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Abstract 

Elicited imitation is a widely used method for testing a child's 

knowledge of a language for scientific or clinical purposes. 

A child hears an utterance and is asked to repeat what they 

have heard. While it is assumed that their fluency or speed in 

doing so is contingent on their linguistic competence, little is 

known about the cognitive mechanisms and/or 

representations involved. To explore this, we train an 

encoder-decoder model, consisting of recurrent neural 

networks, to encode and reproduce a corpus of child-directed 

speech and then test its performance on the experimental task 

of Bannard and Matthews (2008). In that study pre-school 

children were asked to repeat high- and low-frequency four-

word sequences in which the first three words were identical 

(e.g., sit in your chair and sit in your truck) and the final 

words and bigrams were closely matched for frequency. We 

find that like those children our model makes more errors on 

the initial three words when they are part of a low-frequency 

than a high-frequency sequence, despite the fact that the 

words being repeated are identical. We explore why this 

might be and pinpoint some possible similarities between the 

model and child language processing. 

Keywords: sentence repetition; language development; deep 
learning; phrase frequency.  

                       Introduction 

Elicited imitation, also referred to as sentence repetition or 

sentence recall, is a widely used method for testing a child's 

knowledge of a language. A child hears an utterance being 

produced, typically in a recording, and is asked to repeat what 

they have heard. The child’s fluency and/or speed in doing so 

is taken as an indicator of their knowledge of linguistic 

(typically lexical or grammatical) properties of the sentence.  

As well as being used to address a range of theoretical 

questions regarding the acquisition of language, over the last 

two decades elicited imitation has found application in 

clinical diagnosis. Conti-Ramsden et al (2001) explored the 

utility of sentence repetition in identifying children with 

Developmental Language Disorder. They found it to be a 

more useful measure than three other more widely-used tasks. 

Since then, the method has been deployed across multiple 

languages (see Rujas et al, 2021 for a recent survey). 

It is widely assumed that the child's ability to remember 

and then reproduce a sentence is affected by their linguistic 

ability. According to Potter (2012; p.5) "immediate recall of 

a sentence (like longer-term recall) is based on a conceptual 

or propositional representation of the sentence…having 

understood the conceptual proposition in a sentence, one can 

simply express that idea in words, as one might express a new 

thought." However, there is limited understanding of the 

mechanisms involved or the encodings used. One way that 

this gap can be addressed is of course via human experiments 

- looking at how well children are able to represent and recall 

different kinds of sentences. Another, complementary, 

approach is to create a computational model of the process. 

In this work we take a step in this direction. 

Our starting point for a model of elicited imitation is the 

encoder-decoder network. Such networks are used in a range 

of natural language processing tasks to generate utterances 

conditional on an input. First the encoder builds a 

representation of an input utterance, including the order of the 

words. This (whole sentence) representation is then passed on 

to the decoder, whose task it is to generate a sentence 

conditioned on the encoded input. For example, in machine 

translation an utterance is generated in a target language 

conditional on an utterance in a source language. In dialogue 

systems an utterance is generated conditional on the previous 

turn in the dialogue.  

Our goal in this paper is to model the process of sentence 

repetition. The input to our network is the sentence heard by 

the child. The job of the network is to encode and then 

reproduce this sentence. We are interested in whether the 

kinds of representations that encoder-decoder networks 

develop in response to this task can provide a useful model 

of those used by children. Our window onto human 

representations is the errors that speakers make. However, to 

a fully trained network with unlimited capacity, direct 

imitation is a trivial task, much as the sentence repetition task 

is trivial for adult speakers. We therefore impose constraints 

on the representational capacity of the model.  

Our question is whether the circumstances under which our 

model makes errors are the same as those under which 

children make errors. We seek to replicate an effect reported 

by Bannard and Matthews (2008). In this study 2- and 3-year-

old children repeated pairs of four-word sequences that were 

identical except for the final word, where one sequence was 
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high frequency (a drink of milk) and one was low frequency 

(a drink of tea) in child-directed speech. The frequency of the 

final words and bigrams were also matched. Children were 

found to be more fluent and quicker in producing the identical 

first three words when those words were part of a high- 

frequency sequence. This finding, where the error rate for a 

single sequence of words varies depending on the context, 

provides an interesting test case for any model of production. 

While encoding and decoding can be done by a range of 

different temporal-learning networks, the model type we 

deploy is a kind of recurrent neural network - the long short 

term memory model (LSTM; Hochreiter & Schmidhuber, 

1997). Unlike in simple recurrent networks which have been 

widely deployed for cognitive modelling purposes, in LSTMs 

the flow of information across time is controlled by memory 

gates, the behaviour of which is also learned from data.  

Recurrent neural networks with gating are the basis of a 

popular cognitive model of working memory (O'Reilly & 

Frank, 2006) with recent work having identified neural 

signatures of gating (Rac-Lubashevsky & Frank, 2021).  

Methods 

Model Architecture 

Encoder-decoder models, also known as Seq2Seq models, 

consist of two components: an encoder and a decoder. The 

precise function of these components depends on the task 

being performed. In machine translation, the model is trained 

on pairs of translationally equivalent sentences. The task of 

the encoder is to build a representation of the source 

utterance, including the order of the words it contains. This 

(whole sentence) representation is then passed on to the 

decoder, whose task it is to produce a translation of the source 

utterance in the target language. The decoder is presented 

with the encoder’s representation of the source utterance (as 

well as a start-of-utterance marker) and starts to produce 

words in the target language. Importantly, the words that are 

produced by the decoder are fed back to it. The decoder thus 

blends the encoder’s representation of the source utterance 

with the representation of the words it has produced so far1 to 

shape the words it produces downstream (see Fig. 1). This 

process continues until the decoder produces an end-of-

utterance marker, or a maximum word limit is produced. 

Since learning is supervised, the decoder’s production can be 

compared to the target utterance, to generate an error signal 

that is used to adjust weights throughout the model.  

We implement our encoder and decoder using an LSTM 

network. Both the encoder and decoder can be equipped with 

so-called embedding layers, which can provide a dense 

representation capturing the semantic (dis)similarity between 

words. The use of embedding layers representing 

distributional semantics represents an improvement over 

traditional language modelling methods (such as n-gram 

 
1 Though learning can be aided by feeding back the words from 

the target utterance, a process known as Teacher Forcing. 

models) as it enables the computation of linguistic 

representations over classes of distributionally similar items. 

For the current simulations we used a Seq2Seq model in 

which both the encoder and decoder contained a single layer 

LSTM network. We investigated how LSTM capacity affects 

model performance by running models with differing 

numbers (30, 40, 50, 60) of hidden cells or dimensions. Both 

the encoder and decoder were equipped with an embedding 

layer of 50 dimensions. Embeddings were learned during 

training and thus specific to the model’s input which 

consisted of child-directed speech. Code for all experiments 

is at github.com/cbannard/sentrep_cogsci22. 
An important difference between the standard use of the 

Seq2Seq model and our simulations is that, unlike in machine 

translation, where the source and target utterance are 

translational equivalents in different languages (which may 

be of different length), our source and target utterances are 

pairs of identical English utterances. This may seem a trivial 

task from a machine translation perspective. However, it is 

worth bearing in mind that the encoder and decoder are 

independent, and the encoder needs to learn to represent the 

input it receives in a way that is sufficiently fine-grained for 

the decoder to infer both the identity and the order of the 

words that the encoder received. The encoder and decoder 

roughly map onto the distinct processes of comprehension 

and production, and comparing the model’s and children’s 

performance on sentence repetition may provide us with 

insights into the representations involved in these processes. 

 

 
 

Figure 1: An Encoder-Decoder (Seq2Seq) network  

Model Input 

Our model was trained on English child-directed speech 

obtained from CHILDES. Input consisted of a mix of UK and 

US English corpora. We performed minor filtering on the 

CHILDES files (we removed punctuation and markup). For 

information on the corpora and preprocessing employed see 

the github repository. The total amount of input 

approximated 2 million utterances, restricted to a maximum 

length of 15 words. We reduced the vocabulary to words that 

occurred a minimum of 5 times. Out-of-dictionary words in 

the input were replaced with a random token. Models were 

trained for a total of 500 epochs of 10,000 utterances each. 

The input for each individual epoch was sampled randomly 

from the input corpus and split in an 80:20 ratio for training 

and validation. Models were tested (and responses recorded) 



on the experimental stimuli (see below for details) every 10 

epochs. 

Experimental Stimuli 

The stimuli were 13 pairs of high-frequency (e.g., go to the 

shop) and low-frequency sequences (e.g., go to the top) listed 

in Bannard and Matthews (2008). The high- and low- 

frequency items from each pair had the same first three words 

and final words and bigrams were of equivalent frequency. 

Results 

Model performance (error rates on the first three words) on 

the stimuli is shown in Fig. 2. Models were run with 30, 40, 

50 or 60 hidden dimensions in both the encoder and decoder 

LSTMs, and averaged over 10 model runs each. As can be 

seen in Fig 2, all models learn to repeat the stimuli with high 

accuracy. Models with more hidden dimensions do so more 

quickly, and reach better overall accuracy levels than models 

with fewer hidden dimensions. It is clear from Fig. 2 that all 

models go through a stage where they show better 

performance on the first 3 words of the high-frequency than 

the low-frequency sequences. The degree of separation, as 

well as the length of the period during which there is 

separation, is larger for models with lower capacity. Overall, 

the degree of separation is in a similar range to that reported 

by Bannard and Matthews (~10% for the two-year-olds, and 

~5% for the 3-year-olds), though not necessarily at the same 

overall error rates (68% on the low frequency items for the 

two-year-olds, and 35% for the three-year-olds). 

Nevertheless, the fact that the models show separation 

between the two sets of stimuli across a range of 100-200 

epochs suggests that the model architecture captures some 

aspects of the difference between the two sets of stimuli that 

children are sensitive to. 

 

 

 

 

 
 

 

Figure 2: Model performance (3-word error rate) on the Bannard and Matthews (2008) stimuli 

with high and low frequency.



 

Error Analysis 
We next look at the position and types of error that the 

model makes. For this analysis we pooled the data from all 

(10) models with hidden dimensions of 40 and 50 at epochs 

150, 200, 250 and 300. This sample reflects a range of 

intermediate training stages and capacity levels. Since 

there are 26 stimuli (13 pairs) in the Bannard and Matthews 

set, this makes up a set of 2080 productions. The three-

word error rate in the combined set is 40% for the low-

frequency sequences, and 34% for the high-frequency 

sequences.  

    The results shown in figure 2 include only errors on the 

first three words - the parts of the sequences that are 

identical in the high- and low-frequency four-word 

sequences. In the high-frequency sequences, these earlier 

words must somehow be protected from error by the larger 

sequence and the downstream target word. Take, for 

example, the sequence pair when we go out and when we 

go in. For an example model the first, high-frequency 

sequence is correctly produced, but for the second low-

frequency sequence we see the sequence we we go in. It 

appears that the higher probability starting word we has 

intruded and is repeated. However, somehow in the word 

sequence when we go out the higher frequency of the target 

protects the production from this intrusion as early as the 

first word. In fact, errors seem to be made with highest 

frequency in earlier positions of the 2080 productions, 451 

have errors in first position, 428 have errors in second 

position and 229 have errors in third position.  

    Errors in the productions can be loosely divided into two 

kinds - those that involve the production of a word that isn’t 

in the target sequence and the production of a word from 

the target but in the wrong position. Errors of the second  

type can be separated into intrusions (the model produces 

a word that occurs at a later position in the target) and 

perseverations (the model produces a word that occurs at 

an earlier position in the target). Error rates for the different 

positions are shown in Table 1. For completeness we 

include errors on all four words. 

 

Table 1: Error types by position. 

 

 Target word in wrong place Non-target 

word Intrusion Perseveration 

1 288 0 163 

2 183 74 171 

3 36 92 101 

4 0 172 405 

 

    Unsurprisingly, intrusion errors are most common in 

positions 1 and 2, while perseveration errors are more 

common in later positions. However, it is worth noting that 

intrusion errors make up a much larger proportion of errors 

in position 1 (64%), than perseveration errors do in position 

4 (30%). Meanwhile non-target intrusions are most likely 

in this final position. We propose the following explanation 

for this pattern. All of these errors arise because highly 

activated words appear in place of less activated words. 

Words that are less activated early in the sequence  remain 

so throughout the production and thus are omitted rather 

than delayed. Lexical repetition of otherwise preferred 

words is unlikely as repetition is rare in the training corpus. 

These two pressures result in target words occurring earlier 

than they should more often than they occur late.  

    One factor that could plausibly be implicated in this 

process, as well as in the appearance of non-target words is 

the relative frequency of different words and word 

combinations in the training corpus - it could be that errors 

occur in the utterances at exactly the points where the target 

word is least predictable or where another word (from a 

later part of the target or from outside the target) is most 

probable in that context. This latter kind of error is known 

elsewhere in cognitive psychology as a habit slip and has 

recently been reported in linguistic behaviour by adults and 

children (Bannard et al, 2019; McCauley et al, 2021).  

       The existence of habit slips in our model output was 

investigated by examining the relative frequency of the 

target and the produced sequence for each error. The 

analysis was carried out in the following manner. For every 

error, we considered a left and right context, with the left 

context defined as all positions from (and including) the 

start marker up to (and including) the position containing 

the error, while the right context consisted of all positions 

up to (and including) the end marker. For both contexts, we 

aimed to determine the maximum context length for which 

the resulting production (the error) was more probable than 

the target. Thus, for an error in position 1, we considered 

as the left context the unigram (word) probability of the 

produced word compared to the target, as well as the 

bigram probability of the relevant word in combination 

with the start marker (i.e., in utterance-initial position). If 

the bigram probability of the error was larger than the 

target, we assigned a context score (length) of 2. If the 

bigram probability of the target was larger, and the unigram 

(word) probability of the error was larger than the target, 

we assigned a context score of 1. If both the bigram and 

unigram probability of the target exceeded those of the 

error, we assigned a context score of zero, indicating that 

the error was not driven by the n-gram statistics of the 

input. The same procedure was followed for the right 

context and across positions. The rationale behind this 

procedure is that each error is described by two numbers 

that express how well the error is supported by the left and 

right n-gram statistics, with higher numbers reflecting 

larger supportive contexts. The upper limit of these 

numbers depends on position and type of context and 

ranges from 2 (pos1, left; pos4, right) to 5 (pos1, right; 

pos4, left). The lower limit is always zero. Fig. 3 shows the 

results of this analysis as a stacked bar chart.  



 
 

Fig 3: Length of supporting contexts for habit slips in 

different positions, e.g., P1-l = position 1, left context. 

 

There are a number of things that stand out in Fig. 3. At the 

left context for position 1 (the leftmost bar), the 

overwhelming majority of errors is supported by a context of 

length 2, which represents the bigram probability in the 

context of the start marker (the maximum possible value for 

this context). This means that virtually all the errors in 

position 1, consist of words that are more frequent in 

utterance-initial position than the target word. By contrast, 

the largest stack for the right context of position 1 (bar #5), 

shows a majority maximum length of 1, meaning that the 

unigram (word) frequency of the error exceeds the target, but 

the error is not supported by larger n-grams. This pattern is 

consistent with the large number of intrusions in position 1. 

Many of the position 1 errors involve the intrusion (and 

repetition) of high- over low-frequency prepositions (e.g., ‘in 

in the air’ instead of ‘up in the air’). However, there are also 

a small number of position 1 errors that are supported by 

longer contexts (e.g., ‘put in your mouth’ instead of ‘sit in 

your truck’). 

The natural comparison for position 1 is the errors seen in 

position 4. Nearly 60% of errors in position 4 are supported 

by a left context of length 2 or more, meaning that these errors 

result in relatively large n-grams that are more frequent in the 

input than the target n-gram. This is in marked contrast to 

position 1 where only around 30% of errors was supported by 

a right context of length 2 or more. Thus, position 4 errors are 

more influenced by left (preceding context) than position 1 

errors are influenced by the right context (even though both 

have a maximum length of 5). Relatedly, the right context of 

position 4 (end marker) exerts less influence than the left 

context of position 1 (start marker). Taken together these 

analyses suggest that, as we might expect, as the utterance 

progresses the words that are produced become increasingly 

influenced by the words already produced and perhaps less 

by the encoded input.  

 

 

Decoder analysis  
The final stage in production for each word by our decoder 

involves the generation of a list of candidate words along 

with associated probabilities. The results above are all based 

on outputting the most frequent word at each step. However, 

further insight into the production processes of the model can 

be provided by looking at the full distribution. In Tables 2 

and 3 we provide the relative production probability 

(Softmax), of the top 10 candidate words for the low-

frequency target ‘up in the bath’ and its paired high-

frequency sequence 'up in the air' (from a model with 50 

hidden dimensions at 200 epochs).  Table 2 shows an 

example of an intrusion in position 1: the word ‘in’ is 

considerably more common in utterance-initial position than 

‘up’. In the continuation the model has inserted the word 

‘water’ for the (semantically-related) ‘bath’. Both ‘in the 

water’ and ‘in the bath’ are relatively frequent in the input (at 

counts of 897 and 501 respectively). While the higher 

frequency of 'in the water' appears to give it the upper hand it 

is worth noting that ‘water’ is only the 3rd most frequent word 

in the ‘in the X’ frame, with the top two candidates being 

‘box’ (1356) and ‘car’ (1179). It seems then that the existence 

of a semantically-overlapping phrase 'in the water' that is 

more frequent is what leads to this error. 

 

Table 2: Relative production probabilities for low- 

frequency target ‘up in the bath’ 

Pos1 Pos2 Pos3 Pos4 

in .59 in .68 the .99 water .65 

up .21 up .09 in .0 bath .08 

out .12 out .03 water .0 ball .02 

you'll .01 of .02 some .0 money .02 

there's .01 them .02 your .0 juice .01 

more .01 water .01 of .0 bowl .01 

on .0 the .01 front .0 door .01 

here .0 into .01 more .0 paper .01 

back .0 on .01 them .0 sun .01 

two .0 from .01 paper .0 milk .0 

 

By contrast it can be seen in table 3 that when producing 

the high-frequency sequence 'up in the air' the decoding 

process is protected from error from the start of the utterance 

on. Because the encoded target sequence and all of its 

subphrases are high frequency there is less opportunity for 

input-driven intrusions from high-frequency competitor 

words or substrings. The only apparent semantically-related 

word that has moderate production probability is the word 

'sky' in the final word position, presumably supported by the 

medium frequency sequence 'up in the sky'.  

 

 

 

 

 

 

 



Table 3: Relative production probabilities for the high- 

frequency target ‘up in the air’ 

 

Pos1 Pos2 Pos3 Pos4 

up 0.58 in 0.61 the 0.98 air 0.06  
in 0.3 up 0.22 in 0.0 trees 0.05 

 
 

out 0.04 from 0.03 up 0.0 basket 0.03 
 
 

two 0.01 into 0.02 of 0.0 sky 0.03 
 
 

here 0.01 of 0.02 front 0.0 moon 0.02 
 

 
you'll 0.01 out 0.01 from 0.0 stairs 0.02 

 
 

there's 0.01 through 0.01 washing 0.0 kitchen 0.02 
 
 

back 0.0 on 0.01 into 0.0 tree 0.02 
 
 

from 0.0 with 0.01 through 0.0 road 0.02 
 
 

down 0.0 the 0.0 your 0.0 pieces 0.01  

 

Discussion 

The goal of this work was to see whether an encoder-decoder 

network would show the same behaviour as children in an 

elicited imitation task (Bannard and Matthews, 2008).  

In the experimental data, children were found to make 

more errors in repeating the first three words of low- 

frequency four-word sequences than they did when repeating 

exactly the same three words in high-frequency four-word 

sequences (i.e., where only the last word varied). We found 

that an LSTM-based encoder-decoder model showed exactly 

this behaviour. This was observed to be particularly the case 

when the model was given a limited number of hidden nodes 

and/or when it was trained for a limited number of iterations. 

That an LSTM, or indeed any language model, should be 

better at repeating a more probable word sequence than a less 

probable one is to be expected. However, that it should be 

better at producing a sequence of three words when those 

words are part of a frequent four-word sequence than they are 

at repeating exactly the same words when they are part of a 

less frequent four-word sequence requires explanation. 

In a simple LSTM language model (with no conditioning 

on an input utterance) the production of each word is 

conditioned only on those of the words produced so far that 

the network's gating mechanism deems relevant to 

downstream prediction (based on its training). In an encoder-

decoder network, by contrast, each word is conditioned on 

this same information plus the representation of the input 

sentence which the decoder receives from the encoder and 

which is carried over at each step by the recurrent 

connections in the network. When producing the first three 

words of the sequences in our task, a simple LSTM would 

perform identically for high- and low-frequency four-word 

targets. Any difference between the two conditions must be 

due to the presence of the encoded sequence in the 

representation passed along via the recurrent network.   

A likely explanation for the pattern that we see, then, is that 

the encoder finds it easy to encode high-frequency phrases - 

via an embedding space of unchanging size - even with 

limited representational resources (relatively few nodes in the 

hidden layer). The representation of the low frequency 

phrases, however, cannot be done so efficiently and the 

resulting representation may end up being dominated by 

component words or substrings. A decoding process 

conditioned on the former (high-frequency) encoding is 

likely to correctly output the target, while one conditioned on 

the encoding of the low-frequency string may make lexical 

selection errors. These errors are no longer produced once 

more representational resources (additional hidden nodes) or 

more training are provided. 

 The process that leads to the errors in our model provides 

a potentially useful approximation to what happens in child 

sentence repetition. Working memory is assumed to involve 

the allocation of resource-limited attention to long-term 

memory representations (D'Esposito & Postle, 2015). This 

process is in some ways analogous to the encoding process - 

a hidden layer linked to an embedding space - as seen in our 

model. We have only modelled one experiment in this initial 

work - we anticipate that applying the model to a larger range 

of stimuli will offer further insight into the processes and 

representations involved in children's elicited imitation. 
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