.0008)

TEMPt-2 0.0052
(0.0036)

0.0015
(0.0040)

WDFt-1 -0.0026**

(0.0010)
-0.0026**

(0.0011)
WDFt-2 0.0073

(0.0061)
0.0007
(0.0064)

Gamma -0.0419***

(0.0052)
LM spatial lag 13.67***

Robust LM spatial lag 4.18**

R2 0.21 0.60

Notes: Standard errors (in parentheses) are clustered at MPA level. W =
inverse distance matrix, cutoff = 910 km. ***p<0.01, **p<0.05, *p<0.1.
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example, the direct effect of VPD is -0.21 in the SDM and -0.27 in the NS specification.451

On the other hand, only the estimate of the indirect effect WDF appears to be moderately452

significant. However, the estimate of the indirect effects are relatively small compared to453

those of the direct effects, reinforcing the notion that most of the effects emanate from454

the home country, thus are local effects. Furthermore, the indirect effects associated with455

the temperature variables and VPD are statistically insignificant in our spatial models,456

however, we included them in our models to have a full specification with lagged exogenous457

variables.458

In all, the respective estimated total effects of temperature and WDF are negative and459

positive for the NS models, although these effects increase marginally when we correct460

for spatial influences. We also find that the signs of the total (direct plus indirect) effects461

of TEMPsq and WDFsq are significantly negative and positive, respectively. As a result,462

the overall total effect of temperature depend on the level of temperature itself, and463

the overall total effect of WDF depend on the level of WDF. When calculated at their464

respective means, the overall total effect of temperature is -0.158, while that of WDF is465

0.023. Therefore, a temperature rise is associated with a fall in millet yield. On the other466

hand, millet yield changes in the same direction as WDF in SSA. Overall, our result467

suggests that controlling for spatial effects provides larger estimates of the impacts of468

temperature and WDF on millet yield than those of non-spatial effects. This result is469

in line with earlier findings by Hossain and Ahsan (2018); Kumar (2011) that rainfall470

patches span longer periods and travel as underground water and through river channels471

to positively affect agricultural production in neighboring units.472

The estimation results in Table 3 further show that VPD is negatively related to473

millet yield. This finding, supported by plant physiological understanding and previous474

empirical studies (Lobell et al., 2013; Barnabás et al., 2008), signifies that water loss475

or high water demand can be disastrous for plant development. Further, the strong476

adverse effect of VPD depicts that our model is more sensitive to heat than water gain,477

which is consistent with previous studies such as Urban et al. (2015); Lobell et al. (2013);478

Roberts et al. (2012). However, these impacts are entirely local as we find no evidence of479

any spatial effect arising from VPD, as the estimated indirect impacts are minimal and480

insignificant.481

Spatial lag of millet yield (gamma in Table 3) is negative and significant for the spatial482

model. This means that reduction in millet production in one country would induce a483

rise in output in the surrounding countries. The implication of this finding is in tandem484

with previous empirical studies (e.g., Cai et al., 2016; Bohra-Mishra et al., 2014; Gray and485

Mueller, 2012) that find that households use migration as a risk management strategy486

against climatic shocks.487

In summary, it is clear that the direct effects stochastically dominate the indirect488

effects in our model since the direct effect of WDF is several times higher than its in-489
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Table 3: Direct and Spillover Effects based on the Models’ Estimates
from Table 2

NS SDM

Direct Effecta

TEMP -0.2034***

(0.0904)
-0.2187***

(0.0533)
WDF 0.0227***

(0.0023)
0.0210***

(0.0058)
VPD -0.2704***

(0.1082)
-0.2106***

(0.0336)
TEMPsq 0.0107***

(0.0036)
0.0031**

(0.0016)
WDFsq -0.0031***

(0.0009)
-0.0007***

(0.0001)
Indirect Effecta

TEMP -0.0041
(0.0055)

WDF 0.0069**

(0.0028)
VPD 0.0042

(0.0096)
TEMPsq -0.0018

(0.0040)
WDFsq 0.0005

(0.0053)
Total Effecta

TEMP -0.2034***

(0.1096)
-0.2228***

(0.0436)
WDF 0.0227***

(0.0023)
0.0279***

(0.0011)
VPD -0.2704***

(0.1082)
-0.2064***

(0.0412)
TEMPsq 0.0107***

(0.0036)
0.0013**

(0.0006)
WDFsq -0.0031***

(0.0009)
-0.0002***

(0.0000)
Gamma -0.0419***

(0.0047)

Notes: aThe overall effects with respect temperature depend on the
figures reported here for TEMP and TEMPsq, and the overall effects
with respect to WDF depend on the figures reported here for WDF
and WDFsq; see text. Standard errors (in parentheses) are clustered
at MPA level. W = inverse distance matrix, cutoff 910 km. ***p<0.01,
**p<0.05, *p<0.1.
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Table 4: Total Effect of Temporal Lags based on the Models’ Estimates from
Table 3

Dependent Variable
log (yield)

NS SDM

TEMPt-1 -0.0028*

(0.0014)
-0.0035
(0.0024)

TEMPt-2 0.0052
(0.0036)

0.0032
(0.0041)

WDFt-1 -0.0026**

(0.0010)
-0.0029**

(0.0014)
WDFt-2 0.0073

(0.0061)
0.0019
(0.0011)

Notes: Standard errors (in parentheses) are clustered at MPA level. W = inverse
distance matrix, cutoff = 910 km. ***p<0.01, **p<0.05, *p<0.1.

direct counterpart. Nevertheless, regardless of how small the indirect effect may seem490

in magnitude, it is not negligible, signifying that changes in one country’s parameters,491

especially WDF, translate to small but significant changes in nearby countries. There-492

fore, their inclusion in statistical analysis is of first-order importance, as Dell et al. (2014)493

suggested.494

4.1.2 Temporal lag effects495

The results in Table 4 indicate that the impacts of time lags are dissimilar in the NS496

and the SDM model. From the NS model, high temperature values reduce millet output497

marginally in the following year, but not the year after: however, this weak effect becomes498

insignificant when spatial influences are accounted for. This weak effect implies that the499

impact of a hot year does not persist into the following year. On the flip side, one-year500

lag of WDF is negatively related to yield, but such persistence fades away in the second501

year. This sustained effect is unsurprising as a very wet year may lead to flooding, the502

impact of which may spill over to the next year, thus bringing on an adverse effect on503

crop development the following growing season.30 The findings here differ with the use504

of precipitation instead of WDF, as explained in section C of the Appendix.505

The above results reflect the delayed effect or temporal persistence of weather shocks506

cited in several studies (Hsiang, 2016; Burke et al., 2015b; Dell et al., 2012). Accounting507

for these ripple effects is significant if economic activities, such as agriculture, still catch508

up or degenerate further after contemporaneous impacts. In sum, for WDF, the impact509

of weather shocks continues into the next time period but fizzles out in the third time510

30Most SSA countries are already susceptible to flooding (see, http://floodlist.com/africa) due
to natural and anthropogenic causes such as prolonged and heavy rainfall, deforestation, improper waste
disposal, lack of crop management procedures, etc.
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period. However, these delayed effects attenuate rather than dominate contemporaneous511

effects.512

4.2 Sensitivity analysis513

We employ different strategies to check the robustness of our baseline estimates. The514

results of the robustness checks are presented in Table 5. We truncate the results due515

to space by presenting only estimates for direct and spillover effects and the total effects516

of one-period temporal lags of the weather measures. Put another way, we exclude the517

estimates of the quadratic terms, the spatial lag of Y, the second-period temporal lags,518

and time trend with its square.519

Column 2 in Table 5 shows that including only linear time trend produces analogous520

estimated spatial effects of the weather variables, both in spatial and temporal terms. In521

like manner, column 3, which utilizes no time trend produces similar results, although522

at the expense of a marginal decrease in the coefficients in some cases. Removing outlier523

country, South Africa, which reports high millet yield, does not change our benchmark524

estimates, as seen in column 4, implying that outliers do not drive our results. Introducing525

more time lags (using three lags instead of two) does not significantly alter the baseline526

estimates, as seen in column 5, although some weather estimates like temperature reduced527

in significance.31
528

We also confirm whether our results are robust to different weighting schemes by529

using another spatial weight matrix, k-nearest neighbor where k = 4, and weight “1” is530

assigned to the four nearest MPAs to MPA i, and “0” to others. In the spirit of LeSage531

(2014), we do not expect a properly specified spatial model to be sensitive to the choice532

of spatial weight. It is possible that the spillover effects do not emanate from just the533

border countries but distant countries as well. The results presented in column 6 show534

that the direct and indirect effects’ estimates are not significantly different from those535

following the inverse distance matrix in baseline estimates, except that the indirect effect536

of temperature became slightly significant. Summarily, we evidence that our baseline537

estimates are broadly similar across a range of empirical specifications.538

4.3 Disaggregating the impacts539

Do poor and rich countries react similarly to weather changes? This debate has been540

ongoing in the last few years. On the one hand, Dell et al. (2012) find no difference in541

climate response between rich and poor countries, concluding that countries are affected542

adversely by temperature increase because they are already hot and not due to poverty.543

On the other hand, Burke et al. (2015b) argue that poor and rich countries respond544

31Additionally, we also checked whether using levels (instead of logs) of yields will affect the results
considerably and find it not to.
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Table 6: Effects by Income Classification of SSA Countries

(1)
Baseline

(2)
TEMP

(3)
WDF

Direct Effect
TEMP -0.2187***

(0.0533)
-0.1942***

(0.0484)
-0.2103***

(0.0510)
WDF 0.0210***

(0.0058)
0.0207***

(0.0051)
0.0197***

(0.0060)
VPD -0.2106***

(0.0336)
-0.2209***

(0.0340)
-0.1918***

(0.0342)
Indirect Effect
WDF 0.0069**

(0.0028)
0.0057**

(0.0023)
0.0059*

(0.0030)
Gamma -0.0419***

(0.0047)
-0.0415***

(0.0046)
-0.0418***

(0.0046)
Temporal Effect
TEMPt-1 -0.0035

(0.0024)
-0.0023
(0.0048)

-0.0031
(0.0071)

WDFt-1 -0.0029**

(0.0014)
-0.0027*

(0.0015)
-0.0031*

(0.0016)
Interaction Effect
TEMP*Poor -0.0008*

(0.0004)
WDF*Poor -0.0006

(0.0009)
R2 0.60 0.61 0.61

Notes: Except stated, all models include time trend and its square, spatial weight as inverse distance,
with errors clustered at the MPA level. Column 2 (3) includes an interaction term for temperature
(WDF) and poor countries into the baseline equation. Temperature is measured in oC and VPD in
kPa. For space sake, we do not include temporal lags and quadratic terms of TEMP and WDF. A
country is termed “poor” if it is classified as low income by the World Bank; otherwise, it is termed
“rich”. ***p<0.01, **p<0.05, *p<0.1.

differently to weather shocks when nonlinearities in weather measures are included. We545

want to contribute to the debate by ascertaining whether our lags’ estimates will differ546

on account of income differentiation. We examine the impact of weather shocks on millet547

yield while controlling for each country’s income class. Using the income classification548

of SSA countries from World Development Indicators, we interact poor countries with549

temperature and WDF separately, where a country is labeled as ‘poor’ if it falls in the550

low-income category as of 2018 (see, Figure F4 of the Appendix for income classification551

of countries).552

The results in Table 6 show that the main variables maintained their signs and sig-553

nificance, but the spatial and temporal lags’ effects reduced in significance. For example,554

Column 3 shows that the indirect and temporal lag effects of WDF decreased signifi-555

cantly. Moreover, similar to the findings of Burke et al. (2015b), temperature increase556

would adversely affect poor countries more than rich countries, although the significance557

is weak. On the contrary, we find no such effect on interacting with WDF.558

4.4 Accounting for adaptation559

The most critical challenge of panel model analysis is adaptation. In particular, the use560

of country fixed effects and time-trends absorbs long-run atmospheric conditions, which561
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are important for understanding how agents adapt to climate change. Said differently, the562

panel data model assumes that the relationship modeled remains unchanged or stationary,563

even in the face of climate change. Hence it rules out the possibility of farmers taking564

adaptive measures (such as use of weather-resistant cultivars) to alleviate the adverse565

effects of climate change, thus presenting a pessimistic view of its impacts.32 Different566

methods have been proposed to take account of the possibility of adaptation to climate567

change within a panel data setting. For example, Burke and Emerick (2016) use estimates568

based on a long differences (LD) approach to identify how US farmers adapt to climate569

change.570

More recently, Yu et al. (2021) extend the LD approach by developing a flexible571

long differences (FLD) technique to estimate the responsiveness of crop yields to gradual572

changes in climate. Unlike the LD approach, the FLD technique allows for time-varying573

agricultural adaptation between two periods by interacting a period dummy with climate574

variables. The parameter estimates from these methods can be argued to provide a575

better basis for predictions of the impact of future climate changes on yields because the576

estimates take account of adaptations by farmers to past climate changes. This argument577

is premised on the assumption that there has been sufficient variation in climate variables578

in the estimation sample for adaptation to be adequately captured.579

Here, we employ both models to check whether adaptation occurred within the period580

of our estimation. We only present the results here, the construction of the associated581

model is given in Section D in the Appendix. The results of both models are summarized582

in Table 7. We compare the results from the LD and FLD approaches to the non-spatial583

analogue of equation (1) for two reasons. One is for ease of identifying the presence or oth-584

erwise of adaptation using the LD and FLD approaches devoid of spatial complications.585

The second is following the specific-to-general modeling procedure, where we only proceed586

to a more complex model if we find evidence of adaptation in the non-spatial model. The587

results from Columns 2 - 3 in the Table 7 show that the estimates are insignificant across588

all model specifications. Consequently, this study does not find evidence that millet yield589

in SSA is affected by changes in 5-year and 10-year average weather conditions.590

Furthermore, previous studies like Burke et al. (2015b); Dell et al. (2012) find no591

evidence that SSA countries adapt during the period under review, either by way of tech-592

nological advancement or knowledge accumulation. Summarily, neither the LD nor the593

FLD approach provides evidence of adaptation in SSA countries over the period consid-594

ered in this study. The scope of this result could differ if a more disaggregated dataset595

(e.g., household or farm level) is considered. For example, using farm-level dataset,596

32Auffhammer and Schlenker (2014) attenuate this claim by suggesting that the introduction of non-
linear weather measures introduces cross-sectional variation in climate, hence the estimated parameters,
at least, partially captures long-run adaptation. However, the extent to which the adaptation effect is
captured is still a subject for debate as it depends on the size of the cross-sectional variation vis-a-vis
location-specific weather variation (see, Carter et al. (2018) for more intuition).

23



Ta
bl
e
7:

A
lt
er
na

ti
ve

E
st
im

at
io
n
P
ro
ce
du

re
s

1
(B

as
el
in
e)

2a (L
D
)

2b (L
D
)

3a
(F

LD
)

3b
(F

LD
)

T
E
M
P

-0
.2
03
4*

**

(0
.0
90
4)

-0
.1
42
2

(0
.1
12
1)

-0
.1
77
0

(0
.2
94
1)

-0
.1
40
1

(0
.1
22
6)

-0
.1
57
2

(0
.2
03
1)

W
D
F

0.
02
27

**
*

(0
.0
02
3)

0.
01
65

(0
.0
31
8)

0.
00
96

(0
.0
16
7)

0.
01
31

(0
.0
36
4)

0.
01
04

(0
.0
17
7)

V
P
D

-0
.2
70
4*

**

(0
.1
08
2)

-0
.1
15
3

(0
.2
01
2)

-0
.1
53
9

(0
.2
33
1)

-0
.1
27
1

(0
.1
95
2)

-0
.1
32
1

(0
.1
96
2)

D
b
×
T
E
M
P

0.
06
31

(0
.0
72
4)

0.
04
72

(0
.0
53
2)

D
b
×
W
D
F

-0
.0
09
1

(0
.0
13
8)

-0
.0
02
5

(0
.0
10
9)

D
b
×
V
P
D

0.
08
18

(0
.1
74
9)

0.
05
96

(0
.0
83
9)

N
ot

es
:
C
ol
um

n
(1
)
is

th
e
re
su
lt
s
of

th
e
no

n-
sp
at
ia
l
ve
rs
io
n
of

eq
ua

ti
on

(1
).

C
ol
um

ns
(2
a)

an
d
(2
b)

ar
e
lo
ng

di
ffe

re
nc

es
m
od

el
es
ti
m
at
es

of
th
e
im

pa
ct

of
a
ch
an

ge
in

5-
ye
ar

(1
97

0-
19

74
an

d
20

12
-2
01

6)
an

d
10

-y
ea
r
(1
97

0-
19

79
an

d
20

07
-2
01

6)
av
er
ag

e
w
ea
th
er

co
nd

it
io
ns

on
m
ill
et

yi
el
d.

C
ol
um

ns
(3
a)

an
d

(3
b)

ar
e
fle

xi
bl
e
lo
ng

di
ffe

re
nc

es
m
od

el
es
ti
m
at
es

of
th
e
im

pa
ct

of
a
ch
an

ge
in

5-
ye
ar

(1
97

0-
19

74
an

d
20

12
-2
01

6)
an

d
10

-y
ea
r
(1
97

0-
19
79

an
d
20

07
-2
01

6)
av
er
ag

e
w
ea
th
er

co
nd

it
io
ns

on
m
ill
et

yi
el
d.

T
em

pe
ra
tu
re

is
m
ea
su
re
d
in

o C
an

d
V
P
D

in
kP

a.
**

*p
<
0.
01

,*
*p

<
0.
05

,*
p<

0.
1.

24



Di Falco et al. (2020); Di Falco (2014) find that local farmers adapt to climate change597

in some parts of SSA. Consequently, our result here should not be interpreted to imply598

the absence of adaptation to climate change in SSA but, rather, should be interpreted599

cautiously with the observational unit in mind.600

4.5 Trade mechanism601

Weather shocks in an MPA can affect other MPAs’ yields if free trading exists among602

contiguous MPAs. Earlier studies have highlighted that where free trade exists among603

countries, the principle of comparative advantage could re-align countries to focus on604

products where they are more efficient and import those products where they are less ef-605

ficient.33 Weather is one of the factors that determine which crop a country is (in)efficient606

at, thus such country can (dis)invest in such crop at which it is (in)efficient. Alterna-607

tively, where crop production takes place at border areas (which is the case for many608

MPAs as seen in Figure F1 in the Appendix) and given that most SSA countries’ borders609

are porous, countries with much harvest tend to attract resources (including potential610

farm labor) away from neighboring countries.611

We re-examine our baseline equation using spatial weights to account for free trade.34
612

As outlined in Corrado and Fingleton (2012); Ullah (1998), spatial weight matrices can613

be created to reflect spatial interactions based on economic (or regional market) network.614

To create this special spatial weights matrix, we subdivide the entire SSA region into615

seven economic blocs as specified by the United Nations Economic Commission for Africa616

(UNECA) (see, Table F3 of the Appendix for the list of these blocs and the constituent617

countries). Among the aims of these blocs is free movement of persons and goods among618

member states. Free trade might be made easier given that most of the MPAs are at619

border areas, in addition to the porous nature of these borders. We proceed by assigning620

the value 1 to MPAs within the same economic bloc and 0 to others.621

The results are displayed in Table 8. Since we are interested in the spatial effects, the622

results are truncated to exclude temporal lags. A look at the weather variables in column623

2 shows a qualitative similarity to our baseline estimates in column 1, although some624

weather coefficients change noticeably. For instance, the indirect effect of WDF gained625

significance, while the indirect impact of temperature rose marginally. Additionally, the626

impact of spatial lag of yields became stronger in the new spatial model. The result is627

expected as the spatial weights matrix used for our baseline analysis may group MPAs628

who do not trade freely.629

33Earlier studies on comparative advantage, free trade and non-agricultural sector include Doku and
Di Falco (2012); Redding (1999); Leamer and Levinsohn (1995); Krugman (1987), among others; while
works such as Matsuyama (1992); Goldin (1990) discussed the agricultural sector.

34We would have preferred to use trade indicators such as price, import or export indices, but they
are either unavailable or incomplete.
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Table 8: Direct and Spillover Effects using Economic Networks as Spa-
tial Weights

1
(Baseline)

2
(Economic network)

Direct Effect
TEMP -0.2187***

(0.0533)
-0.1919***

(0.0431)
WDF 0.0210***

(0.0058)
0.0258***

(0.0012)
VPD -0.2106***

(0.0336)
-0.2581***

(0.0476)
Indirect Effect
TEMP -0.0041

(0.0055)
-0.0025*

(0.0014)
WDF 0.0069**

(0.0028)
0.0076**

(0.0030)
Total Effect
TEMP -0.2228***

(0.0436)
-0.1944***
(0.0457)

WDF 0.0279***

(0.0011)
0.0334***
(0.0041)

Gamma -0.0419***

(0.0047)
-0.0580***

(0.0037)
R2 0.60 0.62

Notes: Except stated otherwise, all models include time trend and its
quadratic term, spatial weight is inverse distance, with errors clustered
at the MPA level. Temperature is measured in oC and VPD in kPa.
Models: (1) estimates from baseline specification, (9) as in model 1 but
using economic networks (blocs) as spatial weights.
***p<0.01, **p<0.05, *p<0.1.

5 Mid-future climate projections (2040 - 2069)630

This section considers the contemporaneous, spillover, and temporal effects of millet631

yield to future changes in SSA climatic events. The conventional method of estimating632

the potential impacts is to combine the regression estimates from the baseline model with633

forecasted climatic changes derived from global climate models (GCMs). However, this634

method, which is the norm for previous African studies (with exception of Schlenker and635

Lobell (2010)) produces point estimates that neglect two crucial sources of uncertainty636

- climate and statistical sources. Two exercises are essential to incorporating these un-637

certainties - derive projected changes in relevant weather variables under three climate638

change models and re-calibrate the baseline model with inputs from bootstrapped runs.639
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5.1 Global climate models (GCMs)640

To tackle the first exercise, we use projected daily weather measures from the follow-641

ing global climate models (GCMs) at a 0.5o spatial resolution belonging to the CMIP535:642

the Canadian Center for Climate (CCC) model (Flato et al., 2000), the Center for Cli-643

mate Systems Research (CCSR) model (Sakamoto et al., 2004) and the Parallel Climate644

Model (PCM) (Washington et al., 2000). The choice of these GCMs against the use of a645

single model or multi-model predictions is predicated on two factors. One, the selected646

GCMs predict a varied range of outcomes, which is in tandem with the expectations for647

the sub-Saharan African region as documented in African climate literature.36 These648

heterogeneous outcomes amplify the number of potential scenarios typical of the region649

under study. The second and perhaps most important reason for using several GCMs is650

to capture climate uncertainty to some degree. Given that there are no perfect or best651

models, the use of a single GCM introduces significant uncertainty in climate forecast652

since we do not know for sure what the future state of the world will be. Although653

several studies (Moore et al., 2017; Auffhammer and Schlenker, 2014; Knutti, 2010) have654

promoted the use of CMIP5 average against the use of a single model because predictions655

from this multi-model approach have been consistently shown to outperform those from656

individual models, Knutti (2010) notes that this method may smoothen out important657

heterogeneity in individual models, thereby leading to loss of important information. In658

spirit of Burke et al. (2015a), we employ individual forecasts from the three GCMs, rather659

than a single GCM or multi-model average.37
660

Also, we employ the business-as-usual scenario (RCP 8.5) from the GCMs. The deci-661

sion to use the RCP8.5 scenario is justified by previous studies like Burke et al. (2015b);662

Dell et al. (2012) that find no evidence that SSA countries adapt during the period663

under review, either by way of technological advancement or knowledge accumulation.664

Moreover, Figure F5 of the Appendix finds little variation in the weather measures-yield665

relationship between 1970 - 2000 and 2001 - 2017.666

We derive the change in weather variables at the end of a future period (2040-2069,667

in our case) by differencing the GCMs projected average weather measures over 2040 to668

2069 for a given grid cell over that of a relevant historical (baseline) period (1981 - 2010).669

This downscaling method helps to remove the bias introduced by global climate models670

35The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is an umbrella that contains
multi-model datasets. In lieu of presenting detailed description of the simulation processes of these global
climate models (GCMs), readers are referred to Taylor et al. (2012), whereas the dataset can be retrieved
from the CMIP5 website https://pcmdi.llnl.gov/?cmip5.

36Examples of papers on African agriculture and climate change that use a combination of these GCMs
are Kurukulasuriya and Rosenthal (2013); Blanc (2012); Schlenker and Lobell (2010); Mendelsohn and
Dinar (2009).

37In principle, climate uncertainty cannot be totally eliminated, no matter the number of GCMs used,
because the influence of climate on aerosols is complex (Hawkins and Sutton, 2009). At best, uncertainty
can be reduced by using forecasts from several GCMs.
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Table 9: Summary Statistics of Projected Climate Change

Variables Baseline
(1981-2010)

(1)
PCM

(2)
CCSR

(3)
CCC

Average
Temperature (oC)

25.7 26.2 27.5 28.3

Average WDF 15.6 17.43 14.9 12.14
Average VPD
(kPa)

1.431 1.451 1.521 1.586

Notes: All variables are calculated over growing season. The entries in columns 2 - 4 reflect projections from the GCMs under
RCP8.5 scenario for 2040-2069.

(GCMs) for current climate in some locations.38 We recognise that averaging these GCMs671

tends to smooth out heterogeneous spatial patterns.672

We use MPA-level daily mean precipitation forecasts from the respective GCMs to673

construct our projected WDF values for each MPA, where WDF is the number of days674

with rainfall above 0.1 mm. For projected future VPD changes, we obtain daily MPA-675

level maximum temperature (T h) and minimum temperature (T l) and thereafter derive676

VPD using the conventional formula from Roberts et al. (2012)677

V PD = 0.6107(e
(
17.269Th
227.2+Th

) − e(
17.269Tl
227.2+Tl

)
) (2)

Given the already hot nature of SSA, there is a high prospect of regional warming,678

making it unlikely to obtain a positive effect on yield from the current projection trend.679

In like manner, VPD follows the warming trend because both maximum and minimum680

temperatures are projected to increase over time if future socio-economic conditions mimic681

past conditions. On the contrary, there is no unanimity on the future trend of rainfall682

(wet day). For example, Allen et al. (2014) show that for A1B scenario, projected rainfall683

change across the West African coast by 2090 ranges from -9% to 13% for different GCMs.684

However, temperature change is anticipated to eclipse rainfall changes (Lobell and Asseng,685

2017; Lobell et al., 2013). Notwithstanding, there is a decline in regional WDF on average.686

It is significant to note that one key assumption in the use of climate models for future687

predictions is the ceteris paribus assumption, plus the belief that climate will continue to688

affect agriculture in the future.689

The summary statistics for the projected values of our weather measures are found690

in Table 9, and Figure 3 shows the spatial variation of the predicted changes in weather691

measures. Suggestively, there is evidence of future regional warming from the GCMs,692

although CCC seems to predict the highest increase by 2069. The trend in predicted693

WDF varies across the GCMs. While PCM predicts an increase in wet day frequency,694

38Using observed data against climate model’s historical data for the same period will introduce bias
into our predicted estimates because both data may have dissimilar observations. For more on this form
of bias, see Burke et al. (2015a); Auffhammer et al. (2013).
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Note: Predicted changes are from the average of the three GCMs (CCC, CCSR, PCM) for 2040
- 2069 under RCP8.5 scenario. Changes are relative to a 1981 - 2010 baseline.

Figure 3: Spatial Variation in Projected Climate Change

others report a decrease in WDF.695

5.2 Predicted impact from climate change projections696

To fulfill the second exercise, we have to integrate the predicted climatic changes into697

the response function from equation (1) while controlling for statistical (or regression)698

uncertainty as noted by Burke et al. (2015a). To sidestep statistical (or regression) uncer-699

tainty, we re-estimate equation (1) using data from bootstrapped predicted yields from700

1000 bootstrapped residuals and historical climate data to generate bootstrapped coeffi-701

cients (this is to control for regression uncertainty). After that, we obtain bootstrapped702

estimates of average predicted impact by varying climate. Finally, a bootstrapped pre-703

diction interval with 95% of projected estimates will be constructed from the 2.5th and704

97.5th percentiles: hence, distributions are for 3000 (1000 bootstrapped runs × 3 GCMs)705

predicted impacts. The construction of the bootstrapped prediction interval is detailed706

in Section E of the Appendix.707

The distributions of predicted impacts from the GCMs’ scenarios spanning 2040-708

2069 are displayed in Figure 4. Assuming that present socio-economic conditions persist,709

Figure 4 reveals that the median impacts under the baseline specification are -0.46, -0.43,710

-0.37, and -0.44 for the CCC, the CCSR, the PCM and aggregated models, respectively.711

Unsurprisingly, the effect from the CCC model is more severe, given it has the highest712

temperature rise among the selected GCMs. The 2.5th percentile, which images a worst-713

case scenario, shows dire losses in regional millet yields, ranging between 48% to 55% for714

all climate models by the middle of the Century. These figures signify an additional 26%715

to the estimates derived from observational data.716
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Note: Each density plot represents projected impacts obtained from individual (and aggregate)
GCMs with RCP8.5 scenario corrected for both climate and regression uncertainties. The gray
plot represents impact from aggregated climate models with inputs from the three GCMs used
for projections - CCC, PCM and CCSR. While the impact projections from the individual GCMs
plots represent regression uncertainty, the aggregated plot combines both climate and regression
sources of uncertainty.

Figure 4: Projections of Climate Change Effects on Millet Yields across GCMs under
RCP8.5 Scenario by Mid-Century (2040 - 2069), Relative to a 1981 - 2010 Baseline

Overall, unless there is a positive change in carbon emission trajectory, SSA might717

experience an overall negative impact in millet output given the amplified damage from718

warming and the diminished benefits from reduced rainfall in the near future. However,719

accounting for adaptation possibilities and the beneficial effect of CO2 on crop fertilization720

will likely dampen this negative impact.721

6 Summary722

This paper uses a formal spatio-temporal panel data model to estimate the effect of723

annual weather fluctuations on millet yield in sub-Saharan Africa (SSA) for 1970-2016.724

In addition to using updated data, this paper is the first to utilize region-specific weather725

realizations from major production areas of millet producing countries to analyze the726

impact of weather variation on millet yields in SSA. Generally, in tandem with weather-727

agronomic studies for the region, we find that a rise in regional warming reduces millet728

yield, which is not unexpected since warming increases plant’s respiration leading to an729

increase in carbon metabolism and resulting in a decrease in yields. On the other hand,730

wet day’s increase improves millet output. Our work contributes to African climate stud-731

ies by revealing that weather changes can indirectly affect cereal production in bordering732
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countries. The omission of such spatial effects could bias the impact of climate change733

on agriculture in SSA.734

By way of comparison, we showed that the estimates from the spatial models dif-735

fer significantly from those of non-spatial models. For example, accounting for spatial736

effects amplifies the effect of wet day frequency. The finding is not unexpected since737

spatial models have both direct effect within the country, as well as spillovers coming738

from the spatially lagged covariates, thereby moderating or aggravating the direct effect.739

On the other hand, we find no such indirect effect for temperature and vapor pressure740

deficit. Furthermore, the effect of wet day frequency on millet yield spills over time,741

unlike temperature. Although VPD has no transferred effect, either in time or space,742

the significant contemporaneous relationship suggests that water demand is vital for crop743

development, and ignoring this weather measure could bias the estimated impact. This744

finding is robust to a several alternative empirical specification such as use of more lags,745

different weight matrix, etc. Further, we do not find any evidence of adaptation to grad-746

ual change in climate over the period considered using national data and long differences747

approaches. Consequently, there is a call for nations within the region to put efforts748

together to mitigate and adapt to the harsh effects of climate change on agriculture.749

Furthermore, accounting for temporal effects of weather measures is necessary for750

generating a better estimate of the impact of climate change on agriculture in SSA.751

Given that several SSA countries are prone to flooding, many wet days tend to have an752

adverse spillover effect in next year’s millet yield. Consequently, national governments753

must intensify their efforts in the fight against flooding by, among others, facilitating land754

use planning measures that reduce predisposition to future flooding, educating citizens755

on the causes, consequences, and effective means of checkmating flooding.756

The findings in this paper also reinforce the need for international research and policy757

coordination in the fight against climate change. Such collaborations are pertinent to758

overcoming climate change since weather outcomes in a location can affect economic759

activities in near-by countries. In addition to forging inter-continental partnerships to760

tackle such a global challenge, Africa needs effective local think-tanks to develop and761

drive Africa-centric mitigation and adaptation actions and policies. For example, an762

analogue of the European’s Union’s research and innovation program, Horizon Europe763

(2021-2027), which proposes mission areas on adaptation to climate change, including764

societal transformation, should be founded and funded by African Union (AU) leaders.765

Collaborative programs of this sort will help maximize the impact of the AU’s support to766

research and innovation in climate change science and demonstrate its relevance for the767

African society and citizens. Such regional institutions would also address the problems768

of data availability, accessibility, and quality that have bedeviled the study of climate769

change impact analysis in SSA.770

Finally, if future socio-economic conditions mimic past experiences in the mid-century,771
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unmitigated warming will likely prevail, and yield will go down by an additional 26%772

(assuming land use remains the same). This drop in millet production accompanied by773

a projected increase in the region’s future population necessitates urgent attention in774

SSA.39
775

Some caveats are noteworthy in this study: first, we did not account for the benefi-776

cial effect of CO2 on crop fertilization which will likely attenuate this negative impact.777

However, the non-inclusion of CO2 might not significantly impact our results as CO2 fer-778

tilization effect might not be that important for millet (see, McGrath and Lobell (2013)).779

Second, the processes involved in the computation of GCMs leave much to be desired as780

there is no unanimity on the trajectory path weather measures will follow in the future.781

For example, while some GCMs project a future increase in rainfall on the West African782

coasts, others forecast a decrease, and even the extent of the change differs massively.783

Summarily, in utilizing the interpretation of results generated from uncertain models,784

caution must be exercised. Regardless of how cautious the results may be, efforts must785

be combined at different government strata to adapt to and mitigate these climatic influ-786

ences. One strong proposal, among others, is to increase the production area of tolerant787

cereal crops such as millet.788
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320.1060

A Spatial neighbours and weights1061

The spatial dependence structure among spatial units in a sample of size N is for-1062

malized using a nonnegative N × N spatial weights matrix, W . The matrix provides1063

information on how locations in a sample affect a given spatial unit. The weight matrix1064

is mainly determined by the definition of a neighborhood set for each unit. The conven-1065

tional mode of forming this matrix is to select for each unit i (as the row) the neighbors1066

(as the columns) corresponding to nonzero elements w i,j as illustrated below40;1067

W =



0 w1,2 · · · w1,n−1 w1,n

w2,1 0 · · · w2,n−1 w2,n

...
... . . . ...

...
wn−1,1 wn−1,2 · · · 0 wn−1,n

wn,1 wn,2 · · · wn,n−1 0


where the element, w i,j expresses the interaction intensity between spatial unit i and1068

neighbor, j. In terms of interpretation, the elements of j thcolumn reflect the effect of j th1069

unit on all other units, whereas the elements of i throw reflect impact of all other units1070

on unit i. For further explanation, suppose there are observations of a variable y in N1071

spatial locations, thereby forming an N × 1 vector where the i thelement is the value of1072

y in location i, then the N × N matrix W can be multiplied by vector y to produce a1073

spatial lag vector, Wy, which can be interpreted as a simple average of observations from1074

neighboring units.1075

Wy =



0 w1,2 · · · w1,n−1 w1,n

w2,1 0 · · · w2,n−1 w2,n

...
... . . . ...

...
wn−1,1 wn−1,2 · · · 0 wn−1,n

wn,1 wn,2 · · · wn,n−1 0





y1

y2
...

yn−1

yn


It is important to note that the definition of what constitutes a neighbor varies.1076

LeSage and Pace (2009) list two sources of geographical information that are generally1077

exploited. First, the knowledge and shape of spatial units define what a neighbor is.1078

The simplest classification in this category is p-order binary contiguity, where p refers1079

40This condition only holds for i 6= j, hence the diagonal elements, wi,i = 0, because a location is
never a neighbor of itself.
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Figure A1: Contiguity on a Regular Lattice

to the order of contiguity. Specifically, two units are considered as neighbors if they1080

share borders: if p=1, only immediate neighbors are considered, if p=2, both immediate1081

neighbors and neighbors of immediate neighbors are considered, and so on.41 Additionally,1082

what is regarded as a border varies. For example, Figure A1 illustrates how contiguity1083

is subdivided based on border location. Neighborhood can be considered on the basis1084

of common side (rook contiguity), common vertex (bishop contiguity), or both (queen1085

contiguity), with the cells labeled j as contiguous.42
1086

The second source of geographical information commonly exploited in defining what1087

constitutes a neighbor is the use of centroids (or geometric centers) in the Cartesian space1088

to compute distances between locations. One of the classes here is the k-nearest neighbor1089

(k -NN) to unit i, where k is a positive integer. For example, 3 -NN implies that only1090

the three closest locations from the centroid of unit i will be considered as neighbors,1091

thus the entire locations in the sample will have the same number of neighbors, three1092

in this instance. Other classes are inverse distance matrix (wi,j = 1
di,j

) and the inverse1093

squared-distance matrix (wi,j = 1
d2i,j

), where d i,j is an approximated spatial distance (with1094

or without a cut-off point) between the centroids of spatial units i and j. The inverse1095

distance matrix assumes a linear relationship whose strength varies proportionally to1096

the distance, whereas the inverse squared-distance matrix is a nonlinear relation whose1097

strength declines with distance.1098

We decided to opt for distance-based matrix rather than a contiguity-based one be-1099

cause the former specifies the exact locations of the MPAs in the Cartesian plane, while1100

the latter is based on border proximity which is of little practical relevance because some1101

MPAs are not situated at the border. In other words, specifying a weight that includes1102

only boundaries may pick up spatial relationships that are not typical of the MPAs.1103

For ease of interpretation, spatial weights matrix elements are generally row-normalized,1104

such that for each row, i,
∑n

j=1wi,j = 1. This transformation alters the symmetric nature1105

of the spatial weights matrix.43 Since the elements of the weights matrix are based on1106

41Anselin (1988) remarks that the assumption of the existence of a map, from which boundaries can
be discerned, is key to the definition of contiguity.

42Since maps are not really regular lattices, the most preferred contiguity-based weighting scheme
used is queen.

43Anselin (1988) argues that the inverse distance matrix becomes problematic in the face of row-
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some spatial arrangement or contiguity, Anselin (2001) argues that they are, therefore,1107

nonstochastic and exogenous. It is important to state that the weights considered so far1108

are purely cross-sectional. However, extending them to cover panel setting requires the1109

assumption that weights are fixed over time.44 In addition, the spatial weights matrix is1110

specified as WNT = IT ⊗WN , where W NT is the NT ×NT panel weights matrix, W N is1111

an N ×N cross-sectional weights matrix, and I T is an identity matrix of dimension T.1112

B Estimation of spatial panel models1113

LeSage and Pace (2009) show that in the presence of a spatially lagged dependent1114

variable, OLS estimates of the coefficients are inefficient, and inferences based on the con-1115

ventional OLS estimator of the standard errors are biased. To obtain consistent estimates,1116

therefore, several alternative econometric methods have been proposed in the literature1117

- maximum likelihood (ML) (Elhorst, 2003; Anselin, 1988), quasi-maximum likelihood1118

(QML) (Lee and Yu, 2010), generalized method of moments (GMM)/instrumental vari-1119

able (IV) (Kapoor et al., 2007; Kelejian and Prucha, 1999, 1998).1120

Our study employs the ML approach since it is the most commonly used estimation1121

technique, and inferences are based on an asymptotic variance matrix (Anselin et al.,1122

2008). However, the major weakness of the ML method, according to Arbia (2014), is1123

the computational difficulties associated with manipulating N × N matrices, which is1124

remedied in the IV/GMM approach since it has no Jacobian term.45 Moreover, unlike1125

the ML estimator, the IV/GMM estimators are well-suited for spatial models when more1126

than one endogenous regressor needs to be instrumented. Nevertheless, where this is not1127

the case, the ML estimator is preferred since the IV/GMM estimation method can end up1128

with spatial coefficients that lie outside its restricted space; in the ML estimator, these1129

coefficients are restricted in the Jacobian term in the log-likelihood function (Elhorst,1130

2014). Besides, the use of the ML is conditioned on the assumption that the errors are1131

normally distributed, a position assumed in our analysis.1132

Spatial panel models can be estimated using either fixed or random effects approach.1133

In random effects approach, the locational effects (ρ in equation (3)) are uncorrelated1134

with the explanatory variables. However, we will focus on fixed effects estimation since1135

that is the approach our model follows. With recourse to the objective of our analysis,1136

we discuss in what follows the ML estimation process of SDM assuming fixed effects. We1137

also assume that the W is fixed and the panel is balanced.46
1138

standardization since the asymmetric nature of the matrix invalidates its economic interpretation in
terms of distance decay.

44Anselin et al. (2008), however, note that weights can be allowed to vary, given that the parameters
are fixed, although this is less tractable. They further argue that although it is possible to let both the
weights and parameters vary, this will result in identification and interpretation problems.

45Advances in computing technology have remedied this difficulty (LeSage and Pace, 2009).
46A general approach for estimating unbalanced panel due to missing observations is not available,
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B.1 Fixed effects spatial Durbin model (SDM)1139

This model controls for spatial correlation in both the dependent variable and the1140

regressors. The SDM and the associated data generation process (DGP) are shown in (3)1141

and (4), respectively1142

Yt = WYtγ +Xtβ + ρ+ εt (3)

1143

Yt = (IN − γW )−1(Xtβ + ρ+ εt) (4)

ε|X ∼ N(0, σ2IN)

where Y is an N×1 vector of dependent variables, W is a positive N×N spatial weights1144

matrix, WY is an N × 1 vector that represents the endogenous interaction effects among1145

the outcome variables, X is an N × K matrix of K regressors. For the sake of being1146

concise, we assume that spatial lags of the regressors are included in the matrix X. γ1147

is the spatial autoregressive coefficient, β denotes K × 1 vector of fixed but unknown1148

parameters to be estimated, ρ is an N × 1 vector of location-specific fixed effects that1149

absorb time-invariant spatial attributes, ε is the vector of disturbances that are assumed1150

to be independent and identically distributed (iid), and IN is an identity matrix of1151

dimension N. We can equally express (4) in stacked form as represented in (5)1152

Y = γ(IT ⊗WN)Y +Xβ + (ιT ⊗ IN)ρ+ ε (5)

where Y =
[
Y ′1 , Y ′2 , Y ′3 , · · · , Y ′T

]′
is an NT × 1 vector of dependent variables, X1153

is an NT × K matrix of observations on K explanatory variables (including spatially1154

lagged covariates), ιT is a T × 1 vector of ones, I T is an identity matrix of dimension T,1155

⊗ is known as Kronecker product, ε is an NT × 1 vector spatially-corrected innovations,1156

all other terms are as defined in (3) and (4). Two complications immediately arise in1157

equation (3). First is the endogeneity bias due to the lagged dependent variable, WYt,1158

which violates the standard regression exogeneity assumption, resulting in biased and1159

inconsistent estimates if the model is analyzed via OLS. The second is a less general1160

problem that depends on N and T. According to Lee and Yu (2010), the fixed effects1161

estimation may be affected because of the existence of spatial dependence among spatial1162

units at each point in time.1163

The ML estimator is derived to treat the problem of endogeneity in equation (3).1164

hence statistical software such as R, Matlab and recently, Stata and GeoDa find such estimation process
problematic.
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Assuming that the group-level effect is fixed, the log-likelihood function of equation (4)1165

can be expressed as1166

lnL = −NT
2
ln(2πσ2) + T ln | IN − γWN | −

NT

2σ2
(e(ψ)− ρ)′(e(ψ)− ρ) (6)

where e(ψ) = Y − γ(IT ⊗WN)Y −Xβ, ψ = (γ, β′) and |IN − γWN | is an N ×N matrix1167

representing the Jacobian term of transformation from ε to Y which is the most cum-1168

bersome part of the estimation procedure (Anselin et al., 2008). In the remaining part,1169

we follow Elhorst’s (2014) estimation method, an empirical extension of Anselin (1988)1170

estimation technique for cross-sectional spatial models. Given ψ, it is straightforward to1171

show, by taking the partial derivatives of equation (6) with respect to ρ, that the ML1172

estimator of ρ is given as1173

ρ̂ =
1

T
(ι′T ⊗ IN)e(ψ) (7)

The presence of individual fixed effects in a small panel where T is fixed and N → ∞1174

generates what is popularly known in panel data literature as the incidental parameter1175

problem, a situation where the number of unknown parameters increases in direct pro-1176

portion to the number of observations (for a précis of this problem, and the remedies,1177

see next subsection). Substituting closed form solution from equation (7) into (6) and1178

rearranging the terms will produce the concentrated log-likelihood function with respect1179

to the remaining parameters47
1180

lnL = −NT
2
ln(2πσ2) + T ln | IN − γWN | −

NT

2σ2
ê(ψ)′ê(ψ) (8)

where hat denotes temporal demeaning by spatial unit and ê(ψ) = Ŷ − γ(IT ⊗WN)Ŷ −1181

X̂β.48 Functions like equation (8) boil down to a repetition of a typical cross-sectional1182

model in T cross-sections, thus successive T cross-sections are arranged in a stacked form1183

to get NT ×1 vectors of Ŷ and (IT ⊗WN)Ŷ , and an NT ×K matrix for X̂. Next, regress1184

Ŷ and (IT ⊗WN)Ŷ on X̂ successively, and store estimates of the regression coefficients as1185

ϕ0 and ϕ1, and let η̌0 and η̌1 be the associated residuals. Therefore, γ can be estimated1186

by maximizing the concentrated log-likelihood function1187

lnL(γ) = H + T ln | IN − γWN | −
NT

2
ln(R(γ)) (9)

47Davidson and MacKinnon (1993) provided evidence that ML estimates from the concentrated log-
likelihood function are similar to those from the full log-likelihood. However, LeSage and Pace (2009)
argues that the simplification of the optimization problem by reducing multivariate optimization problem
to a univariate one is the primary motivation for the preference of concentrated log-likelihood function.

48Ŷ = DNTY and X̂ = DNTX where DNT = INT − (ιT ι
′
T/T ⊗ IN ) is a popular NT ×NT matrix in

the conventional panel data literature.
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R(γ) = (η̌0 − γη̌1)
′(η̌0 − γη̌1)

where H is a constant that is independent of the parameter γ. According to Elhorst1188

(2003), the non-existence of a closed-form solution means the optimization problem ne-1189

cessitates a numerical solution. Anselin and Hudak (1992) show that a unique numerical1190

solution exists because the concentrated log-likelihood function is concave in γ49. Finally,1191

given the numerical estimate of γ, the ML estimates of β and σ2 are computed1192

β = ϕ0 − γϕ1 = (X̂ ′X̂)−1X̂ ′[Ŷ − γ(IT ⊗WN)Ŷ ] (10)

σ2 =
1

NT
(R(γ)) (11)

B.2 The incidental parameter problem1193

A less general problem emanates from the asymptotic properties of the sample size1194

of (7). According to Lee and Yu (2010), for short panels, where T is fixed and N →∞,1195

consistent estimation of the individual fixed effect is impracticable because of the classical1196

incidental parameter problem - a situation where the number of unknown parameters1197

increases with the sample size. The problem is inconsequential if the individual fixed1198

effects are not the coefficients of interest, which is the case in this study as it is in most1199

empirical studies, as argued by Elhorst (2014).50 Nevertheless, Lee and Yu (2010) use1200

thorough asymptotic evidence to establish that the variance parameter, σ2 is inconsistent1201

for finite T. Consequently, they propose two alternative solutions to deal with the problem1202

of inconsistency.1203

The first approach is the transformation method that eliminates the individual fixed1204

effects by taking the deviation from time average for each spatial unit. This transfor-1205

mation has the net effect of reducing the sample size by one observation for each unit1206

in the sample, from NT to N(T-1) sample size. The second approach proposed by Lee1207

and Yu is a bias correction process of the variance parameter estimated via the direct1208

approach.51 Hence, the true (bias-corrected) parameter, σ̂2
bc = T

T−1 σ̂
2, where σ̂2 is the es-1209

timated variance parameter using direct approach. Moreover, since the correction affects1210

the variance parameters, the standard errors and t-values of the parameter estimates will1211

also be affected. Nevertheless, Lee and Yu (2010) show that the correction does not affect1212

the asymptotic variance matrices of the parameters of the spatial model (see, Theorems 21213

49There are R commands and Matlab routines dedicated to such estimation.
50This is possible since β 6= f(ρi), therefore any inconsistency in the individual fixed effects will not

be relayed to the parameters of other regressors.
51Lee and Yu labeled the conventional demeaning procedure for estimating fixed effects panel data

model as “direct approach”.
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and 4 in Lee and Yu (2010) for formal proofs). Finally, both approaches produce numer-1214

ically equivalent estimates, thus the variance estimate of the bias corrected ML is that of1215

transformed approach. This study adopts the former (bias-correction) approach.52
1216

B.31217

C Alternative weather measures1218

C.1 Precipitation1219

One of this paper’s contributions is the use of WDF in SSA climate change studies, as1220

against aggregate precipitation (PREP) used in previous studies (refer to Sections 1 and 31221

for an extensive discussion on why we prefer WDF to PREP). Our monthly precipitation1222

dataset was obtained from the same source as the WDF dataset, CRU TS v4.02, and1223

we aggregate over growing season by MPA. For estimation purposes, we replaced WDF1224

variable with PREP in our benchmark equation (1). While we expect our estimates to1225

vary in size, since we are using a different dataset, we do not expect a broad change in the1226

signs and significance because of the positive and significant correlation between WDF1227

and PREP, calculated as 0.70.1228

The results are presented in Table C1, but for brevity sake, we did not include esti-1229

mates of quadratic terms, time trend, and the spatial lag of VPD. The results compare1230

our baseline (column 1) estimates (using WDF) with the estimates from column 2 (using1231

PREP) and find marginal differences. While the indirect effect of temperature gained1232

slight significance, it reduced in magnitude. On the other hand, there is an increase in1233

the direct effect. Besides, the significance of temporal lag for precipitation disappeared,1234

with a reduction in the overall fit of the new model, whereas VPD increases sharply in1235

magnitude. These results reveal that the choice of weather measures matters in terms1236

of estimation. Using aggregate precipitation, which does not account for intra-periodic1237

fluctuations in rainfall, increases the negative impact of millet yield vis-a-vis tempera-1238

ture effect while using a more accountable measure of rainfall, like WDF, attenuates this1239

effect.1240

C.2 Standardized precipitation evapotranspiration index (SPEI)1241

As an add-on exercise, we examined the (contemporaneous, spatial and temporal)1242

effect of extreme weather conditions, such as drought, on millet yield in SSA. Although an1243

earlier study in this regard has been done by Blanc (2012) using standardized precipitation1244

index (SPI), we, in spirit of Harari and Ferrara (2018), use a more robust measure that1245

accounts for temperature - standardized precipitation evapotranspiration index (SPEI).1246

52Spatial econometrics software such as R and Matlab have “bias correction” option.
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Table C1: Model Comparison using Alternative Weather Measure - Precipita-
tion

(1)
(WDF)

(2)
(PREP)

Direct Effect
TEMP -0.2187***

(0.0533)
-0.2663***

(0.0481)
WDF/PREP 0.0210***

(0.0058)
0.0027***

(0.0004)
VPD -0.2106***

(0.0336)
-0.2893***

(0.0366)
Indirect Effect
TEMP -0.0041

(0.0055)
-0.0012
(0.0008)

WDF/PREP 0.0069**

(0.0028)
0.0009*

(0.0005)
Gamma -0.0419***

(0.0047)
-0.0503***

(0.0042)
Temporal
Effect
TEMPt-1 -0.0035

(0.0024)
-0.0035
(0.0030)

WDFt-1/PREPt-1 -0.0029**

(0.0014)
-0.0000
(0.0000)

R2 0.60 0.58

Except stated, all models include time trend and its square, spatial weight as
inverse distance, with errors clustered at the MPA level. Temperature is measured
in oC , VPD in kPa and precipitation in mm. For space sake, we do not include the
estimates of the quadratic terms of TEMP, WDF, and PREP. Columns: (1) main
specification estimates, (2) as in column 1, but aggregate precipitation replaces
wet day frequency.
***p<0.01, **p<0.05, *p<0.1.
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In addition, we control for spatial and temporal correlations, which are absent in Blanc1247

(2012). The SPEI was developed by Vicente-Serrano et al. (2015) using temperature and1248

precipitation data from CRU TS3.0 as inputs and has been found to outperform other1249

measures of extreme weather events such as self-calibrated Palmer Drought Severity Index1250

(sc-PDSI) and SPI in quantifying extreme weather impacts (Harari and Ferrara, 2018).53
1251

Table C2: Model Comparison using Alternative
Weather Measure - SPEI

SPEI

Direct Effect 0.0237***

(0.0038)
Indirect Effect 0.0029

(0.0102)
SPEI2 -0.0299*

(0.0172)
SPEIt-1 -0.0024

(0.0091)
SPEIt-2 -0.0007

(0.0169)
Gamma -0.0521***

(0.0110)
R2 0.24

Except stated, all models include time trend and
its square, spatial weight as inverse distance, with
errors clustered at the MPA level.
***p<0.01, **p<0.05, *p<0.1.

The results presented in Table C2 suggest that a point increase in SPEI (indicating1252

less drought) will benefit millet yield. This indication can be seen from the trend in1253

Figure F3 of the Appendix, as, on average, all MPAs are drifting away from the mean1254

value towards dry conditions.54 Therefore an increase in the SPEI value will be restoring1255

weather conditions to the mean value. Besides, the quadratic term is significant, showing1256

that the marginal effect will change to negative as one moves away from the mean. This1257

result is sensible given the understanding that the lower values of SPEI denote conditions,1258

while the above mean values indicate flooding (see, Table C3). In terms of spatial and1259

temporal lags effects because we find no significant effects from both lags. For temporal1260

53The SPEI is a standardized variable with a mean value and standard deviation of 0 and 1, respec-
tively, fitted to different time scales such as 2, 4, 8, 12 months, etc. For our analysis, we use SPEI at a
12-month scale since the growing seasons in the various MPAs are of different duration.

54The trend from Figure F3 in the Appendix also suggests the MPAs are not experiencing extreme
weather events such as flooding or drought, confirming the submission of Auffhammer and Schlenker
(2014) that most of the growing areas in developing regions have weather conditions that are conducive
for agriculture. In a similar twist, this also explains why most MPAs have very scant KDU observations.
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Table C3: Extreme Weather Classification of SPEI

SPEI Value Moisture Category

≥ 2.00 Extremely wet (flood)
1.50 - 1.99 Severely wet
1.00 - 1.49 Moderately wet
0.50 - 0.99 Slightly wet
-0.49 - 0.49 Near normal
-0.99 - -0.50 Mild dry
-1.49 - -1.00 Moderately dry
-1.99 - -1.50 Severely dry
≤ −2.00 Extremely dry

lags, this implies that high (positive or negative) values of SPEI, indicating drought or1261

flooding, may not have a carry-over effect on millet. This result further reinforces the1262

position of millet as a drought-resistant cereal crop.1263

D Construction of long differences (LD) and flexible1264

long differences (FLD)1265

One of the most critical shortcomings of the standard panel model is the absence of1266

adaptive response; hence, crop yields’ response to climate change might be overestimated.1267

To address this challenge, several methods have been proposed in the climate econometrics1268

literature, among which are long difference approach by Burke and Emerick (2016) and1269

flexible long difference method by Yu et al. (2021). We describe how we construct the1270

differences in relation to the non-spatial analogue of our model in turn.55
1271

D.1 Long differences (LD) approach1272

We start with a reminder of the baseline model in (12),1273

Yt = WYtγ + Ctβ +WCtϑ+ ρ+ εt (12)

where Yt is an N × 1 vector of (log of) millet yield observations at time t ; Ct are N ×K1274

matrix of climatic variables; εt is an N × 1 vector of unobservable random variables.1275

The time trend matrix Rt includes linear and squared terms; ρ is an N × 1 vector of1276

country-level fixed effects. W is an N × N matrix of spatial weights (or connectivity),1277

55The reasons for considering the non-spatial rather than the spatial model have been explained in
the main text.
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WY represents spatially autocorrelated outcomes, while WC represents spatial autocor-1278

relation of the covariates (weather measures). In terms of parameter notations, β, ω, γ1279

and ϑ are vectors of parameters to be estimated, the last two being spatial parameters.1280

Our sample period is 1970-2016, so spanning 47 years. Let period a consist of (n=5)1281

years {1970, 1971, 1972, 1973, 1974}, and period b consist of (n=5) years {2012, 2013,1282

2014, 2015, 2016}. For each period, we construct a period average of each variable. Since1283

there are two lags of Tempi,t and WDFi,t included in the main specification, this means1284

we need these variables for 1968 and 1969. The notional dates of periods a and b are1285

taken as the mid-points of 1972 and 2014. In subsequent analysis, we consider a longer1286

average of ten years (n=10): period a as 1970 - 1979 and period b as 2007 - 2016.1287

Given the estimated specification:1288

C
(i,•)
t = (Tempi,t,WDFi,t, V PDi,t, T empDevi,t, T emp

2
i,t,WDF 2

i,t,

TEMPi,t−1, TEMPi,t−2,WDFi,t−1,WDFi,t−2)

Let Ȳi,a =
∑

t∈a Yi,t/n, Ȳi,b =
∑

t∈b Yi,t/n, Ȳa =
∑

t∈a Yt/n, Ȳb =
∑

t∈b Yt/n, etc. It then1289

follows from equation (1) that1290

Ȳi,a = γWi,•Ȳa + C̄i,aβ +Wi,•C̄
(•,1:3)
a ϑ+ R̄aω + ρi + ε̄i,a (13)

Ȳi,b = γWi,•Ȳb + C̄i,bβ +Wi,•C̄
(•,1:3)
b ϑ+ R̄bω + ρi + ε̄i,b (14)

where ¯C(•,1:3) denotes the N × 3 matrix consisting of the first three columns of C. Sub-1291

tracting (13) from (14), zero-constraining γ and ϑ, and stacking the resulting non-spatial1292

equation yields1293

∆b,aȲ = ∆b,aC̄β + ∆b,aR̄ω + ∆b,aε̄ (15)

where ∆b,aȲ = Ȳb − Ȳa, etc. Equation (15) is a cross-sectional model with the resulting1294

OLS estimates as {β̄, ω̄}.1295

D.2 Flexible long differences (FLD) approach1296

Define Dτ to be a dummy variable that indicates the period as follows: Dτ = 0 if1297

τ = a and Dτ = 1 if τ = b. Interacting the period dummy with the climate variables in1298

the respective period yields the flexible long differences (FLD) model. Hence, the FLD1299

approach applied to our model is:1300
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Ȳi,τ = γWi,•Ȳτ + C̄i,τβ +Wi,•C̄
(•,1:3)
τ ϑ+ δWi,•Dτ Ȳτ + C̄i,τDτη

+Wi,•Dτ C̄
(•,1:3)
τ φ+ R̄τω + ρi + ε̄i,τ (16)

Taking difference between τ = b and τ = a to eliminate the fixed effect and setting1301

γ = ϑ = δ = φ = 0 yield the model1302

∆b,aȲ = ∆b,aC̄β + C̄bη + ∆b,aR̄ω + ∆b,aε̄ (17)

where ∆b,aȲ = Ȳb − Ȳa, etc. Equation (17) is a cross-sectional model with the resulting1303

OLS estimates as {β̄, η̄, ω̄}.1304

The difference between equations (15) and (17) is the presence of the interaction term1305

(C̄b) differentiating the effect of climate on crop yields across the two periods, thereby1306

representing time-varying agricultural adaptation. Consequently, where the estimate of1307

the interaction term, η, is not significantly different from zero, the FLD approach is (17)1308

collapses into the LD approach in (15).1309

E Bootstrapping the prediction interval1310

To sidestep statistical (or regression) uncertainty, we need a prediction interval. Fol-1311

lowing the description in subsection 5.1 in the main text, let CCCP = CPP − CHIST ,1312

where CCP is climate change projection, HIST stands for a relevant historical period1313

(1981 - 2010, in our case), and PP stands for a projected period (2040 - 2069, in our1314

case). Predicted impact is, therefore, given as1315

Λ = E[Yt|Ct = CPP ]− E[Yt|Ct = CHIST ] = (IN − γ0W )−1(CCCPβ0 +WCCCPϑ0)

where Λ is an N × 1 vector by definition, and1316

Λ̂ = (IN − γ̂W )−1(CCCP β̂ +WCCCP θ̂)

with IN as an identity matrix of dimension N, and other variables already defined in1317

equation (1).1318

The bootstrapped prediction interval for Λ is calculated as follows where δ̂ = (β̂′, ϑ̂′, ω̂′,1319

γ̂, σ2)′ = (θ̂′, γ̂, σ2)′ = (ζ̂ ′, σ2)′ and ρ̂ are the maximum likelihood estimates from equation1320

(1), and Z = [Ct,WCt, Rt]:1321

1. Construct the residuals from original data: {ε̂t(δ̂, ρ̂)}Tt=11322

2. For b = 1, 2, . . . , B = 10001323
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(a) obtain bootstrap residuals, {ε̂(b)t }Tt=1 from the empirical distribution of the1324

sample residuals from (i)1325

(b) construct bootstrap yields, {Y (b)
t }Tt=1 via1326

Y
(b)
t = (IN − γ̂W )−1(Ztθ̂ + ρ̂+ ε̂

(b)
t )

(c) re-estimate equation (1) via ML based on {Y (b)
t , Zt}Tt=1 to generate bootstrap1327

ML estimates δ̂(b) and ρ̂(b)1328

(d) construct bootstrap estimates of Λ1329

Λ̂(b) = (IN − γ̂(b)W )−1(CCCP β̂
(b) +WCCCP θ̂

(b))

3. Construct a 95% equal tailed bootstrap prediction interval for Λ from the 2.5th and1330

97.5th percentiles.1331

4. Aggregate Λ̂(b) from the three GCMs (1000 bootstrapped runs × 3 GCMs) to pro-1332

duce 3000 distributions, and repeat step (iii).1333
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F Tables and Figures1334

Table F1: Main-Producing Areas (MPAs) used in the Study and their
respective Growing Seasons

Country MPA Growing Season

Angola Huila November-June
Benin Borgou May-November
Botswana Ghanzi November-June
Burkina Faso Bam May-December
Burundi Bururi September-February
Central African
Republic

Bamingui-Bangora May-October

Cameroon Bamenda March-November
Chad Moyen-Chari May-October
Democratic
Republic of Congo

Haut-Congo April-November

Cote d’Ivoire Seguela May-November
Gambia Upper River June-November
Ghana Zabzugu May-November
Guinea Kindia May-November
Guinea Bissau Bafata May-October
Kenya Nyanza March-November
Mali Segou May-November
Mauritania Assaba July-November
Mozambique Zambezi November-June
Namibia Kavango December-June
Niger Diffa June-October
Nigeria Maiduguri June-October
Rwanda Byumba September-February
Senegal Kaolack July-November
Sierra Leone Moyamba May-November
South Africa Free State September-July
Sudan South Darfur March-August
Tanzania Singida March-August
Togo Savanes May-November
Uganda Gulu September-January
Zambia Mbala December-July
Zimbabwe Mashonaland East November-June

Total 31
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Table F2: Classes of Spatial Models

Spatial Model Interaction Effects

Spatial lag model (SLM) or
spatial autoregressive model
(SAR)a

Endogenous interaction effects (Y )

Spatial error model (SEM) Error terms interaction effects (u)
Spatial lag of X model (SLX) Exogenous interaction effects (X )
Spatial autoregressive combined
(SAC)b

Endogenous and error terms interaction effects (Y, u)

Spatial Durbin model (SDM)c Endogenous and exogenous interaction effects (Y, X )
Spatial Durbin error model
(SDEM)

Exogenous and error terms interaction effects (X , u)

General nesting spatial model
(GNS)

All interactions

aAnselin (1988) terms it “mixed regressive spatial autoregressive” model.
bElhorst (2010) names it after its pioneers, the “Kelejian-Prucha” model. Other names used for this

model are spatial autoregressive with spatially autocorrelated errors (SARAR) or Cliff-Ord models.
cThe model can be generalized by employing different spatial weights structure for the endogenous

variable and the spatially weighted regressors or by using explanatory variables that differ from the
spatially weighted regressors (Belotti et al., 2017).
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Table F3: Economic Blocs in SSA and Member Countries

Economic Community Member States

ECOWASa,b Benin, Burkina Faso, Cape Verde, Cote d’Ivoire,
Gambia, Ghana, Guinea, Guinea-Bissau, Liberia,
Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo

SADC Angola, Botswana, DR Congo, Lesotho,
Madagascar, Malawi, Mozambique, Namibia, South
Africa, eSwatini, Tanzania, Zambia, Zimbabwe

EAC Burundi, Kenya, Rwanda, Uganda, Sudan, Tanzania
ECCAS Angola, Burundi, Cameroon, Central Africa

Republic, Chad, DR Congo, Congo, Gabon, Rwanda
COMESA Burundi, DR Congo, Kenya, Madagascar, Malawi,

Rwanda, Sudan, eSwatini, Uganda, Zambia,
Zimbabwe

CEN-SAD Benin, Burkina Faso, Cape Verde, Central Africa
Republic, Chad, Cote d’Ivoire, Gambia, Ghana,
Guinea, Guinea-Bissau, Kenya, Liberia, Mali,
Mauritania, Niger, Nigeria, Senegal, Sierra Leone,
Somalia, Sudan, Togo

IGAD Kenya, Somalia, Sudan, Uganda

aECOWAS = Economic Community of West African States; SADC = Southern African Development
Community; EAC = East African Community; ECCAS = Economic Community of Central African
States; COMESA = Common Market for Eastern and Southern Africa; CEN-SAD = The Community
of Sahel-Saharan States; IGAD = Intergovernmental Authority on Development

bInformation obtained from UNECA website, http://www.un.org/en/africa/osaa/peace/recs.
shtml
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Figure F1: Millet MPAs Locations in SSA Countries

Figure F2: Average Temperature Distribution across MPAs
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Figure F3: Trend of SPEI for SSA (by MPA)
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Note: LI = low-income countries, LMI = lower middle income countries, UMI = upper middle
income countries. This income classification is from World Development Indicators (2018). We
merged LMI and UMI countries as rich countries, while LMI countries are labeled as poor. SSA
has no high-income country.

Figure F4: Classification of SSA Countries by Income Class

Figure F5: Scatterplots of the Weather Measures and Millet Yield (in Logs) for Two
Separate Periods: 1970 - 2000 & 2001 - 2016
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