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Abstract 

Risk assessment relying on characteristics of chemicals in process industries can prevent 

accidents caused by flammable and combustible liquids and gases. Whereas its application is 

limited by the lack of safety-related properties for abundant chemicals of interest, which 

promotes the demand for accurate predictive models to evaluate inherent safety implications 

of chemicals. In this research, staking-based ensemble learning is comprehensively 

investigated on safety-related properties to assist the risk assessment. Based on molecular 

structure-based features, individual and ensemble models are built and compared using 

heterogeneous machine learning (ML) methods. The systematic ensemble learning workflow 

is deployed by a case on flash points of chemical substances. Several representative ML 

methods including multiple linear regression, extreme learning machine, feedforward neural 

network, and support vector machine are taken into consideration. As it turns out, ensemble 

models exhibit improved predictive accuracy than standard individual ML models, indicating 

the effectiveness of ensemble learning on improving model performance. Moreover, extremal 
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evaluations with existing models as well as internal analyses against functional group-based 

organic compound families and structural feature-based data-driven categories are carried out 

to identify model reliability. Ensemble learning is demonstrated as an effective approach for 

high-performance predictive modeling in safety-related risk assessments. 

Keywords: machine learning; predictive modeling; molecular feature; flash point 

 

1 Introduction 

Safety-related properties of organic compounds play a crucial role and have an extensive 

application in chemical and environmental engineering1. Flash point, auto-ignition temperature, 

flammability limits, and other properties are essential in performing risk assessments. Although 

experimental measurements are fairly accurate and reliable, they are expensive, time-

consuming, and sometimes dangerous. Therefore, computer-aided property prediction is 

recognized as an alternative solution to handle these problems, and from the perspective of 

process safety and risk management, it accelerates computer-aided product design for the safe 

operation of industrial processes. 

Over the past decades, a wide variety of advanced computational approaches, such as 

group contribution (GC) methods2,3 and traditional machine learning (ML) algorithms4-6 have 

been put forward and broadly applied to develop predictive models to accurately calculate 

properties of chemical substances. Most recently, cutting-edge deep learning techniques7-9 also 

have been creatively and successfully implemented with the same objectives. Accurate 

predictive models drive the computer-aided molecular and product design toward high 

efficiency10-12, which are important to accelerate marketing by focusing on the best candidates 

at the earliest research and development stage13-15. 

Linear regression is one of the most rudimentary and explainable approaches in 

mathematical modeling, characterized by simple structure and quick calculation16. The 

traditional GC methods, especially the popular three-level GC methods17, were utilized for 

property predictive modeling18-20 by coupling multiple linear regression (MLR). Differing from 
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the MLR, a feedforward neural network (FNN) can handle complicated tasks by introducing 

non-linear transformations. Thus, FNN models usually make more accurate and reliable 

predictions. Attributed to its advantages in data mining, the FNN has been extensively deployed 

in property prediction using different molecular descriptors21-25. Extreme learning machine 

(ELM) is a simplified form of FNN with a part of parameters are randomly predefined. 

Therefore, ELM has fewer learnable parameters and it is trained much faster than FNN26. 

Another popular ML algorithm, support vector machine (SVM) can efficiently perform 

complex non-linear tasks (particularly for high dimensional inputs) by introducing different 

kernel functions27. The SVM modeling presents excellent performance for its convex 

optimization, and it is therefore considered promising in property prediction28,29. 

Significantly increased computational power allows researchers to implement large-scale 

predictive models within a reasonable time. In the context of desiring higher-level requirements 

(mostly regarding model accuracy) on prediction tasks, a large number of innovative 

algorithms are proposed targeting the most challenging and popular applications, which have 

large-scale architectures and require huge computational resources. Developing advanced 

algorithms needs knowledge and experience from computer science, and thus it is pretty 

challenging and impractical for ML practitioners instead of ML experts and developers. 

Ensemble learning is dedicated to predictive modeling by integrating simple ML models 

to achieve better performance and higher computational efficiency. It circumvents complex 

advanced ML models30-32, and it is thereby more friendly to ML practitioners. For instance, 

random forest aggregates result from numerous decision trees to comprehensively make final 

predictions. As a bagging algorithm, random subsets of samples, as well as features, are used 

to train individual trees (i.e., homogeneous learners), requiring numerous trees to fully take all 

samples and features into account. In comparison, the stacking-based ensemble method is 

different. It develops several independent models in parallel using different approaches (i.e., 

heterogeneous learners), and on this basis, a meta-model is trained to implement the ensemble 

for final predictions. In contrast with the bagging method, the stacking method uses all features 

and samples for model development, and thus fewer models and computational effort are 
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required for ensemble learning, as presented in some recent works about toxicity and 

carcinogenicity research33,34. 

To efficiently build models using staking-based ensemble learning, utilizing computational 

resources reasonably for model improvements could be of great importance for ML 

practitioners to obtain desired models straightforwardly. In addition, discovering 

characteristics of favorable models in ensemble learning can also accelerate the implementation 

of ensembles. Therefore, in this work, staking ensembles are comprehensively investigated and 

compared using representative heterogeneous ML algorithms including MLR, ELM, FNN, and 

SVM. Individual models are trained based on independent ML methods, and on this basis, 

ensemble models are developed using an explainable weight-based linear combination. To gain 

insight into ensemble implementation, individual and ensemble models are compared 

elaborately to analyze the role of the independent ML model in staking ensembles via the 

deployment on the flash point case. In this way, key factors that influence ensemble 

performance are disclosed for the high-efficient implementation of ensemble learning in 

predictive modeling. Moreover, model evaluations and analyses are carried out externally with 

existing models and performed internally regarding functional-group-based organic compound 

families as well as structural-feature-based data-driven categories to exhibit model advantages. 

2 Predictive modeling methodology 

The stacking-based ensemble learning workflow is mainly deployed with five stages as 

illustrated in Figure 1, including the first three stages for data processing and the last two stages 

for model development. 

 Dataset construction: collect molecular structures and property data to form a dataset; 

 Data splitting: divide the dataset into subsets for model training, validation, and 

predictability evaluation; 

 Feature extraction: generate feature vectors to characterize molecular structures; 

 Individual modeling: develop individual models using heterogeneous ML algorithms; 

 Ensemble modeling: develop ensemble models by integrating individual models. 
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Figure 1. The workflow for implementing model development and ensemble. 

2.1 Dataset construction 

Molecular structural information and experimental targets are key components for 

predictive modeling. A language-like description, SMILES (Simplified Molecular Input Line 

Entry Specification) string can conveniently express molecular two- and three-dimensional 

structural characteristics by utilizing cheminformatics tools, and it is thus employed to 

characterize molecular structures. Experimental data should be collected from databases or 

literature to guarantee the reasonability of predictive models. As the flash point is employed as 

a case study for the deployment of ensemble-based predictive modeling, experimental flash 

point values (reported in the unit of K) and SMILES strings of organic compounds are gathered 

from the DIPPR 801 database35 and PubChem36. Inorganic compounds (e.g., carbon monoxide, 

diborane, hydrogen sulfide) and metal-organic compounds (i.e., the organic compounds 

containing metal atoms such as sodium, mercury, or/and aluminum) are excluded from the 

gathered dataset. Therefore, the flash point dataset consisting of 1732 organic compounds 

covers various molecular structures including aliphatic and aromatic hydrocarbons, alcohols 

and phenols, heterocyclic compounds, amines, acids, ketones, esters, aldehydes, ethers, and 

organic halogen compounds, which indicates its chemical diversity for model development. 

The analysis for families of organic compounds is presented in Table 1, and the distribution of 

experimental values is provided in Figure S1. 
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Table 1. Detailed analysis for families of organic compounds in the employed dataset. 

Family Whole dataset 

Aliphatic and aromatic hydrocarbons 465 

Alcohols and phenols 177 

Heterocyclic compounds 75 

Amines 146 

Carboxylic acids 94 

Ketones 45 

Esters 213 

Aldehydes 38 

Ethers 30 

Organic halogen compounds 155 

Others 294 

Total 1732 

2.2 Data splitting 

Before training ML-based predictive models, the dataset needs to be divided into two 

disjoint subsets: a training set for model configuration and optimization, and a test set for 

evaluating the external predictive performance of the developed model, respectively 

accounting for 80% and 20% of the dataset. Parameters in ML models (e.g., weights and biases 

of neurons in FNN) can be learned from the training data, whereas the hyper-parameters should 

be customized by optimization. 

Cross-validation is a model validation technique for assessing how well a model 

generalizes to new data. In k-fold cross-validation, the training set is equally partitioned into k 

subsets and the training routine is carried out k times. During each training process, one out of 

k subsets is assigned for model validation and the remaining k-1 subsets are used for model 

development. Therefore, each subset is used for model development k-1 times and model 

validation once. Finally, the performance of model configuration is evaluated with k 

independent validation sets in the k-fold cross-validation. In this way, limited data are fully 

devoted to discover a more robust model configuration for subsequent predictive modeling. 
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Herein, k is set to five, and as such, the five-fold cross-validation (as illustrated in Figure2) is 

employed. Hyper-parameters of ML models are determined by the grid search method. 

 

Figure 2. Schematic diagram of data splitting in the ML-based model development. 

2.3 Feature extraction 

To enable the ML model to read molecular structure, informative molecular features should 

be extracted in the form of numerical vector with a fixed length serving as input variables. For 

this, a novel feature extraction strategy is employed to automatically recognize molecular 

structures and extract molecular features in this research, which has been proven promising in 

generating molecular structure related descriptors for predictive modeling37. Each molecular 

feature represent a molecular substructure that only contains single non-hydrogen atom 

(accompanied with its connected hydrogen atoms and chemical bonds). Additionally, chemical 

information (i.e., the type and formal charge of the non-hydrogen atom, number of hydrogen 

atoms, types of bonds between substructures and stereo-centers) is fully considered in 

molecular features. For a specific molecule, occurrences of these extracted molecular features 

form a fixed-length numerical vector to characterize this molecule in ML models. The feature 

extraction and vector generation are simply exemplified in Figure S2. 

Molecular structure represented with the SMILES strings are provided to perform the 

feature extraction. Relying on feature vectors, molecular structures are processed by ML 

algorithms, finally generating predicted values. Therefore, the feature extraction process is 

integrated with ML algorithm to achieve predictive modeling, illustrated in Figure 3 using the 
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FNN framework as a ML instance. 

 

Figure 3. Integration of feature extraction process and ML algorithm for predictive modeling. 

2.4 Individual modeling 

Individual predictive models are developed using popular heterogeneous ML algorithms 

including MLR, ELM, FNN, and SVM. MLR is the simplest algorithm to model the linear 

relationship and it can easily achieve generality and interpretability, although it has a limitation 

on capturing the complex relationship. As indicated in Formula (1), MLR algorithm fits the 

target value relying on independent variables. Parameters in the multiple linear model are 

optimized by minimizing the objective function (i.e., sum of squares of residuals presented in 

Formula (2)) of all samples used for regression. 

 𝑓(𝑥) = ∑ (𝛽𝑖𝑥𝑖)
𝑛
𝑖=1 + 𝛽0 (1) 

 𝑚𝑖𝑛∑ (𝑓(𝑥𝑗) − 𝑦𝑗)
2𝑛

𝑗=1  (2) 

where β0 is the constant term; βi is the weight for each independent variable xi; x is the 

multivariate matrix; n is the number of variables; y and f (x) are the experimental and predicted 

values, respectively; N is the number of samples. 

In comparison, FNN is the most widely used method in modeling complex relationship by 

introducing non-linear transformations. In the FNN architecture, input information is 

transferred from the first layer to the last layer passing through neurons and connections, and 

the mathematical transformation in neurons is illustrated with Formula (3). As indicated in 

Formulas (4)-(7), back-propagation (BP) and Adam38 algorithms are employed to update 
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parameter θ and train the ML model via minimizing the objective function presented in 

Formula (8). Momentum, which accumulates the past gradients to determine the optimization 

direction, is taken into consideration in the Adam optimizer to update parameters, trying to 

escape the local minimum. 

 𝑓(𝒙) = 𝐹(∑ (𝑤𝑖𝑥𝑖
𝑛
𝑖=1 ) + 𝑏) (3) 

 𝑣𝑡 = 𝛽1𝑣𝑡−1 − (1 − 𝛽1)𝑔𝑡 (4) 

 𝑠𝑡 = 𝛽2𝑠𝑡−1 − (1 − 𝛽2)𝑔𝑡
2 (5) 

 ∆𝜃𝑡 = −
𝑣𝑡

√𝑠𝑡+𝜀
′

𝑔𝑡 (6) 

 𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡 (7) 

 √
∑ (𝑓(𝑥𝑖)−𝑦𝑖)

2𝑁
𝑖=1

𝑁
 (8) 

where w and b are the weight and bias of neuron; gt, vt, and st are gradient, exponential average 

of gradients and exponential average of squares of gradients at time t; β1, β2 and ε' are 

parameters in Adam algorithm, and they are 0.9, 0.999 and 1.00×10-8; η is the learning rate, 

and it is 2.00×10-3; F is activation function (explained below). 

The FNN model is constructed with two hidden layers in this work, and activation 

functions sigmoid and softplus, represented with Formulas (9) and (10), are assigned to hidden 

layers aiming at introducing non-linear transformation into neurons to enhance the ability of 

the FNN model in data fitting. 

 𝐹(𝑥) =
1

1+𝑒−𝑥
 (9) 

 𝐹(𝑥) = 𝑙𝑛⁡(1 + 𝑒𝑥) (10) 

ELM has a similar structure to the FNN, while part of its parameters is assigned randomly 

before training. Thus, comparing to FNN, ELM is less accurate but it offers advantages in 

efficiency and generalization. Due to its less learnable parameters, the ELM model is thereby 

trained much faster than traditional FNN models. Activation function sigmoid is employed for 

the hidden layer of the ELM model, as presented in Formula (9). 

In addition, SVM is also a popular method that is especially preferred to high-dimensional 

data, and it can efficiently handle non-linear data using the kernel trick. Another individual 
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model is developed with the SVM algorithm as indicated in Formula (11), and hyperplanes are 

created to fit data points. In order to improve SVM models in handling complex regression 

tasks, the Gaussian radial basis function, as presented in Formula (12), is employed as the 

kernel method. The SVM model is optimized via minimizing the objective function, Formula 

(13), ensuring that all data points are as close to the created hyperplanes as possible. 

 𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐺(𝑥𝑖, 𝑥) + 𝑎𝑛

𝑖=1  (11) 

 𝐺(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝⁡(−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) (12) 

 𝐿(𝛼) =
1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐺(𝑥𝑖, 𝑥𝑗)

𝑛
𝑗=1 + 𝜀 ∑ (𝛼𝑖 + 𝛼𝑖

∗)𝑛
𝑖=1 +∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗𝑛
𝑖=1 )𝑛

𝑖=1  (13) 

Formula (13) is subjected to: ∑ (𝛼𝑖 − 𝛼𝑖
∗) = 0𝑛

𝑖=1   

 ∀i: 0 ≤ 𝛼𝑖 ≤ 𝐶  

 ∀𝑖: 0 ≤ 𝛼𝑖
∗ ≤ 𝐶  

where α and α* are Lagrange multipliers; a is the distance term; G(xi,xj) represents the kernel 

function; γ is the coefficient in Gaussian radial basis function; ε is the tolerance (i.e., acceptable 

error margin); C is the regularization coefficient. 

2.5 Ensemble modeling 

The identical training set in individual modeling is used for the subsequent ensemble 

learning. For this, a linear weight-based combination is applied to individual ML models for 

ensemble purposes. In the ensemble model, each individual predictor holds weight as indicated 

in Formula (14). 

 𝑓(𝑧) = ∑ (𝑘𝑖𝑧𝑖) + 𝑐𝑁
𝑛=1  (14) 

where ki is the weight of individual predictor; zi is the predicted value from the individual 

predictor; c is the error term. Ensemble models are optimized by minimizing the sum of squares 

of residuals between ensemble results and target values. 

3 Results and discussion 

3.1 Development of individual models 

In terms of theMLR model, its model structure is specified by the independent variables 

(i.e., molecular features summarized in Table S1). Therefore, weights of variables and the error 
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term in the linear model are determined by minimizing the sum of squares of residuals to 

achieve better predictive accuracy. Thus, the MLR model can be obtained by fitting on the 

training set. Weights of molecular features and the error term of the MLR model are provided 

in Table S3. Regarding the ELM model, hyper-parameters (i.e., number of units in the hidden 

layer and mixing coefficient of activation) are optimized with the five-fold cross-validation. As 

shown in Figure S3, the optimal ELM configuration has 270 units and a mixing coefficient of 

0.81, which is employed for the subsequent model development. 

Concerning the FNN model, parameters including weights and biases are learned from the 

training data and updated using the Adam optimizer, which presents advantages in 

computational efficiency. To construct an FNN model with strong robustness, five-fold cross-

validation is used to optimize the FNN structure (i.e., numbers of neurons in the hidden layers). 

In the five-fold cross-validation, the model structure showing the lowest average loss is 

recognized as the optimal one for subsequent modeling. As shown in Figure 4, the FNN 

structure consisting of 11 and 6 neurons in two hidden layers exhibits the lowest RMSE value, 

and it is therefore used for the construction of the FNN model. 

 

Figure 4. Cross-validation-based optimization for hyper-parameters (numbers of neurons in two hidden 

layers, n1 and n2) of the FNN model using the grid search. 

The predictive performance of SVM models depends heavily on their hyper-parameters. 

Therefore, important hyper-parameters (i.e., regularization parameter C and tolerance ε) in the 
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SVM algorithm should be carefully chosen to improve the model performance. Thus, five-fold 

cross-validation is used to seek the appropriate combination of these parameters. As it turns 

out, in the case of that C and ε equal to 2340 and 5, the SVM model presents the lowest RMSE 

value (see Figure S4). Therefore, these optimal hyper-parameters are used for developing the 

SVM model. 

At this point, optimal model structures have been obtained, and on this basis, individual 

predictive models are determined with the training set using the MLR, ELM, FNN, and SVM 

algorithms. Model parameters of four predictive models are summarized in Tables S3-S6. The 

test set is employed as a new dataset to validate the external performance of the developed 

predictive models. Therefore, statistical metrics including root mean square error (RMSE) and 

determination coefficient (R2) are calculated to quantitatively evaluate these models as 

summarized in Table 2. 

Table 2. Statistical metrics of MLR, ELM, FNN, and SVM models on the test set. 

Model N RMSE (K) R2 

MLR model 346 32.7255 0.8118 

ELM model 346 20.5099 0.9261 

FNN model 346 17.0513 0.9489 

SVM model 346 15.9377 0.9554 

Note: N is the number of data points; lower RMSE and higher R2 are preferred. 

It should be noted that model development and evaluation are carried out on identical 

training and test data to guarantee fair comparisons. Evaluated by the test set, the SVM model 

presents good predictive accuracy with an R2 of 0.9554, which shows better performance than 

other models (i.e., the FNN model, followed by ELM and MLR models). Moreover, their 

predictive performance is visualized with the parity plots as shown in Figure 5. As it can be 

seen, there are a couple of data points present huge prediction deviations for the MLR model, 

which is caused by its simple linear structure and limited ability in handling modeling tasks. 

Despite that MLR, ELM, and FNN models exhibit relatively inaccurate predictions in this case, 

they learned underlying relationships between molecular structures and properties. Therefore, 
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they are also able to play a role in collaborative forecasting with less significant contributions, 

which is discussed in Section 3.2 by performing ensemble learning on these individual models. 

 

Figure 5. Parity plots for flash point predictions on the test set: (a) MLR model; (b) ELM model; (c) FNN 

model; (d) SVM model. 

3.2 Development of ensemble models 

To develop ensemble models, the most straightforward linear method is used to determined 

weights of individual heterogeneous models, which can display and analyze the contribution 

of each model. Relying on the MLR, ELM, FNN, and SVM individual models, a total of 11 

ensemble models are developed in terms of different combinations (i.e., 6 two-predictor, 4 

three-predictor, and 1 four-predictor ensemble models). Likewise, ensemble models are 

optimized by minimizing the sum of squares of residuals to fix the weights of individual models. 

Statistical analyses are performed to quantify the predictive accuracy of ensemble models 
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on the test set, as summarized in Table 3. The four-predictor model shows a lower RMSE value 

and a higher R2 value, indicating its better predictive accuracy. In general, the four-predictor 

model is slightly better than the three-predictor models and is much better than the two-

predictor models. It seems that the predictive accuracy of the ensemble model can potentially 

be improved by enriching the diversity of heterogeneous learning algorithms. The improved 

accuracy indicates the effectiveness of ensemble learning in predictive modeling. 

Table 3. Statistical metrics of ensemble predictive models on the test set. 

Model type Model RMSE (K) R2 

Two-predictor 

MLR-ELM model 19.2828 0.9347 

MLR-FNN model 16.9795 0.9493 

ELM-FNN model 16.4765 0.9523 

MLR-SVM model 16.0198 0.9549 

ELM-SVM model 15.7641 0.9563 

FNN-SVM model 15.4381 0.9581 

Three-predictor 

MLR-ELM-FNN model 16.4389 0.9525 

MLR-ELM-SVM model 15.8653 0.9558 

MLR-FNN-SVM model 15.4684 0.9580 

ELM-FNN-SVM model 15.4194 0.9582 

Four-predictor MLR-ELM-FNN-SVM model 15.4463 0.9581 

It is noted that, for example, the MLR-ELM-FNN model (RMSE of 16.4389) performs 

worse than the FNN-SVM model (RMSE of 15.4381), although it integrates more learning 

algorithms. In this case, the SVM model (RMSE of 15.9377) is better than the FNN model 

17.0513). It is supposed that ensemble modeling is dominated by the best individual component. 

Thus, the FNN-SVM model shows better performance, since SVM controls ensemble 

modeling with its higher accuracy. To build better ensemble models, we should first focus on 

developing an excellent individual model, and then improve performance by integrating other 

learning algorithms. 

It can be seen from Table 3, the FNN-SVM model, ELM-FNN-SVM model, and MLR-

ELM-FNN-SVM model present similar predictive accuracy. Although more learning 
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algorithms are integrated into ELM-FNN-SVM and MLR-ELM-FNN-SVM models, they did 

not present significantly better results than the FNN-SVM model, which is caused by the 

limited predictive ability of MLR and ELM models, deteriorating ensemble performance. In 

addition, the development of the FNN-SVM model is more efficient for less ensemble 

computational effort. Therefore, the ensemble model integrated FNN and SVM algorithms are 

the optimal choice for flash point predictions for its higher accuracy and computational 

efficiency. 

3.3 Evaluation among individual and ensemble models 

To make a comprehensive evaluation on the ensemble modeling, predictive performance 

is compared among 4 individual and 11 ensemble models. It is worth highlighting that all 

individual and ensemble models are developed on the same training set, and evaluated using 

the same test set. In Figure 6, RMSE values of these models are visualized along with 

components in each model. In the one-predictor part (i.e., individual predictive models), SVM 

model presents better accuracy as discussed in previous sections. Therefore, the SVM model 

is selected as the benchmark model for following evaluations. In ensemble cases, 6 out of 11 

models perform better than the SVM benchmark model, including 2 two-predictor, 3 three-

predictor, and 1 four-predictor models. It can be seen from Figure 6, all these six models 

integrated the SVM model in ensemble processes. Attributed to the participation of SVM model, 

all six ensemble models display higher predictive accuracy. However, with one exception, the 

8th model (MLR-SVM model) in Figure 6 also integrates the SVM model, which is expected 

to be better than the benchmark. However, it shows slightly worse prediction results, which is 

assumed to be affected by the large predictive errors provided by the MLR model. Therefore, 

it could be better to get rid of such model with limited predictive capability during ensemble 

modeling. Nevertheless, the 8th model is still better than these two-predictor models (5th-7th 

models in Figure 6) without coupling the SVM model, indicating the importance of optimal 

SVM model in this work. Similar conclusions can be draw from the case that only MLR, ELM, 

and FNN are considered for ensembles, as shown in Figure S5. 
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Figure 6. Comparisons among individual and ensemble models (green rectangles indicate activated 

individual models which participate in the ensembles; for example, the 8th model is MLR-SVM model 

which is developed by integrating MLR and SVM models). 

Moreover, the improvements of model ensembles are quantified by the difference between 

the individual model and corresponding ensemble model (i.e., RMSEindividual − RMSEensemble). 

From Figure 7, it is observed that almost all of these ensemble cases perform better than the 

individual cases, indicating the effectiveness of the ensemble learning in improving the model 

prediction performance. Ensembles on MLR model present the most significant improvements, 

because of its initial poor predictive accuracy which leaves much room to make progress. In 

contrast, the SVM individual model already shows high predictive accuracy, and therefore, its 

ensembles did not present significant progress. Nevertheless, model improvements are 

achieved by performing the model integration, demonstrating the superiority of ensemble 

learning assisted property predictive models. 
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Figure 7. Improvements on predictive models by deploying the ensemble learning. 

As the linear ensemble method is employed in this work, it is easy to gain an insight into 

ensemble learning from the contributions of individual models. Formulas for ensemble models 

(i.e., 5th-15th models in Figure 6) are provided in Formulas (15)-(25), respectively. 

 𝑓(𝑧) = 0.1880 ⋅ 𝑧𝑀𝐿𝑅 + 0.8277 ⋅ 𝑧𝐸𝐿𝑀 − 5.4894 (15) 

 𝑓(𝑧) = 0.0317 ⋅ 𝑧𝑀𝐿𝑅 + 0.9775 ⋅ 𝑧𝐹𝑁𝑁 − 3.2685 (16) 

 𝑓(𝑧) = 0.1300 ⋅ 𝑧𝐸𝐿𝑀 + 0.8794 ⋅ 𝑧𝐹𝑁𝑁 − 3.3163 (17) 

 𝑓(𝑧) = −0.0349 ⋅ 𝑧𝑀𝐿𝑅 + 1.0331 ⋅ 𝑧𝑆𝑉𝑀 + 0.7920 (18) 

 𝑓(𝑧) = 0.0794 ⋅ 𝑧𝐸𝐿𝑀 + 0.9238 ⋅ 𝑧𝑆𝑉𝑀 − 0.9680 (19) 

 𝑓(𝑧) = 0.6088 ⋅ 𝑧𝐹𝑁𝑁 + 0.3990 ⋅ 𝑧𝑆𝑉𝑀 − 2.6710 (20) 

 𝑓(𝑧) = 0.0144 ⋅ 𝑧𝑀𝐿𝑅 + 0.1248 ⋅ 𝑧𝐸𝐿𝑀 + 0.8715 ⋅ 𝑧𝐹𝑁𝑁 − 3.7414 (21) 

 𝑓(𝑧) = −0.0375 ⋅ 𝑧𝑀𝐿𝑅 + 0.0828 ⋅ 𝑧𝐸𝐿𝑀 + 0.9546 ⋅ 𝑧𝑆𝑉𝑀 + 0.1824 (22) 

 𝑓(𝑧) = −0.0306 ⋅ 𝑧𝑀𝐿𝑅 + 0.6076 ⋅ 𝑧𝐹𝑁𝑁 + 0.4281 ⋅ 𝑧𝑆𝑉𝑀 − 1.7034 (23) 

 𝑓(𝑧) = 0.0111 ⋅ 𝑧𝐸𝐿𝑀 + 0.6063 ⋅ 𝑧𝐹𝑁𝑁 + 0.3906 ⋅ 𝑧𝑆𝑉𝑀 − 2.7545 (24) 

 𝑓(𝑧) = −0.0311 ⋅ 𝑧𝑀𝐿𝑅 + 0.0142 ⋅ 𝑧𝐸𝐿𝑀 + 0.6044 ⋅ 𝑧𝐹𝑁𝑁 + 0.4178 ⋅ 𝑧𝑆𝑉𝑀 − 1.7949 (25) 

In most ensemble cases, the FNN and SVM model dominate the development of ensemble 

models indicated by their larger weights in linear combinations; while MLR and ELM models 

hold small weights, revealing their insignificant contributions to the ensemble modeling. 
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Moreover, it is noted that, in some cases, the weights for MLR and ELM models are negative, 

which means that they are mostly making predictive errors in the same direction as other 

models holding positive weights. Whereas, with regard to these ensemble models with all 

positive weights, they are mainly making predictions with error in different directions and 

achieving the collective-intelligence ensembles by offsetting errors with each other. For better 

understanding, examples are provided in Figure S6 to explain the same and different directions 

in terms of prediction errors. 

For these ensemble models integrated both FNN and SVM models (Formulas (20) and 

(23)-(25)), it is observed that the FNN model holds a larger weight (around 0.6) than the SVM 

model (around 0.4), which means that the FNN model is much important than the SVM model 

in these cases. However, as discussed in Sections 3.1 and 3.2, the SVM model performs better 

than the FNN model, which seems not consistent with the conclusion drawn from the weight 

values. The inconsistency is caused by their different performance quantified on the training 

and test sets, respectively. During the model development, both individual and ensemble 

models are built with the training data, and therefore, the larger weights in ensemble models 

directly show FNN’s better performance with regard to the training set. However, developed 

models need to be evaluated by the unseen data to quantify their performance in predictions. 

Thus, when evaluated by the test set, the SVM model performs better than the FNN model, 

demonstrating its better accuracy in applications. 

3.4 Comparison with existing models 

The representative individual models (i.e., FNN and SVM models) and ensemble model 

(i.e., FNN-SVM model) developed in this work are compared to other existing models for flash 

point predictions, as presented in Table 4. Hukkerikar et al.39 regressed a GC model for flash 

point prediction using a dataset containing 512 compounds. This GC model employed 93 first-

order groups, 62 second-order groups, and 16 third-order groups, presenting satisfactory 

accuracy with an MAE (mean average error) value of 8.97 and a MAPE (mean absolute 

percentage error) value of 2.8%. The FNN model proposed by Gharagheizi et al.40 was 

developed with 79 functional groups as molecular descriptors (displaying an MAE value of 
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8.101), while the FNN model developed in this work relies on fewer molecular descriptors (i.e., 

69 molecular substructures) showing a smaller MAE value of 7.4508. The SVM model 

proposed by Bagheri et al.41 was built with five descriptors derived from molecular structure. 

However, it exhibits inaccurate results with a large MAE value of 19.31, while the SVM model 

developed in this work shows a low MAE value of 6.7443. Therefore, our FNN and SVM 

models are competitive or significantly better than these existing models developed with the 

same learning algorithms. Furthermore, the FNN-SVM model integrated the FNN and SVM 

models further improved the model performance, which is also much better than the 

aforementioned existing models. Individual and ensemble ML models in this work would be 

more attractive and promising for flash point predictions. 

Table 4. Statistical metrics of developed and existing models on the whole dataset. 

Model Method N MAE (K) MAPE R2 

Hukkerikar et al.39 GC 512 8.97 2.8% 0.9671 

Gharagheizi et al.40 GC-FNN 1378 8.101 - 0.9757 

Bagheri et al.41 SVM 1651 19.31 5.94% 0.8850 

FNN model (this work) FNN 1732 7.4508 2.0867% 0.9756 

SVM model (this work) SVM 1732 7.1423 2.0716% 0.9743 

FNN-SVM model (this work) FNN, SVM 1732 6.7443 1.9095% 0.9790 

Moreover, the lower flammability limit (LFL), which is defined as the lowest 

concentration of a substance to form a flammable mixture with air, is also used to carry out 

safety-related properties predictions by the proposed ensemble learning workflow. To build the 

individual and ensemble models, hyper-parameter optimization, individual model development, 

and ensemble learning are performed on the LFL dataset containing 1728 data points derived 

from DIPPR 801 database35. More details on ML models for LFL predictions are provided in 

Figures S7-S9 and Table S7. In addition, ensemble learning on other types of properties is 

discussed in Pages S9-S10 and S18. 
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3.5 Model performance regarding molecular structure 

The predictive performance of the FNN-SVM ensemble model is further analyzed with 

regard to different functional-group-based organic compound families, as presented in Figure 

8. For Families A (aliphatic and aromatic hydrocarbons), B (alcohols and phenols), C 

(heterocyclic compounds), G (esters), H (aldehydes), and J (organic halogen compounds), R2 

values for both training and test sets are high (over 0.9500), indicating model’s reliable and 

accurate predictions for compounds located within those families. In contrast, the FNN-SVM 

model shows relatively low R2 values (below 0.9000) for training and test samples in Family 

E (carboxylic acids). Therefore, it should be noted that predictions could be less reliable when 

the FNN-SVM model is applied to carboxylic acid compounds. 

 

Figure 8. Sample occurrence and model performance regarding the family of organic compound (A: 

aliphatic and aromatic hydrocarbons; B: alcohols and phenols; C: heterocyclic compounds; D: amines; E: 

carboxylic acids; F: ketones; G: esters; H: aldehydes; I: ethers; J: organic halogen compounds; K: others). 

In some cases, due to the coexist of various functional groups, it could be hard to classify 

compounds into a definite family. Molecular features are used for model development in this 

work, and they are highly related to molecular structures. Therefore, a good alternative solution 

for organic compound classification can be performed on these molecular structure features. 

To determine the category of organic compounds, t-distributed stochastic neighbor embedding 

(t-SNE) is employed to reduce the dimensionality of structural features. In this way, the 
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compressed molecular features are visualized with a two-dimension (2D) embedded space. As 

shown in Figure 9, all investigated compounds are presented in the 2D space and they are 

colored according to prediction absolute errors. Data points with similar representation 

variables are concentrated closely, and thereby four groups are formed in the 2D space. For 

compounds located in Group 1, the FNN-SVM model presents a good predictive accuracy 

(with the RMSE of 8.4335 and R2 of 0.9857). While predictions for compounds in Group 3 

are relatively unreliable comparing with other groups. Therefore, prediction reliability on new 

samples can be evaluated by their located groups, which are determined by dimensionality 

reduction on their structural features. 

 

Figure 9. Visualization of chemical compounds in a 2D space, with colors indicating the absolute error of 

prediction. t-SNE_1 and t-SNE_2 represent two dimensions of the embedded space reorganized into the 

range [0,1] using the min-max normalization. 

4 Conclusions 

In this research, ensemble models are deployed on heterogeneous ML algorithms including 

MLR, ELM, FNN, and SVM. Relying on the case of flash point for chemical substances, 

individual and ensemble ML models are developed with molecular structure-related descriptors. 

Among individual models, the SVM model presents the best predictive accuracy. Regarding 
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ensemble models, they effectively improve the predictive accuracy due to their lower RMSE 

values than corresponding individual models. Demonstrated by analyses among individual and 

ensemble models, developing an excellent individual model should take priority, followed by 

ensemble learning to integrate heterogeneous ML models. Briefly speaking, this research 

proves that stacking-based ensemble learning is a good choice for ML practitioners to develop 

models with enhanced predictive accuracy, and guidance for high-efficient development of 

ensemble-based predictive models is extracted from comprehensive investigations on flash 

point. 

Individual and ensemble ML models in this work can be further used in computer-aided 

molecular design frameworks to improve the reliability of design procedures in terms of 

property pre-evaluation. Moreover, the workflow including data processing, feature extraction, 

predictive modeling, and ensemble learning can be further popularized to other types of 

properties of interest. Although the proposed FNN and SVM models presented higher accuracy 

than existing models, the limited predictive capacity of MLR and ELM models hindered the 

improvement of ensemble models. To overcome this limitation, exploring other promising ML 

algorithms to discover better models as alternatives could be a practical solution. Moreover, 

another interesting idea is to perform ensemble learning using a hybrid approach that combines 

bagging and stacking methods (i.e., integrating homogenous and heterogeneous ML 

algorithms), as the stacking method focuses on predictive accuracy while the bagging method 

pays more attention to the reduction of variance. 
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