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Abstract: Red-green color discrimination is compromised in anomalous trichromacy, the most
common inherited color vision deficiency. This computational analysis tested whether three
commercial optical filters with medium-to-long-wavelength stop bands increased information
about colored surfaces. The surfaces were sampled from 50 hyperspectral images of outdoor
scenes. At best, potential gains in the effective number of surfaces discriminable solely by color
reached 9% in protanomaly and 15% in deuteranomaly, much less than with normal trichromacy.
Gains were still less with lower scene illumination and more severe color vision deficiency.
Stop-band filters may offer little improvement in objective real-world color discrimination.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License.
Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Normal human color vision depends on the presence of three different light-sensitive pigments
in retinal cone photoreceptor cells [1]. These pigments, referred to as long-, medium-, and
short-wavelength-sensitive (L, M, and S), or just red, green, and blue, are characterized by their
wavelengths λmax of peak sensitivity. For L and M pigments, λmax varies somewhat across
individuals. The longest-wavelength L pigment has a λmax of about 559 nm, the shortest-
wavelength M pigment about 530 nm, and the S pigment about 426 nm [2–4]. The gap of almost
30 nm between the peaks of the L and M pigments underpins normal trichromatic vision.

Of the various inherited color vision deficiencies [5,6], anomalous trichromacy is the most
common, with a prevalence of about 6% in European males [7]. In protanomalous trichromacy,
the normal L pigment is replaced by a hybrid M pigment with λmax not more than about 536 nm,
and in deuteranomalous trichromacy, the normal M pigment is replaced by a hybrid L pigment
with λmax not less than about 549 nm. The exact values depend on which of several hybrid
pigments is expressed [4,8,9]. The S pigment lacks this variability [4].

Since red-green color discrimination depends on differences between signals from L and M
cones, the reduced spectral spacing of at most 6 nm in protanomaly and 10 nm in deuteranomaly
means that discrimination is impaired with some stimuli [10]. The degree of impairment is
related not only to genotype but also to pigment optical density [11].

It has long been thought that wearing optical filters with a notch or stop band in the medium-
to-long-wavelength region of the spectrum would help differentiate signals from normal and
hybrid cone pigments and so improve color discrimination performance. Overall, evidence for
their efficacy has been disappointing [12–16], though theoretical modeling [17] and long-term
adaptation experiments with a stop-band filter [18] have pointed to increases in perceived gamut
and contrast. Even so, it is important to distinguish between the perceptual benefits of these
filters and objective discriminatory performance.

The aim of this work was to test computationally whether stop-band filters increase the
information available about colored surfaces in a scene. Information is construed here in the sense
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of Shannon’s mutual information, usually measured in bits [19]. It has the advantage of dealing
with cone signal dependencies that are more general than linear ones and of providing a measure
that does not require a specific model of discriminatory performance [14,16] or dependence on a
specific perceptual color space as, e.g., proposed for dichromacy [20]. It also offers a theoretically
best possible limit, i.e., a least upper bound, on achievable performance gains [19,21].

As explained later, mutual information can be interpreted in the present context in terms of the
effective number of surfaces in a scene that can be discriminated from each other solely by their
color. These surfaces can refer to arbitrarily small surface elements in the scene or to extended
areas, since the analysis is indifferent to what physically defines surfaces and objects [22]. It was
assumed that illumination remained constant [23] and that cone signal processing was limited by
phototransduction noise [24,25].

Three commercial stop-band filters were tested, one from Vino Optics (https://www.vino.vi/)
and two from EnChroma (https://enchroma.com/). Estimates were made of the information
available to an individual with anomalous trichromacy viewing outdoor scenes with and without
one of the filters. The scenes were represented by 50 hyperspectral radiance images characteristic
of everyday outdoor environments. For protanomaly and deuteranomaly, the λmax of a hypothetical
hybrid pigment was varied systematically through the observed range [4], and then beyond, up to
the λmax of the normal pigment it replaced.

Outdoor scenes were chosen because their statistics are relevant to natural vision [26]. To
provide a reference level for performance with these scenes, information estimates were also
made with the approximately uniform color palettes of matt Munsell chips [27] and Natural
Colour System (NCS) standard color references [28].

Reliable gains in information with the stop-band filters were found to be small. In the best
conditions tested, the potential increase in the effective number of discriminable surfaces was 9%
in protanomaly and 15% in deuteranomaly, much less than with normal trichromacy.

2. Methods

2.1. Filters

The spectral filters tested were the Oxy-Iso Color Blindness Clip-on 1.5 mm Lens Blanks from
Vino Optics (“Vino” for short) and two filters from EnChroma Color Blind Glasses, Receptor
64-14-150 BLK 02 (“EnChroma R”) and Explorer MTSLV 03 (“EnChroma E”). The Vino filters
were made available in 2019 and the EnChroma filters in 2015. The spectral transmittance of each
filter was measured with a Shimadzu UV-3600i Plus UV-VIS-NIR spectrophotometer (Shimadzu
Scientific Instruments, Inc.) in the spectral range 400–720 nm with a spectral resolution of
0.1 nm. Measurements were carried out with 0/0 geometry. Variations of transmittance with
measuring position across the lenses were negligible. Figure 1 shows the recorded spectral
transmittances normalized to unity.

2.2. Scenes

Scene data were taken from a set of 50 hyperspectral images of outdoor scenes drawn from the
main land-cover classes, similar to those used previously [29]. Figure 2 shows rendered sRGB
color images of the scenes [30].

Details of the hyperspectral image acquisition and calibration are described in [32]. Each
image had dimensions approximately 1344× 1024 pixels, corresponding to a camera angle of
approximately 6.9°× 5.3°, and spectral range 400–720 nm sampled at 10-nm intervals. The
images were processed as effective spectral reflectance images [32]. A radiance image was
generated by taking the product of the reflectance image and a daylight illuminant spectrum with
correlated color temperature 6500 K [33] representing average daylight, assumed to be constant
throughout, cf. [23]. As in [31], reflectance images were downsampled by spatial averaging

https://www.vino.vi/
https://enchroma.com/
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Fig. 1. Spectral transmittances of three commercial stop-band filters: Vino Oxy-Iso,
EnChroma Receptor, and EnChroma Explorer. Transmittances normalized to unity.

over 4× 4 pixels to reduce non-imaging noise in the unaveraged source data and pixel-pixel
correlations with the 1.3-pixel line-spread function of the hyperspectral camera. To further reduce
noise, images were smoothed spectrally by averaging over adjacent wavelengths. The array size
of each processed image was approximately 336× 256× 33. For each scene, 104 points were
sampled randomly from the processed image, so that each point refers to a unique 4× 4-pixel
average.

Spectral reflectances of the reference NCS set were recorded in-house with a Konica Minolta
CM-2600d spectrophotometer. Spectral reflectances of the matt Munsell set were taken from
measurements by Parkkinen et al. [34]. Radiant spectra were again generated by taking the
product of each reflectance spectrum and a daylight illuminant spectrum with correlated color
temperature 6500 K. The illumination level was the same as with the outdoor scenes. The full
NCS and Munsell sets were used since each contains less than 104 surfaces.

2.3. Cone sensitivities and spectral shifts

At each point in the scene, the radiance spectrum was converted into estimated L, M, and S cone
excitations, based on the Stockman and Sharpe 2° cone pigment spectral sensitivities, lens, and
macular pigment data [3,35]. Details are given in [32]. Hybrid cone excitations were estimated
similarly. Thus spectrally shifted absorption spectra were derived from a quadratic loess fit
[36,37] to the normal L, M, and S absorption spectra on a radiance-versus-log-wavelength scale,
with optimal loess bandwidth determined by cross-validation [38].

The observed variation in the λmax of hybrid pigments is discrete [8]. For the analysis,
however, it was replaced by a hypothetical hybrid pigment whose λmax varied continuously. For
protanomaly it ranged from 530 nm to the observed maximum of 536 nm [4] and then up to 559
nm, and for deuteranomaly from 559 nm to the observed minimum of 549 [4] and then down to
530 nm. Optical density was kept constant [39,40].

2.4. Cone noise

Because of its importance, cone noise was modeled in several ways. The relationship of its
amplitude to the background or reference level can be described by a Weber-like function over a
wide range of light levels [41], though what constitutes the reference level depends on local scene
properties, which may be difficult to specify [42]. It was modeled initially as a Gaussian process
whose standard deviation (SD) at each point was specified relative to the cone excitation either
locally at that point or globally by the average over the scene, producing different degrees of
Weber-like behavior. For comparison with these local and global Gaussian processes, cone noise
was also modeled as a discrete Poisson process. Since the Poisson SD, σ say, coincides with
the square root of the mean µ, it cannot produce Weber-like behavior [41]. For computational
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Fig. 2. Color images of the 50 scenes used in the study. Each image is rendered as an sRGB
image [30] from a hyperspectral reflectance image with a daylight illuminant of correlated
color temperature 6500 K. Adapted from [31].
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purposes, therefore, the value of µ at each point was defined by uniformly scaling L, M, and S
cone excitations so that the median over the scene of the quotients σ/µ= µ−1/2 coincided with the
specified relative SD.

Variation of the relative SD across L, M, and S cone was guided by Stiles’ psychophysical
increment threshold measurements [43], which delivered Weber fractions of 1.8%, 1.9%, and
8.7%, respectively [44], with the larger value for S cones reflecting their functional differences
[45]. For brevity, representative values of the relative SD are given just for L cones, with values
for M and S cones scaled up appropriately (although the scaling for M cones is negligible). For
example, a representative relative SD of 2% was implemented as 2.0%, 2.1%, and 9.7% for L, M,
and S cones, respectively.

Observers were not assumed to be necessarily adapted to the filters, which attenuate L and
M cone signals to about one third. Because of uncertainties about the amplitude of cone noise,
a range of relative SDs of 1%, 2%, 5%, and 10% were tested. Relative SDs below 1% were
excluded for reasons set out later.

2.5. Mutual information

Under the assumption that points were drawn randomly from each scene, the spectral radiance at
each point, with and without spectral filters, was treated as a random variable, X say. Similarly,
the corresponding L, M, and S cone excitations, including cone noise, were treated as another
random variable, Y say. Further detail is available in [22,32]. The amount of information that Y
provides about X is given [19] by the mutual information, I (X; Y). It was estimated numerically
with an offset version [46] of the Kozachenko-Leonenko kth-nearest-neighbor estimator [47,48]
that gives improved convergence. As in [32], it is emphasized that estimates of I (X; Y) refer to
the underlying continuous spectral radiance distributions, not the discrete hyperspectral samples
taken from them.

The analysis exploited the following information-theoretic property. The inverse logarithm of
the mutual information I (X; Y) gives the approximate number of surfaces or parts of surfaces in
a scene that can be discriminated by their color, allowing for their different abundances or relative
frequencies [22,49], in other words, the effective number of discriminable surfaces [19,50].

The mutual information estimates between steady spectral radiances and cone excitations
obtained here should be distinguished from those between successive cone excitations in response
to fluctuating illumination [23].

3. Results

3.1. Information from outdoor scenes

Results are presented first for local Gaussian cone noise with a minimum representative relative
SD of 2%. As shown later, mean filter effects were broadly similar with global Gaussian noise,
and, after excluding surfaces with low reflectance, also with Poisson noise.

Figure 3 shows estimates of mutual information averaged over the 50 scenes plotted against the
wavelength of maximum sensitivity λmax of a hypothetical hybrid pigment undergoing continuous
spectral shifts in protanomaly (left panel) and deuteranomaly (right panel). Data are shown with
and without the three filters. Since mutual information is measured in bits, a change from, say, 4.8
to 5.8 bits constitutes a factor of 2 on a linear scale. The light-gray regions indicate the observed
ranges of λmax in protanomaly, i.e. 530 nm to 536 nm, and in deuteranomaly, i.e. 549 nm to 559
nm [4]. The mid-gray regions indicate variations in λmax that extend beyond the observed ranges.

Within the observed λmax ranges, there are evident increases in estimated mutual information
with the EnChroma R and E filters, but not with the Vino filter. Beyond the observed ranges,
there are increases with all three filters. In the limit, where λmax reaches 559 nm in protanomaly
and 530 nm in deuteranomaly, there are also increases for normal trichromats, which set a
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Fig. 3. Information about colored surfaces available to an observer with anomalous
trichromacy viewing outdoor scenes with and without a stop-band filter. Estimates of
mutual information [19] averaged over 50 hyperspectral images are plotted against the
wavelength of peak sensitivity λmax of a spectrally shifted hypothetical hybrid pigment, with
light-gray regions indicating the observed ranges of λmax [4]. In protanomaly, the normal L
pigment is replaced by a hybrid M pigment with a λmax of not more than about 536 nm; in
deuteranomaly, the normal M pigment is replaced by a hybrid L pigment with a λmax of
not less than about 549 nm [2,4,8]. The mid-gray regions indicate variations in λmax that
extend beyond the observed ranges. Data are for local Gaussian cone noise with minimum
representative relative SD 2%.

ceiling on what improvements are available to observers with reduced spectral spacing between
medium-to-long-wavelength pigments.

Numerically, the estimated gains in mutual information with the EnChroma R and E filters were,
respectively, 0.14 bits and 0.12 bits in protanomaly and 0.20 bits and 0.18 bits in deuteranomaly,
each with the maximum observed spectral shift of the hybrid pigment. For comparison, the
estimated gain in trichromacy over protanomaly was 0.49 bits and over deuteranomaly 0.34 bits.

Are these gains statistically reliable? Most of the variance in mutual information estimates
at each λmax comes from the different compositions of the outdoor scenes rather than from
differences in the filters. Each filter’s effect is revealed more clearly by taking the difference
in estimates with and without the filter for each scene and then averaging over scenes. The
inverse logarithm of the average gives the estimated gain in the effective number of discriminable
surfaces (Section 2.5). Since this number may give a better intuition of the effect of the filters,
subsequent data are given as inverse logarithms. In what follows, the hybrid pigment λmax was
assumed again to be 536 nm in protanomaly and 549 nm in deuteranomaly.

Table 1, first three data columns, shows average estimated gains in the effective number of
discriminable surfaces with 95% confidence limits in parentheses. These limits reflect both
variations in cone excitations over scenes and the representative level of cone noise. Gains greater
than unity signify better performance, less than unity worse performance.

Table 1, fourth data column, shows the average gains with normal trichromatic pigments in
place of the corresponding hybrid pigment with no filter. These gains quantify the advantage of
normal trichromacy over anomalous trichromacy.
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Table 1. Average gains in effective number of discriminable surfaces in 50 outdoor scenes viewed
with filters or normal pigmentsa

Vino EnChroma R EnChroma E Normal pigments

Protanomaly 0.94 (0.89, 1.00) 1.09 (1.06, 1.15) 1.08 (1.05, 1.13) 1.42 (1.36, 1.51)

Deuteranomaly 1.01 (0.95, 1.05) 1.15 (1.11, 1.21) 1.13 (1.10, 1.19) 1.27 (1.24, 1.33)

aEntries in the first three data columns are the proportional increases in the effective number of discriminable surfaces
viewed with and without stop-band filters Vino, EnChroma R, EnChroma E. The normal and hybrid cone pigments were
assumed to have λmax of 530 and 536 nm in protanomaly and λmax of 559 and 549 nm in deuteranomaly [4]. Entries in
the fourth data column are the proportional increases with normal L and M pigments in place of the hybrid pigments,
i.e, with λmax 530 and 559 nm. Gains greater than unity signify improved discrimination. Estimated 95% confidence
limits in parentheses are based on Efron’s BCa bootstrap method with 1000 bootstrap replications [51]. The relative
standard deviation of Gaussian noise of 2% was defined with respect to the cone excitation at each image point. All
entries rounded to 2 decimal digits.

There were no reliable gains with the Vino filter, but there were potentially reliable gains with
the EnChroma R and E filters: in protanomaly 9% and 8%, respectively, and in deuteranomaly
15% and 13%, respectively, which fell to 8% and 7%, respectively, with closer hybrid and normal
pigment λmax (not shown). For comparison, normal trichromacy provided reliable gains of 42%
over protanomaly and 27% over deuteranomaly.

These estimated gains do, however, depend on the amplitude of representative cone noise and
the particular spectral distributions of surfaces in outdoor scenes.

3.2. Information from approximately uniform color palettes

Are filter gains different with distributions of surface colors that are colorimetrically more
uniform? Table 2 shows average estimated gains in the effective number of discriminable Munsell
surfaces with 95% confidence limits in parentheses. Table 3 shows corresponding gains for
NCS surfaces. Since there was only one instance of the Munsell palette and of the NCS palette,
confidence limits reflect only cone noise.

Table 2. Gains in effective number of discriminable Munsell surfaces viewed with filters or normal
pigmentsa

Vino EnChroma R EnChroma E Normal pigments

Protanomaly 1.38 (1.36, 1.40) 1.39 (1.37, 1.41) 1.33 (1.31, 1.34) 2.38 (2.34, 2.42)

Deuteranomaly 2.03 (2.00, 2.07) 1.27 (1.25, 1.29) 1.22 (1.20, 1.25) 1.97 (1.94, 2.00)

aDetails as for Table 1.

Table 3. Gains in effective number of discriminable NCS surfaces viewed with filters or normal
pigmentsa

Vino EnChroma R EnChroma E Normal pigments

Protanomaly 1.08 (1.06, 1.09) 1.11 (1.09, 1.12) 1.09 (1.08, 1.10) 2.93 (2.90, 2.96)

Deuteranomly 1.10 (1.09, 1.11) 1.27 (1.25, 1.28) 1.25 (1.24, 1.26) 2.00 (1.98, 2.02)

aDetails as for Table 1.

All three filters gave potentially reliable gains with these palettes. The average estimated
gain with Munsell surfaces was about 44% and with NCS surfaces about 15%. But the normal
trichromatic advantage was also greater with these palettes than with outdoor scenes. Thus when
filter gains were expressed relative to the normal trichromatic advantage, they were greater with
outdoor scenes than with the palettes. This finding adds to others suggesting that in outdoor
environments observers with red-green color deficiency are less disadvantaged than expected
from traditional laboratory color vision tests [52–56].
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Why should outdoor scenes offer improved performance? The distributions of natural colors
have been considered elsewhere [57–60]. Any bias they exhibit towards the normal trichromatic
yellow-blue axis could reduce the disadvantages of anomalous trichromacy.

3.3. Cone noise amplitude

How does the amplitude of cone noise affect filter gains? The analysis summarized in Table 1 was
repeated with relative SDs of 1%, 5%, and 10%. Results are summarized in Table 4, Appendix A.
There were no reliable gains with the Vino filter but there were with the EnChroma R and
E filters, for all relative SDs. The gains increased as noise amplitude decreased, though the
normal trichromatic advantage also increased, and more rapidly, most noticeably at the smallest
amplitude. In the absence of a principled cost function, a relative SD of 2% was taken as near
optimum.

3.4. Cone noise distribution

To test the influence of the model noise distribution on filter gains, the analysis summarized in
Table 1 was repeated with global Gaussian noise and with Poisson noise. Results are summarized
in Tables 5 and 6 in Appendix B for noise with a representative relative SD of 2%.

With global Gaussian noise, there were no reliable gains with the Vino filter, but there were
with the EnChroma R and E filters, albeit smaller than with local Gaussian noise. For Poisson
noise, none of the filters gave reliable gains, except potentially the Vino filter in deuteranomaly.

A possible explanation, apart from the discreteness of Poisson processes, is that both the
global Gaussian and Poisson processes produce greater variation at low mean levels than the
corresponding local Gaussian process (Section 2.4). If low-reflectance surfaces are therefore
excluded, performance should improve. The analysis was repeated with points omitted if their
spectral reflectances were less than 10% over wavelengths 420–700 nm [31]. The revised gains
without low-reflectance surfaces are shown in Table 7. There were potentially reliable gains with
the Vino filter in deuteranomaly and with both the EnChroma R and E filters in protanomaly and
deuteranomaly.

4. Discussion

For individuals with anomalous trichromacy, the three chosen commercial stop-band filters
appeared to give small or no increases in information about colored surfaces in outdoor scenes.
Translated into changes in the effective number of discriminable surfaces, potentially reliable
gains with the EnChroma R and E filters, under near optimum conditions, were about 9% in
protanomaly and 15% in deuteranomaly. These gains were, though, much less than the gains
provided by normal trichromacy of 42% and 27%, respectively. Under the same conditions, the
Vino filter gave no reliable gains in either protanomaly or deuteranomaly.

A critical assumption in this analysis was that noise arising in the cone photoreceptors limited
color discrimination. Indeed, cone noise may produce most of the noise recorded in individual
ganglion cells [24]. Nevertheless, could post-receptor processes for optimizing the mapping of the
input contrast range to a neural response range compensate in some manner? Evidence for such
a compensatory post-receptor amplification in anomalous trichromacy has been reported both
psychophysically [61–63] and in fMRI [64]. In fact, by virtue of the so-called data-processing
inequality [19], no post-receptor recoding can increase the information about scene surfaces,
although there can be benefits in the way colors are perceived and judged [18,61] in the presence
of multiple sources of noise [41]. As noted in [65], if recoding could compensate for cone noise,
then observers with anomalous trichromacy would show normal spectral discriminations.

There are several limitations to this study. The three filters had spectral transmittance profiles
with relatively broad notches in the medium-to-long wavelength region of the spectrum (Fig. 1),
but other filters with sharper notches or other tailoring [17] might better separate the normal
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and hybrid pigment signals. Assumptions about cone noise amplitudes are also important.
Departures from optimum values, e.g., at lower light levels, are likely to reduce potential filter
gains. Likewise with more severe color vision deficiencies. More generally, procedural factors
to do with how observers make surface discriminations were ignored in the analysis [23], in
particular, the roles of object salience [66] and observer attention [67] and memory [68,69]. It
is not immediately obvious whether their inclusion would improve or worsen potential gains.
Finally, only real reflecting surfaces under natural illumination were considered. For any scene
viewed on an RGB electronic display, the typically narrower bandwidths of the RGB primaries
should give even smaller effects.

Of course, there may be other reasons for individuals with anomalous trichromacy to choose
these filters. Users may be concerned less with objectively distinguishing colored surfaces and
more with how these filters make the world appear more colorful, especially if they lead to
longer-term increases in color awareness [18].

Still, for objective real-world color discriminations, stop-band filters seem to offer, at best,
small gains in performance. Whether they are materially useful to an observer with anomalous
trichromacy can only be established experimentally, either in the laboratory [56] or actively,
outdoors.

Appendix A: Effect of cone noise amplitude

Table 4 shows average gains in the effective number of discriminable surfaces for local Gaussian
cone noise with relative standard deviations SD of 1%, 2%, 5%, and 10%. Data for 2% are from
Table 1 and are included for ease of comparison. The first three data columns are for stop-band
filters and the fourth data column is for normal trichromatic pigments (95% confidence limits in
parentheses).

Table 4. Average gains in effective number of discriminable surfaces in 50 outdoor scenes viewed
with filters or normal pigments in presence of local Gaussian cone noisea

Noise SD Vino EnChroma R EnChroma E Normal pigment

Protanomaly 1% 0.97 (0.92, 1.04) 1.14 (1.10, 1.19) 1.11 (1.08, 1.16) 1.82 (1.71, 1.93)

2% 0.94 (0.89, 1.00) 1.09 (1.06, 1.15) 1.08 (1.05, 1.13) 1.42 (1.36, 1.51)

5% 0.96 (0.90, 1.01) 1.06 (1.03, 1.11) 1.05 (1.03, 1.09) 1.16 (1.13, 1.22)

10% 0.97 (0.91, 1.01) 1.04 (1.01, 1.09) 1.03 (1.01, 1.07) 1.07 (1.05, 1.12)

Deuteranomaly 1% 1.04 (0.99, 1.09) 1.25 (1.20, 1.31) 1.22 (1.18, 1.27) 1.50 (1.43, 1.56)

2% 1.01 (0.95, 1.05) 1.15 (1.11, 1.21) 1.13 (1.10, 1.19) 1.27 (1.24, 1.33)

5% 0.98 (0.93, 1.02) 1.07 (1.04, 1.13) 1.07 (1.04, 1.12) 1.11 (1.08, 1.14)

10% 0.98 (0.92, 1.02) 1.04 (1.02, 1.10) 1.04 (1.02, 1.09) 1.04 (1.03, 1.07)

aOther details as for Table 1.

Appendix B: Effect of cone noise distribution

Table 5 shows average gains in the effective number of discriminable surfaces for global Gaussian
cone noise. The first three data columns are for stop-band filters and the fourth data column is
for normal trichromatic pigments (95% confidence limits in parentheses). Table 6 shows the
corresponding average gains for Poisson cone noise and Table 7 for Poisson cone noise but with
low-reflectance surfaces excluded.
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Table 5. Average gains in effective number of discriminable surfaces in 50 outdoor scenes viewed
with filters or normal pigments in presence of global Gaussian cone noisea

Noise SD Vino EnChroma R EnChroma E Normal pigment

Protanomaly 2% 0.95 (0.93, 0.97) 1.06 (1.04, 1.09) 1.05 (1.03, 1.07) 1.30 (1.26, 1.36)

Deuteranomaly 2% 1.02 (1.00, 1.04) 1.08 (1.06, 1.10) 1.07 (1.05, 1.09) 1.19 (1.16, 1.23)

aOther details as for Table 1.

Table 6. Average gains in effective number of discriminable surfaces in 50 outdoor scenes viewed
with filters or normal pigments in presence of Poisson cone noisea

Noise SD Vino EnChroma R EnChroma E Normal pigment

Protanomaly 2% 0.98 (0.94, 1.07) 1.01 (0.95, 1.05) 1.01 (0.96, 1.05) 1.37 (1.32, 1.44)

Deuteranomaly 2% 1.09 (1.04, 1.21) 1.05 (0.99, 1.09) 1.05 (0.99, 1.09) 1.22 (1.18, 1.25)

aOther details as for Table 1.

Table 7. Average gains in effective number of discriminable surfaces in 50 outdoor scenes viewed
with filters or normal pigments in presence of Poisson cone noise, excluding low surface

reflectancesa

Noise SD Vino EnChroma R EnChroma E Normal pigment

Protanomaly 2% 0.97 (0.94, 1.00) 1.05 (1.02, 1.09) 1.04 (1.02, 1.07) 1.33 (1.28, 1.39)

Deuteranomaly 2% 1.07 (1.04, 1.10) 1.08 (1.06, 1.11) 1.08 (1.06, 1.10) 1.22 (1.18, 1.26)

aOther details as for Table 1.
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